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Synopsis
Data Envelopment Analysis (DEA) is a linear programming technique for measuring the
relative efficiencies of a set of Decision Making Units (DMUs). Each DMU uses the same
set of inputs in differing amounts to produce the same set of outputs in differing quantities.
Weights are freely allocated in order to allow these multiple incommensurate inputs and
outputs to be reduced to a single measure of input and a single measure of output. A
relative efficiency score of a DMU under Constant Returns to Scale is given by maximising
the sum of its weighted outputs to the sum of its weighted inputs, such that this ratio can
not exceed I for any DMU; with the weights derived from the model being taken to
represent the value attributed to the inputs and outputs of the assessment.

It is well known in DEA that this free allocation of weights can lead to several problems in
the analysis. Firstly inputs and outputs can be virtually ignored in the assessment; secondly
any relative relationships between the inputs or outputs can be ignored, and thirdly any
relationships between the inputs and outputs can be violated. To avoid/overcome these
problems, the Decision Maker's (DM) value judgments are incorporated into the
assessment. At present there is one main avenue for the inclusion of values, that of weights
restrictions, whereby the size of the weights are explicitly restricted. Thus to include the
relative value of the inputs or outputs, the relative value of the weights for these related
inputs or outputs are restricted. The popularity of this approach is mainly due to its
simplicity and ease of use.

The aim of this thesis is, therefore, firstly, to demonstrate that, although the weights
restrictions approach is appropriate for many DMs, for a variety of reasons some DMs,
may prefer an alternative form for the expression of their values, e.g. so that they can
include local values in the assessment. With this in mind, the second aim of this thesis is to
present a possible alternative approach for the DMs to incorporate their values in a DEA
assessment and, thirdly, it aims to utilise this alternative approach to improve envelopment.

This alternative approach was derived by considering the basic concept of DEA, which is
that it relies solely on observed data to form the Production Possibility Set (PPS), and then
uses the frontier of this PPS to derive a relative efficiency score for each DMU. It could be
perceived, therefore, that the reason for DMUs receiving inappropriate relative efficiency
scores is due to the lack of suitable DEA-efficient comparator DMIUs. Thus, the proposed
approach attempts to estimate suitable input output levels for these missing DEA-efficient
comparator DMUs, i.e. Unobserved DMUs. These Unobserved DMUs are based on the
manipulation of observed input output levels of specific DEA-efficient DMUs.

The aim of the use of these Unobserved DMUs is to improve envelopment, and the specific
DEA-efficient DMTJs that are selected as a basis for the Unobserved DMILTs are those that
delineate the DEA-efficient frontier from the DEA-inefficient frontier. So, the proposed
approach attempts to extend the observed PPS, while assuming that the values of the
observed DEA-efficient DMIJs are in line with the perceived views of the DM.

The approach was successfully applied to a set of UK bank branches. To illustrate that no
approach is all-purpose, and that each has its strengths and weaknesses and, therefore, its
own areas of application, a brief comparison is made between the approach of weights
restrictions and the approach proposed in this thesis.
This thesis is divided into three sections: A - Overview of the research area;
B - An alternative perspective for incorporating values in DEA; C - The use of UDMUs
to express the DM's values to improve envelopment
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ABC:

ADMU:

AWR:

CEA:

CFA:

CRS:

DEA:

DM:

DMU:

DRS:

EPPS:

FSRD:

lM:

IRDMU:
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MRS:

MRT:
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Sets of DMUs

AJP0
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JFON

JIN

Activity Based Costing

Anchor Decision Making Unit

Absolute Weights Restriction

Controlled Envelopment Analysis

Constrained Facet Analysis

Constant Returns to Scale

Data Envelopment Analysis

Decision Maker

Decision Making unit [Observed only]

Decreasing Returns to Scale

Extended Production Possibility Set

Full Set of Radial DMUs

Input Minimisation

Input Radial DMU

Increasing Returns to Scale

Linked-Dependent Weights Restriction

Most Productive Scale Size

Marginal Rate of Substitution

Marginal Rate of Transformation

Output Maximisation

Output Radial DMU

Production Possibility Set

Radial DMU

Reduced Set of Radial DMUs

Relative Weights Restriction

Scaled DMU

Super Efficiency

Unobserved Decision Making Unit

Variable Returns to Scale

Weights Restriction

Set of Referent DMUs to ADMUj0 under SE

Set of DEA-efficient DMUs

Set of DEA-efficient DMUs excluding]0

Set of Class F DMUs under CRS

Set of Class F DMUs under IM VRS

Set of Class NF DMUs under IM VRS

Set of Class F DMUs under OM VRS

Set of Class NF DMUs under OM VRS

Set of Class NF DMUs under CRS
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Definitions

Th.i secjpn will define, ui very simple terms, some general terminology that will be used in

this.thesis. The tecinology is defined for use in this thesis only.

Absolute Weights Restrictions (AWRs): Restrictions on the actual numerical value
of the DEA weights.

Constant Returns to Scale (CRS): Under efficient input to output transformations,
scaling the input levels by a leads to a scaling of the output levels by 13 , such that a - 13.

Data Envelopment Analysis (DEA): A linear programming technique for
determining the relative efficiency score of a set of DMUs

DEA-Efficient (Pareto-Koopmans): A DMU is DEA-efficient if no other DMU or
linear combination of DMIIJs provide evidence that some of the inputs or outputs of
assessed DMU could have been improved without deterioration to some of its other inputs
or outputs.

Decision Maker (DM): The person responsible for the efficiency assessment.

Decision Making Units (DMU5): Organisational units that perform the same function
and use the same set of inputs to produce the same set of outputs. e.g. Banks, Schools.

Decreasing Returns to Scale: Under efficient input to output transformations,
scaling the input levels by a leads to a scaling of the output levels by 13, such that a> 13.

Extended Production Possibility Set (EPPS): The extension and possible
modification of the observed PPS, through the use of UDMUs.

Increasing Returns to Scale: Under efficient input to output transformations, scaling
the input levels by a leads to a scaling of the output levels by 13, such that a < 13.

Input Minimisation (IM): Is a DMU consuming the minimum amount of input to
produce its output relative to the other DMUs in the assessment?

Linked-Dependent Weights Restrictions (LWRs): Restrictions on the size of
input weights relative to the size of output weights, reflecting the relationship between the
inputs and outputs.

Output Maximisation (OM): Is a DMU producing the maximum amount of output
from its input levels, relative to the other DMUs in the assessment?

Peers: The DEA-efficient DMUs that are used as a basis for the DEA-efficient input
output levels a DMU could attain.

Production Possibility Set (PPS): This set contains all the obtainable input output
mixes.

Iv
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Radial Efficiency: The radial distance of a DMU from the frontier of the PPS.

Relative Efficiency Score: A summary of the measure of the distance between the
actual and efficient input output levels of a DMU.

Relative Weights Restrictions (RWR5): Restrictions imposed on the relative size
that either input or output weights can take relative to other input or output weights
respectively.

Scale Efficiency: A measure of how much of a DMU's inefficiency is solely
attributable to its scale of operation.

Slack: The additional improvement required for a DMU to become DEA-efficient
(increase in outputs, decrease in inputs), after the radial efficiency of a DMU has been
assessed.

Super Efficiency (SE): The relative efficiency score of a DMTJ relative to the other
DMUs in the assessment, excluding itself

Targets: The input output levels that would render a DMU DEA-efficient.

Technical Efficiency: A measure of efficiency that ignores the effect of scale size of a
DMIJ. That is, a DMU's efficiency is only compared relative to DMIJs of a similar scale.

Variable Returns to Scale (VRS): Efficient input to output transformations that do
not necessarily follow CRS, i.e. can be IRS, CRS or DRS.

Virtual Weights Restrictions (VWRs): Restrictions on the percentage that an input
or output can contribute to the sum of the weighted inputs or outputs respectively.

Classes of DMUs

E: that cannot be expressed as linear combinations of other DEA-
efficient DMUs.

E': DEA-efficient DMUs that can be expressed as linear combinations of other DEA-
efficient DMUs.

F: Radially efficient DMUs but DEA-inefficient, due to the presence of slack values.
That is, they can be expressed as a linear combination of other DEA-efficient DMUs
plus or minus a slack value.

NE, NE' and NF are as above only defined for DEA-inefficient DMUs which when
projected onto the PPS frontier, are of class E, E' and F respectively.

V



Section A
Overview of the Research Area

of this Thesis

This section covers chapters one to three and is a general introduction to the research area

of this thesis. It discusses the general concepts of Data Envelopment Analysis, explains

how a relative efficiency score is obtained, and outlines other information provided by the

procedure.

More specifically, the need for the inclusion of the DM's value in a DEA assessment, and

the current procedures for incorporating values in a DEA assessment are discussed, and

their interconnections explored.

The limitations of current procedures to satisfy the possible requirements of certain DMs

motivated the need for alternative approaches to incorporate the DM's values, and hence

this thesis. These motivating needs, aims and resultant procedure of this thesis are

outlined in this section.



1. Chapter One
Introduction

1.1 Introduction

In the modern day world it is becoming more and more important for organisations to

know how efficiently and effectively they are operating compared to similar organisations

(competitors). For example, a department from one university may want to compare its

performance with the same department from other universities, or a bank may want to

compare the performance of its different branches throughout the country - the latter will

in fact be the application of this thesis. What is meant by the word efficient? Efficient

means that something is working well, quickly and without waste; whereas the word

effective is to produce the desired result. This thesis is concerned only with the

assessment of the relative efficiency of an organisation, with relative efficiency being

how well, how quickly and without waste, an organisation performs, compared to similar

organisations. The concept of relative efficiency will be defined more mathematically later.

The question of whether the organisations are producing the desired effect wifi not be

addressed in this thesis, it only addresses the issue of whether an organisation is achieving

its goals relatively efficiently.

I
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Two fundamental approaches exist for obtaining measures of efficiency, with each

approach having numerous methods. These two main approaches are; parametric and

non-parametric. The parametric approaches require a priori assumptions to be made with

regard to the production function (see Fare and Primont [29] p.8 for a formal definition) -

these types of approaches will not be considered in this thesis. In the non-parametric

approaches no assumptions are necessary with respect to the production function. One

such approach is Data Envelopment Analysis (DEA) which uses observed data to

cstumite an efficiency frontier. This is the broad subject area of this thesis. Thus,

throughout this thesis it will be assumed that the Decision Maker (DM) wants a measure

of reLitivc efficiency, as defined by DEA.

This chapter is structured as follows: The next section outlines the general concepts of

DEA m non mathematical terms; section three mathematically details DEA section four

graphically illustrates the approach and section five details the other information provided

byDEA.

1.2 Data Envelopment Analysis: The Approach

DEA is a mathematical programming technique that is applied to a group of Decision

Making Units (DMUs) which are organisational units that perform the same task, Le.

bank branches or sales people, each having the same multiple incommensurate inputs and

outputs. The initial step in the assessment is to determine a set of relevant inputs and

outputs (factors). These factors may be qualitative (weather or location), provided a value

can be given to them, or quantitative (number of employees or amount of produce) and

should be such that it is desired to minimise input levels and maximise output levels. If

large numbers of factors are used in the analysis, the method's ability to distinguish

between the relatively efficient and inefficient DMUs decreases. Therefore, only the most

important factors should be included, see Golany and Roll [33]. DEA can now be applied

to the set of DMUs to determine a relative efficiency measure based on the selected inputs

2
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and outputs. These multiple inputs and outputs are reduced to a single input value and a

single output value by the allocation of a weight to each input and output, with the only

restriction on the weights being that they must be strictly positive. The DMUs' weights

are calculated by comparing their observed input output levels to the observed input

output levels of all the other DMUs in the assessment, in order to show the DMU in the

"best possible light" compared to all the other DMUs in the assessment. Finally, a

measure of relative efficiency is produced as a ratio of the sum of its weighted outputs to

the sum of its weighted inputs. For example, in Figure 1.1 a set of 3 DMUs are to be

assessed, each consuming varying amounts of three different inputs to produce varying

amounts of two different outputs. Through the free allocation of weights to these three

inputs and two outputs, they can be reduced to a single value to represent the amount of

input used to produce its output relative to the other DMUs in the data set.

Figure 1.1 - Data Envelopment Analysis: The Approach

DECISION MAKING UNITS 	 DECISION MAKING UNITS
i!Efli	 OUTPUTS	 !EWi_S	 QUTPI5S

D [02 0 -KiD H
III'	 ____01	 _____KIEiIIIx 

r-

cii___01 __

Thus DEA is a relative measure, and the addition or the subtraction of DMUs may or may

not alter the relative efficiency of a DMU. The efficiency can be viewed from two

orientations, and the choice of orientation will depend on the context, i.e. the DM and the

organisational nature.

3
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• Output Maximisation (OM) - Is the DMU producing the maximum

amount of output from its input levels, relative to the other DMUs

in the assessment?

• Input Minimisation (IM) - Is the DMU consuming the minimum

amount of input to produce its output, relative to the other DMUs

in the assessment?

Once the orientation of the efficiency measured has been decided, the relatively efficient

DMUs which form the "production possibility set frontier" can be identified. This frontier

is formed on the assumption that there exists continual linear substitution between any pair

of inputs or outputs over the relevant range. Further, this production possibility set

frontier is the boundary for the "Production Possililit'y Set" (PPS wbicb. contains all

obtainable input and output mixes. For a formal definition of the PPS in DEA see Banker

etal. [7] p.1081.

Further, DEA not only provides a measure of efficiency, it also provides other useful

information, such as targets and peers. Thus the information provided by DEA is:

Efficiency Score:	 A summary measure of the distance between the
___________________ actual and efficient input output levels of a DMU.

Targets:	 The input output levels that would render a DMU
__________________ DEA-efficient.

Peer DMUs:	 The DEA-efficient DMUs that are used as a basis for
__________________ the stated targets of a DEA-inefficient DMU.

Having outlined the approach oIDEA, the next section will detail the actual DEA model.

1.3 The Derivation of the DEA Model

This idea of an efficiency measure based on observed data which accounted for multiple

inputs and outputs, was first introduced by Farrell [30]. However, his idea remained

undeveloped until Charnes ci a!. [16] derived a linear programming problem to measure

this efficiency, which assumed Constant Returns to Scale (CRS). Consider assessing a
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set of N DMU5,j=1..... N, each consuming m inputs, x11, i1.....m to produce s outputs, y,,

r=l ,...,s. The relative efficiency of DMU Jo is given by the DEA weights ratio models

(M1.1) or (M1.2). These are labelled Input Minimisation (IM) and Output Maximisation

(OM) respectively, justification for this labelling will be given later. Due to the CRS

assumption the relative efficiency scores provided by the two models are the same, see

Charnes eta!. [16].

(Mi.1) IriputMinimisation	 (M1.2) Output Maximisation

Ev,x10

= Max r=i	 e = Mm '

V,Xq

/1rYr,

s.t.	
'	 ^1	 J=1.....N	 s.t.	 ^1	 J=1.....N

/rYr,

V1, /Jr ^ S	 ½, r	 V, I-Jr ^	 ½, r

v and p are the variable weights attached to the inputs and outputs respectively. The

relative efficiency score of DMUJ 0 is given by h in (Ml .1), with h = 1! e J in (Ml .2).

Thus, the models in the above form can be thought of as a value-based measure of relative

efficiency, (see Thanassoulis [45]). These models can be easily converted to ordinary

linear programming problems through a simple transformation, (Ur t/Jr, V = tV1, t 1 =

Xv1x 0; with t>0 in (Ml .1), see Charnes eta!. [16]). Thus the relative efficiency score of

DMUj0 is given by the DEA weights model (Ml .3) or (Ml .4), which are linearisations of

(Ml.l) and (Ml.2) respectively.

5
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(M1.3) Input Minmisation	 (M1.4) Output Maximisation

h = Max	 e = Mm	 v1x,1

s.t.	 v,x,1 = 1	 S.t.	 1

UrYr, -	 v,x,1 ^ 0	 j=1.....N	 UrYrj -	 vx,1 ^ 0	 j=1.....N

V1, Ur ^ C	 Vi, r	 V,, Ur ^ g	 r

v and ur are the weights attached to the inputs and outputs respectively and these are the

variables of the model. Finally, C IS a non-Archimedian infinitesimal, see Charnes et a!.

[17]. In practical terms this restriction on the weights to be greater than c, still leads to the

virtual zero weighting of an input or output.

From these value-based models, the importance of each input or output to the DMU's

relative efficiency score can be determined. This is represented by the value of v1xj0 or

UrYrj0 , and is given the term virtual.

By duality the models (Ml .3) and (Ml .4), can be expressed in an envelopment form,

(Ml .5) and (Ml .6) respectively. These dual models represent the relative efficiency of a

DMU in a production space (see Thanassoulis [45]). From these envelopment models it is

clear to see that the models defme the relative efficiency of a DMU in terms of Input

Minimisation (TM) and Output Maximisation (OM). Hence by duality (Ml .3) and (Ml .4)

are labelled as IM and OM models respectively. Further, the peer DMUs for inefficient

DMUs can be readily obtained from these models. The relative efficiency score of DMUj0

is given by h in (Ml .5), with h = 1 / e in (Ml .6).

6
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(Ml .5) Input Minimisation	 (Ml .6) Output Maximisation

In	 in

= Mm Go -	 + Sm+r	 = Max z0 +	 + SIn+r)

s.t.	 00 x,1 —2 1 x,1 —S1 =0	 1 = 1.....m	 s.t.	 2,x,1 +S = x,,	 i1.....m

,Yrj - 5m+r =	 r1 ,...,s	 Z0Yr, -	 -F Sm+r = 0	 r1 ,...,s

2, Si, Sn,fr ^ 0	 t'J, i, r	 2, S, Sm±r ^ 0	 t7], i, r

If 2*,,> 0, then the corresponding DMU is a peer to DMUj0 , and * will be used to denote

the value of a variable at the optimal solution to the mode] in which it appears.

S1 and Srn+r represent slack variables and iS S* > or m+r >	 IVki kx a

value. So, if Sj > 0 or S*m+r > 0, for some I or r then the DMU either lies on or is

projected on a DEA-inefficient frontier segment. A slack in an input, 5k,> 0, represents, in

that input only, an additional inefficient use of the input. A slack in an output, S*mp> ,

represents, in that output only, an additional inefficiency in the production of that output.

One way of looking at why slack values are obtained is that there does not exist a

relatively efficient DMU or a linear combination of efficient DMUs that have a similar

operating mix to these inefficient DMUs. That is, there is a lack of similar comparator

DMUs, which could be viewed as missing data, see Burgess [13]. This concept of slack

values, will be illustrated graphically in the next section.

At this point it is useful to distinguish between the 'radial efficiency' and the 'DEA-

efficiency' of a DMU.

•	 The DEA-efficiency score of DMUj0 is h, determined using model (Ml.3) or

(M1.4) or lIe in (Ml.5) or (Ml.6). A DEA-efficient DMU is considered to be

technically efficient and it must therefore satisfy the following conditions:

- A relative efficiency score of 1.

7
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No positive slack values e.g. S1 = Sm^r 0; Vl,r.

•	 The radial efficiency of DMU J

is the inverse of the maximum factor by which its output levels can be

raised simultaneously within the PPS, whilst its inputs are held

constant. (That is, with reference to (Ml .6) the radial efficiency is

liz0.)

is the factor by which its input levels can be lowered simultaneously

within the PPS, whilst its outputs are held constant. (That is, with

reference to (Ml .5) the radial efficiency is Oo.)

Further, efficiency can be broken down into:

• Technical efficiency: A measure of efficiency given the scale size of a DMU.

• Scale efficiency: A measure of how much of a DMU's inefficiency is soley

attributable to its scale of operation.

Since its original formulation, considerable research has been conducted and as a

consequence, DEA has expanded. For a brief synopsis of the evolution and the current

state-of-the-art in DEA and an up-to-date bibliography see Seiford [43].

Having discussed the CRS DEA model used to determine the relative efficiency scores of

DMUs, and to aid in its explanation, the next section will illustrate the method through the

use of a simple numerical example.

1.4 Data Envelopment Analysis: A Graphical Illustration

To demonstrate graphically the PPS that is generated by the DEA formulations of (Ml .3)

and (Ml .4), consider assessing a set of 12 DMUs, each consuming a single unit of input to

produce two outputs in varying quantities which are shown in Table 1.1. As the DMUs

8
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are each consuming a normalised level of input, this allows the two-dimensional

representation of the PPS in DEA.

Table 1.1 - Example Data Set I

DOl D02 D03 D04 D05 D06 D07 D08 D09 D1O Dli D12

Output 1	 5.5	 6.25 5	 4	 5.25 7	 4	 2	 8	 1	 6.5	 3

Output 2	 8	 7	 6	 7	 4.5	 6	 9	 7.5	 3	 8	 1	 9

The PPS for DMUs DO1-D12 is plotted in Figure 1.2.

Figure 1.2 - The Production Possibility Set
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The DEA-efficient frontier is defmed by DMUs D07, DOl, D06 and D09 which are

Pareto-Koopmans efficient, i.e. scale and technically efficient, see Cooper et a!. [26]. The

DEA-inefficient frontier segments are defmed by BDO7 and CDO9 and are not Pareto-

Koopmans efficient. One such DMU is D12 in Figure 1.2, which is clearly relatively

inefficient, as it is dominated by D07 and it has a positive output 1 slack value. Similarly

for DEA-inefficient DMUs that are projected onto these inefficient frontier segments, slack

values are obtained. For example, in Figure 1.2, when Dl 0 and D08 are projected onto

the frontier they both have an output 1 slack value, and similarly when Dli is projected

onto the frontier it has a slack value for output 2.

At this point, it is useful to clarify the classifications of DMUs under CRS as they will be

used throughout this thesis. [It should be noted that at present no formal classification of

9
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the DMUs under VRS is given in the literature.] Following the classification of DMUs by

Chames et a!. [19], class E are those DEA-efficient DMUs that are linearly independent of

other DEA-efficient DMUs. Class E' are those DEA-efficient DMUs that can be

expressed as a linear combination of other DEA-efficient DMUs. Class F are those DMUs

that have a radial efficiency score of 1 but have slack values, e.g. at least one St, > 0 or

S,+,.> 0 in (Ml .5) and (Ml .6). Classes NE, NE' and NF represent the classes for the

DEA-inefficient DMUs and are based on their radial projections onto the DEA-frontier,

i.e. if their projections on the DEA frontier are class E, E' or F respectively. For example,

if a DEA-inefficient DMU is radially projected directly onto a class E DEA-efficient DMU,

it will be class NE.

The DMUs in Figure 1.2 would be classed as follows: D07, DOl, D06, D09 are class E;

D02 is class E'; whereas D12 is class F. The remaining DMUs are DEA-inefficient and

are classed as follows: D04 and 003 are NE'; D05 is class NE and D08, D10, Dli are

class NF. It is this class of DMUs that the approach in this thesis concentrates on.

Further, following the definitions in Bessent et a!. [12], those of class NE and NE' are

termed as Property Enveloped DMUs and have S1 = Sm±r 0; Vi,r in (M1.5) and

(Ml .6) as required. Those DMUs of class F or NF are termed non-enveloped DMUs and

have at least one S,> 0 or S*,n+r> 0 in (Ml .5) and (Ml .6). This implies they do not use

all of their inputs and outputs to determine their relative efficiency score, i.e. assign at least

one weight in (Ml .3) and (Ml .4). This implies that there are no DEA-efficient DMUs

with similar operating mixes to the DEA-inefficient DMUs. Thus the observed data set

has no efficient comparator levels for these DMUs to be measured relative to. So it is

these DMUs that have relative efficiency scores that may not reflect their true efficiency

and are thus the focus of the proposed procedure of section C.

As stated earlier, in addition to providing the DM with a relative efficiency score of a

DMU, DEA also provides the DM with information on how the DEA-inefficient DMU can

improve its efficiency performance, and which DMUs it might learn from in terms of

10
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performance, i.e. use as benchmarks. This additional information will be considered in the

next section.

1.5 By-Product of a DEA Assessment: Peers & Targets

The targets provided for DEA-inefficient DMUs are based on the performance of DEA-

efficient DMUs, their peers. Throughout this thesis, it is assumed that the targets are set

based on the pre-emptive priority to radially project the DEA-inefficient DMUs onto the

DEA-efficient frontier. However, other forms of target setting exist which are based on

non-radial measures, see Thanassoulis and Dyson {48J. Target setting re'rès on a basic

PPS assumption, namely - if there are two points that are possible, then a linear

combination of these two points is also possible. That is, it is possibk to substitute one

input/output for another input/output continuaHy between the pair of inputs/outputs.

DEA-inefficient DMUs are radially projected onto the frontier, and provided the inefficient

DMU is properly enveloped, it is these frontier values that are given as the DMU's targets.

Thus their targets are based on the same operating processes as those currently being used.

However, if the DMU is non-enveloped, its radial projections are located on an inefficient

frontier segment, and the radial targets need a displacement onto the efficient frontier.

Thus their targets suggest a change in the DMUs operating practice in order to improve

performance and thus the targets are non-radial. This is demonstrated in Figure 1.3.
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Figure 1.3 - Radial Target Setting for Inefficient DMUs
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Figure 1.3, shows that proper]y enveloped DMUs i.e. class NE and NE' are radially

projected onto a DEA-efficient frontier segment. For example, DMU D04, a properly

enveloped DMU, is projected onto TDO4, which is a linear combination of DMUs D07

and DOl. Therefore, to reach its radial target, DMU 004 has to increase both its output

levels in equal proportions, and thus maintains its current operating mix. Unfortunately,

this is not true if the DMU is non-enveloped, i.e. class NF or F, their targets are not based

solely on radial increases/decreases to their inputs/outputs, e.g. DMU Dl 0. For these

DMUs there is also a suggestion for the DMUs to change their operating process, in order

to attain efficiency. This applies to DMUs Dl 2 in Figure 1.3, as DEA suggests the input

output levels of D07 as its targets. So for DMU 012 to obtain its target it needs only to

increase output 1. Thus, it will have to put more emphasis on producing output I, while

maintaining its present level of output 2. This will require Dl 2 to alter its present

operating mix.

Targets cannot be set for DEA-efficient DMUs, as there are no DMUs in the assessment

that perform better, so it is not known if it is possible to increase the efficiency of a DMU.

Golany and Roll [34] suggest an approach for setting targets and improving efficiency for

the DEA-efficient DMUs by the introduction of additional Unobserved DMUs (UDMUs).

12
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Having outlined the basic principles of DEA and the information provided by the analysis,

a summary of the approach is now offered.

1.6 Conclusion

DEA is a linear programming technique for assessing the relative efficiency of a set of

DMUs, such as schools and bank branches. Each DMU operates its production process

differently but consumes the same set of inputs to produce the same set of outputs. The

relative efficiency score is obtained by the free allocation of weights to a set of inputs and

outputs, with a DEA-efficient frontier being defined by the observed input output )eve)s of

the DMUs. As a by-product of the analysis, inefficient DMUs are VerecX racaX tac'g,ets

and peers, which they might use as benchmarks to improve their performance.

This introductory chapter has outlined the DEA approach for measuring the relative

efficiency of DMUs which has grown in popularity since its initial formulation by Charnes

et al. [16], with the original concept for the need for some form of measure for relative

efficiency by Farrell [30]. Figure 1.4 summaries the general process.

Figure 1.4 - Overview of the General Process

NeedforaPerforrnanceMeasuremJ	 Has a DMUs efficien y
changed?

Suitable approach

Data Envelopment Analysis

How efficient	 Change in a
are the DMUs?

	

	 DMUs
How to Improve

r	 Performance?	 performance

Relative Efficiency
Scores

Reivew of current

Benchmark	 performance

Indicators

The next chapter will discuss the motivating reasons for this thesis, what it will aim to

achieve and how it will attempt to achieve these aims.

13



New\
Concepts

2. Chapter Two
Why Read This Thesis?

Defining
concepts

Motivation Aims

,>/iustifYin
-	 concepts

2.1 Introduction

The previous chapter outlined the basic concepts of DEA. This chapter will set out the

motivation behind this thesis, what it hopes to achieve and how these aims will be arrived

at, with chapter three outlining in greater detail the existing literature in the area of

incorporating value judgments in DEA. Hence, some of the concepts introduced here will

not be formally defined until chapter three.
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This introduction will detail the general motivating reasons for the inclusion of value

judgments in DEA assessments. These reasons will be discussed in greater detail in the

next chapter see also Allen et al. [4].

As detailed in chapter one, DEA treats the observed input and output levels as fixed. Thus

the DEA model assigns variable weights to these factors, which are then interpreted as the

value attributed to the inputs and outputs. So, an assessed DMU is freely allowed to

allocate the weights, in order to show the DMU 'in the best possible light'.

It should be noted that the DEA model oniy considers the quantity of the inputs and

outputs and does not take into account the value of the inputs and outputs; thus,

inappropriate estimates of efficiency may be obtained. There are severaX reasons for ciis.

•	 Non weighting of the inputs and/or outputs

DMUs can attribute low weights (E, which in practical terms is virtually zero) to their

relatively low levels of output and their relatively high levels of input, so that they are

effectively ignored in the assessment. Xn extreme tc tth. re(ative

efficiency scores based on the ratio of a single weighted output to a single weighted input.

•	 Non reflection of the relative relationships between inputs or outputs

DMUs can assign weights to their inputs or outputs in a counter-intuitive manner, that is,

ignoring accepted views about the value of the different inputs or outputs. For example, in

the assessment of a set of police forces, the solution of a burglary crime appears to be

valued more than that of a violent crime by some forces, see Thanassoulis [44].

Further, the weights can be used to estimate marginal rates of substitutionitransformations

(see Charnes et al. [16]). However, with the virtual zero weighting of an input or output

this means that these marginal rates cannot be defined.

•	 Non reflection of dependent relationships between the inputs and outputs

In many assessments of relative efficiency, specific outputs are directly dependent on

specific inputs. Hence in this case, it is reasonable to expect the DEA-weights to be linked
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in some manner. For example, see Thanassoulis et a!. [47], where in their assessment of

perinatal care units, one of the outputs, 'survivals' was directly dependent on an input,

'babies at risk'. Thus it was felt that the weights assigned to these factors should be linked

in some way.

In general, to overcome the problem of inappropriate efficiency estimates, the DM's value

judgments on the inputs and outputs are incorporated into the analysis. As the term value

judgments will be used throughout the thesis, there is a need to define the term:

"logical constructs expressed as the DM's opinions on the

production process under analysis"

Thus, value judgments are DM specific and essentially they begin with the selection of the

input output variables. For example, variables that are omitted from the assessment are

implicitly given zero weight, see Golany and Roll [33]. However, this is not the type of

value judgments that are to be considered in this thesis. The value judgments that are to

be considered in this thesis affect the selection of the optimal set of weights for the inputs

and outputs when assessing a DMU's relative efficiency. Hence, it could be said that they

are the type of values that are incorporated into the analysis in order to obtain a better

picture of the DMLJ's overall relative efficiency. Further, this thesis is concerned with the

inclusion of qualitative information on quantitative factors, rather that the actual inclusion

of qualitative factors, see Cook eta!. [23].

Thus, the need for the inclusion of value judgments in a DEA assessment has been

established. The next section outlines why there is a need for an alternative approach to

those methods available at present.

2.2 Motivation

A number of extensions to the original DEA model have been proposed to overcome the

problem of inappropriate efficiency cores, and these are reviewed in chapter three, see
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also Allen et al. [41 . However, there is one primary approach for incorporating value

judgments into a DEA assessment, and that is, Weights Restrictions (WRs), which

explicitly restrict the DEA weights, Ur or v, in models (Ml .3) or (Ml .4) of chapter one.

The following are observations from this approach that motivated the need for an

alternative approach for the incorporation of value judgments in a DEA assessment, which

prompted the production of this thesis.

2.2.1 Specification of the Value Judgments

In order to implement weights restrictions, the DM is required to specify information on

their values. The format of this information depends on the type of imposed restriction,

but the three main forms of expression are:

•	 Numerical bound values e.g. lower or upper bounds

These can be either the direct or indirect restriction of the contribution of the inputs and/or

outputs to the relative efficiency score. In general, there is a lack of objectivity in the

setting of numerical bound values, see Roll et al. [41]. This is mainly due to the fact that

in general the actual numerical weight value holds no real meaning, except in specific

applications, see Dyson and Thanassoulis [271. Thus there is a need for an objective

approach to ensure that all inputs and outputs contribute to the relative efficiency score,

i.e. no input or output is assigned an s weight.

•	 Relative restrictions e.g. marginal rates of substitution

In order to incorporate the relative relationships between inputs or outputs, an explicit

definition of the relationship has to be made. Thus, the DM is required to specify global

relative relationships between the related inputs or outputs.

It should be noted that this form of restriction is usually used to reflect marginal rates of

substitution. Hence in certain applications the DM may have difficulties defming these

relationships explicitly or may feel global relationships are inappropriate. So, it follows

that the use of relative restrictions may prove problematic to the DM when their
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production process involves services and the interpretation of the weights as marginal rates

holds little meaning. For example, in the assessment of a set of bank branches the outputs

may include the number of mortgage applications and the number of counter transactions.

In this case, the first output (the number of mortgage applications) is clearly of higher

value to the branch. The question then is how to determine the value of this output

relative to that of the second output (the number of counter transactions)? Hence an

approach that allows the DM an alternative expression for these relationships and for the

inclusion of local values would be desirable.

•	 Linked-dependent restrictions

These are restrictions that link the size of the input weight to the size of the output weight.

Once again, this type of restriction requires the explicit definition of the relationship

between the inputs and outputs at a global level, which in certain applications may not be

appropriate or easy for the DM to defme. This is particularly true in a Variable Returns to

Scale (VRS) assessment, where the relationship between the inputs and outputs by

definition is allowed to vary. Thus there is a need for an approach that a((ows for the

inclusion of local values that apply only to specific operating mixes within the PPS.

This section has briefly highlighted, that for some DMs or certain applications, the

specification of their value judgments in the form of weights restrictions may prove to be

difficult or inappropriate. Therefore, there is a need to offer the DM an alternative form of

expression for their value judgments and an approach that allows for the inclusion of local

values for applications where the limitation of weights restrictions to the inclusion of

global values may be restrictive, i.e. in Variable Returns to Scale (VRS) applications.

2.2.2 Implementation

The implementation of certain weights restrictions does not guarantee feasible results

which may be due to the lack of objectivity in the setting of the restrictions. Further, as

will be demonstrated in chapter seven, negative efficiency scores can be obtained through
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the use of weights restrictions in a VRS DEA assessment. Hence the need for an

alternative approach that avoids this problem.

2.2.3 Interpreting the ResuRs

It is known that the incorporation of value judgments in a DEA assessment alters the PPS,

see Roll and Golany [42]. However, under weights restrictions, this alteration is only

implicit and the explicit input output levels of the altered PPS are not known. Therefore,

is it reasonable to interpret the obtained results as relative efficiency scores? Further, at

present, targets are based on observed standards and do not truly reflect the thpur ocpuc

levels that the DMUs are measured relative to. Thus, to aid the DM in their interpretation

of the results and for the setting of objective targets, there is a need for an exp\ict

expression of the value judgments in terms of the inputs and outputs of the assessment.

Having identified the main areas of motivation, the next section will outline the main

objectives that this thesis aims to achieve.

2.3 Objectives

The principal objective of this thesis is to offer an alternative approach to weights

restrictions for the incorporation of value judgments in DEA assessments, when the use of

weights restrictions may be problematic in terms of their specification, their

implementation, or the results obtained. Section B of this thesis will establish that a viable

alternative to weights restrictions exists in the form of the introduction of DEA-efficient

Unobserved DMUs (UDMUs) into the observed data set. Their introduction will attempt

to incorporate all three forms of values, as specified above, into the assessment. It should

be noted that a more general term of VALUES will be used to define the information

incorporated by the approach to be developed in this thesis, as the information ascertained

from the DM may reflect a variety of forms of values. That is, it is used to represent one
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of several values, either a marginal rate of substitution, a marginal rate of transformation

or a minimal/maximal weight value.

Finally, section C uses this alternative approach to concentrate on the following main

objectives.

2.3.1 Increase Factor Contribution

As noted earlier, in a DEA assessment under free weights it is frequently found that many

of the incorporated inputs and outputs do not contribute towards the relative efficiency

scores of DEA-inefficient DMUs. That is, although they are thought sufficiently important

to be included in the analysis, in the actual assessment of relative efficiency they are not

given any value by some DEA-inefficient DMUs. This can be viewed as a lack of DEA-

efficient comparator DMUs for the inefficient DMU, i.e. the DEA-efficient DMUs are of a

dissimilar operating mix to the DEA-inefficient DMUs. Thus, the approach for including

value judgments in this thesis is to provide estimates of DEA-efficient UDMUs with

similar input output operating mixes to the DEA-inefficient DMUs, which at present have

no observed comparator DEA-efficient DMUs.

2.3.2 Feasible Production Levels

It has been noted that the introduction of values in a DEA assessment leads to the PPS

being extended, see Roll and Golany [42] and Dyson et al. [28]. The approach proposed

in this thesis will allow the DMs to express their value judgments in terms of the input

output levels of the assessment. Hence an explicit modification of the PPS is made.

Therefore, this thesis aims to ensure that the extensions to the PPS are feasible and

consequently, the obtained relative efficiency scores are feasible, and hopefully, further aid

the DM in their interpretation of their results.

-- --
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2.3.3 Varying Local Value Judgments

As mentioned earlier, incorporating value judgments via weights restrictions only allows

for the introduction of global values. Thus it is assumed that the values hold universally

for all the DMUs in that data set, regardless of their operating mix and their priorities in

relation to the involved inputs/outputs. The inclusion of global values may be appropriate

in some applications, such as Dyson and Thanassoulis [27, where the weights have a

meaning universally. However, this may not always be the case, and DMUs with different

operating processes may place different values on the different inputs/outputs and the

relationships between them. This is particularly important in the case where the DMUs

operate under Variable Returns to Scale (VRS). Thus the approach of UDMUs provides

the DM with a means for incorporating varying local value judgments into the assessment.

These are the three main objectives of this thesis. The assumptions that are made for this

approach are now stated.

2.4 Assumptions

The following assumptions have been made in the proposed approach of section C.

2.4.1 DEA-Efficient DMUs

The values expressed by the DEA-efficient DMUs are acceptable to the DM and thus, they

are not being directly asked to express their opinions on which of the observed DEA-

efficient DMUs are preferable, i.e. the DM has no model DEA-efficient DMUs. That is,

the approach concentrates on expressing the DMs values that will extend the DEA

efficient frontier, and although the DEA-efficient DMUs may be discriminated between as

a result of the approach, it is not the main aim of the procedure to discriminate between

the DEA-efficient DMUs.
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2.4.2 Returns to Scale of VRS Frontier

The proposed approach does not set out to explicitly alter the observed returns to scale of

the observed DEA frontier. It simply attempts to extend it in an appropriate manner.

2.4.3 Controllable Inputs and Outputs

It is assumed that all the inputs and outputs in the DEA assessment are controllable. That

is the DM is able to manipulate the input output levels of the DEA-efficient DMUs in

order to derive UDMUs.

2.4.4 Encouragement of Individual Inputs and Outputs

The approach is aimed at encouraging individual inputs and outputs to contribute to the

relative efficiency score of DEA-inefficient DMUs, rather than attempting to

simultaneously encourage multiple inputs and outputs to contribute to a DEA-inefficient

DMU's relative efficiency score. Therefore, if a DEA-inefficient DMUs virtually ignores

several inputs and outputs in its initial assessment, full envelopment for these D'MV s may

not be attained.

One outstanding issue now remains - how is the approach of UDMUs determined suitable

for expressing the DM's value judgments in a DEA assessment?

2.5 Methodology

Turning to the issue of how the approach was derived, it was noted earlier that Roll and

Golany[42] demonstrate that the inclusion of an absolute weights restrictions in a DEA

assessment leads to an implicit modification of the PPS. Similarly, Dyson et a!. [28] note

the correspondence between a single relative weights restriction and an alteration of the

PPS. Thus the observation that:
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"the inclusion of value judgments in the form of weights restrictions

implicitly alter the PPS"

led to an alternative perspective of the problem for the inclusion of values in a DEA

assessment, i.e. that of missing suitable comparator DEA-efficient DMUs.

Hence the development of the approach presented in this thesis, which constructs suitable

estimates for these missing comparator DEA-efficient DMUs. These suitable estimates are

constructed from the observed DEA-efficient DMUs and the DM's values judgments.

2.6 Validity

In order to demonstrate that the proposed approach is a valid one, the theoretical

differences between the proposed approach and weights restrictions are highlighted in the

concluding chapter, demonstrating that neither approach is all-purpose, and that each has

its strengths and weaknesses and, thus, its own individual areas of application. In terms of

the usage of this approach, it is difficult to appraise, however, the proposed approach was

successfully applied to a set of bank branches operating in the United Kingdom. Although

no direct illustrative comparison of the application of the proposed approach and weights

restrictions is offered in this thesis, a comparison of the approaches can be found in Allen

and Thanassoulis [5].

2.7 By-Product

This thesis highlights that there is a need for alternative means to express values within a

DEA assessment. As a result of developing a methodology that enables the defined aims

to be achieved, new ideas/thoughts for further areas of research are produced. Those

areas of future research generated by this research are detailed in chapter ten.
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2.8 Conc'usion

The principal motivation and aim of this thesis is to provide an alternative to weights

restrictions for the incorporation of value judgments in a DEA assessment. Value

judgments are incorporated into an assessment for three main reasons:

a) to avoid the non weighting of inputs and outputs;

b) to allow the inclusion of relative relationships between the inputs or outputs;

c) to allow the inclusion of linked-dependent relationships between the inputs

and outputs.

The approach suggested in this thesis attempts to as	 k	 cxv,

UDMUs into the observed data set.

Figure 2.1 attempts to demonstrate the inter-relationship between some of the problem

areas to be investigated.

Figure 2.1 - DEA and Value Judgments

Weights
Restrictions

implicit

The	 -

expresses

defines	 Value Ndefines	 Unobserved
dgments7	 DMUs

sensitivity

Extended
PPS	 expIict

Results	
terpretation

Chapter three will discuss the literature and also highlight some of the points noted in this

chapter as the motivating reasons for this thesis; although chapter five will expand these

points further.
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3. Chapter Three
The Evolution of Incorporating Value
Judgments in Data Envelopment Analysis

3.1 Introduction

Farrell [30] originally proposed the concept of a comparative efficiency measure

determined from observations rather than by theoretical specification of a production

function as followed by economists. This development was operationalised by Charnes et

a!. [16] who established DEA as a prominent methodological tool for assessing the relative

efficiency of DMUs. The phenomenal expansion of the method, see Seiford [43], covered

a very wide area of applications and theoretical extensions including computations, AJi and

Seiford [3] and target setting, Thanassoulis and Dyson [48].

An earlier version of this chapter is forthcoming in Annals of Operational Research
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The need to incorporate value judgments in DEA has been derived as a consequence of the

growing use of DEA in the solution of real life problems. The desire to incorporate value

judgments into the assessment has resulted in the development of explicit restrictions of

the DEA-weights, with reference to the DEA weights model (Ml .3) or (Ml .4) in chapter

one. Currently, value judgments, generally in the form of weights restrictions, cover a

considerable part of the DEA literature without however showing any signs of saturation.

The aim of incorporating value judgments is to introduce prior views or information

regarding the assessment of the efficiency of DMIUs. The incorporation of these opinions

will have implications for the relative efficiency score of the assessed DMUs and possibly

the peers and radial targets provided.

This chapter reviews the evolution of approaches for capturing value judgments in a DEA

assessment and is organised as follows: The next section highlights the application driven

motivation for the incorporation of value judgments into a DEA assessment. The third

section details the alternative approaches for the inclusion of value judgments and are

presented as they arose from the application of DEA to real problems. The fourth section

discusses how the incorporation of these value judgments into the assessment affects the

interpretation of the relative efficiency score, estimation of targets and the selection of peer

comparators for individual DMUs.

3.2 Value Judgments in DEA: Motivation and Purpose

The definition of efficiency in DEA under CRS is specified as the ratio of the weighted

sum of outputs to the weighted sum of inputs of a DMU. A linear programming model is

solved for each assessed DMU that seeks to derive weights for the inputs and outputs

which would maximise its efficiency. The weights represent a relative value system for

each assessed DM1J that provides the highest possible score for the DMU concerned. This

is consistent with the notion that the resulting value system is feasible for all other DMIUs

in the sense that none achieves an efficiency score above a DM specified upper bound.
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DEA in its purest form, Charnes et a!. [16], allows total flexibility in the selection of

weights, such that each DMU will achieve the maximum efficiency score feasible for its

input and output levels.

This complete flexibility in the selection of weights is important in the identification of

inefficient DMUs, which are under-performing even with their own set of weights. As a

consequence, the management of an inefficient DMU cannot argue that they were not

informed of the importance attached by top management to certain inputs/outputs, as no

priorities over the inputs or outputs are included in the analysis.

However, the weights estimated by DEA can prove to be inconsistent with prior

knowledge or accepted views on the relative values of the inputs and outputs. For

example, in the first application of DEA, by Charnes et a!. [18] evaluating the performance

of "Program Follow Through" (a system of support for under privileged children) in the

USA, an analysis of the data shows that many DMUs were rated effic)ent 1y p)athng thtii

output weight solely on "self esteem" and ignoring performance on mathematics and verbal

reasoning.

The initial development of DEA by Charnes et a!. [16] was followed by a rapid expansion

of theory and applications without, however, challenging the fundamental basis of DEA

insofar as the flexibility in the selection of weights is concerned. The evolution of value

judgments (see chapter two for a definition) in the assessment of efficiency followed as a

natural by-product of real life applications, some of which are discussed later. A number

of reasons motivating the use of value judgments in DEA are discussed next.

• To increase the know'edge of the production process

When assessing the relative efficiency of U.S.A. Air Forces, Clark [21] found that due to

the lack of comparability of efficient DMUs with inefficient DMUs, a DMU's efficiency

score obtained from the Charnes et a!. [16] model may not represent a DMU's true

efficiency. That is, the DMUs that were found to be relatively efficient under DEA were

of different operating mixes to the inefficient DMUs. Consequently, these inefficient
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DMUs are projected onto rather arbitrarily generated, artificial frontier facets of the DEA-

frontier (created by the inclusion of the c, see (Ml .3) or (Ml .4) of chapter one). In

addition, these artificially generated frontier facets do not exhibit meaningful efficient

trade-off's for the inputs and outputs. Thus to provide further insight into the

organisation's operations and the production processes of all the DMUs under analysis, the

DEA-frontier is extended using observed Marginal Rates of Substitution (MRS).

Consequently, these inefficient DMUs will use all their inputs and outputs to determine

their relative efficiency score.

• To enable discrimination between efficient units

The use of DEA by Thompson et at. [55] to support the siting of nuclear physics facilities

in Texas, highlighted a problem of lack of discrimination when a small set of DMUs is

being assessed, as five out of six alternative facilities were found relatively efficient. The

discrimination of DEA was improved by defming ranges of acceptable weights, namely

assurance regions, which were then introduced to determine the preferred DEA-efficient

site.

• To incorporate prior views on the value of individual inputs and outputs

Thanassoulis et at. [49] assessing the performance of rates departments, found that the

Audit Commission was concerned that some local authorities were deemed efficient due to

excessively high weights being placed on the numbers of rebates of taxes and court

summonses of recalcitrant tax payers (outputs), while more 'normal' outputs, such as tax

accounts administered, were effectively disregarded. Restrictions on the flexibility of

weights were imposed by Dyson and Thanassoulis [27] in an attempt to incorporate top

management perspectives on the relative importance of the inputs and outputs used in the

assessment.

• To reflect the values of certain inputs and/or outputs

Thanassoulis et at. [47] assessing the efficiency of perinatal care units in the U.K. required

the weight on "babies at risk" (input) to be the same as the weight on "number of
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survivals" (output). The ratio of the number of survivals to babies at risk was the actual

variable to be included in the assessment, and the approach adopted allows the importance

of the survival rate ratio to be varied, but not the individual components of the ratio.

In the assessment of the performance of University departments by Beasley [10] and Ahn

and Seiford [1] in the U.K. and U.S.A. respectively, it was argued that the Universities

with emphasis on postgraduate students should be rewarded in the assessment. Further,

Ahn and Seiford [1] sought to guarantee that State funded students should be prioritised in

the assessment, as the Universities rely on these students for higher grant support from the

State Government.

• To incorporate prior views on efficient and inefficent OM(fs

In assessments of efficiency, management often have prior perceptiori a to vhic* of the

DMUs under assessment they consider to be "good" and "poor" performers. For example,

Charnes et a!. [15], in assessing the performance of banks in the U.S.A., found that "the

Charnes eta!. [15] model recognised some notoriously inefficient banks as DEA-efficient".

Managerial perception had to be incorporated within the assessment of efficiency in order

to bring the results closer to the prior perceptions of management. This brought forward

the "cone ratio" family of models, where the efficiency of banks was assessed on the basis

of the input/output values of three preselected banks which were recognised as very good

performers. It will be shown later that the preselection of DEA-efficient DMUs for

assessing efficiency is a particular type of the cone ratio approach. Nevertheless, the

preselection of DMUs for assessing efficiency is in contrast to the rates department study

(Thanassoulis et a!. [49]), which was carried out to challenge perceived wisdom on

efficient departments.

• To respect the economic notion of input/output substitution

As previously noted, the weights can be used to estimate MRS/MRT, see Charnes et a!.

[1 6]. Unfortunately, the virtual zero weighting of inputs and outputs means that these
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marginal rates can not be defined. This creates a problem in relating the DEA-weights

with the economic literature.

The aforementioned applications have led to a number of extensions to the original DEA

model of Charnes et at. [16] for incorporating value judgments in DEA assessments. The

next section outlines the main theoretical developments in this area.

3.3 Incorporating Value Jud gments in DEA

Figure 3.1, classifies the existing methods for incorporating ra1u jdgrct ix TEA

four approaches and identifies a variety of applications using each approach.

Figure 3.1 - Current Approaches for Incorporating Value Jud gments in DEA

ADDlication	 Theory

Efficiency of Air Forces, Clark [21]	 Extending the
observed frontier

siting Nuclear Facilities, Thompson et aL [55]

Assessing Rates Departments, Thanassoulis eta!. [49]

Efficiency of Army Recruiting, Banker et aL [9]

Efficiency of Highway Maintenance, Cook et aL [25]

Assessing Perinatal Care, Thanassoulis eta!. [47]

University Departrnentsl, Wong and Beasley [58] 	
Restricting the virtual

Jniversity Departments II, Beasley [10] 	 inputs and outputs - -

Corporate Performance of Banks, Charnes etaL [15]	
Adjusting the observed

Business Games, Kornbluth [35] 	 input-output levels	 /1

Selection of Bonds, Cook et aL [241	 -- -	 --

The four broad approaches for incorporating value judgments in DEA outlined are:

• Extending the DEA-frontier

• Direct restrictions on the weights

• Restricting the virtual inputs and outputs
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• Adjusting the observed input-output levels

These approaches will now be detailed in turn. The discussion will be restricted to

incorporating value judgments in the basic DEA model, Charnes et a!. [16], which

implicitly assumes that the DMUs being assessed operate a CRS transformation of the

inputs into outputs. This is mainly due to the fact that no real discussion exists in the

current literature as to how to meaningfully incorporate value judgments into a VRS DEA

assessment. However, this issue will be addressed in chapters seven and eight.

3.3.1 Extending the DEA-Frontier

This approach is motivated by the desire to increase the power of DEA as a management

decision making tool. It attempts to extend the DEA-frontier to provide the DM with a

greater insight into the production processes of all the DMIJs in the assessment by

generating artificial efficient frontier facets based on observed trade-offs for inputs and

outputs. Consequently, all inefficient DMUs use all the selected inputs and outputs to

determine their relative efficiency score, and the artificial efficient facets exhibit some form

of meaningful efficient trade-offs for the inputs and outputs. In generating an artificial

efficient facet, inefficient DMUs become quasi-enveloped DMUs as defined by Bessent et

al. [12]. This term is used to define those DMUs that are partially enveloped by observed

frontier segments and partially by unobserved frontier segments. This methodology was

initially discussed by Clark [21] and later by Bessent et a!. [1], Olesen and Petersen [39]

and Lang et a!. [38]. In addition C hang and Guh [14] and Green et a!. [31] discuss a

similar procedure that differs only in the selection of which frontier segment to extrapolate

in order to improve envelopment. To demonstrate the basic concepts of this approach a

simple graphical illustration will be used.

A simple example

Consider assessing the set of 12 DMUs shown in Table 1.1 of chapter one. The PPS, of

this assessment set is plotted in Figure 3.2. As detailed in chapter one, DMUs D10, 008,
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Dl 2 and Dli are non-enveloped and following the procedure known as Constrained

Facet Analysis (CFA), artificial frontier segments are introduced that extend the observed

frontier facets to quasi-envelop the DMUs of class NF and F using observed MRS.

Figure 3.2 - Extending the Production Possibility Set

12

11

10

I	 4	 5	 6	 7	 8	 9	 10
Output 1 per normalised Input

In order to quasi-envelop, DMUs, D08, D12 and D1O, the observed frontier segment of

DOl D07 is implicitly extended to AD1 0, based on the assumption that the existing MRS

between DOl and D07 can be extended as far as AD1 0. Similarly, the observed frontier

segment of D06D09 is implicitly extended to quasi-envelop Dli.

When the methodology is applied to the multi input output case, there may exist a variety

of possible frontier facets that can be extended, with different algorithms being presented

by Bessent et a!. [12], Olesen and Petersen [39] and Lang et a!. [38] for the selection of

the most appropriate frontier facet to extend and envelop the inefficient DMUs.

As demonstrated by this example, this approach simply projects existing MRS in the PPS

into unknown PPS areas. This assumes that these MRS can be extended as far as required

and then hold at these input output levels. It further assumes that the input and output

levels of the EPPS are feasible, and thus the obtained lower bound relative efficiency score

is feasible. However, as these input output levels are not explicitly stated, how can the
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DM be certain that they are feasible? This approach does not involve any direct

interaction with the DM for values on the inputs and outputs, and the value judgments are

derived directly from the observed data and MRS.

This section has shown that the envelopment of the DMUs can be improved by

extrapolating the observed DEA-frontier into unknown production areas to offer a wider

range of efficient levels of operating mixes, similar to those of the inefficient DMUs. No

explicit specification of the DM's values are incorporated into the analysis, only existing

values are extrapolated. Hence, efficient levels are determined assuming that present MRS

between DEA-efficient DMUs can be extended, and they do not change as the frontier is

extended. Thus, provided this assumption holds, the Gbtaifled teate eWthercy

should be acceptable. The next section presents the main approach for incorporating value

judgments in a DEA assessment - weights restrictions. The alternative types of WRs are

presented as motivated by the application of DEA to real life problems.

3.31 Direct Restrictions on the In put Output Weights

It is assumed that there are N DMUs, j= 1.....N to be evaluated, each consuming varying

amounts, xj1 of m different inputs, i= 1.....m to produce varying quantities, Yr/, of s different

outputs, r= 1.....s. In general, these quantities are assumed to be strictly positive, i.e. x,,>O

and yrj>O, Vi,r,j.

The linear programming model, (M3.1) illustrates some of the direct restrictions on DEA

weights typically found. Without ri -r5, (M3. 1) reduces to the basic DEA model, Charnes

et a!. [16] for assessing the relative efficiency of DMU10.
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Where u, and v, are the weights attached to the rth output and the ith input respectively,

and are the variables of the model. The Greek letters (ic,, a,, 8, Ii' (5j, ' Pr, 7/r, */r,	 , are

DM-specified constants to reflect their value judgments regarding the relative importance

of the input or output factors. The 'normalisation' constant, C is arbitrarily set by the DM

as an upper limit on efficiency scores. (C is typically set to the value of I or 100).

Constraints of type, ri and r2 can involve output rather than input weights or a varied

number of weights.

The five types of weights restrictions, ii to r5, listed in (M3.1), can essentially be divided

into three categories:

a)	 Relative Restrictions - Assurance Regions of Type I (ARI)

These types of restrictions are illustrated by ri and r2 in (M3.1), and are introduced to

incorporate into the analysis the relative ordering or values of the inputs/outputs.
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Thompson et a!. [53] termed restrictions such as, ri and r2 'Assurance Regions type I',

(AR!). Form, ri is similar to the type used in Thompson et a!. [55] and Kornbluth [35].

The use of form r2 is more prevalent reflecting MRS, although the upper bound, a, or

alternatively the lower bound, /3, is often omitted. Clearly, the bound values for ARI are

dependent on the scaling of the inputs and outputs, that is, they are sensitive to the units of

measure of the related factors. Throughout this thesis restrictions of' this type will be

referred to as Relative Weights Restrictions (RWRs).

Charnes et a!. [15] and Thompson et a!. [53] note that when imposing relative restrictions

there will always exist at least one efficient DMU. Further, the relative efficiency scores

obtained from a DEA assessment with the inclusion of RWRs are the same irrespective of

the model orientation.

b) Linked-Dependent Restrictions - Assurance Regions of Type II (ARII)

This type of restriction is depicted by r3 in (M3.1). Thompson et al. [53] termed

relationships between the input and output weights 'Assurance Regions type II' (ARII).

The linking of input and output weights is required in many DEA applications, as it is the

combination rather than the individual values of the variables that the efficiency measure

should reflect. This is, clearly, the case for using ARTI in Thanassoulis et a!. [47] and

Thompson et al. [51] and [52]. It can be shown that AR!! may render (M3.1) infeasible

and a DEA model incorporating ARII produces the same relative efficiency scores when

switching from an IM to an OM orientation or vice versa, with the ARII being dependent

on the scaling of the inputs and outputs. Throughout this thesis restrictions of this type

wifi be referred to as Linked-Dependent Weights Restrictions (LWRs).

c) Absolute Restrictions

These restrictions are illustrated by r4 and r5 in (M3. 1) and are mainly introduced to

prevent the inputs or outputs from being over emphasised or ignored in the analysis. The

value of the restriction is context dependent. For example, it may represent either the
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maximum or minimum cost of the associated factor. Throughout this thesis restrictions of

this type will be referred to as Absolute Weights Restrictions (AWRs).

The bounds used in the restrictions are dependent on the normalisation constant C, in

(M3. 1), as C reflects the scaling of the DEA weights. There is a strong interdependence

between the bounds on different weights. For example, setting an upper bound on one

input weight imposes a lower bound on the total virtual input of the remaining variables.

This, in turn, has implications for the values that the remaining input weights can take, see

Roll and Golany [42]. It should be noted that when AWRs are used in a DEA model,

switching from an IM to an OM orientation produces different relative efficiency scores,

and hence the bounds need to be set in light of the model orientation used. Finally, AWRs

may render model, (M3. 1) infeasible.

A key difficulty in using any one of the four types of weight restrictions outlined in (a), (b)

and (c), is the estimation of the appropriate values for the constants in the restrictions,

compatible with the value judgments to be reflected in the efficiency assessments. A

number of methods have been developed to aid the estimation of such constants and are

now outlined. No method is all-purpose and diffecent approaches may b rorae Ii?

different contexts. This issue is central to the thesis, as it is offering a different approach

that may be appropriate in certain applications or to certain DMs.

As the relative efficiency score is dependent on the selected parameter values of the

restrictions themselves, the next subsection will discuss how the selection of parameters is

made in many practical applications for the different forms of WRs.

3.3.2.1 Estimating the Parameters

a) Parameters in Relative Restrictions

This type of WR is mainly based on the implementation of the economic notion of MRS in

the context of the Charnes et a!. [16] definition. The setting of bounds for relative

restrictions in practical applications has been based either solely on expert opinion (Beasley
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[10] and Kornbluth [35]), or expert opinion in conjunction with price/cost information

(Thompson eta!. [51], [52]).

b) Parameters in Linked-Dependent Restrictions

Methods for developing suitable LWRs have received little attention in the literature other

than Thompson et a!. [51] and Thanassoulis et a!. [47] in assessing World Wide Major Oil

Companies, and Perinatal Care Units respectively. Thompson et a!. [51] rely on market

prices obtained by corporate/industry reports.

In the assessment of Perinatal Care Units in the U.K., environmental impacts on mortality

recognised and they used a standardised survival rate, namely-survival rate of babies at

risk, to reflect the quality of perinatal care medical outcomes. This variable was

incorporated in the DEA model as two variables: 'Babies at risk' an input and 'survivals' an

output.

Evidently the weight of survivals should be linked to that of babies at risk, otherwise a

Perinatal Care Units could exploit its high number of survivals or low number of babies at

risk to improve its efficiency score irrespective of its actual survival rate. To ensure that

the relative efficiencies reflect the actual survival rate, when either survivals or babies at

risk are given any weight, the weights for the two variables are linked.

c) Bounds for Absolute Restrictions

Greater attention has been given in the literature to approaches for estimating absolute

bound values, due to the absence of a real natural basis for their estimation other than

price. Roll et al. [41], RoIl and Golany [42] and Dyson and Thanassoulis [27], have

suggested alternative approaches which rely on relative information obtained from the

DMUs included in the analysis. These methods are outlined below:

37



Chapter Three - The Evolution of Incorporating Value Judgments in DEA 	 April, 97

Based on running unbounded DEA models, Chilingerian and Sherman [20], Roll

et a!. [41] and Roll and Golany [42].

A variety of approaches are suggested in these three papers based on a two-phase process.

In the first phase, an unbounded DEA model is run and a weights matrix is compiled

eliminating either the outlier weights or a certain percentage of the 'extreme' weights.

In the second phase, a number of alternatives are offered. For example, the average

weight for each factor is calculated, and a certain amount of allowable variation about each

mean is decided upon subjectively, giving an upper and lower bound for each factor

weight. It should be noted that alternative optimal solutions may exist foc the uvcec

DEA model, especially in respect of relatively efficient DMUs. The authors do not clarify

how such alternative optimal solutions are to be treated in the context of their method.

ii.	 Based on average input levels per unit of output, Dyson and Thanassoulis [27]

This method has only been developed for single input multi-output or single output multi-

input cases. Considering the single input multi-output case, the weight on the rth output

can be interpreted as the marginal resource level that the DMU would attribute to the

output r in order to appear at maximum efficiency. Methods outside DEA, notably

Ordinary Least Squares (OLS) regression, exist for estimating the average input leve' per

unit of output r. Such estimates can be used to set lower bounds on the DEA output

weights. For example, let the input x be regressed on the r outputs yielding equation

E2.1.

x_rYr+c	 :E2.1

Where, çbr is the partial regression coefficient of output r and ç is the regression constant.

If ^ 0 and is significant, the use of a constant returns to scale DEA model is not

appropriate in the assessment. If = 0 or is not significantly different from zero, then qr

can be directly interpreted as the amount of resource used on average per unit of output r.
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Once the value of ç4. is known it can be used as a reference point to seek a consensus as to

how much less than qr a DMU can sensibly claim to be using per unit of output r by

operating very efficiently. This leads to a lower bound on the DEA weight of output r.

For example, in assessing tax offices let OLS regression suggest that on average it costs

£10 to administer an account. A consensus may now be reached such that the most

efficient rates department could not possibly claim it incurs say 10% or less of the average

cost to administer an account. This would give a lower bound of £1 for the DEA weight

on accounts administered. This approach for setting absolute bounds on the value of the

weights has been applied by Cook et a!. [22] in assessing highway maintenance patrols.

The next section will discuss imposing restrictions on the percentage contribution of the

inputs and outputs to the relative efficiency score e.g. virtual restrictions.

3.3.3 Restricting the Virtual Inputs and Outputs

These restrictions are depicted by r6. Wong and Beasley [58] explored the use of such

^i/fr	 :r6

restrictions in DEA where	 UrYr! represents the total virtual output of DMUj. The tota'

virtual input or output is included as the denominator in the constraint r6 as a

standardisation mechanism that would facilitate the assignment of values to qr, i/Jr. Rather

than restricting the actual DEA weights, the proportion of the total virtual output of DMU

j devoted to output r, i.e. the importance' attached to output r by DMU j, can be

restricted to range between [q, çt'.], with, qr and iur determined by expert opinion, see

Beasley [10].

Implementing this type of restriction is not straightforward, due to the fact that the implied

restrictions on the DEA weights are DMIJ-specific. Hence, several alternative means of

implementation have been suggested by Wong and Beasley [58]. However, as ultimately
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these restrictions can be reduced to an absolute restriction, a simpler means of

implementation would be to determine the possible binding absolute restriction from all the

imposed virtual restrictions and then impose this restriction. Clearly, the relative efficiency

scores obtained with restrictions applied on the virtual inputs/outputs are sensitive to the

orientation of the model (input/output).

Restrictions on the virtual input/output weights have received relatively little attention in

the DEA literature. More research is necessary to explore the pros and cons of setting

restrictions on the virtual inputs and outputs. There has been no attempt to date to

compare methods for setting restrictions on the actual DEA weights with those restricting

virtual inputs and/or outputs.

Having covered the types of WRs that exist, the next subsection will link the inclusion of

WRs in a DEA assessment with extending the PPS.

3.3.4	 Linking Weights Restrictions and Extending the Observed Frontier

As outlined in chapter two, the central theme of this thesis is providing an alternative

approach to WRs for capturing value judgments in DEA. The alternative approach offered

in this thesis, is that of introducing UDMUs into the PPS which extend and possibly

modify the PPS. Now, this section attempts to link the two approaches in terms of the

current literature. It has been shown by Roll and Golany [42] that in the two input single

output case, introducing AWRs on the input weights is equivalent to extending the PPS by

the introduction of additional DMUs. For example, consider the data set of, Table 1.1 of

chapter one. Introducing bounds on the output weights of u i ^ 0.057 1 and u2 ^ 0.0857

respectively, implicitly leads to the introduction of two UDMUs Al (9,0) and A2 (0,

11.667) respectively. These two UDMUs extend the DEA-frontier to envelop DMUs of

class NF and F. Similarly, Thanassoulis and Allen [50] demonstrated (this is also

demonstrated in chapter four) that imposing RWRs of -1.5u, +u2 ^ 0 and u - 3u2 ^ 0

(which are coincidental with the MRS between [006 and D09] and [D07 and DOl]
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respectively) is equivalent to extending the frontier by the introduction of the UDMUs

AD1 1 (8.56, 1.32) and AD1O (1.35, 10.79). In addition these UDMUs are coincidental

with the additional DMUs implicitly introduced by CFA, see Figure 3.3.

Figure 3.3 - The Extended Production Possibility Set

I	 3	 4	 5	 6	 7	 8	 9	 10
Output 1 per normalised Input

Clearly, in terms of the radial efficiency score, the introduction of WRs assumes that the

input output levels of the Extended Production Possibility Set (EPPS) are feasible and

obtainable. That is, in the simple example above, in order to obtain the relative efficiency

score for Dl 0 under the imposed WRs, it is assumed that AD1 0 is obtainable, although

the issue of feasibility may not have been explicitly considered. This consideration of the

feasibility of the EPPS will be discussed further in chapter five.

Evidently, the incorporation of value judgments into the assessment via weights

restrictions can lead to an implicit extension of the observed PPS. However, it may also

lead to an implicit modification of the PPS, with observed efficient DMUs being rendered

inefficient. Thus, in the case where the observed efficient DMUs remain so, the inclusion

of weights restrictions can be viewed as the removal of slack values, similar to CFA. This

only makes assumptions about the feasibility of the introduced efficient input output levels

outside the extremes of the observed PPS; whereas weights restrictions that modify the
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observed PPS make assumptions about the feasibility/under-performance of the observed

efficient input output levels.

The incorporation of value judgments into a DEA assessment via directly restricting the

input output weight values, has been discussed, and has been shown to ultimately lead to

an implicit extension/modification of the observed PPS. The next section will discuss how,

rather than use weights restrictions to implicitly extend the PPS, we might explicitly

change the PPS to capture value judgments. Thus the PPS itself is transformed to

generate an artificial data set that will capture the value judgments in the DEA assessment.

3.3.5 Adjusting the Observed Input Output Levels

Both Charnes et a!. [15] and Golany [32], derive transformations of the observed input

output data, with reference to the envelopment model, in order to simulate relative weights

restrictions.

a.	 Charnes eta!. [15]

In this method an artificial data set is generated which produces the same relative

efficiency scores as imposing RWRs of form r2, in (M3.2). The cone ratio weights DEA

model is as follows:

(M3.2) Cone Ratio Weights Model

= Max u'Y0
.10

Ts.t.	 vX01

vTX+ uY^O

V E V. U E U

Where X is an mxn matrix of input levels, Y is an sxn matrix of output levels, u is an sxl

vector of output weights and v is an mxl vector of input weights. X0 and Y0 are the mxl
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vector of input and sxl vector of output levels respectively of the assessed DMU Jo. The

WR information is contained in the closed convex cones, V c: E1" and U ç E, defining V

and U as their negative polar cones, and information on how to transform the data is

contained in —V and —U. Imposed RWRs of form r2 in (M3.2), can be expressed in

matrix form for inputs as V = {v: Dv^O, v ^O}, and for outputs as U = {u: Fu^O, u ^ O}.

It is worth noting that the weights v and u are allowed to equal zero. Charnes et a!. [15]

derive that the following weights model (M3.3) which provides equivalent relative

efficiency scores to those of(M3.2).

(M3.3) Cone Ratio Weights ModeS

= Max gT(BY0)

s. t.	 wT(Ax0) = 1

wT(AX) + gT(BY) ^ 0

w^0, g^O

where the matrices A and B are defined in relation to matrices D and F above with, A T =

(D'D) 1 DT and B'=(F'F)1F', see Charnes et a!. [15].

Charnes el a!. [15] also suggest approaches for defining the cones used in (M3.2) such

that they favour either specific inputs/outputs or individual DMUs. In their application of

the cone-ratio approach to a set of bank branches, the cones favour individual model

banks, with these model banks being defined by the DM. For example, suppose that

DMUs a and h, are considered as mode' banks and that the optimal unrestricted DEA

weights of DMU a, are v 1 =a 1 ; v2 =a- and of DMU b, v 1 =b 1 , v2 =b. It can be deduced

that these cones imply that the banks are being assessed under the MRS, as determined by

the sets of optimal DEA weights for the model DMUs, a and b. That is,	 ^	 ^
b,	 v,	 a2

(b,	 —b1'
This gives the following matrix D =	 , and from the stated matrix

—a2	a1 )
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(a	 a-,
transformations, we obtain A =

	 which can then be applied to the observed
b,

data to generate an artificial data set. Tone [56] discusses three possible objectives for the

selection of suitable cone-ratios and offers three algorithm for the determination of the

bound values for these three different objective cone-ratios.

b.	 Golany [32]

Golany [32] sought to incorporate ordinal relationships of the form v 1 ^ v2 ^ v3 ^ among

the DEA weights. Without allowing the weights to take a zero value, the relative

efficiency scores obtained are the same as those obtained by transforming the input-output

data to generate an artificial data set, by accumulating the related factors. Golany's [32]

transformations are effectively a special case of the cone ratio transformation. For

example, the restrictions v 1 ^ v2 ^ v3 ^ c can be omitted from a DEA model by replacing x2/

with x21 + x11 and x31, with x31 + x21 + x11, Vj, where x11 is the level of the ith input of the jth

DMU.

However, Ali et a!. [2] pointed out that the data transformations proposed by Golany [32]

only provide suitable solutions for strict, not weak, ordinal relationships between DEA

weights due to the weights being strictly positive. In addition, they note that the weights

themselves can be accumulated, rather than the data, to obtain the same relative efficiency

scores as under the original WRs. For example, v2 is replaced by v1 + v2 and v3 is replaced

by v1 + v2 + v3.

Unfortunately, to interpret the results, the data from this approach requires to be

transformed back to the original form. This can prove more cumbersome than the direct

application of weights restrictions to the original data.

This section, has illustrated the rich variety of approaches to the use of WRs in DEA. It is

clear, however, that no overall approach to setting WRs in DEA has been identified with

the different approaches proving to be more appropriate in different contexts. For
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example, in a single input multi-output case the approach by Dyson and Thanassoulis [27]

may prove suitable, while in the case of strong expert identification of good DMUs, the

approach by Charnes et a!. [15] may prove more appropriate. The next section discusses

how the results obtained from a DEA analysis are interpreted when value judgments have

been incorporated into the analysis.

3.4 Interpreting Results under Value Judgments

In DEA assessments of performance, the results obtained in respect of each DMU reflect

its position within the PPS relative to the efficient part of the boundary of the PPS. As

discussed earlier the inclusion of value judgments in a DEA model may render parts of the

efficient boundary of the PPS inefficient, so that previously defined DEA-efficient DMUs

are no longer deemed so. In addition, the efficient boundary may be implicitly extended to

include previously undefined efficient input output levels. Clearly, the alterations to the

PPS have implications for the interpretation of the relative efficiency score, the radial

targets and the peer DMUs. However, there is little discussion on the interpretation of

these results in the current literature. Thus the following sections will attempt to give

some interpretations of the impact of the inclusion of value judgments in DEA on the

efficiency score, the targets and the peers.

3.41 The Efficiency Score

Clearly, the introduction of value judgments in the assessment will either reduce or have

no impact on the DMUs' relative efficiency. If there is no impact on the relative efficiency

score, then the relative efficiency score can be interpreted as in the absence of weights

restrictions. However, if the inclusion of the value judgments impacts on the relative

efficiency scores, then how should the DM interpret the scores? Bessent et a!. [12]

interpret the results as follows. The standard DEA relative efficiency score is taken to

represent an upper bound on the relative efficiency, and the CFA relative efficiency score

is treated as a lower bound score. As the inclusion of the value judgments impacts on the
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DMU, it implies that the DMU is being measured relative to unobserved input output

levels. Therefore the results should be interpreted with caution, as the feasibility of these

input output levels is uncertain. Evidently, the interpretation of the efficiency score as a

measure of the radial contraction of inputs or radial expansion of outputs, which are

feasible under efficient operations, break down under the inclusion of value judgments.

3.4.2 The Radial Targets

Currently, as approaches for including value judgments implicitly modify the PPS, targets

are set based on the DEA-efficient DMUs that remain DEA-efficient with the inclusion of

the value judgments. However, this may mean that the targets suggested for the DEA-

inefficient DMUs are of a very dissimilar operating mix to their present one, when DEA-

efficient DMUs have been rendered inefficient by the introduction of the additional

information. If the value judgments only extend the present DEA-frontier, the targets will

be actually the same as those offered under the standard DEA model. Thus with the

inclusion of values, are the targets offered by DEA of any practical use to the DM, if they

require substantial changes in their present operating mix? Essentially this will depend on

their objectives in improving their efficiency, i.e. if they want to maintain their present

operating mix or not. Thus, the setting of objective targets when values have been

included in a DEA assessment, is an area in need of further research.

3.4.3 The Peers

It would appear that if the inclusion of weights restrictions in a DEA assessment

substantially reduces the number of DEA-efficient DMUs, then the usefulness of the peer

information is debatable. They only highlight those DMUs that have favourable operating

mixes under weights restrictions, which may be very different from the mixes of the

inefficient DMUs.
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3.5 Conclusion

The introductory section argued that the incorporation of value judgments in DEA is an

area motivated by real life applications. The growing expansion of the weights restrictions

methodology since its original development by Thompson et al. [53] and Dyson and

Thanassoulis [27], heralds encouraging signs regarding the contribution of the method in

assessing performance. Taking stock of the evolutionary stages of the weights restriction

method it can be said that:

• Weights restrictions are based on mathematical modifications of the Charnes

et a!. [16] model that seek to encapsulate value 3udgments the ssessme?t

of performance;

• Weights restrictions do not seek to eliminate the fundamental principle of the

original DEA model, but rather they seek to ensure that appropriate vatues are

affached to the inputioutput variables;

• There is no all-purpose method for translating value judgments into

restrictions on DEA weights;

4 Not fully explored at present are:

The mathematical and managerial implications of the introduction of

value judgments in DEA models. e.g. target seffing.

- Alternative approaches for including value judgments.

- The inclusion of value judgments into the VRS model and further into

many of the extension models.

The development of the WRs field has led, in turn, to new areas of applications of DEA.

One of these areas of concern is the use of DEA as an aid to decision analysis. Cook et a!.

[24] were among the first to propose DEA based models that sought to obtain absolute

ranks of efficient DMUs by means of weights restrictions. From the technical point of
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view, the interest lies in how DEA-efficient DMUs can be ranked on the basis of their

ability to assign a balanced magnitude of weights to their inputs and outputs.

To date, the means of capturing value judgments in DEA assessments has been almost

exclusively by weights restrictions. Although alternative methods such as those used by

Charnes et a!. [15], Bessent et a!. [12] and Lang et a!. [38] exist, and act directly on the

PPS, it is possible to think of developing systematic methods to capture progressively the

DM's value judgements in DEA assessments by specifying UDMUs, suitably constructed

from DMUs. This offers the advantage that the value judgments need only have local

rather than global validity. This is in contrast to weights restrictions which reflect value

judgments with global validity over the entire PPS. This will be the avenue explored in

this thesis.
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Section B
An Alternative Perspective for
Incorporating Values in DEA

The previous section highlighted current procedures for the inclusion of values in a DEA

assessment. This section, which covers chapters four and five, lays the foundations for

an alternative means to current approaches for the expression and incorporation of the

DM's values in a DEA assessment.

This alternative approach is established by recognising that there is a direct link between

the explicit restriction of the weights and an implicit modification of the P?S, and

explores the possibility of how a DM could focus on including values in a DEA

assessment via an explicit modification of the PPS. Thus, an implicit restriction of the

DEA weights will be made.

The section concludes by illustrating why DMs would decide to express their values in

the form of UIDMUs. It also explains how a combined use of weights restrictions and

I.JDMUs may aid DMs in their expression of values, and the setting of targets. Hence

DMs gain a greater understanding of the general implications of the inclusion of values

in a DEA assessment.

This section only establishes the principles for an alternative approach. Thus, it lays the

foundation for an alternative means for DMs to express and incorporate their values in a

DEA assessment, which may be appropriate for DMs who have difficulties with the use

or application of weights restrictions.

Section C will use this foundation to build a procedure for incorporating values in DEA

using UDMIUs. Alternative procedures may be built using the foundations laid in this

section.
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4. Chapter Four
Simulating Weights Restrictions by Means of
Radial DMUs: CRS Case2

4.1 Introduction

As illustrated in chapter three, it has long been recognised that complete weights flexibility

in DEA often leads to inappropriate estimates of efficiency. At one extreme, a DMU

operating under CRS can ignore all but one output and one input variable, and possibly

appear DEA-efficient by virtue of offering the best ratio on those two variables from all

the DMUs, irrespective of poor performance on the rest of the input and output variables.

Alternatively, the weights estimated can be counter intuitive. For example, in an

assessment of perinatal care units without Weights Restrictions (WRs), Thanassoulis et a!.

[47] found some DMUs weighted a 'satisfied mother' more heavily than a 'very satisfied

mother' with the service received. A number of extensions to the original DEA model

have been put Ibrward to overcome the problems created by complete weights flexibility in

2 An earlier version of this chapter is forthcoming in Management Science
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DEA. (e.g. Dyson and Thanassoulis [27], Wong and Beasley [58], Roll and Golany [42],

Thompson et a!. [53], Charnes et a!. [15] and Thanassoulis and Dyson [48]).

Attempts at specifying WRs to date have generally been based on estimates of 'sensible'

ranges of permissible values for the output or input weights. Methods have differed only

on approaches to identify permissible ranges of weights values. See, for example, the

alternative approaches offered by Dyson and Thanassoulis [27], Wong and Beasley [58]

and Charnes et a!. [15], among others. It should be noted, however, that at issue is not so

much which ranges of input and output weights are permissible, but rather how prior

judgments on the relative values of the input and output variables can be clarified and

incorporated in DEA assessments. Weights restrictions specifying permissible weights

ranges are only a means of specifying and incorporating prior judgments on the input and

output variables in DEA assessments. This chapter highlights that there is an alternative

approach to capturing and reflecting prior judgments in DEA based on using Unobserved

DMUs (UDMUs). This new approach offers an alternative to WRs and requires the DMs

to think in terms of comparing DMUs rather than specifying rates of substitution between

output or input variables. One key advantage of using UDMUs rather than weights

restrictions, is that local as opposed to global information is sought from the DM, which is

likely to be more accurate, as well as easier for the certain DMs to provide.

In DEA, efficiency can be defmed either in 'weights space' or 'production space', see

Thanassoulis [45]. In weights space the efficiency of a DMU is defined as above, in terms

of the maximum ratio of the sum of its weighted outputs to the sum of its weighted inputs.

In production space, an equivalent input oriented definition of efficiency is the lowest

proportion to which all input levels of the DMU can be reduced, providing this is not

detrimental to any one of its output levels. This lowest proportion is estimated by using a

PPS constructed using the DMU's input output levels, and contains all feasible input

output correspondences in the production process operated by the DMUs. In the context

of capturing and using value judgments in DEA assessments, UDMUs represent the

production space equivalent to WRs in weights space, as this chapter will demonstrate.
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That is, weights restrictions use the weights model to explicitly restrict the weights,

whereas UDMUs use the envelopment model to implicitly restrict the weights.

As discussed in chapter three, both Chames et at. [15] and Au et a!. [2] point out, that

WRs imply changes to the PPS and these changes can be simulated by suitable

transformations to the observed data. The approach in this chapter maintains the original

DMUs, and focuses on the introduction of UDMUs, to simulate the WR relative efficiency

scores. The notion that an UDMU is implicitly introduced by an absolute WR was initially

highlighted by Roll and Golany [42]. This correspondence between all forms of weights

restrictions (relative, linked-dependent, absolute and virtual) and a modification of the PPS

is explored further in this chapter, and will be limited to DMUs operating under CRS.

This chapter will initially show how relative and linked-dependent weights restrictions can

be simulated by UDMUs. These concepts are then generalised to absolute and virtual

weights restrictions.

4.2 Simulating Relative Output Weights Restrictions by Means
of Radial DMUs

As detailed in chapter three, the relative efficiency scores under RWRs are independent of

the model orientation under CRS. That is, switching from an Input Minimisation (IM) to

Output Maximisation (OM) orientation provides the same results. Thus for simplicity, this

section will only consider simulating relative efficiency scores obtained under an IM

model, although the same approach will hold for the OM model. To illustrate a simple

numerical example will be used.

A Simple Example

Relative output weights restrictions in DEA can be simulated by augmenting the set of

DMUs with UDMUs. The UDMUs necessary are specific to the set of DMUs and to the

WRs being simulated. There is no unique set of UDMTJs. The UDMUs simulating a set
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of WRs are such that the DMUs take the same relative efficiency scores, whether they are

assessed under the WRs or within the augmented set of DMUs, without the WRs.

In order to see how relative output WRs can be simulated by UDMUs, consider the

following set of 4 DMUs, each one using the same normalised level of 12 units of input, to

secure the following levels on two outputs:

Table 4.1 - Example Data Set 2

	

Dl	 D2	 D3	 D4
Output 1	 I	 3	 3.75	 1.5
Output2	 3	 2	 1	 1.5

It is desired to assess the DMUs in Table 4.1 under the assumption that output 1 is more

valuable than output 2. Under this assumption, the efficiency of DMU Jo offering output

levels (y11 ,y21 ) is the optimal value h in (M4. 1).

h* = Max u1 y11 + u2y,,
Jo

s.t.	 u, + 3u2 ^ 12	 :Dl	 (M4.1) 
V

3u i +2u2 ^12	 :D2

3.75u 1 +u2 ^12	 :D3

1.5u 1 + 1.5U2 ^ 12	 :D4

-Uj+U2 O	 iii

-U2 ^ E

(e is a non-A rchimedean infinitesimal)

The model (M4.1) is, in essence, the basic DEA model developed by Charnes ci' a!. [16],

in which u 1 and u2 are the weights attached to output 1 and output 2 respectively. It

differs from the basic DEA model, only in that it includes the relative weights restriction

(RWR), rn, whereby u 1 ^ u2 reflects the perception that output 1 is at least as valuable as

output 2.
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The WR, rn, only needs to be simulated for those DMUs of (M4.1), for which rn is

binding at all optimal solutions to the model. For the remaining DMUs there exists an

optimal solution where rn is redundant. Consider replacing rn in (M4. 1) by one or more

UDMTJs. Obviously, the LJDMU must be DEA-efficient, otherwise its introduction into

the observed data set would have no impact on the relative efficiency of the DMUs. It is

shown in Appendix 4.1 that:

Any UDMU offering output levels such that yi + Y2 = 5 and yi <3y212 can

simulate nil in (M4.1).

Figure 4.1 shows how the PPS originally defined by the DN'UJs in Table 4.1 is itwjlicitly

altered by the introduction of the weights restriction, rr 1.

Figure 4.1 - Extended Production Possibility Set

- -	 Observed Efficient Frontier

1	 2	 3	 4
Output 1 per Normalised Input

Thus any UDMLJ that lies on the line segment, RD 1 Ui, in Figure 4.1, has output levels

that meet these two conditions and hence will simulate rn in (M4. 1), when added to the

data set. One such DMU is RD1, (1.25, 3.75) which is essentially the radial expansion of

the output levels of Dl. Thus adding this DMU to the observed data set and using (M4.2)

to determine the relative efficiency scores, the same scores are obtained as when solving

(M4.1).
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= Max	 + u2y21

s.t.	 ui+3u2^12	 :D1

3ui + 2u2 ^ 12	 :D2	 (M4.2)

3.75u+u2 ^12	 :D3

l.5u + 1.5U2 ^ 12	 :D4

1.25u 1 + 3.75U2 ^ 12	 :RD1

-Ui, -U2 ^ -c

( is a non-A rchimedean infinitesimal)

Under the model (M4.1), the efficient boundary is D3D2, whereas under the model

(M4.2), the efficient frontier is D3D2RD1, with the same relative efficiency scores being

obtained.

As there are no DMUs to the left of the radial OD1 RD1, the only part of the efficient

boundary used in assessing DMUs in Figure 4•l is Y3D2Ri)1. Thus as \orig as klIY s

used as an UDMU, the required part of the efficient boundary is specified and all other

I.JDMUs are redundant. The IJDMIJ, RD1 is the radial projection of Dl, using its relative

efficiency under (M4.1). UDMUs determined by the radial expansion of the DMUs'

output levels will be defined as Output Radia DMIJs (ORDMUs). Due to the CRS

assumption, UDMUs based on the radial contraction of the input levels will also lead to

the same relative efficiency scores as under ORDMUs. UDMUs determined by the radial

contraction of the DMUs' input levels shall be termed Input Radial DMIJ5 (IRDMUs).

The construction of UDMUs by means of radial expansion or contraction of DMUs using

their WRs relative efficiency scores, is developed further in the next section.
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4.3 Simulating Relative and Linked-Dependent Weights
Restrictions by Means of Radial DMUs

The principle of simulating output WRs by means of ORDMUs demonstrated in the

preceding section, can be extended to the general case involving the assessment of any

number of DMUs using multiple inputs to produce multiple outputs. However, ORDMUs

are not the only set of Radial DMUs (RDMUs) that are capable of simulating the imposed

relative weights restrictions. It is now shown that:

• Radial expansions of the output levels of the DMUs can be used to construct

Output Radial DMUs (ORDMUs)

OR

• Radial contractions of the input levels of the DMUs can be used to construct

Input Radial DMUs (IRDMUs)

Augmenting the observed data set with either the ORDMUs or the IRDMUs will simulate

the imposed WRs relative efficiency scores. Only one set is required, and it is for the DM

to decide which set to calculate - this uay rekate to htk t\ otcv	 '& ck

or downsizing phase. The term Radial DMIIJs (RDMIIJs) will be used to define the set of

ORDMUs or IRDMUs that are being implemented in order to simulate the WRs relative

efficiency scores.

This section specifies two sets of RDMUs which can simulate relative and linked-

dependent weights restrictions in the general case. The first set contains as many UDMUs

as there are observed DMUs. This is referred to as the "Full Set of Radial DMUs",

(FSRD). The second set of RDMUs is a subset of FSRD and will be referred to as the

"Reduced Set of Radial DMUs", (RSRD).

4.3.1 Specifying a Full Set of Radial DMUs

It will be assumed that there are N DMUs, j1,..,N, with DMU j using input levels, xq,

i=1.....m to produce outputs levels, Yr/, r1 ,...,s. Further it will be assumed that the N

DMUs are to be assessed under a set of input and output relative and linked-dependent
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weights restrictions defining a feasible set of output weights. The relative efficiency, h of

DMU Jo under the input and output relative weights restrictions, V and U, and linked-

dependent weights restrictions UVis given by (M4.3).

h = Max
r1

"I

s.t.	 v1x,1 = I	 (M4.3)

IUrYO	
vzX,1 ^O	 1=1.... . N

V E V, u 8 U

UV E UV

where u = (U,., r=1,. . ., ․) and v = (v,, 1 = ]..... m) are output and input weights respectively

and are the variables in the model. Two sets of radial DMUs will now 'be àefineà t'tiat wfñ

simulate the relative efficiency scores obtained in (M4.3) excluding the set of weights

restriction defined by U, V and UV.

Full Set of Output Radial DMUs (FSORD)

Define a set of ORDMUs, Jt=1..... N, such that DMUJz' has output levels, Yr/i, r1.....s

and input levels, x11, i=1.... . m as follows:

Yrjt =	 x1 x	 J=1.....N	 (4.1)

h*1 is determined by means of (M4.3).

The ORDMUs defined in (4.1) simulate the weights restrictions defined by U, V and UV in

(M4.2) by virtue of Theorem 4.1.
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Theorem 4.1

Let h, 1=1.....Jo.....N, be as defmed in (M4.3). Letjt=1.....Nbe RDMUs having the input

output levels defined in (4.1), and let h be as defmed in (M4.4), so that

h = Max 8rYrj0

I s.t.	 = 1	 (M4.4)

	

5rYr,i -	 ^ 0	 jt=l.....N

Vr,i

where , yj and x,1 are as in (M4 .3). Then for DMUj0 it fo1ows that:

i ' —h	 (4.2).10 -

The proof of Theorem 4.1 can be found in Appendix 4.2.

The set of RDMUs Jt1,...,N, whose input output levels are those defined in (4.1) is

referred to as a FSORD.

Alternatively, a set of input radial DMUs can be used to simulate these weights restrictions

relative efficiency scores.

Full Set of In put Radial DMUs (FSIRD)

Define a set of IRDMUs jp=l..... N, such that DMUJp has output levels, 	 r1.....s and

input levels, x11 , i=1.....m as follows:

YrjpYri	 x=hx	 J=1.....N	 (4.3)

h 4 1 is determined from model (M4.3).
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Clearly, the RDMUs defined in (4.1) can be scaled to obtain the RDMUs defined in (4.3)

and therefore simulate the WRs defined by U, V and UV in (M4.3) by virtue of Theorem

4.1. The set of DMUsjp=1..... N, whose input output levels are those defined in (4.3) is

referred to as a FSIRD

Where the relative efficiency score of a DMU is h = 1, the RDMU is a duplicate of the

original DMU as can be deduced from (4.1) or (4.3). More generally these RDMUs can

be expressed in terms of the existing inputs and outputs. Evidently the FSORD or the

FSIRD can be reduced to obtain a smaller set of RDMUs that is necessary and sufficient to

simulate the relative efficiency scores under relative and linked-dependent weights

restrictions.

4.3.2 Specifying a Reduced Set of Radial DMUs

Clearly, those RDMUs that duplicate observed DMUs, as well as those RDMUs that can

be expressed as a linear combination of other DEA-efficient DMUs andlor RDMUs are

redundant. That is, those RDMUs that are of class E' as defined by Charnes et a!. 1 9 are

redundant. This will hold for both the ORDMUs and the IRDMUs, and so for simplicity,

only the case for the ORDMUs will be considered. It can be seen, for example, from

Figure 4.1 that the removal of RD4 (class E) will not affect the relative efficiency scores

of the DMUs, and so it is not necessary for the simulation of the WR relative efficiency

scores.

The aforementioned observations can be readily generalised so that

the FSORD/FSIRD which consists of N DMU5 constructed using

expression (4.1) or (4.3) can be reduced by eliminating any RDMUs that

are linearly dependent on other DMU5 and RDMUs in the FSORD/FSIRD.

The resulting RSORD/RSIRD is necessary and sufficient to simulate the

relative efficiency scores under weights restrictions as simulated by the

FSORD/FRIRD.
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One way to identify and eliminate the redundant RDMUs (class E') is by reference to their

'Super Efficiency' (SE) (see Andersen and Petersen [6]). The super efficiency ofDMUj0

in (M4.4) is assessed by dropping the constraint 	 8rYrj - y ,x,1 ^ 0 from the model.

In respect of DMUj0 the model can now yield an efficiency score of over 1, and hence the

term 'Super Efficiency'. Super efficiencies can be used to identify redundant RDMUs as

follows.

Let DMU jto be the non-duplicate RDMU to be tested for redundancy. As the aim is to

eliminate the RDMUs that are linear combinations of other DMUs, the only DMUs that

these RDMUs can be linearly dependent on, are those that are of class E and E' as defmed

by Charnes eta!. [19] under (M4.4). Let JE denote the set of DMUs of class E and E' in

(M4.4). Solve model (M4.5) to compute its SE, h where

hH	 Max	 l/IrYrjiP0 -
r=l

In

s.t.	 w,x11, =1	 (M4.5)

JEJE

rYrji -O),X11, ^0	 jt EJrt

WI ^ S

where Jrt = {jt jtEFSRD, jt^jto and for j=jt, h*, < 1}, h being as defined in (M4.3).

Thus Jrt consists of non-duplicate RDMUs, excluding DMU fto. Notation in (M4.5) is

otherwise as in (M4.3).

Proposition 4.1

If Ii > I or if (M4.5) has no feasible solution, RDMUjt 0 is non-redundant RDMU.

Proposition 4.2

If h = I then RDMUjt0 is a redundant RDMU.
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Proposition 4.3

cannot be less than 1.

For the proof of these propositions see Appendix 4.3.

In light of the above Propositions, a RSRD can be constructed from the FSRD by

eliminating all RDMUs which:

• Duplicate original DMUs;

• Yield a super efficiency of 1 in (M4.5).

The concept of using SE to identif' class E DMUs is easily implemented and SE scores

can be readily estimated by commercial software. (e.g. Warwick DEA Software,

Thanassoulis and Emrouznejad [46]).

It should be noted that, for explanation purposes all possible RDMUs were determined.

Clearly, the number of redundant RDMUs can be reduced by initially only determining

RDMUs that correspond to those DMUs that are effected by the weights restrictions.

This section has shown how relative and linked-dependent weights restrictions can be

simulated by the use of Radial DMUs (RDMUs). The next section wifi consider the case

for absolute and virtual weights restrictions.

4.4 Simulating Absolute and Virtual Weights Restrictions by
Means of Radial DMUs

As discussed in chapter three, virtual weights restrictions restrict the percentage

contribution of individual inputs or outputs to the normalised input or output of a DMU.

This corresponds to DMU specific restrictions on the respective DEA weights. For their

implementation to have any real meaning in terms of relative efficiency, the virtual

constraint for each DMU must be added to the constraint set for all the DMUs, as detailed

in chapter three. In this case, their implementation reduces to that of the introduction of a
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single binding absolute weights restriction. Thus this section will only discuss the

simulation of absolute weights restrictions by means of RDMUs.

Frequently, absolute weights restrictions lead to infeasible solutions. However, it shall be

assumed that the implemented absolute restrictions provide feasible results. In chapter

three, it was noted that when imposing absolute and virtual weights restrictions, the

relative efficiency scores were dependent upon the model orientation. This implies that the

unobserved frontier that is implicitly introduced when assessing a DMU under the absolute

weights restrictions, is different for the different model orientations. Clearly, this has

implications for the interpretation of the results. As the DMUs are operating under CRS it

is therefore expected that the relative efficiency scores will be the same for each model.

Unfortunately, this problem is beyond the area of interest of this thesis and will riot be

investigated further. Evidently, it follows that each orientation requires a different set of

RDMTJs to simulate the weights restrictions relative efficiency scores. However, the

process of determination of these RDMUs will be the same irrespective of the orientation

and thus only the IM case wi'fi be considered.

Consider assessing N DMJJs, j= 1,..,N, with DMU j using input levels, x, i].....m to

produce outputs levels, Yrj, r=J,...,s. The relative efficiency, e of DMUJ0 under input

and output weights restrictions, an and ar2, respectively is determined for model (M4.6).

e = Max

in

s.t.	 v,x1, =

UrYrj — v,x,1 ^O

^ V ^ ,j

Pr ^ Ur ^ ç.

j=1.....N

:arl	 i=1.....m

:ar2	 r1.....s

(M4.6)
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where v and u are the weights attached to the inputs and outputs respectively and p and

are DM specified bound values on the input and output weights.

The DM has the choice of determining either the FSORD or FSIRD as discussed in section

4.3.2. It will be assumed that the DM has decided to define a set of Input Radial DMUs

(IRDMUs),jp=1,.. ,N such that RDrvlUjp has output levels, y,, r=1.....s and input levels

x i1.....m as follows:

Yr/p = y	 x = e 41 x11	 1=1.....N	 (4.4)

e*i is determined from (M4.6). Clearly, in practice only the RDMUs that correspond to

those DMUs that are effected by the weights restrictions are required to be determined.

The ORDMIJs defined in (4.4) simulate the WRs defined by an and ar2 by virtue of

Theorem 4.2.

Theorem 4.2

Let e,j=1.....N be the efficiency scores obtained from (M4.6) and Jetjpl.....N be the

RDMUs having input output levels defined in (4.4). Let e• be as defined in (M4.7)

e = Max rrYri

s.t.	 6,x11 =1	 (M4.7)

j=1.....N

r rYrip 	 öIXI/()

Vi,r

Notation in (M4.7) as in (M4.6). Then for DMUj 0 it follows that:
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=	 (4.5)

The proof of Theorem 4.2 can be found in Appendix 4.4.

Thus, when oniy the specific RDMU, Jpo that corresponds to the assessed DMU Jo is

added, it is found that the correct relative efficiency scores are obtained. This would imply

that when DMUs are assessed under absolute weights restrictions they are being assessed

relative to different standards. That is different hypothetical frontiers. As the hypothetical

frontier that is generated is dependent on the assessed DMU, it would indicate that the

relative efficiency measures are not truly comparable, see Appendix 4.5. The impact of

this on the interpretation of the results and the implications for the imposed values, will be

discussed in chapter five. Clearly, this has implications for the use of absolute weights

restrictions in DEA.

Thus having demonstrated that weights restrictions can be simulated by a modification of

the PPS, a summary of the results will now be drawn.

4.5 Conclusion

Value judgments hitherto have been reflected in DEA assessments by means of restrictions

on the values that the DEA weights can take. This chapter has introduced the foundations

for a new approach to capturing and using value judgments in DEA and establishes that

weights restrictions can be simulated by means of UDMUs, thereby providing an

alternative avenue to capturing and using value judgments in DEA assessments.

Expressing value judgments via UDMUs offers the following advantages;

(i) Value judgments can be expressed locally

(ii) Non linear MRS between variables can be expressed

(iii) The feasibility of' the extended PPS can be consideredlascertained
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To date much of the effort in capturing value judgments in DEA assessments has been

focused on weights restrictions and their construction. This approach virtually ignores the

fact that the issue is capturing value judgments rather than the weights restrictions. This

chapter switches the focus from weights restrictions back to the real issue of expressing

values in a DEA assessment and offers an alternative to weights restrictions for their

inclusion in DEA. Hence, one way to view the impact of explicit restrictions on DEA

weights, is to say that they implicitly add UDMUs to the observed data set. These

UDJVHJs extend the DEA-efficient frontier of the PPS in such a way that values are

incorporated into the assessment. However, as the modifications to the PPS under

weights restrictions are only implicit, the use of weights restrictions to express the DM's

views can hide important assumptions about feasible input output transformations and/or

value judgments. This lays the foundation for a new direction of capturing and using value

judgments in DEA assessments, and is the avenue of explovatioi	 eced iv1 t\i, tke.

The next chapter discusses how the insight offered by Radial DMUs (RDMUs) into the

impact of value judgments on the PPS, provides motivating reasons for the DMs to

express their values directly in the form of UDMUs in DEA.
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5. Chapter Five
Why Express Value Judgments Via UDMUs?

5.1 Introduction

The primary aim of this chapter is to demonstrate in principle the motivating reasons for

why a DM would want to express value judgments in the form of Unobserved DMUs

(UDMUs). To achieve this, it is necessary to demonstrate some of the probkms that ext

with the traditional approach for the incorporation of value judgments, namely that of

weights restrictions. This demonstration aims to highlight that there is a need, in certain

situations, for an alternative approach to weights restrictions for capturing value

judgments in DEA. Subsequently, it will also demonstrate how the Radial DMUs

(RDMUs) of chapter four can be used in conjunction with weights restrictions to aid the

DM in tile determination of appropriate values and how to implement local values.

As demonstrated in earlier chapters, the main avenue for the inclusion of value judgments

in a DEA assessment is by means of weights restrictions. Chapters three and four establish

a link between the incorporation of value judgments and an Extended Production
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Possibility Set (EPPS). This link suggests that Weights Restrictions (WRs) implicitly

express value judgments as input output levels i.e. Unobserved DMUs (UDMU5). Thus, if

the focus of the inclusion of value judgments is transferred from:

• the explicit restriction of the weights,

with an implicit expression of input output levels,

to:

• the explicit expression of input output levels,

with an implicit restriction of the DEA-weights,

an alternative approach for the expression of va(ue judgments in a DEA assessment can be

derived. However, having identified the possibility of an alternative approach to weights

restrictions, namely that of UDMUs, there is a need to offer motivating reasons for the use

of this alternative, when in many cases, weights restrictions are simple, workable and

acceptable. There are several reasons why, in principle, this alternative approach may be

desirable to a DM. These reasons were outlined in chapter two and will now be detailed

further in light of chapter four.

The chapter will be structured as follows: Section two details how Radial DMUs

(RDMUs) can aid the DM's interpretation of the results under WRs. Section three

suggests how to combine the use of weights restrictions and Radial DMUs to incorporate

varying local values into the assessment. Section four concludes.

5.2 Interpreting the Results

As previously mentioned, when value judgments have been incorporated in a DEA

assessment, the Production Possibility Set (PPS) may be implicitly extended (this may

include a modification of the present PPS). The implicit input output levels of the

Extended Production Possibility Set (EPPS) are unknown and therefore may not be

attainable. Thus, while the DMUs can be ranked on their relative efficiency under weights

restrictions, the obtained relative efficiency scores cannot be readily interpreted in terms of
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attainable input output levels.. Thus, other than as a clearer overall picture of a DMUs

relative efficiency, how should a DM interpret the relative efficiency scores of the DMUs?

How can the DM be certain that their DMUs are being measured relative to realistic

production processes? This raises the question of how to set objective targets under

weights restrictions? This section, therefore, proposes to illustrate how expressing the

DM's value judgments via UDMUs can aid the DM in the interpretation of the results as

the DM is provided with an explicit account of the modified PPS.

The initial consideration is that of the feasibility of the EPPS which, clearly, has

implications for the interpretation qf the relative efficiency scores, the targets, peers and

the imposed weights restrictions.

5.2.1 Feasibility of the Extended Production Possibility Set

At present, in terms of the obtained relative efficiency score, it is assumed that the input

output levels of the implicit EPPS are feasible and, thus, the scores obtained are valid.

That is, it is assumed that the input output levels implicitly introduced by the weights

restrictions (WRs) lie within an economically defmed production frontier, see Fare and

Primont [29], which here shall be termed a Theoretical Production Set (TPS). However,

as the actual input output levels that the DMUs are measured relative to, are unknown,

this assumption may or may not be viable. That is, the input output levels of the implicit

EPPS may be outside the theoretical production set or be deemed unachievable by the

DM. Thus without an explicit expression of the EPPS, the DM cannot be certain as to the

acceptability of their relative efficiency scores, and the results may mislead the DM with

respect to the DMUs' true inefficiency. Essentially, if the implicit EPPS under WRs is not

achievable, then the relative efficiency score is not a valid measure of performance. Thus,

caution should be used in interpreting the results without knowledge of the EPPS.

However the real issue at question here is one of whether or not the imposed global values

are appropriate.
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This problem may be overcome through the use of the Radial DMUs (RDMUs) defmed in

chapter four. These RDMUs allow the value judgments captured by the Weights

Restrictions (WRs) to be expressed in the form of the inputs and outputs of the process

under analysis. Thus the RDMUs provide information to the DM on the feasibility of the

input output levels that the DMUs are being assessed relative to under Weights

Restrictions (WRs). This, in turn, aids the DM in the interpretation of the relative

efficiency score and the feasibility of the imposed weights restrictions or, more specifically,

the value judgments that they reflect. Section three of this chapter deals with the case

where, given the explicit expression of the EPPS, the DM feels that the global values are

inappropriate and therefore would like to impose local values. To demonstrate how

RDMUs may aid the DM in the interpretation of their results, a simple example shall be

used.

A Simple Example

Consider assessing the 4 DMUs shown in Table 3.1 of chapter three with the additional

information that output 1 is deemed twice as valuable as output 2, expressed in the form of

u 1 - 2u2 ^ 0, and further suppose that the Theoretical Production Set is known. Construct

a Full Set of Output Radial DMUs (ORDMUs), (RD1, RD4, RD2} (using (4.1) of

chapter four) that will simulate the relative efficiency scores under the weights restriction

and thus defme an Extended Production Possibility Set for the problem. The three

production sets (theoretical, observed and unobserved) are plotted in Figure 5.1.
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Figure 5.1 - Extended Production Possibility Set and the Theoretical Production Set
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Output I per Normalised Input

The marginal rates of substitution (MRS) expressed as the Relative Weights Restriction

(RWR): u i - 2u2 ^ 0 is translated into terms of the input output levels of the assessment by

their expression in the form of the RDMIJs: RD1, RD4 and RD2. These three ORDMUs

modify the observed DEA frontier to form a new partly observed, partly unobserved DEA

efficient frontier that is defined by 03RD . Ho'j, t c cYt& k 'r 'c S.\

that RD1 and part of the unobserved frontier segment IPRD1 lie outside the theoretical

production set, i.e. it is thought that these input output levels are not achievable in

theoretical terms. Hence this would imply that for any inefficient DMU projected onto the

I PR Dl segment of the frontier, that their relative efficiency score is not achievable.

However, UDMtJs RD4 and RD2 lie within the theoretical production set, and their

relative efficiency scores should, in theory, be achievable, thus implying that the imposed

global values are NOT realistic for all the DMUs. That is, they are appropriate for D2 and

D4 but inappropriate for Dl. Hence in this specific example, there may be a need for the

introduction of local rather than global marginal rates of substitution (MRS), or a

modification of the imposed global MRS.

So, without this explicit expression of the EPPS, the DM would not have been aware that

some of its DMUs were being measured relative to unrealistic production processes.

Clearly, in providing the DM with an insight into the feasibility of the EPPS, the DM is
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also provided with an insight into the feasibility of the globally imposed value judgments,

and whether they are appropriate globally, locally or not at all.

The next section deals with problems that arise with the inclusion of absolute/virtual

weights restrictions.

5.2.2 A Meaningful Relative Measure

As demonstrated in chapter four, absolute/virtual restrictions cannot be simulated by a Full

Set of Radial DMUs (FSRD). This implies that the inclusion of absolute)virtual

restrictions leads to a different, implicitly introduced, unobserved frontier for assessed

DMUs, i.e. the implicitly introduced frontier is DMU specific. Hence the DMUs are being

measured relative to different standards. This has serious implications for the meaning and

interpretation of the results. Obviously, the scores cannot be considered as relative

efficiency scores, as the DMUs are not measured relative to the same input output levels.

Thus how should the DM interpret the results? Further, there is a mismatch of the relative

efficiency scores in that the different orientations provide different relative efficiency

scores, which contradicts the CRS assumption. This merely highlights the need for an

alternative approach to weights restrictions for ensuring that all the selected variables

contribute to the relative efficiency score.

One possible approach to overcome this problem is through the combined use of weights

restrictions and the RDMUs that were defined in chapter four. Suppose that some

absolute/virtual restrictions have been imposed in the DEA assessment. The obtained

scores are then used to determine a Full Set of Radial DMUs (FSRD) that individually are

required to simulate the absolute relative efficiency scores as detailed in chapter four.

However, if the DM now re-assesses the DMUs without the WRs but allowing all the

members of the Full Set of Radial DMUs (FSRD) to be considered as peer DMUs. Hence

the problem is converted back to a normal DEA assessment with one common PPS, partly

observed and partly unobserved for all the assessed DMUs. As the assessment is now a
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standard DEA assessment with an extended data set, the scores can be considered as

relative once again. So, the DM has gained a relative efliciency score for all its DMUs

relative to the same PPS, where the contribution of specific inputs and outputs has been

limited in a similar manner to their initial requirements. (Although the obtained results

may not reflect this due to multiple optimal solutions.)

Having considered the actual interpretation of the relative efficiency score, there is also the

interpretation of the targets and peers to be considered, given that the DM has information

on the input output levels of the EPPS, which will be discussed in the next section.

5.2.3 Targets and Peers

This section proposes to suggest how the use of RDMUs can aid the DM in the setting of

alternative targets to those suggested at present under weights restrictions. Currently the

targets provided under WRs are based solely on those DMUs that remain DEA-efficient,

as it is known that these input output levels are achievable. However, as a consequence of

the inclusion of weights restrictions, many of the DEA-efficient DMUs under the standard

DEA model, Charnes et at. [16] are rendered DEA-inefficient. In general those DMUs

that remain DEA-efficient are those with favourable operating mixes, i.e. consume less of

the higher valued inputs and produce more of the higher valued outputs. Thus, suggested

targets for a DMU which has been rendered inefficient by weights restrictions may involve

either a reduction to some of its output levels or an increase in some of its inputs. Such

targets could be perceived as counter-intuitive as they require increases in inputs and

reductions in outputs. Although, these proposed changes do render the DMU DEA-

efficient and are suggested so that higher levels of the higher valued outputs and lower

levels of the higher valued inputs are achieved, they may not be objective for the DM.

One possible interpretation of these suggested targets is that all the DMUs should tend

towards consuming less of the higher valued inputs and produce more of the higher valued

outputs. That is, tend towards a single desirable operating mix. However, this is not in
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line with the principles of DEA, as it implies that the introduced value judgments are

limiting the allowable range of efficient operating mixes, making some operating mixes

appear less desirable than others; whereas DEA allows DMUs of different operating mixes

to be deemed relatively efficient. RDMUs can be used to provide the DM with an

alternative perspective for the impact of the inclusion of values in a DEA assessment. This

alternative indicates to the DM targets that would maintain their present operating mix and

render them DEA-efficient. The more unfavourable the present operating mix under the

values involved the lower the input/higher the output levels needed to render the DMU

DEA-efficient. Thus, indicating to the DM that it is the levels of inputs and outputs that

are inefficient rather than their operating mix.

Hence through the use of RDMUs to express values, targets that maintain the DMU's

present operating mix can be suggested. These suggested targets will unfortunately be

based on unobserved input output levels. However, they could be interpreted as indicating

to the DM that it is not their operating mix that is inefficient, but that their inputs or

outputs levels are inefficient given the DM's values. Therefore, with the use of UDMUs

to express the DM's values the obtained targets imply an extending of the PPS with the

inclusion of values. Whereas the obtained targets with the inclusion of values in the form

of weights restrictions imply the values are narrowing the PPS.

At the least RDMUs are providing the DM with an alternative perspective for improving

their efficiency given the DMs values and their operating mix. To illustrate consider a

simple example.

A Simple Example

Consider assessing the DMUs of Table 3.1 of chapter three with the inclusion of the value

judgments in the form of relative restriction of u 1 - u2 ^ 0. This section assumes that the

imposition of the weights restriction renders no RDMU outside the Theoretical Production

Frontier and hence the imposed values are appropriate.
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Figure 5.2 - Interpretation of the Targets and Peers
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If the DM now determines the output radials, RD1 and RD4 that will simulate the relative

efficiency scores under the weights restriction. Then assessing the DMUs with these

Radial DMUs (RDMUs) as well as the observed DMUs allowed as peers, leads to a new

DEA-frontier being defined D3D2RD1. As can be seen from Figure 5.2 the inclusion of

the relative restriction renders Dl DEA-inefficient. Thus for Dl to be deemed DEA-

efficient, with the imposed WR, DEA suggests targets values of (3,2) with D2 as its peer.

These suggestions imply that DMU Dl should change its operating mix and decrease its

output 2 level by 1 unit so that it can increase its output 1 level (the higher valued output)

by 2 more units. However, the DM may or may not consider these targets to be objective.

RDMUs can be used to suggest alternative targets which are based on their present

operating mix. Thus, in the simple example, this would require an increase of 0.75 units in

output 1 and 0.25 in output 1. Hence to achieve efficiency with the use of RDMUs to

suggest targets, a total increase of 1 unit of output is required, rather than the 2 units for

the targets suggested under weights restrictions. The targets now convey to the DMs that,

given the standards of the other DMUs with different operating mixes and the values of

their outputs, to be deemed relatively efficient while maintaining their present mix, they

must increase, overall, their output levels by 20%.
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Further, both Dl and D4 have the same suggested target output levels under weights

restrictions, but this does not seem appropriate, as they do not reflect either the difference

in current output, their relative inefficiency scores nor their previous efficiency scores

without weights restrictions.

The use of RDMUs to aid the DM in their interpretation of the results and in the setting of

alternative targets, has been discussed in the above section. The next section will discuss

how the DM may amend the input output levels of the RDMUs in order to incorporate

local value judgments.

5.3 The Combined use of Wei g hts Restrictions and RDMUs

In a combined use of weights restrictions and RDMUs, the latter can be used to fine tune

the DM's value judgments initially conveyed by means of the weights restrictions. In

practical applications, the information on which weights restrictions are based is often

subject to uncertainty, as a DM cannot be confident on the precise numerica'l expressions

of their preferences. In these instances RDMUs can be used in an attempt to give more

precise expression to the DM's value judgments. The next section will consider the case

when the DM finds the RDMUs inappropriate and, therefore wants to adjust their imposed

weights restriction values.

5.3.1 Introducing Local Value Judgments

Consider the case, when the DM has calculated the Reduced Set of Radial DMUs

(RSRD), following the steps outlined in chapter four, with the RSRD representing the

minimum required number of RDMUs in order to simulate the weights restrictions. In

examining the input output levels of these RDMUs, the DM considers the imposed values

are in certain cases inappropriate, and would therefore like to alter their imposed values.

This can be achieved by modifying the imposed weights restrictions. However in this case

the DM will just alter their global values as opposed to introducing local values.
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Alternatively, the RSRD could be modified and the DM can introduce varying local values.

If this latter option is chosen, the question, then becomes how to modify the RSRD?

Clearly, different members of the RSRD will be modified differently. This will lead to

different value judgments being introduced for the various operating mixes that exist

within the PPS, i.e. local values are being introduced. One advantage of this approach is

that it is more in line with the principles of DEA, in that DMUs with different operating

mixes place different emphasis on the different inputs and outputs. Essentially, this

approach leads to local marginal rates of substitution (MRS) being introduced, based on

the local modifications of the global rate introduced by weights restrictions. To illustrate

consider a simple example.

A Simple Example

Consider assessing the set of DMUs shown in table 1.1 of chapter one, with the inclusion

of relative weights restrictions (RWRs): O.5u2 ^ u i ^ 4u2. Using (4.1) to calculate the set

of ORDMUs {RDO8, RD12 RD1O RD1 1 } which can be reduced to a Reduced Set of

Radial DMUs (RSRD) {RD1 0, RD1 1 }, following the procedure outlined in chapter four,

that will simulate the imposed weights restrictions. Figure 5.3 plots the EPPS for this

specific example as defined by the RSRDs.

Figure 5.3 - Extended Production Possibility Set

Efficient FrontierPr)1 n
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Output 1 per normalised Input
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The output levels of RDMU RD1 0 convey the global extent to which output 1 is preferred

over output 2. Thus, if output 1 is less preferred to output 2, as the restriction u 1 - 0.5u2 ^

o states, then the output levels of DM1] RD1 0 are (1.30, 10.35). However, had the

output weights restriction been u, ^ u2, indicating that output 1 is preferred to output 2,

then the output levels of the requisite UDMU would be (1.5, 12.0), placing RD1O at

RD1 0'. A much stronger preference of u 1 - 2u2 ^ 0 would lead to a RDMU at (2, 16),

which is not plotted in Figure 5.3. The output levels of RDMU RDIO and ROb' were

estimated, assuming that the output mix of DMU Dl 0 remains constant.

Alternatively the DM may deem that a(tering RDMIS R01c3 om 1 .3(3, 35) to ç, 95) 	 I

would be desirable, which provides a UDMU of a different output mix to Dl 0. This leads

to a new UDMU at RD1O" (see Figure 5.3). The higher efficiency of DMU D10 under

RD1 0" rather than RD1 0, reflects a weaker preference of output 1 relative to output 2.

Extending this idea to the multiple input output case, the RSRD will consist of many

RDMUs. Thus, it is for the DM to decide how to individually modify these RDMUs as

they feel appropriate. In general these modifications will vary from RDMU to RDMU and

thus local values are introduced based on the global values imposed by the weights

restrictions.

This section has illustrated how to introduce a local single value into the PPS. That is, it

has been shown how the DM may take into account the local changes in the values of the

inputs and outputs (values specific to the DMUs operating mix) within the PPS in their

relative efficiency measure. Suppose that the DM now wants to introduce several local

marginal rates of substitution (MRS). That is, take into account the changes in the values

of the inputs and outputs as the unobserved frontier is extended. This will be considered in

the next section.
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5.3.2 Introducing Varying Local Value Judgments

As shown in the previous section, a single local value can be introduced which is

acceptable to the DM in terms of the input output levels that are introduced. This,

however, raises the question of whether these local values are in line with the observed

values? For example, do they apply over similar ranges of input and output levels? If not,

then although a single local value may be viable, it may not be truly meaningful in terms of

the observed values. To illustrate this consider assessing the DMUs of Table 1.1, the PPS

is plotted in Figure 5.4.

Figure 5.4 - Production Possibility Set
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Examining the DEA-efficient frontier and its marginal rates of substitution (MRS), as

Figure 5.4 demonstrates, there are three different marginal rates of substitution (MRS),

one between D09 and D06 (1 unit of output 1 is worth 3 units of output 2); a second

between D06 and DOl (1 unit of output 1 is worth 1.33 units of output 2); and a third

between DOl and D07 (1 unit of output I are worth 0.67 unit of output 2). Clearly, the

value of output 1 relative to output 2 is decreasing as the quantity of its level decreases

and appears to change as output 1 level decreases by 1.5 units. However the frontier

implicitly introduced by the weights restriction, u, ^0.5u2 only allows one set of MRS that

extends over 3 units of output 1, see Figure 5.3. An extended frontier more in line with

the observed frontier would exhibit two MRS over the 3 units of output 1.
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The question is, therefore, how to introduce local varying values? Clearly, this will involve

the introduction of several additional UDMUs. The question then becomes how to

determine input output levels for the additional UDMUs. This can be achieved by

modifying the Full Set of Radial DMUs (FSRD) (as defmed in chapter four) that simulate

the relative efficiency scores under the WRs rather than the RSRD as in the previous

section. As detailed in chapter four, the RSRD can be obtained by removing the linearly

dependent RDMUs from the FSRD. Instead of removing the linearly dependent RDMUs,

the DM is required to modify the input output levels of these RDMUs. In doing this

several different local MRS can be introduced, as the RDMUs are no longer linear

combinations of other DEA-efficient DMUs.

Consider for example introducing varying local values when assessing the DMUs of Table

1.1, plotted in Figure 5.4. As noted earlier the FSORD consists of tRD12, RDO8, RD1O,

RD1 1 }. However, as detailed above, the observed frontier appears to have a change of

MRS approximately every 1.5 units of output 1. Thus, to maintain the continuity of the

observed frontier, the extended frontier should have local values tITlat 'bold over sinñ'lar

ranges of output 1. Imposing the global values in the form of relative restrictions, leads to

values that hold over approximately 3 units of output 1, DO7RD1 0. Suppose that the DM

considers a single MRS between D07 and RD1 0 to be unacceptable, and at least two

MRS should exist, due to the change in the output 1 level. This can be achieved through

the modification of the FSRD. In practice the precise determination of the ranges over

which the local values should and do hold is difficult to determine. However, the DM

should have an idea of ranges of inputs or outputs over which they would like their local

values to hold.
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Figure 5.5 - Introducing Varying Values
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It shall be assumed that the DM decides to modify RD1O and RDO8, (not shown in Figure

5.5) in order to capture two different MRS expressing the preference of the DM for output

1 over output 2. The DM decides that more desirable output levels for the DMUs that

express their preferences would be Ri D07 (2.3, 9.5) and R2D07 (1, 9.75). Introducing

these two UDMUs into the observed data set introduces two MRSs of u 1 - O.294u2 ^ 0 for

output 1 between 2.3 and 4 units of output 1 and u 1 - 0.192u2 ^ 0, for output 1 between 1

and 2.3 units of output 1.

Clearly in the multiple input multiple output case, there will be many more RDMUs that

require adjustments to their input output levels in order to express the DM's varying local

values. Further, it is not so straightforward to translate the adjustments to the RDMUs

back to weights restrictions. However, this graphical example has illustrated that through

the combined use of weights restrictions and RDMUs, the DM may include varying local

values into the assessment. The values are varying in the sense that as the unobserved

frontier created by the RDMUs is extended the marginal rates of substitution that are

exhibited between connecting RDMUs are different. The values are local in the sense that

the RDMUs from the differing areas of the PPS will have different modifications to their
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input output levels and thus the marginal rates of substitution between the same inputs and

outputs will be different in the different areas of the PPS.

This section has illustrated how the value of the outputs can be varied by DMU

comparisons, and how varying local values that are more in line with the DMUs operating

processes, can be implemented. The process illustrated above of modifying explicitly the

imposed value judgments by means of UDMIUs can be applied more generally.

5.4 Conclusion

This chapter has discussed and illustrated that the use of UDMUs as an alternative means

to weights restrictions for expressing the DMs values in a DEA assessment is, in principe,

a valid one. There are several motivating reasons for their use, as the approach offers the

DM a variety of different options for the expression of their values and their thdasion in

the assessment to weights restrictions. The key advantages in the use of UDMUs to

express values in a DEA assessment are now highlighted:

• Aid the DM in their interpretation of the results

Without the explicit expression of the modified PPS under weights restrictions, the DM

cannot be certain as to the meaning of their results. That is, whether they are feasible and,

if so, whether the imposed weights restrictions are appropriate. Thus, through the use of

UDMUs the DM is given an explicit expression of the input output levels that the DMUs

may be measured relative to, in order to obtain their relative efficiency score. Hopefully,

this will aid the DM in their interpretation of their results and give them a clearer picture of

the impact of the imposed values. At the very least it offers the DM an alternative

perspective for the interpretation of the results under weights restrictions.

• Varying Local Values

In general, the observed DMUs have different operating mixes and, therefore, place

different emphasis on the inputs and outputs in the assessment. Thus UDMUs allow the
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DM to express differences that may exist between the values of the inputs and outputs of

the assessment at the various operating mixes.

• Alternative form of expression for value judgments

The approach of weights restrictions requires the precise defmition of the relationships

between the inputs and/or outputs or maximum/minimum weight values, which may in

certain situations be difficult for the DMs to define. Thus UDMUs allow the DM to

express their values in an alternative form: DMU comparisons.

This chapter has established, in principle, that there are several advantages to expressing

the DM values in the form of the inputs and outputs of the production process. However,

throughout this chapter the input output levels of the UDMUs have been determined

through the initial introduction of weights restrictions. That is, the UDMUs are dependent

on the initial specification and implementation of weights restrictions. Thus, it could be

said that the UDMUs have been used to supplement the DM with additional information

that may aid them in obtaining more meaningfli and usefu' tesults.

The next chapter attempts to further develop these concepts of expressing values via

UDMU, by proposing an approach for the determination of UDMUs independently of

weights restrictions in order to capture value judgments iii a DEA assessment. The

specific aim of the introduction of these UDMUs will be to improve envelopment, that is

they are aimed at simply extending the observed DEA frontier rather than modifying and

extending it simultaneously.
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Section C
Improved Envelopment

Via UDMUs

Having established a viable alternative perspective to current approaches for the

inclusion of values in a DEA assessment, this section, which covers chapters six to nine,

focuses on developing practical procedures for using this alternative avenue for the

expression of value judgments.

This section breaks with the traditional approach of weights restrictions for the inclusion

of value judgments in DEA. UDMUs are used to incorporate value judgments in a DEA

assessment, with the input output levels of the UDMIJs being expressed independently

of weights restrictions. Thus the DM directly expresses their values in the form of

UDMUs.

The specific aim of this section is to improve envelopment of the DEA-inefficient

DMUs, that is, simply extend the frontier rather than modify and extend it

simultaneously. Thus, essentially the IJDMUs are being used to derive a similar end

result to the inclusion of lower bound absolute restrictions, in the assessment, except

inputs and outputs are being forced into minimal/maximal contribution levels via the

relationships between the inputs and/or outputs of the process under analysis.

This alternative approach provides the DM with the ability to include varying local

values and also takes into account the feasibility of the Extended Production Possibility

Set (EPPS).



6. Chapter Six
Incorporating Values and Improving
Envelopment Via UDMUs: CRS Case3

6.1 Introduction

The preceding chapters have demonstrated that the use of Weights Restrictions (WRs) to

incorporate value judgments in a DEI\ assessment impVcitty aX oosereti Yfi\s

(UDMUs) to the observed data set, and only allow global values to be introduced into the

assessment. Chapter five has demonstrated the advantages of expressing value judgments

via UDMUs which have been determined through the initial imposition of weights

restrictions. This chapter presents an approach where UDMUs are used directly to

incorporate value judgments in DEA assessments, without the use of Weights Restrictions

(WRs). That is, rather than use the weights model to introduce value judgments, the

envelopment model will be used to introduce UDMUs that explicitly modify the PPS and

implicitly restrict the weights.

One approach already exists that works directly on the PPS to ensure that at least a pre-

specified number of variables are given more than a minimal weight of (see model

(Ml .3) of chapter one) in computing the efficiency score of a DMU, namely that of

An earlier version of this chapter is under review for publication in Journal of Operational Research Society
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'Constrained Facet Analysis' (CFA) proposed by Bessent et a!. [12] and extended as

'Controlled Envelopment Analysis' (CEA) by Lang et a!. [38]. However, these methods

do not take into account the DM's value judgments on the worth of the inputs and outputs

in the assessment. They merely ensure inputs or outputs do not receive an weight.

Consequently these methods assume that the existing observed marginal rates of

substitution (MRS) can be extrapolated as far as necessary into unknown production areas.

This assumes that the unobserved operating mixes will have the same MRS as certain

observed mixes. This may or may not be true as, in general, the observed frontier exhibits

a variety of MRS, thus it is reasonable to assume that unknown production areas will also

exhibit a variety of MRS.

Further, the use of UDMIJs in this thesis to capture value judgments resembles, but differs

from, that of Golany and Roll [33], who also use the envelopment model to introduce their

values. They introduce standard DMUs into the DEA assessment in order to enable the

DM to estimate targets for improved performance for all DMUs, including those which

would otherwise be DEA-efficient. These standard DMUs are DM specified and are

denoted as standard as they are taken to represent ideal standard perfcrmawe, ci

this chapter, the approach is attempting to incorporate values that will extend the DEA-

efficient frontier, rather than directly modify and narrow it, which is the principal aim of

Roll and Golany [42].

The use of UDMUs in this proposed approach has the advantage that an explicit account

can be taken of information in respect of any technological or policy limitations on the

production process. A further advantage is that an explicit account can also be taken of

the value judgments at specific localities of the PPS. Chapter five discussed these

advantages in greater detail.

Throughout this chapter the term values is used to represent one of several values, either

a marginal rate of substitution, a marginal rate of transformation or a minimallmaximal
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weight value. DMUs will be used to denote observed DMUs, and UDMUs to denote

unobserved DMUs.

The chapter is structured as follows. The second section details the approach to be

developed, with two simple illustrations; the third section establishes a need for the

procedure; section four details from where to extend the frontier; section five identifies

which input output levels to adjust to encourage the non-c weighting of individual factors;

section six provides a basis for determining estimates for DEA-efficient UDMUs; section

seven discusses their implementation; section eight summarises the procedure and section

nine applies the procedure to a set of bank branches.

6.2 Jncorporatinq Va'ues & Improving Envelopment by Means of
UDMUs: An Outline

The aim of this chapter is to construct a set of UDMUs which when introduced into an

observed data set will incorporate values and improve envelopment, while placing

minimum informational requirements on the DM. It should be noted that the aim is purely

to improve envelopment, that is, reduce the number of input output variables that are

allocated an c weight in terms of the weights model. This does not, however, guarantee

full envelopment.

In essence the approach aims to obtain a more appropriate measure of efficiency by

extending the DEA-efficient frontier by means of UDMUs. That is, suitably defined

UDMUs are introduced into the observed data set that will extend the observed DEA

frontier in such a manner that it will result in the improved envelopment of DMUs which

have unusual input-output mixes. These DMUs could not be enveloped previously due to

the lack of suitable DEA-efficient comparator DMUs. Thus this approach considers the

problem of the inclusion of values as one of missing data, see Burgess [13]. It attempts

therefore to specify input output levels for these missing DMUs, hence providing

comparator DEA-efficient DMUs where, at present, none exist.
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As minima! information requirements are to be placed on the DM, the estimates for these

DEA-efficient UDMUs are to be based on the input output levels of selected DEA-

efficient DMUs. Thus, there are two main questions to be addressed in determining the

estimates of the DEA-efficient UDMUs:

• Which DMUs to extend the frontier from?

• How to adjust the input output levels of these selected DMUs to derive

suitable UDMUs that will improve envelopment?

The approach is aimed at improving envelopment by means of va!ue judgments. Thus it is

assumed that the va!ues of the DEA-efficient DMUs are acceptable to the DM, and they

are not being asked to directly express their perceived views on the DEA-efficient DMUs.

That is, it is concerned with the non-enve!oped DMUs, similar to the rates department

assessment of Dyson and Thanassoulis [27]. Thus, it was decided that the frontier will be

extended from those DMUs that are:

DEA-efficient and delineate the DEA-efficient from the DEA-inefficient

parts of the PPS boundary.

These DMUs shall be termed ANCHOR DMUs (ADMUs) and an approach for identifying

these ADMUs will be detailed in the next section. Clearly, DMUs can be classed as either

ADMUs or non-ADMUs. Having identified these ADMUs, suitable estimates for DEA-

efficient DMUs are made by adjusting their input output levels. The exact adjustments to

the input output levels are detailed in section 6.5, and are dependent on whether the

UDMU to be constructed is attempting to encourage the non-c weighting of an individual

input or output. However, as they are only estimates, their DEA-efficiency cannot be

guaranteed and it may be that not all the estimates of DEA-efficient UDMUs will in fact be

DEA-efficient.

It should be noted that the procedure only considers attempting to prevent individual

inputs and outputs from being ignored. That is, how to determine UDMUs that, when
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added to the data set will, in principle, encourage the non-s weighting of individual inputs

or outputs, one at a time and NOT the simultaneous non-s weighting of a combination of

inputs or outputs. Thus, if a DMU ignores several inputs or outputs, then it may be

necessary to simultaneously adjust the input output levels of several of the inputs and

outputs of the ADMUs to further decrease the number of their inputs and outputs given an

c weight.

To demonstrate the procedure to be developed for incorporating values and improving

envelopment, two graphical examples are considered, one to encourage the non-s

weighting of a single output, and one to encourage the non-s weighting of a single input.

6.2.1 Encouraging the Non-g Weighting of an Individual Output

Consider assessing the set of 11 DMUs in Table 1.1 of chapter one, plotted in Figure 6.1.

Figure 6.1 - Extended Production Possibility Set
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The DEA-efficient boundary is defined by D07, DOl, D06 and D09, the DEA-inefficient

boundary segments are CDO9 and BDO7, with any DMUs that lie on these segments

(class F), or which are projected onto these segments (class NF), allocate one of their

outputs an c weight. (Alternatively, it can be said that they have a positive output slack.)

It is evident from Figure 6.1 that to ensure proper envelopment, with minimal alteration to
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the observed frontier, it should be extended from D07 and D09 (both class E), in order to

prevent output 1 and output 2 respectively from being ignored in the assessment. Thus

D07 and D09 are the ADMUs in Figure 6.1. Now, in order to emphasise the value of

output 2 over output 1, consider adjusting the output levels of DMU D07 so that its

output 1 is set to the minimum production level deemed to be feasible (because of policy

and/or technical reasons). It is assumed that the minimum feasible level of output 1 is 1

unit (per unit of input). Now the DM is requested to determine how to raise the level of

output 2 to compensate for this loss of 3 units of output 1. The DM decides that locally

no more than 0.5 units of output 2 would be necessary, o con-içiensate or the kiss 3

units of output 1 per unit of input. This means that DMU UDO7, which produces 9.5

units of output 2 and 1 unit of output 1 per unit of input, would be deemed by the DM as

equally efficient as DMU D07. From Figure 6.1 it can be seen that this is sufficient to

ensure the proper envelopment of the previously non-enveloped DMUs Dl 0, D08 and

D12.

Hence to encourage an nthvidua) output. k to use a aoa- weht, seeced

ADMUs require the lowering of their output k levels.

6.2.2 Encouraging the Non-s Weighting of an Individual Input

Consider assessing a set of 12 DMUs producing a single unit of output and consuming two

inputs in the quantities shown in Table 6.1, with Figure 6.2 plotting the PPS generated by

these 12 DMUs. It should be noted that in practice 112 is unrealistic but is included in the

data set for illustrative purposes only.

Table 6.1 - Example Data Set 3

101	 102	 103	 104	 05	 06	 07	 08	 09	 110	 Iii	 12

Input 1	 5.5	 5	 4	 4	 7	 4	 2	 8	 2	 5	 2.5	 9

Input2	 8	 6	 7	 3	 6	 9	 8	 3	 6	 2	 9	 0
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Figure 6.2 - Extended Production Possibility Set

10

9

07

0
E4

(N3

02c

F
U 109

\
\ ± 07

104

Efficient Frontier
-	 Unobserved Efficient Frontier

106
+
101

103
+

102	 105

108

1

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10
Input 1 per normalised Output

The DEA-efficient boundary is mapped by 112, 110, 104 and 109, with the PPS being

bounded by the DEA-efficient boundary and the line F109. DMUs 107 (class F) and Ill

(class NF) attain their maximum efficiency score by allocating an c weight to their inpit 2,

with 109 as their sole peer DMIJ. Clearly, the frontier needs to be extended from 109 in

order to improve envetopment, and so i5 an ADM\3. 'ppose lne YIi cons\eis

adjustments to the input output levels of 109 and deems that U109 (1,10) would be

considered equally as efficient as 109. Thus the DM considers 1 unit of input 1 to have a

local value of 4 units of input 2. Thus UDMU, U109 is sufficient to class 107 and 111 as

NE, and ensures that their input 2 receives a non-s weight.

Thus to encourage the non-s weighting of an input, a DEA-efficient DMU must be

introduced that consumes more of that input than the observed inefficient DMU.

These graphical illustrations demonstrate that DMUs which are non-enveloped have radial

projections onto the DEA-inefficient parts of the PPS boundary. Thus, in the general case,

the UDMUs to be introduced should at least extend the DEA-efficient part of the PPS

boundary to envelop as large a part of the DEA-inefficient boundary of the PPS as

possible. A summary of the steps required in the proposed procedure for suitably

extending the PPS will now be outlined, with each step explained in a later section of this

chapter:
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i.	 Assess the DMUs to determine the DEA-efficient DMUs and the initial

envelopment of the DMUs.

ii. Identify the ADMUs.

iii. Identify the individual inputs and outputs of the ADMUs that need to be adjusted

in order to improve envelopment.

iv. Construct suitable estimates of DEA-efficient UDMUs.

v. Re-assess the DMUs permitting DMUs and UDMUs to be peers.

vi. If the DM feels the results are unsatisfactory then repeat steps (iv) and (v).

Otherwise stop.

Thus, the next section will begin with identifying the DEA-efficient DM1Js and the initial

envelopment of the inefficient DMUs.

63 Assessing Envelopment: Step (i)

The initial step in the procedure is to determine the DEA-efficient DMUs and the

envelopment of the DMUs, to establish a need for the procedure. Thus, consider assessing

a set of N DMU5,j=1..... N, each using varying amounts of m different inputs, xi,, i=1.....m

to secure varying quantities of s different outputs, Yrj, r=1.....s. The DEA weights model

yielding the DEA-efficiency score h of DMUj0, under CRS is (see Charnes et at. [16])

(M6.1) Weights Model	 (M6.2) Envelopment Model

S	 III	 S

h; = Max	 = Mm q 0 -	 S, + Sni+rJ

II:	 N

s.t.	 v,x,, =1	 s.t. q 0 x,1 —2 1x — S1 =0	 i=1.....m

UrYrj —v,x,, ^O	 1= 1.....N	 21y, Sni+r = Yq	 r=1.....s

v,, ur ^	 Vi, r	 2, S1. Sm+r ^ 0	 Vi. j, r
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In (M6. 1) v1 and Ur are the weights attached to the inputs and outputs respectively, e is a

non-Archimedian infinitesimal, see Chames et at. [17]. In (M6.2) S represent slack

variables. Let * denote the value of a variable at the optimal solution to the model in which

it appears. Let .JE be the set of DEA-efficient DMUs provided by (M6. 1), with a DEA-

efficient DMU as defined in chapter one.

Clearly, if all the inefficient DMUs are properly enveloped i.e. = Sm+r = 0 for all

DMUs in (M6.2) then there is no need for the continuation of the procedure. However, in

general, this will not be the case, and so the proposed steps (ii) to (v) provide the DM with

a means of including values and improving envelopment.

The next section will outline an approach for identifying which of the DEA-efficierit

DMUs identified by (M6.1) are ADMUs.

6.4 Identifying Anchor DMUs: Step (ii)

As noted in section 6.2, ADMUs are those DMUs that delineate the PEA-efficient frontier

from the DEA-inefficient frontier. Evidently in the graphical illustrations of section 6.2 the

ADMUs are easily identified. [It should also be noted that DMUs can be classed either as

ADMUs or as non-ADMUs.] Unfortunately, in the multiple input output case, the

identification of the ADMUs is not so straightforward. However, ADMUs can be

identified using the concept of Super Efficiency (SE), introduced by Andersen and

Petersen [6] (see chapter four). Let JE 0 be the set JE defined with reference to (M6. 1)

excluding DMU Jo EJE. To determine the SE off0 EJE with respect to JE 0 solve the

following envelopment model:
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( in	 s

= Mm z0 -	 H1 +Hrn+r

	

i=1	 r=I

- Hm+r = Y0	 r=I.....S

, H, Hm+r^0
	 7I, r,j&JE10.

H represent slack variables. Let / denote the value of a variable at the optimal solution to

model (M6.3).

Model (M6.3) is the Charnes et al. [16] basic DEA model but with reference only to the

DEA-efficient DMUs identified by (M6. 1) excluding DMU Jo. It should be noted that

there are two possible outcomes to (M6.3) in terms of the solution, feasible or infeasible.

For those DMUs with feasible solutions to (M6.3), their status as to whether or not they

are ADMUs is decided by reference to the classifications of DMUs in DEA introduced by

Charnes et al. [19]. Firstly, as the ADMUs are to delineate the DEA-efficient from the

DEA-inefficient boundary, they clearly must be of class E. Secondly, if they are excluded

from the data set, the inefficient facet of the frontier would be altered. This implies

ADMUs can be rendered class F with respect to the other DEA-efficient DMU5 by

radially adjusting their input output levels. That is, when the ADMU is excluded from

the constraint set, there exists no suitable DEA-efficient comparators to ensure no positive

slack variable exist at the optimal solution to (M6.3). Thus, if a DMU has a feasible

solution to (M6.3), then to be considered as an ADMU it must have a SE value in

(M6.3) that is greater than 1 and have at least one positive slack variable. Figure

6.3 illustrates the case for l09 of Table 1.1.
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Figure 63 - Identifying 109 as an ADMU

1	 2	 3	 4	 5	 6	 7	 8	 10
Input 1 per normalised Output

Clearly, assessing 109 under (M6.3) will provide an optimal value of greater than one. In

addition, there is a positive slack corresponding to its input 2, and hence it meets the

conditions to be deemed an Anchor DMU (ADMU). Note that when 109 is assessed

under (M6.3) its point of reference for its SE score is 109', which is a class F DMU. Thus

109 can be rendered a class F DMU with reference to the other DEA-efficient DMUs by

radially extrapolating its input levels.

By the nature of an infeasible solution to (M6.3), see Land [37], the DMUs delineate the

DEA-efficient from the DEA-inefficient. It implies that the DMU cannot be expressed in

terms of the other DMUs. Figure 6.4 demonstrates the case for 112, which consumes 8

units of input 1 and zero units of input 2 per unit of output and yields no feasible solution

to (M6.3).
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Figure 6.4 - The Super Efficiency of /12

1	 2	 3	 4	 5	 5	 1
Input I per normaUsed Output

Figure 6.4 illustrates that when assessing the SE of M 2 under (M6.3) there is no DEA-

efficient frontier against which to measure its SE, and so the model is infeasibe. Ceary,

DMUs such as 112 in Figure 6.4, with infeasible solutions to (M6.3), delineate the DEA-

efficient from the DEA-inefficient frontier and thus, by definition, they are ADMLJs.

Concluding, in the general case, a set of ADMUs, JA can be identified as follows: for all

the DEA-efficient DM1Js assessed under (M6.3) that satisfy one of the following:

•	 > 1, and at least one 1-1'> 0 or W'm+r> 0

or

• (M6.3) has no feasible solution.

For proof of these two statements, see Appendix 6.1

Thus, the process for identifying the ADMUs has been outlined, but there still remains the

question of how to determine the input output levels for the UDMUs. The initial

consideration in the determination of the input output levels of the UDMUs is how to

adjust specific inputs and/or outputs of a ADMU in order to encourage the non-E

weighting of specific inputs and outputs. The next section will address how to identify

which of the ADMU's inputs and/or cutputs need these specific adjustments.
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6.5 Which In put and/or Output Levels of an ADMUs to Adiust?
Step (iii)

The graphical illustration of section 6.2 (where there are only two ADMUs and only two

possible outputs that can be ignored) demonstrated that in order to encourage the non-c

weighting of input k, for a selected ADMU, its input k level needs to be raised. Similarly,

to encourage the non-c weighting of output k for a selected ADMU, its output k level

needs to be lowered. However, in the multiple input output case, it is not so

straightforward and, in general, the number of ADMUs and number of possible inputs and

outputs that can be assigned an c weight is not coincidental. Hence Proposition 6.1 and

Proposition 6.2 state the general cases, for encouraging the non-c weighting of individual

variables.

Proposition 6.1: Encouraging the non-c weighting of an input

To encourage the non-c weighting of input k for a set of selected ADMUs their input k

levels need to be raised in order to construct estimates of suitable DEA-efficient DMIUs

that will, in principle, improve envelopment.

Proposition 6.2: Encouraging the non-c weighting of an output

To encourage the non-c weighting of output k for a set of selected ADMTJs their output k

levels need to be lowered in order t construct estimates of suitable DEA-efficient DMUs

that will, in principle, improve envelopment.

However, the problem of how to identify the set of ADMUs needs to be addressed. That

is, how to identify for each ADMU, which of its inputs and/or outputs need to be adjusted

as the basis of the construction of UDMUs, that are necessary in order to improve

envelopment. It is proposed to identify these inputs and/or outputs by utilising information

on the positive slack variables of the class NF and F DMUs, from the initial DEA

assessment of (M6.2). The motivation for this is, that although it is known that the

ADMUs delineate the DEA-efficient from the DEA-incfficient frontier, it is not known if

any DEA-inefficient DMUs are projected onto these DEA-inefficient frontier segments.
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Thus combining this information should indicate to the DM whether or not the ADMUs

connect to a DEA-inefficient frontier that inefficient DMUs are projected onto.

Let JIN be the set of class NF DMUs, with optimal values of q 1 with reference to (M6.2)

corresponding to the assessed DMU j. Construct a set of class F DMUs, with input

output levels as defined in (6.1), corresponding to these class NF DMUs.

Xj11= q*ixii	
Yiu=Yi	 JEJIN	 (6.1)

Thus, the class NF DMIJs have their input levels radially reduced in line with their radial

DEA-efficiency yielded by (M6.2). Let the set JF contain the observed class F DMUs in

(M6.2) and the adjusted class F DMUs of(6.1), withjf=1.....JJFJ. Let JA denote the set

of ADMUs, defined with reference to (M6.3). For eachjo EJA solve (M6.4).

- Mm z0 -
	

H + H,n+r

r Jy,l +	 =Y0
j EJk1 	 if elF

i iHi,Hm+r^O

r1.....S

i, r,j EJEJ, JfEJF

Notation in (M6.4) as in (M6.3). Let denote the value of a variable at the optimal

solution to model (M6.4).

Let AJPJ0 denote the set of referent DMUs for ADMUj0 in (M6.4). If (M6.4) provides a

feasible solution, then ADMU j requires adjustments to its input andlor output levels as

outlined below.

Stages for identifying which inputs and outputs of the ADMUs to adjust

a) Identify each class F DMU that is a referent DMU to ADMU j in (M6.4), i.e. each

Vjf >0 and thus If E AJP10.
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b) For each of these if e AJP,0 identify the positive slack variables for their original DMU

in (M6.2).

c) For each input or output of the ADMU corresponding to the positive slack variable in

(M6.2), at least one estimate of a DEA-efficient UDMU is to be constructed following

the initial adjustments outlined in Proposition 6.1 and Proposition 6.2.

For proof that these steps will improve envelopment when solving (M6.2) inclusive of the

UDMUs constructed see Appendix 6.2.

To illustrate the procedure, consider the DMUs of Table 6.1, as discussed in Section 6.2.2,

where DMU ill is of class NF. Construct a class F DMU corresponding to this class NF

DMU using (6.1), denoted by TI in Figure 6.5. Section 6.4, identified 109 as an ADMU,

so DMU 109 is assessed in (M6.4), to determine if any of its inputs andlor outputs need

adjusting. Figure 6.5 graphically illustrates this case.

Figure 6.5 - Identifying Which Input Output Levels of /09 to Adjust

1	 2	 3	 4	 5	 6	 7	 8	 10
Input 1 per normalised Output

Clearly, when 109 is assessed under (M6.4), its referent DMUs are 104 and TIl 1. Now it

is known that Till has a positive output 1 slack and hence, ADMU connects to a DEA-

inefficient frontier section that has inefficient DMUs either on the frontier or are projected

onto the frontier in (M6.2). So, ADMU 109 is required to increase its input 2 level to
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create an IJDMU in order to encourage the non-E weighting of input 2 in the assessment,

as detailed in Section 6.2.2. Further, it should be noted that 109 will be a peer DMU

to Ill in (M6.2) as detailed earlier.

It should be noted that this approach may not provide the DM with all possible

adjustments to the inputs and outputs of an ADMU in order to improve envelopment, as

alternative optimal solutions may exist. Clearly, there may be other possible approaches

for identifying the required adjustments to the inputs andlor outputs of an ADMU in order

to improve envelopment. Although the procedure presented here will increase the number

of enveloped DMUs.

Thus to conclude once a DMU is identified as an ADMU from mode) (M& 3) to ident)fr

which the set of specific inputs and/or outputs of each ADMLT that require adjustments in

order to construct suitable estimates for UDMUs that will improve envelopment, model

(M6.4) is used. The next section will suggest approaches for compensating for the raising

of an input or the lowering of an output in order to construct suitable estimates for the

DEA-efficient UDMUs.

6.6 Constructing Suitable Estimates for DEA-Efficient UDMUs:
Step (iv)

To enable the DM to construct suitable estimates of DEA-efficient UDMUs that will, in

principle, improve envelopment, there are several questions that need to be addressed.

What level to raise the inputs to and what levels to reduce the outputs to? How to arrive

at these levels? 1-low to maintain the efficiency of the DMU? As these three questions are

interlinked, and essentially determine the input output levels of the UDMUs, they will be

considered simultaneously. However, the following offers only some general guidelines to

the DM for the construction of the UDMUs. The actual adjustments will be for the DM to

decide and will be dependent on the relationships between the inputs and outputs of the

assessment.

97



Chapter Six - Incorporating Values & Improving Envelopment Via 1JDMUs: CR5 case 	 April, 97

6.6.1 Encouraging the Non-8 Weighting of an Individual Output

To encourage the non-6 weighting of an individual output, DEA-efficient estimates of

UDMUs are constructed from an ADMU by initially reducing the level of one of its

outputs identified following the procedure outlines in the previous section. Ideally for

maximum envelopment output levels will be reduced to zero. However, in many practical

contexts, zero output levels are impossible or simply not acceptable. For example, if in an

assessment of a school's efficiency, one of the outputs is the mean mathematics score of

pupils at exit, a zero level is not very likely even if feasible in principle. Thus each output

will be reduced to a minimal production level determined by the DM, given the technica)

constraints or management policies, and the input levels of the ADMLIs.

Further, the DM may feel that to reduce the output level of the ADMU directly to its

minimum level would encompass several different values (marginal rates of substitution

andlor transformation). That is, the DM feels that to reduce the output directly to a

minimum level would only introduce a single value, whereas in reality several values may

exist over the output levels that the reduction encompasses. Thus the DM would prefer to

reduce the ADMUs output level in stages, with different values introduced at each stage.

These different values are introduced by varying the adjustments to the remaining input

andlor output levels of the ADMU in order to compensate for the reduced output

production. This leads to the question of how to compensate for the reduced output level.

Essentially there are two approaches:

• Raising of the other outt levels	 -

As demonstrated graphically in the two output case, if one output level is reduced, then to

maintain efficiency, the output level of the other output must be raised. Generalising, a

decrease in the level of one output will require an increase in production of some or all of

the remaining s-i outputs in order to maintain the DMU's efficiency. The rise of level in

some or all of the remaining s-i outputs will be dependent on the relationships between the

outputs and between the input and the outputs. For example, if the level of output 1 is
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dependent on the level of output k, then the reduction in level of output k will

automatically lead to the reduction in output 1. Furthermore, the DMs may or may not

have a preference over the relative changes in the output levels, in that they may

want an increase in level of specific outputs in preference to a global increase in the s-i

outputs.

• Lowering of input levels

Alternatively the reduction in output k could be compensated for by reducing the level of

the input used to produce this output. Obviously, this reduction wiU. depend on the

relationship between the reduced output and the input, and will \3e DN defried. inei, iV

as mentioned above, any of the remaining s-i outputs are dependent on the reduced

output, then their level will also have to be reduced. Consequently, the input )evei will

have to be further reduced to take into account this additional decrease in output.

6.6.2 Encouraging the Non-s Weighting of an Individual Input

To encourage the non-s weighting of an individual input the DA-effieient estimates o the

UDMUs are constructed from an ADMU by increasing the level of one of its inputs as

outlined in the previous section. The level by which this input is raised will depend on

technical constraints and managerial policy. In addition, if the consumption level is

increased in steps, a variety of different values can be incorporated into the assessment,

provided that the adjustments to the other inputs and outputs of the ADMU vary from step

to step in order to compensate and maintain efficiency. Thus the question that remains is

how to compensate for the increase in input in order to maintain efficiency? There are two

approaches:

• Raising of output levels

Intuitively, it is reasonable to expect an increase in output as the direct consequence of an

increase in input. Thus UDMUs can be created by increasing the level of the related

outputs to account for the increased amount of input. These increases will be dependent
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on the existing relationships between the inputs, with the increase in one input possibly

implying an increase/decrease in a dependent input. This approach simultaneously

incorporates information on the relationship of the inputs and outputs.

• Lowering of the other input levels

In the multiple input output case, the rise in one input level needs to be compensated for

by a lowering of some or all of the rn-I inputs, taking into account the relationship

between the inputs and the outputs. Further, the DMs may or may not have preferences

over the relative change in the input levels, which will effect the adjustments, as in the

output case.

The DM is now in a position to provide the essential information required to construct the

necessary UDMUs. Clearly, the determination of the input output levels of the UDMUs is

for the DM to decide. This will depend on their values and the existing relationships

between the inputs andlor outputs. However, the value judgments that are extracted at

this stage are only implicitly felt by the DMs and they will need to be helped to articulate

them.

For simplicity, to check if the specified UDMIJs are DEA-efficient, the DM may assess the

UDMUs relative to the DEA-efficient DMUs only. If it is found that some of the UDMUs

are DEA-inefficient then their input output levels may be adjusted. Further, DEA-

efficiency of a UDMU is not sufficient to guarantee the UDMU will improve envelopment;

this depends on the input output levels of the UDMU.

6.7 Implementation: Step (v)

Once the ADMUs relating to a set of N DMUs have been identified and their associated

UDMUs created, following the steps of the previous sections, the DMUs can be assessed

using model (M6.1), permitting UDMUs as well as DMUs to be peers. The number of

properly enveloped DMUs should be larger than in the absence of the UDMUs. This
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follows from Appendix 6.2. However, full envelopment is not guaranteed. The increase in

the envelopment of DMUs will depend on the input output levels of the UDMUs in

relation to the DMUs. If the DM feels that the improvement to envelopment is not

sufficient, then the UDMUs may be modified andlor new UDMUs added using the same

process.

The next section will summarise the procedure.

6.8 Incorporating Values & Im proving Envelopment by Means of
UDMUs: A Summary

Consider a set of N DMUs using m inputs, x,, i= 1.....m to produce s different outputs Yrj,

r= 1 ,...,s. The following steps can increase the number of properly enveloped DMUs in

assessments of DEA efficiency, but does not guarantee full envelopment.

i. Model (M6.1) is used to identify the set of DEA-efficient DMUs JE. The DMUs

inJE are of class E and E' as defmed by Charnes eta!. [19]. If all DMUsjøJE are

properly enveloped as defined in Lang ci al. (38) stop. Otherwise go to (ii).

ii. For eachjEfE solve model (M6.3) to determine h as defined in that model. The

set of ADMUs JA, can be identified from this model with JA = {jj h >1, and at

least one H' > 0 or H"m +r > 0, or DMUJ has no feasible solution}.

iii. In respect of eachjEJA solve (M6.4) and identify the inputs and outputs of each

ADMU that require necessary adjustments as outlined in Section 6.5. Using

Proposition 6.1 and Proposition 6.2 to initiate the construction of at least one

UDMU.

iv. In respect of each ADMU, for each output and input identified in step (iii) at least

one UDMTJ is constructed. The construction of each UDMU is DM defined and

based on the their local values, the relationship between the inputs and outputs and

any technological and policy constraints that may exist.
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v. Assess the DMUs using model (M6.1) but permitting both DMUs and the UDMUs

created in step (iv) to be peer DMUs. The number of properly enveloped DMUs

should be greater than the number initially found in step (i).

vi. If the DM wants to see a further increase in the number of DMUs enveloped,

repeat steps (iv) and (v). Otherwise stop.

The next section demonstrates the use of the aforementioned process on a real data set.

6.9 An Application of the Use of UDMUs to Incorporate Values
and Improve Envelopment in DEA

In this section the use of UDMUs to improve envelopment in DEA will be illustrated by

applying the theory to a real data set, where the DMUs consume multiple inputs in order

to produce multiple outputs. For an illustration of a single input multiple output case, and

as a means of comparison to the approach detailed in this chapter to the approach of

absolute weights restrictions, see Allen and ThanassouVts

The following is an example to illustrate the proposed approach for incorporating value

judgments in a DEA assessment under CRS. A set of 668 bank branches shall be assessed

using the following set of input and output variables, which were selected by the DM and

are deemed to provide appropriate estimates of resource efficiency given the limited

available data. That is, the extent to which the resources of a branch can be reduced, while

maintaining their current level of sales/services. See Berger and Humphrey [11], for a

survey of performance measurement in banks.

Table 6.2 - The Inputs and Output Used to Assess the 668 Bank Branches

Inputs	 Outputs
1. Total Costs (TC)	 1. Number of Mortgages Applications (MT)
2. Number of Facilities (FA) 2. Number of Protection Applications (AP)

____________________________________ 3. Number of Insurance Applications (AT)
_________________________________ 4. Number of New Saving Accounts (SV)
____________________________________ 5. Number of Counter Transactions (CT)
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The first input is the total staff costs incurred at each branch; the second input is the

number of facilities (e.g. computers, desks etc.) at each branch. The first output is the

number of mortgage applications made; the second output is the number of applications

for protection sales that are made, e.g. life and medical insurance and are sold only by

trained stafl the third output is the number of investment applications that are made,

which are regulated sales e.g. peps and unit trusts, and are sold only by trained staff; the

fourth output is the number of new saving accounts made, and the last output is the

number of counter transactions made, e.g. paying in!withdrawal transactions at the tills.

The actual input output levels of the branches can be found in Appendix 6.3.

Step (i)

The initial envelopment of the branches was assessed by solving model (M6.1). II was

found that 29 branches were flEA-efficient, and so thece were ine cccect wacces.

Figure 6.6 summarises the number of inputs and outputs assigned an c weight in the

assessment for each of the 639 inefficient branches. As there are a total of 7 variables, it. i

possible for a DMU to assign a maximum of 5 6 weights. However, it was found that only

a maximum of 4 8 weights were assigned by the neffcient branches. With an c weighting

of a factor in the weights model being equivalent to a positive slack value in the

envelopment model. [There may have been alternative optimal solutions which change the

envelopment of the DMUs as shown in Figure 6.6, but in general the number of DMIUs

would not be properly enveloped.]

103



Chapter Six - Incorporating Values & Improving Envelopment Via UDMLJs: CRS case 	 April, 97

Figure 6.6 - Number of g i	 Input and Output Variables Per DEA-
Inefficient Branch in (M6. 1)
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Although there are a large number of branches that are properly enveloped, the majority of

the inefficient branches do not use all their inputs and outputs to determine their relative

efficiency score and, in general, at least 1 or 2 of their inputs and outputs are allocated an

weight, i.e. are essentially ignored in the analysis. Hence, it could be concluded that the

attained scores do not reflect the true inefficiency of the majority of branches. That is, for

the majority of branches, their true inefficiency is higher than it actually indicated by their

DEA-inefficiency because the latter effectively ignores several inputs and outputs. Thus

this step has established the need for a procedure to improve the envelopment of the

branches. It is worth noting here that the 29 DEA-efficient branches enveloped only 108

inefficient branches, which is a ratio of approximately 1 to 4.

At present, the DM does not use weights restrictions, because it is felt that there is a lack

of objectivity in the setting of restrictions, especially as the weights cannot be used to

represent marginal rates of substitution, so relative restrictions were inappropriate.

However, it was felt by the DM that some means of introducing values into the assessment

was required in order to obtain relative efficiency scores that were more representative of

a branch's true efficiency.
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Independently of their DEA analysis the organisation conduct an Activity Based Costing

(ABC) analysis, see Johnson and Kaplan [36] on their branches. ABC is an accounting

based assessment aimed at aiding the DM in improving the relative efficiency of their

branches. This involves gathering information on the costs assigned to the outputs, and it

was found that this existing information could be readily used to determine the input

output levels for the unobserved branches. The DM felt there may be problems relating

the results to the bank managers, but as these unobserved branches were to be based on

information collected for their ABC assessment, it was felt they would have credibility.

Thus it has been established that there existed both a need for the procedure and a suitable

approach for the DM.

Step (ii)

The identification of the anchor branches of the assessment, was achieved by solving

model (M6.3). It was found that 27 of the 29 DEA-efficient branches were anchor

branches.

Step (iii)

Having identified the potential branches for the basis of the unobserved branches, there

now remains the question of which inputs and outputs of these anchor branches require

adjustments in order to improve envelopment. To illustrate this step of the approach, the

assessment of branch D150 under (M6.4) shall be considered. Firstly, model (M6.4) was

solved in order to determine which of the radially adjusted class F DMUs were Dl 50's

referent DMUs. It was found that the observed inefficient branches from (M6.1) which

correspond to those radially adjusted class F branches identified in (M6.4) as Dl 50's

referent branches were: D046, D246 and D308. Secondly, the slack values for each of

these 3 branches in (M6.2) were identified and are shown in Table 6.3. These are used as

the basis for the construction of any unobserved branches to be based on the input output

levels of D150.
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Table 6.3 - Results of Step (iii) for Branch D150

Observed class NF branch corresponding	 Positive slacks in (M6.2)
to the referent branch in (M6.4)

D046	 CT
D246	 Al & SV
D308	 TC, Al & SV

Hence for branch Dl 50 a minimum of 4 unobserved branches needed to be constructed, as

3 class NF branches have in total 4 different inputs and outputs with positive slack values

in (M6.2). Table 6.4 shows the basis for the construction of these 4 unobserved branches.

Table 6.4 - The Basis for the Construction of the Unobse,ved Branches
Based on Branch D150

For the details of which input output levels of each anchor branch are to be raised or

lowered, as required, in order to construct at 'east oce u bsered canc s

see Appendix 6.4. However, it should be noted that it was found that only 23 anchor

branches required adjustments to their input output levels. The remaining 4 anchor

branches only had anchor branches as their referent branches in (M6.4).

It was decided by the DM to initially only introduce one unobserved branch per input

raised or output lowered. That is, only one local value is to be introduced in extending the

PPS, so the minimum number of unobserved branches (75) were constructed.

Turning to the actual construction of the unobserved branches, the DM felt it was

unrealistic for an unobserved branch to have zero levels for any of the outputs. Thus, an

interesting point here is to note the maximum observed input and minimum observed

output levels, as they may be a useful source of information for the consideration of

appropriate levels to raise the inputs and lower the outputs. Table 6.5 displays these

maximum observed input and minimum observed output levels.
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Table 6.5 - Obseried Maximum Input Levels and Minimum Output Levels

Inputs	 Outputs

TC	 FA	 Al	 AP	 CT	 MT	 SV
426178	 20	 2	 5.8	 33077	 11	 459

Step (iv)

As mentioned previously, the information collected by the DM for their Activity Based

Costing (ABC) analysis, see Johnson and Kaplan [36], could easily be used as a basis for

the determination of the unobserved branches, as the information establishes relationships

between the inputs and outputs.

As the number of unobserved branches to be determined is large, their construction shall

be demonstrated by the construction of the unobserved branches based on branch Dl 50.

As demonstrated earlier 4 unobserved branches Al Dl 50, A2D1 50, A3D1 50 and

A4D150 are to be constructed based on D150's input output levels. The input output

levels for these unobserved branches are shown in Table 6.6 and they were decided by the

DM, drawing from their ABC accounting information on the inputs and outputs of the

assessment.

Table 6.6 - Input Output Levels of the Unobserved Branch Based on D150

FA	 TC	 Al	 AP	 CT	 MT	 SV

D150	 13	 309822	 219.8	 219.2	 305347	 384	 3902

A1D15O	 14.0	 364145	 248	 245	 331254	 421	 4125

A2D150	 12.0	 268966	 2	 174	 29700	 332	 3816

A3D150	 10.8	 202908	 179	 174	 3000	 324	 2654

A4D150	 11.8	 239765	 187	 185	 245120	 345	 450

Clearly, for Al Dl 50, the DM felt that a raise in the total costs at branch Dl 50 would be

compensated by a general increase in all the outputs and the number of facilities at the

branch. Similarly, in lowering the individual outputs of the branch, the DM felt this would

impact on all the other outputs and the inputs of the branch, as can be seen from the
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construction of A2D150, A3D150 and A4D150. The input output levels of the final

non-redundant unobserved branches can be found in Appendix 6.5.

It should be noted here that the input output levels of the unobserved branches shown in

Appendix 6.5 were not the initial estimates. They are the result of several modifications to

their initial specification following their assessment under model (M6.1). Further,

although their DEA-efficiency was secured, it is not sufficient to guarantee that they will

contribute to improvement in the envelopment of the branches. In particular, if the

operating mixes of the unobserved branches are not similar to those of the non-enveloped

inefficient branches, then they may not impact on the envelopment of the non-envelopment

branches. This is difficult to ensure in practice.

Step (v)

Finally, the DM is now in the position to re-assess the observed branches permitting both

the observed and unobserved branches to be used as peer branches in (M6.2). The

inclusion of the unobserved branches has also discriminated between the observed DEA-

efficient branches. The inclusion of the 75 unobserved branches has reduced the number

of observed DEA-efficient branches from 29 to only 19 and as expected, in general, the

relative efficiency scores are lower in the presence of the unobserved branches.

However, the main aim of this procedure was to improve envelopment and incorporate

values, thus the effect of the unobserved branches on the envelopment of the observed

branches needs to be considered. It should be noted that only 48 of the unobserved

branches were actually used to improve the envelopment of the 531 initially non-enveloped

inefficient branches. Figure 6.7 summarises the envelopment of the 649 inefficient

branches, with the inclusion of the 75 unobserved branches. [There may have been

alternative optimal solution which change the envelopment of the DMUs, as shown in

Figure 6.7, but in general the number of enveloped DMUs would still be vastly increased.]
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Figure 6.7 - Number of Weighted In put and Out put Variables Per DEA-
Inefficient Branch with an Extended Data Set in (M6. 1)

0	 1	 2	 3

Number of c weighted inputs and outputs

Clearly, the number of properly enveloped branches has been vastly improved by the

introduction of the unobserved branches from 108 to 526. Thus the scores should reflect

more appropriate efficiency estimates.

It should be noted that although the construction of these unobserved branches appears to

be a rather large number, it is not unexpected. Consider the number of DEA-efficient

branches (observed and unobserved) to the number of properly enveloped branches,

approximately, I to 8 compared to the initial ratio of 1 to 4. So, the number of

unobserved branches constructed in order to improve envelopment is not an unusually

large number.

6.10 Conclusion

This chapter has developed a procedure for incorporating values aimed at improving the

number of properly enveloped DMUs in DEA assessments where the DMUs operate under

CRS. Properly enveloped DMUs have no positive slack values at their optimal solution.

Hence, all their inputs and outputs are taken into account in assessing their performance.

A key feature of the procedure developed, and its difference from previous approaches to

ensure DMUs assign realistic weights to their inputs and outputs, is that it implicitly

restricts rather than explicitly restricts the DEA-weights, by using the envelopment
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model rather than the weights model to achieve the end result. The UDMUs are created

as local variations of DEA-efficient DMUs. These local variations are DM defined, thus,

hopefully, they are reasonable extensions to the observed PPS. One way to look at the

approach developed here is to say that it attempts to fill in for missing data by asking the

DMs about potentially efficient input output levels close to certain DEA-efficient DMUs.

The DMs are only required to provide values on a local level, i.e. for specific DMUs only.

These judgments can be in the form of comparing a DMU with an UDMU or by offering

MRS. Such local information may prove easier for some DMs to provide than the

alternative of specifying global values.

The procedure does not guarantee full envelopment of all DMUs, as the judgments

provided by the DMs throughout the procedure cannot be guaranteed to always lead to

DEA-efficient UDMUs, as required. However, the procedure does provide a mechanism

whereby the information provided by the DMs can be built upon, in order to modiry the

PPS, thereby improving the envelopment of the DMUs in the DEA assessment. In this

context the use of UDMUs has some important advantages over the more traditional

use of weights restrictions to capture value judgments in DEA.

• The trade off s the DMs are asked to make between output and)or 'input 'ieve'ls
are bcalto the part of the PPS in which the ADMU is located.

• The trade offs between output and/or input levels can be given by the DMs in

the form of comparisons of the ADMU with trial UDMUs.

• The modification to the PPS has been made explicit and therefore the
feasibility of the EPPS can be considered; whereas under weights restrictions,
the modification of the PPS is implicit and therefore its feasibility is not

considered.

Some DMs may find the use of comparisons of DMUs easier than the specification of

global values (MRS. MIRT or maximum/minimum weight values). However, it should be

noted that the subjective nature of the information provided by the DMs can mean that

some of the UDMUs created may not be DEA-efficient. These UDMUs will be redundant

and will not increase the number of properly enveloped DMUs, as originally intended.

The next chapter details the DEA Variable Returns to Scale (VRS) model and how Radial

DMUs (RDMUs) can be used to simulate weights restrictions.
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7. Chapter Seven
Data Envelopment Analysis Under Variable
Returns to Scale With and Without Values

7.1 Introduction

The preceding chapters of this thesis have only considered the incorporation of value

judgments in a DEA assessment when the DMUs are operating under CRS. The focus will

now turn to the case where the DMUs operate in a Variable Returns to Scale (VRS)

environment. Hence it is necessary to first detail the standard VRS DEA assessment,

which was introduced by Banker eta!. [7]. This model differs from the Charnes et al. [16]

model in that it assesses a DMU given its scale of operation.

This chapter is structured as follows: Section two details the VRS DEA model; section

three illustrates the PPS under VRS; section four details how weights restrictions can be

simulated under VRS; section five highlights some of the problems encountered when

using weights restrictions in a VRS DEA assessment.
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7.2 The Variable Returns to Scale DEA Model

Consider assessing a set of N DMUs, j= 1.....N each consuming in varying amounts m

different inputs, x,, i= 1.....m to produce in varying quantities s different outputs, Yrj,

r= 1 ,...,s. The DEA weights models (M7.1) and (M7.2) provide the relative efficiency

score of DMU j with an Input Minimisation (IM) and Output Maximisation (OM)

orientation respectively. In general, under the VRS assumption, for inefficient DMUs

h,	 1 / ë,. Thus care must be taken by the DM in selecting the appropriate mode!

orientation for the assessment.

(M7. 1) Input Minimisation	 (M7.2) Output Maximisation

h1 = Max Uq + w	 , Mj	 p, x -

s.t.	 VX,1 = 1	 s.t.	 8rYrj = 1

UrYri +O)-	 V1x ^O	 j=1.....N	 8rYr, —p,x,1 +zu^O	 j=J.....N

Vi, Ur ^ C	 r	 i, & ^ C	 Vi, r

free	 free

In (M7.1) v, and Ur are the weights attached to the inputs and outputs respectively and in

(M7.2) p1 and are the weights attached to the inputs and outputs respectively, in

(M7. 1) and (M7.2) o and zzr respectively can be used to ascertain the nature of returns to

scale efficient DMUs. Table 7.1 shows how to identi the nature of returns to scale of a

DEA-efficient DMU, following Banker and Thrall [8].

Table 71 - How to Identify Returns to Scale of DEA -Efficient DMUs

Value of w or TU	 Nature of Returns to Scale

0)> 0 or zm> 0 at ALL multiple optimal solutions	 Increasing
U) = 0 or	 0 at ANY optimal solution	 Constant
(0 < 0 or zr <0 at ALL multiple optimal solutions 	 Decreasing
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The DEA dual models corresponding to these DEA weights models, (M7.1) and (M7.2),

are known as the envelopment models and they are:

(M7.3) Input Minimisation	 (M7.4) Output Maximisation

h, = Mm o --	 H, + H,n+r J	 Max 9 +	 G, + Gm+rJ

s.t.	 ()X,f -	 2 1 x,, - H, —0	 i=1.... . m s.t.	 r1x + G 1 = x,,.

2 jYri 	 Hm+r — Yr1	 r1.....S 	 8OYrJ)	 njYr, +Gni+r =0	 r=1,...,s

=1

H, Hm+r ^ e	 tij, i, r	 G,, Gm+r ^ e	 J, i, r

The sum of the 2 and r are set to one to prohibit the extrapolations of scales of operation.

Let denote the value of a variable at the optimal solution to the model in which it

appears.

To illustrate the generated DEA PPS when the DMUs operate under VRS, consider

assessing a set of 11 DMUs each consuming a single input to produce a single output.

The actual input output levels are shown in Table 7.2 along with their DEA efficiency

scores, to illustrate that in general for inefficient DMUs, h1 ^
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Table 7.2 - Example Data Set 4

DMUs	 Output	 OM,

VOl	 3	 6	 100.00	 100.00
V02	 3	 3.5	 100.00	 58.33
V03	 8.5	 8.5	 51.47	 77.27

VO4	 5.5	 10	 100.00	 100.00
V05	 8	 11	 100.00	 100.00
V06	 5.5	 3	 54.55	 30.00

V07	 9	 11	 88.89	 100.00
V08	 4.5	 4	 66.67	 46.15

V09	 7	 8	 57.14	 75.47

VlO	 4	 8	 100.00	 100.00
VII	 10	 6.5	 32.50	 59.09

Figure 7. 1 plots the Production Possibility Set for the DMUs.

Figure 7.1 - Production POSsibility Set

The DEA-efficient boundary is mapped by VOl. V1O, VO4 and V05, with the PPS being

defmed by the DEA-efficient frontier, the input axis and the lines FVO1 and F y05. Under

an IM model DMUs V02, V08 and V06 allocate their output level an c weight.

(Alternatively they have a positive output slack.) Thus their relative efficiency score is the

ratio of a value representing their scale of operation, i.e. 0) in (M7.1), and their weighted

input. More generally, any inefficient DMU in this assessment that lies below the line

GVO1, will allocate its output an g weight. Under an OM model, DMUs V03, V07 and

Vii allocate their input level an weight, and their relative efficiency score is the ratio of

a value representing their scale of operation i.e. n in (M7.2) and their weighted output. In
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general, for this assessment, any inefficient DMU that lies to the right of the line CVO5

will allocate their input an c weight.

Generalising to the multiple input multiple output case any inefficient DMUs that lie on or

are projected onto an inefficient frontier facet, allocate at least one input or output an c

weight. Alternatively and equivalently these DMUs have at least one positive slack value

in the envelopment model. Thus, this simple graphical example illustrates that under VRS

the envelopment of the DMUs is dependent on the model orientation. This is due to the

fact that the projection of the DMUs onto the DEA-frontier is dependent on the model

orientation. However, the defined DEA-efficient frontier is coincidental for the two

orientations. Further, the complete weights flexibility offered by the VRS DEA model

may lead to inappropriate estimates of efficiency. In extreme cases, relative efficiency

scores can be obtained that are based on the DMUs scale of operation and a single

weighted input or output. This is not even dependent on any input to output ratio, which

is the essence of an efficiency measure. That is, the efficiency score is determined by the

DMU's weighted scale to one of its weighted inputs/outputs in the IM/OM case

respectively. Thus the score cannot truly be deemed an efficiency score. Evidently to

overcome this problem, additional information must be added to the model. This could

either be in the form of weights restrictions or the introduction of additional DEA-efficient

DMUs.

Although the envelopment of the DMUs is model orientation dependent, the defmition of a

properly enveloped DMU is independent of the model orientation. A properly enveloped

DMU is one that has no positive slack values in their DEA envelopment model (M7.3) or

(M7.4) as solved, i.e. H* = H*m+r = 0 or G1 G*rnIr = 0 respectively Vi and r.

Under VRS, as well as exhibiting varying marginal rates of substitution, the DEA-frontier

exhibits varying rates of returns to scale. Figure 7.2 illustrates the returns to scale

exhibited by the production frontier generated by the DMUs of Table 7.2. Clearly, the

production frontier exhibits increasing, constant and decreasing returns to scale. The scale
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value given for the inefficient DMUs is the scale that they would be operating at if they

were efficient.

Figure 7.2 - Variable Returns of the Production Possibility Frontier
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Having considered the standard VRS DEA models, the next section will consider how

UDMUs can be used to simulate weights restrictions under VRS. The purpose of this is to

allow for the comparison of the two approaches for capturing value judgments (see

chapter nine).

7.3 Simulating Wei ghts Restrictions for DMUs

As already detailed, under VRS the model orientation becomes significant, with the

different models providing different relative efficiency scores. Thus, in all cases, the

weights restrictions will have a different impact on the relative efficiency scores.

Therefore a different set of Radial DMUs (RDMUs) is required to simulate the relative

efficiency scores under each orientation. This in turn implies that the RDMUs have to be

constructed in a specific manner in order to simulate the imposed WRs, i.e. Input Radial

DMUs (IRDMUs) for an IM model and Output Radial DMUs (ORDMUs) for an OM

model. The simulation of WRs under VRS will now be consider, essentially this is the

same as the simulation of weights restrictions under CRS, except for the above mentioned

specification of the necessary Radial DMUs.
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Consider assessing a set of N DMUs the jth using input levels x,1, i1.....m to produce

output levels, Yri, r1.....s, with additional constraints on the weights, ri -r5 in various

forms of weights restrictions. 	 En -r2:	 relative restrictions, r3: 	 linked-dependent

restrictions, r4- r5: absolute restrictions.]

(M7.5) Input Minimisation

= Max UrYrj +&)

UI

s.t.	 V,X,1 = 1

+w 1 v,x,, ^O

Ur - ltrUr-1 ^ 0
	

ri
	

for some r

VI - OIVi-/ ^ 0
	

r2
	

for some i

Ur - %,Vi 0
	

r3
	

for some i,r

Ur ^r^E
	 r4
	

r1.... . S

vi ^ 'ci ^ C
	 r5
	

i=1.....m

(M7.6) Output Maximisation
'U

= Mm	 pixy() -

s.t.	 8rYri =1

8 rY rj	 + &T^0

- 7trri ^ 0	 :rl	 for some r

p-a,p,i^0	 :r2	 forsomei

	

.r3	 forsomei,r

(5;. ^yr^C	 :r4	 r=J .....s

	

:r5	 11.... . m

The notation in (M7.5) and (M7.6) as in (M7.1) and (M7.2) respectively. The Greek

letters ( ir, a, y, K) are DM specified constants that reflect their judgments on the values

of the inputs and outputs in the context of the assessment being undertaken. The two

models require different sets of Radial DMUs (RDMU5) to simulate their weights

restrictions, with, the construction of the Radial DMUs being the same irrespective of the

type of weights restrictions that are to be simulated. Thus, the construction of the

RDMUs for the two orientations will be considered separately:

• Input Minimisation Case

Solve (M7.5) to obtain h, j=1.... .N. Construct a Full Set Input Radial DMUs (FSIRD),

which consists of RDMUs, ft = 1.... . N, such that RDMU jt has output levels Yrit, r1..... S

and input levels x111 , 1 = 1..... in where
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yr/I =	
x1 = h,t x11	

1=1.....N	 (7.1)

• Output Maximisation Case

Solve (M7.6) to obtain h,, j=1.....N. Construct a Full Set of Output Radial DMUs

(FSORD), which consists of RDMUs,Jp = 1.....N, such that RDMUJp has output levels

Yrjn, r= 1 ,...,s and input levels xv,,, i=1.....m where

Vrjp = h yr1	 Xij = Xjj	 j = I.....N	 (7 .2

As shown in chapter four, weights restrictions can be separated into two categories in

order to simulate their relative efficiency scores by RDMUs, see Appendix 4.5.

• For the simulation of relative and linked-dependent restrictions rl-r3 follow

Theorem 7.1.

• For the simu'ation of absolute restrictions r4-r5 toilow Theorem 7.2.

Theorem 7.1: Relative and Linked-Dependent Restrictions

For the case when D]Y weights restrictions of type ri -r3 have been imposed in (M7.5)

and (M7.6), to give h and h, respectively. Let jt].....N and jp"l.....N be RDMUs

having the input output levels defmed in (7.1) and (7.2) respectively. Solve the models

(M7.7) and (M7.8) respectively.
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(M7.7) Input Minimisation	 (M7.8) Output Maximisation

	

e = Max	 J3 rYrj () + q	 e1 - Mm	 9,x,, - c/i

s.t.	 a,x,1	 1	 s.t.	 PrYrj = 1

flrYrii	 ^O	 jt=1,...,N	 j=1,...,N

a,, /3,- ^ s	 Vi, r	 9, ji,- ^ g	 t7', r

	

free	 free

In (M7.7) a, and /3r are the weights attached to the inputs and outputs respectively, in

(M7.8) 9 and Ur are the weights attached to the inputs and outputs respectively, in

(M7.7) and (M7.8) p and &' respectiveiy reflect the sc&e QfQpecat that DEA-e

DMUs operate under. Then for DMUj0 it folJows that:

JO	 Jo	 Jo

* 
=e * 	 =	 (7.3)

The proof of Theorem 7.1 can be found in Appendix 7.1.

Similar to the CRS case, this Full Set of Radial DMUs (FSRD) can be reduced to provide

a necessary and sufficient set of RDMUs to simulate relative and linked-dependent weights

restrictions. This can be achieved, by following the procedure outlined in chapter four, for

reducing the FSRD to the RSRD.

Theorem 7.2: Absolute Restrictions

For the case when weights restrictions of type r4-r5 have been imposed in (M7.5) and

(M7.6), to give h,* and h, respectively. Let jt1.....N and jp1,...,N be RDMUs having

the input output levels defined in (7.1) and (7.2) respectively. Solve the models (M7.9)

and (M7.1O) as required.
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(M7.9) Input Minimisation	 (M7.1O) Output Maximisation

= Max firYrI() +	 = Mm	 -

s.t.	 a,x,1 = 1	 s.t.	 /rYrj	 1

^O	 j=1.... . N	 /rYr/	 +çii^O	 j1.....N

firYrif () +—a,x ^O	 firYrjp0	 +I^O

(Xe, fir ^ &	 r	 9j fir ^ S	 t7'j, r

free	 free

Notation in (M7.9) and (M7.1O) as in (M7.7) and (M7.8) respectively. Then for DMUj0

it follows that:

r=1:	 hJ	 fJ()	 (7.4).

The proof of Theorem 7.2 can be found in Appendix 7.2.

To illustrate the simulation of weights restrictions in a VRS assessment, consider assessing

the set of DMUs shown in Table 7.2. Figure 7.3 plots the Extended Production Possibility

Set (EPPS) for this assessment under Input Minimisation.
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Figure 7.3 - Extended Production Possibility Set
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As stated in section 7.2, under an IM VRS model DMUs V02, V08 and V06 are non-

enveloped and allocate their output an weight. To overcome this problem a linked-

dependent weights restriction v - 6u ^ 0 can be imposed, which can be simulated by a set

of RDMUs determined using (7.1). The FSRD consists of {RVO6, RVO8, RVO6}, which

can be reduced to a RSRD (RVO6} following the procedure of chapter four, and this can

be seen in Figure 7.3. Thus re-assessing the observed data set, without the weights

restriction but with RDMU RVO6 added to the assesx tt se.t, th	 ct

scores are obtained. So, the DM is provided with an idea of an implicit extension to the

observed frontier, RVO6VO1 that is sufficient to simulate the relative efficiency scores

under the linked-dependent restrictions.

This section has shown how to simulate weights restrictions in a VRS environment via the

use of RDMUs. The next section will highlight several possible problematic outcomes

from the use of weights restrictions in a VRS DEA assessment.

7.4 Possible Problematic Outcomes

Unfortunately the use of weights restrictions to capture value judgments in a VRS DEA

assessment can lead to several problematic results, three of which will now be discussed.
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In general, these problems are associated with the fact that weights restrictions implicitly

restrict the scale of operation of the DMUs.

7.4.1 DMU Dependent Implicit Extensions of the PPS: Absolute
Restrictions

The use of absolute weights restrictions (AWR), e.g. r4 and r5 in (M7.5) in a DEA

assessment leads to the implicit extensions of the DEA-frontier being DMU dependent.

(Although this is also a problem in the CRS case.) This is now demonstrated graphically.

Consider assessing the DMUs of Table 7.2, with an absolute weights restriction (AWR) of

u ^ 0.16. Using the expression (7.1) to determine the Input Radial DMUs (IRDMUs),

corresponding to the implicit extensions to the DEA-frontier under the AWR. These

implicit modifications to the PPS are shown in Figure 7.4, with the IRDMUs denoted as

RV. For example, RVO8 represents the IRDMTJ corresponding to V08 required to

simulate its relative efficiency score under the absolute restriction and RVO2 is necessary

to simulate the absolute relative efficiency score for V02.

Figure 7.4 - Absolute Restrictions Under VRS
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Clearly, by translating the Absolute Weight Restriction (AWR) into terms of the inputs and

outputs of the production process under analysis, it can be seen that the DMUs receive

their relative efficiency scores relative to different implicit modifications of the observed
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DEA-frontier. For example, RVO2 represent input output levels such that when V02 is

measured relative to this RDMU, its relative efficiency score under the absolute restriction

is simulated. Similarly, RVO8 represent input output levels such that when V08 is

measured relative to this RDMU, its relative efficiency score under the absolute restriction

is simulated. Clearly, the input output levels of RVO2 are inefficient relative to RVO8,

hence implying that under the absolute restriction, the frontier that V02 is measured

relative to, is inefficient compared to the frontier that V08 is measured relative to. Thus,

this interpretation of the scores as being representative of a relative measure of efficiency

is questionable.	 This, in turn, implies that the use of AWRs to ensure the

maximum/minimum contribution of variables in a DEA assessment under VRS is

questionable, as they cannot be interpreted as relative efficiency scores. Chapter Five

suggests two approaches to overcome this problem.

7.4.2 Misspecification of Returns to Scale Leading to Negative
Relative Efficiency Scores

Another clear cause for concern is the possibility of obtaining negative relative efficiency

scores under a VRS DEA model. This is demonstrated in Figure 7.4 by IRDMUs, RVO6

and RV1 1, which are the input output levels that are the radial reductions of the input

output levels of V06 and Vii under absolute restrictions respectively. See Appendix 7.3

for evidence that negative efficiency can be obtained. Evidently, this outcome would

suggest that the imposed weights restrictions are inappropriate.

This can be perceived as a problem due to the fact that the imposed restrictions arc forcing

the DMUs to be assessed under a nature of returns to scale that is inappropriate for the

DMUs. This can perhaps be more easily seen, when a linked-dependent weights

restrictions is imposed, e.g. -u + v ^ 0. Through the use of Radial DMU, constructed

from (7.1), the implicit modification of the PPS with the inclusion of the linked-dependent

restriction: -u + v ^ 0, can be plotted, see Figure 7.5.
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Figure 7.5 - Extended Production Possibility Set
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The RSRD for this assessment consists of RVO6 and is sufficient to simulate the linked-

dependent relative efficiency scores. Clearly, the introduced weights restrictio ri rces

DMUs V08, V02 and V06 to be assessed under a decreasing returns to scale, which

provides meaningless relative efficiency scores for these three DMUs, as the local

boundary of VOl Vi 0 is exhibiting constant returns to scale. In a sense this restriction is

imposing non-increasing returns to scale between the related input and output on the set of

DMUs i.e. v ^ u, hence it imposes an inappropriate nature of returns to scale on these

DMUs. Whereas, the earlier restriction of v ^ 6u, see Figure 7.3, could be thought of as

imposing an increasing returns to scale on the related input and output. Thus when the

latter restriction is imposed the model provides reasonable relative efficiency scores as the

DEA frontier is extended in an appropriate manner.

This clearly links to the next problem with the use of weights restrictions in a VRS DEA

assessment.

7.4.3 Inappropriate Nature of Returns to Scale Value

Banker and Thrall [8] discuss the Most Productive Scale Size (MPSS) of a DMU and note

that in the discussion of the observed input-output levels of a DMU, dividing by from

model (M7.3) would render a DMU MPSS. Thus, in essence the value of the sum of
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lambdas is indicating the distance of the DMU from MPSS. As the scale variable (w in

(M7.3)) is the dual variable to the restricted sum of lambdas, it is reasonable to assume

that the size of the scale variable provides the DM with some indication of the distance of

the DMU from the MPSS, rather than just an indication of whether the assessed DMU is

operating at increasing/constant/decreasing returns to scale, when DEA-efficient. This

would imply that if the scale variable takes a very large positive or negative value, the scale

of operation suggested by DEA would not reflect a reasonable scale of operation in

practice, and thus the obtained relative efficiency score would be questionable.

When weights restrictions are imposed, as the variable used to ascertain the returns to

scale of efficient DMUs is unrestricted, frequently to satisfy the constraints, this variable

may take inappropriate values in order to obtain the assessed DMU's relative efficiency

score. In the sense that the sca'e of operation of a MU in.icate y cxe	 ie'i m

be practice be unreal, i.e. the absolute value of w in (M7 .3) is extremely large.

Clearly, these observations indicate a cause for concern in the use of weights restrictions

to capture value judgments in a VRS DEA assessment. The approach of this thesis

endeavours to overcome these difficulties.

7.5 Conclusion

This chapter has briefly considered the use of DEA to assess the relative efficiency of

DMUs operating in a VRS environment. It has also demonstrated that the envelopment of

a DMIU and its relative inefficiency score is dependent on the model orientation.

Further, the simulation of weights restrictions was considered. It was found that unlike the

CRS case, only a specific set of RDMUs can be used to simulate the relative efficiency

scores. It also highlighted several disturbing outcomes from the use of weights restrictions

to capture value judgments under VRS. This motivates the need for alternative

approaches to weights restrictions for capturing values in a VRS DEA assessment.

The next chapter will propose an approach similar to that detailed in chapter six for

capturing value judgments via UDMUs in a DEA assessment where the DMUs operate

under VRS.
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8. Chapter Eight
Incorporating Values and Improving
Envelopment Via UDMUs: VRS Case

8.1 Introduction

As highlighted in chapter three, to date there has been very little attention in the literature

given to approaches for the inc1usion of va'ues into a YRS DEA assessment. Chapter

seven illustrated that the main use for their inclusion in a CRS DEA assessment, that of

weights restrictions, does not lend itself readily to implementation in the VRS assessment.

This chapter therefore demonstrates how the procedure proposed in chapter six as an

alternative to weights restrictions in the CRS case can be readily implemented in a VRS

assessment. This is mainly due to the ability of the approach to allow varying local values

and the relationship between the inputs and outputs to be included in the assessment,

which are particularly important in a VRS assessment.

When the DMUs are assessed under VRS, a variable to represent the DMU's scale of

operation is introduced, (see co in model (M7. 1) of chapter seven). In extreme cases it is

possible to obtain relative efficiency scores that are based purely on the ratio of a measure

of the DMU's scale to a weighted input in the input minimisation case, or to a weighted

output in the output maximisation case. That is, the sum of weighted outputs/inputs in the
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IM/OM case can be zero, with all the weight being applied to the DMU's scale to

maximise its elliciency score. Clearly, in these extreme cases the relative efficiency scores

do not, in fact, represent efficiency scores and it is necessary therefore to introduce

additional information into the assessment to overcome this problem.

In a standard CRS DEA assessment this is usually done by the introduction of some

weights restrictions. However, the inclusion of the variable representing the scale of

operation of a DMU can give rise to difficulties in their use. Chapter seven illustrated for

an IM model that WRs can implicitly extend the observed frontier into areas of production

that provide negative relative efficiency scores, which is a cause for concern in the

implementation of WRs in the VRS case. Hence alternative approaches that avoid these

difficulties due to the implicit modification of the Production Possibility Set (PPS) are

necessary.

The use of the approach developed in chapter six which utilises the envelopment model to

express the DM's values and thus explicitly modifying the PPS, avoids these difficulties.

This approach therefore perceives the concept of the inclusion of 'values in a VJ

assessment as a problem of missing data, i.e. the UDMUs are attempts at specifying

estimates of efficient levels of inputs and outputs for operating processes which at present

are only observed at inefficient levels. The approach is not concerned with directly

expressing values on the DEA-efficient DMUs.

The chapter is structured as follows: Section two considers the approach for improving

envelopment; the third section establishes a need for the procedure; section four details

from where to extend the frontier; section five identifies which input output levels to

adjust to encourage the non-E weighting of individual factors; section six provides a

means for constructing suitable DEA-efficient UDMUs; section seven discusses their

implementation and section eight summarises the procedure; section nine applies the

procedure to a set of bank branches.
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8.2 Incorporating Values & Im proving Envelopment by Means of
UDMUs: An Outline

This chapter focuses on adapting the approach derived in chapter six for the CRS case to

the VRS case. In this case estimates of DEA-efficient UDMUs are to be suitably

constructed from the observed input output levels of specific DEA-efficient DMUs, their

estimated scale of operation and the DM's value judgments, while taking into account

technological and managerial constraints. It should be noted that the proposed approach is

an attempt to encourage the non-c weighting of individual inputs and outputs and NOT the

simultaneous non-c weighting of a combination of inputs or outputs. Hence it does not

guarantee full envelopment. Further, as noted in chapter six the improvement to the

envelopment of the DMUs will depend on the specification of the UDMUs.

As the procedure is an adaptation of the one presented in chapter six, the main steps

involved will now be outlined and then explained in later sections of this chapter.

i. Assess the DMIUs to determine the DEA-efficient DMUs and the enve1opnent of th

DMUs.

ii. Identify the ADMUs.

iii. Identify which input andlor output levels of the ADMIUs need to be individually raised

andlor lowered to, in principle, improve envelopment.

iv. Construct estimates of DEA-efficient UDMIJs.

v. Re-assess the DMUs permitting both DMUs and UDMUs to be peer DMUs.

vi. If the DM feels envelopment is unsatisfactory, repeat steps (iv) and (v). Otherwise

stop.

To demonstrate how UDMUs can be used independently of weights restrictions to include

values in DEA, a simple graphical example will be considered using the 11 DMIUs of Table

7.1 of chapter seven, where each DMU consumes a single input to produce a single

output. Further, as chapter seven demonstrated, under VRS the envelopment of the
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DMUs and the use of UDMUs to incorporate values are model orientation dependent, and

so the two orientations will be considered separately.

Figure 8.1 - Extended Production Possibility Set
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8.2.1 Input Minimisation: Encouraging the non-g weighting of an output

As noted in chapter seven, under TM in Figure 8.1 DMUs, V02, V08 and V06 are non-

enveloped and their output receives an weight. (These DMUs have a positive output

slack.) Evidently, to overcome this problem and provide meaningful relative efficiency

scores for these DMUs, some form of values regarding the relationship between the input

and output must be incorporated into the analysis, that exhibits increasing returns to scale.

It will be assumed that these values are to be expressed via the inclusion of additional

UDMUs into the assessment set. Clearly, the DEA-frontier must be extended from VOl,

which is therefore an ADMU, and from Figure 8.1 it can be seen that it delineates the

DEA-efficient frontier from the DEA-inefficient frontier. Thus, if the introduced UDMUs

are to maintain the returns to scale of the observed frontier, they must exhibit in

conjunction with VOl varying increasing returns to scale.

Consider the introduction of two UDMTJs Ui VOl (2, 3.75) and U2VO1 (1.5, 1). These

UDMUs improve envelopment and introduce two marginal rates of transformation. Thus
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V08 and V02 are measured against the extended frontier Ui VOl VOl and V06 against

U2VO1 Ui VOl There are three conclusions that can be drawn from the input

minimisation orientation VRS DEA model:

• To encourage the non-c weighting of an individual output, it is necessary to

introduce DEA-efficient DMUs into the observed data set that have similar

operating mixes to the non-enveloped DMUs but produce less of the ignored

output.

• ADMUs will require adjustments to their input levels in order to incorporate

values and improve envelopment.

• The scale of operation of the ADMU must be considered in determining the

input output levels of the UDMUs.

8.2.2 Output Maximisation: Encouraging the non-c weighting of an input

Clearly, in the OM case, in Figure 8.1 DMUs V03, V07 and Vii are non-enveloped and

their input receives an c weight. To overcome this problem information on the relationship

between the input and output once again needs to be introduced into the assessment.

However, in this case the relationship must exhibit decreasing returns to scale in order to

improve envelopment while at the same time maintaining the efficiency of the DEA-

efficient DMUs. Clearly, in this case the frontier needs to be extended from V05, and thus

it is the ADMU of the observed data set. Therefore the introduced UDMU should, in

conjunction with V05, exhibit decreasing returns. One such DMU would be U1VO5,

(12,12). Hence in the VRS DEA output maximisation model:

• To encourage the non-c weighting an individual input, DEA-efficient DMU5

need to be introduced into the observed data set that have similar operating

mixes to the non-enveloped DMUs but consume more of the ignored input.

• ADMUs will require adjustments to their output levels, in order to incorporate

values and improve envelopment.

• The scale of operation of the ADMU needs to be considered in determining

the input output levels of the UDMUs.
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Having outlined the procedure graphically, the next section will begin the formal

procedure for including values and improving envelopment for the multiple input output

case.

8.3 Assessing Envelopment: Step (i)

Initially the DEA-efficient DMUs have to be identified, along with establishing a need for

the procedure. Thus, consider assessing a set of N DMUs that consume varying amounts

of m different inputs, x11, i= I.....m to produce varying quantities of s different outputs, Yd'

r= 1.....s. The VRS DEA models (M7.3) and (M7.4) provide the relative efficiency score

of DMU Jo under an IM and OM model respectively. Let JE defme the set of DEA-

efficient DMUs under (M7.3) and (M7.4). Although both the IM and the OM models are

discussed, it is assumed that the DM solves only one, either the TM model (M7.3) or the

OM model (M7.4), not both. This model will then be used throughout the procedure, due

to the envelopment of the DMUs being model orientation dependent, as discussed in

chapter seven, hence the constructed UDMUs will be model orientation dependent.

Clearly, if all the inefficient DMUs are properly enveloped i.e. il1 = 0 Vi,r in

(M7.3) or Gt1 = G*fl,.r = 0 Vi,r in (M7.4) then there is no need for the proposed

procedure. However, in general this will not be the case and this initial assessment should

establish the need for the following procedure of steps (ii) to (v). Thus proceeding to step

(ii) which identifies the ADMUs.

8.4 Identifying the ADMUs: Step (ii)

As stated in chapter six the ADMUs are: DEA-efficient and delineate the DEA-efficient

from the DEA-inefficient frontier. Hence the same procedure will be followed in order to

identify them, that is, the use of SE with respect to JE (the set of DEA-efticient DMUs).

Let JE10 be JE excluding DMU Jo . The envelopment models (M8.1) or (M8.2), as

required, is solved in respect of each Jo E JE.
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(M8.1) Input Minimisation	 (M8.2) Output Maximisation

II?	 S	 111

h 1 =Min J —sS,	 =] +s(H1 +Hiii+rJ

s.t. •JJ X ,/ J -	 —S =0	 i'l.... . m s.t.	 + H1 =x,1 	i1.... . m

.1 €IE	 I E.II

- S,,i+r = Yrj11 	 r=1.....S	 f0Y 1, -	 Y jYrj + H,,i+r = 0	 r1.....s
/ E.I/	 j El/i

2s, =1	 =1
I E.//0	 /EJJ

c5;, S1, Smr ^ 0	 VJEJEJ0, 1, r	 H,, Hm+r ^ 0	 t7YEJEJ0, 1, r

Notation in (M8.1) and (M8.2) as in (M7.3) and (M7.4) respectvey. Let- and denote

the value for a variable at the optimal solution to (M8. 1) and (M8.2) respectively.

Let JA denote the set of ADMUs for the assessment, with the criteria for classifying

ADMUs under VRS being the same as the CRS criteria for an ADMU in chapter six.

Thus a DEA-efficient DMU must meet either of the following conditions corresponding to

its assessed model above, to be classed as an ADMU:

(M8.1) Input Minimisation	 (M8.2) Output Maximisation

# h > 1 and at least one	 • Ii <1 and at least one
0	 J

> 0 or S,n+r 0	 II > 0 01 "fli+r > 0

or	 or

• An infeasible solution 	 • An infeasible solution

Proof of these statements can be found in Appendix 8.1.

As illustrated in section 8.2, specific adjustments to selected inputs and/or outputs of the

ADMUs are required to be altered to construct UDMUs, that will in principle improve

envelopment. The next section outlines one approach for identifying which inputs and/or

outputs of an ADMU require adjustments in order to improve envelopment.
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8.5 Which Inputs and/or Out put Levels of a ADMU to Adiust?
Step (iii)

As detailed in chapter six, in the multiple input output case, to prevent individual inputs

and outputs from being ignored in the assessment, several ADMUs may require

adjustments to the same inputs and outputs in order to encourage the non-c weighting of

an individual input and output. Proposition 6.1 and Proposition 6.2 of chapter six outline

the proposed manner for the required adjustments to the selected inputs and/or outputs of

an ADMU. These propositions are:

Proposition 8.1: Encouraging the non-c weighting of an individual input

To encourage the non-c weighting of input Ic, raise the levels of input k for a set of

selected ADMUs, in order to construct estimates of suitable DEA-efficient UDMUs that

will, in principle, improve envelopment.

Proposition 8.2: Encouraging the non-c weighting of an individual output

To encourage the non-c weighting of output k, lower the levels of output k for a	 of

selected ADMUs, in order to construct estimates of suitable DEA-efficient UDMUs that

will, in principle, improve envelopment.

Thus, the question now becomes how to identify which of the inputs andlor outputs of an

ADMU to raise andlor lower. The approach proposed, follows that of chapter six and

attempts to use the information from the initial DEA assessment to determine a basis for

their identification.

Let JFIN and JFON be the set of class NP DMUs, with optimal values of, f andj with

reference to (M7.3) and (M7.4) respectively for DMU j. Determine a set of class F

DMUs, with input output levels as defined in (8.1) and (8.2) respectively, corresponding

to these class NF DMUs.
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I	 (8.1) Input Minimisation	 I	 (8.2) Output Maximisation

+

x11 = q51 x 1 y =	 VjEJFIN x, = x	 = O,Y,-J	 VJEJFON

In (8.1) the class NF DMUs have their input levels radially reduced in line with their radial

DEA-efficiency yielded by (M7.3) and in (8.2) class NF DMUs have their output levels

radially increased in line with their radial DEA-efficiency yielded by (M7.4) respectively.

Let fF1, jJI=1......fF11 be the set of observed class F DMUs of (M7.3) and the class F

DMUs created by means of (8.1). Similarly, let fF0, jfo=1......fF01 be the set of

observed class F DMUs of (M7.4) and the class F DMUs created by means of (8.2). Let

JA denote the set of ADMUs defined with reference to (M8. 1) and (M8.2 as required.

For each Jo JA solve model (M8.3) or (M8.4) as required.

(M8.3) Input Minimisation	 (M8.4) Output Maximisation

In	 in

h Min / —eS, +Srn ^ r J	 h, =Max +e(H +H1+7J

s.t. fx -	 8,x 1, -	 8,fiX —S1 =0 s.t.	 +	 +H1 =x,,
ii LIII	 )	 ji	 3l()

8 jYrj +	 6j/j,7fj S,,i± r - Yr10 fOYrJ( -	 Y jYrj -	 7jtYrjii) + Hiii+ r - 0
j nIL	 JJI n/li	 j L1/	 Ito Eli0

8 +	 8 = 1	 7/ +	 7 to -
1	 ii'	

/ n/h	 jfonJ/0
J EJlO	 /11 Liii	 -

ji, , S, S,n+r ^ 0	 t, r, jjl, j EJE1	 7jIo, 'Ii, Hm+r ^ 0	 , i jfo, J EJEJØ

Notation in (M8.3) and (M8.4) as in (M8.1) and (M8.2) respectively. Let "and denote

the value for a variable at the optimal solution to (M8.1) and (M8.2) respectively. Let

AP10 denote the set of referent DMUs to ADMU Jo from the solved model.

If in (M8.3) and (M8.4) ADMUJ0 provides a feasible solution, then the ADMUj0 requires

adjustments to its input andlor output levels as detailed below.
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Stages for identifying which inputs and outputs of the ADMUs to adjust

a) Identify each class F DMU that is a referent DMU to ADMU /° in (M8.3) or (M8.4)

as required, i.e. each jji EAPJQ in (M8.3) or eachjfo EAP10 in (M8.4).

b) For each of these i/i E AP 0 in (M8.3) orjfo E AP10 in (M8.4) identify the positive

slack variables for their original DMU in (M7.3) or (M7.4) respectively.

c) For each input or output of the ADMU corresponding to the positive slack variable in

(M7.3) or (M7.4) respectively, at least one estimate of a DEA-efficient UDMU is to

be constructed following the initial adjustments as defmed by Proposition 8.1 and

Proposition 8.2.

The proof of that the above steps will improve envelopment in (M7.3) or (M7.4)

respectively inclusive of the UDMUs constructed can be found in Appendix 8.2.

It should be noted here that this approach may not identify all the possible necessary

adjustments to inputs and/or outputs of an ADMU due to muttiçle otiniai outions.

Clearly, there may be alternative approaches. Although, the one presented here will

increase the number of enveloped DMUs.

Having identified the inputs and/or outputs of an ADMU that are to be raised and/or

lowered to improve envelopment, in principle, there now exists/remains the question of

how to compensate for these adjustments, i.e. how to determine the actual input output

levels of the UDMUs. The next section will deal with this issue.

8.6 How to Construct Estimates for DEA-Efficient UDMUs?
Step (iv)

As illustrated in chapter seven to simulate weights restrictions in a VRS environment, the

necessary adjustments to the input output levels of the DMUs in order to determine a set

of Radial DMUs are dependent on the model orientation. However, it has been established
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in Proposition 8.1 and Proposition 8.2, that in order to use UDMUs independently of

weights restrictions to encourage the non-c weighting of an individual input, it is required

to raise this input level for a set of ADMUs regardless of the model orientation. Similarly,

to encourage the non-c weighting of an individual output, it is required to lower this

output level for a set of ADMUs irrespective of the model orientation. So, it has already

been established that the initial adjustments to the ADMUs for the construction of

UDMUs that will attempt to improve envelopment are independent of the model

orientation. This, therefore, implies that if the UDMUs are to improve envelopment, the

adjustments to the remaining input/output levels of the ADMUs must be dependent on the

model orientation. Therefore in the TM case, adjustments to the input levels of the

ADMUs are required in the construction of the UDMUs. Similarly in the OM case,

adjustments to the output levels of the ADMUs are required in some way. Chapter six

offers the DM some general guidelines for the adjustments of the inputs outputs of the

ADMUs in order to construct their UDMUs. But, the DM is limited to one option for

each orientation for the adjustments:

• IM orientation model requires input adjustments

• OM orientation model requires output adjustments

Further, as the DMUs are now operating in a Variable Returns to Scale environment, there

is the additional concept of what nature of returns to scales should the UDMUs exhibit? It

has been assumed that the additional UDMUs should attempt to maintain the observed

nature of returns to scale of the DEA frontier. Thus the nature of the returns to scale of

the ADMU that the UDMIU is being constructed from should be considered. Consider the

earlier simple example and the nature of returns to scale of the DEA-frontier, see Figure

8.2.
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Figure 8.2 - The Nature of the Returns to Scale of the DEA Frontier
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Clearly, if it is desired to only extend the DEA-frontier from VOl by means of UDMUs,

then the UDMUs, in conjunction with VOl, must exhibit IRS, whilst, if it is desired to

extend the DEA-frontier from V05, the UDMUs, in conjunction with V05, must exhibit

DRS.

Some very general guidelines are now offered to the DM for the construction of their

UDMUs considering the returns to scale of the ADMU on which they are based. That is,

it would be expected that the UDMUs operate under the same returns to scale as their

ADMU. Further, if several UDMUs are introduced per ADMU, then these UDMUs

should operate under returns to scale appropriate for those of the ADMU. See Table 8.1,

for some general guidelines of what returns to scale of UDMUs are appropriate for the

returns to scale of the ADMU. These guidelines are based on the concept that the

extended frontier should exhibit VRS and therefore the introduction of any additional

UDMUs should attempt to be consistent with this. However, in practice this may be

difficult to achieve and it will also depend on the number of UDMUs that the DM wants to

introducc.
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Table 8.1 - Basic Guidelines for the Construction of the UDMUs in Terms
of Appropriate Returns to Scale

Nature of Returns to Scale of UDMUs

Nature of Returns Increase input and output	 Decrease input and output
to Scale of ADMU	 levels of ADMU	 levels of ADMU

Increasing	 Initial UDMU:	 Initial UDMU:
Increasing	 Increasing

Subsequent UDMUs:	 Subsequent UDMUs:
______________________ Increasing, Constant, Decreasing Increasing

Constant	 Initial UDMU:	 Initial UDMU:
Constant	 Constant

Subsequent UDM'Js	 Subsequent UD1Js
_____________________ Constant, Decreasing	 Constant, Increasing

Decreasing	 Initial UDMU:	 Initial UDMU:
Decreasing	 Decreasing

Subsequent UDMUs:	 Subsequent UDMUs
_____________________ Decreasing 	 Decreasing, Constant, Increasing

Evidently, the construction of the input output levels of the UDMUs is for the DM to

decide. This will depend on their values and the existing relationships between the inputs

and outputs. However, the DM should now be in a position to estimate a set of UDMUs

for introduction into the observed data set that will, in principle, improve envelopment. As

stated earlier the DEA-efficiency of UDMUs is not guaranteed by their construction, so

for simplicity, the DM may feel it appropriate to first check the DEA-efficiency of their

UDMUs by assessing them relative only to the DEA-efficient DMUs, particularly, if there

are a large number of DMUs in the assessment. If UDMUs are found to be inefficient,

their input output levels may be adjusted until their DEA-efficiency is obtained.

8.7 Implementation: Step (v)

Once the ADMIJs relating to a set of N DMUs have been identified and their associated

UDMUs created, the DMUs can be assessed using model (M7.1) or (M7.2) as required,

allowing DMUs and UDMUs to be peer DMUs. The number of properly enveloped

DMUs should be greater than in the absence of the UDMUs, see Appendix 8.2. However,

the increase lii the number of proply enveloped DMUs will depend on the specification
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of the UDMUs and further adjustments to their input output levels may be required to

further increase the envelopment of the DMUs.

An algorithmic summary of the suggested procedure is now given.

8.8 IncorporatinQValues & Improvin g Envelopment Via UDMUs:
A Summary

Consider a set of N DMUs using m inputs, x11, i='l.....m to produce s different outputs Yr,,

s, using an IM model. The following steps can increase the number of properly

enveloped DMUs in assessments of DEA efficiency, but does not guarantee full

envelopment. (A similar summary can be specified for an output maximisation model.)

i. The model (M7. 1) is used to identify the set of DEA-efficient DMUs JE which are

of class E and E' as defined by Charnes eta!. [19]. If all DMUsjEJE are properly

enveloped stop. Otherwise go to (ii).

ii. In respect of each jEJE solve model (M8.1) to determine h 1 as defmed in thai

model. The set ofADMUsJA = {j I h, >1, and at least one 5', >0 or Sn,+r >0,

or DMUj has no feasible solution in (M8.1)}.

iii. In respect of eachjEJA solve model (M8.4) and use (M7.3) to identify the inputs

and output of each ADMU that require necessary adjustments following

Proposition 8.1 and Proposition 8.2 to initiate the construction of at least one

UDMU.

iv. In respect of each ADMU, the DM specifies UDMUs based on the results of step

(iii). That is, for each input andlor output identified in (M7.3) at least one UDMU

is constructed given the DM's local values, returns to scale of the ADMU, the

model orientation and any technological and policy constraints.
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v. Assess the DMUs using model (M7.1) but permitting both DMUs and the UDMUs

created in step (iv) to be peer DMUs. The number of properly enveloped DMUs

should be greater than the number initially found in step (i).

vi. If the DMs consider further envelopment of the DMUs is required, repeat steps (iv)

and (v). Otherwise stop.

The next section demonstrates the use of the foregoing process on a real data set.

8.9 An Application of the Use of UDMUs to Ca pture Value
Judgments and improve Envetopment in DEP

In this section the use of UDMUs to incorporate value judgments and improve

envelopment will be illustrated by applying the theory to the same data set of chapter six.

However, in this application it is assumed that the branches operate under VRS. It was

felt that the same data set could be assessed in a VRS environment, as the application is

being used to merely illustrate the procedure in a VRS environment. Although, this does

highlight the subjective nature of DEA and the need for an objective procedure for the

selection of an appropriate model. Clearly, if a VRS DEA model is applied VRS is

assumed to hold, whereas if a CRS model is applied CRS is assumed to hold.

Consider assessing the set of 668 bank branches of chapter six, each consuming two inputs

to produce five outputs detailed in Table 6.2. An Input Minimisation model is used.

Step (I)

The initial step of the procedure is to assess the branches under model (M7.1) to identify

the DEA-efficient branches and establish that there is a need to include values and improve

the envelopment of the branches.

As there are 7 factors in the assessment and a VRS IM model is being applied, it is

possible for a maximum of 6 c-weights to be assigned by the branches in their assessment.
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However, it was found that all DMUs use at least two factors to determine their relative

efficiency scores and that there were 53 efficient branches. The frequencies of weights

assigned by the 615 inefficient branches in (M7.1) are shown in Figure 8.3. [There may

have been alternative optimal solutions which change the envelopment of the DMUs as

shown in Figure 8.3, but in general the number of DMUs would not be properly

enveloped.]

Figure 8.3 - The Number of Weighted Inputs and/or Outputs Per DEA-
Inefficient Branch in (M7. 1)

0	 2	 4	 5

Number of E weighted inputs and outputs

Clearly, under the standard VRS model, the majority of branches do not use all their

factors to determine their relative efficiency score. Thus, this implies that in general, the

observed efficient branches are of dissimilar operating mixes to the inefficient branches. It

should be noted that 53 efficient branches envelop only 40 inefficient branches, which is an

approximate ratio of 1 to 0.8.

This step clearly establishes a need for a procedure to improve the envelopment of the

inefficient branches. As established in chapter six the proposed approach developed in this

thesis is suitable for the DM and the implementation of their values, using the information

collected from their ABC analysis to determine the unobserved branches.
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Step (ii)

To determine which of the DEA-efficient branches are anchor branches, model (M8. 1)

was solved. It was found that 52 of the 53 DEA-efficient branches were anchor branches.

Step (iii)

Having identified the potential branches for the basis of the unobserved branches, it is now

required to identify which of the inputs andlor outputs of these branches require

adjustments to their inputs and outputs in order to improve envelopment. To demonstrate,

the assessment of branch D586 under (M8.3) will be considered. Solving (M8.3) for

D586 to determine its radially adjusted class F referent branches, it was found that D586

had two referent branches. The original class NF branches from (M7.3) corresponding to

these two referent branches in (M8.3) are D332 and D485. Referring to the assessment

of these branches in (M7.3), their positive slack values are shown in Table 8.2, and are the

basis for the construction of the unobserved branches based on D586.

Table 8.2 - Results of Step (iii) for Branch D586

Observed Class NF Branches Corresponding	 Positive Slack Values in
to D586's Referent Branches in (M8.3) 	 (M7.3)

D332	 AP&MT
D485	 AP&SV

The 2 class NF branches have in total positive slack values for 3 different inputs and

outputs in model (M7.3). Thus, a minimum of 3 unobserved branches are to be

determined using the input and output levels of branch D586 as a basis for their

construction, as outlined in Table 8.3.

Table 8.3 - The Basis for the Construction of the Unobserved Branches
Based on Branch D586

Constructed Unobserved Branch 	 Basis of Unobserved Branch

Al D586	 Lowering of AP
A2D586	 Lowering of MT
A3D586	 Lowering of SV

142



Chapter Eight - Incorporating Values & Improving Envelopment Via UDMUs: VRS case 	 April, 97

For details of which inputs andlor outputs of the ADMUs are to be adjusted in order to

improve envelopment see Appendix 8.3. It was also noted that only 29 of the anchor

branches actually required adjustments to their input output levels.

Step (iv)

The actual construction of the unobserved branches now needs to be considered.

It was decided that if the anchor branch operated under CRS, then the DM would

construct unobserved branches such that they would, hopefully, operate at CRS and

estimate only one unobserved branch per 'lowering of an output or raising of an Input.

However, if the anchor branch was found to exhibit increasing or decreasing returns to

scale, then the DM would attempt to construct unobserved branches that would exhibit

variable returns to scale when added to the observed set of branches. In practice this is

difficult to achieve, but by the adjustments to the inputs and outputs of the ADMU,

varying rates of transformation may be achieved. The DM only wanted to estimate a

maximum of two unobserved branches per lowering of an output or raising of an input

level. This was done following the guidelines in Table 8.1. In total 97 unobserved

branches were constructed.

As in the CRS case, the construction of the unobserved branches was based on the

information gathered for the ABC analysis. The only real difference in the construction of

the unobserved branches in the VRS to the CRS assessment is for those branches that are

found to exhibit IRS or DRS. The construction of two unobserved branches based on the

lowering of D586's SV level will be used as an illustration, as it was found that D586

exhibits IRS. Table 8.4 displays the input output levels of the observed branch and the

two constructed unobserved branches, A3D586 and B3D586.
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Table 8.4 - Unobseived Branches Based on a Reduction in Number of
Saving Accounts (SV) Held at D586

FA	 TC	 Al	 AP	 CT	 MT	 SV

D586	 4	 75429	 84.2	 25.8	 94140	 57	 1136
A3D586	 3.6	 63654	 71	 18	 92921	 41	 848
B3D586	 3	 59280	 56	 11	 90412	 31	 450

As in the construction of the unobserved branches in the CRS assessment, the DM felt that

a lowering of an output would lead to a reduction in its inputs and the other outputs.

Clearly, SV has been lowered in two stages, with different adjustments to the inputs and

outputs at each stage. As the observed branch exhibits IRS, the unobserved branches

should exhibit varying rates of IRS. In an attempt to ensure this the ratios of the

reductions of the inputs and outputs of D586 were varied at the different stages, in

constructing A3D586 and B3D586.

The final input output levels of the 97 unobserved branches can be found in Appendix 8.4.

It should be noted that these unobserved branches are the result of several iterations under

model (M7. 1) with the assessment set containing onJy the DEA-efficient branches and the

unobserved branches.

Step (v)

Finally, the DM is now in the position to re-assess the observed branches with the

inclusion of the unobserved branches in the assessment, in (M7.1).

As the unobserved branches attempt to include values while improving envelopment, it

would naturally be expected that the DEA-efficiency of the observed DEA-efficient

branches would be discriminated between. This was found with the inclusion of the

observed branches, as only 41 of the observed DEA-efficient branches remained DEA-

efficient with 627 inefficient branches. Figure 8.4 summarises the effect on envelopment of

these 97 unobserved branches. [Evidently, there may have been multiple optimal solutions

that provide different envelopment results to those shown in Figure 8.4, but the results to

envelopment would be vastly improved.]
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fjqqre 8.4 - The Number of Weighted Factors Per DEA -inefficient Branch in
LM7. 1) with an Extenc Data Set

0	 2	 3	 4

Number o weighted inputs and outputs

Clearly, the number of properly enveloped branches has been vastly improved by the

introduction of the 97 unobserved branches into the assessment set. flwis the scotes

should reflect more appropriate measures of relative efficiency.

Finally, although at first it may appear that the determination of 97 unobserved branches is

rather excessive, it is not unexpected, due to the number of inputs and outputs involved in

the assessment and the initial number of non-enveloped branches.

8.10 Conclusion

This chapter has adapted the approach developed in chapter six for introducing value

judgments and improving envelopment in a CRS DEA assessment to a VRS DEA

assessment. The DM's value judgments with regard to unknown production areas have

been captured via the inputs and outputs of the production process, i.e. UDMUs. As in

the CRS case these UDMUs have been constructed based on the observed DEA-efficient

standards and information provided by the DM. However, they have also considered the

returns to scale of their base ADMU, thus hopefluly extending the frontier with suitable

returns to scale being exhibited.
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The main advantages of this approach have generally already been discussed in chapters

five and six. However, this chapter has highlighted how the ability of the approach to

express values at varying local levels and incorporate the relationship between the inputs

and outputs, readily allows it to be applied to VRS DEA assessments.

Evidently the difficulty in the approach is the specification of the UDMUs. If

inappropriately specified they do not impact on the envelopment of the inefficient DMUs,

as it is rather a subjective procedw'e Thus this area of the approach is in need of further

research. However, the proposed approach is merely a starting point for an alternative

perspective for perceiving the problem of how to include \'alue judgments in a DEA

assessment.

The next chapter summarises and concludes. It also offers the reader some thoughts on

further research into the area of the inclusion of values judgments in a DEA assessment.
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9.1 Summary

Initially, this thesis presented an approach for incorporating value judgments in a DEA

assessment via the introduction of Unobserved DMUs (UDMUs) into the assessment set,

it then focused on the use of Unobserved DMUs to capture the DM's values that will

improve the envelopment of the DMUs. These UDMIUs are in essence based on observed

DMUs and the DM's values. The main motivating reason for this research was the lack of

information provided by present approaches on the explicit expression of the impact of the

inclusion of values on the Production Possibility Set. Further motivating reasons for the

research and the developed approach can be found in chapters two and five, with a review
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of present approaches for the inclusion of values in chapter three. Chapter four

demonstrated, in the general case, that the inclusion of values in the form of weights

restrictions implicitly modifies the Production Possibility Set; thus demonstrating that the

problem of including values into a DEA assessment could be considered as a problem of

missing data i.e. lack of suitable DEA-efficient comparator DMUs. This, switches the

perceived view of the inclusion of values in a DEA assessment from the weights model to

the envelopment mode!, and it is this link that laid the foundations for the approach

proposed in this thesis. A brief outline of the steps involved in the procedure developed

will now be provided:

i.	 Assess the observed data using an appropriate standard DEA model to identify the

DEA-efficient DMUs and the initial envelopment of the DMTIs. This step

establishes the need for an approach for the inclusion of values that will improve

the envelopment of the inefficient DMUs.

ii.	 Identify the ADMUs, which are those DEA-efficient DMUs that delineate the

DEA-efficient frontier from the DEA-inefficient frontier. This is done using the

concept of Super Efficiency, see Andersen and Petersen [61.

iii. Identify the specific inputs andlor outputs of the ADMUs that need to be

individually raised andlor lowered respectively in order to improve envelopment.

The proposed approach for identifying these inputs andlor outputs uti!ises the

information provided from step (i) and the positive slack values of the inefficient

DMUs.

iv.	 The DM constructs suitable estimates of DEA-efficient DMUs based on

a) The information provided by step (iii).

b) The input output levels and returns to scales of the ADMUs.

c) Their perceived local values.

d) Management policies and technological constraints.

v. Re-assess the DMUs under the appropriate standard DEA model, allowing both

the observed and unobserved DMUs to be considered as peer DMUs. The

obtained results should reflect the inclusion of the DM's values and an

improvement to the envelopment of the DMUs.

vi.	 If the envelopment of the DMUs is not satisfactory to the DM, repeat steps (iv) &

(v), otherwise stop.
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Having outlined the general procedure developed in the thesis, which is applicable to

DMUs operating under CRS and VRS, the next section will outline the advantages offered

by the approach, its limitations and indicates the circumstances under which a DM would

opt to select this approach for incorporating their values and improving envelopment in a

DEA assessment.

9.2 Conclusions

The developed approach explicitly modifies the observed PPS in order to express the

DM's preferences/values on the inputs and outputs used in the assessment in order to

improve envelopment. This use of UDMUs to modify the PPS could be thought of as

filling in for missing data in the observed data set. That is, estimates of efficient input

output levels are being made, based on certain observed efficient input output levels and

the DM's preferences.

In essence capturing value judgments 'via unobsexed OM\S ofteTs t 1cie	 cmg

advantages:

• Alternative Expression of the DM's Values

In certain situations, DMs may find it difficult to express their value judgments via the

specification of specific global marginal rates of substitution/transformation or

maximal/minimal weight values. In these cases the DMs are provided with an alternative

means of specifying their preferences/values in terms of the inputs and outputs with regard

to specific production processes. Thus value judgments are expressed by the comparison

of input output levels.

• Inclusion of the Relationship Between the Inputs and Outputs

UDMUs can be generated by simultaneously manipulating the input output levels of

certain observed DEA-efficient DMUs. This directly incorporates any relationships which

may exist between the inputs and outputs.
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• Inclusion of Varying Local Values

In certain applications, global values may not be appropriate. That is, the relative value of

the inputs or outputs may be dependent on the levels in which they are observed, i.e.

variable local marginal rates of substitution are appropriate. In general as the observed

frontier exhibits several different values between the inputs and outputs, it is only

reasonable to assume that any extension to this existing frontier may also exhibit a

variation in values. Thus capturing values via UDMUs allows varying local values to be

incorporated.

• Consideration of the Feasibility of the Extended PPS

UDMUs explicitly modify the PPS to implicitly restrict the weights, rather than explicitly

modify the weights, thereby implicitly modifying the PPS. In acting directly on the PPS

the input output levels of the extended PPS are considered and hence controlled. This

avoids DM infeasible extensions to the PPS being made and, therefore, unrealistic relative

efficiency scores being obtained. For example, in the VRS case it avoids extensions into

unknown production areas that provide negative efficiency scores.

• Aid the DM in the Interpretation of the Results

As stated, UDMUs allow the feasibility of the EPPS to be considered. Thus if the EPPS is

deemed feasible by a DM, then the obtained results can be deemed feasible. Further, the

DMs are provided with targets of similar operating processes to their present ones, which

although unobserved, may be more meaningful and objective to the DM in certain

situations. At the very least they provide an alternative suggestion to the DM for how

efficiency may be improved.
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• Limitations

Unfortunately, no approach is all-purpose or without limitations, and the proposed

approach has several drawbacks, namely the determination of the UDMUs. This is rather

time consuming, with the DEA-efficiency of the UDMUs not guaranteed and their

introduction into the observed data set does not guarantee full envelopment.

Having established that the proposed approach offers both a different perspective towards

the inclusion of values in a DEA assessment, and an alternative to existing approaches, a

brief comparison of the approach of UDMUs and weights restrictions will now be made.

Essentially this aims to indicate that each approach has its advantages and disadvantages,

and suggests that each approach has a viable use and is appropriate for certain applications

or specific DMs. A brief comparison of the two approaches is now made.

The three types of weights restrictions, absolute, relative and linked-dependent weights

restrictions are used to incorporate different types of information. Absolute restrictions

attempt to restrict the maximum/minimum contribution of specific inputs and/or outputs to

the relative efficiency score. Hence in many respects these restrictions attempt to extend

the PPS and are concerned with the non-enveloped DMUs of the assessment, similar to the

proposed approach of this thesis. Relative restrictions attempt to reflect the DM's relative

values on the inputs or outputs in the assessment. So, these restrictions attempt to extend

and modify the PPS and, in several applications of these relative restrictions they are used

to directly discriminate between the DEA-efficient DMUs, Thompson et a!. [55]. In these

cases the use of relative restrictions, is not concerned with the non-enveloped DMUs of

the assessment. Linked-Dependent restrictions are used to reflect the DM's values on

dependent relationships between the inputs and outputs of the assessment, so in essence

they are not concerned with the non-enveloped DMUs of the assessment. The approach of

this thesis is primarily interested in the use of the DM's values to extend the PPS and

envelop the previously non-enveloped DMUs, while incorporating the relative and linked-

dependent relationships that may exist between the inputs and/or outputs. So, it is
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assumed that the perceived values of the DEA-efficient DMUs are acceptable to the DM,

whereas in weights restrictions this assumption, in general, is made.

Table 9.1 outlines, in general, the differences between the two approaches for the inclusion

of value judgments in a DEA assessment.

Table 9.1 - A General Comparison of Weights Restrictions and UDMUs

Weights Restrictions	 UDMUs

Specification	 .	 . .	 Local values in form DMUs
Explicit definition of global

comparisons.relationships between or on the
values of the inputs andlor

_________________ outputs.	 Time consuming.

Implementation	 Iterative.	 Iterative.

infeasible solutions possible.

Suitable software required.

Timeconsuming.	 ____________________________

Extended	 Implicit	 extension	 therefore Explicit therefore the feasibility of
Production	 feasibility of input output levels the 	 input	 output	 levels
Possibility Set	 not considered.	 considered.

Targets and	 Observed data only.	 Observed and Unobserved data
Peers	 used.

Drastic changes in input output Input output mix is stable.
mix could arise.

Returns to Scale No account is given to the returns Accounts for the variation of the
to scale of DMUs.	 returns to scale of the DMUs.

Essentially the information required for, and the results provided by the use of weights

restrictions and UDMUs, is of a different format, hence the approaches may be appropriate

for different DMs. As the information is incorporated into the assessment differently, each

format may be appropriate for different applications.

However, as discussed in chapter five, a combined use of weights restrictions and Radial

DMUs can aid the DM in their interpretation of the results and implementation of their

values.
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Having identified the main conclusions of this thesis, some further possible explorations

will be proposed which may extend the ideas presented in this thesis.

9.3 Further Explorations

Possible areas which may provide fruitful research, beginning with this thesis which raises

a number of issues worthy of further exploration including the following:

a) ADMUs - Adjustment of Their Input Output Levels

Alternative approaches for identifying the inputs and outputs o an DMU tbat

require adjustments, in order to construct UDMUs that wil( in principk improve

envelopment could be formulated.

b) Specification of UDMUs

i.	 Adaptation of a Current Approach

The adjustments to the data sets suggested by Chames e at. 1S may prove

valuable in the determination of suitable input output levels for the UDMUs. In the

approach suggested by Charnes et al. [15], a new data set is generated through the

use of cone-ratio information, thus the adjustments suggested are applied by adding

related inputs or outputs. However, as the information provided for the cone-ratio

represents substitution rates, if the related inputs or outputs are substituted rather

than accumulated under their appropriate rates, individual UDMUs could he

generated, instead of an entirely new data set. Further, this is only necessary for

the DEA-efficient DMUs - as they are the only DMUs that will possibly remain

efficient under the substitutions. So, adding these UDMUs to the observed data

set should modify the PPS in the desired manner to express the DM's values in the

assessment.
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ii. Combining Existing Approaches

As illustrated in this thesis, including values into a DEA assessment modifies the

PPS. At present the DEA-efficiency of the UDMUs and their impact on the

envelopment of the inefficient DMUs is rather hit and miss. Thus, rather than

depending solely on the DMs insight into the production process to determine

suitable estimates for UDMUs, it may be possible to integrate knowledge of the

theoretical production function into the model, to aid in extending the observed

production frontier in an appropriate manner. One such approach that attempts to

combine incorporating values in a DEA assessment with stochastic approaches is

Olesen and Petersen [40].

C)	 Suitable DEA-Efficient Frontier?

As stated in chapter two, it has been assumed in the development of the procedure

of section C that the values of the DEA-efficient DMUs are acceptable to the DM.

However, there may be situations where this assumption is not acceptable to the

DM and they may feel that the input output levels offered by the ADMUs relative

to the other DMUs may not be truly efficient. That is, it would be preferable for

the DM to manipulate the input output levels of other DEA-efficient DMUs to

improve envelopment, incorporate values and discriminate between the DEA-

efficient DMUs. This would involve a development of the current procedure.

Similarly, if the DM feels that the identified returns to scale of the DEA frontier is

not appropriate, then a development of the procedure would be necessary to allow

the DM to include UDMUs to modify the returns to scale of the frontier.

d)	 Improving Envelopment

The procedure developed in section C is aimed at encouraging individual inputs

and outputs to contribute to DEA-inefficient DMU's relative efficiency scores.

However, the DM may want to simultaneously encourage several inputs or outputs
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to contribute to a DMU's relative efficiency scores. This will require a

development of the proposed approach.

The approach is limited here to an application with controllable inputs, and further

research of a more general nature is required into the impacts of the inclusion of values

into an assessment where the following may exist:

• Exogeneously Fixed Variables/Categorical Variables

The approach detailed in this thesis assumes that all the inputs and outputs can be freely

modified as required. However, this may not a)ways be the case., such as with

exogeneously fixed and categorical variables, and the approach needs to be extended in

order to take these variables into account, which is true of most approaches for the

inclusion of values in a DEA assessment.

• Values Over Time

In general very little attention has been given to incorporating values into a DEA

assessment over time, with the exception of Thompson et al. [54]. Thus, how to adapt

this procedure for such an assessment would be an interesting research question.

• The Sensitivity of the Results to the Inclusion of Value Judgments.

This thesis has concentrated on how to actually capture value judgments in a DEA

assessment. A possible further avenue of research leading on from this thesis, would be to

consider the sensitivity of the results to changes in the values included via both weights

restrictions and UDMUs. For example, there are limits to the changes in the modification

of specific relative values of the inputs or outputs and the changes in the obtained results.

Does modifying the input/output levels at local levels have a large impact on the variation

in the obtained results? Do modifications to specific inputs outputs have a greater impact

on the relative efficiency score than others?
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• Target Sethng

As demonstrated in chapter five, there is a clear need for an approach for setting

meaningful targets once value judgments have been included in the assessment. It can be

seen that basing targets on observed DMUs only, can provide results that suggest

decreases in output levels or increases in input levels for the DMUs to be deemed

relatively efficient. Clearly, these targets contradict the objectives of setting targets and

provide the DM with no incentive and meaning. However, basing targets on unobserved

input output levels can also be problematic in that, as the levels have not actually been

observed, it is not known whether they can be achieved (this will always be the case for

DEA-efficient DMUs). Therefore, some form of compromise needs to be found.

• Absolute Weights Restrictions

The results reported in chapter four and seven suggest that the use of absolute/virtual

restrictions in their present format is questionable, although there are special cases for their

implementation where their use is acceptable. See, for example Dyson and Thanassoulis

[27]. Further research is required into the use of weights restrictions as, in many

applications, their use is extremely simple, and is a desirable approach for capturing value

judgments.

Finally, the research process of this thesis is shown in Figure 9. 1.

Figure 9.1 - The Research Process of this Thesis

I Explicit restrictions of weights
Weights modification of the PPS
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Appendix 4

Appendix 4.1

Simulating Relative Output Weights Restrictions: A Specific Example

For ease of explanation, the model (M4.1) is reproduced here as model (A4.M1).

h* = Max U lYli	 2)2j

Ui + 3w ^ 12	 :D1	 (A4.M1)

3u1+2u2^l2	 :D2

3.75u l +u2l2	 :D3

1.5u 1 + 1.5u ^ 12	 D4

:rrl

-U2^-g

(e is a non-A rchimedean infinitesimal)

Notation as in (M4.1).

The conditions under which iii is binding for all optimal solutions of (A4.M1), can be

readily deduced by examining its feasible region shown in Figure A4. 1. The lines FM, HK,
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JB and IL are defined when the constraints corresponding to Dl, D2, D3 and D4

respectively are binding, while u i = u2 represents the case when rn is binding in (A4.M1).

Figure A4. I - Output Weight Space of (A4.MI)
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The feasible region of (A4.M1) is ABCD and is defined by the DMUs D3, D2 and rn.

Given that Yri ^O Vj,r with at least one of these being strictly positive, it follows that one of

the vertices B, C or D will be optimal when assessing a DMU in (A4.M1). The weights

restriction rn will only be binding for those DMUs of (A4.M1) which have D as their

UNIQUE optimal solution. From the graph, it can be deduced that D will be the unique

optimal solution for DMUs of (A4.M1) if their objective function slope in (A4.M1), -

Yl//Y2!, (not plotted), is larger than the slope of the line HK (representing D2) which is -3/2.

Thus, rn is binding for aDMU in (A4.M1) if-y 1 /y21 > -3/2 or

2	
(A4.1)

Thus for all the DMUs with output levels that satisfy (A4. 1) the optimal solution to

(A4.Ml) provides a unique optimal solution and rn will not be redundant.

Effectively the introduction of the weights restriction ml in (A4.Ml) introduces a new

vertex, D into its feasible region, see Figure A4. 1 and when a DMU of (A4.Ml) has its

unique optimal solution at D, the efficiency score of this DMU is affected by rn,
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Now, consider replacing rn in (A4.M1) by one UDMU. Obviously, the UDMU must be

DEA-efficient, otherwise its introduction will have no impact on the relative efficiency

scores of the DMUs. Without nil, the feasible region for (A4.M1) is the area labelled

ABCEF in Figure A4. 1. If rn is to be simulated, then the DEA-efficient UDMU must

reduce ABCEF to create a subset of it, sub-ABCEF which will need to be such that

(I)	 it contains D

and

(ii)	 D is optimal for given values ofy11 andy21 in (A4.Ml), whether the feasible

region is ABCD or sub-ABCEF.

To satisfy condition (I) the UDMU must be DEA-efficient and define a line that introduces

the vertex D into the feasible region. At 0, u 1 u2 = 2.4 and for DEA-efficiency it is

required that u 1y, + u2y2 = 12. Hence UDMUs must offer output levels (yi, Y2) such that

Yi Y25.

Condition (ii) is satisfied by (A4.1).

Hence any UDMU offering output levels such that yi + = 5 and Yi < 3Y212 can

simulate rn in (A4.M1).
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APPENDIX 4.2

Proof of Theorem 4.1

For ease of explanation models (M4.3) and (M4.4) are reproduced here as (A4.M2) and

(A4.M3) respectively.

(A4.M2)	 (A4.M3)

= Max	 Max

- S. t.	 V1X. = I	 s. t.	 y,x,, = 1

uryrjv,x,)^O	 j1.....N	 jtl.....N

UEU, VEV UVEUV	
Vr,i

Notation in (A4.M2) and (A4.M3) as in (M4.3) and (M4.4) respectively. The RDMUs,

jt==1..... Nm (A4.M3) are derived using (4.1). It is necessary to show that	 = h.

Proof

Let u,v,,8, be respectively the optimal values of Ur, r1.....s, v,, 1=]..... m and 6,-,

r= 1.....s, y, j=1..... m obtained in (A4.M2) and (A4.M3) respectively.

S	 fli

From the constraints of (A4.M3) for jt0 j0 it follows that	 8Y J() ^ y	 = 1. Using
r=1	 1=1

S

6rYrj	 h'
r=l	

=_<
(4.1) this gives	 *	 * - 1, or

	

h' ^ht	 (A4.2)Jo	 J

The solution,	 = u, Vr and y = v, Vi, is feasible in (A4.M3). To show this it is only

necessary to show that, 	 = u, Vr and y = v,, Vi, satisfies the constraints jt=/..... N in

-- -------------------------------------------------
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(A4.M3). A feasible solution u, r= J ,...,s, v i = 1.....m which is feasible for one assessed

DMU Jo of (A4.M2) will also be feasible for another assessed DMU Jo of (A4.M2)

provided the weights restrictions in (A4.M2) all have zero RUS value, see Appendix 4.5.

Thus, for any DMU j in (A4.M2),	 UyJ =	 vx , with h, ^ h ^ 1, where h is

the efficiency yielded by (A4.M2). So, it follows that, r=1 
*	 vx,, and by

/=l

recourse to (4.1), forj=jt the following holds:

uyrJ, —vx,1, ^O	 j=1.... . N	 1A4.3)

Thus - = u, Vr and y	 v,*, Vi satisfy the constraintsjt=1.....Nof(A4.M3) and provide

a feasible solution to this model. This implies 	 U))1	 h is a feasible objective function

value to (A4.M3) and so

	

h ^h'	 (A4.4)Jo	 Jo

Clearly (A4.2) and (A4.4) imply

h = h	 (A4.5)

QED
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APPENDIX 4.3

Proof of Propositions 4.1-4.3

Let h be as defined in model (M4.5), with the following envelopment model being the

dual to (M4.5).

S represent the slack variables. Let * denote the value of the corresponding variable at the

optimal solution to (A4.M4).

Proposition 4.1

a) If h >1 then DMU jt0 is not a redundant RDMU.

Proof

Clearly if h > 1 then	 > 1. Further, at least one S 1 will be zero as the minimisation

of 9, has pre-emptive priority. Hence within (A4.M4) the input output levels of RDMU

ft j=Jm; y,-,,., r= 1.....s) cannot be expressed as a linear combination of other DMUs

or RDMUs. Hence RDMU ft0 does not generate a redundant constraint in (A4.M4) and

thus it is not a redundant RDMU.

b) If (A4.M4) has no feasible solution then RDMUjt0 is not redundant.

Proof

If no feasible solution to (A4.M4) exists, then RDMU jto cannot be expressed as a linear

combination of the other DMUs or RDMUs. Hence RDMU fto is not a redundant RDMU.
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Proposition 4.2

If h = 1 in (A4.M4) then RDMUjt0 is a redundant RDMU.

Proof

Consider the optimal solution to (A4.M4), where 	 =	 -	 +	 = 1,

with DMU Ito being DEA-efficient, i.e. O = I, and S1* = S,+r = 0 Vr, i. Hence it can be

seen from the constraints of (A4.M4) that the optimal 2. values in (A4.M4) express the

input output levels of RDMU ft0 as a linear combination of the input output levels of other

DMTJs or RDMJJs in (A4.M4). Therefore RDMU ft0 is a redundant RDMIU in (A4.M4).

Proposition 4.3

At the optimal solution to (A4.M4) h cannot be less than 1.

Proof

From the construction of RDMIJ ft0 we know that (A4.M2) has a feasible solution (u*,v*)

that renders RDMU ft0 DEA-efficient in the sense that 	 U Yrji = 1,	 vx0, = 1 and

therefore h = 1. Appendix 4.2 showed that any solution (u', v*) to (A4. M2) is feasible in

(A4.M3). Further, since (A4.M4), which is the dual to (A4.M3), but contains only a

subset of the constraints of (A4.M3) the solution will also be a feasible in (A4.M4). Thus

at the optimal solution to (A4.M4) we cannot have h <1.

QED.
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Appendix 4_4

Proof of Theorem 43

For ease of explanation models (M4.6) and (M4.7) are reproduced here as models

(A4.M5) and (A4.M6) respectively.

	

(A4.M5)	 (A4.M6)

= Max UrYrj	 = Max TrYri

Ill	 11?

s.t.	 = I	 s.t.	 81X,J =1

UrYr, — v1x ^O	 j=1.....N	 rYr,	 ^O	 j=l.....N

Pi^Vi^I	 :arl	 1=1.....m	 TrYrip —8,x,1 ^O

Pr^Ur^r	 :ar2	 r1.....s
V/, r

Notation in (A4.M5) and (A4.M6) as in (M4.5) and (M4.6) respectively. The RDMUjp0

in (A4.M6) is derived using (4.4). It is necessary to show that e . ) = 
1(1

Proof

*	 *	 *	 *
Let Ur ,V, ,8, , T r be respectively the optimal values of Ur, r=1.....s, v,, i1.....m, and 6

1 = 1.....m; r,. r== l.....s obtained in (A4.M5) and (A4.M6) respectively.

From the constraints of (A4.M6) for joJo it follows that	 TYrjp ^	 1.

Using (4.4) this gives for]p0j0,
ci

r=j	 or
e	 e

Jo	 Jo

	

e' ^e*
	

(A4.6)JO	 JO
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The solution, i = u, Vr and (5; = v, 7, is feasible in (A4.M6). To show this it is only

necessary to recall that, Tr = u,, Vr and 5 = v,*, Vi, satisfies the constraint jpo in (A4.M6)

which is true by virtue of (4.4), so the following holds:

S	 In
*	 *

—	 v x,,,, ^ 0	 (A4.7)
r=1	 1=1

Thus the solution z = u, Vr and 5; = v,*, Vi is feasible in (A4.M6), this implies

=	 is a feasible objective function value to (A4.M6) and so

*	 I

e ^e	 (A4.8)Jo	 ./oo

ClearLy (A46) and (A4.8) imply

/ =	 (A4.9)

QED
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Appendix 4.5

Linear and Non-Linear Programming Eguivalencies

This appendix will show that:

(i) If the model (M1.3) with the inclusion of relative and linked-

dependent weights restrictions with a zero RHS value is solved, then

a feasible solution for DMU Jo, will be feasible for any other assessed

DMUj^jo.

(ii) If the model (M13) with the incSusion o absolute resthcttons or

relative and linked-dependent weights restrictions with a non-zero

RHS value is solved, then a feasible solution for DMU Jo, may not be

feasible for any other assessed DMU I ^fo.

Proof

Consider assessing a set NDMUs,j =1.....N with DMUj using input levels XC, i= 1..... m to

produce output levels Yri, rrz1.....s. Further, it is assumed that the DMUs are to be

assessed with additional constraints on their DEA weights. The relative efficiency h,* of

DMU 1(1 is inven by (A4.M7'.

= Max	 UrYr/(,

S. t.	 V 1 X,,, 	 1

(A4.M7) II

U rYrj —V 1 X,1 ^O	 j1.....N

Ur,^ar	 :rl

v2y	 :r2

Uk- Uk-I ^O	 :r3

Vi - v,-j ^ 0	 :r4

Up-Vt ^0	 :r5

r=1.....S

1=1.......kfl

for some k

for some /

Jorsomep, t
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v and U,- are the weights attached to the inputs and outputs respectively and a and y are

DM specified bound values.

To convert the model into a non-linear model, the following transformations are used:

Ur Pr t 	V1 = fl,t	
=

which, with t> 0 gives:

/tr Yr)0

= Max r=1

/11x

/1rYr,

Its.t.

I, x,,

In

/r ^ar/3jxy

fi, ^y1flx,,

f/k - /-lk+1 ^ 0

8i - /3i± ^ 0

- )61 ^ 0

1=]... . N

:rl	 r1..... S

:r2	 i=1.....m

r3
	

for some k

r4
	

for some 1

r5
	

Jorsomep, t

fi, and 1u,- are the weights attached to the inputs and outputs respectively and a and 2' are

the DM specified bound values on the numerical DEA weight values of (A4.M7).

Let /1,- and /1 . be optimal solution values for ji,- and /3 respectively in (A4.M8),
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Proof of (I): Weights Restrictions with a Zero RHS Value

If model (A4.M7) j[y contains additional constraints on the DEA-weights of a similar

form to r3-r5, then a feasible solution for DMUj0	and /f ) in (A4.M8) will also be

feasible when assessing DMU j ^ Jo in (A4.M8) as all this does is change the objective

function of the model.

Proof of (ii): Weights Restrictions with a Non-Zero RHS Value

If model (A4.M7) contains additional constraints on the DEA-weights in the form of ri -

r2, (or r3-r5 with a non-zero RHS value) then a feasible solution for DMU Jo (,U8 r and j)
in (A4.M8) may not be feasible when assessing DMU J^J in (A4.M8) as the constraints

ri -r2, are now DMU dependent, and thus, in addition to changing the objective function

of the model, the constraints ri -r2, are also changed.
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Appendix 6.1

Identifying Anchor DMUs

Consider assessing a set of N DMUs j1.... . N, each using varying amounts of m different

inputs, x, i=1.....m to produce varying quantities of s different outputs, Yrf, r-1.....s. Let

the set JE consist of the DEA-efficient DMUs identified using model (M6.2) and let JE10

be the set JE excluding DMU Jo. In respect of each DEA-efficient DMU Jo solve the

envelopment model (A6.M1).

( II?	 S	 '0

h = Mm Z0	 H, + Hm+rJO

i=I

Si.	 z0x,, -	 r1x,, —H, =0
•i• .JE10

- H,,i+r =
J EJI0

1=1.....m

r=1.... . S

(A6 . Ml)

H1, Hmir, 't, ^ 0
	

Vi, r,J EJE10

H, and Hm4.r represent slack variables. Superscripts / will be used to denote the value of a

variable at the optimal solution to (A6.M1).
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DMUj0 is classed as an ADMU if:

a)	 >1 and it has at least one i-(> 0 or I(m+r> 0.

or

b)	 (A6.M1) has no feasible solution.

Proof of (a)

Consider assessing DMU Jo under model (A6.M2), after scaling its inputs to zx,1,

i=J.....m to give it a radial efficiency of 1 in (A6.M1).

Ils.t.

g 0 = Max S,n + Si

-	 2,x,, =S1
I

+	 2 jYrj = S,ii+r
.1 EI/1

2, Si, Sm+r ^ 0

is the optimal value of zo in (A6.M1) and S and Si+r represent slack variables.

If(a) holds then DMUj0 will yield go> 0 in (A6.M2), and by definition the assessed DMU

is deemed to be of class F. This shows that DEA-efficient DMUj 0 can be rendered class F

under SE with respect to	 and therefore it is an ADMU.

Proof of (b)

DEA-efficient DMUs fall into two categories ADMUs and non-ADMUs. A non-ADMU

in (A6.M1) meets the following conditions:

• h=l

or

• h ^ I and I(, = I(m+ = 0 for i=1,...,m and r = 1.....s.

DMUj0 does not meet these conditions when (A6.M1) has no feasible solution and so it

must be an ADMU.
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Appendix 6.2

Improving Envelopment

Consider assessing a set of N DMUs1J..... N, each using m different inputs, x,1, i=1.....in

to produce s different outputs, Yr!' rl.....s, under model (M6.2). Let some of the DMUs

be non-enveloped in the sense of Lang et a!. [38]. Then introducing DEA-efficient

UDMUs as local variations of ADMUs in the manner outlined in Theorem 6.1 for

determining the input output levels of UDMUs will, in principle, increase the number of

properly enveloped DMUs. An outline of the steps involved in the proof is now given:

(i) It is feasible that if a class F DMU jf is a referent DMU to ADMU jp in (M6.4)

then DMUjfwill have ADMUJp as a peer DMU in (M6.2).

(ii) Introducing an UDMU ja created from ADMU jp will in principle improve

envelopment of DMUjJ'which had DMUj as a peer.

The above steps will now be detailed.

Proof of (I)

It is feasible that if a class F DMU jf is a referent DMU to ADMU jp in (M6.4)

then DMU jf will have ADMU jp as a peer DMU in (M6.2).

Consider using model (M6.2), reproduced here as (A6.M3) for convenience, to assess the

efficiency of DMUj0.

	

( in	 s

= Mm q 0 - e	 S, +	 I

	

i=l	 r=I

s.t.	 -	 - SI = 0
	

i=1.... . m	 (A6.M3)

	

K jYrj Sn,+r	 Yd(,
	 r1,...,s

	

K1 , Si, Sm+r ^ 0
	

Vj,i,r
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S represent slack variables. Let 
* 

denote the value of a variable at the optimal solution to

(A6.M3).

Suppose that all class NF DMUs have been adjusted using (6.1), so that they are now

class F DMUs. Let JF, jf=1..... .fF1 denote the set of observed and radially adjusted class

F DMUs. Let JA be the set of ADMUs. Consider assessing each Jo E IA under (A6.M4).

	

( m	 s

= Mm z0 - >H +H,,7+
Jo

	

i=1	 r=l

s.t.	 Z0Xq -	 TJXI, -	 r 11x,1 —H1 =0
.1 E.1L10

+	 itI -	 n+r Y,,
,j	 .fi•

H,, Hm+r, Ij, i2J^ 0
	

Vi,r, j EJE10, jf EJF

H represent slack variables and (A6.M4) allows only the class F DMUs of JF and the

DEA-efficient DMUs excluding DMUj0 to be referent DMUs to DMUj 0. Let iF10 be the

set of DEA-efficient referent DMUs to DMU Jo in (A6.M4). Let' denote the value of a

variable at the optimal solution to (A6.M4).

Let the assessed ADMUJ 0 in (A6.M4) be ADMUJp i.e.jo Jp. It is found that ADMUjp

has one class F DMU,jJ identified as one of its referent DMUs, i.e. z 1 > 0. Thus, at the

optimal solution to (A6.M4) the input output levels of Jf can be expressed as a linear

combination of DMUjp and other DEA-efficient DMUs plus possibly a slack value, i.e.

-	 - H
JEll',

xli,,, 
=	 /

1=1.....m

Yrj1	 rçy0 +Hi+r
I E.Il1,

Yr11	 /

vi'"

r"l,...,s	 (A6.1) 
j
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In (A6.1) DMU jp has coefficients of z,',, /	 for x11,,,, 1=1. m and 1 / z	 for Yrjp

r=1,...,s. Therefore when assessing ifa in (A6.M3) it is feasible one of its peers will be

DMUJp, i.e. 4 >0. This holds, if the original DMU in (A6.M3) corresponding to DMU

I/a is a class F or NF DMU.

Proof of (ii)

Introducing an UDMU ja created from ADMU jp will in principle improve the

envelopment of non-enveloped DMUs that had jp as a peer in (A6.M3).

Let DMUja be an UDMU which is DEA-efficient and created from ADMUJp. Adding

DMUja to the DMIUs can, in principk, ccae tk'e nmkci OOi? The

optimal solution to (A6.M3) and so increase the number of properJy enveloped DMVs.

To see how the addition of an UDMU ja to the observed data set can increase the number

of properly enveloped DMUs consider using model (A6.M3) to assess the efficiency of

DMU Jo which had ADMIJ j as one of its peers. Following the addition of a single

UDMUja created from DMUjp as in (a) or (b) below, the model solved to assess DMUj0

is (A6.M5).

Mm 0 0 -	 SS + SSrn+r

s.t.	 0 0x -	 2 1 x,,. —2 ta Xi,a - SS, 0	 i1..... m 	 (A6.M5)

2 Y + 2 j•aY,a - SS1,i+r =	 r /..... S

2, SS1, SSm +r ^ 0	 J, i, r

Models (A6.M3) and (A6.M5) differ only in that the latter contains the additional variable

2ja corresponding to the UDMU ja. Superscripts * will be used to denote the value of a

variable at the optimal solution to model (A6.M5).

There are two approaches for the basis of the creation of UDMUs to be used in (A6.M5):
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•	 Encourage the non-c weighting of an individual output: Lower an output level.

•	 Encourage the non-c weighting of an individual input: Raise an input level.

These will be considered now:

a)	 Encouraging the non-s weighting of an individual output:

Let DMU Jo in (A6.M3) have a Sm+k> 0 for one k with ADMU jp as one

of its peer DMUs.

As the introduction of the UDMU is to encourage the non-c weighting of output k, the

output k level of ADMU jp will be set to zero (it is assumed here that the DM specified

minimum level for the output is zero, but it could be a minimum output level). One way to

construct a DEA-efficient DMU, is to raise the remaining s-i output levels of ADMU jp.

Thus, an UDMUja is created as a local variation of ADMUJp with input output levels of

X,ja = X,jf)	 i=1 ,..., m

YkJaO	 (A6.2)

Yrju =Yrjp +Br	 Vr^k

where Br, r = 1..... s r ^k are DM specified levels of sufficient size to enable DMU ja to be

deemed by the DM to be DEA-efficient. Consider the solution to (A6.M5). Depending

on the values of Br, Vr^k in (A6.2) it will be the case that t,, > 0.

To see this note that if in (A6.M5) the following holds, 2,, +	 <ic and ic

Vj^jp, (A6.M5) will give a lower optimal objective function value than (A6.M3) and

would therefore be preferred to the original optimal solution to (A6.M3), provided it is

feasible.

To see that the optimal objective value will be lower in (A6.M5) than in (A6.M3),

consider some binding constraint I at the optimal solution to (A6.M3). [Non-binding

constraints will not affect the optimal solution.]	 The constraint reduces to
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N

K J X ,I, = q0x,,, in (A6.M3) and when 2*,,, +2* <ic,, and K, 2*, Vj^jp it becomes

in (A6.M5),

+ (2,,, + 2*, )x ,,,,, = 8x, , 	(A6.3).

I ^/f)

N

Since	 K x,
*	

= qx 1 , from (A6.M3) and 2*,,, + 2*,, <ic and i = 
2*,. Vjp, then

provided 2*,, > 0, (A6.4) can be balanced with a solution value of q >	 as required.

To see that the solution in which 2*,,, + 2*/a <K 1, and K, = 2*, Vj^jp can be feasible in

(A6.M5) consider some binding constraint / at the optimal solution to (A6.M3). [Non-

binding constraints will not effect the optimal solution.] The constraint reduces to

K,YTII =r,• in (A6.M3) and when 2,, +2*,a <K*,p and K 1 =2*, Vj^jp it becomes in

(A6.M5),

[ K* Y/ +(2,, + 
2*,a)Y 1+ 2*,1 Yr'j,	

(A6.4).

Since	 r1 1 	 (A6.M3) 2*,,, + 2*,, <K, and K. = 2*, Vj^jp the sum in the

squared brackets is less than the RHS of (A6.4). However, depending on the size of B1,

r=nl.....s, pryIded 2*,a > 0 (A6.4) can be balanced and the solution 2*,,, + 2*/a <K,,,,

= 2*, Vj^jp can be feasible in (A6.M5).

Note that when 2,,, + 2*,a <ic,,, and ic, = 2*, Vj^jp at the solution to (A6.M5) it follows

that	 2*,y, <K,Yk, , which implies that for the constraint corresponding to output k,

+ ss,fl+k < Yk,• + s;7 ,. which implies that SS 11*,±k <S,k.
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The fact that	 > 0 and the slack of output k is reduced for model (A6.M5) to yield

an improved objective function value in comparison to that of model (A6M3) means

that (A6.M5) is more likely than (A6.M3) to identify DMUj 0 as a properly enveloped

DMU.

QED

b)	 Encouraging the non-c weighting of an individual input:

Let DMU Jo in (A6.M3) have a Sm+k > 0 for one k with ADMU jp as one

of its peer DMUs.

As the introduction of the UDMU is to encourage the non-c weighting of input k, the input

k level of ADMU jp will be raised to a DM determined amount and to construct a DEA-

efficient DMU, the remaining rn-I input levels of ADMU jp will be lowered. Thus, an

UDMUja is created as a local variation of ADMUjp with input output levels of:

X/jja Bk

- x - B	 Vi ^k	 (A6.5)

Y ia 
= 

Yrip	 i=1.......

where B 1, i= 1.....in are DM specified levels of sufficient size to enable DMU ja to be

deemed by the DM to be DEA-efficient. Consider the solution to (A6.M5). Depending

on the values of B 1 , Vi ^k in (A6.2) it will be the case that 2 > 0.

To see this note that if in (A6.M5) the following holds 2*,,, + 2,a = K11 2*ja > 0 and

K1 = 2*, Vj^jp, (A6.M5) will give a lower optimal objective function value than (A6.M3)

and would therefore be preferred to the original optimal solution to (A6.M3), provided it

is feasible.

To see that the solution in which 2 + 2, =	 and K1 2*, Vj^jp can be feasible in

(A6.M5) consider some binding constraint I at the optimal solution to (A6.M3). [Non-

binding restrictions will not effect the optimal solution]. The constraint reduces to
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KX 1 =qx, in (A6.M3) and when 2 +2	 and	 =2 Vj^jp it becomes

in (A6.M5),

[K:x1 +(2,, + 

2;a)x,I,P1_2;aBI 
= ooxtI/	

(A6.6).

Since	 = qx 1 / 1 ,	 + 2*,a = K,, and K = 2, Vj^jp, provided 2 > 0, which

will depend on the size of B , , i = 1.....m, (A6.6) can be balanced and the solution

2* + 2*,, K,,, K, = 2*, VJp is feasible in (A6.M5), with q > 9, as required.

To see that the slack value for input k in (A6.M3) will be reduced in (A6.M5) consider the

constraint for input k, in both (A6.M5) and (A6.M3). 	 Given q > 9, thus

+ K Xk,p +	 >	 2.X 1 , +	 + 2,, B k + S8,	 which	 given

2 + 2,a K J,, and K, = 2*, Vj^Jp, becomes S > 2,a ( Bk - Xk,P ) + SS. Thus as

Bk -	 > 0, it follows that S > SS, as required.

The fact that 2*,,, > 0 and the slack of input k is reduced for model (A6.M5) to yield

an improved objective function value in comparison to that of model (A6.M3) means

that (A&M5) is more likely than (A6.M3) to identify DMUj 0 as a properly enveloped

DMU.

QED
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Appendix 6.3

The Input Out put Levels of the 668 Bank Branches

DOOl
D002
D003
D004
D005
D006
D007
D008
D009
DOlO
D011
D012
D013
D014
D015
D016
D017
D018
D019
D020
D021
D022
D023
D024
D025
D026
D027
DO28
D029

'DO3O
D031
D032
D033
D034
D035
D036
D037
D038
D039
D040
D041
.D042
D043
D044	 -J
D045

	

EIQ	 !	 ci
	18	 348979	 90	 98	 171S47	 433	 236S

	

S	 113681	 668	 592	 73122	 135	 908

	

9	 166150	 68.8	 50.2	 71717	 145	 1039

	

14	 246690	 1252	 858	 208661	 138	 1819

	

11	 220527	 798	 762	 87609	 214	 1397

	

12	 217428	 968	 42	 157956	 13!	 1890

	

13	 292577	 291	 87	 220520	 231	 3008

	

8	 141005	 1098	 822	 73449	 146	 1173

	

7	 133718	 668	 902	 83332	 154	 1361

	

16	 426178	 425	 170	 309067	 499	 375)

	

13	 247055	 119	 147	 14)121	 233	 2242

	

11	 243548	 912	 3 S	 235292	 154	 29fl

	

12	 221789	 139.2	 97.8	 122234 j	 214	 j	 2050

	

8	 209780	 80.2	 29.8	 153411	 85	 3698

	

11	 218225	 254.4	 192.6	 97238	 445	 2235

	

11	 17970	 99	 31	 14333	 103	 1777

	

14	 236557	 16.8	 71.2	 148008	 142	 2127

	

14	 346445	 2792	 798	 294343	 222	 3070

	

13	 220796	 1782	 468	 129931	 173	 1235

	

17	 255853	 156	 154	 216165	 221	 3034

	

16	 373041	 2116	 1b4	 361563	 247	 4179

	

L 346074	 2G1.8	 64.2	 311410	 201	 4838

	

13	 298947	 221 6	 11 4	 126260	 265	 2577

	

12	 215757	 79.8	 104.2	 112168	 205	 2805

	

11	 212659	 79.8	 117.2	 157647	 191	 2351

	

16	 269273	 151.2	 60.8	 154678	 288	 1903

	

18	 424608	 1764	 1136	 405456	 215	 52D6

	

13	 257118	 108	 117	 190710	 199	 2475

	

7	 182931	 84.8	 62.2	 98231	 177	 1844

	

15	 287927	 902	 1128	 183855	 221	 3072

	

13	 278747	 139.6	 181.4	 228746	 236	 3077

	

12	 202337	 592	 538	 121679	 10	 1875

	

14	 256603 j 279.2	 175.8	 184091	 135	 2807

	

14	 232306	 1582	 1348	 145362	 172	 1932

	

14	 267262	 124.2	 100.8	 252473	 287	 3323

	

12	 246253	 944	 706	 252237	 146	 305

	

15	 I 327193	 2598	 1242	 299664	 246	 3426

	

13	 296114	 187.8	 106.2	 208103	 204	 2744

1.	 323106	 1402	 1008	 238893	 240	 312

	

13	 202059	 130	 44	 156817	 158	 1717

	

14	 201S41	 432	 368	 151411	 118

	

13	 327320	 1586	 1134	 299782	 253	 342

	

13	 283126	 292	 119	 207944	 247	 3583

	

9	 262724	 214	 101	 225774	 181	 289S

	

13	 303453	 273	 155	 175349	 178	 3054
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TE	 ±
	17	 383999	 295.6	 220.4	 243386	 416	 3699

	

18	 292884	 108.8	 118.2	 196735	 143	 2781

J	 16	 346997	 2928	 1782	 299039	 318	 4092

	

15	 362072	 388.6	 123.4	 261621	 370	 J	 4114

	

12	 349679	 258.2	 104.8	 263755	 283	 3462

	

12	 336254	 331.6	 103.4	 257118	 198	 3111

	

9	 21350()	 100.2 H	 62.8	 208846	 210	 2796

	

16	 324816	 207.8	 148.2	 281568	 272	 3867

	

15	 301841	 252	 144	 258578	 288	 3756

	

15	 307322	 230	 213	 216594	 305	 3358

	

11	 181358	 129	 70	 135374	 111	 1904

	

7	 195615	 132.4	 49.6	 J 147443	 87	 1960

	

11	 224209	 128.8	 85.2	 143342	 149	 2157

	

13	 315102	 191	 118	 282725	 253	 3215

	

15	 271441	 151.8	 153.2	 198352	 251	 2955

	

ii	 - 291443	 186	 118	 207785	 163	 2849

	

17	 281264	 84.6	 95.4	 188053	 130	 r	 3208

	

20	 232424	 262.4	 195.6	 323954	 243	 404()

	

12	 394359	 385.2	 53.8	 300915	 -	 4049

	

10	 297971	 149.6	 49.4	 261883	 143	 2805

	

17	 333761	 207.8	 72.2	 266985	 190	 3230

	

12	 290597	 215	 161	 229720	 224	 3143

	

15	 301013	 224.4	 120.6	 201293	 215	 3525

	

14	 203188	 117.8	 106.2	 166491 :	 215	 2915

	

12	 307713	 227.8	 52.2	 268981	 137	 3829

	

- - -- 12	 264766	 106.6	 76.4	 190862	 95	 2181

	

7	 100787	 504	 316	 93314	 67	 1168

	

11	 330134	 1582	 898	 228199	 207	 2867

	

13	 281979	 208.8	 112.2	 212371	 173	 2847

	

ii	 -	 242217 -	 120.8	 90.2	 198876	 132	 2144

210356	 63.6	 73.4	 137259	 128	 2163

	

- 12	 270460	 122	 106 -	 195208	 188	 2044

	

12	
232651	 - 196.2	 105.8	 141878	 198	 2353

	

10	 -	 176162	 180.2	 83.8	 112616	 177	 1730
iI• 

260061	 214.2	 125.8	 208730	 176 -	 3034

	

10	 252864	 140.4	 71.6	 170127 -	 181	 2150

	

12	 222368 -	 195.2	 938	 - 253055	 165 -	 3068 -

	

14	 265792	 1758	 1102 I 162078	 228	 2510

	

11	 251244	 74.2	 86.8	 214424	 150	 2670

	

11	 250654	 193.4	 79.6	 220631	 150	 2153

	

ii	 295310	 183	 85	 186356	 - 150 -	 2138

	

9	 171616	 186	 89	 93838	 157	 1786

	

1[16	 382264	 188	 100	 365142 -	 277	 4810

	

L 20	 - j - 325982	 154	 124	 273763 -	 222	 4071

	

20	 - -	 375028	 272	 184	 282881	 - 217	 4746
255169	 1106	 674	 170573	 130	 2505

	

12	 289716	 224.6	 140.4	 240899 -	 165	 3630

	

9	 175814	 69	 33	 - 134835	 91	 1584

	

15	 279750	 108.6	 - 114.4	 184479	 179	 3148

	

13	 274795 . 1	 173.2	 136.8	 227396	 211	 3277

	

L_ . 1 4	 266468	 194	 104 -	 228538	 242	 3039
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•	 ic	 J_L

D097	 11	 247452	 252	 65	 190863	 127	 2633
D098	 13	 229810	 166.4	 90.6	 162772	 207	 2372
D099	 16	 267628 .	 172.8	 138.2	 174140	 189	 3001
D100	 12	 311026	 211.8	 108.2	 286208:	 183	 3532
D101	 7	 87478.8	 41.2	 .	 21.8	 77764	 61	 939
D102	 10	 265609	 200.4	 65.6	 245214	 128	 2795
D103	 10	 143883	 64.2	 100.8	 78004W j	 109	 1751

D104	 14	 357627	 249.6	 170.4	 301109	 401	 4464

Dl 05	 [12	 242939	 112.4	 105.6	 209342 ].	 225	 2783

D106	 J	 8	 179852	 94.4	 56.6	 159862	 134	 1537

D107	 13	 257634	 113	 152466	 167	 2722

D108	 12	 229236	 114.2	 52.8	 201695	 140	 2537

:D109	 15	 290117 : 286.4	 151.6	 220802	 213	 2401

DuO	 9	 205792	 28.8	 20.2	 107408	 92	 932

Dill	 T	 iS	 23997	 .2	 Y7.%	 \1TFi6

D112	 ]8	 120909	 40.6	 40.4	 87154	 81	 1336

D113	 9	 .232284	 143.4 .	 62.6	 204678	 138	 2418

D114	 T19	 403231	 316.4	 110.6	 296117 .	 322	 4459

D115	 8	 180841	 74.4	 47.6	 j 151311	 137	 2305
:D116	 12	 256000	 137]	 93	 165308;	 158	 2890

D117	 14	 293327	 127.4	 172.6	 230984	 251	 3510

D118	 14	 253676	 114.8	 60.2	 225245	 99	 3853

D119	 17	 341366	 290.2	 140.8	 272316	 315	 3930

D120	 6	 - i21779	 41	 42	 95938	 5!	 1143

D121	 10	 197194	 149	 73	 15285!	 148	 2245
....................................

D122	 ]	 14	 . 294696	 131.8	 118.2	 234348	 271 -	 2826

D123	 12	 211878	 2384	 306	 150637	 101	 187

D124	 J	 11	 • 184024	 158.6	 80.4	 182318	 151	 .	 2419

D125	 12	 313156	 140.4	 105.6 - 274460	 207	 3381

D126	 10	 211802	 254.2	 121.8	 123081	 221	 - 2519
:Dl27	 14	 269720	 97.4	 127.6	 179834	 320 - 1	 1908

D128	 14	 212207	 1324	 726	 217176	 128	 2631

D129	 5	 85463	 186	 94	 83834	 18	 811

D130	 12	 229011	 1784	 686	 169093	 182	 2203

D131	 10	 1 157935	 662	 478	 126843	 131	 1680

D132	 7	 119127	 894	 676	 94358	 135	 1652

D133	 13	 240356	 1568	 962	 186431	 180	 2328

D134	 -	 9	 ..262033	 58.6	 72.4	 228161	 196	 •	 3295

D135	 11	 211443	 748	 562	 169751	 65	 2708

D136	 12	 ; 268007 .	 102.8	 128.2	 294837	 169	 3222

Dl 37 - -	 12	 260697	 167.2 .	 110.8	 218654	 207	 3569

•Dl38	 -- 12	 273226 •	 144.2	 122.8	 211595	 181	 3631
D139	 -	 9	 158942	 66	 27	 131879	 100	 1222
D140	 12	 - - 275861 •	 158.8	 85.2	 189362	 192	 2407
D141	 -. 10	 206883	 155	 90	 183185 -	 261	 2396
D142	 - 9	 168743	 776	 494	 137138	 91	 166
D143	 11	 190971	 135 -	 76	 114416	 148	 .	 1704
D144	 - 13	 264453 H	 115.2	 61.8	 228291 .	 125	 3144
D145 -	 13 - j 223070	 84	 72	 154708	 202	 1514
Dl 46	 13	 320652	 126:4	 86.6	 293982 .	 184	 .	 3855
D147	 L	 5	 83071 •	 65.2	 37.8	 92322	 -9	 1118
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D148
.D149
D150
Dl 51
D152
D153
0154
0155
0156
:0157

0158
0159
Dl 60
0161
0162
0163
0164
0165
.0166
Dl 67
Dl 68
,D169
Dl 70
b171
Dl 72
D173
b174
Dl 75
0176
0177
0178
D179
.D180
'D181
D182
D183
D184
D185
Dl 86
D187
Dl 88
:D189
.0190
D191
D192
D193
0194
D195
D196
Dl 97
;D198

12	 216945	 195	 34	 189687	 7!	 2246

12	 247993	 142 -	 49	 213584	 164	 2874

13	 309822	 219.8	 219.2	 305347	 384	 3902

10	 140620	 60.6	 30.4	 124316	 52	 1361

15	 276942	 204.8	 95.2	 205887	 246	 3221

10	 224518	 181.2	 56.8	 221863	 117	 2310

12	 : 228684	 146.2	 131.8	 180819	 169	 2692

6	 F 89259	 15	 19	 75413	 52	 1076

9	 142728	 70.2	
j	

52.8	
F 

115238	 66	 1687

6	 177352	 96.6	 65.4	 161430	 125	 1802

7	 108785	 32.8	 11.2	 165833	 27	 1577

7	 82600	 33.8	 7.2	 104881	 25	 1039

8	 123921	 502	 308	 124851	 2	 F	 1966

1!	 150508	 90	 I	 52	 153620	 100	 2316

to	 218513	 106	
F	

2O€fl\)	 2610

10	 164247	 215.2	 70.8	 10006()	 125	 1631

12	 256178	 201.2	 121.8	 169915	 178	 j	 2440

14	 F 374038	 204.6	 124.4	 332874	 240	 3997

6	 106870	 76.8	 37.2	 92559	 66	 1178

7	 97005	 46.2	 31.8	 90444	 46	 1516

12	 261053	 162.6	 113.4	 195751	 167	 2696

1!	 246265	 179.2	 66.8	 251575	 130	 2827

10	 211316	 177.8	 95.2	 : 222463	 184	 3008

12	 219253	 172	 33	 178625	 102	 2339

13	 . 264868	 167890.2	 232836	 184	 2474

ii	 229036	 90.4	 67.6	 240709	 218	 2931

9	 228600	 100	 119	 184489 F	 115	 3088

10	 124559	 71	 32	 137097	 114	 1888

12	 333821	 227.8	 52.2	 274768	 159	 2221

8	 222396	 120.8	 61.2	 176658	 113	 2226

13	 249710	 .	 183.2	 49.8	 175085	 217	 2334

13	 331268	 344.4	 - 67.6	 219816	 132	 2906

13	 268598	 207.6	 59.4	 213187	 107	 1823

7	 170762	 1372	 1038	 126425	 247	 2033

8	 - 197739	 91.4	 j	 69.6	 134551	 57	 2212

15	 297941	 I	 190	 154	 251605	 351	 3211

10	 184098	 61.4	 72.6	 131961	 94	 1751

12	 275054	 109	 117	 200350	 165	 2645

	

i50468	 51.6	 65.4	 112436 F	 159	 1503

-	 321024	 255.4	 150.6	 178128	 277	 3787

11	 198165	 82.8	 69.2	 166895	 149	 -	 2399

12	 312115	 109.4	 121.6	 295765 -	 293	 4422

7	 212062	 71.8	 58.2	 240528	 83	 2343

14	 296582	 137.4	 208.6	 253888	 305	 3636

12	 197520	 82.6	 47.4	 185890 -	 118	 2256

12	 204091	 172.2	 100.8	 185530	 - 162	 2460

12	 311798	 204.6	 80.4	 290263	 209	 3494

1()	 153568	 26.8	 25.2	 150723	 69	 1620

8	 155095	 82.2	 48.8	 156631	 114	 F	 1720

8	 180738	 92.6	 45.4	 j 123963	 130 -	 1863

6	 81654	 j	 316	 274	 82234	 77	 1
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D199	 9	 126371	 68.2	 19.8	 128091	 70	 1271

	

0200	 48167	 29	 41	 54199	 55	 745

	

D201	 10	 17168()	 104.4	 61.6	 173108	 100	 2022

	

D202	 4	 112796 J	 56.6	 31.4	 98369	 43	 1171

	

D203	 5	 97679.5	 35.6	 15.4	 96460	 42	 929

	

D204	 9	 215029	 158	 65	 119031	 144	 1781

	

D205	 11	 219169	 62.2	 59.8	 225217	 145	 2892

	

D206	 11	 219180	 178.4	 73.6	 207221	 143	 2343

	

D207	 12	 j 261667	 136.6	 130.4	 193506	 145	 2999

	

0208	 6	 94828	 66.2	 :	 37.8	 78550	 95	 1179

	

D209	 10	 133517	 36.6	 28.4	 163630	 89	 1735

	

D210	 9	 138656	 83.4	 14.6	 155043	 48	 1869

	

D211	 9	 133900	 84.4	 27.6	 141488	 68	 1548

	

D212	 j	 9	 209815	 131	 67	 209385	 141	 2188

	

D213	 9	 137022	 6€4	 5.6	 106290	 102	 1624

	

D214	 10	 235258	 1192	 328	 193841	 98	 1928

	

0215	 13	 233840	 W18	 82.2	 286180	 ?97	 2367

	

D216	 12	 175714	 52	 66	 178108	 106	 2638

	

0217	 7	 200271	 141.8	 73.2	 167738	 115	 2415

	

0218	 -	 12	 268135	 156	 89	 228969	 241	 3023

	

D219	 •6	 151725	 43	 1	 21	 176284	 79	 1791

	

D220	 7	 148540	 82	 26	 155682	 45	 j 1928

	

D221	 -	 12	 318500 [ 462.6 - 	 111.4	 261076	 257	 3249

	

D222	 J	 250804	 132.6	 113.4	 193864	 141	 j 3172

	

D223	 J	 10	 194382 -	 90.8	 51.2	 121670	 106	 i	 1444

	

D224	 11 -	 232738	 140.6	 63.4	 167402	 153	 1982

	

D225	 1	 8 -	 j 133473	 38.6	 24.4	 159762	 86	 - 1663

	

D226	 14	 266619	 2168	 502	 233227	 107	 2904

	

D227	 15	 309587	 1896 -	 69.4	 243866	 163	 - 3362 -.

	

D228	 J 10	 193734	 1016	 604	 112777	 102	 2102

	

D229	 J	 i()	 165837	 63	 89	 112005	 129	 1285

	

0230	 7	 [ 139787	 69	 762	 120096	 149	 168

	

D231	 8	 113250	 572	 318	 111528	 61	 1302

	

D232	 14	 247014	 122.2	 42.8	 210918	 124	 2383

	

D233	 ]	 13	 249385	 1524	 1376	 170327	 213	 3026

	

D234	 10	 220741	 152	 68	 J 171533	 122	 2471

	

D235	 241263	 2382	 608	 201392	 130	 i 226

	

;D236	 11	 245416	 295.8	 79.2	 210179	 214	 3154

	

D237	 11	 '208741	 87	 80	 191984	 138	 2154

	

D238	 7	 151764	 39	 76	 111507	 17()	 1854

	

0239	
1	

10	 178186	 133.2	 73.8	 122906	 165	 1741

	

D240	 j	 16	 407944	 1182	 1038	 357359	 213	 J 3780

f 6	 85272	 644	 366	 76099	 80	 1083

	

0242	 J	 10	 165188 '	 978	 412	 130275	 65	 1828

	

D243	 6	 124244	 42.8	 46.2	 . 111154	 85	 1873

	

D244	 12	 269438	 150.2	 97.8	 228715	 222	 3116

	

D245	 9	 . 191717	 156258.8	 194483 -	 91	 2374

	

D246	 6	 137785	 52.8	 88.2	 113225	 192	 1426

	

D247	 176726	 133.4 i	 71.6	 112939	 98	 1604

	

D248	 IL	 7	 110648	 42.8	 26.2	 79103	 49	 1216

	

D249	 -	 103378	 40.2	 14.8	 100039	 45	 - 1164
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ci	 4I
D250	 7	 143533	 188	 72	 80370	 74	 1607

D251	 7	 94095.3	 32	 18	 105126	 69	 1314

D252	 18	 141341	 41.6	 234	 141318	 102	 1693

D253	 1	 7	 139853	 108	 61	 : 107724	 84	 1550

D254	 f	 13	 199264	 108.2	 66.8	 152804	 137	 2426

D255	 9	 214125 :	 212	 82	 156127	 193	 1943

1D256	 •6	 127643	 68.4	 j	 63.6	 102313	 136	 1629

D257	 12	 170294	 50	 38	 107399	 158	 1018

0258	 -: 10	 164548	 103	 43	 127800	 100	 1462

D259	 11	 186147	 136.6	 28.4	 188243	 65	 2037

. D260	 7	 102967	 40.8	 58.2	 125720	 62	 1649

D261	 12	 245058	 149.2	 20.8	 228704	 77	 2463

D262	 9	 221150	 117.4	 69.6	 190731	 157	 2180

D263	 8	 117243	 64	 31	 83107	 86	 789

D264	 6	 87461	 62.4	 10.6	 26187	 46	 1306

D265	 10	 263041	 135	 77	 23116	 12

D266	 9	 154909	 106	 51	 156737	 97	 2182

D267	 10	 230791	 177.8	 103.2	 2615O	 \61

D268	 9	 186120	 58.4	 50.6	 191286	 112	 2176

0269	 9	 144726	 101.8	 68.2	 141830	 77	 1895

D270	 -	 13	 296717	 241.4	 195.6	 196523	 179	 3100

D271	 8	 199298	 152.4	 76.6	 179886	 151	 2310

D272	 10	 207568	 171.4	 59.6	 154077	 166	 1998

D273	 8	 : 127683	 107.4	 88.6	 98225	 110	 1424

b274	 -	 10	 243701	 138.4	 42.6	 250138	 171;	 319(1

:0275	 13	 304205	 160.4	 58.6	 295183	 196	 3566

D276	 6	 80351	 36.6	 35.4	 79013	 59	 1094

D277 -	 6	 122454	 492	 498	 64841	 87	 876

0278	 7	 -	 178567	 60	 33	 160995	 99	 1434

D279	 9	 [ 193791	 2472	 538	 145054	 94	 1878

b280	 9	 178376	 246.4 -	 69.6	 156106	 111	 2238

D281	 -	 9	 76	 77	 112966	 110	 1774

D282	 8	 T64325	 51.8	 56.2	 95618	 110	 1341

:D283	 --	 6	 96846.3	 23.2	 - 5.8	 96357	 26	 865

b284	 11	 178251	 86.4	 55.6	 185628	 128	 2151

D285	 * 9	 122185	 458	 182	 123258	 55	 1536

0286	 7	 109082	 71	 23	 94714	 51	 1207

D287	 7	 -	 161356	 87.6	 26.4	 122090	 61	 123()

:0288	 9	 223391	 89	 -	 70.6	 182467	 128	 j. - 2947

D289	 11	 231144	 127	 113	 192b4	 140	 2570

D290	 - - 11	 188266	 120	 44	 171854	 126	 2112

D291	 -	 10	 242955 :	 138 --	 75	 217335	 144	 2665

0292	 --	 9	 165396	 1i2	 38	 189720	 113	 1995 -

0293	 8	 178188	 139.2 1	 40.8	 167984	 92	 2171

D294	 -- -	 11	 201587	 122.4	 31.6	 j 166383	 110	 2009

D295	 -	 7	 109796	 9	 - 29	 110162	 76	 1468

:0296	 --	 9	 217038	 126.8	 -- 83.2	 157387	 210	 1999

0297	 7	 110566	 86.6	 31.4	 77534	 45	 1279

0298	 - - 10	 195523	 142.6	 107.4	 184462	 140	 2347

0299	
-*	

9	 148957	 - 64.6 -	 36.4	 155547	 63	 -- 207()

0300	 11	 191093 j	 776	 604	 181160	 117	 j	 2323
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D301
D302
D303
D304
D305
D306
D307
D308
D309
'D310
D311
b312	 jj
D313
D314
D315
D316
D317
b318
D319
'0320
D321
0322
D323
b324
D325
D326
'D327
D328
D329
D330
D331
D332
D333
D334
D335
0336
0337
D338
'0339
0340
0341
D342
D343
0344 -
0345
0346
0347
0348
0349
D350
0351

Aeix 6	 -	 April, 97

r'r'
11	 241254	 214.2	 92.8	 190167	 218	 '	 2747
8	 211983 J	 48.8	 22.2	 187506	 72	 1952
6	 114105	 36	 27	 107268	 36	 1094
11	 213519	 81.6	 115.4	 151269	 187	 2090
14	 215573	 62.4	 103.6	 168175	 166	 2687
16	 ' 280000	 148.8	 99.2	 j ' 153609	 182 -	 2846
9	 128280	 104.2	 16.8	 130057'	 69	 1285
7	 212814	 81.8	 107.2	 152093	 160	 j	 2183
9	 178336	 93.4	 70.6	 125302	 138	 1611

8	 202945	 118.4	 26.6	 205568	 82 , '	 1959

10	 ' 188870	 96	 '	 74	 193281	 142	 2654

11	 281514 I	 110.4	 57.6	 248472	 119	 2597

7	 127794 ,	 85.8	 61.2	 94351	 79	 1455

8	 164244 
1	

133.8	 89.2	 ' 134394	 137	 '	 2198

10	 274133	 205	 75	 ' 233524 ,	 191	 3005

7	 97159	 73.2	 , , 39.8	 88090	 60	 1395

10	 199783	 128.6	 72.4	 142733	 119 -'	 1898

7	 99039	 18.8	 15.2	 J 126452	 32	 1648

10	 ' 174945	 64.8	 58.2	 217763	 130 ,	 2021

9	 153426	 75.2	 56.8	 94855 ,:	 122	 1405

7	 j 154685	 106.4	 ,	 32.6	 150298	 65	 ]	 2150

8	 j141575	 654	 676	 124020	 158	 1516

9 -	 159040 '	 69.6	 85.4	 128224	 208 ,	 1790

11	 ' 168599	 62.6	 '	 51.4	 178370	 84	 2581

8	 151234'	 74.2	 50.8	 148568 - ,	 103 -.	 1964

9	 168292 ".	 183.8	 I	 83.2	 , lS4363	 145	 217

14	 268305	 194.8	 82.2	 196912	 142	 2788

8	 123006	 115	 63	 ] 72257	 ,	 97	 1019

6	 10251	 42 2	 67 8	 - 64768	 124	 - 916

96744	 42.6	 26.4	 95499	 48 -	 983

8	 137605	 62.2	 39.8	 150480	 83:	 1779

6	 115480	 87	 25	 120447 '	 54	 , 1430

1,2	 231016	 , 162.8	 116.2	 170078	 143	 2817

5	 142177 '	 26.6	 11.4	 154080	 24	 2125

10	 219311	 235.2174.8	 184837	 159 -	 2429

8	 169242 ,:	 151142	 165787	 100	 1632

8	 138002,,	 108.4'	 81.6 -	 101167 ,	 128	 1764

14	 348659	 190.2	 94.8	 280026 -	 150	 3001

-- 9	
J 

140729	 61:4	 64.6	 108385 ,	 111	 1551

12	 j 241572	 140.4	 78.6	 113804	 124	 1601

8	 172652	 1398	 1112	 119663	 160	 2224

10 - 1 169870	 172	 67	 , 124470	 84 -	 2314

7	 97839	 101	 40	 76003	 109	 1398

6	 11437()	 67.4	 39.6	 , 91935j	 90	 1435

7	 109372	 69.8	 29.2	 129232	 46	 1384

5	 , 134977	 95	 21	 I 155918	 87	 1767

11	 , 288744	 143	 99	 268668	 105	 '	 3152

5	 172052 I	 962	 388	 181622	 106	 236

s	 140441	 84	 j	 34	 93919	 5,8, -	 1292

-'	 175806	 100 - -	 38	 - 152469	 87	 1789

6	 88537 ,	 2,1 : 8	 j - 21.2	 - 87899	 39	 941
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D352
D353
D354
D355
D356
D357
D358
D359
D360
'b361
D362 - -
(D363
D364
D365
D366
D367
D368
D369
D370
0371
D372
D373
D374
D375
D376
b377
D378
0379
D380
'D381
'D382
D383
D384
D385
D386
D387
b388
D389
D390
D391
'0392
D393
D394
0395
0396
D397
D398
0399
D400
0401
D402

ci
-	 10	 209013	 110	 7!	 150654	 130	 j	 1704

5	 , 70640	 39.8	 43.2	 94159	 38	 1027
9	 229348	 135.8	 '	 58.2	 218245	 160	 2413
6	 I 91637 ,	 27.4	 26.6	 124269	 86	 1717
6	 81661	 20.2	 31.8	 63536	 53	 998
8	 171867	 62.8	 26.2	 136959	 64	 1517
5	 116068	 28.8	 28.2	 118858	 61	 1055
7	 103098	 58.4	 53.6	 100565	 45	 2202
8	 130012	 114	 34	 129807	 103	 1618
8	 159189	 1284	 506	 174014	 112	 2072
8	 112028	 75.6	 79.4	 119722	 161	 r	 2135
10	 156824	 64.6	 34.4	 174971	 129	 2265
9	 173723	 136	 45	 199399	 97	 1877
6	 122112	 97	 1	 53	 73787	 113	 1111
6	 101989	 47.6	 20.4	 158533	 57	 1662
5	 77857	 544	 356	 98649	 74	 1071

- - 8	 .178412	 141.6	 117.4	 164828	 124	 2504
138336	 107.8	 88.2	 118857	 173	 1562
110229 .
	

53.4	 55.6	 72974	 58	 1022

8	 180716 '	 161.2	 132.8	 128072	 202	 2071

.7	 . 137308	 91	 47	 127514	 108	 1392
238238	 47.2	 119.8	 239744 1	 109	 3724
96292	 26235.8	 67687	 83	 896

H 302561	 152.4 .	 52.6	 198768	 175	 2105
138515j	 60	 19	 i 124047 I . 69	 1232

9	 220912	 115:6	 66.4	 165175	 122	 2292
10	 218944	 119	 47	 177620	 167	 2200
6	 120742	 616	 404	 113527	 84 -	 1658

L	 12	 200005	 99.8	 41.2	 225903	 122	 2762

125143	 97	 19	 167305	 60	 1876
14	 214909	 141	 57	 182276	 94	 1801

L_±	 115842	 946	 354	 105815	 70	 I 1474

176476	 82.4	 20.6	 221452 ]	 54	 2031
139892]	 51.6	 38.4	 i35160	 104	 186!

I 92224	 41 4	 24 6	 108397	 39	 1427
11	 199045	 87	 94	 200593	 182	 - 2753
6	 95841 .. I 	 42.8	 33.2	 J 73062	 77	 1090
10	 201329	 1654	 716	 192719	 83	 2450
5	 129540	 25.2	 .	 50.8	 135062	 37	 1906

-	 6	 139460	 998	 502	 91115	 109	 1480
--	 219361 H	 160	 49	 201009	 122	 2381 -

11	 191449	 123.2	 .	 78.8	 - 186431	 170	 3023
8	 1 136602	 68.8	 58.2	 . 91004	 131	 1368

- 11	 241028	 1184	 716	 213722	 148	 2644
6 -	 117602	 56	 17	 145945	 - 27	 1655
13	 241963	 107.4	 124.6	 ' 145482	 215	 .	 2291
7	 111838	 69.2	 19.8	 113130	 54	 1291
7	 133599	 574 -	 186	 130868	 68	 1207
8	 140511	 41.2	 29.8	 109008	 55	 1383
6	 122426	 30.6	 20.4	 134267	 45	 1356
9	 176496	 1734	 616	 13838	 119	 173
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D403	 11	 210037	 1028	 522	 193353	 108	 2888
D404	 6	 109319	 84	 64	 101133	 97	 1536
D405	 12	 215228	 110.4	 34.6	 176534	 154	 2559
D406	 12	 244922	 132.6	 79.4	 239718	 161	 3251
lD4o7	 jii	 156125	 105.2	 74.8	 114076	 160	 1829
D408	 [	 8	 208967	 171.6	 78.4	 174997	 74	 2227
D409	 J	 12	 204672	 101.8	 28.2	 160859	 139	 1548
;D410	 6	 128580	 90.4	 84.6	 103694	 115	 1484
D411	 11	 181788	 125.8	 21.2	 186543	 90	 2683
D412	 10	 168999	 202.6	 81.4	 147486	 133	 j	 2281
D413	 6	 77461	 67.2	 16.8	 72425	 30	 860
!D414	 9	 255123	 91.4	 51.6	 222161	 141	 3178
0415	 7	 78106	 56.4	 50.6	 50343	 94	 790
.D416	 7	 93086	 58.8	 41.2	 131875	 76	 1420
D417	 8	 152893	 73.2	 44.8	 157066	 55	 1855
D418	 - -	 6	 124496	 59.2	 50.8	 118232	 126	 1511
D419	 7	 109771	 504	 306	 134626	 48	 137
D420	 6	 140307	 49.8	 62.2	 122597	 83	 1629
D421	 61 87437	 61.8	 52.2	 93963	 87	 937
D422	 6	 131389	 40.8	 34.2	 150912	 67	 1602
D423	 -	 5	 I 84067 I	 17	 8	 101911	 14	 1126

D424	 4	 1 60508	 34.6	 20.4	 71906	 52	 I	 94
0425	 J	 5	 I 891333	 1094	 136	 90781	 46	 758
D426	 J	 7	 133997 I 129.6	 92.4	 77177	 140	 1487
D427	 J	 9	 204740	 159.8	 111.2	 175686	 149	 2441
D428	 J	 7	 157744	 766	 314	 202240	 83	 1988
D429	 J	 6	 81351	 784 I 436	 71089	 63	 706
D430	 L	 9	 120911	 42.8	 - 20.2	 128776	 81	 1467
D431	 J	 7	 100905	 56.6	 23.4	 134966 J	 4P	 1544
D432	 F	 5	 110823	 71.2	 12.8	 1 106104	 32	 1040
D433	 J	 15	 358819	 415.6:	 77.4	 254256	 227	 3773
0434	 j	 5	 87480 -	 57.4	 25.6	 117176	 40	 1257
0435	 f	 6	 96421	 298	 302	 104613	 79	 15Th
0436	 f	 8 - I 156071	 40.4	 45.6	 136781	 96	 1508
D437	 9	 16786	 384	 176	 180448	 46	 2177
0438	 7	 1 221211	 304.2	 95.8	 150855	 102	 1961
D439	 - 71 77232	 45	 26	 84438 -	 41	 912
D440	 7	 131481	 704	 876	 168825	 133	 I	 1740
D441	 16	 229783	 1138	 101 2	 161799	 220	 200
D442	 6	 1125848	 94.6	 96.4	 100916	 113	 1	 1631
0443	 159391	 118.2	 41.8	 143698	 68	 2153
0444	 - : 124968	 68.8	 56.2	 90631	 61	 1118
D445	 7	 123964 :	 122.2	 11.8	 : 147494 :	 26	 1561
0446	 7	 107809	 99.6 - :	 29.4	 134417	 73	 1586
D447	 11 -	 289886	 - 84.2	 63.8	 237484	 3251
0448	 11	 220353	 168.6	 32.4	 158698	 72	 2446
D449 -	 11	 282651	 141.6	 157.4	 196081	 207	 2790
0450	 6	 107923	 67.2	 25.8	 116731	 46	 970
0451	 4	 91877	 31.2	 27.8	 64133	 48	 770 --
0452 - . 1 	 9	 148294	 102.4	 49.6	 124612	 126	 1769
0453	 7	 117577 1	 62:8	 :	 41.2	 116542	 96	 1712 -
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D454
D455
D456
D457
D458
D459
D460
D461
D462
D463
D464
D465
D466
D467
D468
;D469
'D470
D471
D472
D473
D474
D475
D476

:D477
D478
D479
b48o
D481
D482
D483
D484
D485
D486
0487
b488
D489
0490 -.
D491
0492
D493
:D494
•D495
0496
D497
0498
b499
0500
D501
0502
0503
D504

10	 143737	 48 2	 55 8	 157963	 130	 2296
7	 153923	 57.6	 46.4	 1 131675	 102	 1733
13	 283033	 112.8 r	 174.2	 258765	 256	 2872
9	 159122	 120.8	 48.2	 158443	 64	 2178
7	 138458	 87.4	 18.6	 157377	 90	 2104
5	 76492	 24.6	 5.4	 45	 1055
4	 J 88371	 80.4	 34.6	 82654	 54	 1463
6	 129105	 54.6	 18.4	 133570	 50	 1511
8	 139990 j	 128.6	 43.4	 124502	 115	 1826
5	 94247.3	 24.4	 23.6	 152279	 39	 1565
4	 77552	 32.6	 36.4	 68490	 63	 968
5	 105872	 65.6	 19.4	 146828	 68	 1526
9	 146107	 71	 38	 129517	 111 -	 1595
6	 110575	 123.4	 29.6	 120886	 61	 1290
5	 123023	 77.8	 46.2	 124459	 64	 136€
7	 129878	 40.8	 19.2	 100667	 75	 2256
5	 123404	 39	 32	 158321	 64	 1670
7	 125840	 46.2	 26.8	 113607	 51	 1159
9	 145747	 74	 55	 111080	 96	 1757
14	 j 307290	 147.2	 105.8	 256414	 203	 3692
9	 118704	 522	 228	 j 109196	 74	 1242
8	 144874	 101.4	 40.6	 143514	 64	 1848
14	 318881	 1082	 978	 248725	 192	 3521
10	 157042	 69.6	 30.4	 120931	 40	 j 	 1612
10	 136273	 62.4	 36.6	 146461	 79	 2242
6	 97062	 234	 266	 100931	 62	 1091
7	 141114	 476	 474	 111341	 87	 1259
5	 - 92598.3	 57 -	 14	 117305	 44
9	 127771	 121:2	 .8	 100073	 99	 1943

88	 59	 118519	 101	 1700
6	 1 114443	 35.4 -	 33.6	 86668	 85	 1037
5	 89412	 798	 272	 88576	 63	 103
11	 246803,	 110.2	 79.8	 218748	 184	 2951
10	 250013	 147.8	 - 53.2	 272918	 112	 - 3296

233805	 86.8	 86.2	 169574	 95	 -	 2304

7_	 98103	 43 - ]	 33	 106850j	 34	 1257
9	 262661	 262.6	 - 109.4	 210548	 187	 -- 2518
6	 90810	 60.6	 - 46.4	 79781	 80	 1109
7	 116577	 624 J 366	 99491	 78	 1313

79678	 46.6	 21.4	 78294	 62	 954
7	 135004	 804 -	 276	 214303	 53	 1602
9	 117658	 64.8	 32.2	 123914	 60	 1294
9	 112299	 76.4	 46.6	 116229	 90	 2041
6	 i00139	 53.4	 49.6	 114858	 80	 1817
6	 85913	 -- 42	 51 -	 83213	 81	 1119
5	 1002191	 29.8	 24.2	 115463	 55	 1340
5	 71908	 42.8	 30.2	 - 80349	 54	 1118
7	 16944	 528	 j	 282	 166900	 86	 1879
7	 104975	 4&4i,	 22.6	 120452	 56 --	 1722

-- 6	 j113416	 45	 - 18	 105092	 41	 1122
222116 j S682t648	 160318	 143	 238
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ic
	

Al

D505	
J	

5	 138328
	

81.8
	

36.2	 156789	 62	 1567

:D506	 7	 134724
	

105.2
	

66.8	 130997	 68	 2194

,D507	 9	 187082
	

201.8
	

58.2	 173338	 161	 2284

D508	 7	 F 140587
	

79.2
	

47.8	 142177	 99	 1599

D509	 10	 159647
	

74.8
	

40.2	 176044	 107	 2131

D510	 - 5	 87426	 110	 1()	 108234	 29J	 1203

D511	 7	 136964	 49	 35	 175854	 66	 1872

D512	 6	 tIo3282	 57.4	 10.6	 107334	 28	 1092

D513	 I	 10	 265252	 153.4	 103.6	 197245	 231	 2330

D514	 12	 271627	 220.6	 142.4	 252224	 194	 2838

D515	 3	 50634	 2	 12	 33972	 21	 459

D516	 5	 98871.3	 46.8	 19.2	 113446	 33	 1436

D517	 5	 90981	 50.8	 20.2	 73987	 48	 904

D518	 6	 126376	 43 -	 24	 171025	 58	 1617
D519	 5	 j 134116	 103	 22	 126776	 62	 1271

D520	 7	 134229	 96.2	 62.8	 175966	 129	 2240

D521	 - 3	 46365	 53.4	 26.6	 33077	 45	 492

D522	 5	 94502.5	 51.6	 26.4	 85412	 35	 856

D523	 -	 10	 257417	 1258	 502	 262727	 108	 2884

D524	 6	 151439	 674	 56	 141717 L	 85	 1324

D525	 6	 110960	 588	 142	 144136	 51	 1708

D526	 6	 136151	 49.8	 24.2	 144971	 37

D527	 10	 183764	 108.2	 68.8	 183962	 121	 2907

D528	 8	 147852	 52.4	 17.6	 191190	 50	 J 2012

D529	 5	 68604	 56 4	 18 6	 49943	 43	 670

D530	 6	 124473	 75.6	 . 21.4	 122435	 1584

D531	 5	 j 98109	 26.6	 21.4	 127634	 35 -	 1252

D532	 105656	 46.2	 .57.8 - j 119692	 98	 1256

D533	 -	 6	 96752	 1216	 444	 86517	 8D	 1403

D534	 - 5	 787128	 768	 212	 104708	 27	 106

D535	 12	 237348	 70.2	 76.8	 207601	 139	 2968

D536	 -	 7	 101542	 76.8	 49.2	 81879 .	 110	 1412

D537	 -	 4	 71793	 64	 51	 49488	 68 -
	

718

D538	 - 12	 210536 -	 135	 82	 164879	 149	 2135

D539	 5 -	 125912	 153 4	 41 6	 153254	 63	 10

D540	 7	 108013	 33.8	 1	 30.2	 141834	 67	 1579

D541	 7	 122749	 716 -	 134	 143319	 47 -	 1579

D542	 - 10	 182765	 233.2	 67.8	 83302	 205	 1302

D543	 - 6	 82656	 32 2	 28 8	 105510	 55 - I	 1006

D544	 - 10	 163125	 636	 774	 159815	 149	 2238

D545	 . 81694.5	 54.8	 . 29.2	 101679	 62

D546	 6	 123849	 139j_	 70	 I 76282	 153	 1076

D547	 T	 .1.110339	 ........ 18	 167463	 63	 1360

D548	 J6	 99016.3	 58	 18	 133229 -	 41	 1620

D549	 T 6	 104112	 78	 64	 91428	 186	 b77

D550	 J	 6	 117713	 31.8	 23.2	 130872 .	 89	 1358

D551	 f	 6	 190273	 52.8	 270171	 106	 - 2778

D552	 T	 14	 235917	 -- 79.8 -	 95.2	 256965	 170 - .	 2836 -

D553	 JlS	 .338595	 175.4 j	 89.6	 304831	 284	 3738

D554	 H	 5	 91732	 40.2	 -. 13.8	 119758 .	 55 -	 1221

D555	 f6	 112465	 1228	 972	 7998	 102	 1053
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f:

D556	 9	 134357	 88.8	 50.2	 110007	 115	 1949
D557	 5	 91141	 47.4	 51.6	 103131	 120	 1783
D558	 10	 184847	 200.4	 136.6	 164833	 291	 2843
D559	 4	 100453	 82.4	 17.6	 80682	 52	 1151

. D560	 10	 148089	 84.2	 48.8	 105496	 94	 1989
D561	 5	 108038	 29.6	 14.4	 126453	 43	 1349
D562	 6	 101605	 52.6	 19.4	 162497	 37	 1432

D563	 12	 232849	 62.2	 .	 66.8	 142954	 153	 1413

.D564	 12	 197197	 155.8	 71.2	 133706	 223	 1599

D565	 5	 90569	 42.2	 34.8	 102254 :	 62	 1346

D566	 4	 71965	 64.2	 30.8	 78273	 - 45	 1203

D567	 15	 239491	 353.8	 124.2	 219499	 216	 2894

D568	 j	 6	 111790	 45.8	 15.2	 124049	 48	 j	 1189

D569	 6	 90615	 32.2	 38.8	 114042	 60

D570	 J	 6	 112808	 64.4	 26.6	 140414	 44	 J	 1534

D571	 7	 120279	 136.4	 49.6	 132924	 91	 2631

D572	 ]	 5	 90447 :	 69.4	 -34.6	 108762	 4!	 1419
D573	 j	 4	 80333	 18.6	 10.4	 88372	 24	 881
D574 -	 6	 87810	 73.6	 64.4	 75109	 89	 1223
D575	 5	 105218	 28	 25	 103471	 51	 1184
0576	 12	 226603	 320.6	 90.4	 161248	 157	 2711
D577	 5	 75663	 55.6	 53.4	 83122	 91	 1254
D578	 j	 4	 76032	 80.8	 27.2	 69866	 61	 1184
0579	 f	 4	 80974	 472	 208	 114277	 21	 j 1144
0580	 4	 4	 7678 j	 27	 11	 76266	 14	 970
0581	 5	 69031	 59.6	 16.4	 114902	 72	 11361
0582	 5	 114711	 914	 186	 124462	 47	 1184
0583	 I	 8	 119294 I	 422	 248	 139287	 66	 1747
0584	 i	 6	 168720	 90.2	 43.8	 179994	 71 -	 1745
0585	 8	 198203	 1092	 358	 173596	 75	 1874
0586	 4	 75429	 84.2	 25.8	 94140	 57	 1136
0587	 11	 165512	 578	 302	 157597	 120	 2748 -
0588	 4	 58621	 20	 12	 59850	 17	 867
0589	 5	 ioi	 198	 133576	 30	 1214
0590	 6 -	 126137	 42.2	 23.8 - 1 152647	 63	 1808
0591	 5	 94604 5	 35 2	 21 8	 133290	 40	 1449
0592	 4	 79619	 101 8	 30 2	 52780	 62	 684
D593	 i	 5	 104233	 46	 14	 145918	 38	 I	 1418
0594	 5	 78543	 656	 194	 101214	 29	 998
D595	 7	 166582	 135.6	 - 34.4	 177346	 119	 2573
D596	 is	 47	 61	 90302	 91	 1594
D597	 7	 133141	 97	 39	 157664	 80	 1695
D598	 9 - : 168026	 82.2	 41.8	 134379	 108	 1844
D599	 J	 7	 I 175826	 147.8	 31.2	 183238	 117	 2087
D600	 - ......................176677	 111.6	 115.4	 184482	 128	 2489
D601	 I 106943	 - 29.6	 18.4	 148236	 36	 1452
D602	 7	 88371.8	 43	 8	 95577	 23	 1029
D603	 10	 155506	 101.8	 55.2 - 109545	 125	 1515
D604	 8	 169227	 56.6	 37.4 - 163844	 58	 1466
D605	 - j	 6	 155210 I	 55.2	 30.8	 184487	 61	 1465
D606	 5 -	 74786.5	 57.6	 25.4	 89815	 43	 1239
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r-_-T	 lTh	 APCT MTSV

D607	 6	 124664	 201	 85	 104674	 163	 1424
D608	 6	 72696	 59.8	 45.2	 74634	 49	 1009
D609	 5	 159023	 55.2	 23.8	 218233	 60	 2001
D610	 j	 4	 72636 ]	 48.6	 8.4	 55669	 49	 861
D611	 J	 12	 250467	 174.6	 120.4	 216383	 210	 3370
D612	 J	 5	 115575 :	 59.8	 40.2	 146592	 60	 1736
D613	 J6j86935.5	 54.4	 31.6	 127113	 66	 1481
D614	 J	 5	 113734	 624	 256	 12770	 44	 1335
D615	 J	 5	 76983	 104.2	 30.8	 78454	 72	 1050

D616	 1	 4	 79970	 53.8	 19.2	 98582	 36	 1212
D617	 f	 6	 129984	 74.4	 24.6	 123504	 83	 1032
D618	 J	 5	 105805	 50	 10	 124235	 44 -	 1216
D619	 5	 87153.3	 49.6	 18.4	 123634	 32	 961
D620	 9	 155240	 230.61	 20.4	 181656	 45	 2330
D621	 I - 5	 87956.3	 56.6	 22.4	 113319	 52	 733
D622	 6	 117442	 41.2	 9.8	 137045	 49	 1079
D623	 7	 121313	 97	 61	 96183	 81	 1567
D624	 J	 6	 99069.5	 74.8	 17.2	 115073	 51	 1112
D625	 J	 5	 j109754	 54.2	 1	 26.8	 170832	 33	 1833
D626	 j	 5	 110236	 41	 f	 51	 113130	 105	 1536
D627	 6 -	 107268 I 23 2 j - 26 8	 140824	 66	 1694
D628	 1 - 6	 149704	 41.6	 17.4	 103421	 62	 854
D629	 f 5	 136822	 92	 208	 170739	 28	 1949
D630	 J	 5	 63268	 9.6	 9.4	 119047	 11	 689
D631	 6	 85839	 36.6	 23.4	 101921	 46	 (	 1333
D632	 1 - 7	 138967 --	 60	 - 21	 204067	 84	 2130
D633	 T	 L 105565	 386	 124	 118184	 27	 1081
D634	 10	 203684	 92.4	 54.6	 129371	 i98	 1371
D635	 12	 188442	 1168	 442	 144154	 149	 1127
D636	 .	 7	 109962	 48	 139616 . 47	 1572
D637	 - 13	 j 222079	 88.2 - - 87.8	 136529	 196	 2093
D638	 6	 128547	 - 66.2	 20.8	 145288	 75	 1337
D639	 -	 111266	 30.6	 9.4	 94329	 1221
D640	 L	 73587	 684	 246	 60136	 56 --	 940
D641	 5	 73643.5	 35.2	 14.8	 - 105956	 48	 -	 1079
D642	

j	
8	 166758	 686	 844 -	 138966	 158	 2003

D643	 8 -	 181778	 1182	 - 888	 1 177945	 16S	 20	 j
D644	 8	 184804	 1498	 802	 162171	 120	 2141
D645	 J	 7	 143193	 253.6	 88.4	 120967	 152	 1976

D646	 11	 224308	 131.2	 59.8	 204836	 155	 2988

D647 - -	 9 -	 88386	 34.4	 - 12.6	 57557 .	 84	 624

D648 -	 9	 162749	 68 8	 93 2	 120992	 140	 1978

D649	 10	 193811	 123.2	 103:8	 122536	 217	 1956

D650	 10	 225163	 276.8	 83.2 -	 194617	 191	 2665

D651	 - . 135030	 50	 33 -	 97209	 116	 -- 1261

D652	 5 -	 188991	 39.4	 34.6	 232743	 51	 2196

D653	 i()	 200688	 110.8	 88.2	 133678	 149	 1837
:D654	 5	 65575.3	 42.6	 11.4	 85829	 24	 856

D655	 10	 183845	 55.4	 31.6	 185073	 88	 2317

D656	 15	 328362	 204.4	 124.6 . 251008	 234	 3154
D657	 12	 2199S	 846	 864	 170788	 132	 2390
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I	 I

D658
	

11	 283324	 73.2	 58.8	 307855	 109	 3637
D659
	

13	 281175	 173	 - 73	 240532	 180	 2421
0660
	

j	 15	 3252081121	 -	 591236546	 17020121
D66 1
	

14	 203211	 115.4	 80.6	 136444	 211	 1493
D662
	

J	 12	 213326	 159	 95	
F 

179739	 225	 1908
D663
	

16	 235844	 147.6	 105.4	 157237	 295	 2200
D664
	

12	 182404	 95.8	
F	

67.2	 133291	 132	 2112
D665	 12	 245645	 200.6	 155.4	 136915	 318	 F	 2651
0666
	

7	 , 83135 '	 32.2	
F	

18.8	 59747	 61	 997
D667
	

10	 217959	 60.6	 85.4	 197193 F	 127	 I	 3016
b668
	

12	 248850	 149.8	 46.2	 154412	 150	 1996
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Appendix 6.4

The Input Output Levels of Each Anchor Branch that Require

Adjustments in Order to Construct at Least one Unobserved Branch

FA TO Al AP CT MT SV

D014	 3
D015	 V V V	 V	 4
D063	 V	 V V V	 5
D150	 V V	 V	 V	 4
D348	 V	 V V V	 4
D362 V	 V	 V	 3
D440	 V	 V V	 3
D442	 V	 V	 2
D463	 V	 V	 2
D494	 V	 V V	 3
D504	 V	 V	 2
D539	 V V	 2

D549 V	 V V	 V	 4
D551	 V	 V V	 3
D555	 V	 V	 2
D557	 V	 V V	 3
D571 V	 V V	 V	 4
D581 V	 V V	 V V	 5
D600	 V V	 V V	 4
D607	 V	 V	 2

D625	 V V	 V V	 4
D630 V	 V V	 V V	 5
D645	 V V	 2

_______	 _____	 75
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Appendix 6.5

The 48 Unobserved Branches Used to Improve Envelopment

sv

3599

1824

402

3971

3605

3971

4289

4125

A2D150	 12	 268966	 2	 174	 297000	 332	 3816

A4D150	 11 8	 239765	 187	 18	 245120	 345	 450

A3D348	 3.7	 114113 1	 74	 J	 24	 30000	 84	 1834

A1D362	 9.7	 136215]	 112	 110	 139854	 210	 2441

A3D362	 7	 74798	 48	 53	 30000	 138	 1652

A1D440	 6	 ] 99357	 2	 46	 158541	 74	 1649

A2D440	 6	 99018	 46	 52	 161214	 11	 1662

A1D442	 5.05	 96058 J	 2	 1	 76	 100001	 84	 155()

A2D442	 5.05	 96905 1	 74	 78	 100004	 14	 1552

A1D463	 39	 80053 T	 2	 5	 146543	 24	 1441

A2D463	 4.1	 75142	 19	 j	 18	 137124	 31	 455

A3D494	 6	 99784 j	 66	 t17	 186457	 41	 450

A1D504	 7	 197038	 482	 4	 153854	 110	 2275
:A2D504	 6.9	 j 159574	 509	 46	 139541J	 120	 450

A2D539	 4 2	 ] 95693	 132	 - J	 34	 129541	 48	 450

:A2D549	 5	 88095	 2	 J_ 48	 91138	 142	 1519

A3D549	 5	 89260	 57	 j	 5	 91122	 142	 1522

A4D549	 48	 75125	 60	 53	 79912	 130	 45()

A1D551	 505	 174422	 35	 - 4	 261122 j	 74	 2564

A2D551	 50	 169043	 31	 30	 261241	 11	 2597

A3D551 J - 5	 147608	 37	 - j	 36	 238254	 78	 40

A2D557 H.s	 58330	 27	
1	

31	 ] 30000	 97	 1241

A3D557 j	 42	 811b	 31	 34	 100214	 11	 1687

A1D571	 91	 168215	 192	 - i	 98	 164214	 162	 3184

A2D571	 62	 112018	 2	 32	 125014	 74	 241

A4D571 r	 6.1	 109048	 86	 27	 123512	 11	 2545

A1D581	 8.4	 88003	 68	 24	 141904	 135	 1612

A2D581	 4.1	 58367	 2	 10	 104123	 51	 1201

A3D581	 4	 62975J	 36J5	 111000	 56	 1297

A4D581	 4	 60138	 35	 1	 9	 107942	 11	 1251

A5D581	 4.2	 54464	 42	 11	 99545	 61	 450

A1D607	 5	 103065	 159	 5	 100341	 131	 1378

A2D607	 4.9	 99745 1	 164	 61	 92572	 138	 450

A2D625	 4.1	 101003	 34	 1	 s	 169574	 20	 1775
A3D625	 4 5	 96981	 31	 14	 167954	 11	 1760
A4D625	 4.2	 84413	 40	 18	 152213	 25	 450
A5D630	 3 1	 J 44986	 8	 8	 85197	 10	 371

A1D645	 5	 91644	 203	 56	 30000	 102	 1421

A2D645	 5.9	 j 110442	 1621	 68	 110732	 11	 1894

Al	 AE	 ci	 i
A3D014	 71	 194114	 52	 26	 150008	 11

A3D015	 9.85	 166164	 194	 146	 30000	 402

A40015	 10	 17681	 197	 148	 73321	 408

1A1D063	 19	 200133	 2	 169	 319642]	 182

A2D063	 18.9	 169192	 211	 159	 30000	 198

A3D063	 18.9	 208352	 206	 j	 168	 318457	 11

A5D063	 24	 263223	 304	 248	 356023	 279

A1D15O	 14	 364145	 248	 245	 33i254J	 421

193



Appendix ZA

Proof of Theorem 7.1: The Input Minimisation Case

For ease of explanation models (M7.5) excluding r4 and r5 and (M7.7) are reproduced

here as (A7.Ml) and (A7.M2) respectively.

(A7.M1)	 (A7.M2)

h	 Max UrY + w	 e = Max flrYr,, + 9

,fl

S. t.	 V,X,1 = 1	 s. t.	 a ,x,, = 1

	

UrY0 +W v,x,, ^O j= 1.....N 	 flrYrI,	 ^O jt=1.....N

Ur - JlrUr- / ^ 0	 :rl	 for some i,r	 a,, /3r ^ .	 Vi,r

v,	 ^ 0	 :r2	 for some i,r	 free

Ur - 2'ivi ^ 0	 :r3	 for some i,r

VI, Ur ^S	 Vi,r

•free

Notation in (A7.M1) and (A7.M2) as in (M7.5) and (M7.7) respectively. The RDMUs,

jt=1.....N in (A7.M2) are derived using (7.1). It is necessary to show that h = e
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Proof

Let 
* 

denote the value of a variable at the optimal solution to the model in which it

appears.

From the constraints of (A7.M2) it follows that e =	
+	

^f	 ax1, = lJ.
r=l

S

This, using (7.1) gives forjt =jo,	 /3 YrI 0 +	 = e ^	 ax11
r=I	 1=1

*	 *

h ^e	 (A7.1).1 5	 j5

The solution, fir u, r1.....s, a, = v 11.....m and p = w is feasible in (A7.M2). To

show that this is true it is only necessary to show that fl = u, r=l,..., s, a, = v, i=J.....m

and q' = d satisfies the constraints jt1.....N in (A7.M2). A feasible solution u,

r= 1.....s, v, i=].....m which is feasible for one assessed DMUj0 of(A7.M1) will also be

feasible for another assessed DMU Jo of (A7.M1) provided the weights restrictions in

(A7.Ml) all have zero RHS value, see Appendix 4.5. Thus, in (A7.M2) for DMU j in

(A7.M1)	 uyrj +a = hjv,*xjj , where h1 ^h^1 and h is the efficiency ofDMUj

elded by (A7.M1). Hence 	 uy,., +a	 and by reference to (7.1) forj=jt

the following holds:

UrYrji +	 —vx11, ^o	 jt1.... . N	 (A7.2)

Thus fi,. = u, Vr and a1 = v Vi and q = d satisfies the constraints jt= i.....N of

(A7.M2) and it is a feasible solution to the model. This implies 	 uy,. +w	 h is a

feasible objective function value to (A7.M2), hence

h ^e	 (A7.3)

Clearly, (A7.1) and (A7.3) imply

h = e	 (A7.4)

QED

A similar proof for the OM model can be constructed.
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Appendix Z

Proof of Theorem 7.2: The Input Minimisation Case

For ease of explanation models (M7.5) excluding ri -r3 and (M7.9) are reproduced here

as (A7.M3) and (A7.M4) respectively.

(A7.M3)	 (A7.M4)

h = Max	 +	
= Max PrYr/ +

In

Ins.t.	 =	
s.t.	 =

	

UrYr, +w — v,x,, ^O j=1,...,N	
+—a1x,, ^	 j=1.....N

Ur ^	 :r4	 r1 ,...,s	
+ -	 IXI ^ 0

v,^1c, ^e	 :r5	 i=1.... . in

Vi,r

free

free

Notation in (A7.M3) and (A7.M4) as in (M7.5) and (M7.9) respectively. The RDMUjt()

in (A7.M4) is derived using (7.1). It is necessary to show that h 
=f*•

Proof

Let 
* denote the value of a variable at the optimal solution to the model in which it

appears.

	

.5	 / in

From the constraints of (A7.M4) it follows that 
f1* 

=	 +	 ^[	 ax 1, = I).
r=I

.5	 III

This using (7.1) gives forjt Jo,	 /3Yr1,, +

	
= I

	

.1	 -

r=l	 '=1
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h	 (A7.5)

The solution, fir = u, r=1 ,...,s, a	 v 1=1.....m and q = w* are feasible in (A7.M4). To

show that this is true, recall that fir = u r=1.....s, a1	v, 1=1.....m and q	 w satisfies

the constraintjt() in (A7.M4) which is true by the virtue of(7.1), so the following holds:

+w	 ^ 0	 (A7.6)

Thus the solution, /1,- = u, r=1.....s, a, = v, i= 1.....m and q = w ' is feasible in (A7.M4)

and provide a feasible solution to this model. This implies that 	 UYrI 
+	

= h is a

feasible objective function value to (A7.M4) and so

h * ^f*	
(A7.7).10	 J

Clearly, (A7.5) and (A7.7) imply

= f1	 (A7.8)

QED

A similar argument can be constructed for the OM model.
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Appendix 73

Proof of Negative Relative Efficiency Scores

Consider assessing a set of N DMUs, 1= 1.....N each consuming m different inputs. x,1,

i=I.....m to produce s different outputs, Yr/, r=/ ,...,s. The VRS DEA weights models

(A7.M5) and (A7.M6) provide the relative efficiency scores of DMU Jo with an IM and

OM orientation respectively.

(A7.M5) Input Minimisation	 (A7.M6) Output Maximisation

= Max UrY,.I + wi - w2	 h = Mm	 + w3— w4

S. t.	 V, X,1 = 1	 S. t.	 = I

	

U rYr, +wl—w2v 1 x,1 +S 1 =0 Vi	 rYr/ —p,x —w3+w4+H, =0 Vj

V, Ur ^ E	 Vi, r	 . pi ^ E	 Vi, r

Uk - v, ^O	 for some k,I	 Uk - v1 	for some k,1

wi, w2, S, ^ 0	 Vj	 w3, w4, H, ^ 0

Notation in (A7.M5) and (A7.M6) as in (M7.1) and (M7.2) respectively, except the

variable that can be used to ascertain the returns to scale that the DMU is operating under

is now expressed as two variables. These two variables must be non-negative and hence

only one of these variables can be basic. e.g. wl>O = w2=O and w2 > 0 wl=0, see

Winston [57] p.172.

Essentially, the scale variable acts as an additional slack variable. Thus in order to balance

a constraint, with the introduction of a weights restriction, the scale variable may take an

inappropriately large value. In the TM case if w2 >	 U,y,.1 , then a negative relative

In

efficiency score is obtained. The same occurs in the OM case, if w4>	 p1 x 1, . This will

only happen when the imposed weights restrictions provide infeasible solutions in the CRS

case.
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O O xi, -	 2 l xii - G, 0
/ ElI

i=1.....m (A8. Ml)
Is. t.

It should be noted that the proofs presented in these Appendices are similar to those

presented in Appendix 6.1 and 6.2.

Appendix 8.1

Identifying Anchor DMUs: The Input Minimisation Case

Consider assessing a set of N DMIJsJ=1..... N each using varying amounts of m different

inputs, x1 •, i=1.....m to produce varying quantities of s different outputs, YrI' 1=1.....s. Let

the set JE consist of the DEA-efficient DMUs identified using model (M7.3) and let JE10

be the set JE without DMU j0 . In respect of each DEA-efficient DMU Jo solve the

envelopment model (A8.M1).

Mm 0 -	 G, + Gm+rJ

2, y,., -	 =	 r=I ,...,s
_,

I2L

/ E/Lm

G,, Gm+r, 2 ^ 0
	

Vi, r, / E 1E10

G and G 7+,. represent slack variables. Let denote the value of a variable at the optimal

solution to (A8.M1).
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DMU10 is classed as an ADMU if:

a) > 1 and it has at least one G, > 0 or G rn+r > 0.

or

b) (A8.M1) has no feasible solution

Proof of (a)

Consider assessing DMU Jo under model (A8.M2), after scaling its inputs to Ox,1,

1 = 1.....m to give it a radial efficiency of 1 in (A8.M1).

Is. t.

g0 =Max Sm+r +S,

-	 2 1 x,1 =S,

+	 2 / yd =S,,,+r

=1
/EIE1

2, Si, Srn+r ^ 0

r1 ,...,s

Vi, r,jEJE10

6 is the optimal solution to (A8.M1) and S and Sm+r are slack variables.

If (a) holds then DMU Jo will yield go> 0, and by defmition the assessed DMIU is deemed

to be of class F. This shows that the DEA-efficient DMU Jo can be rendered class F under

SE with respect to JE10. Hence DMUj0 is an ADMU.

Proof of (b)

DEA-efficient DMUs fall into two categories ADMUs and non-ADMUs. A non-ADMU

in (A8.M1) meets the following conditions:

• h* =1

or

•	 ^ 1 and G*j = Gm+r, = 0 for i-1,...,m and r = 1.... . s.

DMUj0 does not meet these conditions when (A8.M1) has no feasible solution and so it

must be an ADMU.

Similar arguments for (a) and (b) can be constructed for the Output Maximisation Case.
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Appendix 8.2

Improving Envelopment: The Input Minimisation Case

Consider assessing a set of N DMUsJ==1..... N, each using in different inputs, x,j, i1.....in

to produce s diflërent outputs, Yri' r = 1.....s, under model (M7.3). Let some of the DMUs

be non-enveloped i.e. weight some inputs or outputs with i. Then introducing DEA-

efficient UDMUs as local variations of ADMUs in the maimer outlined in section 8.5 for

determining the input output levels of UDMUs will, in principle, increase the number of

properly enveloped DMUs. An outline of the steps involved in the proof is now given:

(i) It is feasible that if a class F DMUjfis a referent DMLJ to ADMTJ in (M8.3) then

DMUJf will have ADMUJp as a peer DMU in (M7.3).

(ii) Introducing an UDMU ja created from ADMU iv will in principle improve

envelopment of DMU Jf which had DMUjp as a peer.

The above steps will now be detailed.

Proof of (I)

It is feasible that if a class F DMU jf is a referent DMU to ADMU jp in (M8.3)

then DMU jf will have ADMU jp as a peer DMU in (M7.3).

Consider using model (M7.3). reproduced here as (A8.M3) for convenience, to assess the

relative efficiency of DMUj1).
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(	 S

h* = Mm fo -	 Si +
1(1

r=l

S. t.	 J X, -	 K1X - S, 0
	

i=1.....m
	

(A8.M3) I

-	 = Yrj0	 r1,...,s

K, =

K,•, Si, Sm+r ^ 0
	

t(j,i,r

S represent slack variables. Let 
* 

denote the value of a variable at the optimal solution to

(A8.M3).

Suppose that all class NF DMUs have been adjusted using (8.1), so that they are now

class F DMUs. Let fF1, Jf=1......JEll denote the set of these observed and radially

adjusted class F DMUs and let JA be the set of ADMUs for the assessment. Thus consider

assessing each Jo E JA under (A8.M4).

h = Mm z0 	 +Hin+rJ

s.t. z 0 x,1 -	 r 1 x,, -	 - H = 0
I Elk1 ,,	 i/Elk1

r 1 y1 +	 jiYrj - Hnz+r
.lE./l 11 	 .1/ El/i

+	 r,1=l
I E.1L00	 I/El/I

H1, Hm+r, t/, i2f^.2
	

t1, r, j EJEj0, fEJFJ

H represent slack variables and (A8.M4) is the normal DEA model, with only the DEA-

efficient DMUs, excluding DMU Jo and the class F DMUs of fF1 allowed as referent

DMUs. Let JP10 be the set of DEA-efficient referent DMUs to DMU Jo in (A8.M4). Let /

denote the value of a variable at the optimal solution to (A8.M4)
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Let the assessed ADMUj0 in (A8.M4) be ADMUjp, i.e.jo=Jp. It is found that it has one

class F DMU,IJU identified as one of its referent DMUs, i.e. r > 0. Thus, at the optimal

solution to (A8.M4) the input output levels ofjf can be expressed as a linear combination

of DMUJp and other DEA-efficient DMUs plus possibly a slack value, i.e.

-	 - H:	 ii.....m
J Eli',1,

xlJIfl 
=

.1t

-	 Tq +H:	
r=1,...,s	 (A8.1)

I E.li1,

Ti

In (A8.1) DMU jp has coefficients of z,', /	 for x,, i=1.....m and 1! r	 for Yrjp,

r].....s. Therefore when assessing ha in (A8.M3) it is feasible one of its peers will be

DMUJp, i.e. 4 >0. This holds if the original DMU in (A8.M3) corresponding to DMU

f/a is a class F or NF DMU.

Proof of (ii)

Introducing an UDMU ja created from ADMU jp that will in principle improve

the envelopment of non-enveloped DMUs that had jp as a peer in (A8.M3).

Let DMU ja be an UDMLJ which is DEA-efficient and created from ADMU jp. Adding

DMU ja to the DMUs can, in principle, increase the number of properly enveloped DMUs

at the optimal solution to (A8.M3). To see how the addition of an UDMIU ja to the

observed data set can increase the number of properly enveloped DMUs consider using

model (A8.M3) to assess the efficiency of DMU Jo which had ADMU jp as one of its

peers. Following the addition of a single UDMU ja created from DMU jp as in (a) or (b)

below, the model solved to assess DMUj0 is (A8.M5).
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h, = Mm q 0 -	 + SSFII+J

s.t.	 q0x11 -	 2,x 1 - 2	 - SS, 0
	

m
	

(A8.M5) I

2yq + 2 jaYria - SS,,, +r = Yr10
	 r1.... . S

t2.i +2,a=l

2ja 2, SS1 , SSm +r ^ 0
	

Vj, 1, r

Models (A8.M3) and (A8.M5) differ only in that the latter contains the additional variable

2a corresponding to an UDMU ja. Superscripts * will be used to denote the value of a

variable at the optimal solution to the model (A8.M5).

There are two approaches for the creation of the UDMU to be used in (A8.M5):

• Encourage the non-c weighting of an individual output: Lower an output level.

• Encourage the non-c weighting of an inidividual input: Raising an input level.

With adjustments to the ADMU's input levels to compensate in each case. These two

approaches will be considered now:

a)	 Encouraging the non-c weighting of an individual output:

Let DMU Jo in (A8.M3) have a Sm+k > 0 for one k with ADMU jp as one

of its peer DMUs.

As the UDMU is to encourage the non-c weighting of output k, the output k level of

ADMU jp will be set to zero and to construct a DEA-efficient DMU, the input levels of

ADMUjp will be lowered. Thus, an UDMUja is created as a local variation ofADMUjp

with input output levels of
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Xija = Xqp - B1	 i=1.....in

Ykja = 0
	

(A8.2)

Yr/a = Yrjp
	 Vr^k

where B,; i = I.....m are DM specified levels of sufficient size to enable DMU ja to be

deemed by the DM to be DEA-efficient. Consider the solution to (A8.M5). Depending

on the values of B,, 1=1.... . m in (A8.M5) it will be the case that 2, > 0.

To see this note that if in (A8.M5) the following holds 2, + 2 = ic e,,, and k,* = 2*, Vj ^

jp, this will give a lower optimal objective function value to (A8.M5) than to (A8.M3) and

would therefore be preferred to the original optimal solution to (A8.M3), provided it is

feasible.

To see that the solution in which 2*,,, + 2*,a = ic,, and K, = 2*, Vj^jp can be feasible in

(A8.M5) consider some binding constraint i' at the optimal solution to (A8.M3). [Non-

binding constraints will not effect the optimal solution.] The constraint reduces to

KX 1 , 1 =fx ,1 in (A8.M3) and when 2k,,, + 2*,(, = K and K 1 = 2 Vj^jp it becomes

in (A8.M5).

N

K J X ,JJ + (2 +	 -	 = qx.,	 (A8.3)

j ^Jp

Since	 =fx1, . 2,, +2 a 	 and k 2, Vj ^jp depending on the size of

B 1, i=1.....m, and provided 2*,a > 0 (A8.3) can be balanced with J > q and the solution

+ 2*Ia = K 1 ,, K1 = 2*, Vj^jp is feasible in (A8.M5).

To see that the slack value for output k will be reduced, consider the constraint for output

k, in both (A8.M5) and (A8.M3), thus SS, -	 2*IYk, - 2;aykia = S 1+k -	 KIYkI, and

given 2,, + 2, Ku,, and k = 2* Vj ^ jp becomes SS,+k - 2;a(Yk,(, Yk,p) Sk,

since Ykia = 0, it follows that SS,+k <S;?+k
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The fact that t,,, > 0 and the slack of output k is reduced for model (A8.M3) to yield an

improved objective function value in comparison to that of model (A8.M3) means that

(A8.M5) is more likely than (A8.M3) to identify DMU Jo as a properly enveloped DMU.

b)	 Encouraging the non-c weighting of an individual input:

Let DMU Jo in (A8.M3) have a S*k >0 for one k with ADMU jp as one of

its peer DMUs.

The introduced DMU is to encourage the non-c weighting of input k, so the input k level

of ADMU /p will be raised to a DM determined amount, and to construct a DEA-efficient

DMU, the remaining rn-i input levels of the ADMUjp will be lowered. Thus, an UDMU,

ja is created as a local variation of the ADMU Jp with input output levels of

Xkja = Bk

Xija = XijpBi	 Vi^k	 (A8.4)

Yr/a	 Yrip	 r1,...,s

where B,, i= 1..... rn are DM specified levels of sufficient size to enable DMU ja to be

deemed by the DM to be DEA-efficient. Consider the solution to (A8.M5). Depending

on the values of B1 ,	 4 in (A8.M5) it will be the case that 2* > 0.

It should be noted that (a) proves that 2 + 2. = i, and K, = 2, Vj ^jp provides a

feasible solution in (A8.M3), for a binding constraint / with x	 x, - B,, provided

f* 
>q.

To see that the slack value for input k will be reduced consider the constraint for input k,

in	 both	 (A8.M5)	 and	 (A8.M3).	 Since	 f0* 
> q,

+ K ,p X k,,, +	 >	 + 2,xk,,, + 2*faBk + ss,	 which	 given	 that
i•^jp

+	 K1,, and K, = 2 Vj^jp, becomes S > 2* (B k - Xk/I,) + ss. Thus as

Bk - Xk/p > 0, it follows that s > ss as required.

The fact that 2, > 0 and the slack of input k is reduced for model (A8.M3) to yield an

improved objective function value in comparison to that of model (A8.M3) means that

(A8.M5) is more likely than (A8.M3) to identify DMUj 0 as a properly enveloped DMU.

A similar proof can be constructed for the Output Maximisation Model.
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Appendix 8.3

The Input Output Levels that Need to be Adiusted for Each ADMU in Order to

Construct at Least One Unobserved Branch

FA TC	 Al	 AP CT MT SV TOTAL F RTNs

D014	 2	 CRS
D015 J/	 I	 1	 1	 4	 CRS

D181	 /	 1	 /1	 i 1	 5	 CRS
D200	 I	 /	 1	 4	 IRS
D348 -*	 I	 I	

F 2	 CRS

D353	 /	 /	 1	 3	 IRS
D373	 - I	 1	 DRS
D440 j	 F 	

CRS
:D442 F	

I	 I	 1	 3	 CRS

D460	 T	

' T	 1 1	 IRS
D463	 I	 I	 CRS
D521	 I	 /	 I	 I	 1	 5	 IRS
D539	 I/	 2 j	 CRS
D549	 I	 I	 1	 3	 CRS
D551 j	 I	 I	 I	 1	 4	 CRS
D555	 I	 CRS
D557	 11	 I	 4	 CRS
D558	 1J1II1F 5	 CRS
D571	 I	 /	 I	 1	 5	 CRS

:D577	 /	 /: /	 /	 4	 IRS
D579	 I jI	 I	 1	 IRS
D581	 I	 I	 I	 5	 CRS
D586	 --	 /	 I	 1	 3	 IRS
D600	 I	 I	 - I	 I	 4	 CRS
D607	

F 	
F 

1	 /	 3	 CRS
D625	 /	 I	 I	 4	 CRS
D630	 I	 1	 2	 CRS
D645	 /	 1	 2	 CRS
D652 -	 I	 I	 1	 I	 4	 CRS
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Appendix 8.4

Input Output Levels of the 97 Unobserved Branches

FA	 TC	 Al	 AP	 CT	 MT	 SV

	A1DO14	 71	 194087	 59	 h134	 47	 3601

	

A2D014	 69	 192014	 58	 1	 152081	 11	 360

	A3D015	 16	 254875	 371	 24	 10024	 648	 241

	

A1DO15	 9.8	 197600	 2	 146	 96947	 396	 2189

	

A2D015	 99	 197209	 192	 96824	 394	 2194

	

A4D015	 99	 175851	 198	 148	 73521	 408	 4()

	

A5D181	 12	 198415	 24	 197	 11044	 135	 2472

	

Al Dl 81	 59	 149001	 2	 7	 12064	 208	 1962

	

A2D181	 59	 131101	 97	 5	 120975	 203	 1957

	

A3D181	 59	 113825	 120	 84	 30000	 224	 1698

	

A4D181	 58	 113486	 121	 82	 9804	 221	 4()

	

A1D200	 8	 42207 i	 2	 24	 53294	 28	 651

	

A2D200	 6 35	 4237	 23	 34	 42607	 45	 556

	

B2D200	 -, 9	 34554	 16	 24	 30000	 36	 34

	

A3D200	 59	 42308	 2	 21	 3784	 11	 652

	

A4D200	 6	 38576	 11	 21	 49124	 32	 4()

	

A3D348	 4	 126213	 42	 2	 175457	 64	 2268 I
	A4D348	 405	 153126	 54	 18	 174214 ]	 11	 2268

	

A1D353	 395	 53488	 2	 15	 i 93945	 18	 I	 964

	

A2D353	 3 9	 53069	 8	 14	 93987	 10	 967

	

A3D353	 425	 6091-	 29	 I	 3	 93007	 31	 761

	

B3D353	 4	 54392	 17	 26	 90124	 22	 i	 4()

	

A1D373	 89	 172079	 2	 48	 230759	 48	 369

	

A1D440	 5 95	 103057	 2	 49	 161941	 80	 1648

	

A3D440	 59	 98718	 46	 52	 163214	 11	 1662

	

A1D442	 5	 95858	 2	 72	 100041	 84	 1555

	

A2D442	 5	 85035	 81	 84	 30000	 102	 1306 j

A3D442	 5	 9660	 72	 74	 10004	 11	 h52

A1D460	 3	 9080	 37	 10	 81991	 11	 1370

Al D463	 41	 84353	 2	 8	 147043	 18	 1469

A1D521	 65	 50515	 102	 72	 I 3608	 87	 801

B1D521	 92	 57487	 154	 137	 37751	 150	 998

A3D521	 2	 4032	 19	 5	 32687	 18	 406

A4D521	 2	 39215	 20	 12	 32514	 11	 402

A5D521	 2 1	 I 41893	 17	 14	 29812	 24	 324

A1D539	 41	 110962	 103	 24	 147974	 11	 1460

A2D539	 42	 I 97893	 124	 I	 27	 129041	 41	 450

A1D549	 5	 88195	 2	 43	 91138	 140	 113

A2D549	 5	 89260	 57	 91122	 142	 122

A4D549	 48	 7512	 60	 53	 79912	 h7	 450

A1D551	 495	 18501	 2	 16	 26874	 64	 264

A2D551	 505	 177422	 24	 4	 261122	 74	 2564

A3D551	 505	 171043	 31	 r	 30	 261241	 11	 297

A4D551	 5	 b0608	 37	 36	 23824	 78	 450

A4D555	 5 05 I 93079	 102	 76	 76001	 75	 450

A1D557	 42	 I 84123	 2	 26	 99542	 84	 1692

A2D557	 4	 85977	 23	 5	 99687	 76	 1691
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rAb 7 r 	 583301
	

1241

A4D557	 4.2	 81115	 - 31	 34	 100214	 11
	

1687

A1D558	 8.9	 - 158514	 2	 83	 160210	 210
	

2767

A2D558	 8.9	 154514	 127	 5	 159874	 201
	

2757

A3D558	 9.1	 140285	 170	 114	 30000	 280
	

2504

A4D558	 9	 134097	 138	 108	 159974	 - 11
	

2752

A5D558	 8.9	 140285	 172	 106	 139974	 276
	

450

A1D571	 10	 169215	 192	 106	 164214	 162
	

3214

A2D571	 6.1	 110018	 2	 27	 121014	 84
	

2541

•A3D571	 6.2	 111018	 82	 5	 124325 :
	

2547

A4D571	 - 6.2	 86104	 102	 26	 - 30000	 71
	

2264

A5D571	 6.2	 107048	 84	 24	 124512	 11
	

2545

	

A1D577	 3.8	 60309	 2	 25	 82794 j	 62	 1170

	

A3D577	 4.4	 63403	 48	 47	 62354	 - 87	 1009

	

B3D577	 3.95	 53324	 41	 40	 30000	 78	 845

	

A4D577	 3.9	 58440	 27	 26	 82648	 11	 1178

	

A5D577	 4.1	 58260	 39	 80012	 76	 450

	

A1D579	 3	 72096	 2	 9	 108421	 14	 J	 1054

	

A2D579	 2 9	 73996	 21	 L - 5	 10784S	 12	 1068

	

A3D579	 2.95	 72066	 26	 8	 106548	 11	 J 1097

	

A4D579	 3	 62049	 33	 12	 97546	 17	 450

	

A1D581	 8.5	 82903	 76 132	 141024	 109	 1612

	

A2D581	 4 1	 58367	 2	 j	 10	 104123	 51	 r	 1201

	

A3D581	 4	 62975	 36	 j3	 111000	 56	 1297

	

A5D581	 4	 60138 - I .	 107942	 11	 1251

	

.A6D581	 - 4.2	 54464 ----_j_1	
99545	

61	 450

	

A2D586	 2.9	 J 671311	 26	 11	 - 93654	 11	 1049

	

A1D586	 3:45	 69054	 47	 19	 93945	 - 37	 J	 1105

B1D586 .	 2.9	 65494	 - 19	
I-	

93745 J	 14	 1056

	A3D586	 3.6	 65654j	 7--18	 9292i	 41	 848

	

B3D586	 3	 59280 1	 56	 11	 - 90412	 31	 450 -

	

A1D600	 8.4	 207341	 140	 146	 j 212234	 150	 2702

	

A2D600	 605	 163073	 2	 I	 84	 179528	 90	 238S

	

A3D600	 5 8	 130073 J	 94	 92	 I 30000	 104	 2034

	

A4D600	 59	 150243	 73	 75	 178912	 11	 2401

	

{A2D607	 5i 103065	 159	 5	 100341	 131	 1378

	

A3D607	 495	 99914	 146	 64	 99784	 11	 1378

	

A4D607	 4.9	 99745	 164	 61	 92572	 138	 450

	

A1D625	 4.2	 101303	 2 -	 14	 168547	 18	 1795

	

A2D625	 4.2	 102003 1	 30	 5	 . 168174 I	 20	 1745

	

A3D625	 4.4	 . 99881	 24	 10	 165654 T	 11	 1740

	

A4D625	 42	 84413	 40	 18	 152213	 25	 450

	

A2D630 -	 4.15	 57996	 6	 112041	 8	 570

A3D630 .	 4.1	 58068	 5 -	 : 
110092	 2	 594

A2D645	 5	 91644	 203 - 1	 56	 30000	 102	 1421

A3D645	 5.9	 110442	 162	 68	 . 110732	 ii	 1894

A2D652	 4.1	 179871	 2	 15	 225745	 26	 2001

A4D652	 3.9	 140523 - 1	 28	 25	 200069	 32	 450

A1D652	 9	 2332491	 134	 136	 269874	 195	 2564

A3D652	 3.95	 173871	 17	 5	 227987	 24	 2001 j
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