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Abstract

We consider the analysis of data from the MRC Multicentre Trial for Early
Epilepsy and Single Seizures (MESS), which was undertaken to assess the dif-
ferences between two policies: immediate, or deferred treatment for patients
in early epilepsy. In studies of recurrent events, like epileptic seizures, there is
typically lots of information about individuals’ seizure patterns over a period
of time, which is often not fully utilised in analysis. We develop methodology
that allows pre-randomisation seizure counts and post-randomisation times to
first seizure, and from first to second seizure, to be jointly modelled, assuming
that these outcomes are predicted by (unobserved) seizure rates.

The joint model was found to be superior to standard survival methods. The
model had more power to detect statistically significant covariate effects not
found by standard survival analysis, however, interesting characteristics within
the data, not present in the model were also highlighted. The simple joint
model was extended to acknowledge these characteristics.

The results suggested that the identically distributed assumption for the sur-
vival times may not be accurate. Instead we adjusted the model to allow for
changes in seizure rate both at randomisation and following a seizure post-
randomisation.

There is evidence to suggest that there may be a substantial subset of the
MESS sample containing individuals who we would not expect to experience
seizures post-randomisation. If survival data has a proportion that are im-
mune to the event of interest, a model that ignores this may give misleading
results. We considered a cure rate model that allows the separation of in-
dividuals who will never experience seizure recurrence and those who are at
risk of future seizures. We can then formulate probabilistic models for the
‘at risk’ individuals. These modifications to the simple joint model have been
considered both in isolation and together in a full model.
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Chapter 1

Introduction

This thesis builds a number of models that can be used in the analysis of data

that arrive in the form of event counts and survival times. This work is moti-

vated by individual patient data from a randomised controlled trial that was

undertaken to address the question of whether immediate or deferred treat-

ment should be favoured for patients that are in the early stages of epilepsy.

A baseline seizure count is recorded for each individual, with the associated

number of days over which the seizures were observed and the seizure types ex-

perienced. We consider post randomisation times to first and second seizure.

Time to first seizure is an internationally agreed outcome in epilepsy trials

(ILAE Commission on Antiepileptic Drugs 1998). The primary interest lies

in the contrast between immediate and deferred treatment, with possible in-

teractions with age, sex, pre-randomisation seizure type experienced and the

outcome of an electroencephalogram (EEG).

In studies of recurrent events, like epileptic seizures, there is frequently lots

of information about individuals’ seizure patterns over a period of time that
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is generally not fully utilised in analysis. Additionally, epilepsy is charac-

terised by recurrent seizures, not a single, isolated event, yet in many treat-

ment studies it is often only time to first seizure that is analysed. We develop

methodology that allows the pre-randomisation seizure counts and multiple

post-randomisation survival times to be jointly modelled. This method as-

sumes that all these outcomes are predicted by (unobserved) seizure rates.

We assume that each patient has an underlying constant seizure rate, which

we allow to vary depending on baseline attributes, and suppose that their

subsequent post-randomisation seizure rate will be reduced relative to their

associated baseline seizure rate. A greater reduction in the seizure rate results

in a longer time to seizure post-randomisation, indicating a better therapy.

The class of statistical models that will be developed consider some of the

issues arising when analysing data of this type. More specifically, our data

exhibits cure rates and there is evidence to suggest that individuals’ seizure

rates change not only at randomisation to treatment policy, but also following

a post-randomisation seizure.

As previously stated, we consider the development of new statistical method-

ology, which is applied to an epilepsy dataset. The methods developed in

this thesis, however, are not restricted to randomised controlled trials relating

to epilepsy. We consider novel statistical models that can be applied to any

recurrent event data that combine event counts and survival times.
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1.1 Overview of Thesis

An overview of the current literature on count models and survival models

is provided in Chapter 2. The discussion of survival analysis includes non-

parametric, semi-parametric and fully parametric approaches to modelling.

Methods used to analyse data that is in the form of recurrent event gap times

are also presented. A complication in the analysis of survival data occurs when

there is a proportion of the population not susceptible to the event of inter-

est. When presented with data of this type cure rate models are appropriate.

These models are also discussed in Chapter 2, as is the existing literature on

a model that considers the analysis of a pre-randomisation event count and

a single post-randomisation survival time jointly. Finally, this chapter also

provides an overview of statistical analysis in the presence of missing data.

Chapter 3 provides an overview of epilepsy and introduces the dataset that

motivates the work in the thesis. Standard non-parametric analyses of the

data are also provided. We examine the clinical features of the individuals

included in the trial and generate Kaplan-Meier curves.

Standard parametric models are considered in Chapter 4. The event counts

and survival times are considered separately, with the Negative Binomial Gen-

eralised Linear Model being applied to the event counts. The Log-logistic

and Lomax survival distributions are considered for the analysis of the post-

randomisation times to first seizure and times from first to second seizure.

Chapter 5 develops a model for the joint analysis of pre-randomisation event
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counts and post-randomisation times to first seizure and times from first to sec-

ond seizure. The log-likelihood is derived, with the first and second derivatives,

so that numerical methods can be applied to find the maximum likelihood pa-

rameter estimates. This joint model is then applied to the dataset and the

results are interpreted in terms of pre-randomisation and post-randomisation

seizure rates.

Limitations to the simple joint model developed in Chapter 5 are considered

in Chapter 6. The simple joint model assumes that the post-randomisation

seizure rate remains constant, but a simple modification relaxes this assump-

tion. We also allow for the inclusion of cure rates for each of the survival times,

that is, we consider the scenario where individuals who enter the trial may be

immune to seizures post-randomisation. These two extensions are considered

both in isolation, and together in a single full model.

The performance of the final full model is compared to standard survival meth-

ods in Chapter 7. We assess the goodness-of-fit of the models, considering how

well the distribution of the survival times is modelled. We use a method devel-

oped by Maller and Zhou (1996) for testing the goodness-of-fit of parametric

distributions to survival data.

Further extensions to the joint model are considered in Chapter 8. We consider

the appropriateness of the zero-truncated, one-inflated Poisson distribution for

the count data and the inclusion of further post-randomisation survival times.

We discuss further possible analyses of the dataset that consider not only

the treatment policy to which an individual was randomised, but also which

4



antiepileptic drug they subsequently received. Finally, Chapter 8 also consid-

ers the analysis of long-term prognosis.

Chapter 9 concludes the thesis, discussing the strengths and weaknesses of

the various models that have been developed and the suitability of the under-

lying assumptions.

Appendix A contains detailed information on the Lomax survival distribu-

tion. The log-likelihood, first derivatives and second derivatives are presented,

allowing inference on the parameters using numerical methods. Appendix B

contains the R functions used to fit both the maximum likelihood simple joint

model that was initially developed and the final full joint model that incorpo-

rates all the extensions considered. Finally, Appendix C contains a summary

of a clinical paper that is currently being written with neurologists at the

University of Liverpool. This paper considers the post-randomisation times

to first seizure of any type and first tonic-clonic seizure, using the joint model

that incorporates cure rates, that we have developed.

5



Chapter 2

Literature Review

There is an abundance of literature that addresses the analysis of count data

and survival times separately. Some preliminary work has considered the

analysis of data where a recurrent event process is recorded in the form of

a pre-randomisation event count, followed by a post-randomisation time to

first event, for each individual.

We shall present commonly used approaches for the analysis of event counts

and survival times and then outline methods that have been developed to

jointly analyse event counts and survival times in a single model.

We shall also present an introduction into missing data techniques. Likeli-

hood inference generally proceeds to derive the maximum likelihood estimate

of a parameter, θ, by maximising the observed likelihood. There might be two

problems with this: the observed likelihood could be impossible, or difficult

to derive due to the integration involved or, alternatively, it may be hard to

maximise. Methods used to handle missing data that focus on likelihood based

6



techniques can also be used when presented with problems of this type.

2.1 Analysis of Count Data

A model typically used for the analysis of count data is the Poisson Generalised

Linear Model (McCullagh and Nelder 1989). A restrictive property of the

Poisson distribution is that the mean and variance are equal. When presented

with count data that are overdispersed, random effect mixture distributions

are often used. The most convenient choice of random effects distribution

is the Gamma, which consequently yields the Negative Binomial distribution

(Greenwood and Yule 1920).

Alternatives to the Gamma distribution as the mixing distribution are consid-

ered by Hougaard et al. (1997), with special consideration being given to the

analysis of the frequency of epileptic seizures. A larger family of mixture dis-

tributions are considered, including the Inverse Gaussian mixture distribution.

This paper, however, does not consider the inclusion of covariates.

2.2 Analysis of Survival Data

Survival analysis is the analysis of data which is in the form of times from a

well defined start point, up to a particular event of interest. A comprehen-

sive and thorough discussion of survival techniques is given by Collett (2003).

The actual survival time, t, for an individual, is a realisation of the random

variable T , which can take any non-negative value. This random variable has

associated with it a probability distribution, with an underlying probability

7



density function f(t).

There are generally two functions that are of central interest in survival anal-

ysis, namely the survivor function and the hazard function. The survivor

function is defined to be the probability that an individuals’ survival time is

greater than or equal to some value t, expressed as

S(t) = P(T ≥ t) = 1− F (t), (2.1)

where F (t) is the cumulative distribution function of the random variable T .

The hazard function can be thought of as the instantaneous death rate. To

derive its form, first consider the probability that an individuals’ survival time

lies in the interval t and t + ξt, conditional on survival to time t, for some

ξ > 0. Dividing this probability by ξt then gives a probability per unit time.

The hazard function is simply the limiting value of this quantity, as ξt tends

to zero:

h(t) = lim
ξt→0

{
P(t ≤ T ≤ t+ ξt | T ≥ t)

ξt

}
. (2.2)

A further function that may be of interest when considering survival data is

the cumulative hazard function, simply defined as

H(t) =

∫ t

0

h(u)du. (2.3)
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2.2.1 Censoring

An important issue in survival analysis is that of censoring. Censoring occurs

when an individuals’ actual survival time cannot be measured, but we have

instead some measurable censored time associated with them. There are gener-

ally three types of censoring: (i) right censoring, occurring when the censored

survival time is less than the actual, unknown survival time, (ii) left censor-

ing, occurring when the observed, censored survival time is greater than the

actual, unknown survival time, and (iii) interval censoring, which is evident if

the actual survival time is only known up to some interval. We consider the

analysis of data that is subject to right censoring.

The standard survival techniques outlined in this section are only applicable

if the censoring is non-informative. This essentially means that the censoring

is not related to any factors associated with the actual survival time.

2.2.2 Non-Parametric Procedures

Often the first step in survival analysis would be to produce either graphical or

numerical summaries of the data based on non-parametric, or distribution-free

estimates of the survivor and hazard functions. These estimates are significant

in their own right, but are generally used as a pre-cursor to more detailed anal-

ysis. The most widely used non-parametric estimate of the survivor function,

that allows for censoring, is the Kaplan-Meier estimate.

Given n individuals, let the number of individuals alive just before time t(j)

be denoted by nj, with dj denoting the number of deaths at this time. It
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follows that the estimated probability of survival through the interval t(j) − ϵ

to t(j), for small ϵ, is (nj −dj)/nj. The probability of survival between t(j) and

t(j+1)− ϵ, the time immediately before the next death, is simply unity as there

are no deaths in this interval. The joint probability of surviving in the inter-

vals t(j)−ϵ to t(j) and t(j) to t(j+1)−ϵ is therefore estimated by (nj−dj)/nj. It

follows that in the limit, as ϵ tends to zero, (nj − dj)/nj becomes an estimate

of surviving from t(j) to t(j+1).

Now suppose that there are r death times, among the n individuals, that

are ordered t(1) < t(2) < . . . < t(r). The estimated survivor function at time

t, for t(k) ≤ t < t(k+1) is simply the product of the probability of surviving

in the interval t(k) to t(k+1), and all preceding intervals. This leads to the

Kaplan-Meier estimate of the survivor function, given by

Ŝ(t) =
k∏

j=1

(nj − dj
nj

)
, k = 1, 2, . . . r. (2.4)

2.2.3 Modelling Survival Data

In many situations, individuals’ survival times will be accompanied by a num-

ber of explanatory variables, or covariates. Interest is most commonly con-

cerned with how one or more of these covariates may affect an individual’s

survival time. When these situations arise, simple non-parametric approaches

are not sufficient, and more sophisticated modelling is necessary. Many of

the principles and procedures of linear modelling lend themselves easily to the

modelling of survival data.

10



Cox Proportional-Hazards Model

Probably the most widely adopted and well known of the survival models is

the Cox proportional-hazards model (Cox 1972). This is a semi-parametric

model, as it assumes that the hazard function for an individual is proportional

to some baseline hazard, but does not assume a probability distribution for

the survival times. We consider data that violates the proportional hazards as-

sumption, rendering the Cox model unsuitable. A brief discussion is included

here however, for completeness.

Consider a vector of m explanatory variables, x= (x1, x2, . . . , xm), assumed to

have been collected at time zero, and let h0(t) be the baseline hazard function,

with x= (0, 0, . . . , 0). Under the Cox proportional hazards model the hazard

function for the ith individual can then be written as

hi(t) = eηih0(t),

where ηi =β′xi is the linear component of the model, also known as the risk

score or prognostic index, for the ith individual. Fitting the proportional

hazards model to a given data set involves estimating the coefficients of the

explanatory variables, β, and the baseline hazard, h0(t).

The Cox proportional hazards model is in many cases advantageous due to

its widespread applicability, owing to its lack of restriction to a specific func-

tional form. If, however, an assumed probability distribution is valid, infer-

ences from a fully parametric analysis will yield more precise results than the

Cox semi-parametric approach.
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Parametric Models

Superiority over the Cox proportional hazards model can be obtained through

parametric analysis, when the probability distribution assumed is accurate.

Preliminary study of the validity of a range of probability distributions can be

carried out using Kaplan-Meier estimates of the survival curves. Transform-

ing the survivor function to produce a plot that should give a straight line

if the assumed model is appropriate is one way of assessing the suitability of

parametric models. Common survival distributions include the Weibull, Ex-

ponential, Lognormal and Log-logistic distributions.

Assume that a suitable parametric model has been adopted, and that the

density function of the random variable associated with the survival times is

f(t). If there are no censored observations, then the likelihood for n observa-

tions is simply
∏n

i=1 f(ti). Now suppose that right censoring is present and

consider a censoring indicator, δi, which takes the value zero if the ith survival

time, ti, i = 1, 2, . . . , n is censored, and unity if the survival time is observed.

The likelihood is now given by

n∏
i=1

{f(ti)}δi{S(ti)}1−δi .

Parametric models can be categorised as proportional-hazards, proportional-

odds, accelerated failure time, or a combination of the three. Exploratory

analysis suggests that our data is best modelled through an accelerated failure

time model (Wei 1992), so we focus our attention on the family of distributions

satisfying this property. The accelerated failure time model assumes that for

individual i, the covariates act multiplicatively on the time scale, and so affect
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the rate at which individuals progress along time. If a distribution displays

the accelerated failure time property, the survivor function for individual i can

be expressed as

Si(t) = S0(t/e
ηi),

where S0(t) is the baseline survivor function. Common survival distributions

that are accelerated failure time are the Weibull, Exponential, Log-logistic,

Lognormal, Gamma, and Inverse Gaussian distributions.

Suitability of the accelerated failure time family of distributions is best as-

sessed using a Q-Q plot of the Kaplan-Meier estimate of the survivor func-

tions. If we consider the simple case where there are two groups, then the

accelerated failure time model says that S(t) in one group is equal to S(ϕt)

in another. A plot of the percentiles of the Kaplan-Meier estimated survivor

curves should produce a straight line, with slope ϕ, that passes through the

origin if the accelerated failure time model is appropriate.

2.2.4 Recurrent Event Gap Times

Often, interest may lie in studying processes that generate events repeatedly

through time. Such processes are known as recurrent event processes and the

data they provide are referred to as recurrent event data (Cook and Lawless

2007). Typically, in medical settings there is recurrent event data available on

a large number of individuals, exhibiting a relatively small number of events.

Examples of such settings may include asthma attacks in respiratory studies or

epileptic seizures in neurology studies. Methods for handling recurrent event

data tend to be based on counts and rate functions, or the analysis of gap
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times, which we consider here.

We begin by considering the methodology currently available for renewal pro-

cesses. Renewal processes are ones in which the gap times between successive

events, Yj = Tj − Tj−1, (j = 1, 2, . . .), are independent and identically dis-

tributed. It is usually assumed that the time origin, t = 0, corresponds to

an event, but this may be relaxed to allow Y1 to have a different distribution

from (Y2, Y3, . . .). Cook and Lawless (2007) consider X(s, t), the number of

events over (s, t]. The distribution for counts, X(s, t), in renewal processes

is intractable except for the renewal process in which the Yj are exponential

random variables. That is, when the process is a homogeneous Poisson process.

Methods Based on Gap Times

Analyses based on gap times are often useful when events are relatively infre-

quent, when there is some type of renewal after an event, or when prediction

of the time to the next event is of interest.

We assume that individual i is observed over the time interval [0, τi] and that

mi events are observed at times 0 < ti,1 < . . . < ti,mi
< τi, with yi,j = ti,j−ti,j−1

and yi,mi+1 = τi − ti,mi
, where ti,0 = 0. The yi,j are the observed gap times for

individual i, with the final time being possibly censored. The likelihood for n

individuals can be written in terms of the density and survivor functions:

n∏
i=1

mi∏
j=1

f(yi,j)S(yi,mi+1). (2.5)
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If yi,mi+1 = 0, that is, if observation for individual i terminates after the mith

event, the term S(yi,mi+1) disappears.

2.2.5 Survival Analysis with Cure Rates

A proper survival distribution should have total mass 1, with the resulting

Kaplan-Meier curve having its asymptote at zero. That is, in standard sur-

vival analysis we assume that every individual in the sample is susceptible

to the event of interest. In some situations however, there may be a number

of individuals who would never experience the event of interest, regardless of

the time for which they were followed. Maller and Zhou (1996) encourage us

to think of these individuals as cured, or immune to the event of interest. If

survival data does indeed have a proportion that are immune to the event of

interest, considering a proper survival model that ignores this may give mis-

leading results. An improper survival distribution allows, formally, infinite

survival times. Cure rate models allow the quantity p = F (∞) = limt→∞ F (t)

(where F (t) is the cumulative distribution function of the survival times) to

be strictly less than 1, corresponding to the presence of immunes in the pop-

ulation.

Suppose t∗i is the true survival time for individual i, which is only observed

if it does not exceed their associated censoring time, ci, otherwise we observe

ci. Consequently, the actual, observed survival time for individual i can be

expressed as ti = min(t∗i , ci). To formulate the probabilistic mechanism that

allows the true survival times t∗i to be infinite first assume that individual i

has an associated Bernoulli random variable, Bi, taking the value 1 if individ-
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ual i is susceptible to the event of interest, and with Bi = 0 corresponding

to an immune individual. Additionally, p < 1 represents the proportion of

susceptibles in the population, so that

Bi =

 1 with probability p,

0 with probability 1− p.

In reality we do not know whether an individual is immune or not, so Bi is

not observed. Susceptible individuals are assumed to have a proper cumulative

distribution function, G(t), with G(∞) = 1. Formally, individuals with Bi = 0

have t∗i = ∞, hence, for all t ≥ 0

P{t∗i ≤ t | Bi = 1} = G(t),

P{t∗i ≤ t | Bi = 0} = 0,

These probabilities imply that, for all t ≥ 0, the cumulative distribution func-

tion of the true survival times t∗i is

F (t) = P{t∗i ≤ t}

= P{t∗i ≤ t | Bi = 1}P{Bi = 1}+ P{t∗i ≤ t | Bi = 0}P{Bi = 0}

= pG(t) + 0

= pG(t).

Consequently, for all t ≥ 0

G(t) =
F (t)

p
=

F (t)

F (∞)
. (2.6)

16



To ensure that p remains within the interval [0, 1] the following reparameteri-

sation is often considered:

κ = ln

(
p

1− p

)
.

We can also allow the cure rate to depend on individuals’ covariates:

pi =
exp(κ′wi)

1 + exp(κ′wi)
.

The explanatory variables are entered into the covariate wi and the parameter

κ is the corresponding vector of regression coefficients.

2.3 Joint Modelling of Event Counts and a

Single Survival Time

Consider the case where for each individual we have a pre-randomisation event

count and a post-randomisation survival time. Most standard survival anal-

ysis may treat the pre-randomisation event count information as a covariate

(Verity et al. 1995); this strategy however ignores any existing variation be-

tween individuals. The pre-randomisation event count is an outcome in its own

right and Cowling et al. (2006) proposed a technique that jointly analysed an

individual’s pre-randomisation seizure count, and a single post-randomisation

failure time under a Poisson process framework, in a single model.

We assume that each individual experiences events according to a Poisson

process with rate λiνi, where the parameter λi relates to the baseline covari-
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ates, with additional heterogeneity in the population being modelled through

νi, assumed to follow a Gamma distribution with expectation 1 and variance

1/α. Smaller values of α are indicative of higher levels of heterogeneity. Con-

sequently, the pre-randomisation event count over a period ui, for individual

i, Xi, follows a Poisson distribution with mean λiuiνi. If the underlying point

process is modelled through a Poisson process, then gap times between events

will be Exponential with the same rate. Consequently, post-randomisation, the

time to first seizure will be Exponential, but the rate is updated to allow for a

treatment effect. It is assumed that the treatment effect acts multiplicatively

on the rate, so that the time to first seizure for individual i post-randomisation,

Yi, is Exponential with event rate λiψiνi, where ψi depends on the treatment

in some way. In summary:

Xi | νi ∼ Poisson(λiuiνi),

Yi | νi ∼ Exponential(λiψiνi),

νi ∼ Gamma(α, α).

Therefore the joint model is specified by the following equations:

fX|ν(xi | νi;λi, ui) =
(λiuiνi)

xi exp(−λiuiνi)
xi!

,

fY |ν(yi | νi;λi, ψi) = λiψiνi exp(−λiψiνiyi),

fν(νi;α) =
αανα−1

i exp(−ανi)
Γ(α)

,

where λi = exp(β′
1z1i) and ψi = exp(β′

2z2i). The data enter the model through

z1i, z2i, ui, xi, yi and δi, the censoring indicator taking the value zero if the time

to first seizure post-randomisation is censored and unity if the survival time
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is observed. The baseline explanatory variables are entered into the covariate

z1i, and the treatment covariate z2i contains a treatment indicator, and may

also contain other explanatory variables and interaction terms. The parame-

ters β1 and β2 are the corresponding vectors of regression coefficients.

If the random effect term is integrated out of the joint density of Xi and νi,

then the resulting unconditional density, fX(xi;λi, ui, α), is simply the Nega-

tive Binomial. The unconditional distribution of Yi, obtained when the random

effect term is integrated out of the joint density of Yi and νi, is the Lomax

distribution (Johnson and Kotz 1970), with density

fY (yi;λi, ψi, α) =

∫ ∞

0

fY |ν(yi | νi;λi, ψi)gν(νi;α)dνi

=
λiψi

(1 + λiψiyi/α)α+1
. (2.7)

2.4 Missing Data

Standard statistical methods are well developed for the analysis of complete

rectangular data sets, where the the rows of a data matrix represent subjects.

Missing data arises when some of the observations in the data matrix are not

observed. One approach to handling missing data is to simply omit, from the

data matrix, those rows that contain missing values. This technique, com-

monly referred to as ‘complete-case analysis’, although simple to carry out,

is generally inappropriate. The disadvantages of adopting this approach stem

from the potential loss of precision and induction of bias in discarding the

incomplete cases.
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A comprehensive discussion on statistical analysis in the presence of miss-

ing data is given by Little and Rubin (2002). They identify the problems

associated with the presence of missing data in standard statistical analysis,

consider how missingness can arise, present different missing data patterns and

discuss the various methods for handling datasets that exhibit missing data.

First we define Y = (yij) to be the complete data matrix, and introduce

the missing data indicator matrix, M = (mij), which is unity if yij is missing,

and zero if yij is observed. Now the complete data Y can be partitioned into

Y = (Yobs, Ymis) where

Yobs = Y [mij = 0],

Ymis = Y [mij = 1].

The full probability density function for the observed data, Yobs, missing data,

Ymis, and the missing data indicator, M , is f(Yobs, Ymis,M ; θ, φ). This full

probability density function can be factorised as:

f(Yobs, Ymis,M ; θ, φ) = f(Yobs, Ymis; θ)f(M | Yobs, Ymis;φ), (θ, φ) ∈ Ωθ,φ,

(2.8)

where Ωθ,φ is the parameter space of (θ, φ). The actual observed data con-

sists of the variables (Yobs,M), hence the probability density function for the

observed data can be obtained by integrating Ymis out of equation 2.8:

f(Yobs,M ; θ, φ) =

∫
f(Yobs, Ymis; θ)f(M | Yobs, Ymis;φ)dYmis. (2.9)
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Treating the missing data indicator as a random variable, the missing data

mechanism is characterised by f(M | Yobs, Ymis;φ), the conditional distribu-

tion of M given (Yobs, Ymis), where φ denotes unknown parameters. The miss-

ing data mechanisms, more specifically the question of whether the values that

are missing are related to the underlying variable values, are an extremely im-

portant issue in the area of missing data. Missing data mechanisms generally

determine how the missing data analysis should proceed. There are three dis-

tinct types of missing data mechanism: missing completely at random, missing

at random and not missing at random.

The missing data are said to be missing completely at random (MCAR) if

missingness does not depend on the values of Y , missing or observed. That is,

f(M | Yobs, Ymis;φ) = f(M ;φ), for all Y, φ. (2.10)

An assumption that is less restrictive than MCAR is missing at random

(MAR). If missingness depends on those values of Y that are observed, and

not on the components that are missing, the data are said to be MAR. That

is,

f(M | Yobs, Ymis;φ) = f(M | Yobs;φ), for all Yobs, φ. (2.11)

Finally if data is neither MAR or MCAR, that is the distribution ofM depends

on the missing values in the data matrix Y , we call the data not missing at

random (NMAR).
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2.4.1 Missing Data Methods

Methods proposed for handling missing data can be grouped into the following

categories:

Complete-Case Analysis: Analysis is carried out only on those cases for

which there is no missing data.

Weighting Procedures: A modification to complete-case analysis that dif-

ferentially assigns weights to the complete cases to adjust for bias. This

strategy is found most commonly in sample surveys to handle nonre-

spondents.

Imputation-Based Procedures: Essentially missing values are filled in, with

the subsequent completed data analysed using standard statistical meth-

ods. For the resulting inferences to be valid, modifications to standard

analyses are necessary to allow for the differing status of the real and

imputed values.

Model-Based Procedures: A broad class of procedures can be generated by

defining a model for the observed data and basing subsequent inferences

on the likelihood or posterior distribution under that model.

We have already discussed the relative simplicity of discarding the incompletely

recorded units and the associated disadvantages. Complete-case analysis may

be justified, however, when the amount of missing data is small, so that the loss

of precision and bias is minimal. Weighted complete-case estimators are often

simple to compute, but the corresponding standard errors are less straightfor-

ward to derive.
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Imputation techniques are an attractive and flexible method for handling miss-

ing data. However, one should be wary of the potential pitfalls. Users of

imputation methods should be considerate of the fact that the data are not

complete, and imputed values should not be regarded in the same way as real

values. Imputations are means or draws from a predictive distribution of the

missing values and so a method of creating a predictive distribution is required.

Modelling methods include, but are not limited to, mean modelling, regres-

sion modelling or last observation carried forward. Single imputation methods

replace missing values with a single imputed value, but multiple imputation

replaces missing values with a vector of D ≥ 2 imputed values. The D values

are ordered in such a way that D complete datasets are generated from the

vectors of imputations. Standard complete-data methods are used to analyse

each dataset, with the subsequent D complete-data inferences combined to

form one inference which reflects the uncertainty due to nonresponse.

Likelihood based methods are more attractive than complete-case analysis or

imputation techniques (Schafer and Graham 2002). These methods, however

rely on a few crucial assumptions. The sample may have to be larger than

usual as missing data reduces the sample size and the sample needs to remain

large enough for the maximum likelihood estimates to be approximately un-

biased and normally distributed. Additionally, the likelihood function comes

from an assumed parametric distribution for the complete data and likelihood

methods may not necessarily be robust to deviations from the model assump-

tions.
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2.5 Discussion

This chapter has discussed the standard statistical models that currently exist

for the analysis of event counts and survival times. We have also outlined

models that can be used for the analysis of survival data when there are cure

rates present in the population and models that can be used in the analysis of

recurrent events.

Cook and Lawless (2007) discuss the use of models that are appropriate in

the specification and testing of treatment effects in recurrent events (§ 8.4.1).

They suggest that methods based on rates and mean functions, rather than

gap times, offer the most straightforward specification of treatment effects for

recurrent events and outline the mixed Poisson model as a natural framework

for analyses. Although methods based on rates and mean functions may be

the most advantageous for the specification and testing of treatment effects in

recurrent events, Cook and Lawless (2007) recognise that there may be situ-

ations where analyses based on gap times are more natural. Additionally, if

datasets exhibit cure rates, models that focus on rates and mean functions are

not the most conclusive. Such models would assess post-randomisation event

rates that are zero, but to consider this, focus would need to be on a suitable

length of observation time, or gap time, with no events recorded.

An additional consideration in the analysis of recurrent event data, that is

considered by Cook and Lawless (2007) in § 8.4.3, is the use of baseline

count data. Interest is focussed on the use of mixed Poisson processes for

the analysis of recurrent event data that incorporates a period of observation
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in which subjects are monitored prior to randomisation to treatment. Interest

in this instance would be focussed on the change in event rate pre and post-

randomisation. There is no discussion, however, of the analysis of recurrent

event data that arrive in the form of a pre-randomisation baseline count and

post-randomisation gap times. Recall that time to first seizure is an interna-

tionally agreed outcome in epilepsy trials (ILAE Commission on Antiepileptic

Drugs 1998), so methods pertaining to the analysis of gap times, that fully

make use of the pre-randomisation event counts, seem the most sensible.

A model that considers the analysis of pre-randomisation event counts and

a single post-randomisation survival time, proposed by Cowling et al. (2006),

has been discussed in this chapter. It is suggested that these methods may

form the basis of a model that allows pre-randomisation event counts and mul-

tiple post-randomisation survival times to be jointly analysed in a single model.

Finally, this chapter has briefly presented missing data methods that are com-

monly adopted when presented with incomplete data. The different missing

data mechanisms and methods for handling missing data have been discussed.
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Chapter 3

Introduction to the Epilepsy

Data

We shall now present an overview of epilepsy and introduce the dataset that

will be analysed using both standard statistical methods and the new joint

models that we shall develop in later chapters. We shall conduct exploratory

analysis on the data and produce a number of Kaplan-Meier plots that will

form an initial examination of the effect of the explanatory variables on times

to first and second seizure.

3.1 Overview

Epilepsy is formally defined as the occurrence of recurrent and unprovoked

seizures (Warrell et al. 2003). An epileptic seizure itself is caused by excessive

neuronal activity which will manifest itself in an alteration of consciousness,

or motor, sensory, autonomic, or psychic events. The International League

Against Epilepsy (ILAE) classification scheme divides seizures into partial,
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generalised or unclassified seizures (Berg et al. 2010). Partial seizures are

localised and involve only part of the brain; they can be either simple (con-

sciousness not impaired) or complex (consciousness impaired).

Partial seizures include motor, sensory, occipital, frontal lobe and temporal

lobe seizures. Motor seizures focally affect parts of the body that are corre-

lated with their area of representation in the motor cortex. Following motor

seizures there can be (on rare occasions) paralysis of the affected part. Sen-

sory seizures comprise paraesthesias or numbness in focal areas of the body.

Symptoms of occipital seizures are visual, altering the size, shape or depth of

objects. Jerking or forced closure of the eyelids may also occur. Frontal lobe

seizures are composed of pelvic thrusting, rocking of the body and head move-

ments that are nocturnal. Vocalisation may also occur. Sufferers of temporal

lobe seizures may sense a loss of personal or environmental reality and can ex-

perience intense familiarity or unfamiliarity, psychic symptoms and sensations

pertaining to smell, taste and vertigo.

Partial epilepsy can sometimes occur with secondary generalisation. Gener-

alised seizures involve all of the brain and are categorised as tonic-clonic (grand

mal epilepsy), absence (petit mal epilepsy), myoclonic or atonic. Tonic-clonic

seizures consist of a tonic phase where an individual becomes stiff as muscles

contract, and a clonic phase where limbs jerk caused by the muscles contract-

ing and relaxing in quick succession. During absence seizures, activity ceases

and individuals simply stare blankly and are unresponsive, without loss of

posture. Patients are totally unaware of their absence seizures. Symptoms of

myoclonic seizures are brief, shock-like contractions of muscles, which may be
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generalised or focal. Atonic seizures comprise a sudden loss of muscle tone;

episodes are brief and recovery rapid.

Epilepsy can be genetically determined, caused by migration disorders or

trauma. Epilepsy syndromes, such as juvenile myoclonic epilepsy, usually

occurring between the ages of 12 and 18, are inherited. A certain proportion

of children who suffer epilepsy syndromes will go on to develop epilepsy at a

later age. Epilepsy can also be linked with the presence of tumours, incidence

of strokes, infection, cerebral degeneration, multiple sclerosis or metabolic dis-

orders. Epileptic seizures can be encouraged by lack of adequate sleep, alcohol

abuse and the ingestion of certain drugs; seizures may also be confined to the

menstrual period. Epilepsy attacks can additionally be triggered by particular

stimuli, such as noise and movement.

The question of whether to start patients on a course of anticonvulsants after

a single epileptic seizure remains an area of uncertainty. Several studies have

shown that intervention after a single seizure reduces the risk of short-term

recurrence, but does not affect the long-term remission rates in individuals

with single or infrequent seizures (Marson et al. 2005; Chandra 1992). War-

rell et al. (2003) state that seizure recurrence after a single untreated seizure

is around 80%, but Berg and Shinnar (1991) put seizure recurrence at 50%.

It is suspected that seizure recurrence may be different for different seizure

types, which may account for the difference in these two values. It is also

thought that the risk of future seizures increases with the number of previous

seizures, with around 30% of epilepsy sufferers never achieving long-term re-

mission (Cockerell et al. 1995).
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Antiepileptic drugs (AEDs) often come with extremely unpleasant side effects,

which include weight loss or weight gain, altered mood, drowsiness, hair loss,

polycystic ovarian disease, visual field defects and teratogenicity. For most

epilepsy sufferers, the benefits of AEDs will far outweigh the associated risks.

For those individuals, however, who have had only a single seizure, or have

infrequent and mild epileptic seizures the question of whether to withhold

treatment until absolutely necessary becomes clinically important.

Typically, the questions asked by individuals in early epilepsy might be: ‘If

I have a seizure, am I likely to have another one, and if so, when?’ or ‘If

I have a second seizure am I likely to have more, and with increased fre-

quency?’. We aim to develop methodology that attempts to provide answers

to these questions and ascertains how these questions might be dependent

on important covariates such as seizure type or EEG outcome. We have al-

ready presented some of the existing literature for the analysis of recurrent

event data. This work would encourage us to think of epileptic seizures in

terms of counts, possibly comparing the difference in counts pre and post-

randomisation. Clearly, when presented with questions of this type it is more

natural, and clinically relevant, to analyse recurrent event data in terms of

the survival times. Additionally, recall that time to first seizure is an inter-

nationally agreed outcome (ILAE Commission on Antiepileptic Drugs 1998)

in epilepsy trials. Standard methodology exists for the analysis of recurrent

survival data, but, as we have previously discussed, there is no literature that

provides a parametric modelling strategy for pre-randomisation event counts

and multiple post-randomisation survival times.
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3.1.1 The MESS Trial

The MRC Multicentre Trial for Early Epilepsy and Single Seizures (MESS)

was undertaken to address the question of immediate versus deferred treat-

ment with AEDs in those patients that have had one, or very few seizures.

Interest lay in both the effects on short-term recurrence, and long term prog-

nosis.

The MESS trial randomised 1443 patients worldwide, across 83 centres. The

eligibility criteria were: being aged at least 1 month, having a suitably docu-

mented history of at least one clinically definite, spontaneous and unprovoked

epileptic seizure (excluding febrile convulsions), and there being genuine uncer-

tainty in both clinician and patient as to whether treatment with AEDs should

commence. Patients were excluded from the trial if they had previously re-

ceived treatment with AEDs. Patients were randomised to either immediate

or deferred treatment using the minimisation method, balancing across two

factors: centre or region, and number of seizures prior to randomisation (de-

fined as either single or multiple).

The trial was a pragmatic trial, meaning that those individuals assigned to im-

mediate treatment were administered the most appropriate antiepileptic drug,

determined by the clinician. Those patients randomised to deferred treatment

received no drugs until both clinician and patient agreed that treatment was

absolutely necessary, in which case the clinician decided the optimum anticon-

vulsant, dose and duration of treatment.
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Baseline covariates collected for each individual included age, sex, demographic

information, any history of existing neurological disorders and information on

past seizures including the number of seizures experienced and seizure type.

An electroencephalogram (EEG) was requested for each individual, CT and

MRI scans were performed if clinically indicated. Follow-up occurred at 3

months, 6 months, 1 year, and then at yearly intervals (more regularly if

clinically necessary). At each follow-up information was collected about any

seizures the patient had experienced since the previous follow-up, along with

information about AEDs currently being taken, including dose and any side-

effects experienced. In the event of death, the date and cause of death were

recorded. The outcomes measured included times to first, second and fifth

seizure, as well as times to one and two year remission.

Recruitment for the trial ran from 1st January 1993 to 31st December 2000. Fi-

nal follow-up was attempted between 31st December 2001 and 30th June 2002.

Statistical analyses were by intention to treat, interest lay in the treatment

policy to which an individual was assigned rather than whether an individual

was receiving treatment or not when they experienced future seizures. De-

tailed methods and primary analyses can be found in Marson et al. (2005)

and Kim et al. (2006). We shall present a brief summary of each of the trials

here.

To analyse the times to each outcome event, Marson et al. (2005) used the

log-rank test (Peto and Peto 1972), or the Cox proportional-hazards model

when adjusting for the number of seizures pre-randomisation. The number of

seizures pre-randomisation was taken to either be single or multiple. The key
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demographic and clinical features of participants are given in Marson et al.

(2005), including the number of individuals experiencing particular types of

seizures pre-randomisation, stratified by the treatment policy to which they

were subsequently assigned. Also included is the number of individuals pre-

senting an abnormal EEG and whether the abnormalities were non-specific,

generalised or focal. This analysis of the MESS data does not consider pre-

randomisation seizure types, or EEG outcome, in the analysis of the post-

randomisation times to events of interest. For times to first seizure and times

to second seizure the differences between the two treatment groups were found

to be statistically significantly different (χ2 = 21.4, p< 0.0001 and χ2 = 9.2,

p= 0.0025 respectively).

Kim et al. (2006) developed a prognostic model to categorise individuals as

low risk, medium risk or high risk of seizure recurrence, using Cox regression,

stratified by treatment policy. For the prognostic model, the number of groups

likely to maintain reasonable separation was found to be three. In this analy-

sis of the MESS data, EEG outcome and pre-randomisation seizure type were

considered. The seizure types considered were ‘tonic-clonic seizures only’ and

‘simple or complex partial seizures only’. An abnormal EEG was defined as

a focal or general, excluding non-specific abnormalities. Backwards stepwise

regression was used and found three potentially important prognostic factors:

existence of a neurological disorder, total number of seizures pre-randomisation

over all seizure types and an abnormal EEG. Seizure type pre-randomisation

was not found to be significant for the prognostic model.

The statistically significant prognostic factors were used to identify individuals
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as at a low risk, medium risk or high risk of seizure recurrence as follows:

• Low risk - one seizure only pre-randomisation, no neurological disorder

and a normal EEG.

• Medium risk - two or three seizures pre-randomisation, no neurological

disorder and a normal EEG; or one seizure pre-randomisation and either

a neurological disorder, or an abnormal EEG.

• High risk - one seizure pre-randomisation, a neurological disorder and an

abnormal EEG; or two or three seizures pre-randomisation and either a

neurological disorder, or an abnormal EEG, or both; or any individual

with 4 or more seizures pre-randomisation.

For low-risk individuals, there was no significant difference found between the

treatment policies. For individuals in the medium and high risk groups, im-

mediate treatment was favoured when considering seizure recurrence.

We carry out exploratory analysis on 1425 individuals; 18 were removed due to

missing information, assumed missing completely at random. It is important

to note that 812 of the 1425 individuals included in the exploratory analysis

presented only a single seizure pre-randomisation. The period of time from this

single seizure to randomisation, for these individuals, ranged from the same

day to 464 days, with the median number of days being 27. For the majority

of those individuals with only one seizure pre-randomisation, their associated

period of time from first seizure to randomisation may be inaccurately small,

possibly representing how long it took for them to arrange an appointment

with their GP. This results in imprecise estimates of their associated underly-

ing seizure rates and an ensuing overestimation of the seizure rate reductions.
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Following discussions with clinicians, we subsequently made adjustments to

the values of ui, the number of days from the first pre-randomisation seizure

to randomisation, in the dataset so that ui ≥ 182. That is, any value of

ui < 182, we replaced with 182.

As a sensitivity analysis to the choice of 182 days as the minimum period

pre-randomisation, the data were re-analysed with ui ≥ 91 and ui ≥ 365. The

resulting regression coefficients from these adjustments can be found in Rogers

et al. (2009), along with their associated λ̂i and ψ̂i. The magnitudes of differ-

ences observed in seizure rates between the groups were maintained through

each adjustment.

The log-likelihoods associated with each model would suggest that having a

minimum pre-randomisation period of 365 days is optimal. Further inspection

of the log-likelihoods however, suggested that the likelihood function is very

flat, hence the decision was made to take the clinicians’ suggestion of a mini-

mum pre-randomisation period of 182 days. All future analysis of the MESS

data will be carried out with this adjustment.

3.2 Distribution of Variables

Of the 1425 individuals included in the exploratory analysis, 691 (48.91%)

experienced at least one seizure following randomisation, with a subsequent

480 (69.46%) of these experiencing a second. Later findings conclude that

the variables age and sex are not statistically significant in determining pre-

randomisation seizure rates or post-randomisation seizure rate reductions, so
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we exclude these variables completely here. EEG outcome is simply defined

as being abnormal or normal; further investigation concluded that there was

no statistically significant differences between the effects of the various types

of EEG abnormality on post-randomisation survival times (χ2 = 2, p= 0.569),

only the presence of a normal EEG or abnormal EEG of any type was found

to be statistically significant. The pre-randomisation seizure types are cate-

gorised as follows:

Tonic-Clonic: Those individuals presenting with tonic-clonic seizures only

pre-randomisation.

2◦ Tonic-Clonic: Those individuals presenting with partial seizures with sec-

ondary tonic-clonic seizures pre-randomisation.

Generalised: Those individuals presenting with any combination of gener-

alised seizures pre-randomisation (this group could include those having

a combination of tonic-clonic and other generalised seizures).

Partial: Those presenting with partial seizures only pre-randomisation (either

simple or complex).

Other: Those presenting with seizures pre-randomisation that do not fit into

any of the above categories.

Immediate treatment reduces the risk of a seizure post-randomisation (one

year relative risk 0.734 [95% C.I. (0.63,0.85)], 8 year relative risk 0.820 [95%

C.I. (0.74,0.91)]). Additionally, having an abnormal EEG will increase the risk

of seizure recurrence (one year relative risk 1.325 [95% C.I. (1.15,1.53)], 8 year
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relative risk 1.302 [95% C.I. (1.17,1.45)]). For those who have a seizure post-

randomisation, neither treatment policy nor EEG outcome are statistically

significant in determining the risk of experiencing a second post-randomisation

seizure.

Table 3.1 shows the clinical features for the 1425 individuals included in the

exploratory analysis. Over half of the sample experienced tonic-clonic seizures

only pre-randomisation (54.8%) and almost a third experienced tonic-clonic

seizures with partial seizures (31.9%). Just 7.2% of those randomised had

only partial seizures pre-randomisation, with the other seizure groups making

up the remaining 6.1%.

Those with tonic-clonic seizures only and tonic-clonic seizures with partial

seizures have statistically significantly lower abnormal EEG outcomes than

those with partial seizures only pre-randomisation.

By examining the percentages with one and two seizures at different points in

time, we can see that numbers appear to be levelling off. The fact that these

figures seem to be levelling off suggests that those individuals susceptible to

first and second seizures post-randomisation have presented with these seizures

by 8 years. These figures also fall well below 100%, suggesting that there may

be a cure fraction in the population, that is, not everyone is susceptible to

seizures post-randomisation.
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3.3 Nonparametric Estimation of Gap Time

Distributions in the Analysis of Recurrent

Event Data

When data consists of repetitions of the same event through time, there are

essentially two possible time scales that may be of interest: the total time,

measured from the start of the follow-up, to the occurrence of all the events,

or the gap times, that is, the durations between two successive events. Analysis

of the MESS data focusses on the analysis of the times from randomisation to

first seizure, and the times from first to second seizure, with the overall follow-

up time subject to right censoring. When dealing with gap time distributions

of recurrent events in this censoring scenario, all the gap times, except the first

one, may be subject to dependent censoring (Lin et al. 1999). We consider

data where the duration of the time to first seizure will have an effect on the

potential censoring value of the second duration. A long time to first seizure

post-randomisation implies a short observation period for the time from first

to second seizure post-randomisation, and vice versa.

Recall that when examining the percentages of individuals with first and sec-

ond seizures at different points in time post-randomisation, in Table 3.1, we

observed a levelling off of figures. It was proposed that this levelling off sug-

gested that everyone susceptible to two seizures post-randomisation had pre-

sented with both by 8 years. This result subsequently means that dependent

censoring may not be an issue in the analysis of this dataset. It would appear

that the individuals are followed up for the required amount of time such that
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a long time to first seizure will not bear on the observation period for the time

from first to second seizure.

Let T1i and T2i be the time to first and second seizure respectively, for in-

dividual i, i = 1 . . . n. Now set Y1i = T1i and Y2i = T2i − T1i, so that Y1i is

the actual time to first seizure and Y2i is the actual time from first seizure to

the second. Nonparametric estimation of the marginal gap time distributions

can be difficult, but Visser (1996) proposes a nonparametric estimator of the

conditional survivor function of Y2 | Y1. First recall that we are considering

data where the censoring mechanism bears on the sum of the times to first

and second seizure, rather than on each time separately. Suppose that Y ∗
1 and

Y ∗
2 are the random variables associated with the true gap times. The observed

random variables are therefore

Y1 = min(Y ∗
1 , C), Y2 = min(Y ∗

2 , C − Y ∗
1 )I(Y ∗

1 ≤ C),

where I(A) is the indicator function of the event A and the random variable C

represents the censoring time. The observed random variables, for n individ-

uals, are (Y1i, Y2i, δi), i = 1, . . . , n, where δ is the censoring indicator, taking

the values

δ =


1, if C < Y ∗

1 ,

2, if Y ∗
1 ≤ C < Y ∗

1 + Y ∗
2 ,

3, if Y ∗
1 + Y ∗

2 ≤ C.

Visser (1996) assumes that (Y ∗
1 , Y

∗
2 , C) are discrete random variables and that

they take values in (0, 1, 2, . . . , K). It follows that Y1 and Y2 are also discrete
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random variables, taking values in (0, 1, 2, . . . , K). They denote the bivariate

survivor function of the pair (Y1, Y2) by SY1,Y2(k, l) = P(Y1 ≥ k, Y2 ≥ l). Addi-

tionally, let SY1(k) = P(Y1 ≥ k) and SY2|Y1(l | k) = P(Y2 ≥ l | Y1 ≥ k) denote

the survivor function of Y1 and the conditional survivor function of Y2 given

that Y1 ≥ k respectively.

In addition to the survivor functions, Visser (1996) denotes the hazard func-

tion of Y1 and the conditional hazard function of Y2 given that Y1 ≥ k by

hY1(k) = P(Y1 = k | Y1 ≥ k) and hY2|Y1(l | k) = P(Y2 = l | Y1 ≥ k, Y2 ≥ l)

respectively. It is straightforward to evaluate the subsequent survivor function

of Y1, using the associated hazard function:

SY1(k) = {1− hY1(0)} . . . {1− hY1(k− 1)}, k = 1, 2, . . . , K, SY1(0) = 1. (3.1)

The conditional survivor function and conditional hazard function of Y2 given

that Y1 ≥ k are related in a similar way.

The estimator of the conditional hazard function of Y2 given that Y1 ≥ k,

proposed by Visser (1996), is given by

h̃Y2|Y1(l | k) =
n∑

i=1

I(Y1i ≥ k, Y2i = l, δi = 3)

{ n∑
i=1

I(Y1i ≥ k, Y2i ≥ l)

}−1

.

(3.2)

This estimator is in general a biased estimator for hY2|Y1(l | k), except when

k = K, or when Y1 and Y2 are independent. Substituting this estimator

into the expression relating the conditional hazard function to the conditional

survivor function would result in inconsistent estimates of SY2|Y1(l | k). Instead
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Visser (1996) considers the estimators of hY1(k) and hY2|Y1=k(l) = P(Y2 = l |

Y1 = k, Y2 ≥ l), given by

ĥY1(k) =
n∑

i=1

I(Y1i = k, δi ≥ 2)

{ n∑
i=1

I(Y1i ≥ k)

}−1

, (3.3)

ĥY2|Y1=k(l) =
n∑

i=1

I(Y1i = k, Y2i = l, δi = 3)

{ n∑
i=1

I(Y1i = k, Y2i ≥ l)

}−1

.(3.4)

It is then straightforward to obtain estimators, ŜY1(k) and ŜY2|Y1=k(l), of the

survivor functions of Y1, and Y2 given that Y1 = k respectively. The subsequent

estimator of SY2|Y1(l | k), proposed by Visser (1996), is based on the following

transformation:

SY2|Y1(l | k) = {SY1(k)}−1

K∑
j=k

SY2|Y1=j(l){SY1(j)− SY1(j − 1)}. (3.5)

We can determine the severity of the dependent censoring in our data set

by comparing estimates of SY2|Y1(l | k) with Kaplan-Meier estimates of the

marginal survivor function for Y2.

Figure 3.1 shows the estimates of SY2|Y1(l | k) plotted against the corresponding

Kaplan-Meier estimates of the marginal survivor function for Y2. We can see

that in general Kaplan-Meier estimates of the survivor function are lower than

the conditional estimates of the survivor function. We have already discussed

that underestimates of survival may be due to the fact that a longer time

to first seizure, results in a shorter subsequent observation period for second

seizure. This consequently means that more observations may be censored,

which would lead to underestimates in survival probabilities.
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Figure 3.1: Estimates of SY2|Y1(l | k) plotted against the corresponding uncon-
ditional marginal Kaplan-Meier estimates.

Cook and Lawless (2007) address the issue of dependent censoring and sug-

gests ways to facilitate the examination of marginal gap time distributions.

One approach is to fit random effects models, which use individual-specific

independent and identically distributed random effects to induce associations

among gap times. Such models assume that given a random effect, the gap

times for an individual are independent. This is the approach that we shall be

considering in our modelling strategy. Other methods considered are the spec-

ification of a multivariate model for a specified set of gap times or conditional

models.
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3.3.1 Kaplan-Meier Plots

We consider Kaplan-Meier plots of the outcomes time to first seizure and time

from first seizure to second, examining possible treatment policy, EEG out-

come and seizure type effects.

The Kaplan-Meier curves in Figure 3.2 highlight immediately that treatment

policy appears to be influential in determining an individual’s time to first

seizure post-randomisation, but not their time from first to second seizure. A

plausible explanation for this is that those individuals randomised to deferred

treatment who experience a seizure post-randomisation would most likely re-

ceive subsequent treatment with AEDs, bringing them in line with those allo-

cated to immediate treatment thereafter.

Note that the each of the Kaplan-Meier curves in Figure 3.2 have their asymp-

totes well above zero. This suggests that the associated survivor functions

may not be proper and that there may be a proportion of the individuals’ in-

cluded in the MESS trial ‘immune’ from seizure recurrence post-randomisation.

These cure rates are apparent for those allocated to immediate and deferred

treatment.
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Figure 3.2: Kaplan-Meier curves for time to first seizure and time from first
to second seizure (with 95% CI), stratified by treatment policy.
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Figure 3.3 shows the empirical cumulative distribution function for Y1/T2.

Note that this is only considered for those individuals presenting at least two

seizures post-randomisation, as there is evidence to suggest that dependent

censoring is present. We observe that this plot has its median at 0.663, sug-

gesting that for those experiencing at least two seizures post-randomisation,

their time from first seizure to second is typically shorter than their time

from randomisation to first seizure. Around 60% of those having at least two

seizures post-randomisation have Y1 > Y2, with approximately 30% having Y1

around nine times bigger than Y2. These results suggest that there may be

clustering within seizures.
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Figure 3.4 shows that those individuals presenting with generalised or par-

tial seizures pre-randomisation typically have a shorter time to first seizure

post-randomisation than the other seizure types. Those individuals with

generalised seizures pre-randomisation also present their second seizure post-

randomisation much sooner than other seizure types. Additionally, the differ-

ences between the Kaplan-Meier curves appear to be more pronounced for the

second seizure post-randomisation, than for time to first seizure.

Figure 3.5 suggests that for those participants presenting with partial seizures

only pre-randomisation, treatment policy appears to have no effect on their

time to first seizure post-randomisation. For all other seizure types immediate

treatment is favoured.

When considering EEG outcome, Figure 3.6 indicates that for those presenting

a normal EEG, treatment policy has no effect on their associated time to first

seizure. For those with an abnormal EEG, allocation to immediate treatment

brings their expected time to first seizure in line with those having a normal

EEG. Those randomised to deferred treatment, following an abnormal EEG

outcome can expect a much shorter time to first seizure post-randomisation.

For time from first to second seizure post-randomisation there appears to be

no difference in the four Kaplan-Meier curves.
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Figure 3.4: Kaplan-Meier curves for time to first seizure and time from first
to second seizure, stratified by seizure type pre-randomisation.
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Figure 3.5: Kaplan-Meier curves for time to first seizure and time from first
to second seizure, stratified by seizure type pre-randomisation and treatment
policy.
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Figure 3.6: Kaplan-Meier curves for time to first seizure and time from first
to second seizure, stratified by EEG outcome and treatment policy.
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Finally, Figure 3.7 gives an indication as to any interactions between EEG out-

come and pre-randomisation seizure types that may be present. For time to

first seizure, EEG outcome appears to be influential for those with secondary

tonic-clonic seizures pre-randomisation, with those having a normal EEG far-

ing better. EEG outcome also seems to have a slight impact on time to first

seizure for those with tonic-clonic seizures only pre-randomisation, and possi-

bly for those with generalised seizures pre-randomisation. These interactions

are not seen for time from first to second seizure.
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Figure 3.7: Kaplan-Meier curves for time to first seizure and time from first to
second seizure, stratified by seizure type pre-randomisation and EEG outcome.
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Transformations of the Kaplan-Meier curves can indicate which parametric

distributions may be most suitable for formal statistical modelling of survival

data. Transforming the Kaplan-Meier estimate of the survivor function to

produce a plot that should give a straight line if the assumed model is ap-

propriate is one way of assessing the suitability of parametric models. The

survivor function of the Log-logistic distribution with shape parameter γ and

scale 1/µ is given by:

S(y) = {1 + (µy)γ}−1. (3.6)

From Equation 3.6, the log-odds of survival beyond y can be expressed as:

ln

{
S(y)

1− S(y)

}
= −γ lnµ− γ ln y. (3.7)

It follows from Equation 3.7 that if the the survivor function is estimated using

the Kaplan-Meier estimate, and the subsequent estimated log-odds of survival

beyond y are plotted against log(y), a straight line with intercept −γ lnµ and

slope −γ will be observed if the Log-logistic distribution is appropriate.

Figure 3.8 shows the estimated log-odds of survival beyond y plotted against

ln(y) for times to first seizure and from first to second seizure. We observe

that both of these plots are straight lines, which supports the suitability of the

Log-logistic distribution in the parametric modelling of the MESS data.

Recall that the Log-logistic distribution belongs to the accelerated failure time

family of distributions.
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Figure 3.8: Log-odds of Kaplan-Meier estimates of survival for time to first
seizure and time from first to second seizure, stratified by seizure type pre-
randomisation and EEG outcome.
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3.4 Discussion

The MESS data contains information on 1443 patients, randomised to either

immediate or deferred treatment. The MESS trial was a pragmatic trial, so

that individuals received the optimal type and dose of AED, as determined by

the clinician.

Exploratory analysis of the MESS data was carried out on 1425 individu-

als. There were 18 individuals with missing information, assumed missing

completely at random, excluded from the analyses. Previous analyses of the

data have concluded that treatment policy is statistically significant in de-

termining times to first and second seizure, but this analysis did not include

information available on seizure types and used a log-rank test, or the Cox

proportional-hazards model (Marson et al. 2005), despite the data violating

the proportional-hazards assumption. An alternative analysis of this data de-

veloped a prognostic model based on the existence of a neurological disorder,

total number of seizures experienced pre-randomisation and the presence of an

abnormal EEG (Kim et al. 2006). The prognostic model was used to categorise

individuals as at a low risk, medium risk or high risk of seizure recurrence. For

those at a low risk, there was no statistically significant difference in treatment

policy on times to first seizure post-randomisation. For those determined as

medium or high risk, immediate treatment was favoured.

Non-parametric estimates of the Kaplan-Meier curves are presented in this

chapter to provide an initial indication as to possible covariate effects that

may exist. Treatment policy seems to be significant overall in determining
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times to first seizure post-randomisation, but not times from first to second

seizure. We also note that there may be cure rates present in the data. For

those who have at least two seizures post-randomisation, their time from first

to second seizure is typically shorter than their time to first seizure, suggesting

that clustering within seizures may be present.

Our analysis of the MESS data takes into consideration the types of seizures

an individual has experienced pre-randomisation. The corresponding Kaplan-

Meier curves suggest that seizure type may be significant in determining times

to first and from first to second seizure. Additionally, there is evidence to

suggest that there may be seizure type interactions with treatment policy and

EEG outcome, on post-randomisation survival times. A strong interaction

between EEG outcome and treatment policy has also been observed for time

to first seizure post-randomisation.

When basing the analysis of recurrent event data on gap times, an important

issue that must be addressed is that of dependent censoring. The marginal

Kaplan-Meier estimates of the survival function, for the times from first to

second seizure, have been compared with conditional estimates of the survivor

function of Y2 | Y1, proposed by Visser (1996), to determine the severity of the

effect of dependent censoring in this dataset. Methods used to conduct gap

time analysis in recurrent event data, when dependent censoring is present,

have been discussed.

Following the non-parametric, exploratory analysis of the MESS data that

has been carried out in this chapter, we shall first formally analyse each of the
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outcomes separately, using standard statistical techniques. In later chapters

we shall analyse the pre-randomisation event counts and post-randomisation

survival time jointly, in a single model.
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Chapter 4

Univariate Analysis of the Event

Counts and Survival Times

We shall begin by considering the univariate analysis of the pre-randomisation

counts, using standard statistical techniques. We shall then go on to analyse

each of the post-randomisation survival times separately, using two standard

survival distributions. We shall comment on the statistical significance of the

covariates and compare the two survival distributions.

Note that there were five of the 1425 individuals considered in the exploratory

analysis with incomplete information on their associated seizure history. These

individuals were excluded from the formal statistical modelling. Additionally,

Table 3.1 showed that only 3.4% and 2.7% of those randomised experienced

either generalised seizures or other seizures respectively pre-randomisation.

These groups are sufficiently small that any statistically significant covariate

effects associated with these seizure type groups are unlikely to be confirmed

in subsequent statistical modelling. The decision was made to also exclude
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these individuals from final analyses. This left us with a final sample size of

1334.

4.1 Analysis of Pre-Randomisation Counts

We consider the Negative Binomial Generalised Linear Model as a marginal

model for the pre-randomisation event counts, specified by the following prob-

ability density function:

fX(xi;λi, ui, α) =
Γ(xi + α)

xi!Γ(α)

(
λiui

α+ λiui

)xi
(

α

α+ λiui

)α

, (4.1)

where λi = exp(β′
1z1i). Here z1i is a vector of covariates for individual i, and

β1 is a vector of regression coefficients, including an intercept term.

All analyses in this thesis have been carried out in R. The estimated regression

coefficients for the Negative-Binomial marginal count model are given in Ta-

ble 4.1. The small value of α suggests that there is substantial heterogeneity

within the population. A regression coefficient > 0 (< 0) would indicate an

increased (decreased) seizure count relative to the seizure count in the refer-

ence group, which contains those individuals presenting with partial seizures

only pre-randomisation.

Examination of the coefficients in Table 4.1 tells us that individuals with tonic-

clonic seizures only and secondary tonic-clonic seizures pre-randomisation have

statistically significantly lower pre-randomisation seizure rates than those in-

dividuals presenting with partial seizures only pre-randomisation.
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Regression Estimates (standard errors) for
Coefficient Negative Binomial GLM
α 2.088 (0.113)
β1,0 -4.119 (0.084)
β1,t−c∗ -1.086 (0.093)
β1,2◦t−c -0.686 (0.095)
β1,partial reference
-Log-likelihood (d.f.) 2486 (1330)

Table 4.1: Estimated regression coefficients for the Negative Binomial GLM.
∗tonic-clonic.

4.2 Analysis of Post-Randomisation Survival

Times

Recall from Figure 3.8 that transformations of the Kaplan-Meier estimates of

the survivor function suggested that the survival data may be well modelled

through the Log-logistic distribution, which belongs to the accelerated fail-

ure time family of distributions. Additionally, recall that in the joint model,

developed by Cowling et al. (2006), the unconditional distribution of the

post-randomisation times to first seizure, Yi, was the Lomax distribution. We

therefore consider these survival distributions for the two post-randomisation

survival times separately, namely time to first seizure and time from first to

second seizure. The Log-logistic and Lomax distributions are defined by the

following probability density functions:

• Log-logistic (shape=γ, scale=1/µi)

fY (yi;µi, γ) =
µiγ(µiyi)

γ−1

(1 + (µiyi)γ)2
, (4.2)
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• Lomax (shape=γ, scale=γ/µi)

fY (yi;µi, γ) = µi

( γ

γ + µiyi

)γ+1

, (4.3)

where in each model µi = exp(θ′di) for a vector θ of regression coefficients,

and a vector di of covariates for each individual i, including an intercept term.

Increasing values of the m regression coefficients, θk, k = 0, . . . ,m, correspond

to an increase in the acceleration factor, and hence a decrease in the expected

time to seizure. Conversely, negative values of θk, k = 0, . . . ,m, correspond to

deceleration and an increase in the expected time to seizure. The parameter

γ > 0 is a shape parameter and represents the degree of additional hetero-

geneity within the population, with smaller values indicating higher levels of

heterogeneity.

Recall that exploratory analysis supported the use of the Log-logistic distribu-

tion and note that equations (4.2) and (4.3) are equivalent when γ = 1. Hence

a value of γ close to 1 (indicating that there is considerable heterogeneity in

the population) would suggest that the data could be sufficiently modelled

through the Lomax distribution, validating the use of the joint model pro-

posed by Cowling et al. (2006) and presented in Chapter 2. We now present

the estimated regression coefficients obtained when each of these distributions

is fit to the post-randomisation survival times, time to first seizure and time

from first to second seizure.
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Time to First Seizure

The parameter estimates for time to first seizure only, for the Log-Logistic

and Lomax distributions are given in Table 4.2. The reference group contains

individuals with partial seizures pre-randomisation, with a normal EEG and

randomised to deferred treatment.

Regression Estimates (standard errors) for
Coefficient the following models:

Log-logistic Lomax
θ0 -0.381 (1.156) 0.572 (1.016)
θtrt -1.217 (1.421) -0.927 (1.319)
θt−c -0.567 (0.604) -0.494 (0.602)
θ2◦t−c -0.853 (0.620) -0.660 (0.624)
θpartial reference reference
θeeg -0.340 (1.399) 0.072 (1.283)
θln(rate) 1.227 (0.217) 1.138 (0.189)
θt−c×trt -0.968 (0.648) -1.040 (0.663)
θ2◦t−c×trt -0.976 (0.665) -0.898 (0.684)
θpartial×trt reference reference
θeeg×trt -1.118 (0.347) -1.138 (0.357)
θln(rate)×trt -0.366 (0.266) -0.327 (0.251)
θt−c×eeg 0.598 (0.666) -0.032 (0.246)
θ2◦t−c×eeg 1.668 (0.685) 0.497 (0.685)
θpartial×eeg reference reference
θln(rate)×eeg -0.117 (0.264) 1.190 (0.708)
γ 0.617 (0.021) 0.233 (0.008)
-Log-likelihood (d.f.) 5112 (1321) 5096 (1321)

Table 4.2: Estimated regression coefficients, for the two survival models, fitted
to the times to first seizure.

We begin by conducting the Wald test (Wald 1943) on each of the estimated

regression coefficients given in Table 4.2 and find that for both survival dis-

tributions the only statistically significant covariates are θln(rate) and θeeg×trt.

Furthermore, those experiencing tonic-clonic only and secondary tonic-clonic
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seizures pre-randomisation can typically expect to have a longer time to first

seizure post-randomisation, than those with partial seizures only. Additionally

θ2◦t−c×eeg is significant in the Log-logistic model only. The lack of statistically

significant covariates in these models is contrary to the observations made

through the investigation of the Kaplan-Meier curves. Probably most surpris-

ing is that the exploratory analysis suggested that treatment policy should be

significant, but this is not supported by the coefficient estimates.

The Log-logistic and Lomax distributions can not be compared using the

standard likelihood ratio test, as they are non-nested models. The Akaike

Information Criterion (AIC) (Sahamotoa et al. 1986) is a method for compar-

ing two non-nested models and is given by 2(m− ℓ), where m is the number of

parameters in the model and ℓ is the maximised log-likelihood associated with

the model. Computing the AIC for each of the two survival distributions we

have that for time to first seizure the AIC for the Log-logistic model is 10250,

and for the Lomax distribution the corresponding AIC is 10217. This indicates

that the Lomax distribution is preferred over the Log-logistic distribution.

Time from First to Second Seizure

The parameter estimates for the times from first to second seizure, for the

Log-Logistic and Lomax distributions are given in Table 4.3. If we compute

the AIC for each of these distributions we have that for the Log-logistic dis-

tribution the AIC is 5652, and the AIC for the Lomax distribution is 5614,

meaning that again the Lomax distribution is the preferred of the two distri-

butions.
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If we now compute the Wald statistics for each of the estimated regression coef-

ficients presented in Table 4.3, we see that only θt−c is statistically significant

in the Lomax survival distribution. Additionally, only θln(rate) is significant

in the Log-logistic distribution. This time, however, the lack of statistically

significant covariates is not as surprising. The exploratory analysis suggested

that some covariates that were statistically significant in determining the times

to first seizure failed to be statistically significant when considering the times

from first to second seizure.

Regression Estimates (standard errors) for
Coefficient the following models:

Log-logistic Lomax
θ0 -0.234 (1.497) -0.085 (1.294)
θtrt -2.183 (1.893) -1.650 (1.708)
θt−c -1.770 (0.894) -2.188 (0.783)
θ2◦t−c -0.364 (0.901) -1.063 (0.802)
θpartial reference reference
θeeg -2.013 (1.800) -0.918 (1.616)
θln(rate) 0.780 (0.294) 0.440 (0.250)
θt−c×trt 1.747 (0.932) 1.121 (0.874)
θ2◦t−c×trt 0.647 (0.944) 0.540 (0.887)
θpartial×trt reference reference
θeeg×trt 0.492 (0.499) 0.382 (0.481)
θln(rate)×trt -0.175 (0.369) -0.148 (0.342)
θt−c×eeg 0.192 (0.953) 0.920 (0.902)
θ2◦t−c×eeg 0.043 (0.966) 0.716 (0.917)
θpartial×eeg reference reference
θln(rate)×eeg -0.301 (0.354) 0.040 (0.325)
γ 0.595 (0.024) 0.270 (0.012)
-Log-likelihood (d.f.) 2813 (1321) 2794 (1321)

Table 4.3: Estimated regression coefficients, for the two survival models, fitted
to the times from first to second seizure.
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4.3 Discussion

In Chapter 3, exploratory analysis was carried out on 1425 individuals. In the

formal analysis of the MESS data however, five individuals, for whom there

was no information on their pre-randomisation seizure history, were removed,

as were all those individuals presenting with either generalised or other seizures

pre-randomisation. This left us with a final sample size of 1334 individuals all

presenting with tonic-clonic and/or partial seizures.

The Negative Binomial Generalised Linear Model was considered as a marginal

model for the event counts, with the Log-logistic and Lomax accelerated fail-

ure time models being adopted for the marginal survival times.

Seizure type was found to be statistically significant in determining an individ-

uals’ pre-randomisation seizure count. Those individuals experiencing partial

seizures only, typically have more seizures pre-randomisation, than those pre-

senting with tonic-clonic seizures.

In the analysis of the post-randomisation survival times, the Lomax distri-

bution was found to be more suitable than the Log-logistic distribution for

both times to first, and from first to second seizures. A lack of statistically

significant exploratory variables was observed. This surprising result is in stark

contrast to the conclusions drawn following the examination of the Kaplan-

Meier curves in Chapter 3.
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Chapter 5

The Joint Model

Analysis of the post-randomisation survival times in a univariate setting, using

standard survival distributions, was unable to pick up on covariate effects that

were suggested by the examination of the Kaplan-Meier curves.

Cowling et al. (2006) compared the joint model for pre-randomisation event

counts and post-randomisation survival times with the best fitting standard

survival distribution that treated the pre-randomisation event count informa-

tion as a covariate. A simulation study of power (Cowling 2003) indicated

that the joint model provided more precise estimates of the treatment effect

than the standard parametric survival models. The joint model also had more

power to identify interaction effects not affirmed by the standard survival mod-

els.

We shall use the model developed by Cowling et al. (2006) as the basis for

a joint model that analyses pre-randomisation event counts and two post-

randomisation survival times together.
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5.1 Building the Joint Model for the Event

Counts Pre-Randomisation and Two Post-

Randomisation Survival Times

In many treatment studies it is often time to first event that is measured,

however epilepsy is characterised by recurrent seizures, not a single, isolated

event. Our data arrives in three parts: a pre-randomisation event count, post-

randomisation time to first seizure and post-randomisation time from first to

second seizure. Our aim is to develop methodology that analyses these out-

comes jointly, in a single model.

Let T1i and T2i be the times from randomisation to first and second seizure

respectively, for individual i, i = 1 . . . n. Now, setting Y1i = T1i and Y2i =

T2i − T1i, gives that Y1i is subsequently the time to first seizure, and Y2i is the

time from first seizure to the second. We shall assume individuals experience

seizures according to a Poisson process with rate λiνi, where the parame-

ter λi relates to the baseline covariates, with additional heterogeneity in the

population being modelled through νi, assumed to follow a Gamma(α, α) dis-

tribution. Smaller values of α are indicative of higher levels of heterogeneity.

Consequently, the pre-randomisation event count, for individual i, over period

ui, Xi, follows a Poisson distribution with mean and variance λiuiνi.

A consequence of the Poisson process is that interevent times are Exponential,

so that post-randomisation survival times to first seizure, and from first to

second seizure, Y1i and Y2i, will be independent, conditional on the random
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effect term, and Exponentially distributed with rate λiψiνi. The parameter

ψi is a post-randomisation seizure rate modifier, related to the individuals’

treatment in some way. In summary:

Xi | νi ∼ Poisson(λiuiνi),

Yji | νi ∼ Exponential(λiψiνi), j = 1, 2,

νi ∼ Gamma(α, α).

The joint density of the survival times is the product of the densities of Y1i

and Y2i, so that the joint model is specified by the following equations:

fX|ν(xi | νi;λi, ui) =
(λiuiνi)

xi exp(−λiuiνi)
xi!

,

fY1,Y2|ν(y1i, y2i | νi;λi, ψi) = (λiψiνi)
2 exp(−λiψiνi(y1i + y2i)),

fν(νi;α) =
αανα−1

i exp(−ανi)
Γ(α)

,

where λi = exp(β′
1z1i), ψi = exp(β′

2z2i) and z1i, z2i are vectors of covariates,

not necessarily distinct.

5.1.1 Marginal Distributions

If the random effect term is integrated out of the joint density of Xi and νi,

then the resulting unconditional density, fX(xi;λi, ui, α), is simply the Nega-

tive Binomial (Equation 4.1). The unconditional joint distribution of the Yji,

j = 1, 2, obtained when the random effects are integrated out of the joint

density of the survival times, Y1i and Y2i, and νi, is the bivariate Lomax distri-

bution (Nayak 1987). This distribution has the following density and survivor
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functions:

fY1,Y2(y1i, y2i;λi, ψi, α) =

∫ ∞

0

fY1,Y2|ν(y1i, y2i | νi;λi, ψi)gν(νi;α)dνi

=
α+ 1

α
(λiψi)

2

{
1 +

λiψi(y1i + y2i)

α

}−(α+2)

(5.1)

SY1,Y2(y1i, y2i;λi, ψi, α) =

∫ ∞

y2i

∫ ∞

y1i

fY1,Y2(u, v;λi, ψi, α)du dv

=

{
1 +

λiψi(y1i + y2i)

α

}−α

. (5.2)

Each of the Yji have univariate Lomax marginal distributions, with shape and

scale parameters α and α/λiψi respectively, with density:

fYj
(yji;λi, ψi, α) =

λiψi

(1 + λiψiyji/α)α+1
, j = 1, 2.

5.1.2 The Full Log-Likelihood and Derivatives

When formulating the likelihood, we need to consider the different ways that

censoring can occur. There are three different ways censoring can arise in this

setting, namely: (i) Y1i and Y2i are both observed, (ii) Y1i is observed, but Y2i

is censored, and (iii) Y1i is censored, so Y2i is taken to be censored at zero. We

now consider these three situations separately.
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Joint Distribution with Y1i and Y2i Observed

In this situation the joint density of Y1i and Y2i contributes towards the like-

lihood, giving

∫ ∞

0

fX|ν(xi | νi;λi, ui)fY1,Y2|ν(y1i, y2i | νi;λi, ψi)fν(νi;α)dνi

=
(λiui)

xi

xi!

(λiψi)
2αα

Γ(α)

Γ(xi + α+ 2)

(λiui + λiψi(y1i + y2i) + α)xi+α+2
. (5.3)

Joint Distribution with Y1i Observed and Y2i Censored

In this situation the density of Y1i and the survivor function for Y2i contribute

to the likelihood, giving

∫ ∞

0

fX|ν(xi | νi;λi, ui)fY1|ν(y1i | νi;λi, ψi)SY2|ν(y2i | νi;λi, ψi)fν(νi;α)dνi

=
(λiui)

xi

xi!

λiψiα
α

Γ(α)

Γ(xi + α+ 1)

(λiui + λiψi(y1i + y2i) + α)xi+α+1
. (5.4)

69



Joint Distribution with Y1i Censored, so Y2i Taken to be Censored

at Zero

In this situation it is the survivor functions of Y1i and Y2i that will contribute

to the likelihood, however we assume that the second survival time is censored

at zero, giving SY2|ν(0 | νi;λi, ψi) = 1.

∫ ∞

0

fX|ν(xi | νi;λi, ui)SY1|ν(y1i | νi;λi, ψi)fν(νi;α)dνi

=
(λiui)

xi

xi!

αα

Γ(α)

Γ(xi + α)

(λiui + λiψiy1i + α)xi+α
. (5.5)

Conversely, by keeping SY2|ν(y2i | νi;λi, ψi) in the calculations, we subsequently

obtain a simpler likelihood function, so we proceed in this way to obtain

∫ ∞

0

fX|ν(xi | νi;λi, ui)SY1|ν(y1i | νi;λi, ψi)SY2|ν(y2i | νi;λi, ψi)fν(νi;α)dνi

=
(λiui)

xi

xi!

αα

Γ(α)

Γ(xi + α)

(λiui + λiψi(y1i + y2i) + α)xi+α
. (5.6)

Note that equations (5.5) and (5.6) are equivalent when y2i = 0.
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Log-likelihood

Let δji be the indicator function for the jth survival time, taking the value 1

if the seizure is observed, and zero if the survival time is censored. Combining

these indicator functions with equations (5.3)-(5.6) allows us to formulate the

log-likelihood for the observed data D, for all the n individuals, given by

ℓ(α,β1,β2 | D) =
n∑

i=1

{[ xi−1∑
k=0

ln(α+ k)

]
+ (xi + δ1i(1 + δ2i)) ln(λi) + xi ln(ui)

− ln(xi!) + α ln(α) + δ1i(1 + δ2i) ln(ψi) + δ1i ln(xi + α)

+δ1iδ2i ln(xi + α+ 1)− (1− δ1i)(xi + α) ln (λiui + λiψiy1i + α)

−δ1i(δ2i + xi + α+ 1) ln (λiui + λiψi(y1i + y2i) + α)

}
. (5.7)

First and second derivatives of this log-likelihood can easily be obtained, al-

lowing inference on the parameters α, β1 and β2 using a numerical method

such as Newton Raphson.

First Derivatives

The first-order derivatives of the full log-likelihood are

∂ℓ

∂β1

=
n∑

i=1

{
α(xi + δ1i(1 + δ2i)− λiui − λiψi(y1i + y2i))

λiui + λiψi(y1i + y2i) + α

}
z1i,

∂ℓ

∂β2

=
n∑

i=1

{
δ1i(1 + δ2i)(λiui + α)− λiψi(y1i + y2i)(xi + α)

λiui + λiψi(y1i + y2i) + α

}
z1i,

∂ℓ

∂α
=

n∑
i=1

{[ xi−1∑
k=0

1

α+ k

]
+

δ1i
xi + α

+
δ1iδ2i

xi + α+ 1
+ ln(α) + 1

− ln(λiui + λiψi(y1i + y2i) + α)− xi + α+ δ1i(1 + δ2i)

λiui + λiψi(y1i + y2i) + α

}
.

71



Second Derivatives

The second-order derivatives of the full log-likelihood are

∂2ℓ

∂β1∂β1′
= −

n∑
i=1

{
α(xi + δ1i(1 + δ2i + α)(λiui + λiψi(y1i + y2i))

(λiui + λiψi(y1i + y2i) + α)2

}
z1iz1i′,

∂2ℓ

∂β1∂β2′
= −

n∑
i=1

{
α(α+ xi + δ1i(1 + δ2i))λiψi(y1i + y2i)

(λiui + λiψi(y1i + y2i) + α)2

}
z1iz2i′,

∂2ℓ

∂β1∂α
=

n∑
i=1

{
(λiui + λiψi(y1i + y2i))(xi + δ1i(1 + δ2i)− λiui

(λiui + λiψi(y1i + y2i) + α)2

− λiψi(y1i + y2i))

(λiui + λiψi(y1i + y2i) + α)2

}
z1i,

∂2ℓ

∂β2∂β2′
= −

n∑
i=1

{
(xi + α+ δ1i(1 + δ2i))(λiui + α)λiψi(y1i + y2i)

(λiui + λiψi(y1i + y2i) + α)2

}
z2iz2i′,

∂2ℓ

∂β2∂α
=

n∑
i=1

{
(xi − λiui + δ1i(1 + δ2i))λiψi(y1i + y2i)

(λiui + λiψi(y1i + y2i) + α)2

−(λiψi(y1i + y2i))λiψi(y1i + y2i)

(λiui + λiψi(y1i + y2i) + α)2

}
z2i,

∂2ℓ

∂α∂α
= −

n∑
i=1

{[ xi−1∑
k=0

1

(α+ k)2

]
+

δ1i
(xi + α)2

+
δ1iδ2i

(xi + α+ 1)2
− 1

α

−(xi + δ1i(1 + δ2i)− α− 2(λiui + λiψi(y1i + y2i)))

(λiui + λiψi(y1i + y2i) + α)2

}
.

5.2 Implementing the Joint Model

We consider two versions of the joint model: the joint model proposed by

Cowling et al. (2006), which considers the pre-randomisation event counts and

times to first post-randomisation seizure only (Joint Model A), and the joint

model we have developed here that models the pre-randomisation event counts

and post-randomisation seizure times to first and second seizure (Joint Model

B). The estimated regression coefficients for the two fitted models are given
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in Table 5.1. A regression coefficient > 0 (< 0) would indicate an increased

(decreased) seizure rate relative to the seizure rate in the reference group. The

reference group contains individuals with partial seizures pre-randomisation,

with a normal EEG and randomised to deferred treatment.

It is encouraging to note that the estimated regression coefficients contained in

λi are very similar to those obtained through the Negative-Binomial marginal

count model, presented in Table 4.1.

If we conduct the Wald test on each of the regression coefficients in ψi we

can see that in the joint models there are numerous significant covariates,

indeed all but the pre-randomisation seizure types and EEG outcome are sig-

nificant. It may be surprising to conclude that the pre-randomisation seizure

types are not significant in the model, but note that the interaction terms are

highly significant.

If we compare the significant variables appearing in ψi, for each of the two mod-

els considered, the estimated regression coefficients observed in Joint Model

B are closer to zero than those estimates observed in Joint Model A. Recall

that the exploratory analysis suggested that covariates that were significant in

determining the times to first seizure post-randomisation, may not be signifi-

cant when analysing the times from first to second post-randomisation seizure.

This may explain the averaging down effect observed here and suggests that we

should not assume that the ψi remains constant between post-randomisation

seizures.
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Regression Estimates (standard errors)
Coefficient for the following models:

Joint Model A Joint Model B
α 1.942 (0.105) 1.738 (0.092)

λi β1,0 -4.133 (0.087) -4.145 (0.091)
β1,t−c -1.074 (0.097) -1.054 (0.100)
β1,2◦t−c -0.694 (0.100) -0.697 (0.103)
β1,partial reference reference

ψi β2,0 -2.759 (0.327) -2.067 (0.252)
β2,trt 0.979 (0.331) 0.433 (0.263)
β2,t−c 0.549 (0.337) 0.057 (0.262)
β2,2◦t−c 0.242 (0.347) 0.067 (0.270)
β2,partial reference reference
β2,eeg -0.251 (0.338) -0.537 (0.268)
β2,t−c×trt -1.214 (0.333) -0.491 (0.265)
β2,2◦t−c×trt -1.340 (0.346) -0.854 (0.274)
β2,partial×trt reference reference
β2,eeg×trt -0.629 (0.184) -0.377 (0.148)
β2,t−c×eeg 0.777 (0.347) 0.875 (0.277)
β2,2◦t−c×eeg 1.478 (0.359) 1.272 (0.286)
β2,partial×eeg reference reference

-Log-likelihood (d.f.) 7872 (1320) 11233 (1320)

Table 5.1: Estimated regression coefficients for the joint models. The term λi
contains parameter estimates corresponding to the effect of covariates on the
underlying event rate and ψi contains parameter estimates corresponding to
the effect of covariates on the post-randomisation reduction in event rates.

5.3 Interpretation of Results

To gain a better understanding of the estimated regression coefficients, given

in Table 5.1, we can obtain subsequent estimates of the pre-randomisation

seizure rates and the post-randomisation seizure rate modifiers, for the dif-

ferent seizure types, EEG outcomes and treatment policies. We shall use the

estimates given by Joint Model B.

Table 5.2 gives the expected pre-randomisation seizure rates per unit time,
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for the different seizure types. We can see that those individuals presenting

with partial seizures pre-randomisation can typically expect to have the highest

seizure rate, with those experiencing tonic-clonic seizures only and secondary

tonic-clonic seizures having statistically significantly lower rates.

Seizure Type λ̂i (95% C.I.) Expected
yearly rate

Tonic-Clonic 0.0055 (0.005,0.006) 2
2◦ Tonic-Clonic 0.008 (0.007,0.009) 3

Partial 0.016 (0.013,0.019) 6

Table 5.2: The expected pre-randomisation seizure rate per unit time and
the corresponding expected yearly seizure rate, using the estimated regression
coefficients from Joint Model B.

Table 5.3 gives estimates of the expected post-randomisation change in seizure

rate, stratified by seizure type, EEG outcome and treatment policy. As

an example consider a person presenting with tonic-clonic seizures only pre-

randomisation, with an abnormal EEG and randomised to deferred treat-

ment. Table 5.2 tells us that their expected pre-randomisation seizure rate

per unit time, λ̂i, is 0.0055, which equates to a seizure approximately ev-

ery 182 days. Their subsequent ψ̂i, from Table 5.3, is 0.188, meaning that

post-randomisation they should expect to have seizures about 19% as often as

they had experienced pre-randomisation. Recall that the post-randomisation

seizure rate per unit time is given by λ̂iψ̂i = 0.0055 × 0.188 = 0.0010, which

equates to one seizure approximately every 970 days.

Looking at the values of ψ̂i presented in Table 5.3, we can see that treat-

ment policy is not statistically significant for those individuals with a normal
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EEG. Additionally, those individuals having an abnormal EEG, but allocated

to immediate treatment, can expect to have a post-randomisation seizure rate

in line with those presenting a normal EEG. We can see that for those with an

abnormal EEG, immediate treatment is favoured for all groups except partial,

where no significant difference between treatment policies is observed. This is

in line with what was suggested by the exploratory analysis.

Seizure Type ψ̂i (95% C.I.)
Abnormal EEG

Immediate Deferred
Tonic-Clonic 0.122 (0.10,0.15) 0.188 (0.15,0.23)

2◦ Tonic-Clonic 0.127 (0.10,0.16) 0.282 (0.22,0.36)
Partial 0.078 (0.05,0.12) 0.074 (0.05,0.11)

Normal EEG
Immediate Deferred

Tonic-Clonic 0.127 (0.10,0.15) 0.134 (0.11,0.16)
2◦ Tonic-Clonic 0.089 (0.07,0.11) 0.135 (0.11,0.17)

Partial 0.195 (0.12,0.32) 0.127 (0.08,0.21)

Table 5.3: The expected change in seizure rate post-randomisation, using the
estimated regression coefficients from Joint Model B.

If we further consider the values of the expected post-randomisation seizure

rate reductions, presented in Table 5.3, we observe large reductions in the

seizure rates across all groups. Note that the estimates presented suggest

that even those individuals with an abnormal EEG and randomised to de-

ferred treatment should expect to see considerable reductions in their seizure

rate post-randomisation. It seems unrealistic that an individual receiving no

treatment should expect to see such dramatic reductions in their seizure rate

post-randomisation.
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5.4 Discussion

In this chapter we have built a model that allows pre-randomisation event

counts and post-randomisation times to first, and from first to second seizure,

to be analysed jointly. This model is proposed as an alternative to standard

survival analysis, which treats the pre-randomisation event count information

as a covariate, and was based on a joint model developed by Cowling et al.

(2006). We have built our joint model under a Poisson process framework,

with an assumed underlying individual event rate. This underlying seizure

rate is modified at randomisation to allow for the treatment effects. We have

assumed that post-randomisation survival times are independent, conditional

on the individual-specific random effects, and identically distributed.

The joint model that has been developed in this chapter has subsequently

been used to analyse the MESS data. Two versions of the joint model were

considered: one that jointly analyses the pre-randomisation event count and

time to first seizure post-randomisation only (Joint Model A), and a second

that additionally incorporates the times from first to second seizure (Joint

Model B). On fitting the joint models, we concluded that the seizure type

interactions with treatment and EEG outcome were highly statistically signif-

icant.

To gain a better understanding of the regression coefficients presented, subse-

quent estimates of the pre-randomisation seizure rates and post-randomisation

seizure rate modifiers were derived. These estimates revealed possible limita-

tions of the joint model presented in this chapter. First, the magnitudes of
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the seizure rate reductions presented in Table 5.3 are a cause for concern.

Non-parametric analysis of the data, carried out in Chapter 3, highlighted the

possibility of cure rates being prevalent in the dataset, which would explain

the unrealistic reductions in seizures rates observed here.

Secondly, we have noted that the estimated regression coefficients observed

in Joint Model B are closer to zero than those estimates observed in Joint

Model A. This result has suggested that the assumption of a constant ψi post-

randomisation may be violated.

The joint models for the pre-randomisation and post-randomisation seizure

rates, developed in this chapter, seem to provide an improvement over stan-

dard survival models. The inclusion of additional information in the joint

models has resulted in an increase in power, which consequently means that

statistically significant covariate effects, not recognised by the standard sur-

vival distributions, have been affirmed.

Previously analyses of the MESS data, by Marson et al. (2005) and Kim

et al. (2006), concluded that the risk of seizure recurrence increased with the

number of seizures pre-randomisation and an abnormal EEG, and that imme-

diate treatment increased times to first and second seizures. These findings are

consistent with our analysis of the MESS data. Nonetheless, neither of these

analyses considered differences between types of epileptic seizures, or interac-

tions between the covariates, which we have found to be statistically significant

in determining underlying seizure rates and post-randomisation seizure rate re-

ductions.
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To summarise, despite an observed improvement, the joint model does not

incorporate other characteristics evident within the data, and discussed here.

Extensions to the joint model that accommodate these interesting character-

istics in the dataset shall be considered in the next chapter.
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Chapter 6

Extensions to the Simple Joint

Model

As previously discussed, examination of the results obtained following the im-

plementation of Joint Models A and B, has highlighted possible limitations.

The assumption of a constant seizure rate post-randomisation may not be ac-

curate, and there is evidence to suggest that cure rates may be present.

In this next section we discuss each of these limitations separately and ex-

plore possible solutions to the problems that they present. We shall then

proceed to build a model that encompasses all the interesting characteristics

present in the data, in one complete model.

6.1 Varying Post-Randomisation Seizure Rate

There is evidence to suggest that the seizure rates may change not only at

randomisation, but also following a first seizure post-randomisation. We shall
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account for this by first considering the following adjustment:

Xi | νi ∼ Poisson(λiuiνi),

Y1i | νi ∼ Exponential(λiψ1iνi),

Y2i | νi ∼ Exponential(λiψ1iρνi),

νi ∼ Gamma(α, α),

where λi = exp(β′
1z1i), ψ1i = exp(β′

2z2i) and z1i, z2i are vectors of covariates,

not necessarily distinct. The parameter ρ is a constant, which determines the

change in seizure rate following a post-randomisation seizure.

Integrating the random effect term out of the joint density of the survival times,

Y1i and Y2i, and νi, the unconditional joint distribution of the Yji, j = 1, 2,

remains the bivariate Lomax distribution, with univariate Lomax marginal

distributions. Proceeding in the same manner as before, considering the dif-

ferent censoring patterns separately, allows us to formulate the log-likelihood

for the observed data D, on all the n individuals, obtaining

ℓ(α,β1,β2, ρ | D) =
n∑

i=1

{[ xi−1∑
k=0

ln(α+ k)

]
+ {xi + δ1i(1 + δ2i)} ln(λi)

+xi ln(ui)− ln(xi!) + α ln(α) + δ1i(1 + δ2i) ln(ψ1i) + δ1iδ2i ln(ρ)

+δ1i ln(xi + α) + δ1iδ2i ln(xi + α+ 1) (6.1)

−{xi + α+ δ1i(1 + δ2i)} ln (λiui + λiψ1i(−y1i + ρy2i) + α)

}
.

The derivation of this adjusted model allows us to conduct a hypothesis test,

comparing Joint Model B with the model that we consider here. The estimate
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for ρ was 2.2 (standard error 0.16)1, with the corresponding log-likelihood ratio

test statistic of 2468 providing overwhelming support for its inclusion.

We do not believe that this model is sufficient for modelling the data, we merely

use this example to illustrate that the identically distributed assumption for

the two survival times is violated. Instead, we now consider a joint model that

includes seizure rate modifiers, both at randomisation and following a first

post-randomisation seizure, that depend on covariates. This modification is

implemented by considering the following adjustment to the joint density for

the post-randomisation survival times:

fY1,Y2|ν(y1i, y2i | νi;λi, ψ1i, ψ2i) = (λiψ1iνi)
2ψ2i exp(−λiψ1iνi(y1i + ψ2iy2i)),

where λi = exp(β′
1z1i), ψ1i = exp(β′

2z2i), ψ2i = exp(β′
3z3i) and z1i, z2i, z3i

are vectors of covariates, not necessarily distinct.

Table 6.1 shows the subsequent estimated pre-randomisation seizure rates and

the expected yearly seizure rates, stratified by seizure type. It is not sur-

prising to observe that the figures presented in Table 6.1 are the same as

those presented in Table 5.2. The extensions that we consider in this chap-

ter correspond to interesting characteristics present in the post-randomisation

survival times only. There is no reason why, by considering extensions to the

simple joint model, we should expect parameter estimates concerning the pre-

randomisation event counts to change.

1Maximum likelihood estimates of the regression coefficients for
the different models considered in this chapter can be found at
http://www.warwick.ac.uk/go/jenniferrogers/research/thesis.
This page is password protected, the password is ‘thesisrogers2010’.
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Seizure Type λ̂i (95% C.I.) Expected
yearly rate

Tonic-Clonic 0.0054 (0.005,0.006) 2
2◦ Tonic-Clonic 0.008 (0.007,0.009) 3

Partial 0.016 (0.013,0.019) 6

Table 6.1: The expected pre-randomisation seizure rate per unit time and
the corresponding expected yearly seizure rate, using the estimated regression
coefficients from Joint Model B.

Table 6.2 shows the maximum likelihood estimates for ψ1i and ψ2i. The values

of ψ1i represent the change in seizure rate at randomisation, with ψ2i repre-

senting the change in rate following a first post-randomisation seizure. As in

Chapter 5, we see that treatment policy does not appear to be statistically sig-

nificant in determining the estimate of ψ1i for those individuals with a normal

EEG. Additionally, those individuals having an abnormal EEG, but allocated

to immediate treatment can expect to have a seizure rate following randomisa-

tion in line with those presenting a normal EEG. For those with an abnormal

EEG immediate treatment is favoured for all groups except partial, where no

statistically significant difference between treatment policies is observed.

Following a first seizure post-randomisation we see that, in general, seizure

rates increase. Those with an abnormal EEG, and allocated to deferred treat-

ment, typically have the smallest increase in seizure rate following a first seizure

post-randomisation. A possible explanation for this is that these individuals

typically see the smallest reduction in seizure rate following randomisation.

Recall that those randomised to deferred treatment were simply withheld

AEDs until it was deemed absolutely necessary by the clinician. It seems

reasonable to suggest that those individuals who were randomised to deferred
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treatment, who experience a seizure post-randomisation, may start a subse-

quent course of treatment with AEDs, thus bringing them in line with those

randomised to immediate treatment.

Seizure Type ψ̂1i (95% C.I.) first seizure
Abnormal EEG

Immediate Deferred
Tonic-Clonic 0.086 (0.07,0.11) 0.157 (0.12,0.20)

2◦ Tonic-Clonic 0.109 (0.08,0.14) 0.227 (0.17,0.31)
Partial 0.052 (0.03,0.09) 0.065 (0.04,0.10)

Normal EEG
Immediate Deferred

Tonic-Clonic 0.094 (0.08,0.12) 0.107 (0.09,0.13)
2◦ Tonic-Clonic 0.067 (0.05,0.09) 0.087 (0.07,0.11)

Partial 0.119 (0.06,0.22) 0.093 (0.05,0.17)

ψ̂2i (95% C.I.) second seizure
Abnormal EEG

Immediate Deferred
Tonic-Clonic 3.755 (2.48,5.70) 1.413 (0.99,2.01)

2◦ Tonic-Clonic 1.708 (1.12,2.62) 1.361 (0.89,2.08)
Partial 2.202 (0.99,4.91) 2.134 (1.01,4.53)

Normal EEG
Immediate Deferred

Tonic-Clonic 3.116 (2.19,4.43) 1.983 (1.41,2.78)
2◦ Tonic-Clonic 3.640 (2.31,5.73) 4.902 (3.18,7.56)

Partial 1.814 (0.74,4.46) 2.972 (1.19,7.44)

Table 6.2: The expected change in seizure rates following randomisation
and following the first post-randomisation seizure, using the estimated re-
gression coefficients from the joint model that incorporates a varying post-
randomisation seizure rate.
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6.2 Cure Rate Models

The magnitude of the reductions in seizure rates post-randomisation, observed

in Chapter 5 suggest that there may be a substantial proportion of the pop-

ulation that we should regard as cured. This was also discussed in the ex-

ploratory analysis, presented in Chapter 3. Berg and Shinnar (1991) noted

that, on average, around 50% of people do not experience seizure recurrence

after a single, untreated seizure. Recall that over half of the 1425 individuals

for whom exploratory analysis was carried out presented only a single seizure

pre-randomisation. It is therefore not unreasonable to suspect that a substan-

tial proportion of the individuals included in the MESS trial would never have

a seizure post-randomisation, regardless of the length of time for which they

were followed. It has already been acknowledged that if survival data does in-

deed have a proportion that are immune to the event of interest, a model that

ignores this may give misleading results. More specifically, ignoring any po-

tential cure fraction could result in underestimates of the post-randomisation

seizure rates, thus contributing to the magnitude of seizure rate reductions

that have been observed.

Recall that a proper survival distribution should have total mass 1, with the

resulting Kaplan-Meier curve having its asymptote at zero. The Kaplan-Meier

curves for times to first seizure, and from first to second seizure, are presented

in Figure 6.1. Both of the Kaplan-Meier curves level off well above zero, sug-

gesting that there may be an immune component present for both time to first

seizure post-randomisation and time from first to second seizure.
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Figure 6.1: Kaplan-Meier curves for time to first and second seizures (with
95% CI). Curves are marked at each censoring time.
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We have presented a cure rate model, proposed by Maller and Zhou (1996),

which takes into consideration the fact that there may be a proportion of

individuals in the population immune to the event of interest. We shall now

proceed to consider the analysis of the MESS data using cure rate models.

6.2.1 Standard Survival Analysis with Cure Rates

Standard software in R (Peng ) allows the fitting of various parametric mix-

ture models, including the Log-logistic, for the estimation of cure rates. We

therefore proceed to fit a Log-logistic mixture model that incorporates a cure

fraction. This model was considered for both times to first seizure post-

randomisation, and times from first to second seizure.

We initially consider mixture models that allow the associated cure rates to

depend on an intercept term only. The derivation of these adjusted models

allows us to conduct a hypothesis test, comparing the Log-logistic cure rate

models with the standard Log-logistic models presented in Chapter 4. The

estimated cure fractions are 23.9% for time to first seizure, and 19.3% for

time from first to second seizure. The corresponding log-likelihood ratio test

statistics are 6236 and 3268 for the models for time to first seizure and time

from first to second seizure respectively. These two highly statistically signif-

icant test statistics provide overwhelming evidence for the inclusion of cure

rates, when analysing the survival data. These estimated values, however, are

slightly lower than suggested by the Kaplan-Meier curves in Figure 6.1, but

still provide sufficient evidence to suggest that we should incorporate a cure

fraction into the joint model.
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Further investigation concluded that the cure rates associated with times to

first seizure post-randomisation are dependent on seizure type, EEG outcome

and the logarithm of the pre-randomisation seizure rate for each individual.

For the times from first to second post-randomisation, no covariate effects were

found to be statistically significant in determining the proportion cured.

6.2.2 Cure Rate for Single Post-Randomisation Survival

Time

We can adjust our original, simple joint model, to allow for the inclusion of

cure rates. We first consider a model that jointly models the pre-randomisation

seizure counts and post-randomisation time to first seizure only, which has the

following density and survivor functions:

fY1|ν(y1i | νi;λi, ψi, p) = pgY1|ν(y1i | νi;λi, ψi)

= pλiψiνi exp(−λiψiνiy1i),

SY1|ν(y1i | νi;λi, ψi, p) = 1− p+ pRY1|ν(y1i | νi;λi, ψi)

= 1− p+ p exp(−λiψiνiy1i),

where λi = exp(β′
1z1i), ψi = exp(β′

2z2i) and z1i, z2i are vectors of covariates,

not necessarily distinct. The term p represents the susceptible proportion in

the population, so that 1 − p is the cure fraction. The density and survivor

functions for the susceptibles are given by g(·) and R(·) respectively.

On fitting the joint model allowing for the cure rate, we obtain a maximum

likelihood estimate for p of 0.574 (standard error 0.02). Comparing this esti-
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mate with the Kaplan-Meier curve for time to first seizure in Figure 6.1, this

estimate seems sensible. We can formally test for the inclusion of p by compar-

ing the log-likelihood of Joint Model A with the log-likelihood obtained here.

A highly statistically significant likelihood-ratio test statistic of 442 supports

the inclusion of the cure rate, and the corresponding estimated value suggests

that there is a substantial proportion of the population ‘immune’ to seizures

post-randomisation.

6.2.3 Allowing the Cure Rates to Depend on Covariates

We can allow the cure rate to depend on individuals’ covariates by considering

the following parameterisation:

pi =
exp(κ′wi)

1 + exp(κ′wi)
.

The explanatory variables associated with individual i are entered into the

covariate wi, with κ denoting the corresponding vector of regression coeffi-

cients. Estimates of λ̂i will remain the same as those presented in Tables 5.2

and 6.1. Subsequent parameter estimates can be used to obtain estimates of

the post-randomisation seizure rate modifiers and cure rates, denoted by ψ̂i

and 1− p̂i respectively. Table 6.3 shows the estimated cure rates, whilst Table

6.4 presents the estimated seizure rate modifiers for the subsequent susceptible

proportion. The results in Tables 6.3 and 6.4 allow us to estimate an individ-

uals’ probability of being immune to seizure recurrence, dependent on their

pre-randomisation seizure types EEG outcome and their associated interac-

tion terms. If an individual is susceptible to seizure recurrence, we can predict

the magnitude of their seizure rate reductions post-randomisation, dependent
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on their pre-randomisation seizure types, EEG outcome and, additionally, the

treatment policy to which they are assigned.

Treatment policy was not found to be significant in determining whether an

individual is susceptible or immune to seizure recurrence post-randomisation.

Model selection was carried out using stepwise backwards elimination (Hock-

ing 1976). Examination of Table 6.3 highlights that those individuals with

an abnormal EEG can expect to have a statistically significantly lower cure

rate than those with a normal EEG, except for those individuals experiencing

Partial seizures only pre-randomisation, where no statistically significant dif-

ference is observed.

Seizure Type 1− p̂i (95% C.I.)
Abnormal EEG Normal EEG

Tonic-Clonic 0.352 (0.28,0.43) 0.495 (0.44,0.55)
2◦ Tonic-Clonic 0.235 (0.16,0.33) 0.549 (0.48,0.62)

Partial 0.391 (0.27,0.53) 0.280 (0.14,0.48)

Table 6.3: The expected cure rates when considering the times to first seizure,
using estimates from the joint model that incorporates the post-randomisation
times to first seizure only, with associated cure rates.

Looking at the estimated values of ψ̂i presented in Table 6.4, we can again see

that treatment policy does not appear to be significant for those individuals

with a normal EEG. Those individuals having an abnormal EEG, but allocated

to immediate treatment, still expect to have a post-randomisation seizure rate

in line with those presenting a normal EEG. We can see that for those with

an abnormal EEG immediate treatment is favoured for all groups except par-

tial, where no significant difference between treatment policies is observed.
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Finally, we observe that the magnitudes of the seizure rate reductions post-

randomisation are not as large as those presented in Table 5.3. Additionally,

note that those with Partial seizures, with or without secondary Tonic-Clonic

seizures, with an abnormal EEG, and allocated to deferred treatment have

a value of ψ̂i not statistically significantly different from unity, which corre-

sponds to the seizure rate not changing post-randomisation.

Seizure Type ψ̂i (95% C.I.)
Abnormal EEG

Immediate Deferred
Tonic-Clonic 0.189 (0.12,0.30) 0.638 (0.48,0.86)

2◦ Tonic-Clonic 0.186 (0.13,0.27) 0.761 (0.55,1.06)
Partial 0.431 (0.23,0.79) 0.683 (0.40,1.18)

Normal EEG
Immediate Deferred

Tonic-Clonic 0.487 (0.36,0.66) 0.626 (0.47,0.84)
2◦ Tonic-Clonic 0.360 (0.23,0.55) 0.559 (0.40,0.79)

Partial 0.461 (0.23,0.92) 0.278 (0.13,0.59)

Table 6.4: The expected change in seizure rates following randomisation for the
susceptible proportion, using estimates from the joint model that incorporates
the post-randomisation times to first seizure only, with associated cure rates.

6.2.4 Cure Rates for Both Post-Randomisation Survival

Times

We now develop a model that considers the pre-randomisation event counts

and both of the post-randomisation survival times, allowing each of the sur-

vival times to have an associated cure rate.
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In this scenario, censored times to first seizure post-randomisation may be cen-

sored because individuals are immune to seizure recurrence or, alternatively,

their period of follow up may not be long enough to observe any seizures post-

randomisation, that is, the observation time may be less than their actual,

unobserved time to first seizure.

These two distinct events have an effect on the subsequent post-randomisation

time from first to second seizure. If an individual is immune to seizures post-

randomisation, then their time from first to second seizure simply does not

exist. Alternatively, if the time to first seizure exists but we do not observe

it, we know that an individual could either have a second post-randomisation

seizure (which we again do not observe), or they could, despite having a first

seizure, be immune to further seizures.

We introduce, for each individual, an allocation variable, qi, which is an in-

dicator function taking the value 1 if the individual is susceptible to post-

randomisation seizure recurrence, and zero if the individual is immune.

Considering the different censoring patterns separately allows us to formulate

the log-likelihood for the observed data D, on all the n individuals, obtaining
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ℓ(α,β1,β2,κ1,κ2 | D) =
n∑

i=1

{[ xi−1∑
k=0

ln(α+ k)

]
+ xi ln(ui)− ln(xi!) + α ln(α)

+(xi + δ1i(1 + δ2i)) ln(λi) + δ1i(1 + δ2i) ln(ψi) + δ1i ln(p1i)

+δ1iδ2i ln(p2i) + δ1i ln(xi + α) + δ1iδ2i ln(xi + α+ 1)

−δ1iδ2i(xi + α+ 2) ln(λiui + λiψi(y1i + y2i) + α)

+(1− δ1i)qi ln

(
p1i

(λiui + λiψiy1i + α)xi+α

)
+(1− δ1i)(1− qi) ln

(
1− p1i

(λiui + α)xi+α

)}
+δ1i(1− δ2i) ln

(
1− p2i

(λiui + λiψiy1i + α)xi+α+1

+
p2i

(λiui + λiψi(y1i + y2i) + α)xi+α+1

)
, (6.2)

where λi = exp(β′
1z1i), ψi = exp(β′

2z2i) and z1i, z2i are vectors of covariates,

not necessarily distinct. In addition,

p1i =
exp(κ′

1w1i)

1 + exp(κ′
1w1i)

,

p2i =
exp(κ′

2w2i)

1 + exp(κ′
2w2i)

.

In practice, we do not observe the allocation variable, qi, for each individual,

instead we can regard it as a missing value. We must now proceed to perform

likelihood inference in the presence of missing data. Little and Rubin (2002)

note that, in a formal sense, there is no difference between maximum likelihood

for incomplete data and maximum likelihood for complete data: the likelihood

for the parameters, based on the incomplete data, is derived and the maximum

likelihood estimates are then found by solving the likelihood equation.
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Recall that the full model treats the missing data indicator as a random vari-

able, and considers the joint distribution of M and Y = (Yobs, Ymis). We have

already discussed how the full probability density function can be re-written

as the product of the probability density function of Y , and the conditional

distribution of M given Y . This conditional probability density function,

f(M | Yobs, Ymis;φ), is indexed by the unknown parameter φ, and is the distri-

bution of the missing-data mechanism. Recall that the actual observed data

are (Yobs,M), and the distribution of the observed data is obtained through

integrating Ymis out of the the joint density of Y and M (Equation 2.9). The

full likelihood of θ and φ is then any function of θ and φ proportional to the

joint probability distribution of Yobs and M :

Lfull(θ, φ | Yobs,M) ∝ f(Yobs,M ; θ, φ), (θ, φ) ∈ Ωθ,φ. (6.3)

We can similarly let the likelihood of θ, based on Yobs, ignoring the missing-

data mechanism, be any function of θ proportional to f(Yobs; θ):

Lign(θ | Yobs) ∝ f(Yobs; θ), θ ∈ Ωθ. (6.4)

The subsequent question of importance is when inference for θ should be based

on the full likelihood in Equation (6.3), and when it can be based on the sim-

pler, ignorable likelihood, given by Equation (6.4). The missing-data mech-

anism is ignorable for likelihood inference if the data are MCAR, or MAR,

and the parameters θ and φ are distinct, in the sense that the joint parameter

space of (θ, φ) is the product of the parameter space of θ and the parameter

space of φ.
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A common likelihood based technique, that is adopted when presented with

mixture models of the type presented in Equation 6.2, is the EM-algorithm.

The EM Algorithm

The EM algorithm is a general iterative algorithm for maximum likelihood

estimation, in the presence of missing data. This technique is based on a

somewhat ad-hoc idea of: (1) Replacing missing values by estimated values,

(2) Estimating parameters, (3) Re-estimating the missing values according to

the new parameter estimates, (4) Re-estimating the parameters, iterating until

convergence.

Suppose that the complete data are Y , with associated density f(Y ; θ). We

write Y = (Yobs, Ymis), where Yobs represents the observed part of Y , and Ymis

denotes the missing part. The objective is to maximise the ignorable likeli-

hood,

Lign(θ | Yobs) =
∫
f(Yobs, Ymis; θ)dYmis,

with respect to θ.

The EM algorithm comprises an E-step and an M-step. The E-step finds the

conditional expectation of the ‘missing data’, given the observed data and the

current estimated parameters. These expectations are then substitutes for the

‘missing data’. We write ‘missing data’ in quotation marks because, in real-

ity, the EM algorithm does not substitute the missing values themselves, but

regards the functions of Ymis appearing in the complete-data log-likelihood,

ℓ(θ | Y ), as missing. The subsequent M-step simply comprises finding the
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maximum likelihood estimates of θ, as if there were no missing data. The

M-step uses exactly the same computational methods as maximum likelihood

estimation from ℓ(θ | Y ).

The algorithm is formally defined as:

1. Choose initial value θ(0), set t=0.

2. E-step: calculate

Q(θ, θ(t)) = E[ln(L(θ | Yobs, Ymis))]

=

∫
ℓ(θ | Y )f(Ymis | Yobs, θ = θ(t))dYmis (6.5)

(at this stage θ(t) is fixed and Q(θ, θ(t)) is a function of θ).

3. M-step: find θ(t+1) which maximises Q(θ, θ(t)) as a function of θ.

4. Set t = t+ 1 and go to step 2.

Essentially, each iteration of the EM algorithm updates θ(t) to θ(t+1) by solving

the following equation:

∂

∂θ
E[ln(L(θ | Yobs, Ymis))] = 0,

where θ(t) is used to find E[ln(L(θ | Yobs, Ymis))], and θ
(t+1) is the solution to

the equation. The main feature of the algorithm is that

L(θ(t) | Yobs) ≤ L(θ(t+1) | Yobs).
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That is, the likelihood function is increased at each iteration of the algorithm

and consequently, the sequence, θ(0), θ(1), θ(2), . . ., is guaranteed to converge to

the location of a local maximum of the likelihood.

The complete-data log-likelihood is given by Equation (6.2). The parame-

ters to be maximised are θ = {α,β1,β2,κ1,κ2}. The observed data comprises

Yobs = {X, Y1, Y2, Z1, Z2,W1,W2, δ1, δ2}, and the missing data is Ymis = {Q}.

To implement the EM-algorithm, using the iterative scheme outlined, we first

carry out the E-step:

Q(θ, θ(t)) =
n∑

i=1

{[ xi−1∑
k=0

ln(α+ k)

]
+ xi ln(ui)− ln(xi!) + α ln(α)

+(xi + δ1i(1 + δ2i)) ln(λi) + δ1i(1 + δ2i) ln(ψi) + δ1i ln(p1i)

+δ1iδ2i ln(p2i) + δ1i ln(xi + α) + δ1iδ2i ln(xi + α+ 1)

−δ1iδ2i(xi + α+ 2) ln(λiui + λiψi(y1i + y2i) + α)

+(1− δ1i)E(qi | Yobs, θ(t)) ln
(

p1i
(λiui + λiψiy1i + α)xi+α

)
+(1− δ1i)(1− E(qi | Yobs, θ(t))) ln

(
1− p1i

(λiui + α)xi+α

)
+δ1i(1− δ2i) ln

(
1− p2i

(λiui + λiψiy1i + α)xi+α+1

+
p2i

(λiui + λiψi(y1i + y2i) + α)xi+α+1

)}
, (6.6)

where E(qi | Yobs, θ(t)) is the expected value of qi, given the observed data and

the current values of the parameters of interest. Completion of the E-step

requires the derivation of an expression for this expectation. Clearly, as qi is

an indicator variable, we have E(qi | Yobs, θ(t)) = P(qi = 1 | Yobs, θ(t)). Recall

that qi = 1 corresponds to an individual having a post-randomisation time to
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first seizure that is censored, but exists. We can now formulate an expression

for E(qi | Yobs, θ(t)) as so:

E(qi | Yobs, θ(t)) = P(qi = 1 | Yobs, θ(t))

= p1iRY1(y1i;λi, ψ1i, α)

= p1i

(
1 +

λiψ1iy1i
α

)−α

.

The subsequent first derivatives of Equation 6.6 are simple to obtain, allowing

the M-step, derivation of the maximum likelihood estimates of the parameters

contained in θ, to be carried out, using numerical methods.

We consider two versions of this model, the first simply allows the cure rates

to depend on intercept terms, so that we consider only the overall cure rates,

across all individuals, for the times to first seizure, and from first to second

seizure post-randomisation. Following this, we shall allow the cure rates to

depend on statistically significant covariates, using stepwise backwards elimi-

nation to evaluate the optimum model.

On fitting the joint model that considers only the overall cure rates, across

all individuals, for each of the post-randomisation survival times, we obtain

maximum likelihood estimates for p1 and p2 of 0.478 (standard error 0.06) and

0.235 (standard error 0.11) respectively. Comparing both these estimates with

the Kaplan-Meier curves for time to first seizure, these estimates seem sensible.

The formulation of this joint model allows us to formally test for the inclu-

sion of p1 and p2, comparing the subsequent log-likelihood with that of Joint
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Model B. A highly statistically significant likelihood-ratio test statistic of 649

supports the inclusion of both cure rates. The maximum likelihood estimates

of p1 and p2 suggest that there is a substantial proportion of the population

‘immune’ to post-randomisation seizure recurrence, and a significant propor-

tion who experience a single seizure post-randomisation ‘immune’ to further

seizure recurrence. Also note that p̂1 > p̂2, which supports the conjecture that

seizures beget seizures, that is, the more seizures an individual has, the more

likely they are to continue experiencing seizures in the future.

The optimal joint model that considers the pre-randomisation event counts

and both post-randomisation survival times, with cure rates, was derived us-

ing stepwise backwards elimination. This model concluded that the parameters

statistically significant in determining the cure rates associated with the times

to first seizure were again seizure type, EEG outcome and their associated

interaction terms. Additionally, the optimal model found that treatment, and

its interaction with EEG outcome, were statistically significant in determining

the probability of being ‘immune’ to a first seizure post-randomisation. There

were no covariates that were found to be statistically significant in determining

the cure rates associated with the times from first to second seizure.

Tables 6.5 and 6.6 show the estimated cure rates for times to first seizure, and

the subsequent estimated seizure rate modifiers for the susceptible proportion

respectively. Examination of Table 6.5 highlights that those individuals al-

located to deferred treatment, with an abnormal EEG, can expect to have

statistically significantly lower cure rates than those with a normal EEG, ex-

cept for those individuals experiencing partial seizures only pre-randomisation,
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where no statistically significant difference is observed. For those with a normal

EEG, no statistically significant treatment effect on the cure rates is observed.

Seizure Type 1− p̂1i (95% C.I.)
Abnormal EEG

Immediate Deferred
Tonic-Clonic 0.537 (0.46,0.61) 0.365 (0.30,0.43)

2◦ Tonic-Clonic 0.398 (0.32,0.48) 0.247 (0.18,0.32)
Partial 0.500 (0.37,0.63) 0.331 (0.22,0.49)

Normal EEG
Immediate Deferred

Tonic-Clonic 0.533 (0.47,0.59) 0.514 (0.46,0.57)
2◦ Tonic-Clonic 0.593 (0.52,0.66) 0.574 (0.50,0.64)

Partial 0.361 (0.22,0.54) 0.344 (0.20,0.52)

Table 6.5: The expected cure rates for the times to first seizure, using the
estimated regression coefficients from the joint model that incorporates the
post-randomisation times to first seizure and from first to second seizure, with
cure rates.

Recall that for times from first to second seizure, the associated cure rate de-

pended on an intercept term only. The overall estimated cure rate was 24%.

Looking at the values of ψ̂i presented in Table 6.6, we again see that treatment

policy is not statistically significant for those individuals with a normal EEG,

and once again, those individuals having an abnormal EEG, but allocated to

immediate treatment have a post-randomisation seizure rate in line with those

presenting a normal EEG. We can see that for those with an abnormal EEG,

immediate treatment is favoured. We again observe that the magnitudes of

the seizure rate reductions post-randomisation are not as large as those pre-

sented in Table 5.3. Additionally, note that a number of groups have a value

of ψ̂i not statistically significantly different from unity, which corresponds to
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the seizure rate not changing post-randomisation.

Seizure Type ψ̂i (95% C.I.)
Abnormal EEG

Immediate Deferred
Tonic-Clonic 0.536 (0.41,0.69) 0.832 (0.66,1.04)

2◦ Tonic-Clonic 0.386 (0.30,0.50) 0.735 (0.58,0.94)
Partial 0.726 (0.47,1.13) 0.887 (0.58,1.35)

Normal EEG
Immediate Deferred

Tonic-Clonic 0.701 (0.56,0.88) 0.746 (0.60,0.92)
2◦ Tonic-Clonic 0.663 (0.50,0.88) 0.866 (0.68,1.11)

Partial 0.743 (0.43,1.27) 0.622 (0.36,1.07)

Table 6.6: The expected change in seizure rates following randomisation for
the susceptible proportion, using the estimated regression coefficients from the
joint model that incorporates the post-randomisation times to first seizure and
from first to second seizure, with cure rates.

6.3 Building a Full Model that Incorporates

Varying Post-Randomisation Seizure Rates

and Cure Rates

We now proceed to develop a model that jointly models the pre-randomisation

event counts and post-randomisation times to first seizure, and from first to

second seizure, incorporating both of the extensions that have already been

considered in isolation. That is, we shall develop a joint model that allows the

seizure rate to vary post-randomisation and incorporates cure rates for each

of the survival times.
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We assume that the pre-randomisation event count, for individual i, over pe-

riod ui, Xi, follows a Poisson distribution with mean and variance λiuiνi, as

in the initial simple joint model. The probability density function for the

pre-randomisation event counts is given by

fX|ν(xi | νi;λi, ui) =
(λiuiνi)

xi exp(−λiuiνi)
xi!

.

The parameter λi relates to the baseline covariates, with additional hetero-

geneity in the population being modelled through νi, again assumed to follow

a Gamma(α, α) distribution.

The probability density functions and survivor functions for the times to first

seizure, and from first to second seizure post-randomisation, are specified by

the following equations:

fY1|ν(y1i | νi;λi, ψ1i, p1i) = p1igY1|ν(y1i | νi;λi, ψ1i)

= p1iλiψ1iνi exp(−λiψ1iνiy1i),

SY1|ν(y1i | νi;λi, ψ1i, p1i) = 1− p1i + p1iRY1|ν(y1i | νi;λi, ψ1i)

= 1− p1i + p1i exp(−λiψ1iνiy1i),

fY2|ν(y2i | νi;λi, ψ1i, ψ2i, p2i) = p2igY2|ν(y2i | νi;λi, ψ1i, ψ2i)

= p2iλiψ1iψ2iνi exp(−λiψ1iψ2iνiy1i),

SY2|ν(y2i | νi;λi, ψ1i, ψ2i, p2i) = 1− p2i + p2iRY2|ν(y2i | νi;λi, ψ1i, ψ2i)

= 1− p2i + p2i exp(−λiψ1iψ2iνiy2i).
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The density and survivor functions for the susceptibles are given by g(·) and

R(·) respectively. The term pji represents the probability that individual i is

susceptible to post-randomisation seizure j, so that 1−pji is the cure fraction.

The following parameterisations for p1i and p2i are considered:

p1i =
exp(κ′

1w1i)

1 + exp(κ′
1w1i)

,

p2i =
exp(κ′

2w2i)

1 + exp(κ′
2w2i)

.

Additionally, λi = exp(β′
1z1i), ψ1i = exp(β′

2z2i), ψ2i = exp(β′
3z3i) and z1i, z2i,

z3i, w1i, w2i are vectors of covariates, not necessarily distinct.

6.3.1 Marginal Distributions

If the random effect term is integrated out of the joint density of Xi and

νi, then the resulting unconditional density, fX(xi;λi, ui, α), is, as before, the

Negative Binomial (Equation 4.1). The unconditional joint distribution of the

Yji, j = 1, 2, for the susceptible proportion, obtained when the random effects

are integrated out of gY1,Y2|ν(y1i, y2i | νi;λi, ψ1i, ψ2i), the joint density of the

survival times, Y1i and Y2i, and νi, is the bivariate Lomax distribution.

The marginal distribution of Y1i, for those that are susceptible, is the uni-

variate Lomax distribution with shape and scale parameters α and α/λiψ1i

respectively. The marginal distribution of Y2i, for those that are suscepti-

ble, is also the univariate Lomax distribution, but now with shape and scale

parameters α and α/λiψ1iψ2i respectively.
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6.3.2 The Full Log-Likelihood and Derivatives

When formulating the likelihood we need to consider the different ways that

censoring can occur. There are four different ways censoring can arise in this

setting, namely: (i) Y1i and Y2i are both observed, (ii) Y1i is observed, but

Y2i is censored, (iii) Y1i is censored, but exists, so Y2i is taken to be censored

at zero, and (iv) Y1i is censored, and cured, so Y2i does not exist. We now

consider these four situations separately:

Joint Distribution with Y1i and Y2i Observed

In this situation the joint density of Y1i and Y2i contributes towards the like-

lihood, giving

∫ ∞

0

fX|ν(xi | νi;λi, ui)p1ip2igY1,Y2|ν(y1i, y2i | νi;λi, ψ1i, ψ2i)fν(νi;α)dνi

=
(λiui)

xi

xi!

p1ip2iψ2i(λiψ1i)
2ααΓ(xi + α+ 2)

Γ(α)(λiui + λiψ1i(y1i + ψ2iy2i) + α)xi+α+2
. (6.7)
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Joint Distribution with Y1i Observed and Y2i Censored

In this situation the density function of Y1i and survivor functions of Y2i con-

tribute to the likelihood, giving

∫ ∞

0

fX|ν(xi | νi;λi, ui)p1igY1|ν(y1i | νi;λi, ψ1i)(1− p2i

+p2iRY2|ν(y2i | νi;λi, ψ1i, ψ2i))fν(νi;α)dνi

=
(λiui)

xi

xi!

p1ip2iλiψ1iα
αΓ(xi + α+ 1)

Γ(α)

(
1− p2i

(λiui + λiψ1iy1i + α)xi+α+1

+
p2i

(λiui + λiψ1i(y1i + ψ2iy2i) + α)xi+α+1

)
. (6.8)

Joint Distribution with Y1i Censored but Exists

In this scenario only the survivor function of Y1i contributes towards the like-

lihood, giving

∫ ∞

0

fX|ν(xi | νi;λi, ui)p1iRY1|ν(y1i | νi;λi, ψ1i)fν(νi;α)dνi

=
(λiui)

xi

xi!

p1iα
α

Γ(α)

Γ(xi + α)

(λiui + λiψ1iy1i + α)xi+α
. (6.9)
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Joint Distribution with Y1i Censored and Cured

In this scenario we only have the pre-randomisation event counts and random

effects for each individual, with the cure rate associated with the time to first

seizure post-randomisation:

∫ ∞

0

fX|ν(xi | νi;λi, ui)(1− p1i)fν(νi;α)dνi

=
(λiui)

xi

xi!

(1− p1i)α
α

Γ(α)

Γ(xi + α)

(λiui + α)xi+α
. (6.10)

Log-likelihood

Let δji be the indicator function for the jth survival time, taking the value 1 if

the seizure is observed, and zero if the survival time is censored. Additionally,

we consider an allocation variable, qi, which is an indicator function taking the

value 1 if the individual is susceptible to post-randomisation seizure recurrence,

and zero if the individual is immune. Combining these indicator functions with

equations (6.7)-(6.10) allows us to formulate the log-likelihood for the observed

data D, for all the n individuals, given by
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ℓ(α,β1,β2,β3,κ1,κ2 | D) =
n∑

i=1

{[ xi−1∑
k=0

ln(α+ k)

]
+ xi ln(ui)− ln(xi!)

+α ln(α) + (xi + δ1i(1 + δ2i)) ln(λi) + δ1i(1 + δ2i) ln(ψ1i) + δ1iδ2i ln(ψ2i)

+δ1i ln(p1i) + δ1iδ2i ln(p2i) + δ1i ln(xi + α) + δ1iδ2i ln(xi + α+ 1)

−δ1iδ2i(xi + α+ 2) ln(λiui + λiψ1i(y1i + ψ2iy2i) + α)

+(1− δ1i)qi ln

(
p1i

(λiui + λiψ1iy1i + α)xi+α

)
+(1− δ1i)(1− qi) ln

(
1− p1i

(λiui + α)xi+α

)
+δ1i(1− δ2i) ln

(
1− p2i

(λiui + λiψ1iy1i + α)xi+α+1

+
p2i

(λiui + λiψ1i(y1i + ψ2iy2i) + α)xi+α+1

)}
. (6.11)

As before, we do not observe the allocation variable, qi, for each individual,

instead we again regard it as a missing value and perform likelihood inference

in the presence of missing data. We adopt the EM-algorithm, implementing

the algorithm outlined in § 6.2.4.

Equation 6.11 is the complete-data log-likelihood, from which we can derive

the subsequent Q(θ, θ(t)) = E[ln(L(θ | Yobs, Ymis))]. Again we have

E(qi | Yobs, θ(t)) = p1i

(
1 +

λiψ1iy1i
α

)−α

.

The first derivatives of the complete-data log-likelihood are straightforward to

derive, allowing subsequent maximisation using standard numerical methods.
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First Derivatives

The first-order derivatives of the complete-data log-likelihood are

∂ℓ

∂β1

=
n∑

i=1

{
xi + δ1i(1 + δ2i)−

δ1iδ2i(xi + α+ 2)(λiui + λiψ1i(y1i + ψ2iy2i))

λiui + λiψ1i(y1i + ψ2iy2i) + α

−(1− δ1i)(xi + α)

(
qi(λiui + λiψ1iy1i)

λiui + λiψ1iy1i + α
+

(1− qi)λiui
λiui + α

)
−δ1i(1− δ2i)(xi + α+ 1)

(
(1− p2i)(λiui + λiψ1iy1i)

(λiui + λiψ1iy1i + α)xi+α+2

+
p2i(λiui + λiψ1i(y1i + ψ2iy2i))

(λiui + λiψ1i(y1i + ψ2iy2i) + α)xi+α+2

(
1− p2i

(λiui + λiψ1iy1i + α)xi+α+1

+
p2i

(λiui + λiψ1i(y1i + ψ2iy2i) + α)xi+α+1

)−1}
z1i,

∂ℓ

∂β2

=
n∑

i=1

{
δ1i(1 + δ2i)−

δ1iδ2i(xi + α+ 2)λiψ1i(y1i + ψ2iy2i)

λiui + λiψ1i(y1i + ψ2iy2i) + α

−(1− δ1i)(xi + α)qiλiψ1iy1i
λiui + λiψ1iy1i + α

−δ1i(1− δ2i)(xi + α+ 1)

(
(1− p2i)λiψ1iy1i

(λiui + λiψ1iy1i + α)xi+α+2

+
p2iλiψ1i(y1i + ψ2iy2i)

(λiui + λiψ1i(y1i + ψ2iy2i) + α)xi+α+2

(
1− p2i

(λiui + λiψ1iy1i + α)xi+α+1

+
p2i

(λiui + λiψ1i(y1i + ψ2iy2i) + α)xi+α+1

)−1}
z2i,

∂ℓ

∂β3

=
n∑

i=1

{
δ1iδ2i −

δ1iδ2i(xi + α+ 2)λiψ1iψ2iy2i
λiui + λiψ1i(y1i + ψ2iy2i) + α

− δ1i(1− δ2i)(xi + α+ 1)p2iλiψ1iψ2iy2i
(λiui + λiψ1i(y1i + ψ2iy2i) + α)xi+α+2

(
1− p2i

(λiui + λiψ1iy1i + α)xi+α+1

+
p2i

(λiui + λiψ1i(y1i + ψ2iy2i) + α)xi+α+1

)−1}
z3i,

∂ℓ

∂κ1

=
n∑

i=1

{
(1− p1i)− (1− δ1i)(1− qi)

}
w1i,
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∂ℓ

∂κ2

=
n∑

i=1

{
δ1iδ2i(1− p2i)− δ1i(1− δ2i)p2i(1− p2i)

×
(

1

(λiui + λiψ1iy1i + α)xi+α+1

− 1

(λiui + λiψ1i(y1i + ψ2iy2i) + α)xi+α+1

)
×
(

1− p2i
(λiui + λiψ1iy1i + α)xi+α+1

+
p2i

(λiui + λiψ1i(y1i + ψ2iy2i) + α)xi+α+1

)−1}
w2i,

∂ℓ

∂α
=

n∑
i=1

{[ xi−1∑
k=0

1

α+ k

]
+

δ1i
xi + α

+
δ1iδ2i

xi + α+ 1
+ ln(α) + 1

−δ1iδ2i ln(λiui + λiψ1i(y1i + ψ2iy2i) + α)

− δ1iδ2i(xi + α+ 2)

λiui + λiψ1i(y1i + ψ2iy2i) + α

−(1− δ1i)qi

(
xi + α

λiui + λiψ1iy1i + α
+ ln(λiui + λiψ1iy1i + α)

)
−(1− δ1i)(1− qi)

(
xi + α

λiui + α
+ ln(λiui + α)

)
−δ1i(1− δ2i)

[(
xi + α+ 1

λiui + λiψ1iy1i + α
+ ln(λiui + λiψ1iy1i + α)

)
× 1− p2i
(λiui + λiψ1iy1i + α)xi+α+1

+

(
xi + α+ 1

λiui + λiψ1i(y1i + ψ2iy2i) + α

+ ln(λiui + λiψ1i(y1i + ψ2iy2i) + α)

)
× p2i
(λiui + λiψ1i(y1i + ψ2iy2i) + α)xi+α+1

]
×
(

1− p2i
(λiui + λiψ1iy1i + α)xi+α+1

+
p2i

(λiui + λiψ1i(y1i + ψ2iy2i) + α)xi+α+1

)−1}
.
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6.4 Implementing the Full Joint Model

Tables 6.7 and 6.8 give the estimated regression coefficients for the full joint

model. The reference group contains individuals with partial seizures pre-

randomisation, with a normal EEG and randomised to deferred treatment.

A β regression coefficient > 0 (< 0) would indicate an increased (decreased)

seizure rate relative to the seizure rate in the reference group. A κ regression

coefficient > 0 (< 0) would indicate an increase (decrease) in the susceptible

proportion relative to the susceptible proportion in the reference group and,

therefore, a subsequent decrease (increase) in the corresponding cure rate.

We can see that the regression coefficients in λi are similar to those observed in

Table 5.1 for Joint Model A and Joint Model B. This is not surprising as the ex-

tensions considered in this chapter are concerned with the post-randomisation

seizure rates, rather than the pre-randomisation seizure rates.

The value of α we observe in Table 6.7 is larger than the value observed in

Table 5.1. This increase in α indicates that there is less natural heterogeneity

in the full joint model than in the simple joint models developed in Chapter

5. This is increase in α is unsurprising as the inclusion of more covariates

explains more of the observed variation between individuals.
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Regression Estimates
Coefficient (standard errors)
α 2.023 (0.107)

λi β1,0 -4.131 (0.086)
β1,t−c -1.076 (0.096)
β1,2◦t−c -0.701 (0.098)
β1,partial reference

ψ1i β2,0 -0.958 (0.320)
β2,trt 0.307 (0.347)
β2,t−c 0.577 (0.334)
β2,2◦t−c 0.483 (0.344)
β2,partial reference
β2,eeg 0.595 (0.350)
β2,t−c×trt -0.468 (0.352)
β2,2◦t−c×trt -0.594 (0.362)
β2,partial×trt reference
β2,eeg×trt -0.593 (0.202)
β2,t−c×eeg -0.518 (0.363)
β2,2◦t−c×eeg -0.361 (0.374)
β2,partial×eeg reference

ψ2i β3,0 1.537 (0.524)
β3,trt -0.393 (0.537)
β3,t−c -1.219 (0.544)
β3,2◦t−c -0.590 (0.551)
β3,partial reference
β3,eeg -0.820 (0.545)
β3,t−c×trt 0.599 (0.549)
β3,2◦t−c×trt 0.450 (0.555)
β3,partial×trt reference
β3,eeg×trt 0.690 (0.315)
β3,t−c×eeg 0.944 (0.564)
β3,2◦t−c×eeg -0.266 (0.573)
β3,partial×eeg reference

Table 6.7: Estimated regression coefficients in λi, ψ1i and ψ2i for the full joint
model. The term λi contains parameter estimates corresponding to the effect
of covariates on the underlying event rate. The terms ψ1i and ψ2i contain
parameter estimates corresponding to the effect of covariates on the post-
randomisation reduction in event rates at randomisation and following a first
seizure post-randomisation respectively.
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Stepwise backwards elimination was used to derive the optimal full joint model,

which concluded that treatment policy, seizure type, EEG outcome and their

interactions were important in determining the change in seizure rate at ran-

domisation and following a first seizure post-randomisation. Treatment policy

and seizure type were statistically significant in determining the proportion im-

mune from seizure recurrence post-randomisation, as was EEG outcome and

its interactions with treatment policy and seizure type. No covariate effects

were statistically significant in determining the cure rate for a second post-

randomisation seizure, this term was found to be dependent on an intercept

term only.

Wald tests were carried out on each of the estimated regression coefficients,

and concluded that seizure type is statistically significant in determining the

underlying, pre-randomisation seizure rates. Only β2,eeg×trt is found to be

statistically significant when considering the change in seizure rate following

randomisation. When looking at those explanatory variables corresponding

with the change in seizure rate following a seizure post-randomisation, we see

that only β3,t−c and β3,eeg×trt are statistically significant.

When looking at the regression coefficients in Table 6.8 we see that seizure

type is statistically significant in determining whether an individual is suscep-

tible to seizure recurrence post-randomisation. Additionally κ1,2◦t−c×eeg and

κ1,eeg×trt are statistically significant in determining the cure rates associated

with the times to first seizure post-randomisation. For the cure rates asso-

ciated with the times from first to second seizure post-randomisation, recall

that no statistically significant covariate effects were observed.
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Regression Estimates
Coefficient (standard errors)

p1i κ1,0 0.706 (0.359)
κ1,trt -0.067 (0.146)
κ1,t−c -0.750 (0.365)
κ1,2◦t−c -0.979 (0.374)
κ1,partial reference
κ1,eeg -0.006 (0.448)
κ1,eeg×trt -0.582 (0.228)
κ1,t−c×eeg 0.624 (0.458)
κ1,2◦t−c×eeg 1.378 (0.478)
κ1,partial×eeg reference

p2i κ2,0 1.037 (0.099)
-Log-likelihood (d.f.) 10855 (1301)

Table 6.8: Estimated regression coefficients in p1i and p2i for the full joint
model. The term p1i contains parameter estimates corresponding to the effect
of covariates on the cure rate for the first seizure post-randomisation. The term
p2i contains parameter estimates corresponding to the effect of covariates on
the cure rate for the second seizure post-randomisation.

6.4.1 Interpretation of the Results

To gain a better understanding of the estimated regression coefficients, given in

Tables 6.7 and 6.8, we can obtain subsequent estimates of the cure rates and

the pre and post-randomisation seizure rates for the different seizure types,

EEG outcomes and treatment policies.

Table 6.9 shows that those individuals with a normal EEG, presenting with

partial seizures can expect to have a cure rate of around 30%, irrespective of

treatment policy, whilst those with tonic-clonic seizures can expect to have a

cure rate of around 50%. For those with an abnormal EEG, higher cure rates

are observed for those individuals randomised to immediate treatment, rather
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than deferred. Recall that Warrell et al. (2003) put seizure recurrence after a

single untreated seizure at around 80%, but Berg and Shinnar (1991) stated

that seizure recurrence was 50%. The results that we have observed in Table

6.9 may provide an explanation for the difference in these values.

Seizure Type 1− p̂1i (95% C.I.)
Abnormal EEG

Immediate Deferred
Tonic-Clonic 0.518 (0.45,0.59) 0.360 (0.20,0.43)

2◦ Tonic-Clonic 0.389 (0.31,0.48) 0.250 (0.19,0.33)
Partial 0.487 (0.36,0.62) 0.332 (0.22,0.46)

Normal EEG
Immediate Deferred

Tonic-Clonic 0.528 (0.47,0.59) 0.511 (0.45,0.57)
2◦ Tonic-Clonic 0.584 (0.51,0.65) 0.568 (0.50,0.64)

Partial 0.345 (0.20,0.52) 0.330 (0.19,0.50)

Table 6.9: The expected cure rates associated with the post-randomisation
times to first seizure, using the estimated regression coefficients from the full
joint model.

Recall that no significant covariate effects were observed for the cure rate as-

sociated with the times from first to second seizure. The overall cure rate for

this survival time is 26%.

Table 6.10 shows the maximum likelihood estimates of ψ1i and ψ2i under the

full joint model. The values of ψ̂1i represent the change in seizure rate fol-

lowing randomisation, with ψ̂2i representing the change in rate following first

post-randomisation seizure. We again see that treatment policy does not ap-

pear to be statistically significant in determining the estimate of ψ̂1i for those

individuals with a normal EEG. Additionally, for those individuals with an
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abnormal EEG, immediate treatment is favoured.

Seizure Type ψ̂1i (95% C.I.) first seizure
Abnormal EEG

Immediate Deferred
Tonic-Clonic 0.347 (0.26,0.47) 0.738 (0.57,0.95)

2◦ Tonic-Clonic 0.326 (0.24,0.44) 0.786 (0.58,1.06)
Partial 0.522 (0.31,0.88) 0.695 (0.41,1.18)

Normal EEG
Immediate Deferred

Tonic-Clonic 0.582 (0.45,0.75) 0.683 (0.53,0.87)
2◦ Tonic-Clonic 0.467 (0.34,0.65) 0.622 (0.46,0.84)

Partial 0.522 (0.27,1.00) 0.384 (0.20,0.73)

ψ̂2i (95% C.I.) second seizure
Abnormal EEG

Immediate Deferred
Tonic-Clonic 3.806 (2.43,5.97) 1.554 (1.00,2.41)

2◦ Tonic-Clonic 1.835 (1.17,2.88) 0.870 (0.56,1.36)
Partial 2.754 (1.17,6.49) 2.047 (0.98,4.26)

Normal EEG
Immediate Deferred

Tonic-Clonic 1.688 (1.13,2.51) 1.373 (0.93,2.02)
2◦ Tonic-Clonic 2.727 (1.69,4.41) 2.577 (1.67,3.97)

Partial 3.138 (1.28,7.70) 4.649 (1.63,13.27)

Table 6.10: The expected change in seizure rates following randomisation and
following the first post-randomisation seizure, using the estimated regression
coefficients from the full joint model.

Following a first seizure post-randomisation we again see that, in general,

seizure rates increase. We observe that those individuals allocated to immedi-

ate treatment see more of an increase in seizure rate following a first seizure

post-randomisation than those allocated to deferred treatment. Recall that

a possible explanation for this may be that those allocated to deferred treat-

ment may subsequently be started on a course of AEDs following a seizure

post-randomisation, bringing them in line with those allocated to immediate
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treatment. Also note that these individuals typically experience the smallest

reduction in seizure rate following randomisation.

6.5 Discussion

This chapter has examined extensions to the simple joint model that was de-

veloped in Chapter 5, both in isolation, and together in a single full model.

The simple joint model assumed that, post-randomisation, an individual’s

seizure rate remained constant. This assumption was relaxed and a model

was considered that allowed the seizure rate to change both at randomisa-

tion, and following a first post-randomisation seizure. We let ψ1i and ψ2i

be the seizure rate modifiers at randomisation and following a first post-

randomisation seizure respectively. We found that seizure rates were gen-

erally reduced after randomisation, but then increased following a first post-

randomisation seizure. The change in seizure rates both at randomisation and

following a first post-randomisation seizure were found to be dependent on

seizure type, treatment policy and EEG outcome.

We next considered the use of cure rate models in analysing the MESS data.

Standard statistical software exists for the implementation of Log-logistic mix-

ture survival models, that allow for the existence of cure rates. This model was

considered for the times to first seizure and from first to second seizure sepa-

rately. Initial models, that allowed the cure rates to depend on an intercept

term only, concluded that there was highly statistically significant evidence to

support the inclusion of cure rates in modelling. Further investigation found
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that the cure rates associated with time to first seizure post-randomisation

were dependent on seizure type, EEG outcome and the logarithm of an indi-

vidual’s pre-randomisation seizure rate. For the cure rates associated with the

post-randomisation times from first to second seizure however, no statistically

significant covariate effects were found.

A model that jointly analysed the pre-randomisation event counts and post-

randomisation times to first seizure only, with cure rates, was included for

completeness. A joint model for the pre-randomisation event counts and both

of the post-randomisation survival times, allowing each of the survival times

to have an associated cure rate, was then considered. It was noted that if

an individual’s time to first seizure post-randomisation is censored, it is un-

known whether censoring is due to the individual being ‘immune’ to seizures

post-randomisation, or due to their period of follow up not being sufficient to

observe the survival time. An unobserved allocation variable was introduced

to distinguish between these two scenarios and the EM-algorithm was adopted

for the maximisation of the subsequent log-likelihood.

The optimal joint model that considers the pre-randomisation event counts

and both post-randomisation survival times, with cure rates, concluded that

those individuals allocated to deferred treatment, with an abnormal EEG,

can expect to have statistically significantly lower cure rates than those with

a normal EEG, except for those individuals experiencing partial seizures only

pre-randomisation, where no statistically significant difference is observed. For

those with a normal EEG, no statistically significant treatment effect on the

cure rates was observed. There were no covariates that were found to be sta-
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tistically significant in determining the cure rates associated with the times

from first to second seizure.

After considering each of the extensions applicable to the MESS data in

isolation, a model was developed that allows the pre-randomisation event

counts and post-randomisation times to first seizure, and from first to sec-

ond seizure to be analysed jointly. This full joint model allowed the seizure

rate to vary post-randomisation and incorporated cure rates for each of the

post-randomisation survival times.

Those individuals with a normal EEG, presenting with partial seizures can ex-

pect to have a cure rate of around 30%, irrespective of treatment policy, whilst

those with tonic-clonic seizures can expect to have a cure rate of around 50%.

For those with an abnormal EEG, higher cure rates are observed for those

individuals randomised to immediate treatment rather than deferred. No sta-

tistically significant covariate effects were concluded in determining the cure

rate for a second post-randomisation seizure, this term was found to be de-

pendent on an intercept term only. Treatment policy was not statistically

significant in determining the estimate of the change in seizure rate following

randomisation, for those individuals with a normal EEG. For those individu-

als with an abnormal EEG, immediate treatment was favoured. Following a

first seizure post-randomisation we observed a general increase in seizure rates,

however, those allocated to deferred treatment, possibly surprisingly, have the

smallest increase in seizure rate following a first seizure post-randomisation.

Possible explanations for this observation were discussed.
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Chapter 7

Model Checking

This thesis discusses the use of joint models for event counts and survival

times as an alternative to standard survival models. Chapter 5 developed a

simple joint model that had more statistically significant covariate effects than

standard survival analysis. Further investigation of the subsequent estimated

pre-randomisation seizure rates and post-randomisation seizure rate modifiers,

however, highlighted possible limitations to the model.

Chapter 6 considered each of the interesting characteristics, present in the

data, separately and together in a final full joint model. This full joint model

allowed the pre-randomisation event counts and post-randomisation times to

first seizure and from first to second seizure to be analysed together. Fur-

thermore, this full joint model assumed a change in seizure rate both at ran-

domisation and following a first post-randomisation seizure, with each of the

survival times having an associated proportion cured.

119



This chapter will assess the performance of this full joint model, compared

with standard survival analysis, by investigating how well the distribution of

the survival times is modelled under the different models considered.

7.1 Kaplan-Meier Curves

We will present a number of Kaplan-Meier curves along with the subsequent

fitted estimates of survival, using the final full joint model that was devel-

oped in Chapter 6. These survival curves will be compared to the estimated

survival curves obtained through implementing the standard survival methods.

It has already been noted that standard software (Peng ) exists that allows for

the analysis of survival data using the Log-logistic model with cure rates. We

therefore use the estimates obtained from the Log-logistic mixture model, that

incorporated a cure fraction, to produce fitted survival curves for the times

to first seizure, and from first to second seizure post-randomisation. The esti-

mated survivor functions are derived using

ŜYj
(yji;µji, γj, pji) = 1− p̂ji + p̂ji(1 + (µ̂jiyji)

γ̂j)−1, j = 1, 2,

where in each model µ̂ji = exp(θ̂′
jdi) for a vector θ̂j of estimated regression

coefficients for survival time j, and a vector di of covariates for each individual

i. The parameter γ̂j > 0 is the estimated shape parameter associated with

survival time j.

The term p̂ji represents the estimated susceptible proportion associated with
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survival time j post-randomisation, so that 1− p̂ji is the estimated cure frac-

tion. The following parameterisations for p̂1i and p̂2i are considered:

p̂1i =
exp(κ̂′

1w1i)

1 + exp(κ̂′
1w1i)

,

p̂2i =
exp(κ̂′

2w2i)

1 + exp(κ̂′
2w2i)

.

The estimated Log-logistic fitted survival curves will be compared with the

fitted estimates of survival obtained using the full joint model that allows the

seizure rate to vary post-randomisation, and incorporates cure rates for each

of the survival times. Log-likelihood ratio tests concluded that the full joint

model, presented in § 6.3, was the optimal model for analysing the MESS

data. Stepwise backwards elimination was used to determine which explana-

tory variables were statistically significant in the model. The estimated sur-

vivor functions for the survival times, under the full joint model are given

by

ŜY1(y1i;λi, ψ1i, α, p1i) = 1− p̂1i + p̂1i

(
1 +

λ̂iψ̂1iy1i
α̂

)−α̂

,

ŜY1(y1i;λi, ψ1i, ψ2i, α, p2i) = 1− p̂2i + p̂2i

(
1 +

λ̂iψ̂1iψ̂2iy2i
α̂

)−α̂

.

Additionally, λ̂i = exp(β̂′
1z1i), ψ̂1i = exp(β̂′

2z2i), ψ̂2i = exp(β̂′
3z3i), where β̂1,

β̂2 and β̂3 are vectors of estimated regression coefficients and z1i, z2i, z3i are

vectors of covariates, not necessarily distinct.

We will examine the Kaplan-Meier and fitted estimates of the survival curves

for different subgroups of individuals in our dataset. We confine our investi-

gation of the survival curves to those individuals presenting with secondary
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tonic-clonic seizures only pre-randomisation. We then consider four different

scenarios for these individuals separately:

• Normal EEG and allocated to immediate treatment.

• Normal EEG and allocated to deferred treatment.

• Abnormal EEG and allocated to immediate treatment.

• Abnormal EEG and allocated to deferred treatment.

Recall that the standard survival analysis of the MESS data included the

logarithm of an individual’s pre-randomisation seizure rate as an explana-

tory variable in determining their subsequent times to first seizure and from

first to second seizure. In the subsequent derivation of the estimated fitted

survival curves we shall just consider the mean of the logarithm of the pre-

randomisation seizure rates for each individual.

Figures 7.1-7.4 present the Kaplan-Meier estimates of the survival curves, for

each of the subgroups considered, with their corresponding 95% confidence

intervals. The estimated fitted survival curves from the two parametric mod-

els considered are also presented. We can see that for times to first seizure,

and from first to second seizure, for each of the subgroups, the fitted full joint

model, and the fitted Log-logistic survival model with cure rates, both seem

to model the distribution of survival very well. We observed that for the most

part, the estimates of the fitted survival curves for the full joint model, and

Log-logistic model with cure rates, tend to remain within the 95% confidence

intervals of the corresponding Kaplan-Meier estimates.
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Figure 7.1: Kaplan-Meier curves and fitted curves for time to first seizure,
and time from first to second seizure, for those with an abnormal EEG and
allocated to immediate treatment.
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Figure 7.2: Kaplan-Meier curves and fitted curves for time to first seizure,
and time from first to second seizure, for those with an abnormal EEG and
allocated to deferred treatment.
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Figure 7.3: Kaplan-Meier curves and fitted curves for time to first seizure, and
time from first to second seizure, for those with a normal EEG and allocated
to immediate treatment.
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Figure 7.4: Kaplan-Meier curves and fitted curves for time to first seizure, and
time from first to second seizure, for those with a normal EEG and allocated
to deferred treatment.
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7.2 Goodness-of-Fit

A method for testing goodness-of-fit of parametric distributions to survival

data was developed by Maller and Zhou (1996), which is a variant to the

method devised by Filliben (1975) for testing the normality of uncensored

data. Filliben (1975) proposed calculating the correlation coefficient between

the order statistics of a sample and the expected values of the order statistics

for a sample of the same size from a standard Normal distribution. The subse-

quent correlation coefficient then forms the basis of the test, with values close

to 1 being indicative of a good fit and values close to zero suggesting a poor fit.

The test for censored survival times introduced by Maller and Zhou (1996)

considers the hypothesis H0 : F = F̂ , where F̂ is some specified distribution

function. Let y1 ≤ y2 ≤ . . . ≤ yn be the ordered sample of survival times.

If there is no censoring present, then a plot of F̂ (yji) against the empirical

distribution function, F̃ (yji) = i/n, under H0, should produce a near-straight

line with slope close to 1. When censoring is present the same argument would

lead us to expect to obtain, under H0, a near-straight line with slope close to

1, by plotting F̂ (yji) = 1 − Ŝ(yji) against F̃ (yji), where F̃ is taken as the

Kaplan-Meier estimate.

Figures 7.5-7.8 present plots of the estimated Kaplan-Meier estimates of the

cumulative distribution function of the survival times, against the correspond-

ing fitted estimates for the parametric models considered.
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Figure 7.5: Kaplan-Meier estimate and fitted estimates of the cumulative dis-
tribution function for time to first seizure, and time from first to second seizure,
for those with an abnormal EEG and allocated to immediate treatment.
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Figure 7.6: Kaplan-Meier estimate and fitted estimates of the cumulative dis-
tribution function for time to first seizure, and time from first to second seizure,
for those with an abnormal EEG and allocated to deferred treatment.
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Figure 7.7: Kaplan-Meier estimate and fitted estimates of the cumulative dis-
tribution function for time to first seizure, and time from first to second seizure,
for those with a normal EEG and allocated to immediate treatment.
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Figure 7.8: Kaplan-Meier estimate and fitted estimates of the cumulative dis-
tribution function for time to first seizure, and time from first to second seizure,
for those with a normal EEG and allocated to deferred treatment.
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The figures suggest that the joint model performs very well when considering

the times to first seizure post-randomisation. The Log-logistic distribution,

with cure rates, however, generally appears to model the survival times from

first to second seizure better.

Maller and Zhou (1996) propose using the correlation coefficient, r, between

F̃ (yji) and F̂ (yji), 1 ≤ i ≤ n as an appropriate measure of the goodness-of-

fit. The correlation coefficient however, is a measure of a linear relationship

between two sets of data, this is not necessarily useful when trying to assess

the goodness of fit. We do not wish to assess the strength of linearity between

F̃ (yji) and F̂ (yji), we wish to test how far the points deviate from the line of

equality.

7.3 Discussion

We have formally shown that the full joint model performs very well when

considering how well the distribution of the survival times is modelled. We

have shown, however, that the Log-logistic distribution is also very good at

modelling the distribution of the survival times. Comparisons between the two

models have simply comprised of a visual examination of Figures 7.1-7.8. No

formal comparisons between the full joint model and the standard Log-logistic

survival model, with cure rates, have been carried out.

We have not formally assessed the performance of the full joint model in its

own right. Maller and Zhou (1996) propose using the correlation coefficient as

a means of testing model performance. We have noted however, that correla-
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tion coefficients are used to assess the strength of a linear relationship between

two sets of data. We wish to assess the strength of equality between two sets

of data which renders the correlation coefficient unsuitable.

To assess model performance more accurately, we propose that a statistic

which assesses the levels of deviations from equality of two sets of data needs

to be derived.
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Chapter 8

Further Extensions Applicable

to MESS

We shall now present further analyses of the MESS data that could be consid-

ered, but that are not carried out in this thesis. We develop a zero-truncated,

one-inflated Poisson distribution for the pre-randomisation count data as an

alternative to the standard Poisson distribution. We discuss analyses that

consider the type of AED an individual is assigned and include further post-

randomisation survival times. We also consider the analysis of long-term prog-

nosis.

8.1 Zero-Truncated, One-Inflated Poisson Dis-

tribution

It has already been noted that over half of the participants recruited to MESS

presented only a single seizure pre-randomisation. This excess of ones that

the data displays is not accounted for in any of the models considered in
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this thesis. Additionally, recall that the eligibility criterion for the MESS

trial specified that participants should have had at least one epileptic seizure

pre-randomisation. A one-inflated, zero-truncated Poisson distribution could

therefore be considered for the pre-randomisation event counts. The zero-

truncated Poisson is a model for count data that is truncated at zero (Finney

and Varley 1955). The density function for the zero-truncated Poisson(λiuiνi)

distribution is

ZTP(xi;λi, ui, νi) =
(λiuiνi)

xi exp(−λiuiνi)
xi!(1− exp(−λiuiνi))

=
(λiuiνi)

xi

xi!(exp(λiuiνi)− 1)
.

The one-inflated, zero-truncated Poisson distribution is a model for data that

exhibits excess ones and is truncated at zero. The model assumes that, with

probability π, the only possible observation is 1, and with probability 1− π a

zero-truncated Poisson(λiuiνi) random variable is observed. Hence,

Xi = 1 with probability π + (1− π)
λiuiνi

(exp(λiuiνi)− 1)
,

Xi = k > 1 with probability (1− π)
(λiuiνi)

k

k!(exp(λiuiνi)− 1)
,

giving, for xi ≥ 1,

fX(xi;λi, ui, νi, π) = πI[xi=1] + (1− π)ZTP(xi;λiuiνi), (8.1)

where I[xi=1] is the indicator function taking the value 1 when xi = 1 and zero

otherwise.

135



8.2 Different Antiepileptic Drugs

MESS was initially designed to investigate the difference between two policies:

immediate versus deferred treatment. The randomisation scheme was reevalu-

ated part way through the trial, allowing the relative merits of specific drugs to

be investigated. Consequently, during the trial, two randomisation procedures

were utilised. Initially the clinicians declared which drug a patient would be

administered only if they were allocated to immediate treatment. A conse-

quence of this randomisation scheme is that for those individuals randomised

to deferred treatment, it is not known what drug they would have been given

had they been randomised to immediate treatment. Subsequently, any analy-

sis confined to a particular drug using this data will be potentially confounded.

Part way through the trial the randomisation scheme was altered so that clin-

icians had to declare which drug would be most appropriate for participants

prior to randomisation. Specifying the drug prior to randomisation creates

control groups for individual drugs, but analysing only those individuals that

allow for comparisons within specific drugs ignores a substantial amount of

costly data. Of the 1425 individuals considered in the exploratory analysis,

614 were randomised using the first randomisation scheme, leaving 811 ran-

domised using the second, updated scheme. We propose adopting missing data

techniques to complete the data matrix, allowing analysis across all individu-

als, subsequently giving more reliable results.
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8.2.1 Multiple Imputation

Our data exhibits univariate non-response, as missingness is confined to a sin-

gle variable, namely the type of drug a patient was assigned at randomisation.

One strategy for handling missing data is to impute the missing values and

then use standard statistical methods on the completed data matrix. Suppose

there are two variables ZJ and ZK , and suppose further that ZJ is completely

observed, but some of the ZK are missing. If the two variables are strongly

correlated it may be sensible to use ZJ to predict those values of ZK that are

missing. Methods of this type can be used to impute either single or multiple

values for each of the missing items, producing complete data matrices which

can then be analysed using standard techniques. One method of imputation is

regression imputation, which replaces missing values by predicted values from

a regression of the missing item on items observed for the unit.

In the case of epilepsy, the drug a patient is assigned is strongly dependent

on a number of the baseline covariates that were collected in the MESS trial,

namely age, sex and covariates concerning the type of epilepsy a patient has

and the nature of the seizures. This would enable us to use regression im-

putation methods, regressing the missing items on those influential baseline

covariates we have observed, which, in turn, should allow us to approach the

interesting question of differences between specific drug types.

We have already presented a brief discussion of multiple imputation (MI) in

Chapter 2. Recall that MI is the term given to the procedure of replacing
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missing values by D ≥ 2 imputed values. This policy produces D complete

data sets, and standard statistical techniques can be used to analyse each of

these. If the D sets of imputations are repeated random draws from the same

predictive model the D complete-data inferences can be combined to form one

inference properly reflecting the uncertainty caused by the nonresponse.

8.3 Inclusion of further Post-Randomisation

Survival Times

The outcomes concerning short-term seizure recurrence, that were measured

in the MESS trial, were times to first, second and fifth seizures. However,

owing to the fact that we have the raw data, it may be possible, and more

informative, to establish times to the intermittent third and fourth seizures.

For example, if a second seizure is observed, but the fifth seizure censored,

we do not know if this censoring occurred before the third, fourth or fifth

seizure. Hence, consideration of the raw data would boost the quality of the

data we were working with. It would then be useful to generalise the model

we have developed to allow for the joint modelling of the pre-randomisation

event counts and a general m number of post-randomisation survival times.

8.4 Analysis of Long-Term Prognosis

In studies of epilepsy, interest is often not restricted to the analysis of the risk

of short-term seizure recurrence, but also the long-term prognosis. The MESS

trial was conducted to assess not only short-term outcomes, times to one and

two year remission were also considered.
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Figure 8.1 shows the Kaplan-Meier curves for the times to one and two year re-

mission, stratified by treatment policy. Additionally, the Kaplan-Meier curves

are marked at each censoring time which is not also a death time.

Standard analysis would ignore the first sections of the plots in Figure 8.1

and simply report the percentage of people achieving one year and two year

remission at 365 and 730 days respectively. Marson et al. (2005) discusses

time to two year remission and simply reports that at two years 64% of those

in the immediate treatment group and 52% in the deferred group achieved

immediate remission, further discussing how this difference diminishes in time.

Figure 8.1 shows substantial drop-out within the first one and two years. An

immediate consequence of this is that the percentages presented will be exag-

gerated. For example, Marson et al. (2005) interpret their reported 64% as

the percentage of patients randomised achieving immediate remission. What

that figure actually represents is the percentage of people randomised who

have either achieved immediate remission at two years, or have dropped out of

the trial within the two years. An analysis that does not take this into consid-

eration may give misleading results. The reasons for drop-out could include a

patient being randomised to deferred treatment and not experiencing a further

seizure, hence regarding follow-up as pointless, but could also include patients

moving house, or death. Clearly careful investigation of patient drop-out must

be considered.
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Figure 8.1: Kaplan-Meier plots of the times to one and two remission.
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8.5 Discussion

This chapter has outlined some further extensions that could be considered

in the analysis of the MESS dataset. Firstly, a zero-truncated, one-inflated

Poisson distribution was proposed as an alternative to the standard Poisson

distribution. This distribution accounts for the fact that all patients included

in the MESS trial had to have had at least one clinically definite, unprovoked

epileptic seizure prior to randomisation, and that over half of those included

presented with only a single seizure pre-randomisation.

Two randomisation procedures were used in the MESS trial, initially a clin-

ician would declare which drug a patient were to receive only if they were

randomised to immediate treatment. The second randomisation procedure,

implemented around half way through the recruitment of patients, required

clinicians to declare which drug a patient would receive, prior to randomisa-

tion to a treatment policy. The second of these randomisation policies allows

comparisons between the different AEDs to be carried out. For those individ-

uals randomised using the first treatment policy, it is proposed that missing

data methods are adopted to recover information missing about subsequent

choices of AEDs.

Outcomes of the MESS trial, not included in the analyses presented in this

thesis, are time to fifth seizure and times to one and two year remission. It

is proposed that times to third and fourth seizure may be obtainable from

the raw data, allowing the joint model to be generalised, to jointly model pre-

randomisation event counts and a general number of m post-randomisation
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survival times. Investigation into the effects of treatment policy on the long-

term prognosis of epilepsy may also be carried out.
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Chapter 9

Conclusions

9.1 Overview of Thesis

This thesis has built a number of models that can be used to analyse data

that arrive in the form of event counts, and survival times, following a change

in event rate. Chapter 3 provided an overview of the epilepsy dataset which

motivated the statistical models that have been developed in this thesis. Non-

parametric analyses of the data were carried out and non-parametric estimates

of the survivor functions, for the two survival times, were transformed in order

to provide an indication as to which parametric model may be suitable for

further analyses.

In Chapter 4 standard parametric analyses of the pre-randomisation event

counts and post-randomisation times to first seizure, and from first to sec-

ond seizure were presented. Following the analysis of each of the outcomes

separately, a joint model was developed in Chapter 5 that allowed the pre-

randomisation event counts and post-randomisation survival times to be anal-
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ysed in a single model. This joint model comprised a simple extension of the

model developed by Cowling et al. (2006). This simple joint model was used

in the analysis of the MESS data, and was found to be superior to standard

survival techniques. Further examination of the estimated pre-randomisation

seizure rates, and post-randomisation seizure rate modifications indicated that

there may be interesting characteristics within the MESS data, not accounted

for in the simple joint model.

It was proposed in Chapter 6 that the assumption of a constant seizure rate

post-randomisation may not be accurate. There was evidence to suggest that

cure rates may be present in the dataset, this was also investigated in Chap-

ter 6. After examining each of these extensions to the simple joint model in

isolation, a full joint model that incorporated both of the extensions was de-

veloped. This joint model allowed the seizure rate to vary post-randomisation

and incorporated cure rates for each of the survival times.

Chapter 7 assessed the performance of the full joint model, compared with

standard survival analysis, by investigating how well the distribution of the

survival times is modelled under the different models considered. The Kaplan-

Meier estimates of the survival curves were examined alongside the fitted es-

timates of survival for the two parametric models considered.

9.2 Conclusions about Epilepsy Data

We can see that those individuals presenting with partial seizures only pre-

randomisation typically experience the highest seizure rates. Those experienc-
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ing tonic-clonic seizures only and secondary tonic-clonic seizures have statis-

tically significantly lower rates.

For the cure rates associated with the times to first seizure post-randomisation,

treatment policy has no effect for those individuals presenting with a normal

EEG. Those individuals with a normal EEG, presenting with partial seizures

can expect to have a cure rate of around 30%, irrespective of treatment pol-

icy, whilst those with tonic-clonic seizures can expect to have a cure rate of

around 50%. For those with an abnormal EEG, higher cure rates are observed

for those individuals randomised to immediate treatment, rather than deferred.

The optimal full joint model concluded that no explanatory variables were

statistically significant in determining the cure rates associated with the times

from first to second seizure post-randomisation. The overall estimated cure

rate for these survival times was 26%.

When considering the estimated values of the seizure rate modifiers follow-

ing randomisation, we conclude that treatment policy does not appear to

be statistically significant for those individuals with a normal EEG. Those

with an abnormal EEG, but allocated to immediate treatment have estimated

post-randomisation seizure rate modifiers in line with those presenting with a

normal EEG. Additionally, for those individuals with an abnormal EEG and

allocated to deferred treatment, the seizure rate modifiers following randomi-

sation are generally not statistically different from unity, which is indicative

of no change in seizure rate post-randomisation.

145



Following a first seizure post-randomisation we see that, in general, seizure

rates increase. We observe that those individuals allocated to immediate treat-

ment see a more substantial increase in seizure rate following a first seizure

post-randomisation than those allocated to deferred treatment. This contrast

is greater for those with an abnormal EEG. It has been proposed that a pos-

sible explanation for this is that those allocated to deferred treatment may

subsequently start a course of AEDs following a seizure post-randomisation,

bringing them in line with those allocated to immediate treatment. Also note

that those individuals with an abnormal EEG and allocated to deferred treat-

ment typically experience the smallest reduction in seizure rate following ran-

domisation.

9.3 Conclusions about the Joint Models

We shall provide an overview of the assumptions that were made in the simple

joint model. We shall also discuss how the model was extended to accommo-

date those assumptions that were violated in the MESS data. We shall also

provide an overview of additional assumptions that are made in all of the joint

models that have been developed in this thesis.

9.3.1 Assumptions in the Simple Joint Model

The simple joint model, developed in Chapter 5, assumed that individuals ex-

perience seizures according to a Poisson process, so that the pre-randomisation

event counts follow a Poisson distribution and interevent times are Exponen-

tial. Each individual that was recruited to MESS had an underlying baseline

seizure rate, which was updated at randomisation to allow for treatment ef-

146



fects. This simple joint model was used to analyse the MESS data, which

subsequently cast doubt on assumptions that had been made.

Secondly, note that the simple joint model assumed that post-randomisation,

seizure rates remained constant. It has been stated that clinicians believe

that epileptic seizures beget epileptic seizures, that is, the more seizures an

individual presents with, the more likely they are to carry on having seizures,

with increased frequency. We also noted that, following the implementation

of the simple joint model, the estimated regression coefficients observed in

Joint Model B were closer to zero than those estimates observed in Joint

Model A. This result has suggested that the assumption of a constant post-

randomisation seizure rate may be violated.

The simple joint model assumed that, post-randomisation, everyone in the

sample was susceptible to seizure recurrence. We know that seizure recur-

rence following a single untreated seizure is around 50%− 80%, and as MESS

was a study of early epilepsy it was not unreasonable to assume that a pro-

portion of individuals included in the trial would be ‘immune’ from seizure

recurrence post-randomisation. The magnitude of the seizure rate reductions

observed following the implementation of the simple joint model highlighted

that if survival data does indeed have a proportion that are immune to the

event of interest, considering a proper survival model that ignores this, may

give misleading results.

This thesis proceeded to address each of the assumptions discussed above first

in isolation, and then together, in a full joint model.

147



9.3.2 Violation of the Post-Randomisation Survival Time

IID Assumption

It was proposed that seizure rates may change not only at randomisation, but

also following a first seizure post-randomisation. We considered a joint model

that included seizure rate modifiers, both at randomisation and following a

first post-randomisation seizure, and allowed these terms to depend on a num-

ber of explanatory variables.

We observed that at randomisation seizure rates either did not change, or

decreased and following a first seizure post-randomisation, we saw that, in

general, seizure rates increased.

9.3.3 Incorporation of Cure Rates

The magnitude of the reductions in seizure rates post-randomisation, observed

in Chapter 5, suggested that there may be a substantial proportion of the pop-

ulation that we should regard as cured. Additionally, the Kaplan-Meier curves

for each of the post-randomisation survival times have their asymptotes well

above zero. This suggested that there may be an immune component present

in the MESS data for both times to first seizure post-randomisation and from

first to second seizure.

Models were developed that allowed for the inclusion of cure rates for each

of the survival times.
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9.3.4 Further Assumptions

Cowling (2003) outlines some of the assumptions made when developing a

joint model that considers pre-randomisation event counts and a single post-

randomisation survival time. Some of the assumptions associated with this

joint model are also relevant when we consider the joint models that have

been developed in this thesis.

First, all of the joint models assume that the seizure rate between successive

seizures remains constant. Clinical opinion, however, is that following a seizure

there is an instantaneous increase in the risk of future seizures, which is why

we typically observe clustering of seizures. Recall that Figure 3.3 displayed

the empirical cumulative distribution function for Y1/T2, and showed that for

those experiencing at least two seizures post-randomisation, their time from

first seizure to second was typically shorter than their time from randomisa-

tion to first seizure. It is thought that the immediate increase in risk following

a seizure diminishes in time, but that in some cases of epilepsy the condition

deteriorates after each event occurs. In the full joint model that we have de-

veloped, we have simply assumed that seizure rates change after each event,

remaining constant between events. We may need to consider the possibility

that seizure rates also change between events.

A further assumption that has been made is that there is an instantaneous

multiplicative treatment effect at randomisation. Recall that MESS was a

pragmatic trial, meaning that recruited individuals received treatment with

AEDs in line with the clinicians’ usual practice. When patients start a course
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of AEDs, they typically start with smaller doses for an initial period, rather

than starting immediately on the full dose. A consequence of this is that we

may observe a delayed treatment effect which would need to be accounted for.

9.3.5 Further Work

Chapter 8 outlined further possible extensions to the analysis of the MESS

data, that have been considered, but not carried out in this thesis. A zero-

truncated, one-inflated Poisson distribution has been proposed as an alterna-

tive to the standard Poisson distribution, to reflect the fact that all individuals

entering the trial had experienced at least one seizure pre-randomisation, al-

though many presented with a single seizure only.

It was proposed that missing data methods could be adopted to recover infor-

mation about the specific types of AED that were administered. This informa-

tion could then be included as an explanatory variable in analyses. Additional

outcomes that could be considered are times to third, fourth and fifth seizure

post-randomisation, and times to one and two year remission.

One of the big questions in epilepsy is what causes drug refractoriness. We

have stated in this thesis that around 30% of epilepsy sufferers will never

achieve long-term remission from epileptic seizures. Clinical opinion is that

there may be genetic determinants of this, as well as clinical ones. Epilepsy

data exists that considers the outcomes time to first seizure and time to 12

month remission. This epilepsy dataset additionally contains information on

individuals’ DNA. It has been proposed that the models we have developed in
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this thesis may be applicable to the analysis of this data.

Chapter 7 compared the performance of the full joint model with the Log-

logistic model that incorporated cure rates, by considering how well the fitted

estimates modelled the distribution of the survival curves. This comparison,

however, did not formally assess the performance of the full joint model in its

own right. Maller and Zhou (1996) propose using the correlation coefficient,

for the Kaplan-Meier estimates of the cumulative distribution function and

the corresponding fitted estimates from the full joint model, as a means of

testing model performance. We have noted however, that correlation coeffi-

cients would simply assess the strength of a linear relationship between these

two sets of data, but we wish to assess the strength of equality. Further work

may consider statistics that may be appropriate for this.

9.4 Summary

In conclusion, this thesis has developed a number of statistical models that can

be used in the analysis of data that arrives in the form of pre-randomisation

event counts and two post-randomisation survival times. These joint models

have been motivated by and illustrated on epilepsy data. The final full joint

model that was concluded as optimal has been compared with standard sur-

vival models that incorporated cure rates. Despite initial indications being

that the full joint model was superior to standard modelling strategies, vi-

sual comparisons of how the well the fitted estimates model the distribution

of the survival times have shown that standard methods also perform very well.
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It would be interesting to explore further if there are certain scenarios whereby

the full joint model provides a significant improvement over standard survival

methods.
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Appendix A

Lomax Survival Distribution

Standard software for the analysis of survival data using the Lomax distri-

bution does not exist. By considering the density and survivor functions of

the Lomax distribution, we can derive the log-likelihood. First and second

derivatives of this log-likelihood can easily be obtained, allowing inference on

the parameters γ and θ, using a numerical method such as Newton Raphson.

A.1 The Full Log-Likelihood and Derivatives

Recall that the probability density function for the Lomax distribution is

fY (yi;µi, γ) = µi

( γ

γ + µiyi

)γ+1

, (A.1)

where µi = exp(θ′di) for a vector θ of regression coefficients, and a vector di

of covariates for each individual i, including an intercept term. It is trivial

to derive the corresponding survivor function from the probability density

153



function:

SY (yi;µi, γ) =

∫ ∞

yi

fY (u;µi, γ)du

=
( γ

γ + µiyi

)γ

. (A.2)

Log-likelihood

Let δi be the indicator function for the survival time, taking the value 1 if

the seizure is observed, and zero if the survival time is censored. Combining

these indicator functions with density and survivor functions, (A.1) and (A.2)

respectively, allows us to formulate the log-likelihood for the observed data D

on all the n individuals, given by

ℓ(γ,θ | D) =
n∑

i=1

{δi ln fY (yi;µi, γ) + (1− δi) lnSY (yi;µi, γ)}

=
n∑

i=1

{δi ln(µi) + (δi + γ) ln(γ)− (δi + γ) ln(γ + µiyi)}.(A.3)

First Derivatives

The first-order derivatives of the full log-likelihood, (A.3) are:

∂ℓ

∂θ
=

n∑
i=1

{
γ(δi − µiyi)

γ + µiyi

}
di

∂ℓ

∂γ
=

n∑
i=1

{
ln(γ) + 1 +

δi
γ
− ln(γ + µiyi)−

δi + γ

γ + µiyi

}
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Second Derivatives

The second-order derivatives of the full log-likelihood are:

∂2ℓ

∂θ∂θ′
= −

n∑
i=1

{
γµiyi(δi + γ)

(γ + µiyi)2

}
didi′

∂2ℓ

∂γ∂γ′
= −

n∑
i=1

{
1

γ
− δi
γ2

− 1

γ + µiyi
+

δi − µiyi
(γ + µiyi)2

}
∂2ℓ

∂θ∂γ
=

n∑
i=1

{
µiyi(δi − µiyi)

(γ + µiyi)2

}
di
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Appendix B

R Code

B.1 Simple Joint Model

joint1 <- function(alphainit = 1, beta1initvec = 0, beta2initvec

= c(0, 0), incl1 = 1, incl2 = 1, data, maxiter = 50)

{

#

# Function to find maximum likelihood estimates for joint model

# Data should be in a data frame including:

# "nseiz" = pre-randomisation seizure count;

# "period" = period in days from first pre-randomisation

# seizure to randomisation

# "time1" = post-randomisation time to first seizure;

# "time2" = post-randomisation time from first seizure

# to second seizure;

# "cens1" = censoring indicator (first seizure);

# "cens2" = censoring indicator (second seizure);
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# "type1" 0/1 tonic-clonic seizures only pre-randomisation;

# "type2" 0/1 partial with 2-degree t-c pre-randomisation;

# "type3" 0/1 generalised seizures pre-randomisation

# (including tonic-clonic and generalised);

# "type4" 0/1 partial minor seizures only pre-randomisation;

# "type6" 0/1 other seizures pre-randomisation;

# "ager" = age at randomisation minus 30 as a continuous

# covariate in years;

# "sex" 0/1 indicating sex (male/female);

# "trt" 0/1 indicating treatment (deferred/immediate).

# "eeg" 0/1 indicating eeg outcome (normal/abnormal);

#

# When calling the function, "incl1" and "incl2" decide which

# covariates to include in lambda and psi respectively.

#

#

# the first section initialises the variables in the model

#

k1 <- length(beta1initvec)

k2 <- length(beta2initvec)

beta1out <- matrix(rep(NA, k1 * maxiter), ncol = k1)

beta2out <- matrix(rep(NA, k2 * maxiter), ncol = k2)

alphaout <- matrix(rep(NA, maxiter), ncol = 1)

beta1out[1, ] <- beta1initvec

beta2out[1, ] <- beta2initvec

alphaout[1, ] <- alphainit
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maxx <- 1

i <- 1

#

#

# the next section is a Newton-Raphson loop, repeatedly calling

# the function "joint2" until every estimate is within 0.00001

# of its value in the previous iteration

#

#

while((i <= maxiter - 1) && (maxx > 1e-005)) {

i <- i + 1

newests <- joint2(alphaout[i - 1, ], beta1out[i - 1,

], beta2out[i - 1, ], incl1, incl2, data)

alphaout[i, ] <- newests$alpha

beta1out[i, ] <- newests$beta1

beta2out[i, ] <- newests$beta2

maxad <- abs(alphaout[i, ] - alphaout[i - 1, ])

maxbd1 <- max(abs(beta1out[i, ] - beta1out[i - 1, ]))

maxbd2 <- max(abs(beta2out[i, ] - beta2out[i - 1, ]))

maxx <- max(maxad, maxbd1, maxbd2)

}

#

#

# the final section uses the maximum likelihood solution to

# generate the variance-covariance matrix (also using "joint2")

# and then output the estimates and related information
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#

#

newcov <- joint2(alphaout[i, ], beta1out[i, ], beta2out[i,

], incl1, incl2, data)

list(alpha = alphaout[i, ], beta1 = beta1out[i, ], beta2

= beta2out[i, ], sd = round(sqrt(diag(newcov$covmat)),

digits = 3), wald = round(c(beta1out[i, ],beta2out[i,

])^2/diag(newcov$covmat)[-1],

digits = 3), covmat = newcov$covmat, iter = i, loglik

= newcov$loglik)

}

joint2 <- function(alpha, beta1vec, beta2vec, incl1,incl2, data)

{

#

# Function to help "joint1" by finding the log-likelihood,

# gradient, and Hessian, for a single Newton-Raphson iteration

#

# The first section initialises some parameters for the model,

# and reparameterises some covariates

#

k1 <- length(beta1vec)

k2 <- length(beta2vec)

n <- length(data$type1)

beta1 <- matrix(beta1vec, nrow = k1)
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beta2 <- matrix(beta2vec, nrow = k2)

ager <- data$ager

type1 <- data$type1

type2 <- data$type2

type3 <- data$type3

type4 <- data$type4

type6 <- data$type6

trt <- data$trt

eeg <- data$eeg

sex <- data$sex

trttype1 <- trt * type1 # trt/type interactions

trttype2 <- trt * type2

trttype3 <- trt * type3

trttype4 <- trt * type4

trttype6 <- trt * type6

trtager <- trt * ager

eegtype1 <- eeg * type1 # eeg/type interactions

eegtype2 <- eeg * type2

eegtype3 <- eeg * type3

eegtype4 <- eeg * type4

eegtype6 <- eeg * type6

trteeg <- trt * eeg

cens1 <- data$cens1

time1 <- data$time1

cens2 <- data$cens2

time2 <- data$time2
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nseiz <- data$nseiz

period <- data$period

#

#

# the next section uses the initially specified variables "incl1"

# and "incl2" to construct the covariate matrices which will

# later be used to give lambda and psi

#

#

if(incl1 == 1)

z1 <- matrix(rep(1, n), byrow = T, nrow = k1)

if(incl1 == 2)

z1 <- matrix(c(rep(1, n), type1, type2, type3, type6),

byrow = T, nrow = k1)

if(incl1 == 3)

z1 <- matrix(c(rep(1, n), ager), byrow = T, nrow = k1)

if(incl1 == 4)

z1 <- matrix(c(rep(1, n), type1, type2, type3, type6,

ager),

byrow = T, nrow = k1)

if(incl1 == 5)

z1 <- matrix(c(rep(1, n), type1, type2, type3, type6,

ager, sex), byrow = T, nrow = k1)

if(incl1 == 6)

z1 <- matrix(c(rep(1, n), type1, type2),

byrow = T, nrow = k1)
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#

if(incl2 == 0)

z2 <- matrix(rep(1, n), byrow = T, nrow = k2)

if(incl2 == 1)

z2 <- matrix(c(rep(1, n), trt), byrow = T, nrow = k2)

if(incl2 == 2)

z2 <- matrix(c(rep(1, n), trt, type1, type2, type3,

type6), byrow = T, nrow = k2)

if(incl2 == 3)

z2 <- matrix(c(rep(1, n), trt, type1, type2, type3,

type6, ager), byrow = T, nrow = k2)

if(incl2 == 4)

z2 <- matrix(c(rep(1, n), trt, type1, type2, type3,

type6, ager, eeg), byrow = T, nrow = k2)

if(incl2 == 5)

z2 <- matrix(c(rep(1, n), trt, type1, type2, type3,

type6, eeg), byrow = T, nrow = k2)

if(incl2 == 6)

z2 <- matrix(c(rep(1, n), trt, type1, type2, type3,

type6, trttype1, trttype2, trttype3, trttype6,

eeg, trteeg, eegtype1, eegtype2, eegtype3,

eegtype6), byrow = T, nrow = k2)

if(incl2 == 7)

z2 <- matrix(c(rep(1, n), trt, type1, type2),

byrow = T, nrow = k2)

if(incl2 == 8)
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z2 <- matrix(c(rep(1, n), trt, type1, type2,

trttype1, trttype2, eeg, trteeg, eegtype1,

eegtype2), byrow = T, nrow = k2)

#

#

# the next section initialises the matrices and vectors

# which will store the values of the likelihood contributions,

# and the contributions to the gradient and Hessian, for

# each individual observation

#

#

mat1 <- matrix(rep(0, k1 * k1), nrow = k1) # for the Hessian

mat2 <- matrix(rep(0, k2 * k2), nrow = k2) # for the Hessian

mat12 <- matrix(rep(0, k1 * k2), nrow = k1) # for the Hessian

mat1a <- matrix(rep(0, k1), nrow = k1) # for the Hessian

mat2a <- matrix(rep(0, k2), nrow = k2) # for the Hessian

#

term1 <- matrix(rep(0, k1), nrow = k1) # for the gradient

term2 <- matrix(rep(0, k2), nrow = k2) # for the gradient

#

bigmat <- matrix(rep(0, (k1 + k2 + 1) * (k1 + k2 + 1)),

nrow = k1 + k2 + 1)

invbigmat <- bigmat # for the observed information matrix

#

aterm1 <- rep(NA, n) # for the Hessian

aterm2 <- aterm1 # for the gradient
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aterm3 <- rep(0, n)

aterm4 <- aterm3

#

ll <- rep(NA, n)

llterm1 <- rep(0, n)

#

lambda <- exp(t(beta1) %*% z1) # individual rate

psi <- exp(t(beta2) %*% z2) # treatment effect

#

cens <- cens1 * (1 + cens2)

time <- time1 + time2

bit1 <- lambda * period

bit2 <- lambda * psi * time

bit3 <- bit1 + bit2 + alpha #these "bits" come up a lot

#

#

# the next section is a loop for each observation in the data,

# calculating the individual contribution to the log-likelihood,

# the gradient, and the Hessian

#

#

for(i in 1:n) {

#

# for Hessian and gradient contributions for beta1 and beta2

#

mat1 <- mat1 - ((alpha * (nseiz[i] + cens[i] + alpha) *
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(bit1[i] + bit2[i]))/(bit3[i] * bit3[i])) * outer(

z1[, i], z1[, i])

mat2 <- mat2 - (((nseiz[i] + alpha + cens[i]) * (bit1[i]

+ alpha) * bit2[i])/(bit3[i] * bit3[i])) * outer(

z2[, i], z2[, i])

mat12 <- mat12 - ((alpha * (alpha + nseiz[i] + cens[i])

* bit2[i])/(bit3[i] * bit3[i])) * outer(z1[, i],

z2[, i])

#

term1 <- term1 + ((alpha * (nseiz[i] + cens[i] -

bit1[i] - bit2[i]))/bit3[i]) * z1[, i]

term2 <- term2 + ((cens[i] * bit1[i] - nseiz[i] * bit2[i]

+ alpha * (cens[i] - bit2[i]))/bit3[i]) * z2[, i]

#

# for gradient and Hessian contributions for alpha

#

for(j in 0:(nseiz[i] - 1)) {

aterm3[i] <- aterm3[i] + 1/((alpha + j)^

2)

aterm4[i] <- aterm4[i] + 1/(alpha + j)

}

aterm1[i] <- aterm3[i] + (cens1[i]/((alpha + nseiz[i]) *

(alpha + nseiz[i]))) + ((cens1[i] * cens2[i])/

((alpha + nseiz[i] + 1) * (alpha + nseiz[i] + 1))) -

(1/alpha) - ((nseiz[i] + cens[i] - alpha - 2 *

(bit1[i] + bit2[i]))/(bit3[i] * bit3[i]))
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aterm2[i] <- aterm4[i] + (cens1[i]/(alpha + nseiz[i])) +

((cens1[i] * cens2[i])/(alpha + nseiz[i] + 1)) +

log(alpha) + 1 - log(bit3[i]) - ((nseiz[i] +

alpha + cens[i])/bit3[i])

#

# for Hessian contribution of correlation between alpha and beta

#

mat1a <- mat1a + (((bit1[i] + bit2[i]) * (nseiz[i] +

cens[i] - bit1[i] - bit2[i]))/(bit3[i] * bit3[i])) *

z1[, i]

mat2a <- mat2a + (((nseiz[i] + cens[i] - bit1[i] -

bit2[i]) * bit2[i])/(bit3[i] * bit3[i])) * z2[, i]

#

# for log-likelihood contribution of individual i

#

for(j in 0:(nseiz[i] - 1)) {

llterm1[i] <- llterm1[i] + log(alpha +

j)

}

ll[i] <- llterm1[i] + cens1[i] * log(alpha + nseiz[i]) +

(cens1[i] * cens2[i]) * log(alpha + nseiz[i] + 1) +

nseiz[i] * log(period[i]) + alpha * log(alpha) +

(nseiz[i] + cens[i]) * log(lambda[i]) + cens[i] *

log(psi[i]) - lgamma(nseiz[i] + 1) - (nseiz[i] +

alpha + cens[i]) * log(bit3[i])

}
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#

#

# the next section combines the individual second-derivative

# matrices into the Hessian, and then the observed information

# matrix.

#

#

bigmat[2:(k1 + 1), 2:(k1 + 1)] <- mat1

bigmat[2:(k1 + 1), (k1 + 2):(k1 + k2 + 1)] <- mat12

bigmat[(k1 + 2):(k1 + k2 + 1), 2:(k1 + 1)] <- t(mat12)

bigmat[(k1 + 2):(k1 + k2 + 1), (k1 + 2):(k1 + k2 + 1)] <-

mat2

bigmat[1, 1] <- 0 - sum(aterm1)

bigmat[1, 2:(k1 + 1)] <- mat1a

bigmat[1, (k1 + 2):(k1 + k2 + 1)] <- mat2a

bigmat[2:(k1 + 1), 1] <- t(mat1a)

bigmat[(k1 + 2):(k1 + k2 + 1), 1] <- t(mat2a)

#

invbigmat <- solve(bigmat)

#

#

# the final section finds the updated parameter estimates using

# a Newton-Raphson step, and outputs the new parameter values,

# the observed information matrix, and the fitted log-likelihood

#

#
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newabvec <- t(c(alpha, beta1, beta2) - invbigmat %*% c(sum(

aterm2), term1, term2))

#

list(alpha = newabvec[, 1], beta1 = newabvec[, 2:(k1 + 1)],

beta2 = newabvec[, (k1 + 2):(k1 + k2 + 1)], covmat = -

invbigmat, loglik = sum(ll))

}
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B.2 Full Model

two_cure_rate1 <- function(alphainit, beta1init, beta2init,

beta3init, kappa1init, kappa2init, incl1, incl2, incl5, incl3,

incl4, data, maxiter = 50, iterations=500)

{

#

# the first section initialises the variables in the model

#

#

k1 <- length(beta1init)

k2 <- length(beta2init)

k3 <- length(kappa1init)

k4 <- length(kappa2init)

k5 <- length(beta3init)

beta1out <- matrix(rep(NA, k1 * maxiter), ncol = k1)

beta2out <- matrix(rep(NA, k2 * maxiter), ncol = k2)

beta3out <- matrix(rep(NA, k5 * maxiter), ncol = k5)

kappa1out <- matrix(rep(NA, k3 * maxiter), ncol = k3)

kappa2out <- matrix(rep(NA, k4 * maxiter), ncol = k4)

alphaout <- matrix(rep(NA, maxiter), ncol = 1)

beta1out[1, ] <- beta1init

beta2out[1, ] <- beta2init

kappa1out[1, ] <- kappa1init

kappa2out[1, ] <- kappa2init

alphaout[1, ] <- alphainit
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beta3out[1, ] <- beta3init

maxx <- 1

i <- 1

#

#

# the next section is an optim loop, repeatedly calling

# the function "two_cure2" until every estimate is within

# 0.00001 of its value in the previous iteration

#

#

while((i <= maxiter - 1) && (maxx > 1e-005)) {

i <- i + 1

newests <- two_cure_rate2(alphaout[i - 1, ], beta1out[i

- 1, ], beta2out[i - 1, ], beta3out[i - 1, ],

kappa1out[i - 1, ], kappa2out[i - 1, ], incl1,

incl2, incl5, incl3, incl4, data, iterations)

alphaout[i, ] <- newests$alpha

beta1out[i, ] <- newests$beta1

beta2out[i, ] <- newests$beta2

beta3out[i, ] <- newests$beta3

kappa1out[i, ] <- newests$kappa1

kappa2out[i, ] <- newests$kappa2

maxad <- abs(alphaout[i, ] - alphaout[i - 1, ])

maxbd1 <- max(abs(beta1out[i, ] - beta1out[i - 1, ]))

maxbd2 <- max(abs(beta2out[i, ] - beta2out[i - 1, ]))

maxbd3 <- max(abs(beta3out[i, ] - beta3out[i - 1, ]))
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maxkd1 <- max(abs(kappa1out[i, ] - kappa1out[i - 1,

]))

maxkd2 <- max(abs(kappa2out[i, ] - kappa2out[i - 1,

]))

maxx <- max(maxad, maxbd1, maxbd2, maxbd3, maxkd1,

maxkd2)

}

#

#

# the final section uses the maximum likelihood solution to

# generate the variance-covariance matrix (also using

# "two_cure2") and then output the estimates and related

# information

#

#

newcov <- two_cure_rate2(alphaout[i, ], beta1out[i, ],

beta2out[i, ], beta3out[i, ], kappa1out[i, ],

kappa2out[i, ], incl1, incl2, incl5, incl3, incl4,

data, iterations)

list(alpha = alphaout[i, ], beta1 = beta1out[i, ], beta2 =

beta2out[i, ], beta3 = beta3out[i, ], kappa1 =

kappa1out[i, ], kappa2 = kappa2out[i, ], sd =

round(sqrt(diag(newcov$covmat)),digits = 3), wald =

round(c(beta1out[i, ],beta2out[i, ],beta3out[i, ],

kappa1out[i, ], kappa2out[i, ])^2/diag(newcov$covmat)[

-1], digits = 3), covmat = newcov$covmat, iter = i,

171



loglik = newcov$loglik)

}

two_cure_rate2 <- function(alphain, beta1vec, beta2vec,

beta3vec, kappa1vec, kappa2vec, incl1, incl2, incl5, incl3,

incl4, data, iterations)

{

#

# Function to help "two_cure1" by finding the log-likelihood,

# and gradient, for a single optim iteration

#

#

#

# the first section initialises some parameters for the model,

# and reparameterises some covariates

#

#

k1 <- length(beta1vec)

k2 <- length(beta2vec)

k3 <- length(kappa1vec)

k4 <- length(kappa2vec)

k5 <- length(beta3vec)

n <- length(data$type1)

ager <- data$ager

type1 <- data$type1
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type2 <- data$type2

type3 <- data$type3

type4 <- data$type4

type6 <- data$type6

trt <- data$trt

eeg <- data$eeg

sex <- data$sex

trttype1 <- trt * type1 # trt/type interactions

trttype2 <- trt * type2

trttype3 <- trt * type3

trttype4 <- trt * type4

trttype6 <- trt * type6

trtager <- trt * ager

eegtype1 <- eeg * type1 # eeg/type interactions

eegtype2 <- eeg * type2

eegtype3 <- eeg * type3

eegtype4 <- eeg * type4

eegtype6 <- eeg * type6

trteeg <- trt * eeg

cens1 <- data$cens1

time1 <- data$time1

cens2 <- data$cens2

time2 <- data$time2

nseiz <- data$nseiz

period <- data$period

#
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#

# the next section uses the initially specified variables "incl1"

# and "incl2" to construct the covariate matrices which will

# later be used to give lambda and psi

#

#

if(incl1 == 1)

z1 <- matrix(rep(1, n), byrow = T, nrow = k1)

if(incl1 == 2)

z1 <- matrix(c(rep(1, n), type1, type2, type3, type6),

byrow = T, nrow = k1)

if(incl1 == 3)

z1 <- matrix(c(rep(1, n), ager), byrow = T, nrow = k1)

if(incl1 == 4)

z1 <- matrix(c(rep(1, n), type1, type2, type3, type6,

ager), byrow = T, nrow = k1)

if(incl1 == 5)

z1 <- matrix(c(rep(1, n), type1, type2, type3, type6,

ager, sex), byrow = T, nrow = k1)

if(incl1 == 6)

z1 <- matrix(c(rep(1, n), type1, type2), byrow = T,

nrow = k1)

if(incl1 == 7)

z1 <- matrix(c(rep(1, n), type1, type3, type6),

byrow = T, nrow = k1)

#
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if(incl2 == 0)

z2 <- matrix(rep(1, n), byrow = T, nrow = k2)

if(incl2 == 1)

z2 <- matrix(c(rep(1, n), trt), byrow = T, nrow = k2)

if(incl2 == 2)

z2 <- matrix(c(rep(1, n), trt, type1, type2, type3,

type6), byrow = T, nrow = k2)

if(incl2 == 3)

z2 <- matrix(c(rep(1, n), trt, type1, type2, type3,

type6, ager), byrow = T, nrow = k2)

if(incl2 == 4)

z2 <- matrix(c(rep(1, n), trt, type1, type2, type3,

type6, ager, eeg), byrow = T, nrow = k2)

if(incl2 == 5)

z2 <- matrix(c(rep(1, n), trt, type1, type2, type3,

type6, eeg), byrow = T, nrow = k2)

if(incl2 == 6)

z2 <- matrix(c(rep(1, n), trt, type1, type2, type3,

type6, trttype1, trttype2, trttype3, trttype6, eeg,

trteeg, eegtype1, eegtype2, eegtype3, eegtype6),

byrow = T, nrow = k2)

if(incl2 == 7)

z2 <- matrix(c(rep(1, n), trt, type1, type2), byrow = T,

nrow = k2)

if(incl2 == 8)

z2 <- matrix(c(rep(1, n), trt, type1, type2, trttype1,
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trttype2, eeg, trteeg, eegtype1, eegtype2),

byrow = T, nrow = k2)

#

if(incl3 == 0)

w1 <- matrix(rep(1, n), byrow = T, nrow = k3)

if(incl3 == 1)

w1 <- matrix(c(rep(1, n), trt), byrow = T, nrow = k3)

if(incl3 == 2)

w1 <- matrix(c(rep(1, n), trt, type1, type2, type3,

type6), byrow = T, nrow = k3)

if(incl3 == 3)

w1 <- matrix(c(rep(1, n), trt, type1, type2, type3,

type6, ager), byrow = T, nrow = k3)

if(incl3 == 4)

w1 <- matrix(c(rep(1, n), trt, type1, type2, type3,

type6, ager, eeg), byrow = T, nrow = k3)

if(incl3 == 5)

w1 <- matrix(c(rep(1, n), trt, type1, type2, type3,

type6, eeg), byrow = T, nrow = k3)

if(incl3 == 6)

w1 <- matrix(c(rep(1, n), trt, type1, type2, type3,

type6, trttype1, trttype2, trttype3, trttype6, eeg,

trteeg, eegtype1, eegtype2, eegtype3, eegtype6),

byrow = T, nrow = k3)

if(incl3 == 7)

w1 <- matrix(c(rep(1, n), trt, type1, type2), byrow = T,
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nrow = k3)

if(incl3 == 8)

w1 <- matrix(c(rep(1, n), trt, type1, type2, trttype1,

trttype2, eeg, trteeg, eegtype1, eegtype2),

byrow = T, nrow = k3)

if(incl3 == 9)

w1 <- matrix(c(rep(1, n), type1, type2, eeg, eegtype1,

eegtype2), byrow = T, nrow = k3)

#

if(incl4 == 0)

w2 <- matrix(rep(1, n), byrow = T, nrow = k4)

if(incl4 == 1)

w2 <- matrix(c(rep(1, n), trt), byrow = T, nrow = k4)

if(incl4 == 2)

w2 <- matrix(c(rep(1, n), trt, type1, type2, type3,

type6), byrow = T, nrow = k4)

if(incl4 == 3)

w2 <- matrix(c(rep(1, n), trt, type1, type2, type3,

type6, ager), byrow = T, nrow = k4)

if(incl4 == 4)

w2 <- matrix(c(rep(1, n), trt, type1, type2, type3,

type6, ager, eeg), byrow = T, nrow = k4)

if(incl4 == 5)

w2 <- matrix(c(rep(1, n), trt, type1, type2, type3,

type6, eeg), byrow = T, nrow = k4)

if(incl4 == 6)
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w2 <- matrix(c(rep(1, n), trt, type1, type2, type3,

type6, trttype1, trttype2, trttype3, trttype6, eeg,

trteeg, eegtype1, eegtype2, eegtype3, eegtype6),

byrow = T, nrow = k4)

if(incl4 == 7)

w2 <- matrix(c(rep(1, n), trt, type1, type2), byrow = T,

nrow = k4)

if(incl4 == 8)

w2 <- matrix(c(rep(1, n), trt, type1, type2, trttype1,

trttype2, eeg, trteeg, eegtype1, eegtype2), byrow = T,

nrow = k4)

#

if(incl5 == 0)

z3 <- matrix(rep(1, n), byrow = T, nrow = k5)

if(incl5 == 1)

z3 <- matrix(c(rep(1, n), trt), byrow = T, nrow = k5)

if(incl5 == 2)

z3 <- matrix(c(rep(1, n), trt, type1, type2, type3,

type6), byrow = T, nrow = k5)

if(incl5 == 3)

z3 <- matrix(c(rep(1, n), trt, type1, type2, type3,

type6, ager), byrow = T, nrow = k5)

if(incl5 == 4)

z3 <- matrix(c(rep(1, n), trt, type1, type2, type3,

type6, ager, eeg), byrow = T, nrow = k5)

if(incl5 == 5)
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z3 <- matrix(c(rep(1, n), trt, type1, type2, type3,

type6, eeg), byrow = T, nrow = k5)

if(incl5 == 6)

z3 <- matrix(c(rep(1, n), trt, type1, type2, type3,

type6, trttype1, trttype2, trttype3, trttype6, eeg,

trteeg, eegtype1, eegtype2, eegtype3, eegtype6),

byrow = T, nrow = k5)

if(incl5 == 7)

z3 <- matrix(c(rep(1, n), trt, type1, type2), byrow = T,

nrow = k5)

if(incl5 == 8)

z3 <- matrix(c(rep(1, n), trt, type1, type2, trttype1,

trttype2, eeg, trteeg, eegtype1, eegtype2),

byrow = T, nrow = k5)

#

#

#

#

lambdaq<-exp(t(beta1vec)%*%z1)

psiq<-exp(t(beta2vec)%*%z2)

p1q<-exp(t(kappa1vec)%*%w1)/(1+exp(t(kappa1vec)%*%w1))

alphaq<-alphain

q <- p1q * ((1 + (lambdaq * psiq * time1)/alphaq)^(-alphaq))

#

#

like <- function(par){
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alpha <- par[1]

beta1 <- matrix(par[2:(k1 + 1)], nrow = k1)

beta2 <- matrix(par[(k1 + 2):(k1 + k2 + 1)], nrow = k2)

beta3 <- matrix(par[(k1 + k2 + 2):(k1 + k2 + k5 + 1)],

nrow = k5)

kappa1 <- matrix(par[(k1 + k2 + k5 + 2):(k1 + k2 + k5 + k3

+ 1)], nrow = k3)

kappa2 <- matrix(par[(k1 + k2 + k5 + k3 + 2):(k1 + k2 + k5

+ k3 + k4 + 1)], nrow = k4)

#

ll <- rep(NA, n)

llterm1 <- rep(0, n)

#

lambda <- exp(t(beta1) %*% z1) # individual rate

psi1 <- exp(t(beta2) %*% z2) # treatment effect 1

psi2 <- exp(t(beta3) %*% z3) # treatment effect 2

p1 <- exp(t(kappa1) %*% w1)/(1 + exp(t(kappa1) %*% w1))

p2 <- exp(t(kappa2) %*% w2)/(1 + exp(t(kappa2) %*% w2))

# p is the susceptible proportion

#

cens <- cens1 * (1 + cens2)

bit1 <- lambda * period

bit2 <- lambda * psi1 * time1

bit3 <- lambda * psi1 * psi2 * time2

bit4 <- bit1 + bit2

bit5 <- bit3 + bit4
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bit6 <- nseiz + alpha

bit7 <- ((1 - p1)/((bit1 + alpha)^(bit6)))

bit8 <- (p1/((bit4 + alpha)^(bit6)))

bit9 <- ((1 - p2)/((bit4 + alpha)^(bit6 + 1))) + (p2/((bit5

+ alpha)^(bit6 + 1)))

# these "bits" come up a lot

#

#

for(i in 1:n) {

for(j in 0:(nseiz[i] - 1)) {

llterm1[i] <- llterm1[i] + log(alpha +

j)

}

ll[i] <- llterm1[i] + (nseiz[i] * log(period[i])) -

lgamma(nseiz[i] + 1) + (alpha * log(alpha)) + ((nseiz[i] +

cens[i]) * log(lambda[i])) + (cens[i] * log(psi1[i])) +

(cens1[i] * log(p1[i])) + (cens1[i] * cens2[i] * log(p2[i])) +

(cens1[i] * log(bit6[i])) + (cens1[i] * cens2[i] * log(bit6[i]

+ 1)) - (cens1[i] * cens2[i] * (bit6[i] + 2) * log(bit5[i] +

alpha)) + (cens1[i] * (1 - cens2[i]) * log(bit9[i])) + ((1 -

cens1[i]) * q[i] * log(bit8[i])) + ((1 - cens1[i]) * (1 - q[i])

* log(bit7[i])) + (cens1[i] * cens2[i] * log(psi2[i]))

}

return(sum(ll))

}

#
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#

#

#

grad <- function(par){

alpha <- par[1]

beta1 <- matrix(par[2:(k1 + 1)], nrow = k1)

beta2 <- matrix(par[(k1 + 2):(k1 + k2 + 1)], nrow = k2)

beta3 <- matrix(par[(k1 + k2 + 2):(k1 + k2 + k5 + 1)],

nrow = k5)

kappa1 <- matrix(par[(k1 + k2 + k5 + 2):(k1 + k2 + k5 + k3

+ 1)], nrow = k3)

kappa2 <- matrix(par[(k1 + k2 + k5 + k3 + 2):(k1 + k2 + k5

+ k3 + k4 + 1)], nrow = k4)

#

term1 <- matrix(rep(0, k1), nrow = k1) # for the gradient

term2 <- matrix(rep(0, k2), nrow = k2) # for the gradient

term3 <- matrix(rep(0, k5), nrow = k5) # for the gradient

kterm1 <- matrix(rep(0, k3), nrow = k3) # for the gradient

kterm2 <- matrix(rep(0, k4), nrow = k4) # for the gradient

#

aterm1 <- rep(NA, n)

aterm2 <- rep(0, n) # for the gradient

#

lambda <- exp(t(beta1) %*% z1) # individual rate

psi1 <- exp(t(beta2) %*% z2) # treatment effect 1
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psi2 <- exp(t(beta3) %*% z3) # treatment effect 2

p1 <- exp(t(kappa1) %*% w1)/(1 + exp(t(kappa1) %*% w1))

p2 <- exp(t(kappa2) %*% w2)/(1 + exp(t(kappa2) %*% w2))

# p is the susceptible proportion

#

cens <- cens1 * (1 + cens2)

bit1 <- lambda * period

bit2 <- lambda * psi1 * time1

bit3 <- lambda * psi1 * psi2 * time2

bit4 <- bit1 + bit2

bit5 <- bit3 + bit4

bit6 <- nseiz + alpha

bit7 <- ((1 - p1)/((bit1 + alpha)^(bit6)))

bit8 <- (p1/((bit4 + alpha)^(bit6)))

bit9 <- ((1 - p2)/((bit4 + alpha)^(bit6 + 1))) + (p2/((bit5

+ alpha)^(bit6 + 1)))

# these "bits" come up a lot

#

#

for(i in 1:n) {

# for gradient contributions for beta1, beta2

#

term1 <- term1 + (nseiz[i] + cens[i] - ((cens1[i] *

cens2[i] * (bit6[i] + 2) * bit5[i])/(bit5[i] + alpha)) - ((1 -

cens1[i]) * bit6[i] * (((q[i] * bit4[i])/(bit4[i] + alpha)) +

(((1 - q[i]) * bit1[i])/(bit1[i] + alpha)))) - ((cens1[i] * (1 -
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cens2[i]) * (bit6[i] + 1) * ((((1 - p2[i]) * bit4[i])/((bit4[i]

+ alpha)^(bit6[i] + 2))) + ((p2[i] * bit5[i])/((bit5[i] + alpha)

^(bit6[i] + 2)))))/bit9[i])) * z1[, i]

#

term2 <- term2 + (cens[i] - ((cens1[i] * cens2[i] *

(bit6[i] + 2) * (bit2[i] + bit3[i]))/(bit5[i] + alpha)) -

(((1 - cens1[i]) * q[i] * bit6[i] * bit2[i])/(bit4[i] + alpha)) -

((cens1[i] * (1 - cens2[i]) * (bit6[i] + 1) * ((((1 - p2[i]) *

bit2[i])/((bit4[i] + alpha)^(bit6[i] + 2))) + ((p2[i] * (bit2[i]

+ bit3[i]))/((bit5[i] + alpha)^(bit6[i] + 2)))))/bit9[i])) *

z2[, i]

#

kterm1 <- kterm1 + ((1 - p1[i]) - ((1 - cens1[i]) * (1 - q[i])))

* w1[, i]

#

kterm2 <- kterm2 + (cens1[i] * cens2[i] * (1 - p2[i]) -

((cens1[i] * (1 - cens2[i]) * p2[i] * (1 - p2[i]) * (((bit4[i] +

alpha)^(- bit6[i] - 1)) - ((bit5[i] + alpha)^(- bit6[i] - 1))))/

bit9[i])) * w2[, i]

#

term3 <- term3 + ((cens1[i] * cens2[i]) - ((cens1[i] * cens2[i] *

(bit6[i] + 2) * bit3[i])/(bit5[i] + alpha)) - (((cens1[i] * (1 -

cens2[i]) * (bit6[i] + 1) * p2[i] * bit3[i])/((bit5[i] + alpha)^

(bit6[i] + 2)))/bit9[i])) * z3[, i]

#

# for gradient contributions for alpha
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#

for(j in 0:(nseiz[i] - 1)) {

aterm2[i] <- aterm2[i] + 1/(alpha + j)

}

aterm1[i] <- aterm2[i] + log(alpha) + 1 + (cens1[i]/

bit6[i]) + ((cens1[i] * cens2[i])/(bit6[i] + 1)) - (cens1[i] *

cens2[i] *

log(bit5[i] + alpha)) - ((cens1[i] * cens2[i] * (bit6[i] +

2))/(bit5[i] + alpha)) - ((cens1[i] * (1 - cens2[i]) *

((((((bit6[i] + 1)/(bit4[i] + alpha)) + log(bit4[i] + alpha)) * (1 -

p2[i]))/((bit4[i] + alpha)^(bit6[i] + 1))) + (((((bit6[i] + 1)/

(bit5[i] + alpha)) + log(bit5[i] + alpha)) * p2[i])/((bit5[i] + alpha)^

(bit6[i]+ joint1)))))/bit9[i]) - ((1 - cens1[i]) * q[i] * ((bit6[i]/

(bit4[i] + alpha)) + log(bit4[i] + alpha))) - ((1 - cens1[i]) * (1 -

q[i]) * ((bit6[i]/(bit1[i] + alpha)) + log(bit1[i] + alpha)))

#

}

return(c(sum(aterm1),term1,term2,term3,kterm1,kterm2))

}

#

#

#

joint<-optim(c(alphain,beta1vec,beta2vec,beta3vec,kappa1vec,

kappa2vec),like,grad,hessian=T,method=‘Nelder-Mead’,

control=list(maxit=iterations,fnscale=-1))

#

185



#

alpha = joint$par[1]

beta1 = joint$par[2:(k1 + 1)]

beta2 = joint$par[(k1 + 2):(k1 + k2 + 1)]

beta3 = joint$par[(k1 + k2 + 2):(k1 + k2 + k5 + 1)]

kappa1 = joint$par[(k1 + k2 + k5 + 2):(k1 + k2 + k5 + k3 + 1)]

kappa2 = joint$par[(k1 + k2 + k5 + k3 + 2):(k1 + k2 + k5 + k3 +

k4 + 1)]

#

list(alpha = alpha, beta1 = beta1, beta2 = beta2, beta3 =

beta3, kappa1 = kappa1, kappa2 = kappa2, sd =

round(sqrt(diag(-solve(joint$hessian))),digits = 3), wald =

round(c(beta1,beta2,beta3,kappa1,kappa2)^2/diag(-solve(joint$hessian))[

-1],digits = 3),covmat = -solve(joint$hessian), loglik = joint$value,

convergence = joint$convergence, message = joint$message)

}
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Appendix C

Clinical Paper

In addition to the work that has been presented in this thesis, I have collabo-

rated with clinicians at the University of Liverpool. As part of this collabora-

tion, I am currently working on a clinical paper that analyses the MESS data,

but attention is focussed on post-randomisation times to first seizure of any

type and first tonic-clonic seizure. This paper is currently in the draft stage,

but I include a brief summary here1.

One of the most important decisions for a person with newly diagnosed epilep-

tic seizures will be whether to start treatment with an antiepileptic drug

(AED). This will be dependent on an analysis that requires consideration

of the risk of seizures on the one hand and the side effects associated AED

treatment on the other. Existing literature tends to focuss primarily on the

risks associated tonic-clonic seizures in patients who have presented with a

tonic clonic seizure previously. For patients who have received a diagnosis of

1The most up to date draft of the clinical paper discussed here can be found at
http://www.warwick.ac.uk/go/jenniferrogers/research/thesis.
This page is password protected, the password is ‘thesisrogers2010’.
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epilepsy, but have never experienced a tonic-clonic seizure, information about

the risk of future tonic-clonic seizures may be clinically relevant. The MRC

Multicentre Trial for Early Epilepsy and Single Seizures (MESS) was a ran-

domized controlled trial which compared the treatment policies of immediate

and deferred treatment with AEDs, in those patients considered to be in the

early stages of epilepsy. Because of its broad entry criteria, MESS contained

a number of patients with a history of partial seizures only. In this paper we

explore the outcomes time to first seizure of any type and time to first tonic-

clonic seizure in these patients, and compare them with that of other subjects

who had at least one tonic-clonic seizure before randomisation.

The data arrives in the two parts: a pre-randomisation seizure count, along

with the associated number of days over which these seizures were observed,

and post-randomisation survival times to first seizure of any type and first

tonic-clonic seizure. We adopt methodology that allows the pre-randomisation

seizure counts and post-randomisation survival times to be jointly modelled

(Cowling et al. 2006). This method assumes that both these outcomes are

predicted by (unobserved) seizure rates, assuming that each patient has an un-

derlying constant seizure rate that we allow to vary depending on the following

baseline attributes: age at randomisation, sex and seizure type. Additionally

we suppose that the post-randomisation seizure rates will be reduced relative

to the baseline seizure rate. A greater reduction in the seizure rate results

in a longer time to seizure post-randomisation, indicating a better therapy.

We have modified this methodology however, to incorporate the inclusion of

possible cure rates.
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The data indicate that the risk of secondary generalised tonic-clonic seizures in

those patients that have presented with partial seizures only pre-randomisation

is low, regardless of EEG outcome. As would be expected, immediate treat-

ment with AEDs also had little benefit in reducing the incidence of secondary

generalised tonic-clonic seizures post-randomisation. For this reason, the main

issue to be considered in this group of patients will be the effect of immediate

treatment on the frequency of their partial seizures. When this is examined,

treatment policy is not statistically significant in reducing post-randomisation

seizure rates for those individuals presenting with partial seizures only. For

those groups of patients with tonic-clonic seizures pre-randomisation, immedi-

ate treatment is favoured. This observation is in keeping with the hypothesis

that partial seizures are generally more resistant to AEDs than tonic-clonic

seizures, be these generalised at onset or secondarily generalised. Indeed, it

could be argued that the main effects of currently available AEDs are to limit

the spread of seizure discharge within the brain, rather than to prevent the

initiation of seizures.

The findings that we have observed may have some regulatory implications.

There has been some debate about the licensing of new AEDs. These are

brought to market through trials that compare add-on drugs with a placebo

in subjects with a history of pharmacologically resistant partial seizures. The

key outcomes will be the reduction in seizure frequency compared to placebo,

but the patients included are likely to have many more simple or complex par-

tial seizures than secondary generalised seizures. Thus it can be asked whether

such trials provide reasonable evidence of effectiveness against secondary gen-

eralised seizures.
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