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Abstract

Consider an analytic two-degrees of freedom Hamiltonian system with an equi-
librium point that undergoes a Hamiltonian-Hopf bifurcation, i.e., the eigenvalues of
the linearized system at the equilibrium change from complex ±β ± iα (α, β > 0) for
ǫ > 0 to pure imaginary ±iω1 and ±iω2 (ω1 6= ω2 6= 0) for ǫ < 0. At ǫ = 0 the
equilibrium has a pair of doubled pure imaginary eigenvalues. Depending on the sign
of a certain coefficient of the normal form there are two main bifurcation scenarios. In
one of these (the stable case), two dimensional stable and unstable manifolds of the
equilibrium shrink and disappear as ǫ→ 0+. At any order of the normal form the stable
and unstable manifolds coincide and the invariant manifolds are indistinguishable using
classical perturbation theory. In particular, Melnikov’s method is not capable to evaluate
the splitting.

In this thesis we have addressed the problem of measuring the splitting of these
manifolds for small values of the bifurcation parameter ǫ. We have estimated the size
of the splitting which depends on a singular way from the bifurcation parameter. In
order to measure the splitting we have introduced an homoclinic invariant ωǫ which
extends the Lazutkin’s homoclinic invariant defined for area-preserving maps. The main
result of this thesis is an asymptotic formula for the homoclinic invariant. Assuming
reversibility, we have proved that there is a symmetric homoclinic orbit such that its
homoclinic invariant can be estimated as follows,

ωǫ = ±2e
−πα

2β (ω0 +O(ǫ1−µ)).

where µ > 0 is arbitrarily small and ω0 is known as the Stokes constant. This asymptotic
formula implies that the splitting is exponentially small (with respect to ǫ). When ω0 6= 0
then the invariant manifolds intersect transversely. The Stokes constant ω0 is defined
for the Hamiltonian at the moment of bifurcation only. We also prove that it does not
vanish identically. Finally, we apply our methods to study homoclinic solutions in the
Swift-Hohenberg equation. Our results show the existence of multi-pulse homoclinic
solutions and a small scale chaos.

x



Chapter 1

Introduction

The subject of this thesis is related to a phenomenon first observed by the French

mathematician Henri Poincaré around 1890, when investigating the question of the

stability of the solar system. Poincaré considered the system formed by three bodies

Sun-Earth-Moon, under the action of Newton’s laws of gravity. In an attempt to prove

the stability of the three body system, Poincaré used perturbation series and realized

its divergence character due to the presence of a transverse homoclinic orbit [63]. He

also realized that the evolution of such system was often chaotic in the sense that a

small perturbation in the initial positions or velocities of one of the bodies would lead

to a radically different state when compared to the unperturbed system, uncovering

for the first time what is now commonly known as chaos in deterministic systems.

Poincaré decided to send his results to an international competition created in 1885

by King Oscar II of Sweden on the occasion of his 60th birthday, to award the best

mathematical research in four different areas, one of which was the question of stability

of the solar system. The jury, consisting of Mittag-Leffler, Weierstrass and Hermite

decided to award the prize to Poincaré and noted that although his paper [63] couldn’t

be regarded as a solution to the original problem it would mark the beginning of a new

era in celestial mechanics.

However, when his work was about to be published in Acta Mathematica, the
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editor of the journal found an error in Poincaré’s arguments and Mittag-Leffler prevented

the respective publication. The situation was very embarrassing for everyone and in

particular to Poincaré who spent the time between March 1887 and July 1890 working

on the correction of that major error. The outcome of this work was impressive. Poincaré

invented a series of methods endowed with a geometric flavour, which laid the grounds

for the development of the field up to the present day. Methods of which included the

first-return (Poincaré) maps, stability theory for fixed points and periodic orbits, stable

and unstable manifolds, the Poincaré recurrence theorem, integral invariants, etc. which

can be found in his three volume treatise [64].

Inspired by the work of Poincaré, Jacques Hadamard published in 1898 an article

where he studied geodesics on surfaces of negative curvature [38]. Hadamard introduced

a method of symbolic description to study the dynamics of the geodesic flow which

originated what is now known as symbolic dynamics. Poincaré appreciated Hadamard’s

results although he believed that the trajectories of the three body problem were rather

comparable to geodesics on convex surfaces [65].

From a historical point of view, a more detailed account of Poincaré’s work on

the three body problem can be found in this excellent book [6].

In order to better understand what Poincaré observed we consider the following

model,

ẍ = sinx+ µ cos x cos
t

ǫ
, (1.1)

which he derived when studying periodic orbits of two degrees of freedom Hamiltonian

systems. System (1.1) describes a pendulum with an oscillating suspension point. Of

course, the simple pendulum ẍ = sinx is integrable and at the points x = 0 (mod 2π)

we have saddle equilibria and centers for x = π (mod 2π). Using the 2π-periodicity in x

we can restrict our analysis to the interval [0, 2π] and the conservation of energy allow

us to fully understand the dynamics of the pendulum and obtain a phase portrait similar

to Figure 1.1. The curves that connect the points 0 and 2π were initially referred by

Poincaré as bi -asymptotic orbits and later in his book [64] he named them heteroclinic
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π0 2π

ẋ

x

Figure 1.1: Phase portrait of the pendulum.

orbits (resp. homoclinic). Because these curves separate different types of motion they

are also known as separatrices. So now we can ask he following question: how different

is the phase portrait of system (1.1) from the one in Figure 1.1. Following Poincaré,

to better understand the dynamics of (1.1) we construct hyperbolic periodic orbits by

taking the system,

ẍ = sinx, θ̇ = 1,

where θ ∈ S
1. The phase space of this system is R2× S

1 and x = 0 is now a hyperbolic

periodic orbit. The study of the system reduces to the study of the map P0 : {θ = 0} →
{θ = 2π} (Poincaré map) which is defined in the obvious way using the orbits of the

system. The phase portrait of this map looks similar to Figure 1.1 except that the orbits

are now discrete sets. Now system (1.1) is equivalent to,

ẍ = sinx+ µ cos x cos
θ

ǫ
, θ̇ = 1,

and its Poincaré map Pµ has a hyperbolic fixed point xµ close to x = 0 for µ and ǫ

sufficiently small. Moreover, the separatrices split in the way shown in Figure 1.2. After

discovering this splitting, Poincaré wrote in [64] the following,

“If one attempts to imagine the figure formed by these two curves and their

infinitely many intersections, each of which corresponds to a bi-asymptotic

3



0 2π

ẋ

x

Figure 1.2: Splitting of the separatrices of the perturbed pendulum.

solution, these intersections form something like a lattice or fabric or a net

with infinitely tight loops. None of these loops can intersect itself, but it

must wind around itself in a very complicated fashion in order to intersect

all the other loops of the net infinitely many times. One is struck by the

complexity of this figure, which I shall not even attempt to draw. Nothing

gives us a better idea of the complicated nature of the three-body problem

and the problems of dynamics in general, in which there is no unique integral

and in which the Bohlin series diverge.”

Poincaré was aware of the complexity of motion near a transverse homoclinic orbit and

he also knew that in some cases the splitting of the separatrices is exponentially small.

In fact, for the present example (1.1) the splitting is of order O(µǫ−1e−
π
2ǫ ) (see [30]).

1.1 Homoclinic Chaos

It was not until the work of Birkhoff [10] in 1935 that more light was shed into the

dynamical consequences near a transverse homoclinic orbit. In that paper, Birkhoff

proved that given a two dimensional area-preserving analytic diffeomorphism T having a

saddle fixed point p with a transverse homoclinic orbit Γ, then in every neighbourhood
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of the closure of a homoclinic orbit there exists a countable set of periodic orbits having

all periods greater than equal to some natural number. Years later, around 1960, Smale

found his horseshoe while strolling the beaches of Rio de Janeiro. He then used it as

a model basis for finding chaotic dynamics near transverse homoclinic orbits. In his

paper [70] in 1965 he proved a result which became known as Smale-Birkhoff Theorem

which says that given a diffeomorphism T : Rn → R
n having a hyperbolic fixed point

p and a homoclinic point q 6= p such that the stable and unstable manifolds of p

intersect transversely, there exists a hyperbolic invariant set Λ on which T is topologically

conjugated to a shift on two symbols. In that same year, Shilnikov proved in [68] that

given a three-dimensional system having an equilibrium of saddle-focus type, where its

eigenvalues are of the form {ρ± iω, λ} where ω > 0, ρ < 0, λ > 0 such that ρ+λ > 0

and the equilibrium has a homoclinic orbit, then one can define a Poincaré map P in a

transversal neighbourhood of the homoclinic orbit such that P has a countable set of

“Smale horseshoes”. A couple of years later, Shilnikov gave a complete description of all

orbits in a neighbourhood of the closure of a homoclinic orbit (see [69]). Subsequently,

the foundations of the general theory were laid by Alekseev in [1, 2, 3].

One important corollary of the results mentioned above is for two degrees of

freedom Hamiltonian systems having a saddle-focus equilibrium with stable and unstable

manifolds intersecting transversely. In [21] Devaney extended the previous results to this

case and proved that in any neighbourhood of a transverse homoclinic orbit, the system

admits a suspended horseshoe as an invariant set.

Further results and generalizations have been obtained by many people and

therefore, the literature on this subject is vast. As a last remark, let us just mention that

for three or more degrees of freedom near integrable Hamiltonian systems, the splitting

of invariant manifolds is an important ingredient in the so called Arnold diffusion [4]. It

is clear that for more than two degrees of freedom the invariant tori of KAM theory are

no longer obstructions for diffusion since their co-dimension is at least 2. In this case the

stable and unstable manifolds of the invariant tori work as paths for diffusion provided

5



the invariant manifolds split and the size of the splitting is sufficiently large to allow the

transition from one torus to another. It is believed that for a priori stable systems (which

is the case of the Arnold example [4]) the Arnold diffusion is a generic phenomenon. In

this setting the splitting of invariant manifolds is expected to be exponentially small and

the diffusion time is exponentially long [61].

1.2 Poincaré-Arnold-Melnikov Method

The theory of splitting of invariant manifolds (or separatrices) has evolved in parallel

both for maps and for flows. At present, the standard method for determining the

transversality of invariant manifolds is the Poincaré-Arnold-Melnikov method [57]. In

the following, we shall restrict our explanations to the case of time-periodic perturba-

tions of one degree of freedom Hamiltonian systems, although one can apply the method

in more general situations, see for instance [43] where Melnikov’s method is applied in

Hamiltonian systems of higher degrees of freedom or [36] where the method is devel-

oped for systems with arbitrary dimensions or even more recently [53] where Melnikov’s

method is developed for diffeomorphisms.

Consider the following Hamiltonian,

H(q, p, t, µ) = H0(q, p) + µH1(q, p, t), (1.2)

where µ is a small parameter. Suppose that the Hamiltonian H0 has a saddle equi-

librium, say at the origin, and a corresponding homoclinic orbit Γ0(t) = (q0(t), p0(t)),

i.e. limt→±∞ Γ0(t) = 0. The implicit function theorem can be applied to obtain a

periodic hyperbolic orbit γ for the full system (1.2) such that γ = O(µ). Moreover

the corresponding stable and unstable manifolds of the periodic orbit γ are µ-close to

the unperturbed homoclinic orbit Γ0. Using classical perturbation theory one can write

parametrisations of the stable (resp. unstable) manifold as powers series in the parame-

ter µ and by properly choosing a transverse section to a certain homoclinic point Γ0(t0)

it is possible, to compute the difference d(t0) between the points of first intersection of
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the section with the stable and unstable manifolds of the periodic orbit γ. Using H0 as

one of the coordinates, V. Arnold derived the following simple formula,

d(t0) =M(t0)µ+O(µ2), M(t0) =

∫ +∞

−∞
{H0,H1}|Γ0(t),t+t0

dt, (1.3)

whereM(t0) is known as the Melnikov’s function. Notice the brackets inside the integral

of the previous formula are the Poisson brackets. It immediately follows from the previous

formula that simple zeros of the Melnikov function yield transverse homoclinic orbits for

the full system (1.2). Note that Melnikov method is a first order perturbation method

as it compares stable and unstable manifolds at the order O(µ). Additionally, when H1

depends on an extra parameter ǫ, for instance as in example (1.1), then the Melnikov

function may also depend on that parameter. In the example above, where the frequency

of the perturbation is ǫ−1, we have that,

M(t0) = − 2π

ǫ2 cosh( π2ǫ)
cos

t0
ǫ
,

and the Melnikov function is exponentially small with respect to ǫ. Recall from (1.3)

that the error term is of order O(µ2) which becomes greater than the leading term

M(t0)µ when ǫ is very small. Thus, in systems where exponentially small phenomena

occur, Melnikov’s method does not directly apply and further study is needed to justify

the method and prove the correctness of the prediction. In the case of example (1.1),

Gelfreich [27] and Treshchev [74] have independently obtained an asymptotic formula

for the splitting which differs from the one predicted by Melnikov’s theory. There are

numerous examples where Melnikov’s method requires further justification and obtaining

the correct leading order for the splitting distance is in general a very non-trivial problem

due to the presence of exponentially small phenomena. On the same line of research,

let us just mention the articles [26] and [20] on the rapidly forced pendulum,

ẍ+ sinx = µǫp sin
t

ǫ
,

which justified Melnikov’s method for p > 0 and ǫ > 0. For a detailed survey of these

results and much more the reader is referred to [30].
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Fast and slow dynamics are a common theme in high frequency periodic pertur-

bations. As they fall into the class of singular perturbation problems then this is the

main reason for the failure of Melnikov’s method as exponentially small phenomena is

predominant in this class. Thus a new approach is required to deal with exponentially

small splitting and in the following section we will briefly discuss a set of problems where

estimating the size of the splitting has been done successfully.

1.3 Exponentially Small Splitting

Exponentially small splitting can be found in many systems such as high frequency

periodic perturbations of autonomous systems (as previously discussed), in close to

identity area preserving maps, bifurcations of resonant periodic orbits in two degrees

of freedom Hamiltonian systems and as a result of this thesis in bifurcations of total

elliptic equilibria in two degrees of freedom Hamiltonian systems. As explained before,

detecting the exponentially small splitting of invariant manifolds is very important due to

its profound consequences in the dynamics of the phase space of the system. Moreover,

in many interesting cases Melnikov’s method is not applicable to detect the splitting.

In the case of systems with slow-fast motions, Neishtadt’s theorem [60] can be

used to obtain an exponentially small upper bound for the splitting and for close to

identity area preserving maps Fontich and Simó, [25] also derived an exponentially small

upper bound for the splitting of separatrices. However, getting a lower bound is generally

very difficult and strongly depends on the form of the equations of the system. Hence,

very few results are known for generic families of systems and most cases treated in the

literature are for particular systems only.

In addition to high frequency perturbations of pendula the most paradigmatic

example in the exponentially small splitting is given by the Chirikov standard map which

is defined by the following relation,



x

y



 7→




x+ y + ǫ sinx

y + ǫ sinx



 .
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This map is a diffeomorphism on a two dimensional torus T
2 which is area-preserving

and reversible. For ǫ = 0 the standard map is integrable and the torus is foliated

into invariant circles where y is an integral of motion. When ǫ > 0 the map has a

hyperbolic fixed point (0, 0) and it is well known that it has stable and unstable curves

(separatrices) intersecting at the primary homolinic point (π, yǫ) which corresponds to

the first intersection of the curves with the symmetric line x = π. Note that the

standard map is a ǫ-step discretization of the pendulum ẍ = sinx (modulus a proper

scaling of variables). Hence its phase portrait looks like the pendulum (see figure 1.1)

for ǫ small but the separatrices are expected to split. In 1984, in the pioneering article

[47], V.F. Lazutkin obtained an asymptotic formula for the splitting angle αǫ, defined

by the separatrices at the primary homolinic point,

αǫ =
πe

− π2
√

ǫ

ǫ

(

ω0 +O(ǫ
1
8
−δ)
)

, (1.4)

where the constant δ is an arbitrarily small positive constant and ω0 is a positive constant

defined for an ǫ-independent problem. It is not known if is possible to write ω0 in terms

of elementarily constants (e.g. π, e) and at the present, the only known way to estimate

ω0 is through numerical computations. A numerical procedure can be designed to the

effect [30] and several digits of ω0 have been computed,

ω0 = 1118.827706...

The proof of the asymptotic formula for the splitting angle given by Lazutkin was

incomplete and only in 1999, V. Gelfreich presented in [28] a complete proof inspired by

the original ideas of Lazutkin.

As the splitting angle αǫ depends on the homoclinic point and coordinate system,

in a subsequent paper [33] the Lazutkin homoclinic invariant was introduced to measure

the splitting of separatrices in area-preserving maps. The idea was to parametrize the

stable (resp. unstable) curve Γ±(t) = (x±(t), y±(t)) by solutions of the finite-difference

system,

x(t+ h) = x(t) + y(t+ h), y(t+ h) = y(t) + ǫ sinx(t),

9



where h is a conveniently defined parameter which depends on ǫ (in fact ǫ ≈ h2, see

[28] for more details). Assuming that Γ±(0) is equal to the primary homoclinic point,

then the Lazutkin homoclinic invariant could be defined as follows,

ω = det




ẋ−(0) ẋ+(0)

ẏ−(0) ẏ+(0)



 .

Clearly the Lazutkin homoclinic invariant is equal to the signed area formed by the

tangent vectors Γ±(0) at the primary homolinic point and its definition is independent

from any symplectic coordinate system. Moreover, it can be shown that it takes the

same value for all points of the homoclinic orbit. These remarkable properties make

the Lazutkin homoclinic invariant the natural quantity for detecting the splitting of

separatrices in area-preserving maps. In the case of the standard map, an asymptotic

expansion for ω was obtained in [33] which reads,

ω ≍ 4π

h2
e−

π2

h

∑

n≥0

ωnh
2n,

where the symbol ≍ means that if we truncate the series in the right hand side at some

order then the error will be of the order of the first missing term. From the asymptotic

expansion of ω one can obtain a refinement of the splitting angle.

Note that in the case of the standard map, an application of Melnikov’s method

gives an incorrect estimate for the splitting of the separatrices. In fact, Melnikov method

is a finite order perturbation method, in the sense that it expands the separatrices in

powers of the perturbation parameter ǫ and compares stable and unstable curves at the

order O(ǫp) for some p > 0. However it can be shown (see Proposition 3.1 of [28]) that

for every p ∈ N there is a C > 0 and ǫ0 > 0 such that,

∣
∣x+(t)− x−(t)

∣
∣+
∣
∣y+(t)− y−(t)

∣
∣ ≤ Cǫp, t ∈ (−√

ǫ,
√
ǫ), ǫ < ǫ0. (1.5)

Since the error in Melnikov method is always polynomial in ǫ (see (1.3)) it is clear from

(1.5) that it exceeds the magnitude of the splitting of separatrices, thus not giving a

correct estimate for the size of the splitting. Consequently, a new method for estimating

the size of the splitting had to be invented.
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In relation to the splitting of separatrices of the standard map, let us also mention

the work of Hakim and Mallick [39] which used Borel summation methods to study the

exponential pre-factor of the asymptotic formula (1.4). Their work established a relation

between Écalle’s resurgence theory of functions [13] and the problems of splitting of

separatrices which later inspired the work of D. Sauzin and many other people (see [31]

and [66] and references therein). More recently, P. Mart́ın, D. Sauzin and T. M. Seara

have studied the splitting of separatrices in perturbations of the McMillan map (see [55]

and [54]). Their approach is based on Lazutkin’s original ideas and resurgent theory.

Many other maps where exponentially small splitting of separatrices is present,

have been studied and an asymptotic formula measuring the splitting has been obtained

(see the survey [30] for several examples and references therein), in most cases using

only formal arguments. Moreover, most rigorous results in the area concern particular

maps or systems and very few general results are known. As a matter of fact, in the case

of maps, only very recently a preprint [29] of Gelfreich and N. Brännström appear on

arxiv where an asymptotic formula for Lazutkin’s homolinic invariant is formally derived

which describes the exponentially small splitting of separatrices in a generic analytic

family of area preserving maps near a Hamiltonian saddle-center bifurcation.

Lazutkin’s approach has become standard and most rigorous proofs use more

or less Lazutkin’s original ideas. Roughly speaking, the approach consists in studying

the analytic continuation of parametrizations of stable and unstable manifolds into the

complex domain. Although the phenomena we want to study lives in a real domain, a

careful analytic study of the parametrizations near a certain complex singularity is able

to detect the exponentially small phenomena. Then a local rectification of the map and

standard Fourier arguments are able to return to the reals and obtain the asymptotic

formula describing the splitting. At the heart of the method is a “complex matching

technique” which allows the passage from the analytic study of the invariant manifolds

in a neighbourhood of the fixed point to the analytic study near the complex singularity.

This technique can be found in the Physics literature where problems of ex-

11



ponentially small splitting of invariant manifolds are also studied but use a different

mathematical framework from the one used in Dynamical Systems. There the common

approach is known as “asymptotics beyond all orders” [67] which is related to matched

asymptotic expansions [23] that capture the exponentially small terms. Most notably,

the work of Kruskal and Segur [45] in the 80’s where they considered a model of crystal

growth and using matched asymptotic expansions they were able to prove that a certain

heteroclinic connection breaks. This work has influenced many others in the field and

the same technique has been applied (at the formal level) to prove the non-persistence of

homoclinic or heteroclinic solutions to certain singularly perturbed systems (for instance

[35, 78, 17]). It is worth mentioning that most arguments used in the “asymptotics be-

yond all orders” approach are heuristics and although may produce satisfactory solutions

are not rigorous mathematical proofs. More recently, the asymptotic beyond all orders

approach has been applied in [73, 19, 18, 75].

In his book [52], Eric Lombardi undertook efforts to put the matched asymptotic

expansions technique into rigorous arguments that could be used to solve many problems

in the class of exponentially small phenomena. He realized that most problems in this

class could be reduced to the study of certain oscillatory integrals which capture the

exponentially small terms. He then applied his methods to study homoclinic connections

of periodic orbits in reversible analytic vector fields near resonances. Let us emphasise

that his results apply not only for particular examples but for one parameter families of

reversible vector fields admitting some sort of resonance (in particular for a 02iω or a

(iω0)
2iω1 resonance). However, we should mention that his methods do not apply to a

(iω)2 resonance, which is considered in this thesis. The reader is referred to his book

[52] for more details.

As a final remark, let us refer the reader to the survey of A.R. Champneys [14]

where several applications of exponentially small splitting to mechanics, fluids and optics

are considered.
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ǫ < 0 ǫ = 0 ǫ > 0

Figure 1.3: Eigenvalues of DXHǫ(p).

1.4 Main Contributions of this Thesis

Consider an analytic one parameter family of two degrees of freedom Hamiltonian sys-

tems XHǫ with a common equilibrium point p, i.e., XHǫ(p) = 0. We say that p

undergoes a Hamiltonian-Hopf bifurcation if the eigenvalues of the linearized system

at the equilibrium point change from complex ±β ± iα (α, β > 0) for ǫ > 0 to pure

imaginary ±iα1 and ±iα2 (α1 6= α2 6= 0) for ǫ < 0, as is shown schematically in Figure

1.3. When ǫ = 0 the equilibrium has a pair of pure imaginary eigenvalues ±iα0 with

multiplicity two. In other words, the equilibrium p changes from hyperbolic to elliptic.

This bifurcation has been extensively studied [76] and a normal form theory for the

bifurcation has been developed. It is known that depending on the sign of a certain

coefficient η of the normal form there are two main bifurcation scenarios (see section

2.2 of chapter 2). In one of these scenarios, which corresponds to η > 0 (the stable

case) it is known that for ǫ > 0 there are two dimensional stable W s
ǫ and unstable W u

ǫ

manifolds within a three dimensional energy level set, that shrink to the equilibrium as

the bifurcation parameter ǫ approaches the critical value.

At the level of the normal form the stable and unstable manifolds coincide and

for the original Hamiltonian, in general, it is expected a completely different situation:

stable and unstable manifolds will not coincide any longer and intersect transversely,

forming a countable set of homoclinic orbits as initially described by Poincaré and all

13



the chaos that it implies.

The question of transversality in an Hamiltonian-Hopf bifurcation has been con-

sidered by many people and finds applications in many different problems. For instance,

in the study of stationary localized solutions for the Swift-Hohenberg equation [48, 18] or

in the restricted three body problem where numerical evidence have shown the existence

of homoclinic orbits to the Lagrange equilateral equilibrium point which are the limit of

periodic orbits with long periods (blue sky catastrophe) [42]. For more applications the

reader is referred to [14].

In this thesis, we have addressed the problem of determining if stable and unstable

manifolds of the equilibrium intersect transversely. We have estimated the size of the

splitting of the invariant manifolds which depend on a singular way from the bifurcation

parameter. For ǫ = 0 the equilibrium is elliptic, thus the problem of determining the

transversality belongs to the class of analytic singular perturbation problems.

The most significant effort towards solving the question of transversality occurred

in 2003 when P. D. McSwiggen and K. R. Meyer proved in [56] that for small positive ǫ

the stable and unstable manifolds are either identical or have a transverse intersection,

i.e. a transverse homoclinic orbit. However, their arguments did not show a transverse

intersection and the main question remained open.

When the Hamiltonian vector field XHǫ is reversible, Glebsky and Lerman proved

in [34] the existence of two symmetric homoclinic orbits using an implicit function

theorem argument. They also pointed out that stable and unstable manifolds could

split and that this splitting was exponentially small. The existence of two symmetric

homoclinic orbits follows from a more general result of G. Iooss and M. C. Pérouème in

[44] where it is considered a four dimensional reversible vector field near a 1:1 resonance

(or (iω)2 resonance). See also [15] where the existence of symmetric homoclinic orbits

is studied by considering ω and β as independent parameters.

More recently, Lombardi [52] developed several methods that allowed him to

study homoclinic connections of periodic orbits in reversible analytic vector fields near
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certain resonances. The resonance considered in this thesis (iω)2 is not treated in his

book and in page 12 we find:

“Observe from Figure 1.3 that for the (iω)2 resonance such a coexistence

of slow hyperbolic part with a rapid oscillatory one does not exist. Thus

they can be studied with classical tools (see [44]).”

Our results have shown that exponentially small phenomena is generic near a Hamiltonian-

Hopf bifurcation, thus contradicting Lombardi’s observation. More precisely, we have

proved that generically stable and unstable manifolds of the equilibrium split and that

the size of the splitting is exponentially small with respect to ǫ.

In order to measure the splitting of the invariant manifolds we have extended

the definition of the Lazutkin’s homoclinic invariant (which is defined for area-preserving

maps) for our case of two degrees of freedom Hamiltonian systems. Given a homoclinic

point pǫ ∈W s
ǫ ∩W u

ǫ , we have found a natural way to normalize vectors vu,sǫ tangent to

W s
ǫ and W u

ǫ at the homoclinic point pǫ and defined the following homoclinic invariant,

ωǫ = Ω(vsǫ , v
u
ǫ ),

where Ω is the standard symplectic form in R
4. Moreover, we have shown that it satisfies

the following properties:

1. It is invariant under symplectic change of coordinates,

2. It takes the same value along the homolinic orbit defined by pǫ, i.e., is independent

of a particular homoclinic point,

3. If v̂u,sǫ is a different pair of tangent vectors such that the homoclinic invariant ω̂ǫ

defined by those vectors satisfy the above properties then ω̂ǫ is not independent

of ωǫ, i.e., there exists a relation between the homoclinic invariants,

4. If ωǫ 6= 0 then W s
ǫ and W u

ǫ have a transverse intersection.
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To effectively measure an exponentially small splitting we have constructed ap-

proximations of stable and unstable manifolds in complex domains and measure the

splitting in places where it is detectable, that is, near singularities in complex domains.

This has involved several steps, such as the construction of asymptotic expansions for

the invariant manifolds in different complex domains and a complex matching technique

that captures the exponentially small phenomena, as mentioned earlier in this Chapter.

Assuming that the family XHǫ is reversible with respect to the involution,

S(q1, q2, p1, p2) = (−q1, q2, p1,−p2),

we have measured the splitting of the invariant manifolds at a symmetric homoclinic

point pǫ, i.e. pǫ ∈ Fix(S) (the set of fixed points of S). We can now state the main

result of this thesis,

Theorem 1.4.1. If ǫ > 0 and η > 0 (the stable case) then there exists a symmetric

homoclinic point pǫ ∈ W s
ǫ ∩W u

ǫ such that the corresponding homoclinic invariant has

the following asymptotic formula,

ωǫ = ±2e
−πα

2β (ω0 +O(ǫ1−µ)). (1.6)

where µ > 0 is arbitrarily small.

Recall that α and β are the imaginary and real part of the eigenvalues of the

linearized system at the equilibrium point. Moreover, β → 0 as ǫ→ 0+ (see Figure 1.3,

in fact we know that β = O(
√
ǫ)). Consequently ωǫ is exponentially small with respect

to ǫ. In addition, when ω0 is different from zero, the previous asymptotic formula implies

that the invariant manifolds have a transverse intersection.

Similar to many other problems in the class of exponentially small splitting (com-

pare with the standard map (1.4)) the constant ω0 is defined for an ǫ-independent prob-

lem and in our case it only depends on the Hamiltonian H0 (at the exact moment of

bifurcation). It is a remarkable fact that the leading coefficient ω0 which determines

the transversality of the family of invariant manifolds W s
ǫ and W u

ǫ does not depend on
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the unfolding of H0. To be more precise, let U ⊆ C
4 be a neighbourhood of the origin

and H0 be the space of analytic Hamiltonian functions H : U → C
4 that have the same

properties as H0. Then we have the following,

Theorem 1.4.2. There exists a non-zero functional K0 : H0 → R
+
0 satisfying the

following properties:

1. ω0 =
√

K0(H0) (Stokes constant),

2. Given H ∈ H0 such that K0(H) 6= 0 then H is non-integrable and the normal

form transformation diverges,

3. K0 is independent of the symplectic coordinate system, i.e., if Ĥ = H ◦ Ψ for

some analytic symplectic map Ψ fixing the equilibrium p then K0(H) = K0(Ĥ),

4. If Hν is an analytic curve in H0 then K0 is an analytic function of ν.

5. Given any analytic curve Hν in H0 where ν is defined in an open disc D ⊂ C, then

for every ǫ > 0 there is an ǫ-close analytic curve Fν ∈ H0 to Hν , i.e.

sup
x∈U ,ν∈D

|Hν(x)− Fν(x)| < ǫ,

such that K0(Fν) does not vanish on an open and dense subset of D.

The definition of K0 is related to a phenomenon observed in solutions of certain

differential equations known as Stokes phenomenon (see [62] and references therein).

From the last property of Theorem 1.4.2 we conclude that the splitting of invariant

manifolds near a Hamiltonian-Hopf bifurcation is a generic phenomenon.

The reversibility assumption is not necessary in most parts of this thesis. In

fact, it is only used to ensure the existence of a certain primary homoclinic orbit. We

believe arguments based on the preservation of the symplectic form yield the existence

of a homoclinic orbit such that the asymptotic formula (1.6) holds in the non-reversible

case.
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Taking the Swift-Hohenberg equation as an example, we have performed high-

precision numerical experiments to support validity of the asymptotic expansion (1.6) and

evaluated a Stokes constant numerically using two independent methods. In particular,

this study implies the existence of countably many reversible homoclinic orbits for the

Swift-Hohenberg equation, which are known as multisolitons. The Swift-Hohenberg

equation is also considered as a paradigmatic model in pattern formation theory [51,

50, 18]. Recently, similar computations to ours have been performed by S. J. Chapman

and G. Kozyreff in [18] where they study localised patterns in the Swift-Hohenberg

equation emerging from a subcritical modulation instability using the multiple-scales

analysis beyond all orders. Although arguments in [18] are not completely rigorous they

were still able to capture the exponentially small phenomena by means of analysing

certain formal expansions using optimal truncation and studied their difference in the

vicinity of the Stokes lines.

Our results extend those in [18] as we have developed a theory to study transver-

sal homoclinic orbits in Hamiltonian system near a Hamiltonian-Hopf bifurcation, for

which the Swift-Hohenberg is a particular example of this type of bifurcation.
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Chapter 2

Preliminaries

In this chapter we review some well known results about Hamiltonian systems and

describe the Hamiltonian-Hopf bifurcation in detail. In the end we shall define certain

linear operators and obtain inverse theorems that will be used in subsequent chapters.

2.1 Hamiltonian Systems

The goal of this section is to present a brief introduction to Hamiltonian systems and

introduce some of the notation that will be used throughout this thesis. The material

of this section can be found in [5, 58].

The Hamiltonian formalism is the natural mathematical framework in which is

possible to develop the theory of conservative mechanical systems since the equations

of motion of a mechanical system can be transformed into a Hamiltonian system,

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, (2.1)

where H is a C2 function defined in the even-dimensional space R
2n with coordinates

(q1, . . . , qn, p1, . . . , pn) where the configuration variable qi is conjugated to the momen-

tum variable pi. In this case we say that the Hamiltonian system (2.1) has n degrees of

freedom and the function H is known as the Hamiltonian.
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More generally, in Hamiltonian mechanics there is a one-to-one correspondence

between Hamiltonian vector fields and Hamiltonian functions which is defined by the

symplectic structure. In the simplest case, the standard symplectic structure in R
2n is

given by the canonical symplectic form,

Ω(x, y) = xTJy, where J =




0 I

−I 0



 .

For a given Hamiltonian function H one can define the associated (Hamiltonian) vector

field XH in a coordinate independent way as follows,

dH = Ω(XH , ·).

Moreover, we can compute the derivative of a given function F along the vector field

XH which we denote by {F,H} where,

{F,H} = Ω(XF ,XH).

The operation {·, ·} is called the Poisson bracket. The integral curves of the Hamiltonian

vector field XH satisfy the Hamilton equations (2.1) which can be written as follows,

q̇i = {qi,H} , ṗi = {pi,H} , (2.2)

or using the shorter notation ẋ = XH(x) where x = (q, p) ∈ R
2n. The flow of this

ODE is denoted by ΦtH . Using the Poisson bracket we can see that the derivative of the

function H along the vector field XH vanishes, since {H,H} = 0. Thus H is constant

along the flow lines of the Hamiltonian vector field XH . This property is known as

conservation of energy.

Another well known fact in Hamiltonian mechanics is that the flow ΦtH preserves

the symplectic form Ω and in particular, it preserves the volume form Ωn given by the

nth exterior product of Ω. Moreover, the transformations that preserve the symplectic

form are known as canonical or symplectic transformations. From the definition of

XH it is clear that if Ψ is a canonical transformation such that F = H ◦ Ψ then
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XF = (DΨ)−1XH ◦ Ψ. Consequently the Hamiltonian structure is preserved under

canonical changes of coordinates.

The ultimate goal in Hamiltonian dynamics is to understand the asymptotic be-

havior of most trajectories of the Hamiltonian system (2.2). A class of Hamiltonian

systems where the dynamics are significantly simple to understand is the class of inte-

grable Hamiltonian systems. Roughly speaking, an n degrees of freedom Hamiltonian

system with Hamiltonian H is said to be integrable (in the sense of Liouville-Arnold [5])

if there exist n functions H = F1, . . . , Fn which are independent (their differentials are

pointwise linearly independent) and in involution {Fi, Fj} = 0 for all i, j = 1, . . . , n. In

this case, the equations of motion can be solved by “quadratures”, obtaining a complete

description of the structure of the orbits in the phase space. A more precise statement

is given by Liouville-Arnold Theorem which says that if,

Mz :=
{
x ∈ R

2n | Fi(x) = zi, i = 1, . . . , n
}
,

is connected and compact thenMz is diffeomorphic to the n-torus Tn and moreover in a

neighbourhood ofMz there exist a canonical change of coordinates such that in the new

coordinates (I1, . . . , In, ϕ1, . . . , ϕn) the Hamiltonian depends only on Ii. These new

coordinates are called action-angle coordinates. An example of an integrable system

is given by the pendulum as discussed in the introduction of this thesis. Additional

examples will come later when studying the normal forms.

In fact, the most interesting phenomena in Hamiltonian dynamics is given by non-

integrable systems. There, one can start by studying its invariant objects (equilibrium

points, periodic orbits, tori, etc) and the corresponding attracting and repelling sets. A

particular case is when p is an equilibrium point of XH , i.e., XH(p) = 0, then one can

define its stable and unstable set as follows,

W u(p) =

{

x ∈ R
2n | lim

t→−∞
ΦtH(x) = 0

}

,

W s(p) =

{

x ∈ R
2n | lim

t→+∞
ΦtH(x) = 0

}

.

(2.3)
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and assuming that DXH(p) contains no eigenvalues on the imaginary axis (hyperbolic

equilibrium) then the spectrum of DXH(p) will contain n eigenvalues λ1, . . . , λn with

negative real part and n eigenvalues µ1, . . . , µn with positive real part (since the spec-

trum of a Hamiltonian matrix is invariant under complex conjugation and symmetric

with respect to the imaginary axis). Now the well known Stable Manifold theorem [37]

implies thatW u,s(p) are locally n dimensional smooth manifolds having the same degree

of regularity as the vector field XH . Thus we usually denote by W u,s
loc (p) the stable and

unstable manifolds in a neighbourhood of the equilibrium p. Moreover the local stable

manifold W s
loc(p) is tangent at p to the eigenspace of the λi’s and the local unstable

manifold W u
loc(p) is tangent at p to the eigenspace of the µi’s. In general, the stable

and unstable sets (2.3) are immersed manifolds and their global structure can be very

complicated as Figure 1.2 shows.

Particularly interesting are the homoclinic points which belong to the intersection

W u(p)∩W s(p). For a homoclinic point ph we have the corresponding homoclinic orbit

γh(t) = ΦtH(ph) which is also in the intersection of stable and unstable manifolds.

Thus W u(p) ∩W s(p) is at least one dimensional. Recall that conservation of energy

implies that both stable and unstable manifolds are contained inside the energy level

{H = H(p)} which is 2n− 1 dimensional.

A fundamental question is whether stable and unstable manifolds intersect transver-

sally at the homoclinic orbit γh. That is, if for every homoclinic point q of the homoclinic

orbit γh the tangent space of stable and unstable manifolds at q generated the space

R
2n−1,

TqW
u(p) + TqW

s(p) = R
2n−1.

In this case we say that γh is a transverse homoclinic orbit. This question is of great

importance as it provides a route to very complicated dynamics in a neighbourhood

of the transverse homoclinic orbit as was described in the introductory chapter of this

thesis.
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2.1.1 Normal forms

The idea of the normal form procedure is to simplify as much as possible a given

Hamiltonian H by producing suitable near identity canonical change of coordinates that

kill most terms in the original Hamiltonian. The transformed Hamiltonian HNF is

expected to have some type of additional symmetry, such as S
1 symmetry induced by

some integral of motion.

In the following we shall restrict our explanations to normal forms around equi-

libria. So we suppose that H can be written as follows,

H = H2 +H3 +H4 · · · , (2.4)

where Hi ∈ Hi and Hi is the space of homogeneous polynomials of degree i. The

first step in the normalization is to bring the quadratic part H2 into a canonical normal

form. The study of normal forms for linear Hamiltonian systems is important as it

is not always possible to put a linear Hamiltonian matrix into a Jordan normal form

by a linear canonical change of coordinates. Thus, the classification of normal forms

for linear Hamiltonian matrices is more refined then the usual Jordan normal form and

for more details the reader is referred to [59]. So let us suppose that H2 is in some

canonical normal form and explain how one proceeds to normalize H3. Given F3 ∈ H3

we produce a near identity canonical change of coordinates Φ3 by considering the time

one Hamiltonian flow generated by F3, i.e., Φ
1
F3
, and compose it with H to get,

H ◦Φ1
F3

= H2 +H3 − adjH2
(F3) + higher order terms,

where adjH2
(·) = {·,H2} is called the adjoint operator or also known as the homological

operator. Note that this change of coordinates did not affect the quadratic part. Now

we will try to eliminate the order 3 terms or in other words solve the equation H3 −
adjH2

(F3) = 0 with respect to F3. In general, it is not always possible to solve that

equation as adjH2
: H3 → H3 may have non-trivial kernel and consequently H3 may

not belong to im(adjH2
). Thus, the image of adjH2

describes to a great extend the
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normal form to which H can be transformed. Moreover, it may have different styles

[59] depending on the choice of complement of im adjH2
. Repeating these arguments

recursively we obtain the following,

Theorem 2.1.1. Let Gi be linear subspaces of Hi such that Gi + imadjH2
= Hi, then

there exists a formal near identity canonical change of coordinates Φ such that,

HNF = H ◦ Φ = H2 + H̃3 + H̃4 + · · · ,

where H̃i ∈ Gi.

So the question of computing a normal form for H reduces to computing the

complements Gi. Choosing a normal form style (or complements Gi) depends whether
XH2 is semisimple or not. In the first case the ker adjH2

complements im adjH2
and the

polynomials Fi can be chosen properly so that HNF belongs to ker adjH2
. This implies

thatHNF is constant along the Hamiltonian flow ofH2. ThusH2 is an integral ofH
NF .

WhenXH2 is not semisimple then it is possible to choose a particular inner product in the

linear spaces Hi such that the adjoint operator of adjH2
: Hi → Hi with respect to that

inner product is adjHT
2

where HT
2 is the Hamiltonian of the transposed Hamiltonian

matrix (DXH2(0))
T . Now Fredholm alternative implies that ker adjHT

2
complements

im adjH2
and as before one can choose polynomials Fi such that

{

H̃i,H
T
2

}

= 0 for all

i ≥ 3.

There is also an sl(2,R) normal form style that is a ring of invariants under a

modified linear flow (see [59]). This approach and the inner product often yield the same

normal form but the sl(2,R) is less known due to its representation theory apparatus.

Note that as adjH2
has kernel then the normal form transformation Φ is non

unique.

This technique of simplifying the form of a given Hamiltonian goes back to

Birkhoff [9] who studied a semisimple Hamiltonian with multiple centers,

H =

n∑

i=1

ωiLi + higher order terms, where Li =
q2i + p2i

2
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and proved that in the absence of resonances in the frequencies, i.e., (k, ω) 6= 0 for all

k ∈ Z
n, then the original Hamiltonian could be formally transformed into a Hamiltonian

depending only on the Li’s.

Normal form for the nonsemisimple Hamiltonian 1 : −1 resonance

The nonsemisimple Hamiltonian 1 : −1 resonance is a two degrees of freedom Hamilto-

nian system having the following Hamiltonian function,

H = q1p2 − q2p1 +
q21 + q22

2
+ higher order terms,

where the higher order terms are at least cubic in the variables q1, q2, p1 and p2. We

want to derive a normal form for the Hamiltonian H and for our purposes it is sufficient

to consider H as a formal series. Let us denote the quadratic part of H by H2. Note

that DXH2(0) is not semisimple. We have the following,

Theorem 2.1.2 (Sokol’skĭı [71]). There is a formal near identity canonical change of

coordinates Φ such that,

HNF = H ◦ Φ = q1p2 − q2p1 +
q21 + q22

2
+K(q2p1 − q1p2, p

2
1 + p22),

where K is a formal series in two variables starting with quadratic terms. Moreover

the coefficients of K are uniquely defined, forming an infinite set of invariants for the

Hamiltonian H.

Proof. In normal form theory often formulae look simpler if one considers complex

coordinates given by,

z = q1 + iq2, w = p1 + ip2, z̄ = q1 − iq2, w̄ = p1 − ip2.

This change of variables in an automorphism of C4 and it deforms the canonical sym-

plectic form Ω according to the relation,

dq1 ∧ dp1 + dq2 ∧ dp2 =
1

2
(dz ∧ dw̄ + dz̄ ∧ dw) .

25



Thus in the new variables we multiply the Hamiltonian H by 2 and use the symplectic

form dz∧dw̄+dz̄∧dw to derive its Hamilton equations. Now, as shown in [58], on the

linear spaceHn of homogeneous polynomials of degree n in the variables x = (z, w, z̄, w̄)

we can introduce an inner product such that the adjoint of the linear operator adjH2
:

Hn → Hn with respect to that inner product is adjHT
2
where HT

2 is the Hamiltonian of

the transposed Hamiltonian matrix (DXH2(0))
T ,

HT
2 = i(zw̄ − z̄w)− ww̄.

The Fredholm alternative gives the splitting Hn = ker adjHT
2
⊕ im adjH2

and according

to Theorem 2.1.1 there is a formal near identity canonical change of coordinates Φ such

that,

HNF = H ◦ Φ = H2 + H̃3 + H̃4 + · · · ,

where H̃n ∈ ker(adjHT
2

: Hn → Hn) for all n ≥ 3. So in order to get the form

of the polynomials H̃n we only need to determine a basis for ker adjHT
2
. Recall that

adjHT
2
(·) =

{
·,HT

2

}
where the Poisson bracket {·, ·} is defined by the formula,

{P,Q} =
∂P

∂z

∂Q

∂w̄
− ∂P

∂w̄

∂Q

∂z
+
∂P

∂z̄

∂Q

∂w
− ∂P

∂w

∂Q

∂z̄
.

To determine the kernel of adjHT
2
we see how {·, ·} acts on terms of the form zi1wi2 z̄j1 z̄j2

where i1+i2+j1+j2 = n for some n ≥ 3. Note that adjHT
2
also splits into a semisimple

part plus a nilpotent part, namely,

adjHT
2
(·) = {·, i(zw̄ − z̄w)}+ {·,−ww̄} .

Thus we compute,

{
zi1wi2 z̄j1w̄j2 , i(zw̄ − z̄w)

}
= i(i1 + i2 − j1 − j2)z

i1wi2 z̄j1w̄j2 ,

{
zi1wi2 z̄j1w̄j2 ,−ww̄

}
= −i1zi1−1wi2+1z̄j1w̄j2 − j1z

i1wi2 z̄j1−1w̄j2+1.
(2.5)

From the first equation we see that the normalized Hamiltonian HNF contains only

homogeneous polynomials of even degree in n and moreover,

i1 + i2 =
n

2
and j1 + j2 =

n

2
.
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Now taking into account the second equation of (2.5) it is not difficult to conclude

that dimker(adjHT
2

: Hn → Hn) = n
2 + 1. Moreover, we can explicitly compute the

following basis

ker(adjHT
2
: Hn → Hn) = span

{

(zw̄ − z̄w)k(ww̄)m |m,k ≥ 0, m+ k =
n

2

}

.

Thus, the homogeneous polynomials H̃n can be written uniquely in terms of that basis

and this concludes the proof of the Theorem.

Remark 2.1.2.1. It is clear that HNF is in involution with q2p1 − q1p2. Thus HNF is

symmetric with respect to the one-parameter group of rotations induced by the Hamil-

tonian flow of q2p1−q1p2. Hence any truncation of HNF is integrable and consequently

H can be approximated by an integrable Hamiltonian at every order.

2.2 Hamiltonian-Hopf bifurcation

Let Hǫ be an analytic family of two degrees of freedom Hamiltonians defined in a

neighbourhood of the origin in R
4. Suppose that the family of vector fields XHǫ (with

respect to the canonical symplectic form in R
4) has a common equilibrium point which

we assume to be at the origin (XHǫ(0) = 0 for every ǫ) and that as ǫ → 0+ the

equilibrium point of the family XHǫ goes through a Hamiltonian-Hopf bifurcation as

described in the introduction of this thesis: for ǫ > 0 the linear system DXHǫ(0) has

two pairs of complex conjugate eigenvalues ±βǫ ± iαǫ, αǫ 6= 0, βǫ 6= 0 which approach

the imaginary axis as ǫ→ 0+ yielding a single pair of pure imaginary eigenvalues ±α0i,

α0 6= 0 with multiplicity two for the linear system DXH0(0). Therefore, in the general

case the matrix DXH0(0) is nonsemisimple and according to the normal form theory for

Hamiltonian matrices [11] one can assume that,

DXH0(0) =











0 −α0 0 0

α0 0 0 0

−ι 0 0 −α0

0 −ι α0 0











,
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where ι = ±1. For simplification purposes one can assume without lost of generality

that α0 = 1 and ι = 1. Indeed, by a reparametrization of time or equivalently by

multiplying the Hamiltonian Hǫ by ι |α0|−1 and considering the canonical linear change

of variables,

(q1, q2, p1, p2) →
(

ι
α0
√

|α0|
q1,
√

|α0|q2, ι
√

|α0|
α0

p1,
1

√

|α0|
p2

)

, (2.6)

we obtain the desired normalization of α0 and ι. Thus we can write Hǫ in the following

form,

Hǫ(q, p) = q1p2 − q2p1 +
q21 + q22

2
+ Fǫ(q, p), (2.7)

where Fǫ(q, p) = O((|q|+|p|+|ǫ|)3) such that q = (q1, q2), p = (p1, p2) and Fǫ(0, 0) = 0

and ∂q,pFǫ(0, 0) = 0.

The Hamiltonian-Hopf bifurcation corresponds to the unfolding of a nonsemisim-

ple Hamiltonian with a 1 : −1 resonance. This resonance has been studied by Sokol’skĭı

in [71] who investigated the stability of the equilibrium point. With the help of normal

form of Theorem 2.1.2 he established its formal stability.

The definitive study of the Hamiltonian-Hopf bifurcation is attributed to van der

Meer in [76] who derived the following normal form for the bifurcation,

HNF
ǫ = H0

ǫ +
∑

3m+2j+2l≥5

am,j,lI
m
1 I

j
3ǫ
l, H0

ǫ = −I1 + I2 − ǫI3 + ηI23 , (2.8)

such that,

I1 = q2p1 − q1p2, I2 =
q21 + q22

2
, I3 =

p21 + p22
2

, (2.9)

where η and the coefficients am,j,l are real numbers. Note that I1 is an integral of HNF ,

i.e.
{
HNF , I1

}
= 0, and that any truncation of the normal form is integrable. Moreover,

by an analytic near identity canonical change of coordinates Φn we can normalize H up

to some fixed order whereas the transformation that carries H into HNF is expected to

diverge in general.

Also note that the normal form HNF
ǫ is reversible with respect to the involution,

S(q1, q2, p1, p2) = (−q1, q2, p1,−p2). (2.10)
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Figure 2.1: Different scenarios in the Hamiltonian-Hopf bifurcation.

That is SXHNF
ǫ

(x) = −XHNF
ǫ

(Sx).
Now, there is a convenient scaling of variables which groups terms of the same

order in the normal form (2.8). We start by scaling the bifurcation parameter by ǫ = δ2

and change variables according to,

q1 = δ2Q1, q2 = δ2Q2, p1 = δP1, p2 = δP2. (2.11)

We call this change the standard scaling. It is not difficult to see that the standard

scaling is symplectic with multiplier δ3. Hence we multiply the new Hamiltonian by δ−3

and use the canonical symplectic form Ω to derive the Hamilton equations. In these

new variables the leading order Hamiltonian H0
ǫ becomes,

h0 = −I1 +
{
I2 − I3 + ηI2

3

}
δ,

where the Ii’s are defined in the same way as the Ii’s but in the new variables Q and

P . As h0 is integrable a detailed bifurcation analysis of the Hamiltonian system can be

performed. For that end, it is convenient to change to the following polar coordinates,

Q1 = R cos θ − Θ
r sin θ, P1 = r cos θ,

Q2 = R sin θ + Θ
r cos θ, P2 = r sin θ.

(2.12)

In these new coordinates the Hamiltonian h0 takes the form,

h0 = −Θ+

{
1

2

(

R2 +
Θ2

r2

)

− 1

2
r2 +

η

4
r4
}

δ,
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Figure 2.2: The invariant manifold of H0
ǫ .

and Θ = I1 is a first integral of h0. Now we look for the stable and unstable manifolds

of the equilibrium of h0 which are contained inside the set
{
h0 = 0,Θ = 0

}
. Stable and

unstable manifolds coincide and are defined by the equation,

R2 = r2 − η

2
r4, θ ∈ S

1. (2.13)

Due to the S1 invariance we can take a section θ = 0 and plot the curve defined

by the equation above. According to the sign of η there are three distinct cases (see

Figure 2.1).

Recently, in [49] Lerman and Markova proved that when η > 0 the equilibrium

of H0 is Lyapunov stable and unstable when η < 0. Thus the stable case is when η > 0

and unstable when η < 0. The case η = 0 is called degenerate.

When η > 0 we have a single loop in the (r,R) plane as Figure 2.1 demonstrates.

Taking into account the rotation θ ∈ S
1 we obtain a manifold which is homeomorphic

to a 2-sphere where its north and south poles are glued together (see Figure 2.2). We

can cut this invariant manifold along a transverse section R = 0 and obtain a circle of

homoclinic points as illustrated in Figure 2.3.

In the polar coordinates (2.12) the set of fixed points Fix(S) of the involution

(2.10) is given by R = 0 and θ = 0 or θ = π. Thus there are exactly two symmetric

homoclinic points that correspond to θ = 0, π. For the full system (2.7), the circle of

homoclinic points is expected to split in two circles, stable and unstable, that intersect
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Any truncation of HNF
ǫ

Full system Hǫ

Figure 2.3: Section R = 0.

at two symmetric homoclinic points. In fact, the existence of such symmetric homoclinic

orbits for the full system follows from an application of the implicit function theorem.

Of course, this analysis works for any truncation of the normal form HNF
ǫ and

therefore, when η > 0 the stable and unstable manifolds W s,u
ǫ of the equilibrium of Hǫ

can be approximated at any order by a single manifold having the properties previously

described. In general, W s
ǫ and W u

ǫ are expected to split and due to the integrability of

the normal form at every orders we conclude that the invariant manifolds are extremely

close. In fact, we will show that it is impossible to distinguish them using classical

perturbation theory, i.e. their difference is beyond all orders, and the size of the splitting

is exponentially small with respect to ǫ.

2.3 Natural Parametrizations

In a study of homoclinic trajectories it is important to have a convenient basis in the tan-

gent space to the stable and unstable manifolds. The tangent space is given by natural

parametrizations of the invariant manifolds. Below we provide a definition adapted to

our problem. This definition can be of independent interest as it can be easily extended

onto hyperbolic equilibria of higher dimensional systems (not necessarily Hamiltonian).

Suppose that the origin is an equilibrium of a Hamiltonian vector field XH and

that ±β ± iα are the eigenvalues of DXH(0). Then the origin has a two dimensional
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unstable manifold. According to Hartman [41] the restriction of the vector field on W u
loc

can be linearised by a C1 change of variables. In the polar coordinates the linearised

dynamics on W u
loc takes the form:

ṙ = βr ϕ̇ = α .

It is convenient to introduce z = log r so that ż = β. Then the local unstable manifold

is the image of a function

Γu : {(ϕ, z) : ϕ ∈ S1, z < log r0} → R
4

where r0 is the radius of the linearisation domain and S1 is the unit circle. Since Γu

maps trajectories into trajectories we can propagate it uniquely along the trajectories of

the Hamiltonian system using the property

Γu(ϕ+ αt, z + βt) = ΦtH ◦ Γu(ϕ, z) (2.14)

where ΦtH is the Hamiltonian flow. Note that

Γu(ϕ+ 2π, z) = Γu(ϕ, z)

since ϕ is the angle component of the polar coordinates. Moreover,

lim
z→−∞

Γu(ϕ, z) = 0 .

Differentiating Γu along a trajectory we see that it satisfies the non-linear PDE:

α∂ϕΓ
u + β∂zΓ

u = XH(Γ
u) . (2.15)

Note that each of the derivatives ∂zΓ
u and ∂ϕΓ

u defines a vector field on W u and

equation (2.14) implies that both vector fields are invariant under the restriction of the

flow ΦtH

∣
∣
∣
Wu

.

Equation (2.15) is very important in the study of the invariant manifolds and in

the subsequent chapters we will develop a theory to solve this PDE subject to certain
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conditions. The parametrization Γu is C1 but in fact, using directly equation (2.15) we

will show that when the Hamiltonian is analytic the parametrization is also analytic.

We can define Γs applying the same arguments to the Hamiltonian −H. In this

case it is convenient to set z = − log r to ensure that Γs satisfies the same PDE as Γu.

In a reversible system with a reversing involution S, it is convenient to set

Γs(ϕ, z) = S ◦ Γu(−ϕ,−z). (2.16)

Now let us present an example. Following the previous discussion, we will parametrise

the invariant manifold defined by equation (2.13) by a real analytic map X0 : R
2 → R

4

which is a solution of the following linear PDE,

∂ϕX0 + ∂zX0 = Xh0(X0).

Due to integrability of the Hamiltonian h0 it is possible to compute explicitly a parametri-

sation X0 (see Theorem 4.2.1),

X0(ϕ, z) =

√
2

η

(
cosϕ sinh z

cosh2 z
,
sinϕ sinh z

cosh2 z
,
cosϕ

cosh z
,
sinϕ

cosh z

)T

. (2.17)

The curves defined by x(t;ϕ, z) := X0(ϕ + t, z + t) are integral curves of the vector

field Xh0 and foliate the invariant manifold. Notice that X0 is periodic in ϕ (due to the

rotational invariance of Xh0) and limz→±∞X0(·, z) = 0.

We will see that X0 in the unscaled variables can be regarded as the zeroth order

approximation of the stable and unstable manifolds of Hǫ near the equilibrium point.

Note that the parametrisation X0 has complex singularities for values of z = iπ2 + kπ,

k ∈ Z and is iπ-antiperiodic in z, i.e. X0(ϕ, z + iπ) = −X0(ϕ, z).

An anaytic study in a neighbourhood of the singularities of X0 will provide

a method for detecting the exponentially small splitting of the stable and unstable

manifolds. Periodicity of X0 in z allow us to restrict our analysis to the singular point

z = iπ2 . More concretely, we will study the solutions of equation (compare with (2.15)),

αǫ∂ϕΓ+ βǫ∂zΓ = XHǫ(Γ), (2.18)
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Figure 2.4: Domains D±
r .

and the corresponding analytic continuation up to the singular point z = iπ2 . For points

close to the singularity, it is convenient to use the following change of variables,

z =
βǫ
αǫ
τ + i

π

2
,

to center the singularity at the origin. The scale βǫ
αǫ

≈ √
ǫ is used due to technical reasons

which will become more apparent when performing the complex matching technique

developed in chapter 4. Thus, in the new variable τ , equation (2.18) becomes,

∂ϕΓ+ ∂τΓ = α−1
ǫ XHǫ(Γ) (2.19)

This equation and equation (2.18) will be studied in detail in the subsequent chapters.

2.4 Linear Operators

In this section we define and study certain complex Banach spaces and some linear

operators acting on them. The linear operators and motivated by the study of the PDE

(2.19). These technical results are at the core of the proofs of the Theorems in the next

chapters.

2.4.1 Solutions of first order linear differential equations

Let 0 < θ0 <
π
4 , h > 0. We shall leave these parameters fixed throughout this section.

Let Sh = {ϕ ∈ C | |Imϕ| < h} and for r > 0 consider the following domains in the
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complex plane,

D−
r = {τ ∈ C | |arg (τ + r)| > θ0} , D+

r =
{
τ ∈ C | − τ ∈ D−

r

}
. (2.20)

In this section we consider the problem of solving the following linear PDE,

Dx = f, (2.21)

where D = ∂ϕ + ∂τ is a first order linear differential operator and f is some analytic

function defined in an open subset of C2. We will also suppose that all functions are

2π-periodic in ϕ.

The simplest case is when f = 0. As one would expect, by using the method

of characteristics, a solution of the homogeneous equation Dx = 0 must be a function

which is constant along the characteristics ϕ̇ = 1 and τ̇ = 1. Thus, is a function

depending on a single variable, say τ−ϕ. The next Proposition determines such function

and its domain of definition,

Proposition 2.4.1. Let x : Sh×B → C be an analytic function, 2π-periodic in ϕ where

B is an open domain of C. Suppose that Dx = 0, then there is a unique 2π-periodic

analytic function,

x0 :
⋃

τ0∈B

τ0 + Sh → C

such that x(ϕ, τ) = x0(τ − ϕ).

Proof. Given τ0 ∈ B let

Ωτ0 = {(ϕ, τ) ∈ Sh ×B | ϕ− τ + τ0 ∈ Sh} .

Note that Ωτ0 is an open domain of C2. Now the initial value problem,

Dξ = 0, ξ(ϕ, τ0) = x(ϕ, τ0), (2.22)

has a solution ξ(ϕ, τ) = x(ϕ − τ + τ0, τ0). Hence ξ is an analytic function of a single

variable τ−ϕ and is defined in the translated horizontal strip τ0+Sh. By the main local
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existence and uniqueness theorem for analytic partial differential equations (see [24] for

instance) we conclude that x = ξ on Ωτ0 . Thus x(ϕ, τ) = x(ϕ − τ + τ0, τ0). Observe

that for τ0, τ1 ∈ B such that (τ0 + S) ∩ (τ1 + S) 6= ∅ then Ωτ0 ∩ Ωτ1 6= ∅. Taking into

account Sh × B =
⋃

τ0∈B
Ωτ0 and the uniqueness of analytic continuation we get the

desired result.

When f is non-zero and for instance defined in Sh ×D±
r then equation (2.21)

has two solutions,

x−(ϕ, τ) =

∫ 0

−∞
f(ϕ+ s, τ + s)ds and x+(ϕ, τ) = −

∫ +∞

0
f(ϕ+ s, τ + s)ds,

provided the integrand in both functions is well defined in the domain of f and the

corresponding integral converges.

Proposition 2.4.2. Let f : Sh × D−
r → C be an analytic function, 2π-periodic in ϕ

and continuous on the closure of its domain. Moreover, suppose that |f(ϕ, τ)| ≤ Kf

|τ |p

for some Kf > 0 and p ≥ 2. Then the formula,

x−(ϕ, τ) =

∫ 0

−∞
f(ϕ+ s, τ + s)ds,

defines an analytic function in Sh ×D−
r , continuous on the closure of its domain, 2π-

periodic in ϕ. Moreover,
∣
∣x−(ϕ, τ)

∣
∣ ≤ Kp−1Kf

|τ |p−1 , (2.23)

for some Kp > 0 independent of r.

In order to prove this Proposition we need the following Lemmas,

Lemma 2.4.1. Let p ≥ 1, τ ∈ D+
r . Then there exists a constant Kp > 0 such that,

∫ 0

−∞

1

|τ + s|p+1ds ≤
Kp

|τ |p . (2.24)

Proof. The proof of this lemma follows from easy estimates. First note that,

∫ 0

−∞

ds

|τ + s|p+1 =
︸︷︷︸

t= s
|τ |

1

|τ |p
∫ 0

−∞

dt
∣
∣1 + e−i arg(τ)t

∣
∣p+1 .
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It is not difficult to get the following upper bounds,

sup
t∈(−∞,0]

1
∣
∣1 + e−i arg(τ)t

∣
∣p+1 ≤ 1

(sin θ0)p+1
∀τ ∈ D−

r

and,

1
∣
∣1 + e−i arg(τ)t

∣
∣
≤ −1

t+ cos arg(τ)
, ∀t ≤ −1 , ∀τ ∈ D−

r .

Using these estimates we conclude that,

∫ 0

−∞

dt
∣
∣1 + e−i arg(τ)t

∣
∣p+1 =

∫ 0

−1

dt
∣
∣1 + e−i arg(τ)t

∣
∣p+1 +

∫ −1

−∞

dt
∣
∣1 + e−i arg(τ)t

∣
∣p+1

≤ 1

(sin θ0)p+1
+

1

p (1− cos arg(τ))p

≤ 1

(sin θ0)p+1
+

1

p (1− cos θ0)
p ,

yielding the desired estimate (2.24).

Lemma 2.4.2. Let Ω be an open subset of C2, f a continuous function from (−∞, 0)×Ω

into C. Suppose that for each t ∈ (−∞, 0) the function (z1, z2) → f(t, z1, z2) is

analytic in Ω and that both ∂f
∂z1

(t, z1, z2) and
∂f
∂z2

(t, z1, z2) are continuous functions in

(−∞, 0)× Ω. Moreover, assume that for every (z1, z2) ∈ Ω,

F (z1, z2) =

∫ 0

−∞
f(t, z1, z2)dt <∞,

and that
∫ 0
−N f(t, z1, z2)dt converges uniformly as N → +∞ to F (z1, z2) for (z1, z2)

in compact subsets of Ω. Under these conditions the function F is analytic in Ω.

Proof. This result is standard in classical analysis and can be found in some text books,

for instance [22].

Proof of Proposition 2.4.2. Let f : Sh × D−
r → C be an analytic function as defined

in the statement of the proposition. Moreover we know that |f(ϕ, τ)| ≤ Kf

|τ |p for some
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Kf > 0 and p ≥ 2. For N ≥ 0 we have (ϕ−N, τ −N) ∈ Sh ×D−
r , then,

∫ −N

−∞
|f(ϕ+ s, τ + s)| ds ≤

∫ 0

−∞
|f(ϕ−N + s, τ −N + s)| ds

≤
∫ 0

−∞

Kf

|τ −N + s|p ds

≤ Kp−1Kf

|τ −N |p−1 ,

(2.25)

by the Lemma 2.4.1. Thus, the integral
∫ 0
−N f(ϕ+ s, τ + s)ds converges uniformly in

Sh ×D−
r and we can apply Lemma 2.4.2 and deduce that,

x−(ϕ, τ) =

∫ 0

−∞
f(ϕ+ s, τ + s)ds,

defines an analytic function in Sh × D−
r . The continuity on the closure of its domain

also follows from the continuity of f and the uniform convergence of the integral (2.25).

The periodicity is trivial and the upper bound for x− follows from (2.25) with N = 0.

This concludes the proof.

Remark 2.4.0.2. An analogous Proposition holds for the function,

x+(ϕ, τ) = −
∫ +∞

0
f(ϕ+ s, τ + s)ds,

which is defined in Sh ×D+
r .

Now we consider the problem of solving equation (2.21), which we recall for

convenience,

Dx = f, (2.26)

but for functions f defined in Sh ×D1
r where,

D1
r = D+

r ∩D−
r ∩ {τ ∈ C | Imτ < −r} .

Regarding this new domain D1
r we can not repeat the same arguments of Proposition

2.4.2 since D1
r does not contain an infinite horizontal segment. In order to overcome

this difficulty, we construct an analytic solution of (2.26) using a technique similar to
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partition of unity, originally developed by V. F. Lazutkin in [46]. Following the ideas of

[28] we consider the following domains,

D̃−
r = {τ ∈ C | |arg (τ + r)| > θ0 and Im(τ) < −r} ,

D̃+
r =

{

τ ∈ C | − τ ∈ D̃−
r

}

.

Note that D1
r = D̃+

r ∩ D̃−
r . The method consists of representing in a suitable way

a function f analytic in Sh × D1
r as a sum of two functions f± analytic in S1

h × D̃±
r

respectively. For that purpose we need to define a partition of unity for the set ∂D1
r as

follows. Let λ0 : R → [0, 1] be a smooth function such that,

λ0(t) = 0 t ≤ −π, λ0(t) = 1 t ≥ π,
∣
∣λ′0(t)

∣
∣ ≤ 1 ∀t ∈ R

and define the following functions λ± : ∂D1
r → [0, 1] by,

λ+(τ) = λ0 (Re(τ)) , λ−(τ) = 1− λ+(τ).

Lemma 2.4.3 (On the Cauchy integral). Let r > π tan θ0
1−tan θ0

and f : Sh × D1
r → C

an analytic function, 2π-periodic in ϕ and continuous on the closure of its domain.

Moreover suppose that there exists Kf > 0 such that

|f(ϕ, τ)| ≤ Kf

|τ |2
in Sh ×D1

r .

Then the integral,

f±(ϕ, τ) =
1

2πi

∫

∂D1
r

λ±(ξ)f(ϕ, ξ)

ξ − τ
dξ, (2.27)

defines an analytic function in Sh × D̃±
r , 2π-periodic in ϕ, continuous in Sh × D̃±

r and

∣
∣f±(ϕ, τ)

∣
∣ ≤ 2Kf

r2
in Sh × D̃±

r .

Moreover,

f(ϕ, τ) = f+(ϕ, τ) + f−(ϕ, τ).

Proof. This lemma is a special case of Lemma 9.2 in [28].
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Using this lemma we are able to prove,

Proposition 2.4.3. Let ǫ ≥ 0, r > π tan θ0
1−tan θ0

and p ≥ 4. If f : Sh ×D1
r → C is analytic,

2π-periodic in ϕ, continuous on the closure of its domain and there exists Kf > 0 such

that,

|f(ϕ, τ)| ≤ Kf
∣
∣τpeiǫ(τ−ϕ)

∣
∣

in Sh ×D1
r .

Then equation (2.26) has an analytic solution x : Sh ×D1
r → C, 2π-periodic in ϕ and

continuous on the closure of its domain such that,

|x(ϕ, τ)| ≤ 4KfKp−3

r2
1

∣
∣τp−3eiǫ(τ−ϕ)

∣
∣
. (2.28)

Proof. Let µ(ϕ, τ) = τp−2eiǫ(τ−ϕ) and f̃(ϕ, τ) = µ(ϕ, τ)f(ϕ, τ). Now we apply lemma

2.4.3 to f̃ with Kf̃ = Kf to get,

f(ϕ, τ) =
1

µ(ϕ, τ)

(

f̃−(ϕ, τ) + f̃+(ϕ, τ)
)

. (2.29)

Note that periodicity in ϕ is preserved since by (2.27) the function f̃± is 2π periodic in

ϕ as well as the function µ. Let,

x(ϕ, τ) =

∫ 0

−∞

f̃−(ϕ+ s, τ + s)

µ(ϕ+ s, τ + s)
ds −

∫ +∞

0

f̃+(ϕ+ s, τ + s)

µ(ϕ+ s, τ + s)
ds. (2.30)

If formula (2.30) defines an analytic function in Sh ×D1
r , then it is the desired solution

of equation (2.26). Let us prove that x is analytic. Applying Lemma 2.4.1 and the

upper bound from Lemma 2.4.3 to the first term of (2.30) we get,
∣
∣
∣
∣
∣

∫ 0

−∞

f̃−(ϕ+ s, τ + s)

µ(ϕ+ s, τ + s)
ds

∣
∣
∣
∣
∣
≤ 2Kf

r2
∣
∣eiǫ(τ−ϕ)

∣
∣

∫ 0

−∞

1

|τ + s|p−2ds ≤
2KfKp−3

r2
∣
∣eiǫ(τ−ϕ)

∣
∣ |τ |p−3 .

(2.31)

Thus for p ≥ 4 the integral converges uniformly in S1
r × D̃−

r and by Lemma 2.4.2 it

defines an analytic function in Sh × D̃−
r . The continuity on the closure of Sh × D̃−

r

also follows from uniform convergence and continuity of f̃−. In an analogous way we

conclude that
∫ +∞
0

f̃−(ϕ+s,τ+s)
µ(ϕ+s,τ+s) ds defines an analytic function in Sh × D̃+

r , continuous

on the closure of its domain and having the same upper bound (2.31). Thus,

|x(ϕ, τ)| ≤ 4KfKp−3

r2
∣
∣eiǫ(τ−ϕ)

∣
∣ |τ |p−3 ,
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and the proof is complete.

2.4.2 Linear operators and their inverses

Let B ⊂ C be an open domain. We denote Xp (Sh ×B) for p ∈ Z the space of

analytic functions f = (f1, . . . , f4) : Sh×B → C
4 continuous on the closure of Sh×B,

2π-periodic in ϕ ∈ Sh and satisfying,

‖f‖p = sup
(ϕ,τ)∈Sh×B

(∣
∣τp+1f1(ϕ, τ)

∣
∣ +

∣
∣τp+1f2(ϕ, τ)

∣
∣

+ |τpf3(ϕ, τ)| + |τpf4(ϕ, τ)|) <∞.

The space Xp (Sh ×B) with the norm ‖·‖p as defined above is a complex Banach space.

When f ∈ Xp (Sh ×B) we occasionally write

f(ϕ, τ) = (τ−p−1f1(ϕ, τ), τ
−p−1f2(ϕ, τ), τ

−pf3(ϕ, τ), τ
−pf4(ϕ, τ)),

where the norm of f is now ‖f‖p = sup(ϕ,τ)∈Sh×B

∑4
i=1 |fi(ϕ, τ)|.

For 0 < µ < 2 let Yµ(Sh × B) be the space of analytic functions ξ =

(ξ1, . . . , ξ4) : Sh × B → C
4 continuous on the closure of Sh × B, 2π-periodic in

ϕ ∈ Sh and satisfying,

‖ξ‖µ = sup
(ϕ,τ)∈Sh×B

4∑

i=1

∣
∣
∣e(2−µ)i(τ−ϕ)ξi(ϕ, τ)

∣
∣
∣ <∞.

Given two Banach spaces (X, ‖·‖X) and (Y, ‖·‖Y) we define the usual norm on

the space of linear operators L : X → Y as follows,

‖L‖Y,X = sup
ξ∈X\{0}

‖L(ξ)‖Y
‖ξ‖X

.

When it is clear from the text we shall omit the dependence of the Banach spaces

Xp (Sh ×B) and Yµ(Sh ×B) from the set Sh ×B. Moreover, in order to simplify the

notation we shall write the norm of a linear operator L : Xp (Sh ×B) → Xq (Sh ×B)

as ‖L‖q,p and the norm of a linear operator L : Yµ(Sh×B) → Yµ′(Sh×B) as ‖L‖µ′,µ.
The following inclusions are not difficult to prove and we shall use them when

appropriate,
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• Xp (Sh ×D−
r ) ⊆ Xq (Sh ×D−

r ) for p ≥ q;

• Yµ(Sh ×D1
r) ⊂ Yµ′(Sh ×D1

r) for µ < µ′;

• Xp(Sh ×D−
r̃ ) ⊂ Xp(Sh ×D−

r ) for r̃ < r;

• Yµ(Sh ×D1
r̃) ⊂ Yµ(Sh ×D1

r) for r̃ < r;

• Yµ(Sh ×D1
r) ⊂ Xp(Sh ×D1

r ).

Now let A : Sh × B → C
4×4 be an analytic matrix-valued function which is

2π-periodic in ϕ. Define,

L(ξ)(ϕ, τ) = Dξ(ϕ, τ) −A(ϕ, τ)ξ(ϕ, τ), (2.32)

where D = ∂ϕ+ ∂τ is the same differential operator defined in the previous section and

ξ : Sh × B → C
4 is an analytic function which is 2π-periodic in ϕ. In the following

we shall be interested in solving the equation L(ξ) = f for a given f . The functions u

and f will be defined later in this section. The reason why we look at this equation is

because we want to solve the PDE (2.19) when ǫ = 0.

We say that a 4 by 4 matrix-valued functionU : Sh×B → C
4×4 is a fundamental

matrix of L if L(U) = 0, det(U) = 1 and moreover,

U =











τ−2u1,1 τ2u1,2 τu1,3 τ−3u1,4

τ−2u2,1 τ2u2,2 τu2,3 τ−3u2,4

τ−1u3,1 τ3u3,2 τ2u3,3 τ−2u3,4

τ−1u4,1 τ3u4,2 τ2u4,3 τ−2u4,4











, (2.33)

where ui,j are analytic functions in Sh × B, continuous on the closure of its domain,

2π-periodic in ϕ and sup(ϕ,τ)∈Sh×B
|ui,j(ϕ, τ)| <∞ for every i, j = 1, . . . , 4. Thus, we

can define,

KU := max
i,j

{

sup
(ϕ,τ)∈Sh×B

|ui,j(ϕ, τ)|
}

. (2.34)

Note that the columns of U belong to X1 (Sh ×B), X−3 (Sh ×B), X−2 (Sh ×B) and

X2 (Sh ×B) respectively.
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An example: the operator L0

Here we define an operator L0 in the form of (2.32) which depends on a certain matrix

A0 and has a fundamental matrix U0 that will be defined below. This operator will play

an important role in the perturbation theory developed in the subsequent chapters. Let

us consider the following PDE,

Dx = XH0(x), (2.35)

where H0 denotes the leading order H0
0 (we omit its subscript to simplify the notation)

of Hǫ for ǫ = 0 (see (2.8)) which we recall H0 = −I1 + I2 + ηI23 . It is not difficult to

check that,

Γ0(ϕ, τ) =
(
κτ−2 cosϕ, κτ−2 sinϕ, κτ−1 cosϕ, κτ−1 sinϕ

)T
, (2.36)

solves equation (2.35) where κ2 = − 2
η . Indeed, using the polar coordinates,

q1 = R cos θ, p1 = r cos θ, q2 = R sin θ, p2 = r sin θ.

we see that equation (2.35) reduces to the following equations,

Dθ = 1, Dr = −R, DR = ηr3.

The last two equations define a second order differential equation D2r = −ηr3 which

has a solution r(ϕ, τ) = κ
τ . Thus R(ϕ, τ) = κ

τ2
. Now using θ(ϕ, τ) = ϕ as a solution

of the first equation we get the desired solution Γ0.

The linearized Hamiltonian vector field A0 := DXH0(Γ0) evaluated at Γ0 reads,

A0(ϕ, τ) =











0 −1 −1+2 cos2 ϕ
τ2

− sin(2ϕ)
τ2

1 0 − sin(2ϕ)
τ2

−1+2 sin2 ϕ
τ2

−1 0 0 −1

0 −1 1 0











. (2.37)

Note that A0 does not depend on the choice of κ. Moreover it is 2π-periodic in ϕ,

analytic in C× C
∗ and bounded in Sh ×D−

r . Now we define L0 as in (2.32) to be,

L0(ξ)(ϕ, τ) = Dξ(ϕ, τ) −A0(ϕ, τ)ξ(ϕ, τ), (2.38)
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where ξ : Sh × B → C
4 is an analytic function which is 2π-periodic in ϕ. It can be

checked directly (using the polar coordinates as before) that the following matrix

U0(ϕ, τ) =











−κ sinϕ
τ2

−3τ2 cosϕ
5κ

2τ sinϕ
3κ −2κ cosϕ

τ3

κ cosϕ
τ2 −3τ2 sinϕ

5κ −2τ cosϕ
3κ −2κ sinϕ

τ3

−κ sinϕ
τ

τ3 cosϕ
5κ − τ2 sinϕ

3κ −κ cosϕ
τ2

κ cosϕ
τ

τ3 sinϕ
5κ

τ2 cosϕ
3κ −κ sinϕ

τ2











, (2.39)

is a fundamental matrix for the linear operator L0. In fact, a direct substitution of U0

into (2.38) yields L0(U0) = 0 and all entries of U0 are analytic functions in C×C
∗ and

2π-periodic in ϕ. Moreover, for any h, r > 0 it is clear that the columns of U0 belong to

the spaces X1 (Sh ×D−
r ), X−3 (Sh ×D−

r ), X−2 (Sh ×D−
r ) and X2 (Sh ×D−

r ) respec-

tively. Finally, U0(ϕ, τ) is symplectic for all (ϕ, τ) ∈ C×C
∗. In particular det(U0) = 1

and hence U0 is a fundamental matrix of L0.

Inverse Theorems for the linear operator L in certain Banach spaces

In this subsection we are interested in the question of invertibility of L in different Banach

spaces. We state and prove several Theorems that will be used in the perturbation theory

developed in the subsequent chapters.

Theorem 2.4.1. Let p ≥ 3 and suppose that the linear operator L : Xp(Sh ×D−
r ) →

Xp(Sh ×D−
r ) acting by the formula (2.32) has a fundamental matrix U. Then L has

trivial kernel. Moreover there exists an unique bounded linear operator L−1 : Xp+1(Sh×
D−
r ) → Xp(Sh ×D−

r ) such that LL−1 = Id.

Proof. Let us prove the first assertion of the Proposition: kernel of L is trivial. In fact,

let ξ ∈ Xp(Sh × D−
r ) such that L(ξ) = 0. Then, by the definition of the operator L,

the function ξ must satisfy,

Dξ = Aξ.

Now we use the method of variation of constants and write ξ = Uc for some vector

function c : Sh ×D−
r → C

4. Hence, in the virtue of det(U) = 1, it is not difficult to
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show that c must satisfy Dc = 0. Applying Proposition 2.4.1 to each component of the

vector function c we conclude that c(ϕ, τ) = c0(τ −ϕ) where c0 : C → C
4 is an entire,

2π-periodic vector function. Moreover, since c0 = U−1ξ we can bound c0 as follows.

Due to (2.33), the inverse U−1 has the following form,

U−1 =











τ2ŭ1,1 τ2ŭ1,2 τ ŭ1,3 τ ŭ1,4

τ−2ŭ2,1 τ−2ŭ2,2 τ−3ŭ2,3 τ−3ŭ2,4

τ−1ŭ3,1 τ−1ŭ3,2 τ−2ŭ3,3 τ−2ŭ3,4

τ3ŭ4,1 τ3ŭ4,2 τ2ŭ4,3 τ2ŭ4,4











(2.40)

where ŭi,j are analytic functions in Sh ×D−
r , 2π-periodic in ϕ and

KU−1 := max
i,j

{

sup
(ϕ,τ)∈Sh×D

−
r

|ŭi,j(ϕ, τ)|
}

<∞, (2.41)

which follows from (2.34). Thus, if ξ = (τ−p−1ξ1, τ
−p−1ξ2, τ

−pξ3, τ
−pξ4) then

c0 =

(

τ−p+1
4∑

i=1

ŭ1,jξi, τ
−p−3

4∑

i=1

ŭ2,jξi, τ
−p−2

4∑

i=1

ŭ3,jξi, τ
−p+2

4∑

i=1

ŭ4,jξi

)

. (2.42)

It is not difficult to see that (2.42) and (2.41) imply that c0 is bounded in C for p ≥ 3.

Thus, an entire bounded function must be a constant, by Liouville’s theorem. Moreover,

(2.42) implies that

lim
Im(s)→±∞

c0(s) = 0.

Thus ξ = 0 and the kernel of L is trivial.

Now let us construct an inverse of L, i.e., let us solve the following equation,

L(ξ) = f. (2.43)

where f ∈ Xp+1(Sh ×D−
r ). Again, we look for a solution of (2.43) using the method

of variation of constants. Let ξ = Uc. Then equation (2.43) is equivalent to,

Dc = U−1f. (2.44)
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Writing f = (τ−p−2f1, τ
−p−2f2, τ

−p−1f3, τ
−p−1f4) and taking into account (2.40) we

can write the right hand side of equation (2.44) as follows U−1f = (g1, g2, g3, g4)
T

where,

g1 = τ−p
4∑

i=1

ŭ1,jfi, g2 = τ−p−4
4∑

i=1

ŭ2,jfi,

g3 = τ−p−3
4∑

i=1

ŭ3,jfi, g4 = τ−p+1
4∑

i=1

ŭ4,jfi.

Now bearing in mind that ‖f‖p+1 <∞ and (2.41) we can estimate the previous functions

as follows,

|g1(ϕ, τ)| ≤
KU−1 ‖f‖p+1

|τ |p , |g2(ϕ, τ)| ≤
KU−1 ‖f‖p+1

|τ |p+4 ,

|g3(ϕ, τ)| ≤
KU−1 ‖f‖p+1

|τ |p+3 , |g4(ϕ, τ)| ≤
KU−1 ‖f‖p+1

|τ |p−1 .

where the upper bounds are valid in Sh × D−
r . For integers p ≥ 3 we can apply

Proposition 2.4.2 to each component of equation (2.44) and conclude that there is a

vector function c = (c1, c2, c3, c4) : Sh × D−
r → C4 such that each ci is an analytic

function in Sh × D−
r , continuous on the closure of its domain and 2π-periodic in ϕ.

Moreover (2.23) yields,

|c1(ϕ, τ)| ≤
Kp−1KU−1 ‖f‖p+1

|τ |p−1 , |c2(ϕ, τ)| ≤
Kp+3KU−1 ‖f‖p+1

|τ |p+3 ,

|c3(ϕ, τ)| ≤
Kp+2KU−1 ‖f‖p+1

|τ |p+2 , |c4(ϕ, τ)| ≤
Kp−2KU−1 ‖f‖p+1

|τ |p−2 .

Finally, we define the linear operator L−1 as follows

L−1(f) = ξ,

where the vector function ξ is obtain through the relation ξ = Uc. If ξi denote the

components of ξ then the ξi can be bounded in Sh ×D−
r in the following way,

|ξ1(ϕ, τ)| ≤
K̄

|τ |p+1 ‖f‖p+1 , |ξ2(ϕ, τ)| ≤
K̄

|τ |p+1 ‖f‖p+1 ,

|ξ3(ϕ, τ)| ≤
K̄

|τ |p ‖f‖p+1 , |ξ4(ϕ, τ)| ≤
K̄

|τ |p ‖f‖p+1 ,
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where K̄ = (Kp−1 +Kp+3+Kp+2+Kp−2)KUKU−1 . Consequently ‖ξ‖n ≤ K̄ ‖f‖p+1

yielding
∥
∥L−1

∥
∥
n,n+1

≤ K̄. Thus L−1 is bounded and the uniqueness follows from the

triviality of the kernel of L. This completes the proof of the Theorem.

Remark 2.4.1.1. It is clear that we can repeat the same arguments of the previous proof

mutatis mutandis to the case when all the functions (including U and A) are analytic

in Sh ×D+
r . As the proof is completely equivalent we omit the details.

Theorem 2.4.2. Let p ≥ 3, r > π tan θ0
1−tan θ0

and suppose that the linear operator L :

Xp(Sh ×D1
r ) → Xp(Sh ×D1

r) acting by the formula (2.32) has a fundamental matrix

U. Then the kernel of L consists of functions of the form

U(ϕ, τ)c(τ − ϕ)

where c : {s ∈ C : Im(s) < −r + h} → C
4 is an analytic vector function which is 2π-

periodic, continuous on the closure of its domain and,

lim
Ims→−∞

c(s) = 0.

Moreover, there exists a bounded linear operator L−1 : Xp+3(Sh×D1
r) → Xp(Sh×D1

r)

such that LL−1 = Id.

Proof. The proof of this theorem is almost identical to the previous one except that the

functions are now defined in a different domain Sh×D1
r . As before, if ξ ∈ Xp(Sh×D1

r)

such that L(ξ) = 0 then, by the definition of the operator L, the function ξ must satisfy,

Dξ = Aξ.

Again, we use the method of variation of constants and write ξ = Uc for some vector

function c : Sh × D1
r → C

4. Hence, c must satisfy the equation Dc = 0. Apply-

ing Proposition 2.4.1 to each component of the vector function c, we conclude that

c(ϕ, τ) = c0(τ −ϕ) where c0 :
⋃

τ0∈D1
r
τ0 +Sh → C

4 is an analytic, 2π-periodic vector
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function. Note that
⋃

τ0∈D1
r
τ0+Sh is equal to the half plane {s ∈ C : Im(s) < −r + h}.

Moreover, since c0 = U−1ξ we conclude as in the proof of the previous Theorem that

c0 =

(

τ−p+1
4∑

i=1

ŭ1,jξi, τ
−p−3

4∑

i=1

ŭ2,jξi, τ
−p−2

4∑

i=1

ŭ3,jξi, τ
−p+2

4∑

i=1

ŭ4,jξi

)

, (2.45)

where ŭi,j are the entries of the inverse matrix U−1 (see (2.40)) and

ξ = (τ−p−1ξ1, τ
−p−1ξ2, τ

−pξ3, τ
−pξ4),

such that

max
i=1,...,4

sup
(ϕ,τ)∈Sh×D1

r

|ξi(ϕ, τ)| <∞.

Taking into account these observations and (2.41) we conclude that,

lim
Im(s)→−∞

c0(s) = 0,

which proves the first part of the Theorem. For the second part, let us construct an

inverse of L by solving the following equation,

L(ξ) = f, (2.46)

where f ∈ Xp+3(Sh ×D1
r). Again, we look for a solution of (2.46) using the method

of variation of constants. Let ξ = Uc. As in the proof of the previous Theorem, the

equation (2.46) is equivalent to,

Dc = U−1f. (2.47)

Writing f = (τ−p−4f1, τ
−p−4f2, τ

−p−3f3, τ
−p−3f4) and taking into account (2.40) we

can write the right hand side of equation (2.47) as follows U−1f = (g1, g2, g3, g4)
T

where,

g1 = τ−p−2
4∑

i=1

ŭ1,jfi, g2 = τ−p−6
4∑

i=1

ŭ2,jfi,

g3 = τ−p−5
4∑

i=1

ŭ3,jfi, g4 = τ−p−1
4∑

i=1

ŭ4,jfi.
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Now bearing in mind that ‖f‖p+3 <∞ and (2.41) we can estimate the previous functions

as follows,

|g1(ϕ, τ)| ≤
KU−1 ‖f‖p+3

|τ |p+2 , |g2(ϕ, τ)| ≤
KU−1 ‖f‖p+3

|τ |p+6 ,

|g3(ϕ, τ)| ≤
KU−1 ‖f‖p+3

|τ |p+5 , |g4(ϕ, τ)| ≤
KU−1 ‖f‖p+3

|τ |p+1 .

where the upper bounds are now valid in Sh ×D1
r . Since r > π tan θ0

1−tan θ0
then for p ≥ 3

we can apply Proposition 2.4.3 with ǫ = 0 to each component of equation (2.47) and

conclude that there is a vector function c = (c1, c2, c3, c4) : Sh ×D1
r → C4 such that

each ci is an analytic function in Sh ×D1
r , continuous on the closure of its domain and

2π-periodic in ϕ. Moreover (2.28) yields,

|c1(ϕ, τ)| ≤
4Kp−1KU−1 ‖f‖p+3

r2 |τ |p−1 , |c2(ϕ, τ)| ≤
4Kp+3KU−1 ‖f‖p+3

r2 |τ |p+3 ,

|c3(ϕ, τ)| ≤
4Kp+2KU−1 ‖f‖p+3

r2 |τ |p+2 , |c4(ϕ, τ)| ≤
4Kp−2KU−1 ‖f‖p+3

r2 |τ |p−2 .

Finally, as in the proof of the previous Theorem, we define the linear operator L−1 as

follows

L−1(f) = ξ,

where the vector function ξ is obtain through the relation ξ = Uc. If ξi denote the

components of ξ then the ξi can be bounded in Sh ×D1
r in the following way,

|ξ1(ϕ, τ)| ≤
K̄

|τ |p+1 ‖f‖p+3 , |ξ2(ϕ, τ)| ≤
K̄

|τ |p+1 ‖f‖p+3 ,

|ξ3(ϕ, τ)| ≤
K̄

|τ |p ‖f‖p+3 , |ξ4(ϕ, τ)| ≤
K̄

|τ |p ‖f‖p+3 ,

where K̄ = 4
r2 (Kp−1+Kp+3+Kp+2+Kp−2)KUKU−1 . Consequently ‖ξ‖n ≤ K̄ ‖f‖p+3

yielding
∥
∥L−1

∥
∥
n,n+3

≤ K̄. Thus L−1 is bounded. This completes the proof of the

Theorem.

Theorem 2.4.3. Let p ∈ Z, 0 < µ < 2 and r > max
{

1, π tan θ0
1−tan θ0

}

. Suppose that the

linear operator L : Xp(Sh × D1
r ) → Xp(Sh × D1

r) acting by the formula (2.32) has a
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fundamental matrix U. Then for any µ′ > 0 such that µ′ < µ there exists a bounded

linear operator L−1
µ′ : Yµ′(Sh ×D1

r) → Yµ(Sh ×D1
r ) such that LL−1

µ′ = Id.

Proof. Let µ′ > 0 such that µ′ < µ and let us obtain an inverse of L by solving the

following equation,

L(ξ) = f, (2.48)

where f ∈ Yµ′(Sh×D1
r) ⊂ Xp(Sh×D1

r) for any p ∈ Z. Again, we look for a solution of

(2.48) using the method of variation of constants. Let ξ = Uc. As before, the equation

(2.48) is equivalent to,

Dc = U−1f. (2.49)

Let f(ϕ, τ) = e−(2−µ′)i(τ−ϕ)f̃(ϕ, τ) where f̃ is a bounded function. Taking into account

that r > 1 and (2.40) we can bounded the components of U−1f = (g1, g2, g3, g4)
T as

follows,

|gi(ϕ, τ)| ≤ sup
(ϕ,τ)∈Sh×D1

r

∣
∣
∣τ9e−(µ−µ′)i(τ−ϕ)

∣
∣
∣

‖f‖µ′ KU−1

∣
∣τ6e(2−µ)i(τ−ϕ)

∣
∣
, i = 1, . . . , 4,

valid in Sh × D1
r . Note that the supremum in the previous estimate is finite since

µ − µ′ > 0. Now bearing in mind that r > π tan θ0
1−tan θ0

we can apply Proposition 2.4.3

with ǫ = 2 − µ and p = 6 to each component of equation (2.49) and conclude that

there is a vector function c = (c1, c2, c3, c4) : Sh × D1
r → C

4 such that each ci is an

analytic function in Sh ×D1
r , continuous on the closure of its domain and 2π-periodic

in ϕ. Moreover (2.28) yields,

|ci(ϕ, τ)| ≤
Kc

∣
∣τ3e(2−µ)i(τ−ϕ)

∣
∣
‖f‖µ′ , i = 1, . . . , 4, (2.50)

where,

Kc =
4 sup(ϕ,τ)∈Sh×D1

r

∣
∣
∣τ9e−(µ−µ′)i(τ−ϕ)

∣
∣
∣KU−1K3

r2
.

Finally, we define the linear operator L−1
µ′ as follows

L−1
µ′ (f) = ξ,
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where the vector function ξ is obtained through the relation ξ = Uc. If ξi denote the

components of ξ then taking into account (2.50) the ξi can be bounded in Sh ×D1
r in

the following way,

|ξi(ϕ, τ)| ≤
4KUKc

∣
∣e(2−µ)i(τ−ϕ)

∣
∣
‖f‖µ′ , i = 1, . . . , 4,

whereKU is defined in (2.34). Consequently ‖ξ‖µ ≤ 16KUKc ‖f‖µ′ yielding
∥
∥
∥L−1

µ′

∥
∥
∥
µ,µ′

≤
16KUKc. Thus L−1

µ′ is bounded which completes the proof of the Theorem.
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Chapter 3

Inner Problem

In this chapter we study the Hamiltonian Hǫ at the exact moment of bifurcation, i.e.,

for ǫ = 0. We will show that the equilibrium point has a stable (resp. unstable)

analytic complex manifold W s
0 (resp. W u

0 ) which are obtained using a parametrisation

method. Their parametrisations are defined in certain domains of C
2 and have the

same asymptotic expansion valid in a common domain of intersection. Hence their

distance is beyond all algebraic orders. We prove an exponentially small upper bound

for their distance. In the four dimensional space C4 the distance of these manifolds can

be locally described by two quantities. Furthermore, since the manifolds lie inside the

zero energy level of the Hamiltonian it implies that their distance can be described by a

single number, which we call the Stokes constant. This is closely related to the Stokes

phenomena, where the same asymptotic expansion describes two different solutions in

a common region.

3.1 Introduction

Consider a two degrees of freedom Hamiltonian system where the Hamiltonian H is

supposed to be analytic in a complex neighbourhood U ⊆ C
4 of the origin and continuous

on its closure. We suppose that the Hamiltonian vector field XH has an equilibrium
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point which we assume to be at the origin. Moreover, we assume that the linear part

of the Hamiltonian vector field is not diagonalizable and has a pair of pure imaginary

eigenvalues ±α0i (α0 > 0) having multiplicity two. The well known normal form theory

for quadratic Hamiltonians [11] implies that exists a linear symplectic change of variables

that transforms the Hamiltonian H to the form,

H = −α0 (q2p1 − q1p2) +
ι

2

(
q21 + q22

)
+ high order terms,

where ι = ±1. Without lost of generality we can assume that α0 = 1 and ι = 1 (see

(2.6)) and by a canonical change of coordinates we can suppose that H is in the general

form,

H = H0 + F, where H0 = −I1 + I2 + ηI23 ,

and I1 = q2p1 − q1p2, I2 =
q21 + q22

2
, I3 =

p21 + p22
2

,

(3.1)

where η ∈ C and F : U → C
4 is an analytic function such that F (q, p) = O((|q| 12+|p|)5)

where q = (q1, q2) and p = (p1, p2). In the following, we will consider the non-degenerate

case which corresponds to,

η 6= 0. (3.2)

It is well known that Hamiltonian (3.1) can be normalized up to a given order (see

chapter 2 on the normal form). There is a formal near identity canonical change of

coordinates Φ that transforms H into the following,

HNF = H ◦ Φ = −I1 + I2 + ηI23 +
∑

3l+2k≥5

al,kI
l
1I
k
3 , (3.3)

where the coefficients al,k ∈ C. Note that, if the series (3.3) converge then since I1

is an integral of motion it would imply that HNF is integrable. The results of this

chapter imply that generically the normal form transformation diverge, hence in general

the Hamiltonian H is non-integrable.

Although the equilibrium point is of elliptic type, we will show the existence of

a stable (resp. unstable) analytic invariant manifold immersed in C
4 such that points
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on this invariant manifold converge to the equilibrium forward (resp. backward) in time

under the flow. Moreover, as one might expect, the rate of convergence is of polynomial

type.

Let x = (q, p) ∈ C
4. In the study of the invariant manifolds, we shall look

for natural parametrizations (see section 2.3 of chapter 2) as solutions of the following

PDE,

Dx = XH(x), where D = ∂ϕ + ∂τ . (3.4)

Note that equation (3.4) is obtained from equation (2.19) by setting ǫ = 0.

We will show that there is a stable parametrisation Γ− and an unstable parametri-

sation Γ+ satisfying equation (3.4) which are defined in certain domains of C2 having

the same asymptotic expansion valid in a common domain of intersection. Therefore

their distance is beyond all algebraic orders. In addition, we will prove an exponentially

small upper bound for their distance.

3.2 Formal Series

The results in this section are of formal character, therefore we do not care about the

convergence of the power series involved. Let TK denote the space of trigonometric

polynomials where K = C,R, i.e., the space of functions of the form,

a0 +

n∑

k=1

ak cos(kϕ) +

n∑

k=1

bk sin(kϕ), ak, bk ∈ K, n ∈ N0.

The function degTK
: TK → N0 stands for the usual definition of the degree.

In this section, we will look for formal solutions of equation (3.4) in the class

of formal power series in the variable τ−1 with coefficients in TC. It is convenient

to transform H into its normal form and compute a formal solution in the normal

form coordinates. Then using the normal form transformation we return to the original

coordinates.

Note that the normal form (3.3) is rotationally symmetric, i.e., it commutes with
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the one parameter group of rotations Rϕ,

Rϕ =











cos(ϕ) − sin(ϕ) 0 0

sin(ϕ) cos(ϕ) 0 0

0 0 cos(ϕ) − sin(ϕ)

0 0 sin(ϕ) cos(ϕ)











.

In the following we look for formal solutions of the PDE,

Dz = XHNF (z), (3.5)

in the class of formal power series τ−1T4
C
[[τ−1]]. We have the following,

Theorem 3.2.1. Equation (3.5) has a formal solution Ẑ ∈ τ−1T4
C
[[τ−1]] having the

form,

Ẑ(ϕ, τ) = Rϕ (ψ1(τ), φ1(τ), φ2(τ), ψ2(τ))
T ,

where for i = 1, 2, ψi, φi ∈ τ−1
C[[τ−1]] and ψi are even formal series and φi are odd

formal series and having the leading orders,

ψ1(τ) = κτ−2 + · · · , φ1(τ) =
κ3a1,1

2
τ−3 + · · · ,

φ2(τ) = κτ−1 + · · · , ψ2(τ) =
κ3a1,1

2
τ−2 + · · · .

where κ2 = − 2
η . The formal solution Ẑ is unique modulus a rotation Rπ, i.e., Ẑ and

RπẐ are the only formal solutions satisfying the properties stated above. Moreover,

for any other formal solution ˆ̃
Z ∈ τ−1T4

C
[[τ−1]] there exist (ϕ0, τ0) ∈ C

2 such that

ˆ̃
Z(ϕ, τ) = Ẑ(ϕ+ ϕ0, τ + τ0).

Proof. Let us look for a formal solution of equation (3.5) in the form Ẑ(ϕ, τ) = Rϕξ̂(τ)

where ξ̂ ∈ τ−1
C
4[[τ−1]]. Taking into account that the Hamiltonian vector field com-

mutes with Rϕ which has infinitesimal generator −XI1 , then we get the following equiv-

alent equation,

∂τ ξ̂ = XHNF+I1(ξ̂). (3.6)
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Now, it is convenient to change to polar coordinates given by,

ξ1 = R cos θ − Θ
r sin θ, ξ3 = r cos θ,

ξ2 = R sin θ + Θ
r cos θ, ξ4 = r sin θ,

(3.7)

where ξ̂ = (ξ1, ξ2, ξ3, ξ4). Note that the integral I1 is equal to Θ. In these new variables

the equation (3.6) takes the form,

∂τθ = −Θ

r2
−

∑

3i+2j≥5

iai,j
2j

Θi−1r2j, ∂τ r = −R, ∂τΘ = 0, (3.8)

∂τR =

(

−Θ2

r3
+ ηr3

)

+
∑

3i+2j≥5

2jai,j
2j

Θir2j−1. (3.9)

Let us start with the third equation of (3.8). It follows that Θ(τ) = Θ0 where Θ0 ∈ C.

Taking into account that Θ ∈ τ−2
C[[τ−1]] we conclude that Θ0 = 0. Hence Θ = 0.

We move on and consider now the second equation of (3.8) and equation (3.9).

Taking into account that Θ = 0, these two equations are equivalent to the following

single equation,

∂2τ r = −ηr3 −
∑

j≥2

2(j + 1)a0,j+1

2j+1
r2j+1. (3.10)

In the following we construct a formal solution of (3.10) belonging to τ−1
C[[τ−1]].

Claim 3.2.1.1. Equation (3.10) has a non-zero formal solution r ∈ τ−1
C[[τ−1]] having

only odd powers of τ−1. Moreover,

r(τ) = κτ−1 − 1

8
a0,3κ

5τ−3 + · · · . (3.11)

where κ2 = − 2
η . This solution is unique if we fix one of the two values for κ. Moreover,

for any other non-zero formal solution r̃ ∈ τ−1
C[[τ−1]] of equation (3.10) there exists

τ0 such that r̃(τ) = ±r(τ + τ0).

Proof. Let us take a formal series r(τ) =
∑

k≥1 rkτ
−k and substitute into equation

(3.10). After collecting terms of the same order in τ−k−2 we obtain an equation which
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we can solve for the coefficient rk. Let us present the details. At order τ−3 we get the

following equation for r1,

2r1 = −ηr31,

which implies that r21 = − 2
η (the other solution is trivialy r1 which leads to the zero

formal solution r = 0). Hence we let r1 := κ where κ is defined by the relation κ2 = − 2
η .

Note that κ can take to distinct values, i.e., −
√

− 2
η and

√

− 2
η . Let us move to the

next order. At order τ−4 we obtain,

6r2 = −3ηr21r2.

Note that this equation is linear with respect to r2. Taking into account that r1 = κ we

can simplify the previous equation and conclude that it holds for every r2 ∈ C. Hence r2

is a free coefficient. Since we are considering only odd powers of r we set this coefficient

to zero.

At this stage, we have determined r1 = κ and r2 = 0. Now we proceed by

induction on k. First let us determine r3. It is not difficult to write the equation for r3

which reads,

6r3 = −6

8
a0,3r

5
1.

Thus r3 = −1
8a0,3κ

5. Now suppose that all coefficients rl, 3 ≤ l ≤ k have been defined

uniquely such that for l even we have rl = 0 and for l odd we have rl = p(κ) where

p ∈ C[κ] and contains only odd powers in κ. Due to the induction hypothesis, at the

order τ−k−3 we have the following equation for rk+1,

((k + 1)(k + 2)− 6)rk+1 = fk+1(r1, . . . , rk)

where fk+1 is a polynomial depending on a finite number of coefficients a0,j+1 for j ≥ 2.

Note that it is always possible to solve the previous equation with respect to rk+1 for

k ≥ 2 since (k+1)(k+2)−6 = 0 only if k = 1 or k = −4. Now we have to distinguish

two cases. First consider the case when k + 1 is even. Since the right hand side of

equation (3.10) has only odd powers of r and according to the induction hypothesis
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rl = 0 for even l then fk+1 = 0. Thus rk+1 = 0. On the other hand, when k + 1

is odd then by the same reasoning as above it is not difficult to see that fk+1 is a

polynomial in C[κ], having only odd powers of κ, and rk+1 is determined uniquely by

the formula rk+1 = ((k + 1)(k + 2)− 6)−1fk+1. This completes the induction. Finally

let r̃ ∈ τ−1
C[[τ−1]] be a another non zero formal solution of equation (3.10). We can

write r̃ =
∑

k≥1 r̃kτ
−k. As before, we conclude that r̃21 = κ2 thus, r̃1 = ±κ. Now for

τ0 ∈ C we have that,

r(τ + τ0) =
κ

τ + τ0
+ · · · = κ

τ
− τ0κ

τ2
+ · · · .

is also a formal solution of equation (3.10). Comparing the second order coefficient

−τ0κ with the coefficient r̃2 we conclude by the uniqueness of r that if τ0 = − r̃2
κ then

r̃(τ) = ±r(τ + τ0) and the claim is proved.

As a direct consequence of the previous Claim and taking into account the second

equation of (3.8) we conclude that R = −∂τr, hence R ∈ τ−2
C[[τ−1]] containing only

even powers in τ−1. Moreover,

R(τ) = κτ−2 + · · ·

Finally, using the known formal solutions Θ and r we simplify the first equation of (3.8)

and obtain,

∂τθ = −
∑

j≥1

a1,j
2j




∑

k≥1

rkτ
−k





2j

. (3.12)

Note that
(
∑

k≥1 rkτ
−k
)2j

∈ τ−2j
C[[τ−1]] and contains only even powers in τ−1. Since

κ2 = − 2
η then the right hand side is independent of the choice of κ. Hence, equation

(3.12) can be simplified to give,

∂τθ =
∑

k≥1

bkτ
−2k,

where bk ∈ C and depend on a finite number of coefficients of r and a1,j for j ≥ 1. For
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this equation a general formal solution has the form,

θ(τ) = θ0 +
∑

k≥1

θkτ
−2k+1,

where θk ∈ C. Let b(τ) :=
∑

k≥1 θkτ
−2k+1. Note that,

b(τ) = −a1,1
η
τ−1 + · · · .

At this point let us rewrite the formal solutions in the following form,

θ(τ) = θ0 + b(τ), Θ(τ) = 0,

r(τ) =
∑

k≥1

rkτ
−2k+1, R(τ) =

∑

k≥1

Rkτ
−2k.

(3.13)

In order to conclude the proof of the Theorem, let us come back to the variable ξ̂. First

observe that,

cos b(τ) =
∑

i≥0

(−1)i

(2i)!




∑

k≥1

θkτ
−2k+1





2i

,

and taking into account that the formal series inside the parenthesis of the right hand

side of the previous formula is an even formal series in τ−1 starting with the term τ−2i

we conclude that,

cos b(τ) =
∑

k≥0

wkτ
−2k, (3.14)

for some wk ∈ C depending on a finite number of coefficients θk for k ≥ 1. A similar

formula holds for the sine function which reads,

sin b(τ) =
∑

k≥0

zkτ
−2k+1, (3.15)

for some zk ∈ C depending on a finite number of coefficients θk for k ≥ 1. Now

according to the change of variables (3.7) let us define,

φ1(τ) = R(τ) cos b(τ), ψ2(τ) = r(τ) cos b(τ),

ψ1(τ) = R(τ) sin b(τ), φ2(τ) = r(τ) sin b(τ).
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Thus,

ξ̂(τ) = Rθ0
(
φ1(τ), ψ1(τ), ψ2(τ), φ2(τ)

)T
,

is a formal solution of equation (3.6). Taking into account the formulae (3.13), (3.14)

and (3.15) we conclude that the formal series ψ1, φ1, φ2 and ψ2 satisfy the required

properties stated in the Theorem. Thus, θ0 must be equal to 0 or π and from the

definition of κ we conclude that ξ̂ is uniquely defined up to a rotation Rπ. This completes

the proof of the Theorem.

Remark 3.2.1.1. If the original Hamiltonian H is real analytic then its normal form HNF

is a formal series with real coefficients, i.e., HNF (z) = HNF (z) and in particular, the

coefficient η is real.

Depending on the sign of η we can say more about the coefficients of the formal

solutions. If η < 0 (which corresponds to the unstable case) then one can trace the

proofs of the previous Theorem (in particular the proof of Claim 3.2.1.1) and conclude

that the coefficients of Ẑ are real, i.e., Ẑ = Rϕξ where ξ ∈ τ−1
R
4[[τ−1]]. Thus,

Ẑ(ϕ, τ) = Ẑ(ϕ̄, τ̄) when η < 0. On the other hand, when η > 0 (which is the stable

case) then the coefficients of Ẑ are pure imaginary numbers, i.e., Ẑ = iRϕξ where

ξ ∈ τ−1
R
4[[τ−1]]. Thus, Ẑ(ϕ, τ) = Ẑ(ϕ̄+ π, τ̄ ) when η > 0.

Remark 3.2.1.2. If the original Hamiltonian H is real analytic then taking into account

that the normal form vector field XHNF is reversible with respect to the linear involution,

S(q1, q2, p1, p2) = (−q1, q2, p1,−p2), (3.16)

it is not difficult to see that the conditions of the previous Theorem on the formal series

ψi and φi are equivalent to the following condition,

Ẑ(ϕ, τ) = S(Ẑ(−ϕ̄,−τ̄)).

This condition defines the formal solution Ẑ uniquely (up to a rotation Rπ) and inde-

pendently from any coordinate system.
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Theorem 3.2.2. Equation (3.4) has a non zero formal solution Γ̂ belonging to the class

τ−1T4
C

[[
τ−1

]]
and having the form,

Γ̂ =
(

τ−2Γ̂1, τ
−2Γ̂2, τ

−1Γ̂3, τ
−1Γ̂4

)T
,

where Γ̂i =
∑

k≥0 Γ
i
kτ

−k, i = 1, . . . , 4, such that Γik ∈ TC with degTC
(Γik) = k + 2

for i = 1, 2 and degTC
(Γik) = k + 1 for i = 3, 4. Moreover, for any other non zero

formal solution ˆ̃
Γ of (3.4) belonging to the same class there exist (ϕ0, τ0) ∈ C

2 such

that ˆ̃
Γ(ϕ, τ) = Γ̂(ϕ+ ϕ0, τ + τ0).

Proof. By the normal form theory there exists (non unique) a near identity formal

canonical change of variables x = Φ(z) which transforms the Hamiltonian H into its

normal form HNF by the relation HNF = H ◦ Φ. For our purposes, we can suppose

that the transformation Φ is a formal power series having the general form,

q = Q+
∑

2|i|+|j|≥3

φ1i,jQ
iP j ,

p = P +
∑

2|i|+|j|≥4

φ2i,jQ
iP j ,

(3.17)

written in multi-index notation, where φ1i,j , φ
2
i,j ∈ C

2. Now the previous Theorem

provides a formal solution Ẑ for the normal form equation (3.5) having the form Ẑ =

Rϕξ̂(τ) where ξ̂ = (ψ1, φ1, φ2, ψ2)
T such that ψ1, ψ2 ∈ τ−2

C[[τ−1]], φ1 ∈ τ−3
C[[τ−1]]

and φ2 ∈ τ−1
C[[τ−1]]. Substituting this formal solution into the formal series (3.17)

we obtain a formal solution Γ̂ := Φ ◦ Ẑ for equation (3.4). Now, since composition of

formal series is again a formal series, the Theorem follows and we just need to check

the degree of the trigonometric polynomials. As this should not present any difficulty

we conclude the proof of the Theorem.

Several remarks are in order,

Remark 3.2.2.1. The freedom in the definition of the formal solution Γ̂ can be eliminated

if we fix the first two orders of the formal series Γ̂i, i = 1, . . . , 4. In general, we cannot

eliminate this freedom in a coordinate independent way.

61



Remark 3.2.2.2. If the original Hamiltonian H is real analytic then for any solution Γ

of equation (3.4) we have that Γ(ϕ, τ ) is also a solution of the same equation. Indeed,

DΓ(ϕ̄, τ̄) = DΓ(ϕ̄, τ̄ ) = XH(Γ(ϕ̄, τ̄)) = XH(Γ(ϕ̄, τ̄)),

where D = ∂ϕ̄ + ∂τ̄ . Moreover, as Γ̂ = Φ ◦ Ẑ where Φ is a normal form transformation

(3.17) which is a formal series with real coefficients, we have according to Remark

3.2.1.1 that,

Γ̂(ϕ̄, τ̄) = Φ(Ẑ(ϕ̄, τ̄ )) = Φ(Ẑ(ϕ+ π, τ)) = Γ̂(ϕ+ π, τ), for η > 0,

Γ̂(ϕ̄, τ̄) = Φ(Ẑ(ϕ̄, τ̄ )) = Φ(Ẑ(ϕ, τ)) = Γ̂(ϕ, τ), for η < 0.

Remark 3.2.2.3. If the original Hamiltonian H is real analytic and XH is reversible with

respect to the involution (3.16) then the normal form preserves the reversibility. Thus,

it follows from Remark 3.2.1.2 that one can define the formal solution Γ̂ in a coordinate

independent way using the reversibility as follows,

Γ̂(ϕ, τ) = S(Γ̂(−ϕ̄,−τ̄)).

This formal solution is unique up to a translation Γ̂(ϕ+ π, τ).

Remark 3.2.2.4. Let j ∈ Z and û be a formal series in the class τ jT4
C
[[τ−1]] such that

û =
(
τ j−1u1, τ j−1u2, τ ju3, τ ju4

)T
, where ui =

∑

k≥0 u
i
kτ

−k ∈ TC[[τ
−1]]. Now define,

〈û〉n :=

(

τ j−1
n+j
∑

k=0

u1kτ
−k, τ j−1

n+j
∑

k=0

u2kτ
−k, τ j

n+j
∑

k=0

u3kτ
−k, τ j

n+j
∑

k=0

u4kτ
−k

)T

,

which is just a partial sum of the formal series û up to order τ−(n+1) in the first two

components and up to order τ−n in the last two.

For n ≥ 1 let Γn :=
〈

Γ̂
〉

n
. Then we have the following important property,

DΓn −XH(Γn) =
(

τ−(n+2)R1
n, τ

−(n+2)R2
n, τ

−(n+1)R3
n, τ

−(n+1)R4
n

)T
, (3.18)

for some Rin ∈ T4
C
[[τ−1]], i = 1, . . . , 4. Indeed, for a formal series Γ̂ =

∑

k≥1 Γ
kτ−k

with Γk ∈ T4
C
to solve formally the equation (3.4), then the coefficients Γk must solve
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the infinite system of equations,

∂ϕΓ
k −X−I1+I2(Γ

k) = (k − 1)Γk−1 +Gk(Γ
1, . . . ,Γk−2), k = 1, 2, . . . (3.19)

obtained from substituting the formal series into equation (3.4) and collecting terms of

the same order in τ−k. The function Gk can be defined in a recursive way.

Now since the first n coefficients of the sum Γn solve the equations (3.19) for

k = 1, . . . , n then in order to get (3.18) we consider the equation (3.19) for k = n+1.

Note that the left hand side of equation (3.19) depends only on the kth coefficient of

the formal series Γ̂. Moreover, due to the form of the vector field X−I1+I2 we can

see that the first two components of the expression in the left hand side of (3.19) only

depend on the first two components of Γk. These observations allow us to conclude

(3.18).

3.2.1 Formal variational equation

In this subsection we consider the first variational equation of XH around the formal

solution Γ̂,

Du = DXH(Γ̂)u. (3.20)

Our goal in this section is to construct a convenient basis for the space of formal solutions

of equation (3.20). These formal solutions provide asymptotic series for certain analytic

solutions of a modified equation of (3.20) that will be at the core of the perturbation

theory developed in the subsequent sections.

We know already two formal solutions of the previous equation. They are ∂ϕΓ̂

and ∂τ Γ̂. Note that these formal solutions are linearly independent (as formal series in

T4
C
[[τ−1]]). We can regard these as formal invariant tangent vectors fields of the formal

invariant manifold parametrised by Γ̂. If the series were convergent, then we could drop

the adjective “formal” and the tangent vector fields and the invariant manifold would

be analytic. Moreover,

Ω(∂ϕΓ̂, ∂τ Γ̂) = 0, (3.21)
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where Ω is the canonical symplectic form in C
4. In other words the tangent vector fields

∂ϕΓ̂ and ∂τ Γ̂ form a Lagrangian plane. In general, these series are expected to diverge.

Nevertheless, at the formal level we still have (3.21). In fact, a simple computation

shows that, if u1 and u2 are two formal solutions of (3.20), then

Ω(u1,u2) ∈ C.

In fact, for i ∈ {1, 2}, let ui ∈ τniT4
C
[[τ−1]] for some ni ∈ Z and suppose that

Dui = DXH(Γ̂)ui. Then,

DΩ(u1,u2) = Ω(Du1,u2) + Ω(u1,Du2)

= Ω(DXH(Γ̂)u1,u2) + Ω(u1,DXH(Γ̂)u2)

= 0.

(3.22)

In particular, DΩ(∂ϕΓ̂, ∂τ Γ̂) = 0. Now the next Lemma provides the desired answer.

Lemma 3.2.1. Let g ∈ τ jT4
C
[[τ−1]] for some j ∈ Z and suppose that Dg = 0. Then

g = g0 ∈ C. In addition, if j ≤ −1 then g = 0.

Proof. Let g =
∑

k≤j gkτ
k where gk ∈ T4

C
. Substituting g into the equation Dg = 0

and collecting terms of the same order in τk we get,

∂ϕgj = 0,

∂ϕgk + (k + 1)gk+1 = 0, k ≤ j − 1.
(3.23)

The first equation of (3.23) implies that gj ∈ C. Now using the second equation we

can solve for gk. Taking into account that gk ∈ T4
C
we conclude that (k + 1)gk+1 = 0

for all k ≤ j − 1. Note that when k = −1 we have no restriction on g0 and the Lemma

follows.

In the following, we will construct a matrix of formal solutions Û = (û1, û2, û3, û4)

for the linear equation (3.20), satisfying the following properties,

1. For every i = 1, . . . , 4, ûi ∈ τ jT4
C
[[τ−1]] for some j ∈ Z,
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2. The formal series ûi are linearly independent,

3. The first and fourth columns of the matrix Û are the known formal solutions

û1 = ∂ϕΓ̂ and û4 = ∂τ Γ̂,

4. The columns of Û form a formal “symplectic basis”, i.e.,

Ω(∂ϕΓ̂, û2) = 0, Ω(û2, ∂τ Γ̂) = 1, Ω(∂ϕΓ̂, ∂τ Γ̂) = 0

Ω(∂ϕΓ̂, û3) = 1, Ω(û3, ∂τ Γ̂) = 0, Ω(û3, û2) = 0.

where Ω is the canonical symplectic form in C
4. The last property of Û implies that,

Ω(Ûv, Ûw) = Ω(v,w), ∀ v,w ∈ C
4.

Thus, Û as defined by the properties above is a symplectic matrix and moreover

det(Û) = 1. A matrix Û satisfying the properties stated above is called a formal

normalized fundamental matrix for equation (3.20).

Theorem 3.2.3. The linear equation (3.20) has a formal normalized fundamental matrix

Û such that,

Û =











τ−2û1,1 τ2û1,2 τ û1,3 τ−3û1,4

τ−2û2,1 τ2û2,2 τ û2,3 τ−3û2,4

τ−1û3,1 τ3û3,2 τ2û3,3 τ−2û3,4

τ−1û4,1 τ3û4,2 τ2û4,3 τ−2û4,4











,

where ûi,j =
∑

k≥0 u
i,j
k τ

−k ∈ TC[[τ
−1]], for i, j = 1, . . . , 4. Moreover for any other

formal normalized fundamental matrix ˆ̃
U there is a c = (c1, c2, c3) ∈ C

3 such that

ˆ̃
U = ÛEc where,

Ec =











1 −c1 c2 0

0 1 0 0

0 0 1 0

0 c3 c1 1











. (3.24)
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Proof. In the proof of Theorem 3.2.2 we have obtained the formal solution Γ̂ through

the normal form Hamiltonian HNF by defining Γ̂ = Φ ◦ Ẑ, where Φ is the normal form

transformation, which is a formal series of the form (3.17), and Ẑ is the formal solution

of Theorem 3.2.1. Also from the same Theorem we know that Ẑ = Rϕξ̂ where ξ̂ is

a formal series in the class τ−1
C
4[[τ−1]] and using the polar coordinates (3.7) we can

write it as follows,

ξ̂(τ) = (R(τ) cos θ(τ), R(τ) sin θ(τ), r(τ) cos θ(τ), r(τ) sin θ(τ))T , (3.25)

where r, R and θ are the formal series (3.13). Now using Φ, the equation (3.20) is

equivalent to,

Dv = DXHNF (Ẑ)v, (3.26)

where v and u are related by,

u = DΨ(Ẑ)v.

We seek for formal solutions of (3.26) in the form v = Rϕζ where ζ ∈ τ jC4[[τ−1]] for

some j ∈ Z. Similar to the proof of Theorem 3.2.1 the ζ must satisfy the linear PDE,

∂τζ = DXHNF+I1(ξ̂)ζ.

Bearing in mind (3.25), we now rewrite the previous equation in polar coordinates,

∂τw1 = −
∑

l≥1

la1,l
2l−1

r2l−1w2 −




1

r2
+
∑

l≥0

a2,l
2l−1

r2l



w3, ∂τw2 = −w4,

∂τw3 = 0, ∂τw4 =



3ηr2 +
∑

l≥3

l(2l − 1)a0,l
2l−1

r2l−2



w2 +
∑

l≥1

la1,l
2l−1

r2l−1w3,

(3.27)

where the relation between the variables is the following,

ζ = DΛ(θ, r,Θ, R)w, (3.28)

where Λ denotes the change of variables (3.7), θ, r, Θ and R are the formal series

(3.13) and w = (w1, w2, w3, w4)
T . Recall that Θ = 0. Note that Λ is symplectic with

66



multiplier −1. Two formal solutions of (3.27) immediately follow from the formal series

r, θ and R,

ŵ1 = (1, 0, 0, 0)T and ŵ4 = (∂τθ, ∂τr, 0, ∂τR)
T . (3.29)

We now construct two more formal solutions which are independent of (3.29). We shall

look for these formal solutions of (3.27) in the class of formal series τ jC[[τ−1]]. Let us

consider the second and fourth equations of (3.27). They are equivalent to the single

second order linear equation,

∂2τw2 = −



3ηr2 +
∑

l≥3

l(2l − 1)a0,l
2l−1

r2l−2



w2 −
∑

l≥1

la1,l
2l−1

r2l−1w3. (3.30)

In order to solve the previous equation, we first consider the homogeneous part.

Claim 3.2.3.1. The linear homogeneous equation,

∂2τw2 = −



3ηr2 +
∑

l≥3

l(2l − 1)a0,l
2l−1

r2l−2



w2, (3.31)

has two linearly independent formal solutions,

w2,1 ∈ τ−2
C[[τ−1]] and w2,2 ∈ τ3C[[τ−1]]

such that w2,1 is an even formal series and w2,2 an odd formal series. Moreover w2,1 =

∂τr, w2,2 =
τ3

5κ + 7
40a0,3κ

3τ + · · · and,

w2,2∂τw2,1 − w2,1∂τw2,2 = 1. (3.32)

Proof. That ∂τr is a formal solution of the homogeneous equation is obvious. Moreover

its properties follow from the properties of the formal series r. Now let us determine the

second formal solution. It follows from the fact that the formal series r ∈ τ−1
C[[τ−1]]

is odd that the right hand side of the homogeneous equation (3.31) is a formal series of

the form b =
∑

k≤−1 bkτ
2k where bk depend on a finite number of coefficients of r and

a0,l for l ≥ 3. Moreover, according to (3.11) we have,

r(τ) = κτ−1 − 1

8
a0,3κ

5τ−3 + · · · ,
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where κ2 = − 2
η . Using the leading orders of r, we compute the first few orders of the

formal series b for further reference,

b−1 = 6 and b−2 = −21a0,3
η2

. (3.33)

Now we are ready to solve equation (3.31) in the class of formal series. Thus, substituting

the formal series w2,2 =
∑

k≤1w2,2,kτ
2k+1 into equation (3.31) and collecting terms of

the same order in τk we obtain the following infinite system of linear equations,

(2k(2k + 1)− 6)w2,2,k =

−2∑

j=k−2

w2,2,k−j−1bj, k = 1, 0,−1, . . .

For k = 1 we get no condition on the first coefficient, thus w2,2,1 ∈ C. For k = 0

we obtain w2,2,0 = −1
6w2,2,1b−2. When k ≤ −1, a simple induction argument shows

that we can determine the coefficients w2,2,k (which depend linearly on the coefficient

w2,2,1) in a recursive way by using the previous formula since (2k(2k + 1)− 6) = 0 only

if k = 1 or k = −3
2 . Finally let us derive the equality (3.32). Since,

∂τ (w2,2∂τw2,1 − w2,1∂τw2,2) = 0,

due to the fact that both w2,1 and w2,2 solve the homogeneous equation (3.31) we have

that w2,2∂τw2,1−w2,1∂τw2,2 is equal to some constant. Taking into account the leading

orders of the formal solutions w2,1 and w2,2 we conclude that w2,2∂τw2,1−w2,1∂τw2,2 =

5κw2,2,1. As w2,2,1 is a free coefficient we can define w2,2,1 :=
1
5κ and obtain the desired

equality. This concludes the proof of the Claim.

Returning to the non-homogeneous equation (3.30), we can see that the last

term of the right hand side of the equation depends on w3 from which we know that

∂τw3 =. Thus w3 = w3,0 ∈ C is a constant. Now, taking into account the form of the

formal series r,

g(τ) :=
∑

l≥1

la1,l
2l−1

r2l−1 ∈ τ−1
C[[τ−1]],

is an odd formal series whose coefficients depend on a finite number of coefficients of r

and a1,l for l ≥ 1. Using the well known method of variation of constants we can write
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the general formal solution of (3.30) as follows,

w2 = c1w2,1 + c2w2,2 + w2,2

∫ τ

w2,1gw3,0 − w2,1

∫ τ

w2,2gw3,0, (3.34)

where w3,0, c1, c2 ∈ C. Note that the integration in the previous formula is well defined

in the class of formal series C[[τ−1]][[τ ]]. Indeed, it can be easily checked that w2,1g ∈
τ−3

C[[τ−1]] is an odd formal series and w2,2g ∈ τ2C[[τ−1]] is an even formal series.

Hence both integrands do not contain the term τ−1. Next we define two particular

formal solutions of (3.30),

w0
2 := w2,2 and w−1

2 := −w2,2

∫ τ

w2,1g + w2,1

∫ τ

w2,2g. (3.35)

The first formal solution corresponds to setting c1 = w3,0 = 0 and c2 = 1 in the general

solution (3.34) and the second corresponds to c1 = c2 = 0 and w3,0 = −1. Note that

w0
2 ∈ τ3C[[τ−1]] is an odd formal series and w−1

2 ∈ τC[[τ−1]] is also odd formal series.

Now coming back to the first equation of (3.27), we can rewrite it as follows,

∂τw1 = −gw2 + fw3,0,

where,

f = − 1

r2
−
∑

l≥0

a2,l
2l−1

r2l.

It is not difficult to see that f ∈ τ2C[[τ−1]] is an even formal series. Moreover both

gw0
2 ∈ τ2C[[τ−1]] and gw−1

2 ∈ C[[τ−1]] are even formal series. These observations allow

us to conclude that the following are formal solutions of (3.27),

w0
1 = −

∫ τ

gw0
2 and w−1

1 = −
∫ τ

gw−1
2 −

∫ τ

f, (3.36)

which are well defined in the class of formal series C[[τ−1]][[τ ]] and moreover w0
1, w

−1
1 ∈

τ3C[[τ−1]] are both odd formal series. Thus we obtain two formal solutions of (3.27)

defined as follows,

ŵ2 :=
(
w0
1, w

0
2, 0,−∂τw0

2

)T
and ŵ3 :=

(
w−1
1 , w−1

2 ,−1,−∂τw−1
2

)T
.
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Note that {ŵi}i=1,...,4 is a set of linearly independent formal solutions of equation (3.27)

and that,

Ω(ŵ1, ŵ2) = 0, Ω(ŵ1, ŵ3) = −1, Ω(ŵ1, ŵ4) = 0,

Ω(ŵ2, ŵ3) = 0, Ω(ŵ2, ŵ4) = −1, Ω(ŵ3, ŵ4) = 0.
(3.37)

where Ω is the canonical symplectic form in the polar coordinates, i.e., Ω = dθ∧Θ+dr∧
dR. The top identities of (3.37) are straightforward to prove just by using the definition

of ŵi. The ones on the bottom are a bit more trickier and let us prove them. First

note that similar arguments as in (3.22) show that ∂τΩ(ŵi, ŵj) = 0 for i, j = 1, . . . , 4.

Secondly, it follows from the previous claim and from (3.11) that,

w2,2(τ) =
τ3

5κ
+

7

40
a0,3κ

3τ + · · · and r(τ) = κτ−1 − 1

8
a0,3κ

5τ−3 + · · · . (3.38)

Now we compute Ω(ŵ2, ŵ3). Using the definition of both ŵ2 and ŵ3 we get

Ω(ŵ2, ŵ3) = −w1
0 − w0

2∂τw
−1
2 + ∂τw

2
0w

−1
2 .

Bearing in mind (3.35) and (3.36) we can simplify the previous expression and rewrite

it as follows,

Ω(ŵ2, ŵ3) =
(
1− w2,2∂

2
τ r + ∂τw2,2∂τr

)
∫ τ

gw2,2.

Now using the leading orders (3.38) we conclude that the expression inside the parenthe-

sis in the previous formula belongs to τ−4
C[[τ−1]]. Moreover

∫ τ
gw2,2 ∈ τ3C[[τ−1]] and

consequently Ω(ŵ2, ŵ3) ∈ τ−1
C[[τ−1]]. Applying Lemma 3.2.1 we get Ω(ŵ2, ŵ3) = 0

as we wanted to show.

Now we handle Ω(ŵ2, ŵ4). Again, making use of the definitions (3.35) and

recalling that ∂τR = −∂2τ r and w2,1 = ∂τ r we obtain,

Ω(ŵ2, ŵ4) = w2,1∂τw2,2 − w2,2∂τw2,1.

The identity now follows from (3.32).

At last, let us compute Ω(ŵ3, ŵ4). Again using the definitions of the functions

involved we get,

Ω(ŵ3, ŵ4) = ∂τθ + w−1
2 ∂τR+ ∂τ r∂τw

−1
2 .
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This last expression belongs to τ−2
C[[τ−2]] and applying Lemma 3.2.1 we obtain the

desired result.

Now, taking into account the change (3.28) and v = Rϕζ we define,

v̂i = RϕDΛ(θ, r,Θ, R)ŵi.

Clearly {v̂i}i=1,...,4 is a set of linearly independent formal solutions of equation (3.26)

and moreover v̂1 = ∂ϕẐ and v̂4 = ∂τ Ẑ. Taking into account the formulae (3.14) and

(3.15) for the cos and sin respectively and that r−1 ∈ τC[[τ−1]], a closer look at the

Jacobian of the polar coordinates transformation Λ reveals that,

DΛ(θ, r,Θ, R) =











τ−3Λ1 0 Λ2 Λ3

τ−2Λ4 0 τΛ5 τ−1Λ6

τ−2Λ7 Λ8 0 0

τ−1Λ9 τ−1Λ10 0 0











,

for some Λi ∈ C[[τ−1]] for i = 1, . . . , 10. Thus

v̂2 =
(
τ2v̂1,2, τ

2v̂2,2, τ
3v̂3,2, τ

3v̂4,2
)T

and v̂3 =
(
τ v̂1,3, τ v̂2,3, τ

2v̂3,3, τ
2v̂4,3

)T
,

for some v̂i,1, v̂i,2 ∈ TC[[τ
−1]] for i = 1, . . . , 4. As previously observed Λ is symplectic

with multiplier −1 and the identities (3.37) in the new variables read,

Ω(v̂1, v̂2) = 0, Ω(v̂1, v̂3) = 1, Ω(v̂1, v̂4) = 0,

Ω(v̂2, v̂3) = 0, Ω(v̂2, v̂4) = 1, Ω(v̂3, v̂4) = 0.
(3.39)

Finally, composing the formal solutions v̂i with the normal form transformation Φ we

obtain the desired matrix Û = (û1, û2, û3, û4)
T where the ûi are defined in the following

way,

ûi := DΦ(Ẑ)v̂i.

It is clear that Û satisfies all properties of a formal normalized fundamental matrix for

equation (3.20). Moreover its leading orders follow easily from the leading orders of v̂i

and the fact that Φ is near identity. In order to conclude the proof of the Theorem,
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note that by the method of variation of constants a general formal solution of equation

(3.20) is of the form Ûc where c is any formal series in τ jT4
C
[[τ−1]] for some j ∈ Z,

such that Dc = 0. Lemma 3.2.1 implies that c ∈ C
4. Thus, if ˆ̃

U is another formal

normalized fundamental matrix of (3.20) then there exist a matrix E ∈ C
4×4 such that

ˆ̃
U = ÛE. From the third property of a formal normalized fundamental matrix we also

conclude that,

E =











1 · · 0

0 · · 0

0 · · 0

0 · · 1











.

Moreover, since ˆ̃
U and Û are symplectic it also follows that E is symplectic and a simple

computation shows that one can reduce the number of entries of E to obtain the form

(3.24). This concludes the proof of the Theorem.

Remark 3.2.3.1. For n ≥ 1 let,

Un := (〈û1〉n , 〈û2〉n , 〈û3〉n , 〈û4〉n)T .

where 〈·〉n was defined in Remark 3.2.2.4 and ûi are the columns of a formal normalized

fundamental matrix Û. As in Remark 3.2.2.4 it is not difficult to show that each column

of,

DUn −DXH(Γn+3)Un

starts with terms of order τ−(n+2) in the first two components and with terms of order

τ−(n+1) in the last two.

3.3 Solutions of a Variational Equation

Let n ≥ 3 and ξ ∈ Xn+4(Sh ×D−
r ) and consider the following variational equation,

Du = DXH(Γn+3 + ξ)u. (3.40)
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where Γn+3 is the function defined in Remark 3.2.2.4. In this section we construct a

4 by 4 matrix function U = (u1,u2,u3,u4) : Sh × D−
r :→ C

4×4 such that DU =

DXH(Γn+3 + ξ)U. The vector functions ui : Sh ×D−
r :→ C

4 are the columns of U

and satisfy the following properties,

1. u1 ∈ X1(Sh × D−
r ), u2 ∈ X−3(Sh × D−

r ), u3 ∈ X−2(Sh × D−
r ) and u4 ∈

X2(Sh ×D−
r ).

2. {ui}i=1,...,4 form a “symplectic basis” in C
4, i.e.,

Ω(u1,u2) = 0, Ω(u2,u4) = 1, Ω(u1,u4) = 0

Ω(u1,u3) = 1, Ω(u3,u4) = 0, Ω(u3,u2) = 0.
(3.41)

where Ω is the canonical symplectic form in C
4. The last property implies that U is a

symplectic matrix for all (ϕ, τ) ∈ Sh ×D−
r and det(U) = 1. A matrix U that satisfies

the properties above is called a canonical fundamental matrix for the variation equation

(3.40).

Theorem 3.3.1. Let n ≥ 3 and let Un be a piece of a formal normalized fundamental

matrix Û as defined in Remark 3.2.3.1. Then there is r0 > 0 sufficiently large such that

for every r > r0 the variational equation (3.40) has an unique canonical fundamental

matrix U : Sh ×D−
r :→ C

4×4 such that,

U−Un ∈ X4
n+1(Sh ×D−

r ). (3.42)

Proof. Let n ≥ 3. We look for a canonical fundamental matrix of (3.40) in the form,

U = Un +V, (3.43)

where V = (v1,v2,v3,v4) : Sh × D−
r → C

4×4 is a 4 by 4 matrix function such that

each vector column vi belong to the space Xn (Sh ×D−
r ) for some r > 0 (to be chosen

later in the proof). Substituting (3.43) into the equation (3.40) we obtain,

DV = DXH(Γn+3 + ξ)V +DXH(Γn+3 + ξ)Un −DUn.
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This last equation can be rewritten in the following form,

L0(V) = BV +Rn, (3.44)

where the linear operator L0 is defined by formula (2.38) which we recall L0(u) =

Du−A0u where A0 is the matrix given by (2.37) and

B = DXH(Γn+3 + ξ)−A0 and Rn = DXH(Γn+3 + ξ)Un −DUn.

Note that B(ϕ, τ) = O(τ−3). Moreover due to Remark 3.2.3.1 each column of Rn

belongs to Xn+1 (Sh ×D−
r ). Thus, BV+Rn ∈ X4

n+1 (Sh ×D−
r ). Now since L0 has a

fundamental matrix U0 given by (2.39) then we can apply Theorem 2.4.1 and obtain an

unique bounded inverse L−1
0 : Xn+1 (Sh ×D−

r ) → Xn (Sh ×D−
r ) for n ≥ 3. Thus, in

order to solve (3.44) for V, it is sufficient to find a fixed point of the following operator,

V 7→ L−1
0 (BV) + L−1

0 (Rn) . (3.45)

First note that the matrixB induces a linear operator B : Xn (Sh ×D−
r ) → Xn+1 (Sh ×D−

r )

such that B(v) = Bv for a given v ∈ Xn (Sh ×D−
r ). Thus, in order to prove the exis-

tence of a fixed point for (3.45) it is enough to show that,

∥
∥L−1

0 ◦ B
∥
∥
n,n

≤ 1

2
. (3.46)

We now show the inequality (3.46). Given v ∈ Xn (Sh ×D−
r ) we write

v = (τ−n−1v1, τ
−n−1v2, τ

−nv3, τ
−nv4),

and as B = O(τ−3) we can write Bv as follows,

Bv =











τ−n−4 (B1,1v1 +B1,2v2) + τ−n−3 (B1,3v3 +B1,4v4)

τ−n−4 (B2,1v1 +B2,2v2) + τ−n−3 (B2,3v3 +B2,4v4)

τ−n−4 (B3,1v1 +B3,2v2) + τ−n−3 (B3,3v3 +B3,4v4)

τ−n−4 (B4,1v1 +B4,2v2) + τ−n−3 (B4,3v3 +B4,4v4)











, (3.47)
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for some analytic functions Bi,j : Sh × D−
r → C which are 2π-periodic in ϕ and

continuous on the closure on their domains. Moreover,

KB = max
i,j=1,...,4

{

sup
(ϕ,τ)∈Sh×D

−
r

|Bi,j(ϕ, τ)|
}

<∞.

Now given r0 >
1

sin θ0
then for every r > r0 the following chain of inequalities hold,

|τ |−k ≤ |τ |−1 ≤ 1

r0 sin θ0
in D−

r .

The previous observation and (3.47) give the following estimate,

‖Bv‖n+1 ≤
KB

r0 sin θ0
‖v‖n .

Thus the linear operator B is bounded and ‖B‖n+1,n ≤ KB

r0 sin θ0
. Now taking into account

that L−1
0 is also bounded by Theorem 2.4.1 we get,

∥
∥L−1

0 ◦ B
∥
∥
n,n

≤
∥
∥L−1

0

∥
∥
n,n+1

‖B‖n+1,n ≤
KB

∥
∥L−1

0

∥
∥
n,n+1

r0 sin θ0
.

Therefore if r0 > max

{

1
sin θ0

,
2KB‖L−1

0 ‖
n,n+1

sin θ0

}

then for every r > r0 we get the desired

inequality (3.46) and consequently we can apply the contraction mapping theorem and

obtain an unique fixed point V ∈ X4
n (Sh ×D−

r ) of equation (3.45). Finally, note that if

we repeat the previous arguments with n+1 instead of n then for r̃ > 0 sufficiently large

there exists an unique Ṽ ∈ X4
n+1

(
Sh ×D−

r̃

)
such that Ũ = Un+1 + Ṽ solves equation

(3.40). Now it follows that Ũ−Un ∈ X4
n+1

(
Sh ×D−

r̃

)
and due to the uniqueness of

the fixed point we conclude that Ũ−Un = V. Hence V ∈ X4
n+1 (Sh ×D−

r ) for every

r sufficiently large. Thus inclusion (3.42) is proved. In order to conclude the proof of

the Theorem we just need to show the equalities (3.41). They follow from the fact that

Ω is bilinear, DΩ(ui,uj) = 0 for i, j = 1, . . . , 4 and Proposition 2.4.1 and the fact that

Û is formal symplectic. This concludes the proof of the Theorem.

Remark 3.3.1.1. As before, it is clear that the arguments of the proof of the previous

Theorem work equally well when all the functions are analytic in Sh ×D+
r .
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3.4 Analytic Invariant Manifolds

In this section we prove the existence of an unstable (resp. stable) analytic manifold

immersed in C
4. We also provide an asymptotic expansion for both manifolds. More

concretely, following (3.4) we look for parametrisations as solutions of the following

PDE,

Dx = XH(x). (3.48)

Now, given a formal solution Γ̂ in the class τ−1T4
C
[[τ−1]] of equation (3.48), which

exists due to Theorem 3.2.2, we prove the existence of an unique solution Γ− (resp.

Γ+) of equation (3.48) belonging to the space X1 (Sh ×D−
r ) (resp. X1 (Sh ×D+

r ))

such that Γ± ≍ Γ̂, i.e.

∀n ∈ N, ∃C > 0,
∥
∥Γ±(ϕ, τ) − Γn(ϕ, τ)

∥
∥ ≤ Cτ−n−1, in Sh ×D±

r , (3.49)

where Γn denotes a truncation of Γ̂ as defined in Remark 3.2.2.4. We will prove the

existence of such solution for the − case only as the + case is completely analogous mod-

ulus minor modifications in the definitions of the sets where the functions are analytic.

Then we have the following,

Theorem 3.4.1 (Analytic unstable parametrisation). Given a formal solution Γ̂ ∈
τ−1T4

C
[[τ−1]] of equation (3.48) there is an r0 > 0 sufficiently large such that for

every r > r0 the equation (3.48) has an unique analytic solution Γ− ∈ X1 (Sh ×D−
r )

such that Γ− − Γn ∈ Xn+1 (Sh ×D−
r ) for all n ≥ 6.

Proof. Let n ≥ 6 and r > 0 (to be chosen later in the proof). Let us look for a solution

of equation (3.48) of the form,

Γ− = Γn + ξ, (3.50)

where ξ ∈ Xn (Sh ×D−
r ) and Γn is defined as in Remark 3.2.2.4. Substituting (3.50)

into equation (3.48) we obtain,

Dξ = XH(Γn + ξ)−DΓn.
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Now we rewrite the previous equation as follows,

L(ξ) = Q(ξ) +Rn, (3.51)

where L is a linear operator acting according to the formula L(ξ) = Dξ −DXH(Γn)ξ

and

Q(ξ) = XH(Γn + ξ)−XH(Γn)−DXH(Γn)ξ, Rn = XH(Γn)−DΓn.

Note that it follows from Remark 3.2.2.4 that Rn ∈ Xn+1 (Sh ×D−
r ). We focus our

attention in solving equation (3.51) with respect to ξ. For that purpose we want to

invert the linear operator L and obtain a new equation from which we can apply a fixed

point argument to get the desired solution.

According to Theorem 2.4.1 we can invert the linear operator L as long as it has

a fundamental matrix U and Q(ξ) ∈ Xn+1 (Sh ×D−
r ) given ξ ∈ Xn (Sh ×D−

r ). Due

to Theorem 3.3.1 there exist an r0 > 0 such that for every r > r0 the linear operator L
has a fundamental matrix U such that U−Un−3 ∈ X4

n−2(Sh ×D−
r ).

Now let us show that Q(ξ) ∈ Xn+1 (Sh ×D−
r ). Denote the components of the

vector field XH by (v1, v2, v3, v4) and consider the following auxiliary functions,

γi(t) = vi(Γn + tξ)− vi(Γn)− t∇vi(Γn)ξ, i = 1, . . . , 4.

Note that γi(0) = 0 for i = 1, . . . , 4 and Q(ξ) = (γ1(1), γ2(1), γ3(1), γ4(1))
T . Now we

can integrate by parts each function γi to obtain,

γi(1) =

∫ 1

0
(1− s)γ′′i (s)ds, i = 1, . . . , 4.

Then by the intermediate value theorem there exist ti ∈ [0, 1] for i = 1, . . . , 4 such that

γi(1) = (1 − ti)γ
′′
i (ti) for i = 1, . . . , 4 where the second derivative of γi can be easily

computed

γ′′i (s) = ξT Hess (vi)|Γn+sξ
ξ. (3.52)

Now taking into account that ξ ∈ Xn (Sh ×D−
r ) and the analyticity of XH it is not

difficult to get the following estimate,

|γi(1)| ≤ 2 ‖H‖C3 |τ |−2n ‖ξ‖2n ,
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where ‖·‖C3 is the usual C3 norm of a smooth function. Using this upper bound and

the fact that given r1 > max
{

r0,
1

sin θ0

}

then for every r > r1 we have |τ |−2 ≤ |τ |−1

for τ ∈ D−
r , then we can estimate ‖Q(ξ)‖n+1 in the following way,

‖Q(ξ)‖n+1 ≤ 8 ‖H‖C3 ‖ξ‖2n sup
τ∈D−

r

|τ |−n+2 ≤ 8 ‖H‖C3 ‖ξ‖2n
(r1 sin θ0)n−2

, (3.53)

where this last estimate holds since n ≥ 6. Thus Q(ξ) ∈ Xn+1 (Sh ×D−
r ).

Thus, it follows from Theorem 2.4.1 that there is an unique bounded linear

operator L−1 such that LL−1 = Id. Thus, in order to solve equation (3.51), it is

sufficient to find a fixed point in Xn (Sh ×D−
r ) of the following non-linear operator,

ξ 7→ L−1(Q(ξ)) + L−1(Rn).

Let us denote this non-linear operator by G. So in order to apply the contraction mapping

theorem we have to check that G is contracting in some invariant ball

Bρ =
{
ξ ∈ Xn(Sh ×D−

r ) | ‖ξ‖n ≤ ρ
}
,

where ρ > 0. First we prove that G(Bρ) ⊆ Bρ for some ρ > 0. Indeed, let ρ =

2
∥
∥L−1

∥
∥
n,n+1

‖Rn‖n+1 and ξ ∈ Bρ, then (3.53) implies,

∥
∥L−1(Q(ξ))− L−1(Rn)

∥
∥
n
≤
∥
∥L−1

∥
∥
n,n+1

(

8 ‖H‖C3 ‖ξ‖2n
(r1 sin θ0)n−2

+ ‖Rn‖n+1

)

≤ ρ,

provided r1 is sufficiently large,

r1 ≥
(16 ‖H‖C3

∥
∥L−1

∥
∥
n,n+1

ρ)
1

n−2

sin θ0
. (3.54)

Thus G leaves invariant a closed ball Bρ.

To check the contraction we let ξ1, ξ2 ∈ Bρ and consider a line connecting both

points, i.e., θt = (1− t)ξ1 + tξ2. Clearly θt ∈ Bρ for all t ∈ [0, 1]. Similar as before we

define the following auxiliary functions,

ψi(t) = vi(Γn + θt)− vi(Γn)−∇vi(Γn)θt, i = 1, . . . , 4.
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Note that,

Q(ξ1) = (ψ1(0), ψ2(0), ψ3(0), ψ4(0))
T and Q(ξ2) = (ψ1(1), ψ2(1), ψ3(1), ψ4(1))

T .

By the mean value theorem there exist ti ∈ [0, 1] for i = 1, . . . , 4 such that ψi(1) −
ψi(0) = ψ′

i(ti). Differentiating the functions ψi we get,

ψi(1)− ψi(0) = (∇vi (Γn + θti)−∇vi (Γn)) · (ξ2 − ξ1) , i = 1, . . . , 4. (3.55)

Now we can easily get the following upper bounds for the differences (3.55),

|ψi(1)− ψi(0)| ≤ 2 ‖H‖C3 ρ |τ |−2n ‖ξ2 − ξ1‖n .

Thus,

‖Q(ξ2)−Q(ξ1)‖n+1 ≤
8ρ ‖H‖C3

(r0 sin θ0)n−2
‖ξ2 − ξ1‖n .

Applying the linear operator L−1 and taking into account (3.54) we get,

∥
∥L−1(Q(ξ2)−Q(ξ1))

∥
∥
n
≤
∥
∥L−1

∥
∥
n,n+1

8ρ ‖H‖C3

(r0 sin θ0)n−2
‖ξ2 − ξ1‖n

≤ 1

2
‖ξ2 − ξ1‖n ,

which proves that ‖G(ξ2)− G(ξ1)‖n ≤ 1
2 ‖ξ2 − ξ1‖n. Thus G is contracting in the ball

Bρ provided r > r1 where,

r1 > max






r0,

1

sin θ0
,
(16 ‖H‖C3

∥
∥L−1

∥
∥
n,n+1

ρ)
1

n−2

sin θ0






.

Now let us check that the unique function Γ− obtained with n ≥ 6 is in fact independent

of n. Increasing r, if necessary, the distance ‖Γ− − Γ6‖6 can be made as small as

we want in order to apply the contraction mapping theorem for n = 6. Hence it is

independent of n. Finally,

Γ− − Γn = Γ− − Γn+1 + Γn+1 − Γn ∈ Xn+1(Sh ×D−
r ).

This completes the proof of the Theorem.
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Figure 3.1: The intersection of the domains D±
r± .

As previously observed we can repeat the same arguments of the previous The-

orem but now considering the functions defined on the domains Sh ×D+
r . We obtain

the following,

Theorem 3.4.2 (Analytic stable parametrisation). Given a formal solution Γ̂ ∈ τ−1T4
C
[[τ−1]]

of equation (3.48) there is an r0 > 0 sufficiently large such that for every r > r0

the equation (3.48) has an unique analytic solution Γ+ ∈ X1 (Sh ×D+
r ) such that

Γ+ − Γn ∈ Xn+1 (Sh ×D+
r ) for all n ≥ 6.

3.5 Stokes phenomenon

Given a formal solution Γ̂ of (3.48) in the class τ−1T4
C
[[τ−1]], Theorem 3.4.1 estab-

lishes the existence of an unique analytic vector function Γ− : Sh ×D−
r− → C

4 which

parametrises an unstable analytic invariant manifold such that Γ− ≍ Γ̂ (see (3.49) for

the definition of ≍). Analogously, Theorem 3.4.2 yields the existence of an analytic vec-

tor function Γ+ : Sh×D+
r+ → C

4 which parametrises a stable analytic invariant manifold

and having the same asymptotic expansion as Γ− valid in its domain of definition. Both

parametrisations have the same asymptotic expansion valid in the intersections of the

domains Sh × D±
r± (see Figure 3.1). It is clear that the intersection of the domains

has two connected components and the difference Γ+ − Γ− is asymptotic to zero, i.e.,
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beyond all algebraic orders. In the following we shall obtain a more precise estimate for

the difference of the parametrisations on the lower component of the intersection set,

i.e. Sh×D1
r1 where r1 = max {r−, r+}. Similar considerations work for the upper con-

nected component. In order to obtain such estimate we will use the fact that Γ+ −Γ−

is approximately a solution of the variational equation of XH along the unstable solution

Γ−. So in the following we study the analytic solutions of the variational equation,

Du = DXH(Γ
−)u. (3.56)

It is clear that both ∂ϕΓ
− and ∂τΓ

− solve equation (3.56). Now using the theory of

Section 3.3 we can construct two other independent analytic solutions such that together

form a 4 by 4 matrix function U = (u1,u2,u3,u4) : Sh ×D−
r :→ C

4×4 which solves

equation (3.56) where the vector functions ui : Sh ×D−
r :→ C

4 are the columns of U

and satisfy the following properties,

1. u1 ∈ X1(Sh × D−
r ), u2 ∈ X−3(Sh × D−

r ), u3 ∈ X−2(Sh × D−
r ) and u4 ∈

X2(Sh ×D−
r ).

2. The first and fourth columns of the matrix U are the known solutions u1 = ∂ϕΓ
−

and u4 = ∂τΓ
−,

3. {ui}i=1,...,4 form a symplectic basis in C
4, i.e.,

Ω(u1,u2) = 0, Ω(u2,u4) = 1, Ω(u1,u4) = 0

Ω(u1,u3) = 1, Ω(u3,u4) = 0, Ω(u3,u2) = 0.
(3.57)

where Ω is the canonical symplectic form in C
4. The last property implies that U is a

symplectic matrix for all (ϕ, τ) ∈ Sh ×D−
r and det(U) = 1. A matrix U satisfying the

above properties is called a normalized fundamental matrix for the variation equation

(3.56).

Corollary 3.5.0.1. Given an analytic unstable parametrisation Γ− ≍ Γ̂ and a formal

normalized fundamental matrix Û then there is r0 > 0 such that for every r > r0
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the variational equation (3.56) has an unique normalized fundamental matrix U : Sh ×
D−
r → C

4×4 such that,

U−Un ∈ X4
n+1(Sh ×D−

r ), ∀n ≥ 3,

where Un is a partial sum of the formal series Û as defined in Remark 3.2.3.1.

Proof. From Theorem 3.3.1 we know that for every n ≥ 3 there exists r0 > 0 such

that for every r > r0 there exists an unique canonical fundamental matrix U such that

U−Un ∈ Xn+1(Sh ×D−
r ). Thus we only need to prove that U is in fact independent

of n. Indeed for all n ≥ 3, we can trace the proof of Theorem 3.3.1 and see that, by

increasing r if necessary, we can make ‖U−U3‖3 as small as we want in order apply

the contraction mapping theorem. Now due to the uniqueness of the fixed point we get

independence from n.

Theorem 3.5.1. Let µ0 > 0 be very small, then there exist a vector Θ∗ ∈ C
4 and an

r0 > 0 such that for r > r0 we have the following asymptotic formula for the difference,

Γ+(ϕ, τ)− Γ−(ϕ, τ) = e−i(τ−ϕ)U(ϕ, τ)Θ∗ +O(e−(2−µ0)i(τ−ϕ)), (3.58)

valid in Sh×D1
r where U is a normalized fundamental matrix of the variational equation

(3.56).

Proof. Let ξ∗ = Γ+ − Γ−. Notice that ξ∗ ∈ Xn(Sh ×D1
r1) for all n ≥ 6. Let us prove

that ξ∗ admits an exponentially small upper bound. Using the fact that both Γ− and

Γ+ are solutions of (3.48) we can write,

Dξ∗ +DΓ− = XH(Γ
− + ξ∗)

⇔ Dξ∗ −DXH(Γ
−)ξ∗ = XH(Γ

− + ξ∗)−XH(Γ
−)−DXH(Γ

−)ξ∗.

Now we rewrite the previous equation as follows,

L(ξ∗) = Q(ξ∗), (3.59)
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where L(ξ∗) = Dξ∗ −DXH(Γ
−)ξ∗ and

Q(ξ∗) = XH(Γ
− + ξ∗)−XH(Γ

−)−DXH(Γ
−)ξ∗.

Similar estimates as in the proof of theorem 3.4.1 (in particular the estimate (3.53))

show that given r2 > max
{

r1,
1

sin θ0

}

we have,

‖Q(ξ∗)‖n+3 ≤
8 ‖H‖C3 ‖ξ∗‖2n
(r sin θ0)n

, (3.60)

valid in Sh×D1
r for every r > r2 and every n ≥ 6. Therefore, Q(ξ∗) ∈ Xn+3(Sh×D1

r )

for n ≥ 6. Moreover, due to Corollary 3.5.0.1 there exists an r3 > 0 such that for r > r3

there exists a unique normalized fundamental matrix U : Sh × D1
r → C

4×4 such that

L(U) = 0 and U ≍ Û. Hence for r > max
{
π tan θ0
1−tan θ0

, r3, r2

}

we can apply Theorem

2.4.2 and get a bounded operator L−1 : Xn+3(Sh × D1
r) → Xn(Sh × D1

r) which is a

right inverse of L, i.e., LL−1 = Id. Consequently, the function,

ξ0 = ξ∗ − L−1(Q(ξ∗)), (3.61)

belongs to the kernel of L. Thus, due to Theorem 2.4.2 there exists a 2π-periodic

analytic function c0 : Hr−h → C
4, continuous on the closure of its domain, such that

ξ0(ϕ, τ) = U(ϕ, τ)c0(τ − ϕ). The domain of c0 is a half plane,

Hr−h = {s ∈ C | Im(s) < −r + h} .

Therefore equation (3.61) is equivalent to,

ξ∗ = L−1(Q(ξ∗)) +Uc0,

and the function ξ∗ is a fixed point of the nonlinear operator,

ξ 7→ L−1(Q(ξ)) +Uc0, (3.62)

which is defined in Xn(Sh × D1
r). Now let ρ = 2 ‖Uc0‖n. Similar estimates as in

the proof of Theorem 3.4.1 show that the nonlinear operator (3.62) is contracting in
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Bρ =
{
ξ ∈ Xn(Sh ×D1

r ) | ‖ξ‖n ≤ ρ
}
provided r > r4 where,

r4 >

(

16
∥
∥L−1

∥
∥
n,n+3

‖H‖C3 ρ
) 1

n−4

sin θ0
.

Therefore, by the contracting mapping theorem, the sequence (ξk)k≥0 defined by,

ξk+1 = L−1(Q(ξk)) +Uc0, k ≥ 0, (3.63)

converges to ξ∗, i.e., ‖ξk − ξ∗‖n → 0 as k → ∞. Now define a new sequence of

functions ξ̃k as follows,

ξ̃k(ϕ, τ) = ei(τ−ϕ)U−1(ϕ, τ)ξk(ϕ, τ), ∀k ∈ N0. (3.64)

In order to prove an exponential upper bound for ξ∗ it is sufficient to prove that there

exists an C∗ > 0 such that,

Ck := sup
(ϕ,τ)∈Sh×D1

r

4∑

i=1

∣
∣
∣ξ̃k,i(ϕ, τ)

∣
∣
∣ < C∗, ∀k ≥ 0, (3.65)

where ξ̃k,i are the components of the vector function ξ̃k. Taking into account (3.64)

and (3.65) it is not difficult to derive the following bound for ‖ξk‖n,

‖ξk‖n ≤ 4KU sup
(ϕ,τ)∈Sh×D1

r

∣
∣
∣τn+4e−i(τ−ϕ)

∣
∣
∣Ck.

Thus according to (3.60) and the previous estimate we obtain,

‖Q(ξk)‖n+3 ≤
27 ‖H‖C3 K2

U
sup(ϕ,τ)∈Sh×D1

r

∣
∣τ2n+8e−2i(τ−ϕ)

∣
∣

(r sin θ0)n
C2
k . (3.66)

Now we construct another right inverse of L as follows. Using (3.64) and (3.65) and

again similar estimates as in the proof of the Theorem 3.4.1 (in particular (3.52)) show

that the components of Q(ξk) can be bounded by,

2 ‖H‖C3 KU

∣
∣
∣e−2i(τ−ϕ)τ6

∣
∣
∣C2

k ,

valid in Sh ×D1
r . Thus, if µ

′ > 0 is any small positive real number we have,

‖Q(ξk)‖µ′ ≤ 8 ‖H‖C3 KU sup
(ϕ,τ)∈Sh×D1

r

∣
∣
∣e−µ

′i(τ−ϕ)τ6
∣
∣
∣C2

k . (3.67)
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Thus, for a given 1 > µ0 > µ′ we can apply Theorem 2.4.3 and obtain a bounded

linear operator L−1
µ′ : Yµ′(Sh×D1

r) → Yµ0(Sh×D1
r ) which is a right inverse of L, i.e.,

LL−1
µ′ = Id.

Note that L−1(Q(ξk)) − L−1
µ′ (Q(ξk)) belongs to the kernel of L. It follows

from Theorem 2.4.2 that there exists a 2π-periodic analytic function ck : Hr−h → C
4,

continuous on the closure of its domain, such that,

Uck = L−1(Q(ξk))− L−1
µ′ (Q(ξk)). (3.68)

In order to prove the uniform bound (3.65) we rewrite the recursion formula in (3.63)

as follows,

ξk+1 = L−1
µ′ (Q(ξk)) +Uck +Uc0. (3.69)

Now taking into account the relation (3.64) the previous equation is equivalent to,

ξ̃k+1 = ei(τ−ϕ)U−1L−1
µ′ (Q(ξk)) + ei(τ−ϕ)ck + ei(τ−ϕ)c0. (3.70)

The remaining steps of the proof are to estimate these functions in a proper way.

In order to simplify the presentation of the subsequent estimates, it is convenient to

introduce an adapted supremum norm as follows. Given a bounded analytic function

g = (g1, . . . , g4) : Sh ×D1
r× → C

4 consider its norm ‖g‖1 defined by,

‖g‖ = sup
(ϕ,τ)∈Sh×D1

r

4∑

i=1

|gi(ϕ, τ)| .

We also consider its usual induced norm on the space of 4 by 4 matrices valued functions

G = (Gi,j) : Sh ×D1
r× → C

4,

‖G‖ = max
j=1,...,4

sup
(ϕ,τ)∈Sh×D1

r

4∑

i=1

|Gi,j(ϕ, τ)| .

Note that
∥
∥
∥ξ̃k

∥
∥
∥ = Ck and for a given analytic function γ : D1

r → C such that γ(τ) =

O(τ−3) we have,
∥
∥γU−1

∥
∥ ≤ 4KU−1 sup

τ∈D1
r

∣
∣τ3γ(τ)

∣
∣ . (3.71)
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With this norm in mind it is not difficult to get the following inequalities,

∥
∥τnL−1(Q(ξk))

∥
∥ ≤

∥
∥L−1(Q(ξk))

∥
∥
n
,

∥
∥
∥e(2−µ0)i(τ−ϕ)L−1

µ′ (Q(ξk))
∥
∥
∥ ≤

∥
∥
∥L−1

µ′ (Q(ξk))
∥
∥
∥
µ0
.

(3.72)

Now let us estimate the terms in the right hand side of equation (3.70). Starting

with the first term we get,

ei(τ−ϕ)U−1L−1
µ′ (Q(ξk)) = e(µ0−1)i(τ−ϕ)U−1e(2−µ0)i(τ−ϕ)L−1

µ′ (Q(ξk)).

Taking into account (3.71) and (3.72) we obtain the following estimate,
∥
∥
∥ei(τ−ϕ)U−1L−1

µ′ (Q(ξk))
∥
∥
∥ ≤

∥
∥
∥e(µ0−1)i(τ−ϕ)U−1

∥
∥
∥

∥
∥
∥e(2−µ0)i(τ−ϕ)L−1

µ′ (Q(ξk))
∥
∥
∥ ,

≤ 4KU−1 sup
(ϕ,τ)∈Sh×D1

r

∣
∣
∣τ3e(µ0−1)i(τ−ϕ)

∣
∣
∣

∥
∥
∥L−1

µ′ (Q(ξk))
∥
∥
∥
µ0
.

Thus, using (3.67) we get,

∥
∥
∥ei(τ−ϕ)U−1L−1

µ′ (Q(ξk))
∥
∥
∥ ≤ K̄C2

k , (3.73)

where

K̄ = 25KU−1KU

∥
∥
∥L−1

µ′

∥
∥
∥
µ0,µ′

‖H‖C3 sup
(ϕ,τ)∈Sh×D1

r

∣
∣
∣τ9e−(1−(µ0−µ′))i(τ−ϕ)

∣
∣
∣ <∞, (3.74)

since n ≥ 6 and 0 < µ′ < µ0 < 1. Now we deal with the second term of equation

(3.70). Taking into account (3.68) we write,

ck = U−1L−1(Q(ξk))−U−1L−1
µ′ (Q(ξk)),

= τ−nU−1τnL−1(Q(ξk))− e−(2−µ0)i(τ−ϕ)U−1e(2−µ0)i(τ−ϕ)L−1
µ′ (Q(ξk)).

Thus, using the estimates (3.71) and (3.72) we can bound ck as follows,

‖ck‖ ≤
∥
∥τ−nU−1

∥
∥
∥
∥τnL−1(Q(ξk))

∥
∥ +

∥
∥
∥e−(2−µ0)i(τ−ϕ)U−1

∥
∥
∥

∥
∥
∥e(2−µ0)i(τ−ϕ)L−1

µ′ (Q(ξk))
∥
∥
∥ ,

≤ 4KU−1

(

sup
τ∈D1

r

∣
∣τ3−n

∣
∣
∥
∥L−1(Q(ξk))

∥
∥
n

+ sup
(ϕ,τ)∈Sh×D1

r

∣
∣
∣τ3e−(2−µ0)i(τ−ϕ)

∣
∣
∣

∥
∥
∥L−1

µ′ (Q(ξk))
∥
∥
∥
µ0

)

.

(3.75)
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Thus (3.66), (3.67) and (3.75) imply that,

‖ck‖ ≤ Kck
e−r+hC2

k , (3.76)

where,

Kck
= 25KU−1KU ‖H‖C3

(
24
∥
∥L−1

∥
∥
n,n+3

KU sup(ϕ,τ)∈Sh×D1
r

∣
∣τn+11e−i(τ−ϕ)

∣
∣

rn sinn θ0

+ sup
(ϕ,τ)∈Sh×D1

r

∣
∣
∣τ9e−(1−(µ0−µ′))i(τ−ϕ)

∣
∣
∣

∥
∥
∥L−1

µ′

∥
∥
∥
µ0,µ′

)

<∞,

(3.77)

since n ≥ 6 and 0 < µ′ < µ0 < 1.

In order to complete the estimation of the terms of equation (3.70) we need the

following simple result from complex analysis,

Claim 3.5.1.1. Let σ > 0 and c : Hσ → C an analytic function, 2π-periodic, continuous

in the closure of Hσ and limIm(s)→−∞ c(s) = 0. Then we can bound the function c as

follows,

|c(s)| ≤ sup
Im(s)=−σ

|c(s)| eIm(s)+σ. (3.78)

Proof. The proof is very simple as is just an application of the maximum modulus

principle for analytic functions.

Applying the previous result to each component of the 2π-periodic analytic vector

function ck = (ck,1, . . . , ck,4) : Hr−h → C
4 we get,

|ck,i(s)| ≤ sup
Im(s)=−r+h

|ck,i(s)| eIm(s)+r−h, i = 1, . . . , 4.

Thus,

sup
(ϕ,τ)∈Sh×D1

r

∣
∣
∣ei(τ−ϕ)ck,i(τ − ϕ)

∣
∣
∣ ≤ sup

Im(s)=−r+h
|ck,i(s)| er−h, i = 1, . . . , 4,

and taking into account (3.76) we get,

∥
∥
∥ei(τ−ϕ)ck

∥
∥
∥ ≤ Kck

C2
k . (3.79)
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For the last term of equation (3.70) we know that c0 = U−1ξ0 and taking into account

(3.64) we conclude that
∥
∥eiτc0

∥
∥ = C0. Using the previous claim we can show that

C0 < ∞. Thus, it follows from equation (3.70) and the estimates (3.73) and (3.79)

that,

Ck+1 ≤
(
K̄ +Kck

)
C2
k + C0. (3.80)

Note that both K̄ and Kck
which are given by expressions (3.74) and (3.77) respectively

decay to zero as r → +∞. In fact for any m ∈ N it is easy to see that K̄ = O(r−m)

and Kck
= O(r−m). Thus there exist r0 > 0 sufficiently large such that for r > r0 we

have,
(
K̄ +Kck

)
C0 ≤

1

4
,

which together with (3.80) implies that Ck ≤ 2C0 for all k ≥ 0. Consequently
∥
∥ei(τ−ϕ)U−1ξ∗

∥
∥ ≤ 2C0. In order to finish the proof of the theorem note that the

estimate (3.67) applied to ξ∗ implies that Q(ξ∗) ∈ Yµ′(Sh × D1
r). Moreover, as

ξ∗ − L−1
µ′ (Q(ξ∗)) ∈ Ker(L) then there exists a analytic 2π-periodic vector function

c∗ : Hr−h → C
4 such that ξ∗ = Uc∗ +L−1

µ′ (Q(ξ∗)). Since limIm(s)→−∞ c∗(s) = 0, we

can write its Fourier series as follows,

c∗(s) =
∞∑

m=1

c∗,me
−ims,

where c∗,m ∈ C
4. Moreover, as

L−1
µ′ (Q(ξ∗)) ∈ Yµ0(Sh ×D1

r ),

we have that,

ξ∗(ϕ, τ) = e−i(τ−ϕ)U(ϕ, τ)Θ∗ +O
(

e−(2−µ0)i(τ−ϕ)
)

,

where Θ∗ := c∗,1. This completes the proof of the Theorem.

Remark 3.5.1.1. One can repeat the arguments of the previous proof and obtain a

similar estimate for the difference of the parametrisations defined on the upper connected
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component Sh ×D1,+
r ,

Γ+(ϕ, τ) − Γ−(ϕ, τ) = ei(τ−ϕ)U(ϕ, τ)Θ+
∗ +O(e(2−µ0)i(τ−ϕ)),

where D1,+
r = D+

r ∩D−
r ∩{τ ∈ C | Imτ > r}, Θ+

∗ ∈ C
4 and µ0 > 0 is arbitrarily small.

Remark 3.5.1.2. Note that the previous Theorem provides an exponentially small upper

bound for the difference Γ+ − Γ−. In fact, there exists an M > 0 such that,

∥
∥Γ+(ϕ, τ) − Γ−(ϕ, τ)

∥
∥ ≤M |τ |3 eIm(τ),

valid in Sh ×D1
r .

3.5.1 Stokes Constant

In this subsection we use the asymptotic formula of Theorem 3.5.1 to construct an

analytic invariant known as Stokes constant that measures the splitting distance of the

complex invariant manifolds parametrised by Γ±. This constant is also related to the

Stokes phenomenon where two difference analytic functions which possess a common

asymptotic expansion in a common region differ by an exponentially small term. The

Stokes constant is the normalized amplitude of this exponentially small term. In order

to define this invariant, let us first prove two technical Lemmas which we will use later

on. Let ∆(ϕ, τ) = Γ+(ϕ, τ) − Γ−(ϕ, τ).

Lemma 3.5.1. For every v ∈ C
4 we have,

Ω(Θ±
∗ , v) = lim

Im(τ)→±∞
Ω(∆(ϕ, τ),U(ϕ, τ)v)e∓i(τ−ϕ) ,

where the convergence of the limit in the right hand side is uniform with respect to

ϕ ∈ Sh.

Proof. According to Theorem 3.5.1 and Remark 3.5.1.1 we have the following asymp-

totic formula,

∆(ϕ, τ) = e±i(τ−ϕ)U(ϕ, τ)Θ±
∗ +O

(

e±(2−µ0)i(τ−ϕ)
)

, (3.81)
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valid in Sh ×D1,±
r for µ0 ∈ (0, 1) very small, r > 0 sufficiently large. Now taking into

account that U is a normalized fundamental matrix and formula (3.81) we get at once,

Ω(∆(ϕ, τ),U(ϕ, τ)v)e∓i(τ−ϕ) = Ω(U(ϕ, τ)Θ±
∗ ,U(ϕ, τ)v) +O

(

e±(1−µ0)i(τ−ϕ)
)

,

= Ω(Θ±
∗ , v) +O

(

e±(1−µ0)i(τ−ϕ)
)

.

which proves the desired formula by taking the limit as Im(τ) → ±∞. Moreover it is

clear that the convergence is uniform with respect to ϕ ∈ Sh.

Lemma 3.5.2. The following limits exist, are independent of ϕ and the convergence is

uniform in Sh,

Θ±
0 := lim

Im(τ)→±∞
Ω(∆(ϕ, τ), ∂ϕΓ

−(ϕ, τ))e∓i(τ−ϕ) <∞. (3.82)

Moreover,

1. Θ±
0 = − lim

Im(τ)→±∞
Ω(∆(ϕ, τ), ∂τΓ

−(ϕ, τ))e∓i(τ−ϕ) ,

2. If H is real analytic then,

Θ+
0 =







−Θ−
0 if η > 0,

Θ−
0 if η < 0.

3. For any other solutions Γ̃± ∈ X1(Sh × D±
r̃ ) of equation (3.4) such that Γ̃± ≍

ˆ̃
Γ where ˆ̃

Γ ∈ τ−1T4
C
[[τ−1]] is a formal solution of equation (3.4) we have the

following relation Θ̃±
0 = Θ±

0 e
±i(τ0−ϕ0) for some (ϕ0, τ0) ∈ C

2 where the definition

of Θ̃±
0 is analogous to (3.82) for the parametrisations Γ̃±.

Proof. That the limits (3.82) exist and are uniform with respect to ϕ follows from the

previous Lemma with v = (1, 0, 0, 0). Now let us prove that

Θ−
0 = − lim

Im(τ)→−∞
Ω(∆(ϕ, τ), ∂τΓ

−(ϕ, τ))ei(τ−ϕ) ,

(the + case being completely analogous). First note that (3.81) implies,

H(Γ+(ϕ, τ)) = H(Γ−(ϕ, τ)) +∇H(Γ−(ϕ, τ))∆(ϕ, τ) +O(e−2i(τ−ϕ)).
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Now taking into account that H(Γ±(ϕ, τ)) = 0 we get,

lim
Im(τ)→−∞

∇H(Γ−(ϕ, τ))∆(ϕ, τ)ei(τ−ϕ) = 0. (3.83)

Moreover,

∇H(Γ−)∆ = Ω(XH(Γ
−),∆) = Ω(DΓ−,∆) = −

(
Ω(∆, ∂ϕΓ

−) + Ω(∆, ∂τΓ
−)
)
.

Thus, (3.83) yields,

lim
Im(τ)→−∞

(
Ω(∆(ϕ, τ), ∂ϕΓ

−(ϕ, τ)) + Ω(∆(ϕ, τ), ∂τΓ
−(ϕ, τ))

)
ei(τ−ϕ) = 0

which proves the desired equality.

Now suppose that H is real analytic and η > 0. Let us prove that Θ−
0 = −Θ+

0 .

Since Θ−
0 is defined by a limit as Im(τ) → −∞ we can take a sequence τn = −iσn

where σn is any real sequence such that σn → +∞ as n→ +∞. Then,

Θ−
0 = lim

n→+∞
Ω(∆(0,−iσn), ∂ϕΓ−(0,−iσn))eσn .

Now it follows from Remark 3.2.2.2 that∆(0,−iσn) = ∆(π, iσn) and ∂ϕΓ−(0,−iσn) =
∂ϕΓ

−(π, iσn). Thus,

Θ−
0 = lim

n→+∞
Ω(∆(0,−iσn), ∂ϕΓ−(0,−iσn))eσn

= lim
n→+∞

Ω(∆(π, iσn), ∂ϕΓ
−(π, iσn))e

i(−iσn−π)e−iπ

= −Θ+
0 .

Analogous considerations can be used to prove that Θ−
0 = Θ+

0 when η < 0.

Finally, let Γ̃± ∈ X1(Sh × D±
r̃ ) be two solutions of equation (3.4) asymptotic

to ˆ̃
Γ. Then it follows from Theorem 3.2.2 that there exist (ϕ0, τ0) ∈ C

2 such that

ˆ̃
Γ(ϕ, τ) = Γ̂(ϕ+ϕ0, τ +τ0). Thus, uniqueness of solutions Γ̃

± ≍ ˆ̃
Γ and Γ± ≍ Γ̂ allows

us to conclude that Γ̃±(ϕ, τ) = Γ±(ϕ+ ϕ0, τ + τ0). Therefore,

Θ̃±
0 = lim

Im(τ)→±∞
Ω(Γ̃+(ϕ, τ) − Γ̃−(ϕ, τ), ∂ϕΓ̃

−(ϕ, τ))e∓i(τ−ϕ)

= lim
Im(τ)→±∞

Ω(∆(ϕ+ ϕ0, τ + τ0), ∂ϕΓ
−(ϕ+ ϕ0, τ + τ0))e

∓i(τ+τ0−(ϕ+ϕ0))e±i(τ0−ϕ0)

= Θ±
0 e

±i(τ0−ϕ0).
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Theorem 3.5.2 (Stokes constant). Let H0 be the space of analytic Hamiltonian func-

tions H : U → C which have the same properties as described in the introduction of the

present Chapter. For a given H ∈ H0 the constants Θ
±
0 define a functional K0 : H0 → C

according to the formula,

K0 = −Θ−
0 Θ

+
0 .

In other words, K0 is independent of the choice of the parametrisations Γ±. Moreover,

K0 is independent of the coordinate system, i.e., if H̃ ∈ H0 is another Hamiltonian

function which is conjugated to H, i.e., H̃ = H ◦ Ψ for some analytic symplectic map

Ψ which fixes the origin Ψ(0) = 0 then K0(H) = K0(H̃). The number
√

K0(H) is

known as the Stokes constant.

Proof. This Theorem follows directly from the previous Lemmas since all the freedom

we have in the definition of the K0 comes from the freedom of the parametrisations

Γ±. As the parametrisations are defined up to translation in (ϕ, τ) we get the desired

conclusion which follows from the third item of the previous Lemma. The coordinate

independence also follows from similar considerations.

Remark 3.5.2.1. If H is real analytic then,

K0(H) =







∣
∣Θ−

0

∣
∣2 if η > 0,

−
∣
∣Θ−

0

∣
∣2 if η < 0.

In the stable case, i.e. η > 0, the Stokes constant is equal to
∣
∣Θ−

0

∣
∣.

Remark 3.5.2.2. If the Stokes constant
√

K0(H) does not vanish then the asymptotic

formula (3.58) provides an exponentially small lower bound for the splitting distance

‖Γ+(ϕ, τ) − Γ−(ϕ, τ)‖. Thus implying that H is non-integrable and that the normal

form transformation Φ diverges.

Corollary 3.5.2.1. If H is real analytic and XH is reversible with respect to the involu-

tion (3.16) then there exist parametrisations Γ± : Sh ×D±
r → C

4 which are symmetric
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in the sense that Γ±(ϕ, τ) = S(Γ±(−ϕ̄,−τ̄)) such that the corresponding constant Θ−
0

is a purely imaginary number, i.e., Re(Θ−
0 ) = 0.

Proof. It follows from Remark 3.2.2.2 and the reversibility of XH that there exists a

formal solution Γ̂ ∈ τ−1TC4 [[τ−1]] of equation (3.4) such that,

Γ̂(ϕ, τ) = S(Γ̂(−ϕ̄,−τ̄)). (3.84)

This formal solution is unique up to translation ϕ + π, that is, if ˆ̃
Γ is another formal

solution of the same class satisfying (3.84) then there is a number k ∈ {0, 1} such

that ˆ̃
Γ(ϕ, τ) = Γ̂(ϕ + kπ, τ). Now due to Theorem 3.4.1 and Theorem 3.4.2 there

exist unique Γ± : Sh × D±
r → C

4 such that Γ± ≍ Γ̂. If we define Γ̃±(ϕ, τ) =

S(Γ±(−ϕ̄,−τ̄)) and taking into account that H is real analytic we conclude that the

functions Γ̃± : Sh×D±
r → C

4 are solutions of equation (3.4) and due to (3.84) we also

have that Γ̃± ≍ Γ̂. Thus, uniqueness of Γ± implies that S(Γ±(−ϕ̄,−τ̄)) = Γ±(ϕ, τ)

yielding the first part of the corollary. As for the second part, taking into account the

previous Theorem, we can write Θ−
0 as follows,

Θ−
0 = lim

n→+∞
Θ(0,−iσn)eσn ,

where σn is any real sequence such that σn → +∞ as n→ +∞. Thus,

Θ−
0 = lim

n→+∞
Ω(∆(0,−iσn), ∂τΓ−(0,−iσn))eσn

= lim
n→+∞

Ω(S(∆(0,−iσn)),S(∂τΓ−(0,−iσn)))eσn

= − lim
n→+∞

Ω(∆(0,−iσn), ∂τΓ−(0,−iσn))eσn

= −Θ−
0 .

Remark 3.5.2.3. In fact the parametrisations Γ± of the previous Corollary are uniquely

defined by the reversibility up to a translation ϕ+ π in the first argument.

93



3.5.2 Analytic dependence of K0 on a parameter

Let H : U × D(ν0) → C
4 be an analytic function where U ⊂ C

4 is an open connected

neighbourhood of the origin and D(ν0) an open disc on the complex plane having radius

ν0 > 0 and centered at 0. We also suppose that H is continuous on the closure of

U × D(ν0). For x ∈ U and ν ∈ D(ν0) we shall write Hν(x) instead of H(x, ν) and say

that Hν is an one-parameter analytic family of Hamiltonian functions. Moreover, for

each ν ∈ D(ν0) we assume that each Hamiltonian function Hν satisfies the assumptions

of the previous Theorems and that the coefficient η which was defined in the introduction

of the present Chapter and depends analytically on the parameter ν satisfies the non-

degenerate condition,

η(ν) 6= 0, for ν ∈ D(ν0). (3.85)

Now by the theory of the previous sections (in particular Theorem 3.5.2) the function

K0 : D(ν0) → C is well defined. Now we consider the following question: How regular

is the function K0? The next Theorem provides the answer,

Theorem 3.5.3. There exist ν0 > 0 and parametrisations Γ±
ν analytic with respect to

ν ∈ D(ν0) such that Θ±
0 : D(ν0) → C are analytic functions.

According to the definition of K0 (in Theorem 3.5.2) we conclude that K0 :

D(ν0) → C is analytic since K0 is independent of the choice of the parametrisations.

Proof of Theorem 3.5.3. Tracing the proofs of Theorems 3.2.1, 3.2.2 and 3.2.3 it is not

difficult to see that there exist formal series Γ̂ν and Ûν such that the coefficients of

the these formal series depend polynomially on a finite number of coefficients of Hν

which are assumed to be analytic with respect to ν. Thus the coefficients of both Γ̂ν

and Ûν are analytic with respect to ν. Note that the theory on the linear operators

developed in Chapter 2 can be generalized to functions which are also analytic with

respect to ν and following the proofs of Theorems 3.3.1 and 3.4.1 and the fact that

the fundamental matrix U0 defined in (2.39) does not depend on ν we conclude that

there exist a normalized fundamental matrix Uν and analytic parametrisations Γ±
ν , all
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of which are analytic with respect to ν such that Uν ≍ Ûν and Γ±
ν ≍ Γ̂ν . Finally, let

∆ν = Γ+
ν − Γ−

ν , then according to the proof of Theorem 3.5.1 we conclude that,

∆ν = Uνcν +Rν , (3.86)

where cν is an analytic 2π-periodic vector function defined in a lower half complex plane,

analytic with respect to ν, decaying to zero as Im τ → −∞ andRν = O(e−(2−µ0)i(τ−ϕ))

where the bound is uniform with respect to ν for some 0 < µ0 < 1 very small. Now as

in the proof of Theorem 3.5.1 we can represent cν in Fourier series and conclude that,

cν(τ − ϕ) = Θνe
−i(τ−ϕ) +O(e−2i(τ−ϕ)), (3.87)

where the bound is uniform with respect to ν and,

Θν =
1

2π

∫ 2π−iσ

−iσ
cν(s)e

isds, (3.88)

for some σ > 0. Clearly Θν is analytic with respect to ν. Thus following the proof of

Theorem 3.5.2 and taking into account (3.86), (3.87) and (3.88) we have that,

Θ−
0 (ν) := lim

Im(τ)→−∞
Ω(∆ν(ϕ, τ), ∂ϕΓ

−
ν (ϕ, τ))e

i(τ−ϕ) = −Θν,3

where Θν,3 is the third component of the vector Θν . Thus Θ
−
0 is an analytic function of

ν. This concludes the proof as analogous considerations applied to Θ+
0 yields analyticity

in ν.

3.5.3 The Stokes constant does not vanish identically

In this subsection we address the following question: Does the Stokes constant
√K0

vanish identically? The answer is no. We shall construct an Hamiltonian satisfying the

assumptions of Theorem 3.5.2 such that the corresponding Stokes constant does not

vanish.
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An important example

Let us define the following family Hν of Hamiltonians,

Hν = −I1 + I2 + ηI23 + νq52,

where η > 0, ν is in some disc of fixed radius around the origin and Ii, i = 1, . . . , 3 are

defined in (3.1). Notice that H0 = H0 as defined in (3.1) and moreover H0 is integrable

(where I1 is first integral independent of H0). We will often refer to subsection 2.4.2

of Chapter 2 for a detailed study of the parametrisations and corresponding variational

equations of H0.

Now according to Theorem 3.4.1 (resp. Theorem 3.4.2) there exist r > 0 and

analytic parametrisations Γ±
ν : Sh ×D±

r → C
4 which are also analytic with respect to

ν. As the parametrisations are analytic in ν we can write them as follows,

Γ±
ν = Γ0 + νξ±0 +O(ν2), (3.89)

where Γ0 is the parametrisation of H0, i.e. DΓ0 = XH0(Γ0), which is defined in (2.36)

and ξ±0 satisfy the following equation,

L0(ξ
±
0 ) = Xq52

(Γ0), (3.90)

where L0 is the linear operator defined in (2.38). For our convenience, let us recall the

form of Γ0,

Γ0(ϕ, τ) =
(
κτ−2 cosϕ, κτ−2 sinϕ, κτ−1 cosϕ, κτ−1 sinϕ

)T
.

The linear operator L0 has a normalized fundamental matrix U0, i.e. L0(U0) = 0,

which can be found in (2.39). Thus, by Theorem 2.4.1 the linear operator L0 : X8(Sh×
D±
r ) → X8(Sh ×D±

r ) has trivial kernel and has an unique bounded right inverse L−1
0 :

X8(Sh×D±
r ) → X7(Sh×D±

r ) (see section 2.4.2 for the definition of the Banach spaces

Xp). Notice that we have overloaded the notation of the linear operator L0 and its

inverse since we write the same letter for the − and + case. Now a simple computation
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shows that,

Xq52
(Γ0) =

(

0, 0, 0,−5κ4 sin4 ϕ

τ8

)T

.

Thus, Xq52
(Γ0) ∈ X8(Sh ×D±

r ) and we can invert equation (3.90) to get,

ξ±0 = L−1
0 (Xq52

(Γ0)).

In fact, following the proof of the Theorem 2.4.1 we can write explicit integrals for ξ±0

which read,

ξ−0 (ϕ, τ) = U0(ϕ, τ)

∫ 0

−∞
U−1

0 (ϕ+ s, τ + s)Xq52
(Γ0(ϕ+ s, τ + s))ds,

ξ+0 (ϕ, τ) = −U0(ϕ, τ)

∫ +∞

0
U−1

0 (ϕ+ s, τ + s)Xq52
(Γ0(ϕ+ s, τ + s))ds.

Our goal is to compute the Stokes constant
√

K0(ν). Recall that K0(ν) is analytic with

respect to ν and by definition K0(ν) = −Θ−
0 (ν)Θ

+
0 (ν) where Θ±

0 (ν) are defined by the

limits (3.82), depend on the parametrisations Γ±
ν and are also analytic with respect to

ν. Moreover, it is not difficult to see that the family XHν is reversible with respect to

the involution S defined in (3.16). Thus, Remark 3.5.2.1 and Corollary 3.5.2.1 give that
√

K0(ν) =
∣
∣Θ−

0 (ν)
∣
∣ where Re(Θ−

0 (ν)) = 0. Moreover, since H0 is integrable we know

that K0(0) = 0. So in order to prove that
√

K0(ν) is non-zero for a certain ν it is

sufficient to prove that the derivative of Θ−
0 (ν) at ν = 0 does not vanish. The following

Lemma provides a formula for computing the first derivative,

Lemma 3.5.3. Let ∆0 = ξ+0 − ξ−0 . Then,

dΘ−
0

dν

∣
∣
∣
∣
ν=0

= lim
Im τ→−∞

Ω(∆0(ϕ, τ), ∂ϕΓ0(ϕ, τ))e
i(τ−ϕ). (3.91)

Let us postpone the proof of this Lemma to the end of the present subsection.

In order to use the formula of the previous Lemma we have to compute the difference

∆0 = ξ+0 − ξ−0 . It follows from (3.89) and the formulae for ξ±0 that,

∆0 = U0c0 where c0(ϕ, τ) = −
∫ +∞

−∞
F0(ϕ+ s, τ + s)ds, and,

F0(ϕ, τ) := U−1
0 (ϕ, τ)Xq52

(Γ0(ϕ, τ))

(3.92)
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Moreover, from equations (3.90) we conclude that L0(∆0) = 0 and Theorem 2.4.2

implies that c0 is in fact a 2π-periodic analytic vector function of a single variable,

which is analytic on the union of two half planes H−
r−h ∪H

+
r−h where

H
±
r−h = {s ∈ C | ∓ Im s < −r + h} .

Taking into account the expressions for U0 and Γ0 a simple computations shows that,

F0(ϕ, τ) =

(

−10κ3 cosϕ sin4 ϕ

3τ7
,−10κ5 sin5 ϕ

τ11
,−5κ5 cosϕ sin4 ϕ

τ10
,
3κ3 sin5 ϕ

τ6

)T

.

Now since U0 is a normalized fundamental matrix it follows that,

Ω(∆0, ∂ϕΓ0) = Ω(U0c0, ∂ϕΓ0) = −c0,3, (3.93)

where c0 = (c0,1, . . . , c0,4)
T . Therefore, in order to compute

dΘ−
0

dν

∣
∣
∣
ν=0

through formula

(3.91) it is enough to compute the following integral,

c0,3(ϕ, τ) =

∫ +∞

−∞

5κ5 cos(ϕ+ s) sin4(ϕ+ s)

(τ + s)10
ds,

where (ϕ, τ) ∈ Sh×D1
r . Using the calculus of residues to compute the previous integral

it is not difficult to get,

c0,3(ϕ, τ) = −5κ5π

239!
e−i(τ−ϕ) +

3105κ5π

249!
e−3i(τ−ϕ) − 510κ5π

249!
e−5i(τ−ϕ), (3.94)

where (ϕ, τ) ∈ Sh × D1
r . Note that c0,3 only depends on τ − ϕ as predicted by the

theory. Moreover it is analytic in H
−
r−h and 2π-periodic. Finally according to the formula

(3.91), (3.93) and (3.94) we have that,

dΘ−
0

dν

∣
∣
∣
∣
ν=0

= − lim
Im τ→−∞

c0,3(ϕ, τ)e
i(τ−ϕ) =

5κ5π

239!
.

Recall that κ2 = − 2
η and since η > 0 the previous expression imply that

dΘ−
0

dν

∣
∣
∣
ν=0

6= 0.

Consequently K0(ν) and the Stokes constant do not vanish identically.

Proof of Lemma 3.5.3. According to the definition of Θ−
0 (ν) we have that,

Θ−
0 (ν) = lim

Im τ→−∞
Ω(∆ν(ϕ, τ), ∂ϕΓ

−
ν (ϕ, τ))e

i(τ−ϕ), (3.95)
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where ∆ν = Γ+
ν − Γ−

ν . Moreover, it follows from formulae (3.93) and (3.94) that,

F ∗
0 := lim

Im τ→−∞
Ω(∆0(ϕ, τ), ∂ϕΓ0(ϕ, τ))e

i(τ−ϕ) <∞. (3.96)

Now we define the following auxiliary function,

R(ϕ, τ, ν) =
(
Ω(∆ν(ϕ, τ), ∂ϕΓ

−
ν (ϕ, τ)) − Ω(∆0(ϕ, τ), ∂ϕΓ0(ϕ, τ))ν

)
ei(τ−ϕ).

Note that R is analytic in Sh×D1
r×Dν′ for some ν ′ > 0 and dR

dν (ϕ, τ, 0) = 0. Moreover,

it follows from (3.95) and (3.96) that,

lim
Im τ→−∞

R(ϕ, τ, ν) = Θ−
0 (ν)− F ∗

0 ν.

Now due to the uniform convergence of the limit we get at once,

0 =
d

dν
lim

Im τ→−∞
R(ϕ, τ, ν)

∣
∣
∣
∣
ν=0

=
dΘ−

0

dν
(0)− F ∗

0 .

Generic Families

In the previous section we have constructed an Hamiltonian having non-zero Stokes

constant. Now let H0 denote the space of analytic Hamiltonian functions H : U ⊂
C
4 → C that satisfy the properties described in the introduction of the present chapter.

Then, we have the following result,

Corollary 3.5.3.1. Given any analytic curve Hν in H0 where ν is defined in an open

disc D ⊂ C, then for every ǫ > 0 there is an ǫ-close analytic curve Fν ∈ H0 to Hν, i.e.

sup
x∈U ,ν∈D

|Hν(x)− Fν(x)| < ǫ,

such that K0(Fν) does not vanish on an open and dense subset of D.

Proof. Given Hν in H0 and a point ν0 ∈ D there exists H∗ ∈ H0 such that H∗(x) −
Hν0(x) = O(‖x‖3) and K0(H

∗) 6= 0. This simply follows from the discussion in
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the previous section and the fact that K0 is invariant under symplectic changes of

coordinates. Thus we can define,

Fν,λ := Hν + λ(H∗ −Hν0) ∈ H0.

Now it follows from K0(Fν0,λ) being analytic with respect to λ and Fν0,1 = H∗ that for

any ǫ > 0 we can choose,

δ <

(

sup
x∈U

|H∗(x)−Hν0(x)|
)−1

ǫ,

such that there is a λ∗ ∈ C with |λ∗| < δ such that K0(Fν0,λ∗) 6= 0. Then Fν,λ∗ is the

desired family.

This result implies that for a given family Hν ∈ H0 there exist another family

Fν ∈ H0 as close as we like to Hν such that K0(Fν) does not vanish on a open and

dense set of the parameter ν. An important consequence is that Fν is non-integrable

for ν on a set which is open and has full Lebesgue measure.
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Chapter 4

Splitting of Invariant Manifolds

In the present chapter we derive an asymptotic formula for the homoclinic invariant which

measures the splitting of invariant manifolds near a Hamiltonian-Hopf bifurcation. The

leading order of the asymptotic formula is given by a Stokes constant which was defined

in chapter 3.

4.1 Introduction

Let Hǫ : U ⊂ R
4 → R be an analytic family of two degrees of freedom Hamiltonians

defined in a connected open neighbourhood U of the origin and analytic with respect to ǫ

in |ǫ| < ǫ0 for some ǫ0 > 0. Moreover, we suppose that the family of Hamiltonian vector

fields XHǫ has a common equilibrium point which we can assume to be at the origin

(XHǫ(0) = 0 for every ǫ) that undergoes a Hamiltonian-Hopf bifurcation as described

in section 2.2. Thus we can assume that Hǫ has the following form,

Hǫ = −I1 + I2 − ǫI3 + ηI23 + high order terms,

where

I1 = q2p1 − q1p2, I2 =
q21 + q22

2
, I3 =

p21 + p22
2

. (4.1)

We also suppose that the normal form coefficient η is positive which corresponds to the

stable case.
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Recall that the matrix DXHǫ(0) is assumed to have two pairs of complex con-

jugate eigenvalues ±βǫ ± iαǫ such that αǫ and βǫ are positive for ǫ > 0. As ǫ → 0+,

βǫ converges to zero and αǫ converges to one. In fact we will show that αǫ = O(1) and

βǫ = O(
√
ǫ).

Thus, for ǫ > 0 the equilibrium is hyperbolic and it has two dimensional stable

(resp. unstable) manifold W s
ǫ (resp. W u

ǫ ). Following the discussion in section 2.3 of

chapter 2 we parametrize stable and unstable manifolds by solutions of the following

nonlinear PDE,

DǫΓ
s,u = XHǫ(Γ

s,u), where Dǫ = αǫ∂ϕ + βǫ∂z , (4.2)

where we have omitted the dependence of Γu,s in ǫ to ease the notation. Now to

solve equation (4.2) we require that Γs,u are 2π-periodic in ϕ and satisfy the following

asymptotic conditions,

lim
z→+∞

Γs(ϕ, z) = 0 and lim
z→−∞

Γu(ϕ, z) = 0. (4.3)

Even though these conditions do not define the parametrisations Γs,u uniquely, their

freedom is restricted to a translation in their arguments by a constant, i.e., independent

of (ϕ, z). Each of the derivatives ∂zΓ
s,u and ∂ϕΓ

s,u defines a tangent vector field on

W s,u
ǫ and it can be checked that these vector fields are defined uniquely. Indeed, since

Γs,u is defined uniquely up to a translation in (ϕ, z) plane, the tangent vector fields are

independent from the freedom in the definition of Γs,u. Moreover, the relation

Γs,u(ϕ+ αǫt, z + βǫt) = ΦtHǫ
◦ Γs,u(ϕ, z), (4.4)

where ΦtHǫ
denotes the Hamiltonian flow of Hǫ, implies that ∂ϕΓ

s,u and ∂zΓ
s,u are

invariant under the restriction of the flow ΦtHǫ

∣
∣
∣
W s,u

ǫ

.

Given a homoclinic point pǫ ∈ W u
ǫ ∩W s

ǫ we will show that it is possible to set

Γs,u(0, 0) = pǫ eliminating completely the freedom in the definition of the parametrisa-

tions. In a Hamiltonian system the symplectic form provides a natural tool for studying
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W u
ǫ

W s
ǫ

pǫ
∂ϕΓu

∂zΓ
u

∂ϕΓs

∂zΓ
s

γǫ

Figure 4.1: Illustration of stable and unstable manifolds, the symmetric homoclinic orbit
γǫ and the tangent vectors at the symmetric homoclinic point pǫ.

transversality of invariant manifolds. So we define the homoclinic invariant ωǫ of the

homoclinic point pǫ as follows,

ωǫ = Ω(∂ϕΓ
s, ∂ϕΓ

u)
∣
∣
∣
(ϕ,z)=(0,0)

. (4.5)

It is relatively straightforward to check that ωǫ is an invariant: the definition leads to

the same value for all points of the homoclinic trajectory γǫ = {ΦtHǫ
(pǫ) : t ∈ R}.

We also note that the definition of ωǫ does not depend on the choice of coordinates.

Moreover, since Γs,u belong to the energy level {Hǫ = 0}, which is three-dimensional,

the inequality ωǫ 6= 0 implies the transversality of the homoclinic trajectory γǫ.

Further, note that we have defined two vectors tangent to W u
ǫ and another two

vectors tangent toW s
ǫ at pǫ ∈W u

ǫ ∩W s
ǫ and used a pair of them to define the homoclinic

invariant (see Figure 4.1). Other pairs of tangent vectors give different definitions for

the homoclinic invariant. However these are not independent as one can show thatW s,u
ǫ

being Lagrangian manifolds imposes some relations between different definitions of ωǫ.

In fact let us define,

ωx,y = Ω(∂xΓ
u(0, 0), ∂yΓ

s(0, 0)), where x, y ∈ {ϕ, z} .
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Then the following relations are satisfied,

αǫωǫ + βǫωϕ,z = 0, αǫωǫ + βǫωz,ϕ = 0, α2
ǫωǫ − β2ǫωz,z = 0.

The proof of the previous identities is very simple as it only uses the fact that stable

and unstable manifolds are Lagrangian and the following formula,

αǫ∂ϕΓ
s(0, 0) + βǫ∂zΓ

s(0, 0) = αǫ∂ϕΓ
u(0, 0) + βǫ∂zΓ

u(0, 0).

Finally, note that the definition of the homoclinic invariant is a natural extension

of the Lazutkin’s invariant defined for homoclinic orbits of area-preserving maps [30]

and it can be easily generalized to higher dimensional Hamiltonian systems.

In what follows we shall assume that the Hamiltonian vector field Hǫ is time-

reversible with respect to the linear involution,

S(q1, q2, p1, p2) = (−q1, q2, p1,−p2). (4.6)

That is SXHǫ(x) = −XHǫ(Sx). Note that the normal form procedure preserves the

reversibility given by S. Let us denote the set of fixed points of the involution S by

Fix(S). This set is known as the symmetric plane. It is clear that given an integral curve

x(t) of XHǫ then S(x(−t)) is also an integral curve of the same Hamiltonian vector field.

In particular if x(0) ∈ Fix(S) then the curve x(t) is symmetric, i.e. x(t) = S(x(−t)). If
a symmetric curve x(t) belongs to the unstable manifold W u

ǫ then x(t) is a symmetric

homoclinic orbit and the point x(0) is called a symmetric homoclinic point.

The main result of this chapter in the following,

Theorem 4.1.1. There exists a symmetric homoclinic point pǫ ∈ Fix(S) belonging to

a symmetric homoclinic orbit such that the corresponding homoclinic invariant has the

following asymptotic formula,

ωǫ = ±2e
−παǫ

2βǫ (ω0 +O(ǫ1−µ)), (4.7)

where ω0 =
√K0 is the Stokes constant and µ > 0 is arbitrarily small.
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4.2 Formal Separatrix

In this section we construct an asymptotic series (formal separatrix) using the normal

form Hamiltonian HNF
ǫ . These series will provide approximations for the invariant

manifolds W s,u
ǫ and will be of fundamental importance in the analytic study of the

invariant manifolds.

4.2.1 Base functions of the asymptotic series

Let us describe a useful class of functions that will be used throughout the present

section. A function f : C → C belongs to this class if,

1. it is 2πi-periodic.

2. it is analytic in C except for poles at π
2 i+ kπi, for k ∈ Z.

3. f → 0 as Re(z) → ±∞.

For instance, the function γ0 defined by,

γ0(z) =

√
2

η

1

cosh(z)
(4.8)

belongs to this class, as well its derivative γ̇0. It can be shown that any function f of

this class can be written in the form,

f = p(γ0) + γ̇0q(γ0) (4.9)

where p and q are polynomials in one variable and p(0) = 0. Indeed, suppose that f(z)

satisfy the properties above. Notice that the function tanh(z) is iπ-periodic and analytic

in C except for simple poles at π
2 i + kπi for k ∈ Z. Writing the functions f(z) and

tanh(z) in Laurent series around the poles and comparing coefficients we can construct

two polynomials p̂ and q̂ such that the function f(z)−
(
cosh−1(z)p̂(tanh(z)) + q̂(tanh(z))

)

has no singularities and is bounded in C. Hence must be equal to a constant, say c ∈ C.
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Taking into account the third property of f we deduce that q̂(x) = (1 − x2)r(x) + c

where r is some polynomial. Thus,

f(z) = cosh−1(z)p̂(tanh(z)) + cosh−2(z)r(tanh(z)). (4.10)

Finally it is easy to check that x = γ0 satisfy the differential equation ẍ = x − ηx3

which can be written as an Hamiltonian system with Hamiltonian y2

2 − x2

2 + η x
4

4 . From

this observation we conclude that,

γ̇0
2 = γ20 −

η

2
γ40 . (4.11)

This relation can be used to simplify the expression (4.10) obtaining the desired repre-

sentation (4.9). It will also be useful in the construction of the formal separatrix.

4.2.2 Formal Separatrix of the normal form

Recall from chapter 2 that by a formal near identity canonical change of coordinates Φ

we can transform Hǫ into its normal form,

HNF
ǫ = Hǫ◦Φ = H0

ǫ +
∑

3m+2j+2l≥5

am,j,lI
m
1 I

j
3ǫ
l, H0

ǫ = −I1+I2−ǫI3+ηI23 , (4.12)

where Ii are given by (4.1). Now let D̂δ denote the following formal differential operator,

D̂δ = α∂ϕ + β∂z, (4.13)

where α, β ∈ R[[δ]] such that,

β = δ

√

1−
∑

l≥2

a0,1,lδ2l−2, α = 1−
∑

l≥1

a1,0,lδ
2l, (4.14)

where ai,j,l are the normal form coefficients. The definition of the formal series β and α

becomes clear in Lemma 4.4.1. Let hNFδ denote the normal form Hamiltonian HNF
ǫ in

the standard scaling (2.11). In this section we look for formal solutions of the nonlinear

PDE,

D̂δX̂ = XhNF
δ

(X̂) (4.15)
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in the form of formal series in powers of δ,

X̂(ϕ, z) =
∑

k≥0

Xk(ϕ, z)δ
k . (4.16)

If we substitute (4.16) into the equation (4.15) and collect terms of same order in δ

then we get an infinite system of equations,

∂ϕX0 +XI1(X0) = 0

∂ϕX1 +XI1(X1) = −∂zX0 +XI2(X0)−XI3(X0) + ηXI23
(X0)

...

∂ϕXk +XI1(Xk) = −∂zXk−1 +XI2(Xk−1)−XI3(Xk−1) + ηdXI23
(X0)Xk−1

+Gk(X0, . . . ,Xk−2)

...

(4.17)

where Gk is a well defined polynomial function depending exclusively from a finite

number of coefficients of the normal form hNFδ . Note that the normal form preserves

the reversibility given by the linear involution S which we recall,

S(q1, q2, p1, p2) = (−q1, q2, p1,−p2). (4.18)

Also note that the normal form is rotationally symmetric, which follows from the fact

that I1 is an integral. Indeed the Hamiltonian vector field XhNF
δ

commutes with the

rotation Rϕ defined by,

Rϕ =











cos(ϕ) − sin(ϕ) 0 0

sin(ϕ) cos(ϕ) 0 0

0 0 cos(ϕ) − sin(ϕ)

0 0 sin(ϕ) cos(ϕ)











. (4.19)

Note that −XI1 is the infinitesimal generator of the group Rϕ, i.e., ∂ϕRϕ = −XI1(Rϕ).

The infinite system (4.17) can be solved recursively if we impose the following boundary

conditions

Xk(ϕ+ 2π, z) = Xk(ϕ, z), lim
Re(z)→±∞

Xk(·, z) = 0, S(Xk(−ϕ,−z)) = Xk(ϕ, z).

(4.20)
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From the first equation of (4.17) we deduce that X0 = Rϕξ0(z) where ξ0 is an arbitrary

function and Rϕ is the rotation matrix (4.19). The second equation of (4.17) and the

2π-periodicity in ϕ imply that,

X1 = Rϕξ1(z) and ∂zξ0 = XI2(ξ0)−XI3(ξ0) + ηXI23
(ξ0). (4.21)

Taking into account that SR−ϕ = RϕS we see that the last two conditions of (4.20)

are equivalent to,

lim
Re(z)→±∞

ξ0(z) = 0 and S(ξ0(−z)) = ξ0(z). (4.22)

It is straightforward to check that ξ0 = (−γ̇0, 0, γ0, 0)T solves the second equation of

(4.21) and satisfies conditions (4.22) where γ0 is the base function defined in (4.8). Note

that X0 = Rϕξ0 is the parametrisation defined in (2.17). Moreover it is not difficult

to see that X0(ϕ, z) and X0(ϕ + π, z) are the only reversible solutions that satisfy the

boundary conditions (4.20). In the following Theorem we show that having fixed X0

as above we can continue this process to solve the system (4.17) and obtain an unique

solution that satisfy the boundary conditions (4.20).

Theorem 4.2.1 (Formal Separatrix of the normal form). Equation (4.15) has an unique

non zero formal solution X̂ satisfying the conditions (4.20) and having the form,

X̂ = Rϕ



γ̇0
∑

k≥0

ψ1
kδ

2k,
∑

k≥0

φ1k+1δ
2k+1,

∑

k≥0

φ2kδ
2k, γ̇0

∑

k≥0

ψ2
kδ

2k+1





T

, (4.23)

where the coefficients ψik are even polynomials in γ0 of deg(ψik) = 2k and φik are odd

polynomials in γ0 of deg(φik) = 2k + 1. Moreover ψ1
0 = −1 and φ20 = γ0.

Proof. Let us suppose that Xk(ϕ, z) = Rϕξk(z) for all k ≥ 0. We will justify this

assumption at the end of the proof. Thus, if X̂(ϕ, z) = Rϕξ̂(z) then equation (4.15) is

equivalent to,

α∂ϕRϕξ̂ + β∂zRϕξ̂ = XhNF
δ

(Rϕξ̂)

⇔ −αRϕXI1(ξ̂) + βRϕ∂z ξ̂ = RϕXhNF
δ

(ξ̂).
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Using the expression for the vector field XhNF
δ

and the fact that α = 1−∑l≥1 a1,0,lδ
2l

we get,

β∂z ξ̂ =
(

XI2−I3(ξ̂) + ηXI23
(ξ̂)
)

δ +
∑

3i+2j+2l=k≥5
i 6=1 or j 6=0

ai,j,lXIi1I
j
3
δk−3. (4.24)

In the following we look for formal solutions of (4.24) of the form,

ξ̂(z) =
∑

k≥0

ξk(z)δ
k . (4.25)

In the variable ξ̂ the boundary conditions (4.20) are equivalent to,

lim
Re(z)→±∞

ξk(z) = 0 and S(ξk(−z)) = ξk(z). (4.26)

The last condition implies that the first and fourth components of ξk are odd functions

and the second and third are even functions.

Substituting the series (4.25) into equation (4.24) and collecting terms of the

same order in δ we obtain an infinite system of equations similar to (4.17) but without

the rotation terms. Then at each order one has to compute solvability conditions which

allow to solve the equations with respect to ξk. These solvability conditions are difficult

to compute and there is a more convenient coordinate system such that the verification

of these conditions and the construction of a formal solution becomes much simpler. In

fact, taking advantage of the fact that hNFδ is formally integrable, where I1 is a integral

of motion, we consider the following change,

ξ1 = R cos θ − Θ
r sin θ, ξ3 = r cos θ,

ξ2 = R sin θ + Θ
r cos θ, ξ4 = r sin θ,

(4.27)

where ξ̂ = (ξ1, ξ2, ξ3, ξ4). Note that the integral I1 is equal to Θ. In these new variables
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equation (4.24) takes the form,

β∂zθ = −Θ

r2
δ −

∑

3i+2j+2l=k≥5
i 6=1 or j 6=0

iai,j,l
2j

Θi−1r2jδk−3, β∂zr = −δR, β∂zΘ = 0,

(4.28)

β∂zR =

(

−Θ2

r3
− r + ηr3

)

δ +
∑

3i+2j+2l=k≥5
i 6=1 or j 6=0

2jai,j,l
2j

Θir2j−1δk−3. (4.29)

Let us start with the third equation of (4.28). It follows that Θ(z) =
∑

k≥0Θkδ
k where

Θk ∈ C. Taking into account the first condition of (4.26) we conclude that all Θk must

vanish as Re(z) → ±∞. Hence Θk = 0, k ≥ 0.

We move on and consider now the second and fourth equations of (4.28). Taking

into account that Θ = 0, these two equations are equivalent to the following single

equation,

β2∂2zr =
(
r − ηr3

)
δ2 −

∑

2j+2l=k≥5
j≥1

2ja0,j,l
2j

r2j−1δk−2. (4.30)

In the following we construct a formal solution of (4.30) of the form,

r(z) =
∑

k≥0

rk(z)δ
k. (4.31)

Claim 4.2.1.1. Equation (4.30) has an unique non zero formal solution of the form (4.31)

satisfying the boundary conditions

lim
Re(z)→±∞

rk(z) = 0, rk(z) = rk(−z) and r0(0) > 0. (4.32)

Moreover, r(z) only contains even powers of δ and its coefficients are odd polynomials

in γ0 with real coefficients,

r(z) =
∑

k≥0

rk(z)δ
2k , where rk(z) =

k∑

l=0

rk,lγ
2l+1
0 , rk,l ∈ R.

In particular r0,0 = 1.
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Proof of Claim 4.2.1.1. Simplifying the summation indices in (4.30) we obtain an equiv-

alent equation,

β2∂2zr =
(
r − ηr3

)
δ2 −

∑

l≥2





l+1∑

j=1

2ja0,j,l+1−j

2j
r2j−1



 δ2l (4.33)

which we solve by substituting a formal power series of the form (4.31) into the equation

and collect terms of the same order in δ. Let us recall the definition of β in (4.14),

β = δ

√

1−
∑

l≥1

a0,1,l+1δ2l. (4.34)

Hence, β2 = δ2
(

1−∑l≥1 a0,1,l+1δ
2l
)

. Now we are ready to start collecting coeffi-

cients. At the order δ2 we obtain the following equation,

∂2zr0 = r0 − ηr30 (4.35)

This equation has an unique solution satisfying the boundary conditions (4.32) which

is,

r0(z) = γ0(z) =

√
2

η

1

cosh(z)

We move on to the next order in δ. Thus, collecting the coefficients of the same order

in δ3 we obtain the following equation,

∂2zr1 = (1− 3ηr20)r1

This equation is linear with respect to r1 and we rewrite it the following way,

L0(r1) = 0 where L0 =
(
∂2z − 1 + 3ηγ20

)
.

It is not difficult to compute two independent solutions for the homogeneous equation

L0 = 0. In fact, one solution is v1 = γ̇0. A second independent solution can be obtained

using the well known theory of linear differential equations and it reads,

v2 =
3η

2
(zγ̇0 + γ0)− γ−1

0

Let B denote the linear space of polynomials in the variable γ0 having real coefficients.

It is not difficult to prove the following facts concerning the operator L0,
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1. L0 : B → B is a linear map.

2. L0(γ
k
0 ) = (k − 1)(k + 1)γk0 − η

2 (k − 2)(k + 3)γk+2
0 .

3. Ker (L0) = {0}.

4. If Bo is the subset of B consisting of odd polynomials, then L0(Bo) ⊆ Bo.

5. If g ∈ Bo then equation L0(f) = g has a unique solution f ∈ Bo if and only if g

does not contain the term γ0. Moreover, if deg(g) = 2n+1 then deg(f) = 2n−1.

Thus, by item (3) we conclude that r1 = 0. In order to proceed by induction we let

k ≥ 2 and collect all terms of the same order in δk+2 in the equation (4.33). Thus,

∂zrk −
⌊k

2⌋∑

l=1

a0,1,l+1rk−2l = (1− ηγ20)rk +Gk(r0, . . . , rk−1),

where Gk is a polynomial with real coefficients. We rewrite the previous equation in the

form,

L0(rk) =

⌊k
2⌋∑

l=1

a0,1,l+1rk−2l +Gk(r0, . . . , rk−1). (4.36)

where L0 is the linear map defined above. For k = 2 the equation (4.36) reads,

L0(r2) = −a0,2,1γ30 −
3

4
a0,3,0γ

5
0 , (4.37)

and due to item (5) there exists an unique r2 ∈ Bo solving the previous equation such

that deg(r2) = 3. Now we use induction on k ≥ 2 and suppose that all coefficients

rm for m ≤ k have been uniquely determined by the equation (4.36) such that for m

odd we have rm = 0 and for even m we have rm ∈ Bo and deg(rm) = m+ 1. Let us

consider the equation (4.36) for k + 1. There are two cases to distinguish. First, when

k + 1 = 2j + 1 for some j ∈ N we have,

L0(rk+1) = 0,

due to the induction hypothesis and the fact that Gk+1 only depends on ri for odd i.

According to item (3) the linear map L0 has trivial kernel. Hence rk+1 = 0.
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On the other hand, if k + 1 = 2j for some j ∈ N then,

L0(rk+1) =

j
∑

l=1

a0,1,l+1r2(j−l) +Gk+1(r0, . . . , rk). (4.38)

Now due to induction hypothesis it is not difficult to see that Gk+1 is an odd polynomial

in the variable γ0, hence Gk+1 ∈ Bo. Moreover it can be checked that deg(Gk+1) = k+4

and

Gk+1(γ0) = −
j
∑

l=1

a0,1,l+1

[
r2(j−l)

]

1
γ0 +O(γ30),

where [.]1 denotes the coefficient of the term γ0. Thus, we can rewrite equation (4.38)

in the form,

L0(rk+1) = gk+1

where gk+1 ∈ Bo having deg(gk+1) = k + 4 and not containing the term γ0. Thus, by

item (5) of the properties of the linear map L0 we conclude that there exists an unique

rk+1 ∈ Bo such that deg(rk+1) = k + 2. Hence the claim is true.

As a direct consequence of previous Claim and taking into account the second

equation of (4.28) we conclude that,

R(z) =
∑

k≥0

Rk(z)δ
2k , where Rk(z) = γ̇0

k∑

j=0

Rk,jγ
2j
0 , Rk,j ∈ R.

In particular R0,0 = −r0,0. Note that the coefficients Rk satisfy,

lim
Re(z)→±∞

Rk(z) = 0 and Rk(−z) = −Rk(z). (4.39)

Finally, using the known formal solutions Θ and r we simplify the first equation

of (4.28) and obtain,

β∂zθ = −
∑

j+l=i≥1
j≥1,l≥0

a1,j,l
2j




∑

k≥0

rkδ
2k





2j

δ2i. (4.40)

For this equation it is possible to compute a formal solution of the form,

θ(z) =
∑

k≥0

θk(z)δ
k . (4.41)
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Claim 4.2.1.2. Equation (4.40) has an unique non zero formal solution of the form

(4.41) such that θk(−z) = −θk(z). Moreover, θ(z) only contains odd powers of δ and

its coefficients are of the form,

θ(z) =
∑

k≥0

θk(z)δ
2k+1, where θk(z) = γ̇0γ

−1
0

k∑

l=0

θk,lγ
2l
0 , θk,l ∈ R.

In particular θ0,0 =
a1,1,0
η r20,0.

Proof of Claim 4.2.1.2. Due to Claim 4.2.1.1 we know that rk = γ0Pk where Pk is an

even polynomial in the variable γ0 such that deg(Pk) = 2k. It is not difficult to see

that,



∑

k≥0

rkδ
2k





2j

= γ2j0




∑

k≥0

Pkδ
2k





2j

= γ2j0
∑

k≥0

P̃
(j)
k δ2k,

for some even polynomials P̃
(j)
k such that deg P̃

(j)
k = 2k. Thus, the sum in the right

hand side of equation (4.40) can be rewritten in the form,

β∂zθ = −
∑

k≥1





k∑

j=1

b̃j γ
2j
0



 δ2k, (4.42)

where b̃j ∈ R. We know that β−1 = δ−1
∑

k≥0 hkδ
2k for some hk ∈ R. Hence, equation

(4.42) is equivalent to,

∂zθ = −
∑

k≥0





k+1∑

j=1

bj γ
2j
0



 δ2k+1,

where bj ∈ R. In particular we have, b1 =
a1,1,0

2 . The general formal solution of the

previous equation reads,

θ(z) = θ0 −
∑

k≥0





k+1∑

j=1

bj

∫ z

γ2j0



 δ2k+1,

for any θ0 ∈ C. Since we are only interested in odd solutions, i.e. θk(−z) = −θk(z),
we can set θ0 = 0 and using the following formula,

∫ z

0
γ2j0 = −γ̇0γ−1

0

j−1
∑

i=0

(
2

η

)j−i AjA
−1
i+1

2i+ 1
γ2i0 ,
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where

Ai =

i−1∏

l=1

2l

2l + 1
and A1 = 1,

we get the desired form for the coefficients of θ(z).

At this point let us recall what we have proved. Equation (4.28) has a formal

solution of the form,

θ(z) = γ̇0γ0
∑

k≥0

Tkδ
2k+1, r(z) = γ0

∑

k≥0

Qkδ
2k,

Θ(z) = 0, R(z) = γ̇0
∑

k≥0

Pkδ
2k,

(4.43)

such that Tk, Qk and Pk are even polynomials of degree 2k in the variable γ0. Moreover

the solution is unique if Q0 > 0. In particular this last condition implies that Q0 = 1,

hence P0 = −1. Note that the formal solution θ(z) is independent from the condition

Q0 > 0. Indeed, equation (4.40) which defines θ(z) contains only even powers of the

form r2j and that is sufficient to show the independence.

In order to conclude the proof of Theorem 4.2.1, let us come back to the variable

ξ̂. First observe that,

cos θ(z) =
∑

i≥0

(−1)i(γ̇0γ
−1
0 δ)2i




∑

k≥0

Tkδ
2k





2i

,

and taking into account the relation (4.11) and the fact that
(
∑

k≥0 Tkδ
2k
)2i

=
∑

k≥0 Ti,kδ
2k where Ti,k are even polynomials of degree 2k, we can simplify the previous

formula to get,

cos θ(z) =
∑

i≥0

∑

k≥0

(−1)i
(

1− η

2
γ20

)i
Ti,kδ

2(i+k).

Moreover, since (−1)i
(
1− η

2γ
2
0

)i
Ti,k is an even polynomial of degree 2(i + k) we can

write the previous formula as follows,

cos θ(z) =
∑

j≥0

Wjδ
2j , (4.44)
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where Wj is an even polynomial in γ0 of degree 2j andW0 = 1. A similar formula holds

for the sine function which reads,

sin θ(z) = γ̇0γ
−2
0

∑

j≥0

Zjδ
2j+1, (4.45)

where Zj is an odd polynomial in γ0 of degree 2j + 1. Now according to the change of

variables (4.27) we have that,

ξ̂(z) = (R(z) cos θ(z), R(z) sin θ(z), r(z) cos θ(z), r(z) sin θ(z))T ,

is a formal solution of the equation (4.24). Using formulae (4.43), (4.44), (4.45) and

(4.11) we can rewrite the components of ξ̂ as follows,

R(z) cos θ(z) = γ̇0
∑

k≥0

ψ1
kδ

2k, R(z) sin θ(z) =
∑

k≥0

φ1k+1δ
2k+1,

r(z) cos θ(z) =
∑

k≥0

φ2kδ
2k, r(z) sin θ(z) = γ̇0

∑

k≥0

ψ2
kδ

2k+1,

where

ψ1
k =

∑

i+j=k

PiWj, φ1k+1 =
(

1− η

2
γ20

) ∑

i+j=k

PiZj ,

φ2k = γ0
∑

i+j=k

QiWj, ψ2
k = γ−1

0

∑

i+j=k

QiZj .
(4.46)

Note that ξ0 = (γ̇0ψ
1
1 , 0, φ

2
0, 0)

T . Taking into account that Q0 = 1, P0 = −1 and

W0 = 1 we get that ξ0 = (−γ̇0, 0, γ0, 0) as concluded in the introduction of the present

subsection. Finally, at the beginning of this proof we assumed that X̂ = Rϕξ̂. If Ŷ

is any formal solution of (4.15) of the form (4.16) then its coefficients must satisfy

the infinite system of equations (4.17). Since we require the functions involved to be

2π-periodic in ϕ then a simple induction argument shows that the coefficients of Ŷ

must be of the form Rϕζk(z). This concludes the proof of the Theorem.

Remark 4.2.1.1. Inverting the standard scaling we obtain a formal separatrix X̂δ which

solves formally the equation,

D̂δX̂δ = XHNF
ǫ

(X̂δ).
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4.3 The Unstable Parametrisation

Let U be an open ball centered at 0 ∈ C
4 and F = (F1, F2, F3, F4) : U → C

4 an analytic

vector field. We also assume that F is continuous on the closure of U . Suppose that

F has an equilibrium point at the origin, i.e. F (0) = 0, and that the equilibrium point

is hyperbolic with eigenvalues ±β ± iα. Moreover suppose that the linear part of the

vector field F is in the canonical form,

DF (0) =




BT 02×2

02×2 −B



 ,

where B is a 2 by 2 Jordan block of the form,

B =




β α

−α β



 .

Since the equilibrium is hyperbolic, it follows form the stable (resp. unstable) mani-

fold Theorem that there exists an analytic invariant stable (resp. unstable) immersed

manifold Ws (resp. Wu) such that orbits in this manifold converge to the equilibrium

forward (resp. backward) in time at an exponential rate. In this section we parametrise

the local unstable manifold Wu
loc by an analytic vector function Υu which satisfies the

PDE,

α∂ϕx+ β∂zx = F (x). (4.47)

An analogous result holds for the local stable manifold Ws
loc and in the following we will

only present the details for the unstable case. We can rewrite equation (4.47) in the

following equivalent form,

α∂ϕx+ β∂zx = ∆x+R(x), (4.48)

where ∆ = DF (0) and R is analytic in U , continuous on its closure and R(x) =

O(‖x‖2).
Now let γ ∈ R and h > 0 (which we consider fixed throughout this section) and

consider the following sets,

Sh = {ϕ ∈ C | |Im(ϕ)| < h} , Du
γ = {z ∈ C | Re(z) < −γ} .
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Moreover, denote by X the complex linear space of analytic maps f : Sh × Du
γ → C

4

which are 2π periodic in the variable ϕ, continuous on the closure of its domain and

having finite norm,

‖f‖X := sup
(ϕ,z)∈Sh×Du

γ

∥
∥e−zf(ϕ, z)

∥
∥ <∞

where ‖ · ‖ denotes the standard infinity norm defined in C4. The pair (X, ‖·‖X) is a

complex Banach space. Let us prove two Lemmas which will be used to prove the main

result of this subsection.

Lemma 4.3.1. The linear PDE,

(α∂ϕ + β∂z) ξ = ∆ξ

has a fundamental matrix solution Π of the form,

Π(ϕ, z) =











ez




cosϕ − sinϕ

sinϕ cosϕ



 02×2

02×2 e−z




cosϕ − sinϕ

sinϕ cosϕ















.

Moreover, it has the following properties:

1. Π(0, 0) = Id,

2. Π(ϕ1 + ϕ2, z1 + z2) = Π(ϕ1, z1)Π(ϕ2, z2),

3. Π(ϕ, z) is invertible for all (ϕ, z) ∈ C
2,

4. Π−1(ϕ, z) = Π(−ϕ,−z).

Proof. Verifying that Π(ϕ, z) satisfies the linear equation is a straightforward computa-

tion. Moreover, it is not difficult to check the above properties.

Lemma 4.3.2. Let γ ∈ R and Lα,β : X → X be the linear operator defined by,

Lα,β(ξ) = (α∂ϕ + β∂z) ξ −∆ξ.

The operator Lα,β has the following properties,
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1. Ker (Lα,β) =






Π(ϕ, z)




c

0



 | c ∈ C
2






,

2. If f ∈ X and moreover f(ϕ, z) = O(e2z) in Sh ×Du
γ then equation Lα,β(ξ) = f

has a general solution of the form,

ξ(ϕ, z) = Π(ϕ, z)




c

0



+ L−1(f),

where L−1 is defined by,

L−1(f)(ϕ, z) =

∫ 0

−∞
Π(−s,−s)f(ϕ+ s, z + s)ds. (4.49)

Proof. Let us prove (1). Suppose that Lα,β(ξ) = 0 for ξ ∈ X. Let ξ = Πc where Π is the

fundamental matrix of Lemma 4.3.1. Then according to the definition of Lα,β and due

to Lemma 4.3.1 we conclude that (α∂ϕ + β∂z)c = 0. Thus c(ϕ, z) = c0(z − ϕ) where

c0 : C → C
4 is an entire, 2π-periodic vector function. As ξ(ϕ, z) = ez ξ̃(ϕ, z) where ξ̃

is bounded in Sh × Du
γ then c0(ϕ − z) = ezΠ−1(ϕ, z)ξ̃(ϕ, z) = ezΠ(−ϕ,−z)ξ̃(ϕ, z).

Thus,

c0(ϕ− z) =














cosϕ sinϕ

− sinϕ cosϕ



 02×2

02×2 e2z




cosϕ sinϕ

− sinϕ cosϕ















ξ̃(ϕ, z),

which implies that all components of c0 are bounded entire functions, hence must be

equal to a constant, i.e. c ∈ C
4. Moreover, as the last two components of c0 decay to

zero as Re z → −∞ then these must be equal zero. Thus proving the desired result.

Finally, let us prove (2). Let Lα,β(ξ) = f for f ∈ X such that f = O(e2z).

Simple estimates show that,
∥
∥
∥
∥

∫ 0

−∞
Π(−s,−s)f(ϕ+ s, z + s)ds

∥
∥
∥
∥
≤
∫ 0

−∞
‖Π(−s,−s)f(ϕ+ s, z + s)‖ ds

≤ e2Re z

∫ 0

−∞
KeRe sds,
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where K > 0 depends only on h and γ which define the set Sh × Du
γ . Therefore

the integral (4.49) converges uniformly on Sh ×Du
γ , thus defining an analytic function

L−1(f) ∈ X such that Lα,β(L−1(f)) = f . Since L−1(f)− ξ ∈ Ker(Lα,β) then by item

(1) there exists c ∈ C
2 such that,

L−1(f)− ξ = Π




c

0



 ,

which concludes the proof of the Lemma.

We are now ready to prove the following,

Theorem 4.3.1 (Unstable Parametrisation). For every c ∈ C
2 there exists γ > 0 such

that equation (4.47) has an unique analytic solution Υu : Sh × Du
γ → C

4, which is

2π-periodic in ϕ, continuous on the closure of its domain and possessing the following

asymptotics,

Υu(ϕ, z) = Π(ϕ, z)




c

0



+O(e2z), in Sh ×Du
γ . (4.50)

Proof. Let c ∈ C
2 and γ > 0 (to be chosen later in the proof). We look for a solution ξ

of equation (4.48) belonging to the Banach space X. To that end we rewrite equation

(4.48) in the equivalent form,

Lα,β(ξ) = R(ξ), (4.51)

where the linear operator Lα,β acts in X according Lemma 4.3.2. As ξ ∈ X then standard

Cauchy estimates applied to the map R which is defined in the open ball U yield that,

R(ξ) = O(e2z), in Sh ×Du
γ .

for γ > γ1 where γ1 > 0 being sufficiently large. In the light of Lemma 4.3.2 we can

invert Lα,β in (4.51) and conclude that in order for ξ be a solution of (4.51) it must

satisfy the integral equation,

ξ(ϕ, z) = Π(ϕ, z)




c

0



+

∫ 0

−∞
Π(−s,−s)R(ξ(ϕ+ s, z + s))ds. (4.52)
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Let us denote the nonlinear operator in the right hand side of (4.52) by G(ξ). Note that
a fix point of this operator yields a solution for (4.51), hence a solution for (4.67). We

shall construct a fixed point of G using a contraction mapping argument. We first show

that G leaves invariant a certain ball. Let Bρ denote a closed ball of radius ρ > 0,

Bρ = {ξ ∈ X | ‖ξ‖X ≤ ρ} .

Notice that, ∥
∥
∥
∥
∥
∥

Π




c

0





∥
∥
∥
∥
∥
∥
X

≤ k0 ‖c‖ ,

where k0 > 0 is some constant. If ξ ∈ Bρ, then

‖G(ξ)‖X ≤ k0 ‖c‖+ sup
(ϕ,z)∈Sh×Du

γ

∥
∥
∥
∥
e−z

∫ 0

−∞
Π(−s,−s)R(ξ(ϕ+ s, z + s))ds

∥
∥
∥
∥
.

Now since R is analytic in U and R(x) = O(‖x‖2) then simples estimates show that,

‖R(ξ(ϕ+ s, z + s))‖ ≤ k1 ‖ξ(ϕ+ s, z + s)‖2 ≤ k1e
2Re(z)e2s ‖ξ‖2X ,

valid in Sh×Du
γ where γ > γ2 for γ2 > 0 sufficiently large and k1 > 0 is some constant.

Thus,

‖G(ξ)‖X ≤ k0 ‖c‖+ sup
(ϕ,z)∈Sh×Du

γ

k2

∫ 0

−∞
e−Re(z)e−s ‖R(ξ(ϕ+ s, z + s))‖ ds

≤ k0 ‖c‖+ k1k2 ‖ξ‖2X sup
z∈Du

γ

eRe(z)

∫ 0

−∞
esds

≤ k0 ‖c‖+ k1k2 ‖ξ‖2X e−γ ,

(4.53)

where k2 > 0 is some constant. Now let ρ := 2k0 ‖c‖, so if ξ ∈ Bρ then it follows from

estimate (4.53) that,

‖G(ξ)‖X ≤ ρ

2
+ k1k2ρ

2e−γ ,

and choosing γ > max {log(2k1k2ρ), γ2, γ1} we conclude that ‖G(ξ)‖X ≤ ρ. Thus

G(Bρ) ⊆ Bρ. Now we show that G in contracting on the ball Bρ. Given ξ1, ξ2 ∈ Bρ

then

G(ξ1)(ϕ, z)−G(ξ2)(ϕ, z) =
∫ 0

−∞
Π(−s,−s) (R(ξ1(ϕ+ s, z + s))−R(ξ2(ϕ+ s, z + s))) ds.
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For (ϕ, z) ∈ Sh × Du
γ the finite segment θξ1(ϕ, z) + (1 − θ)ξ2(ϕ, z)) belongs to the

open ball U and since Bρ ⊆ X is convex then Cauchy estimates yield,

‖R(ξ1(ϕ, z)) −R(ξ2(ϕ, z))‖ ≤ eRe(z) ‖ξ1 − ξ2‖X
∫ 1

0
‖dR(θξ1(ϕ, z) + (1− θ)ξ2(ϕ, z))‖ dθ

≤ k4e
2Re(z) ‖ξ1 − ξ2‖X ,

where k4 > 0 is some positive constant. Thus,

‖G(ξ1)− G(ξ2)‖X ≤ sup
z∈Du

γ

∫ 0

−∞
k2e

−se−Re(z) ‖R(ξ1(ϕ+ s, z + s))−R(ξ2(ϕ+ s, z + s))‖ ds

≤ sup
z∈Du

γ

∫ 0

−∞
k4k2e

seRe(z)ds ‖ξ1 − ξ2‖X

≤ k̄e−γ ‖ξ1 − ξ2‖X ,

where k̄ = k2k4. Choosing γ > max
{
log(2k̄), log(2k1k2ρ), γ2, γ1

}
we get that,

‖G(ξ1)− G(ξ2)‖X ≤ 1

2
‖ξ1 − ξ2‖X ,

for ξ1, ξ2 ∈ Bρ. Thus, applying the contraction mapping theorem to the operator G
we obtain the existence of an unique fixed point Υu ∈ Bρ of G, i.e. Υu = G(Υu).

Moreover, estimate (4.53) implies that,

Υu(ϕ, z) = Π(ϕ, z)




c

0



+O(e2z), in Sh ×Du
γ .

Remark 4.3.1.1. If c = (0, 0)T then the unique analytic solution Υu possessing the

asymptotics (4.50) is the trivial solution, i.e., Υu = 0. Indeed, from the proof of the

previous Theorem we know that Υu = G(Υu) and since c = (0, 0)T then G(0) = 0.

Due to the uniqueness of the fixed point we conclude that Υu = 0.

Remark 4.3.1.2. If F is real analytic and c ∈ R
2 then Υu is real analytic in the half

plane R × (−∞,−γ) for some γ > 0. Moreover for any (ϕ0, z0) ∈ R × (−∞,−γ) the
orbit {Υu(αt+ α0, βt+ z0)}t∈R− belongs to the local unstable manifold Wu

loc of the
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equilibrium point. In fact x(t) = Υu(αt+ α0, βt + z0) for t ∈ R
− is an integral curve

of the vector field F and it spirals to the equilibrium as t→ −∞ at an exponential rate

eβt. Thus we call Υu an unstable parametrisation.

Remark 4.3.1.3. If we denote Φt the flow of the vector field F then the following relation

holds,

Υu(ϕ+ αt, z + βt) = Φt(Υu(ϕ, z)). (4.54)

and we can use it to extend the domain of analyticity of the unstable parametrisation

Υu onto a larger domain in C
2 until it leaves the domain U of the vector field F .

Remark 4.3.1.4. In Theorem 4.3.1 the freedom in the choice of the unstable parametri-

sation Υu is given by the parameter c. In fact this is the only freedom we have. If Υ̃u

is a different solution of equation (4.47) such that Υ̃u = O(ez) then as in the proof of

Theorem 4.3.1 there exists an unique c̃ ∈ C
2 such that,

Υ̃u(ϕ, z) = Π(ϕ, z)




c̃

0



+O(e2z), (4.55)

in Sh ×Du
γ̃ for some γ̃ > 0. Moreover, according to Lemma 4.3.1 we get that,

Υu(ϕ+ ϕ0, z + z0) = Π(ϕ, z)Π(ϕ0 , z0)




c

0



+O(e2z),

for (ϕ + ϕ0, z + z0) ∈ Sh × Du
γ . Comparing the previous equation with (4.55) we

conclude that Υu(ϕ+ ϕ0, z + z0) = Υ̃u(ϕ, z) if and only if,

c̃ = ez0




cosϕ0 − sinϕ0

sinϕ0 cosϕ0



 c. (4.56)

Equation (4.56) can be solved for (ϕ0, z0) and we conclude that the unstable parametri-

sation Υu is uniquely defined up to a translation in (ϕ, z).

4.4 Approximation Theorems

In this section we provide explicit approximations for the unstable manifold W u
ǫ of the

equilibrium of Hǫ in different regions. These approximations are constructed using the
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formal separatrix of the normal form.

4.4.1 Preliminaries

Given n ∈ N we normalize the Hamiltonian Hǫ up to order 2n+4 (see section 2.1.1 for

more details about the normal form). After 2n steps of normalization we get,

Hǫ,n = Hǫ ◦ Φn = H0
ǫ +

2n+4∑

3m+2j+2l≥5

am,j,lI
m
1 I

j
3ǫ
l +Rǫ,n, (4.57)

where Φn is an analytic near identity canonical change of coordinates, H0
ǫ = −I1 +

I2 − ǫI3 + ηI23 , and Ii, i = 1, 2, 3 are given by (4.1). Moreover Rǫ,n is a real analytic

function defined in an open neighbourhood of the origin in R
4, analytic with respect to

ǫ and Rǫ,n = O((|q| 12 + |p|+ |ǫ| 12 )2n+5). In what follows it is convenient to complexify

the Hamiltonian Hǫ,n, so we may assume that it is analytic in an open ball Bσn ⊆ C
4

for some σn > 0 sufficiently small. The normal form coefficients am,j,l ∈ R are uniquely

defined and the coefficient η in H0
ǫ is assumed to be positive which corresponds to the

stable case.

Also, given two vector-functions f, g : Ω ⊂ C
2 → C

4 and p ≥ 0 we write

g = Op(f) if there exist ci > 0, i = 1, . . . , 4 such that,

|gi(x)| ≤ ci |fi(x)|p+1 , i = 1, 2 and |gi(x)| ≤ ci |fi(x)|p , i = 3, 4, (4.58)

valid in Ω where fi and gi denote the components of the corresponding functions.

Eigenvalues of DXHǫ(0)

The matrix DXHǫ,n(0) has the same eigenvalues ±βǫ± iαǫ as DXHǫ(0) since these are

preserved under the normal form procedure. Moreover, using the successive normaliza-

tions of Hǫ we can prove the following,

Lemma 4.4.1. For ǫ > 0 the functions βǫ and αǫ can be expanded into convergent
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power series,

βǫ = δ

√
√
√
√1−

∞∑

l=2

a0,1,lδ2l−2, αǫ = 1−
∞∑

l=1

a1,0,lδ
2l,

where δ2 = ǫ and the coefficients in the series above are the normal form coefficients of

Hǫ.

Proof. Let n ∈ N and consider Hǫ,n as defined (4.57). We scale variables according

to the standard scaling (2.11) and change to complex variables given by the following

relation,

z = q1 + iq2, w = p1 + ip2, z̄ = q1 − iq2, w̄ = p1 − ip2.

The map defined above does not preserve the canonical symplectic form. However, the

following relation holds,

dq1 ∧ dp1 + dq2 ∧ dp2 =
δ3

2
(dz ∧ dw̄ + dz̄ ∧ dw) ,

and in the new variables we multiply the Hamiltonian by 2δ−3 and use the canonical

symplectic form to derive the Hamiltonian equations. The Hamiltonian Hǫ,n in these

new coordinates reads,

h̃δ,n = i (zw̄ − z̄w) +
(

zz̄ − ww̄ +
η

2
(ww̄)2

)

δ

+

2n+4∑

3m+2j+2l=k≥5

am,j,l
2j−1

(
zw̄ − z̄w

2i

)m

(ww̄)jδk−3 +O(δ2n+2).

(4.59)

Note that the eigenvalues of DXHǫ(0) are the same as DXh̃δ,n
(0). Now let Z =

(z, w, z̄, w̄). We can write the Hamilton equations of (4.59) as follows,

Ż = AδZ +O
(

‖Z‖2
)

,

where,

Aδ =











iαǫ,n −δµǫ,n 0 0

−δ iαǫ,n 0 0

0 0 −iαǫ,n −δµǫ,n
0 0 −δ −iαǫ,n











+O(δ2n+2),
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and

αǫ,n = 1−
n∑

l=1

a1,0,lδ
2l, µǫ,n = 1−

n∑

l=1

a0,1,l+1δ
2l. (4.60)

Since the spectrum of Aδ is invariant under complex conjugation and symmetric with

respect to the imaginary axis, we can write its characteristic polynomial as follows,

det(Aδ − λId4) = λ4 + b2(δ)λ
2 + b0(δ) (4.61)

where b2(δ) and b0(δ) are analytic functions possibly having complex coefficients. A

closer look to the determinant (4.61) gives,

b2(δ) = 2α2
ǫ,n − 2δ2µǫ,n +O(δ2n+2), b0(δ) =

(
α2
ǫ,n + δ2µǫ,n

)2
+O(δ2n+2), (4.62)

and using the quadratic formula it is not difficult to see that,
√
√
√
√−b2(δ)

2
+

√
(
b2(δ)

2

)2

− b0(δ),

is a root of the characteristic polynomial, hence an eigenvalue of Aδ. Moreover a simple

computation shows that,
(
b2(δ)

2

)2

− b0(δ) = −4δ2α2
ǫ,nµǫ,n + f1(δ),

where f1(δ) is an analytic function such that f1(δ) = O(δ2n+2). Thus one can define

an analytic function,

g(δ) := 2iαǫ,nδ

√

µǫ,n −
f1(δ)

4α2
ǫ,nδ

2
,

such that,

g2(δ) =

(
b2(δ)

2

)2

− b0(δ).

Now since g(δ) = 2iαǫ,nδ
√
µǫ,n +O(δ2n+1) and bearing in mind (4.62) we have that,

−b2(δ)
2

+ g(δ) = (iαǫ,n + δ
√
µǫ,n)

2 + f2(δ)

where f2(δ) is analytic and f2(δ) = O(δ2n+1). Putting all these observations together

we conclude that,

λǫ :=
(
iαǫ,n + δ

√
µǫ,n

)

√

1 +
f2(δ)

(iαǫ,n + δ
√
µǫ,n)2

,
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is an eigenvalue of DXHǫ(0) and is analytic with respect to δ. Moreover, it is not

difficult to see that,

λǫ = iαǫ,n + δ
√
µǫ,n +O(δ2n+1).

Finally, taking into account the expressions (4.60), the fact that n is an arbitrary natural

number and λǫ is analytic we conclude that,

λǫ = i

(

1−
∞∑

l=1

a1,0,lδ
2l

)

+ δ

√
√
√
√1−

∞∑

l=2

a0,1,lδ2l−2.

Remark 4.4.0.5. Given n ∈ N, the Hamiltonian Hǫ,n after the standard scaling takes

the form,

hδ,n = −I1 +
{
1

2
I2 −

ǫ

2
I3 +

η

4
I23

}

δ +
2n+4∑

3m+2j+2l=k≥5

am,j,lI
m
1 I

j
3δ
k−3 +O(δ2n+2).

Let us denote by hnδ the Hamiltonian hδ,n truncated at order δ2n+2. The eigenvalues

of the matrix DXhδ,n(0) are ±βǫ ± iαǫ where αǫ and βǫ are analytic with respect to

δ = ǫ2 due to the previous Lemma. Then according to [7] (see Theorem 2 on pag.

233) it follows that the eigenvectors of DXhδ,n(0) will also depend analytically from δ.

Consequently, there exists an analytic matrix Tδ such that,

∆δ = T−1
δ DXhδ,n(0)Tδ ,

where

∆δ =




BT 0

0 −B



 and B =




βǫ αǫ

−αǫ βǫ



 . (4.63)

Moreover, it is not difficult to see that the matrixDXhn
δ
(0) has eigenvalues ±βǫ,n±iαǫ,n

where,

αǫ,n = 1−
n∑

l=1

a1,0,lδ
2l, βǫ,n = δ

√
√
√
√1−

n∑

l=1

a0,1,l+1δ2l. (4.64)
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Figure 4.2: Domain T u
0 .

Now according to previous Lemma we know that, βǫ = βǫ,n + O(δ2n+3) and αǫ =

αǫ,n + O(δ2n+2). Thus, we can also transform the matrix DXhn
δ
(0) to its canonical

form,

∆δ,n = T−1
δ,nDXhnδ

(0)Tδ,n.

where the matrix Tδ,n is analytic with respect to δ and,

∆δ,n =




BT
n 0

0 −Bn



 and Bn =




βǫ,n αǫ,n

−αǫ,n βǫ,n



 .

Finally, analyticity in δ yields,

Tδ = Tδ,n +O(δ2n+2) and ∆δ = ∆δ,n +O(δ2n+2).

4.4.2 First approximation Theorem

In this subsection we prove that the unstable manifold W u
ǫ can be parametrised by an

analytic map Γu which is close to a partial sum of the formal separatrix X̂δ and satisfies

the following PDE,

DǫΓ
u = XHǫ,n(Γ

u), (4.65)
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where recall from (4.2) that Dǫ = αǫ∂ϕ + βǫ∂z. More concretely, let ρ, σ, h > 0 and

consider the following set,

T u
0 (ρ, σ, h) = {z ∈ C | Re(z) < ρ,X0(ϕ, z − s) ∈ Bσ, ∀ s ≥ 0 ∀ϕ ∈ Sh} ,

where Sh = {ϕ ∈ C | |Imϕ| < h}, Bσ ⊂ C
4 is an open ball centered at the origin

having radius σ > 0 and X0 is the leading order parametrisation given by (2.17). It is

not difficult to see that has poles at z = iπ2 +iπk, k ∈ Z. Hence the domain T u
0 (ρ, σ, h)

has the form similar to Figure 4.2.

In order to ease the notation we will occasionally drop the explicit dependence

of the domain T u
0 (ρ, σ, h) on the parameters (ρ, σ, h). Now we are ready to prove the

following,

Theorem 4.4.1. Given ρ, σ, h > 0, for every n ∈ N, there exists an analytic unstable

parametrisation Γu : Sh×T u
0 (ρ, σ, h) → C

4, 2π-periodic in ϕ, continuous on the closure

of its domain and satisfying the PDE (4.65) such that

Γu = Xn
δ +O2n+2(δ),

valid in Sh × T u
0 where Xn

δ is a partial sum of the formal separatrix X̂δ up to order

δ2n+2 in the first two components and up to order δ2n+1 in the last two.

Proof. Since DXH0,n(0) is not semisimple and we can not apply directly Theorem 4.3.1

to get an unstable parametrisation of W u
ǫ,loc. We overcome this difficulty by scaling

variables according to the standard scaling (2.11). The Hamiltonian Hǫ,n in the scaled

variables reads,

hδ,n = hnδ +O(δ2n+2), (4.66)

where

hnδ = −I1 +
(
I2 − I3 + ηI23

)
δ +

2n+4∑

3m+2j+2l=k≥5

am,j,lI
m
1 I

j
3δ
k−3.

Given σ > 0, for sufficiently small δ the domain of analyticity of the scaled Hamiltonian

hδ,n contains an δ-independent open ball Bσ ⊂ C
4 centered at the origin and having

radius σ.

129



Now following Remark 4.4.0.5 we can transform the linear part of the Hamil-

tonian vector field Xhδ,n into its Jordan canonical form by a linear analytic change of

variables,

∆δ = T−1
δ DXhδ,n(0)Tδ ,

where ∆δ is the matrix given in (4.63). Thus, we look for solutions of the following

PDE,

Dǫx = ∆δx+ Fδ(x), (4.67)

where Fδ is analytic in Bσ, continuous on the closure of Bσ and Fδ(x) = O(‖x‖2).
We can now apply Theorem 4.3.1 and obtain for every c ∈ C

2 an unique unstable

parametrisation Υ̃u : Sh×Du
γ → C

4, 2π-periodic in ϕ, continuous on the closure of its

domain and satisfying the integral equation,

Υ̃u = Π




c

0



+ L−1(Fδ(Υ̃
u)), (4.68)

where L−1 is given by Lemma 4.3.2 and γ > 0. Following Remark 4.3.1.3 we can extend

the domain of analyticity of the unstable parametrisation Υ̃u onto a larger domain

Ω ⊇ Sh × Du
γ of C2 until it leaves the open ball Bσ where the Hamiltonian hδ,n is

known to be analytic.

Let Υu = Tδ ◦ Υ̃u. In the following we will construct an analytic map Xn

(close to the formal series X̂δ in the formal sense) that will approximate Υu in a

suitable subdomain of Ω. First note that the linearized system DXhn
δ
(0) has eigenvalues

±βδ,n±iαδ,n where αδ,n and βδ,n are given by formulae (4.64). Also according to Remark

4.4.0.5 we have that

βǫ + iαǫ = βǫ,n + iαǫ,n +O(δ2n+2). (4.69)

Now define Dǫ,n = αǫ,n∂ϕ+βǫ,n∂z. As in the proof of Theorem 4.2.1 we let X(ϕ, z) =
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Rϕξ(z) and note that,

Dǫ,nX−Xhnδ
(X) = Dǫ,nRϕξ −Xhnδ

(Rϕξ)

= −αǫ,nRϕXI1(ξ) + βǫ,nRϕ∂zξ −RϕXhnδ
(ξ)

= Rϕ

(

βǫ,n∂zξ −Xh̃n
δ
(ξ)
)

(4.70)

where,

h̃nδ =
(
I2 − I3 + ηI23

)
δ +

2n+4∑

3i+2j+2l=k≥5
i 6=1 or j 6=0

ai,j,lI
i
1I
j
3δ
k−3.

Now changing to the polar coordinates (θ, r,Θ, R) as in the proof of Theorem 4.2.1 we

define the following functions,

θ(n)(z) := −β−1
ǫ,n

n∑

j+l=i≥1
j≥1,l≥0

a1,j,l
2j

δ2i
∫ z

0

(

r(n)(s)
)2j

ds, Θ(n) := 0,

r(n)(z) :=
n∑

k=0

rk(z)δ
2k , R(n)(z) := −βǫ,n

δ
∂zr

(n)(z).

(4.71)

where the coefficients rk are defined in Claim 4.2.1.1 of Theorem 4.2.1 which are odd

polynomials in the variable γ0 (recall that γ0 =
√

2
η

1
cosh(z)). Thus, it is clear that the

functions θ(n), r(n) and R(n) are analytic in C except for poles z = iπ2 + iπk for k ∈ Z.

Also from the proof of the same Theorem it follows that given ρ, σ, h > 0 we have that,

β2ǫ,n∂
2
zr

(n) −
(

r(n) − η(r(n))3
)

δ2 −
2n+4∑

2j+2l=k≥5

2ja0,j,l
2j

(r(n))2j−1δk−2 = O(δ2n+2e3z),

(4.72)

valid in the domain T u
0 (ρ, σ, h). Finally let us define the map Xn as follows,

Xn := Rϕξn, (4.73)

where ξn(z) =
(
R(n) cos θ(n), R(n) sin θ(n), r(n) cos θ(n), r(n) sin θ(n)

)T
. Taking into ac-

count (4.70) and the estimate (4.72) it is not difficult to see that,

Fn := Dǫ,nXn −Xhnδ
(Xn) = O(δ2n+2e3z), in Sh × T u

0 .
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Moreover, it follows from the construction of the functions above and the last estimate

that Xn coincides with the formal separatrix X̂ of Theorem 4.2.1 up to order δ2n.

Now following Remark 4.4.0.5 there exists a linear analytic change of variables

Tδ,n that transforms the linear part of the vector field Xhn
δ
into its Jordan canonical

form,

∆δ,n = T−1
δ,nDXhn

δ
(0)Tδ,n.

and moreover,

Tδ = Tδ,n +O(δ2n+2) and ∆δ = ∆δ,n +O(δ2n+2). (4.74)

Further, if X̃n = T−1
δ,n ◦Xn then it is not difficult to see that,

Lαǫ,n,βǫ,n(X̃n) = Fnδ (X̃n) + F̃n, (4.75)

where,

Fnδ (x) = T−1
δ,n

(

Xhn
δ
(x)−DXhn

δ
(0)x

)

Tδ,n and F̃n = T−1
δ,n ◦ Fn ◦ Tδ,n,

and Lαǫ,n,βǫ,n is the linear operator defined in Lemma 4.3.2.

Now let Ω0 = Ω∩(Sh × T u
0 (ρ, σ, h)). Note that Fnδ (x) = O(‖x‖3) and standard

Cauchy estimates yield Fnδ (X̃n) = O(e3z) in Ω0. Moreover, since F̃n = O(δ2n+2e3z)

we can use Lemma 4.3.2 to rewrite equation (4.75) as follows,

X̃n = Π




cδ,n

0



+ L−1(Fnδ (X̃n)) + L−1(F̃n), (4.76)

where the constant cδ,n is defined by the limit,




cδ,n

0



 := lim
Re z→−∞

Π(−ϕ,−z)X̃n(ϕ, z),

which converges uniformly with respect to ϕ ∈ Sh. Also note that it follows from the

expressions (4.71) and (4.73) that cδ,n ∈ R
2[δ].
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Now we set c := cδ,n in (4.68) and compute the difference (4.68)−(4.76),

Υ̃u − X̃n = L−1(Fδ(Υ̃
u)− Fnδ (X̃n))− L−1(F̃n), (4.77)

where we have used the linearity of L−1. First we estimate the difference Fδ(Υ̃
u) −

Fnδ (X̃n). Observe that,

Fδ(Υ̃
u)− Fnδ (X̃n) = Fδ(Υ̃

u)− Fnδ (Υ̃
u) + Fnδ (Υ̃

u)− Fnδ (X̃n). (4.78)

Taking into account (4.66) and (4.74) we can deduce that,

Fδ(x) = Fnδ (x) +O(δ2n+2 ‖x‖2),

and bearing in mind (4.68) we get the following upper bound for the first difference of

the right hand side of (4.78),

Fδ(Υ̃
u)− Fnδ (Υ̃

u) = O(δ2n+2e2z), in Ω0.

Now we handle the second difference of (4.78). It follows from the Fundamental The-

orem of Calculus that,

Fnδ (Υ̃
u)− Fnδ (X̃n) =

∫ 1

0
DFnδ (sΥ̃

u + (1− s)X̃n)ds(Υ̃
u − X̃n).

Using Cauchy estimates for the function Fnδ and the fact that both functions Υ̃u and

X̃n admit an upper bound of the type O(ez) in Ω0 we can bound from above the integral

in the previous formula by O(e2z). Thus,

Fnδ (Υ̃
u)− Fnδ (X̃n) = O

(

e2z(Υ̃u − X̃n)
)

in Ω0.

Let W := Υ̃u− X̃n. Taking into account the upper bounds for the differences in (4.78)

and the definition of L−1, it is not difficult to get the following estimates valid in Ω0,
∥
∥
∥e−2zL−1(F̃n)(ϕ, z)

∥
∥
∥ ≤ k0δ

2n+2,
∥
∥
∥e−2zL−1

(

Fδ(Υ̃
u)− Fnδ (Υ̃

u)
)

(ϕ, z)
∥
∥
∥ ≤ k1δ

2n+2,

∥
∥
∥e−2zL−1

(

Fnδ (Υ̃
u)− Fnδ (X̃n)

)

(ϕ, z)
∥
∥
∥ ≤

∫ 0

−∞
k2e

3s
∥
∥
∥e−2(z+s)W(ϕ + s, z + s)

∥
∥
∥ ds,

(4.79)
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where k0, k1 and k2 are positive constants and ‖·‖ is the standard infinity norm in C
4.

Now for t ≤ ρ let us define,

w(t) := sup
(ϕ,z)∈Ω0, Re z≤t

∥
∥e−2zW(ϕ, z)

∥
∥ .

Taking into account the estimates (4.79) and equation (4.77) it is not difficult to derive

the following inequality for w(t),

w(t) ≤ k3δ
2n+2 + k4

∫ t

−∞
e3sw(s)ds, t ≤ ρ.

An application of Gronwall Lemma yields,

w(ρ) ≤ k3e
k4e

3ρ

3 δ2n+2.

Thus, for (ϕ, z) ∈ Ω0 we have that,

Υ̃u(ϕ, z) = X̃n(ϕ, z) +O(e2zδ2n+2). (4.80)

Now we extend the domain of analyticity of Υ̃u to Sh × T u
0 (ρ, σ, h) and conclude

the same estimate (4.80) in that domain. The argument goes as follows. Recall that

Υ̃u is analytic in a domain Ω ⊂ C
2 which contains the set Sh × Du

γ . Now suppose

that Sh × T u
0 (ρ, σ, h) is not a subset of Ω, that is, suppose there exist (ϕ0, z0) ∈

Sh × T u
0 (ρ, σ, h) such that (ϕ0, z0) /∈ Ω. Define,

t∗ := inf
{
t ∈ R

− | (ϕ0 + t, z0 + t) /∈ Ω
}
.

Note that the infimum exists since there is t0 ∈ R
− such that (ϕ0 + t0, z0 + t0) ∈

Sh×Du
γ ⊆ Ω. Moreover, the set Ω is open in C

2, thus its complement is closed. Hence,

(ϕ0 + t∗, z0 + t∗) belongs to the complement of Ω and (ϕ0 + t, z0 + t) ∈ Ω0 for all

t < t∗. Thus, we can use the estimate (4.80) to get,

Υ̃u(ϕ0 + t∗, z0 + t∗) = X̃n(ϕ0 + t∗, z0 + t∗) +O(δ2n+2),

and bearing in mind the definition of T u
0 (ρ, σ, h) we conclude that for δ sufficiently

small Υ̃u(ϕ0 + t∗, z0 + t∗) belongs to the open ball Bσ. Thus contradicting the fact
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that (ϕ0 + t∗, z0 + t∗) /∈ Ω. Thus, the unstable parametrisation Υ̃u is analytic in

Sh × T u
0 (ρ, σ, h) and the estimate (4.80) also holds in this set. Moreover,

Υu −Xn = Tδ ◦ Υ̃u − Tδ,n ◦ X̃n

= Tδ,n ◦ (Υ̃u − X̃n) +O(δ2n+2)

= O(e2zδ2n+2) +O(δ2n+2) = O(δ2n+2),

(4.81)

and if
[

X̂
]

2n
denotes a partial sum of the formal separatrix up to order δ2n then,

Υu −
[

X̂
]

2n
= Υu −Xn +Xn −

[

X̂
]

2n
= O(δ2n+2) +O(δ2n+1) = O(δ2n+1).

Finally, denoting by Γu the parametrisation Υu in the unscaled variables (2.11) we get

the desired result.

4.4.3 Extension of the approximation towards the singularity z = iπ
2

In the previous subsection we have constructed approximations for the unstable manifold

W u
ǫ near the equilibrium point. Then using a finite time stability argument we have

extended the approximation until it leaves the domain of analyticity of the Hamiltonian

vector field. Given n ∈ N, the approximations Xn
δ have singularities for complex z ∈ C.

In fact according to the definition of Xn
δ in the statement of Theorem 4.4.1 we known

that Xn
δ = Rϕ(ξ

n
1 , ξ

n
2 , ξ

n
3 , ξ

n
4 ) where

ξn1 = γ̇0

n∑

k=0

ψ1
kδ

2k+2, ξ22 =

n−1∑

k=0

φ1k+1δ
2k+3, (4.82)

ξn3 =

n∑

k=0

φ2kδ
2k+1, ξn4 = γ̇0

n−1∑

k=0

ψ2
kδ

2k+2, (4.83)

where ψik are even polynomials in γ0 of deg(ψik) = 2k and φik are odd polynomials in γ0

of deg(φik) = 2k + 1. Recall that from the definition of γ0 that it has simple poles for

z = iπ2 + kπ with k ∈ Z. Thus the sum Xn
δ grows in a neighbourhood of the singular

point z = iπ2 .
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In this subsection we extend the approximation result obtained in the previous

subsection for points δ-close to the singularity z = iπ2 . For that end it is convenient to

introduce a new variable τ which satisfies the relation,

z =
βǫ
αǫ
τ + i

π

2
. (4.84)

According to Lemma 4.4.1 we known that αǫ = O(1) and βǫ = O(δ). Thus, change

(4.84) fixes the singularity at τ = 0 and for small δ augments a neighbourhood of the

singularity by a factor of order δ−1. In the new variable τ , the formal separatrix X̂δ

satisfies the following PDE,

DX̂δ = α−1
ǫ XHNF

ǫ
(X̂δ),

where D is the differential operator ∂ϕ+∂τ used in chapter 3. This fact is very important

and it will be used later on in the development of the theory. In order to extend the

approximation given by Xn
δ we first need to study its behaviour near the singular point.

Re-expansion of Xn
δ around the singularity iπ2

In order to derive the Laurent series of Xn
δ we first expand the base functions, γ0 and

γ̇0 around the singularity iπ2 ,

γ0(ζ + i
π

2
) = −i

√
2

η

1

ζ

(

1 +

∞∑

k=1

akζ
2k

)

, γ̇0(ζ + i
π

2
) = i

√
2

η

1

ζ2

(

1 +

∞∑

k=1

bkζ
2k

)

,

where ak, bk ∈ C and both functions are analytic in punctured disk 0 < |ζ| < π (where

the size of the disk is given by the distance to the closest singularity). In the following

we will only deal with the function,

ξn1 = γ̇0

n∑

k=0

ψ1
kδ

2k+2.

We compute its Laurent series in the new variable τ and the same procedure can be

applied to the remaining components of Xn
δ . Let us present the details. Since ψ1

k is an

even polynomial of degree 2k in the variable γ0, we can write,

ψ1
k =

k∑

i=0

ψ1
k,iγ

2i
0 , where ψ1

k,i ∈ R.
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According to the Laurent series of γ0 we have,

ψ1
k(ζ + i

π

2
) =

k∑

i=0

ψ1
k,i

(

−i
√

2

η

)2i
1

ζ2i



1 +
∞∑

j=0

ajζ
2j





2i

=
1

ζ2k

∞∑

i=0

ψ̂1
k,iζ

2i,

(4.85)

for some ψ̂1
k,i ∈ C and analytic in 0 < |ζ| < π. Now taking into account the Laurent

series of γ̇0 we can expand the function ξn1 ,

ξn1 (ζ + i
π

2
) =

n∑

k=0

(

i

√
2

η

1

ζ2
(1 +

∞∑

k=1

bkζ
2k)

1

ζ2k

∞∑

i=0

ψ̂1
k,iζ

2i

)

δ2k+2

=

n∑

k=0

1

ζ2k+2

(
∞∑

i=0

ψ̆1
k,iζ

2i

)

δ2k+2,

for some ψ̆1
k,i ∈ C and analytic in 0 < |ζ| < π. At this point we let ζ = βǫ

αǫ
τ (according

to formula (4.84)) and substitute into the previous series. First observe that due to

Lemma 4.4.1 the quotient βǫ
αǫ

is an odd function of δ and analytic in a sufficiently small

open disk centered at δ = 0. Moreover,

(
βǫ
αǫ

)2i

= δ2i
∞∑

j=0

h2i,jδ
2j .

It is convenient to write ξn1 (τ) for ξ
n
1 (

β
ατ+ i

π
2 ) in order to simplify the exposition. Thus,

ξn1 (τ) =

n∑

k=0

∞∑

i=0

ψ̆1
k,iδ

2i−(2k+2)
∞∑

j=0

h2(i−k−1),jδ
2jτ2(i−k−1)δ2k+2.

Note that the term δ2k+2 cancels. Now setting i + j = m we can rearrange the sums

in the previous formula as follows,

ξn1 (τ) =

∞∑

m=0




∑

i+j=m

n∑

k=0

h2(i−k−1),j ψ̆
1
k,iτ

2(i−k−1)



 δ2m.
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Finally we simplify the part inside the parenthesis in the previous formula. If l = i−k−1

then,

ξn1 (τ) =

∞∑

m=0

δ2m
m−1∑

l=−n−1

τ2l
∑

i+j=m
i−k−1=l
k=0,...,n

h2l,jψ̆
1
k,i

=
∞∑

m=0

δ2m
m−1∑

l=−n−1

ψ̃1
n,m,lτ

2l

analytic for |δ| sufficiently small and 0 < |τ | < αǫ

βǫ
π.

Similar expansions can be obtained for the other components of Xn
δ and we

summarize the results in the form of a Lemma,

Lemma 4.4.2. For any n ∈ N the functions ξni , i = 1, . . . , 4, have the following Laurent

expansions around the singularity iπ2 ,

ξn1 (τ) =
∞∑

m=0

δ2m
m−1∑

l=−n−1

ψ̃1
n,m,lτ

2l, ξn2 (τ) =
∞∑

m=0

δ2m
m−2∑

l=−n−1

φ̃1n,m,lτ
2l+1,

ξn3 (τ) =
∞∑

m=0

δ2m
m−1∑

l=−n−1

φ̃2n,m,lτ
2l+1, ξn4 (τ) =

∞∑

m=0

δ2m
m−1∑

l=−n

ψ̃2
n,m,lτ

2l,

where τ is given by formula (4.84). The coefficients ψ̃1
n,m,l, φ̃

1
n,m,l, φ̃

2
n,m,l, ψ̃

2
n,m,l belong

to C and all series converge for |δ| sufficiently small and 0 < |τ | < αǫ

βǫ
π.

Thus, Xn
δ has poles at z = iπ2 + iπk, k ∈ Z of order 2n + 2 in the first two

components and of order 2n+ 1 in the last two components.

Extension Theorem

Now given c1, r1 and ρ1 positive real constants and |θ1| < π
4 , consider the following set,

Du
1 (δ) = { τ ∈ C | |arg(τ + r1)| > π − θ1,

−c1δ−1 < Re(τ) < ρ1, |Im(τ)| < c1δ
−1
}
.

Note that Du
1 (δ) is an open domain in C and is only defined for δ < c1

r . In the following

we shall leave c1, θ1 and ρ1 fixed. Moreover, in order not to overload the notation
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and if no confusion arises, we shall not write the explicit dependence of Du
1 (δ) on its

parameters and taking into account the relation (4.84) we will shorten the notation by

writing Xn
δ (ϕ, τ) = Xn

δ (ϕ, z) and Γu(ϕ, τ) = Γu(ϕ, z).

Theorem 4.4.2. For any n ∈ N there exists an r1 > 0 sufficiently large such that

the unstable parametrisation Γu of Theorem 4.4.1 can be analytically extended onto

Sh ×Du
1 (δ) such that,

Γu = Xn
δ +O2n+2(τ

−1), in Sh ×Du
1 (δ).

Proof. In the new variable τ the unstable parametrisation Γu of Theorem 4.4.1 satisfies

the following PDE,

DΓu = α−1
ǫ XHǫ,n(Γ

u), (4.86)

where D = ∂ϕ + ∂τ . In order to extend the domain of analyticity of the unstable

parametrisation and the estimate (4.94) onto the domain Du
1 (δ) we derive an new

integral equation from which will follow a solution of the PDE (4.86) that will match

the unstable parametrisation in a boundary domain. By the uniqueness of solutions of

(4.86) it will provide the desired extension onto Du
1 (δ). Let us present the details. Let

Z = Γu −Xn
δ . It follows from equation (4.86) that Z satisfies the PDE,

DZ = α−1
ǫ XHǫ,n(Z+Xn

δ )−DXn
δ . (4.87)

Now we rewrite the previous equation as follows,

L0(Z) = F0 + (F1,0 + F1,1)Z+ F2(Z), (4.88)

where L0(Z) = DZ−A0Z (the matrix A0 is given by (2.37)) and,

F0 = α−1
ǫ XHǫ,n(X

n
δ )−DXn

δ ,

F1,0 = DXH0,n(X
n
δ )−A0,

F1,1 = α−1
ǫ DXHǫ,n(X

n
δ )−DXH0,n(X

n
δ ),

F2(Z) = α−1
ǫ

(
XHǫ,n(X

n
δ + Z)−XHǫ,n(X

n
δ )−DXHǫ,n(X

n
δ )Z

)
.

(4.89)
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Now for a given τ0 ∈ ℓc1 let us define,

Zin(ϕ, τ) := U0(ϕ, τ)U
−1
0 (ϕ− τ + τ0, τ0)Z(ϕ− τ + τ0, τ0), (4.90)

where ℓc1 is the left boundary of the set Du
1 (δ),

ℓc1 =
{
τ ∈ C | Re(τ) = −c1δ−1, |Im(τ)| < c1δ

−1
}
, (4.91)

and U0 is the fundamental matrix of the linear operator L0 as defined in (2.38). Notice

that Zin(ϕ, τ0) = Z(ϕ, τ0). Thus, equation (4.88) is equivalent to,

Z = Zin + L−1
0 (F0 + F1,0Z+ F1,1Z+ F2(Z)), (4.92)

where L−1
0 is acting by the following formula,

L−1
0 (Z)(ϕ, τ) = U0(ϕ, τ)

∫ τ

τ0

U−1
0 (ϕ− τ + r, r)Z(ϕ − τ + r, r)dr, (4.93)

and the path of the integral is a segment joining the points τ0 and τ . In the following

we will use equation (4.92) to extend the domain of analyticity of Z. To that end we

have to estimate the terms involved in equation that equation. Let us define a set Ωτ0

as follows,

Ωτ0 := {(ϕ, τ) ∈ Sh ×Du
1 (δ) | ϕ− τ + τ0 ∈ Sh, λτ + (1− λ)τ0 ∈ Du

1 (δ), ∀λ ∈ [0, 1]} .

Note that Ωτ0 is an open and connected subset of Sh ×Du
1 (δ). We need the following,

Claim 4.4.2.1. Formula (4.93) defines a bounded linear operator L−1
0 : Xp+1(Ωτ0) →

Xp(Ωτ0) for p ≥ 3.

Proof. That L−1
0 is linear it’s clear from the definition. Now let ξ ∈ Xp+1(Ωτ0) then we

can write ξ = (τ−p−2ξ1, τ
−p−2ξ2, τ

−p−1ξ3, τ
−p−1ξ4) where each ξi is bounded in Ωτ0

for i = 1, . . . , 4. Also from the definition of L−1
0 it is clear that L−1

0 (ξ) is an analytic

function in Ωτ0 , continuous on the closure of its domain and 2π-periodic in ϕ. Thus, it

remains to show that
∥
∥L−1

0 (ξ)
∥
∥
p
<∞.
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Taking into account that U0 is a normalized fundamental matrix (in particular

detU0 = 1) then denoting by gi each component of U−1
0 ξ then we get the following

estimates,

|g1(ϕ, τ)| ≤
M

U
−1
0

‖ξ‖p+1

|τ |p , |g2(ϕ, τ)| ≤
M

U
−1
0

‖ξ‖p+1

|τ |p+4 ,

|g3(ϕ, τ)| ≤
M

U
−1
0

‖ξ‖p+1

|τ |p+3 , |g4(ϕ, τ)| ≤
M

U
−1
0

‖ξ‖p+1

|τ |p−1 ,

valid in the set Ωτ0 and M
U

−1
0

some positive real constant. Note that ‖ξ‖p+1 < ∞ by

assumption. Now we estimate the integral in the formula of the definition of L−1
0 . Let

us handle the first component g1. Thus, taking into account the estimate for g1 we get,

∣
∣
∣
∣

∫ τ

τ0

g1(ϕ− τ + r, r)dr

∣
∣
∣
∣
≤
∫ τ

τ0

M
U

−1
0

‖ξ‖p+1

|r|p |dr| ≤
∫ 0

−∞

M
U

−1
0

‖ξ‖p+1

|τ + s|p ds.

Now using Lemma 2.4.1 we obtain the following estimate for the integral of g1,

∣
∣
∣
∣

∫ τ

τ0

g1(ϕ− τ + r, r)dr

∣
∣
∣
∣
≤
Kp−1MU

−1
0

‖ξ‖p+1

|τ |p−1 ,

valid in Ωτ0 . In the same way it is possible to obtain similar estimates for the other gi’s.

Consequently,
∥
∥L−1

0 (ξ)
∥
∥
p
≤ K̄ ‖ξ‖p+1 ,

where K̄ = (Kp−1 +Kp+3 +Kp+2 +Kp−2)MU
−1
0
MU0 .

Let us continue the proof of the Theorem. We start by estimating the function

Zin in Ωτ0 . It follows from Theorem 4.4.1 that given c1 > 0 sufficiently large the

following estimate,

Γu(ϕ, τ) = Xn
δ (ϕ, τ) +O2n+2(τ

−1), (4.94)

holds on the segment ℓc1 which was defined in (4.91). Thus, according to the definition

(4.90) we have that ‖Zin(ϕ, τ)‖ ≤ Cinδ
2n−1 in Ωτ0 . Thus Zin ∈ X2n−2(Ωτ0).

Now, taking into account the definition of the formal separatrix X̂ it is not

difficult to derive the following estimate,

DǫX
n −Xhδ,n(X

n) = O(δ2n+1 cosh−2n−2(z)),
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where Xn is a truncation of X̂ at the order δ2n. The previous estimate implies that

‖F0(ϕ, τ)‖ ≤ C0 |τ |−2n−2 in Ωτ0 . Thus F0 ∈ X2n−1(Ωτ0) and in light of the previous

claim we conclude that L−1
0 (F0) ∈ X2n−2(Ωτ0).

Moreover, it is not difficult to derive the following upperbounds for the functions

F1,0 and F1,1,

‖F1,0(ϕ, τ)‖ ≤ C1,0 |τ |−3 and ‖F1,1(ϕ, τ)‖ ≤ C1,1δ
2. (4.95)

Indeed, the first estimate follows from the fact that,

Xn
δ = Γ0 +O3(τ

−1) and DXH0,n(Γ0)−A0 = O(τ−3),

whereas the second estimate follows from,

α−1
ǫ = 1 +O(δ2) and DXHǫ,n(X

n
δ ) = DXH0,n(X

n
δ ) +O(δ2).

Let p ∈ N. The first estimate of (4.95) implies that δ−2F1,1 induces a bounded

linear operator F1,1 : Xp(Ωτ0) → Xp(Ωτ0) acting by the formula F1,1(ξ)(ϕ, τ) =

δ−2F1,1(ϕ, τ)ξ(ϕ, τ) with ‖F1,1‖p,p ≤ C1,1. Similarly the function F1,0 induces a

bounded linear operator F1,0 : Xp(Ωτ0) → Xp+1(Ωτ0) acting according to the the

formula F1,0(ξ)(ϕ, τ) = F1,0(ϕ, τ)ξ(ϕ, τ) with ‖F1,1‖p+1,p ≤ C1,0

r1
. Now we rewrite

equation (4.92) as follows,

(
Id− δ2L−1

0 ◦ F1,1

)
Z = Zin + L−1

0 (F0) + L−1
0 ◦ F1,0(Z) + F2(Z)).

Using the fact that |δτ | is bounded in Du
1 (δ) we conclude that δL−1

0 ◦F1,1 : Xp(Ωτ0) →
Xp(Ωτ0) is a bounded (independent of δ) linear operator. Thus, Neumann series can be

used to prove that L1 := Id − δ2L−1
0 ◦ F1,1 has a bounded inverse L−1

1 : Xp(Ωτ0) →
Xp(Ωτ0) provided

∥
∥δ2L−1

0 ◦ F1,1

∥
∥
p,p

< 1 which certainly holds for δ sufficiently small.

Furthermore, similar arguments as in the proof of Theorem 3.4.1 show that for

δ sufficiently small,

XHǫ,n(X
n
δ + x)−XHǫ,n(X

n
δ )−DXHǫ,n(X

n
δ )x = O(‖x‖2),
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for x ∈ Bσn . Thus, according to the definition of F2 we have that F2 : Xp(Ωτ0) →
Xp+1(Ωτ0).

Thus for n ≥ 3 we define a non-linear operator H : X2n−2(Ωτ0) → X2n−2(Ωτ0)

acting according to the formula,

H(ξ) = L−1
1 (Zin)+L−1

1 ◦L−1
0 (F0)+L−1

1 ◦L−1
0 ◦F1,0(ξ)+L−1

1 ◦L−1
0 ◦F2(ξ), (4.96)

and prove that it is contracting on a certain closed ball in X2n−2(Ωτ0). Note that a fix

point of H is a solution of equation (4.92).

First we show that there is µ > 0 such that H(Bµ) ⊆ Bµ where,

Bµ :=
{
ξ ∈ X2n−2(Ωτ0) | ‖ξ‖2n−2 ≤ µ

}
.

In fact, similar estimates as in the proof of Theorem 3.4.1 show that for r1 > 0 sufficiently

large and δ small enough we have the following estimate,

‖F2(ξ)‖2n−1 ≤
8 ‖Hǫ,n‖C3 ‖ξ‖22n−2

(r1 sin θ1)2n−4
, (4.97)

for ξ ∈ X2n−2(Ωτ0). Now let

µ = 2
∥
∥L−1

1

∥
∥
2n−2,2n−2

(

‖Zin‖2n−2 +
∥
∥L−1

0

∥
∥
2n−2,2n−1

‖F0‖2n−1

)

.

Taking into account (4.96) and estimate (4.97), then for ξ ∈ Bµ we have that,

‖H(ξ)‖2n−2 ≤
µ

2
+
C1,0Mµ

r1
+

8M ‖Hǫ,n‖C3 µ2

r2n−4
1 sin2n−4 θ1

,

where

M =
∥
∥L−1

1

∥
∥
2n−2,2n−2

∥
∥L−1

0

∥
∥
2n−2,2n−1

.

Thus for,

r1 > 2C1,0M +
16M ‖Hǫ,n‖C3 µ

sin2n−4 θ1
, (4.98)

we get that ‖H(ξ)‖2n−2 < µ for ξ ∈ Bµ. Thus H leaves invariant the closed ball Bµ.

Now let us prove that H is contracting in Bρ. Again, similar estimates as in the proof

of Theorem 3.4.1 show that,

‖F2(ξ2)−F2(ξ1)‖2n−1 ≤
8µ ‖Hǫ,n‖C3

(r1 sin θ1)2n−4
‖ξ2 − ξ1‖2n−2 ,
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for ξ1, ξ2 ∈ Bµ and according to the definition of H and (4.98) we get at once,

‖H(ξ2)−H(ξ1)‖2n−2 <
1

2
‖ξ2 − ξ1‖2n−2 ,

which proves that H is contracting in Bµ. Consequently there exists an unique fixed

point ξ∗ ∈ Bµ of H such that Xn
δ + ξ∗ solves equation (4.86). Thus, by the main local

existence and uniqueness theorem for analytic PDE (see for instance [24]) we conclude

that the function Xn
δ + ξ∗ extends the domain of analyticity of Γu onto the set Ωτ0 .

Moreover, since

Sh ×Du
1 (δ) =

⋃

τ0∈ℓc1

Ωτ0 ,

we can repeat the same arguments for every τ0 ∈ ℓc1 and due to uniqueness of analytic

continuation we get that,

Γu = Xn
δ +O2n−2(τ

−1), in Sh ×Du
1 (δ).

Finally increasing n we obtain,

Γu −Xn
δ = Γu −Xn+4

δ +Xn+4
δ −Xn

δ = O2n+2(τ
−1),

which proves the desired estimate on the set Sh ×Du
1 (δ).

4.4.4 Complex Matching

In this subsection we construct different approximations for the parametrisations of

the unstable manifold near the singularity. These approximations will be obtained by

a method known as complex matching. Roughly speaking, they retain the essential

behavior near the singularity, providing better estimates for the parametrisations in that

region. Moreover, we will show that these approximations can distinguish the stable

and unstable manifolds and can be used to capture the exponentially small splitting. In

order to construct these approximations we first need to recall some the approximations

provided by the formal separatrix X̂δ. According to Lemma 4.4.2 we can write the
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formal Laurent expansion of X̂δ as follows,

X̂δ =

∞∑

m=0

X̂mδ
2m, where X̂m = Rϕ(ψ̃

1
m, φ̃

1
m, φ̃

2
m, ψ̃

2
m), (4.99)

such that,

ψ̃1
m(τ) =

∑

l≤m−1

ψ̃1
m,lτ

2l, φ̃1m(τ) =
∑

l≤m−2

φ̃1m,lτ
2l+1,

φ̃2m(τ) =
∑

l≤m−1

φ̃2m,lτ
2l+1, ψ̃2

m(τ) =
∑

l≤m−1

ψ̃2
m,lτ

2l.
(4.100)

Note that the formal series (4.99) satisfies equation DX̂δ = α−1
ǫ XHNF

ǫ
(X̂δ). Now

according to normal form theory there is a formal near identity canonical transformation

Φ that puts Hǫ,n into its formal normal form, i.e., HNF
ǫ = Hǫ,n◦Φ. The transformation

Φ has the general form,

q = Q+
∑

2|i|+|j|+2l≥2n+3

Φ̂i,j,lQ
iP jδ2l,

p = P +
∑

2|i|+|j|+2l≥2n+4

Φ̃i,j,lQ
iP jδ2l,

(4.101)

written in multi-index notation where Φ̂i,j,l, Φ̃i,j,l ∈ R
2. The composition Γ̂ = Φ ◦ X̂δ

is well defined (it converges in the formal sense) in the class of formal series since to

compute a certain coefficient one only needs a finite number of previous coefficients.

Moreover, taking into account (4.101), (4.99) and the formal series (4.100) we can write

Γ̂ as follows,

Γ̂ =
∑

m≥0

Γ̂mδ
2m, (4.102)

where Γ̂m ∈ τ2m−1T4
C
[[τ−1]] (see section 3.2 for a definition of these spaces) and most

important,

DΓ̂ = α−1
ǫ XHǫ,n(Γ̂). (4.103)

Substituting the series (4.102) into the equation (4.103) and collecting terms of the

same order in δ2m we obtain an infinite system of equations relating the coefficients

Γ̂m. At the leading order δ0 we get the following equation,

DΓ̂0 = XH0,n(Γ̂0), (4.104)
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and for the remaining orders it is not difficult to derive,

DΓ̂m = DXH0,n(Γ̂0)Γ̂m + Fm(Γ̂0, . . . , Γ̂m−1), m ≥ 1, (4.105)

where Fm is a well defined function that depends on a finite number of coefficients of

Hǫ,n. The theory of chapter 3 can be used to obtain analytic solutions for the previous

system of equations with prescribed asymptotics given by the formal series Γ̂m. More

concretely, we have the following,

Lemma 4.4.3. There exists an r > 0 and an unique sequence of analytic functions

{Γ−
m}m≥0 solving the infinite system of equations (4.105) such that for every m ≥ 0

and N ≥ 3 we have that,

Γ−
m −

〈

Γ̂m

〉

N
∈ XN+1(Sh ×D−

r ).

Proof. It follows from Theorem 3.4.1 that there exists an r > 0 sufficiently large and

an unique analytic parametrisation Γ−
0 ∈ X1(Sh ×D−1

r ) such that DΓ−
0 = XH0,n(Γ

−
0 )

and Γ−
0 ≍ Γ̂0. Hence Γ−

0 −
〈

Γ̂0

〉

N
∈ XN+1(Sh ×D−1

r ) for all N ≥ 3.

Now we can solve equations (4.105) using induction on m ≥ 1. Let us start with

m = 1. We are looking for a solution Γ−
1 of equation,

DΓ−
1 = DXH0,n(Γ

−
0 )Γ

−
1 + F1(Γ

−
0 ). (4.106)

We seek such solution by setting Γ−
1 =

〈

Γ̂1

〉

N
+ Z for some N ≥ 3. Thus Z must

satisfy,

L(Z) = R1, where R1 = D
〈

Γ̂1

〉

N
−DXH0,n(Γ

−
0 )
〈

Γ̂1

〉

N
− F1(Γ

−
0 ), (4.107)

and L(Z) = DZ − DXH0,n(Γ
−
0 )Z. Since Γ̂1 solves formally equation (4.106) we get

that R1 ∈ XN+1(Sh ×D−
r ). Moreover, the results of chapter 3 (in particular Theorem

3.5.0.1) imply the existence of a normalized fundamental matrix U having the form

(2.33) such that L(U) = 0. Thus according to Theorem 2.4.1 the linear operator

L : XN (Sh × D−
r ) → XN (Sh × D−

r ) has a bounded right inverse L−1 : XN+1(Sh ×
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D−
r ) → XN (Sh × D−

r ) for N ≥ 3. Since R1 ∈ XN+1(Sh × D−
r ), it follows that

L−1(R1) ∈ XN (Sh × D−
r ), thus Γ−

1 :=
〈

Γ̂1

〉

N
+ L−1(R1) is the desired solution of

equation (4.106). Moreover, its uniqueness follows from the fact that the kernel of L is

trivial. As N is arbitrary we conclude that Γ−
1 ≍ Γ̂1.

Finally, in order to complete the induction it remains to show that we can repeat

the same steps for m ≥ 2. Since it does not present any difficulty we conclude the proof

of the Lemma.

Let c2 > 0 be any fixed constant. Let Du
2 (δ) be a subset of Du

1 (δ) which is

defined as follows,

Du
2 (δ) = Du

1 (δ) ∩
{

τ ∈ C | − c2δ
− 1

2 < Re τ < +∞, |Im τ | < c2δ
− 1

2

}

,

and ℓc2 the left boundary of the set Du
2 (δ),

ℓc2 =
{

τ ∈ C | Re(τ) = −c2δ−
1
2 , |Im(τ)| < c2δ

− 1
2

}

. (4.108)

Let us prove a preliminary result which will be used in the next theorem.

Lemma 4.4.4 (Complex Matching). Given n ∈ N, the following estimate holds,

Xn
δ =

n∑

m=0

Γ−
mδ

2m +O(δn+1), (4.109)

uniformly in the set Sh × ℓc2 .

Proof. It follows from the definition of Xn
δ and the formal series Γ̂m that,

Xn
δ −

n∑

m=0

〈

Γ̂m

〉

2n+2
δ2m = O(δn+1), in Sh × ℓc2 .

Moreover, the previous Lemma implies that,

n∑

m=0

(〈

Γ̂m

〉

2n+2
− Γ−

m

)

δ2m = O(δn+1), in Sh × ℓc2

Putting together these estimates we get (4.109).
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We are now ready to prove our second approximation result.

Theorem 4.4.3. Given n ∈ N there exists an r1 > 0 such that the unstable parametri-

sation Γu of Theorem 4.4.2 can be approximated in Sh ×Du
2 (δ) as follows,

Γu =

n∑

m=0

Γ−
mδ

2m +O((τδ))2n+2,

where the functions Γ−
m are given by Lemma 4.4.3.

Proof. According to Theorem 4.4.2, for every n ≥ 3 there exists an unstable parametri-

sation Γu : Sh ×Du
1 (δ) → C

4 which is a solution of the following PDE,

DΓu = α−1
ǫ XHǫ,n(Γ

u), (4.110)

such that,

Γu = Xn
δ +O2n+2(τ

−1), in Sh ×Du
1 (δ). (4.111)

Now let Γn =
∑n

m=0 Γ
−
mδ

2m and define Z := Γu − Γn. Since Γu satisfies equation

(4.110) then it is not difficult to see that Z must satisfy the following equation,

L(Z) = F0 + F1Z+ F2(Z), (4.112)

where L(Z) = DZ−DXH0,n(Γ
−
0 )Z and moreover,

F0 = α−1
ǫ XHǫ,n(Γ

n)−DΓn,

F1 = α−1
ǫ DXHǫ,n(Γ

n)−DXH0,n(Γ
−
0 ),

F2(Z) = α−1
ǫ

(
XHǫ,n(Γ

n + Z)−XHǫ,n(Γ
n)−DXHǫ,n(Γ

n)Z
)
.

Now for a given τ0 ∈ ℓc2 let us define,

Zin(ϕ, τ) := U(ϕ, τ)U−1(ϕ− τ + τ0, τ0)Z(ϕ− τ + τ0, τ0), (4.113)

where ℓc2 is defined in (4.108) and U is a normalized fundamental matrix of L, i.e.,
L(U) = 0, which exists due to Theorem 3.3.1. Notice that Zin(ϕ, τ0) = Z(ϕ, τ0).

Thus, equation (4.112) is equivalent to,

Z = Zin + L−1(F0) + L−1(F1Z) + L−1 ◦ F2(Z), (4.114)
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where L−1 is acting by the following formula,

L−1(ξ)(ϕ, τ) = U(ϕ, τ)

∫ τ

τ0

U−1(ϕ− τ + r, r)ξ(ϕ− τ + r, r)dr, (4.115)

and the path of the integral is a segment joining the points τ0 and τ .

It is possible to estimate the functions F0 and F1 as follows,

‖F0(ϕ, τ)‖ ≤ C0δ
2n+2 |τ |2n−1 and ‖F1(ϕ, τ)‖ ≤ C1δ

2 |τ | , (4.116)

valid in Sh ×Du
2 (δ) for some C0, C1 > 0. Indeed, both estimates follow from the fact

that Γ−
j = O2j−1(τ) for j ≥ 0 and thus Γn = Γ−

0 +O(δ2τ) in Sh ×Du
2 (δ). Moreover,

similar to Theorem 4.4.2 we define the set Ωτ0 as follows,

Ωτ0 := {(ϕ, τ) ∈ Sh ×Du
2 (δ) | ϕ− τ + τ0 ∈ Sh, λτ + (1− λ)τ0 ∈ Du

2 (δ), ∀λ ∈ [0, 1]} .

Note that Ωτ0 is an open and connected subset of Sh ×Du
2 (δ) and

Sh ×Du
2 (δ) =

⋃

τ0∈ℓc2

Ωτ0 .

As in the proof of Theorem 4.4.2 we can show that formula (4.115) defines a bounded

linear operator L−1 : Xp+1(Ωτ0) → Xp(Ωτ0) for p ≥ 3.

Moreover, for p ∈ N it follows from the second estimate of (4.116) and the

fact that
∣
∣τ2δ

∣
∣ is bounded in Du

2 (δ) that we can defined a bounded linear operator

F1 : Xp(Ωτ0) → Xp+1(Ωτ0) defined by the formula F1(ξ)(ϕ, τ) = F1(ϕ, τ)ξ(ϕ, τ) for

ξ ∈ Xp(Ωτ0). Moreover,

‖F1(ξ)‖p+1 ≤
C1

r1
‖ξ‖p . (4.117)

In order to estimate Z in the set Sh×Du
2 (δ) we shall use a convergent iteration scheme

for functions defined in Ωτ0 . For k ≥ 0, let Zk : Ωτ0 → C
4 be the functions defined by

the recursion formula,

Zk+1 = Zin + L−1(F0) + L−1 ◦ F1(Zk) + L−1 ◦ F2(Zk), Z0 = 0. (4.118)
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In the following we will show that Zk ∈ X4(Ωτ0) for all k ≥ 0 and that {Zk}k≥0

is a Cauchy sequence. Let us start by estimating the functions Zk for k ≥ 0 in Ωτ0 . For

k = 1 we have that,

Z1 = Zin + L−1(F0). (4.119)

It follows from Lemma 4.4.4 and Theorem 4.4.2 that,

Γu = Γn +O(δn+1), in Sh × ℓc2 .

Taking into account the definition of Zin we conclude that ‖Zin(ϕ, τ)‖ ≤ Cinδ
n− 1

2 in

Ωτ0 for some Cin > 0. Thus Zin ∈ X4(Ωτ0) and,

‖Zin‖4 ≤ Cin sup
τ∈Du

2 (δ)

∣
∣τ2δ

∣
∣
5
2 δn−3 = O(δn−3). (4.120)

Now, it follows from the first estimate in (4.116) that F0 ∈ X5(Ωτ0) and,

‖F0‖5 ≤ C0 sup
τ∈Du

2 (δ)

∣
∣τ2δ

∣
∣
2n−1

2 δn+
3
2 = O(δn+

3
2 ). (4.121)

Thus, (4.119) and the estimates (4.120) and (4.121) imply that,

‖Z1‖4 ≤ ‖Zin‖4 +
∥
∥L−1

∥
∥
4,5

‖F0‖5 = O(δn−3).

To prove an upper bound for Zk with k ≥ 2 we proceed by induction on k ∈ N. Let us

suppose that,

‖Zk‖4 ≤ 2 ‖Z1‖4 , for some k ∈ N.

Now we show that ‖Zk+1‖4 ≤ 2 ‖Z1‖4. Similar to the previous Theorem we can derive

the following upper bound,

‖F2(Zk)‖5 ≤
8 ‖Hǫ,n‖C3 ‖Zk‖24

r21 sin
2 θ1

. (4.122)

Thus (4.117), (4.118) and (4.122) imply that,

‖Zk+1‖4 ≤ ‖Z1‖4 +
∥
∥L−1 ◦ F1(Zk)

∥
∥
4
+
∥
∥L−1 ◦ F2(Zk)

∥
∥
4

≤ ‖Z1‖4 +
∥
∥L−1

∥
∥
4,5

(‖F1(Zk)‖5 + ‖F2(Zk)‖5)

≤ ‖Z1‖4 +
∥
∥L−1

∥
∥
4,5

(

C1

r1
‖Zk‖4 +

8 ‖Hǫ,n‖C3 ‖Zk‖24
r21 sin

2 θ1

)
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Now using the induction hypothesis we conclude that,

‖Zk+1‖4 ≤ ‖Z1‖4 +
∥
∥L−1

∥
∥
4,5

(

2C1

r1
‖Z1‖4 +

32 ‖Hǫ,n‖C3 ‖Z1‖24
r21 sin

2 θ1

)

.

Choosing,

r1 >
∥
∥L−1

∥
∥
4,5

(

2C1 +
32 ‖Hǫ,n‖C3 ‖Z1‖4

sin2 θ1

)

, (4.123)

we get ‖Zk+1‖4 ≤ 2 ‖Z1‖4 as we wanted to prove. Now let us prove that the sequence

{Zk}k≥0 is Cauchy. First note that according to formula (4.118) we can write,

‖Zk+1 − Zk‖4 ≤
∥
∥L−1

∥
∥
4,5

(‖F1(Zk − Zk−1)‖5 + ‖F2(Zk)−F2(Zk−1)‖5) . (4.124)

Similar considerations as in the proof of Theorem 4.4.2 show that,

‖F2(Zk)−F2(Zk−1)‖5 ≤
16 ‖Z1‖4 ‖Hǫ,n‖C3

r21 sin
2 θ1

‖Zk − Zk−1‖4 .

Thus, (4.117), (4.123), (4.124) and the previous estimate give,

‖Zk+1 − Zk‖4 ≤
1

2
‖Zk − Zk−1‖4 ,

which implies that {Zk}k≥0 is a Cauchy sequence in the Banach space (X4(Ωτ0), ‖·‖4)
and has limit Z. Moreover, ‖Z‖4 ≤ 2 ‖Z1‖4 which taking into account (4.120) implies

that Z(ϕ, τ) = O(δn−3) in Ωτ0 . Since τ0 ∈ ℓ2 is arbitrary we conclude that,

Γu =
n∑

m=0

Γ−
mδ

2m +O(δn−3),

uniformly in the set Sh×Du
2 (δ). Finally, substituting n by 2n+5 in the previous estimate

and taking into account that Γ−
n+1δ

2n+2 = O((τδ)2n+2) we conclude that,

Γu =

2n+5∑

m=0

Γ−
mδ

2m +O(δ2n+2)

=
n∑

m=0

Γ−
mδ

2m +
2n+5∑

m=n+1

Γ−
mδ

2m +O(δ2n+2)

=

n∑

m=0

Γ−
mδ

2m +O((τδ)2n+2) +O(δ2n+2)

=
n∑

m=0

Γ−
mδ

2m +O((τδ)2n+2),

valid in Sh ×Du
2 (δ). This concludes the proof of the Theorem.
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Figure 4.3: Overview of the regions of validity of the approximation results.

4.4.5 Summary of the approximation results

Let us collect the approximation results obtained until this point. By Theorem 4.4.1

the unstable manifold W u
ǫ can be parametrised by an analytic function Γu : Sh ×

T u
0 (ρ, σ, h) → C

4 which satisfies the equation DǫΓ
u = XHǫn

(Γu). The parametrisation

Γu has real symmetry, i.e. it takes real values for (ϕ, τ) ∈ Sh × T u
0 ∩ R

2. Thus when

Γu is restricted to the reals it is real analytic (see Remark 4.3.1.2). Moreover, it is

2π-periodic in ϕ ∈ Sh. The set Sh is a strip in C of width h containing the real axis

and the set T u
0 ⊂ C has a shape similar to Figure 4.2. Furthermore we have proved in

the same Theorem that, given n ∈ N the following estimate holds,

Γu = Xn
δ +O2n+2(δ), (4.125)

valid in Sh × T u
0 where Xn

δ is a partial sum of the formal separatrix X̂δ up to order

δ2n+2 in the first two components and up to order δ2n+1 in the last two. Recall (4.58)

for a definition of the On notation.

In Theorem 4.4.2 we have extended the domain of analyticity of Γu and the

estimate (4.125) until it reaches the boundary of an δ-neighbourhood of the singular

point z = iπ2 . It is convenient to present the estimate in terms of the τ variable which
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is related to the z variable according to formula,

z =
βǫ
αǫ
τ + i

π

2
. (4.126)

Then Theorem 4.4.2 says that Γu can be analytically extended onto Sh × Du
1 (δ) and

estimated as follows,

Γu = Xn
δ +O2n+2(τ

−1),

in the set Sh ×Du
1 (δ). As expected the approximation given by the formal separatrix

deteriorates when z gets closer to iπ2 .

In a region closer to the singular point z = iπ2 a more accurate approximation is

given by Theorem 4.4.3. According to that Theorem the following estimate,

Γu =
n∑

m=0

Γ−
mδ

2m +O((τδ))2n+2,

holds in Sh ×Du
2 (δ) where the functions Γ−

m are given by Theorem 4.4.3.

We have obtained different approximations for the unstable parametrisation in

different regions of C2 and in Figure 4.3 it is illustrated where these estimates are valid.

4.5 Stable Manifold

The theory presented in the previous sections concerns the unstable manifold W u
ǫ of the

equilibrium of the family Hǫ, ǫ > 0. We have constructed rather good approximations

for this invariant manifold in different regions of the complexified phase space. Near the

equilibrium, the approximations provided by the formal separatrix are quite accurate.

In regions where the coefficients of the formal separatrix grow, i.e., near the singulari-

ties iπ2 + kπ, k ∈ Z, we have constructed different approximations which account for

the local behavior near the singularities and “glued” them together with the unstable

parametrisation using a complex matching technique.

Analogous results can be obtained for the stable manifold W s
ǫ . Let us define the

following sets,

T s
0 = {z | − z ∈ T u

0 } , Ds
1(δ) = {τ | − τ ∈ Du

1 (δ)} , Ds
2(δ) = {τ | − τ ∈ Du

2 (δ)} .
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Using the reversibility we can define the stable parametrisation as follows,

Γs(ϕ, z) = S(Γu(−ϕ,−z)).

Recall that the formal separatrix X̂δ is symmetric, i.e. S(X̂δ(−ϕ,−z)) = X̂δ(ϕ, z).

Thus, similar to Theorem 4.4.1 we obtain,

Theorem 4.5.1. For every n ∈ N, the stable parametrisation Γs : Sh × T s
0 → C

4 is

analytic, 2π-periodic in ϕ, continuous on the closure of its domain, satisfy the PDE

(4.65) and

Γs = Xn
δ +O2n+2(δ),

valid in Sh × T s
0 .

Continuing our analogy of results with the unstable case we have the following,

Theorem 4.5.2. For any n ∈ N there exists an r1 > 0 sufficiently large such that the

stable parametrisation Γs can be analytically extended onto Sh ×Ds
1(δ) such that,

Γs = Xn
δ +O2n+2(τ

−1), in Sh ×Ds
1(δ).

In a region closer to the singularity the stable parametrisation Γs can be approximated

in Sh ×Ds
2(δ) as follows,

Γs =

n∑

m=0

Γ+
mδ

2m +O((τδ))2n+2,

where Γ+
m(ϕ, τ) = S(Γ−

m(−ϕ,−τ)) solve the infinite system of equations (4.105) and

defined in Sh ×D+
r where D+

r = {τ ∈ C | − τ ∈ D−
r }.

Now we consider the question of finding homoclinic orbits. A natural place to

look for homoclinic points is the symmetric plane,

Lemma 4.5.1. Given n ∈ N, there exist functions ϕ0(δ) and z0(δ) analytic in (−δ0, δ0)
for some δ0 > 0 such that Γu(ϕ+ ϕ0(δ), z + z0(δ)) ∈ Fix(S) and moreover,

Γu(ϕ+ ϕ0(δ), z + z0(δ)) = Γu(ϕ, z) +O(δn+1), in Sh × T s
0 . (4.127)
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Proof. Tracing the proof of Theorem 4.4.1 it is possible to check that the unstable

parametrisation Γu can be made real analytic with respect to δ in some open interval

(−δ0, δ0). Moreover, in the standard scaling the following estimate holds,

Γu(ϕ, z) =
[

X̂
]

n
(ϕ, z) +O(δn+1),

where
[

X̂
]

n
denotes the sum of the formal separatrix of Theorem 4.2.1 up to order δn.

Now consider the following function,

G(ϕ, z, δ) = S(Γu(ϕ, z)) − Γu(ϕ, z).

Due to the real analyticity of the unstable parametrisation, the function G is also real

analytic. Moreover, as S(
[

X̂
]

n
(0, 0)) =

[

X̂
]

n
(0, 0) then G(0, 0, 0) = 0. Denote by

Gi the components of the function G. Thus, by the Implicit Function Theorem it is

sufficient to prove that,

d = det





∂G1
∂ϕ

∂G1
∂ϕ

∂G4
∂ϕ

∂G4
∂ϕ





∣
∣
∣
∣
∣
∣
ϕ=z=δ=0

6= 0.

Taking into account that
[

X̂
]

n
= X0 +O(δ) and the definition of X0 (see (2.17)) we

conclude that d = 8
η and the result follows. Moreover, it is not difficult to see that

ϕ0(δ) = O(δn+1) and z0(δ) = O(δn+1) and estimate (4.127) follows.

In the light of the previous Lemma and Remark 4.3.1.4 one can uniquely define

a parametrisation of the unstable (resp. stable) manifold W u
ǫ (resp. W s

ǫ ) by requiring,

Γu,s(0, 0) ∈ Fix(S).

Note that the approximations obtained in the previous sections are still valid due to esti-

mate (4.127). Moreover, Γs(0, 0) = S(Γu(0, 0)) = Γu(0, 0) is a symmetric homoclinic

point.
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4.6 Measuring the splitting

In this section we proceed to measure the splitting of stable and unstable manifolds. Let

us first derive some estimates for the difference Γs − Γu that will be used throughout

this section. Note that since T s
0 ∩ T u

0 6= ∅ then Theorems 4.4.1 and 4.5.1 imply that,

Γs(ϕ, z) − Γu(ϕ, z) = O2n+2(δ), ∀n ∈ N, (4.128)

in Sh × T s
0 ∩ T u

0 . Now let us consider the following rectangles,

R1(δ) =
{

z ∈ C | |Re z| < ρ1δ, 0 ≤ Im z <
π

2
− r1δ

}

,

R2(δ) = R1(δ) ∩
{

z ∈ C | Im z >
π

2
− c2δ

1/2
}

,
(4.129)

Note that R2(δ) ⊂ R1(δ) for δ sufficiently small. According to the extension Theorems

4.4.2 and 4.5.2 we still have the following estimate,

Γs(ϕ, z) − Γu(ϕ, z) = O2n+2(τ
−1), (4.130)

valid in Sh × R1(δ) where recall that z = βǫ
αǫ
τ + iπ2 . Note that the last estimate goes

from O(δ2n+2) in the bottom part of R1(δ) to O(1) in the top part of R1(δ). In a

region closer to the singularity iπ2 we can get sharper upper bounds. It follows from

Theorems 4.4.3 and 4.5.2 that,

Γs(ϕ, z) − Γu(ϕ, z) = ∆0(ϕ, τ) +O((δτ)2),

in Sh ×R2(δ) where ∆0 = Γ+
0 − Γ−

0 . Now according to Theorem 3.5.1 we have that,

∆0(ϕ, τ) = O(τ3e−i(τ−ϕ)),

in Sh ×D1
r where D1

r = D+
r ∩D−

r ∩ {Imτ < −r} for r > 0 sufficiently large. Thus,

Γs(ϕ, z) − Γu(ϕ, z) = O(τ3e−i(τ−ϕ)) +O((δτ)2), (4.131)

in Sh × R2(δ). A sharper estimate of the difference in Sh × R2(δ) can be obtained as

follows,
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Lemma 4.6.1. For any 0 < µ < 1 the following estimate holds,

Γs(ϕ, z) − Γu(ϕ, z) = ∆0(ϕ, τ) +O(e−µi(τ−ϕ)δ2) +O((δτ)4).

Proof. By Lemma 4.4.3 we known that the formal series Γ± =
∑

m≥0 Γ
±
mδ

2m satisfy

the equation,

DΓ± = α−1
ǫ XHǫ,n(Γ

±).

Recall that αǫ = 1 −∑∞
l=1 a1,0,lδ

2l. Now let us write XHǫ,n =
∑

m≥0 Fmδ
2m where

F0 = XH0,n and expand the previous equation in powers of δ. Collecting terms of the

same order in δ2 we get the following equation,

DΓ±
1 = DF0(Γ

±
0 )Γ

±
1 + a1,0,1F0(Γ

±
0 ) + F1(Γ

±
0 ).

Now we define ∆1 = Γ+
1 − Γ−

1 and rewrite the previous equation as follows,

L(∆1) = a1,0,1(F0(Γ
+
0 )−F0(Γ

−
0 ))+F1(Γ

+
0 )−F1(Γ

−
0 )+

(
DF0(Γ

+
0 )−DF0(Γ

−
0 )
)
Γ+
1 ,

(4.132)

where L(∆1) = D∆1 − DF0(Γ
−
0 )∆1. Denote by R1 the right hand side of equation

(4.132). Taking into account that F0 and F1 are analytic and the estimates (4.131)

and Γ±
1 = O−1(τ

−1) it is not difficult to conclude that R1 ∈ Yµ′(Sh × D1
r ) for any

1 < µ′ < 2. Note that by the result of chapter 3 the linear operator L has a fundamental

matrix U. According to Theorem 2.4.3 given µ′′ > µ′ there exists a bounded linear

operator L−1
µ′ : Yµ′(Sh×D1

r) → Yµ′′(Sh×D1
r ) such that LL−1

µ′ = Id. As∆1 = O(τ−N )

for all N ∈ N, it follows from the fact that ∆1 −L−1
µ′ (R1) ∈ ker(L) and Theorem 2.4.2

that there is an analytic 2π-periodic function c1 : {s ∈ C : Im(s) < −r + h} → C
4 such

that ∆1 − L−1
µ′ (R1) = Uc1. Since,

lim
Ims→−∞

c1(s) = 0,

we can write c1 in Fourier series and conclude that c1 = O(e−i(τ−ϕ)). Thus ∆1 =

O(e−µi(τ−ϕ)) where µ = 2− µ′. Finally, as

Γs(ϕ, z) − Γu(ϕ, z) = ∆0(ϕ, τ) + ∆1(ϕ, τ)δ
2 +O((δτ)4),

we get the desired result.
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4.6.1 Derivation of an asymptotic formula

In this subsection we derive an asymptotic formula for the homoclinic invariant at the

primary homoclinic point Γs(0, 0) = Γu(0, 0). In order to derive the asymptotic formula

we consider an auxiliary function defined by

Θ(ϕ, z) = Ω (∆(ϕ, z), ∂ϕΓ
u(ϕ, z)) , (4.133)

where ∆(ϕ, z) = Γs(ϕ, z) − Γu(ϕ, z) and Ω is the standard symplectic form. The

homoclinic invariant of the primary homoclinic orbit is defined by (4.5) which takes the

form

ωǫ = Ω
(
∂ϕΓ

s, ∂ϕΓ
u
)∣
∣
ϕ=z=0

. (4.134)

Differentiating the definition of Θ at the origin and taking into account that ∆(0, 0) = 0

we get the relation:

ωǫ = ∂ϕΘ(0, 0).

Thus, we only need to estimate the function Θ and its derivative. Note that the function

Θ satisfy the following PDE,

DǫΘ = Ω(F (∆), ∂ϕΓ
u), (4.135)

where F (∆) = XHǫ(Γ
u + ∆) − XHǫ(Γ

u) − DXHǫ(Γ
u)∆. As F (∆) is of second

order in ∆, then Θ approximately satisfies the homogeneous equation Dǫu = 0. Thus,

Θ is approximately equal to a 2πβǫ-periodic function depending on a single variable

Θ(ϕ, z) ≈ f(αǫz − βǫϕ). Periodicity allow us to write Θ in Fourier series,

Θ(ϕ, z) ≈
∑

k∈Z

fke
ik(

αǫ

βǫ
z−ϕ)

,

and we can estimate the function Θ by estimating the coefficients fk using the standard

integral formula. A rigorous argument that justifies the previous heuristic requires the

method of flow box.
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Flow box coordinates

The main idea of the method is to construct new coordinates valid in a suitable neigh-

bourhood of a piece of the unstable manifold such that in the new coordinates the

original flow is conjugated to a linear flow on a “cylinder”. Let us be more precise.

Given r, c, σ > 0, consider the following domain in the complex plane,

R(δ) =
{

z ∈ C | |Im z| < π

2
− rδ, |Re z| < cδ

}

and let Mδ be the following domain in C
4,

Mδ = Sh ×R(δ)×
{
(E1, E2) ∈ C

2 | |E1|+ |E2| < δσ
}
.

Then we have the following,

Theorem 4.6.1. There exist c, σ > 0, r > 0 sufficiently large and δ0 > 0 such that if

δ ∈ (0, δ0) then there exists a real analytic symplectic injective map Ψ : Mδ → C
4 such

that:

1. Ψ is 2π-periodic in ϕ,

2. DǫΨ = XHǫ(Ψ),

3. Ψ(ϕ, z, 0, 0) = Γu(ϕ, z),

4.
∥
∥Ψ−1

∥
∥
C2 is uniformly bounded (with respect to δ ∈ (0, δ0)).

The idea of constructing a flow box to study the splitting of invariant manifolds

goes back to Lazutkin’s original ideas when studying the splitting of separatrices of the

standard map [47]. Here we will only give a sketch of its proof since it is a simple

adaptation of the proof of Theorem 7.1 in [28]. There, it is constructed a symplectic

diffeomorphism which conjugates the dynamics near a piece of the unstable separatrix

of the standard map to a shift (t, E) 7→ (t + h,E) (see chapter 1 for an introduction

to the splitting of separatrices of the standard map). One of the key ingredients in the
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proof of the theorem is to obtain a suitable description of solutions of the following

variational equation,

Dǫu = DXHǫ(Γ
u(ϕ, z))u. (4.136)

Clearly the tangent vector fields ∂ϕΓ
u and ∂zΓ

u satisfy the previous equation and since

W u
ǫ is Lagrangian it follows that,

Ω(∂ϕΓ
u, ∂zΓ

u) = 0. (4.137)

Now two other independent solutions u1 and u2 can be obtained using the method

described in Appendix A. Together these four linear independent solutions form a sym-

plectic fundamental solution Π(ϕ, z) of equation (4.136). Moreover, u1 and u2 can be

estimated in Sh×R(δ) using the known estimates of Γu in that domain. Then we look

for a solution of equation

DǫΨ = XHǫ(Ψ), (4.138)

in the following form,

Ψ(ϕ, z,E1, E2) = Γu(ϕ, z) + Z(ϕ, z,E1, E2),

subject to condition Z(ϕ, z, 0, 0) = 0. Thus, Z must satisfy the following integral

equation,

L(Z) = XHǫ(Γ
u + Z)−XHǫ(Γ

u)−DXHǫ(Γ
u)Z, (4.139)

where L(Z) = DǫZ − DXHǫ(Γ
u)Z. This linear operator acts on the Banach space

Cµ(Sh × R(δ)) for µ > 0 which consists of analytic functions f : Sh × R(δ) → C
4,

2π-periodic in ϕ, continuous on the closure of its domain and having finite norm,

‖f‖Cµ
:= sup

Sh×R(δ)
‖coshµ(z)f(ϕ, z)‖ <∞.

The linear operator L has kernel in Cµ(Sh ×R(δ)) which follows from the existence of

a fundamental solution Π. Moreover, it is not difficult to construct a right inverse of

L which we denote by L−1. Thus the problem of solving the integral equation (4.139)

subject to condition Z(ϕ, z, 0, 0) = 0 is reduced to the problem of finding a fixed point,

Z = E1u1 + E2u2 + L−1(F (Z)),
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where F (Z) denotes the right hand side of equation (4.139). Now given µ > 0 and

|E1| + |E2| < δσ for some σ(µ) > 0 and δ sufficiently small, it is possible to derive

analogous estimates as in the proof of Theorem 7.1 in [28] to show that the non-linear

operator in the right hand side of the previous equation is contracting in a suitable

invariant closed ball (with radius possibly depending on µ) defined in Cµ(Sh ×R(δ)).

Then using a contraction mapping principle one can obtain the map Ψ. Note

that Ψ as defined previously is not unique. In fact,

Ψ(ϕ+ s1(αǫz − βǫϕ), z + s2(αǫz − βǫϕ), s3(αǫz − βǫϕ), s4(αǫz − βǫϕ)),

also satisfies equation (4.138) where si are 2πβǫ-periodic functions such that si(0) = 0.

Since the map Ψ may not be symplectic, this freedom can be used to construct a new

map Ψ̃ which has the desired properties stated in Theorem 4.6.1.

Now let us look at some consequences of the Theorem.

The splitting function

It follows from the second property of the Theorem, that in the new coordinates defined

by the map Ψ the Hamiltonian flow of Hǫ is conjugated to the linear motion given by,

ϕ̇ = αǫ, ż = βǫ, Ė1 = 0, Ė1 = 0.

Now let us define the splitting function as follows,

Ξ(ϕ, z) = E1 ◦ Γs(ϕ, z), (4.140)

where E1 is the third component of the map Ψ−1. Now we check the domain of validity

of the function Ξ. According to Theorem 3.5.1 we have that,

Γ+
0 (ϕ, τ)− Γ−

0 (ϕ, τ) = O(τ3e−i(τ−ϕ)),

in Sh ×D1
r for r sufficiently large. Consequently, Lemma 4.6.1, the previous estimate

and estimates (4.128) and (4.130) imply that,

Γs(ϕ, z) − Γu(ϕ, z) = O(δ
2
µ log3 δ−1), (4.141)
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for 0 < µ < 1 arbitrarily close to 1, which is valid in the set Sh ×D(δ) where,

D(δ) = R(δ) ∩
{

|Im z| < π

2
− 2

µ
δ log δ−1

}

.

It is not difficult to see that the estimate (4.141) implies that,

Γs(ϕ, z) − Γu(ϕ, z) = O(δ2), in Sh ×D(δ). (4.142)

Thus, provided σ ≤ 2 in Theorem 4.6.1, the function Ξ(ϕ, z) is well defined in the set

Sh ×D(δ).

Hereafter we shall assume that σ can be chosen such that the splitting function

Ξ is well defined. This is not a serious assumption as is explained in the next subsection

and it can be overcome by finer estimates for the difference (4.141).

Now let us study the splitting function and see that it provides a way to measure

the splitting of the invariant manifolds. First of all note that,

ωǫ = −∂ϕΞ(0, 0).

In fact, it follows directly from the third property of Ψ that

Ψ−1
∗ ∂ϕΓ

u(0, 0) = ∂ϕΨ
−1(Γu(ϕ, z))

∣
∣
ϕ=z=0

= ∂ϕ(ϕ, z, 0, 0)|ϕ=z=0 = (1, 0, 0, 0),

and

Ψ−1
∗ ∂ϕΓ

s(0, 0) = ∂ϕΨ
−1(Γs(ϕ, z))

∣
∣
ϕ=z=0

.

Finally, taking into account the definition of the homoclinic invariant and the fact that

Ψ is a symplectic map we get,

ωǫ = Ω(Ψ−1
∗ ∂ϕΓ

s(0, 0),Ψ−1
∗ ∂ϕΓ

u(0, 0)) = −∂ϕΞ(0, 0).

This fact justifies why Ξ is known as the splitting function. Furthermore, since Ė1 = 0

it follows that,

d

dt
E1 ◦ Γs(ϕ+ αǫt, z + βǫt) = 0.
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ϕ

z

4π

0

4π
βǫ

αǫ

Figure 4.4: Illustration of the graph of the splitting function. The stable manifold
“snakes” the unstable manifold which corresponds to the plane E1 = 0.

Thus, DǫΞ = 0 and Ξ can be considered as a function of a single variable Ξ(ϕ, z) =

Ξ0(αǫz − βǫϕ). Moreover, the 2π-periodicity in ϕ implies that Ξ0 is in fact 2π βǫαǫ
-

periodic in z and its domain can be extended by periodicity to contain a strip |Im z| <
π
2 − 2

µδ log δ
−1.

When Ξ is restricted to the reals, then a piece of the stable manifold is repre-

sented as the graph of Ξ while the unstable manifold in given by the plane E1 = 0 as

figure 4.4 illustrates.

Now we derive a formula that will be useful to estimate the function Ξ.

Lemma 4.6.2. The following identity holds,

∇E1(Γ
u(ϕ, z)) = (∂ϕΓ

u(ϕ, z))T J .

Proof. According to the inverse function theorem we have that (dΨ)−1 = dΨ−1. More-

over, given a symplectic matrix,

M =




A B

C D



 ,

where A,B,C and D are n-by-n matrices, thenM−1 can be computed according to the
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following well known formula,

M−1 =




DT −BT

−CT AT



 .

Thus, denoting by (q1, q2, p1, p2) the components of the map Ψ and taking into account

the previous formula for the inverse of a symplectic matrix we have that,











∂q1
∂ϕ

∂q1
∂z

∂q1
∂E1

∂q1
∂E2

∂q2
∂ϕ

∂q2
∂z

∂q2
∂E1

∂q2
∂E2

∂p1
∂ϕ

∂p1
∂z

∂p1
∂E1

∂p1
∂E2

∂p2
∂ϕ

∂p2
∂z

∂p2
∂E1

∂p2
∂E2











−1

=











∂p1
∂E1

∂p2
∂E1

− ∂q1
∂E1

− ∂q2
∂E1

∂p1
∂E2

∂p2
∂E2

− ∂q1
∂E2

− ∂q2
∂E2

−∂p1
∂ϕ −∂p2

∂ϕ
∂q1
∂ϕ

∂q2
∂ϕ

−∂p1
∂z −∂p2

∂z
∂q1
∂z

∂q2
∂z











.

Since Ψ(ϕ, z, 0, 0) = Γu(ϕ, z) and equating the third row of the previous matrices we

get the desired identity.

Now the last property of Theorem 4.6.1 implies that we can use Taylor series

around Γu(ϕ, z) to expand the splitting function as follows,

Ξ(ϕ, z) = ∇E1(Γ
u(ϕ, z)) · (Γs(ϕ, z) − Γu(ϕ, z)) +O(‖Γs(ϕ, z) − Γu(ϕ, z)‖2).

Thus, taking into account the identity of the previous Lemma we conclude that,

Ξ(ϕ, z) = −Θ(ϕ, z) +O(‖Γs(ϕ, z) − Γu(ϕ, z)‖2), (4.143)

where recall that Θ is the auxiliary function defined in (4.133). Now let us estimate the

function Θ on the line,

ℓ(δ) = ∂D(δ) ∩
{

Im z =
π

2
− 2

µ
δ log δ−1

}

.

Recall that 0 < µ < 1 is arbitrarily close to 1. In the following we shall use both variables

z and τ which are related through the formula z = βǫ
αǫ
τ + iπ2 . According to Theorem

4.4.3, for (ϕ, z) ∈ Sh × ℓ(δ) we have that,

Γu(ϕ, z) = Γ−
0 (ϕ, τ) +O(δ2 log2 δ−1), in Sh × ℓ(δ),

∂ϕΓ
u(ϕ, z) = ∂ϕΓ

−
0 (ϕ, τ) +O(δ2 log2 δ−1), in Sh × ℓ(δ),

(4.144)

164



where the last estimate for the derivative follows from standard Cauchy estimates. More-

over, Lemma 4.6.1 implies that,

Γs(ϕ, z) − Γu(ϕ, z) = Γ+
0 (ϕ, τ)− Γ−

0 (ϕ, τ) +O(δ4−µ1), in Sh × ℓ(δ), (4.145)

where µ1 > 0 is an arbitrarily small. Thus, taking into account the definition of Θ(ϕ, z),

the previous estimates (4.144) and (4.145) we get,

Θ(ϕ, z) = Ω(Γ+
0 (ϕ, τ) − Γ−

0 (ϕ, τ), ∂ϕΓ
−
0 (ϕ, τ)) +O(δ4−µ2), (4.146)

valid in Sh × ℓ(δ) where µ2 > 0 is arbitrarily small. Now according to Theorem 3.5.1

we have that,

Ω(Γ+
0 (ϕ, τ) − Γ−

0 (ϕ, τ), ∂ϕΓ
−
0 (ϕ, τ)) = Θ−

0 e
−i(τ−ϕ) +O

(

e−(2−µ0)i(τ−ϕ)
)

, (4.147)

for µ0 > 0 arbitrarily small, valid in Sh ×D1
r . Also note that from Corollary 3.5.2.1 we

have ReΘ−
0 = 0 (a consequence of reversibility). Putting estimates (4.146) and (4.147)

together and changing to variable z we get,

Θ(ϕ, z) = e
−παǫ

2βǫ Θ−
0 e

−i(αǫ
βǫ
z−ϕ)

+O(δ4−µ3),

on the line Sh × ℓ(δ), where µ3 > 0 is arbitrarily small. Thus, taking into account the

previous estimate, (4.142) and (4.143) we have the following estimate for the splitting

function,

Ξ(ϕ, z) = −e−
παǫ
2βǫ Θ−

0 e
−i(αǫ

βǫ
z−ϕ) +O(δ4−µ4),

valid in Sh× ℓ(δ), where µ4 > 0 is arbitrarily small. Since ei
αǫ
βǫ
z = O(e−

παǫ
2βǫ ) on the line

ℓ(δ) and moreover Θ−
0 = ±i

√
K0 (see Remark 3.5.2.1) where K0 is the Stokes constant

of H0, then the following estimate is still valid,

Ξ(ϕ, z) = ∓ie−
παǫ
2βǫ

√

K0

(

e−i(
αǫ
βǫ
z−ϕ) − ei(

αǫ
βǫ
z−ϕ)

)

+O(δ4−µ4)

= ±2e−
παǫ
2βǫ

√

K0 sin

(
αǫ
βǫ
z − ϕ

)

+O(δ4−µ4),
(4.148)
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in Sh × ℓ(δ). Taking into account that Ξ(ϕ, z) is real analytic then the same estimate

holds in the set,

Sh ×
(

∂D(δ) ∩
{

Im z = −π
2
+

2

µ
δ log δ−1

})

.

Now, since Ξ(ϕ, z) is 2π βǫαǫ
-periodic in z then using a maximum modulus principle we

conclude that,

Ξ(0, z) = ±2e−
παǫ
2βǫ

√

K0 sin

(
αǫ
βǫ
z

)

+O(δ4−µ4),

valid in the strip |Im z| ≤ π
2 − 2

µδ log δ
−1.

Using this bound for the splitting function we are now ready to get a lower

bound for the homoclinic invariant. The argument is based on estimating the Fourier

coefficients of Ξ in a suitable way. It goes as follows: consider the following function,

g(ϕ, z) = Ξ(ϕ, z) ∓ 2e−
παǫ
2βǫ

√

K0 sin

(
αǫ
βǫ
z − ϕ

)

.

It has the same properties as Ξ and moreover g(0, 0) = 0. Now we expand the function

g into Fourier series, i.e.,

g(ϕ, z) =
∑

k∈Z

gke
ik(

αǫ

βǫ
z−ϕ)

,

where coefficients of the series can be expressed in terms of Fourier integrals:

gk =
αǫ

2πβǫ

∫ 2πβǫ
αǫ

0
e
−ik

αǫ

βǫ
z
g(0, z)dz .

Following the common procedure of Fourier Analysis, we shift the contour of integration

to Im z = iρ where ρ = π
2 − 2

µδ log δ
−1 to get,

gk =
αǫ

2πβǫ

∫ iρ+
2πβǫ
αǫ

iρ
e
−ik

αǫ

βǫ
z
g(0, z)dz

=
αǫ

2πβǫ
e

kαǫρ
βǫ

∫ 2πβǫ
αǫ

0
e
−ik

αǫ

βǫ
z
g(0, iρ + z)dz .
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Thus, for k ≤ −1 we can estimate gk as follows,

|gk| ≤ e
kαǫρ
βǫ sup

|Im z|≤ρ
|g(0, z)| , k ≤ −1.

Analogously, by shifting the contour of integration to Im z = −iρ we get for k ≥ 1 the

following estimate,

|gk| ≤ e−
kαǫρ
βǫ sup

|Im z|≤ρ
|g(0, z)| , k ≥ 1.

Taking into account these estimates for the Fourier coefficients we obtain for (ϕ, z) ∈ R
2

that,

|g(ϕ, z) − g0| ≤
∑

k∈Z−{0}

|gk|

≤ 2 sup
|Im z|≤ρ

|g(0, z)|
∑

k≥1

e−
kαǫρ
βǫ

≤ 2 sup
|Im z|≤ρ

|g(0, z)| e
−αǫρ

βǫ

1− e−
αǫρ
βǫ

.

Finally, taking into account that,

sup
|Im z|≤ρ

|g(0, z)| = O(δ4−µ4) and e−
αǫρ
βǫ = O(e−

παǫ
2βǫ δ−2−µ5),

where µ5 > 0 is arbitrarily small we conclude that,

|g(ϕ, z) − g0| = O(e
−παǫ

2βǫ δ2−µ4−µ5), for (ϕ, z) ∈ R
2.

Thus,

|g(ϕ, z)| = |g(ϕ, z) − g(0, 0)| ≤ |g(ϕ, z) − g0|+ |g(0, 0) − g0| = O(e−
παǫ
2βǫ δ2−µ4−µ5),

which implies that,

Ξ(ϕ, z) = ±2e
−παǫ

2βǫ

√

K0 sin

(
αǫ
βǫ
z − ϕ

)

+O(e
−παǫ

2βǫ δ2−µ6),

for µ6 > 0 arbitrarily small. At last, taking into account that ωǫ = −∂ϕΞ(0, 0) we

obtain the desired asymptotic formula for the homoclinic invariant. This completes the

proof of Theorem 4.1.1.
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4.6.2 Finer estimates for Γ
s − Γ

u and an asymptotic expansion for the

homoclinic invariant

In order to define the splitting function in the previous subsection, we have assumed that

the domain of definition of the symplectic map Ψ was large enough to contain a piece

of the stable parametrisation Γs. More precisely we have assumed that |E1|+ |E2| < δσ

where σ ≤ 2. As mentioned previously, this is not a serious restriction and it can

be overcome by finer estimates for the inner differences Γ+
k − Γ−

k . In fact, using the

methods developed in Chapter 3 it is possible to prove that,

Γ+
k (ϕ, τ)− Γ−

k (ϕ, τ) = O(τNke−i(τ−ϕ)), in Sh ×D1
r , (4.149)

where D1
r = D+

r ∩D−
r ∩ {Imτ < −r} for r > 0 sufficiently large and Nk ∈ N. Now,

taking into account Theorems 4.4.3 and 4.5.2 we have that,

Γs(ϕ, z) − Γu(ϕ, z) =

n∑

k=0

(Γ+
k (ϕ, τ) − Γ−

k (ϕ, τ))δ
2k +O((δτ)2n+2) (4.150)

valid in Sh × R2(δ) where recall that z = βǫ
αǫ
τ + iπ2 and R2(δ) is defined in (4.129).

Thus, estimates (4.149) and (4.150) imply that,

Γs(ϕ, z) − Γu(ϕ, z) = O(δσ log3 δ−1),

valid in the set Sh ×Dσ(δ) where,

Dσ(δ) =
{

|Im z| < π

2
− σδ log δ−1, |Re z| < cδ

}

,

for some c > 0. Thus, given any σ > 0 the splitting function (4.140) is well defined.

Finally, similar considerations as in the previous subsection and taking into account the

finer estimates for the differences (4.149) we can derive an asymptotic expansion for the

homoclinic invariant which we conjecture as follows,

ωǫ ≍ ±2e
−παǫ

2βǫ

∑

k≥0

ωkδ
2k, ωk ∈ R, (4.151)

where ω0 =
√K0.

In the next chapter we perform numerical experiments that support the validity

of the asymptotic formula and asymptotic expansion of the homoclinic invariant.
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4.7 Conclusion

The goal of this chapter was to prove Theorem 4.1.1. Its proof depends on several

different results obtained in the previous and present chapter. In this section we shall

briefly describe the main steps of the proof. The strategy is as follows:

1. Parametrization of the invariant manifolds. We show in Theorem 4.3.1 that it

is possible to parametrize stable and unstable manifolds by solutions of equation

(4.2). This parametrization is initially defined in a complex neighbourhood of the

equilibrium point.

2. Approximation near the equilibrium. We prove that any truncation of the

formal separatrix (see Theorem 4.2.1) of the normal form HNF
ǫ provides a good

approximation of the stable and unstable manifolds in a neighbourhood of the

equilibrium point. This is the content of Theorem 4.4.1.

3. Analytic continuation of the parametrizations towards the singular points.

The approximations provided by the formal separatrix have singularities at z =

iπ2 + kπ, k ∈ Z. We show in Theorem 4.4.2 that it is possible to extend the

approximation and the domain of analyticity of the parametrizations up to a δ-

neighbourhood of the singular points.

4. Complex matching near the singularity. The approximations provided by the

truncations of the formal separatrix grow near the singularity z = iπ2 . Instead

of improving the existent approximations we construct different approximations

using the method of complex matching (see Theorem 4.4.3). Roughly speaking,

the new approximations retain the essential behavior near the singularity, providing

better estimates for the parametrisations in that region. The leading order of the

approximation is given by the parametrizations Γ±
0 which are studied in chapter 3.

These new approximations distinguishes between stable and unstable manifolds.

5. Flow box coordinates and the splitting function. This is the last step of
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the proof and is developed in section 4.6.1 of the present chapter. Using a flow

box (see Theorem 4.6.1) and the upper bounds provided by the approximations

of the complex matching method we are able to get an asymptotic formula for

the splitting. The main point here is periodicity of a certain splitting function

(4.140), that allow us to use standard arguments in Fourier analysis to capture

the exponential smallness of the splitting.
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Chapter 5

Numerical Investigation of

Homoclinic Phenomenon

In this chapter we study the asymptotic formula of the homoclinic invariant from a

numerical point of view. Our example is the Swift-Hohenberg equation. We perform

several numerical experiments that support the validity of the asymptotic formula and

obtain the same Stokes constant using two completely different methods. All computa-

tions were performed using Maple Software with high-precision arithmetic.

5.1 The generalized Swift-Hohenberg equation

The generalized Swift-Hohenberg equation (GSHE),

ut = ǫu+ κu2 − u3 − (1 + ∆)2u (5.1)

is widely used to model nonlinear phenomena in various areas of modern Physics in-

cluding hydrodynamics, pattern formation and nonlinear optics (e.g. [12, 40]). This

equation (with κ = 0) was originally introduced by Swift and Hohenberg [72] in a study

of thermal fluctuations in a convective instability.

In the following we consider u to be one dimensional and study stationary solu-
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tions of (5.1) which satisfy the ordinary differential equation

ǫu+ κu2 − u3 − (1 + ∂2x)
2u = 0 . (5.2)

Obviously this equation has a reversible symmetry (if u(x) satisfy the equation then

u(−x) also does). It is well known that for small negative ǫ this equation has two

symmetric homoclinic solutions [34] similar to the ones shown on Figure 5.1. In this

chapter we study from a numerical point of view the transversality of the homoclinic

solutions, which implies, by the results of the previous chapters, the existence of multi-

pulse homoclinic solutions and a small scale chaos. Recently, similar computations for the

Swift-Hohenberg equation have been performed by S. J. Chapman and G. Kozyreff in [18]

where they study localised patterns emerging from a subcritical modulation instability

using the multiple-scales analysis beyond all orders. Our methods extend those of [18]

as they can be applied to any Hamiltonian system near a Hamiltonian-Hopf bifurcation.

Moreover, our dynamical system approach provides more insight about the divergence

of the asymptotic expansions derived in [18] and gives a rigorous framework to study

transversal homoclinic orbits for the Swift-Hohenberg equation.

In order to describe the homoclinic phenomena it is convenient to rewrite the

equation (5.2) in the form of an equivalent Hamiltonian system [8, 48]:

q̇1 = q2 ṗ1 = p2 − ǫq1 − κq21 + q31 (5.3)

q̇2 = p2 − q1 ṗ2 = −p1 ,

where the variables are defined by the following equalities

u = q1, u′ = q2, −(u′ + u′′′) = p1 and u+ u′′ = p2 (5.4)

and the Hamiltonian function has the form

Hǫ = p1q2 − p2q1 +
p22
2

+ ǫ
q21
2

+ κ
q31
3

− q41
4
. (5.5)

The system (5.3) is reversible with respect to the involution,

S : (q1, q2, p1, p2) → (q1,−q2,−p1, p2).
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Figure 5.1: Two primary symmetric homoclinic solutions of the scalar stationary GSHE (ǫ =
−0.05).

The origin is an equilibrium of the system and the eigenvalues of the linearized vector

field are
{

±
√

−1 +
√
ǫ, ±

√

−1−√
ǫ

}

.

If ǫ < 0, the eigenvalues form a quadruple ±βǫ ± iαǫ where

βǫ =

√

2
√
1− ǫ− 2

2
=

√

− ǫ
4
(1 +O(ǫ)) ,

αǫ =

√

2
√
1− ǫ+ 2

2
= 1 +O(ǫ) .

At ǫ = 0 the eigenvalues collide forming two purely imaginary eigenvalues±i of multiplic-

ity two. Moreover, the corresponding linearization of the vector field is not semisimple.

Thus, the equilibrium point of system (5.3) undergoes a Hamiltonian-Hopf bifurcation
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described in section 2.2. In general position there are two possible scenarios of the bifur-

cation depending on the sign of a certain coefficient of a normal form (see section 2.2).

In the Swift-Hohenberg equation both scenarios are possible and depend on the value

of the parameter κ. In the following we shall consider the case when the equilibrium

is stable at the moment of the bifurcation which corresponds to |κ| >
√

27
38 as shown

in [8]. For the degenerate case κ =
√

27
38 , interesting phenomena known as snaking

takes place [77].

When ǫ < 0 is small, the equilibrium is a saddle-focus and we can parametrise

the invariant manifoldsW u,s
ǫ by solutions of the PDE (4.2) (see also discussion in section

2.3 of chapter 2). In the case of the Swift-Hohenberg equation the system of PDE (4.2)

can be conveniently replaced by a single scalar PDE of higher order,

(1 +D2
ǫ )

2u = ǫu+ κu2 − u3 , (5.6)

where we recall that Dǫ denotes the following differential operator,

Dǫ = αǫ∂ϕ + βǫ∂z.

Let us use u± to denote the first component of Γu and Γs respectively, then u± satisfies

the equation (5.6). Its other components can be restored using (5.4). The Swift-

Hohenberg equation is reversible and we assume that

u+(ϕ, z) = u−(−ϕ,−z),

and Γs(0, 0) = Γu(0, 0) ∈ Fix(S) is the primary symmetric homoclinic point. We recall

the definition of homoclinic invariant,

ωǫ = Ω(∂ϕΓ
s(0, 0), ∂ϕΓ

u(0, 0)). (5.7)

In the case of the Swift-Hohenberg equation the formula above can be rewritten in terms

of u−:

ωǫ = 2∂ϕ
(
(u−)2 + u−D2

ǫu
−)
)
,
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Figure 5.2: Graph of the function Im(Θ−
0 (κ)) for κ >

√
27
38 .

where the derivatives are evaluated at (ϕ, z) = (0, 0). The theory of the previous

chapters implies that,

ωǫ = ±2e−
παǫ
2βǫ

(
ω0 +O(ǫ1−µ)

)
, (5.8)

where ω0 =
∣
∣Θ−

0 (κ)
∣
∣ (see section 3.5 of chapter 3 for a definition of Θ−

0 ) and µ > 0 is

arbitrarily small. This formula implies the transversality of the homoclinic orbit for all

small values of ǫ provided the splitting coefficient ω0 does not vanish. This constant is

known as the Stokes constant and due to the reversibility is a purely imaginary number

(see Corollary 3.5.2.1). Figure 5.2 gives an idea about its behaviour as a function of the

parameter κ.

5.1.1 Normal form of the Swift-Hohenberg equation

Let us compute the normal form for the Swift-Hohenberg equation. As a first step the

quadratic part of the Hamiltonian (5.5) is normalised with the help of a linear symplectic
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transformation (similar to [11]):

T =














0 −1/4
√
2 −1/2

√
2 0

1/4
√
2 0 0 1/2

√
2

√
2 0 0 0

0 −
√
2 0 0














,

which transforms (5.5) into

Hǫ =− (q2p1 − q1p2) +
1

2
(q21 + q22) +

1

4
p21ǫ−

√
2

12
κp31 +

1

4
q2p1ǫ−

√
2

8
κq2p

2
1+

1

16
q22ǫ−

√
2

16
κq22p1 −

√
2

96
κq32 −

1

16
p41 −

1

8
q2p

3
1 −

3

32
q22p

2
1 −

1

32
q32p1 −

1

256
q42 ,

(5.9)

where we keep the same notation for the variables. Note that the involution S in the

new coordinates takes the form

S : (q1, q2, p1, p2) → (−q1, q2, p1,−p2). (5.10)

Now, with the quadratic part in normal form, we can apply the standard normal form

procedure to normalize the Hamiltonian (5.9) up to any order: There is a near identity

canonical change of variables Φn which normalizes all terms of order less than equal to

n and transforms the Hamiltonian to the following form:

Hǫ = Hn
ǫ + higher order terms (5.11)

where

Hn
ǫ = −I1 + I2 +

n∑

3i+2j+2l≥4
i+j≥1

ai,j,lI
i
1I
j
3ǫ
l

with

I1 = q2p1 − q1p2, I2 =
q21 + q22

2
, I3 =

p21 + p22
2

.

This normalization preserves the reversibility with respect to the involution (5.10). In

the case of the GSHE the normal form up to the order five has the form (see Appendix B
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for more details about the change of variables)

H5
ǫ = −I1 +

(

I2 +
1

4
ǫI3 + ηI23

)

+

(
1

8
ǫI1 + µ I1I3

)

.

The leading part of the normal form includes two parameters which can be explicitly

expressed in terms of the original parameter κ:

η = 4

(
19

576
κ2 − 3

128

)

and µ = 2

(
65

864
κ2 − 3

64

)

.

The geometry of the invariant manifolds depends on the sign of η. In the case of GSHE,

if

|κ| >
√

27

38
,

then η > 0 and the truncated normal form has a continuum of homoclinic orbits among

which exactly two are reversible, i.e., symmetric with respect to the involution (5.10).

In order to describe the geometry of the invariant manifolds near the bifurcation

it is convenient to introduce the new parameter ǫ = −4δ2 and perform the standard

scaling (2.11) which we recall for convenience:

q1 = δ2Q1, q2 = δ2Q2, p1 = δP1, p2 = δP2 .

This change of variables is not symplectic, nevertheless it preserves the form of the

Hamiltonian equations since the symplectic form gains a constant factor δ3, so we have

to multiply the Hamiltonian by δ−3 in order to return back to the standard symplectic

form. The Hamiltonian Hn
ǫ is transformed into,

hnδ = −I1 +
(
I2 − I3 + ηI23

)
δ +

(

−1

2
I1 + µ I1I3

)

δ2 +O(δ3).

This Hamiltonian system has an equilibrium at the origin characterized by a quadruple

of complex eigenvalues ±iαn,ǫ ± βn,ǫ, where αn,ǫ = 1 + 1
2δ

2 + O(δ4) and βn,ǫ =

δ − 1
2δ

3 +O(δ5).

The equilibrium has a real two dimensional stable and two dimensional unstable

manifolds. We parametrise these manifolds by solutions of the PDE:

(αn,ǫ∂ϕ + βn,ǫ∂z)Xn = Xhnδ
(Xn). (5.12)
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The function Xn(ϕ, z) is real-analytic, converges to zero as z → ±∞ and is 2π-periodic

in ϕ. Taking into account the rotational symmetry of the normal form Hamiltonian, we

can look for the solution of this equation in the form:

Xn(ϕ, z) =
(
Rn(z) cos(θn(ϕ, z)), Rn(z) sin(θn(ϕ, z)),

rn(z) cos(θn(ϕ, z)), rn(z) sin(θn(ϕ, z))
)
,

where Rn(z), rn(z) and θn(ϕ, z) are real analytic functions. In particular, for n = 5 we

get the following system of equations:

β5,ǫR
′
5 = −δr5

(
1− ηr25

)
, β5,ǫr

′
5 = −δR5 ,

(α5,ǫ∂ϕ + β5,ǫ∂z) θ5 = 1 +
δ2

2
(1− µr25) .

From these equations we conclude, if

β5,ǫ = δ α5,ǫ = 1 +
δ2

2
,

then

r5 =

√
2

η

1

cosh z
, R5 =

√
2

η

sinh z

cosh2 z

θ5 = ϕ− δ2µ

2

∫ z

r25dz = ϕ− δ2µ

η

sinh z

cosh z
.

We see that (r(z), R(z)) runs over a homoclinic loop when z varies from −∞ to +∞.

In general the parameterization Xn is the unique solution of (5.12) such that

Rn(0) = 0 and θn(ϕ, 0) = ϕ. Thus, Xn(ϕ, z) belongs to the symmetry plane associated

with the involution (5.10) if and only if z = 0 and ϕ = 0 or ϕ = π. Therefore, there are

exactly 2 symmetric homoclinic points. Let us call these homoclinic orbits the primary

reversible homoclinic orbit.

In chapter 4 (see Theorem 4.4.1) it was shown that the functions Xn approx-

imate reasonably well the parametrisations u± in a neighbourhood of the equilibrium.

Transforming X5(ϕ, z) back to the original coordinates we obtain the following approx-
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imation:

u−ǫ (ϕ, z) = − 1√
η

cos (ϕ)

cosh (z)
δ (5.13)

+

(
9κ+ κ cos(2ϕ)

18η

1

cosh2(z)
− 1√

η

(
µ

η
+

1

2

)
sin(ϕ) sinh(z)

cosh2(z)

)

δ2 +O(δ3),

where ǫ = −4δ2. Since the function in the right-hand-side of the equation is even, it

also approximates the stable manifold represented by u+ǫ (ϕ, z) = u−(−ϕ,−z).

5.1.2 Stokes constant

Let us study invariant manifolds of (5.2) for ǫ = 0. Following (2.19) it is convenient to

parametrise these invariant manifolds by solutions of the following PDE:

(1 + (∂ϕ + ∂τ )
2)2u = κu2 − u3 . (5.14)

The results of chapter 3 imply that this equation has an unique analytic solution u = u−0

with the following asymptotic behaviour:

u−0 (ϕ, τ) =
P1(ϕ)

τ
+
P2(ϕ)

τ2
+O(τ−3)

in the set

τ ∈ D−
r = {τ : |arg(τ + r)| > θ0} ,

where θ0 is a small fixed constant and r is sufficiently large and

P1 =
i cos (ϕ)√

η
, P2 =

i√
η

(
µ

η
+

1

2

)

sin(φ)− κ cos (2φ)

18η
− κ

2η
. (5.15)

The function u−0 is 2π-periodic in ϕ.

The equation (5.14) has a second solution u = u+0 with

u+0 (τ, ϕ) = u−0 (−τ ,−ϕ) .

It has the same asymptotic behaviour as u−0 but is defined in a different sector, more

precisely, it is defined for τ such that −τ ∈ D−
r . The solutions u±0 have a common
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asymptotics on the intersection of their domains but they do not typically coincide (see

Theorem 3.5.1). The difference of these two solutions can be described in the following

way. We can restore 4-dimensional vectors Γ±
0 using equations (5.4) with ′ replaced by

∂ϕ + ∂τ . In particular, the first component of Γ±
0 coincides with u±0 . The functions

Γ±
0 are parametrisations of the stable and unstable manifolds and satisfy the following

non-linear PDE,

DΓ = XH0(Γ), where D = ∂ϕ + ∂τ . (5.16)

Let

∆0(ϕ, τ) = Γ+
0 (ϕ, τ) − Γ−

0 (ϕ, τ),

and

θ0(ϕ, τ) = Ω
(
∆0(ϕ, τ), ∂ϕΓ

+
0 (ϕ, τ)

)
,

where Ω is the standard symplectic form. Then according to Lemma 3.5.2 and Theorem

3.5.1 there is a purely imaginary number Θ−
0 (κ) such that

θ0(ϕ, τ) = Θ−
0 (κ)e

−i(τ−ϕ) +O(e−(2−µ0)i(τ−ϕ)), (5.17)

as Im τ → −∞ and for very small µ0 > 0. The constant Θ−
0 (κ) is known as the Stokes

(or splitting) constant. The Stokes constant of the Swift-Hohenberg equation can be

defined by the following limit:

Θ−
0 (κ) := lim

Im(τ)→−∞
θ0(ϕ, τ)e

i(τ−ϕ) . (5.18)

We note that the value of the Stokes constant cannot be obtained from our arguments.

Fortunately the numerical evaluation of this constant is reasonably easy. Figure 5.2

shows the values of ImΘ−
0 (κ) plotted against κ for κ > κ0 =

√
27
38 . The picture

suggests that the Stokes constant vanishes infinitely many times and that its zeros

accumulate to κ0.
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5.2 Numerical methods

In this section we present numerical methods that support the validity of the asymptotic

formula (5.8). The procedure is based on comparison of two different methods for

evaluation of the Stokes constants. The first method relies on the definition (5.18)

and involves the GSHE with ǫ = 0 only. The second method evaluates the homoclinic

invariant for ε 6= 0 and relies on the validity of the asymptotic expansion (4.151) to

extrapolate the values of the (normalised) homoclinic invariant towards ε = 0 in order

to get ω0.

5.2.1 Computation of the Stokes constant

Let us describe the first method for computing the Stokes constant. We set τ = −iσ,
ϕ = 0 and rewrite equation (5.17) in the form:

Θ−
0 = θ0(0,−iσ)eσ +O(e−(1−ǫ0)σ). (5.19)

A method for the computation of the Stokes constant

Let us proceed as follows:

1. The first step is to construct a good approximation of stable and unstable man-

ifolds. This approximation is given by a finite sum ΓN of the unique formal

separatrix Γ̂0 of (5.16),

ΓN (ϕ, τ) =

N∑

k=1

Γk(ϕ)τ
−k ,

where

Γk(ϕ) =

k∑

j=−k

Γk,je
jiϕ with Γk,j ∈ C

4,

that approximates the parametrisations Γ±
0 in the following sense

Γ±
0 (ϕ, z) − ΓN (ϕ, τ) = O(τ−N−1) . (5.20)
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Figure 5.3: Graph of log10

(
maxj|Γk,j|
(350π)k

)

.

The natural number N can be chosen using the astronomers recipe. It simply

chooses N such that for fixed τ and ϕ it minimizes
∣
∣ΓN+1(ϕ)τ

−N−1
∣
∣, that is, the

least term of the series Γ̂0(ϕ, τ) (see Figure 5.3).

2. A point on the unstable manifold (resp. stable manifold) can be represented in the

coordinates (ϕ, τ). In order to obtain a point close to the unstable manifold we

fix a positive real number σ ∈ R
+ and a sufficiently large d ∈ R

+ and define z−0 =

ΓN (−d,−iσ−d) and a tangent vector v−0 = ∂ϕΓN (−d,−iσ−d). Analogously, for
the stable manifold we define z+0 = ΓN (d,−iσ+d) and v+0 = ∂ϕΓN (d,−iσ+d).

3. The next step is to measure the difference of stable and unstable manifolds at the

point (ϕ, τ) = (0,−iσ). Taking into account the periodicity in ϕ we set d equal

to a multiple to 2π and integrate numerically the ODE,

z′ = XH0(z),

v′ = DXH0(z)v,
(5.21)

forward in time with t ∈ [0, d] and initial conditions z−(0) = z−0 , v
−(0) = v−0 and

then backward in time with t ∈ [−d, 0] and initial conditions z+(0) = z+0 , v
+(0) =

v+0 .
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4. Finally we evaluate,

Θ̂(σ) = Ω(z+(−d)− z−(d), v−(d))eσ . (5.22)

Remark 5.2.0.1. The stable and unstable manifolds have the same asymptotic expansion

and the difference z+(−d) − z−(d) is known to be exponentially small (see Theorem

3.5.1), i.e. comparable with eσ. Thus the system (5.21) has to be integrated with great

accuracy. In the case of GSHE an excellent integrator can be constructed using a high

order Taylor series method.

Numerical results

In all current computations we have used a Taylor series method, which is incorporated

in the Maple Software, to integrate the equations of motion (5.21). The method uses

an adaptive step procedure controlled by a local error tolerance which was set to 10−D,

where D is the number of significant digits used in the computations. The order of

the method has been automatically defined using the formula max(22, ⌊1.5D⌋). Having
fixed κ = 2 we have computed the first 45 coefficients of the formal separatrix Γ̂0 with

60 digits precision. Taking into account (5.20) we see that the error committed by the

approximation ΓN is approximately of the order of the first missing term (see Figure

5.3). Using double precision (16 digits) we have integrated numerically the equations

(5.21) to obtain Θ̂(σ) for values of σ uniformly distributed in the interval [20, 28.89].

The initial conditions were computed using d = 350π and the first 9 terms of the formal

series Γ̂0. The results are depicted in Figure 5.4. The expected errors are bounded by

the red curves. This implies in particular that the method is numerically stable, that is,

the propagation errors due to integration do not increase drastically. There are several

sources of errors that affect the accuracy of the computation of the Stokes constant,

namely:

• Approximation of stable and unstable manifolds given by the function ΓN ;

• Errors due to the numerical integration;
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Figure 5.4: The top figure represents the graph of the function Im(Θ̂(σ))eσ−10.472161956944
and the bottom figure represents the graph of the function Re(Θ̂(σ))eσ . When σ is around 25
the rounding errors become visible and the convergence stops. The red curves represent the
magnitude of the rounding errors.
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• Rounding errors.

The first and the second source of errors can be made small compared to the rounding

errors, which can be roughly estimated by,

C

|η| σ2 10
−Deσ, (5.23)

where D is the number of digits used in the computations and C is some real positive

constant which reflects the propagation of rounding errors. Using this estimate we have

provided bounds for the rounding errors which can be observed in Figure 5.4. The

constant C can be estimated by fitting (5.23) to the points
∣
∣
∣Θ̂(σ)

∣
∣
∣ for σ ≥ 25. Using

the method of least squares we have concluded that C ≈ 16.7.

With double arithmetic precision the method previously described allows the

computation of 7 to 8 correct digits of the Stokes constant. In fact the rounding errors

in computing Θ̂(σ) from formula (5.22) grow accordingly to (5.23) whereas the neglected

terms of the formula (5.19) decrease like C1e
−σ, where C1 is some positive constant.

Hence the optimum is attained when both contributions are of the same order. The

constant C1 can be estimated by fitting the function C0 +C1e
−σ to the points

∣
∣
∣Θ̂(σ)

∣
∣
∣

for σ ≤ 24. Using the method of least squares we have obtained that C1 ≈ 17305.75.

Using this information we can determine the value σ∗ where both contributions are

essentially of the same order. This means that σ∗ must satisfy the equation,

(e−σ)2 =
C

|η| σ2 C1

10−D,

which implies that,
∣
∣
∣Θ0 − Θ̂(σ∗)

∣
∣
∣ ≈ 816

σ∗
10−

D
2 .

In this way it is possible to obtain 8 correct digits for the Stokes constant using

only double precision (16-digits precision). In Table 5.1 we have listed the values of

Θ̂(σ∗) evaluated at the optimum σ∗ for higher computer precisions. The digits in bold

correspond to correct digits of the Stokes constant. We also note that the numerics

suggest that Θ−
0 is pure imaginary which agrees with Corollary 3.5.2.1.
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D σ∗ Re(Θ̂(σ∗)) Im(Θ̂(σ∗))
16 24.68 2.7e-05 10.47216143901571

20 29.46 7.8e-07 10.472161953423286113

24 34.21 1.6e-08 10.4721619569069446924024

28 38.95 3.1e-10 10.47216195694413924682820786

32 43.67 5.3e-12 10.472161956944396725504278408504

36 48.37 8.5e-14 10.4721619569443983419527788851129556

40 53.07 1.2e-15 10.47216195694439835812989263311456886391

44 57.76 1.8e-17 10.472161956944398358284180684468467819622191

48 62.45 2.6e-19 10.4721619569443983582855084356725900717201861670

52 67.12 3.5e-21 10.47216195694439835828552130242825730920048239485015

56 71.80 4.7e-23 10.472161956944398358285521430879142372532568396894067732

60 76.46 6.2e-25 10.4721619569443983582855214320209319731283197852962601326570

64 81.13 8.0e-27 10.47216195694439835828552143203166495538939445255794702026972749

68 85.79 1.0e-28 10.472161956944398358285521432031900047829633854060398152634432422925

Table 5.1: Stokes constant evaluated at the optimum σ∗ for different computer preci-
sions. In the computations we have used d = 350π and N = 40

d\N 10 20 30

100π 10.47216215179386 10.47216215183208 10.47216215181955

150π 10.47216131335742 10.47216131335746 10.47216131335772

200π 10.47216144775669 10.47216144775671 10.47216144775682

250π 10.47216149546998 10.47216149546998 10.47216149547027

300π 10.47216132022817 10.47216132022820 10.47216132022773

350π 10.47216138600882 10.47216138600883 10.47216138600868

Table 5.2: Comparison of the value of Im(Θ̂(25)) for different values of parameters N
and d.

Finally, let us mention that in the process of computing the Stokes constant we

have made several choices for the parameters. Namely, the number of terms N used to

compute ΓN and the parameter d which were used in computing the initial conditions of

step (ii) of the numerical scheme. In fact the results are independent of these particular

choices and Table 5.2 demonstrates the robustness of the numerical method.

5.2.2 High precision computations of the homoclinic invariant

In this section we present a numerical method for the computation of the homoclinic

invariant as defined in (5.7) for the Swift-Hohenberg equation with κ = 2 and ǫ < 0.

This section follows the ideas of [32] originally developed for the study of exponentially

small phenomena for area-preserving maps.

In order to compute the homoclinic invariant (5.7) we need to compute two
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tangent vectors at the symmetric homoclinic point Γs(0, 0). Using the fact that the

system is reversible we can obtain the stable tangent vector ∂ϕΓ
s by applying the

reverser to the unstable tangent vector ∂ϕΓ
u. The unstable tangent vector ∂ϕΓ

u lives

in the tangent plane of the unstable manifold at the symmetric homoclinic orbit. Thus

an easy way to compute this tangent vector is to approximate the primary homoclinic

orbit near the equilibrium point by the following expansion,

ΓuN (ϕ, z) =
N∑

k=1

ekz



ck(ǫ) +
k∑

j≥1

ak,j(ǫ) cos(jϕ) + bk,j(ǫ) sin(jϕ)



 , (5.24)

and then use the variational equations,

x′ = XHǫ(x),

v′ = DXHǫ(x)v,
(5.25)

to transport the tangent vector ∂ϕΓ
u
N along the primary homoclinic orbit until it hits

the symmetric plane Fix(S) defined by {q2 = 0, p1 = 0}. Let us present the details of

the method.

A method for the computation of the homoclinic invariant

1. The first step is to determine the coefficients of (5.24). To that end we take a

new expansion,

uN (ϕ, z) =
N∑

k=1

ekz



ck(ǫ) +
k∑

j≥1

ak,j(ǫ) cos(jϕ) + bk,j(ǫ) sin(jϕ)



 ,

and substitute into the equation,

((αǫ∂ϕ + βǫ∂z)
2 + 1)2 u = ǫu+ 2u2 − u3, (5.26)

and collect the terms of the same order in ekz. In this way it is possible to

determine coefficients ck, ak,j and bk,j. It is not difficult to see that the coefficients

a1,1 and b1,1 satisfy no relations and that all other coefficients depend from these

two. So we define,

a1,1 = r0 cos(ψ0) and b1,1 = r0 sin(ψ0).
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Now recall that the first component of Γu solves equation (5.26) and due to

the asymptotic behavior (5.13) we conclude that for z << 0 and δ << 1 it is

approximately,

ez
(

− 2δ√
η
cos(ϕ) +

δ2√
η

(

1 +
2µ

η

)

sin(ϕ)

)

+O(e2z), (5.27)

where ǫ = −4δ2. Next we “match” the leading order of uN (φ, s) with the expres-

sion (5.27) and conclude that ψ0 and r0 must satisfy,

ψ0 = arctan

(

−
(

1 +
2µ

η

)
δ

2

)

,

r0 =
2δ√
η

√

1 +

(

1 +
2µ

η

)2 δ2

4
.

(5.28)

Taking into account (5.4) we reconstruct ΓuN from uN and due to the ”matching”

(5.28) we have,

Γu(t, t) ≈ ΓuN (t, t), as t→ −∞, δ → 0.

That is, for small values of δ, the expansion ΓuN provides a good approximation

of the primary homoclinic orbit near the equilibrium point.

2. The second step is to improve the accuracy of the approximation of the symmetric

homoclinic point, provided by ΓuN . Given small δ and sufficiently large T0 > 0 we

want to determine (T, ψ) such that,

x′ = XHǫ(x), x(0;ψ) = ΓuN (−αǫT0,−βǫT0;ψ),

subject to,

x(T ;ψ) ∈ Fix(S). (5.29)

This problem can be solved using Newton method. Starting from (T0, ψ0) we

obtain a sequence of points (Ti, ψi),




Ti+1

ψi+1



 =




Ti

ψi



−





∂q2
∂T (Ti;ψi)

∂q2
∂ψ (Ti;ψi)

∂p1
∂T (Ti;ψi)

∂p1
∂ψ (Ti;ψi)





−1


q2(Ti;ψi)

p1(Ti;ψi)



 , (5.30)
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that converges to a limit (T∗, ψ∗) such that x(T∗;ψ∗) ∈ Fix(S), provided (T0, ψ0)

is sufficiently close to (T∗, ψ∗) (see [16]). The derivatives in (5.30) can be com-

puted using the variational equations along the orbit x(t;ψ). Later we will see

that formulae (5.28) provide sufficiently accurate initial “guesses” yielding the

convergence of the Newton method.

3. Having obtained in the previous step an accurate approximation of the symmetric

homoclinic point, the last step is to integrate numerically the system,

x′ = XHǫ(x), x(0;ψ) = ΓuN (−αǫT0,−βǫT0;ψ∗),

v′ = DXHǫ(x)v, v(0;ψ) = αǫ∂ϕΓ
u
N (−αǫT0,−βǫT0;ψ∗),

and evaluate the homoclinic invariant,

ω̂ = Ω(v(T∗, ψ∗), S(v(T∗, ψ∗))).

Numerical results

We have considered a finite set I consisting of points in the interval ǫ ∈ [− 1
10 ,− 1

1000 ]

and computed the homoclinic invariant for those points using the method previously

described. For all points in I the magnitude of the homoclinic invariant ranges from

10−5 to 10−45. Thus, in all numerical integrations we have used a high order Taylor

method which allows to perform the numerical integration with very high precision. We

have computed the coefficients of the expansion (5.24) up to N = 5 and for each

ǫ ∈ I we have chosen T0 sufficiently large so that ΓuN (−αǫT0,−βǫT0) approximates

the unstable manifold within the required precision. The initial point (T0, ψ0) used in

Newton method proved to be very close to (T∗, ψ∗) and its relative error can be observed

in Figure 5.5. After computing the homoclinic invariant we have normalized it using the

formula,

ω̄(ǫ) =
ωǫ
2
e

παǫ
2βǫ .
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Figure 5.5: Relative error of (T0, ψ0) depending on ǫ ∈ I.
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Figure 5.6: Graph of the function ω̄(ǫ).
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ω̄0 ω̄1 ω̄2

5 10.47216195694 8.979943127 - 42.60110

6 10.472161956944 8.979943127 - 42.601100

7 10.4721619569443 8.9799431275 - 42.6011004

8 10.47216195694439 8.97994312752 - 42.60110043

9 10.472161956944398 8.9799431275209 - 42.601100432

10 10.4721619569443983 8.9799431275210 - 42.601100432

11 10.4721619569443983 8.9799431275210 - 42.601100432

12 10.4721619569443983 8.9799431275210 - 42.6011004327

ω̄3 ω̄4 ω̄5

5 152.88 - 774.4 3.8×103

6 152.888 - 774.2 3.8×103

7 152.887 - 774.40 3.80×103

8 152.88795 - 774.39 3.814×103

9 152.88795 - 774.394 3.813×103

10 152.887958 - 774.3944 3.8138×103

11 152.887958 - 774.3944 3.813×103

12 152.887958 - 774.3944 3.813×103

Table 5.3: Coefficients of the estimated polynomials for different subsets of P and
different degrees.

The behaviour of the function ω̄(ǫ) can be observed in Figure 5.6. It possible to see

that it is approaching the value of the Stokes constant computed in the previous section.

Moreover, it is approaching this value in an approximately linear fashion, supporting the

validity of the asymptotic formula (5.8). Taking into account the conjecture (4.151) for

ωǫ we investigate the validity of the following asymptotic expansion for ω̄(ǫ),

ω̄(ǫ) ≍
∑

k≥0

ω̄kǫ
k. (5.31)

To that end, we have taken 14 points evenly spaced in the interval [−2.7 ×
10−3,−1.4 × 10−3] and computed the corresponding normalized homoclinic invariant

with more than 40 correct digits. Let us denote this set of homoclinic invariants by

P. Then, in order to get the first few coefficients of the asymptotic expansion (5.31)

we have fitted a partial sum of the asymptotic expansion to the points of P. Here we

have used as many points as the number of unknown coefficients. Moreover, following

[32] we have performed the following tests to evaluate the validity of the asymptotic

expansion:

1. Interpolating different partial sums to different subsets of P should give essentially
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the same results for the coefficients.

2. The constant term of the interpolating polynomial should coincide with the value

of the Stokes constant computed in the previous section.

3. The interpolating polynomial should reasonably approximate ω̄(ǫ) outside the in-

terval [−2.7 × 10−3,−1.4 × 10−3], in the sense that it agrees with the main

property of an asymptotic expansion:
∣
∣
∣
∣
∣
∣

ω̄(ǫ)−
n−1∑

k≥0

ω̄kǫ
k

∣
∣
∣
∣
∣
∣

≤ Cǫn, ∀ǫ ∈ [ǫ0, 0) ,

for some C > 0 and ǫ0 < 0.

For the first test we have considered all possible subsets of P having only 6 consecutive

elements and interpolated these points by polynomials of degree 5. Then for each

coefficient, we have extracted the part of the number which is equal to all polynomials.

We have repeated this process for polynomials of degree 6 up to degree 12. The results

are summarized in Table 5.3, where it is possible to see that there is a good agreement

between the coefficients of the different interpolating polynomials of different subsets

of P. We can also infer from Table 5.3 that the results are numerically stable. Thus,

we have the following estimates for the first 6 coefficients of (5.31):

ω̄0 = 10.4721619569443983 . . . ω̄1 = 8.9799431275210 . . . ω̄2 = −42.601100432 . . .

ω̄3 = 152.887958 . . . ω̄4 = −774.3944 . . . ω̄5 = 3.813 . . . × 103

Furthermore, it is clear that the coefficient ω̄0 coincides (up to 18 digits) with

the value of the Stokes constant which we recall,

∣
∣Θ−

0

∣
∣ = 10.47216195694439835828552143203190 . . .

Moreover, in Figure 5.7 we see that the relative error of the asymptotic expansion does

not exceed 0.06 in the hole interval
[
− 1

10 , 0
]
. Thus, our numerical results provide a sat-

isfactory numerical evidence that supports the correctness of the asymptotic expansion

(4.151) for the homoclinic invariant.
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Figure 5.7: Relative error of the asymptotic expansion of ω̄(ǫ).
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Appendix A

Solutions of linear Hamiltonian

systems

Let us consider the following system of linear differential equations,

ẋ = A(t)x, (A.1)

such that A(t) is an 2n-by-2n Hamiltonian matrix, i.e. A(t) = JS(t) where S(t) is a

non-degenerate symmetric matrix and J is the canonical skew-symmetric matrix. We

also assume that S(t) is at least C1. In the following let us omit the dependence of

time for simplicity.

Solutions of (A.1) form an 2n-dimensional linear space and it is well known that

there is a fundamental matrix solution Π(t) which is symplectic for all t [58]. Let us

suppose that we know n linear independent solutions of (A.1), say vi, i = 1, . . . , n, such

that,

vTi Jvj = 0, ∀ i, j = 1, . . . , n. (A.2)

Now consider the problem of finding n solutions ui i = 1, . . . , n that combined with the

vi’s span the linear space of solutions of equation (A.1) and satisfy,

ΠTJ Π = J, (A.3)

194



where Π = [v1, . . . , vn, u1, . . . , un]. This last condition is equivalent to saying that Π is

a symplectic matrix. Let us restate the problem in block form. We start by rewriting

the matrices A and Π as follows,

A =




A1,1 A1,2

A2,1 A2,2



 and Π =




Vq Uq

Vp Up



 , (A.4)

where Ai,j, Vq, Vp, Uq and Up are n-by-n matrices. Suppose that Vq and Vp are known

which are formed by the vi’s in the obvious way. Thus, finding solutions ui i = 1, . . . , n

of (A.1) is equivalent to finding matrices Uq and Up such that,

U̇q = A1,1Uq +A1,2Up,

U̇p = A2,1Uq +A2,2Up,
(A.5)

subject to the condition,




Vq Uq

Vp Up





T 


0 I

−I 0








Vq Uq

Vp Up



 =




0 I

−I 0



 . (A.6)

Since A is non-singular then either A1,2 or A2,2 is non-singular. By the same reasoning,

since {v1, . . . , vn} are linear independent, then either Vq or Vp is non-singular. Without

lost of generality let us assume that both A1,2 and Vq are non-singular matrices. Then

the following formulae,

Uq = VqC, Up = VpC + (V −1
q )T , Ċ = V −1

q A1,2(V
−1
q )T , (A.7)

define matrices Uq and Up that solve the desired problem. Let us derive the previous

formulae. Condition (A.6) is equivalent to,

V T
q Vp = V T

p Vq, UTq Up = UTp Uq and V T
q Up − V T

p Uq = I. (A.8)

Since Vq is invertible, we deduce from the last equality of (A.8) that,

Up = (V −1
q )T + (V −1

q )TV T
p Uq. (A.9)

195



Substituting the previous expression for Up into the first equation of (A.5) we get,

U̇q = A1,1Uq +A1,2

(
(V −1
q )T + (V −1

q )TV T
p Uq

)

=
(
A1,1 +A1,2(V

−1
q )TV T

p

)
Uq +A1,2(V

−1
q )T .

(A.10)

Now the homogeneous equation,

u̇ =
(
A1,1 +A1,2(V

−1
q )TV T

p

)
u,

has a fundamental solution Vq. Indeed, since V
T
q Vp = V T

p Vq and V̇q = A1,1Vq +A1,2Vp

by hypothesis, then

V̇q −
(
A1,1 +A1,2(V

−1
q )TV T

p

)
Vq = V̇q −A1,1Vq −A1,2(V

−1
q )TV T

q Vp = 0.

Thus, by the method of variation of constants Uq = VqC solves equation (A.10) where

C satisfies,

Ċ = V −1
q A1,2(V

−1
q )T .

Finally, according to equation (A.9) and V T
q Vp = V T

p Vq we get,

Up = VpC + (V −1
q )T . (A.11)

Now using the fact that A1,2 is symmetric it is not difficult to conclude that UTq Up =

UTp Uq. Consequently, formulae (A.7), Vq and Vp define a symplectic fundamental matrix

solution Π of equation (A.1).
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Appendix B

Transformation of GSHE to the

normal form

In order to normalize Hǫ up to order 5, we have used the method of Lie series to

determine Hamiltonians Fi, i = 0, . . . , 4 which generate a near identity canonical map

Ψ5 = Φ1
F0

◦Φ1
F1

◦Φ1
F2

◦ Φ1
F3

◦ Φ1
F4

where

F0 = ǫ

(

− 5

32
q1 p1 +

3

32
q2 p2 +

1

8
p1 p2

)

F1 =
7

216
κ
√
2q1

2p2 +
95

216
κ
√
2q1 q2 p1 +

17

72
κ
√
2q1 p1

2 +
5

36
κ
√
2q1 p2

2+

175

432
κ
√
2q2

2p2 +
1

36
κ
√
2q2 p1 p2 −

1

12
κ
√
2p1

2p2 −
1

18
κ
√
2p2

3

F2 =

(

− 517

20736
κ2 +

29

512

)

q1 p1
3 +

(

− 217

20736
κ2 +

17

512

)

q1 p1 p2
2+

(
2327

20736
κ2 − 31

512

)

q2 p1
2p2 +

(

− 19

512
+

2027

20736
κ2
)

q2 p2
3+

(

− 5

128
+

7

192
κ2
)

p1
3p2 +

(
19

576
κ2 − 3

128

)

p1 p2
3

F3 = ǫ

(

− 143

1152
κ
√
2p1

2p2 −
167

1728
κ
√
2p2

3

)

F4 = − 2

1215

√
2κ
(
37κ2 − 27

)
p2

5 − 1

648

√
2κ
(
−45 + 52κ2

)
p1

4p2−
1

243

√
2κ
(
−27 + 34κ2

)
p1

2p2
3

(B.1)
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Using an algebraic manipulator it is not difficult to see that Ψ5 transforms Hǫ into the

desired form.
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[25] E. Fontich and C. Simó. The splitting of separatrices for analytic diffeomorphisms.

Ergodic Theory Dynam. Systems, 10(2):295–318, 1990.

[26] V. Gelfreich. Separatrices splitting for the rapidly forced pendulum. In Seminar on

Dynamical Systems (St. Petersburg), Progress in Nonlinear Differential Equations

and their Applications, volume 12, pages 47–67. Birkhauser, 1991.

[27] V. Gelfreich. Reference systems for splittings of separatrices. Nonlinearity,

10(1):175–193, 1997.

[28] V. Gelfreich. A proof of the exponentially small transversality of the separatrices

for the standard map. Comm. Math. Phys., 201:155–216, 1999.

[29] V. Gelfreich and N. Brännström. Asymptotic series for the splitting of separatrices

near a hamiltonian bifurcation. arXiv:0806.2403v1, 2008.

[30] V. Gelfreich and V. Lazutkin. Splitting of separatrices: perturbation theory and

exponential smallness. Russian Math. Surveys, 56:499–558, 2001.

201



[31] V. Gelfreich and D. Sauzin. Borel summation and splitting of separatrices for the
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theory for diffeomorphisms. Nonlinearity, 21(3):485–508, 2008.

[54] P. Mart́ın, D. Sauzin, and T. M. Seara. Exponentially small splitting of separatrices

in the perturbed mcmillan map. preprint, 2009.

[55] P. Mart́ın, D. Sauzin, and T. M. Seara. Resurgence of inner solutions for pertur-

bations of the mcmillan map. preprint, 2009.

[56] P. D. McSwiggen and K. R. Meyer. The evolution of invariant manifolds in

hamiltonian-hopf bifurcations. Journal of Differential Equations, 189:538–555,

2003.

[57] V. K. Melnikov. On the stability of the center for time periodic perturbations.

Trans. Moscow Math. Soc., 12:1–57, 1963.

[58] K. R. Meyer and G. R. Hall. Introduction to Hamiltonian Dynamical Systems and

the N-Body Problem. Springer-Verlag, New York, 1991.

[59] J. Murdock. Normal Forms and Unfoldings for Local Dynamical Systems. Springer-

Verlag, New York, 2003.

[60] A. I. Neishtadt. The separation of motions in systems with rapidly rotating phase.

Prikl. Mat. Mekh., 48(2):197–204, 1984.

[61] N.N. Nekhoroshev. An exponential estimate for the time of stability of nearly

integrable hamiltonian systems. Russian Math. Surveys, 32:1–65, 1977.

204



[62] A. B. Olde Daalhuis, S. J. Chapman, J. R. King, J. R. Ockendon, and R. H. Tew.

Stokes phenomenon and matched asymptotic expansions. SIAM J. Appl. Math.,

55(6):1469–1483, 1995.
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