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Abstract

Consider an analytic two-degrees of freedom Hamiltonian system with an equi-
librium point that undergoes a Hamiltonian-Hopf bifurcation, i.e., the eigenvalues of
the linearized system at the equilibrium change from complex +3 + i (o, f > 0) for
e > 0 to pure imaginary tiw; and +iws (w1 # wo # 0) for e < 0. At e = 0 the
equilibrium has a pair of doubled pure imaginary eigenvalues. Depending on the sign
of a certain coefficient of the normal form there are two main bifurcation scenarios. In
one of these (the stable case), two dimensional stable and unstable manifolds of the
equilibrium shrink and disappear as ¢ — 07. At any order of the normal form the stable
and unstable manifolds coincide and the invariant manifolds are indistinguishable using
classical perturbation theory. In particular, Melnikov's method is not capable to evaluate
the splitting.

In this thesis we have addressed the problem of measuring the splitting of these
manifolds for small values of the bifurcation parameter ¢. We have estimated the size
of the splitting which depends on a singular way from the bifurcation parameter. In
order to measure the splitting we have introduced an homoclinic invariant w. which
extends the Lazutkin’s homoclinic invariant defined for area-preserving maps. The main
result of this thesis is an asymptotic formula for the homoclinic invariant. Assuming
reversibility, we have proved that there is a symmetric homoclinic orbit such that its
homoclinic invariant can be estimated as follows,

uxe

we = £2e 25 (wy + O(' 7).

where p > 0 is arbitrarily small and wy is known as the Stokes constant. This asymptotic
formula implies that the splitting is exponentially small (with respect to €). When wg # 0
then the invariant manifolds intersect transversely. The Stokes constant wy is defined
for the Hamiltonian at the moment of bifurcation only. We also prove that it does not
vanish identically. Finally, we apply our methods to study homoclinic solutions in the
Swift-Hohenberg equation. Our results show the existence of multi-pulse homoclinic
solutions and a small scale chaos.



Chapter 1

Introduction

The subject of this thesis is related to a phenomenon first observed by the French
mathematician Henri Poincaré around 1890, when investigating the question of the
stability of the solar system. Poincaré considered the system formed by three bodies
Sun-Earth-Moon, under the action of Newton's laws of gravity. In an attempt to prove
the stability of the three body system, Poincaré used perturbation series and realized
its divergence character due to the presence of a transverse homoclinic orbit [63]. He
also realized that the evolution of such system was often chaotic in the sense that a
small perturbation in the initial positions or velocities of one of the bodies would lead
to a radically different state when compared to the unperturbed system, uncovering
for the first time what is now commonly known as chaos in deterministic systems.
Poincaré decided to send his results to an international competition created in 1885
by King Oscar Il of Sweden on the occasion of his 60th birthday, to award the best
mathematical research in four different areas, one of which was the question of stability
of the solar system. The jury, consisting of Mittag-Leffler, Weierstrass and Hermite
decided to award the prize to Poincaré and noted that although his paper [63] couldn't
be regarded as a solution to the original problem it would mark the beginning of a new

era in celestial mechanics.

However, when his work was about to be published in Acta Mathematica, the



editor of the journal found an error in Poincaré’s arguments and Mittag-Leffler prevented
the respective publication. The situation was very embarrassing for everyone and in
particular to Poincaré who spent the time between March 1887 and July 1890 working
on the correction of that major error. The outcome of this work was impressive. Poincaré
invented a series of methods endowed with a geometric flavour, which laid the grounds
for the development of the field up to the present day. Methods of which included the
first-return (Poincaré) maps, stability theory for fixed points and periodic orbits, stable
and unstable manifolds, the Poincaré recurrence theorem, integral invariants, etc. which
can be found in his three volume treatise [64].

Inspired by the work of Poincaré, Jacques Hadamard published in 1898 an article
where he studied geodesics on surfaces of negative curvature [38]. Hadamard introduced
a method of symbolic description to study the dynamics of the geodesic flow which
originated what is now known as symbolic dynamics. Poincaré appreciated Hadamard's
results although he believed that the trajectories of the three body problem were rather
comparable to geodesics on convex surfaces [65].

From a historical point of view, a more detailed account of Poincaré’s work on
the three body problem can be found in this excellent book [6].

In order to better understand what Poincaré observed we consider the following

model,

t
Z = sinx + 1 cos T cos -, (1.1)
€

which he derived when studying periodic orbits of two degrees of freedom Hamiltonian
systems. System (1.1) describes a pendulum with an oscillating suspension point. Of
course, the simple pendulum % = sinx is integrable and at the points z = 0 (mod 2)
we have saddle equilibria and centers for x = 7 (mod 27). Using the 2m-periodicity in
we can restrict our analysis to the interval [0,27] and the conservation of energy allow
us to fully understand the dynamics of the pendulum and obtain a phase portrait similar
to Figure 1.1. The curves that connect the points 0 and 27 were initially referred by

Poincaré as bi-asymptotic orbits and later in his book [64] he named them heteroclinic
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Figure 1.1: Phase portrait of the pendulum.

orbits (resp. homoclinic). Because these curves separate different types of motion they
are also known as separatrices. So now we can ask he following question: how different
is the phase portrait of system (1.1) from the one in Figure 1.1. Following Poincaré,
to better understand the dynamics of (1.1) we construct hyperbolic periodic orbits by
taking the system,

T =sinz, 0=1,

where § € S'. The phase space of this system is R x S' and z = 0 is now a hyperbolic
periodic orbit. The study of the system reduces to the study of the map Py : {6 =0} —
{6 = 27} (Poincaré map) which is defined in the obvious way using the orbits of the
system. The phase portrait of this map looks similar to Figure 1.1 except that the orbits

are now discrete sets. Now system (1.1) is equivalent to,

. . 0 .
T =sinx+ pcosxrcos—, 6O=1,
€
and its Poincaré map P, has a hyperbolic fixed point z, close to x = 0 for y and €
sufficiently small. Moreover, the separatrices split in the way shown in Figure 1.2. After

discovering this splitting, Poincaré wrote in [64] the following,

“If one attempts to imagine the figure formed by these two curves and their

infinitely many intersections, each of which corresponds to a bi-asymptotic



Figure 1.2: Splitting of the separatrices of the perturbed pendulum.

solution, these intersections form something like a lattice or fabric or a net
with infinitely tight loops. None of these loops can intersect itself, but it
must wind around itself in a very complicated fashion in order to intersect
all the other loops of the net infinitely many times. One is struck by the
complexity of this figure, which | shall not even attempt to draw. Nothing
gives us a better idea of the complicated nature of the three-body problem
and the problems of dynamics in general, in which there is no unique integral

and in which the Bohlin series diverge.”

Poincaré was aware of the complexity of motion near a transverse homoclinic orbit and
he also knew that in some cases the splitting of the separatrices is exponentially small.

In fact, for the present example (1.1) the splitting is of order O(ue 'e™3) (see [30]).

1.1 Homoclinic Chaos

It was not until the work of Birkhoff [10] in 1935 that more light was shed into the
dynamical consequences near a transverse homoclinic orbit. In that paper, Birkhoff
proved that given a two dimensional area-preserving analytic diffeomorphism 1" having a

saddle fixed point p with a transverse homoclinic orbit I", then in every neighbourhood



of the closure of a homoclinic orbit there exists a countable set of periodic orbits having
all periods greater than equal to some natural number. Years later, around 1960, Smale
found his horseshoe while strolling the beaches of Rio de Janeiro. He then used it as
a model basis for finding chaotic dynamics near transverse homoclinic orbits. In his
paper [70] in 1965 he proved a result which became known as Smale-Birkhoff Theorem
which says that given a diffeomorphism 1" : R® — R™ having a hyperbolic fixed point
p and a homoclinic point ¢ # p such that the stable and unstable manifolds of p
intersect transversely, there exists a hyperbolic invariant set A on which T is topologically
conjugated to a shift on two symbols. In that same year, Shilnikov proved in [68] that
given a three-dimensional system having an equilibrium of saddle-focus type, where its
eigenvalues are of the form {p & iw, A} where w > 0, p < 0, A > 0 such that p+ A >0
and the equilibrium has a homoclinic orbit, then one can define a Poincaré map P in a
transversal neighbourhood of the homoclinic orbit such that P has a countable set of
“Smale horseshoes”. A couple of years later, Shilnikov gave a complete description of all
orbits in a neighbourhood of the closure of a homoclinic orbit (see [69]). Subsequently,

the foundations of the general theory were laid by Alekseev in [1, 2, 3].

One important corollary of the results mentioned above is for two degrees of
freedom Hamiltonian systems having a saddle-focus equilibrium with stable and unstable
manifolds intersecting transversely. In [21] Devaney extended the previous results to this
case and proved that in any neighbourhood of a transverse homoclinic orbit, the system

admits a suspended horseshoe as an invariant set.

Further results and generalizations have been obtained by many people and
therefore, the literature on this subject is vast. As a last remark, let us just mention that
for three or more degrees of freedom near integrable Hamiltonian systems, the splitting
of invariant manifolds is an important ingredient in the so called Arnold diffusion [4]. It
is clear that for more than two degrees of freedom the invariant tori of KAM theory are
no longer obstructions for diffusion since their co-dimension is at least 2. In this case the

stable and unstable manifolds of the invariant tori work as paths for diffusion provided



the invariant manifolds split and the size of the splitting is sufficiently large to allow the
transition from one torus to another. It is believed that for a priori stable systems (which
is the case of the Arnold example [4]) the Arnold diffusion is a generic phenomenon. In
this setting the splitting of invariant manifolds is expected to be exponentially small and

the diffusion time is exponentially long [61].

1.2 Poincaré-Arnold-Melnikov Method

The theory of splitting of invariant manifolds (or separatrices) has evolved in parallel
both for maps and for flows. At present, the standard method for determining the
transversality of invariant manifolds is the Poincaré-Arnold-Melnikov method [57]. In
the following, we shall restrict our explanations to the case of time-periodic perturba-
tions of one degree of freedom Hamiltonian systems, although one can apply the method
in more general situations, see for instance [43] where Melnikov's method is applied in
Hamiltonian systems of higher degrees of freedom or [36] where the method is devel-
oped for systems with arbitrary dimensions or even more recently [53] where Melnikov's
method is developed for diffeomorphisms.

Consider the following Hamiltonian,

H(q>p>t7#) = HO(q>p) + /LHI((vat)v (12)

where p is a small parameter. Suppose that the Hamiltonian Hy has a saddle equi-
librium, say at the origin, and a corresponding homoclinic orbit T'y(t) = (qo(t),po(t)),
i.e. limp 400 () = 0. The implicit function theorem can be applied to obtain a
periodic hyperbolic orbit ~ for the full system (1.2) such that v = O(u). Moreover
the corresponding stable and unstable manifolds of the periodic orbit v are u-close to
the unperturbed homoclinic orbit I'g. Using classical perturbation theory one can write
parametrisations of the stable (resp. unstable) manifold as powers series in the parame-
ter 1 and by properly choosing a transverse section to a certain homoclinic point I'g(%p)

it is possible, to compute the difference d(ty) between the points of first intersection of



the section with the stable and unstable manifolds of the periodic orbit «. Using Hy as

one of the coordinates, V. Arnold derived the following simple formula,
+00

dlto) = M(to)u+ 002, MCt0) = [ (o gt (13
where M (tg) is known as the Melnikov’s function. Notice the brackets inside the integral
of the previous formula are the Poisson brackets. It immediately follows from the previous
formula that simple zeros of the Melnikov function yield transverse homoclinic orbits for
the full system (1.2). Note that Melnikov method is a first order perturbation method
as it compares stable and unstable manifolds at the order O(y). Additionally, when H;
depends on an extra parameter ¢, for instance as in example (1.1), then the Melnikov
function may also depend on that parameter. In the example above, where the frequency

1

of the perturbation is ¢+, we have that,

27 to
——————— CO8 —
€2 cosh(3) €’

M(to) =
and the Melnikov function is exponentially small with respect to e¢. Recall from (1.3)
that the error term is of order O(u?) which becomes greater than the leading term
M (to)p when € is very small. Thus, in systems where exponentially small phenomena
occur, Melnikov's method does not directly apply and further study is needed to justify
the method and prove the correctness of the prediction. In the case of example (1.1),
Gelfreich [27] and Treshchev [74] have independently obtained an asymptotic formula
for the splitting which differs from the one predicted by Melnikov's theory. There are
numerous examples where Melnikov's method requires further justification and obtaining
the correct leading order for the splitting distance is in general a very non-trivial problem

due to the presence of exponentially small phenomena. On the same line of research,

let us just mention the articles [26] and [20] on the rapidly forced pendulum,
. Lt
Z + sinx = peP sin -,
€

which justified Melnikov's method for p > 0 and € > 0. For a detailed survey of these

results and much more the reader is referred to [30].



Fast and slow dynamics are a common theme in high frequency periodic pertur-
bations. As they fall into the class of singular perturbation problems then this is the
main reason for the failure of Melnikov's method as exponentially small phenomena is
predominant in this class. Thus a new approach is required to deal with exponentially
small splitting and in the following section we will briefly discuss a set of problems where

estimating the size of the splitting has been done successfully.

1.3 Exponentially Small Splitting

Exponentially small splitting can be found in many systems such as high frequency
periodic perturbations of autonomous systems (as previously discussed), in close to
identity area preserving maps, bifurcations of resonant periodic orbits in two degrees
of freedom Hamiltonian systems and as a result of this thesis in bifurcations of total
elliptic equilibria in two degrees of freedom Hamiltonian systems. As explained before,
detecting the exponentially small splitting of invariant manifolds is very important due to
its profound consequences in the dynamics of the phase space of the system. Moreover,
in many interesting cases Melnikov's method is not applicable to detect the splitting.

In the case of systems with slow-fast motions, Neishtadt's theorem [60] can be
used to obtain an exponentially small upper bound for the splitting and for close to
identity area preserving maps Fontich and Simé, [25] also derived an exponentially small
upper bound for the splitting of separatrices. However, getting a lower bound is generally
very difficult and strongly depends on the form of the equations of the system. Hence,
very few results are known for generic families of systems and most cases treated in the
literature are for particular systems only.

In addition to high frequency perturbations of pendula the most paradigmatic
example in the exponentially small splitting is given by the Chirikov standard map which

is defined by the following relation,
T T+ y+esinz
—

Y y+esine



This map is a diffeomorphism on a two dimensional torus T? which is area-preserving
and reversible. For ¢ = 0 the standard map is integrable and the torus is foliated
into invariant circles where y is an integral of motion. When € > 0 the map has a
hyperbolic fixed point (0,0) and it is well known that it has stable and unstable curves
(separatrices) intersecting at the primary homolinic point (7, y.) which corresponds to
the first intersection of the curves with the symmetric line x = w. Note that the
standard map is a e-step discretization of the pendulum & = sinz (modulus a proper
scaling of variables). Hence its phase portrait looks like the pendulum (see figure 1.1)
for € small but the separatrices are expected to split. In 1984, in the pioneering article
[47], V.F. Lazutkin obtained an asymptotic formula for the splitting angle ., defined

by the separatrices at the primary homolinic point,

_x2
Te Ve

Qe =

(wo + O(E%-é)) , (1.4)

where the constant d is an arbitrarily small positive constant and wy is a positive constant
defined for an e-independent problem. It is not known if is possible to write wy in terms
of elementarily constants (e.g. , €) and at the present, the only known way to estimate
wo is through numerical computations. A numerical procedure can be designed to the

effect [30] and several digits of wy have been computed,
wo = 1118.827706...

The proof of the asymptotic formula for the splitting angle given by Lazutkin was
incomplete and only in 1999, V. Gelfreich presented in [28] a complete proof inspired by
the original ideas of Lazutkin.

As the splitting angle o depends on the homoclinic point and coordinate system,
in a subsequent paper [33] the Lazutkin homoclinic invariant was introduced to measure
the splitting of separatrices in area-preserving maps. The idea was to parametrize the
stable (resp. unstable) curve I't(¢) = (2 (t),y*(t)) by solutions of the finite-difference
system,

x(t+h)=x(@t)+yt+h), ylt+h)=y(t)+esinz(t),



where h is a conveniently defined parameter which depends on ¢ (in fact € ~ h?, see
[28] for more details). Assuming that I'£(0) is equal to the primary homoclinic point,

then the Lazutkin homoclinic invariant could be defined as follows,
w = det

Clearly the Lazutkin homoclinic invariant is equal to the signed area formed by the
tangent vectors I'F(0) at the primary homolinic point and its definition is independent
from any symplectic coordinate system. Moreover, it can be shown that it takes the
same value for all points of the homoclinic orbit. These remarkable properties make
the Lazutkin homoclinic invariant the natural quantity for detecting the splitting of
separatrices in area-preserving maps. In the case of the standard map, an asymptotic
expansion for w was obtained in [33] which reads,
w =< i—ge_% anh2n,
n>0

where the symbol =< means that if we truncate the series in the right hand side at some
order then the error will be of the order of the first missing term. From the asymptotic
expansion of w one can obtain a refinement of the splitting angle.

Note that in the case of the standard map, an application of Melnikov's method
gives an incorrect estimate for the splitting of the separatrices. In fact, Melnikov method
is a finite order perturbation method, in the sense that it expands the separatrices in
powers of the perturbation parameter € and compares stable and unstable curves at the
order O(eP) for some p > 0. However it can be shown (see Proposition 3.1 of [28]) that

for every p € N there is a C' > 0 and ¢y > 0 such that,
(1) — 2 ()] + |yt (1) —y ()] SCEL te(—Vevd), e<e.  (15)

Since the error in Melnikov method is always polynomial in € (see (1.3)) it is clear from
(1.5) that it exceeds the magnitude of the splitting of separatrices, thus not giving a
correct estimate for the size of the splitting. Consequently, a new method for estimating

the size of the splitting had to be invented.

10



In relation to the splitting of separatrices of the standard map, let us also mention
the work of Hakim and Mallick [39] which used Borel summation methods to study the
exponential pre-factor of the asymptotic formula (1.4). Their work established a relation
between Ecalle’s resurgence theory of functions [13] and the problems of splitting of
separatrices which later inspired the work of D. Sauzin and many other people (see [31]
and [66] and references therein). More recently, P. Martin, D. Sauzin and T. M. Seara
have studied the splitting of separatrices in perturbations of the McMillan map (see [55]

and [54]). Their approach is based on Lazutkin's original ideas and resurgent theory.

Many other maps where exponentially small splitting of separatrices is present,
have been studied and an asymptotic formula measuring the splitting has been obtained
(see the survey [30] for several examples and references therein), in most cases using
only formal arguments. Moreover, most rigorous results in the area concern particular
maps or systems and very few general results are known. As a matter of fact, in the case
of maps, only very recently a preprint [29] of Gelfreich and N. Brannstrom appear on
arxiv where an asymptotic formula for Lazutkin's homolinic invariant is formally derived
which describes the exponentially small splitting of separatrices in a generic analytic

family of area preserving maps near a Hamiltonian saddle-center bifurcation.

Lazutkin's approach has become standard and most rigorous proofs use more
or less Lazutkin's original ideas. Roughly speaking, the approach consists in studying
the analytic continuation of parametrizations of stable and unstable manifolds into the
complex domain. Although the phenomena we want to study lives in a real domain, a
careful analytic study of the parametrizations near a certain complex singularity is able
to detect the exponentially small phenomena. Then a local rectification of the map and
standard Fourier arguments are able to return to the reals and obtain the asymptotic
formula describing the splitting. At the heart of the method is a “complex matching
technique” which allows the passage from the analytic study of the invariant manifolds

in a neighbourhood of the fixed point to the analytic study near the complex singularity.

This technique can be found in the Physics literature where problems of ex-

11



ponentially small splitting of invariant manifolds are also studied but use a different
mathematical framework from the one used in Dynamical Systems. There the common
approach is known as “asymptotics beyond all orders” [67] which is related to matched
asymptotic expansions [23] that capture the exponentially small terms. Most notably,
the work of Kruskal and Segur [45] in the 80's where they considered a model of crystal
growth and using matched asymptotic expansions they were able to prove that a certain
heteroclinic connection breaks. This work has influenced many others in the field and
the same technique has been applied (at the formal level) to prove the non-persistence of
homoclinic or heteroclinic solutions to certain singularly perturbed systems (for instance
[35, 78, 17]). It is worth mentioning that most arguments used in the “asymptotics be-
yond all orders” approach are heuristics and although may produce satisfactory solutions
are not rigorous mathematical proofs. More recently, the asymptotic beyond all orders

approach has been applied in [73, 19, 18, 75].

In his book [52], Eric Lombardi undertook efforts to put the matched asymptotic
expansions technique into rigorous arguments that could be used to solve many problems
in the class of exponentially small phenomena. He realized that most problems in this
class could be reduced to the study of certain oscillatory integrals which capture the
exponentially small terms. He then applied his methods to study homoclinic connections
of periodic orbits in reversible analytic vector fields near resonances. Let us emphasise
that his results apply not only for particular examples but for one parameter families of
reversible vector fields admitting some sort of resonance (in particular for a 0%iw or a
(iwp)%iw; resonance). However, we should mention that his methods do not apply to a
(iw)? resonance, which is considered in this thesis. The reader is referred to his book

[52] for more details.

As a final remark, let us refer the reader to the survey of A.R. Champneys [14]
where several applications of exponentially small splitting to mechanics, fluids and optics

are considered.

12



Figure 1.3: Eigenvalues of DXy _(p).

1.4 Main Contributions of this Thesis

Consider an analytic one parameter family of two degrees of freedom Hamiltonian sys-
tems Xy with a common equilibrium point p, i.e., Xg.(p) = 0. We say that p
undergoes a Hamiltonian-Hopf bifurcation if the eigenvalues of the linearized system
at the equilibrium point change from complex +5 + ia (o, 8 > 0) for € > 0 to pure
imaginary +iay and fias (a1 # ag # 0) for € < 0, as is shown schematically in Figure
1.3. When ¢ = 0 the equilibrium has a pair of pure imaginary eigenvalues +icg with
multiplicity two. In other words, the equilibrium p changes from hyperbolic to elliptic.
This bifurcation has been extensively studied [76] and a normal form theory for the
bifurcation has been developed. It is known that depending on the sign of a certain
coefficient 7 of the normal form there are two main bifurcation scenarios (see section
2.2 of chapter 2). In one of these scenarios, which corresponds to nn > 0 (the stable
case) it is known that for ¢ > 0 there are two dimensional stable W2 and unstable W
manifolds within a three dimensional energy level set, that shrink to the equilibrium as
the bifurcation parameter ¢ approaches the critical value.

At the level of the normal form the stable and unstable manifolds coincide and
for the original Hamiltonian, in general, it is expected a completely different situation:
stable and unstable manifolds will not coincide any longer and intersect transversely,

forming a countable set of homoclinic orbits as initially described by Poincaré and all
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the chaos that it implies.

The question of transversality in an Hamiltonian-Hopf bifurcation has been con-
sidered by many people and finds applications in many different problems. For instance,
in the study of stationary localized solutions for the Swift-Hohenberg equation [48, 18] or
in the restricted three body problem where numerical evidence have shown the existence
of homoclinic orbits to the Lagrange equilateral equilibrium point which are the limit of
periodic orbits with long periods (blue sky catastrophe) [42]. For more applications the

reader is referred to [14].

In this thesis, we have addressed the problem of determining if stable and unstable
manifolds of the equilibrium intersect transversely. We have estimated the size of the
splitting of the invariant manifolds which depend on a singular way from the bifurcation
parameter. For ¢ = 0 the equilibrium is elliptic, thus the problem of determining the

transversality belongs to the class of analytic singular perturbation problems.

The most significant effort towards solving the question of transversality occurred
in 2003 when P. D. McSwiggen and K. R. Meyer proved in [56] that for small positive €
the stable and unstable manifolds are either identical or have a transverse intersection,
i.e. a transverse homoclinic orbit. However, their arguments did not show a transverse

intersection and the main question remained open.

When the Hamiltonian vector field Xy is reversible, Glebsky and Lerman proved
in [34] the existence of two symmetric homoclinic orbits using an implicit function
theorem argument. They also pointed out that stable and unstable manifolds could
split and that this splitting was exponentially small. The existence of two symmetric
homoclinic orbits follows from a more general result of G. looss and M. C. Pérouéme in
[44] where it is considered a four dimensional reversible vector field near a 1:1 resonance
(or (iw)? resonance). See also [15] where the existence of symmetric homoclinic orbits

is studied by considering w and [ as independent parameters.

More recently, Lombardi [52] developed several methods that allowed him to

study homoclinic connections of periodic orbits in reversible analytic vector fields near
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certain resonances. The resonance considered in this thesis (iw)? is not treated in his

book and in page 12 we find:

“Observe from Figure 1.3 that for the (iw)? resonance such a coexistence
of slow hyperbolic part with a rapid oscillatory one does not exist. Thus

they can be studied with classical tools (see [44])."

Our results have shown that exponentially small phenomena is generic near a Hamiltonian-
Hopf bifurcation, thus contradicting Lombardi's observation. More precisely, we have
proved that generically stable and unstable manifolds of the equilibrium split and that
the size of the splitting is exponentially small with respect to e.

In order to measure the splitting of the invariant manifolds we have extended
the definition of the Lazutkin's homoclinic invariant (which is defined for area-preserving
maps) for our case of two degrees of freedom Hamiltonian systems. Given a homoclinic
point p. € WEN WX, we have found a natural way to normalize vectors v¢”® tangent to

Wp and W at the homoclinic point p. and defined the following homoclinic invariant,

we = (v, ve),

where € is the standard symplectic form in R?. Moreover, we have shown that it satisfies

the following properties:
1. It is invariant under symplectic change of coordinates,

2. It takes the same value along the homolinic orbit defined by py, i.e., is independent

of a particular homoclinic point,

3. If 9¢"% is a different pair of tangent vectors such that the homoclinic invariant &,
defined by those vectors satisfy the above properties then @, is not independent

of we, i.e., there exists a relation between the homoclinic invariants,

4. If we # 0 then W2 and W have a transverse intersection.
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To effectively measure an exponentially small splitting we have constructed ap-
proximations of stable and unstable manifolds in complex domains and measure the
splitting in places where it is detectable, that is, near singularities in complex domains.
This has involved several steps, such as the construction of asymptotic expansions for
the invariant manifolds in different complex domains and a complex matching technique
that captures the exponentially small phenomena, as mentioned earlier in this Chapter.

Assuming that the family Xy, is reversible with respect to the involution,

S(q1,92,p1,02) = (—q1, 92, P1, —P2),

we have measured the splitting of the invariant manifolds at a symmetric homoclinic
point p, i.e. p. € Fix(S) (the set of fixed points of ). We can now state the main

result of this thesis,

Theorem 1.4.1. If e > 0 and n > 0 (the stable case) then there exists a symmetric
homoclinic point p. € W2 N WX such that the corresponding homoclinic invariant has

the following asymptotic formula,

ey

we = +2e” 2 (wy + O(e! ). (1.6)
where p > 0 is arbitrarily small.

Recall that v and [ are the imaginary and real part of the eigenvalues of the
linearized system at the equilibrium point. Moreover, 3 — 0 as € — 0T (see Figure 1.3,
in fact we know that 8 = O(,/€)). Consequently w, is exponentially small with respect
to e. In addition, when wy is different from zero, the previous asymptotic formula implies
that the invariant manifolds have a transverse intersection.

Similar to many other problems in the class of exponentially small splitting (com-
pare with the standard map (1.4)) the constant wy is defined for an e-independent prob-
lem and in our case it only depends on the Hamiltonian Hj (at the exact moment of
bifurcation). It is a remarkable fact that the leading coefficient wy which determines

the transversality of the family of invariant manifolds W2 and W does not depend on
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the unfolding of Hy. To be more precise, let &/ C C* be a neighbourhood of the origin
and $)o be the space of analytic Hamiltonian functions H : i/ — C* that have the same

properties as Hy. Then we have the following,

Theorem 1.4.2. There exists a non-zero functional Ky : $5 — Rar satisfying the

following properties:

1. wo = /Ko(Hy) (Stokes constant),

2. Given H € $)g such that Ko(H) # 0 then H is non-integrable and the normal

form transformation diverges,

3. Ky is independent of the symplectic coordinate system, i.e., if H=HoWU for

some analytic symplectic map U fixing the equilibrium p then Ko(H) = ICO(ET )
4. If H, is an analytic curve in $o then Ky is an analytic function of v.

5. Given any analytic curve H,, in $o where v is defined in an open disc D C C, then
for every € > (0 there is an e-close analytic curve F,, € $y to H,, i.e.

sup |HI/(X) - FI/(X)| <€,
xeU,veD

such that ICo(F),) does not vanish on an open and dense subset of D.

The definition of Iy is related to a phenomenon observed in solutions of certain
differential equations known as Stokes phenomenon (see [62] and references therein).
From the last property of Theorem 1.4.2 we conclude that the splitting of invariant
manifolds near a Hamiltonian-Hopf bifurcation is a generic phenomenon.

The reversibility assumption is not necessary in most parts of this thesis. In
fact, it is only used to ensure the existence of a certain primary homoclinic orbit. We
believe arguments based on the preservation of the symplectic form yield the existence
of a homoclinic orbit such that the asymptotic formula (1.6) holds in the non-reversible

case.
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Taking the Swift-Hohenberg equation as an example, we have performed high-
precision numerical experiments to support validity of the asymptotic expansion (1.6) and
evaluated a Stokes constant numerically using two independent methods. In particular,
this study implies the existence of countably many reversible homoclinic orbits for the
Swift-Hohenberg equation, which are known as multisolitons. The Swift-Hohenberg
equation is also considered as a paradigmatic model in pattern formation theory [51,
50, 18]. Recently, similar computations to ours have been performed by S. J. Chapman
and G. Kozyreff in [18] where they study localised patterns in the Swift-Hohenberg
equation emerging from a subcritical modulation instability using the multiple-scales
analysis beyond all orders. Although arguments in [18] are not completely rigorous they
were still able to capture the exponentially small phenomena by means of analysing
certain formal expansions using optimal truncation and studied their difference in the
vicinity of the Stokes lines.

Our results extend those in [18] as we have developed a theory to study transver-
sal homoclinic orbits in Hamiltonian system near a Hamiltonian-Hopf bifurcation, for

which the Swift-Hohenberg is a particular example of this type of bifurcation.
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Chapter 2

Preliminaries

In this chapter we review some well known results about Hamiltonian systems and
describe the Hamiltonian-Hopf bifurcation in detail. In the end we shall define certain

linear operators and obtain inverse theorems that will be used in subsequent chapters.

2.1 Hamiltonian Systems

The goal of this section is to present a brief introduction to Hamiltonian systems and
introduce some of the notation that will be used throughout this thesis. The material
of this section can be found in [5, 58].

The Hamiltonian formalism is the natural mathematical framework in which is
possible to develop the theory of conservative mechanical systems since the equations

of motion of a mechanical system can be transformed into a Hamiltonian system,

. oH . 9H

T — Y 7 = - ) 2].
Gi= 73, p 94, (2.1)

where H is a C? function defined in the even-dimensional space R?” with coordinates
(q1s---yqn,D1,---,Dn) Where the configuration variable g; is conjugated to the momen-
tum variable p;. In this case we say that the Hamiltonian system (2.1) has n degrees of

freedom and the function H is known as the Hamiltonian.
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More generally, in Hamiltonian mechanics there is a one-to-one correspondence
between Hamiltonian vector fields and Hamiltonian functions which is defined by the
symplectic structure. In the simplest case, the standard symplectic structure in R?" is

given by the canonical symplectic form,

0 I
-1 0

Qz,y) =T Jy, where J=

For a given Hamiltonian function H one can define the associated (Hamiltonian) vector

field Xz in a coordinate independent way as follows,
dH = Q(Xg, ).

Moreover, we can compute the derivative of a given function F along the vector field

X which we denote by {F, H} where,
{F.H} = Q(Xp, Xp).

The operation {-, -} is called the Poisson bracket. The integral curves of the Hamiltonian

vector field Xy satisfy the Hamilton equations (2.1) which can be written as follows,

or using the shorter notation x = Xy (x) where x = (q,p) € R?". The flow of this
ODE is denoted by ®;. Using the Poisson bracket we can see that the derivative of the
function H along the vector field Xy vanishes, since {H, H} = 0. Thus H is constant
along the flow lines of the Hamiltonian vector field Xp. This property is known as
conservation of energy.

Another well known fact in Hamiltonian mechanics is that the flow <I>fH preserves
the symplectic form €2 and in particular, it preserves the volume form 2" given by the
nth exterior product of 2. Moreover, the transformations that preserve the symplectic
form are known as canonical or symplectic transformations. From the definition of

Xy it is clear that if ¥ is a canonical transformation such that ¥ = H o ¥ then
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Xp = (DV)"'Xpy o ¥. Consequently the Hamiltonian structure is preserved under
canonical changes of coordinates.

The ultimate goal in Hamiltonian dynamics is to understand the asymptotic be-
havior of most trajectories of the Hamiltonian system (2.2). A class of Hamiltonian
systems where the dynamics are significantly simple to understand is the class of inte-
grable Hamiltonian systems. Roughly speaking, an n degrees of freedom Hamiltonian
system with Hamiltonian H is said to be integrable (in the sense of Liouville-Arnold [5])
if there exist n functions H = F},..., F,, which are independent (their differentials are
pointwise linearly independent) and in involution {F;, F;} =0 forall 4,5 =1,...,n. In
this case, the equations of motion can be solved by “quadratures”, obtaining a complete
description of the structure of the orbits in the phase space. A more precise statement

is given by Liouville-Arnold Theorem which says that if,
M, = {XER2”|FZ-(X) = 2z, izl,...,n},

is connected and compact then M, is diffeomorphic to the n-torus T™ and moreover in a
neighbourhood of M, there exist a canonical change of coordinates such that in the new
coordinates (I1,...,In,1,...,pn) the Hamiltonian depends only on I;. These new
coordinates are called action-angle coordinates. An example of an integrable system
is given by the pendulum as discussed in the introduction of this thesis. Additional
examples will come later when studying the normal forms.

In fact, the most interesting phenomena in Hamiltonian dynamics is given by non-
integrable systems. There, one can start by studying its invariant objects (equilibrium
points, periodic orbits, tori, etc) and the corresponding attracting and repelling sets. A
particular case is when p is an equilibrium point of Xy, i.e., Xy (p) = 0, then one can

define its stable and unstable set as follows,

W) = {xe R im_aly00 =0,
(2.3)
S _ 2n : t _
We(p) = {x € R*"| t_lilﬁlooq)H(X) —O}.
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and assuming that DXy (p) contains no eigenvalues on the imaginary axis (hyperbolic
equilibrium) then the spectrum of DX (p) will contain n eigenvalues Aq, ..., \, with
negative real part and n eigenvalues p1, ..., i, with positive real part (since the spec-
trum of a Hamiltonian matrix is invariant under complex conjugation and symmetric
with respect to the imaginary axis). Now the well known Stable Manifold theorem [37]
implies that W*#(p) are locally n dimensional smooth manifolds having the same degree
of regularity as the vector field Xz. Thus we usually denote by I/V;;’(f(p) the stable and
unstable manifolds in a neighbourhood of the equilibrium p. Moreover the local stable
manifold W (p) is tangent at p to the eigenspace of the \;'s and the local unstable
manifold W} (p) is tangent at p to the eigenspace of the y;'s. In general, the stable
and unstable sets (2.3) are immersed manifolds and their global structure can be very

complicated as Figure 1.2 shows.

Particularly interesting are the homoclinic points which belong to the intersection
W (p)NW#*(p). For a homoclinic point p;, we have the corresponding homoclinic orbit
() = @ (ps) which is also in the intersection of stable and unstable manifolds.
Thus W"(p) N W#(p) is at least one dimensional. Recall that conservation of energy
implies that both stable and unstable manifolds are contained inside the energy level

{H = H(p)} which is 2n — 1 dimensional.

A fundamental question is whether stable and unstable manifolds intersect transver-
sally at the homoclinic orbit . That is, if for every homoclinic point g of the homoclinic
orbit v, the tangent space of stable and unstable manifolds at g generated the space

R2n—1

Tun(p) + TqWS(p) — R2n—1.
In this case we say that , is a transverse homoclinic orbit. This question is of great
importance as it provides a route to very complicated dynamics in a neighbourhood

of the transverse homoclinic orbit as was described in the introductory chapter of this

thesis.
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2.1.1 Normal forms

The idea of the normal form procedure is to simplify as much as possible a given
Hamiltonian H by producing suitable near identity canonical change of coordinates that
kill most terms in the original Hamiltonian. The transformed Hamiltonian HV¥ is
expected to have some type of additional symmetry, such as S! symmetry induced by
some integral of motion.

In the following we shall restrict our explanations to normal forms around equi-

libria. So we suppose that H can be written as follows,
H=Hy+Hs+Hy -, (24)

where H; € H; and H; is the space of homogeneous polynomials of degree i. The
first step in the normalization is to bring the quadratic part Hs into a canonical normal
form. The study of normal forms for linear Hamiltonian systems is important as it
is not always possible to put a linear Hamiltonian matrix into a Jordan normal form
by a linear canonical change of coordinates. Thus, the classification of normal forms
for linear Hamiltonian matrices is more refined then the usual Jordan normal form and
for more details the reader is referred to [59]. So let us suppose that Hy is in some
canonical normal form and explain how one proceeds to normalize H3. Given F3 € H3
we produce a near identity canonical change of coordinates ®3 by considering the time

one Hamiltonian flow generated by F3, i.e., <I>}73, and compose it with H to get,
Ho (P,ng = Hy + H3 — adjy, (F3) + higher order terms,

where adjy, (-) = {-, Hz} is called the adjoint operator or also known as the homological
operator. Note that this change of coordinates did not affect the quadratic part. Now
we will try to eliminate the order 3 terms or in other words solve the equation Hz —
adjy, (F3) = 0 with respect to F3. In general, it is not always possible to solve that
equation as adjy, : H3 — H3 may have non-trivial kernel and consequently H3 may

not belong to im(adjy,). Thus, the image of adjy, describes to a great extend the
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normal form to which H can be transformed. Moreover, it may have different styles
[59] depending on the choice of complement of imadjy,. Repeating these arguments

recursively we obtain the following,

Theorem 2.1.1. Let G; be linear subspaces of H; such that G; + im adjy, = H;, then

there exists a formal near identity canonical change of coordinates ® such that,
HNF:HO(I):H2+F13+]SI4+"‘ )
where fli € g;.

So the question of computing a normal form for H reduces to computing the
complements G;. Choosing a normal form style (or complements G;) depends whether
X, is semisimple or not. In the first case the ker adjy, complements im adjj, and the
polynomials Fj; can be chosen properly so that HV*" belongs to ker adjyy,. This implies
that HVF is constant along the Hamiltonian flow of Hy. Thus Hs is an integral of HNF',
When X, is not semisimple then it is possible to choose a particular inner product in the
linear spaces H; such that the adjoint operator of adjy, : H; — H; with respect to that
inner product is ade2T where HI is the Hamiltonian of the transposed Hamiltonian
matrix (DXp,(0))7. Now Fredholm alternative implies that ker adjyr complements
im adjy, and as before one can choose polynomials F; such that {ﬁi,H;f} = 0 for all
1> 3.

There is also an sl(2,R) normal form style that is a ring of invariants under a
modified linear flow (see [59]). This approach and the inner product often yield the same
normal form but the sl(2,R) is less known due to its representation theory apparatus.

Note that as adjy, has kernel then the normal form transformation @ is non
unique.

This technique of simplifying the form of a given Hamiltonian goes back to
Birkhoff [9] who studied a semisimple Hamiltonian with multiple centers,

@2 + p?

n
H = sz’Lz’ + higher order terms, where L; = 5

1=1
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and proved that in the absence of resonances in the frequencies, i.e., (k,w) # 0 for all
k € Z"™, then the original Hamiltonian could be formally transformed into a Hamiltonian

depending only on the L;'s.

Normal form for the nonsemisimple Hamiltonian 1 : —1 resonance

The nonsemisimple Hamiltonian 1 : —1 resonance is a two degrees of freedom Hamilto-
nian system having the following Hamiltonian function,
2, 2

Qi + 493
2

H = qp2 — qap1 + + higher order terms,

where the higher order terms are at least cubic in the variables ¢1, ¢q2, p1 and py. We
want to derive a normal form for the Hamiltonian H and for our purposes it is sufficient
to consider H as a formal series. Let us denote the quadratic part of H by Hs. Note

that DX, (0) is not semisimple. We have the following,
Theorem 2.1.2 (Sokol'skii [71]). There is a formal near identity canonical change of
coordinates ® such that,

2 2
@ +q
HNF = Ho® = qipy — qopy + 2+—2 5 2 + K(gap1 — q1p2, pT + p3),

where K is a formal series in two variables starting with quadratic terms. Moreover
the coefficients of K are uniquely defined, forming an infinite set of invariants for the

Hamiltonian H .

Proof. In normal form theory often formulae look simpler if one considers complex

coordinates given by,
z=q1+iq2, w=p1+ip2, Z=q1—iG2, W=p1 —ip2.

This change of variables in an automorphism of C* and it deforms the canonical sym-

plectic form ) according to the relation,
1 _ _
dgi A dpy + dga N\ dpy = §(dz/\dw+dz/\dw).
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Thus in the new variables we multiply the Hamiltonian H by 2 and use the symplectic
form dz A dw+ dz A dw to derive its Hamilton equations. Now, as shown in [58], on the
linear space H,, of homogeneous polynomials of degree n in the variables x = (z,w, z, w)
we can introduce an inner product such that the adjoint of the linear operator adjy, :
Hp — Hp with respect to that inner product is adjyr where HI is the Hamiltonian of

the transposed Hamiltonian matrix (DX, (0))7T,
HI = i(20 — zw) — ww.

The Fredholm alternative gives the splitting H,, = ker adeQT @ imadjy, and according
to Theorem 2.1.1 there is a formal near identity canonical change of coordinates ® such
that,

HN' —=Ho®=Hy+Hs+Hy+ -,

where H, € ker(adezT : Hp — Hy) for all n > 3. So in order to get the form
of the polynomials H,, we only need to determine a basis for ker adeér. Recall that

adeér(-) = {-, H]'} where the Poisson bracket {-,-} is defined by the formula,

OPO0Q 0POQ O0PO0Q O0POQ

PQY=5-50 " 902: T 920w 9w oz

To determine the kernel of adj ;7 we see how {-, -} acts on terms of the form 22zt ZI2
where i1 +i5+ j1 4+ jo = n for some n > 3. Note that adeQT also splits into a semisimple
part plus a nilpotent part, namely,
adjpyr (1) = {,i(zw — Zw)} + {-, —ww}.

Thus we compute,

{zilwi22jlu7j2,’i(zw _ Zw)} —_ Z(Zl + ’i2 _ jl _ j2)zilwi2zjle2, ( )

25
{zilwi22j1’(f)j2, _ww} — _Z'lzi1—1wi2+15j1wj2 _ jlzilwi22j1_ltf)j2+1.

From the first equation we see that the normalized Hamiltonian H¥*" contains only

homogeneous polynomials of even degree in n and moreover,

[N

21+22=§ and ji1 4+ jo = —.
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Now taking into account the second equation of (2.5) it is not difficult to conclude
that dimker(adeQT : Hn — Hp) = 5 + 1. Moreover, we can explicitly compute the

following basis

ker(adeQT : Hp — Hy) = span {(zw — zw)* (wd)™ | m, k>0, m+k= g} .

Thus, the homogeneous polynomials H,, can be written uniquely in terms of that basis

and this concludes the proof of the Theorem. O

Remark 2.1.2.1. It is clear that HNF is in involution with gap; — qip2. Thus HVF is
symmetric with respect to the one-parameter group of rotations induced by the Hamil-

HNF

tonian flow of gap; — ¢1p2. Hence any truncation of is integrable and consequently

H can be approximated by an integrable Hamiltonian at every order.

2.2 Hamiltonian-Hopf bifurcation

Let H. be an analytic family of two degrees of freedom Hamiltonians defined in a
neighbourhood of the origin in R*. Suppose that the family of vector fields Xy (with
respect to the canonical symplectic form in R*) has a common equilibrium point which
we assume to be at the origin (X (0) = O for every €) and that as e — 0T the
equilibrium point of the family Xy, goes through a Hamiltonian-Hopf bifurcation as
described in the introduction of this thesis: for ¢ > 0 the linear system DXy (0) has
two pairs of complex conjugate eigenvalues +0, + ic., a. # 0, B # 0 which approach
the imaginary axis as ¢ — 07 yielding a single pair of pure imaginary eigenvalues +ayi,
ap # 0 with multiplicity two for the linear system DX, (0). Therefore, in the general
case the matrix DX, (0) is nonsemisimple and according to the normal form theory for
Hamiltonian matrices [11] one can assume that,

0 —ag O 0

ag 0 0 0

DX, (0) = )
— 0 0 —ap

0 —t (&%)} 0
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where ¢« = £1. For simplification purposes one can assume without lost of generality
that g = 1 and + = 1. Indeed, by a reparametrization of time or equivalently by
multiplying the Hamiltonian H, by ¢ |a0|_1 and considering the canonical linear change

of variables,

(71} VAL 1
(q1,92,p1,p2) = | ¢ a1,V |lolga; ¢ | ’pl, P2 |, (2.6)
|ao @ Vol

we obtain the desired normalization of g and ¢. Thus we can write H, in the following
form,

2

i+
H(q,p) = qip2 — q2p1 + 5+ Fi(q,p), (2.7)

where F.(q,p) = O((|q|+|p|+]|e|)?) such that ¢ = (q1, 42), p = (p1,p2) and F.(0,0) =0
and 0, ,F(0,0) = 0.

The Hamiltonian-Hopf bifurcation corresponds to the unfolding of a nonsemisim-
ple Hamiltonian with a 1 : —1 resonance. This resonance has been studied by Sokol’skit
in [71] who investigated the stability of the equilibrium point. With the help of normal
form of Theorem 2.1.2 he established its formal stability.

The definitive study of the Hamiltonian-Hopf bifurcation is attributed to van der
Meer in [76] who derived the following normal form for the bifurcation,

HNF =HY+ > ampditld,  H!=-L+L—elz+nl3, (28)
3m+2j+21>5

such that,
@+a it
2 2

where 7 and the coefficients a,, ;; are real numbers. Note that I is an integral of HNE,

I = @p1 — qip2, I2 = e (2.9)
i.e. {HNF, Il} = 0, and that any truncation of the normal form is integrable. Moreover,
by an analytic near identity canonical change of coordinates ®,, we can normalize H up
to some fixed order whereas the transformation that carries H into HV' is expected to

diverge in general.

Also note that the normal form HN*" is reversible with respect to the involution,

5(<]17<J27p1,p2) = (—Q1,Q2>p17 —p2)- (2-10)
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Figure 2.1: Different scenarios in the Hamiltonian-Hopf bifurcation.

That is SXHENF (x) = —XHENF (Sx).
Now, there is a convenient scaling of variables which groups terms of the same
order in the normal form (2.8). We start by scaling the bifurcation parameter by € = §2

and change variables according to,
@ =0°Q1, g2 =05°Q2, p1=0P1, py =0P;. (2.11)

We call this change the standard scaling. It is not difficult to see that the standard
scaling is symplectic with multiplier 62. Hence we multiply the new Hamiltonian by 673
and use the canonical symplectic form ) to derive the Hamilton equations. In these

new variables the leading order Hamiltonian H? becomes,
R =-T; + {7, - T +771§}5,

where the Z;'s are defined in the same way as the I;'s but in the new variables () and
P. As h0 is integrable a detailed bifurcation analysis of the Hamiltonian system can be
performed. For that end, it is convenient to change to the following polar coordinates,
Q1 = Rcosb — %sin@, P, = rcosf,
(2.12)
Q2 = Rsinf + % cosf, P, =rsinf.

In these new coordinates the Hamiltonian h° takes the form,

1 0?2 1 n
0_ _ S p2 PN _ L2 N
h” = @+{2<R+r2> 5" +4r}6,
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Figure 2.2: The invariant manifold of H?.

and © = T is a first integral of h°. Now we look for the stable and unstable manifolds
of the equilibrium of % which are contained inside the set {h° = 0,0 = 0}. Stable and

unstable manifolds coincide and are defined by the equation,

R?=r2— gr4, 0es. (2.13)

Due to the S! invariance we can take a section § = 0 and plot the curve defined
by the equation above. According to the sign of 1 there are three distinct cases (see
Figure 2.1).

Recently, in [49] Lerman and Markova proved that when 7 > 0 the equilibrium
of Hy is Lyapunov stable and unstable when 7 < 0. Thus the stable case is when 1 > 0
and unstable when i < 0. The case n = 0 is called degenerate.

When 1 > 0 we have a single loop in the (r, R) plane as Figure 2.1 demonstrates.
Taking into account the rotation # € S! we obtain a manifold which is homeomorphic
to a 2-sphere where its north and south poles are glued together (see Figure 2.2). We
can cut this invariant manifold along a transverse section R = 0 and obtain a circle of
homoclinic points as illustrated in Figure 2.3.

In the polar coordinates (2.12) the set of fixed points Fix(S) of the involution
(2.10) is given by R = 0 and # = 0 or # = 7. Thus there are exactly two symmetric
homoclinic points that correspond to # = 0, 7. For the full system (2.7), the circle of

homoclinic points is expected to split in two circles, stable and unstable, that intersect
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Any truncation of H¥F Full system H.

Figure 2.3: Section R = 0.

at two symmetric homoclinic points. In fact, the existence of such symmetric homoclinic
orbits for the full system follows from an application of the implicit function theorem.
Of course, this analysis works for any truncation of the normal form HN*" and
therefore, when 1 > 0 the stable and unstable manifolds W of the equilibrium of H,
can be approximated at any order by a single manifold having the properties previously
described. In general, W2 and W are expected to split and due to the integrability of
the normal form at every orders we conclude that the invariant manifolds are extremely
close. In fact, we will show that it is impossible to distinguish them using classical
perturbation theory, i.e. their difference is beyond all orders, and the size of the splitting

is exponentially small with respect to e.

2.3 Natural Parametrizations

In a study of homoclinic trajectories it is important to have a convenient basis in the tan-
gent space to the stable and unstable manifolds. The tangent space is given by natural
parametrizations of the invariant manifolds. Below we provide a definition adapted to
our problem. This definition can be of independent interest as it can be easily extended
onto hyperbolic equilibria of higher dimensional systems (not necessarily Hamiltonian).

Suppose that the origin is an equilibrium of a Hamiltonian vector field Xz and

that &+ + i« are the eigenvalues of DX (0). Then the origin has a two dimensional
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unstable manifold. According to Hartman [41] the restriction of the vector field on W},
can be linearised by a C'! change of variables. In the polar coordinates the linearised

dynamics on W}! takes the form:
7= pr O=a.

It is convenient to introduce z = logr so that 2 = . Then the local unstable manifold

is the image of a function
T: {(p,2): p €8 z<logrg} = R?

where rg is the radius of the linearisation domain and S is the unit circle. Since T'*
maps trajectories into trajectories we can propagate it uniquely along the trajectories of

the Hamiltonian system using the property
Lo+ at,z + ft) = @y o T (g, 2) (2.14)
where @, is the Hamiltonian flow. Note that
I'(¢+2m, z) =T"(p, 2)
since ¢ is the angle component of the polar coordinates. Moreover,

lim T'(p,2) =0.

Z——00

Differentiating I'* along a trajectory we see that it satisfies the non-linear PDE:
a0, I + 0. I'" = Xy (T'"). (2.15)

Note that each of the derivatives 9.I'* and 9,I'* defines a vector field on W* and
equation (2.14) implies that both vector fields are invariant under the restriction of the
flow %, .

Equation (2.15) is very important in the study of the invariant manifolds and in

the subsequent chapters we will develop a theory to solve this PDE subject to certain
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conditions. The parametrization ' is C! but in fact, using directly equation (2.15) we

will show that when the Hamiltonian is analytic the parametrization is also analytic.
We can define I'* applying the same arguments to the Hamiltonian —H. In this

case it is convenient to set z = —log r to ensure that I'® satisfies the same PDE as T'".

In a reversible system with a reversing involution S, it is convenient to set
(p,2) = S o T(—p, —2). (2.16)

Now let us present an example. Following the previous discussion, we will parametrise
the invariant manifold defined by equation (2.13) by a real analytic map Xj : R? — R*

which is a solution of the following linear PDE,
%Xo + 0, X0 = X0 (X(])

Due to integrability of the Hamiltonian A% it is possible to compute explicitly a parametri-

sation X (see Theorem 4.2.1),

2 (cospsinhz sinpsinhz cosep singp T
Xo(p,2) =/ — , , , . 2.17
o(¢p:2) \/; < cosh? z cosh? z " cosh z’ cosh z ( )

The curves defined by x(t; ¢, 2) := Xo(p + ¢,z + t) are integral curves of the vector
field X0 and foliate the invariant manifold. Notice that X is periodic in ¢ (due to the
rotational invariance of Xj,0) and lim,_, 1 Xo(+,2) = 0.

We will see that X in the unscaled variables can be regarded as the zeroth order
approximation of the stable and unstable manifolds of H. near the equilibrium point.
Note that the parametrisation X has complex singularities for values of z = i5 + k,
k € Z and is im-antiperiodic in z, i.e. Xo(p,z+im) = —Xo(p, 2).

An anaytic study in a neighbourhood of the singularities of X will provide
a method for detecting the exponentially small splitting of the stable and unstable
manifolds. Periodicity of Xg in z allow us to restrict our analysis to the singular point

z = i%. More concretely, we will study the solutions of equation (compare with (2.15)),
aeagor + B:0.I' = XHe (F)> (218)
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Figure 2.4: Domains D,

and the corresponding analytic continuation up to the singular point z = 5. For points

close to the singularity, it is convenient to use the following change of variables,

_56 LT
B aET+Z2’

z

to center the singularity at the origin. The scale g—z ~ /€ is used due to technical reasons
which will become more apparent when performing the complex matching technique

developed in chapter 4. Thus, in the new variable 7, equation (2.18) becomes,
9, T +0,T =o' Xy (T) (2.19)

This equation and equation (2.18) will be studied in detail in the subsequent chapters.

2.4 Linear Operators

In this section we define and study certain complex Banach spaces and some linear
operators acting on them. The linear operators and motivated by the study of the PDE
(2.19). These technical results are at the core of the proofs of the Theorems in the next

chapters.

2.4.1 Solutions of first order linear differential equations

Let 0 < 0y < %, h > 0. We shall leave these parameters fixed throughout this section.

Let S, = {¢ € C| [Imyp| < h} and for r > 0 consider the following domains in the
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complex plane,
Dy ={reC||ag(r+r)|>6}, Df={reC|-71eD;}. (2.20)
In this section we consider the problem of solving the following linear PDE,
Dz = f, (2.21)

where D = 0, + O is a first order linear differential operator and f is some analytic
function defined in an open subset of C2. We will also suppose that all functions are
2m-periodic in .

The simplest case is when f = 0. As one would expect, by using the method
of characteristics, a solution of the homogeneous equation Dx = 0 must be a function
which is constant along the characteristics ¢ = 1 and 7 = 1. Thus, is a function
depending on a single variable, say 7— . The next Proposition determines such function

and its domain of definition,

Proposition 2.4.1. Let x : S}, x B — C be an analytic function, 2w-periodic in o where
B is an open domain of C. Suppose that Dx = 0, then there is a unique 2m-periodic

analytic function,
o : U v+ S, —»C
T0EB
such that z(p,7) = zo(T — @).
Proof. Given 19 € B let

Qry ={(¢,7) €Sk X Bl -7+ 70 € Si}.

Note that €2, is an open domain of C2. Now the initial value problem,

DE=0, &(p,10)=2(v,70), (2.22)

has a solution &(p,7) = 2(¢ — T + 70,70). Hence £ is an analytic function of a single

variable 7 — ¢ and is defined in the translated horizontal strip 79+ .S5,. By the main local
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existence and uniqueness theorem for analytic partial differential equations (see [24] for
instance) we conclude that x = & on Q. Thus z(y,7) = (¢ — 7 + 79, 70). Observe
that for 79, 71 € B such that (19 +5) N (71 + S) # 0 then Q,, N Q,;, # 0. Taking into
account Sy x B = UTQGB 2, and the uniqueness of analytic continuation we get the

desired result. O

When f is non-zero and for instance defined in S}, x D then equation (2.21)

has two solutions,

0 +oo
x (o, 7) = / flo+s,7+s)ds and w+(cp,7') = —/ flo+ s, 7+ s)ds,
oo 0

provided the integrand in both functions is well defined in the domain of f and the

corresponding integral converges.

Proposition 2.4.2. Let f : S;, x D, — C be an analytic function, 2m-periodic in ¢
and continuous on the closure of its domain. Moreover, suppose that |f(p,T)| < ff—ﬂ,

for some Ky > 0 and p > 2. Then the formula,

0
96_(4,0,7'):/_ flp+s,7+ s)ds,

defines an analytic function in Sy, x D_, continuous on the closure of its domain, 2-

periodic in ¢. Moreover,

|z~ (p,7)| < % (2.23)

for some K,, > 0 independent of r.

In order to prove this Proposition we need the following Lemmas,

Lemma 2.4.1. Let p > 1, 7 € D;". Then there exists a constant K, > 0 such that,

0
1 K
/ — _dis< ﬁ (2.24)

—00 |T + S|p+1

Proof. The proof of this lemma follows from easy estimates. First note that,

/0 ds 1 /0 dt
oo [T+ 8PS TP oo [1 4 emimmsmg P
=1
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It is not difficult to get the following upper bounds,

1
su < —
te(—og,o] |1 + e—iarg(T)t|p+1 ~ (sinfg)Pt+!

Vre D,

and,
1 -1
- <
!1 + e—’arg(T)ﬂ ~ t+ cosarg(T)

, Vi< —-1,VreD,.

Using these estimates we conclude that,

/0 dt B /0 dt N /—1 dt
oo |1 etangMPTE oy |1 emtanm P s |1 4 emtara(mg P

1 1
~ (sinfp)Pt+t * p (1 — cosarg(r))?
1 1

~ (sinfp)pt+! + p (1 —cos )P’

yielding the desired estimate (2.24). O

Lemma 2.4.2. Let Q) be an open subset of C2, fa continuous function from (—oc,0) x
into C. Suppose that for each t € (—o00,0) the function (z1,2z2) — f(t,z1,22) is
analytic in Q and that both g—i(t, 21,29) and g—zj;(t, 21, z9) are continuous functions in

(—00,0) x Q. Moreover, assume that for every (z1,z2) € €,
0
F(z1,22) = / f(t, z1,22)dt < o0,
—00

and that fBN f(t, z1,z2)dt converges uniformly as N — 400 to F(z1,z2) for (21, 22)

in compact subsets of ). Under these conditions the function F' is analytic in €.

Proof. This result is standard in classical analysis and can be found in some text books,

for instance [22]. O

Proof of Proposition 2.4.2. Let f : S, x D — C be an analytic function as defined

. . K
in the statement of the proposition. Moreover we know that |f (¢, 7)| < # for some
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K¢y >0andp>2 For N>0wehave (p — N, 7— N) €S}, x D, then,

—N 0
/ \f(t,0+s,7-+s)]ds§/ |f(¢ — N+s,7—N+s)|ds

—0o0 — 00

0
< / _ By g (2.25)

oo |T—= N +s]P
Ky, 1Ky
= N|p_1’
by the Lemma 2.4.1. Thus, the integral fEN f(p+ s, 7 + s)ds converges uniformly in

Sp x D;” and we can apply Lemma 2.4.2 and deduce that,

0
v (py7) = /_ Flo+ 5,7+ s)ds,

defines an analytic function in S}, x D, . The continuity on the closure of its domain
also follows from the continuity of f and the uniform convergence of the integral (2.25).
The periodicity is trivial and the upper bound for =~ follows from (2.25) with N = 0.

This concludes the proof. O

Remark 2.4.0.2. An analogous Proposition holds for the function,
“+oo
‘T+(Q07T):_ f(QO—I—S,T—FS)dS,
0

which is defined in S}, x D;f.

Now we consider the problem of solving equation (2.21), which we recall for
convenience,

Dx = f, (2.26)
but for functions f defined in S} x D} where,
D} =DfnD n{reC|Imr < —r}.

Regarding this new domain D! we can not repeat the same arguments of Proposition
2.4.2 since D} does not contain an infinite horizontal segment. In order to overcome

this difficulty, we construct an analytic solution of (2.26) using a technique similar to
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partition of unity, originally developed by V. F. Lazutkin in [46]. Following the ideas of

[28] we consider the following domains,

D7 ={reC||arg(r+7)| >0y and Im(r) < —r},
ﬁ;":{TEC] —TGD,,_}.
Note that D! = D N D:. The method consists of representing in a suitable way
a function f analytic in S, x D} as a sum of two functions f* analytic in S}l X [),?—L

respectively. For that purpose we need to define a partition of unity for the set 9D/ as

follows. Let Ag : R — [0, 1] be a smooth function such that,
M) =0 t<—m, X(t)=1t>m [XNE)|<1VieR
and define the following functions A* : D} — [0,1] by,
AT (1) =X (Re(7)), A (7)=1-)\T(7).

Lemma 2.4.3 (On the Cauchy integral). Let r > % and f : S, x D} — C
an analytic function, 2m-periodic in ¢ and continuous on the closure of its domain.
Moreover suppose that there exists Ky > 0 such that
Ky .
flem)| < ﬁ in Sy x Dy

Then the integral,

/\:I:
o) =g [ R 2.27)

defines an analytic function in Sy X D?F 2m-periodic in p, continuous in Sy, X Dri and

|f= (1) < 2y in S, x DF.

r2
Moreover,
flo.m) = fT(e.7) + £ (7).
Proof. This lemma is a special case of Lemma 9.2 in [28]. O
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Using this lemma we are able to prove,

Proposition 2.4.3. Lete >0, r > l’r_tf;f;o andp>4. If f: S, x D} — C is analytic,

2m-periodic in @, continuous on the closure of its domain and there exists Ky > 0 such
that,
Ky

: 1
‘SW m ShXDT.

| f(p,7)

Then equation (2.26) has an analytic solution = : Sy x D} — C, 2w-periodic in p and

continuous on the closure of its domain such that,

4K Ky 5 1
2 |rrseir—a)|’

[2(p, 7)| < (2.28)

Proof. Let (g, 7) = 772e(7=%) and f(¢,7) = p(e, 7)f(¢, 7). Now we apply lemma
243 to f with K; = Ky to get,

—— (Fen+ 7). (2:29)

Note that periodicity in ¢ is preserved since by (2.27) the function f* is 27 periodic in

f((va) =

 as well as the function u. Let,

O fletsT+s) _/+°°f+(so+s,f+s)
—oo M+ 5, T+ 8) o klp+sT+s)

z(p,T) = ds. (2.30)

If formula (2.30) defines an analytic function in S, x D}, then it is the desired solution
of equation (2.26). Let us prove that x is analytic. Applying Lemma 2.4.1 and the

upper bound from Lemma 2.4.3 to the first term of (2.30) we get,

0
<2y / L gs<— 2BiBpes
= 2 |ezs(’r—gp)| e ‘T + S‘P—2 2 |625(T—gp)| ’T‘p—?’

(2.31)

O f(p+s,745) .
oo M+ s, T+ s)

Thus for p > 4 the integral converges uniformly in S} x D; and by Lemma 2.4.2 it
defines an analytic function in S}, x D;-. The continuity on the closure of Sj, x D;-

also follows from uniform convergence and continuity of f~. In an analogous way we

+00 [~ (p+s,T+s)

conclude that [ (otsrts) @8 defines an analytic function in S}, X D;f, continuous

on the closure of its domain and having the same upper bound (2.31). Thus,

o) < o L
r2 ‘eze(r—cp)‘ |T|P—3
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and the proof is complete. O

2.4.2 Linear operators and their inverses

Let B C C be an open domain. We denote X, (S}, x B) for p € Z the space of
analytic functions f = (f1,..., f4) : S, x B — C* continuous on the closure of S}, x B,

2m-periodic in ¢ € Sy and satisfying,

I, = sup (|77 fule, )| + |77 fale, 7))
(¢,7)ESLXB

+ 1T fs(o, T)| + |77 fale, 7)]) < oo
The space X, (Sy, x B) with the norm ||-||,, as defined above is a complex Banach space.

When f € X, (S, x B) we occasionally write
f((vpv 7-) = (T_p_lfl((p’ T)a T_p_1f2(907 T)v T_pf3((107 7_)7 T_pf4((107 7-))7

where the norm of f is now Hpr = SUP(y, 1), x B Z?‘Zl | fi(o, 7).
For 0 < p < 2 let 9,(Sy x B) be the space of analytic functions & =
(€1,...,€4) + S, x B — C* continuous on the closure of S; x B, 2nm-periodic in

@ € Sy, and satisfying,

4

lel, = sup 3|7 < ox,
(Sva)EShXB =1

Given two Banach spaces (X, [|-[|x) and (2),]|-[l3) we define the usual norm on

the space of linear operators £ : X — 2) as follows,

£
€2 = 220 el
When it is clear from the text we shall omit the dependence of the Banach spaces
Xp (Sh x B) and 9,,(S), x B) from the set S x B. Moreover, in order to simplify the
notation we shall write the norm of a linear operator £ : X, (S, x B) — X, (S, x B)
as [|£][, , and the norm of a linear operator £ :9),,(Sp, X B) = ),/ (Sp x B) as ||L]] ;-

The following inclusions are not difficult to prove and we shall use them when

appropriate,
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® X, (Snx D7) © Xq (Sp x D) forp > g
® 9,.(Sp x D}) C Y (Sh x D}) for p < 4
o X,(Sp, x D) CXp(Sy x D) for 7 <r;
® 9,(S, x DY) C9,(Sh x D}) for 7 < r;
e 9,(51 x D}) € %,(S, x DY)

Now let A : S, x B — C** be an analytic matrix-valued function which is

2m-periodic in . Define,

ﬁ(g)((p, T) = Dg(@? T) - A((‘D, T)i(@? T)? (232)

where D = 0, + O; is the same differential operator defined in the previous section and
€: 8, x B — C*is an analytic function which is 27-periodic in ¢. In the following
we shall be interested in solving the equation £(£) = f for a given f. The functions u
and f will be defined later in this section. The reason why we look at this equation is
because we want to solve the PDE (2.19) when € = 0.

We say that a 4 by 4 matrix-valued function U : S}, x B — C*** is a fundamental
matrix of L if L(U) =0, det(U) =1 and moreover,

T_2U171 T2u172 TUL,3 7'_3u174

-2 2 -3
T “U21 T U222 TUu2,3 T “U24
U= , (2.33)
T_1U371 T3U372 T2U,373 T_2U374

T_1U,471 T3U472 T2U473 T_2U474

where u; ; are analytic functions in Sy, x B, continuous on the closure of its domain,

2m-periodic in ¢ and sup(,, r)cs, x B [1i,j(p, 7)| < oo for every i,j =1,...,4. Thus, we
can define,
Ky := max sup  |u; (e, 7)| p - (2.34)
b (@77—)€Sh><B

Note that the columns of U belong to X; (S}, x B), X_3(Sp, x B), X_2 (S, x B) and
X5 (Sp x B) respectively.
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An example: the operator Lg

Here we define an operator L in the form of (2.32) which depends on a certain matrix
Ap and has a fundamental matrix Ug that will be defined below. This operator will play
an important role in the perturbation theory developed in the subsequent chapters. Let
us consider the following PDE,

Dx = Xpo(x), (2.35)

where H? denotes the leading order Hg (we omit its subscript to simplify the notation)
of H, for ¢ = 0 (see (2.8)) which we recall H® = —I1 + I + nI2. It is not difficult to

check that,

To(p,7) = (k7% cos ¢, kT~ 2 sin g, KT~ " cos o, KT ' sin go)T , (2.36)

solves equation (2.35) where k% =

—%. Indeed, using the polar coordinates,
qu =Rcosf, pi=rcosf, ¢ = Rsinf, po=rsind.
we see that equation (2.35) reduces to the following equations,

D=1, Dr=-R, DR=nr.

The last two equations define a second order differential equation D?r = —nr3 which
has a solution r(¢,7) = Z. Thus R(p,7) = 5. Now using 0(p,T) = ¢ as a solution
of the first equation we get the desired solution T'g.

The linearized Hamiltonian vector field Ay := DX 0(T) evaluated at Ty reads,

9 .
0 1 — 1+27(—)2OS p _51n£§<p)
1 0 __sin(2¢) _1+42sin?p
T2 72
Ao(p,7) = . (2.37)
-1 0 0 -1
0 -1 1 0

Note that Ay does not depend on the choice of k. Moreover it is 2m-periodic in ¢,

analytic in C x C* and bounded in S}, x D,. Now we define Ly as in (2.32) to be,

Lo (g)((pv 7_) = Dg(@) T) - AO(‘P? 7)5(907 T)v (238)
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where £ : S, x B — C% is an analytic function which is 27-periodic in ¢. It can be

checked directly (using the polar coordinates as before) that the following matrix

__ksingp _37—2 cos ¢ 27 sin @ _ 2Kcos g
T2 5K 3k T3
K COS 372singp 27 cos ¢ 2k sin ¢
_ T2 T 5k T 3k R
UO(('ID?T) -  sin 3 2 . ) (239)
_ %) T° Cos ¢ _ T singp __ KCOsSY
T 5K 3K T2
K COS 3 sing 72 cos @ __ksingp
T 5k 3K T2

is a fundamental matrix for the linear operator L. In fact, a direct substitution of Uy
into (2.38) yields £Ly(Up) = 0 and all entries of Uy are analytic functions in C x C* and
2m-periodic in . Moreover, for any h,r > 0 it is clear that the columns of Uy belong to
the spaces X1 (S}, x D,7), X_3(Sp x D), X_2 (Sp, x D7) and X2 (S), x D;) respec-
tively. Finally, Ug(¢p, 7) is symplectic for all (¢, 7) € C x C*. In particular det(Ugy) = 1

and hence Uy is a fundamental matrix of L.

Inverse Theorems for the linear operator £ in certain Banach spaces

In this subsection we are interested in the question of invertibility of £ in different Banach
spaces. We state and prove several Theorems that will be used in the perturbation theory

developed in the subsequent chapters.

Theorem 2.4.1. Let p > 3 and suppose that the linear operator L : X,(Sy, x D) —
X,(Sn x D;") acting by the formula (2.32) has a fundamental matrix U. Then L has
trivial kernel. Moreover there exists an unique bounded linear operator L™! : Xp+1(Sh x

D;7) — X,(Sp x D;) such that LL™ = Id.

Proof. Let us prove the first assertion of the Proposition: kernel of L is trivial. In fact,
let £ € X,(Sh, x D;) such that £(§) = 0. Then, by the definition of the operator L,
the function & must satisfy,

D¢ = A€
Now we use the method of variation of constants and write £ = Uc for some vector

function ¢ : S, x D — C*. Hence, in the virtue of det(U) = 1, it is not difficult to
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show that ¢ must satisfy Dc = 0. Applying Proposition 2.4.1 to each component of the
vector function ¢ we conclude that c(p, 7) = co(7 — @) where ¢y : C — C* is an entire,
27-periodic vector function. Moreover, since ¢y = U~1¢ we can bound cq as follows.

Due to (2.33), the inverse U~! has the following form,

T27j171 T2?1172 T?ng T’LUL1,4
—2v —2v —3v —3v
_ T ’U/2’1 T ’U/2’2 T ’U/273 T ’U/274
U= (2.40)
T Mgy T30 T3 T 2Uga
T3s1  TI4o TP THiaa
where 4; ; are analytic functions in S}, x D", 2m-periodic in ¢ and
Ky-1 := max sup |t (0, T)| p < 00, (2.41)
Y (em)E€SKx Dy

which follows from (2.34). Thus, if £ = (17P71&, 7P~ 1, 77PE&3, 77PEy) then

4 4 4 1
1 o —p—3 - —p—2 7 —p+2 7
co = <T PR D i, TR Y o6, TR Y i &, TR U4,j§i>' (2.42)
i=1 i=1 i=1 i=1

It is not difficult to see that (2.42) and (2.41) imply that cg is bounded in C for p > 3.
Thus, an entire bounded function must be a constant, by Liouville’s theorem. Moreover,

(2.42) implies that

li =0.
Im(s;Ii)l:I:oo €0 (S)

Thus £ = 0 and the kernel of L is trivial.

Now let us construct an inverse of L, i.e., let us solve the following equation,

L) =f. (2.43)

where f € X,11(S, x D;7). Again, we look for a solution of (2.43) using the method

of variation of constants. Let £ = Uc. Then equation (2.43) is equivalent to,

Dc=U"'f. (2.44)
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Writing f = (77P=2f1, 7P~ 2fy, 7 P71 f3,77P~1 f1) and taking into account (2.40) we
can write the right hand side of equation (2.44) as follows U~ f = (91,92, 93,94)"

where,

4 4
_ o 4 o
g=17° § u1,j fis gp=17 E U2, j fis

=1

i=1
4 4
__p3N\" __pI N
g3 =17 E ugjfi, ga=717 g Ugj fi-
i=1 i=1

Now bearing in mind that || f[|,,; < oo and (2.41) we can estimate the previous functions

as follows,
Kyt 141 Kyt ||l
e € = (el S =t
Kyt |41 Kyt 141
93 77_ §—7 94 77— =  5>—_1 -
.7 < — s e, € —

where the upper bounds are valid in S, x D_. For integers p > 3 we can apply
Proposition 2.4.2 to each component of equation (2.44) and conclude that there is a

vector function ¢ = (c1,¢,¢3,¢4) : S, x D — C* such that each ¢; is an analytic

T

Moreover (2.23) yields,

Kp—lKvU*1 ”pr-H

function in Sj, x D, continuous on the closure of its domain and 2m-periodic in ¢.

Kpr3Ky-1 [ fllp41

lei(p,7)| < E , lea (o, 7)| < R ,
Ky oKy |f Ky oKy-1||f
st )| < ——— +2” HPH, lea(ip, 7)) < 22 _2” HPH.
‘T‘p ‘T’p

Finally, we define the linear operator L1 as follows

L7Nf) =¢,

where the vector function £ is obtain through the relation ¢ = Uc. If & denote the

components of £ then the & can be bounded in S}, x D in the following way,

K K
|£1(907T)| = ‘T’p-i-l Hf||p+17 |£2(907T)| = ‘T’p-‘rl Hf”p-',-la
K K
1€3(,7)| < P £ 11 5 €alp, T)| < P [ £llpg1 5
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where K = (Kp_1 + Kpi3+ Kpo+ Kp—2) KuKy-1. Consequently €], < K £l
yielding H.C_lHnnH < K. Thus £7! is bounded and the uniqueness follows from the

triviality of the kernel of £. This completes the proof of the Theorem. U

Remark 2.4.1.1. It is clear that we can repeat the same arguments of the previous proof
mutatis mutandis to the case when all the functions (including U and A) are analytic

in S, x D, As the proof is completely equivalent we omit the details.

Theorem 2.4.2. letp > 3, r > 1”_'35“;;9900 and suppose that the linear operator L :
X,(Sp x DY) — X,(Sh x D}) acting by the formula (2.32) has a fundamental matrix

U. Then the kernel of L consists of functions of the form

U(p, 7)e(r — )

where ¢ : {s € C : Im(s) < —r + h} — C* is an analytic vector function which is 27-
periodic, continuous on the closure of its domain and,

lim c¢(s) =0.

Ims——o0

Moreover, there exists a bounded linear operator L~1 : X,,3(S), x D}) — X,(S), x D})

such that L£~1 = 1d.

Proof. The proof of this theorem is almost identical to the previous one except that the
functions are now defined in a different domain S}, x D}. As before, if £ € X,,(S), x D})

such that £(§) = 0 then, by the definition of the operator £, the function & must satisfy,
D¢ = A€.

Again, we use the method of variation of constants and write £ = Uc for some vector
function ¢ : S;, x D} — C*. Hence, ¢ must satisfy the equation Dc = 0. Apply-
ing Proposition 2.4.1 to each component of the vector function ¢, we conclude that

c(p,7) = co(T — @) where ¢ : UmeD} 70+ S, — C* is an analytic, 2-periodic vector
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function. Note that |, cp1 70+ Sk is equal to the half plane {s € C:Im(s) < —r+ h}.

Moreover, since cg = U~'¢ we conclude as in the proof of the previous Theorem that

4 4 4 4
—p+1 o —p— - —p—2 7 —p+2 7
co = <T PN " &, 7Py &, TPy g6, TP u4,j§¢>, (2.45)
i=1 i=1 i=1 i=1

where 1i; ; are the entries of the inverse matrix U~! (see (2.40)) and
g = (T_p_lglv T—p—l£27 T_p£37 ,7_—1754)’

such that

max - sup [§(p, T)| < oo
=14 (‘va)EShXD'}

Taking into account these observations and (2.41) we conclude that,

li =0
Im(s%r—r:—oo CO(S) ’

which proves the first part of the Theorem. For the second part, let us construct an

inverse of £ by solving the following equation,

L) =1, (2.40)

where f € X,13(Sn x D}). Again, we look for a solution of (2.46) using the method
of variation of constants. Let £ = Uc. As in the proof of the previous Theorem, the

equation (2.46) is equivalent to,
Dc=U"1f. (2.47)

Writing f = (77P=4f1, 77 P4y, 77P=3 f3,77P~3 f4) and taking into account (2.40) we
can write the right hand side of equation (2.47) as follows U~ f = (91,92, 93,94)"

where,

4 4
9 . _p_§ o
g =17 E tyfi, ga=717 § U2, j fis
i1 =1
4 4
—p—5 o —p—1 o
gg=17, E usjfi, ga=717" E Uaj fi-
i1 i1
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Now bearing in mind that || f[|,,, 3 < co and (2.41) we can estimate the previous functions

as follows,
Koy [[flly13 Ky (1 fll,43
lg1(,7)| < Ww‘p 1920, 7)| < Wwp
Ky [[flly13 Ky (1 fll,43
l93(0,7)| < ?4-5:07 l94(, 7)| < W—i—lp

where the upper bounds are now valid in S, x D}. Since r > % then for p > 3
we can apply Proposition 2.4.3 with ¢ = 0 to each component of equation (2.47) and
conclude that there is a vector function ¢ = (c1,c2,c3,¢4) : Sp X D} — C*% such that
each ¢; is an analytic function in Sj, x D}, continuous on the closure of its domain and

27-periodic in . Moreover (2.28) yields,

AKy 1 Kyt || f]], 4K 3Kyt (| £l
ler(e, )| < = (e )| < AR
r2 ]T\p_l r2 \T]p+3
AKp 2 Ku-1 || fllpss 4KpoKy-1 [|fll,13
les(@, )| < > ’T‘p+2 , lea(p, )| < 2 ‘T’p_g

Finally, as in the proof of the previous Theorem, we define the linear operator £~ ! as

follows
L7 =¢,

where the vector function £ is obtain through the relation ¢ = Uc. If & denote the

components of ¢ then the &; can be bounded in Sj, x D} in the following way,
K K
&1 (e, 7)| < e [fllprss  [62(e )] < e 1fllpss s

K K
[E3(p,7)] < GQ £ llpss [€a(p,7)] < Q [F 115

where K = 4 (K, 1+ K13+ Kpo+ K, 2)KyKy-1. Consequently [|€]|, < K [ £1lpss

7-2
yielding H£_1||nn+3 < K. Thus £7! is bounded. This completes the proof of the
Theorem. O

’ 1—tan 6y

Theorem 2.4.3. Letp € Z, 0 < u < 2 and r > max {1  tan 6o } Suppose that the
linear operator L : X,(Sp, x DY) — X,(S, x D}) acting by the formula (2.32) has a
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fundamental matrix U. Then for any p/ > 0 such that u' < u there exists a bounded
linear operator E;,l : 9,0 (Sp x DY) — 9,,(Sn, x D}) such that Eﬁ;,l = 1d.

Proof. Let y/ > 0 such that g/ < p and let us obtain an inverse of £ by solving the

following equation,

L&) = f, (2.48)

where f € 9,/ (S, X D}) C X,(Sh x D}) for any p € Z. Again, we look for a solution of
(2.48) using the method of variation of constants. Let { = Uc. As before, the equation
(2.48) is equivalent to,

Dc=U"!f (2.49)

Let f(p,7) = e_(2_“/)i(7_“@)f(g0,7') where f is a bounded function. Taking into account
that r > 1 and (2.40) we can bounded the components of U~!f = (g1, 92,93,94)" as

follows,

1f1],r Kuy-1

s et

lgi(p, 7)] < sup 7-96—(H—H')i(7—go)‘
(¢,7)ESL x D} |T
valid in Sp, x D}!. Note that the supremum in the previous estimate is finite since

7 tan g
1—tan g

w— ' > 0. Now bearing in mind that r > we can apply Proposition 2.4.3
with € = 2 — p and p = 6 to each component of equation (2.49) and conclude that
there is a vector function ¢ = (c1,co,c3,¢4) : Sp x D! — C* such that each ¢; is an
analytic function in S}, x D}, continuous on the closure of its domain and 2m-periodic

in ¢. Moreover (2.28) yields,

K.
lei(p, )] < [3eC=miT=9)]

Hf”/j ’ = 17 e 747 (250)

where,

K. =

Finally, we define the linear operator 5;,1 as follows



where the vector function £ is obtained through the relation ¢ = Uc. If & denote the
components of ¢ then taking into account (2.50) the &; can be bounded in Sj, x D} in

the following way,

4Ky K )
1€i(e, 7| < m HfHH/ , t=1,...,4,

where Ky is defined in (2.34). Consequently |||, < 16KuKc || f|, yielding HE;,I

;=

JTy”
16 Ky K. Thus E;,l is bounded which completes the proof of the Theorem. O
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Chapter 3

Inner Problem

In this chapter we study the Hamiltonian H, at the exact moment of bifurcation, i.e.,
for ¢ = 0. We will show that the equilibrium point has a stable (resp. unstable)
analytic complex manifold W (resp. W;') which are obtained using a parametrisation
method. Their parametrisations are defined in certain domains of C? and have the
same asymptotic expansion valid in a common domain of intersection. Hence their
distance is beyond all algebraic orders. We prove an exponentially small upper bound
for their distance. In the four dimensional space C* the distance of these manifolds can
be locally described by two quantities. Furthermore, since the manifolds lie inside the
zero energy level of the Hamiltonian it implies that their distance can be described by a
single number, which we call the Stokes constant. This is closely related to the Stokes
phenomena, where the same asymptotic expansion describes two different solutions in

a common region.

3.1 Introduction

Consider a two degrees of freedom Hamiltonian system where the Hamiltonian H is
supposed to be analytic in a complex neighbourhood &/ C C* of the origin and continuous

on its closure. We suppose that the Hamiltonian vector field Xy has an equilibrium
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point which we assume to be at the origin. Moreover, we assume that the linear part
of the Hamiltonian vector field is not diagonalizable and has a pair of pure imaginary
eigenvalues +agi (g > 0) having multiplicity two. The well known normal form theory
for quadratic Hamiltonians [11] implies that exists a linear symplectic change of variables

that transforms the Hamiltonian H to the form,
L .
H = —og (g2p1 — q1p2) + B (q% + q%) + high order terms,

where ¢+ = +1. Without lost of generality we can assume that ap = 1 and ¢ = 1 (see
(2.6)) and by a canonical change of coordinates we can suppose that H is in the general

form,

H=H"+F, where H°= -1 + I, +nl3,

2 (3.1)

e, _pite
2 2

and Iy = @p1 —qp2, L=

where p € C and F : U — C%is an analytic function such that F'(q,p) = O((\q\%ﬂpW)
where ¢ = (q1,q2) and p = (p1,p2). In the following, we will consider the non-degenerate

case which corresponds to,

n # 0. (3.2)

It is well known that Hamiltonian (3.1) can be normalized up to a given order (see
chapter 2 on the normal form). There is a formal near identity canonical change of

coordinates ® that transforms H into the following,

HYF =Ho®d=-L+L+nli+ >  axlll], (3.3)
3l4+2k>5

where the coefficients a;;, € C. Note that, if the series (3.3) converge then since I;

HNF is integrable. The results of this

is an integral of motion it would imply that
chapter imply that generically the normal form transformation diverge, hence in general
the Hamiltonian H is non-integrable.

Although the equilibrium point is of elliptic type, we will show the existence of

a stable (resp. unstable) analytic invariant manifold immersed in C* such that points
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on this invariant manifold converge to the equilibrium forward (resp. backward) in time
under the flow. Moreover, as one might expect, the rate of convergence is of polynomial
type.

Let x = (¢,p) € C% In the study of the invariant manifolds, we shall look
for natural parametrizations (see section 2.3 of chapter 2) as solutions of the following

PDE,
Dx = Xp(x), where D =0, + 0;. (3.4)

Note that equation (3.4) is obtained from equation (2.19) by setting ¢ = 0.

We will show that there is a stable parametrisation I'”™ and an unstable parametri-
sation T'" satisfying equation (3.4) which are defined in certain domains of C? having
the same asymptotic expansion valid in a common domain of intersection. Therefore
their distance is beyond all algebraic orders. In addition, we will prove an exponentially

small upper bound for their distance.

3.2 Formal Series

The results in this section are of formal character, therefore we do not care about the
convergence of the power series involved. Let Tk denote the space of trigonometric

polynomials where K = C, R, i.e., the space of functions of the form,

ao + Z a, cos(kp) + Z b sin(kyp), ag, b, € K, n € Np.
k=1 k=1

The function deg-r[K : Tk — Ny stands for the usual definition of the degree.

In this section, we will look for formal solutions of equation (3.4) in the class
of formal power series in the variable 77! with coefficients in Tc. It is convenient
to transform H into its normal form and compute a formal solution in the normal
form coordinates. Then using the normal form transformation we return to the original
coordinates.

Note that the normal form (3.3) is rotationally symmetric, i.e., it commutes with
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the one parameter group of rotations R,

cos(p) —sin(p) 0 0
0

sin(¢)  cos(yp) 0

R —
’ 0 0 cos(p) —sin(yp)
0 0 sin(p)  cos(yp)

In the following we look for formal solutions of the PDE,
Dz = Xynr(z), (3.5)
in the class of formal power series 71T [[771]]. We have the following,

Theorem 3.2.1. Equation (3.5) has a formal solution Z € T='TA[[7~1]] having the

form,

A

Z((,D, 7_) = Rgﬂ (¢1 (7_)’ $1 (7_)’ op) (7—)7 (0 (T))T )

where for i = 1,2, 1;,¢; € 7~ C[[r7Y]] and 1; are even formal series and ¢; are odd

formal series and having the leading orders,

3
KPar1
S

Yi(r) = kT2 4, () =

5 -
3
K°a
Go(7) = KT e, a(T) = %7’_24‘"' :
where K2 = —%. The formal solution 7 is unique modulus a rotation R, i.e., 7 and

R.7Z are the only formal solutions satisfying the properties stated above. Moreover,

for any other formal solution Z € T='T&[[r~"]] there exist (po,70) € C? such that

Z(p, 1) = Z(p + ¢o, T + o).

Proof. Let us look for a formal solution of equation (3.5) in the form Z(p, 7) = R¢f(7')
where £ € 771C*[[r7!]]. Taking into account that the Hamiltonian vector field com-
mutes with R, which has infinitesimal generator —X7,, then we get the following equiv-

alent equation,

0:& = Xynr oy, (). (3.6)
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Now, it is convenient to change to polar coordinates given by,

&' = Rcosf — %Sinﬁ, €3 =rcosb,
(3.7)

€2 = Rsinf + %COSQ, €' = rsinb,

where f = (£1,€2 63, ¢%). Note that the integral I; is equal to ©. In these new variables

the equation (3.6) takes the form,

@ Z.ai" i— ;
0-0 = _T‘_2 — Z —JJ@ 17‘237 Orr = —R, 0,0 = 0, (38)
3i+25>5
e’ 3 2J0ij i 251
aTR:<_r_3+W>+ Z T@rj . (3.9)
3i42j>5

Let us start with the third equation of (3.8). It follows that ©(7) = ©y where O € C.

Taking into account that © € 772C[[7!]] we conclude that ©g = 0. Hence © = 0.
We move on and consider now the second equation of (3.8) and equation (3.9).

Taking into account that © = 0, these two equations are equivalent to the following

single equation,
2 3 2(] + 1)&0 G+l 2541
Oir = —nre — E — T (3.10)

2j+1
j=2

In the following we construct a formal solution of (3.10) belonging to 7~ *C[[7]].

Claim 3.2.1.1. Equation (3.10) has a non-zero formal solution r € 7-'C[[7!]] having

only odd powers of 71, Moreover,

1
r(t) = kT 1 — §a0,3ﬁ57_3 +ee (3.11)
where k2 = —%. This solution is unique if we fix one of the two values for k. Moreover,

for any other non-zero formal solution 7 € 7~C[[77!]] of equation (3.10) there exists

7o such that 7(7) = +r(7 + 79).

Proof. Let us take a formal series 7(7) = Y_,~,7x7 ¥ and substitute into equation

—k—2

(3.10). After collecting terms of the same order in 7 we obtain an equation which
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we can solve for the coefficient 7). Let us present the details. At order 772 we get the

following equation for 7,

2r1 = —777‘11)’,
which implies that r% = —% (the other solution is trivialy r; which leads to the zero
formal solution » = 0). Hence we let r; := x where & is defined by the relation x? = —%.
Note that x can take to distinct values, i.e., —, /—% and —%. Let us move to the
next order. At order 7= we obtain,

619 = —37]7“%7’2.

Note that this equation is linear with respect to ro. Taking into account that r; = k we
can simplify the previous equation and conclude that it holds for every o € C. Hence ro
is a free coefficient. Since we are considering only odd powers of r we set this coefficient
to zero.

At this stage, we have determined r; = k and 75 = 0. Now we proceed by

induction on k. First let us determine r3. It is not difficult to write the equation for r3

which reads,
6
6r3 = ——ag3r.
3 340,371
Thus rg = —%a073/<;5. Now suppose that all coefficients r;, 3 < [ < k have been defined

uniquely such that for [ even we have r; = 0 and for [ odd we have r; = p(k) where
p € Clk| and contains only odd powers in k. Due to the induction hypothesis, at the

k-3

order T we have the following equation for 7.1,

((k+1)(k+2) = 6)rrp1 = frp1(re, ... k)

where fi41 is a polynomial depending on a finite number of coefficients ag_j41 for j > 2.
Note that it is always possible to solve the previous equation with respect to ry1q for
k> 2since (k+1)(k+2)—6 =0onlyif k =1 or k = —4. Now we have to distinguish
two cases. First consider the case when k + 1 is even. Since the right hand side of

equation (3.10) has only odd powers of r and according to the induction hypothesis
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r; = 0 for even [ then fri 1 = 0. Thus rp31 = 0. On the other hand, when k 4+ 1
is odd then by the same reasoning as above it is not difficult to see that fr.1 is a
polynomial in C[x], having only odd powers of x, and 74 is determined uniquely by
the formula r,1 = ((k + 1)(k +2) — 6) "' fx 1. This completes the induction. Finally
let # € 771C[[7~!]] be a another non zero formal solution of equation (3.10). We can
write 7 =3y 7,7 F. As before, we conclude that 72 = k2 thus, 7 = £+. Now for

70 € C we have that,

K K ToR
T(T+TO):T+TO+"':;—?+

is also a formal solution of equation (3.10). Comparing the second order coefficient
—T1pk with the coefficient 7o we conclude by the uniqueness of r that if 7y = —%2 then

7(7) = £r(7 4+ 70) and the claim is proved. O

As a direct consequence of the previous Claim and taking into account the second
equation of (3.8) we conclude that R = —d,7, hence R € 7~2C[[7~!]] containing only

even powers in 7 1. Moreover,
—2

Finally, using the known formal solutions © and r we simplify the first equation of (3.8)

and obtain,
23

00=-3" % Somr ] (3.12)

j>1 k>1

2j ,
Note that (Zk>1 TkT_k> € 772 C[[r~1]] and contains only even powers in 771 Since

K2 = —% then the right hand side is independent of the choice of k. Hence, equation

(3.12) can be simplified to give,

0.0 = Z ka_%,

k>1

where b, € C and depend on a finite number of coefficients of r and a; ; for j > 1. For
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this equation a general formal solution has the form,

0(r) =0p + > Opr 2,
k>1

where 0 € C. Let b(7) := Y, 07 2. Note that,

a1l g
b(r) = ——=7"1 4+ ...
(7) p

At this point let us rewrite the formal solutions in the following form,
O(1) =0y +0b(r), O(1r)=0,
r(r) = ZrkT_ZkH, R(7) = ZRkT_Zk.

k>1 k>1

(3.13)

In order to conclude the proof of the Theorem, let us come back to the variable €. First

observe that,
2

cosb(1) = Z ((;:))'Z ZGM_%H ;

i>0 k>1

and taking into account that the formal series inside the parenthesis of the right hand
side of the previous formula is an even formal series in 77! starting with the term 72

we conclude that,

cosb(t) = Z w2, (3.14)

for some w; € C depending on a finite number of coefficients 6 for k > 1. A similar

formula holds for the sine function which reads,

sinb(r) = Z zpr 2L (3.15)
k>0

for some z;, € C depending on a finite number of coefficients 6, for £ > 1. Now

according to the change of variables (3.7) let us define,

P! (1) = R(1) cos b(1), wZ(T) = r(7) cos b(1),
(1) = R(7)sinb(r), ¢*(1) = (1) sinb(7).
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Thus,
E(7) = Ry (6" (7), 0" (7),02(7), 62(7)) ",

is a formal solution of equation (3.6). Taking into account the formulae (3.13), (3.14)
and (3.15) we conclude that the formal series 1!, ¢!, ¢ and ¢? satisfy the required
properties stated in the Theorem. Thus, 6y must be equal to 0 or w and from the
definition of x we conclude that é is uniquely defined up to a rotation R,. This completes

the proof of the Theorem. O

Remark 3.2.1.1. If the original Hamiltonian H is real analytic then its normal form HNF
is a formal series with real coefficients, i.e., HNiF(z) = HNF(Z) and in particular, the
coefficient n is real.

Depending on the sign of 1 we can say more about the coefficients of the formal
solutions. If n < 0 (which corresponds to the unstable case) then one can trace the
proofs of the previous Theorem (in particular the proof of Claim 3.2.1.1) and conclude
that the coefficients of Z are real, i.e., Z = R,¢ where & € 77 'R*[[r~']]. Thus,
Z(p,7) = m when 17 < 0. On the other hand, when 1 > 0 (which is the stable
case) then the coefficients of 7. are pure imaginary numbers, i.e., Z = iR,€ where

€ e 7 'R [r7Y). Thus, Z(p,7) = Z($ + 7,7) when 1 > 0.

Remark 3.2.1.2. If the original Hamiltonian H is real analytic then taking into account

that the normal form vector field X g~r is reversible with respect to the linear involution,

S(q1,92,p1,02) = (—q1, 92, P1, —D2), (3.16)

it is not difficult to see that the conditions of the previous Theorem on the formal series

1; and ¢; are equivalent to the following condition,
Z(Q‘% T) = S(Z(_QZ)? _77—))'

This condition defines the formal solution Z uniquely (up to a rotation R;) and inde-

pendently from any coordinate system.
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Theorem 3.2.2. Equation (3.4) has a non zero formal solution T' belonging to the class

7 IT¢ [[77Y]] and having the form,

. . . . A\T
I e ST P Vi VA

where I'; = > k>0 Tir=F i =1,....4, such that T} € T¢ with degy (T}) = k + 2
for i = 1,2 and degy.(T'}) = k + 1 for i = 3,4. Moreover, for any other non zero
formal solution T' of (3.4) belonging to the same class there exist (po,0) € C2 such

that 1:‘(4,0, T) = f‘((p + o, T + T0).

Proof. By the normal form theory there exists (non unique) a near identity formal
canonical change of variables x = ®(z) which transforms the Hamiltonian H into its
normal form HNF' by the relation HN¥ = H o ®. For our purposes, we can suppose
that the transformation ® is a formal power series having the general form,
q=0Q+ Z ¢zl,jQin7
2[i|+51=3

p=P+ > ¢};,Q'P,

2[i[+|j]=4

(3.17)

1

written in multi-index notation, where ¢i7j,¢?’j € C2. Now the previous Theorem

provides a formal solution Z for the normal form equation (3.5) having the form Z =
R,E(T) where € = (Y1, 61, da, 1) such that ¢, € 772C[[r71]], ¢1 € 73C[[r71]]
and ¢ € 77'C[[r7!]]. Substituting this formal solution into the formal series (3.17)
we obtain a formal solution T' := & o Z for equation (3.4). Now, since composition of
formal series is again a formal series, the Theorem follows and we just need to check
the degree of the trigonometric polynomials. As this should not present any difficulty

we conclude the proof of the Theorem. O

Several remarks are in order,

Remark 3.2.2.1. The freedom in the definition of the formal solution I" can be eliminated
if we fix the first two orders of the formal series fl i=1,...,4. In general, we cannot

eliminate this freedom in a coordinate independent way.
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Remark 3.2.2.2. If the original Hamiltonian H is real analytic then for any solution T'

of equation (3.4) we have that I'(3, 7) is also a solution of the same equation. Indeed,

DI (¢,7) = DI (¢, 7) = Xu(L(2,7)) = Xu(T(¢, 7)),

where D = Oz + Oz. Moreover, as I' = ® 0 Z where ® is a normal form transformation

(3.17) which is a formal series with real coefficients, we have according to Remark

3.2.1.1 that,
L(¢,7) = B(Z(¢, 7)) = ®(Z(p + 7, 7)) = T(p+m,7), for 7> 0,
L(p,7) = ®(Z(3,7)) = ®(Z(p, 7)) = L(p,7), for 7 <O0.

Remark 3.2.2.3. If the original Hamiltonian H is real analytic and Xz is reversible with
respect to the involution (3.16) then the normal form preserves the reversibility. Thus,

it follows from Remark 3.2.1.2 that one can define the formal solution I in a coordinate
independent way using the reversibility as follows,

L(p,7) = S(P(=p,—7)).

This formal solution is unique up to a translation f‘(cp + 7, 7).
Remark 3.2.2.4. Let j € Z and 1 be a formal series in the class 7/ T&[[771]] such that

u= (Tj_lul,Tj_luz,Tju?’,Tju‘l)T, where u’ = > k>0 ut 7k € Te[[771]]. Now define,
T

n+j n+j n+j n+j
= (7! E U,lfT_k,Tj_l g uiT_k,T] g uzT_k,Tj E uiT_k ,
k=0 k=0 k=0 k=0

<ﬁ>n =
which is just a partial sum of the formal series @ up to order 7= (1) in the first two

™ in the last two.
. Then we have the following important property,

n

components and up to order 7~

Forn>1letT, := <f‘>

DIy, — Xg(Ty) = <T—<"+2>R,£,T—<"+2>R§,T—<"+1>R;°;,T—<"+1>Rf;> . (3.18)

for some R, € T&[[r71]], i = 1,...,4. Indeed, for a formal series I = > k>t rhr=Fk

with T* ¢ T¢ to solve formally the equation (3.4), then the coefficients I'* must solve
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the infinite system of equations,
O,T% — X_ 111, (TF) = (k — )IF L 4 Gy (TY, ..., T2, k=1,2,... (3.19)

obtained from substituting the formal series into equation (3.4) and collecting terms of
the same order in 7%, The function G}, can be defined in a recursive way.

Now since the first n coefficients of the sum T',, solve the equations (3.19) for
k=1,...,n then in order to get (3.18) we consider the equation (3.19) for k = n + 1.
Note that the left hand side of equation (3.19) depends only on the kth coefficient of
the formal series I'. Moreover, due to the form of the vector field X_;, 7, we can
see that the first two components of the expression in the left hand side of (3.19) only
depend on the first two components of I'*. These observations allow us to conclude

(3.18).

3.2.1 Formal variational equation

In this subsection we consider the first variational equation of Xy around the formal
solution f‘

Du = DXy (Du. (3.20)

Our goal in this section is to construct a convenient basis for the space of formal solutions
of equation (3.20). These formal solutions provide asymptotic series for certain analytic
solutions of a modified equation of (3.20) that will be at the core of the perturbation
theory developed in the subsequent sections.

We know already two formal solutions of the previous equation. They are &pf‘
and 9,T. Note that these formal solutions are linearly independent (as formal series in
T&[[771]]). We can regard these as formal invariant tangent vectors fields of the formal
invariant manifold parametrised by I'. If the series were convergent, then we could drop
the adjective “formal” and the tangent vector fields and the invariant manifold would
be analytic. Moreover,

Q(o,I',8,T) =0, (3.21)
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where € is the canonical symplectic form in C%. In other words the tangent vector fields
QDIA‘ and 0. form a Lagrangian plane. In general, these series are expected to diverge.
Nevertheless, at the formal level we still have (3.21). In fact, a simple computation

shows that, if u; and uy are two formal solutions of (3.20), then
Q(ug,uy) € C.

In fact, for i € {1,2}, let u; € 7™ Tg[[r7!]] for some n; € Z and suppose that
Du; = DX (I)u;. Then,
DQ(ul,ug) = Q(Dul, UQ) + Q(ul,Dug)
= Q(DXp(D)uy, 1) + Q(uy, DXp(D)uy) (3:22)

=0.
In particular, DQ(8¢1:‘,87f‘) = 0. Now the next Lemma provides the desired answer.

Lemma 3.2.1. Let g € T/TL[[7Y]] for some j € Z and suppose that Dg = 0. Then
g = go € C. In addition, if j < —1 then g = 0.

Proof. Let g = Zkgj grT" where g, € Té. Substituting g into the equation Dg = 0

k

and collecting terms of the same order in 7" we get,

0p95 =0,
7 (3.23)

Opgr + (k+1)gry1 =0, k<j—1

The first equation of (3.23) implies that g; € C. Now using the second equation we
can solve for g. Taking into account that g € Té we conclude that (k4 1)gx+1 =0
for all kK < j — 1. Note that when k = —1 we have no restriction on gy and the Lemma

follows. n

In the following, we will construct a matrix of formal solutions U = (i1, G2, 13, 4

for the linear equation (3.20), satisfying the following properties,
1. Foreveryi=1,...,4, 4; € 7 T&[[r7Y]] for some j € Z,
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2. The formal series 0i; are linearly independent,

3. The first and fourth columns of the matrix U are the known formal solutions

@ = 9,T and iy = 0, T,
4. The columns of U form a formal “symplectic basis”, i.e.,
Q(0,I', ) =0, Q2,0,T) =1, Q9,I,0,T) =0
Q0,I,t3) =1, Q43,8,T) =0, Q(aa3,12) = 0.
where € is the canonical symplectic form in C*. The last property of U implies that,
Q(Uv, Uw) = Qv,w), Yov,weC

Thus, U as defined by the properties above is a symplectic matrix and moreover

det(U) = 1. A matrix U satisfying the properties stated above is called a formal

normalized fundamental matrix for equation (3.20).

Theorem 3.2.3. The linear equation (3.20) has a formal normalized fundamental matrix

U such tha t,

772011 T Th1y T Sdia
N 7_—2,&2’1 7'2?1272 T’[Lg,g 7_371274
U= ,
T 31 T30 Tz T Zdga
T gy TRye TR T 2daa
where U;; = Y 150 uz’]T_k € Te[[r7Y), fori,j = 1,...,4. Moreover for any other

formal normalized fundamental matrix U there is a ¢ = (c1,c0,c3) € C? such that

U = fJEc where,

1 —C1 C2 0
0 1 00
E,.= (3.24)
0 0 1 0
0 C3 C1 1
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Proof. In the proof of Theorem 3.2.2 we have obtained the formal solution I' through
the normal form Hamiltonian HV' by defining I' = ® o Z, where ® is the normal form
transformation, which is a formal series of the form (3.17), and Z is the formal solution
of Theorem 3.2.1. Also from the same Theorem we know that Z = Rspf where f is
a formal series in the class 7=1C*[[7!]] and using the polar coordinates (3.7) we can

write it as follows,
£(r) = (R(7) cos O(7), R(7) sin O(7), 7(7) cos O(7), r(7) sin (7)), (3.25)

where r, R and 6 are the formal series (3.13). Now using ®, the equation (3.20) is
equivalent to,

Dv = DX ynr(Z)v, (3.26)

where v and u are related by,

u=DU(Z)v.

We seek for formal solutions of (3.26) in the form v = R, where ¢ € 79C*[[r7!]] for

some j € Z. Similar to the proof of Theorem 3.2.1 the { must satisfy the linear PDE,

0:¢ = DXynr o, (€)C.

Bearing in mind (3.25), we now rewrite the previous equation in polar coordinates,

lall 1 a9
§ b 201 E 71 21
awl—_ ﬁr w2_ _+ ﬁr w3’ aw2—_w’

r2
I>1 1>0
- - (3.27)
(2] — 1a _ la B
Orws =0, Orws = 317r2 + Z 7( 21—1) 0l 212 wy + Z _2;,11 r 1?1]3,
1>3 1>1
where the relation between the variables is the following,
¢ =DA(0,r,0,R)w, (3.28)

where A denotes the change of variables (3.7), 6, , © and R are the formal series

(3.13) and w = (w1, wa, w3, ws)”. Recall that © = 0. Note that A is symplectic with
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multiplier —1. Two formal solutions of (3.27) immediately follow from the formal series
r, 8 and R,
= (1,0,0,0)7 and w4 = (9.0,0.r,0,0,R)" . (3.29)

We now construct two more formal solutions which are independent of (3.29). We shall
look for these formal solutions of (3.27) in the class of formal series 7/C[[7~!]]. Let us
consider the second and fourth equations of (3.27). They are equivalent to the single

second order linear equation,

21 — 1 )a la _
OPwy = — | 3nr? + g R A R E 2l—i’1l7‘21 Lws. (3.30)
1>3 1>1

In order to solve the previous equation, we first consider the homogeneous part.

Claim 3.2.3.1. The linear homogeneous equation,

2! 1 w9, (331)

02wy = — | 3nr? + Z
1>3

has two linearly independent formal solutions,
way € T2C[r7Y)] and  wag € TAC[[r7Y]

such that wy 1 is an even formal series and w2 an odd formal series. Moreover wg 1 =

Orr, wap = g3+470a03,< 7+ --- and,
w27287w2,1 — w2718Tw272 =1. (332)

Proof. That 0,7 is a formal solution of the homogeneous equation is obvious. Moreover
its properties follow from the properties of the formal series 7. Now let us determine the
second formal solution. It follows from the fact that the formal series r € 7= 1C[[77!]]
is odd that the right hand side of the homogeneous equation (3.31) is a formal series of
the form b = Zkg—l b2k where by, depend on a finite number of coefficients of 7 and

ao, for I > 3. Moreover, according to (3.11) we have,

1
7“(7') = ,‘437'_1 — §a0,3/£57'_3 + - y
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where k2 =

—%. Using the leading orders of r, we compute the first few orders of the
formal series b for further reference,

21a0,3

b-1=6 and bop=-= (3.33)

Now we are ready to solve equation (3.31) in the class of formal series. Thus, substituting

2k+1

the formal series wo o = >\ Wa 2 kT into equation (3.31) and collecting terms of

k

the same order in 7" we obtain the following infinite system of linear equations,

-2

(2]{7(2]{7 + 1) — 6) Wo 2k = Z w272,k_j_1bj, k=1,0,—1,...
j=k—2

For £ = 1 we get no condition on the first coefficient, thus wp21 € C. For k = 0
we obtain wg 2 = —%’w27271b_2. When k£ < —1, a simple induction argument shows
that we can determine the coefficients ws 5 j, (which depend linearly on the coefficient
wa.2.1) in a recursive way by using the previous formula since (2k(2k 4+ 1) — 6) = 0 only

if k=1o0r k= —3. Finally let us derive the equality (3.32). Since,
07 (wo,20-wo 1 — wo,10-wa2) = 0,

due to the fact that both wy ; and ws 5 solve the homogeneous equation (3.31) we have
that wy 20,w2 1 — w210, w3 2 is equal to some constant. Taking into account the leading
orders of the formal solutions ws ;1 and ws 2 we conclude that wg 20, w2 1 — w2 10; w2 2 =
Skw 21. As w1 is a free coefficient we can define wp 21 := 5% and obtain the desired

equality. This concludes the proof of the Claim. O

Returning to the non-homogeneous equation (3.30), we can see that the last
term of the right hand side of the equation depends on w3 from which we know that
Orws =. Thus ws = w3 € C is a constant. Now, taking into account the form of the

formal series 7,

lay; o_ _ _
g(r) = gt e i,

>1

is an odd formal series whose coefficients depend on a finite number of coefficients of r

and ay; for I > 1. Using the well known method of variation of constants we can write
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the general formal solution of (3.30) as follows,

T T
wo = clwa1 + Qw22 + w2,2/ wW2,1gW3,0 — w2,1/ w2,2gW3,0, (3.34)

where w3 g,c1,c2 € C. Note that the integration in the previous formula is well defined
in the class of formal series C[[7~!]][[7]]. Indeed, it can be easily checked that ws 19 €
773C[[771]] is an odd formal series and w299 € T2C[[7~!]] is an even formal series.

1

Hence both integrands do not contain the term 77. Next we define two particular

formal solutions of (3.30),

T T
wg = w9 and w2_1 = —w272/ w219 +w2,1/ w2,24- (3.35)

The first formal solution corresponds to setting c; = w39 = 0 and ¢ = 1 in the general
solution (3.34) and the second corresponds to ¢; = ¢z = 0 and w3y = —1. Note that
wy € T3C[[r~']] is an odd formal series and wy, ' € 7C[[r~']] is also odd formal series.

Now coming back to the first equation of (3.27), we can rewrite it as follows,
O-wi1 = —gws + fwsp,

where,
1 a2l 2
f=—m > ™
1>0
It is not difficult to see that f € 72C[[r~!]] is an even formal series. Moreover both
guw§ € T2C[[r~]] and gw, ! € C[[r~!]] are even formal series. These observations allow

us to conclude that the following are formal solutions of (3.27),

w(l]:—/ gwy and wl_lz—/ ng_l—/ 1, (3.36)

which are well defined in the class of formal series C[[r~']][[7]] and moreover w, w;*

S
73C[[r~1]] are both odd formal series. Thus we obtain two formal solutions of (3.27)

defined as follows,

0 T

P 0 o\ T P U . | —1
Wo 1= (wl,wz,O,—aTwz) and w3 := (w1 Jwy —, —1, —0rw; )

69



Note that {W;};,_; 4 isa set of linearly independent formal solutions of equation (3.27)

and that,

Q(wi,wo) =0, Q(wy,w3)=—-1, Q(Wwy,wy) =0,
(3.37)
Q(wa,w3) =0, Q(wo,wy)=—-1, Q(ws3,wy)=0.
where € is the canonical symplectic form in the polar coordinates, i.e., Q = dOAO+dr A
dR. The top identities of (3.37) are straightforward to prove just by using the definition
of w;. The ones on the bottom are a bit more trickier and let us prove them. First
note that similar arguments as in (3.22) show that 0,Q(W;, w;) =0fori,j =1,...,4.
Secondly, it follows from the previous claim and from (3.11) that,

73 7 1 5 _3

woo(T) = B + Ea073537 +--+ and r(1)=kKrT " — ga03k T4+ . (3.38)

Now we compute Q(Ws, W3). Using the definition of both wo and w3 we get

PN —1 —1
Q(Wa, W3) = —wp — wIdrwsy b+ drwiws; .

Bearing in mind (3.35) and (3.36) we can simplify the previous expression and rewrite

it as follows,
Q(Wg, Wg) = (1 — w27263r -+ 87—’(027267—7‘) / qwz 2.

Now using the leading orders (3.38) we conclude that the expression inside the parenthe-
sis in the previous formula belongs to 7~4C[[7~!]]. Moreover [ gws 2 € 73C[[r!]] and
consequently Q(Wo, W3) € 77 1C[[771]]. Applying Lemma 3.2.1 we get (W2, W3) =0
as we wanted to show.

Now we handle Q(Wq,W,4). Again, making use of the definitions (3.35) and

recalling that 0, R = —02r and wa,1 = O we obtain,
O (W, Wy) = w10, wa 2 — w2 20;wa 1.

The identity now follows from (3.32).
At last, let us compute Q (W3, Wy). Again using the definitions of the functions
involved we get,

Q(W3, Wa) = 0,0 + wy ' 0, R + 0rr0-wy .
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This last expression belongs to 7~2C[[r~2]] and applying Lemma 3.2.1 we obtain the
desired result.

Now, taking into account the change (3.28) and v = R,( we define,
\A/Z' = R¢DA(9, T, @, R)WZ

Clearly {\A/i}i:17___74 is a set of linearly independent formal solutions of equation (3.26)
and moreover V| = ag,Z and v, = 0, Z. Taking into account the formulae (3.14) and
(3.15) for the cos and sin respectively and that r—1 € 7C[[r7!]], a closer look at the

Jacobian of the polar coordinates transformation A reveals that,

772N Ag 0 0
T_lAg T_lAlo 0 0

for some A; € C[[r71]] fori =1,...,10. Thus
N 24 24 3 34 \T N N N 24 2. \T
Vo = (17012, T 09,9, T 032, T 042) and V3 = (7013, 7023, 7 033, 7 043)

for some ;1,90 € Tc[[r7!]] for i = 1,...,4. As previously observed A is symplectic
with multiplier —1 and the identities (3.37) in the new variables read,

Q(vq1,ve) =0, Q(vi,v3) =1, Q(v1,v4) =0,

(3.39)

Q(vo,v3) =0, Q(ve,vy) =1, Q(vs3,v4) =0.
Finally, composing the formal solutions V; with the normal form transformation ® we
obtain the desired matrix U = (iy, g, 3, 014)” where the 11; are defined in the following
way,

It is clear that U satisfies all properties of a formal normalized fundamental matrix for
equation (3.20). Moreover its leading orders follow easily from the leading orders of ¥;

and the fact that ® is near identity. In order to conclude the proof of the Theorem,
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note that by the method of variation of constants a general formal solution of equation
(3.20) is of the form Uc where ¢ is any formal series in TITE[[77Y] for some j € Z,
such that Dc = 0. Lemma 3.2.1 implies that ¢ € C*. Thus, if Ij' is another formal
normalized fundamental matrix of (3.20) then there exist a matrix E € C**% such that
fJ = UE. From the third property of a formal normalized fundamental matrix we also

conclude that,

o o o =
= o O O

Moreover, since U and U are symplectic it also follows that E is symplectic and a simple
computation shows that one can reduce the number of entries of E to obtain the form

(3.24). This concludes the proof of the Theorem. O

Remark 3.2.3.1. For n > 1 let,

where (), was defined in Remark 3.2.2.4 and 1; are the columns of a formal normalized
fundamental matrix U. As in Remark 3.2.2.4 it is not difficult to show that each column
of,

DU,, — DXy (T)4+3)U,

starts with terms of order 7= ("*2) in the first two components and with terms of order

—(n+1)

T in the last two.

3.3 Solutions of a Variational Equation
Let n > 3 and § € X,,44(S, x D;") and consider the following variational equation,

Du = DXy (Tnys + Eu. (3.40)
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where T',, 13 is the function defined in Remark 3.2.2.4. In this section we construct a
4 by 4 matrix function U = (uy,ug,uz,uy) : S, x D :— C¥* such that DU =
DXy (Tyy3 + €)U. The vector functions u; : Sy, x D :— C* are the columns of U

and satisfy the following properties,

1. u € %1(Sh X DT_), uy € %_3(Sh X DT,_), ug € %_Q(Sh X DT_) and uy €
Xo(Sh x DT_)

2. {ui}i:Lm’4 form a “symplectic basis” in C?, i.e.,

Q(ul,ug) = O, Q(UQ, U_4) = 1, Q(ul, U_4) =0
(3.41)
Q(ul,U3) = 1, Q(U3, U_4) = O, Q(U3, U_Q) =0.
where Q is the canonical symplectic form in C*. The last property implies that U is a

symplectic matrix for all (¢, 7) € Sp, x D;” and det(U) = 1. A matrix U that satisfies

the properties above is called a canonical fundamental matrix for the variation equation

(3.40).

Theorem 3.3.1. Let n > 3 and let U,, be a piece of a formal normalized fundamental
matrix U as defined in Remark 3.2.3.1. Then there is rg > 0 sufficiently large such that
for every r > r( the variational equation (3.40) has an unique canonical fundamental

matrix U : S, x D7 :— C**4 sych that,
U-U,€X: (S, x D). (3.42)
Proof. Let n > 3. We look for a canonical fundamental matrix of (3.40) in the form,
Uu=0,+V, (3.43)

where V = (vi,va,v3,vy4) : S x D, — C*? is a 4 by 4 matrix function such that
each vector column v; belong to the space X,, (S;, x D,) for some r > 0 (to be chosen

later in the proof). Substituting (3.43) into the equation (3.40) we obtain,
DV = DXy (Tpis + &)V + DXy (Tnys + €U, — DU,
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This last equation can be rewritten in the following form,
Lo(V) =BV + R,, (3.44)

where the linear operator L is defined by formula (2.38) which we recall Lo(u) =

Du — Agu where Ay is the matrix given by (2.37) and
B = DXy(Tnis+6) — Ay and Ry, = DXg(Tpys + €U, — DU,

Note that B(y¢,7) = O(773). Moreover due to Remark 3.2.3.1 each column of R,
belongs to X,,+1 (Sy x D;7). Thus, BV+R,, € %ﬁﬂ (Sp x D;7). Now since Ly has a
fundamental matrix Uy given by (2.39) then we can apply Theorem 2.4.1 and obtain an
unique bounded inverse £yt : X,,11 (Sp x D7) — X, (S, x D) for n > 3. Thus, in

order to solve (3.44) for V, it is sufficient to find a fixed point of the following operator,
Vs LoH(BV)+ L5t (Ry). (3.45)

First note that the matrix B induces a linear operator B : X,, (Sp, x D;") — Xp41 (Sp x D;)
such that B(v) = Bv for a given v € X,, (S, X D;7). Thus, in order to prove the exis-

tence of a fixed point for (3.45) it is enough to show that,

1
125" e B, <3 (3.46)
We now show the inequality (3.46). Given v € X,, (S), x D, ) we write
v = (7'_”_1211,7“”‘%2,7“”213,7“”1}4),
and as B = O(773) we can write Bv as follows,
77" (By1v1 + Bigve) + 7773 (B 303 + B14vs)
By — 77" (By101 + Baova) + 7773 (Basvs + Baavy) ’ (3.47)
77" (Bs1v1 + Bsave) + 773 (Bs 303 + B3 4v4)
77" (Byv1 + Bagve) + 7773 (Bysvs + Byavs)
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for some analytic functions B;; : Sy x D — C which are 27-periodic in ¢ and

continuous on the closure on their domains. Moreover,

Kp = max sup |Bij(¢,T)| ¢ < 00.
b=l (o m)eSux Dy

_1_

Now given rg > S

then for every r > rqy the following chain of inequalities hold,

1
7" <|r’'<—— in Dj.
70 sin 6g

The previous observation and (3.47) give the following estimate,

Kg

B < ——
H V”n—i—l — TQSiH@Q

vl -

Thus the linear operator B is bounded and ||BJ|,,; ,, < mg—geo. Now taking into account

that 551 is also bounded by Theorem 2.4.1 we get,

K [[£5" |5

125" @ Bl 0 < 10 s 1Bl < — 5

1 2Kl

Therefore if rg > max e S do

rntl } then for every r > ry we get the desired
inequality (3.46) and consequently we can apply the contraction mapping theorem and
obtain an unique fixed point V € X2 (S}, x D.") of equation (3.45). Finally, note that if
we repeat the previous arguments with n+1 instead of n then for # > 0 sufficiently large
there exists an unique V € X2, (Sp x D7) such that U = U, + V solves equation
(3.40). Now it follows that U — U, € X2 1 (Sp x D7) and due to the uniqueness of
the fixed point we conclude that U — U,, = V. Hence V € X231 (Sh x Dy) for every
r sufficiently large. Thus inclusion (3.42) is proved. In order to conclude the proof of
the Theorem we just need to show the equalities (3.41). They follow from the fact that
2 is bilinear, DQ2(u;,u;) =0 for i, = 1,...,4 and Proposition 2.4.1 and the fact that

U is formal symplectic. This concludes the proof of the Theorem. O

Remark 3.3.1.1. As before, it is clear that the arguments of the proof of the previous

Theorem work equally well when all the functions are analytic in S; x D;t.
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3.4 Analytic Invariant Manifolds

In this section we prove the existence of an unstable (resp. stable) analytic manifold
immersed in C*. We also provide an asymptotic expansion for both manifolds. More
concretely, following (3.4) we look for parametrisations as solutions of the following
PDE,

Dx = Xy (x). (3.48)

Now, given a formal solution T' in the class 7~ TA[[r~!]] of equation (3.48), which
exists due to Theorem 3.2.2, we prove the existence of an unique solution '~ (resp.
I'") of equation (3.48) belonging to the space X (S, x D;) (resp. Xj (Sp x D))

such that TF <T, i.e.
YneN, 3IC >0, HFi(gp,T) - Fn((,D,T)H <Cr™ 7l in S, x DX (3.49)

where T',, denotes a truncation of I' as defined in Remark 3.2.2.4. We will prove the
existence of such solution for the — case only as the 4 case is completely analogous mod-
ulus minor modifications in the definitions of the sets where the functions are analytic.

Then we have the following,

Theorem 3.4.1 (Analytic unstable parametrisation). Given a formal solution T' €
T ATE (7] of equation (3.48) there is an rq > O sufficiently large such that for
every r > ro the equation (3.48) has an unique analytic solution T~ € X1 (S x D)
such that T~ —T',, € X,,41 (Sp, x D,") for all n > 6.

Proof. Let n > 6 and r > 0 (to be chosen later in the proof). Let us look for a solution
of equation (3.48) of the form,
r=r,+¢, (3.50)

where £ € X,, (S, x D) and I';, is defined as in Remark 3.2.2.4. Substituting (3.50)

into equation (3.48) we obtain,
D¢ = Xu(Ty+¢&) — DLy,
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Now we rewrite the previous equation as follows,

L(£) = Q&) + Rn, (3.51)

where L is a linear operator acting according to the formula £(§) = D{ — DXy (T),)¢

and
Q(6) = Xu(Ty + &) — Xu(Ty) — DXpu(Th)E, R, = Xy(T'yn) — DTy.

Note that it follows from Remark 3.2.2.4 that R,, € X,,+1 (S, x D;”). We focus our
attention in solving equation (3.51) with respect to £. For that purpose we want to
invert the linear operator £ and obtain a new equation from which we can apply a fixed
point argument to get the desired solution.

According to Theorem 2.4.1 we can invert the linear operator £ as long as it has
a fundamental matrix U and Q(§) € X,,41 (Sp, x D;) given £ € X,, (S, x D,”). Due
to Theorem 3.3.1 there exist an ¢ > 0 such that for every r > r( the linear operator £
has a fundamental matrix U such that U — U,,_3 € X* (S}, x D;").

Now let us show that Q(§) € X,,+1 (Sp X D,). Denote the components of the

vector field Xz by (v, v2,v3,v4) and consider the following auxiliary functions,
%i(t) = vi(Tn +t8) —vi(Ty) —tVu(Ty)E, i=1,....,4.
Note that v;(0) =0 for i = 1,...,4 and Q(&) = (71(1),72(1),73(1),v4(1))T. Now we
can integrate by parts each function ~; to obtain,
1
WO = [l =L
0
Then by the intermediate value theorem there exist ¢; € [0,1] for i = 1,...,4 such that
vi(1) = (1 — ;)7 (t;) for i = 1,...,4 where the second derivative of +; can be easily
computed
7 (s) = € Hess (vi)lp, 1 & (3.52)
Now taking into account that £ € X,, (S, x D7) and the analyticity of X it is not
difficult to get the following estimate,

—2 2
(W] < 2 Hllgs 7177 [I€]F, »
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where ||| s is the usual C? norm of a smooth function. Using this upper bound and
the fact that given r; > max {7’0, ﬁ} then for every r > r1 we have |7|72 < |7| ™
for 7 € D7, then we can estimate [|Q(¢)][,,,.; in the following way,

8|H|lcs |I€)12

(rqsinfp)n—2" (353)

2 —n—+2
1QE) |41 < 811 Hlles lIE]5, sup 77" <
T€ED,

where this last estimate holds since n > 6. Thus Q(§) € Xp4+1 (Sp x D,").
Thus, it follows from Theorem 2.4.1 that there is an unique bounded linear
operator £~ such that ££L~! = Id. Thus, in order to solve equation (3.51), it is

sufficient to find a fixed point in X,, (S, x D,") of the following non-linear operator,

£ L7HQ(E)) + LT (Rn).

Let us denote this non-linear operator by G. So in order to apply the contraction mapping

theorem we have to check that G is contracting in some invariant ball

%p = {é € %n(sh X D | ng p}

where p > 0. First we prove that G(B,) C B, for some p > 0. Indeed, let p =
2|l . . IRall,4y and & € B, then (3.53) implies,

n,n-+

_ - - 81 Hl s 1€l
I @) = £ R,y < [1£7 (W IR ”n+1> <P
provided r is sufficiently large,
_ (1611 H s [[£7H ] 10 27
> « S ad (3.54)

Thus G leaves invariant a closed ball B,.
To check the contraction we let £1,§> € B, and consider a line connecting both
points, i.e., 0y = (1 — t)& + t&,. Clearly 6, € B, for all t € [0, 1]. Similar as before we

define the following auxiliary functions,

T,Z)Z(t) = Ui(rn + Qt) — ’L)Z'(Fn) — sz-(I‘n)Gt, i=1,...,4.
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Note that,

Q(&) = (11(0),2(0),3(0),44(0))"  and  Q(&) = (¥1(1),¥2(1),e3(1),va(1))".

By the mean value theorem there exist ¢; € [0,1] for ¢ = 1,...,4 such that ;(1) —

1i(0) = 9i(t;). Differentiating the functions 1; we get,

¢2(1) - ZZ)Z(O) = (VUZ (Fn + Gtz) — Vu; (Fn)) . (52 — 61) , 1=1,...,4. (355)

Now we can easily get the following upper bounds for the differences (3.55),

[Wi(1) = ¥3(0)] < 2| H||gs pl7| 72" €2 — &ll,,

Thus,

8p || H || o

1Q(&2) = Q)41 < — &2 = &ll,, -

(rosinfp)™

Applying the linear operator £~! and taking into account (3.54) we get,

8p || H||cs
nn+1 ToSlne) ) HS fl”

1£71(Q(&) — Q&) |, < Hc Y]
< 3 H§2 - &,

which proves that [|G(&2) — G(&1)],, < 4 €2 — &ill,,- Thus G is contracting in the ball

B, provided r > 11 where,

1 (6] H| s [|£71]

sin g’ sin 6y

nn—i—lp

71 > max\ 7o,

Now let us check that the unique function I'™ obtained with n > 6 is in fact independent
of n. Increasing r, if necessary, the distance ||[I'” — I'g||; can be made as small as
we want in order to apply the contraction mapping theorem for n = 6. Hence it is

independent of n. Finally,
r-r,=r - I‘n+1 + I‘n+1 -y e %n+1(sh X Dr_)
This completes the proof of the Theorem. O

79



Figure 3.1: The intersection of the domains Dﬁi.

As previously observed we can repeat the same arguments of the previous The-
orem but now considering the functions defined on the domains S, x D;. We obtain

the following,

Theorem 3.4.2 (Analytic stable parametrisation). Given a formal solution T' € AT
of equation (3.48) there is an ro > 0 sufficiently large such that for every r > rg
the equation (3.48) has an unique analytic solution Tt € X1 (S, x D;t) such that
't — T, € X1 (Sy, x D) for all n > 6.

3.5 Stokes phenomenon

Given a formal solution T' of (3.48) in the class 7~ 'T&[[7~']], Theorem 3.4.1 estab-
lishes the existence of an unique analytic vector function T~ : S, x D;. — C* which
parametrises an unstable analytic invariant manifold such that I'™ =< T (see (3.49) for
the definition of <). Analogously, Theorem 3.4.2 yields the existence of an analytic vec-
tor function '™ : ), ><D7fr+ — C* which parametrises a stable analytic invariant manifold
and having the same asymptotic expansion as I'” valid in its domain of definition. Both
parametrisations have the same asymptotic expansion valid in the intersections of the
domains Sp, X D;—l (see Figure 3.1). It is clear that the intersection of the domains

has two connected components and the difference 't — '™ is asymptotic to zero, i.e.,
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beyond all algebraic orders. In the following we shall obtain a more precise estimate for
the difference of the parametrisations on the lower component of the intersection set,
i.e. S X D}l where 71 = max {r_,ry}. Similar considerations work for the upper con-
nected component. In order to obtain such estimate we will use the fact that Tt — '~
is approximately a solution of the variational equation of X along the unstable solution

I'~. So in the following we study the analytic solutions of the variational equation,
Du=DXy(T )u (3.56)

It is clear that both d,I'" and 0,I'" solve equation (3.56). Now using the theory of
Section 3.3 we can construct two other independent analytic solutions such that together
form a 4 by 4 matrix function U = (uy,ug,u3,uy) : Sp, x D :— C*** which solves
equation (3.56) where the vector functions u; : Sj, x D~ :— C* are the columns of U

and satisfy the following properties,

1. up € %1(Sh X DT_), us € %_3(Sh X DT_), uz € %_Q(Sh X DT_) and uy €
%Q(Sh X DT_)

2. The first and fourth columns of the matrix U are the known solutions u; = 9,I'~

and uy = 0, I'",
3. {u;};—y 4 form a symplectic basis in C4 e,

Q(ul, UQ) = O, Q(UQ, U_4) = 1, Q(ul, U_4) =0
(3.57)

Q(ul, U3) = 1, Q(U3, U_4) = O, Q(U3, U_Q) =0.
where Q is the canonical symplectic form in C*. The last property implies that U is a
symplectic matrix for all (¢, 7) € Sy x D, and det(U) = 1. A matrix U satisfying the
above properties is called a normalized fundamental matrix for the variation equation

(3.56).

Corollary 3.5.0.1. Given an analytic unstable parametrisation I'~ =< ' and a formal

normalized fundamental matrix U then there is ry > 0 such that for every v > 1
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the variational equation (3.56) has an unique normalized fundamental matrix U : Sj, x

D — C**4 sych that,
U-U, X} (S, xD;), ¥n>3,
where U,, is a partial sum of the formal series U as defined in Remark 3.2.3.1.

Proof. From Theorem 3.3.1 we know that for every n > 3 there exists g > 0 such
that for every r > r( there exists an unique canonical fundamental matrix U such that
U—-U, € X,41(S), x D;7). Thus we only need to prove that U is in fact independent
of n. Indeed for all n > 3, we can trace the proof of Theorem 3.3.1 and see that, by
increasing r if necessary, we can make ||U — Usl||; as small as we want in order apply
the contraction mapping theorem. Now due to the uniqueness of the fixed point we get

independence from n. O

Theorem 3.5.1. Let pg > 0 be very small, then there exist a vector ®, € C* and an

ro > 0 such that for r > rg we have the following asymptotic formula for the difference,
T (p,7) =T (p,7) = e 79U, 7)@, + O™ 10)iT=9)), (3.58)

valid in Sy, x D} where U is a normalized fundamental matrix of the variational equation

(3.56).

Proof. Let &, =T+ —T'~. Notice that & € X,(S, x D},) for all n > 6. Let us prove
that &, admits an exponentially small upper bound. Using the fact that both I'” and

" are solutions of (3.48) we can write,

D¢+ DI~ = Xg(T™ + &)

& DE — DXy(TT)e, = Xp(T™ + &) — Xu(T7) — DXy(T)E,.

Now we rewrite the previous equation as follows,
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where L(&,) = DE, — DXy (T~ )&, and
Q&) = Xu ('™ + &) — Xu(T'7) = DXp(T7)E..

Similar estimates as in the proof of theorem 3.4.1 (in particular the estimate (3.53))

show that given ro > max {rl, ﬁ} we have,

81|H || cs 1615
(rsinfy)”

1Q(E) s < (3.60)

valid in Sy, x D} for every r > r5 and every n > 6. Therefore, Q(&.) € X,13(Sh x D))
for n > 6. Moreover, due to Corollary 3.5.0.1 there exists an r3 > 0 such that for r > rg
there exists a unique normalized fundamental matrix U : S, x D} — C** such that
L(U)=0and U = U. Hence for r > max{f_tfa‘;f;o,rg,rg} we can apply Theorem
2.4.2 and get a bounded operator £7! : X,,43(S, x D}) — %,(S, x D}) which is a

right inverse of L, i.e., L1 =1d. Consequently, the function,

& =& — L7H(Q(&)), (3.61)

belongs to the kernel of £. Thus, due to Theorem 2.4.2 there exists a 2m-periodic
analytic function cg : H,_; — C*, continuous on the closure of its domain, such that

&o(e,7) = U(p, T)co(T — ¢). The domain of cq is a half plane,
H,_p, ={se€C|Im(s) < —r+h}.
Therefore equation (3.61) is equivalent to,
& = L71(Q(&) + Ucy,
and the function &, is a fixed point of the nonlinear operator,
& L7(Q(9)) + Uey, (3.62)

which is defined in X,,(S, x D}). Now let p = 2||Ucyl|,,. Similar estimates as in

the proof of Theorem 3.4.1 show that the nonlinear operator (3.62) is contracting in
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B, ={€Xn(ShxD})| |[€]l, < p} provided r > 74 where,

1
(16 H‘C_lHn,n—i-Zi HHHC3 P) "

sin 6,

T4 >
Therefore, by the contracting mapping theorem, the sequence (5k)k20 defined by,

£k+l = E_l(Q(ék)) + UC07 k > 07 (363)

converges to &, i.e., [|& — &, = 0 as & — co. Now define a new sequence of

functions &, as follows,

ék(cpv 7-) = ei(T_¢)U_1(907 T)&k(@) T)v Vk € Np. (364)

In order to prove an exponential upper bound for &, it is sufficient to prove that there
exists an C, > 0 such that,
Ch = sup Z ‘&“ 0, T ‘ < C,, Vk>0, (3.65)

(p,7)ESKXDL i Z

where 5;” are the components of the vector function ék Taking into account (3.64)

and (3.65) it is not difficult to derive the following bound for ||&]l,,,

I€kll,, < 4Ky sup
(@7T)€ShXD%

,7_n+4e—i('r—gp) ‘ Ch.

Thus according to (3.60) and the previous estimate we obtain,

27 HHHCS K% SUD(¢,7)€S), x D1 ‘T2”+86_2i(7—§0)|

2
st C2. (3.66)

1Q(&k) g3 <

Now we construct another right inverse of L as follows. Using (3.64) and (3.65) and
again similar estimates as in the proof of the Theorem 3.4.1 (in particular (3.52)) show

that the components of Q(&x) can be bounded by,
2||Hllea Ku 2797 7,
valid in S}, x D. Thus, if 4/ > 0 is any small positive real number we have,

1Q(E), < 8[[Hllcs Ky sup
(p,7)ESH XD}

e_“/i(T_‘p)T6‘ C2. (3.67)
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Thus, for a given 1 > pg > ' we can apply Theorem 2.4.3 and obtain a bounded
linear operator E;,l 9,/ (Sh x DY) — 9, (Sp, x DY) which is a right inverse of £, i.e.,
-1 _
LL, =1d.
Note that £71(Q(&)) — E;,l(Q(fk)) belongs to the kernel of L. It follows
from Theorem 2.4.2 that there exists a 27-periodic analytic function c;, : H,_;, — C?,

continuous on the closure of its domain, such that,

Ucy, = L71(Q(&)) — £, (Q(&))- (3.68)

In order to prove the uniform bound (3.65) we rewrite the recursion formula in (3.63)

as follows,

1 = £, (Q(&)) + Ucy + Ucy. (3.69)

Now taking into account the relation (3.64) the previous equation is equivalent to,
&1 = TTIUTILIQE) + T ey + Ty, (3.70)

The remaining steps of the proof are to estimate these functions in a proper way.
In order to simplify the presentation of the subsequent estimates, it is convenient to
introduce an adapted supremum norm as follows. Given a bounded analytic function

g=1(g1,-..,914) : Sp x D}x — C* consider its norm ||g||, defined by,

4
lgll = > lgile,T)

Lp,T)EShXD% i=1

We also consider its usual induced norm on the space of 4 by 4 matrices valued functions

G = (Gi,j) : Sh X D711>< — (C4,

G| = sup ZIGJ 0,7
- (gOT GShXDT i=1

Note that Hng = C} and for a given analytic function v : D} — C such that y(7) =
O(773) we have,

HvU_lu < 4Ky seul'[))1 |7‘37(7)| : (3.71)

85



With this norm in mind it is not difficult to get the following inequalities,

I et @l < 127 Q).

He(2—uo)i(r—¢)£;, (Q(fk))H < HE;, (Q(&)) (3.72)

Ho

Now let us estimate the terms in the right hand side of equation (3.70). Starting

with the first term we get,
i(T—p) — Di(r=@)y—12—ro)i(r—¢) p—1
UL (Q(E)) = o DI U122 £-1(Q ().

Taking into account (3.71) and (3.72) we obtain the following estimate,

e C T e e | 7 C IOV §

<AKyoa sup F3e(ro—1)i(T—p) ‘ H»Cljzl(Q(fk))

(SovT)ESh XD'}“

110

Thus, using (3.67) we get,

CTOUTIL N QUe) | < K (373)
where

K =2°Ky-1 Ky HE;} e U-lo—rilr=9)| « 0 (3.74)

, [1H|[cs sup
0,1 (p,7)ESH XD}

sincen > 6 and 0 < p/ < pp < 1. Now we deal with the second term of equation

(3.70). Taking into account (3.68) we write,

¢ = U L71(Q(&) — UL, Q(&)).
:7'_”U_17'"£_1(Q(£k)) —(2—po)i(T— SO)U 1 (2 po)ilr— gO)E'ull(Q(gk))

Thus, using the estimates (3.71) and (3.72) we can bound cy, as follows,

lexll < 707 [ @] + [[em U [el2mt=a 21 Quen) |

)

(3.75)

< 4Ky (S“pl [~ QR

TED,

réemmmi=a)| | 21 Q(er))

+ sup
(¢,7)ESE XD}
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Thus (3.66), (3.67) and (3.75) imply that,
lexll < Koo ™C2, (3.76)

where,

94 Hﬁ_l Hn,n-i'3 Ky SUD(y,7)€S), x D1 ‘Tn-i-lle—i(—r_sp) |

r7sin™ 0y

ch = 25KU71KU ”H”03 (

+ sup
(Sva)ESh X Drl

< 00,
Ho s

796—(1—(u()—u’))i(7—s0)‘ H ;!

(3.77)
sincen >6and 0 < p/ < pg < 1.
In order to complete the estimation of the terms of equation (3.70) we need the

following simple result from complex analysis,

Claim 3.5.1.1. Let 0 > 0 and ¢ : H, — C an analytic function, 2m-periodic, continuous
in the closure of Hy and limypy,(s)——oo ¢(s) = 0. Then we can bound the function ¢ as
follows,

le(s)] < sup \c(s)]elm(sHU. (3.78)
Im(s)=—0

Proof. The proof is very simple as is just an application of the maximum modulus

principle for analytic functions. O

Applying the previous result to each component of the 27-periodic analytic vector

function ¢, = (ci 1,5 Cpa) : Hpmp — C* we get,
lewi(s)| < sup  egi(s)] =y 1 .4
Im(s)=—r+h
Thus,
sup ei(T_go)ckJﬁ — gp)‘ < sup |egi(s)] eh =14,
(¢,7)ESLx D} Im(s)=—r+h
and taking into account (3.76) we get,
ei(T_‘P)ckH < K., C}. (3.79)
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For the last term of equation (3.70) we know that ¢y = U~1¢ and taking into account
(3.64) we conclude that He”coH = Cp. Using the previous claim we can show that
Cp < oo. Thus, it follows from equation (3.70) and the estimates (3.73) and (3.79)
that,

Cii1 < (K + Ke,) C + Co. (3.80)

Note that both K and K¢, which are given by expressions (3.74) and (3.77) respectively
decay to zero as 7 — +oo. In fact for any m € N it is easy to see that K = O(r™™)
and K, = O(r~™). Thus there exist 79 > 0 sufficiently large such that for r > 9 we
have,

1

which together with (3.80) implies that C; < 2C; for all & > 0. Consequently
Hei(T_W)U_lg*H < 2Cy. In order to finish the proof of the theorem note that the
estimate (3.67) applied to &, implies that Q(&,) € 9,/(Sh, x D). Moreover, as
€ — E;,l (Q(&)) € Ker(L) then there exists a analytic 2m-periodic vector function
c, : H,_, — C* such that &, = Uc, + L';,l (Q(&+))- Since limypy,(g)—s—oo Cx(s) = 0, we

can write its Fourier series as follows,
w .
ci(s) = Z Cime ",
m=1
where ¢, ,, € C*. Moreover, as
L1 (Q(6)) € Dy (Sh x Dy),
we have that,
Elp,T) = TTTAU(p,1)O. + O (emEroNi=0)),
where ©, := c, 1. This completes the proof of the Theorem. O

Remark 3.5.1.1. One can repeat the arguments of the previous proof and obtain a

similar estimate for the difference of the parametrisations defined on the upper connected
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component S}, X DM,
TH(p,7) =T (¢, 7) = DU (p,7)OF + O(ePH0)ilT=2)),

where DF'T = DX N D7 N{r € C|Imr > r}, ©F € C* and p1o > 0 is arbitrarily small.

Remark 3.5.1.2. Note that the previous Theorem provides an exponentially small upper

bound for the difference Tt — I'". In fact, there exists an M > 0 such that,
T (o, 7) = T (g, 7)|| < M |7 ™),

valid in Sy, x D}.

3.5.1 Stokes Constant

In this subsection we use the asymptotic formula of Theorem 3.5.1 to construct an
analytic invariant known as Stokes constant that measures the splitting distance of the
complex invariant manifolds parametrised by I't. This constant is also related to the
Stokes phenomenon where two difference analytic functions which possess a common
asymptotic expansion in a common region differ by an exponentially small term. The
Stokes constant is the normalized amplitude of this exponentially small term. In order
to define this invariant, let us first prove two technical Lemmas which we will use later

on. Let A(p,7) =T"(p,7) =T (¢, 7).
Lemma 3.5.1. For every v € C* we have,

QO v) = lim  QA(p,7), U(p, 7)0)eT =9

Im(7)—+o0
where the convergence of the limit in the right hand side is uniform with respect to

p € Sp.

Proof. According to Theorem 3.5.1 and Remark 3.5.1.1 we have the following asymp-

totic formula,
A7) = AU (o, 7)OF + 0 (=) (3.81)
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valid in S, x DY for o € (0,1) very small, » > 0 sufficiently large. Now taking into

account that U is a normalized fundamental matrix and formula (3.81) we get at once,
QA(p,7), U, T)0)eF %) = Q(U(p, 7)0F, U(p, 7)v) + O (ei(l—uo)i(T—go)) :
=Q(0;,v)+0 (ei(l—uo)i('r—w)) )

which proves the desired formula by taking the limit as Im(7) — +oo. Moreover it is

clear that the convergence is uniform with respect to ¢ € Sj. U

Lemma 3.5.2. The following limits exist, are independent of ¢ and the convergence is

uniform in Sy,

Of = lim  QA(p,7),0,T (,7))eT ) < 0. (3.82)
Im(7)—+oo
Moreover,
1. 6F=—  lim  QA(p,7),0.T (p,7))eTT=9),
Im(7)—+oc0

2. If H is real analytic then,

-0, ifn>0,
of = 0

0, ifn<o.

3. For any other solutions T* € X1(Sy, x D) of equation (3.4) such that T+ =
I where T € T AT&[[77 Y] is a formal solution of equation (3.4) we have the
following relation ©F = @F e+ (0=%0) for some (g, 70) € C? where the definition

of (:)0i is analogous to (3.82) for the parametrisations '+

Proof. That the limits (3.82) exist and are uniform with respect to ¢ follows from the

previous Lemma with v = (1,0,0,0). Now let us prove that
Oy =— lim  Q(A(p,7),0, T (,7))e"7 %),
Im(7)——00

(the + case being completely analogous). First note that (3.81) implies,
H(T™ (¢p,7)) = HT (.7)) + VHI (p,7)A(p,7) + O >79).
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Now taking into account that H(T'*(p,7)) = 0 we get,

lim VH(I (p,7)A(p,7)e!T%) = 0. (3.83)

Im(7)——00

Moreover,
VHI)A=Q(Xyg(T7),A)=Q(DI' ,A)=— (Q(A, 0,T7) + Q(A, OTI‘_)) .
Thus, (3.83) yields,

lim (A9, 7),0,T (7)) + QA 7). 0:T (7)) €T =0

Im(7)——o0
which proves the desired equality.

Now suppose that H is real analytic and n > 0. Let us prove that 6—5 = —@F{.
Since O is defined by a limit as Im(7) — —oo we can take a sequence 7, = —ioy,

where o, is any real sequence such that o, — +00 as n — +o00. Then,

0y = lim QA(0,—ioy), 8,1 (0, —ic,))e™.

n——+00
Now it follows from Remark 3.2.2.2 that A(0, —io,) = A(m, i0y,) and d,I'~ (0, —ioy,) =
0, (m,i0y). Thus,

0, = lim Q(A(0, —ioy,), 0,T (0, —ioy))e’

n——+o0o

= lim Q(A(m, i), 0,0 (7, i0,))e Tion =™ =im

n—-4o0o

— ot

Analogous considerations can be used to prove that 6—5 = @(J{ when 7 < 0.
Finally, let T € X;(S), x D) be two solutions of equation (3.4) asymptotic
to T. Then it follows from Theorem 3.2.2 that there exist (¢g,70) € C? such that

['(p,7) = D¢+, T+70). Thus, uniqueness of solutions I't < T and I't < I" allows
us to conclude that T*(p, 7) = TF (¢ 4 ¢o, 7 + 70). Therefore,

Oy = lim QT (p,7) ~ T (p,7), 0, (ip,7))e T

Im(7)—+o0

= lim  Q(A(¢ + o, T + 70), QOI‘_(go + g, T + TO))e:Fi(T-l-To—(<P+900))eii(70—900)

Im(7)—+o0

— @Oieii(m_%).
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O

Theorem 3.5.2 (Stokes constant). Let $)y be the space of analytic Hamiltonian func-
tions H : U — C which have the same properties as described in the introduction of the
present Chapter. For a given H € $)( the constants @gt define a functional Ky : $y — C
according to the formula,

Ko = —@6@3_

In other words, Ky is independent of the choice of the parametrisations I't. Moreover,
Ko is independent of the coordinate system, i.e., if H € $o Is another Hamiltonian
function which is conjugated to H, i.e., H = H o U for some analytic symplectic map
U which fixes the origin W(0) = 0 then Ko(H) = Ko(H). The number \/Ko(H) is

known as the Stokes constant.

Proof. This Theorem follows directly from the previous Lemmas since all the freedom
we have in the definition of the g comes from the freedom of the parametrisations
I'+. As the parametrisations are defined up to translation in (p,7) we get the desired
conclusion which follows from the third item of the previous Lemma. The coordinate

independence also follows from similar considerations. O
Remark 3.5.2.1. If H is real analytic then,

—12 .
KoH) = |Og | if n >0,

~ &g [*

if n <O.

In the stable case, i.e. 7 > 0, the Stokes constant is equal to ‘65‘-

Remark 3.5.2.2. If the Stokes constant //Ko(H) does not vanish then the asymptotic
formula (3.58) provides an exponentially small lower bound for the splitting distance
IT*(¢,7) — T~ (p,7)||. Thus implying that H is non-integrable and that the normal

form transformation ® diverges.

Corollary 3.5.2.1. If H is real analytic and X is reversible with respect to the involu-

tion (3.16) then there exist parametrisations T+ : S}, x D — C* which are symmetric
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in the sense that T+ (i, 7) = S(T'*(—@, —7)) such that the corresponding constant ©5

is a purely imaginary number, i.e., Re(©,) = 0.

Proof. It follows from Remark 3.2.2.2 and the reversibility of X that there exists a

formal solution I' € 77! Ta[[r1]] of equation (3.4) such that,

(e, 7) = S(O(=¢,~7)). (3.84)
This formal solution is unique up to translation ¢ + m, that is, if I' is another formal
solution of the same class satisfying (3.84) then there is a number & € {0,1} such
that f‘(gp,?) = (¢ + km,7). Now due to Theorem 3.4.1 and Theorem 3.4.2 there

exist unique T : S, x DX — C? such that It =< I'. If we define T (p,7) =

S(T'*(—p,—7)) and taking into account that H is real analytic we conclude that the

functions T'* : S, x D¥ — C* are solutions of equation (3.4) and due to (3.84) we also

have that I't =< I'. Thus, uniqueness of I'F implies that S(TF(—@, —7)) = I'f (g, 7)
yielding the first part of the corollary. As for the second part, taking into account the

previous Theorem, we can write © as follows,

O, = lim ©(0,—ioy)e’",

n——+o0o

where o, is any real sequence such that o,, — 400 as n — +oo. Thus,

0, = lim Q(A(0, —ioy,), 0.T (0, —io,))e™

n——+o0o

= lim Q(S(A(0, —ioy,)), S0, (0, —ic,)))e’

n——+00
= — HETOOQ(A(O, —ioy,),0; T (0, —i0y,))e’™
=-0,.
U

Remark 3.5.2.3. In fact the parametrisations I'* of the previous Corollary are uniquely

defined by the reversibility up to a translation ¢ + 7 in the first argument.
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3.5.2 Analytic dependence of K, on a parameter

Let H : U x D(r) — C* be an analytic function where &/ C C* is an open connected
neighbourhood of the origin and D(1y) an open disc on the complex plane having radius
vy > 0 and centered at 0. We also suppose that H is continuous on the closure of
U x D(vp). For x € U and v € D(1y) we shall write H, (x) instead of H(x,v) and say
that H, is an one-parameter analytic family of Hamiltonian functions. Moreover, for
each v € D(vy) we assume that each Hamiltonian function H,, satisfies the assumptions
of the previous Theorems and that the coefficient  which was defined in the introduction
of the present Chapter and depends analytically on the parameter v satisfies the non-

degenerate condition,

n(v) #0, for veD(w). (3.85)

Now by the theory of the previous sections (in particular Theorem 3.5.2) the function
Ko : D(rg) — C is well defined. Now we consider the following question: How regular

is the function Cyp? The next Theorem provides the answer,

Theorem 3.5.3. There exist vy > 0 and parametrisations I‘,jf analytic with respect to

v € D(v) such that ©F : D(v) — C are analytic functions.

According to the definition of Ky (in Theorem 3.5.2) we conclude that Ky :

D(vy) — C is analytic since Ky is independent of the choice of the parametrisations.

Proof of Theorem 3.5.3. Tracing the proofs of Theorems 3.2.1, 3.2.2 and 3.2.3 it is not
difficult to see that there exist formal series f‘,, and I]',, such that the coefficients of
the these formal series depend polynomially on a finite number of coefficients of H,
which are assumed to be analytic with respect to v. Thus the coefficients of both T,
and U, are analytic with respect to v. Note that the theory on the linear operators
developed in Chapter 2 can be generalized to functions which are also analytic with
respect to v and following the proofs of Theorems 3.3.1 and 3.4.1 and the fact that
the fundamental matrix Uy defined in (2.39) does not depend on v we conclude that

there exist a normalized fundamental matrix U, and analytic parametrisations I';", all
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of which are analytic with respect to v such that U, =< ﬂ,, and I‘;—L = f‘u. Finally, let

A, = I‘j —TI',, then according to the proof of Theorem 3.5.1 we conclude that,
A,=Uyc, +R,, (3.86)

where ¢, is an analytic 27-periodic vector function defined in a lower half complex plane,
analytic with respect to v, decaying to zero as Im 7 — —oc and R, = O(e~(2—#0)i(T—¢))
where the bound is uniform with respect to v for some 0 < g < 1 very small. Now as

in the proof of Theorem 3.5.1 we can represent c, in Fourier series and conclude that,
cu(T = ) = 0,7 4 O, (3.87)
where the bound is uniform with respect to v and,

1 2w —io )
o, / e (s)ei*ds, (3.88)

27 —1i0

for some ¢ > 0. Clearly ©, is analytic with respect to v. Thus following the proof of
Theorem 3.5.2 and taking into account (3.86), (3.87) and (3.88) we have that,

Oy ()= lim QA (p,7),0,T, (7)) = —0,3

Im(7)——00

where ©, 3 is the third component of the vector ©,. Thus ©; is an analytic function of
v. This concludes the proof as analogous considerations applied to @ar yields analyticity

inv. O

3.6.3 The Stokes constant does not vanish identically

In this subsection we address the following question: Does the Stokes constant /Ky
vanish identically? The answer is no. We shall construct an Hamiltonian satisfying the
assumptions of Theorem 3.5.2 such that the corresponding Stokes constant does not

vanish.
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An important example

Let us define the following family H, of Hamiltonians,
H,=—I + I + I + vg,

where 1 > 0, v is in some disc of fixed radius around the origin and I;, i =1,...,3 are
defined in (3.1). Notice that Hy = H as defined in (3.1) and moreover HY is integrable
(where I is first integral independent of H°). We will often refer to subsection 2.4.2
of Chapter 2 for a detailed study of the parametrisations and corresponding variational
equations of HY.

Now according to Theorem 3.4.1 (resp. Theorem 3.4.2) there exist » > 0 and
analytic parametrisations T';F : S; x D — C* which are also analytic with respect to

v. As the parametrisations are analytic in v we can write them as follows,
TE =Ty +ved + 0(v?), (3.89)

where T is the parametrisation of H?, i.e. DT'g = X0 (T), which is defined in (2.36)

and féﬁ satisfy the following equation,
Lo(&y) = Xy3(To), (3.90)

where L is the linear operator defined in (2.38). For our convenience, let us recall the

form of I'y,
Lo(p,7) = (/17'_2 cos @, kT~ 2sin g, kT L cos p, kT L sin @)T

The linear operator £y has a normalized fundamental matrix Uy, i.e. Lo(Up) = 0,
which can be found in (2.39). Thus, by Theorem 2.4.1 the linear operator L : Xg(Sp %
DF) — Xs(Sy x DiF) has trivial kernel and has an unique bounded right inverse £, :
Xs(Sp x DE) — X7(Sh x D) (see section 2.4.2 for the definition of the Banach spaces
X,). Notice that we have overloaded the notation of the linear operator £y and its

inverse since we write the same letter for the — and + case. Now a simple computation
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shows that, .
5k sint o
T8 '

X,5(To) = <0,0, 0, -

Thus, X;5(To) € X5(Sh x D;F) and we can invert equation (3.90) to get,
& = Ly (Xg5(To))-

In fact, following the proof of the Theorem 2.4.1 we can write explicit integrals for §SE

which read,

& (o) = Up(ep, 1) /O Uyl (p+s,7+ $)X gz (Lol + 5,7+ 5))ds,
_OO+OO

& (o, 7) = —Ug(p,7) i Uy (p+ 5,7+ 8) X5 (Tolp + 5,7 + 5))ds.
Our goal is to compute the Stokes constant /Ko (v). Recall that Ko(v) is analytic with
respect to v and by definition Ko(v) = —0; (v)O7 (v) where OF (v) are defined by the
limits (3.82), depend on the parametrisations T';> and are also analytic with respect to
v. Moreover, it is not difficult to see that the family Xy, is reversible with respect to
the involution S defined in (3.16). Thus, Remark 3.5.2.1 and Corollary 3.5.2.1 give that
VEKo(v) = |85 (v)| where Re(Og (v)) = 0. Moreover, since Hy is integrable we know
that /Cp(0) = 0. So in order to prove that /Ky(v) is non-zero for a certain v it is
sufficient to prove that the derivative of © (v) at v = 0 does not vanish. The following

Lemma provides a formula for computing the first derivative,

Lemma 3.5.3. Let Ay = far — & - Then,

dOy ,
—01 = lim  QAg(p,7),8,To(p,7))e 9. (3.91)
dv V=0 Im7——0c0
Let us postpone the proof of this Lemma to the end of the present subsection.
In order to use the formula of the previous Lemma we have to compute the difference

Ag =& — & . It follows from (3.89) and the formulae for ¢ that,

+00
Ag=Ugcy where co(p,7) = —/ Fo(¢ + 8,7+ s)ds, and,
oo (3.92)

FO(@? T) = U(;l(()‘% T)qu (FO(% T))
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Moreover, from equations (3.90) we conclude that L£o(Ag) = 0 and Theorem 2.4.2
implies that cg is in fact a 27-periodic analytic vector function of a single variable,

which is analytic on the union of two half planes H_, U H:T_h where
HE , ={s€C| FIms < —r+h}.

Taking into account the expressions for Uy and I’y a simple computations shows that,

P B 103 cos psintp  10k°sin® ¢ 5k cos psin? p 3k3 sin® @ T
olg,7) = | — 377 ST v +10 ’ 76

Now since Uy is a normalized fundamental matrix it follows that,

Q(Ao, 0,T0) = Q(Ugco, ,T0) = —co 3, (3.93)
where ¢y = (co 1, . . - ,00,4)T. Therefore, in order to compute dg)f . through formula

(3.91) it is enough to compute the following integral,

T 5k5 cos(p + s) sin?(p + )
00,3(9077-) = / (T + 3)10 dS,

where (¢, 7) € Sj, x D}. Using the calculus of residues to compute the previous integral

it is not difficult to get,

BEOT i 305k i 510k5m o
co3(p,7) = — 2307 ¢ i S0)—1-7249! e3ir=¢) _ St silr=e), (3.94)
where (p,7) € S, x D!. Note that cp,3 only depends on 7 — ¢ as predicted by the
theory. Moreover it is analyticin H. ", and 27-periodic. Finally according to the formula

(3.91), (3.93) and (3.94) we have that,

Bl st = S
Recall that k2 = —% and since 17 > 0 the previous expression imply that dg)_yg o £ 0.
Consequently Ky(v) and the Stokes constant do not vanish identically.
Proof of Lemma 3.5.3. According to the definition of O (v) we have that,

Oy ()= lim QA (p,7),0,T; (10, 7)), (3.95)

Im7——00
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where A, =T} —T';,. Moreover, it follows from formulae (3.93) and (3.94) that,

Fy:= lim Q(Ao(gp,T),8¢F0(<p,7))ei(7_“0) < 0. (3.96)

Im7——0c0

Now we define the following auxiliary function,

R(p,7,v) = (UA($,7),0,T5 (7)) = 2Ao(p, 7), D To (12, 7)) €779,

Note that R is analytic in S, x D} x D,/ for some v/ > 0 and & (¢, 7,0) = 0. Moreover,

it follows from (3.95) and (3.96) that,

lim R(p,7,v) =04 (v)— Fyv.

Im7——00

Now due to the uniform convergence of the limit we get at once,

0= 4 lim  R(e,7,v) = 46,

dv ImT——o00 V=0 dv

(0) — Fy.-

Generic Families

In the previous section we have constructed an Hamiltonian having non-zero Stokes
constant. Now let $)¢ denote the space of analytic Hamiltonian functions H : U C
C* — C that satisfy the properties described in the introduction of the present chapter.

Then, we have the following result,

Corollary 3.5.3.1. Given any analytic curve H, in $o where v is defined in an open

disc D C C, then for every € > 0 there is an e-close analytic curve F,, € )y to H,, i.e.

sup |H,(x)— F,(x)| <k,
xeU,veD

such that ICo(F,) does not vanish on an open and dense subset of .

Proof. Given H, in £ and a point vy € D there exists H* € §, such that H*(x) —
H, (x) = O(||lz||*) and Ko(H*) # 0. This simply follows from the discussion in
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the previous section and the fact that Ky is invariant under symplectic changes of

coordinates. Thus we can define,
FI/,)\ = H, + )\(H* — H,,O) € 9o-

Now it follows from Ko(F,, ) being analytic with respect to A and F,,; = H* that for
any € > 0 we can choose,
-1
0 < <Sup |H*(x) — H,,O(x)|> €,
xel

such that there is a \* € C with |\*| < ¢ such that KCo(F,, r+) # 0. Then F), » is the

desired family. O

This result implies that for a given family H, € £ there exist another family
F, € $ as close as we like to H,, such that Ky(F,) does not vanish on a open and
dense set of the parameter v. An important consequence is that £}, is non-integrable

for v on a set which is open and has full Lebesgue measure.
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Chapter 4

Splitting of Invariant Manifolds

In the present chapter we derive an asymptotic formula for the homoclinic invariant which
measures the splitting of invariant manifolds near a Hamiltonian-Hopf bifurcation. The
leading order of the asymptotic formula is given by a Stokes constant which was defined

in chapter 3.

4.1 Introduction

Let H. : U c R* — R be an analytic family of two degrees of freedom Hamiltonians
defined in a connected open neighbourhood U of the origin and analytic with respect to ¢
in |e| < eg for some €y > 0. Moreover, we suppose that the family of Hamiltonian vector
fields X has a common equilibrium point which we can assume to be at the origin
(Xm.(0) = 0 for every €) that undergoes a Hamiltonian-Hopf bifurcation as described

in section 2.2. Thus we can assume that H. has the following form,
H.=-1L+1,—els+ 77[?? + high order terms,

where
_ Gt a _pi+p3
2 2

We also suppose that the normal form coefficient 7 is positive which corresponds to the

I = @p1 — qip2, 12 , I3 (4.1)

stable case.
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Recall that the matrix DXy (0) is assumed to have two pairs of complex con-
jugate eigenvalues /3. & icr. such that o, and 3. are positive for ¢ > 0. As ¢ — 0T,
e converges to zero and a, converges to one. In fact we will show that a. = O(1) and
fe = O(Ve).

Thus, for € > 0 the equilibrium is hyperbolic and it has two dimensional stable
(resp. unstable) manifold W2 (resp. W). Following the discussion in section 2.3 of

chapter 2 we parametrize stable and unstable manifolds by solutions of the following

nonlinear PDE,
DI*" = Xy, (I*"), where D, = a0, + 0., (4.2)

where we have omitted the dependence of I'**® in ¢ to ease the notation. Now to
solve equation (4.2) we require that I'*" are 27-periodic in ¢ and satisfy the following
asymptotic conditions,

lim I'’(p,z) =0 and lim I'(¢,z) =0. (4.3)

Z—+00 Z——00

Even though these conditions do not define the parametrisations I'®'* uniquely, their
freedom is restricted to a translation in their arguments by a constant, i.e., independent
of (p,2). Each of the derivatives 0,I'*" and 9,I'>" defines a tangent vector field on
W™ and it can be checked that these vector fields are defined uniquely. Indeed, since
I'** is defined uniquely up to a translation in (¢, z) plane, the tangent vector fields are

independent from the freedom in the definition of I'>“. Moreover, the relation
¥ (p 4+ act, z + Bet) = CIDEE o I'*%(¢p, 2), (4.4)

where <I>fq€ denotes the Hamiltonian flow of H,, implies that 9,I'*" and 0,I'>" are

invariant under the restriction of the flow CID%E -

Given a homoclinic point p. € W* N WS we will show that it is possible to set
I'*%(0,0) = p. eliminating completely the freedom in the definition of the parametrisa-

tions. In a Hamiltonian system the symplectic form provides a natural tool for studying
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Figure 4.1: Illustration of stable and unstable manifolds, the symmetric homoclinic orbit
~e and the tangent vectors at the symmetric homoclinic point p..

transversality of invariant manifolds. So we define the homoclinic invariant w. of the

homoclinic point p, as follows,

we = Q(0,I'*,0,I'") (2)—(0.0) (4.5)
It is relatively straightforward to check that w, is an invariant: the definition leads to
the same value for all points of the homoclinic trajectory 7. = {®%; (pc) : t € R}.
We also note that the definition of w. does not depend on the choice of coordinates.
Moreover, since I'>"" belong to the energy level { H. = 0}, which is three-dimensional,
the inequality we # 0 implies the transversality of the homoclinic trajectory ~..

Further, note that we have defined two vectors tangent to W! and another two
vectors tangent to W7 at p. € W*NW¢ and used a pair of them to define the homoclinic
invariant (see Figure 4.1). Other pairs of tangent vectors give different definitions for
the homoclinic invariant. However these are not independent as one can show that W
being Lagrangian manifolds imposes some relations between different definitions of we.

In fact let us define,

wey = 2(0,T%(0,0),0,T°(0,0)), where z,y€ {p,z}.
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Then the following relations are satisfied,

2 2
QeWe + Bswgp,z = 07 QeWe + /Bewz,gp = 07 Qe We — 55 Wez = 0.

The proof of the previous identities is very simple as it only uses the fact that stable

and unstable manifolds are Lagrangian and the following formula,
a.0,I*(0,0) + £:0.I'*(0,0) = a.0,I"“(0,0) + £0.T“(0,0).

Finally, note that the definition of the homoclinic invariant is a natural extension
of the Lazutkin's invariant defined for homoclinic orbits of area-preserving maps [30]
and it can be easily generalized to higher dimensional Hamiltonian systems.

In what follows we shall assume that the Hamiltonian vector field H, is time-

reversible with respect to the linear involution,

S(q1,92,p1,p2) = (—q1,92,P1, —P2)- (4.6)

That is SXp, (x) = —Xp,(Sx). Note that the normal form procedure preserves the
reversibility given by S. Let us denote the set of fixed points of the involution S by
Fix(S). This set is known as the symmetric plane. It is clear that given an integral curve
x(t) of X, then S(x(—t)) is also an integral curve of the same Hamiltonian vector field.
In particular if x(0) € Fix(S) then the curve x(t) is symmetric, i.e. x(t) = S(x(—t)). If
a symmetric curve x(t) belongs to the unstable manifold W* then x(t) is a symmetric
homoclinic orbit and the point x(0) is called a symmetric homoclinic point.

The main result of this chapter in the following,

Theorem 4.1.1. There exists a symmetric homoclinic point p. € Fix(S) belonging to
a symmetric homoclinic orbit such that the corresponding homoclinic invariant has the

following asymptotic formula,
we = +2e7 25 (wy + O(e' ™M), (4.7)
where wy = /Ky is the Stokes constant and p > 0 is arbitrarily small.
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4.2 Formal Separatrix

In this section we construct an asymptotic series (formal separatrix) using the normal
form Hamiltonian HENF. These series will provide approximations for the invariant
manifolds W2 and will be of fundamental importance in the analytic study of the

invariant manifolds.

4.2.1 Base functions of the asymptotic series

Let us describe a useful class of functions that will be used throughout the present

section. A function f : C — C belongs to this class if,
1. it is 2mi-periodic.
2. it is analytic in C except for poles at i + ki, for k € Z.
3. f— 0 as Re(z) = £oo.

For instance, the function g defined by,

Y0(2) = \/%Flll(z) (4.8)

belongs to this class, as well its derivative . It can be shown that any function f of

this class can be written in the form,

f=p(0) +709(70) (4.9)

where p and ¢ are polynomials in one variable and p(0) = 0. Indeed, suppose that f(z)
satisfy the properties above. Notice that the function tanh(z) is im-periodic and analytic
in C except for simple poles at §i + kmi for k € Z. Writing the functions f(z) and
tanh(z) in Laurent series around the poles and comparing coefficients we can construct
two polynomials /) and § such that the function f(z)—(cosh™'(2)p(tanh(z)) + G(tanh(z)))

has no singularities and is bounded in C. Hence must be equal to a constant, say ¢ € C.
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Taking into account the third property of f we deduce that §(z) = (1 — z?)r(z) + ¢

where 7 is some polynomial. Thus,
f(2) = cosh™(2)p(tanh(z)) + cosh™2(2)r(tanh(z)). (4.10)

Finally it is easy to check that = ~q satisfy the differential equation & = = — na?

which can be written as an Hamiltonian system with Hamiltonian % — %2 —1—17%. From

this observation we conclude that,

. "
Yo% =1 - 573- (4.11)

This relation can be used to simplify the expression (4.10) obtaining the desired repre-
sentation (4.9). It will also be useful in the construction of the formal separatrix.
4.2.2 Formal Separatrix of the normal form

Recall from chapter 2 that by a formal near identity canonical change of coordinates ®

we can transform H, into its normal form,

HNF = Heo® = H)+ Y amI"Be,  H? = —L+L—els+nl3, (4.12)
3m+25+20>5

where I; are given by (4.1). Now let Djs denote the following formal differential operator,
Ds = ad, + 0., (4.13)

where o, 8 € R[[0]] such that,

5 = (5\/1 — Zao’Ll(le_z, a=1-— ZCLL(]J(;ZI, (4.14)

1>2 >1

where a; ;; are the normal form coefficients. The definition of the formal series 3 and «
becomes clear in Lemma 4.4.1. Let h)YT" denote the normal form Hamiltonian HN*" in
the standard scaling (2.11). In this section we look for formal solutions of the nonlinear
PDE,

DsX = Xpr(X) (4.15)
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in the form of formal series in powers of 9,

X(p,z) = ZXk(gp, 2)o". (4.16)
k>0

If we substitute (4.16) into the equation (4.15) and collect terms of same order in §
then we get an infinite system of equations,

QDXO + le (X()) =0
Op X1 + X1, (X1) = —0: X0 + X1, (Xo) — X1,(Xo) + nX2(Xo)

(4.17)
astk + X1, (Xk) = -0, X1+ X1,(Xg—1) — ng(Xk—l) + T]Xmg(Xo)Xk_l

+ Grp(Xo, ..., Xp—2)

where Gy, is a well defined polynomial function depending exclusively from a finite
number of coefficients of the normal form h(];VF. Note that the normal form preserves

the reversibility given by the linear involution & which we recall,

S(q1,92,p1,p2) = (—q1,92,P1, —P2)- (4.18)

Also note that the normal form is rotationally symmetric, which follows from the fact
that I; is an integral. Indeed the Hamiltonian vector field Xh(JS\rF commutes with the

rotation R, defined by,

cos(p) —sin(p) 0 0
R, = sin(¢)  cos(yp) 0 0 ‘ (4.19)
0 0 cos(p) —sin(p)
0 0 sin(p)  cos(yp)

Note that — X7, is the infinitesimal generator of the group R, i.e., O,R, = — X1, (R,).
The infinite system (4.17) can be solved recursively if we impose the following boundary

conditions

Xk((,0+27'(',2) :Xk((pa 2)7 RO(ZI?E:EOOX/C('?Z) = 07 S(Xk(_(pa_z)) :Xk((pa Z)'
(4.20)
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From the first equation of (4.17) we deduce that Xy = R, {o(2) where & is an arbitrary
function and R, is the rotation matrix (4.19). The second equation of (4.17) and the

2m-periodicity in ¢ imply that,
X1 =Rp&i(z) and 0.8 = X1,(S0) — X15(60) + 1 X12(80)- (4.21)

Taking into account that SR_, = R,S we see that the last two conditions of (4.20)

are equivalent to,

plim @) =0 and S(E@(-2) = (). (4.22)

It is straightforward to check that & = (—ﬁo,O,wo,O)T solves the second equation of
(4.21) and satisfies conditions (4.22) where g is the base function defined in (4.8). Note
that Xo = R, is the parametrisation defined in (2.17). Moreover it is not difficult
to see that Xo (¢, 2) and Xo(¢ + 7, z) are the only reversible solutions that satisfy the
boundary conditions (4.20). In the following Theorem we show that having fixed X
as above we can continue this process to solve the system (4.17) and obtain an unique

solution that satisfy the boundary conditions (4.20).

Theorem 4.2.1 (Formal Separatrix of the normal form). Equation (4.15) has an unique

non zero formal solution X satisfying the conditions (4.20) and having the form,

T

X =Ry | 40> _ ro™,  dpa 0D T 0p6% 0 Y _wrd® ] (4.23)

k>0 k>0 k>0 k>0
where the coefficients 1. are even polynomials in ~yy of deg(¢%) = 2k and ¢!, are odd

polynomials in ~yy of deg(¢t) = 2k + 1. Moreover ¢ = —1 and ¢2 = .

Proof. Let us suppose that X (¢, 2) = R,&i(2) for all k > 0. We will justify this
assumption at the end of the proof. Thus, if X (i, 2) = R¢§:(z) then equation (4.15) is
equivalent to,
Rk + B0, Rob = Xynr (Rpé)
& —aR,Xp(6) + BR,0.6 = RyXyxr(€).
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Using the expression for the vector field Xhé\fF and the fact that a =1—-3",-, a170,152l

we get,

5825 = (XIQ—IS (é) + 77XI§ (é)) o+ Z ai,j,lX[i'Igdk_g- (424)
3i4+-2j+2l=k>5
i#1 or j#0

In the following we look for formal solutions of (4.24) of the form,

£(2) =) (2)d". (4.25)

k>0

In the variable ¢ the boundary conditions (4.20) are equivalent to,

Re(gglioo &(z) =0 and  S(&k(—2)) = &(2). (4.26)

The last condition implies that the first and fourth components of & are odd functions

and the second and third are even functions.

Substituting the series (4.25) into equation (4.24) and collecting terms of the
same order in § we obtain an infinite system of equations similar to (4.17) but without
the rotation terms. Then at each order one has to compute solvability conditions which
allow to solve the equations with respect to £;. These solvability conditions are difficult
to compute and there is a more convenient coordinate system such that the verification
of these conditions and the construction of a formal solution becomes much simpler. In
B F

fact, taking advantage of the fact that is formally integrable, where I is a integral

of motion, we consider the following change,

SI:RCOSH—%siHQ, €3 =rcosb,
(4.27)
52:Rsin9—|—%cos,9, €' = rsinb,

where £ = (€1,€2,63,¢%). Note that the integral I; is equal to ©. In these new variables
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equation (4.24) takes the form,

Bo.0= -5 3 MilgiLuge3 o, GR 0.0 =0,
r? 3i+2j421=k>5 2
i#1 or j#0
(4.28)

@2 Qia; i R
BO.R = <__3 —r nr3> b+ Y. e TR (429)
" 3i+2j+21=k>5
1#1 or j#0

Let us start with the third equation of (4.28). It follows that ©(2) =} ;. 050" where
©y € C. Taking into account the first condition of (4.26) we conclude that all ©; must
vanish as Re(z) — o00. Hence O =0, k£ > 0.

We move on and consider now the second and fourth equations of (4.28). Taking
into account that ® = 0, these two equations are equivalent to the following single
equation,

52827‘ = (7‘ — nrg) 62 — Z %?’j’lﬁj_lék_z. (4.30)
2j+]2l2:1k25

In the following we construct a formal solution of (4.30) of the form,

r(z) =) ri(2)6". (4.31)

k>0

Claim 4.2.1.1. Equation (4.30) has an unique non zero formal solution of the form (4.31)

satisfying the boundary conditions

lim  r,(2) =0, 7ri(2) =rr(—2) and re(0) > 0. (4.32)
Re(z)—=+o0

Moreover, 7(z) only contains even powers of § and its coefficients are odd polynomials

in v with real coefficients,

k
r(z) = ZTk(Z)52k, where 71(z) = Z rk,mglﬂ, ri € R.
k>0 =0

In particular 799 = 1.
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Proof of Claim 4.2.1.1. Simplifying the summation indices in (4.30) we obtain an equiv-
alent equation,

41 . o
B20%r = (r — 7]7“3) 62 — Z Z 2ao.je1j r2i=1) 6% (4.33)

9]
1>2 \ j=1
which we solve by substituting a formal power series of the form (4.31) into the equation
and collect terms of the same order in 0. Let us recall the definition of 3 in (4.14),

ﬁ = 5\/1 — Z a071,l+152l. (4.34)

>1

Hence, 5% = §2 (1 — 2121a071,l+152l>. Now we are ready to start collecting coeffi-

cients. At the order 62 we obtain the following equation,
837"0 =79 — 777‘5’ (4.35)

This equation has an unique solution satisfying the boundary conditions (4.32) which

r0(2) = v0(2) = \/%Ffll(z)

We move on to the next order in §. Thus, collecting the coefficients of the same order

is,

in 6 we obtain the following equation,
837"1 =(1- 3777’8)7“1
This equation is linear with respect to r1 and we rewrite it the following way,
Lo(r1) =0 where Ly = (83 -1+ 37773) .

It is not difficult to compute two independent solutions for the homogeneous equation
Ly = 0. In fact, one solution is v;1 = . A second independent solution can be obtained

using the well known theory of linear differential equations and it reads,

3, . _
1)2:7(2704-70)—701

Let B denote the linear space of polynomials in the variable vy having real coefficients.

It is not difficult to prove the following facts concerning the operator Ly,
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1. Ly : B — B is a linear map.

2. Lo(v§) = (k= )(k + 17§ — 3(k = 2)(k +3)5+>.

3. Ker (Ly) = {0}.

4. If B° is the subset of B consisting of odd polynomials, then Ly(5°) C B°.

5. If g € B then equation Lo(f) = g has a unique solution f € B if and only if g

does not contain the term 7. Moreover, if deg(g) = 2n+1 then deg(f) = 2n—1.

Thus, by item (3) we conclude that ;1 = 0. In order to proceed by induction we let
k > 2 and collect all terms of the same order in 6**2 in the equation (4.33). Thus,
5]

Oyry — Z ao, 17— = (L =) + Gr(ro, .., Tk—1),
=1

where G, is a polynomial with real coefficients. We rewrite the previous equation in the

form,
15]
Lo(ry) = Z ao,1,0417k—21 + Gr(ro, ..., rR—1). (4.36)
=1

where L is the linear map defined above. For k = 2 the equation (4.36) reads,

3

Lo(r2) = —ag2.17 — Za0,3,0787 (4.37)

and due to item (5) there exists an unique ry € B° solving the previous equation such
that deg(r2) = 3. Now we use induction on k > 2 and suppose that all coefficients
rm for m < k have been uniquely determined by the equation (4.36) such that for m
odd we have r,, = 0 and for even m we have r,, € B° and deg(r,,) = m + 1. Let us
consider the equation (4.36) for k 4+ 1. There are two cases to distinguish. First, when

k+1=2j+1 for some j € N we have,
Lo(rg+1) = 0,

due to the induction hypothesis and the fact that Gy.1 only depends on r; for odd i.

According to item (3) the linear map Ly has trivial kernel. Hence r;; = 0.
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On the other hand, if k + 1 = 2j for some j € N then,
J
Lo(ris1) =D ao14172-1) + Grr1(ro -, 7). (4.38)
=1

Now due to induction hypothesis it is not difficult to see that G4 is an odd polynomial
in the variable 7o, hence Gi11 € B°. Moreover it can be checked that deg(Gj11) = k+4
and

j
Grt1(v0) = — Z ao1,i+1 [rag-), 70 + O(%),
=1

where [.]; denotes the coefficient of the term 7. Thus, we can rewrite equation (4.38)
in the form,

Lo(ri+1) = gr
where g1 € B° having deg(gr+1) = k + 4 and not containing the term ~y. Thus, by
item (5) of the properties of the linear map Lo we conclude that there exists an unique

rr+1 € B such that deg(rg+1) = k + 2. Hence the claim is true. O

As a direct consequence of previous Claim and taking into account the second

equation of (4.28) we conclude that,

k
R(z) = ZRk(z)ézk, where Ry(z) = o Z Rmfygj, Ry ; € R.

k>0 Jj=0
In particular Rp o = —7rg,0. Note that the coefficients R}, satisfy,
lim Ri(z) =0 and Ri(—z)= —Rk(2). (4.39)
Re(z)—+o00

Finally, using the known formal solutions © and r we simplify the first equation
of (4.28) and obtain,
2j

Bo.0=— 3 T[S §% (4.40)

2j
jHl=i>1 k>0
J=1,1>0

For this equation it is possible to compute a formal solution of the form,

0(z) = k(2)0". (4.41)

k>0
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Claim 4.2.1.2. Equation (4.40) has an unique non zero formal solution of the form
(4.41) such that ;(—z) = —6k(z). Moreover, 6(z) only contains odd powers of § and
its coefficients are of the form,

k
0(z) = Z 0y (2)02F 1, where  0x(2) = o5 Z Orve, O, €R.
k>0 1=0

In particular 6 = al;;’o 2

7‘0’0.

Proof of Claim 4.2.1.2. Due to Claim 4.2.1.1 we know that r; = v9 P, where Py is an
even polynomial in the variable ~y such that deg(P;) = 2k. It is not difficult to see

that,
25 25

Zrkd% _ ,ng Zpk52k _ ,ng Zpéj)(g%’
k>0 k>0 k>0

for some even polynomials p,gj) such that deg I}éj) = 2k. Thus, the sum in the right

hand side of equation (4.40) can be rewritten in the form,
k ~ .
BO0 == b’ | 0%, (4.42)
k>1 \j=1

where l;j € R. We know that =1 = ¢! Zkzo hi:62% for some hy, € R. Hence, equation

(4.42) is equivalent to,

k+1
0
0,0 = — Z Z b; '70] 52k+1’
k>0 \j=1
where b; € R. In particular we have, by = % The general formal solution of the
previous equation reads,
k+1 .
o
0(z) =6y — Z ij / V| s,
k>0 \j=1
for any 6y € C. Since we are only interested in odd solutions, i.e. Ox(—z) = —0x(2),

we can set 6y = 0 and using the following formula,
2 Jj—1 j—i g4 A—1
; 2 A A; 4
2 .1 “ J 41 24
/0 % = —0% ; (77) S
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where

i—1 2l
A, = d A =1,
Ezzﬂ and A

we get the desired form for the coefficients of 6(z). O

At this point let us recall what we have proved. Equation (4.28) has a formal
solution of the form,
0(z) = vov0 Y Tkd™ ™, r(2) =70 > Q6™
k>0 k>0

O(z) =0, R(z) =0 Y _ Puo*,
k>0

(4.43)

such that T}, Q. and Py are even polynomials of degree 2k in the variable ~y. Moreover
the solution is unique if Qg > 0. In particular this last condition implies that Qg = 1,
hence Py = —1. Note that the formal solution 6(z) is independent from the condition
Qo > 0. Indeed, equation (4.40) which defines 6(z) contains only even powers of the
form 727 and that is sufficient to show the independence.

In order to conclude the proof of Theorem 4.2.1, let us come back to the variable

~

&. First observe that,

24

cosf(z) = Z(—l)i(707515)2i ZTk52k )

i>0 k>0

2i
and taking into account the relation (4.11) and the fact that (Zk>0 Tkézk) =
Zk>0 Ti,kézk where T; ;. are even polynomials of degree 2k, we can simplify the previous

formula to get,

cosf(z) = Z Z(—l)i (1 — g’yg)iTi,ké%”k).

i>0 k>0
Moreover, since (—1)* (1 — gVS)ZT,k is an even polynomial of degree 2(i + k) we can

write the previous formula as follows,

cosf(z) = Z W;6%, (4.44)

Jj=0
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where W} is an even polynomial in vy of degree 25 and Wy = 1. A similar formula holds

for the sine function which reads,

sin0(z) = Yoy 2 Z 765+ (4.45)
Jj=0
where Z; is an odd polynomial in vy of degree 2j + 1. Now according to the change of

variables (4.27) we have that,
£(2) = (R(z) cos 0(z), R(z) sin 0(z), 7(z) cos 0(z), r(z) sin (2))"

is a formal solution of the equation (4.24). Using formulae (4.43), (4.44), (4.45) and

(4.11) we can rewrite the components of £ as follows,

R(z)cosb(z) 702¢152k R(z)sinf(z Zgb +152k+1

k>0 k>0
r(z) cosf(z Z P25k, r(z)sinf(z) = o Z DRt
k>0 k>0

where

oh= 3 BW. sba=(1-5%) X Rz

= =\
=10 Y, QiWj W=7 QiZ
i+j=k i+j=k

Note that & = (yo11,0, ¢3,0)T. Taking into account that Qy = 1, Py = —1 and
Woy = 1 we get that £y = (—10,0,70,0) as concluded in the introduction of the present
subsection. Finally, at the beginning of this proof we assumed that X = R¢é. If Y
is any formal solution of (4.15) of the form (4.16) then its coefficients must satisfy
the infinite system of equations (4.17). Since we require the functions involved to be
2m-periodic in ¢ then a simple induction argument shows that the coefficients of Y

must be of the form R,(j(z). This concludes the proof of the Theorem. O

Remark 4.2.1.1. Inverting the standard scaling we obtain a formal separatrix X; which

solves formally the equation,

DsXs5 = Xpr (Xs).
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4.3 The Unstable Parametrisation

Let U be an open ball centered at 0 € C* and F' = (F}, Iy, F3, Fy) : U — C* an analytic
vector field. We also assume that F' is continuous on the closure of U. Suppose that
F has an equilibrium point at the origin, i.e. F/(0) =0, and that the equilibrium point
is hyperbolic with eigenvalues +3 + ice. Moreover suppose that the linear part of the

vector field F' is in the canonical form,

BT 0
DF(O) _ 2x2 ’
O2x2 —B

where B is a 2 by 2 Jordan block of the form,
8 «
—a B

Since the equilibrium is hyperbolic, it follows form the stable (resp. unstable) mani-

B =

fold Theorem that there exists an analytic invariant stable (resp. unstable) immersed
manifold W?* (resp. W") such that orbits in this manifold converge to the equilibrium
forward (resp. backward) in time at an exponential rate. In this section we parametrise
the local unstable manifold W}’ by an analytic vector function T* which satisfies the
PDE,

alyx + f0,x = F(x). (4.47)

An analogous result holds for the local stable manifold W; . and in the following we will
only present the details for the unstable case. We can rewrite equation (4.47) in the

following equivalent form,
alyx + 0,x = Ax + R(x), (4.48)

where A = DF(0) and R is analytic in U, continuous on its closure and R(x) =
O/

Now let v € R and h > 0 (which we consider fixed throughout this section) and
consider the following sets,

Sh={p e C|[Im(p)| <h}, DI={zecC|Re(z) <—}.
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Moreover, denote by X the complex linear space of analytic maps f : Sp x DY — c*
which are 27 periodic in the variable ¢, continuous on the closure of its domain and

having finite norm,

= s [l 2)]| < oo
(p,2)€SK x DY

where || - || denotes the standard infinity norm defined in C%. The pair (X, ||-||5) is a
complex Banach space. Let us prove two Lemmas which will be used to prove the main

result of this subsection.
Lemma 4.3.1. The linear PDE,

(ady + B0.) § = AL
has a fundamental matrix solution I1 of the form,

o cosp —singp Ons
sinp  cos g
H((:D?Z):
__[cosgp —sing
022 e
singp  cos

Moreover, it has the following properties:
1. 11(0,0) = 1d,
2. Il(p1 + @2, 21 + 22) = I(io1, 21) (2, 22),
3. (¢, 2) is invertible for all (¢,z) € C?,
4. T (g, 2) = I(—p, —2).

Proof. Verifying that II(y, z) satisfies the linear equation is a straightforward computa-

tion. Moreover, it is not difficult to check the above properties. O
Lemma 4.3.2. Let y € R and L, 3 : X — X be the linear operator defined by,

Lo (&) = (ad, + 0,) & — AL.
The operator L, g has the following properties,

118



c
1. Ker (Lag) = < (e, 2) lceC?y,
0

2. If f € X and moreover f(p,z) = O(e**) in S, x DY then equation L 5(£) = f

has a general solution of the form,

C

E(p, 2) = I(p, 2) . +L7Y(f),
where L~ is defined by,
0
L7, 2) = / II(—s,—s)f(p+ s,z + s)ds. (4.49)

Proof. Let us prove (1). Suppose that L, g(§) = 0 for £ € X. Let { = Ilc where I is the
fundamental matrix of Lemma 4.3.1. Then according to the definition of £, 3 and due
to Lemma 4.3.1 we conclude that (a0, + $0,)c = 0. Thus c(p, 2) = co(z — ¢) where
co : C — C*is an entire, 2m-periodic vector function. As &(p,2) = ezg(cp, z) where 3
is bounded in Sj, x D¥ then co(p — z) = e*II" (g, 2)E(p, 2) = e*TI(—p, —2)E(¢p, 2).
Thus,

cosp  sinp 0
2x2
co(yp — 2) e sy £(¢, 2)
0 - = y <)y
cosp sinp
O2x2 e*
—singp cosp

which implies that all components of ¢y are bounded entire functions, hence must be
equal to a constant, i.e. ¢ € C*. Moreover, as the last two components of ¢y decay to
zero as Rez — —oo then these must be equal zero. Thus proving the desired result.

Finally, let us prove (2). Let £, 5(¢) = f for f € X such that f = O(e*).
Simple estimates show that,

0
g/ ITT(—s, =) f(o + 5, = + 9)|| ds

—00

H/_(;, I(—s,—s)f(¢+ s,z +s)ds

0
§62Rez/ KeRest,
—00
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where K > 0 depends only on h and 7 which define the set S, x DJ. Therefore
the integral (4.49) converges uniformly on S}, x DY, thus defining an analytic function
L7L(f) € X such that L, g(L71(f)) = f. Since L71(f) — & € Ker(L, g) then by item

(1) there exists ¢ € C? such that,

L) —¢=1| |,
0

which concludes the proof of the Lemma. O
We are now ready to prove the following,

Theorem 4.3.1 (Unstable Parametrisation). For every c € C? there exists -y > 0 such
that equation (4.47) has an unique analytic solution X" : Sy x DY — C*, which is
2m-periodic in @, continuous on the closure of its domain and possessing the following

asymptotics,

YU(p,2) =M(p,2) | | +0(*), inSyx DL (4.50)
0

Proof. Let ¢ € C% and v > 0 (to be chosen later in the proof). We look for a solution &
of equation (4.48) belonging to the Banach space X. To that end we rewrite equation

(4.48) in the equivalent form,
Lap(§) = R(§), (4.51)

where the linear operator £, g acts in X according Lemma 4.3.2. As ¢ € X then standard

Cauchy estimates applied to the map R which is defined in the open ball U yield that,
R(€) = O(e*), in S}, x Dy.

for v > 1 where 73 > 0 being sufficiently large. In the light of Lemma 4.3.2 we can
invert £, 5 in (4.51) and conclude that in order for £ be a solution of (4.51) it must

satisfy the integral equation,

c 0
E(p,z) =T(p, 2) . + /_ II(—s,—s)R({(@ + s,z + 8))ds. (4.52)

120



Let us denote the nonlinear operator in the right hand side of (4.52) by G(§). Note that
a fix point of this operator yields a solution for (4.51), hence a solution for (4.67). We
shall construct a fixed point of G using a contraction mapping argument. We first show

that G leaves invariant a certain ball. Let B, denote a closed ball of radius p > 0,

B,={{ecX|[€llx <p}
Notice that,

&
II < k(]chv
0

X
where kg > 0 is some constant. If £ € B, then

19|z < kollel +  sup
(Q&Z)ES}LXD;“/

0
e ? / II(—s,—s)R(&(p + 5,2+ s))ds

—00

Now since R is analytic in U and R(x) = O(||x||*) then simples estimates show that,
IR(E(p + 5,2+ 5))| < ki€l + 5,2+ 9) |7 < kae?Pe® €],

valid in \Sj, x DY where v > 7 for 2 > 0 sufficiently large and k1 > 0 is some constant.

Thus,

0
16©x < kollel +  sup ky/ R R(E(p + 5,2+ 5))]] ds
(p,2)ESEx DY —o0

0
< ko |lc]| + ki [|€]|% sup eRe®) / e ds (4.53)

zeDY

< ko lle]| + kikz [[€]1% 77,
where ky > 0 is some constant. Now let p := 2k ||c[|, so if £ € B, then it follows from
estimate (4.53) that,
191z < § + kukape™,

and choosing v > max {log(2k1k2p),v2,71} we conclude that ||G(§)|l; < p. Thus
G(*B,) € B,. Now we show that G in contracting on the ball B,. Given &;,& € B,

then
0

G(&1)(, 2)=G(&2)(#, 2) = / (s, —5) (R(&1(p + 8,2+ 5)) — R(&a(p + 5,2 + 5))) ds.

—00
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For (¢,2) € S x DY the finite segment 0&1(¢p, 2) + (1 — 0)&2(,2)) belongs to the

open ball U and since 9B, C X is convex then Cauchy estimates yield,

1
IR(&1 (¢, 2)) — R(&(p, 2))|| < @) ||g; — §2H35/0 [AR(0€1(, 2) + (1 = 0)Ea(wp, 2))[| dO
< kge?BeC) g — ol

where k4 > 0 is some positive constant. Thus,

0
IG(&1) — G(&)llx < sup / koe e TG | R(& (9 + 5,2 + ) — R(&a(p + 5,2+ 5))|| ds

26D2¢ —00

0
< Sup/ kakoe®e® ) ds |16 — &)

zGDE; —00
<ke V& — &l

where k = kaky. Choosing v > max {log(2k),log(2k1k2p), 72,71} we get that,

1
1G(61) = G(&2)llx < 5 16— &l

for £1,&2 € B,. Thus, applying the contraction mapping theorem to the operator G
we obtain the existence of an unique fixed point XY* € 9B, of G, ie. X" = Gg(r").

Moreover, estimate (4.53) implies that,

c
Y, 2) = II(p, 2) + O(e%*), in S), x Dy.
0

O

Remark 4.3.1.1. If ¢ = (0,0)7 then the unique analytic solution Y* possessing the
asymptotics (4.50) is the trivial solution, i.e., Y% = 0. Indeed, from the proof of the
previous Theorem we know that Y% = G(Y*) and since ¢ = (0,0)T then G(0) = 0.

Due to the uniqueness of the fixed point we conclude that Y* = 0.

Remark 4.3.1.2. If F is real analytic and ¢ € R? then Y is real analytic in the half
plane R x (—o0, —y) for some v > 0. Moreover for any (¢p,20) € R X (—o0, —7) the

orbit {Y*(at + ag, Bt + 20) },cr- belongs to the local unstable manifold Wy of the
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equilibrium point. In fact x(t) = Y"(at + ag, St + zp) for t € R™ is an integral curve
of the vector field F' and it spirals to the equilibrium as ¢t — —oo at an exponential rate

ePt. Thus we call X¥ an unstable parametrisation.

Remark 4.3.1.3. If we denote ®! the flow of the vector field F' then the following relation
holds,
Yo+ at, z + ft) = (X% (p, 2)). (4.54)

and we can use it to extend the domain of analyticity of the unstable parametrisation

Y onto a larger domain in C? until it leaves the domain U of the vector field F.

Remark 4.3.1.4. In Theorem 4.3.1 the freedom in the choice of the unstable parametri-
sation Y is given by the parameter c. In fact this is the only freedom we have. If Y
is a different solution of equation (4.47) such that Y% = O(e?) then as in the proof of

Theorem 4.3.1 there exists an unique é € C? such that,

Y(p,2) = I(g, 2) S + 0(e*), (4.55)

in Sp x Dy for some 4 > 0. Moreover, according to Lemma 4.3.1 we get that,

c
Y (¢ + o, z + 20) = (g, 2)1(g0, 20) +0(e*),
0
for (¢ + @0,z + 20) € Sp x DY. Comparing the previous equation with (4.55) we

conclude that Y“(¢ + o,z + 29) = 'i‘“(gp, z) if and only if,

cos —sin
g= e | CF0 IS (4.56)
sinpg  €os g
Equation (4.56) can be solved for (g, z9) and we conclude that the unstable parametri-

sation X" is uniquely defined up to a translation in (¢, 2).

4.4 Approximation Theorems

In this section we provide explicit approximations for the unstable manifold W of the

equilibrium of H, in different regions. These approximations are constructed using the
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formal separatrix of the normal form.

4.4.1 Preliminaries

Given n € N we normalize the Hamiltonian H,. up to order 2n + 4 (see section 2.1.1 for

more details about the normal form). After 2n steps of normalization we get,

2n+4
Hop=Hoo®y=H'+ > amjdl" e + Rep, (4.57)
3m+2j+21>5
where ®,, is an analytic near identity canonical change of coordinates, H? = —I; +

I — el + nlg, and I;, i = 1,2,3 are given by (4.1). Moreover R, ,, is a real analytic
function defined in an open neighbourhood of the origin in R*, analytic with respect to
eand R, = O((|q|% + |p| + |e|%)2"+5). In what follows it is convenient to complexify
the Hamiltonian H, ,, so we may assume that it is analytic in an open ball B,, C ct
for some o, > 0 sufficiently small. The normal form coefficients a,, ;; € R are uniquely
defined and the coefficient 7 in H? is assumed to be positive which corresponds to the
stable case.

Also, given two vector-functions f,g : @ € C?> — C* and p > 0 we write

g = O,(f) if there exist ¢; > 0, i =1,...,4 such that,
9:(@)] < cilf@)P*, i =12 and |gi(2)| < cilfi(@)], i=3,4,  (458)

valid in © where f; and g; denote the components of the corresponding functions.

Eigenvalues of DXy (0)

The matrix DX, ,(0) has the same eigenvalues +f, i as DX g, (0) since these are
preserved under the normal form procedure. Moreover, using the successive normaliza-

tions of H. we can prove the following,

Lemma 4.4.1. For ¢ > 0 the functions 3. and a. can be expanded into convergent
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power series,

0o 0o

_ § : 21

BE =4,|1— E a071,152l 2, Qe = 1-— al,O,l(S )
=2 =1

where 62 = € and the coefficients in the series above are the normal form coefficients of

H..

Proof. Let n € N and consider H,,, as defined (4.57). We scale variables according
to the standard scaling (2.11) and change to complex variables given by the following
relation,

z=q +iq2, w=p1+ip2, Z=q —iG2, W= P —ip2.
The map defined above does not preserve the canonical symplectic form. However, the

following relation holds,

3
dql/\dp1+dq2/\dp2:%(dz/\dw+d2/\dw),

and in the new variables we multiply the Hamiltonian by 26=3 and use the canonical
symplectic form to derive the Hamiltonian equations. The Hamiltonian H, , in these

new coordinates reads,

o =i (20 — Zw) + (22 — W + g(ww)z) 5

ntd a 2w —zw\"
m,Jj,! — —\j sk—3 2n+2
DD < 2i > (W) 8% 4 O™,
3m+2j+21=k>5
(4.59)

Note that the eigenvalues of DXp, (0) are the same as DXj (0). Now let Z =

(z,w, z,w). We can write the Hamilton equations of (4.59) as follows,

7= AsZ+0 (quz) ,

where,
ias,n _6,u5,n 0 0
—0 10 p 0 0
45 = | +O(s22),
0 0 —iQe _5Ne,n
0 0 -0 —iQe

)
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and

n n
Qe = 1— Z al,O,l5217 Hen = 1- Z aO,l,l+152l' (460)
=1 =1

Since the spectrum of Ay is invariant under complex conjugation and symmetric with

respect to the imaginary axis, we can write its characteristic polynomial as follows,
det(As — Ady) = A* + b2 (0)A? + bo(9) (4.61)

where by(d) and by(d) are analytic functions possibly having complex coefficients. A

closer look to the determinant (4.61) gives,
ba(8) = 202, — 28%1cn + O(6°™F2), bo(8) = (a2, + %p1en)” + O(62"2), (4.62)

and using the quadratic formula it is not difficult to see that,

2
{2 () e

is a root of the characteristic polynomial, hence an eigenvalue of As. Moreover a simple

computation shows that,

2
<b2é5)> — bo(0) = —48%0 e + 11(6),

where f1(8) is an analytic function such that fi(8) = O(6%"*2). Thus one can define

an analytic function,

9(8) = 2icee n Oy [ fen — 4!2127?53527
such that, )
7o) = (22) - )
Now since g(d) = 2icte n0/Tlen + O(6?"*1) and bearing in mind (4.62) we have that,
2O o) = G+ 6 e)? + a00)

where f>(8) is analytic and f2(6) = O(6"+1). Putting all these observations together

we conclude that,

f2(0)
iae,n + 5\/ﬂe,n)2 ’

Ae i= (z'ozem + 6, /,ue,n) \/1 + (
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is an eigenvalue of DXy (0) and is analytic with respect to 6. Moreover, it is not

difficult to see that,

e = iy + 0y /Tien + O(6" 1),

Finally, taking into account the expressions (4.60), the fact that n is an arbitrary natural

number and A is analytic we conclude that,

00 00
Ae = 1 <1 — ZCLL(]J(;Zl) +4,|1— Za071,152l—2.
=1

=2

O

Remark 4.4.0.5. Given n € N, the Hamiltonian H,,, after the standard scaling takes

the form,

2n+4
1 € .
W=D+ 5lo— I3+ 113 4 6 + > am B+ 057,
’ 277 271 4 : g
3m+2j+20=k>5

Let us denote by hj the Hamiltonian hs,, truncated at order §2n+2

. The eigenvalues
of the matrix DX}, (0) are £0¢ + iae where o, and 3¢ are analytic with respect to
§ = €2 due to the previous Lemma. Then according to [7] (see Theorem 2 on pag.
233) it follows that the eigenvectors of DXp,  (0) will also depend analytically from 4.

Consequently, there exists an analytic matrix Tj such that,
As =T DXy, (0)T5,

where
BT 0 Be e
As = and B = . (4.63)
0 —-B —ae  Se
Moreover, it is not difficult to see that the matrix Dth(O) has eigenvalues £4, , ic p

where,

n n
OZEm =1 Z a1,07152l, en — 5 1-— Z a0717l+1521. (464)
=1 =1
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T P

Figure 4.2: Domain 7"

Now according to previous Lemma we know that, 8. = B, + O(6?"13) and a, =
Qen + O(62"F2). Thus, we can also transform the matrix DXz (0) to its canonical

form,

Asn = T({T}Dth(O)T&n.

where the matrix T ,, is analytic with respect to ¢ and,

BT 0 «
A(S,n _ n and B, — Bs,n €,n
0 —B, —Qen 6&,1’1,

)

Finally, analyticity in ¢ yields,

Ts = Tsn + O(0*2) and As = Ag,, + O(5*"2).

4.4.2 First approximation Theorem

In this subsection we prove that the unstable manifold W can be parametrised by an
analytic map I'* which is close to a partial sum of the formal separatrix X and satisfies

the following PDE,
DI" = Xg, ,(T"), (4.65)
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where recall from (4.2) that D, = a0, + B:0.. More concretely, let p,o,h > 0 and

consider the following set,

To (p,o,h) ={z € C|Re(z) < p, Xo(p, 2 —s) € By, Vs> 0Vp € Sp},

where S, = {p € C| |Imp| < h}, B, C C* is an open ball centered at the origin
having radius 0 > 0 and X is the leading order parametrisation given by (2.17). It is
not difficult to see that has poles at z = i§ +ink, k € Z. Hence the domain 7(p, 0, h)
has the form similar to Figure 4.2.

In order to ease the notation we will occasionally drop the explicit dependence
of the domain 7;*(p, o, h) on the parameters (p,o,h). Now we are ready to prove the

following,

Theorem 4.4.1. Given p,o,h > 0, for every n € N, there exists an analytic unstable
parametrisation T% : Sy, x To“(p, o, h) — C*, 2m-periodic in ¢, continuous on the closure

of its domain and satisfying the PDE (4.65) such that
T = X? + 02n+2(5)7

valid in Sy, x Ty* where X% is a partial sum of the formal separatrix X up to order

82"*2 jn the first two components and up to order 6"+ in the last two.

Proof. Since DXp, ,(0) is not semisimple and we can not apply directly Theorem 4.3.1

to get an unstable parametrisation of W, .

We overcome this difficulty by scaling
variables according to the standard scaling (2.11). The Hamiltonian H , in the scaled
variables reads,

hsn = b + O(6*"2), (4.66)

where
2n+4

hy=-L+(L-I+nl3)d+ Y amd" e
3m+2j+21=k>5
Given ¢ > 0, for sufficiently small 4 the domain of analyticity of the scaled Hamiltonian

hsn contains an d-independent open ball B, C C* centered at the origin and having

radius o.
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Now following Remark 4.4.0.5 we can transform the linear part of the Hamil-
tonian vector field Xj,  into its Jordan canonical form by a linear analytic change of

variables,

As =T; ' DXy, (0)T5,

where Ay is the matrix given in (4.63). Thus, we look for solutions of the following

PDE,

Dex = Asx + Fs(x), (4.67)

where Fj is analytic in B,, continuous on the closure of B, and Fs(x) = O(||x||?).
We can now apply Theorem 4.3.1 and obtain for every ¢ € C? an unique unstable
parametrisation YU . S}, % Dij — C*, 27-periodic in , continuous on the closure of its

domain and satisfying the integral equation,

Te—m | + LY F5(XY)), (4.68)
0

where £71 is given by Lemma 4.3.2 and v > 0. Following Remark 4.3.1.3 we can extend
the domain of analyticity of the unstable parametrisation Y onto a larger domain
Q2 Sp x DY of C? until it leaves the open ball B, where the Hamiltonian hsn is

known to be analytic.

Let Y* = T5 o0 Y% In the following we will construct an analytic map X,
(close to the formal series X in the formal sense) that will approximate X" in a
suitable subdomain of €. First note that the linearized system D .X),» (0) has eigenvalues
+ 05 nEics , where as , and S5 5, are given by formulae (4.64). Also according to Remark

4.4.0.5 we have that

Be + it = Bey +icen + O(672). (4.69)

Now define D, ;, = ate nOp + e 0. As in the proof of Theorem 4.2.1 we let X (¢, 2) =
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R,£(2) and note that,

DE,nX - th (X) = De,chpg - th (RQDS)
= _as,nRngh (5) + /Be,nRgpazf - RgothL (5) (4'70)
= Rgp (/Be,nazf - XBZSL (§)>

where,
2n+4

hy=(L-L+nl3)o+ > ay i
3i+2j+2l=k>5
i#1 or j#0
Now changing to the polar coordinates (6, r,©, R) as in the proof of Theorem 4.2.1 we

define the following functions,

n ) ) z 2
0" (2) = =B, Y M‘52’/ (T("Rs))Jda e =,
0

2J
jH=i>1
i>11>0 (4.71)
rM(z) .= Zrk(z)é%, RM(z) := —%@r(")(z).
k=0

where the coefficients rj are defined in Claim 4.2.1.1 of Theorem 4.2.1 which are odd

polynomials in the variable 7y (recall that 79 = \/%ﬁh(z)) Thus, it is clear that the

functions (), (™ and R(™ are analytic in C except for poles z = ig +irk for k € Z.

Also from the proof of the same Theorem it follows that given p, o, h > 0 we have that,

2n+4

n n n 2]'(107 il n - _ n .
627n8§7~( )_ <’I"( )_77(',"( ))3) 52 _ Z TJ(T( ))2,] 1516 2 — 0(52 +2€3 )’
2j+2l=k>5
(4.72)
valid in the domain 73*(p, o, h). Finally let us define the map X,, as follows,
Xy = Rgoén, (473)

where £, (z) = (R(”) cos 0 R(M gin (") (1) cog §() | (") gin 9("))T. Taking into ac-

count (4.70) and the estimate (4.72) it is not difficult to see that,
F 1= DenXp — Xpp(Xp) = 0(67"2€%), in S x Tg".
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Moreover, it follows from the construction of the functions above and the last estimate
that X,, coincides with the formal separatrix X of Theorem 4.2.1 up to order §2".

Now following Remark 4.4.0.5 there exists a linear analytic change of variables
T5,, that transforms the linear part of the vector field th into its Jordan canonical
form,

Asy = T({;DX%L(O)T&”.
and moreover,
Ts = Ts,, + O(6*" ) and As = Ag,, + O(5*"1). (4.74)

Further, if 5(” = T(S_T} o X,, then it is not difficult to see that,

Eae,n,ﬁe,n(xn) = FgL(XH) + Fn7 (475)
where,
FP(x) = T; ! (th (x) — Dth(O)x) Ty and F, =T} oF, 0Ty,

and L, g... is the linear operator defined in Lemma 4.3.2.
Now let Q¢ = QN (S, x T3*(p, 0, h)). Note that F§'(x) = O(||x||*) and standard
Cauchy estimates yield F"(X,,) = O(¢%) in Qy. Moreover, since F, = O(622¢%)

we can use Lemma 4.3.2 to rewrite equation (4.75) as follows,
X, =1I + LN ER (X)) + L7 (E), (4.76)

where the constant c;s,, is defined by the limit,

Csn ] -
= lim H(_SO»_Z)XH((:D’ Z),

0 Rez——o0

which converges uniformly with respect to ¢ € S;,. Also note that it follows from the

expressions (4.71) and (4.73) that cs,, € R?[0].
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Now we set ¢ := ¢;,, in (4.68) and compute the difference (4.68)—(4.76),

Y - X, = L (E (YY) - F(Xa)) — L7 (Fa), (4.77)

where we have used the linearity of £~!. First we estimate the difference F5(¥*) —

F§'(X,,). Observe that,
F5(Y") = F{(X,) = Fs(X") = FP (YY) + F (YY) — F§ (Xn). (4.78)
Taking into account (4.66) and (4.74) we can deduce that,
F5(x) = F§'(x) + O(5*" " |x|*),

and bearing in mind (4.68) we get the following upper bound for the first difference of
the right hand side of (4.78),

F5(XY) — F(YXY) = O(6%12e%), in Q.

Now we handle the second difference of (4.78). It follows from the Fundamental The-

orem of Calculus that,

~ 1 ~ ~ ~
R - FR(X,) = /0 DEP(sT" + (1 — 8)K,)ds(T" — X.).

Using Cauchy estimates for the function Fj and the fact that both functions Y and
X, admit an upper bound of the type O(e?) in 2 we can bound from above the integral
in the previous formula by O(e??). Thus,
FMTY) — FP(X,) = O (622(1?“ - Xn)) in Q.
Let W := Y% —X,,. Taking into account the upper bounds for the differences in (4.78)
and the definition of £71, it is not difficult to get the following estimates valid in g,
e L7 (F) e, 2)|| < Roo™ 2,
o727t (Fo(E) = F(T) (,2)
0

He—2zc—1 (Fg(r“) - Fgl(Xn)> (0, 2)] < / ko

< k‘152n+2,

e 2ETIW (o + 5,2 4 5) H ds,

(4.79)
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where ko, k1 and ko are positive constants and ||-|| is the standard infinity norm in C*.
Now for t < p let us define,
w(t) := sup e W (e, 2)]|.
(¢,2)€Q0, Rez<t

Taking into account the estimates (4.79) and equation (4.77) it is not difficult to derive

the following inequality for w(t),

t
w(t) < kgo® 2 4 /<;4/ e3Sw(s)ds, t<p.
—00
An application of Gronwall Lemma yields,
k453p

w(p) < kze~ 3 02"2,

Thus, for (¢, z) € Qy we have that,

TU(p, 2) = X (p, 2) + O(26%+2), (4.80)

Now we extend the domain of analyticity of Y* to S} x To"(p,o,h) and conclude
the same estimate (4.80) in that domain. The argument goes as follows. Recall that
YU is analytic in a domain Q C C? which contains the set S}, x DY. Now suppose
that S, x T3"(p,o,h) is not a subset of 2, that is, suppose there exist (¢q,z20) €
Sp x Tg"(p, 0, h) such that (¢, 20) ¢ 2. Define,

ti=inf {t e R™ | (po+1t,20 +1) ¢ Q}.

Note that the infimum exists since there is tg € R~ such that (¢g + to,20 + to) €
Spx DY C ). Moreover, the set () is open in C?, thus its complement is closed. Hence,
(po + t*, 20 + t*) belongs to the complement of  and (¢g + t,20 + t) € Qq for all

t < t*. Thus, we can use the estimate (4.80) to get,
T(po + 1% 20 + 1) = Rulipo + 17, 20 + 1) + O(5°"2),

and bearing in mind the definition of 7;"(p, 0, h) we conclude that for § sufficiently

small T“(QDO + t*, z9 + t*) belongs to the open ball B,. Thus contradicting the fact
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that (oo + t*,20 + t*) ¢ Q. Thus, the unstable parametrisation Y is analytic in

Sp x Tg"(p, 0, h) and the estimate (4.80) also holds in this set. Moreover,

YU X, =T50X" ~Ts,0X,
= Tsmo (T" = X,) +0(5*") (4.81)
— O(e2z52n+2) + 0(52714—2) — 0(52714—2)’

and if [X} denotes a partial sum of the formal separatrix up to order 52" then,
2n

Tu _ [X] = Y _X, 4+ X, — [X] = O(827+2) 1 O(627+1) = O(527+1).

Finally, denoting by I'* the parametrisation X" in the unscaled variables (2.11) we get

the desired result. O

4.4.3 Extension of the approximation towards the singularity z = i

In the previous subsection we have constructed approximations for the unstable manifold
W2 near the equilibrium point. Then using a finite time stability argument we have
extended the approximation until it leaves the domain of analyticity of the Hamiltonian
vector field. Given n € N, the approximations X have singularities for complex z € C.
In fact according to the definition of X7 in the statement of Theorem 4.4.1 we known

that X% = R, (7, &5, €5, €1) where

n n—1
& =0 ) po* T2, &= ¢ 0%, (4.82)
k=0 k=0
n n—1
&= o, & =0 y_ o™, (4.83)
k=0 k=0

where 9! are even polynomials in 7 of deg(¢.) = 2k and ¢ are odd polynomials in 7o
of deg(qﬁ@ = 2k 4+ 1. Recall that from the definition of 7y that it has simple poles for
z =15 + km with k € Z. Thus the sum X7} grows in a neighbourhood of the singular

. T
point 2 = 13.
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In this subsection we extend the approximation result obtained in the previous
subsection for points d-close to the singularity z = i5. For that end it is convenient to

introduce a new variable 7 which satisfies the relation,

5& LT
= — —. 4.84
aET+Z2 (4.84)

z

According to Lemma 4.4.1 we known that a. = O(1) and 8. = O(d). Thus, change
(4.84) fixes the singularity at 7 = 0 and for small § augments a neighbourhood of the
singularity by a factor of order 6~ 1. In the new variable 7, the formal separatrix X;

satisfies the following PDE,
'DX(; = Oée_lXHENF (X5),

where D is the differential operator O, + 0, used in chapter 3. This fact is very important
and it will be used later on in the development of the theory. In order to extend the

approximation given by X% we first need to study its behaviour near the singular point.

Re-expansion of XY around the singularity i3

In order to derive the Laurent series of X} we first expand the base functions, vy and

. : o
Yo around the singularity i3,

Ty 2L S 2t erily i 2L S (2
(¢ +ig) = Z\/;g <1+k2:1ak< >, ’YO(C+22)—Z\/;<2 <1+k§::1bk< >7

where ay, b, € C and both functions are analytic in punctured disk 0 < |¢| < 7 (where
the size of the disk is given by the distance to the closest singularity). In the following
we will only deal with the function,
n
. 1 £2k+42
& =0 pis* .
k=0
We compute its Laurent series in the new variable 7 and the same procedure can be

applied to the remaining components of X¥. Let us present the details. Since w,i is an

even polynomial of degree 2k in the variable g, we can write,

k
1 1 2 1
v = Zwm%l, where Vi €R.
i=0
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According to the Laurent series of 7y we have,

27

21 00
T/JkC‘H— Z¢m< \/7> % 1+ZGJC2j
n) ¢ =

1 . ,
= @ Z ,l/}]}:’iCQZ’
=0

(4.85)

for some 1%@ € C and analytic in 0 < || < m. Now taking into account the Laurent

series of 7y we can expand the function &7,

n

§’f(C +Zg) = Z ( (2 1 + Zb Czk C2k Zwk Z<2z> §52k+2

k=0

n 1 . '
— Z m (Z ¢i7ig2z> 52k+2’
k=0 =0

for some Q,Zu),iz € C and analytic in 0 < |¢] < 7. At this point we let { = 5—27 (according
to formula (4.84)) and substitute into the previous series. First observe that due to
Lemma 4.4.1 the quotient g—z is an odd function of § and analytic in a sufficiently small

open disk centered at 4 = 0. Moreover,
<&> 5%2;1 i0%.

It is convenient to write £J'(7) for &7 ( T+1%) in order to simplify the exposition. Thus,

Zzwl 52— (2k+2) th( ko), 62] 2(i—k— 1)52k+2

k=0 i=0

Note that the term §2**2 cancels. Now setting i + j = m we can rearrange the sums

in the previous formula as follows,

o0

S{L(T) = Z Z Zh2 —k— 1,]¢k2 —k-1) 52m.

m=0 \i+j=m k=0
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Finally we simplify the part inside the parenthesis in the previous formula. If | =i—k—1

then,

0o m—1
G =6 > > hadl,

m=0 l=—n—1 i+j=m

i—k—1=I
k=0,...,n
5 ¢nml
l=—n—1

analytic for |6] sufficiently small and 0 < |7] < G
Similar expansions can be obtained for the other components of X and we

summarize the results in the form of a Lemma,

Lemma 4.4.2. For anyn € N the functions ', i = 1,...,4, have the following Laurent

: . o
expansions around the singularity i

00 m—2
&1 (r) = Z g Z rams G =D 8 Y byt

m=0 l=—n—1 m=0 l=—n—1
0o m—1
_ 2 72 2041 2
- Z 5 " Z ¢n7mvl7— ) gn Z 5 " Z ¢n ml 7
m=0 l=—n—1 l=—n

where T is given by formula (4.84). The coefficients 1/;711 .l QN% i ggi .l 1/;721 m. belong

to C and all series converge for |§| sufficiently small and 0 < |7 < g7
Thus, X7 has poles at z = i5 + ink, k € Z of order 2n + 2 in the first two
components and of order 2n + 1 in the last two components.
Extension Theorem
Now given c1, r1 and p; positive real constants and |01 < 7, consider the following set,

Dy (0) ={7eC| |arg(r +r1)| > 7 — 01,

—c1071 < Re(r) < p1, [Im(7)| < c167'}.

Note that D (0) is an open domain in C and is only defined for 6 < L. In the following

we shall leave ¢q, 61 and p; fixed. Moreover, in order not to overload the notation
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and if no confusion arises, we shall not write the explicit dependence of D} () on its
parameters and taking into account the relation (4.84) we will shorten the notation by

writing X% (¢, 7) = XJ (¢, 2) and T'%(¢,7) = T"%(p, 2).

Theorem 4.4.2. For any n € N there exists an r1 > 0 sufficiently large such that
the unstable parametrisation T'" of Theorem 4.4.1 can be analytically extended onto

Sy x DY(0) such that,
I = X% + Ognga(r7), in S, x DY(6).

Proof. In the new variable 7 the unstable parametrisation I'* of Theorem 4.4.1 satisfies
the following PDE,
DI =o' Xy, (T"), (4.86)

where D = 0, + 0-. In order to extend the domain of analyticity of the unstable
parametrisation and the estimate (4.94) onto the domain D} (J) we derive an new
integral equation from which will follow a solution of the PDE (4.86) that will match
the unstable parametrisation in a boundary domain. By the uniqueness of solutions of
(4.86) it will provide the desired extension onto D} (). Let us present the details. Let
Z =T" — X7 It follows from equation (4.86) that Z satisfies the PDE,

DZ = o' Xy, ,(Z +X}) — DX}. (4.87)
Now we rewrite the previous equation as follows,
Lo(Z) =Fo+ (F10+F11)Z+ F>(Z), (4.88)
where Lo(Z) = DZ — AoZ (the matrix Ay is given by (2.37)) and,

Fo =o' Xp,,(X}) - DXF,
Fi0=DXpg,,(X5) — Ao,
(4.89)
Fl,l = aE_lDXHs,n (X?) - DXHO,n (X?),

Fo(Z) = o (X, (X5 + Z) — Xp,,(X§) — DXn,,(X5)Z) .
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Now for a given 79 € /., let us define,
Zin(0,7) == Uo(p,7)Uq " (¢ = 7 + 70, 70)Z(p — T + 70, 70), (4.90)
where £, is the left boundary of the set D (),
le, ={7€C| Re(r) = —c107Y,  [Im(7)] < 615_1}, (4.91)

and Uy is the fundamental matrix of the linear operator Ly as defined in (2.38). Notice

that Z;, (v, 70) = Z(p,70). Thus, equation (4.88) is equivalent to,
Z="Z + Ly (Fo+ F10Z + F11Z + Fa(Z)), (4.92)
where 551 is acting by the following formula,

£al(Z)(<p, 7) = Up(p, 1) /T Ugl(gp —7+r,r)(p—T+ 7T T)dr (4.93)

and the path of the integral is a segment joining the points 7y and 7. In the following
we will use equation (4.92) to extend the domain of analyticity of Z. To that end we
have to estimate the terms involved in equation that equation. Let us define a set €2,

as follows,
Qr=A{(p,7) € Sp x DY(0) | ¢ — T+ 10 € Spy AT+ (1 — N)19 € DY(9), YA € [0,1]}.

Note that €2, is an open and connected subset of Sj, x D} (). We need the following,

Claim 4.4.2.1. Formula (4.93) defines a bounded linear operator £y : X,41(Q,,) —
X,(Qr,) for p > 3.

Proof. That L5 is linear it's clear from the definition. Now let £ € X,+1(Q,,) then we
can write & = (77P72¢;, 7P 2y, 7P 77P71E,) where each & is bounded in Q.
for i = 1,...,4. Also from the definition of £y it is clear that £;'(¢) is an analytic
function in €, continuous on the closure of its domain and 27-periodic in ¢. Thus, it

remains to show that H/Lgl(f)Hp < 00.
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Taking into account that Uy is a normalized fundamental matrix (in particular
det Uy = 1) then denoting by g; each component of U0_1§ then we get the following
estimates,

M1 |€]| My €]
U p+1 U, p+1
’gl((pﬂ')‘ < O‘T—’p7 ’92(Q07T)‘ < |O7_|p+4 ’

My €] My €]l
U, p+1 U, p+1
l93(, 7)| < |O7_|T7 l94(, 7)| < |O7_|T7

valid in the set Q. and MU51 some positive real constant. Note that ||{][,,; < oo by
assumption. Now we estimate the integral in the formula of the definition of £51. Let
us handle the first component g;. Thus, taking into account the estimate for g; we get,

r My [[€]] 0 My €]
S/ UO—”“wmg/ Tugt Bllpt o

0 [r[? o TSP

/ g1(e —7+r,r)dr

70

Now using Lemma 2.4.1 we obtain the following estimate for the integral of gy,

Kp—lMUal ||£Hp+1
P

/ g1 —71+rr)drl <

0

|7
valid in 2. In the same way it is possible to obtain similar estimates for the other g;'s.

Consequently,
le5 O, < K 1l

where K = (Kp_l + Kp+3 + Kp+2 + Kp_g) MUglMUO' |

Let us continue the proof of the Theorem. We start by estimating the function
Zin in Q. It follows from Theorem 4.4.1 that given ¢; > 0 sufficiently large the
following estimate,

I(p,7) = X3 (,7) + Ogpaa(r71), (4.94)

holds on the segment ¢., which was defined in (4.91). Thus, according to the definition
(4.90) we have that || Zin (¢, 7)|| < Cind® L in Q.. Thus Z;, € Xon—o(Qry).
Now, taking into account the definition of the formal separatrix X it is not

difficult to derive the following estimate,
DX" — Xpy,(X") = O(8%" ! cosh™2"72(2)),
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where X is a truncation of X at the order §2". The previous estimate implies that
IFo(,7)|| < Colr|72" 2 in Q. Thus Fy € X2,_1(Q5,) and in light of the previous
claim we conclude that £al(F0) € Xopn—2(Qr).

Moreover, it is not difficult to derive the following upperbounds for the functions

Fi0and Fy 1,
IFio(p, )| < Ciolr|™ and  [[Fia(e,7)| < C1 162 (4.95)
Indeed, the first estimate follows from the fact that,
Xy =To+O0s3(r"") and DXpg,,(To) — Ag=O(r7?),
whereas the second estimate follows from,
a7t =1+0(%) and DXp,_, (X}) =DXp,,(X})+ O(52).

Let p € N. The first estimate of (4.95) implies that 6~ 2F;; induces a bounded
linear operator Fi1 : X,(Qr) — X,(Q2y,) acting by the formula Fi1(&)(p,7) =
57 F1,1(p, 7)E(p,7) with [[Fiall,, < Cii. Similarly the function F1g induces a
bounded linear operator Fig : X,(r) — X,+1(£25,) acting according to the the

formula F10(&)(p,7) = Fio(p, 7)&(@, 7) with [[Frall,,,, < 07}10 Now we rewrite

equation (4.92) as follows,
(Id = 62Lyt 0o Fi1) Z = Zin + L' (Fo) + Lot 0 Fi0(Z) + Fa(Z)).

Using the fact that |§7] is bounded in D¥(5) we conclude that 6Ly o Fy 1 : X,(Qrp) —
X,(25,) is a bounded (independent of ) linear operator. Thus, Neumann series can be
used to prove that £; := Id — 62£61 o F1,1 has a bounded inverse £1_1 FXp(Qr) —
Xp(Qr,) provided [|§2L5 " o Fi|, < 1 which certainly holds for § sufficiently small.
Furthermore, similar arguments as in the proof of Theorem 3.4.1 show that for

d sufficiently small,
X, (X +x) = Xu.,,(X§) = DXp,,(X§)x = O(||x[*),
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for x € By,. Thus, according to the definition of 7, we have that F : X,(25,) —
%P-i-l(QTo)'

Thus for n > 3 we define a non-linear operator H : Xo,—2(Qr,) — Xon—2(2r)

acting according to the formula,
H(E) = L7 (Zin) + L7 o L5 (Fo)+ L7 oLy o Fro(€) + L o Ly o Fa(€), (4.96)

and prove that it is contracting on a certain closed ball in X3,,_2(€2,). Note that a fix
point of H is a solution of equation (4.92).

First we show that there is 44 > 0 such that H(B,) C B, where,

B, = {€ € Xon2() | €130 <1}

In fact, similar estimates as in the proof of Theorem 3.4.1 show that for 1 > 0 sufficiently

large and § small enough we have the following estimate,

2
81| Henlles l1€]12n 2

< 4.
1P2()l2ns < =Gt (4.97)
for £ € Xay,—2(Q,). Now let
p=2 H£1_1H2n—2,2n—2 (HzlnH2n—2 + H£61H2n—2,2n—1 ”FOH2”—1) ’
Taking into account (4.96) and estimate (4.97), then for £ € B,, we have that,
o CroMp 8M || He nHC3 Nz

H < = + : : 9

H (£)||2n—2 =9 1 T%n_4 SinZn—4 91
where

-1 —1
M = Hﬁl H2n—2,2n—2 Hﬁo H2n—2,2n—1'
Thus for,
16M || He
ry > 20170M + - H2n—’4 HCS 'u, (4.98)
sin 01

we get that ||H(&)]]y,_o < o for £ € B,. Thus H leaves invariant the closed ball B,,.
Now let us prove that H is contracting in B,. Again, similar estimates as in the proof
of Theorem 3.4.1 show that,

8 | Henll s

1 F2(&2) — Fa(&1)llgn_1 < (risin )21

162 — &1llon_2
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for £1,& € B, and according to the definition of 7 and (4.98) we get at once,

1
”H(&) - H(&)Hm-z < 5 HSZ - §1H2n—27

which proves that H is contracting in ®5,,. Consequently there exists an unique fixed
point &, € B, of H such that X} 4 &, solves equation (4.86). Thus, by the main local
existence and uniqueness theorem for analytic PDE (see for instance [24]) we conclude
that the function X} + ¢, extends the domain of analyticity of I'* onto the set {1,,.

Moreover, since

Spx DY) = | O,

ToE€Ley
we can repeat the same arguments for every 7y € {., and due to uniqueness of analytic

continuation we get that,
T = X} 4 Ogy_o(r71), in S), x D¥(6).
Finally increasing n we obtain,
T = X5 =T = X7 4+ X5 = X3 = Ona(7),

which proves the desired estimate on the set S}, x D} (6). O

4.4.4 Complex Matching

In this subsection we construct different approximations for the parametrisations of
the unstable manifold near the singularity. These approximations will be obtained by
a method known as complex matching. Roughly speaking, they retain the essential
behavior near the singularity, providing better estimates for the parametrisations in that
region. Moreover, we will show that these approximations can distinguish the stable
and unstable manifolds and can be used to capture the exponentially small splitting. In
order to construct these approximations we first need to recall some the approximations

provided by the formal separatrix X. According to Lemma 4.4.2 we can write the
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formal Laurent expansion of X as follows,

th = Xm52m’ Where Xm = RQO(TZJ}HA qg}rw qggrm &i)? (499)
m=0
such that,
(™)=Y ot )= Y by
) I<m-—1 ) ) I<m-—2 ) (4100)
O(T) =D o () = > dnr
I<m-—1 I<m-—1

Note that the formal series (4.99) satisfies equation DX; = Oée_lXHENF(X(S). Now
according to normal form theory there is a formal near identity canonical transformation
® that puts H,, into its formal normal form, i.e., HthF = H, ,0®. The transformation
® has the general form,
=Q+ > QP
2|4+ |j|+21>2n+3

p=P+ Z i)i,jJQindm,
2|i|+]j|+21>2n+4

(4.101)

written in multi-index notation where éi,jvb <i>,-7j,l € R2. The composition I'=do X(g
is well defined (it converges in the formal sense) in the class of formal series since to
compute a certain coefficient one only needs a finite number of previous coefficients.
Moreover, taking into account (4.101), (4.99) and the formal series (4.100) we can write
I' as follows,

I=> T, (4.102)

m>0
where T',,, € 72"~ 1T4[[771]] (see section 3.2 for a definition of these spaces) and most
important,
DT = o' Xy, (I). (4.103)
Substituting the series (4.102) into the equation (4.103) and collecting terms of the
same order in %™ we obtain an infinite system of equations relating the coefficients

T,,. At the leading order 6° we get the following equation,
DIy = Xpg,,, (To), (4.104)
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and for the remaining orders it is not difficult to derive,

Df‘m = DXHo,n (f‘o)f‘m + Fm(f‘o, - ,f‘m_l), m > 1, (4.105)
where F},, is a well defined function that depends on a finite number of coefficients of
H,,,. The theory of chapter 3 can be used to obtain analytic solutions for the previous
system of equations with prescribed asymptotics given by the formal series I',,. More

concretely, we have the following,

Lemma 4.4.3. There exists an v > 0 and an unique sequence of analytic functions
{T;.} >0 solving the infinite system of equations (4.105) such that for every m > 0

and N > 3 we have that,
r,B — <f‘m>N € Xn41(Sy x D,).

Proof. It follows from Theorem 3.4.1 that there exists an r > 0 sufficiently large and
an unique analytic parametrisation I'y € X1(S), x D; ') such that DT = Xpg,,, (')
and Ty < T. Hence Ty — <f‘0>N € Xn+1(Sp x DY) for all N > 3.

Now we can solve equations (4.105) using induction on m > 1. Let us start with

m = 1. We are looking for a solution I'] of equation,
DIy = DXHO’n(I‘a)I‘l_ + Fi(Ty)). (4.106)

We seek such solution by setting I'] = <f‘1>N + Z for some N > 3. Thus Z must

satisfy,
£(Z)=Ri, where Ri=D(T1) —DXp,,(T5)(T1) —Fi(Ty), (4.107)

and L(Z) = DZ — DXpg, ,(Ty)Z. Since I'; solves formally equation (4.106) we get
that Ry € Xn41(Sh x D, 7). Moreover, the results of chapter 3 (in particular Theorem
3.5.0.1) imply the existence of a normalized fundamental matrix U having the form
(2.33) such that £(U) = 0. Thus according to Theorem 2.4.1 the linear operator
L : Xn(Sy, x D7) — Xn(S, x D;7) has a bounded right inverse £ : Xn41(S) ¥
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D;) — Xn(Sp x D7) for N > 3. Since Ry € Xn4+1(Sp x D,"), it follows that
L7YRy) € XN(Sh x D;7), thus T'] = <f‘1>N + L7Y(Ry) is the desired solution of
equation (4.106). Moreover, its uniqueness follows from the fact that the kernel of L is
trivial. As N is arbitrary we conclude that I'] =< I

Finally, in order to complete the induction it remains to show that we can repeat

the same steps for m > 2. Since it does not present any difficulty we conclude the proof

of the Lemma. O

Let co > 0 be any fixed constant. Let D4 (d) be a subset of D} (d) which is

defined as follows,
1 1
DY(8) = D¥(8) N {T €C| — 077 <Rer < +oo, |Im7| < 025-5} ,
and /., the left boundary of the set D¥(J),
1 1
ley, = {7‘ €C| Re(r)=—c20" 2, |Im(7)|< 625_5} . (4.108)
Let us prove a preliminary result which will be used in the next theorem.

Lemma 4.4.4 (Complex Matching). Given n € N, the following estimate holds,

p=> T8+ 0", (4.109)

m=0

uniformly in the set Sy, X (., .

Proof. It follows from the definition of X and the formal series f‘m that,

Xy - <f’”>2n+2 52 = O™, in Sy x L,

m=0

Moreover, the previous Lemma implies that,

n

> <<fm>2n+2 - F,;) " =0(0"), in Sy x L,

m=0

Putting together these estimates we get (4.109). O
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We are now ready to prove our second approximation result.

Theorem 4.4.3. Given n € N there exists an r1 > 0 such that the unstable parametri-

sation T'" of Theorem 4.4.2 can be approximated in Sj, x D4(6) as follows,

I = T.0" +0((r8))"*?,

m=0

where the functions I',, are given by Lemma 4.4.3.

Proof. According to Theorem 4.4.2, for every n > 3 there exists an unstable parametri-

sation T : S), x D¥(8§) — C* which is a solution of the following PDE,
DI = a ' Xy, (TY), (4.110)

such that,
T = X} 4+ Ogpia(771), in Sy x D¥(0). (4.111)

Now let I = " _ T;.6°™ and define Z := I'* — T"™. Since I'“ satisfies equation

(4.110) then it is not difficult to see that Z must satisfy the following equation,
L(Z)=Fo+FZ+ F(Z), (4.112)
where L(Z) = DZ — DXy, (' )Z and moreover,
Fo=a.'Xy,_, (") - DI,
Fy =o' DXp,, (T") = DX, (Tg),
F2(Z) = o' (Xp,,,(T" + Z) - Xp, ,(T") = DXp,,(T")Z) .
Now for a given 79 € /., let us define,

Zin(p.7) == U(p, 1)U o — 7+ 70,70)Z(p — 7 + 70, 70), (4.113)

where /., is defined in (4.108) and U is a normalized fundamental matrix of L, i.e.,
L(U) = 0, which exists due to Theorem 3.3.1. Notice that Z;,(yp,70) = Z(p, 7).

Thus, equation (4.112) is equivalent to,
Z=Zin+ LYFo) + L7YFLZ) 4+ L7 o Fo(Z), (4.114)
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where £~! is acting by the following formula,

L7 (p,7) =U(p,7) /T U o—71+r7)e(p—1+7rr)dr, (4.115)

and the path of the integral is a segment joining the points 7y and 7.

It is possible to estimate the functions Fy and F'; as follows,
[Fo(e, 7l < Cod®™ 2 7"~ and  |Fa(p,7)|| < C16° |71, (4.116)

valid in S}, x DY(9) for some Cp,Cy > 0. Indeed, both estimates follow from the fact
that I'; = Oy;_1(7) for j > 0 and thus I'" =T’ + O(8%7) in Sj, x DY(6). Moreover,

similar to Theorem 4.4.2 we define the set €2, as follows,
Qr=A{(p,7) € S x D) | ¢ — T+ 10 € Spy AT+ (1 — N)19 € D5(9), YA € [0,1]}.
Note that 2., is an open and connected subset of S}, x D¥(J) and

Spx D3 = | Q.

ToELcqy

As in the proof of Theorem 4.4.2 we can show that formula (4.115) defines a bounded
linear operator £71: X,11(Qr,) — Xp(Qy) for p > 3.

Moreover, for p € N it follows from the second estimate of (4.116) and the
fact that ‘7'25| is bounded in D¥(0) that we can defined a bounded linear operator
Fi: Xp(Qry) = Xp41(Q4,) defined by the formula F1(€) (e, 7) = Fi(p, 7)&(p, T) for
€ € X,(24,). Moreover,

C
1721 < = Nl (4.117)

In order to estimate Z in the set S;, x D¥(d) we shall use a convergent iteration scheme
for functions defined in 2. For k > 0, let Zj : Q,, — C* be the functions defined by

the recursion formula,

L1 = Zin + LY Fo) + L7 o FL(Zy) + L7 0 Fo(Z), Zo = 0. (4.118)
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In the following we will show that Zjy, € X4(f2,) for all k > 0 and that {Zy};-,
is a Cauchy sequence. Let us start by estimating the functions Zj, for k > 0 in Q,,. For
k =1 we have that,

Zy = Zin + L71(F). (4.119)

It follows from Lemma 4.4.4 and Theorem 4.4.2 that,
T =T"+0("™), in Sy xLe,.

Taking into account the definition of Z;, we conclude that ||Z;, (¢, 7)|| < C’mén_% in
Q, for some Cjy, > 0. Thus Z;,, € X4(Q,) and,
98
| Zinlly < Cin sup |728]7 6"7% = O(5"73). (4.120)
TEDY(J)
Now, it follows from the first estimate in (4.116) that Fy € X5(€2,) and,

2n—1 - E
IFolls; < Co sup |72%6] % §"F2 = O(5"*2). (4.121)
T€DY(0)

Thus, (4.119) and the estimates (4.120) and (4.121) imply that,
1Zally < 1Zinlly + 17, 5 [ Folls = O(6"2).

To prove an upper bound for Zj with &k > 2 we proceed by induction on k € N. Let us
suppose that,

|Zg|l, <2||Z1]],, for some k € N.

Now we show that ||Z1]|, < 2||Z1]|,. Similar to the previous Theorem we can derive
the following upper bound,

2

8 ||H6,nH03 HZkH4

r% sin? 6, )

Thus (4.117), (4.118) and (4.122) imply that,

[F2(Zk) |5 < (4.122)

1Zksally S N Zally+ || £71 0 Fu(Z)||, + [|£7" 0 Fa(Zn)],
<NNZally + [[£7Y],5 UFLZi)5 + 1 F2(Zo)15)
81| Henll oo szui>

Ly (@
R s
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Now using the induction hypothesis we conclude that,

20 32| Henll s 12112
201 7.1, 1 32 Henllea H4>.

| Zs1ll, < 121, + H£_1H4,5 ( - r? sin® 0,

Choosing,

> 27, (201 L 32 Henlles ||zl\|4> |

4.123
sin? 6, ( )
we get || Zyy1]|, < 2||Z1]|, as we wanted to prove. Now let us prove that the sequence

{Z} >0 is Cauchy. First note that according to formula (4.118) we can write,
1 Zs1 — Zilly < [[£7Y], 5 (IF1(Zh = Zi—)ll5 + | F2(Zg) = Fo(Zp—a)ll5) - (4.124)

Similar considerations as in the proof of Theorem 4.4.2 show that,

16 ||Z H.,
|Fo(Z) — Fa(Zy ) < 2N Bl Henls
r{ sin” 01

Thus, (4.117), (4.123), (4.124) and the previous estimate give,

1Zr — Zi—ly -

1
”Zk+1 - Zk”4 < 5 sz - Zk—1H47

which implies that {Z}, is a Cauchy sequence in the Banach space (X4(2r,),[*ll4)
and has limit Z. Moreover, ||Z||, < 2||Z]|, which taking into account (4.120) implies

that Z(p,7) = O(6"73) in Q. Since 1y € 5 is arbitrary we conclude that,

n
I = T, +0(5"),
m=0
uniformly in the set Sy, x D¥(6). Finally, substituting n by 2n+5 in the previous estimate
and taking into account that I'; ;6% = O((76)?"2) we conclude that,

2n+5
Tt — Z F;%52m + 0(52714—2)
m=0
2n+5

= En: L0+ Y T,60%"+0(*"?)
m=0

m=n+1

— Z F;%52m + O((T5)2n+2) + 0(52n+2)

m=0

= ) T8 +0((78)*"*?),
m=0

valid in Sj, x D4(0). This concludes the proof of the Theorem. O
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Matching zone
z-plane 7-plane

Figure 4.3: Overview of the regions of validity of the approximation results.

4.4.5 Summary of the approximation results

Let us collect the approximation results obtained until this point. By Theorem 4.4.1
the unstable manifold W! can be parametrised by an analytic function T'* : S} X
T5“(p, 0, h) — C* which satisfies the equation D.I'* = Xy, (I'*). The parametrisation
T% has real symmetry, i.e. it takes real values for (p,7) € S, x T* N R2. Thus when
' is restricted to the reals it is real analytic (see Remark 4.3.1.2). Moreover, it is
2m-periodic in ¢ € Sp. The set Sy, is a strip in C of width A containing the real axis
and the set 7 C C has a shape similar to Figure 4.2. Furthermore we have proved in

the same Theorem that, given n € N the following estimate holds,
= Xgl + O2n+2(5)7 (4125)

valid in Sy x 73" where X7 is a partial sum of the formal separatrix X; up to order
§2"*2 in the first two components and up to order 62"*! in the last two. Recall (4.58)
for a definition of the O,, notation.

In Theorem 4.4.2 we have extended the domain of analyticity of I'* and the
estimate (4.125) until it reaches the boundary of an d-neighbourhood of the singular

point z = i5. It is convenient to present the estimate in terms of the 7 variable which
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is related to the z variable according to formula,

e T
= — —. 4.12
aET+z2 (4.126)

z

Then Theorem 4.4.2 says that I'" can be analytically extended onto S;, x D} (§) and
estimated as follows,

I = X} + Ognya(771),
in the set Sj, x D{(0). As expected the approximation given by the formal separatrix
deteriorates when 2z gets closer to i 7.
In a region closer to the singular point z = i3 a more accurate approximation is
given by Theorem 4.4.3. According to that Theorem the following estimate,

I =Y " T8 +0((r5))""*?,

m=0
holds in Sy, x D¥(0) where the functions I'; are given by Theorem 4.4.3.
We have obtained different approximations for the unstable parametrisation in

different regions of C? and in Figure 4.3 it is illustrated where these estimates are valid.

4.5 Stable Manifold

The theory presented in the previous sections concerns the unstable manifold W of the
equilibrium of the family H,, ¢ > 0. We have constructed rather good approximations
for this invariant manifold in different regions of the complexified phase space. Near the
equilibrium, the approximations provided by the formal separatrix are quite accurate.
In regions where the coefficients of the formal separatrix grow, i.e., near the singulari-
ties z% + km, k € Z, we have constructed different approximations which account for
the local behavior near the singularities and “glued” them together with the unstable
parametrisation using a complex matching technique.

Analogous results can be obtained for the stable manifold W?. Let us define the

following sets,
To ={zl —2€Ty't, Di(6)={7| —7€DY(d)}, D36 =A{r] —7e€D3(d)}.
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Using the reversibility we can define the stable parametrisation as follows,

I*(p, 2) = S(T(—p, —2)).

Recall that the formal separatrix X; is symmetric, i.e. S(Xs(—¢,—2)) = X;(p, 2).

Thus, similar to Theorem 4.4.1 we obtain,

Theorem 4.5.1. For every n € N, the stable parametrisation I'* : S, x T3 — Ctis
analytic, 2m-periodic in o, continuous on the closure of its domain, satisfy the PDE
(4.65) and

I* = X§ 4+ O2,42(9),

valid in Sp, x T
Continuing our analogy of results with the unstable case we have the following,

Theorem 4.5.2. For any n € N there exists an r1 > 0 sufficiently large such that the

stable parametrisation T'* can be analytically extended onto Sy, x D5(0) such that,
¥ = X? + Ogyio(r™1), in Sy, x D5(6).

In a region closer to the singularity the stable parametrisation I'* can be approximated

in Sy, x D3(6) as follows,

T =) T8 +0((r6)*"+,

m=0
where T} (o, 7) = S(T;,,(—p, —T)) solve the infinite system of equations (4.105) and
defined in Sy, x D where D ={r € C| — 7€ D, }.

Now we consider the question of finding homoclinic orbits. A natural place to

look for homoclinic points is the symmetric plane,

Lemma 4.5.1. Givenn € N, there exist functions @, (3) and zy(6) analytic in (—dg, o)

for some §y > 0 such that T (¢ + ¢0(0), z + 20(0)) € Fix(S) and moreover,
T (p + @0(6), 2 + 20(6)) = T"(¢p,2) + O(6™™), in S x T (4.127)
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Proof. Tracing the proof of Theorem 4.4.1 it is possible to check that the unstable
parametrisation I'* can be made real analytic with respect to § in some open interval

(—d0,00). Moreover, in the standard scaling the following estimate holds,
(p.2) = [X] (¢,2)+00™),

where [X} denotes the sum of the formal separatrix of Theorem 4.2.1 up to order 6™.
n

Now consider the following function,

G(‘F’? 275) = S(Fu((p7 Z)) - I‘u((pa Z)'

Due to the real analyticity of the unstable parametrisation, the function G is also real
analytic. Moreover, as S([X} 0,0)) = [X] (0,0) then G(0,0,0) = 0. Denote by
G; the components of the function G. Thus, by the Implicit Function Theorem it is

sufficient to prove that,

0G1 0G1
d=det | % 9 £0.
0G4 0G4

Taking into account that [X} = Xy + O(d) and the definition of X (see (2.17)) we
n
conclude that d = % and the result follows. Moreover, it is not difficult to see that

©0(8) = O(6™"1) and () = O(6™*!) and estimate (4.127) follows. O

In the light of the previous Lemma and Remark 4.3.1.4 one can uniquely define

a parametrisation of the unstable (resp. stable) manifold W* (resp. W?) by requiring,
r'“#(0,0) € Fix(S).

Note that the approximations obtained in the previous sections are still valid due to esti-
mate (4.127). Moreover, I'*(0,0) = S(I'*(0,0)) = I'“(0,0) is a symmetric homoclinic

point.
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4.6 Measuring the splitting

In this section we proceed to measure the splitting of stable and unstable manifolds. Let
us first derive some estimates for the difference T'® — I'* that will be used throughout

this section. Note that since 75 N 7" # () then Theorems 4.4.1 and 4.5.1 imply that,
I*(p,2) = T"(p, 2) = O2p42(0), Vn €N, (4.128)

in Sy, x Ty’ NTy*. Now let us consider the following rectangles,

R1(0) = {z €C| |Rez|<p1d, 0<Imz< T —r15},
_ 2 (4.129)
Ro(8) = Ry(8) N {z €Clmz>7 - 0251/2} ,

Note that Ry(d) C R1(d) for § sufficiently small. According to the extension Theorems

4.4.2 and 4.5.2 we still have the following estimate,
I*(p,2) = T%(p, 2) = Ognia(t™1), (4.130)

valid in Sj, X R1(8) where recall that z = 227 + im. Note that the last estimate goes

Qe

from O(527*2) in the bottom part of R{(6) to O(1) in the top part of R(5). In a
region closer to the singularity i5 we can get sharper upper bounds. It follows from

Theorems 4.4.3 and 4.5.2 that,
L*(ip,2) = T%(ip,2) = Do(p,7) + O((97)?),
in Sp X Ro(0) where Ay = I‘g —I'y. Now according to Theorem 3.5.1 we have that,
Ao(p,7) = O(r3eT=9)),
in S, x D} where D! = D;f N D N {Im7 < —r} for r > 0 sufficiently large. Thus,
(¢, 2) — T"(p, 2) = O(r%e~=9)) 1+ O((47)%), (4.131)

in S, X Ra(5). A sharper estimate of the difference in S;, x R2(d) can be obtained as

follows,
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Lemma 4.6.1. For any 0 < p < 1 the following estimate holds,
T%(ip,2) = T"(p,2) = Do(ip,7) + O(e #T79)5%) + O((67)").

Proof. By Lemma 4.4.3 we known that the formal series 't = > m>0 T 6%m satisfy
the equation,

DI+ = o' Xy, , (TF).
Recall that ae = 1 — 3772 a1,0,0%. Now let us write Xp7,, = >~ Frn6®™ where
Fy = Xp,, and expand the previous equation in powers of . Collecting terms of the

same order in 6% we get the following equation,
DI'Y = DFy(TETY + a101Fo(TE) + Fi(TE).
Now we define A; = I' — '] and rewrite the previous equation as follows,

L(A1) = a101(Fo(Tg) — Fo(Ty)) + F(Tg) — Fi(Tg) + (DFy(T§) — DFy(Ty)) T,

(4.132)
where L(A1) = DAy — DFy(T'y)A;. Denote by R; the right hand side of equation
(4.132). Taking into account that Fy and F} are analytic and the estimates (4.131)
and TT = O_(77') it is not difficult to conclude that Ry € 9,/(S, x D}) for any
1 < p/ < 2. Note that by the result of chapter 3 the linear operator £ has a fundamental
matrix U. According to Theorem 2.4.3 given 1 > 1/ there exists a bounded linear
operator E;,l : 9, (SpxD}) = 9, (Spx D}) such that Eﬁ;,l =1d. AsA; =O(r~N)
for all N € N, it follows from the fact that A; — 5;,1(R1) € ker(£) and Theorem 2.4.2
that there is an analytic 2m-periodic function ¢; : {s € C : Im(s) < —r + h} — C* such

that Ay — ﬁ;,l(Rl) = Uec;. Since,
lim c¢(s) =0,
Ims——o0

we can write c¢; in Fourier series and conclude that ¢; = O(e™*"=%)). Thus A; =

O(e #(7=%)) where = 2 — 1. Finally, as
I‘S(C}Dv Z) - Fu(('pv Z) = AO(@? 7_) + Al(@v 7_)52 + O((67)4)7

we get the desired result. O
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4.6.1 Derivation of an asymptotic formula

In this subsection we derive an asymptotic formula for the homoclinic invariant at the
primary homoclinic point I'*(0,0) = I'*(0,0). In order to derive the asymptotic formula

we consider an auxiliary function defined by
O(p,z) = Q(A(p, 2),0,T"(p,2)) , (4.133)

where A(p,z) = I'(¢,2) — I'(p,2) and  is the standard symplectic form. The
homoclinic invariant of the primary homoclinic orbit is defined by (4.5) which takes the
form

we = Q(0,T*,0,T")| (4.134)

p=2z=0 "
Differentiating the definition of © at the origin and taking into account that A(0,0) =0
we get the relation:

we = 0,0(0,0).

Thus, we only need to estimate the function © and its derivative. Note that the function

O satisfy the following PDE,
D.O = Q(F(A),0,T), (4.135)

where F(A) = Xy (T" + A) — Xy (T'*) — DXy (T*)A. As F(A) is of second
order in A, then © approximately satisfies the homogeneous equation D.u = 0. Thus,
O is approximately equal to a 27wf3.-periodic function depending on a single variable

O(p,2) = f(aez — Bew). Periodicity allow us to write © in Fourier series,
ik(FE2—)
®(¢7z)%2fl€€ Be )
keZ

and we can estimate the function © by estimating the coefficients fj. using the standard
integral formula. A rigorous argument that justifies the previous heuristic requires the

method of flow box.
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Flow box coordinates

The main idea of the method is to construct new coordinates valid in a suitable neigh-
bourhood of a piece of the unstable manifold such that in the new coordinates the
original flow is conjugated to a linear flow on a “cylinder”. Let us be more precise.

Given r,¢,0 > 0, consider the following domain in the complex plane,
R(5) = {z €C||mz| <X —rs, [Rez|< ca}
2
and let M be the following domain in C*,
Ms =S}y x R(5) X {(El,Eg) S (C2 ’ ’Ely + ‘EQ’ < (50} .
Then we have the following,

Theorem 4.6.1. There exist c,o0 > 0, r > 0 sufficiently large and §y > 0 such that if
§ € (0,00) then there exists a real analytic symplectic injective map ¥ : Mg — C* such

that:
1. W is 2m-periodic in ¢,
2. DU = Xy (),
3 U(p,20,0) =T"%ep,z2),
4. || @] s is uniformly bounded (with respect to § € (0, dp)).

The idea of constructing a flow box to study the splitting of invariant manifolds
goes back to Lazutkin's original ideas when studying the splitting of separatrices of the
standard map [47]. Here we will only give a sketch of its proof since it is a simple
adaptation of the proof of Theorem 7.1 in [28]. There, it is constructed a symplectic
diffeomorphism which conjugates the dynamics near a piece of the unstable separatrix
of the standard map to a shift (¢, E) — (¢t + h, E) (see chapter 1 for an introduction

to the splitting of separatrices of the standard map). One of the key ingredients in the
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proof of the theorem is to obtain a suitable description of solutions of the following

variational equation,

Deu = DXy (T"(p,2))u. (4.136)

Clearly the tangent vector fields 9,I'* and 0.I'* satisfy the previous equation and since

W is Lagrangian it follows that,

Q(a,I", 0,.T*) = 0. (4.137)

Now two other independent solutions u; and ug can be obtained using the method
described in Appendix A. Together these four linear independent solutions form a sym-
plectic fundamental solution II(¢, z) of equation (4.136). Moreover, u; and us can be
estimated in S, X R(d) using the known estimates of I'* in that domain. Then we look

for a solution of equation

DV = Xy (V), (4.138)
in the following form,
\Ij(% Z>E17 EQ) = I‘u(@» Z) + Z((,D, 2, Ela E2)7

subject to condition Z(p,2,0,0) = 0. Thus, Z must satisfy the following integral
equation,

L(Z) =Xy, (T"+ Z) — Xy, (T*) — DXy, (T*)Z, (4.139)
where £(Z) = D.Z — DXy (T'™)Z. This linear operator acts on the Banach space
€, (Sp x R(d)) for 1 > 0 which consists of analytic functions f : S, x R(§) — C4,

2m-periodic in ¢, continuous on the closure of its domain and having finite norm,

[flle, == sup [lcosh”(z)f(p,2)[| < oc.

ShXR 4

The linear operator L has kernel in €,(S), x R(d)) which follows from the existence of
a fundamental solution II. Moreover, it is not difficult to construct a right inverse of
L which we denote by £~!. Thus the problem of solving the integral equation (4.139)

subject to condition Z(y, 2,0,0) = 0 is reduced to the problem of finding a fixed point,

Z = Fiuy + Eoug + E_I(F(Z))>
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where F'(Z) denotes the right hand side of equation (4.139). Now given 1 > 0 and
|Ev| + |Ea| < 67 for some o(p) > 0 and ¢ sufficiently small, it is possible to derive
analogous estimates as in the proof of Theorem 7.1 in [28] to show that the non-linear
operator in the right hand side of the previous equation is contracting in a suitable
invariant closed ball (with radius possibly depending on 1) defined in €,(S), x R(9)).
Then using a contraction mapping principle one can obtain the map W¥. Note

that ¥ as defined previously is not unique. In fact,

V(e + s1(aez = Beip), 2 + s2(ez = Bep), s3(ez — Bep), sa(@ez — Beip)),

also satisfies equation (4.138) where s; are 27 3.-periodic functions such that s;(0) = 0.
Since the map ¥ may not be symplectic, this freedom can be used to construct a new
map U which has the desired properties stated in Theorem 4.6.1.

Now let us look at some consequences of the Theorem.

The splitting function

It follows from the second property of the Theorem, that in the new coordinates defined

by the map ¥ the Hamiltonian flow of H, is conjugated to the linear motion given by,
p=ae, zZ2=[f, E1=0, E1:0.
Now let us define the splitting function as follows,
E(p,2) = By oT%(p, 2), (4.140)

where E; is the third component of the map ¥~!. Now we check the domain of validity

of the function =. According to Theorem 3.5.1 we have that,
T{(p,7) =T (p,7) = O(re~T=9)),

in Sy, x D} for r sufficiently large. Consequently, Lemma 4.6.1, the previous estimate

and estimates (4.128) and (4.130) imply that,
T (0, 2) — T"(p,2) = O(67 log?67"), (4.141)
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for 0 < p < 1 arbitrarily close to 1, which is valid in the set S;, x D(d) where,
T2 -1
D) =R(0) N4 Imz| < 3~ ;5log5 .
It is not difficult to see that the estimate (4.141) implies that,
T¥(p,2) — T%p,2) = 0(8%), in S, x D(S). (4.142)

Thus, provided o < 2 in Theorem 4.6.1, the function Z(¢p, z) is well defined in the set
Sp x D(9).

Hereafter we shall assume that o can be chosen such that the splitting function
= is well defined. This is not a serious assumption as is explained in the next subsection
and it can be overcome by finer estimates for the difference (4.141).

Now let us study the splitting function and see that it provides a way to measure

the splitting of the invariant manifolds. First of all note that,
we = —0,2(0,0).
In fact, it follows directly from the third property of ¥ that

\Il*_lagoru(ovo) = 84,0\1,_1(1‘“((107 z))hpzzzo = a@(@» z>070)|¢:z:0 = (1707070)7

and

V19,0°(0,0) = 9,97 H(T*(.2))| g -

Finally, taking into account the definition of the homoclinic invariant and the fact that

U is a symplectic map we get,
we = Q(V;19,I*(0,0), ¥, 19,T(0,0)) = —9,Z(0,0).

This fact justifies why = is known as the splitting function. Furthermore, since E; = 0

it follows that,

d
aEl oI¥(p + aet, z + Bet) = 0.
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Figure 4.4: lllustration of the graph of the splitting function. The stable manifold
“snakes” the unstable manifold which corresponds to the plane E; = 0.

Thus, D.E = 0 and = can be considered as a function of a single variable Z(¢, z) =
Be _

Qe

Eo(aez — Bew). Moreover, the 2m-periodicity in ¢ implies that =g is in fact 27
periodic in z and its domain can be extended by periodicity to contain a strip |Im z| <
5= %(ﬂog L.

When Z is restricted to the reals, then a piece of the stable manifold is repre-
sented as the graph of = while the unstable manifold in given by the plane F; = 0 as

figure 4.4 illustrates.

[

Now we derive a formula that will be useful to estimate the function
Lemma 4.6.2. The following identity holds,
VE(T%(p, 2)) = (0,T"(p,2))" J .

Proof. According to the inverse function theorem we have that (d¥)~! = d¥~!. More-

over, given a symplectic matrix,

A B
C D

)

where A, B, C and D are n-by-n matrices, then M ~! can be computed according to the
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following well known formula,

pT BT
—-cT AT

M~ =

Thus, denoting by (q1, g2, p1,p2) the components of the map ¥ and taking into account

the previous formula for the inverse of a symplectic matrix we have that,

-1

91 O OS¢ Oqu Op1 Ops 91 _ Oq2
o 0z IO OF> IO IO O, IO
9¢2 992 Oqp  Ogqp Op1 Opp O _ 9g2
o 0z OF1 OF> — OF> OF> OF> OF>
Op1 9p1 9 Om _0p _0Op2  Oq g2
Op 0z O0E1 O0Es ) Op Op Op
Op2  9p2  Op2  Op2 _9p1 _Op2 Oq 9q2
o 0z O0E1 OFs> 0z 0z 0z 0z

Since ¥(p, 2,0,0) = T"(¢p, z) and equating the third row of the previous matrices we

get the desired identity. O

Now the last property of Theorem 4.6.1 implies that we can use Taylor series

around I' (¢, z) to expand the splitting function as follows,
E(p,2) = VEI(T"(¢,2)) - (T°(0,2) = T(, 2)) + O(|IT°(i0,2) — T(p, 2)[|")-
Thus, taking into account the identity of the previous Lemma we conclude that,
E(p,2) = —O(p,2) + O(IT*(p, 2) = (0, 2)]1%), (4.143)

where recall that © is the auxiliary function defined in (4.133). Now let us estimate the

function © on the line,
T 2 -1
0(6) =0D(6) N Imz:E—;Mogé .

Recall that 0 < p < 1 is arbitrarily close to 1. In the following we shall use both variables
z and 7 which are related through the formula z = g—zT +1i%. According to Theorem
4.4.3, for (p,z) € S, x £(0) we have that,

T%(p,2) =Ty (p,7) + O(6%1og?57Y), in Sy x £(9),

(4.144)
0,1 (p,2) = 9,L (¢, 7) + O(6%1log? 671), in Sy x £(6),
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where the last estimate for the derivative follows from standard Cauchy estimates. More-

over, Lemma 4.6.1 implies that,
(g, 2) —T%(p,2) =T§(p,7) =Ty (@, 7) + O(3* ), in Sy x £(5), (4.145)

where 111 > 0 is an arbitrarily small. Thus, taking into account the definition of O(¢, 2),

the previous estimates (4.144) and (4.145) we get,
O(p,2) = AT (9, 7) — T (9, 7), 0,5 (9, 7)) + O3 7#2), (4.146)

valid in Sy x £(0) where pug > 0 is arbitrarily small. Now according to Theorem 3.5.1

we have that,
AT (p.7) = T (,7), 0,7 (2,7)) = O5 ¢ 40 (e @m0)ilr=)) | (4.147)

for p19 > 0 arbitrarily small, valid in S}, x D}!. Also note that from Corollary 3.5.2.1 we
have Re ©, = 0 (a consequence of reversibility). Putting estimates (4.146) and (4.147)

together and changing to variable z we get,
O(p,2) = e T oge HT 4 051,

on the line Sy x £(9), where pus > 0 is arbitrarily small. Thus, taking into account the
previous estimate, (4.142) and (4.143) we have the following estimate for the splitting
function,

Slp.z) = =~ F Oy 30 o5,
valid in Sj, X £(9), where p4 > 0 is arbitrarily small. Since Bt = O(e_%) on the line

¢(5) and moreover ©, = +i\/Ky (see Remark 3.5.2.1) where Ky is the Stokes constant

of Hy, then the following estimate is still valid,

S, 2) = Fie” e /Ky (7 —E9) ot

= :|:2e_72rﬁie€\/lco sin <%2 _ (,0> + 0(54—u4)7

€

(4.148)
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in Sy, x £(8). Taking into account that Z(y, z) is real analytic then the same estimate

holds in the set,

Sh % <8D(5) N {Imz = —g + z5logf5—1}> .
i

Be

Now, since Z(y, 2) is 27Ta—€—per|od|c in z then using a maximum modulus principle we

conclude that,

=(0,z2) = £9e” 2e v/ Ko sin <%z> + O(54H4),

valid in the strip [Im 2| < § — %(ﬂogé_l.

Using this bound for the splitting function we are now ready to get a lower
bound for the homoclinic invariant. The argument is based on estimating the Fourier
coefficients of = in a suitable way. It goes as follows: consider the following function,

g(p,2) = E(p, 2) F 2¢ 7 /Ko sin (%z - 90> -

It has the same properties as = and moreover g(0,0) = 0. Now we expand the function
g into Fourier series, i.e.,
Qe

(e
g((p7 Z) _ ngez (Bez <P)7
keZ

where coefficients of the series can be expressed in terms of Fourier integrals:
2mfe

Qe ae —ik%ey
gk 271_56 /0 € g( ) Z) <

Following the common procedure of Fourier Analysis, we shift the contour of integration

to Imz = ip where p = 5 — %cﬂog 6! to get,




Thus, for £ < —1 we can estimate g as follows,
kaep
lgk| < e"f sup [g(0,2)], k< -1
[Im 2|<p
Analogously, by shifting the contour of integration to Im z = —ip we get for k > 1 the

following estimate,
ko

_ k&ep
lgx| < e sup g(0,2)[, k=1
[Tm z|<p
Taking into account these estimates for the Fourier coefficients we obtain for (¢, z) € R?

that,

9(e.2) —gol < ) gl

kez—{0}

<2 sup ]g(O,z)]Ze_ Be
[Tm z|<p k>1

<2 sup |9(0,2)] ——=7-
[Im 2|<p 1—e 5

Finally, taking into account that,

sup |g(0,2)] = O(6* ") and e~
[Im z[<p

where ps > 0 is arbitrarily small we conclude that,
lg(v,2) — go| = 0(6_%52_“4_“5), for (p,z) € R%
Thus,
(g, 2)| = lg(.2) — 9(0,0)] < lg(e2. 2) — gol + [9(0,0) — go| = O(e™ %5 3>~ #a=ws),
which implies that,

E(p,2) = +2e” e vV Ko sin <%Z — 90) + 0(6_%62_"6),
€

for g > 0 arbitrarily small. At last, taking into account that w. = —0,2(0,0) we
obtain the desired asymptotic formula for the homoclinic invariant. This completes the

proof of Theorem 4.1.1.
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4.6.2 Finer estimates for I'* — I'* and an asymptotic expansion for the

homoclinic invariant

In order to define the splitting function in the previous subsection, we have assumed that
the domain of definition of the symplectic map ¥ was large enough to contain a piece
of the stable parametrisation I'*. More precisely we have assumed that |E |+ |Eq| < 67
where ¢ < 2. As mentioned previously, this is not a serious restriction and it can
be overcome by finer estimates for the inner differences I‘/{‘CF — T, . In fact, using the

methods developed in Chapter 3 it is possible to prove that,
T/ (o, 7) — T; (p,7) = O(rNee™T=9)) in ), x D, (4.149)

where D! = DY N D N {Imr < —r} for r > 0 sufficiently large and N}, € N. Now,

taking into account Theorems 4.4.3 and 4.5.2 we have that,

n

T(p,2) =T"(p,2) = Y (TF (0, 7) = T (,7))5% + O((67)*"*?) (4.150)
k=0
valid in Sj, X Ry(8) where recall that z = Zer + 1% and Ry(6) is defined in (4.129).

Qe

Thus, estimates (4.149) and (4.150) imply that,
I*(p,2) = T¥(p,2) = O(67 log® 671,
valid in the set Sy x D,(d) where,
D,(9) = {|Imz| < g— odlogd™!, |Rez| < 05},

for some ¢ > 0. Thus, given any o > 0 the splitting function (4.140) is well defined.
Finally, similar considerations as in the previous subsection and taking into account the
finer estimates for the differences (4.149) we can derive an asymptotic expansion for the
homoclinic invariant which we conjecture as follows,

we = 22720 Y wd®™, wy €R, (4.151)
k>0

where wg = K.
In the next chapter we perform numerical experiments that support the validity

of the asymptotic formula and asymptotic expansion of the homoclinic invariant.
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4.7 Conclusion

The goal of this chapter was to prove Theorem 4.1.1. Its proof depends on several
different results obtained in the previous and present chapter. In this section we shall

briefly describe the main steps of the proof. The strategy is as follows:

1. Parametrization of the invariant manifolds. We show in Theorem 4.3.1 that it
is possible to parametrize stable and unstable manifolds by solutions of equation
(4.2). This parametrization is initially defined in a complex neighbourhood of the

equilibrium point.

2. Approximation near the equilibrium. We prove that any truncation of the
formal separatrix (see Theorem 4.2.1) of the normal form HN* provides a good
approximation of the stable and unstable manifolds in a neighbourhood of the

equilibrium point. This is the content of Theorem 4.4.1.

3. Analytic continuation of the parametrizations towards the singular points.
The approximations provided by the formal separatrix have singularities at z =
z% + km, k € Z. We show in Theorem 4.4.2 that it is possible to extend the
approximation and the domain of analyticity of the parametrizations up to a §-

neighbourhood of the singular points.

4. Complex matching near the singularity. The approximations provided by the
truncations of the formal separatrix grow near the singularity z = i7. Instead
of improving the existent approximations we construct different approximations
using the method of complex matching (see Theorem 4.4.3). Roughly speaking,
the new approximations retain the essential behavior near the singularity, providing
better estimates for the parametrisations in that region. The leading order of the
approximation is given by the parametrizations I‘f)t which are studied in chapter 3.

These new approximations distinguishes between stable and unstable manifolds.
5. Flow box coordinates and the splitting function. This is the last step of
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the proof and is developed in section 4.6.1 of the present chapter. Using a flow
box (see Theorem 4.6.1) and the upper bounds provided by the approximations
of the complex matching method we are able to get an asymptotic formula for
the splitting. The main point here is periodicity of a certain splitting function
(4.140), that allow us to use standard arguments in Fourier analysis to capture

the exponential smallness of the splitting.
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Chapter 5

Numerical Investigation of

Homoclinic Phenomenon

In this chapter we study the asymptotic formula of the homoclinic invariant from a
numerical point of view. Our example is the Swift-Hohenberg equation. We perform
several numerical experiments that support the validity of the asymptotic formula and
obtain the same Stokes constant using two completely different methods. All computa-

tions were performed using Maple Software with high-precision arithmetic.

5.1 The generalized Swift-Hohenberg equation
The generalized Swift-Hohenberg equation (GSHE),
up = eu + ru® —u® — (14 A)?u (5.1)

is widely used to model nonlinear phenomena in various areas of modern Physics in-
cluding hydrodynamics, pattern formation and nonlinear optics (e.g. [12, 40]). This
equation (with x = 0) was originally introduced by Swift and Hohenberg [72] in a study
of thermal fluctuations in a convective instability.

In the following we consider u to be one dimensional and study stationary solu-
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tions of (5.1) which satisfy the ordinary differential equation
eu+ru® —ud — (1+02)*u=0. (5.2)

Obviously this equation has a reversible symmetry (if u(x) satisfy the equation then
u(—x) also does). It is well known that for small negative e this equation has two
symmetric homoclinic solutions [34] similar to the ones shown on Figure 5.1. In this
chapter we study from a numerical point of view the transversality of the homoclinic
solutions, which implies, by the results of the previous chapters, the existence of multi-
pulse homoclinic solutions and a small scale chaos. Recently, similar computations for the
Swift-Hohenberg equation have been performed by S. J. Chapman and G. Kozyreff in [18]
where they study localised patterns emerging from a subcritical modulation instability
using the multiple-scales analysis beyond all orders. Our methods extend those of [18]
as they can be applied to any Hamiltonian system near a Hamiltonian-Hopf bifurcation.
Moreover, our dynamical system approach provides more insight about the divergence
of the asymptotic expansions derived in [18] and gives a rigorous framework to study
transversal homoclinic orbits for the Swift-Hohenberg equation.

In order to describe the homoclinic phenomena it is convenient to rewrite the

equation (5.2) in the form of an equivalent Hamiltonian system [8, 48]:

41 = q2 P1=Dp2—€q1 — kgt + G} (5.3)

G2=p2—q P2 = —D1,
where the variables are defined by the following equalities

u=q, u=q, —(@W+u")=p and u+u’ =ps (5.4)

and the Hamiltonian function has the form

2 2 3 4
D3 41 49 %
H, = — + =24+ e=+Kr=— —. 5.5
P1g92 — P2q1 B € B K 3 4 ( )

The system (5.3) is reversible with respect to the involution,

S (q1,92,1,p2) = (@1, —q2, —Pp1,P2)-
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ql

ql

Figure 5.1: Two primary symmetric homoclinic solutions of the scalar stationary GSHE (e =
—0.05).

The origin is an equilibrium of the system and the eigenvalues of the linearized vector

{i\/—1+\/2, i\/—l—ﬁ} )

If € < 0, the eigenvalues form a quadruple £+, + ia,. where

po= Y22 a0,

21 —€+2
0 = Y224 o)

field are

At € = 0 the eigenvalues collide forming two purely imaginary eigenvalues £ of multiplic-
ity two. Moreover, the corresponding linearization of the vector field is not semisimple.

Thus, the equilibrium point of system (5.3) undergoes a Hamiltonian-Hopf bifurcation
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described in section 2.2. In general position there are two possible scenarios of the bifur-
cation depending on the sign of a certain coefficient of a normal form (see section 2.2).
In the Swift-Hohenberg equation both scenarios are possible and depend on the value

of the parameter k. In the following we shall consider the case when the equilibrium

is stable at the moment of the bifurcation which corresponds to |x| > % as shown
in [8]. For the degenerate case k = g—g, interesting phenomena known as snaking

takes place [77].

When € < 0 is small, the equilibrium is a saddle-focus and we can parametrise
the invariant manifolds W¢"* by solutions of the PDE (4.2) (see also discussion in section
2.3 of chapter 2). In the case of the Swift-Hohenberg equation the system of PDE (4.2)

can be conveniently replaced by a single scalar PDE of higher order,
(1 +D?*?u = eu + ru?® —u?, (5.6)
where we recall that D, denotes the following differential operator,
D, = a0y + Be0..

Let us use u™ to denote the first component of I'* and I'* respectively, then u™ satisfies
the equation (5.6). Its other components can be restored using (5.4). The Swift-

Hohenberg equation is reversible and we assume that
’LL+((p, Z) = U_(—(p, _Z)>

and I'*(0,0) = I'*(0,0) € Fix(S) is the primary symmetric homoclinic point. We recall

the definition of homoclinic invariant,
we = Q2(0,I'*(0,0),0,T*(0,0)). (5.7)

In the case of the Swift-Hohenberg equation the formula above can be rewritten in terms

of u™:

we =20, (u")? +u~ D7),
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Figure 5.2: Graph of the function Im(©; (k)) for > |/ 2L.

where the derivatives are evaluated at (p,z) = (0,0). The theory of the previous

chapters implies that,

Qe

we = £2e” 25 (wp + O(e'™M)) , (5.8)

where wy = ‘(90_(/1)‘ (see section 3.5 of chapter 3 for a definition of ©7) and 1 > 0 is
arbitrarily small. This formula implies the transversality of the homoclinic orbit for all
small values of € provided the splitting coefficient wg does not vanish. This constant is
known as the Stokes constant and due to the reversibility is a purely imaginary number
(see Corollary 3.5.2.1). Figure 5.2 gives an idea about its behaviour as a function of the

parameter K.

5.1.1 Normal form of the Swift-Hohenberg equation

Let us compute the normal form for the Swift-Hohenberg equation. As a first step the

quadratic part of the Hamiltonian (5.5) is normalised with the help of a linear symplectic

175



transformation (similar to [11]):

0 ~1/4v2 —-1/2v/2 0
1/4v/2 0 0 1/2v/2
V2 0 0 0
0 -2 0 0

which transforms (5.5) into

1 1 V2 1 V2
H. =~ (@2p1 — qip2) + i(q% +43) + pre — Eﬂpi’ + pre — ?ﬁqu%
1 2 \/5 2 \/i 3 1 4 1 3 3 2 2 1 3 1 4
16Q26 16 K4sP1 9% K4y 16171 8(121?1 39 DY 39 qa2P1 256 q2,

(5.9)

where we keep the same notation for the variables. Note that the involution S in the

new coordinates takes the form

S :(q1,q2,p1,p2) = (—q1,G2,P1, —P2)- (5.10)

Now, with the quadratic part in normal form, we can apply the standard normal form
procedure to normalize the Hamiltonian (5.9) up to any order: There is a near identity
canonical change of variables ®,, which normalizes all terms of order less than equal to

n and transforms the Hamiltonian to the following form:

H. = H! + higher order terms (5.11)
where
n
HY==hi+h+ > aulilid
3i+2j+21>4
i+j>1
with
2 2 2 2
q; +¢q pi+p
I = @2p1 — qip2, 122%, ]3:%‘

This normalization preserves the reversibility with respect to the involution (5.10). In

the case of the GSHE the normal form up to the order five has the form (see Appendix B
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for more details about the change of variables)

1 1
H}=-I+ <Iz + 1613 + nl§> + <§eh + u1113> -

The leading part of the normal form includes two parameters which can be explicitly

expressed in terms of the original parameter x:

19 3 65 3
=4 —=kr?- = =2 —kK2-=).
g <576K 128) and -y (864 " 64>
The geometry of the invariant manifolds depends on the sign of 7. In the case of GSHE,
if
27

> P
ol > /5,

then n > 0 and the truncated normal form has a continuum of homoclinic orbits among

which exactly two are reversible, i.e., symmetric with respect to the involution (5.10).
In order to describe the geometry of the invariant manifolds near the bifurcation

it is convenient to introduce the new parameter ¢ = —46% and perform the standard

scaling (2.11) which we recall for convenience:
¢ =6Q1, @=0"Q2, p1=6P, pr=0b.

This change of variables is not symplectic, nevertheless it preserves the form of the
Hamiltonian equations since the symplectic form gains a constant factor 63, so we have
to multiply the Hamiltonian by =3 in order to return back to the standard symplectic

form. The Hamiltonian H[" is transformed into,
1
hy=—I+ (L—I3+nl5)d+ <—511 + ymg) 6%+ 0(8°).

This Hamiltonian system has an equilibrium at the origin characterized by a quadruple
of complex eigenvalues i, £ ., where o, = 1+ %52 + O(6*) and Brne =
1
0 — 563 + O(8%).
The equilibrium has a real two dimensional stable and two dimensional unstable

manifolds. We parametrise these manifolds by solutions of the PDE:
(n,0p + Bn,c02) Xy = Xpn (Xp). (5.12)
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The function X, (¢, 2) is real-analytic, converges to zero as z — +oo and is 27-periodic
in ¢. Taking into account the rotational symmetry of the normal form Hamiltonian, we

can look for the solution of this equation in the form:
Xn(p, 2) = (Bn(2) cos(0n(p, 2)), By (2) sin(0n (0, 2)),
7 (2) cos(0n(, 2)), T (2) sin(bn (¢, 2))),

where R, (2), m,(2) and 0,,(¢, z) are real analytic functions. In particular, for n =5 we

get the following system of equations:

Bs Ry = —dr5 (1 —nr3) , Bs.ers = —O0R5,
52
(045,Ea<p + /85,582) 95 =1+ ?(1 - /M’g) .

From these equations we conclude, if

52
/85,5:5 045,5:14_57
then

2 1 2 sinh z

7"5 = \/j s R5 = \/j72

7 cosh z 71 cosh” z

Pu [* 6% sinh z
05 =p— —— 2de = — L .

5TY 2 542 =¥ 1 cosh z

We see that (r(z), R(2)) runs over a homoclinic loop when z varies from —oo to +oc.
In general the parameterization X,, is the unique solution of (5.12) such that
R,(0) =0and 0,(p,0) = ¢. Thus, X, (p, z) belongs to the symmetry plane associated
with the involution (5.10) if and only if z = 0 and ¢ = 0 or ¢ = 7. Therefore, there are
exactly 2 symmetric homoclinic points. Let us call these homoclinic orbits the primary
reversible homoclinic orbit.
In chapter 4 (see Theorem 4.4.1) it was shown that the functions X,, approx-

+

imate reasonably well the parametrisations u™ in a neighbourhood of the equilibrium.

Transforming X5(, z) back to the original coordinates we obtain the following approx-

178



imation:

_ 1 cos(p)
- 5.13
w7 =~ (513)
N (9/{4— K cos(2¢p) 12 L <ﬁ l) sin(yp) szinh(z)> 52+ 0(6%),
18n cosh“(z) m\n 2 cosh?(2)
where € = —462. Since the function in the right-hand-side of the equation is even, it

also approximates the stable manifold represented by ul (p,2) = u™(—p, —2).

5.1.2 Stokes constant

Let us study invariant manifolds of (5.2) for ¢ = 0. Following (2.19) it is convenient to

parametrise these invariant manifolds by solutions of the following PDE:
(L4 (0p + 0-)H)*u = ku? —u®. (5.14)

The results of chapter 3 imply that this equation has an unique analytic solution u = ug

with the following asymptotic behaviour:

Pi(y) n Py(p)
T T2

+0(r73)

uy (p,7) =
in the set
Te€ D, ={r : |larg(t +71)| > by},

where 0y is a small fixed constant and r is sufficiently large and

_icos(p) i (w1 sin _kcos(29) K
P=tlE p e (B ) - RS (s

The function u, is 2m-periodic in .

The equation (5.14) has a second solution u = ug with

US_(T, ) =uy (-7, —9).

It has the same asymptotic behaviour as u, but is defined in a different sector, more

precisely, it is defined for 7 such that —7 € D_. The solutions u(jf have a common
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asymptotics on the intersection of their domains but they do not typically coincide (see
Theorem 3.5.1). The difference of these two solutions can be described in the following
way. We can restore 4-dimensional vectors I‘(jf using equations (5.4) with ’ replaced by
O, + Or. In particular, the first component of I‘(jf coincides with uoi. The functions
I‘(jf are parametrisations of the stable and unstable manifolds and satisfy the following

non-linear PDE,

DI' = Xp, ('), where D =0,+0-. (5.16)

Let

AO(@? 7-) = FS_(% 7-) - I‘a (@7 T)a
and

90(907 T) = Q(AO(‘p> 7—)7 asOI‘E]F(‘% T)) s

where (Q is the standard symplectic form. Then according to Lemma 3.5.2 and Theorem

3.5.1 there is a purely imaginary number © () such that
Bo(p,7) = Oy (k)e 779 4 O(e~Gm)ilT=0)y (5.17)

as Im 7 — —oo and for very small jig > 0. The constant © (x) is known as the Stokes
(or splitting) constant. The Stokes constant of the Swift-Hohenberg equation can be
defined by the following limit:

Oy (k) := lim  fp(p, 7)) (5.18)

Im(7)——00

We note that the value of the Stokes constant cannot be obtained from our arguments.
Fortunately the numerical evaluation of this constant is reasonably easy. Figure 5.2
shows the values of Im©; () plotted against x for k > ko = \/g. The picture
suggests that the Stokes constant vanishes infinitely many times and that its zeros

accumulate to kg.
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5.2 Numerical methods

In this section we present numerical methods that support the validity of the asymptotic
formula (5.8). The procedure is based on comparison of two different methods for
evaluation of the Stokes constants. The first method relies on the definition (5.18)
and involves the GSHE with ¢ = 0 only. The second method evaluates the homoclinic
invariant for ¢ # 0 and relies on the validity of the asymptotic expansion (4.151) to
extrapolate the values of the (normalised) homoclinic invariant towards £ = 0 in order

to get wyp.

5.2.1 Computation of the Stokes constant

Let us describe the first method for computing the Stokes constant. We set 7 = —io,

¢ = 0 and rewrite equation (5.17) in the form:

Oy = 0(0, —ic)e” + O(e~1c0)7), (5.19)

A method for the computation of the Stokes constant

Let us proceed as follows:

1. The first step is to construct a good approximation of stable and unstable man-
ifolds. This approximation is given by a finite sum I'y of the unique formal
separatrix Ty of (5.16),

N

Tn(p,m) =Y Tr(e)r ",
k=1

where

k
Fk(Qp) = Z FkJeﬁw with de S (C4,
=k

that approximates the parametrisations I‘(jf in the following sense
T3 (. 2) —Tn(p,m) = O 1), (5-20)
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Figure 5.3: Graph of logyg <%>

The natural number N can be chosen using the astronomers recipe. It simply
chooses N such that for fixed 7 and ¢ it minimizes ‘FNH(cp)T_N_l!, that is, the

least term of the series T'g(p, 7) (see Figure 5.3).

. A point on the unstable manifold (resp. stable manifold) can be represented in the
coordinates (¢, 7). In order to obtain a point close to the unstable manifold we
fix a positive real number o € R and a sufficiently large d € R and define z; =
I'v(—d, —ic—d) and a tangent vector v, = 0,I'n(—d, —ioc—d). Analogously, for

the stable manifold we define z = I'y(d, —io +d) and v§ = 9, n(d, —io +d).

. The next step is to measure the difference of stable and unstable manifolds at the
point (p,7) = (0, —i0). Taking into account the periodicity in ¢ we set d equal

to a multiple to 27 and integrate numerically the ODE,

2= Xpu,(2),
v = DXpg,(2)v,

(5.21)

forward in time with ¢ € [0, d] and initial conditions 2~ (0) = 2, ,v~(0) = v, and
then backward in time with ¢ € [—d, 0] and initial conditions 2 (0) = z;", v (0) =

+
Vg -

182



4. Finally we evaluate,
O(o) = Q2T (=d) — 2z~ (d),v™(d))e”. (5.22)

Remark 5.2.0.1. The stable and unstable manifolds have the same asymptotic expansion
and the difference z*(—d) — 27 (d) is known to be exponentially small (see Theorem
3.5.1), i.e. comparable with €. Thus the system (5.21) has to be integrated with great
accuracy. In the case of GSHE an excellent integrator can be constructed using a high

order Taylor series method.

Numerical results

In all current computations we have used a Taylor series method, which is incorporated
in the Maple Software, to integrate the equations of motion (5.21). The method uses
an adaptive step procedure controlled by a local error tolerance which was set to 1072,
where D is the number of significant digits used in the computations. The order of
the method has been automatically defined using the formula max(22, |1.5D]). Having
fixed k = 2 we have computed the first 45 coefficients of the formal separatrix I'y with
60 digits precision. Taking into account (5.20) we see that the error committed by the
approximation I'y is approximately of the order of the first missing term (see Figure
5.3). Using double precision (16 digits) we have integrated numerically the equations
(5.21) to obtain ©(c) for values of o uniformly distributed in the interval [20,28.89)].
The initial conditions were computed using d = 3507 and the first 9 terms of the formal
series I'y. The results are depicted in Figure 5.4. The expected errors are bounded by
the red curves. This implies in particular that the method is numerically stable, that is,
the propagation errors due to integration do not increase drastically. There are several
sources of errors that affect the accuracy of the computation of the Stokes constant,

namely:

e Approximation of stable and unstable manifolds given by the function I'y;

e Errors due to the numerical integration;
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Figure 5.4: The top figure represents the graph of the function Im(©(c))e” —10.472161956944
and the bottom figure represents the graph of the function Re(©(c))e?. When o is around 25
the rounding errors become visible and the convergence stops. The red curves represent the

magnitude of the rounding errors.
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e Rounding errors.

The first and the second source of errors can be made small compared to the rounding

errors, which can be roughly estimated by,
C
n| o

where D is the number of digits used in the computations and C' is some real positive

107Pe?, (5.23)

constant which reflects the propagation of rounding errors. Using this estimate we have
provided bounds for the rounding errors which can be observed in Figure 5.4. The
constant C' can be estimated by fitting (5.23) to the points ‘(:)(a)‘ for o > 25. Using
the method of least squares we have concluded that C' ~ 16.7.

With double arithmetic precision the method previously described allows the
computation of 7 to 8 correct digits of the Stokes constant. In fact the rounding errors
in computing © (o) from formula (5.22) grow accordingly to (5.23) whereas the neglected
terms of the formula (5.19) decrease like C1e™7, where C is some positive constant.
Hence the optimum is attained when both contributions are of the same order. The
constant C'; can be estimated by fitting the function Cy + C1e™? to the points ‘@(J)‘
for 0 < 24. Using the method of least squares we have obtained that C'y ~ 17305.75.
Using this information we can determine the value o* where both contributions are

essentially of the same order. This means that ¢* must satisfy the equation,

(6—0)2 — C; O_D,
Info” C1
which implies that,
. 816
‘@0 —0O(c")| =~ FlO_%.

In this way it is possible to obtain 8 correct digits for the Stokes constant using
only double precision (16-digits precision). In Table 5.1 we have listed the values of
é(a*) evaluated at the optimum o* for higher computer precisions. The digits in bold
correspond to correct digits of the Stokes constant. We also note that the numerics

suggest that © is pure imaginary which agrees with Corollary 3.5.2.1.
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D o Re(O(c™)) Im(©(c™))

16 24.68 2.7e-05 10.47216143901571

20 29.46 7.8e-07 10.472161953423286113

24 34.21 1.6e-08 10.4721619569069446924024

28 38.95 3.1e-10 10.47216195694413924682820786

32 43.67 5.3e-12 10.472161956944396725504278408504

36 48.37 8.5e-14 10.4721619569443983419527788851129556

40 53.07 1.2e-15 10.47216195694439835812989263311456886391

44 57.76 1.8e-17 10.472161956944398358284180684468467819622191

48 62.45 2.6e-19 10.4721619569443983582855084356725900717201861670

52 67.12 3.5e-21 10.47216195694439835828552130242825730920048239485015

56 71.80 4.7e-23 10.472161956944398358285521430879142372532568396894067732

60 76.46 6.2e-25 10.4721619569443983582855214320209319731283197852962601326570

64 81.13 8.0e-27 10.47216195694439835828552143203166495538939445255794702026972749
68 85.79 1.0e-28 10.472161956944398358285521432031900047829633854060398152634432422925

Table 5.1: Stokes constant evaluated at the optimum o* for different computer preci-

sions. In the computations we have used d = 3507 and N = 40

A\N 10 20 30

1007 | 10.47216215179386 | 10.47216215183208 | 10.47216215181955
1507 | 10.47216131335742 | 10.47216131335746 | 10.47216131335772
2007 | 10.47216144775669 | 10.47216144775671 | 10.47216144775682
2507 | 10.47216149546998 | 10.47216149546998 | 10.47216149547027
3007 | 10.47216132022817 | 10.47216132022820 | 10.47216132022773
3507 | 10.47216138600882 | 10.47216138600883 | 10.47216138600868

Table 5.2: Comparison of the value of Im(©(25)) for different values of parameters N
and d.

Finally, let us mention that in the process of computing the Stokes constant we
have made several choices for the parameters. Namely, the number of terms N used to
compute I'y and the parameter d which were used in computing the initial conditions of
step (ii) of the numerical scheme. In fact the results are independent of these particular

choices and Table 5.2 demonstrates the robustness of the numerical method.

5.2.2 High precision computations of the homoclinic invariant

In this section we present a numerical method for the computation of the homoclinic
invariant as defined in (5.7) for the Swift-Hohenberg equation with k = 2 and ¢ < 0.
This section follows the ideas of [32] originally developed for the study of exponentially
small phenomena for area-preserving maps.

In order to compute the homoclinic invariant (5.7) we need to compute two
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tangent vectors at the symmetric homoclinic point I'*(0,0). Using the fact that the
system is reversible we can obtain the stable tangent vector 9,I'* by applying the
reverser to the unstable tangent vector 9,I'". The unstable tangent vector J,I'" lives
in the tangent plane of the unstable manifold at the symmetric homoclinic orbit. Thus
an easy way to compute this tangent vector is to approximate the primary homoclinic

orbit near the equilibrium point by the following expansion,

N k
T (p,2) = > ¥ | crl(e) + > ag,(e) cos() + by j(e) sin() | (5.24)
k=1 Jj=1

and then use the variational equations,

x' = Xy, (x),
(5.25)
v = DXy (x)v,
to transport the tangent vector 9, I'); along the primary homoclinic orbit until it hits

the symmetric plane Fix(S) defined by {go = 0,p; = 0}. Let us present the details of

the method.

A method for the computation of the homoclinic invariant

1. The first step is to determine the coefficients of (5.24). To that end we take a

new expansion,

k
un(p,2) = > e | enle) + D anj(e) cos(jep) + i) sin(jy) | ,
k=1 Jj=1

and substitute into the equation,

((edyp + BeD2)? +1)* u = eu + 2u? — o, (5.26)

and collect the terms of the same order in e*Z.

In this way it is possible to
determine coefficients ¢y, ay j and by, ;. It is not difficult to see that the coefficients
a1,1 and by 1 satisfy no relations and that all other coefficients depend from these

two. So we define,
a1 =ropcos(¢y) and by = rosin(eyp).
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Now recall that the first component of I'* solves equation (5.26) and due to
the asymptotic behavior (5.13) we conclude that for z << 0 and 0 << 1 it is

approximately,

20 52 24 9
e [ ———=cos(p +—<1+—>sin<p>+(’)ez, 5.27
(- T eostor + 2= (142 )sinte)) 0. (527
where ¢ = —42. Next we “match” the leading order of ux (¢, s) with the expres-

sion (5.27) and conclude that ¢y and ry must satisfy,

1Py = arctan <— <1 + 2_,u> é) )
n ) 2

2 2
7'0:2—6 1—|—<1—|—2—M> 5—
Vi nj) 4

Taking into account (5.4) we reconstruct I'Y, from uy and due to the "matching”

(5.28)

(5.28) we have,
I“(t,t) ~ T%(t,t), as t - —o0, d — 0.

That is, for small values of J, the expansion I'}; provides a good approximation

of the primary homoclinic orbit near the equilibrium point.

. The second step is to improve the accuracy of the approximation of the symmetric
homoclinic point, provided by I'};. Given small ¢ and sufficiently large Ty > 0 we

want to determine (7,v) such that,
x = AXVH6 (X)> X(Oa TIZ)) = FQ]{/’(_O[ETO» _ﬁeTO; TIZ)),

subject to,

x(T;v) € Fix(S). (5.29)

This problem can be solved using Newton method. Starting from (Tp, 1) we

obtain a sequence of points (73, 1),

-1

Lo _(T) _ (T G| (@) oo
Vit ¥ FE(Tis ) FH(Tis ) p1(T5; )
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that converges to a limit (7%, ¢.) such that x(T};v.) € Fix(S), provided (Tp, o)
is sufficiently close to (T, 1).) (see [16]). The derivatives in (5.30) can be com-
puted using the variational equations along the orbit x(¢;1). Later we will see
that formulae (5.28) provide sufficiently accurate initial “guesses” yielding the

convergence of the Newton method.

3. Having obtained in the previous step an accurate approximation of the symmetric

homoclinic point, the last step is to integrate numerically the system,

x' = Xp, (x), x(0;9) = TR (—aeTy, —BeTo; 1+),

V/ = DAXVHE (X)V, V(0§ ¢) = Oéeagor]u\[(_aeTba _5ETO; ¢*)7

and evaluate the homoclinic invariant,
w = QV(Ti, ), S(v(Ts, 1))

Numerical results

11
10° 1000

We have considered a finite set Z consisting of points in the interval € € [—
and computed the homoclinic invariant for those points using the method previously
described. For all points in Z the magnitude of the homoclinic invariant ranges from
107° to 107, Thus, in all numerical integrations we have used a high order Taylor
method which allows to perform the numerical integration with very high precision. We
have computed the coefficients of the expansion (5.24) up to N = 5 and for each
€ € Z we have chosen Tj sufficiently large so that I'} (—a.To, —B:Tn) approximates
the unstable manifold within the required precision. The initial point (7p,%9) used in
Newton method proved to be very close to (7%, . ) and its relative error can be observed
in Figure 5.5. After computing the homoclinic invariant we have normalized it using the

formula,




-01 -0,08 -0,06 -0,04 -0,02 0

Figure 5.5: Relative error of (T, 10) depending on € € Z.

10

-0,1 -0,08 -0,06 -0,04 -0,02 0

Figure 5.6: Graph of the function w(e).

190



10.47216195694439
10.472161956944398
10 | 10.4721619569443983
11 | 10.4721619569443983
12 | 10.4721619569443983

5
6
7 10.4721619569443
8
9

8.97994312752

8.9799431275209
8.9799431275210
8.9799431275210
8.9799431275210

wo w1 w2

10.47216195694 8.979943127 - 42.60110

10.472161956944 8.979943127 - 42.601100
8.9799431275 - 42.6011004

- 42.60110043

- 42.601100432
- 42.601100432
- 42.601100432
- 42.6011004327

w3 w4 ws
5 | 152.88 - T774.4 3.8x103
6 | 152.888 - 774.2 3.8x103
7 | 152.887 - 774.40 3.80x 103
8 | 152.88795 - 774.39 3.814x103
9 | 152.88795 - 774.394 3.813x103
10 | 152.887958 - 774.3944 3.8138x103
11 | 152.887958 - 774.3944 3.813x103
12 | 152.887958 - 774.3944 3.813x103

Table 5.3: Coefficients of the estimated polynomials for different subsets of P and
different degrees.

The behaviour of the function w(e) can be observed in Figure 5.6. It possible to see
that it is approaching the value of the Stokes constant computed in the previous section.
Moreover, it is approaching this value in an approximately linear fashion, supporting the
validity of the asymptotic formula (5.8). Taking into account the conjecture (4.151) for
we we investigate the validity of the following asymptotic expansion for w(e),

w(e) < Z et

k>0

(5.31)

To that end, we have taken 14 points evenly spaced in the interval [—2.7 X
1073, 1.4 x 1073] and computed the corresponding normalized homoclinic invariant
with more than 40 correct digits. Let us denote this set of homoclinic invariants by
P. Then, in order to get the first few coefficients of the asymptotic expansion (5.31)
we have fitted a partial sum of the asymptotic expansion to the points of P. Here we
have used as many points as the number of unknown coefficients. Moreover, following
[32] we have performed the following tests to evaluate the validity of the asymptotic

expansion:
1. Interpolating different partial sums to different subsets of P should give essentially
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the same results for the coefficients.

2. The constant term of the interpolating polynomial should coincide with the value

of the Stokes constant computed in the previous section.

3. The interpolating polynomial should reasonably approximate w(e) outside the in-
terval [—2.7 x 1073, —1.4 x 1073], in the sense that it agrees with the main

property of an asymptotic expansion:

n—1
w(e) — Z(Dkek < Ce€", Ve € [,0),
k>0

for some C' > 0 and ¢y < 0.

For the first test we have considered all possible subsets of P having only 6 consecutive
elements and interpolated these points by polynomials of degree 5. Then for each
coefficient, we have extracted the part of the number which is equal to all polynomials.
We have repeated this process for polynomials of degree 6 up to degree 12. The results
are summarized in Table 5.3, where it is possible to see that there is a good agreement
between the coefficients of the different interpolating polynomials of different subsets
of P. We can also infer from Table 5.3 that the results are numerically stable. Thus,

we have the following estimates for the first 6 coefficients of (5.31):

o = 10.4721619569443983 ... @1 = 8.9799431275210... &y = —42.601100432...
w3 = 152.887958.. .. g = —774.3944 . .. @5 = 3.813... x 10°

Furthermore, it is clear that the coefficient @y coincides (up to 18 digits) with

the value of the Stokes constant which we recall,
|(90_| = 10.47216195694439835828552143203190.. ..

Moreover, in Figure 5.7 we see that the relative error of the asymptotic expansion does
not exceed 0.06 in the hole interval [—1—10,0]. Thus, our numerical results provide a sat-
isfactory numerical evidence that supports the correctness of the asymptotic expansion

(4.151) for the homoclinic invariant.
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-0,1 -0,08 -0,06 -0,04 -0,02

Figure 5.7: Relative error of the asymptotic expansion of w(e).
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Appendix A

Solutions of linear Hamiltonian

systems

Let us consider the following system of linear differential equations,
&= A(t)x, (A.1)

such that A(t) is an 2n-by-2n Hamiltonian matrix, i.e. A(t) = JS(t) where S(t) is a
non-degenerate symmetric matrix and J is the canonical skew-symmetric matrix. We
also assume that S(t) is at least C'. In the following let us omit the dependence of
time for simplicity.

Solutions of (A.1) form an 2n-dimensional linear space and it is well known that

there is a fundamental matrix solution II(¢) which is symplectic for all ¢ [58]. Let us

suppose that we know n linear independent solutions of (A.1), say v;, i = 1,...,n, such
that,

vl Ju; =0, Vij=1,...,n. (A2)
Now consider the problem of finding n solutions u; ¢ = 1,...,n that combined with the

v;'s span the linear space of solutions of equation (A.1) and satisfy,
' Ji=J, (A.3)
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where IT = [vq, ..., v, u1,...,u,]. This last condition is equivalent to saying that IT is
a symplectic matrix. Let us restate the problem in block form. We start by rewriting
the matrices A and II as follows,

Ve Uy

A A
b and II= , (A.4)
As1 Agp Ve Up

A=

where A; ;, V,, Vp, Uy and U), are n-by-n matrices. Suppose that V, and V}, are known
which are formed by the v;'s in the obvious way. Thus, finding solutions u; i = 1,...,n

of (A.1) is equivalent to finding matrices U, and U, such that,

Ug = A11Uq + A12Up,

. (A.5)
Up = A21Uq + A2 20U,
subject to the condition,
T
V, U 0 I V, U, 0 I
q q q a| _ . (A.6)
Ve Up -1 0 Vo Up -1 0

Since A is non-singular then either A; 5 or As 5 is non-singular. By the same reasoning,
since {v1,...,v,} are linear independent, then either V; or V}, is non-singular. Without
lost of generality let us assume that both A; 2 and V; are non-singular matrices. Then

the following formulae,
Uy =VoC,  Up=WC+ VO,  C=V " A, (A.7)

define matrices U, and U, that solve the desired problem. Let us derive the previous

formulae. Condition (A.6) is equivalent to,
viv,=vlv, uvlv,=vlU, and V]U,-V]U,=1. (A.8)
Since Vj is invertible, we deduce from the last equality of (A.8) that,

Up = (Vg ) + (V7 )TV U (A.9)



Substituting the previous expression for U, into the first equation of (A.5) we get,

Uy = A1aUg + Arg (VYT + (v HTVEU,) (A.10)
= (Ava + AV, )TV Uy Ava(V )T

Now the homogeneous equation,
U = (A171 + ALQ(‘/q_l)T‘/pT) u,

has a fundamental solution V. Indeed, since VqTVp = VpTVq and Vq = A1V + A2V,

by hypothesis, then
Vo= (A + Ao (Vy DTV Ve =V = AV — A (Vo )TV, =0,

Thus, by the method of variation of constants U, = V,C solves equation (A.10) where
C satisfies,

C = ‘/:1_114172(‘/(1_1)71.
Finally, according to equation (A.9) and VqTVp = VpTVq we get,
U, =V,C+ (V; HT. (A.11)

Now using the fact that A; o is symmetric it is not difficult to conclude that UqTU =
Uqu. Consequently, formulae (A.7), V, and V,, define a symplectic fundamental matrix

solution IT of equation (A.1).
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Appendix B

Transformation of GSHE to the

normal form

In order to normalize H. up to order 5, we have used the method of Lie series to
determine Hamiltonians F;, ¢ = 0,...,4 which generate a near identity canonical map
Uy = q)};o o <I>};1 o @};2 o <I>};3 o @};4 where
I 5 n 3 n 1
= € —_—— — —
0 39 q1p1 32 q2 P2 3 P1p2

7 , 9 17 , 5 )
— kv D 2 L2 2 k2
F 216/“/7(]1 p2+216ﬁ\/7Q1QQp1+72/€\/_Q1p1 +36H\/_Q1p2 +
175 1 1 1
— K V2¢pa + 36 " V2qa p1p2 — 12 K V2p1 s — T V2py?

432
517 29 217 17
oo (o2t 2 =Y 3 el o A 2
2 ( 20736 " +512> ap +< 20736 " +512> NpLp2t
2327 , 31 ) 19 2027 ,
el 2y =D B.1
(20736” 512> 2p1 p2+< 512 20736 " ) 2P (B.1)

S5 T ey (19 e 3 3
128 " 102" )P P2\ 576 128 ) P12

143 167
Fy=c |~ k20120 — e k203
3 €< Tigs " V2P 1728’“”’2)

2k (37 K% —27) po° — L 2k (—45 + 52K%) p1'po—

Fy =
1 648

1215

1 2y, 2 3
3 2K (—27+34/<; )p1 D2
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Using an algebraic manipulator it is not difficult to see that W5 transforms H, into the

desired form.
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