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Summary

Fixed effects meta analysis can be thought of as least squares analysis of the radial
plot, the plot of standardized treatment effect against precision (reciprocal of the standard
deviation) for the studies in a systematic review. For example, the least squares slope
through the origin estimates the treatment effect, and a widely used test for publication
bias is equivalent to testing the significance of the regression intercept. However, the usual
theory assumes that the within-study variances are known, whereas in practice they are
estimated. This leads to extra variability in the points of the radial plot which can lead to a
marked distortion in inferences derived from these regression calculations. This is illustrated
by a clinical trials example from the Cochrane Database. We derive approximations to the
sampling properties of the radial plot and suggest bias corrections to some of the commonly
used methods of meta analysis. A simulation study suggests that these bias corrections are
effective in controlling significance levels of tests and coverage of confidence intervals.
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1 Introduction and example

The standard fixed effects model in meta analysis is that we have k separate studies, each
reporting an estimate θ̂ of a common parameter θ. Each estimate (typically a treatment
effect) is assumed to be independent and normally distributed

θ̂ ∼ N(θ,
σ2

n
), (1)

where n is the sample size and σ2 an underlying variance parameter. Note that θ is common
(the fixed effects assumption) but n and σ2 will usually vary across the studies. Given
(θ̂i, σ

2
i , ni) for the k studies, the maximum likelihood estimate of θ, and its variance, are

θ̃ =

∑

niσ
−2
i θ̂i

∑

niσ
−2
i

, σ2
θ̃

=
1

∑

niσ
−2
i

. (2)

Confidence intervals and tests for θ are based on the fact that

Z1 = (
∑

niσ
−2
i )

1

2 (θ̃ − θ) (3)

has a standard normal distribution.
A good way of looking at (θ̂i, σ

2
i , ni) in a meta analysis is to plot the data as a Radial

Plot (Galbraith, 1988). This plots the standardized treatment effect against the precision
(one over the standard error) of each study, or y against x where

y =
θ̂
√

n

σ
and x =

√
n

σ
. (4)

In terms of the radial plot, (1) is the linear regression model

y = α + θx + ǫ, (5)

where α = 0 and ǫ is a standard normal residual. Thus, if the model is correct, the plot of
standardized effects against study precision should be a straight line radiating out from the
origin, with slope equal to the true value of θ and known residual variance equal to one.
Further, θ̃ is just the slope of the least squares line through the origin, so (2) and (3) are
the familiar regression calculations

θ̃ =
sxy

sxx

, σ2
θ̃

=
1

ksxx

, Z1 = (ksxx)
1

2 (θ̃ − θ) .

In this and throughout the paper we use the generic notation, for any k pairs of numbers
(ai, bi),

sab =
1

k

∑

i

aibi , cab =
1

k

∑

i

(ai − ā)(bi − b̄) .

See Sutton et al. (2000) for a good general introduction to meta analysis and radial plots.
For reasons that will become clear later, we have used a slightly different notation from

that usually used in meta analysis. By defining the variance of θ̂ to be σ2/n rather than
simply σ2, we are making explicit the role of the within-study sample sizes.
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As the motivating example for this paper, Table 1 reports the results of 11 clinical trials
into the effectiveness of iron supplementation in pregnancy. This example comes from the
Cochrane database (Pena-Rosas and Viteri, 2006; Schwarzer et al., 2007). The entries in
Table 1 are observed frequencies, for example in the first trial the number of adverse events
(low haemoglobin level in late pregnancy) was 0 out of 30 patients on treatment (f1 out of
m1) and 14 out of 25 patients on control (f2 out of m2). The data clearly suggest that iron
supplementation has a very strong beneficial effect. If θ is the underlying log odds ratio
measuring the treatment effect, then for each study the usual estimate of θ is

θ̂ = log

{

(f1 + 0.5)(m2 − f2 + 0.5)

(m1 − f1 + 0.5)(f2 + 0.5)

}

, (6)

with variance σ2 taken to be

σ̂2 = n

(

1

f1 + 0.5
+

1

m1 − f1 + 0.5
+

1

f2 + 0.5
+

1

m2 − f2 + 0.5

)

, (7)

where n is the total study sample size n = m1 +m2. In these calculations we have followed
the standard convention of adding 0.5 onto each frequency to improve bias and avoid prob-
lems with sparse data. Substituting these values into (2) gives the meta analysis estimate
of θ to be θ̃ = −1.906 with standard error σθ̃ = 0.191.

To visualize the model, Figure 1 shows the radial plot for these data. The fit of the
fixed effects model is confirmed by the three parallel straight lines drawn on this graph,
y = −1.906x (solid line) and y = −1.906x ± 1.96 (dotted lines). Ten out of the eleven
points lie between the outer lines, consistent with the point-wise 95% coverage probabilities
implied by (5).

Trial f1 m1 f2 m2 n
1 0 30 14 25 55
2 0 100 10 107 207
3 2 81 25 84 165
4 17 90 54 95 185
5 7 99 20 98 197
6 1 22 7 23 45
7 3 60 20 60 120
8 4 55 17 54 109
9 3 80 6 44 124
10 1 94 23 55 149
11 0 48 16 42 90

Table 1. Iron supplementation meta analysis.

Although the radial plot suggests a reasonable fit of the model, we know that the model
cannot be exactly correct because we have ignored the fact that (7) is merely an estimate
and not the true variance of each study. As mentioned, the validity of the usual analysis
depends on the distribution of Z1 being standard normal. We can check this by estimating
the actual distribution of Z1 through a bootstrap simulation. To do this, we take the
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estimate θ̃ = −1.906 as if it was the true value of θ, and estimate the probabilities (p1, p2)
for the two arms of each trial so that they have −1.906 as their common log-odds ratio
(details of how to do this will be discussed later in Section 3). We then simulate sets of 2×2
tables by generating random observations from the binomial distributions f1 ∼ bin(m1, p1)
and f2 ∼ bin(m2, p2). Each set of tables gives a new estimate θ̃ and hence a value of Z1 with
θ = −1.906. The dashed line in Figure 2 shows the kernel density estimate of Z1 based on
10, 000 simulations. This is clearly different from the nominal standard normal distribution
shown as the solid line. The distortion is a substantial shift to the right. The fact that
the variance stays about the same suggests that for valid confidence intervals we should
adjust the value Z1 with a bias correction before assuming it is standard normal. The
vertical dotted line in Figure 2 indicates the value of E(Z1) calculated from the asymptotic
formula to be developed later in Sections 2 and 3. We see that subtracting this bias from
Z1 successfully restores the distribution to N(0, 1), at least approximately. The object of
our paper is to show how we can improve meta analysis calculations by developing bias
corrections of this kind. We will return to this example again in Section 3.

Other standard methods in meta analysis can also be reduced to regression-like calcu-
lations on the radial plot. The residual sum of squares from the least squares line through
the origin,

Q = ksyy −
ks2

xy

sxx
=
∑

i

ni

σ2
i

(θ̂i − θ̃)2 , (8)

is just the usual “Q-statistic” for testing heterogeneity between the studies. Under the
fixed effects model (1), Q is chi-squared on (k − 1) degrees of freedom. A large value of Q
indicates that there are systematic differences between the studies — the usual approach is
then to use Q to estimate the random effects variance in a random effects model (Sutton et

al., 2000, section 5.2). The model assertion that the intercept of the radial plot is zero can
also be tested, by fitting an unconstrained least squares line to the radial plot and testing
its intercept to give the test statistic

Z2 =

(

kcxx

sxx

)
1

2

(ȳ − θ̆x̄) , θ̆ =
cxy

cxx
. (9)

Under the model, Z2 is standard normal. Testing Z2 is equivalent to the “Egger test”,
widely used in meta analysis to test for publication bias or a “small study effect” (Egger
et al., 1997). Finally, testing significance of the slope θ̆ of the unconstrained least squares
line provides another way of testing the treatment effect (that θ 6= 0). Under the model (1)
this is less powerful than the test based on Z1, but Copas and Malley (2008) show that it
is much more robust to publication bias. This gives the robust test statistic

Z3 = (kcxx)
1

2 θ̆ , (10)

again standard normal under the model.
The example has already highlighted the main cause of bias, that in practice we have to

use estimates σ̂2 instead of the true study-specific variances σ2 when plotting radial plots
and calculating these various quantities. So from now on we replace (4) by

y =
θ̂
√

n

σ̂
and x =

√
n

σ̂
. (11)
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Replacing σ by σ̂ in x and y upsets the assumptions necessary for the linear regression (5).
The stochastic error in x may lead to bias in the parameter estimates, and the variability in
σ̂ may also induce a within-study correlation between x and y. Both effects mean that the
distributions stated for Z1, Q, Z2 and Z3 are no longer valid. Although this problem has
been widely acknowledged, little work seems to have been done to explore its consequences.
An exception is the Egger test, where several recent simulation studies (Macaskill et al.,
2001; Schwarzer et al., 2002; Peters et al., 2006; Harbord et al., 2006) have shown that the
true significance level can be substantially inflated, meaning that the test rejects the null
hypothesis more often than it should.

In Section 2 of this paper we study the distribution of x and y in (11) and give asymptotic
approximations to some of the sampling properties of the radial plot, asymptotic in the sense
that the study-specific sample sizes are large. This leads in Section 3 to bias corrections
to the various statistics listed above, and hence to improved control of significance levels of
tests and coverage of confidence intervals. We also return to the example in Section 3, and
then report the results of a simulation study in Section 4. Brief comments and conclusions
are listed in Section 5. The Appendix outlines the derivation of some of the formulae used
in Sections 2 and 3.

2 Asymptotic theory of radial plots

Since there are k different sample sizes ni in a meta analysis, we first need to be clear what
we mean by “asymptotic”. The accuracy of the approximations developed below are stated
in terms of the overall sample size N =

∑k
1 ni, assuming that the proportional sample sizes

ni/N are fixed. Our numerical results suggest that in practice these approximations will
be useful provided that the sample sizes in the majority of studies are not too small.

Properties of the radial plot coordinates x and y in (11) depend on the statistical
properties of θ̂ and σ̂2, and hence on the type and design of the studies being combined in
the meta analysis. We show in the Appendix that there are three important quantities for
each study:

a =
( n

Nσ2

)
1

2

, b = E

{

(nN)
1

2 (θ̂ − θ)

σ̂

}

, d = E

{

n(θ̂ − θ)(σ̂ − σ)

σσ̂2

}

. (12)

The quantity a is defined directly in terms of n and σ2. Two special cases of interest for b
and d are:

Special case 1: normal data. If, in each study, θ̂ is the sample mean of a random sample
of size n from N(θ, σ2) and σ̂2 is the sample variance, then θ̂ and σ̂2 are independent
and so b = d = 0.

Special case 2: 2×2 table. Here we assume we have two treatments and a binary response,
as in the data of Table 1 for example, so the data for each study take the form of
two independent binomial distributions f1 ∼ bin(m1, p1) and f2 ∼ bin(m2, p2). Each
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study gives an estimated log-odds ratio θ̂ in (6) with estimated variance σ̂2 in (7).
The corresponding study parameters are

θ = log
p1(1 − p2)

(1 − p1)p2
and σ2 = γ1 + γ2 , (13)

where
γj =

n

mjpj(1 − pj)
; j = 1, 2. (14)

In this case, θ̂ and σ̂2 can be substantially correlated, and we show in Appendix A2
that for large n,

b = −d

a
, d =

γ2
2(1 − 2p2) − γ2

1(1 − 2p1)

2(γ1 + γ2)2
. (15)

With estimated within-study variances, θ̃ is no longer an unbiased estimate of θ, but has
a bias of order O(N−1). This means that if N is large the bias in θ̃ is small compared to its

standard error which is of order O(N−

1

2 ). Similarly, it turns out that E(Q) = k−1+O(N−1).
However, for tests and confidence intervals we need the quantities Z1, Z2, Z3, and each of
these has a bias of order O(N−

1

2 ). The size of the bias depends on the values of (a, b, d) in
each study. Explicitly, we show in Appendix A3 that

E(Zj) = AjN
−

1

2 + O(N−1) ; j = 1, 2, 3 , (16)

where

A1 =

(

k

saa

)
1

2

{

sab − d̄ +
sa2d

ksaa

}

, (17)

A2 =

(

k

caas3
aa

)
1

2

×
[

saa(caab̄ − cabā) − 1

k

{

cad(2ā
2 − saa) − (k − 2)saaād̄ − āc(a−ā)2d

caa

(2saa − ā2)

}]

, (18)

and

A3 =

(

k

caa

)
1

2

{

cab −
(

1 − 2

k

)

d̄ +
c(a−ā)2d

kcaa

}

. (19)

Note that the study-specific values (a, b, d) enter into the bias terms through the averages
and average squares and products ā, saa, sab etc.

3 Bias corrections

We show in Appendix A3 that

Var(Zj) = 1 + O(N−1) ; j = 1, 2, 3 . (20)

Comparing this with (16) we see that for large N the shift in the distribution of Zj is in
the mean rather than the variance. This confirms the impression from Figure 2, which
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compared an estimate of the density of Z1 in the medical example with the density of the
standard normal.

If we ignore terms of order O(N−1) but allow for the bias in Z1 of order O(N−

1

2 ), a
normal approximation for Z1 gives the adjusted confidence interval for θ with limits

θ̃ − (ksxx)
−

1

2{Â1N
−

1

2 ± zα} , (21)

where Â1 is an estimate of A1 in (17) and zα is the standard normal percentage point needed
to achieve the desired coverage (1 − α). The conventional confidence interval is just (21)
with the bias term omitted. The analogous two-sided P-value for treatment effect is

P = 2Φ{−|(ksxx)
1

2 θ̃ − Â1N
−

1

2 |} , (22)

where Φ is the standard normal cumulative distribution function. Similarly, the adjusted
two-sided P-values for tests based on Z2 and Z3 are

2Φ{−|Z2 − Â2N
−

1

2 |} and 2Φ{−|Z3 − Â3N
−

1

2 |} . (23)

To implement these adjustments we have to estimate A1, A2 and A3 using (17), (18) and
(19). Again these depend on the nature of the studies being combined.

Special case 1: normal data. Here b = d = 0 for all studies, so all three quantities Aj are
zero. No bias corrections are needed in this case. Of course the procedures are still
biased, but the biases are of a lower order of magnitude.

Special case 2: 2 × 2 tables. From (12) and (13),

a =

√

n

N(γ1 + γ2)
. (24)

This, together with (15), shows that (a, b, d) can all be written as functions of the
values of (γ1, γ2) and hence of (p1, p2) in the k studies. To estimate (p1, p2) we should
exploit the fixed effects assumption, that the pairs (p1, p2) are related through a
common log-odds ratio. The constrained maximum likelihood estimates of p1 and p2

given that

Θ(p1, p2) = log
p1(1 − p2)

(1 − p1)p2

= θ̃

are

p1(λ) =
f1 + λ + 0.5

m1 + 1
and p2(λ) =

f2 − λ + 0.5

m2 + 1
, (25)

where λ is a Lagrange multiplier given by solving the quadratic equation

Θ{p1(λ), p2(λ)} = θ̃ . (26)

For consistency with the earlier definitions of x and y, we have again added one half
onto all of the observed frequencies in these calculations. By examining the function
Θ(p1, p2) it is easy to check that (26) has two real solutions and that it is the larger
solution for λ which gives values of p1 and p2 in [0, 1]. Thus, to estimate (a, b, d)
for each study, we find λ from (26), (p1, p2) from (25), (γ1, γ2) from (14) and hence
(a, b, d) from (24) and (15).
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Since the special case of 2×2 tables is the most commonly occurring example in medical
applications, we now set out these calculation more explicitly. We have k studies each with
data f1 ∼ bin(m1, p1) and f2 ∼ bin(m2, p2). The steps are

• First calculate the study-specific estimates (θ̂, σ̂2) in (6) and (7), and hence the usual
radial plot co-ordinates (x, y) in (11) and the radial plot regression statistics of inter-
est.

• Let η = exp(θ̃). If η 6= 1, calculate the Lagrange multipliers

λ = {2(1 − η)}−1 [−{f1 + m2 − f2 + 1 + η(f2 + m1 − f1 + 1)}
+

{

{f1 + f2 − m2 + η(m1 − f1 − f2)}2 + 4η(m1 + 1)(m2 + 1)
}

1

2

]

,

and hence each study’s estimate of (p1, p2) in (25). If η = 1 (no treatment effect) then
we simply take p̂1 = p̂2 = (f1 + f2 + 1)/(m1 + m2 + 2). We can now calculate the
estimates (γ̂1, γ̂2) from (14) and hence the following three quantities for each study:

â =

√

n

N(γ̂1 + γ̂2)
, d̂ =

γ̂2
2(1 − 2p̂2) − γ̂2

1(1 − 2p̂1)

2(γ̂1 + γ̂2)2
, b̂ = − d̂

â
.

• Calculate the average values across the k studies of the quantities (â, b̂, d̂, â2, (â− ¯̂a)2)
and the empirical mean squares and covariances needed to find Â1, Â2 or Â3 from
(17), (18) or (19). These give the bias corrections for the tests or confidence intervals
specified in (21), (22) and (23).

To illustrate these calculations we return to the medical example mentioned in
Section 1, with data set out in Table 1. First we fit the fixed effects model to the observed
2 × 2 tables by estimating (p1, p2) as explained above, and hence calculate estimates of
(a, b, d) for each study, and hence the bias corrections for Z1 and Z2. The null hypothesis
being tested by Z3 is H0 : θ = 0, and so to estimate the bias correction for Z3 we fit the
null model instead (η = 1 in the above notation). The results are as follows:

Confidence interval for θ. The conventional estimate of the log-odds ratio is θ̃ = −1.906
with standard error 0.191. This gives the usual 95% confidence interval

−1.906 ± 1.96 × 0.191 = (−2.280,−1.532).

The bias estimate Â1N
−

1

2 is +0.879 giving the corrected confidence interval

−1.906 − 0.191 × (0.879 ± 1.96) = (−2.447,−1.700).

In this case θ̃ is sufficiently accurate that the bias correction results in only a small shift
in the interval, but the coverage properties of the conventional interval would be very poor
(the bootstrap distribution in Figure 2 suggests that the actual coverage would be nearer
85% than 95%).
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Intercept test for publication bias. The value of (9) is Z2 = −2.844 giving the con-
ventional P-value as P = 0.004, highly significant evidence for publication bias. The bias
estimate Â2N

−

1

2 is −0.927, and so the bias adjusted P-value in (23) is P = 0.055, suggest-
ing that the real evidence is substantially weaker than the naive analysis suggests. This
agrees with the analysis of this example in Schwarzer et al. (2007), who also conclude
that the evidence for publication bias provided by the conventional intercept test is much
exaggerated.

Unconstrained test of treatment effect. The evidence for a non-zero treatment effect is
extremely strong when judged by the confidence intervals discussed above, with or without
the bias correction on Z1. However the intercept test raises doubts about publication bias,
even with the bias correction on Z2 the P-value only just exceeds 5%. It is well known that
if there is a selection effect in meta analysis then to ignore it can be extremely misleading.
Thus, following Copas and Malley (2008), it might be thought safer in this case to allow
for the possibility of a selection effect, and use the robust test based on Z3. The value of
(10) comes to Z3 = −1.698, giving a nominal P-value of P = 0.090: the evidence for the

treatment effect is now much weaker. The bias correction Â3N
−

1

2 is −0.0818, adjusting the
P-value in (23) to P = 0.106. In this case the bias correction to Z3 is unimportant, but
allowing for publication bias has been catastrophic as far as the conclusion of this particular
meta analysis is concerned.

4 Simulation study

In this section we give a very brief summary of some simulation results exploring the accu-
racy of our approximations. We only report results here for the special case of 2× 2 tables,
and for perhaps the two most common tasks in meta analysis, confidence intervals and
P-values for θ, and the intercept (Egger) test for publication bias. Clearly it is impossible
to cover all possibilities: we illustrate our results by looking at the distributions of Z1 and
Z2 in a few representative cases, and suggest some qualitative conclusions.

For Figures 3 and 4, and Table 2, we have taken k = 50, generated random sample sizes
m1 and m2 uniformly between 150 and 300, and defined pE , the average of p1 and p2 on the
logit scale, to be 0.3. For any true value of θ we can then generate random 2×2 tables, and
for each set of tables calculate the statistics of interest and estimate their bias corrections
as set out in Section 3. The simulations are repeated 100, 000 times.

Figure 3 looks at Z1 with θ = log(0.2) and shows kernel density estimates of the distri-

bution of Z1, and of the bias corrected version Z1−Â1N
−

1

2 . The distribution of Z1−Â1N
−

1

2

is virtually indistinguishable from the standard normal, but the distribution of Z1 is no-
ticeably shifted to the right, in the same direction as the bias noted earlier for the example
in Figure 2. In Figure 3, the estimates of E(Z1) have been very effective at removing the
bias.

Figure 4 takes θ = log(0.5) and shows kernel density estimates of the distribution of Z2

and of the bias corrected version Z2 − Â2N
−

1

2 . Here there is an even larger shift, this time
to the left, but again the distribution of Z2 − Â2N

−

1

2 is virtually indistinguishable from the

9
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standard normal.
The short vertical lines on these figures indicate the 5th and 95th percentiles of the stan-

dard normal distribution. Thus the areas to each side of these lines indicate the actual sig-
nificance levels of tests based on Z1 and Z2, or equivalently the actual coverage of confidence
intervals based on Z1. The results are summarized in Table 2 for θ = log(0.67), log(0.5) and
log(0.2). For the cases shown, the distortion in significance levels is particulary severe for
the intercept test Z2, these figures being in line with the findings of Macaskill et al. (2001),
Schwarzer et al. (2002), Peters et al. (2006) and Harbord et al. (2006). In all rows of the
table, bias is indicated by an imbalance between the left and right tail error rates.

Radial plot methods apply to meta analysis problems rather generally, but for the
specific case of 2 × 2 tables other methods are also available, notably the Mantel-Haenszel
estimate (Mantel and Haenszel, 1959; Mantel, 1963). This estimate works directly on odds
ratios without the logarithmic transformation, and so is not a function of the radial plot
as defined here. For completeness we have included in Table 2 the analogous results for
the Mantel-Haenszel method, using the analogue of Z1 for the logarithm of the Mantel-
Haenszel estimate and the variance estimate of Robins et al. (1986). For the intercept test
(Egger test) based on Z2, we can also compare our results with the recently proposed test
of Harbord et al. (2006). Again their test is specific to the 2× 2 case and is not a function
of the radial plot. In Table 2 we include error rates for the Harbord et al. test statistic in
place of Z2.

θ statistic left tail % right tail % significance level %
log(0.67) Z1 3.71 6.21 9.91

Mantel-Haenszel 4.06 5.96 10.02

Z1 − Â1N
−

1

2 4.98 5.06 10.03
Z2 20.62 0.72 21.35

Harbord et al. 4.85 5.10 9.95

Z2 − Â2N
−

1

2 4.99 5.20 10.19
log(0.5) Z1 3.19 7.11 10.30

Mantel-Haenszel 3.59 6.59 10.18

Z1 − Â1N
−

1

2 5.01 4.89 9.90
Z2 38.22 0.12 38.34

Harbord et al. 5.04 5.06 10.10

Z2 − Â2N
−

1

2 4.48 5.14 9.62
log(0.2) Z1 1.64 11.85 13.49

Mantel-Haenszel 2.30 9.91 12.21

Z1 − Â1N
−

1

2 4.97 5.18 10.14
Z2 88.12 0 88.12

Harbord et al. 7.63 2.50 10.13

Z2 − Â2N
−

1

2 1.88 6.89 8.77

Table 2. Error rates for nominal 10% (two-sided) and 5% (one-sided) confidence intervals
and tests.

These simulations, plus more extensive results covering other configurations, suggest
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some tentative conclusions about how the biases of Z1, Z2 and Z3 depend on the particular
characteristics of the meta analysis. We find:

• bias tends to increase with k, the number of studies

• bias tends to increase with |θ| (the stronger the treatment effect)

• bias tends to increase as the average response probability pE becomes more extreme
(nearer 0 or 1)

• bias tends to decrease as the sample sizes m1 and m2 increase

• bias tends to increase as the trials become more unbalanced (m1 different from m2)

• bias is relatively insensitive to variations in p1 and p2 between trials (trials have the
same value of θ but different values of pE)

• on the whole, bias is more marked for the intercept test Z2 than for the tests or
confidence intervals based on Z1 and Z3

• the accuracy of the bias estimates deteriorates as the data become more sparse (m1

and p1, or m2 and p2, both small). These are cases, however, where bias can be
particularly severe, but the bias corrections can still be worthwhile in the sense of
being less misleading than the conventional statistics (this is clearly shown in the last
part of Table 2 where the Z2 test is grossly misleading: at this setting there are likely
to be several zeros in the data).

Table 2 suggests that the Mantel-Haenszel method suffers a bias rather similar to that
of Z1, suggesting that a bias correction to this estimate would also be useful. Table 2 also
shows (at least for the cases considered) that the test of Harbord et al. (2006) is effective
in reducing the bias of the Egger test. At more extreme values of θ, seen in the last part
of Table 2, there is a tendency for Harbord et al. to under-correct, and for Z2 − Â2N

−

1

2 to
over-correct, for this bias, although the (two-tail) significance levels are quite similar (and
dramatically better than the significance level of Z2).

5 Conclusions and comments

1. The variance-weighted estimate θ̃ in (2), widely used in meta analysis, can be thought
of as the slope of a linear regression through the origin of the radial plot (plot of standardized
treatment effects against one over their standard errors). Tests and confidence intervals for
θ based on θ̃, as well as a number of other meta analysis tasks, can similarly be reduced
to regression-like calculations on the radial plot. Under the naive assumption that within-
study variances are known, statistical properties of methods of meta analysis then follow
immediately from those of standard linear regression. However, using estimated within-
study variances means that the radial plot no longer satisfies the usual assumptions of linear
regression, leading to a bias in θ̃ and related inferences. We have suggested a rather general

11



CRiSM Paper No. 09-02, www.warwick.ac.uk/go/crism

setting for investigating and correcting for these biases. At least for the cases discussed
above, these biases can be quite substantial. Provided |θ|, the size of the treatment effect,
is not too large, the bias corrections proposed here seem effective and will be useful in
practice.

2. The bias corrections in Section 3 depend on the quantities (a, b, d) for each study,
and hence on the statistical properties of the studies being combined. We have evaluated
these explicitly for the case of normally distributed observations and for the case of 2 × 2
tables. However, meta analysis is used much more widely, for example the case of estimated
log hazard ratios in survival studies would also be of interest. Insight into the statistical
properties of (θ̂, σ̂2) is needed for estimating (a, b, d) and so is a pre-requisite for estimating
bias corrections for the resulting meta analysis.

3. We have referred to Z2 as the intercept test rather than the Egger test, to make the
technical distinction that Z2 uses the fact that the residual variance of the radial plot under
the fixed effects model is known to be one, whereas the Egger test often uses the estimated
residual mean square as in standard regression analysis. Although less efficient than Z2

under the fixed effects model, using the observed residual mean square has the advantage
of being more robust to heterogeneity between the studies.

4. For completeness we have also included the Mantel-Haenszel and Harbord et al.

methods in Table 2 since these are also available in the special case of 2×2 tables. There is
a large literature on the Mantel-Haenszel estimate and how it compares with the variance-
weighted approach, see Sutton et al. (2000, section 4.3.5) for a summary. The consensus
in most of this literature is that Mantel-Haenszel is better if there is a large number of
small studies, but θ̃ is better for a small number of large studies. It is unclear how these
conclusions would be affected if bias corrections were introduced. The test proposed by
Harbord et al. (2006) is just one of several other recently proposed improvements to the
Egger test (Macaskill et al., 2001; Peters et al., 2006; Rücker et al., 2008; Schwarzer et al.,
2007). These may be effective (and simpler) alternatives to using the bias correction for
Z2, but their comparative properties have yet to be fully evaluated.

5. We have assumed the fixed effects model throughout. The usual practice is to test
this assumption by calculating Q in (8) and if this is significant as χ2 on (k − 1) degrees of
freedom to estimate a between-studies variance τ 2 and use the random effects model instead
(Sutton et al., 2000, section 5.2). Essentially, this is equivalent to redefining the radial plot
coordinates by replacing σ2/n by τ 2 + σ2/n. The conventional calculations of θ̃ and Z1

take exactly the same form, but the bias E(Z1) will change. Simulations suggest that when
τ 2 is small the size of this bias is quite similar, but we have no theory to back this up.
To fully rework the theory of Section 2 for the random effects model would be much more
challenging, as estimates of τ 2 depend on all the data and not just on the individual points
in the radial plot. The literature shows that allowing for the uncertainty in τ̂ 2, especially
with the truncation usually used to avoid negative variance estimates, is difficult enough
without adding the complication of uncertainty in the σ̂2

i ’s.
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6. The bias formulae for the case of 2×2 tables simplify for two special (but important)
cases, when the two arms of each trial are balanced (m1 = m2 in all trials), and for the
null hypothesis H0 (p1 = p2 in all trials). If both of these hold (balanced trials with no
treatment effect), the biases are all zero since d = 0 in (15). In particular, both Z1 and Z3

provide approximately unbiased tests for the significance of the overall treatment effect in
the important case of balanced clinical trials, when no bias corrections are needed.
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Appendix

Here is an outline of the derivation of some of the formulae quoted in Section 2 and 3:

A1 : Approximations for a single study

Model (1) states that θ̂ is asymptotically N(θ, σ2/n); first we extend this to suppose that
(θ̂, σ̂2) is asymptotically jointly normal with mean (θ, σ2). We assume that the biases in both
estimates are of order O(n−1), that Var(θ̂) = σ2/n + O(n−2), and that Var(σ̂2) = O(n−1).
These are standard properties of maximum likelihood estimates; in practice they will hold
for any ‘sensible’ estimates of θ and σ2.

Now define

u = x−
√

n

σ
=

√
n

(

1

σ̂
− 1

σ

)

, v = y − θ
√

n

σ
=

√
n

(

θ̂

σ̂
− θ

σ

)

, w = v − θu =
(θ̂ − θ)

√
n

σ̂
.

(27)
Then

b = N
1

2 E(w) and d = −E(uw) ,

both of which are of order O(1) as N → ∞. Also as a consequence of the above assumptions
we have

E(u) = O(n−

1

2 ) , Var(w) = 1 + O(n−1) and Cov(w, uw) = O(n−

1

2 ). (28)

A2 : Special case 2: 2 × 2 table

First consider the case of a single binomial distribution, with observed frequency
f ∼ bin(m, p), say. Let z be the asymptotic (large m) standard normal deviate correspond-
ing to f , that is

z =
f − mp
√

m/γ
and γ =

1

p(1 − p)
.
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Then after some tedious but straightforward algebra we find

log
f + 1

2

m − f + 1
2

= log
p

1 − p
+ γ

1

2 zm−

1

2 +
1

2
γ(1 − 2p)(1 − z2)m−1 + Op(m

−3/2), (29)

m + 1

(f + 1
2
)(m − f + 1

2
)

= γm−1 − γ3/2(1 − 2p)zm−3/2 + Op(m
−2). (30)

Now extend this to two binomial distributions f1 ∼ bin(m1, p1) and f2 ∼ bin(m2, p2),
with n = m1 + m2 and (θ̂, σ̂2) defined in (6) and (7). We use (29) and (30) to expand θ̂

and σ̂2 in powers of n−

1

2 and in terms of two independent standard normal deviates z1 and
z2. With (14) this leads to

u =
1

2
(γ1 + γ2)

−3/2{γ3/2
1 (1 − 2p1)z1 + γ

3/2
2 (1 − 2p2)z2} + Op(n

−

1

2 ),

and

w = (γ1 + γ2)
−

1

2 (γ
1

2

1 z1 − γ
1

2

2 z2) +
1

2
n−

1

2

[

2u(γ
1

2

1 z1 − γ
1

2

2 z2)

+ (γ1 + γ2)
−

1

2{γ1(1 − 2p1)(1 − z2
1) − γ2(1 − 2p2)(1 − z2

2)}
]

+ Op(n
−1).

which in turn lead to (15).

A3 : Approximations for radial plot statistics

From (27) and (12) we get

x =

√
n

σ̂
= aN

1

2 + u and y =
θ̂
√

n

σ̂
= aθN

1

2 + v .

Hence

sxx = Nsaa + 2N
1

2 sau + suu ,

sxy = θNsaa + N
1

2 (sav + θsau) + suv

= θsxx + N
1

2 saw + suw .

These lead to

θ̃ = θ +
saw

saa
N−

1

2 + Op(N
−1) (31)

Z1 =

(

k

saa

)
1

2

{

saw +

(

suw − sawsau

saa

)

N−

1

2

}

+ Op(N
−1) (32)

Q = k

{

sww − s2
wa

saa
− 2swa

s2
aa

(saasuw − sausaw)N−

1

2

}

+ Op(N
−1) . (33)

The expectations of the random quantities appearing in (31) to (33) are

E(saw) = sabN
−

1

2 + O(N−1), E(suw) = −d̄ + O(N−

1

2 ), E(sausaw) = −k−1sa2d + O(N−

1

2 ),
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and
E(sww) = 1 + O(N−1), E(s2

wa) = k−1saa + O(N−1) .

These lead to E(θ̃) = θ + O(N−1) , E(Q) = k − 1 + O(N−1), and (17).
The analogous expressions for cxx and cxy are essentially the same but with the obvious

replacement of terms like saa with caa. Reworking these calculations for Z3 leads to (19).
For Z2 we find

ȳ − θ̆x̄ = w̄ − cawā

caa
−
{

cawū

caa
+

ā(cuwcaa − 2cawcau)

c2
aa

}

N−

1

2 + Op(N
−1) ,

which leads to (18).
Finally, from (32) we have

Var(Z1) =

(

k

saa

)

(

Var(saw) + 2N−

1

2 Cov(saw, B)
)

+ O(N−1),

where B is the factor multiplying N−

1

2 in (32). But B can be written as a linear combination
of products of the form uiwj, and so from (28) we get

Var(saw) =
saa

k
+ O(N−1) and Cov(saw, B) = O(N−

1

2 ).

Equation (20) follows for j = 1, and similarly for j = 2, 3.
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Captions for tables and figures

Table 1. Iron supplementation meta analysis.
Table 2. Error rates of Z1 and Z2 for nominal 10% (two-sided) and 5% (one-sided)

confidence intervals and tests.
Figure 1. Radial plot for iron supplementation meta analysis.
Figure 2. Distribution of Z1 for iron supplementation meta analysis.
Figure 3. Simulation study: distribution of Z1.
Figure 4. Simulation study: distribution of Z2.
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Figure 1: Radial plot for iron supplementation meta analysis.
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Figure 2: Distribution of Z1 for iron supplementation meta analysis.
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Figure 3: Simulation study: distribution of Z1.
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Figure 4: Simulation study: distribution of Z2.
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