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A B S T R A C T

The Fortuin-Kasteleyn random cluster model was adapted to
the tree by Häggström [38] who considered a Gibbs specifica-
tion corresponding to “wired boundary conditions” on the tree.
Grimmett and Janson [36] generalized this idea by considering
boundary conditions defined by equivalence relations on the set
of rays of the tree.

In this thesis we continue this project by defining a new object,
a “random connection;” a type of random equivalence relation
that allows us to redefine what is meant by a cluster of edges on
the tree. Our definition is general enough to include Grimmett
and Janson’s boundary conditions. The random connection ap-
proach allows us to reconnect the random cluster model on the
tree with Bernoulli bond percolation and we define two critical
probabilities for bond percolation on a tree associated with each
random connection that allow us to identify three behavioral
phases of the associated random cluster model.

We consider some examples of random connections defined by
equivalence relations, including the “open” boundary conditions
described in [36] where we are able to describe the behaviour of
the random cluster model exactly and “Mandelbrot” bondary
conditions described by a map from the boundary of a tree to
the unit square that defines fractal percolation. In addition we
adapt work of Zachary [66] to the wired random cluster model
on a tree so as to prove a conjecture of Häggström concerning
uniqueness of the Gibbs measure for large bond strengths.
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1 M OT I VAT I O N A N D C O N T E X T

Kendall and Wilson [46], motivated by questions of applied image
analysis, considered the Fortuin-Kasteleyn random cluster model on
the QuadTree; a graphical structure pictured on the previous page.
This thesis concerns questions about the random cluster model on the
tree which arose after study of [46]. In this chapter we use the lan-
guage of image analysis to define the QuadTree and to motivate our
study.

Although we have departed quite radically from image analysis prob-
lems in this text we pose a specific motivating problem concerning the
random cluster model on the QuadTree. We give an overview of some
of the existing literature relevant to the subject and describe briefly the
material contained in the forthcoming chapters. We will treat the mate-
rial in this chapter with no great rigour, preferring a historical account.
We will provide a more rigorous account of the background material
in the next chapter.
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1.3.2 Boundary Conditions From Equivalence Rela-
tions 26
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1.1 THE QUADTREE 2

1.1 THE QUADTREE

The main focus of this work is to define and study a set of
random cluster models on the tree. In order to motivate our
study we begin by considering the random cluster model on the
QuadTree pictured on the title page.

The QuadTree is a graphical structure used in image analysis.
The applications of the QuadTree in image analysis are beyond
the scope of this document. We direct the reader to [46] and
references therein for some background on the subject.

It will however be helpful for motivation to describe the QuadTree
in the language of images.

Before we start let us define an unusual piece of notation which
resolves an ambiguity specific to the QuadTree.

From an image analysis point of view, the QuadTree is a tool
for understanding Rd. As a graph there is a strong link between
the QuadTree and the lattice Zd. Rectangles, both in Zd and in
Rd will play an important role in many of our arguments and
we must distinguish between integer intervals and real intervals.
The notation [a, b] = {x ∈ R : a ≤ x ≤ b} is common throughout
mathematics, but in percolation [a, b] is often used to indicate the
set {a, . . . , b}. We introduce a new bracket

Ja, bK = [a, b] ∩Z (1.1)

to indicate an interval of integers.

1.1.1 Potts Models on the Lattice

Given a non-negative n ∈ N we may partition Rd into a set of
pixels by setting

Pn
Rd = {[2−na1, 2−n (a1 + 1)]× · · · × [2−nad, 2−n (ad + 1)] : a1, . . . ad ∈ Z}

(1.2)
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to be the resolution n pixellation of Rd. Equivalently for a domain
D ⊂ Rd we may set

Pn
D =

{
P ∈ Pn

Rd : P ⊂ D
}

. (1.3)

For a general domain D the pixel set Pn
D does not cover D. We

are interested only in those domains which may be partitioned
exactly by some subset of Pn

Rd . We say a rectangle S ⊂ Rd is a
screen of resolution n if

⋃ {
P ∈ Pn

Rd : P ⊂ S
}

= S. We say S is a
screen if it is a screen of resolution n for some n. We say the min-
imum resolution of a screen is the smallest n with this property.

Notice that the minimum resolution of any screen must be non-
negative as we have not defined Pn

D for n < 0.

For any n ≥ 0 the set Pn
Rd is invariant under the symmetries

of Zd. If we were to allow P -n
Rd to contain cubes in the form

[2na1, 2n (a1 + 1)]× · · · × [2nad, 2n (ad + 1)] this symmetry would
be broken as the pixellation would no longer be invariant under
a shift of length 1.

We will return briefly to the idea of negative pixelation in Re-
mark 1.6. Unfortunately there has been insufficient time to in-
vestigate the idea fully and this topic must be left as a possible
direction for future research.

The simplest representation of an image is a bitmap, each pixel
P ∈ Pn

S is assigned a colour, this extends in an obvious way to
a map (up to a null set) of S to the set of colours. In modern
computers the set of colours is large enough to be modelled as a
continuum of colours and in practice the “colour” of a pixel will
usually represent a wavelet rather than a solid block of colour.

For our purposes we assume that we are dealing with only a
finite set of colours and that no two colours are specially related
in any way.

A problem of interest in image analysis to assign a probability
distribution to the set of maps from Pn

S to the set of colours.
This distribution may than be used either as a prior for Bayesian
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image segmentation or reconstruction or as a model for data
compression.

A simple model for a bitmap is the Potts model.

Endow the set Pn
S with a graph structure by naming a set of

“lattice edges”

L(Pn
S ) =

{
〈P, P′〉 : P ∪ P′ is a rectangle

}
. (1.4)

Let ρ be the discrete metric on the set J1, qK (where J1, qK is in-
terpreted as a set of q discrete colours). Now let ΣS be the set
of functions {σ : Pn

S → J1, kK}. Then for β ∈ R we may assign a
measure

µβ

S(σ) ∝ exp

−β ∑
〈P,P′〉∈L(Pn

S )

ρ
(
σ(P), σ

(
P′
)) (1.5)

To simplify notation fix Σ = ΣRd to be the space of functions{
σ : Pn

Rd → J1, kK
}

, and define measures µβ

S by restricting to the
appropriate σ-algebra. We are using Σ here to represent the state
of vertex-configurations, as opposed to the more usual Ω which
we reserve for the use of edge-configurations introduced below
which will be the main focus of this work.

The main concern of this work is the case where β > 0. Under
such conditions a configuration is penalised if the colours of two
adjacent pixels σ(P) and σ(P′) disagree for some edge of the
graph 〈P, P′〉 ∈ L(Pn

S ). Thus the random configuration favours
images with connected “clusters” of pixels with the same colour.

Historically the case where q = 2 was studied first. It was fa-
mously proposed by Lenz to his student Ising who studied the
model on the two dimensional lattice [43]. The model was ex-
tended to the four colour case by Ashkin and Teller [2] and to
the general case by Potts [55]. The history of the Ising model is
well known and we direct the reader to Brush [14] for a historical
account.
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The accounts described above are all concerned with the infinite
lattice Zd. As Pn

Rd is isomorphic to Zd we shall keep our current
notation and not formally introduce the model on Zd.

However the measure defined in (1.5) makes sense only when
S is a finite domain. Next we consider how to extend the Potts
model to Pn

Rd .

The Potts model forms an example of a Gibbs measure, to each
edge we have assigned an “energy function” ρ(σ(P), σ(P′)). If
we set HS(σ) to be the total energy of a configuration then we
have µβ

S(σ) ∝ e−βHS(σ). For a graph such as Zd, where there are
no triangles a Gibbs measure is a probability measure in this
form where energy assigned to each edge 〈P, P′〉 is an arbitrary
(and not necessarily symmetric) function of σ(P) and σ(P′). For
a general graph we assign an energy to each “clique” of the
graph.

A theorem of Hammersly and Clifford [41], popularized by Pre-
ston [56] states that the Gibbs measures are exactly those mea-
sures that have the Markov random field property

For a set A ⊂ Pn
S set NA to be the set of neighbours of A, that

is the set of vertices v /∈ A such that there is some u ∈ A
with 〈u, v〉 ∈ L. Let FA be the σ-algebra generated by the ran-
dom variables {σ(v) : v ∈ A} and TA the σ-algebra generated by
{σ(v) : v /∈ A}.

A measure µ on σ is a Markov random field if for any finite set
A we have

(µ |TA ) = (µ |FNA ). (1.6)

That is the distribution of the colouring of A is conditionally
independent of the colouring of those pixels outside of A given
the neighbourhood of A.

For finite screens the measure µβ

S is a Markov random field and
it may be seen that in the case of the Potts model the left hand
side of (1.6) does not depend on the choice of screen S other than
in the requirement that S 3 P for every P ∈ (A ∪ NA).
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Dobrushin [17], Lanford and Ruelle [47] proposed a definition of
general Markov random fields on infinite graphs. For simplicity
we consider only the special case of the Potts model on Pn

Rd .

Say a measure µ on Σ satisfies DLR conditions (for the (β, q)-Potts
model) if for every finite subset A ⊂ Pn

Rd we have

(µ |TA )(σ) = µβ

A(σ) (1.7)
def
=
(
µβ

S

∣∣FNA

)
(σ) (1.8)

for an appropriate choice of finite screen S.

We may construct measures that satisfy (1.7) by considering weak
limits of models on finite graphs. In particular we introduce
sequences of measures with either free or fixed boundary condi-
tions.

Fix a boundary condition ξ ∈ Σ and let Si be some sequence of
finite screens that exhaust Rd. Consider the two sequences of
measures

µ
β
free,i = µβ

Si
, (1.9)

µ
β
ξ,i = µβ

Pn
Si
(ξ). (1.10)

The space Σ is compact and a theorem of Prohorov [57] states
that any sequence of measures on a compact space contains a
weakly convergent subsequence. Thus we assume without loss
of generality that the two sequences above converge to weak
limits µ

β
free = wlimi→∞µ

β
free,i and µ

β
ξ = wlimi→∞µ

β
ξ,i.

In the case of the Potts model it is known that for any sequence
of finite screens Si the free measures above converge to a limit.
Moreover there exists some critical value βc such that if β < βc

then µ
β
ξ,i → µ

β
free,i weakly as i → ∞ for every configuration ξ.

Conversely if β > βc then constant limits µ
β

ξk (where ξk(P) ≡ k
are the constant configurations for k ∈ J1, qK) all differ and the
free model may be expressed as the uniform mixture

µ
β
free =

1
q

q

∑
i=1

µ
β

ξk . (1.11)
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We will consider this phenomenon in more depth in Section
1.2 where we introduce the Fortuin-Kasteleyn random cluster
model. Before that we continue to build up the structure of the
QuadTree.

1.1.2 Markov Random Fields on the Tree

In the previous subsection we considered the Potts model on the
infinite lattice

(
Pn

Rd , L
(
Pn

Rd

))
. On the infinite lattice our choice of

the resolution level n does not matter.

However, if we choose a finite screen, say [0, 1]d, then the image
chosen by a Potts model will have dramatically different proper-
ties depending on the choice of resolution.

If n is small the possible images will all be “blocky” and corre-
sponding models of actual images will be unable to represent
fine detail. If n is very large the random fluctuations of the Potts
model will average out to leave, to a human observer, a single
coherent shade rather than a detailed image. To model a “real”
image we require aspects of both the high and low resolutions
to produce something realistic.

For nonnegative integers m < n set

P Jm,nK
D =

n⋃
i=m

P i
D . (1.12)

When several resolutions are taken together the pixels exhibit a
tree like structure. For every P ∈ Pn

Rd there is a unique smallest
M(P) ∈ P n−1

Rd such that P ⊂ M(P). We name this pixel the mother
of P. We say P1 is a child of P2 if P2 = M(P1) is the mother of P1.

Define a set of directed, tree-like edges,

T(P) = {|P1, P2〉 : P1, P2 ∈ P ; P2 = M(P2)} . (1.13)
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We are directing the edges of the tree for convenience only. We
will allow undirected edges in the form 〈P1, P2〉 to represent |P1, P2〉
or |P2, P1〉 as appropriate.

The study of Markov random fields on trees was initiated by
Spitzer [60] who considered the two state case. Zachary [66] con-
tinued this work extending Spitzer’s results to the case of count-
able state space Markov random fields (in our terms a countably
infinite set of colours) which we recount briefly here.

We concern ourselves only with the case of finite colour sets.
Let T be a finite tree with all edges directed away from some
nominated root vertex x and let µ be a Markov random field on
T with state space Σ = J1, qKV(T). We may sample from µ in
following way.

First select σ(x) according to µ(σ(x)). Then µ is a Markov ran-
dom field and removing each edge 〈x, u〉 for u ∈ Nx splits the
tree into |Nx| subtrees. Hence the random variables {σ(v) : v ∈ Nx}
are conditionally independent given σ(x).

Arguing inductively we see that for each edge e = |u, v〉 we may
choose some stochastic matrix Me : J1, qK2 → [0, 1] such that if A
is some connected set of vertices containing x with u ∈ A and
v ∈ NA we have

µ(σ(v) = i |FA ) = M(σ(u), i). (1.14)

As µ is a Markov random field we may assign some energy func-
tion ρe : J1, qK2 → R such that

µ(σ) ∝ exp

[
−β ·∑

e=|u,v〉∈E(T)
ρe(σ(u), σ(v))

]
. (1.15)

Now let Λ(T) ⊂ V(T) be the set of leaves of T, that is those ver-
tices v with exactly one neighbour (assume the root x /∈ Λ(T)).
For an arbitrary function Ψ : (Λ(T)× J1, qK) → [0, 1] we may
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modify the measure µ by applying an external field to the leaves
of T by setting

µΨ(σ) ∝ exp

[
−β ·∑

e=|u,v〉∈E(T)
ρe(σ(u), σ(v)) + ∑

v∈Λ(T)
Ψ(v)

]
. (1.16)

Then µΨ is also a Markov random field and may assign stochastic
matrices MΨ

e to describe µΨ as a Markov chain.

The notion of a Markov chain extends naturally to the case of an
infinite tree. It may be seen that, for an infinite tree T ; a measure
µ on ΣT is a Markov chain if and only if, for every finite subtree
T ⊂ T , the restriction of µ to FT is a Markov random field.

If ρ = {ρe : e ∈ E(T )} is an interaction then the set of measures
Mβ(ρ) satisfying DLR conditions for ρ forms a simplex in the
sense of Dynkin [21].

Zachary was able to show that

Every extremal element ofMβ(ρ) is a Markov chain.

A measure µ ∈ Mβ(ρ) is a Markov chain if and only if
there exists some function Ψ : Λ(T )× J1, qK such that the
restriction of µ to ΣT is given by (1.16).

In addition Zachary gave necessary and sufficient conditions for
a function Ψ to define a Markov chain, and named the such a
function an entrance law.

Thus the study of Markov random fields on trees reduces to the
study of entrance laws. In particular as the extremal elements
are specified uniquely by entrance laws then the set of Gibbs
measures is unique if and only if there is a unique entrance law
for that specification.

The ideas in [66] will form the basis for our investigation of the
random cluster model on a tree in Chapter 3.
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FIGURE 1

Two graphical representations of the QuadTree. On the left the unit
square is partitioned by a sequence of pixelations. On the right the
partition is represented as a graph, with each vertex representing one
pixel. The structure of the underlying pixel set is encoded by adding
tree-like and lattice-like edges.

1.1.3 Constructing the QuadTree

We have described two ways of structuring sets of pixels to form
Markov specifications that might describe an image. We have
dismissed the lattice structure as insufficient as it is restricted to
a single resolution level, where a genuine image may be better
described by a “multiresolution” representation. However the
tree does not reflect the structure of the cube. In particular pix-
els than are close in the image may be far from each other on
the tree. Any measure on images produced by the tree struc-
ture alone will be invariant under the symmetries of the tree, a
restriction that does not apply to a genuine image.

To form the QuadTree we combine both structures, the aim being
to maintain the multiresolution properties of the tree structure
while effectively breaking the symmetry group of the tree better
to reflect the finite symmetries of the cube.

Recall we have defined pixel sets

Pn
Rd = {[2−na1, 2−n (a1 + 1)]× · · · × [2−nad, 2−n (ad + 1)] : a1, . . . ad ∈ Z}

(1.17)
Pn

D =
{
P ∈ Pn

Rd : P ⊂ D
}

(1.18)

P Jm,nK
D =

n⋃
i=m

P i
D . (1.19)
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We say two pixels P1, P2 are adjacent and write P1 ∼ P2 if their
union is a (non-square) rectangle.

Let P ⊂ P J1,∞K
Rd be some subset of pixels then we define sets of

lattice like edges and tree like edges

L(P) = {〈P1, P2〉 : P1, P2 ∈ P ; P1 ∼ P2} , (1.20)

T(P) = {|P1, P2〉 : P1, P2 ∈ P ; P2 = M(P2)} . (1.21)

Hence, associated with the pixel set, there is an implicit partially
directed graph (P , L(P) ∪ T(P)). Figure 1 shows a finite pixela-
tion of the unit square and the associated graph structure.

To define the QuadTree, we extend the pixelation of the unit
square to infinity by setting

V(Q) = P J0,∞K

[0,1]d
, (1.22)

Q = (V(Q), T(V(Q)) ∪ T(V(Q))) . (1.23)

The QuadTree may be pictured, in two dimensions at least, by
extending the tree in Figure 1 down to infinity and adding in
extra lattice-like edges as required. From the point of view of
the random cluster model the QuadTree presents two challenges
not encountered in the conventional setting of the random clus-
ter model on the integer lattice. Firstly it is not amenable, see def-
inition 1.4 below. Similar to the tree, the boundary of a large ball
is of comparable size to the ball itself. Secondly the QuadTree
has a finite symmetry group, that of the cube.

These two characteristics mean that many of the standard tech-
niques used for the study of Markov random fields are unavail-
able on the QuadTree.
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1.2 PERCOLATION AND THE RANDOM CLUS-
TER MODEL

The random cluster model on a graph G = (V, E) was intro-
duced in 1972 in a series of papers by Fortuin and Kasteleyn [26,
24, 25] to explain connections between results concerning perco-
lation, Ising and Potts models and electrical networks. Rather
than considering the space Σ above directly we let ΩG be the set
of functions E→ {0, 1}.

We say an edge e ∈ E is open if ω(e) = 1 and closed if ω(e) = 0.
By removing all closed edges from the graph we partition the
vertices V into κ(ω) connected components which we refer to as
clusters.

Then we may consider measures in the form

Qp,q(ω) ∝ qκ(ω) ∏
e∈E

(
p

1− p

)ω(e)

. (1.24)

We refer to the measure Qp,q as the random cluster model with
bond strength p and cluster factor q.

It is well known that if q is an integer then we may recover the
Potts model for β ≥ 0 by setting λ = 1 − e−β then assigning
independently to each cluster a colour chosen uniformly from
J1, qK. The definition of the model above does not require q to
be an integer. We will be interested in the random cluster model
for all q > 0.

The relationship between the random cluster and the Potts mod-
els is well, but not perfectly understood, see for example [52, 37,
10, 9]. As we are using the Potts model only as motivation we
will not dwell on the details of the relationship.
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1.2.1 Domination and Percolation

The space ΩG comes with a natural partial order which we may
exploit by considering increasing random variables. We say a
random variable X : Ω → R is increasing if X(ω1) ≥ X(ω2)

whenever ω1(e) ≥ ω2(e) for every e ∈ E and an event A is
increasing if its indicator 1A is increasing.

In particular a famous theorem of Fortuin, Kasteleyn and Gini-
bre [27] gives a sufficient condition for increasing events to be
correlated.

THEOREM 1.1: FKG INEQUALITY

Let Ω be a distributive lattice, and let µ be a probability measure
on Ω with the property that for any ω1, ω2 ∈ Ω

µ(ω1 ∨ω2) · µ(ω1 ∧ω2) ≥ µ(ω1) · µ(ω2) (1.25)

then for any pair of increasing random variables X and Y we
have

µ(XY) ≥ µ(X) · µ(Y). (1.26)

Holley [42] extended the ideas of Fortuin et al. to compare the
probabilities of increasing events over two different measures.

THEOREM 1.2: HOLLEY
Let Ω be a distributive lattice, and let and let µ1 and µ2 be
two probability measures on Ω with the property that for any
ω1, ω2 ∈ Ω

µ1(ω1 ∨ω2) · µ2(ω1 ∧ω2) ≥ µ1(ω1) · µ2(ω2) (1.27)

Then for any increasing random variable X we have

µ1(X) ≥ µ2(X). (1.28)
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We will return to these ideas in more detail in Chapter 2, for now
we note that for any finite graph G and q ≥ 0 and p ∈ (0, 1), then
if we set π = p

p+(1−p)q and let Qp,q be the random cluster model
as in (1.24) and set Pp and Pπ to be Bernoulli percolation on G
with bond probabilities p and π respectively then all measures
satisfy (1.25) and the pairs

(
Pπ, Qp,q

)
and

(
Qp,q, Pp

)
satisfy (1.27)

so that Pπ(X) ≤ Qp,q(X) ≤ Pp(X) for any increasing random
variable X.

Therefore if we wish to understand the random cluster model,
particularly the behaviour of increasing events then it is useful
to study Bernoulli bond percolation.

1.2.2 Percolation on the QuadTree

Kendall and Wilson [46] studied the Ising model on the QuadTree
by comparison with independent bond percolation.

Let ΩQ = {0, 1}E(Q) and let P be the product measure on ΩQ

such that ω(e) = 1 with probability τ if e ∈ T(Q) and with
probability λ if e ∈ L(Q).

Kendall and Wilson were particularly interested in the number
of infinite clusters of the percolation process. The QuadTree com-
bines elements of the lattice Zd with the tree. Supercritical perco-
lation on the tree and the lattice behave very differently to each
other.

On any graph there exists some critical probability pc such that
if p < pc then independent percolation with all bonds open with
probability p contains no infinitely large clusters whereas if p >

pc at least one infinite cluster exists. We may of course construct
graphs where pc = 0 or 1.

On Zd if p > pc
(
Zd) that there can exist at most one infinite

cluster see for example Grimmett [34]. On a tree however if p >

pc then there exist infinitely many infinitely large components.
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FIGURE 2

0
τU (d)

pc(d)
N = 1

N ≥ 1

N = 0

2−d

N = ∞

λ

τ

Partial phase diagram for independent bond percolation on the
QuadTree from Kendall and Wilson [46]. The number N of infinite
clusters may be 0, 1 or ∞.

Kendall and Wilson showed that on the QuadTree, for any N ∈
{0, 1, ∞} there exist pairs pairs of parameters τ, λ for which with
probability one there exist N infinite clusters. We summarize the
main results of [46] concerning percolation on the QuadTree in
Theorem 1.3 and in Figure 2.

THEOREM 1.3: KENDALL AND WILSON
Let P be independent bond percolation on the QuadTree Q with
parameters (τ, λ) as above.

If

2dτχd(λ)

(
1−

√
1− χd(λ)

-1
)
< 1 (1.29)

there exist no infinite percolation clusters.

If τ ∈
(

2−d, 2
1−d

2

)
then there is some ε = ε(τ) > 0, such

that if λ < ε there exist infinitely many infinite clusters.

When d = 2 and λ > pc(d) then for any τ > 0 there exists
a unique infinite cluster.

For d ≥ 2 there exists some τU(d) such that if τ ≥ τU and
λ > 0 then there exists a unique infinite cluster.
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Here pc(d) is the critical bond probability for Bernoulli percola-
tion on Zd and χd(λ) is the expected size of the cluster at the
origin for Bernoulli percolation on Zd with bond probability λ

The QuadTree was not the first example of a graph that exhibits
three phases in this way. Grimmett and Newman [31] studied
the product graph T ×Zd for regular trees T. The authors of
that paper were also able to show the existence of both a single
infinite cluster phase and a multiple infinite cluster phase.

The existence of both phases is strongly connected with the no-
tion of amenability.

DEFINITION 1.4

Recall for a set of vertices A on a graph G = (V, E) we may
define NA, the neighbours of A, as the set of vertices v ∈ V \ A
for which 〈u, v〉 ∈ E for some u ∈ A.

The Cheeger constant of an infinite graph is the infimum over
finite sets A

h(G) = inf
A

|NA|
|A| . (1.30)

We say a graph is amenable if h(G) = 0.

A celebrated theorem of Burton and Keane [15] shows that for
Bernoulli bond percolation any transitive amenable graph with
probability one there exists at most one infinite cluster. The pic-
ture is less clear for a nonameanable graph.

A major question in this area was posed by Benjamini and Schramm
[5] concerning the number of infinite clusters on a nonamenable
graph.

CONJECTURE 1.5: BENJAMINI AND SCHRAMM

If G is a nonameanable transitive graph with one end then there
exist 0 < pc < pu < 1 such that Bernoulli p percolation has

No infinite clusters if p < pc,
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Infinitely many infinite clusters if pc < p < pu,

A unique infinite cluster if p > pu.

The result is known under the additional assumption that G is
planar, see Benjamini and Schramm [6].

Schonmann [58] has also proved known that for any transitive
graph that if p1 < p2 and Bernoulli-p1 percolation exhibits a
unique infinite cluster, so Bernoulli-p2 percolation exhibits a unique
infinite cluster also. We refer the reader to surveys on the sub-
ject by Benjamini and Schramm [5] and Häggström and Jonasson
[39].

The QuadTree however is far from transitive, it has only a finite
symmetry group. Thus results such as the above may not be
applied directly.

REMARK 1.6
We may recover some form of transitivity by a considering a
random environment derived from the QuadTree.

We have not defined pixels at resolution −n as there is no obvi-
ous way to chose the set P−n

Rd
from the 2(nd) possible choices. In

addition by fixing P−n
Rd we reduce the symmetry of P0

Rd . Our aim
then is to choose sets P−n

Rd uniformly at random in such a way
that the random environment is invariant under the group Zd of
translations.

For some pixel P ∈ V(Q) let TP be the (homeothetic) map Rd →
Rd such that TP

(
[0, 1]d

)
= P. So, choosing P uniformly from

Pn
[0,1]d

we may set P k−n
Rd = T-1

P

(
P k

Rd

)
. It is easy to see that the ran-

dom graph defined by this procedure is invariant under transla-
tions in Zd.

Next we extend this random environment as n→ −∞ by choos-

ing a random sequence of pixels as follows. Let Ξ =
(
P1
[0,1]d

)N
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and choose a uniformly distributed i.i.d. sequence of resolution
one pixels ξi ∈ Ξ. Now set

P0 = [0, 1]d , P i+1 = Tξi(P i), (1.31)

P−n
Rd = T-1

Pn

(
P0

Rd

)
. (1.32)

We leave it to the reader to check that for any sequence ξ the set
P−n

Rd exactly partitions P−(n+1)
Rd and that the resulting random

pixellation is invariant under both translations by Zd and the
transformations TP for any P ∈ V(Q).

If we add the relevant tree and lattice edges to the pixel set
P J−∞,0K

R the resulting random graph may be interpreted as a
QuadTree viewed from the bottom layer. Bernoulli percolation
and the random cluster model on this “worm’s-eye” view of the
QuadTree offer many interesting questions for future research.
We will return to this structure in Chapter 6 where we consider
how the behaviour of the random cluster model on the worm’s-
eye QuadTree might impact on the behaviour of the random clus-
ter model on the QuadTree.

1.2.3 The Random Cluster Model on the QuadTree

We have not yet discussed how to define the random cluster
model on an infinite graph. The DLR approach we have used
above was formalized by Grimmett [32], we will deal with this
formally in the next chapter. For now we make an observation
about the random cluster model on a finite graph.

For a graph G let QG be the (p, q) random cluster model on G.
For an edge e ∈ E(G) let Te be the sigma algebra generated by
the random variables ω( f ) for f 6= e.

Now suppose we alter a configuration by opening or closing
e. This may have one of two effects on the number of clusters;
either opening e joins two distinct clusters, hence reduces the
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number of clusters by 1 or opening and closing e has no effect
on the number of clusters at all.

Let Le be the event that there is a “loop” around e, that is the two
end vertices of e are connected whether e is open or not. Then
Le is the event that opening and closing e has no effect on the
number of clusters, and we may calculate that

QG(ω(e) |Te )(ω) =

p : if ω ∈ Le,

π : if ω /∈ Le.
(1.33)

Here π = p
p+(1−p)q as before.

If fact a simple Markov chain argument shows that QG is the
only measure on ΩG that satisfies (1.33). We can use (1.33) as
a working definition of the random cluster model on an infinite
graph. Although we will not use (1.33) as a formal definition we
will show that it is in fact a necessary and sufficient condition
for a measure to satisfy DLR conditions for the random cluster
model. We will use this observation in many of our arguments
concerning the random cluster model.

We may describe the topology on ΩG by associating an equiv-
alence relation with each subgraph H ⊂ G. Set ω

H∼ ω′ if
ω(e) = ω′(e) for every e ∈ H. The open balls of ΩG are the
equivalence classes of H∼ for finite subgraphs H. Notice that for
an infinite graph G the indicator 1Le is not a continuous function
on Ω.

To see this suppose that when the edge e is closed the end ver-
tices of e are in two separate infinite clusters. Then for any finite
subgraph H we may connect the two end vertices of e by opening
every vertex outside H.

Hence is it not immediate that any measure satisfies DLR condi-
tions for the random cluster model on an infinite graph. How-
ever the indicator 1Le while not continuous is right continuous
with respect to the partial order on ΩG. That is if ω ∈ Le then
there is some open set of configurations A such that ω′ ∈ Le

for any ω′ ∈ A with ω′ > ω. We will see in the next chap-
ter that if q > 1 and Hn is a sequence of finite subgraphs that
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exhaust G then the sequence of finite random cluster models
QHn are stochastically increasing in the sense that for an increas-
ing random variable X the sequence QHn(X) is increasing hence
convergent. This will be enough to show that the weak limit of
such a sequence satisfies DLR conditions above.

On the QuadTree we have a two parameter percolation process,
although we have considered the random cluster model with
homogeneous bond weights it is easy to define a random clus-
ter model on the QuadTree with three parameters, tree bond
strength τ, lattice bond strength λ and cluster factor q. We de-
note such a random cluster model by Q

q
Q(τ,λ).

The event that there exist infinite clusters is clearly increasing,
and so if percolation with probabilities λ, τ exhibits only finite
clusters then for q > 1 the random cluster model with strengths
τ, λ exhibits only finite clusters. If percolation with bond proba-
bilities τ

τ+(1−τ)q , λ
λ+(1−λ)q exhibits at least one infinite cluster then

the free random cluster model with strengths τ, λ exhibits at
least one infinite cluster also.

The event that there exists exactly one infinite cluster is neither
increasing nor decreasing and so the above argument fails for
the single cluster phase. However a slightly more sophisticated
argument, Theorem 2.20 in the next chapter, allows us to bound
the single cluster phase on the QuadTree in a similar way.

However, the bounds provided above are limited in their accu-
racy; even if we could plot the phase diagram exactly for perco-
lation on the QuadTree the margins of error given by the com-
parison inequalities becomes very large for high q.

So, if we wish to go beyond comparison with independent per-
colation, to what extent can we can we attack the problem using
direct arguments concerning the random cluster model?

The techniques of Kendall and Wilson [46] focus on two parts
of the phase diagram (see figure 2), the left axis part where λ is
small and the bottom axis there τ is close to zero.
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Consider the case of the random cluster model where q > 1. We
may either fix τ ∈ (0, 1) and consider a sequence λn → 0 or
fix λ ∈ (0, 1) and consider a sequence τn → 0. In both cases
this gives us a sequence of random cluster models, Q

q
Q(τ,λn) and

Q
q
Q(τn ,λ) respectively.

For any increasing random variable X the sequences of expecta-
tions Q

q
Q(τ,λn)(X) and Q

q
Q(τn ,λ)(X) are decreasing. Again this will

be enough to show that the sequences of random cluster mod-
els Q

q
Q(τ,λn) and Q

q
Q(τn ,λ) converge weakly to some pair of limiting

measures.

In fact we may go further. A theorem of Skorohod [59] (Theorem
2.11 in the next chapter) states that if µn → µ is a weakly con-
vergent sequence of measures on ΩQ (in fact any Polish space)
then there is some measure µ on ΩN

Q such that ωn ∼ µn and the
sequence ωn → ω as n → ∞ where ω ∼ µ. We may extend this
theorem so that if µn is decreasing sequence of measures (in the
sense that µn(X) is decreasing for every increasing X) then we
may choose ωn as above to be a decreasing sequence.

Now what can we say about the two limiting measures we have
constructed? Consider first the case where τ → 0. Removing
all tree bonds from the QuadTree splits the graph into countably
many finite lattices. Let ωn ∼ Q

q
Q(τn ,λ) be a decreasing sequence

as above, then every tree edge is closed in ω. Therefore for an
edge e ∈ L

(
Pm
[0,1]d

)
we have ω ∈ Le if and only if ωn ∈ Le for

every n. It is an easy exercise to deduce from (1.33) that the limit
wlimn→∞ Q

q
Q(τn ,λ) is the measure given by independent random

cluster models on the finite graphs
(
Pm
[0,1]d

, L
(
Pm
[0,1]d

))
.

This does not of course mean that the random cluster model
contains no infinite clusters for sufficiently small τ.

Consider the case of independent percolation on the QuadTree,
in this case the configurations on the finite layers

(
Pm
[0,1]d

, L
(
Pm
[0,1]d

))
are independent whatever the value of τ and it is known (for
d = 2 at least) that if λ is subcritical then we may choose some
τ so small that the finite clusters on the layers are not joined by
the few open tree bonds to form an infinite cluster. Conversely if
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λ is super critical, even though the layers are finite, the clusters
are large enough that no matter how small we make τ we may
find some infinite cluster, furthermore it is unique.

For the random cluster model we might suspect that a similar
phenomenon occurs.

CONJECTURE 1.7

Let pc(q, d) be the critical probability for the Fortuin-Kasteleyn
random cluster model on Zd with cluster factor q.

If λ < pc(q, d) then there exists some τ > 0 such that the
random cluster model Q

q
Q(τ,λ) exhibits no infinite clusters.

If λ > pc(q, d) then for every τ > 0 the random cluster
model Q

q
Q(τ,λ) exhibits a unique infinite cluster.

There are technical difficulties in the proof of this statement
which we have not yet overcome. We leave this as an open prob-
lem for future research.

We move on to the motivating problem for this work. Fix τ ∈
(0, 1) and q > 0. Let λn → 0 and let Q̃τ,q be the weak limit as
n→ ∞ of the sequence of free random cluster measures Q

q
Q(τ,λn).

If we remove all the lattice edges from the QuadTree we are left
with a spanning tree. Now consider some e = 〈u, v〉 ∈ T(Q).
The event Le cannot occur on a tree and the only measure that
satisfies (1.33) is independent bond percolation with probability

τ
τ+(1−τ)q .

Now consider a decreasing sequence ωn ∼ Q
q
Q(τ,λn) with ωn → ω

as n→ ∞.

If τ
τ+(1−τ)q > 2−d then there is a positive probability that, even

if we close e both u and v are contained in infinite clusters in
every ωn. From Theorem 1.3 above if τ

τ+(1−τ)q > τu as well then
ωn contains a single infinite cluster for every n. In particular we
may have ωn ∈ Le for every n ∈N event though we cannot have
ω ∈ Le.
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What can we say then about the probabilities Q̃τ,q(ω(e) |Te )?
Recall that Le is the event that both ends of e are in the “same
cluster.” In this case however we have seen that two vertices may
be in different in ω but still be in the same cluster for every ωn.

Suppose two ω-clusters (say C1 and C2) are “close” in the sense
that there are infinitely many edges ei = 〈ui, vi〉 with ui ∈ C1

and vi ∈ C2. Then for every n ∈ N we may argue from (1.33)
that with probability one at least one edge ei is open in ωn, we
should treat C1 and C2 as the same cluster from the point of view
of our limiting model.

Now consider the sequence of edges ei. By compactness the
sets (ui ∪ vi) ⊂ [0, 1]d has a convergent subsequence and as the
diameter of the sets ui and vi converges to zero the limit must
be a point in Rd. We may find some pair of half infinite open
paths Π1 = (ũ1, ũ2, . . . ) ⊂ C1 and Π2 = (ṽ1, ṽ2, . . . ) such that the
sequences ũi and ṽi (as subsets of [0, 1]d) converge to some point
x ∈ [0, 1]d

Alternatively if we can find paths Π1 and Π2 as above then (as-
suming without loss of generality that ũ1, ṽi ∈ P i

[0,1]d
) there is a

chain of at most d lattice edges between ũi and ṽi and so with
probability one the clusters C1 and C2 are connected in every ωn.

So given a configuration ω ∈ ΩT(Q) let�−−ω� be the smallest equiva-
lence relation on V(Q) such that u�−−ω� v if the unique path on the
tree between u and v is open or if there is some pair of open half
infinite paths (u = ũ1, ũ2, . . . ) and (v = ṽ1, ṽ2, . . . ) with lim inf ũi

= lim inf ṽi.

Set L�−�e for u = 〈u, v〉 ∈ T(Q) to be the event that u�−−ωe� v, where
ωe is the configuration obtained from ω by closing e.

Set π(τ) = τ
τ+(1−τ)q and consider the question as to whether

Q̃τ,q(ω(e) |Te )(ω) =

τ : if ω ∈ L�−�e ,

π(τ) : if ω /∈ L�−�e .
(1.34)
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We are not able to answer this question for every τ. In fact for
the Quad tree we will ultimately have to fall back on the bounds
given by the comparison with independent bond percolation.

Our interest however is in the specification given by (1.34). Are
there any probability measures on ΩT(Q) that satisfy (1.34) and if
so how do they behave?

The aim of this thesis then is to investigate the random cluster
model on a tree under general boundary conditions that include
those described informally above. In particular we wish to de-
fine Gibbs specifications for the random cluster model on a tree
in a general context, allowing connections through the bound-
ary.

If we can make the specification (1.34) rigorous then what may
we say about the set of measures that satisfy it? In particular
does there exist such a measure for every pair τ, q and is this
measure unique?

1.3 THE RANDOM CLUSTER MODEL ON THE
TREE

The random cluster model was adapted to the tree by Häggström
[38]. The standard construction of the random cluster model on
a tree will always produce an independent percolation. Häg-
gström’s approach was to count only finite clusters, that is to
consider all infinite clusters as part of the same cluster. We will
return to this idea in more detail in the next chapter.

To adapt our informal definition we may define an event L?
e

as the event that the two end vertices of e are both contained
either in the same cluster, or in separate infinite clusters in the
configuration ωe.

Substituting L?
e for Le in the specification will be equivalent to

the formal definition of the wired random cluster model we will
meet in the next chapter.
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1.3.1 Wired Boundary Conditions

Häggström’s focus was on the case of regular trees with homo-
geneous bond weights. Let T be a regular k-tree, and fix some
τ ∈ (0, 1) and q > 0 Now if π(τ) ≤ 1

k then Bernoulli perco-
lation with bond probability π(τ) forms no infinite clusters on
the tree and thus satisfies our informal definition of a wired ran-
dom cluster model. If π(τ) > 1

k then L?
e occurs with positive

probability and Bernoulli percolation cannot be a wired random
cluster model.

In addition to constructing the wired random cluster model for-
mally, and providing a rigorous proof of the claim above Häg-
gström was able to construct processes that satisfied the defini-
tion of the wired random cluster model on the tree.

THEOREM 1.8: HÄGGSTRÖM
If T is a regular tree such that each vertex had degree k + 1 and
each edge has weight τ, then for each x ∈ (0, 1) such that

(q− 1)xk+1 +
(
1− τ

1−τ − q
)

xk + ( τ
1−τ + 1)x− 1 = 0 (1.35)

there exists a measure µx
τ,k,q that satisfies DLR conditions for the

wired random cluster model.

If q ≤ 2 the equation (1.35) has no root in (0, 1) for π(τ) ≤ 1
k and

exactly one if π(τ) > 1
k . If q > 2 there is some τc < π-1(τ) > 1

k

such that (1.35) has N solutions in (0, 1) where

N =



0 : if τ < τc,

1 : if τ = τc,

2 : if τc < τ ≤ π-1
(

1
k

)
,

1 : if π(τ) > 1
k .

(1.36)

In addition Häggström was able to show that if τ < τc then
Bernoulli bond percolation as above is the only measure satisfy-
ing DLR conditions he conjectured that if π(τ) > 1

k then there
can exist only one measure that satisfied DLR conditions.
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We will recover equation (1.35) in Chapter 3 and prove Häg-
gström’s conjecture.

Jonasson [44] extended the wired random cluster model to a gen-
eral graph and proved uniqueness of the random cluster model
for sufficiently high τ. In addition it was shown that on any non-
amenable graph of bounded degree there is some q > 0 such that
the wired random cluster model is not unique on some interval
of values τ ∈ (τc, τu).

1.3.2 Boundary Conditions From Equivalence Relations

We are interested in more general boundary conditions than
those considered by Häggström [38] and Jonasson [44]. A more
general approach was taken by Grimmett and Janson [36] by con-
sidering equivalence relations on the set of rays of the tree. A ray
on a tree is a half infinite self avoiding path.

Grimmett and Janson considered equivalence relations on the set
of rays (under the assumption that two rays are always equiva-
lent if they differ on only a finite number of edges). They then
attempted to define the random cluster model on a tree where
two clusters are connected if they contain equivalent open rays.

Let R be the set of rays of a tree T . The authors classify equiva-
lence relations ∼ according to the properties of the set of equiv-
alent pairs {(Π1, Π2) : Π1 ∼ Π2} ⊂ R2.

We have described above an equivalence relation on the set of
rays induced by the map R → [0, 1]d. We shall see that as [0, 1]d

is Hausdorff we may immediately conclude that the induced
equivalence relation is closed.

Unfortunately the construction of the random cluster model in
[36] contains an error. In particular the Gibbs specification de-
fined for the random cluster model is inconsistent. The au-
thors’ definition may be recovered for the special class of “open”
boundary conditions where the specification is consistent if re-
stricted to some exhaustive set of subgraphs.
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There is a lot of work to be done to correct this error. In Chapter
4 we will construct the random cluster model in very general cir-
cumstances, This will be enough to redefine the random cluster
model with Grimmett-Janson boundary conditions in a consis-
tent way.

1.4 THESIS OVERVIEW

In Chapter 2 we introduce some preliminary material which we
shall rely on in later chapters. Although most of this material
is not new. We introduce “generalized series and parallel laws”
which do not appear to be covered in the literature.

The series and parallel laws of Fortuin [25], well known from
electrical network theory concern the replacement of a pair of
edges, either in series or in parallel by a single edge. Our gen-
eralization allows an edge like subgraph to be replaced with a
single, appropriately weighted edge. More importantly for our
purposes we introduce a decomposition of the random cluster
model into a random cluster model on the edge like subgraph
and the random cluster model on the new graph formed by re-
placing the edge like subgraph with a new edge.

In addition we prove Theorem 2.20 concerning the monotonicity
of the single cluster phase on the QuadTree mentioned above.

In Chapter 3 We introduce the wired random cluster model of
Häggström [38]. We adapt the work of Zachary [66] to the
random cluster model by introducing a class of processes that
we call “Markov chains.” As the random cluster model is not
a Markov random fields our Markov chains will not have the
Markov property in the conventional sense.

We introduce a weaker conditional independence requirement
that describes our notion of a Markov chain and define a set of
entrance laws that correspond to the Markov chains in the same
way as Zachary’s entrance laws correspond to Markov chains
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on vertex indexed Markov random fields. Following [66] we
are able to show that every extremal random cluster model is a
Markov chain and so describe the set of random cluster mod-
els in terms of entrance laws. This allows us to prove Häg-
gström’s conjecture concerning the uniqueness of the random
cluster model.

In Chapter 4 we generalize the notion of a random cluster model
by introducing a new object, a random connection. Informally a
random connection −̂_ is a "different kind of arrow" that may
replace the usual connection operator ←−→ in the construction
of the random cluster model on an infinite graph. We introduce
axioms that a random connection must satisfy to allow a random
cluster model to be constructed.

We then consider the behaviour of the random cluster model
defined by a general random connection −̂_ and show a con-
nection with the behaviour of Bernoulli bond percolation on the
tree.

In Chapter 5 we consider the special case of random cluster mod-
els defined by Grimmett-Janson boundary conditions. We pay
particular attention to the “open” equivalence relations defined
in [36]. Grimmett and Janson were able to show that for suffi-
ciently high bond strengths the random cluster model with open
boundary conditions is unique. We go further by demonstrat-
ing that any open equivalence relation defines a set of random
cluster models that corresponds 1–1 with the set of wired ran-
dom cluster models on the same underlying tree. In addition
we define rigorously the random connection �−� and by consid-
ering the behaviour of the random connection under Bernoulli
bond percolation we are able to give a complete description of
the phase behaviour for the random cluster model on a homoge-
neous tree under open boundary conditions.

In Chapter 6 we conclude by describing the behaviour of the
random cluster model on the QuadTree when the strength of
the lattice edges is small and discuss topics raised by this work
which would constitute interesting and significant avenues for
future research.
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In this chapter we prepare the ground for our work by introducing
some preliminary material.

In addition to an overview of existing material we introduce new “gen-
eralized series and parallel laws” which we shall rely on in later chap-
ters and we prove a claim concerning monotonicity of the single cluster
phase for the random cluster model on the QuadTree which we made
in Chapter 1.
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2.1 PRELIMINARY MATERIAL

2.1.1 Graphs and networks

A graph G = (V, E) is a set of vertices V, together with a set of
edges E. An edge is an unordered pair in the form 〈u, v〉 where
u, v ∈ V. A path Π on G is a sequence of vertices (. . . , Πn, . . .)
with 〈Πn, Πn+1〉 ∈ E for every n. As with a sequence a path may
be finite, infinite or doubly-infinite. We may describe a finite path
(u = Π0, . . . , Πn = v) as a path from u to v. We say a graph is
connected if there exists a path from u to v for every u, v ∈ V.

A vertex u of a graph has degree k if there exist exactly k edges in
the form 〈u, v〉. We say a graph has degree k if every vertex has
degree k. We say a graph has maximum degree k if the degree of
each vertex is at most k.

We say a path Π is self-avoiding if for every m 6= n the two edges
〈Πm, Πm+1〉 and 〈Πn, Πn+1〉 are distinct, a cycle in G is a finite
self avoiding path (Π0, . . . , Πn) with Π0 = Πn. Notice that the
vertices of a self avoiding path need not be distinct. We say a
path Π is cycle-free if Πm 6= Πn whenever m 6= n.

There are several common generalizations of the basic graph ob-
ject. We mention a few here. A weighted graph is a graph (V, E)
and a function γ : E → R that assigns a weight to each edge. A
multigraph is a set of vertices together with a multiset of edges.
That is we allow more than one edge between a given pair of
vertices. A directed graph is a set of vertices together with a set
of directed edges. A directed edge is an ordered pair in the form
|u, v〉 where u, v ∈ V. A directed path is a sequence of vertices
Πn such that |Πn, Πn+1〉 ∈ E for every n. The notions of a self-
avoiding path and a cycle generalize naturally to the directed
case.

We will pay particular attention in this work to trees. A tree is
a connected graph that contains no cycles, that is for any two
vertices u, v there is a unique self avoiding path from u to v. A
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FIGURE 3

v e
u v

Two ways of rooting a tree. On the left the regular binary tree is rooted
at a vertex v by directing all edges away from v. On the right the tree
is rooted at a directed edge e = |u, v〉 by directing all edges either
towards u or away from v in such a way that every directed doubly
infinite path runs through e.

regular-tree of degree k is a tree such that every vertex has degree k.
Notice that a regular tree of degree k > 1 is necessarily infinite.

A directed tree is a directed graph that becomes a tree if we re-
place every directed edge |u, v〉 with the undirected edge 〈u, v〉.
We place no restrictions on how edges are directed, however
there are two principal configurations that will be important. We
say a directed tree is rooted at a vertex v if there is a directed
path from v to u for every vertex u 6= v. We say a directed tree
is rooted at a directed edge e = |u, v〉 if for every vertex w there is
either a directed path from w to v, or from u to w. It is easy to
see (refer to figure 3) that rooting a tree at an edge or a vertex
specifies the direction of each edge uniquely.

The natural setting for a random cluster model is a weighted
graph, as we will be dealing with the series and parallel laws
it will also be helpful to allow multiple edges. Although there
has been work on percolation in the setting of directed graphs
(see for example Durrett [20]) the random cluster model makes
no sense on a directed graph as there is no concept of a cluster.
However, directed graphs, and in particular directed trees, will
be useful to us as a method of navigation around the QuadTree.
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Next we define a network as a suitable object on which to define
a random cluster model. Although we include both multiple
and directed edges we stress that most structures we deal with
will not have multiple edges (as they may be removed using the
series and parallel laws) and that edges are directed only for the
convenience of specifying particular events. The underlying per-
colation and random cluster models will ignore edge directions.

DEFINITION 2.1
A network is a partially directed, weighted multigraph. That is a
set of vertices V and a multiset E containing both directed and
undirected edges, together with an associated weight function
γ : E → (0, 1). The weight function is interpreted as a multifunc-
tion in such a way that multiple instances of an edge 〈u, v〉 may
be assigned different weights.

Formally a network N is some set of vertices V(N ) together with
some arbitrary indexing set JN and an associated weight func-
tion γ : JN → (0, 1). Associate with each j ∈ JN an undirected
edge 〈j〉 = 〈u, v〉 for u, v ∈ V(N ).

Recall we wish to downplay the importance of the directions of
edges in a network. For this reason the “default” set of edges
{〈j〉 : j ∈J } is undirected. A labelling ` of a network is a map
from JN to the set of possible directed and undirected edges in
such a way that if 〈j〉 = 〈u, v〉 then `(j) ∈ {〈u, v〉, |u, v〉, |v, u〉}.

For a labelling ` we name E` to be the image of JN under `. If
necessary we allow E` to be a multiset. We will not normally
specify an indexing set and a labelling. Instead, as is conven-
tional with graphs and networks, we will specify the contents
of the edge set E(N ), either as a proper set or a multiset. This
implicitly defines an indexing set JN and a nameless labelling:
JN → E(N ).

As we will not usually be dealing with multigraphs we allow
E(N ) = JN to be a proper set of edges with 〈e〉 = e for every
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e ∈ JN. We will always assume that a network has finitely or
countably many edges and vertices.

REMARK 2.2
We will use letters live u, v and w for vertices of a network and
letters e and f for edges. As shorthand we will often write
u, v, w ∈ N or e, f ∈ N for u, v, w ∈ V(N ) and e, f ∈ E(N ) respec-
tively when it is clear from the context whether we are referring
to an edge or a vertex.

2.1.2 Probability and measure

For clarity and definiteness we define briefly some elementary
terms from probability theory. This is not intended to be an
introduction to the subject and we refer the reader to Williams
[63] or Feller [22, 23] for further details.

A measurable space (Ω, F ) is a sample space Ω, together with a
σ-algebra of events F . We say a measure µ on (Ω, F ) is a prob-
ability measure if µ(Ω) = 1. We will sometimes refer to a proba-
bility measure as a distribution. We say a probability measure or
distribution µ is supported on an event A if µ(A) = 1

In this thesis we will deal only with sample spaces equipped
with a well defined topology. Thus we may interpret a topologi-
cal space Ω as the measurable space (Ω, B(Ω)) where B(Ω) is
the Borel σ-algebra on Ω.

We say a random element is a measurable function E : Ω → Ω′

from Ω to a second measurable space Ω′ If µ is a probability
measure on Ω we name the distribution of E under µ to be the
push-forwards measure E(µ) defined by

(E(µ)) (A) = µ
(
E -1(A)

)
.

As a special case of a random element we say a random variable
X on Ω is a Borel-measurable function Ω→ R.
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If µ is a measure on a space Ω and X a random variable we
denote by µ(X) the expectation of X under µ. Defined by the
Lebesgue integral

µ(X) =
∫

Ω
X(ω) dµ(ω). (2.1)

For some arguments it will be convenient to treat the topic of
conditional expectation in a slightly unusual way. For a measure
µ on a space Ω, and a σ-algebra F ⊂ B(Ω) it is well known that
for every integrable random variable X there exists a unique (up
to µ) F -measurable random variable µ(X |F ) such that∫

A
µ(X |F )(ω) dµ(ω) = µ(X · 1A) (2.2)

for every A ∈ F . We refer the reader to Williams [63] for a list
of the properties of conditional expectation.

For fixed µ, F ,the operator X 7→ µ(X |F ) is linear and pre-
serves expectation. Thus we may define a Markov kernel

(µ |F )(ω, A) = µ(1A |F )(ω). (2.3)

We denote the Markov operator associated with the above kernel
by (µ |F ).

We have chosen to consider conditional expectation in this way
as a notational convenience rather than for a specific mathemati-
cal purpose. In particular,given a σ-algebra F ⊂ B(Ω) we may
define a random, conditioned measure

((µ |F )(ω)) (A) = (µ |F )(ω, A) (2.4)

and of course for an event A ∈ B(Ω) we may define a condi-
tional measure

(µ |A )(E) =
µ(A ∩ E)

µ(E)
. (2.5)
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2.1.3 Coupling

The technique of coupling is central to many arguments in the
field of statistical mechanics, and particularly in interacting par-
ticle systems. Suppose we wish to compare two probability dis-
tributions (say µ1 and µ2). One technique is to specify a coupling
of µ1 and µ2, that is a construction of µ1 and µ2 on the same
probability space.

Specifically we say a coupling of µ1 and µ2 is a probability mea-
sure ν on a second measurable space Ξ, together with two ran-
dom elements E1, E2 : Ξ → Ω such that the push forwards dis-
tributions satisfy E1(ν) = µ1 and E2(ν) = µ2. We may of course
extend the notion of a coupling to several measures, not neces-
sarily all referring the same state space.

The simplest example of a coupling is two independent random
elements, using the symbols above we set Ξ = Ω2 and ν =

µ1 × µ2. Then (Ξ, ν) together with the maps E1 : (ω1, ω2) 7→ ω1

and E2 : (ω1, ω2) 7→ ω2 is one possible coupling of µ1 and µ2.

We will not always wish to describe the mechanism of a coupling
explicitly and so we introduce some special notation. For a cou-
pling of say (Ω1, µ1) , . . . , (Ωn, µn) we will specify properties of
a measure on the product space Ω1 × · · · ×Ωn and the E i from
above are assumed to be the projections onto the subspaces Ωi.
In this case we will usually denote the product space by Ω and
specify a typical element ω as a vector of symbols. For example
to couple two measures µ1 and µ2 on Ω1 and Ω2 with a measure
µ3 on R we might specify ω = (ω1, ω2, x). Then we may specify
events in terms of the random elements ωi ∈ Ωi and x ∈ R.

For percolation and the random cluster model the natural prob-
ability space ΩN = {0, 1}E comes equipped with a partial order.
Suppose Ω1 and Ω2 are partially ordered spaces. We say a ran-
dom element E : Ω1 → Ω2 is increasing (respectively decreasing)
if for every pair ω ≤ ω′ ∈ Ω1 we have E(ω) ≤ E(ω′) (respec-
tively E(ω) ≤ E(ω′)). For Ω2 = R this extends naturally to a
partial order on the set of measures.
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DEFINITION 2.3

For two probability measures µ1, µ2 on some partially ordered
space Ω we say µ1 stochastically dominates µ2 and write µ1 � µ2

if for every increasing random variable X : Ω→ R we have

µ1(X) ≥ µ2(X). (2.6)

There is a deep connection between stochastic domination and
coupling. Suppose µ1 and µ2 are probability measures on Ω and
we may find a coupling ω ∼ ν with ω = (ω1, ω2) ∈ Ω2 such
that ω1 ∼ µ1 and ω2 ∼ µ2 and ω1 ≥ ω2 ν-almost surely. Then
it is clear that µ1(X)− µ2(X) = ν(X(ω1)− X(ω2)) > 0 for any
increasing X.

The converse of this observation also holds and is due to Strassen
[61]. The original paper is not concerned with coupling and
“Strassen’s Theorem” appears only as an special case of a more
general result. We refer the reader to Lindvall [49] or the mono-
graph [50] for a proof and a full discussion.

THEOREM 2.4: STRASSEN’S THEOREM

Let µ1 and µ2 be probability measures on some partially ordered
space Ω. Then if µ1 and µ2 are such that µ1(X) ≥ µ2(X) for every
increasing random variable X : Ω → R, that is if µ1 � µ2; there
exists a measure ν on Ω2 with first and second marginals µ1 and
µ2 respectively, such that

ω1 ≥ ω2 for ν-almost every (ω1, ω2) ∈ Ω2. (2.7)

Lastly we introduce some special notation to describe events de-
fined by statements. We may have recourse to define an event
using an informal statement. For example if Ω is a space of
functions we may define an event A by stating that ω ∈ A if ω is
continuous, or for a random variable X : Ω → N we may wish
to define B as the event that X is an even number.
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We use square brackets to define such informal events, that is
we may express A and B above as

A = [ω is continuous] B = [X is even]

As this notation is by nature informal and its use is largely self
explanatory we will not attempt a rigorous definition.

2.2 THE RANDOM CLUSTER MODEL ON A FI-
NITE NETWORK

2.2.1 Measurable networks

Recall from Definition 2.1 that a network is a partially-directed
weighted multigraph. Recall also from the discussion below Def-
inition 2.1 that associated with a network N there is an arbitrary
indexing set JN .

As JN is arbitrary we may assume that it is a set of events in
some named measurable space. We will refer to an edge of such
a network as a bond.

DEFINITION 2.5

A measurable network on a measurable space (Ω, F ) is a network
N such that

JN = {Je ∈ F : e ∈ E(N )} (2.8)

with 〈Je〉 = e.

We refer to an element of ω ∈ Ω as a configuration of N and name
Je the bond at e.

We say a bond Je is open in a configuration ω if ω ∈ Je and closed
otherwise. We set H(ω) = {e : ω ∈ Je} to be the set of open
bonds.
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There is a natural probability space ΩN = {0, 1}E(N ) associated
with a network N which we interpret as the space of functions
{ω : E(N )→ {0, 1}}. We say a random network is a network N
indexed arbitrarily, together with a measure µ on ΩN .

An implementation of a random network (N , µ) is a measurable
network G, isomorphic to N , defined on a Borel space Ω; together
with a probability measure ν on Ω such that the joint distribution
of the random variables {1Je : e ∈ E(G)} agrees with the distribu-
tion of the random variables {ω(e) : e ∈ E(N )} under µ.

The natural implementation of a random network (N , µ) is the
measurable network defined on ΩN such that

Je = {ω ∈ ΩN : ω(e) = 1} (2.9)

Unless otherwise specified we will always assume that we are
working with the natural implementation of a random network.

As ΩN is a space of functions it is automatically endowed with a
partial order ≤ and join and meet operators ∨ and ∧. Recall that
a random variable X is increasing if X(ω1) ≤ X(ω2) whenever
ω1 ≤ ω2 and decreasing if −X is increasing. We say an event
A ∈ B(ΩN ) is increasing if the indicator 1A is increasing and
decreasing if A{ is increasing.

If N is an infinite network the space N under the product topol-
ogy is not discrete. We will examine this space in more detail in
Section 2.3. We say a random variable X : ΩN → R is left con-
tinuous (respectively right continuous) if for every ω ∈ ΩN and
ε > 0 there exists some open set O ⊂ ΩN with ω ∈ O such that
|X(ω)− X(ω′)| < ε whenever ω′ ∈ O and ω′ ≤ ω. (Respectively
ω′ ≥ ω.)

For ω ∈ ΩN let ωe and ωe be the configurations obtained from ω

by opening and closing e respectively; that is H(ωe) = H(ω) ∪
{e} and H(ωe) = H(ω) \ {e}. For an event A ∈ B(ΩN ) and
e ∈ E we define new events Ae and Ae by setting Ae = [ωe ∈ A]

and Ae = [ωe ∈ A].
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For a set of edges E ⊂ E(N ) we define two σ-algebras, FE and
TE generated respectively by the set of bonds in E, and those in
E(N ) \ E respectively. That is

FE = σ {Je : e ∈ E}, (2.10)

TE = σ {Je : e ∈ (E(N ) \ E)}. (2.11)

If G is a subnetwork of N , that is G is a network with V(G) ⊂
V(N ) and E(G) ⊂ E(N ), or if e ∈ E(N ) is a single edge, define
analogously

FG = FE(G), Fe = F{e}, (2.12)

TG = TE(G), Te = T{e}. (2.13)

We will be interested in the properties of the random network
(V(N ),H) and in particular the properties of its connected com-
ponents.

For a network N = (V, E) with a labelling ` and ω ∈ ΩN we
write

u←−−ω→ v if there exists a path Π from u to v and a se-
quence of bonds Ji with 〈Ji〉 = 〈Πi, Πi+1〉 and
ω ∈ Ji.

u 7−−−−ω,`→ v if there exists an `-directed path Π from u to
v, and a sequence of bonds Ji with `(Ji) ∈
{〈Πi, Πi+1〉, |Πi, Πi+1〉} and ω ∈ Ji.

Thus we may define events

[u←−→ v] = {ω ∈ ΩN : u←−−ω→ v}, (2.14)[
u 7−−̀→ v

]
= {ω ∈ ΩN : u 7−−−−ω,`→ v}. (2.15)

If E(N ) is a set of directed edges we define u 7−−−ω→ v and [u 7−−→ v]
using the default labelling of N .

If V(N ) is infinite we write [u←−→∞],
[
u 7−−̀→∞

]
and [u 7−−→∞] for

the events that u←−→ v (respectively u 7−−̀→ v, u 7−−→ v) for infinitely
many v ∈ V(N ).
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Notice that the event [u←−→ v] ignores the directions of edges,
and so ←−−ω→ is an equivalence relation for every ω ∈ ΩN . Thus
for any vertex v ∈ N we may define the cluster at v to be the
equivalence class of vertices

Cv(ω) = {u ∈ V(N ) : u←−−ω→ v} . (2.16)

If N is a finite network we may set

κN (ω) = |{Cv : v ∈ N}| . (2.17)

We will usually omit the subscript on κ when the network is
clear from the context.

2.2.2 The random cluster model.

We introduced independent bond percolation informally in Chap-
ter 1. Here we will reintroduce the two models more rigorously.
We will use the same notation as in Chapter 1.

Recall that a network N comes equipped with a weight function
γ : E(N ) → (0, 1). Name the measure PN to be Bernoulli bond
percolation on N . That is the is the product measure on ΩN such
that every bond Je is open independently with probability γ(e).

If N is a finite measurable network the number of clusters κ

is bounded above by the number of vertices. Thus for a finite
network N we may define the random cluster model in closed
form as follows.

QN ,q(ω) = Z-1
N ,q

(
∏

e∈E(N )

(
γ(e)

1− γ(e)

)ω(e)
)

qκ(ω) (2.18)

where ZN ,q = ∑
ω∈ΩN

(
∏

e∈E(N )

(
γ(e)

1− γ(e)

)ω(e)
)

qκ(ω) (2.19)

is a normalizing constant.
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FIGURE 4

Cluster
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e

A random configuration of Z2. Marked are a loop at a bond e and a
cluster. Loops are of crucial importance to the random cluster model
as the existence of a loop dictates whether the inclusion or exclusion
of a bond affects the number of clusters.

2.2.3 Basic properties

In this section we outline several key properties of the random
cluster model. These properties stem from a characterization of
the random cluster model in terms of the conditional probabil-
ities QN ,q(Je |Te ). In order to express this characterization we
introduce a loop event Le.

The term “loop” is already used in graph theory to denote an
edge from a vertex to itself. As such edges do not effect any
event in percolation theory, and we do not allow them in our
definition of a network we shall give the term a special mean-
ing in the context of random networks. Let N be a measurable
network and ω ∈ ΩN a configuration of N . Then for an edge
e = 〈u, v〉 a loop at e is an undirected open path from u to v that
does not include e.

Figure 4 shows a loop at an edge e. Notice the existence of a
loop at e is not affected by the state of the bond Je.

DEFINITION 2.6
We say a configuration contains a loop at an edge e = 〈u, v〉 if
it contains an open self avoiding path Π = (u = Π0, . . . , Πn = v)
from u to v such that for every i ∈ J1, nK we have 〈Πi−1, Πi〉 6= e.
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For an edge e ∈ E(N ); if there exists a loop at e then opening and
closing e has no effect on the event [u←−→ v] for any u, v ∈ V(N ).
Conversely if there is no loop at e then opening e connects the
two distinct clusters containing the end vertices of e.

So we may define the event that there is a loop at e as

Le = [ũ←−→ ṽ]e for e = 〈ũ, ṽ〉. (2.20)

and we have

κ(ωe) = κ(ωe) + 1− 1Le(ω) (2.21)

From the definition of the random cluster model (2.18) we see
that

QN ,q(ωe)

QN ,q(ωe)
=


γ(e)

1−γ(e) : if ω ∈ Le

γ(e)
q(1−γ(e)) : if ω /∈ Le

(2.22)

Therefore as Le is Te-measurable we have

QN ,q(Je |Te ) =

γ(e) : if ω ∈ Le

γ(e)
γ(e)+q(1−γ(e)) : if ω /∈ Le.

(2.23)

This fact is crucial to the study of the random cluster model and
will be central to many of our arguments. The quotient in the
right hand side of equation (2.23) will play an important role in
this work. Thus we name functions

πq(p) =
p

p + (1− p)q
π-1

q (p) =
pq

pq + (1− p)
. (2.24)

In addition we allow the functions above to apply to entire net-
works, that is if N is a network with weight function γ, we set
π(N ) to be the network with the same edges and vertices as N
but with weight function γ′, where γ′(e) = π(γ(e))
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THEOREM 2.7

Let G be a finite multigraph and N ,N ′ be two networks with
underlying graphs G and weight functions γ, γ′. Fix q ≥ 1 and
q′ ≤ q.

QN ,q′ is the unique probability measure that satisfies (2.23).

QN ,q satisfies the strong FKG condition (1.25).

If either; for every e ∈ E(G), γ(e) ≥ γ′(e); or for every
e ∈ E(G), π(γ(e)) ≥ π(γ′(e)) then QN ,q � QN ′,q′ .

The proof of this theorem is elementary and may be found in
almost any book on the random cluster model. We refer the
reader to Grimmett [35] or Georgii et al. [29] for the full proof.

Rather than a full proof, we sketch the main ideas using a Markov
chain based coupling argument. We will rely on this and similar
couplings in later chapters.

For every edge e ∈ E(N ) define functions θe
N ,q : ΩN × [0, 1] →

{0, 1} and Θe
N ,q : ΩN × [0, 1]→ ΩN by

θe
N ,q(ω, λ) =


1 : if λ < πq(γ(e)),

0 : if λ > γ(e),

1Le (ω) : if λ ∈
[
πq(γ(e)), γ(e)

]
.

(2.25)

(
Θe
N ,q(ω, λ)

)
( f ) =

θe
N ,q(ω, λi) : if f = e,

ω( f ) : if f 6= e.
(2.26)

We have chosen θe
N ,q in such a way that if λ is a uniform [0, 1] ran-

dom variable then θe
N ,q(ω, λ) is a Bernoulli random variable with

expectation QN ,q(Je |Te )(ω). Hence we have
∫ 1

0 Θe
N ,q(ω, λ)dλ =(

QN ,q
∣∣Te
)
(ω) and in particular QN ,q is invariant under the Markov

kernel ( f , ω) 7→
∫ 1

0 f
(

Θe
N ,q(ω, λ)

)
dλ.

Notice also that as Le is an increasing event then, if q ≥ 1, the
random variable ω 7→ θe

N ,q(ω, λ) is increasing for every λ ∈
(0, 1).
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Next set ω0 to be the constant configuration ω0(e) ≡ 0 choose
independent sequences Λ = (λ1, λ2, . . .) and E = (e1, e2, . . .) uni-
formly from [0, 1]N and E(N )N respectively.

Now define a sequence ωn = ωn(N , q) inductively by setting
ωi+1 = Θei

N ,q(ωi, λi).

It is easy to see that the sequence ωn(N , q) is an irreducible
Markov chain with invariant measure QN ,q. Therefore QN ,q is
specified uniquely by the functions θe

N ,q and, as any measure sat-
isfying (2.23) is an invariant measure for the chain ωn; QN ,q is
the unique measure with conditional probabilities (2.23).

Now for any two pairs (N , q) and (N ′, q′) we may define a se-
quence of couplings ωn = (ωn(N , q), ωn(N ′, q′)). Furthermore
if (N , q) and (N ′, q′) satisfy the conditions of the theorem then
for every ω ≥ ω′ ∈ ΩN , λ ∈ [0, 1] and e ∈ E(N ) we have
θe
N ,q(ω, λ) ≥ θe

N ′,q′(ω
′, λ) and we must have ωn(N , q) ≥ ωn(N ′, q′)

for every n. By considering the stationary distribution of the
chain ωn we must have QN ,q � QN ′,q′ .

We have proved two parts of Theorem 2.7. We leave it to the
reader to check the strong FKG condition (equation (1.25)). This
is simply a matter of checking that for any pair of configurations
ω1, ω2 we have κ(ω1 ∨ω2)+ κ(ω1 ∧ω2) ≥ κ(ω1)+ κ(ω2), which
follows inductively by checking the inequality for configurations
that differ on a single edge. We refer the reader to Grimmett [35]
for details.

Instead we will check the conclusions of Theorem 1.1 directly,
that is we show that for any network N and q ≥ 1 we have

(
QN ,q

∣∣A) � QN ,q (2.27)

for all increasing events A.

The proof is identical to the argument above, but this time set

(Θ |A )e
N ,q(ω, λ) =

Θe
N ,q(ω, λ) : if ωe ∈ A

1 : if ωe /∈ A
(2.28)
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Now define a second chain by ωA
i = (θ |A )ei

N ,q
(
ωA

i−1, λi
)
. This

chain is identical to the previous Markov Chain except that a
bond will never close if this would cause the chain to leave A.
Furthermore the event A forms the only recurrence class of the
chain ωA

n .

Therefore
(
QN ,q

∣∣A) is the unique invariant measure and, argu-
ing as above, (Θ |A )e

N ,q(ω, λ) ≥ Θe
N ,q(ω, λ) for every ω ∈ ΩN

and we have
(
QN ,q

∣∣A) � QN ,q.

2.3 PROBABILITY ON INFINITE PRODUCT SPACES

The random cluster model is a probability measure on the space
of edge configurations of a graph G, in which edges can be either
“open” or “closed.” We have already seen that the natural prob-
ability space for a random cluster model, or for Bernoulli perco-
lation on a finite network is the product space ΩN = {0, 1}E(N ).
If N is an infinite network than the natural probability space is
isomorphic to {0, 1}N and it is natural to consider the Tychonoff
product topology.

For an infinite network N let GN be the set of finite subnetworks
of N .

We say a set G ⊂ GN is exhaustive if for every finite network
G ∈ GN there exists some G ′ ∈ G with G ⊂ G ′.

Alternatively we say a sequence of finite subnetworks Gn ∈ GN is
exhaustive if for every G ∈ GN there exists some N ∈ N such
that G ⊂ Gn for every n > N.

We say a set {XG : G ∈ G} indexed by some exhaustive set G has
property P as G ↑ N if for every exhaustive sequence Gn ∈ G the
sequence XGn has property P as n → ∞. We may write “as G
exhausts N” for as G ↑ N .
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Recall the definitions of FG and TG for subnetworks G. For an
infinite network we may define the tail σ-algebra

T =
⋂
G∈GN

TG . (2.29)

Chose some ξ ∈ ΩN arbitrarily. For G ⊂ N we say a configuration
ω agrees with ξ on G if ω(e) = ξ(e) for every e ∈ E(G) and ω agrees
with ξ off G if ω(e) = ξ(e) for every e ∈ E(N ) \ E(G). We name
two cylinder sets associated with G and ξ.

Oξ
G =

⋂
e∈G
{ω ∈ ΩN : ω(e) = ξ(e)} , (2.30)

Ωξ
G =

⋂
e/∈G
{ω ∈ ΩN : ω(e) = ξ(e)} . (2.31)

Notice that there is a natural bijection between the three sets ΩG ,
Ωξ
G and {Oξ

G : ξ ∈ ΩN}.
DEFINITION 2.8
The Tychonoff product topology on ΩN is the topology generated
by the countable set of open cylinders {Oξ

G : ξ ∈ ΩN , G ∈ GN}.

It is a fundamental fact of topology, see for example Willard [62]
that this topology is compact, countably generated and Haus-
dorff.

Notice also that for finite subgraphs G1 and G2 and configurations
ξ1 and ξ2 the event Oξ1

G1 ∩ O
ξ2
G2 is FG1∪G2-measurable, hence may

be expressed as a union of cylinder sets in the form Oζ
G1∪G2 . In

particular the set of open cylinders forms a basis for the product
topology.

As for every finite G ∈ GN the space ΩG is finite each set Oξ
G is

both open and closed. In particular all FG-measurable functions
are continuous and take only finitely many values. These con-
tinuous simple functions play a key role in our understanding
of the space of probability measures on ΩN .

DEFINITION 2.9
We say a random variable X : ΩN → R is a continuous simple
function if X is FG-measurable for some finite G ∈ GN .
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2.3.1 Topology of probability measures

We may extend any topology on a sample space to a topology
on the space of probability measures.

DEFINITION 2.10

We say a sequence of measures µn converges weakly to a
measure µ and write µn

W→µ if for every continuous simple
function X we have µn(X)→ µ(X).

For a network N let PN = P(ΩN ) be the set of probabil-
ity measures on ΩN with the associated topology of weak
convergence.

Notice we have defined weak convergence in terms of continu-
ous simple functions rather than the usual definition involving
bounded continuous functions. As any continuous function may
be expressed as a uniform limit of continuous simple functions
is is easy to see that there is no loss of generality in weakening
the definition.

It is known (see for example Billingsley [7]) that as the space
ΩN is compact any sequence of measures contains a weakly con-
vergent subsequence. The space ΩN is metrizable as well as
compact. By Prohorov’s Theorem [57] the topology of weak con-
vergence is metrizable also. Both the Levy-Prohorov and the
Vasserstein metrics may be shown to generate the weak topol-
ogy.

Say a sequence of measures µn is Cauchy if µn(X) is a Cauchy se-
quence for every continuous simple function X. If µn is Cauchy
we write wlimn→∞ µn to represent the weak limit of the sequence
µn.

Recall the event Le. The definition extends naturally to an infi-
nite network, however the indicator function 1Le is not continu-
ous. In Chapter 1 we gave an informal definition of the random
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cluster model on an infinite graph as a measure that satisfies the
conditional specification (2.23).

As this specification is not continuous the weak limit of a se-
quence random cluster measures might not satisfy (2.23) and so
might not be a random cluster model.

The key tool we will use to overcome this difficulty is that of
stochastic domination. We will give a brief overview of some
aspects of the weak topology from the perspective of stochas-
tic domination and coupling. This will enable us to construct
random cluster measures as weak limits in certain situations, in
particular as weak limits of monotonic sequences of measures.

A famous theorem of Skorohod [59] states that for any weakly
convergent sequence of measures we may find a coupling that
converges almost surely. This theorem is valid not just for ΩN ,
but for any Polish space, see for example Billingsley [8]. We
prove only the special case where we may write down the cou-
pling explicitly.

THEOREM 2.11: SKOROHOD
Let µn be a sequence of measures on ΩN . Then µn

W→µ if and only
if there exists a coupling with typical element ω = (ω, ω1, ω2, ...)
with marginals ω ∼ µ, ωi ∼ µi such that ωn → ω as n → ∞ for
almost every ω.

PROOF
First if ω is distributed as in the statement of the theorem then
for any continuous random variable X : ΩN → R the sequence
X(ωn) → X(ω) almost surely as n → ∞. ΩN is compact and
so X is bounded, therefore µn(X) → µ(X) as n → ∞ by the
dominated convergence theorem.

Next suppose µn
W→µ. Let Λ = (λ1, λ2, . . .) ∈ (0, 1)N be an i.i.d.

sequence of uniform (0, 1) random variables.
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Order E(N ) arbitrarily and set ωi(Λ) by fixing the values of
bonds ei inductively, setting

1Jei
(ωn(Λ)) =

1 : if λi ≥ 1− µn
(

Jei

∣∣Je1 , . . . , Jei−1

)
,

0 : otherwise
(2.32)

and choosing ω(Λ) ∼ µ in the same way.

For a given n ∈ N we say that ωn fails at stage i if i is smallest
number such that ωn(Λ) and ω(Λ) disagree on ei. We may write
the probability that ωn fails at stage i as a bounded rational func-
tion of a finite number of probabilities µn

(
Oξ
G

)
, µ
(
Oξ
G

)
and so

if µn
W→µ the probability that ωn fails at stage i converges to the

probability that ω fails at stage i, which, trivially, is zero.

Now fix ω and suppose ωn has not failed before stage i. Set
λ̃i = 1− µ

(
Jei

∣∣Je1 , . . . , Jei−1

)
(ω) then ωn fails at stage i only if∣∣λi − λ̃i

∣∣ is sufficiently small. Moreover the size of this interval
must shrink to zero for µ-almost very ω, for if not then the prob-
ability that ωn fails at or before stage i would not disappear as
n→ ∞.

Therefore for almost every Λ, ωn fails at stage i for only finitely
many n, hence ωn → ω as n→ ∞ almost surely as required.

Skorohod’s Theorem demonstrates that there is a close link be-
tween coupling and weak convergence. Strassen’s Theorem (The-
orem 2.4 above) gives us a link between coupling and stochastic
domination. Our next aim is to exploit these links to express the
notion of weak convergence meaningfully in terms of stochastic
domination.

From the definition of stochastic domination(Definition 2.3) if we
wish to show µ � ν then we must check that µ(X) ≥ ν(X) for
every increasing function X. However, weak convergence gives
us control only over continuous functions, and not all increasing
functions are continuous. (Consider for example the indicator
1Le .)
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Before we proceed we prove a technical lemma to show that for
the purpose of stochastic domination it is enough to consider
only the continuous simple functions.

LEMMA 2.12

If µ1 and µ2 be measures such that µ1(X) ≤ µ2(X) for any in-
creasing continuous simple function X then µ1 ≺ µ2.

PROOF
Suppose µ1 and µ2 are as in the statement of the theorem. We
use the sequential compactness the set of probability measures
to construct an ordered coupling of µ1 and µ2 as the limit of a
sequence of couplings.

For any G ∈ GN we may define restricted measures µG1 , µG2 on
ΩG in the obvious way. As every FG-measurable random vari-
able is a continuous simple function we must have µG1 ≺ µG2 .
By Strassen’s theorem, (Theorem 2.4), we may chose a coupling(
ω̃G1 , ω̃G2

)
∼ ν̃G on Ω2

G such that ω̃G1 ∼ µG1 , ω̃G2 ∼ µG2 and ω̃G1 ≤ ω̃G2
ν̃G-almost surely.

Extend this to a coupling of µ1 and µ2 by setting

νG(A× B) =
∫

Ω2
G

µ1(A |FG )
(
ω̃G1
)
·µ2(B |FG )

(
ω̃G2
)

dν̃G
(
ω̃G1 , ω̃G2

)
.

Informally, we sample from νG by choosing
(
ω̃G1 , ω̃G2

)
∈ Ω2

G ac-
cording to the ordered coupling ν̃G , then choosing

(
ωG1 , ωG2

)
∈

Ω2
N according to the product measure µ1 × µ2 conditioned to

agree with
(
ω̃G1 , ω̃G2

)
on G.

We have chosen νG in such a way that if
(
ωG1 , ωG2

)
∼ νG then

ωG1 ∼ µ1, ωG2 ∼ µ2 and ω1(e) ≤ ω2(e) for every e ∈ E(G).

The space Ω2
N is compact and metrizable, hence by Prohorohov’s

Theorem the set of measures {νG : G ∈ GN} is tight and we may
choose some sequence Gn ↑ N such that νGn

W→ν for some ν ∈
P
(
Ω2
N

)
.
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For any continuous simple function X and edge e ∈ E(N ) the
functions X1 : (ω1, ω2) 7→ X(ω1), X2 : (ω1, ω2) 7→ X(ω2) and
1[ω1(e)>ω2(e)] : (ω1, ω2) 7→ ω1(e) (1−ω2(e)) are continuous.

Therefore we have ν(X1) = µ1(X) and ν(X2) = µ2(X) so by
Carathéodory’s Extension Theorem, ν has marginal distributions
µ1 and µ2. Furthermore. ν[ω1(e) > ω2(e)] = 0 therefore ω1(e) ≤
ω2(e)-ν almost surely. Hence ν gives us the required coupling
and µ1 ≺ µ2 by Theorem 2.11.

Suppose that µn is an increasing (respectively decreasing) sequence
of measures, that is if µn+1 � µn for every n (respectively µn+1 ≺
µn) we say µn increases to µ and write µn ↑ µ (µn ↓ µ, decreases
to µ) if in addition µn

W→µ.

We may combine Theorem 2.11 and Lemma 2.12 to prove a use-
ful monotone convergence theorem for the space PN associated
with an infinite network N .

THEOREM 2.13

Let µn be some sequence of probability measures on ΩN .

If µn is an increasing sequence of probability measures
then there exists some measure µ such that µn

W→µ. The
measure µ may be characterized as the unique smallest
probability measure such that µ � µn for every n ∈ N. In
addition µn(X) → µ(X) for every left-continuous random
variable X.

The sequence µn
W→µ if and only if there exist both an in-

creasing sequence νn ↑ µ and a decreasing sequence νn ↓ µ

such that νn ≺ µn ≺ νn for every n ∈N.

PROOF
Firstly if µn is increasing then for each n we may specify a cou-
pling (ωn, ωn+1) ∼ νn of µn and µn+1 such that ωn ≤ ωn+1 al-
most surely. If we define a Markov transition kernel θn(A, ω) =
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νn(ΩN × A |ωn = ω ) then we may construct a discrete Markov
chain ω = (ω1, ω2, . . .) with ωn ∼ µn and ωn ≤ ωn+1 almost
surely. Now set ω(e) = supn∈N

ωn(e) and let µ be the distribu-
tion of ω. Arguing as in Theorem 2.11 we have µn(X) → µ(X)

for every left continuous random variable X.

If µ′ is such that µ′ � µn for every n then for every finite G ∈ GN

and increasing FG-measurable X we have µ′(X) ≥ µ(X) and so
µ′ � µ by Lemma 2.12.

For the second statement if µn
W→µ then we may find a cou-

pling ω = (ω, ω1, ω2, . . .) as in Theorem 2.11. Setting νn to be
the distribution of infi>n ωn(e) and νn to be the distribution of
supi>n ωn(e) we have νn ↑ µ and νn ↓ µ as required.

COROLLARY 2.14

If µn and νn are two sequences of probability measures on ΩN

with µn ≺ νn for every n ∈ N then and µn
W→µ, νn

W→ν as n → ∞
we have µ ≺ ν.

PROOF

From Theorem 2.13 we may choose an increasing sequence µ′n
and a decreasing sequence ν′n of probability measures such that
µ′n ≺ µn ≺ νn ≺ ν′n for every n ∈N and µ′n ↑ µ, ν′n ↓ ν as n→ ∞.

So for any increasing continuous simple function X we have

µ(X) = lim
n→∞

µ′n(X) ≤ lim
n→∞

ν′(X) = ν(X). (2.33)

Therefore µ ≺ ν by Lemma 2.12
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2.3.2 The random cluster model on an infinite graph

We turn our attention back to the random cluster model.

If N is a countably infinite network we may still define Bernoulli
bond percolation on N as an infinite product measure. However,
if the weight function γ(e) is bounded above then number of
clusters κN (ω) is infinite PN -almost surely. Therefore we may
not define the random cluster model directly using the closed
form definition (2.18).

We may however define measures which obey the rules of the
random cluster model (Theorem 2.7) on some finite subnetwork
G ∈ GN , but are “fixed” outside G.

Fix an infinite network N and a cluster factor q > 0. Now let G be
a finite subnetwork of N . Then only a finite number of clusters
intersect G and we may set

κG(ω) = |{Cv(ω) : v ∈ G}| . (2.34)

Recall from (2.31) the cylinder spaces Ωξ
G of configurations that

agree with ξ off G. For finite G ∈ GN the space Ωξ
G is finite and

we may define a measure Q
ξ
G = Q

ξ,q
N ,G as the free cylinder measure

with boundary condition ξ by setting

Q
ξ
G(ω) = Z-1

G,ξ 1Ωξ
G
(ω) ∏

e∈E(G)

(
γ(e)

1− γ(e)

)ω(e)

qκG(ω) (2.35)

where ZG,ξ = ∑
ω∈Ωξ

G

(
∏

e∈E(G)

(
γ(e)

1− γ(e)

)ω(e)
)

qκG(ω). (2.36)

We say that a measure Q is an infinity free random cluster model
on N if for every finite subnetwork G ⊂ N we have

(Q |TG )(ξ) = Q
ξ
G . (2.37)

The term infinity free is defined in contrast to the term infinity
wired. The infinity wired random cluster model was first intro-
duced on the tree by Häggström [38] and extended to a general
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graph by Jonasson [44]. The wired model is defined in a similar
manner to the free model by changing the way we count clusters.
In particular all infinite clusters are considered as a single “giant”
clusters by setting κ?G (ω) to be the number of finite clusters that
intersect G. We may then define the wired cylinder measure Q

ξ
G by

substituting κ?G into the definition (2.35).

We say that a measure Q is an infinity wired random cluster
model on N if for every finite subnetwork G ⊂ N we have

(Q |TG )(ξ) = Q
ξ
G . (2.38)

Arguing as above it is easy to see that the measure Q
ξ
G satisfies

the conditional specification (2.23) for every edge e ∈ G. Further-
more the conclusions of Theorem 2.7 hold for all free cylinder
measures. The specification (2.23) does not in general hold for
wired cylinder measures. For an edge e = 〈u, v〉 ∈ E(G), let ω

be a configuration in which u and v are members of separate
infinite clusters. Then, although there is no loop at e, including
or removing e has no effect on the number of finite clusters.

We may recover a version of (2.23) by defining an analogue of
the event Le to fit with the wired random cluster model. Recall
that informally [u←−→ v] is the event that u and v are members
of the same cluster. The equivalent for the wired specification
therefore is that u and v are not members of distinct clusters
which are not both infinite. Define a new set of events

[u⇐=⇒ v] = [u←−→ v] ∪ ([u←−→∞] ∩ [v←−→∞]) (2.39)

as the wired equivalent of the events [u←−→ v].

Intuitively u⇐=⇒ v if there is a path between u and v, where we
may consider two half infinite paths as a single path “through
infinity”. Then we may set

L?
〈u,v〉 = [u⇐=⇒ v]〈u,v〉 (2.40)

analogously to (2.20).
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We have defined L?
e so that for e ∈ E(G) we have κ?G (ωe) −

κ?G (ω
e) = 1− 1L?e (ω). Arguing as for Theorem 2.7 we have

THEOREM 2.15

The conclusions of Theorem 2.7 hold for both Q
ξ
G and Q

ξ
G .

If ξ ′ ≤ ξ and q ≥ 1 then both Q
ξ ′

G ≺ Q
ξ
G and Q

ξ ′

G ≺ Q
ξ
G .

Q
ξ
G � Q

ξ
G whenever q ≥ 1.

If the configuration ξ does not contain two distinct infinite
clusters then Q

ξ
G = Q

ξ
G .

The proof is again elementary, and follows the same steps as the
proof of Theorem 2.7. It is enough to check the domination for
the implied transition functions

θe
N ,q(ω, λ) =


1 : if λ < πq(γ(e)),

0 : if λ > γ(e),

1Le (ω) : if λ ∈
[
πq(γ(e)), γ(e)

]
,

(2.41)

θ̄e
N ,q(ω, λ) =


1 : if λ < πq(γ(e)),

0 : if λ > γ(e),

1L?e (ω) : if λ ∈
[
πq(γ(e)), γ(e)

]
.

(2.42)

We have mentioned in passing the notion of infinity free and in-
finity wired random cluster models. We will use these concepts as
our definition of the random cluster model. This approach was
pioneered by Dobrushin [17, 18], Lanford and Ruelle [47] and
adapted for the random cluster model by Grimmett [32].

DEFINITION 2.16
Name the sets of infinity free and infinity wired random cluster mod-
els respectively as

RN ,q =
⋂
G∈G

{
µ
∣∣∣(µ |TG )(ξ) = Q

ξ
G

}
, (2.43)

R?
N ,q =

⋂
G∈G

{
µ
∣∣∣(µ |TG )(ξ) = Q

ξ
G

}
. (2.44)
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From Theorem 2.15 we may characterize the random cluster
models as follows.

RN ,q =

{
µ

∣∣∣∣∣µ(Je |Te )(ω) =
{ γ(e) : if ω ∈ Le

π(γ(e)) : if ω /∈ Le

}
(2.45)

R?
N ,q =

{
µ

∣∣∣∣∣µ(Je |Te )(ω) =
{ γ(e) : if ω ∈ L?e

π(γ(e)) : if ω /∈ L?e

}
(2.46)

We are interested primarily in the structure of the sets RN ,q and
R?
N ,q. Before proceeding we must check that the sets RN ,q and

R?
N ,q are non empty.

DEFINITION 2.17

Define the set

ΞN ,q =
{

ξ ∈ ΩN

∣∣∣Qξ
G is Cauchy as G ↑ N .

}
(2.47)

and for ξ ∈ ΞN ,q set

Q
ξ
N ,q = wlimG↑N Q

ξ
G (2.48)

and let

WN ,q =
{

Q
ξ
N ,q

∣∣∣ξ ∈ ΞN ,q

}
. (2.49)

be the set of weak limits.

Define equivalents Ξ?
N ,q, Q

ξ
N ,q and W?

N ,q for the wired random
cluster model.

Of special importance are the weak limits obtained by constant
configurations, ξ1(e) ≡ 1 and ξ0(e) ≡ 0.
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THEOREM 2.18

For every q ≥ 1 we have ξ0, ξ1 ∈
(

ΞN ,q ∩ Ξ?
N ,q

)
. Furthermore

QN ,q = wlimG↑N Q
ξ0
G ∈ RN ,q, (2.50)

QN ,q = wlimG↑N Q
ξ1
G ∈ R?

N ,q (2.51)

and for any µ ∈ RN ,q ∪R?
N ,q we have

QN ,q ≺ µ ≺ QN ,q. (2.52)

This was first proved for the free model by Grimmett [32] and
for the wired model by Jonasson [44]. We omit the proof which
follows directly from the observation that if q ≥ 1 then for any
increasing, exhaustive sequence Gn ∈ GN the sequence Q

ξ0
Gn

is
increasing and Q

ξ1
Gn

is decreasing.

The sets RN ,q and R?
N ,q are obviously convex as they are defined

in terms of conditional probabilities. Thus it is natural to con-
sider the extremal sets. We have defined the random cluster
models in terms of a Gibbs Specification. There is a well estab-
lished theory of the geometry of the sets of measures satisfying
such specifications. We state the conclusions of the general the-
ory, details of which may be found in Dynkin [21] or Georgii
[28].

THEOREM 2.19
For every µ ∈ RN ,q

µ
(
ΞN ,q

)
= 1 and Q

ξ
N ,q = (µ |T )(ξ) ∈ RN ,q µ-almost surely.

The set EN ,q =
{

µ ∈ RN ,q : (µ |T )(ξ) ≡ µ
}

of tail trivial
measures is exactly the set of extremal elements of the set
RN ,q.

Respectively for the wired model the set of tail trivial measures
E ?
N ,q =

{
µ ∈ R?

N ,q : (µ |T )(ξ) ≡ µ
}

forms the extremal elements

of R?
N ,q with Q

ξ
N ,q = (µ |T )(ξ) ∈ R?

N ,q µ-almost surely.
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2.3.3 Monotonicity of the single cluster phase on the QuadTree

We conclude this section by returning to the QuadTree.

We saw in Chapter 1 that supercritical Bernoulli percolation on
the QuadTree exhibits either infinitely many infinite clusters or
only a single infinite cluster. Kendall and Wilson [46] provided
bounds for the single cluster phase for Bernoulli percolation.

The exhibition of a single infinite cluster is not an increasing
event, for if ω contains a unique infinite cluster there may exist
some path Π for which no vertex is contained within the infinite
cluster. Then we may open every bond in Π to create a second
infinite cluster.

Here we show that the single cluster phase of the random cluster
model is still monotonic in the sense that if µ1 ≺ µ2 are free or
wired random cluster models (with q > 1 in both cases) then if
µ1 has the single cluster property so does µ2.

Recall the graph Q(τ, λ) — the d-dimensional QuadTree with
edge weights τ for tree-like edges and λ for lattice-like edges –
defined in Section 1.1.3 for fixed d ≥ 2.

THEOREM 2.20

For q, q′ ≥ 1 and τ ≤ τ′, λ′ ≤ λ′ be such that πq(τ) ≤ πq′(τ
′)

and πq(λ) ≤ πq′(λ
′).

If QQ(τ,λ),q exhibits a unique infinite cluster then QQ(τ′,λ′),q′

exhibits a unique infinite cluster also.

If QQ(τ,λ),q exhibits a unique infinite cluster then QQ(τ,λ),q

exhibits a unique infinite cluster also.

If QQ(τ,λ),q exhibits a unique infinite cluster then QQ(τ′,λ′),q′

exhibits a unique infinite cluster also.
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PROOF
We only consider the case for the free random cluster models,
the proof only requires stochastic domination and a certain in-
variance requirement shared by both the free and wired models.

First for some large integer N, which we will fix below and an
arbitrary pixel P ∈ V(Q) let QN , Q{N and QP ⊂ Q be the sub-
networks of Q with V(QN) = P J0,NK

[0,1]d
, V
(
Q{N
)
= P JN,∞K

[0,1]d
and

V(QP) = P J0,∞K
P ; where each subnetwork contains all appropri-

ate edges of Q.

First each subgraph QP for P ∈ PN
[0,1]d

is isomorphic to Q, let µN

be the measure obtained by choosing the configuration of each
subgraph QP , for P ∈ PN

[0,1]d
independently according to QQ(τ,λ),q

with the remaining edges closed.

Now we may express µN as the limit as M → ∞ of the free
random cluster model on the graph QM ∩

⋃
P∈PN

[0,1]d
QP . Therefore

it is easy to see that we must have µN ≺ QQ{N(τ,λ),q.

Now for ξ ≤ ξ ′ ∈ ΩQ consider the measures
(

QQ(τ,λ),q

∣∣∣FQN

)
(ξ)

and
(

QQ(τ′,λ′),q′
∣∣∣FQN

)
(ξ ′). by the FKG inequality we have

(
QQ(τ′,λ′),q′

∣∣∣FQN

)(
ξ ′
)
�
(

QQ(τ,λ),q

∣∣∣FQN

)
(ξ) (2.53)

�
(

QQ(τ,λ),q

∣∣∣FQN

)
(ξ0) (2.54)

= QQ{N(τ,λ),q � µN . (2.55)

We may use these observations to create an ordered coupling
ω = (ω1, ω2, ω3) ∼ ν with ω1 ∼ µN , ω2 ∼ QQ(τ,λ),q and ω3 ∼
QQ(τ′,λ′),q′ in such a way that ω1 ≤ ω2 ≤ ω3 but for any FQN

measurable X we have X(ω3) independent of ω1.

To achieve this choose a pair ξ, ξ ′ such that ξ ∼ QQ(τ,λ),q and
ξ ′ ∼ QQ(τ′,λ′),q′ and choose ω1 according to µN independently of
ξ and ξ ′.

From above we may choose ω2 according to
(

QQ(τ,λ),q

∣∣∣FQN

)
(ξ)

and ω3 according to
(

QQ(τ′,λ′),q′
∣∣∣FQN

)
(ξ ′) to get the required

coupling.



2.3 PROBABILITY ON INFINITE PRODUCT SPACES 60

Now set ρ = [0, 1]d be the root vertex of Q and set

p = QQ(τ,λ),q[ρ←−→∞]. (2.56)

Choose vertices u, v ∈ V(Q) and ε > 0 arbitrarily. By the mar-
tingale convergence theorem; for ν almost every ω

QQ(τ′,λ′),q′(u←−→∞ |FQN )(ω3)→ 1[u←−→∞](ω3). (2.57)

Therefore we may choose N large enough so that with probabil-
ity at least 1− ε either

QQ(τ′,λ′),q′(u←−→∞ |FQN )(ω3) < p

or

QQ(τ′,λ′),q′(u←−→∞ |FQN )(ω3) > 1− exp
[
2d log (1− τ) log (ε)

log (1− p)

]
.

Now colour a pixel P ∈ PN
[0,1]d

green if P←−−ω1→∞ and blue if there is
some ω3-open path from u to P within the subgraph QN . Then
each pixel is coloured green independently with probability p
and independently of all blue pixels.

Now if a pixel is both green and blue then as ω3 ≥ ω1 we must
have u←−−ω3→∞. Say a blue pixel P dies if every tree bond |P, P′〉
is ω3-closed.

If all blue pixels die then we cannot have u←−−ω3→∞. Furthermore
as the random cluster model is dominated by Bernoulli percola-
tion each green pixel dies with probability at least (1− τ)2d

.

Therefore if there are K > 0 green pixels we have

p > QQ(τ′,λ′),q′(u←−→∞ |FQN )(ω3) > (1− τ)K . (2.58)

And in particular with probability at least 1− ε there are either
no blue pixels or at least log(ε)

log(1−p) blue pixels. Therefore with
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probability 1− 2ε there are either no blue pixels or at least one
pixel that is both blue and green.

So to finish notice that any green pixel is is the root of an infinite
cluster of ω1 and so contained in some infinite cluster of ω2. As
ω2 contains only a single infinite cluster then all green pixels are
connected in ω2 and so all green pixels are connected in ω3.

Arguing as above with probability at least 1− 4ε either one of
u, v is connected to only finitely many vertices or u←−−ω3→ v. As ε

is arbitrary and there are only countably many pairs of vertices
u, v there can only be one ω3 infinite cluster.

2.4 GENERALIZED SERIES AND PARALLEL LAWS

Part of the original motivation for defining the random cluster
model was the observation that independent percolation and
the Ising/Potts models satisfy versions of the series and paral-
lel laws of electrical networks. In an electrical circuit an elec-
trician may replace a single resistor with two resistors either
in series or in parallel without affecting the rest of the circuit,
provided he chooses the values of the new resistors correctly.
There is a similar rule for the random cluster model. An edge
e in a network N may be replaced by two edges, e1 and e2,
in parallel if 1 − γ(e) = (1− γ(e1)) (1− γ(e2)); or in series if
π(γ(e)) = π(γ(e1))π(γ(e2)); without affecting the random clus-
ter model on the rest of N . For details see the original papers
[26, 24, 25] or for example Grimmett [35]

Of course a clever electrician need not be restricted to the series
and parallel laws, he may replace a single resistor with any net-
work of resistors so long as the resistance across the network is
the same as the original resistance, whether calculated or simply
measured using an ohmmeter. We present here a generalized
version of the series and parallel laws for the random cluster
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model whereby a single edge on a weighted graph may be re-
placed by a second weighted graph as long as the probability of
a path across the new graph is correct.

The motivation for this theorem is not in fact that we wish to
replace a complicated graph with a single edge, rather we wish
to make explicit a coupling that is implicit in the original series
and parallel laws.

Let N be a measurable network containing some edge e = 〈u, v〉.
Let G be a second network containing vertices u′ and v′ with
QG,q[u′←−→ v′] = π(γ(e)). Now suppose we remove e from N

and replace it with a copy of G by attaching u′ to u and v′ to v,
how does the random cluster model on this new graph behave?

Theorem 2.23 below may be interpreted as a method of sampling
from the random cluster model on the new network. First choose
a configuration ω of N according to QN ,q. Next, choose a config-
uration ω′ of G as follows. If ω(e) = 1 then choose ω′ according
to
(
QG,q

∣∣u′←−→ v′
)
. If ω(e) = 0 then choose ω′ according to(

QG,q
∣∣u′←−/→ v′

)
. Then ω × ω′ gives a configuration of the new

network distributed according to the q-random cluster model.

2.4.1 Gluing Networks

In order to make rigorous the informal idea of replacing a sub-
network with an edge we define a gluing operation in which
we join two separate graphs by identifying two pairs of vertices.
This will allow us to define an edge like subnetwork (Definition
2.22 below) that may be replaced by a single edge.

Consider two networks N1 and N2 containing vertices u1, v1 ∈
N1 and u2, v2 ∈ N2. Interpret N1tN2

u1 ∼ u2 , v1 ∼ v2 as the network whose
vertices are the quotient set V(N1)tV(N2)

u1 ∼ u2 , v1 ∼ v2 with edge set E(N1) t
E(N2) interpreted in the obvious way.

Notice in particular that if N = N1tN2
u1 ∼ u2 , v1 ∼ v2 we have ΩN = ΩN1 ×

ΩN2 . First we examine how the random cluster measure on N
relates to the product measure QN1 ×QN2 .
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FIGURE 5

u v
u1

v1

u2 v2

{u1, u2} 7→ u

{v1, v2} 7→ v

An illustration of the gluing operation (N1,N2) 7→ N1tN2
u1 ∼ u2 , v1 ∼ v2 from

Lemma 2.21.

Lemma 2.21 describes this relationship. To state the lemma we
name a new simple multigraph, the digon. A digon is a network
with two vertices u, v and two undirected edges e1 and e2 from
u to v.

LEMMA 2.21
Let N = N1tN2

u1 ∼ u2 , v1 ∼ v2 be as above and name a digon D with edge
weights γ(ei) = π-1(QNi [ui←−→ vi]) for i ∈ {0, 1}.

If ψ : ΩN1 ×ΩN2 → ΩD is the map defined by setting

1Jei
(ψ(ω1, ω2)) = 1[ui←−→vi ](ωi)

Then the push forwards measure ψ(QN ) agrees with QD and
the conditional measure (QN |ψ )(ω) = (QN1 ×QN2 |ψ )(ω) for
all ω ∈ ΩD.

PROOF
Recall that ΩN = ΩN1 ×ΩN2 . For ω = (ω1, ω2). Let κN (ω) be the
number of clusters of ω when interpreted as a configuration on
N and let κN1(ω) and κN2(ω) be the number of clusters of ω1 and
ω2 respectively interpreted as configurations of N1 and N2.

Let A = [u1←−→ v1]× [u2←−→ v2] ⊂ ΩN1 ×ΩN2 be the event that
both edges of D are open in the configuration ψ(ω). Notice that

κN = κN1
+ κN1

+ 1A − 2. (2.59)



2.4 GENERALIZED SERIES AND PARALLEL LAWS 64

To see this connect N1 and N2 by first identifying u1 with u2 and
then v1 with v2. When we identify u1 with u2 we reduce the
number of clusters by one. Then connecting v1 to v2 we reduce
the number of clusters by one again unless v1 and v2 are already
in the same cluster, that is if u1←−→ v1 in N1 and u2←−→ v2 in N2.

So we have

QN (ω)

QN1(ω1)QN2(ω)
∝ q1A(ω). (2.60)

We may interpret (2.60) as a Radom-Nikodym derivative and
by comparison with the closed form definition of the random
cluster model (2.18) we have

dQN

d(QN1 ×QN2)
(ω) =

dQD

dPπ(D)
(ψ(ω)). (2.61)

In particular dQN
d
(

QN1
×QN2

) (ω) is measurable with respect to the σ-

algebra generated by ψ and so (QN |ψ )(ω) = (QN1 ×QN2 |ψ )(ω)

for all ω ∈ ΩD. Furthermore we have

dψ(QN )

dψ(QN1 ×QN2)
(ω) =

dQD

dPπ(D)
(ω). (2.62)

Therefore, as ψ(QN1 ×QN2) = Pπ(D) we have ψ(QN ) = QD as
required.

2.4.2 Edge-like subgraphs

Lemma 2.21 provides the engine for the generalized series and
parallel laws. It remains to translate the lemma into a more
usable form.

The gluing operation above may be used as a formal tool for
adding a single edge to a network. If N is some network con-
taining vertices u, v we may set E to be a network containing a
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single edge e = 〈u′, v′〉 with weight γ. The network NtE
u ∼ u′ , v ∼ v′ is

simply a copy of N with an extra edge between u′ and v′.

If G 3 (u′, v′) is a second network, with QG [u′←−→ v′] = π(γ)

then Lemma 2.21 states that the random cluster models on NtG
u ∼ u′ , v ∼ v′

and NtE
u ∼ u′ , v ∼ v′ behave in similar ways.

We reinterpret Lemma 2.21 as a partial decomposition of the
random cluster model on a network in the form NtG

u ∼ u′ , v ∼ v′ into

loosely dependent random cluster models on G and on NtE
u ∼ u′ , v ∼ v′ .

Given a finite network it is easy to spot subgraphs which may be
replaced by a single edge without resorting to a rigorous char-
acterization of such subgraphs. Thus we define an edge like sub-
graph simply as a subgraph that may be replaced by an edge in
the manner specified above.

DEFINITION 2.22
For a network N we say G ⊂ N is an edge-like subgraph of N
if there exists a graph N ′ 3 u′, v′ such that N is isomorphic to
N ′tG

u′ ∼ u, v′ ∼ v for some u, v ∈ G.

Let (N//G) be the graph obtained from N ′ by adding a single
edge eG = 〈u′, v′〉 with weight γ(eG) = π-1(QG [u←−→ v]).

For G ⊂ N and N ′ as above recall that ΩN = ΩN ′ × ΩG . Set-
ting ω = (ω1 ×ω2) ∈ ΩN ′ × ΩG we may define projections
ψG : ΩN → ΩG and ψ(N//G) : ΩN → Ω(N//G) such that

1Je(ψG(ω)) = ω1(e) (2.63)

1Je

(
ψ(N//G)(ω)

)
=

1[u′←−→v′](ω2) : if e = eG

ω1(e) : otherwise
(2.64)
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2.4.3 Generalized series and parallel laws

THEOREM 2.23: THE GENERALIZED SERIES AND PARALLEL LAW

If G ⊂ N is an edge-like subgraph then

ψ(N//G)(QN ) = Q(N//G),

for any FG-measurable random variable X

QN

(
X
∣∣∣ψ(N//G)

)
(ω) = QG

(
X
∣∣∣1[u←−→v]

)
(ψG(ω)).

PROOF

Let G ⊂ N and N ′ be as in Definition 2.22 and let E be the
graph containing a single edge e = 〈u, v〉 with bond weight
γ(e) = π-1(QG [u←−→ v]). Then (N//G) = N ′tE

u′ ∼ u, v′ ∼ v up to some
trivial isomorphism.

From Lemma 2.21 we see that

dQN

d(QN ′ ×QG)
(ω) =

dQ(N//G)

d(QN ′ ×QE)

(
ψ(N//G)(ω)

)
(2.65)

is ψ(N//G)-measurable and so

dQN

d(QN ′ ×QG)
(ω) =

dψ(N//G)(QN )

dψ(N//G)(QN ′ ×QG)

(
ψ(N//G)(ω)

)
(2.66)

=
dQ(N//G)

d(QN ′ ×QE)

(
ψ(N//G)(ω)

)
. (2.67)

Hence

dψ(N//G)(QN )

dQ(N//G)
=

dψ(N//G)(QN ′ ×QN )

d(QN ′ ×QE)
. (2.68)

By expressing ψ(N//G) as a product map we see that

ψ(N//G)(QN ′ ×QG) = QN ′ ×QE (2.69)
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hence ψ(N//G)(QN ) = Q(N//G).

To prove the second part of the theorem let X be some FG-
measurable random variable and choose a ψ(N//G)-measurable
test function Y. Then as dQN

dψ(N//G)(QN ′×QG)
is also ψ(N//G)-measurable

we have

QN (XY) = QN

(
(QN ′ ×QG)

(
X
∣∣∣ψ(N//G)

)
Y
)

(2.70)

Furthermore as (QN ′ ×QG) is a product measure and ψ(N//G) de-
pends on bonds in G only through the indicator 1[u←−→v](ψG(ω))

we have

QN (XY) = QN

(
QG

(
X
∣∣∣1[u←−→v]

)
(ψG(ω))Y

)
. (2.71)

2.4.4 An example

We illustrate Theorem 1.4 with an example.

Define the diamond Dk,p,η to be the weighted graph consisting of
k + 2 vertices, u, v and w1, . . . , wk and 2k edges 〈u, wi〉, 〈wi, v〉 for
i = 1 . . . k with weights γ〈u, wi〉 = p and γ〈wi, v〉 = η. Suppose
we wish to simulate QDk,p,η using a random number generator.

The calculation below plays a key role in Grimmett’s [35, §10.10]
calculation of the critical point for the wired model on the regu-
lar tree and we will refer to it in Chapter 3. The exact simulation
will play a part in establishing a non-uniqueness phase for the
random cluster model for some of the new boundary conditions
on trees we define in Chapter 4.

We may use the series and parallel laws to calculate the probabil-
ity QDk,p,η [u←−→ v] = 1− (1− π-1(π(p)π(η)))k. This calculation
is elementary and appears in [35]. See Figure 6 for an illustra-
tion.
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FIGURE 6

p

η

p′

p

η

p′

p

η

p′

p

η

p′ α

Dk,p,η D′k,p,η

p′ = π-1(π(p)π(η)) α = 1− (1− p′)k

We simplify the “diamond” Dk,p,η (here k = 4) using the series law
and then the parallel law. We may simulate the random cluster model
QDk,p,η

by working backwards and building up the graph from simpler
pieces.

First let Gi be the edge like subgraph of Dk,p,η comprised of the
two edges 〈u, wi〉, 〈wi, v〉. Each graph Gi is a tree and so the
random cluster model QGi is independent bond percolation with
bond probabilities π(p) and π(η). We may apply Theorem 2.23

k times, each time replacing Gi with a single edge ei.

So let D′k,p,η be the multigraph consisting of two vertices u, v and
k edges ei between u and v, each with weight p′ = π-1(π(p)π(η))

and define a map ψ : ΩDk,p,η → D′k,p,η by

ψ ·ω(ei) = ω〈u, wi〉 ∧ω〈wi, v〉.

By k inductive applications of Theorem 2.23 we may calculate
QD′k,p,η

= ψ
(

QDk,p,η

)
and

(
QDk,p,η

∣∣∣ψ) is the measure given by
choosing the configuration of each pair of bonds (〈u, wi〉, 〈wi, v〉)
independently as either both open if ei is open, or according to(

QD1,p,η

∣∣∣u←−/→ v
)

if ei is closed.

For ω ∈ ΩD′k,p,η
, the number of clusters κ(ω) = 2− 1[u←−→v] de-

pends only on the event [u←−→ v] and so(
QD′k,p,η

∣∣∣u←−→ v
)
=
(

PD′k,p,η

∣∣∣u←−→ v
)
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and from the definition of the random cluster model we have

QD′k,p,η
[u←−→ v] = π

(
PD′k,p,η

[u←−→ v]
)

= π
(

1−
(
1− p′

)k
)

.

So far we have done nothing new, we have simply used the
ordinary series and parallel laws to calculate the probability
QDk,p,η [u←−→ v]. The innovation is that we may reverse the pro-
cess to build up the distribution from conditioned percolation
processes.

To sample from QDk,p,η first set

α = 1−
(
1− p′

)k , β =
1− π(p)

1− π(p)π(η)
,

γ =
(1− π(p))π(η)

1− π(p)π(η)
, θ(x) = 1−

(
1− α

1− αx

)1/k

.

Now choose (x1, . . . , xk, y1, . . . , yk, N) uniformly from [0, 1]2k ×
{1, . . . , k} and set

ω0〈u, wi〉 = 1[xi>β] ω0〈wi, v〉 = 1[xi<γ]

and for an edge e ∈ {〈u, wi〉, 〈wi, v〉}

ω1(e) =

1 : if i = N or yi < θ(yN)

ω0(e) : otherwise

Lastly we set ω = ω1 with probability 1− (1− π-1(π(p)π(η)))k

and ω = ω0 with probability (1− π-1(π(p)π(η)))k. We claim ω

is distributed as QDk,p,η .

As the xi are independent uniform [0, 1] random variables it is

easy to see that ω0 is distributed as
(

PD1,p,η

∣∣∣u←−/→ v
)k

. From

above,
(

QDk,p,η

∣∣∣ψ) =
(

PDk,p,η

∣∣∣ψ) so we need only check that

ψ(ω) is distributed as ψ
(

QDk,p,η

)
.



2.4 GENERALIZED SERIES AND PARALLEL LAWS 70

In particular we need to show that the indicators (ψ(ω1)) (ei) =

1[i = N or yi < θ(yN)] are distributed as independent Bernoulli(p′)
random variables conditioned on the event that ∑k

i=1 Gi > 0.

Set

zn
i =

1− (1− αyn)1/k : if i = n

1− (1− yi)(1− zn
n) : if i 6= n

We have chosen zn so that mini=1...k zn
i = zn

n ≤ 1− (1− α)1/k = p′

and we may calculate the determinant
∥∥∥ ∂zn

i
∂yj

∥∥∥ = α
k .

Therefore as N is chosen uniformly the random variables zN,i

are distributed as uniform [0, 1] random variables conditioned
on the event that at least one is smaller that p′. Furthermore for
i 6= n we have zn

i < 1− (1− α)1/k if and only if yi < θ(yn).



3 T H E R A N D O M C L U S T E R M O D E L
O N A T R E E

We consider the random cluster model on a tree under the “wired”
boundary conditions of Häggström [38]. Our approach combines the
method of Zachary [66] with the method of Grimmett [35, Section
10.9]. In particular we adapt the notion of a Markov chain to the ran-
dom cluster model on a tree and show that the set of Markov chains
contains the extremal set of random cluster models. Using the Gen-
eralized Series and Parallel Laws of Chapter 2 we may identify each
Markov chain belonging to the set of (p, q) random cluster models on
a tree with an “entrance law”. On a regular tree this approach allows
us to reconstruct the branching construction of Häggström [38] and to
prove a conjecture from that paper regarding the uniqueness phase of
the random cluster model.
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3.1 CONSTRUCTION OF THE WIRED MODEL

Fix q > 0 and let T be a weighted tree. Recall the definition of
the infinity free and infinity wired random cluster models from
subsection 2.3.2. As T is a tree and contains no cycles, we have
Le = ∅ for every e ∈ T .

Hence for every finite subtree T ⊂ T and boundary condition
ξ ∈ ΩT ; Q

ξ
T(Le) = 0 and so Q

ξ
T(Je |Te ) = πq(p) Q

ξ
T-almost

surely. Therefore Q
ξ
T =

(
Pπq(T)

∣∣∣TT

)
(ξ) .

In particular we have Q
ξ
T ,q = PT and the study of the free ran-

dom cluster model is reduced to the study of Bernoulli percola-
tion on the tree.

In this chapter we explore the wired random cluster model on
the tree. This model was introduced by Häggström [38] on the
regular isotropic tree, and in more generality by Jonasson [44].
Recall from Theorem 2.15 that we may characterize the set of
wired random cluster models

R?
T =

{
ϕ : ϕ(Je |Te ) = πq(p) + (p− πq(p))1L?e

}
, (3.1)

and that the set R?
T is closed and convex with extremal measures

E ?
T = {ϕ ∈ R?

T : ϕ(A) ∈ {0, 1}∀A ∈ T } . (3.2)

Our aim is to adapt the work of Spitzer [60] and Zachary [66]
to the random cluster model in combination with the method
of Grimmett [35, §10.10]. Both Spitzer and Zachary considered
Markov random fields indexed by the vertices of a tree. In both
papers it was shown that any extremal Markov random field
may be expressed as a Markov chain. In the two state case
by Spitzer [60] and for countable state space by Zachary [66].
Furthermore Zachary was able to show that the set of Markov
chains for a given state space is in one to one correspondence
with a set of entrance laws defined for the specification.
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REMARK 3.1

Before we begin we comment on an idiosyncrasy of the random
cluster model on the general tree. Suppose µ ∈ R?

T ,q is a ran-
dom cluster model for q 6= 1. Suppose further that for some
(hence every) v ∈ V(T ) we have µ[v←−→∞] = 0. Then for every
e ∈ E(T ) we have µ(L?

e ) = 0 and µ must be independent bond
percolation with bond probabilities π(γ(e)).

Now suppose T is a regular k-tree with γ(e) = τ then if τ ≤
π-1
( 1

k

)
we have Pπ(T )(v←−→∞) = 0 and Pπ(T ) is a random cluster

model. Conversely if τ > π-1
( 1

k

)
then for every e ∈ E(T ) we

have Pπ(T )(L?
e ) > 0 and Pπ(T ) is not a random cluster model.

We may conclude informally that subcritical percolation on a ho-
mogeneous tree is a random cluster model, whereas supercritical
percolation is not. This observation is not restricted to homoge-
neous trees, and will play a key role in this chapter, however
there are exceptions to this rule that we must discount. Let T ′ be
a regular k-tree with some nominated infinite path Π from ρ to in-
finity. Set γ (〈Πn, Πn+1〉) = 1− 2n and γ(e) = π-1

( 1
2k

)
for all other

edges. Then Pπ(T ′) is “supercritical” in that Pπ(T ′)(ρ←−→∞) > 0
but for every e ∈ E(T ′) we have Pπ(T ′)(L?

e ) = 0 and Pπ(T ′) ∈
R?

T ′,q.

The main purpose of this chapter is prepare the ground for
Chapter 4, where we focus on homogeneous trees, and to prove
Conjecture 1.9 of Häggström [38], which again concerns homo-
geneous trees. However we prefer to present arguments in as
much generality as possible.

In order to avoid this kind of exception we will always assume
that for any weighted tree the weight function γ : E(T) → (0, 1)
is bounded below by some ε > 0.

One interpretation of a Markov chain on the vertices of a tree
is as follows. A Markov random field ϕ on a tree is a Markov
chain if and only if for any finite subtree T the restriction of ϕ to
the vertices of T is a Markov random field on T. We have seen
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FIGURE 7

v∞
T ⊂ T T? = T ∪ ∂T

Augmenting a subtree by adding a ghost vertex. We may always de-
scribe an extremal wired random cluster model by a consistent set of
random cluster models on such finite graphs.

that any random cluster model on a finite tree is independent
bond percolation. Hence for the wired random cluster model
on a tree we may not use such a definition directly. In order
to make sense of this interpretation of a Markov chain for the
random cluster measure we augment certain finite subtrees by
including a ghost vertex v∞ to represent the infinite cluster. We
add extra edges between v∞ and the leaf vertices of the tree (see
Figure 7.) A random cluster measure ϕ will be a Markov chain if
the push forwards measure of ϕ under an appropriate projection
is a random cluster model on the augmented tree T?, whenever
T is a member of a certain class of finite subtrees T

Recall that for a nominated vertex v ∈ V(T ) we may root T as v
by directing all edges away from v. Alternatively for a directed
edge e we may root the tree at e by directing all bi-infinite paths
through e. Let Ev(T ) be the set of directed edges of the tree
rooted at v and Ee(T ) be the edges of the tree rooted at e. If
e = |u, v〉 is a directed edge then as T is a tree we may remove
e from T to split the tree into two components, the ancestors of e
and the descendants of e, A(e) 3 u and D(e) 3 v respectively, by
convention we direct both subtrees to agree with Ee(T ). Define
the children of e to be the set of directed edges

χ(|u, v〉) = {|v, w〉 ∈ D(e)} . (3.3)
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Now let T be the set of finite subtrees of T such that for every
directed edge e ∈ E(T) either χ(e) ⊂ E(T) or χ(e) ∩ E(T) = ∅.
Introduce a ghost vertex v∞ and for a directed edge e = |u, v〉 ∈
E(T ) let e? = |v, v∞〉.

Next for each T ∈ T name the leaves, the boundary and the aug-
mentation of T respectively as follows.

ΛT = {e ∈ T : χ(e) ∩ T = ∅} , (3.4)

∂T = {e? : e ∈ ΛT} , (3.5)

T? = (V(T) ∪ {v∞} , E(T) ∪ ∂T) . (3.6)

In addition let T? = {T? : T ∈ T} be the set of finite augmented
trees.

Our main arguments will revolve around random cluster models
on finite augmented trees, together with the generalized series
and parallel laws of Theorem 2.23. It will be helpful to name
some further subgraphs in order to dissect our augmented trees
effectively. Recall from Remark 2.2 that for a subtree T ∈ T we
may write e ∈ T or e ∈ T? as shorthand for e ∈ E(T) or e ∈ E(T?)

For a directed edge e let χ?(e) be the graph containing edges f
and f ? for every f ∈ χ(e). If e ∈ T ∈ T let DT(e) = D(e) ∩ T
and ΛDT(e) = D(e)∩ΛT. Define ∂DT(e) = { f ? : f ∈ ΛD(e)} and
D?

T(e) = DT(e) ∪ ∂DT(e) as above.

For a tree T ∈ T and e ∈ ΛT define the e-extension of T to be the
undirected tree (T + e) ∈ T with Eρ(T + e) = Eρ(T) ∪ χ(e) for
any and every ρ ∈ T.

Next for a directed edge e = |u, v〉 let [e ↓∞] = [v←−→∞]e be the
event that there is an open directed path from e to infinity in
D(e). Let [e ↓v∞ ] = [v←−→ v∞]e ⊂ ΩT? be the event that there is an
open directed path from e to v∞ in DT(e). For finite trees S, T ∈ T
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with S ⊂ T define maps ψS,T : ΩT? → ΩS? and ψT : ΩT → ΩT?

such that

1Je(ψS,T(ω)) =

ω(e) : if e ∈ S,

1[ f ↓v∞ ](ω) : if e = f ? ∈ ∂S,
(3.7)

1Je(ψT(ω)) =

ω(e) : if e ∈ T,

1[ f ↓∞](ω) : if e = f ? ∈ ∂T.
(3.8)

Notice that these maps commute in the sense that ψS,T · ψT,W =

ψS,W and ψS,T · ψT = ψS. Furthermore the map ψS,T preserves the
events [e ↓v∞ ] and Le interpreted as subsets either of ΩS? or of
ΩT? . Similarly for the map ψT we have ψ-1

T [e ↓v∞ ] = [e ↓∞] and
ψ-1

T (Le) = L?
e .

It is easy to see that if S, T ∈ T with S ⊂ T then for each e ∈
ΛS \ΛT the subgraph D?

T(e) is an edge like subgraph of T?. In
particular applying Theorem 2.23 once for each e ∈ ΛS \ΛT we
see that if γS and γT are weightings of S? and T? such that

γS(e) =

γT(e) : if e ∈ S,

π-1
(

QD?
T(e)[ f ↓v∞ ]

)
: if e = f ? ∈ ∂S.

(3.9)

then the push forwards measure ψS,T(QT?) = QS? .

Now suppose ϕ ∈ R?
T is a random cluster measure on T , what

can we say about the push forwards measures ψT(ϕ)? The map
ψT follows the same rules as ψS,T so it is natural to ask whether
ψT(ϕ) is a random cluster model on T?.

Recall that for a Markov specification on the vertices of a tree we
may characterize the set of Markov chains as the set of Markov
random fields whose restrictions to finite trees are Markov ran-
dom fields.

For the random cluster model we will see that there is an analo-
gous class of random cluster measures which we shall name the
Markov chains. These measures may be characterized as exactly
those measures ϕ ∈ R?

T for which ψT(ϕ) is a random cluster
measure on T? for every T ∈ T.
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The following observation motivates our definition of a Markov
chain. Let QT? be the random cluster measure associated with
any weighting of T?. For an edge e ∈ T, removing e splits T? into
two parts, A?

T(e) and D?
T(e) connected by a single vertex v∞. It is

easy to see, either from the characterization (2.23) or an applica-
tion of Therorem 2.23 that the two σ-algebras FA?

T(e)
and FD?

T(e)

are independent under the conditioned measure
(
QT?

∣∣Je
{
)
.

We may deduce that if ψT(ϕ) is a random cluster model for every
T ∈ T then ϕ must have the following property.

DEFINITION 3.2

We say a measure ϕ on ΩT is a Markov chain if for every directed
edge e ∈ T the σ-algebras FA(e) and FD(e) are independent under
the conditioned measure

(
ϕ
∣∣Je
{
)
.

As an aid to understanding we make the following claim about
Markov chains.

PROPOSITION 3.3

A measure ϕ ∈ R?
T is a Markov chain if and only if for every T ∈

T the push forwards measure ψT(ϕ) is a random cluster model
on T? for some weight function γT,ϕ such that γT,ϕ(e) = γ(e) for
every e ∈ T.

Proposition 3.3 is a strictly weaker statement than the forthcom-
ing Theorem 3.8 which we prove in Section 3.2.

Now we follow the main steps of Zachary [66]. First we connect
the set of Markov chains with the extremal elements of RT .

THEOREM 3.4

Every extremal random cluster model ϕ ∈ E ?
T is a Markov chain.



3.1 CONSTRUCTION OF THE WIRED MODEL 78

PROOF

Given ϕ ∈ R?
T let ϕe = (ϕ |ω(e) = 0 ) and for T ∈ T suppose

T? is weighted in such a way that γT(e) = γ(e) for every e ∈ T.
We will only be interested in (QT? |T∂T ) so bond strengths of ∂T
may be chosen arbitrarily.

Now choose ξ ∈ ΩT . As ϕ ∈ R?
T we have (ϕ |TT )(ξ) = Q

ξ
T.

Set ϕT = ψT

(
Q

ξ
T

)
. Firstly the event [e ↓∞] is TT-measurable for

every e ∈ ΛT; therefore ϕT(Je?) = 1Je? (ψT(ξ)) for every e ∈ ΛT.

Furthermore for e ∈ T and ω ∈ Ωξ
T

Q
ξ
T (Je |Te )(ω) = π(p) + (p− π(p))1L?e (ω) (3.10)

= π(p) + (p− π(p))1Le(ψT(ω)) (3.11)

= QT?(Je |Te )(ψT(ω)). (3.12)

Hence we have ϕT = (QT? |TT ) from Theorem 2.7.

Therefore the σ-algebras FA(e) and FD(e) are independent under
(ϕe |TT )(ξ) and so are independent under (ϕe |T )(ξ) for ϕ al-
most every ξ by the reverse martingale convergence theorem. If
ϕ is extremal we have (ϕ |T )(ξ) = ϕ for almost every ξ and so
ϕ is a Markov chain.

Our next task is to define an entrance law. We have claimed that
for every Markov chain ϕ and subtree T ∈ T the push forwards
measure ψT(ϕ) is a random cluster measure on T? with clus-
ter factor q. For an edge e ∈ T, the conditional probabilities
ϕ(Je |Te ) and ψT(ϕ)(Je |Te ) are set by the conditional specifica-
tions of equations (2.37) and (2.23) respectively, and so the bond
weights γT(e) must be constant over all T 3 e.

Therefore to specify a Markov chain it will be enough to fix the
weights of bonds e? for every directed edge e.

Let E = E(T ) be the set of directed edges {|u, v〉 : 〈u, v〉 ∈ E(T )}.
For a function Θ : E → [0, 1] and subtree T ∈ T, let TΘ be the
network with underlying graph T? such that the bond weights
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γ(e) agree with those of T and γ(e?) = Θ(e) for every edge
e ∈ ΛT.

An entrance law H will be a special function : E → (0, 1) such
that the set of random cluster models QH

T = QTH are coherent
under the maps ψS,T.

There is an extra complication for the random cluster model. The
constant function H0 ≡ 0 induces a consistent set of random
cluster measures {Q0

T : T ∈ T} with weak limit Q0
T → Pπ(T ) as

T ↑ T . Independent bond percolation trivially satisfies our def-
inition of a Markov chain, but we have seen that supercritical
bond percolation is not a wired random cluster model on the
tree. Furthermore if Pπ(T ) is supercritical the push forwards mea-

sure ψT

(
Pπ(T )

)
6= Q0

T.

We introduce an extra robustness condition that will ensure that
ψT

(
lim
S↑T

QH
S

)
= QH

T.

DEFINITION 3.5

For a nominated root vertex ρ ∈ V(T ), we say a function Hρ :
Eρ → [0, 1] is a rooted entrance law if for every e ∈ Eρ

1−Hρ(e) = ∏
f∈χ(e)

(
1− γ( f )Hρ( f )

1+(1−γ( f ))(1−Hρ( f ))(q−1)

)
. (3.13)

We say Hρ is robust if in addition the independent percolation
PHρ , given by

PHρ(Je) =
π(γ(e))(1−π(Hρ(e)))

1−π(γ(e))π(Hρ(e))
(3.14)

is subcritical.

We say a function H : E → [0, 1] is an entrance law if for every
ρ ∈ V(T ) the restriction Hρ of H to Eρ is a rooted entrance law.
We say H is robust if Hρ is robust for every choice of root vertex
ρ.
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There is only a superficial difference between an entrance law
and a rooted entrance law. If ρ and ρ′ are adjacent vertices then
Eρ and Eρ′ differ only by the reversal of a single edge 〈ρ, ρ′〉.
From the definition (3.13), given Hρ, there is a unique choice of
Hρ′ that agrees with Hρ on all directed edges Eρ ∩ Eρ′ . Further-
more from (3.13) the new value Hρ′ (|ρ′, ρ〉) < 1 and so the right
hand side of (3.14) is nonzero, therefore Hρ′ is robust if and only
if Hρ is robust. Extending this by an induction on the graph the-
oretic distance between ρ and ρ′ is is easy to see that for every
(robust) rooted entrance law Hρ there exists a unique (robust)
entrance law H that agrees with Hρ on Eρ.

Next we use Theorem 2.23 to justify (3.13) in the definition above.

LEMMA 3.6

A function H : E → [0, 1] is an entrance law if and only if for
every S ⊂ T ∈ T the push forwards measure

ψS,T(Q
H
T) = QH

S . (3.15)

PROOF
Choose S, T ∈ T with S ⊂ T. For every leaf e ∈ ΛS, either
e ∈ ΛT in which case χ(e) ∩ E(T) = ∅ or e /∈ ΛT, in which
case χ(e) ⊂ E(T). Hence T \ S is a forest and each connected
component contains χ(e) for exactly one e ∈ ΛS \ΛT. Therefore
we may define a sequence of trees Si with S0 = S and Si+1 =

Si + ei for some ei ∈ ΛS \ ΛT. As T ∈ T is finite the sequence
must terminate with Sn = T,

Now χ?(ei) is an edge like subgraph of Si+1 and Si is isomorphic
to (Si+1//χ?(ei)). Setting ei = |ui, vi〉 and letting QH

χ(ei)
be the

random cluster model on χ?(ei) with bond weights inherited
from TH, we have from Theorem 2.23 that QH

Si
= ψSi ,Si+1

(
QH

Si+1

)
if

and only if π(H(ei)) = QH
χ(ei)

[vi←−→ v∞].
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Similar to the example in subsection 2.4.4 we may use the series
and parallel laws to calculate

QH
χ(ei)

[vi←−→ v∞] = π

(
1− ∏

f∈χ(e)
1− π-1(π(γ(e))π(η( f )))

)
(3.16)

= ∏
f∈χ(e)

(
1− γ( f )Hρ( f )

1+(1−γ( f ))(1−Hρ( f ))(q−1)

)
.

(3.17)

So if H is an entrance law then

QH
S = ψS,S1

. . . ψSn−1,T(Q
H
T) (3.18)

= ψS,T(Q
H
T). (3.19)

Conversely if (3.13) fails for some directed edge e ∈ T we may
choose S, T ∈ T with T = S + e and from above we see that
QH

S 6= ψS,T(QH
T).

REMARK 3.7
Notice that there is an iterative construction of the random clus-
ter models QH

T implicit in the proof above. Choose an undi-
rected edge e ∈ T and let S0 be the tree containing the single
edge e. Next choose a sequence of trees Si+1 = Si + ei. Select
ω0 ∈ ΩS?

0
according to QH

S0
and select ωi+1 ∈ ΩS?

i+1
inductively by

replacing e?i with a configuration of χ?(ei) chosen according to(
QH

χ(ei)

∣∣∣vi←−→ v∞

)
if Jei = 1, or according to

(
QH

χ(ei)

∣∣∣vi←−/→ v∞

)
if Jei = 0.

3.2 EQUIVALENCE OF MARKOV CHAINS AND
ENTRANCE LAWS

So far we have defined two objects. A Markov chain is a measure
on ΩT which satisfies a weak conditional independence condi-



3.2 EQUIVALENCE OF MARKOV CHAINS AND ENTRANCE LAWS 82

tion. An entrance law is a function on the set of directed edges of
a tree which gives rise to a set of random cluster models, indexed
by T, that are coherent under the projections {ψS,T : S ⊂ T ∈ T}.

The iterative construction of Remark 3.7 suggests that there is
a large volume limit of the set of measures {QH

T : T ∈ T} and
the conditional independence assumption is consistent with the
conditional independence properties of the finite random cluster
models {QT? : T ∈ T}. In this section we explore the relation-
ship between entrance laws and Markov chains. The robustness
condition (3.14) will play a key role.

THEOREM 3.8

If ϕ ∈ R?
T is a Markov chain then the function

Hϕ : e 7→ π-1
(

ϕ
(
e ↓∞

∣∣Je
{
))

(3.20)

is an entrance law and the push forwards measures of ϕ under
the maps {ψT : T ∈ T} satisfy ψT(ϕ) = QHϕ

T for every T ∈ T.

PROOF
Choose a subtree T ∈ T arbitrarily and set ϕT = ψT(ϕ). First we
check that ϕT = QHϕ

T .

For any ω ∈ ΩT? and edge e ∈ T, the event ψ-1
T {ωe, ωe} ∈ Te ⊂

FT . As L?
e = ψ-1

T (Le) and ϕ ∈ R?
T satisfies the characterization

(3.1) we have

ϕT(ω
e)

ϕT(ωe)
=

p
1− p

q1Le (ω)−1. (3.21)

Thus we need only check the finite conditional probabilities (2.23)
for edges e? ∈ ∂T.

Choose an edge e ∈ ΛT and fix ω ∈ ΩT? such that ω(e) = 0 and
ω(e?) = 1. As the edges e and e? are in series we have

1Le? (ω
e) = 1Le(ω) (3.22)

1Le? (ω) = 1Le(ωe?) = 0. (3.23)
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Now as ϕ is a Markov chain and ω(e) = 0 we have

ϕT(ω)

ϕT(ωe?)
=

π
(
Hϕ(e)

)
1− π

(
Hϕ(e)

) =
Hϕ(e)(

1−Hϕ(e)
)

q
(3.24)

where Hϕ(e) = π-1
(

ϕ
(
e ↓∞

∣∣Je
{
))

as in the statement of the the-
orem.

Now as e ∈ T we have from (3.21) that

ϕT(ω
e)

ϕT(ω)
=

p
1− p

q1Le (ω)−1, (3.25)

ϕT(ω
e
e?)

ϕT(ωe?)
=

p
(1− p) q

. (3.26)

Taking the product of (3.24), (3.25) and (3.26) we see

ϕT(ω
e)

ϕT(ω
e
e?)

=
ϕT(ω

e)

ϕT(ω)

ϕT(ω)

ϕT(ωe?)

ϕT(ωe?)

ϕT(ω
e
e?)

(3.27)

=
Hϕ(e)

1−Hϕ(e)
q1Le (ω)−1 (3.28)

=
Hϕ(e)

1−Hϕ(e)
q1Le?

(ωe)−1 (3.29)

Therefore we have confirmed the finite conditional bond proba-
bilities of (2.23) for e? in both ω and ωe and by Theorem 2.7 we
have ψT(ϕ) = QHϕ

T for arbitrary T ∈ T. Furthermore we have
QHϕ

S = ψS(ϕ) = ψS,TψT(ϕ) = ψS,T(Q
Hϕ
T ) and so Hϕ is an entrance

law by Lemma 3.6.

Now, if ϕ1 and ϕ2 ∈ R?
T are two Markov chains with Hϕ1 = Hϕ2

then for any finite subtree T ∈ T and FT-measurable event A
we must have ϕ1(A) = ϕ2(A) by Theorem 3.8 and as T exhausts
T we must have ϕ1 = ϕ2 by Carathéodory’s extension theorem.

Conversely we have seen that not all entrance laws may be ob-
tained in this way from random cluster models, The constant
entrance law H ≡ 0 is a counterexample if Pπ(T) is supercritical.
Next we show that the property of robustness is a necessary and
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sufficient property for an entrance law to give rise to a random
cluster model.

THEOREM 3.9

If H : E→ [0, 1] is an entrance law there exists a unique Markov
chain QH

T such that for every T ∈ T and FT-measurable random
variable X we have QH

T (X) = QH
T(X)

Furthermore QH
T ∈ R?

T if and only if H is robust.

PROOF
First from Lemma 3.6, for any S ⊂ T ∈ T and FS-measurable X
we have QH

T(X) = QH
S(X). As ΩT is compact we may set QH

T to
be the weak limit as T ↑ T . For any e ∈ T the σ-algebras FAT(e)

and FDT(e) are independent under
(
QH

T

∣∣Je
{
)

and hence under(
QH
T
∣∣Je
{
)
. By the martingale convergence theorem FAT(e) and

FDT(e) are independent under
(
QH
T
∣∣Je
{
)

and so QH
T is a Markov

chain.

Notice that for general entrance laws we have claimed only that
QH
T (X) = QH

T(X) for FT-measurable X. We have not claimed
that ψT(QH

T ) = QH
T. From Theorem 3.8 if QH

T ∈ R?
T then ψT(QH

T )

is a random cluster model on T? for every T ∈ T. Furthermore
if ψT(QH

T ) is a random cluster model on T? then QH
T must satisfy

(3.1). Hence QH
T ∈ R?

T if and only if ψT(QH
T ) = QH

T.

We show that ψT(QH
T ) = QH

T if and only if H is robust by con-
structing a large coupling of the set of measures {QH

T : T ∈ T}.

Let Ω be the product space ∏T∈T ΩT? . We consider an element
ω ∈ Ω as a set of random elements {ωT ∈ ΩT? : T ∈ T}. We
say ω is ψ-coherent if ωS = ψS,T(ωT) for every S ⊂ T ∈ T and
let Ψ ⊂ Ω be the event that ω is ψ-coherent. If ω is ψ-coherent
then we may set ωT ∈ ΩT to be the configuration such that
ωT (e) = ωT(e) whenever e ∈ T. We say ω is robust if ω is
ψ-coherent and ωT = ψT(ωT ) for every T ∈ T.

If G is a σ-algebra of events in ΩT , we interpret G as the σ-
algebra of events in Ω generated by events expressible in the
form Ψ ∩ [ωT ∈ A] for A ∈ G .
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For T ∈ T set ΩT = ∏ S∈T
S⊆T

ΩS (with typical element ωT). For
any ω ∈ ΩT? there exists exactly one ψ-coherent ωT ∈ ΩT with
ωT = ω. Let µT be the distribution on ΩT such that ω is ψ-
coherent almost surely and ωT is distributed according to QH

T.

If ωT ∼ µT then, as H is an entrance law, for any S ⊂ T, ωS ∼
QH

S . Hence µS is the push forwards measure of µT under the
natural projection ΩT → ΩS. Therefore as T is countable and
each ΩT is trivially Polish, by Daniell’s theorem on the existence
of random sequences, [45, Theorem 6.14], there exists a unique
measure µ on Ω such that ω is almost surely ψ-coherent and ωT

is distributed as QH
T for every T ∈ T. Hence if ω ∼ µ we have

ωT ∼ QH
T .

If ω is robust µ-almost surely then ψT(ωT ) = ωT ∼ QH
T, hence

QH
T satisfies (3.1) and QH

T ∈ R?
T .

Conversely as ω is µ-almost surely ψ-coherent, then if ωT ∈
[e ↓v∞ ] ⊂ ΩT? for some, and hence every, T ∈ T we must have
ωT ∈ [e ↓∞]. Therefore, for µ-almost every ω, ωT ∈ Le only if
ωT ∈ L?

e .

Hence if QH
T is a random cluster model we have

QH
T (Je) = π(γ(e)) + (γ(e)− π(γ(e))) µ(ωT ∈ L?

e ) (3.30)

QH
T(Je) = π(γ(e)) + (γ(e)− π(γ(e))) µ(ωT ∈ Le). (3.31)

Therefore if q 6= 1 we must have µ[ωT ∈ L?
e ] = µ[ωT ∈ Le] and

so, for µ-almost every ω, ωT ∈ Le if and only if ωT ∈ L?
e .

That is QH
T is a random cluster model if and only if ω is µ-almost

surely robust.

To complete the proof we show that ω is µ-almost surely robust
if and only if H is robust.

Consider the distribution
(

QH
χ(e)

∣∣∣v←−/→ v∞

)
for e = |u, v〉. Each

f ∈ χ(e) is open independently with probability π(γ(e))(1−π(H(e)))
1−π(γ(e))π(H(e)) ,

and if f is open f ? is closed. Using the iterative construction of
Remark 3.7 we see that µ

(
e ↓∞

∣∣Je?
{
)
= PH(e ↓∞).
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Now, suppose PH is supercritical. Recall from Remark 3.1 that
we are considering only those trees with γ(e) bounded strictly
below 1, then PH(Je |e ↓∞ ) ≤ π(γ(e)) is bounded strictly below
1 also and the

(
PH
)

probability that there is exactly one open
path from v to infinity is zero.

Hence if H is not robust then with positive probability we may
find some edge e with ωT ∈ L?

e but ωT /∈ Le. Therefore QH
T ∈ R?

T

if and only if H is robust.

3.3 ADDITIONAL RESULTS FOR GENERAL TREES

To summarise, there is a one to one correspondence between the
set E ?

T of extremal random cluster measures and some subset of
the robust entrance laws. Therefore R?

T is nonempty if and only
if there exists a robust entrance law and R?

T is a singleton if and
only if there exists a unique robust entrance law.

We are unable to create a complete picture of the set R?
T ,q for

general trees. On a general tree the question of whether a given
entrance law is robust is non trivial. In Section 3.4 we restrict
our attention to homogeneously weighted regular trees where
the question of robustness is resolved in the upcoming Lemma
3.14.

In Chapter 4 we present results for the random cluster model
on a tree under more general boundary conditions, we will con-
centrate on regular trees, partially for simplicity and partially
because we will rely on results in this chapter which we may
only prove on the homogeneous tree.

For now we will present a few results that may be proved on the
general tree.

We have already seen that all extremal random cluster models
may be constructed as weak limits of the cylinder measures Q

ξ
T
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for boundary conditions ξ for some, but not in general every
ξ ∈ ΩT .

On the tree, we may take an alternative approach, by considering
sequences of functions that converge to entrance laws.

For a function Θ : E→ [0, 1] recall the random cluster measures
QΘ

T on ΩT? formed by choosing the edge weights of ∂T accord-
ing to Θ. We begin by making an observation that the random
cluster models QΘ

T are well behaved with respect to the product
topology on the set of functions E→ [0, 1].

LEMMA 3.10

If Θn is a sequence of functions E → [0, 1] such that for each
e ∈ E, Θn → H as n → ∞ for some entrance law H then for
every T ∈ T the measure QΘn

T → ψT(QH
T ).

PROOF
From Theorem 3.9 QH

T is a Markov chain with ψT(QH
T ) = QH

T. As
T? is a finite graph the probabilities QΘn

T (ω) may be expressed
as a continuous function of the edge weights. Hence QΘn

T (ω) →
QH

T(ω) for every ω ∈ ΩT? .

Notice that for ξ ∈ ΩT we may set Θξ(e) ≡ 1[e↓∞](ξ) and the
measures QΘ

T and QΘξ

T agree on FT.

Recall that to specify an entrance law H it is enough to fix the
rooted entrance law Hρ for any choice of root vertex ρ. For a
general function Θ there is no such restriction. Therefore it will
be convenient to fix a root ρ and restrict our attention to subtrees
Tρ = {T ∈ T : ρ ∈ T} and consider the restriction Θρ : Eρ →
[0, 1]. As for any S ∈ T we may choose T ∈ Tρ with S ⊂ T we
will incur no loss of generality from such a restriction.

Given a function Θ : Eρ → [0, 1] and some subtree T ∈ Tρ set
ΘT : Eρ → [0, 1] to be the function that agrees with Θ for every
e ∈ Tρ \ T and satisfies (3.13) for every e ∈ T. Notice that if
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ΘT = limT↑∞ ΘT, exists it must be an entrance law by continuity
of (3.13).

DEFINITION 3.11

We say Θ : Eρ → [0, 1] is a sub-entrance law if Θ(e) ≥ 1 −
∏ f∈χ(e)(1− π-1(1− π(γ( f ))π(Θ( f ))) and a super-entrance law if
Θ(e) ≤ 1−∏ f∈χ(e)(1− π-1(1− π(γ( f ))π(Θ( f ))) (cf. equation
(3.13)). We say Θ is robust if it the bond percolation PΘ from
(3.14) is subcritical.

Notice that if T is a regular tree then any constant function
Θ(e) ≡ θ is either a sub-entrance law or a super-entrance law.

If Θ is a sub (respectively super)-entrance law then ΘT(e) is in-
creasing (respectively decreasing) in T. Therefore the (edgewise)
limit, ΘT = limT↑∞ ΘT, exists and must be an entrance law by
continuity of (3.13).

The bond probabilities PΘ(e) are decreasing in Θ(e), Therefore if
Θ is a robust sub-entrance law then ΘT is robust also.

LEMMA 3.12

If ξ ∈ ΩT is such that Q
ξ
T
W→ϕ as T ↑ T for some measure ϕ on ΩT

then ϕ is a Markov chain and for every S ∈ T ψS

(
Q

ξ
T

)
W→ψS(ϕ)

as T ↑ T .

PROOF
Given ξ ∈ ΩT set Θξ(e) ≡ 1[e↓∞](ξ) it is easy to see that the
measures QΘξ

T and Q
ξ
T agree on FT.

Now if Θξ
T → Θξ

T as T ↑ T then from Lemma 3.10 Q
ξ
T converges

weakly to the Markov chain Q
Θξ
T
T .

If Θξ
T does not converge then by compactness we may choose

sequences Tn and T′n such that Θξ
Tn
→ H and Θξ

T′n
→ H′ as n →

∞ for distinct entrance laws H and H′. Hence Q
ξ
Tn

W→QH
T and

Q
ξ
T′n

W→QH′
T with QH′

T 6= QH′
T from Theorem 3.9.
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Let Θ : E(T ) → [0, 1] be the constant function θ(e) ≡ 1, Then Θ
is clearly a super entrance-law and we may set

HT = lim
T↑T

ΘT . (3.32)

Then HT is an entrance law and for any entrance law H we must
have H ≤ HT by monotonicity of (3.13). Furthermore QH

T = Q
ξ1
T

for every T ∈ T. Therefore if q ≥ 1 then QH
T = QT ,q is a random

cluster model hence H is robust.

If q < 1 the maximal entrance law H still exists. However for the
general case we may not show that H is robust. For the regular
homogeneous tree it is always the case that H is robust, we will
prove this in Section 3.4. This fact is also proved in Häggström
[38] although not explicitly.

We will leave open the question of whether there exists a tree
T and some q < 1 such that H is not robust and R?

T ,q = ∅. In
Chapter 4, Example 4.13 we will see an example of a boundary
condition on a tree that admits no random cluster model for a
particular value of q < 1.

However when q < 1 we may prove that there exists at most one
random cluster model on a given tree.

THEOREM 3.13

If q < 1 then either R?
T =

{
QT
}

or it is empty. If PT is supercriti-
cal then R?

T =
{

QT
}

and QT 6= Pπ(T ). If Pπ(T ) is subcritical then
R?
T =

{
QT
}

and QT = Pπ(T ).

PROOF
From above we need only show that there can exist at most one
random cluster model. We may assume without loss of gener-
ality that H is robust. For if not then R?

T is empty and there is
nothing to prove.

Consider a multigraph with two edges, weighted as p1 and p2.
For q < 1 we may sample from the random cluster model as fol-
lows. First choose edges open independently with probabilities
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π(p1) and π(p2). If at least one edge is closed accept the configu-
ration, if both edges are open accept the sample with probability
q and reject with probability 1− q. If the sample is rejected re-
draw in the same manner rejecting as many times as necessary.
It is easy to check that this procedure generates a random cluster
model on the two bond multigraph.

For two graphs G1 3 u1, v1 and G2 3 u2, v2 set N = G1tG2
u1 ∼ u2 , v1 ∼ v2

as in Theorem 2.23. Then we may sample from QN in the same
way, by choosing configurations independently according to QG1

and QG2 and rejecting the configuration with probability q if both
u1←−→ v1 in G1 and u2←−→ v2 in G2.

Next, consider a directed edge e = |u, v〉 ∈ T ∈ T and let H
be any entrance law. Recall the measures QH

T and Q1
T on ΩT

and define random cluster measures QH
DT(e)

and Q1
DT(e)

on ΩD?
T(e)

analogously.

Define [e ↓∂T] =
⋃

f∈ΛT [v←−→ v∞]
f
e as the event that there is an

open directed path from v to v f for some 〈v f , v∞〉 ∈ ∂DT(e). We
claim that for any entrance law H we have

QH
DT(e)[e ↓∂T] ≥ Q1

DT(e)[e ↓v∞ ] ≥ QH
DT(e)[e ↓v∞ ] = H(e). (3.33)

For the right hand inequality we already have Q1
DT(e)

[e ↓v∞ ] =

ΘT(e) ≥ H(e). To prove the left hand inequality we use in-
duction on the depth of DT(e) (taken to be the graph theoretic
distance between v and v∞) and the number of children |χ(e)|.
If the depth of DT(e) is 1 and |χ(e)| = 1 then D?

T(e) is a tree
containing two edges and the inequality is obvious.

Suppose that (3.33) holds whenever the depth of DT(e) is at
most n. Consider some DT(e) of depth n + 1 with χ(e) = { f }.
Then DT(e) = DT( f ) ∪ f and any random cluster measure on
D?

T(e) is a product of a random cluster model of D?
T( f ) and a

Bernoulli(π(p)) random variable ω( f ). So (3.33) is satisfied.

Next suppose that (3.33) holds whenever the depth of DT(e) is
at most n and |χ(e)| is at most d and consider DT(e) of depth n
with |χ(e)| = d + 1. Choose f ∈ χ(e) and set G1 = D?

T( f ) ∪ f
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and G2 = D?
T(e) \ G1. Let QH

Gi
and Q1

Gi
be random cluster models

on Gi as above for i ∈ {1, 2}. As G1 and G2 are both edge like
subgraphs of DT(e) we may construct a coupling of QH

DT(e)
and

Q1
DT(e)

using the rejection algorithm above.

By inductive assumption we have

QH
Gi
[e ↓∂T] ≥ Q1

Gi
[e ↓v∞ ] ≥ QH

Gi
[e ↓v∞ ]. (3.34)

Couple QH
Gi

and Q1
Gi

by selecting (ωi, ωi) in such a way that ωi

is distributed as QH
Gi

, ωi is distributed as Q1
Gi

and (v←−−ωi→ v∞) ⇒
(v←−−ωi→ v∞)⇒ (v←−−ωi→ ∂Gi) almost surely.

Now choose coupled pairs (ω1, ω1), (ω2, ω2) independently as
above. If we have no more than one of v←−−ω1→ v∞ and v←−−ω2→ v∞

then accept the sample. If both v←−−ω1→ v∞ and v←−−ω2→ v∞ then reject
the sample with probability 1− q.

If both v←−−ω1→ v∞ and v←−−ω2→ v∞ but not both v←−−ω1→ v∞ and v←−−ω2→ v∞

then with probability q accept both (ω1, ω2) and (ω1, ω2), and
with probability 1− q accept (ω1, ω2), but reject (ω1, ω2). Let
ω = (ω1, ω2) and ω = (ω1, ω2) ∈ ΩD?

T(e)
be the configurations

produced.

If both samples are accepted at the same time then by construc-
tion we have [v←−−ω→ v∞] only if [v←−−ω→ ∂Gi]. If not, and (ω1, ω2) is
rejected while ω = (ω1, ω2) is accepted then [v←−−ω→ ∂Gi].

Therefore v←−−ω→ v∞ only if v←−−ω→ ∂Gi and we see that

QH
DT(e)[e ↓∂T] ≥ Q1

DT(e)[e ↓v∞ ]. (3.35)

Hence by induction the inequality (3.33) holds for all pairs e ∈
T ∈ T.

Now let T ↑ T . If H is robust then QH
DT(e)

[e ↓∂T] decreases to H(e)
and so H(e) = limT↑T Q1

DT(e)
[e ↓v∞ ] = H(e). Therefore there can

exist at most one robust entrance law.
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3.4 ON REGULAR TREES

For the remainder of this chapter we concentrate on regular trees
with isotropic edge weights. For 1 < k ∈ N and τ ∈ (0, 1) we
fix T to be the tree such that every vertex has degree k + 1 and
every edge has weight γ(e) = τ.

As T is translation invariant it is natural to consider the constant
entrance laws H(e) ≡ η. Recall equation (3.13) in the definition
of an entrance law. To describe the constant entrance laws we
may rewrite the right hand side of (3.13) as a function.

Set

Fτ,q,k(θ) = 1− (1− π-1(π(τ)π(θ)))
k (3.36)

= 1−
(

1− τθ

1 + (1− τ)(1− θ)(q− 1)

)k

Then the constant function η is an entrance law if and only if η

is a fixed point of Fτ,q,k.

On the general tree T the question of robustness is a hurdle
to our understanding of the set RT ,q. For the regular tree the
situation is simpler, the specification of an entrance law and the
condition of robustness each reduce to a single equation.

LEMMA 3.14
Every non-zero constant entrance law on a regular tree is robust.

PROOF
Recall that η is a constant entrance law if and only if

1− η = (1− π-1(π(τ)π(η)))
k . (3.37)

Rearranging we have

π(τ) =
π
(

1− (1− η)1/k
)

π(η)
(3.38)

≤
π
( η

k

)
π(η)

(3.39)
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by Bernoulli’s inequality.

Conversely if η is not robust then

1
k
<

π(τ) (1− π(η))

1− π(τ)π(η)
(3.40)

⇔ π(τ) ≥ (k (1− π(η))− π(η))-1 . (3.41)

From the definition (2.24), π(η) =
η

η+(1−η)q , so we have

π
( η

k

)
π(η)

=
η + (1− η) q
η + (k− η) q

(3.42)

(k (1− π(η))− π(η)) =
k (1− η) q− η

η + (1− η) q
. (3.43)

Combining (3.39) with (3.41), if η is a constant entrance law, but
not robust we have

k (1− η) q− η ≥ η + (k− η) q (3.44)

⇔ 0 ≥ ((k− 1) q + 2) η (3.45)

Therefore as k ≥ 1, any strictly positive constant entrance law is
robust.

It remains to identify the fixed points of the function (3.36). Re-
call from Chapter 1 that Häggström [38] constructs translation
invariant random cluster models from the roots of a particular
equation (1.35). Although Häggström’s derivation of equation
(1.35) differs from our approach — which is similar to that of
Grimmett [35, §10.10] — we may rearrange (3.36) to show that
the fixed points of (3.36) correspond exactly to the roots of (1.35).

THEOREM 3.15: HÄGGSTRÖM

If q ≤ 2 then there exists τu = q
q+k−1 such that

If τ ≤ τu then Fτ,q,k(θ) < θ for all θ > 1.

If τ > τu there exists a unique fixed point η̄ = Fτ,q,k(η̄) ∈
(0, 1) attractive in the domain (0, 1).
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If q > 2 then there exist τc < τu = q
q+k−1 such that

If τ < τc then Fτ,q,k(θ) < θ for all θ > 1.

If τ = τc then there exists a unique fixed point η = Fτ,q,k(η) ∈
(0, 1) with Fτ,q,k(θ) < θ for θ ∈ (0, η) ∪ (η, 1).

If τc < τ < τu then there exist fixed points 0 < η < η̄ < 1
with Fτ,q,k(θ) > θ for θ ∈ (η, η̄) and Fτ,q,k(θ) < θ for θ ∈
(0, η) ∪ (η̄, 1).

If τ ≥ τu there exists a unique fixed point η̄ = Fτ,q,k(η̄) ∈
(0, 1) attractive in the domain (0, 1).

Furthermore if k = 2 we may express τc =
2
√

q−1

1+2
√

q−1
.

Theorem 3.15 is summarized by the graphs in Figure 8.

PROOF
A full analysis of Equation 1.35 appears in [38] and we will not
repeat it here. Instead set η = 1− xk, then

η ≤ Fτ,q,k(η) (3.46)

⇔ x ≤
τ
(
1− xk)

1 + (1− τ) (q− 1) xk (3.47)

⇔ 0 ≥ (q− 1) xk+1 +
(
1− τ

1−τ − q
)

xk +
(

τ
1−τ + 1

)
x− 1
(3.48)

with equality iff η = Fτ,q,k(η). The conclusions of Theorem 3.15

are stated in [38] in terms of the polynomial (3.48).

THEOREM 3.16

If q ≤ 2 then R?
Tk ,q is a singleton with R?

Tk ,q =
{

Pπ(Tk)

}
if and

only if τ ≤ τc. If q > 2 then R?
Tk ,q is a singleton if and only

if τ < τc, in which case R?
Tk ,q =

{
Pπ(Tk)

}
; or τ > τu, in which

case R?
Tk ,q 6=

{
Pπ(Tk)

}
. If τ ∈ [τc, τu] then there exist uncountably

many extremal random cluster models.
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FIGURE 8
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Sketch graphs of the function Fτ,q,k for differing values of τ. The be-
haviour of the function Fτ,q,k is qualitatively different in the two inter-
vals 0 < q ≤ 2 and q > 2.

REMARK 3.17

Before we prove this theorem we remind the reader that the be-
haviour of R?

Tk ,q is described in Häggström [38] for τ ≤ τu. It
remains to prove the uniqueness of the random cluster model
for τ > τu, Conjecture 1.9 of [38].

PROOF

Set η = max
{

θ ∈ [0, 1] : θ = Fτ,q,k(θ)
}

, then η = limn→∞ Fn
τ,q,k(1)

and the maximal entrance law H(e) ≡ η. Now, if η = 0, that
is if q ≤ 2 and τ ≤ τc = τu or q > 2 and τ < τc, then the
zero function is the only entrance law. Furthermore as τc ≤ τu =

q
q+k−1 = π-1

q
( 1

k

)
and so the zero entrance law is robust. Therefore

R?
Tk ,q =

{
Pπ(Tk)

}
.

If η > 0 but τ ≤ τu then there exist at least two extremal entrance
laws. In Section 5 of [38] Häggström constructs a continuum of
random cluster models by combining the maximal and minimal
random cluster models. We refer the reader to [38] for details as
we do not rely on this fact for any further results.

If τ > τu then η > 0 is a robust entrance law from Lemma 3.14,
and the zero function is not robust as π(τ) > 1

k .
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If q ≤ 1 then from Theorem 3.13 H(e) ≡
0 : if τ ≤ τu

η : if τ > τu
is the

only robust entrance law for Tk with cluster factor q. Hence the
conclusions of the theorem hold for q < 1.

For q > 1 choose some e ∈ Tk and set

γ = π-1

(
inf

ϕ∈E ?
Tk ,q

ϕ
(
e ↓∞

∣∣Je
{
))
≥ Pπ(τ)[e ↓∞] > 0. (3.49)

As the set of entrance laws is closed we may choose some en-
trance law H with H(e) = γ. As Tk is translation invariant then
for any f ∈ χ(e) we have H( f ) ≥ γ. Hence, by monotonicity
of equation (3.13) in the definition of an entrance law, we have
γ = H(e) ≥ Fτ,q,k(γ) > 0 and so we must have γ ≥ η.

Thus for any extremal random cluster model ϕ we have η ≥
Hϕ(e) ≥ γ ≥ η and so there exists a unique robust entrance law
H(e) ≡ η.



4 R A N D O M C O N N E C T I O N S A N D
B O U N DA R Y C O N D I T I O N S

The random cluster model on a tree with general boundary conditions
was studied by Grimmett and Janson [36], however the construction of
the model in that paper contains an error. In this chapter we provide an
alternative construction of boundary conditions by defining a random
connection.

A random connection −̂_ is a set of events {u −̂_ v : u, v ∈ V} that
generalizes the usual connection events {u←−→ v : u, v ∈ V}. We in-
troduce axioms for a random connection that allow us to repeat the
conventional construction of the random cluster model on an infinite
graph that we saw in Chapter 2. As a random connection is a set of
events we may study its properties under Bernoulli percolation.

We associate two critical probabilities with a random connection −̂_.
The first τ −̂_C marks the appearence of infinite loops, the second τ −̂_U
the onset of a single cluster. We extend results of [38] and Chapter
3 to general random connections to show that for q > 1, if p < τ −̂_C
or πq(p) > τ −̂_U the random cluster model is unique. If in addition
−̂_ satisfies an extra measurability condition, we may show that for

sufficiently large q there exists an open interval in which there exists a
continuum of −̂_-random cluster models.
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We have seen two possible definitions of the random cluster
model. In both cases we characterize the random cluster through
a Gibbs specification where conditional probabilities are given
in terms of a loop event; Le or L?

e respectively. In turn both loop
events may be defined in terms of a “connection rule.” Recall
from equations (2.20) and (2.40) that for an edge e = 〈u, v〉 we
may express

Le = [u←−→ v]e , (4.1)

L?
e = [u⇐=⇒ v]e . (4.2)

Informally we may interpret the infinity wired random clus-
ter model as the random cluster model where clusters may be
“connected at infinity”. In [36] Gimmett and Janson consider
more general boundary conditions. Their method is to define
the boundary of a tree as the set of rays – half infinite paths on
the tree, where two rays are considered equivalent if they differ
on only a finite number of edges. The authors then consider
equivalence relations on the set of rays and define random clus-
ter models where two clusters are connected at infinity if they
contain equivalent open rays.

Unfortunately the formal definition of the random cluster model
in [36] contains an error. The random cluster model is defined
in terms of a Gibbs specification that in general may not be con-
sistent.

Here we take a formal approach to the definition of the general
random cluster model. In Chapter 1 we considered a third set of
events {[u�−� v] : u, v ∈ V(Q)} and suggested that we define a
random cluster model using the arrow�−� in place of either←−→
of ⇐=⇒. Our first aim is to identify key properties shared by the
events {u←−→ v : u, v ∈ V(N )} and {u⇐=⇒ v : u, v ∈ V(N )} used
in the construction of the random cluster model on a network N .

We may then repeat the construction for a general random connec-
tion −̂_, to be interpreted as a connection rule that may replace
either←−→ or⇐=⇒.
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4.1 RANDOM CONNECTIONS

Say a random relation ∼ on a network N is a set of events

∼= {[u ∼ v] : u, v ∈ V(N )} ⊂ FN . (4.3)

For each ω ∈ Ω there is a relation

ω∼=
{
(u, v) ∈ V(N )2

∣∣∣ω ∈ [u ∼ v]
}

. (4.4)

We say ω∼ is a realization of ∼.

We allow the usual terminology for binary relations (see for ex-
ample [12]) to carry over to random relations. For example we
say a random relation ∼ is reflexive if every realization of ∼ is
reflexive, or we say ∼ is a random equivalence relation if ∼ is
reflexive, symmetric and transitive. (That is if every realization
of ∼ is an equivalence relation.)

We will define a Gibbs specification on a tree in terms of a for-
mal object, a random connection. A random connection −̂_ will
be a random equivalence relation with similar properties to the
connections←−→ and⇐=⇒ that we have already seen. The random
cluster model may then be defined following the main steps in
Chapter 2.

We will define a random connection, and the associated random
cluster model on a general network as there is no advantage to
restricting the definition to a tree at this stage. Later however we
restrict our analysis to homogeneous regular trees and will not
attempt to adapt our results to a general network.

DEFINITION 4.1

We say a random equivalence relation on a network N is a random
connection if it satisfies the following three conditions.

I −̂_ extends←−→ through boundary connections:

[u −̂_ v] ⊆ [u⇐=⇒ v]

= [u←−→ v] ∪ ([u←−→∞] ∩ [v←−→∞])
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II [u −̂_ v] is an increasing event for every u, v ∈ V(N ).

III For an edge e = 〈ũ, ṽ〉

[u −̂_ v]e = [u −̂_ v]e ∪ [u −̂_ ũ, ṽ −̂_ v]e
∪ [u −̂_ ṽ, ũ −̂_ v]e

for every u, v ∈ V(N ).

For a random connection −̂_ associate a loop event

L −̂_e = [u −̂_ v]e (4.5)

with each edge e = 〈u, v〉 ∈ E(N ).

Notice that both the free connection {[u←−→ v] : u, v ∈ V(N )} and
the wired connection {[u⇐=⇒ v] : u, v ∈ V(N )} satisfy the defini-
tion of a random connection. Our aim is to repeat the construc-
tion of the free and wired random cluster models, substituting
a general random connection −̂_ in place of either ←−→ or ⇐=⇒.
As a random connection is always a random equivalence rela-
tion we may count the number of clusters that intersect a finite
subnetwork of N and define a Gibbs specification for a general
random connection in the same way as for the free and wired
random cluster models. Axioms I–III represent key properties
shared by←−→ and⇐=⇒ used in the construction.

Axiom I ensures that the behaviour of a random connection re-
spects the local structure of the network.

Axiom II allows us to use monotonicity arguments when q ≥ 1.
In particular we will see in Theorem 4.5 below that the set of ran-
dom cluster models we define is non-empty for q ≥ 1. For q < 1
it is not the case that every random connection admits a random
cluster model. Example 4.13 provides a counterexample.

Axiom III is a technical condition that allows us to specify single
bond conditional probabilities in terms of the loop event L −̂_e . In
particular the effect of opening a single bond 〈u, v〉 is to alter the
number of equivalence classes by at most one. Lemma 4.3 below
plays the role of Theorem 2.7 for random cluster models defined
in terms of a random connection.
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DEFINITION 4.2

For a network N , a random connection −̂_ on N and a subnet-
work G ∈ GN let κ]

G (ω) be the number of equivalence classes of
−̂−ω_ that intersect V(G). Define the −̂_ random cluster measure

Q −̂ξ_
G,q to be the probability measure concentrated on Ωξ

G with

Q −̂ξ_
G,q (ω) = Z-1

G,ξ 1Ωξ
G
(ω)

(
∏

e∈E(G)

(
γ(e)

1− γ(e)

)ω(e)
)

qκ]
G (ω)

(4.6)

where ZG,ξ = ∑
ω∈Ωξ

G

(
∏

e∈E(G)

(
γ(e)

1− γ(e)

)ω(e)
)

qκ]
G (ω). (4.7)

And let

R −̂_
N ,q =

⋂
G∈GN

{
µ
∣∣∣(µ |TG )(ξ) = Q −̂ξ_

G,q

}
(4.8)

be the set of −̂_ random cluster models.

Now we check that the Gibbs specification above is consistent
and that the set R −̂_

N ,q is non-empty.

LEMMA 4.3

Q −̂ξ_
G,q is the unique probability measure concentrated on Ωξ

G that
satisfies the single bond conditional specification

Q −̂ξ_
G,q (Je |Te )(ω) =

γ(e) : if ω ∈ L −̂_e ,

πq(γ(e)) : if ω /∈ L −̂_e .
(4.9)

PROOF

By definition Q −̂ξ_
G,q is concentrated on the finite state space Ωξ

G .
First we show that there may exist at most one such probability
measure satisfying (4.9).



4.1 RANDOM CONNECTIONS 102

As for the random cluster model on the finite graph we may
rewrite (4.9) in the equivalent form

Q −̂ξ_
G,q (ω

e)

Q −̂ξ_
G,q (ωe)

=
γ(e)

1− γ(e)
q1L −̂_e

(ω)−1. (4.10)

Therefore if µ and ν are two probability measures satisfying (4.9),
and equivalently (4.10), we must have µ(ωe)

µ(ωe)
= ν(ωe)

ν(ωe)
and therefore

µ(ωe)
ν(ωe)

= µ(ωe)
ν(ωe)

. We may extend this by induction to show that
µ(ω)
ν(ω)

= µ(ω′)
ν(ω′)

whenever ω and ω′ disagree on only finitely many
bonds.

As the subgraph G is finite and any ω, ω′ ∈ Ωξ
G agree on N \ G;

the ratio µ(ω)
ν(ω)

is constant on the finite state space Ωξ
G . Thus there

may exist at most one probability measure concentrated on Ωξ
G

that satisfies (4.9).

Now from the definition of Q −̂ξ_
G,q we may write

Q −̂ξ_
G,q (ω

e)

Q −̂ξ_
G,q (ωe)

=
γ(e)

1− γ(e)
qκ]
G (ωe)−κ]

G (ωe). (4.11)

Comparing (4.10) with (4.11) we see that Q −̂ξ_
G,q is the unique prob-

ability measure satisfying (4.9) if and only if

κ]
G (ωe)− κ]

G (ω
e) = 1− 1L −̂_e

(ω). (4.12)

Fix e = 〈ũ, ṽ〉 ∈ E(G) and choose u, v ∈ V(G) arbitrarily. The
event [u −̂_ v] is increasing by Axiom II and so we must have
[u −̂_ v]e ⊃ [u −̂_ v]e. Now suppose ω ∈ [u −̂_ v]e \ [u −̂_ v]e.
From Axiom III we may assume without loss of generality that
ω ∈ [u −̂_ ũ, ṽ −̂_ v]e.

From the definition L −̂_e = [ũ −̂_ ṽ]e and as any random con-
nection is also a random equivalence relation we must have
L −̂_e ∩ [u −̂_ ũ, ṽ −̂_ v]e ⊂ [u −̂_ v]e.
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In particular we have [u −̂_ v]e ∩ L −̂_e = [u −̂_ v]e ∩ L −̂_e . There-
fore, as u and v are arbitrary, we have κ]

G (ω
e) = κ]

G (ωe) for
every ω ∈ L −̂_e .

Conversely if ω /∈ L −̂_e then ũ and ṽ are in distinct −̂−ωe_ clusters,
but are in the same −̂−ωe_ cluster, and so κ]

G (ωe) − κ]
G (ω

e) ≥ 1.
However any −̂−ωe_ cluster that contains neither ũ nor ṽ is also a
−̂−ωe_ cluster by Axiom III. Hence κ]

G (ωe)− κ]
G (ω

e) ≤ 1 as well.

Therefore κ]
G (ωe)− κ]

G (ω
e) = 1− 1L −̂_e

(ω) as required and we
are done.

COROLLARY 4.4

1. The measures
{

Q −̂ξ_
G,q

∣∣∣G ∈ GN

}
form a consistent Gibbs spec-

ification. That is for G ′ ⊂ G ∈ GN and ω ∈ Ωξ
G(

Q −̂ξ_
G,q

∣∣∣TG ′ )(ω) = Q −̂ω_
G ′,q. (4.13)

2. If q ≥ 1 then the measure Q −̂ξ_
G,q satisfies the FKG inequality.

3. If ξ ≥ ξ ′ ∈ ΩN , q, q′ ≥ 1 and γ, γ′ are two weightings of
N with γ(e) ≥ γ′(e) and πq(γ(e)) ≥ πq′(γ

′(e)) for every
e ∈ E(N ) then for every G ∈ GN

Q −̂ξ_
Gγ,q � Q −̂−ξ′_

Gγ′ ,q′
. (4.14)

PROOF

For the first statement fix configurations ξ ∈ ΩN and ω ∈ Ωξ
G ,

and set µ =
(

Q −̂ξ_
G,q

∣∣∣TG ′ )(ω). By Lemma 4.3 we need to show
only that µ satisfies (4.9). That is, it is enough to check that
µ(Je |Te ) = Q −̂ω_

G ′,q(Je |Te ) for arbitrary e ∈ E(G ′).
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From the definition of µ, for any Te-measurable X we have

µ(1Je · X) = Q −̂ξ_
G,q (1Je · X |TG ′ )(ω) (4.15)

= Q −̂ξ_
G,q

(
Q −̂ξ_
G,q (Je |Te ) · X

∣∣∣TG ′ )(ω) (4.16)

= Q −̂ξ_
G,q

(
Q −̂ω_
G ′,q(Je |Te ) · X

∣∣∣TG ′ )(ω) (4.17)

= µ
(

Q −̂ω_
G ′,q(Je |Te ) · X

)
. (4.18)

The final two statements follow from the Markov chain argu-
ment of Theorem 2.7. We need only note that L −̂_e is increasing
by Axiom II and so

Q −̂ξ_
Gγ,q(Je |Te )(ω) ≥ Q −̂−ξ′_

Gγ′ ,q
(Je |Te )

(
ω′
)

(4.19)

for ω ∈ Ωξ
G and ω′ ∈ Ωξ ′

G with ω ≥ ω′, and q, q′, γ, γ′ satisfying
the conditions of part 3.

For the free and wired random cluster models, with q ≥ 1 we
were able to obtain at least one random cluster model as a weak
limit wlimG↑N Q

ξ0
G,q ∈ RN ,q or wlimG↑N Q

ξ1
G,q ∈ R?

N ,q. The proof
of this relies on the respective left and right continuity of the
indicators {1Le : e ∈ N} and

{
1L?e : e ∈ N

}
. However in general

the loop events L −̂_e may be neither left nor right continuous and
for a typical random connection −̂_ the limits wlimG↑N Q −̂−ξ0_

G,q and
wlimG↑N Q −̂−ξ1_

G,q may not be random cluster measures.

Our next aim is to show that although this direct construction
may fail, there still exists both a minimal and a maximal random
cluster model for any random connection.

THEOREM 4.5
Let −̂_ be a random connection on a network N and choose
q ≥ 1. There exist measures Q −̂_

N ,q and Q −̂_
N ,q ∈ R −̂_

N ,q with the
property that

Q −̂_
N ,q ≺ ϕ ≺ Q −̂_

N ,q (4.20)

for every ϕ ∈ R −̂_
N ,q.
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We will only prove the existence of the minimal random clus-
ter model. The proof for the maximal random cluster model is
identical but with the stochastic ordering reversed.

Rather than consider the probability measures Q −̂ξ_
G,q for fixed ξ

we integrate the function ξ 7→ Q −̂ξ_
G,q with respect to a probability

measure µ ∈PN . We may identify a set of probability measures
for which the resulting map G 7→

∫
Q −̂ξ_
G,q dµ(ξ) is monotonic for

µ ∈ I .

LEMMA 4.6
For every G ∈ GN there exists an operator MG : PN →PN with

MGµ(X) =
∫

Q −̂ξ_
G,q (X)dµ(ξ) (4.21)

for every bounded FN -measurable random variable X.

Let I = I −̂_N ,q ⊂PN be the set of measures such that MGµ � µ for
every G ∈ GN . Then I is nonempty, it is closed under weak limits
of increasing sequences and there is a well defined increasing
operator M : I → I such that

MGµ ↑ Mµ as G ↑ N (4.22)

and Mµ � µ for every µ ∈ I .

PROOF
First for µ ∈ PN and G ∈ GN the right hand side of (4.21) is
linear in X and is countably additive on indicator functions by
the monotone convergence theorem. Therefore there is a well
defined measure MGµ with expectation given by (4.21).

Set δ0 to be the probability measure concentrated on ξ0, that is
δ0(Je) = 0 for every e ∈ E(N ). Every probability measure on ΩN

dominates δ0 so trivially we have µ0 ∈ I . In particular the set I
is nonempty.

For a fixed increasing continuous simple function X the random
variable ξ 7→ Q −̂ξ_

G,q (X) is increasing and TG-measurable by Corol-
lary 4.4. Therefore if µ � ν we have MGµ(X) ≥ MGν(X) by the
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definition of stochastic domination. Therefore MGµ � MGν by
Lemma 2.12.

Consider an increasing sequence of probability measures µn ∈ I
with µn ↑ µ. Then µ � µn for every n ∈ N and for G ∈ GN we
have MGµ � MGµn � µn. Therefore MGµ � µ by Theorem 2.13.

Next consider G ′ ⊂ G ∈ GN . From Corollary 4.4 for every ξ ∈ ΩN

and ω ∈ Ωξ
G we have

(
Q −̂ξ_
G,q

∣∣∣TG ′ )(ω) = Q −̂ω_
G ′,q.

Noting that Q −̂ξ_
G,q is concentrated on Ωξ

G ; for every µ ∈ PN and
bounded FN -measurable X we have

MG ′ ·MGµ(X) =
∫

Q −̂ω_
G ′,q(X)dMGµ(ω) (4.23)

=
∫∫

Q −̂ω_
G ′,q(X)dQ −̂ξ_

G,q (ω)dµ(ξ) (4.24)

=
∫∫

Q −̂ξ_
G,q (X |TG ′ )(ω)dQ −̂ξ_

G,q (ω)dµ(ξ) (4.25)

=
∫

Q −̂ξ_
G,q (X)dµ(ξ) (4.26)

= MG(X). (4.27)

So if µ ∈ I we have MG ′µ ≺ MG ′ · MGµ = MGµ. Therefore
for some increasing sequence of finite graphs Gn ↑ N we may
set Mµ = wlimn→∞ MGn µ. It is easy to see that this limit is
independent of the choice of subsequence hence MGµ ↑ Mµ as
G ↑ N for every µ ∈ I . In addition for every G ∈ GN and µ ∈ I
we have Mµ � MGµ � µ.

It remains to show that Mµ ∈ I for all µ ∈ I .

Fix µ ∈ I , G ∈ GN and some increasing continuous simple func-
tion X. Consider a sequence of finite subgraphs G ⊂ Gn ↑ N ; then
as X is continuous and increasing we have MGn µ(X) ↑ Mµ(X)

as n→ ∞.

So for every ε > 0 we may choose n ∈N such that

Mµ(X)− ε ≤ MGn µ(X) (4.28)

= MG ·MGn µ(X) (4.29)

≤ MG ·Mµ(X) (4.30)
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Letting ε → 0 we have Mµ(X) ≤ MG ·Mµ(X) for every increas-
ing continuous simple function X, hence by Lemma 2.12 we have
Mµ(X) ≺ MG · Mµ(X) and so, as G ∈ GN is arbitrary, we have
Mµ ∈ I for every µ ∈ I .

The first step in proving Theorem 4.5 will be to show that I
contains a fixed point.

Recall that a chain is a totally ordered subset of a partially or-
dered set. We say a partially ordered set (X ,≥) is chain complete
if for every nonempty chain C ⊂ X there exists a least upper
bound of C in X .

THEOREM 4.7: BOURBAKI-WITT

If (X ,≥) is a chain complete partially ordered set and F : X →
X is a function such that F(x) ≥ x for every x ∈ X then X
contains a fixed point of F.

This was proved independently by Bourbaki [11] and Witt [65].
We will not attempt a proof here and refer the interested reader
to Lang [48] for details.

We have only claimed that I is closed under the weak limits of
increasing sequences, to satisfy the conditions of Bourbaki-Witt
Theorem we must check that it is chain complete.

LEMMA 4.8

Let X ⊂ PN be a set of probability measures on ΩN such that
wlimn→∞ µn ∈ X for every increasing sequence µn ∈ X . Then X
is chain complete.

PROOF
Let X satisfy the conditions of the Lemma and consider a non-
empty chain C ⊂ X . As PN is a compact metrizable space we
may nominate a countably dense subset C = {cn : n ∈N} ⊂ C.
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If there exists some c ∈ C with c � cn for every n ∈ N then c is
a least upper bound for C.

If there exists no such c ∈ C then as C is also a chain we may
choose an increasing subsequence cni such that for every cm ∈ C
there exists i such that cni � cm. From Theorem 2.13 we may set
c = wlimi→∞ cni ∈ X to be the least upper bound of {cni : i ∈N}.
Then for every cm ∈ C we may choose i ∈ N with cm ≺ cni ≺ c
hence c is an upper bound of C and {cni : i ∈N} ⊂ C ensures
that c is the least upper bound of C.

Now C is dense in C so for any c ∈ C we may choose a sub-
sequence cmi

W→c. Furthermore, from Theorem 2.13, there exists
some sequence µi (not necessarily in X ) such that µi ≺ cmi ≺ c
and µmi ↑ c as i→ ∞.

Then c is the least upper bound of the subsequence µmi and as c
is an upper bound for µmi we have c � c.

Therefore c is an upper bound of C and as c is the least upper
bound of C ⊂ C it must be the case that c ∈ X is the least upper
bound of C.

We are ready to prove Theorem 4.5

PROOF OF THEOREM 4.5

Recall the set I , we claim that a measure ϕ is a −̂_ random
cluster model if and only if ϕ ∈ I and Mϕ = ϕ.

Recall that a measure ϕ ∈ R −̂_
N ,q if and only if (ϕ |TG )(ξ) = Q −̂ξ_

G,q

for every G ∈ GN and ϕ-almost every ξ ∈ ΩN . Therefore for any
FN -measurable random variable X and G ∈ GN we have

MGϕ(X) =
∫

Q −̂ξ_
G,q (X)dϕ(ξ) (4.31)

=
∫

ϕ(X |TG )(ξ)dϕ(ξ) (4.32)

= ϕ(X). (4.33)

So trivially ϕ ∈ I and Mϕ = ϕ.
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Now if ϕ ∈ I is a fixed point of M then for every G ∈ GN we
have

ϕ ≺ MGϕ ≺ Mϕ = ϕ. (4.34)

So ϕ is invariant under MG and for any bounded FN -measurable
X and TG-measurable Y we have

ϕ(XY) = MGϕ(XY) (4.35)

=
∫

Q −̂ξ_
G,q (XY)dϕ(ξ) (4.36)

=
∫

Q −̂ξ_
G,q (X)Y(ξ)dϕ(ξ) (4.37)

as Y is Q −̂ξ_
G,q -almost surely constant.

Therefore (ϕ |TG )(ξ) = Q −̂ξ_
G,q and so ϕ ∈ R −̂_

G,q. In particular we
have

R −̂_
N ,q = {ϕ ∈ I : Mϕ = ϕ} . (4.38)

Recall the minimal probability measure δ0 defined by δ0(Je) = 0
for every e ∈ E(N ). From Lemma 4.6 we have δ0 ∈ I and I
is closed under M. Furthermore from Lemma 4.8 I is chain
complete.

Therefore the triple (I ,�, M) satisfies the conditions of Theo-
rem 4.7. Hence I contains a fixed point of M which must be a
random cluster model. It remains to show that R −̂_

N ,q contains a
minimal element.

Let A be the set of subsets of I which contain δ0 and are closed
under M and under the limits of increasing sequences. It is
easy to check that A is closed under arbitrary intersections. Let
X ∈ A be the intersection of every set in A.

The triple (X ,�, M) satisfies the conditions of Theorem 4.7 and
so we may nominate Q −̂_

N ,q ∈ X to be some fixed point of M.

Therefore Q −̂_
N ,q ∈ R −̂_

N ,q and we claim that Q −̂_
N ,q is the minimal

element of R −̂_
N ,q.
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To see this let ϕ ∈ R −̂_
N ,q be a −̂_-random cluster measure and

define a set of probability measures Aϕ = {µ ∈ I : ϕ � µ}. It is
easy to see that δ0 ∈ Aϕ and that Aϕ is closed under the limits
of increasing sequences. As ϕ ∈ R −̂_

N ,q we have Mϕ = ϕ and, as
M is increasing, for any µ ∈ Aϕ we have Mµ ≺ Mϕ = ϕ and so
Aϕ is closed under M and Aϕ ∈ A.

Therefore Q −̂_
N ,q ∈ X ⊂ Aϕ and Q −̂_

N ,q ≺ ϕ.

4.2 RANDOM CONNECTIONS ON TREES

We have defined a random connection as a formal object and
constructed a class of models that we may describe as general-
ized random cluster measures. Axioms I–III of Definition 4.1 are
not motivated by any example. Rather, Definition 4.1 is a list of
the assumptions we have used to prove Corollary 4.4.

We have described two random connections so far, the “free con-
nection”←−→ and the “wired” connection⇐=⇒. In this section we
first show that examples of random connections exist intermedi-
ate between←−→ and⇐=⇒.

REMARK 4.9

It is possible to define a random connection on any network by
specifying some increasing event A ∈ TN and setting

[u −̂−A_ v] = [u←−→ v] ∪ (A ∩ [u⇐=⇒ v]) . (4.39)

It is easy to check that this satisfies the axioms of a random
connection and we may write down the extremal elements of
R −̂_
N as

E −̂_
N = {ϕ ∈ EN : ϕ(A) = 0} ∪ {ϕ ∈ E ?

N : ϕ(A) = 1} . (4.40)
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We have not attempted to exclude this class of models from the
definition of a random connection, although it would be unsatis-
fying if they were the only examples of random connections. In
this section we describe a method of generating random connec-
tions that excludes random connection in the form of (4.39).

One way to specify an equivalence relation is to define a neigh-
bour relation and to consider the strictest equivalence relation
that contains the described neighbour relation. We may extend
this as a method to generate random equivalence relations from
random neighbour relations.

Axiom III of definition 4.1 requires a random connection −̂_ to
have the property that [u←−→ v] ⊂ [u −̂_ v] for every u, v ∈ V(T ).
So, given a random neighbour relation ∼, we may define the
strictest possible random equivalence relation that contains both
∼ and −̂_. We will use this method to describe all the examples
of random connections that we will encounter on the tree.

4.2.1 Random connections from random neighbour relations

DEFINITION 4.10

We say a random neighbour relation ∼ on the vertices of a net-
work N generates a random connection −̂_ if for every ω ∈ ΩN

−̂−ω_ is the strictest equivalence relation on V(N ) such that u −̂−ω_ v
whenever u←−−ω→ v or u ω∼ v.

We say two random neighbour relations ∼1 and ∼2 are equivalent
if for every ω ∈ ΩN and u, v ∈ V(N )

If u ω∼1 v then either u←−−ω→ v or there exist u′, v′ ∈ V(N )

with u←−−ω→ u′ ω∼2 v′←−−ω→ v.

If u ω∼2 v then either u←−−ω→ v or there exist u′, v′ ∈ V(N )

with u←−−ω→ u′ ω∼1 v′←−−ω→ v.
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Of course not every random neighbour relation generates a ran-
dom connection. In Definition 4.17 below we specify some suf-
ficient conditions for a random neighbour relation to generate
a random connection. We will use the symbol ↓↓ for a random
neighbour relation on V(N ) that generates a random connection.

Before proceeding we introduce two examples of random con-
nections generated by random neighbour relations in order to
familiarize the reader with the objects we are studying.

For now we will leave the reader to convince himself that the ran-
dom neighbour relations in both Example 4.11 and Example 4.13

generate random connections. In fact we shall see that both are
examples of quasi-boundary conditions as described in Definition
4.17. Theorem 4.19 below shows that such random neighbour
relations always generate a random connection.

EXAMPLE 4.11: GRIMMETT-JANSON CONNECTIONS

Let T be a tree and name the set ΠT of half infinite self avoiding
paths in T . For a vertex v ∈ V(T ) let Rv ⊂ ΠT be the set of
v-rays, half infinite self-avoiding paths started at v. Choose a
root ρ ∈ V(T ) arbitrarily and set R = Rρ. There exists a map
R : ΠT → R such that for every Π ∈ ΠT the two rays Π and
R(Π) differ on only finitely many edges.

Now let∼ be an equivalence relation onR. Define a set of events
{[u �∼� v] : u, v ∈ V(T )} where [u �∼� v] is the event that there exist
open rays Πu ∈ Ru and Πv ∈ Rv such that R(Πu) ∼ R(Πv).

We say an equivalence relation ∼ on R is measurable if

{[u �∼� v] : u, v ∈ V(T )} ⊂ FT . (4.41)

For an equivalence relation ∼ let −̂−∼_ be the random connection
generated by �∼�.
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As an aid to understanding we may construct simple equiva-
lence relations as follows. Choose a subtree T ∈ Tρ and arbi-
trarily partition the leaves of T by choosing some equivalence
relation ∼T on ΛT. As ρ ∈ T each Π ∈ R passes through exactly
one leaf eΠ ∈ ΛT. Let Π1 ∼ Π2 whenever eΠ1 ∼T eΠ2 . This class
of equivalence relations forms the open equivalence relations de-
scribed in [36] and we will return to them in Chapter 5.

Informally we may think of [u �∼� v] as the event that there exists
an infinitely long “indirect” path from u to v that passes through
the boundary of the tree. Extending to an equivalence in the ob-
vious way, [u −̂−∼_ v] is the event that there exists an indirect path
from u to v that is allowed to pass through the boundary finitely
many times. It is easy to check that this informal definition sat-
isfies the axioms of a random connection.

REMARK 4.12

The idea of constructing a random cluster model based on an
equivalence relation as in Example 4.11 was first proposed in
Grimmett and Janson [36]. Definition 4.17 may be seen as a
generalization of this idea. We have mentioned that there is an
error in [36] on which we will elaborate here. For a finite sub-
tree T ⊂ T , and ξ ∈ ΩT let ξT =

∧
e∈T ξe be the configuration

obtained from ξ by switching off all edges in T. Given a ran-
dom connection −̂_ we may define a graph G −̂_T,ξ by identifying
vertices u, v ∈ T whenever ξT ∈ [u −̂_ v].

It may be shown that the cylinder measure Q −̂ξ_
T ,q = QG −̂_T,ξ ,q, using

the obvious identification Ωξ
T ↔ ΩG −̂_T,ξ

.

Grimmett and Janson [36] use this approach to define the ran-
dom cluster model generated by an equivalence relation on R.
However, rather than identifying vertices u, v ∈ T when ξT ∈
[u −̂_ v]; u and v are identified only when ξT ∈ [u �∼� v]. For
general measurable equivalence relations the set of cylinder ran-
dom cluster models defined does not form a consistent Gibbs
specification.

For the open boundary conditions as described above this speci-
fication holds as long as we restrict it to large enough trees. For
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boundary conditions that are not open the specification cannot
be recovered.

Theorem 6.2 of [36] claims that for any closed equivalence rela-
tion the limit of the sequence limT↑T Q −̂−−∼,ξ1_

T,q ∈ R −̂−∼_
T ,q .

We shall see that the random connection�−� described in Chap-
ter 1 may be described in terms of a closed equivalence relation.
The statement of [36, Theorem 6.2] is false for this connection
and for τ ∈

(
2−d, π-1

(
2

1−d
2

))
the above limit does not satisfy the

appropriate DLR conditions.

EXAMPLE 4.13

Let T be a regular 3-tree directed with respect to an arbitrary
root ρ. For an edge e = |u, v〉 we say e↓↓∞ or v↓↓∞ if v is the
root of some open 2-tree contained within D(e). (Recall a rooted
k-tree is a tree such that every vertex of a tree has degree k + 1
with the exception of the root which has degree k.)

We may define a random neighbour relation

[u ↓↓ v] = [u↓↓∞] ∩ [v↓↓∞] . (4.42)

We claim that ↓↓ generates a random connection −̂_ such that
if T is weighted homogeneously with γ(e) ≡ τ, the set of −̂_
random cluster measures is empty for sufficiently small τ and q.

Before proving this claim we will establish two facts about the
events [e↓↓∞].

LEMMA 4.14

Choose p ∈
[ 8

9 , 1
)

and let P be Bernoulli bond percolation on
a regular 3-tree T with P(Je) ≡ p. Then P[e↓↓∞] > 0 for every
directed edge e.
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PROOF
Notice that the event

[e↓↓∞] =
⋃

f , f ′∈χ(e)

J f ∩ [ f ↓↓∞] ∩ J f ′ ∩
[

f ′↓↓∞
]

(4.43)

Thus from standard branching process theory, P[e↓↓∞] ≡ s where
s ∈ (0, 1) is the largest solution to

s = p3s3 + 3p2s2(1− p)(1− s). (4.44)

It is easy to check that if p = 8
9 then s = 27

32 solves (4.44).

LEMMA 4.15

Let T be a regular 3-tree with edge weights γ(e) ≡ τ ≤ 1
3 then for

every q > 0, ξ ∈ ΩT and e ∈ E(T ) the probability Q
ξ
T,q[e↓↓∞]→ 0

as T ↑ T .

PROOF
As T is homogeneous we may choose e arbitrarily. Set

s = sup
ξ∈[e↓∞]

lim sup
T↑T

Q
ξ
T,q(e↓↓∞ |e ↓∞ ) (4.45)

Here we are taking the supremum over ξ ∈ [e ↓∞] to ensure that
Q

ξ
T,q[e ↓∞] is strictly positive.

From the definition of s, as T is homogeneous, for every ε > 0
and ξ ∈ [e ↓∞] we may choose some T ∈ T such that for every
f ∈ χ(e) we have

β( f ) = Q
ξ
T,q( f ↓↓∞ | f ↓∞ ) < s + ε. (4.46)

Now consider the graph T? and the map ψT : ΩT → ΩT? . Recall
that the push forwards measure ψT

(
Q

ξ
T,q

)
is the random clus-

ter measure on T? where the edge weights of ∂T are given by
γ(e?) = 1[e↓∞](ξ).
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Now let S be the tree containing e and χ(e). From Theorem 2.23

the push forwards measure ψS

(
Q

ξ
T,q

)
= ψS,TψT

(
Q

ξ
T,q

)
is a ran-

dom cluster model on S? and for f ∈ χ(e) the DT( f )-measurable
event [ f ↓↓∞] is conditionally independent of ψS given the indica-
tor 1[ f ↓∞].

Next let Ω̃e be the state space ΩS? ×Ω∂χ(e) We interpret (ω̃, σ) ∈
Ω̃e as a configuration ω of S? and a colouring σ of the edges in
∂χ(e) where the bond f ? is blue if σ( f ?) = 1. A blue edge will
represent the event [ f ↓↓∞].

As Ω̃e is finite, set F̃ to be the set of subsets of Ω̃e

Let ψ̃S : ΩT → Ω̃e be the map defined by ω 7→ (ψS(ω), σ) where
σ( f ?) = 1[ f↓↓∞]

and let ϕ̃ be the push forwards measure ϕ̃ =

ψ̃S

(
Q

ξ
T?

∣∣∣ [e ↓∞]
)

.

Introduce a Markov kernel M : F̃ × Ω̃e → [0, 1] by setting
M(A, ω̃) to be the probability that ω̃′ ∈ A, where we select
ω̃′ = (ω′, σ′) ∈ Ω̃e as follows.

Set ω′( f ) = ω( f ) for every edge e ∈ S? \ χ(e).

Let the events {[ω′( f ) = 1] : f ∈ χ(e)} occur independently
with probability π(τ) + (τ − π(τ))ω( f ?).

For each f ∈ χ(e) with ω( f ?) = 1 colour f ? blue indepen-
dently of everything else and with probability β( f ).

Now define G̃ ⊂ F̃ to be the σ-algebra generated by the events{
J f : f ∈ f ? \ χ(e)

}
.

We claim that for any event A ∈ F̃ and ω̃ ∈ [e ↓v∞ ] we have

M(A ∩ [e ↓v∞ ] , ω̃)

M([e ↓v∞ ] , ω̃)
= ϕ̃

(
A
∣∣G̃ )(ω̃). (4.47)

First choose ω̃ and ω̃′ with ω, ω′ ∈ [e ↓v∞ ] such that ω and ω′

agree on S? \ χ(e) and ω(e) = ω(ẽ?) = 1, where ẽ? is the single
member of ∂S \ ∂χ(e). The colourings σ and σ′ may be chosen
arbitrarily so long as σ( f ) = σ′( f ) = 0 whenever ω( f ?) = 0.
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As we have fixed ω(e) = ω′(ẽ?) = 1 we have 1L f (ω) = ω( f ?)
for every f ∈ χ(e). Furthermore for f ∈ χ(e) the event { f ↓∞}
depends on the map ψS only through the edge state ω( f ?) and
occurs with probability β( f ) · ω( f ?). Therefore from the recipe
above we have M({ω̃′} , ω̃) = ψ̃S

(
Q

ξ
T?

)(
{ω̃′}

∣∣∣Tχ(e)

)
(ω).

As ϕ̃ is defined by conditioning Q
ξ
T? on some ψ̃S-measurable

event then for ω̃ and ω̃′ chosen as above we have

M({ω̃′} , ω̃)

M({ω̃} , ω̃)
=

ϕ̃(ω̃′)

ϕ̃(ω̃)
(4.48)

=
ϕ̃
(
ω̃′
∣∣G̃ )(ω̃)

ϕ̃
(
ω̃
∣∣G̃ )(ω̃)

. (4.49)

We argue that (4.49) holds for any choice of ω̃ and ω̃′ with
ω, ω′ ∈ [e ↓v∞ ]. Firstly if ω and ω′ do not agree on S? \ χ(e)
then both sides of (4.49) are zero. We have insisted above that
ω(e) = ω′(ẽ?) = 1 however the choices in the description of
M above are not affected by the states of these edges. Further-
more as ϕ̃ is conditioned on the event [e ↓∞], the state of these
bonds does not affect ϕ̃ on the edge like subgraph χ?(e) by the
generalized series and parallel laws of Theorem 2.23.

Therefore (4.49) holds for any choice of ω̃, ω̃′ with ω, ω′ ∈ [e ↓v∞ ]

and for any event A ∈ F̃ we have

M(A ∩ [e ↓v∞ ] , ω̃)

M({ω̃} , ω̃)
=

ϕ̃
(

A
∣∣G̃ )(ω̃)

ϕ̃
(
{ω̃}

∣∣G̃ )(ω̃)
. (4.50)

Therefore

M(A ∩ [e ↓v∞ ] , ω̃)

M([e ↓v∞ ] , ω̃)
=

ϕ̃
(

A
∣∣G̃ )(ω̃)

ϕ̃
(

Ω̃e

∣∣∣G̃ )(ω̃)
(4.51)

= ϕ̃
(

A
∣∣G̃ )(ω̃). (4.52)

Now for ϕ̃-almost every ω̃ ∈ Ω̃e at least one f ? ∈ ∂χ(e) is open
and we must have M([e ↓v∞ ] , ω̃) > τ. Similarly there are at
most three open pairs { f1, f2} ⊂ χ(e) and as β( f ) < s + ε we
have M(e↓↓∞, ω̃) < 3τ2 (s + ε)2.
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In particular letting ε → 0 and integrating (4.47) with respect to
ϕ̃ we have s < 3τs2. Trivially s < 1 and so for τ ≤ 1

3 we have
s = 0 and we are done.

Lemma 4.14 shows that if we choose π(τ) large enough then
Bernoulli-π(τ) percolation cannot satisfy DLR conditions for −̂_.
An easy corollary of Lemma 4.15 is that we may choose τ small
enough that the wired model random cluster model on T does
not satisfy DLR conditions either.

Combining these two facts we may choose τ and q such that
there can exist no −̂_ random cluster model at all on the homo-
geneous 3-tree.

THEOREM 4.16

Let T be a regular 3 tree with homogeneous bond weights γ(e) ≡
τ ≤ 1

3 and let −̂_ be the random connection generated by the
boundary condition ↓↓ in Example 4.13. Choose q ≤ τ

9(1−τ)
.

Then the set R −̂_
T ,q of −̂_ random cluster models is empty.

PROOF

Notice that we have chosen (τ, q) in such a way that πq(τ) ≥ 8
9 .

This fact will be crucial to our argument.

Choose an arbitrary root ρ ∈ V(T ), for each vertex v let ev ∈ Eρ

be the unique edge directed away from ρ in the form ev = |v′, v〉.

Next we colour each open directed edge e ∈ Eρ(T )

blue if e↓↓∞,

yellow if e is not blue but there exists some w ∈ D(e) with
v←−→ w and ew↓↓∞,

red if e is neither blue nor yellow.
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We say an edge is green if it is either blue or yellow, and white if
it is closed. Now for ξ ∈ ΩT let G(ξ) ∈ ΩT be the configuration
with G(ξ) ∈ Je if and only if e is green.

We leave it to the reader to convince himself that the random
neighbour relation ↓↓ of Example 4.13 generates a random con-
nection −̂_ and that for any T ∈ Tρ we have Q −̂ξ_

T,q = Q
G(ξ)
T,q .

Now suppose ϕ ∈ R −̂_
T ,q and choose an edge e ∈ Eρ(T ). For

every ξ ∈ ΩT and sequence Tn ↑ T we have Q −̂ξ_
Tn,q[e is blue] =

Q
G(ξ)
Tn,q [e is blue] → 0 as n → ∞ by Lemma 4.15. Hence by the

dominated convergence theorem we have

ϕ[e is blue] = lim
n→∞

∫
Q −̂ξ_

Tn,q[e is blue]dϕ(ξ) = 0. (4.53)

In particular there are ϕ-almost surely no blue edges. Further-
more if an edge e is yellow we may find some blue edge in D(e),
hence there are ϕ almost surely no green edges in Eρ(T ).

So for every edge e we have ϕ(L −̂_e ) = 0 and so we must have
ϕ = Pπq(T ) but we have chosen τ and q such that πq(τ) ≥ 8

9

and so from Lemma 4.14 there exist infinitely many blue edges
ϕ almost surely.

Therefore there can exist no ϕ ∈ R −̂_
T ,q for T , q as in the statement

of the theorem.

4.2.2 Random connections from boundary conditions

We have invited the reader to convince himself that the random
neighbour relations in Examples 4.11 and 4.13 above generate
random connections. We would like a more reliable method
of ascertaining whether a particular random neighbour relation
generates a random connection.

Next we specify a class of random neighbour relations that al-
ways generate a random connection. This definition expresses
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more naturally the concept of vertices being connected at the
boundary and it may be easier to construct examples of this type
than constructing random connections directly.

First, with each pair of vertices u, v ∈ V(T ), we associate two
σ-algebras. For fixed u and v there exists a unique directed path
Πu,v from u to v. If we remove the path Πu,v from T we are left
with a forest. We are interested in two components of this forest,
that containing u and that containing v.

Formally for a directed edge e recall the set D(e) of descendants
of e and set

D(u, v) =
⋂

e∈Πu,v

D(e) (4.54)

to be the descendants of the path Πu,v.

Now define two σ-algebras

Gu,v = σ {Je : e ∈ (D(u, v) ∪ D(v, u))}, (4.55)

G ?
u,v = σ

{
Je ∧ 1[e↓∞] : e ∈ (D(u, v) ∪ D(v, u))

}
. (4.56)

A boundary condition on a tree will be a random neighbour relation
↓↓ where [u ↓↓ v] is interpreted as the event that u and v are
connected “through the boundary” one condition of which is
that each event [u ↓↓ v] is Gu,v-measurable. This measurability
condition may be interpreted informally as a connection from u
to the boundary using edges in D(v, u) and back to v through
edges in D(u, v).

We will also define a strong boundary condition where the events
[u ↓↓ v] are required to be G ?

u,v measurable. This assumption is
used in the proof of Theorem 4.23. We leave open the question
of whether there exist any examples (or more subjectively any in-
teresting examples) of boundary conditions which are not strong
boundary conditions.

DEFINITION 4.17

We say a random neighbour relation {[u ↓↓ v] : u, v ∈ V(T )} is a
boundary condition if
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I [u ↓↓ v] is an increasing event for every u, v ∈ V(T ).

II [u ↓↓ v] ∈ Gu,v for every u, v ∈ V(T ).

III For any finite subtree T and vertices u, v ∈ V(T) then if
u ↓↓ v there exist vertices u′, v′ ∈ V(T \ T) such that

u←−→ u′ ↓↓ v′←−→ v

We say ↓↓ is a strong boundary condition if in addition each event
[u ↓↓ v] ∈ G ?

u,v.

A random neighbour relation ↓↓ is a (strong) quasi-boundary con-
dition if it is equivalent, in the sense of Definition 4.10, to some
(strong) boundary condition ↓↓′.

Before we prove that random neighbour relations of this type
always generate random connections we check that our two ex-
amples above are included in the class of boundary conditions.

LEMMA 4.18

Both random relations �∼� of Example 4.11 (where ∼ is some mea-
surable equivalence relation) and ↓↓ of Example 4.13 are strong
quasi-boundary conditions.

PROOF
It is easy to check that both random relations satisfy Axiom I
and III. However neither [u �∼� v] nor [u ↓↓ v] are Gu,v-measurable.
Therefore we must construct strong boundary conditions ↓↓′ and
�∼�
′ equivalent to ↓↓ and ↓↓′ which satisfy the measurabillity con-

dition of Axiom II.

For vertices u, v ∈ V(T ) define a map Gu,v : ΩT → ΩT as fol-
lows.

For edges e ∈ Du,v ∪ Dv,u set G-1
u,v(Je) = Je ∩ [e ↓∞].
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For e ∈ Ev(T ) \ (Du,v ∪ Dv,u) set G-1
u,v(Je) = ∅.

The σ-algebra G ?
u,v is exactly the σ-algebra generated by the map

Gu,v.

Now set [u �∼�
′ v] = G-1

u,v[u �∼� v] and [u ↓↓′ v] = G-1
u,v[u ↓↓ v]. Both

[u �∼�
′ v] and [u �∼�

′ v] are increasing G ?
u,v-measurable events.

It remains to check that �∼�
′ is equivalent to �∼�, ↓↓′ is equivalent to

↓↓ and that both �∼�
′ and ↓↓′ satisfy Axiom III.

Choose u, v ∈ V(T ) and let T ∈ T be any finite subtree, we
assume without loss of generality that T contains both u and v.
If u �∼� v then we may choose open equivalent rays Πu ∈ Ru and
Πv ∈ Rv.

Now let u′ and v′ be the two leaf vertices of T on the paths Πu

and Πv respectively. Then u←−→ u′ and v←−→ v′, and there exist
open subpaths Πu ⊃ Π′u ∈ Ru′ and Πv ⊃ Π′v ∈ Rv′ . As u′ is a
leaf of T then Π′u ⊂ D(w, u′) for every w in T. Furthermore if
Π′u is open in ω it is open in Gw,u′(ω) and so setting w = v′ and
arguing similarly for Π′v we have [u′ �∼�

′ v′].

Similarly if u �∼� v we may find leaves u′ and v′ of T on the open
2-trees rooted at u and v respectively. Then there must be some
open 2-tree rooted at u′ contained in D(u, u′) and some open
2-tree rooted at v′ contained in D(v, v′)

In particular we have u←−→ u′ ↓↓′ v′←−→ v.

Therefore �∼� is equivalent to �∼�
′ and ↓↓ is equivalent to ↓↓′ and

both satisfy Axiom III.

THEOREM 4.19
Let ↓↓ be a quasi-boundary condition. Write u −̂_ v if there exist
finite sequences of vertices u0, . . . , un and v0, . . . , vn such that

u = u0←−→ v0 ↓↓ u1←−→ v1 ↓↓ . . . ↓↓ un←−→ vn = v.

Then −̂_ is a random connection and is generated by ↓↓.

Note: we allow n = 0 so that [u←−→ v] ⊂ [u −̂_ v] and we allow
u = v0, v = v1 so that [u ↓↓ v] ⊂ u −̂_ v.
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PROOF
It is immediate from the definition that −̂_ is a random equiva-
lence relation. Furthermore if two boundary conditions ↓↓ and
↓↓′ are equivalent it is easy to check that both random relations
generate −̂_ and so we may assume without loss of generality
that ↓↓ is a boundary condition.

Each event [ui←−→ vi] and [vi ↓↓ ui+1] is increasing hence the event
[u −̂_ v] is increasing also. If u −̂_ v but not u←−→ v then there
exist pairs v0,u1 and vn−1, un with v0 ↓↓ u1 and vn−1 ↓↓ un. It fol-
lows from Axiom III of the definition of a boundary condition
that u←−→ v0←−→∞ and v←−→ un←−→∞.

It remains to check Axiom III of Definition 4.1.

Suppose u −̂_ v. If u←−→ v then for any edge e = 〈ũ, ṽ〉 either e
is not on the direct path from u to v in which case u←−−ωe→ v or e is
on the path from u to v in which case either u←−−ωe→ ũ and v←−−ωe→ ṽ
or u←−−ωe→ ṽ and v←−−ωe→ ũ depending on the orientation of e.

So suppose u −̂_ v but not u←−→ v and choose sequences u =

u0, . . . , un and v0, . . . , vn = v as in the statement of the theorem.
Notice that we may assume without loss of generality that ui←−→
vj if and only if i = j, for if not we may find shorter sequences
of vertices u0, . . . , ui, uj, . . . un and v0, . . . , vi, vj, . . . , vn that form a
path from u to v.

Now let T be the smallest subtree of T that contains every vertex,
u0, v0, . . . , un, vn and the edge e.

Suppose each vertex ui, vi is a leaf of T, then the descendants
D(vi, ui+1) and D(ui+1, vi) of the path Πui+1,vi lie outside of T and
hence the events [ui+1 ↓↓ vi] ∈ Gui+1,vi

⊂ TT do not depend on the
state of the edge e ∈ T. Therefore if ωe /∈ [u −̂_ v] then e must lie
on exactly one of the paths from ui to vi. in particular we may
assume without loss of generality that ui←−−ωe→ ũ and ṽ←−−ωe→ vi. As
none of the other events in our sequence are affected by the state
of e we have u −̂−ωe_ ũ and ṽ −̂−ωe_ v.

Of course it may not be the case that each ui, vi is a leaf of T.
To complete the proof we will use Axiom III of Definition 4.17
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to choose sequences of vertices u′0, . . . , u′n and v′0, . . . v′n such that
ui←−→ u′i ↓↓ v′i+1←−→ vi+1 and all vertices u′i, v′i are leaves of the
smallest subtree containing T and every vertex u′0, v′0, . . . , u′n, v′n.

Set T0 = T and suppose inductively we have constructed Ti ⊃ T
with leaves v′0, u′1 . . . , u′i−1, v′i−1, u′i such that vj←−→ v′j ↓↓ u′j+1←−→
uj+1 for every j < i.

Now from Axiom III in Definition 4.17, as Ti is finite we may
choose v′i, u′i+1 /∈ T with vi←−→ v′i ↓↓ u′i+1←−→ ui+1. Set Ti+1 to be
the smallest subtree of T that contains Ti, u′i+1 and v′i. We claim
that for every 0 ≤ j < i both v′j and u′j+1 are leaves of Ti+1.

Let w ∈ Ti+1 \ Ti be a leaf of Ti+1. If v1 6= w 6= ui+1 then let f be
the single edge of Ti+1 that contains w. Then f /∈ Ti so T′i+1 =

Ti+1 \ f contains v′i, u′i+1 and Ti−1 contradicting the assumption
that Ti+1 is the smallest tree satisfying this condition.

Now suppose v′j is not a leaf of Ti+1 for some 0 ≤ j ≤ i, then
there must exist some leaf w ∈ Ti+1 \ Ti of Ti+1 such that u′j
lies on the direct path from Ti to w; but as w ∈

{
v′i, u′i+1

}
and

{vi, ui+1} ⊂ Ti there must be an open path from w into Ti and
so v′j←−→ w.

If w = u′i+1 then vj←−→ v′j←−→ ui+i←−→ ui+1 and if w = v′i we have
vj←−→ v′i←−→ vi←−→ ui, in both cases contradicting our assumption
that uj←−→ vi only if i = j.

We may argue similarly that u′j is a leaf of Ti+1 whenever 1 ≤
j ≤ i + 1 and so continuing the construction we may find a tree
Tn−1 containing e, with leaves v′0, u′1, . . . vn−1, un and arguing as
above either ωe ∈ [u −̂_ v] or e lies on the open path between
uj and vj for exactly one j and we have ωe ∈ [u −̂_ ũ, ṽ −̂_ v] ∪
[u −̂_ ṽ, ũ −̂_ v].

Thus −̂_ satisfies Axioms I–III of Definition 4.1 and is a random
connection. Furthermore it is easy to see from the definition
that −̂_ is the random connection generated by ↓↓ described in
Definition 4.10.
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4.3 THE PHASE DIAGRAM FOR REGULAR TREES

So far in this chapter we have constructed a class of random
cluster models and shown that, on a tree at least, there exist
non trivial examples of random connections. We have not yet
discussed how these models behave.

There is a well established connection between the random clus-
ter model and Bernoulli bond percolation on a general network.
On a regular k-tree we have seen in Chapter 3 that the behaviour
of the wired random cluster model is related to the critical point
of Bernoulli percolation on the tree.

In this section we establish a link between Bernoulli bond perco-
lation and the generalized random cluster model on the regular
tree by considering the behaviour of the events [u −̂_ v] under
homogeneous bond percolation. In particular we define two crit-
ical percolation probabilities τ −̂_

C ≤ τ −̂_
U associated with a ran-

dom connection, we may then identify both a free phase, R −̂_
T ,q ={

Pπq(T )

}
whenever τ < τ −̂_

C and a wired phase, R −̂_
T ,q = {Q?

T }
whenever π(τ) > τ −̂_

U .

If −̂_ is the random connection generated by some strong bound-
ary condition with τ −̂_

U < 1 then in addition, for sufficiently large
q there exists some τ̃ = τ̃(q) such that the set R −̂_

T ,q is uncount-
able whenever τ is in the interval (τ̃, π-1(τ −̂_

U )).

The remainder of this chapter is devoted to establishing the
phase diagram in Figure 9.

4.3.1 The uniqueness phases

Fix 2 ≤ k ∈ N, τ ∈ (0, 1) and q > 0 and let T be a regular k-tree
with homogeneous bond weights γ(e) ≡ τ. Let η̄ = η̄(k, τ, q) ∈
[0, 1) be the largest solution to equation (3.36) (that is the largest
constant entrance law). Recall that Q?

T = Q
η

T is the maximal
wired random cluster model for (T , q).
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FIGURE 9

q0 1

τC

τU

τ

R −̂_
T =

{
Pπ(τ)

}

R −̂_
T ⊇

{
Pπ(τ), Q?

T
}R −̂_

T =
{

Q?
T
} π-1(τC)

π-1(τU )

τ̃(q)

Phase diagram for the set of −̂_ random cluster models when 1
k <

τC < τU < 1. In this case the random cluster model exhibits a free
phase and a wired phase. If the random connection is generated by
a strong boundary condition then the random cluster model exhibits a
nonuniqueness phase when q is large.

DEFINITION 4.20

We say a measure µ has the −̂_-loopless property if we have µ(L −̂_e ) =

0 for every edge e ∈ E(T ).

We say µ has the −̂_-single cluster property if for every pair of
vertices u, v ∈ V(T ) we have µ[u −̂_ v] = µ[u⇐=⇒ v] > µ[u←−→ v].

We say a random connection is connected if every measure con-
centrated on the event that only finitely many bonds are closed
has the −̂_ single cluster property and strongly connected if there
exists some p < 1 such that Pp has the −̂_ single cluster prop-
erty.

We will mainly be interested in strongly connected random con-
nections, in particular we are interested in two questions, When
is Pπ(τ) ∈ R −̂_

T and when is Q?
T ∈ R −̂_

T ?

Now we define critical probabilities for Bernoulli percolation on
T corresponding to the loopless and single cluster properties.
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For a strongly connected random connection we define two crit-
ical probabilities.

τC = sup
{

p ∈ (0, 1) : Pp has the −̂_ loopless property
}

,

τU = inf
{

p ∈
(

1
k

, 1
) ∣∣∣∣Pp has the −̂_ single cluster property

}
.

Our first task is to check that both the loopless and single clus-
ter properties represent critical phenomena for Bernoulli perco-
lation on the regular tree..

LEMMA 4.21
If p < πc then Pp has the −̂_ loopless property and if p > τU

then Pp has the single cluster property.

PROOF
The first statement follows directly from the monotonicity of Le.
From the definition of τC for any p < τC we may choose p < p′ ≤
τC such that Pp′ has the −̂_ loopless property. Hence Pp(L −̂_e ) ≤
Pp′(L −̂_e ) = 0 for every e.

The single cluster property may not be expressed in terms of
monotonic events.

However as T is a regular k-tree it has unimodular symmetry
group. A theorem of Häggström and Peres [40] states that for
any p > p′ there exists a coupling ω =

(
ωp′ , ωp

)
with ωp′ ∼ Pp′

and ωp ∼ Pp such that almost every ω has the property that
ωp ≥ ωp′ and every infinite cluster of ωp contains an infinite
cluster of ωp′ .

So given p > τU we may choose some p′ < p such that p′

has the −̂_ single cluster property. Coupling as above if ωp ∈
[u ↓∞, v ↓∞] then with probability one there exist vertices u′, v′

with u←−−ωp→ u′, v←−−ωp→ v′ and ωp′ ∈ [u′ ↓∞, v′ ↓∞].

As Pp′ has the −̂_ single cluster property we have u′ −̂−−ωp′_ v′ al-
most surely and as ωp ≥ ωp′ and [u −̂_ v] is increasing we must
have u←−−ωp→ u′ −̂−ωp_ v′←−−ωp→ v and so u←−−ωp→ v.
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So Bernoulli bond percolation exhibits either two or three phases
with respect to a strongly connected random connection. If p <

τC then −̂_ is indistinguishable from ←−→ and if p > τU then −̂_
is indistinguishable from ⇐=⇒. We have insisted that τU < 1 and
trivially τC ≥ 1

k so these two phases are nontrivial. In addition
we may have τC < τU , in which case there exists an intermediate
phase where the behaviour of −̂_ is not adequately described by
either←−→ or⇐=⇒.

We may translate this observation into a statement about the
random cluster model using the comparison inequalities of The-
orem 2.7.

THEOREM 4.22

Let T be a homogeneous regular tree with γ(e) ≡ τ and fix
q > 1.

If τ < τC then R −̂_
T = {Pτ}.

If π(τ) < τC then R −̂_
T ⊇ {Pτ}.

If π(τ) > τU then R −̂_
T = {Q?

T }.

PROOF
First if π(τ) < τC then Pπ(τ)(L −̂_e ) = 0 for every e and so Pπ(τ) ∈
R −̂_
T by Corollary 4.4. If in addition τ < τC then for any ϕ ∈ R −̂_

T

we have ϕ(L −̂_e ) ≤ Pτ(L −̂_e ) = 0 for every e ∈ E(T ). Again by
Corollary 4.4 we must have ϕ = Pπ(τ).

Suppose π(τ) > τU . Set θ = Pπ(τ)[e ↓∞] > 0. Recall the measure
Qθ

T on the graph T?, we aim to show that for every ϕ ∈ R −̂_
T and

T ∈ T we have ψT(ϕ) ≺ Qθ
T.

First ψT

(
Pπ(τ)

)
is independent bond percolation on T?, with

bonds e? ∈ ∂T open with probability θ. So for every increas-
ing F∂T-measurable random variable X, ψT

(
Pπ(τ)

)
(X) > Qθ

T(X)

and in particular for any increasing event A∫
Qθ

T(A |F∂T )(ψT(ξ))dPπ(τ)(ξ) ≥
∫

Qθ
T(A |F∂T )(ω)dQθ

T(ω)
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Next, as Pπ(τ) has the −̂_ single cluster property, Q −̂ξ_
T = Q

ξ
T for

Pπ(τ) almost every ξ.

Now let A be some increasing ψT-measurable event and let ϕ ∈
R −̂_
T be any random cluster measure. As ϕ � Pπ(T ) we may

calculate

ϕ(A) =
∫

Q −̂ξ_
T (A)dϕ(ξ) (4.57)

≥
∫

Q −̂ξ_
T (A)dPπ(τ)(ξ) (4.58)

=
∫

Q
ξ
T(A)dPπ(τ)(ξ) (4.59)

=
∫

Qθ
T(A |F∂T )(ψT(ξ))dPπ(τ)(ξ) (4.60)

≥
∫

Qθ
T(A |F∂T )(ω)dQθ

T(ξ) (4.61)

= Qθ
T(A). (4.62)

So we have ψT(ϕ) � Qθ
T for some θ > 0. As π(τ) > τU ≥ 1

k

we have Qθ
T → Q?

T as T ↑ T by Theorem 3.15. Hence ϕ � Q?
T .

Similarly by considering Q
π-1(θ)
T it is clear that ϕ ≺ Q1

T → Q?
T as

T ↑ T .

Therefore ϕ = Q?
T and as ϕ is arbitrary we have R −̂_

T = {Q?
T } as

required.

4.3.2 The nonuniqueness phase

We have been able to use the comparison with percolation to
establish the existence of both a “high temperature phase” where
R −̂_
T =

{
Pπ(T )

}
and a “low temperature phase” where R −̂_

T =

{Q?
T }.

Jonasson [44] characterized the property of nonamenability for a
network N by demonstrating that N is nonamenable if and only
if for every sufficiently large q there is an open interval (p1, p2)



4.3 THE PHASE DIAGRAM FOR REGULAR TREES 130

such that the wired random cluster model in not unique on N
whenever γ(e) ≡ p ∈ (p1, p2).

The tree is certainly not amenable, and we have seen that this
phenomenon holds for wired boundary conditions on the regu-
lar tree. What can we say about more general boundary condi-
tions?

We conclude this chapter by demonstrating that if a random con-
nection on a regular tree is generated by a strong boundary condi-
tion and has τU < 1 then, as with the wired model, we may al-
ways find q sufficiently high such that the random cluster model
is not uniqueness for an entire interval of bond strengths.

THEOREM 4.23

Let −̂_ be a strongly continuous random connection generated
by a strong boundary condition ↓↓. For fixed τ, q and some η

satisfying η = Fτ,q,k(η) set

p̃ =
1− (1− π(η))1/k

π(η)
. (4.63)

If p̃ > τU then Q
η

T ∈ R −̂_
Tk ,q.

PROOF
We aim to show that if τ, q and k are such that p̃ > τU then Q?

T

has the −̂_ single cluster property.

Choose a root ρ arbitrarily and direct all edges away from ρ. For
an edge e ∈ Eρ(T ) green if e is open and e ↓∞, colour e red if e is
open but not green and white if e is closed.

For a subtree T ∈ Tρ and a configuration ω ∈ ΩT? colour di-
rected edges e ∈ Eρ(T?) green if e ↓v∞ and red or white as above.
For edges e? ∈ ∂T interpret e? as green if open and white if
closed.

Now choose a subtree S ∈ Tρ and a configuration ω ∈ ΩS?

arbitrarily. Our strategy is to create a coupling (ωP, ωQ) with
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ωP ∼
(
Pp̃
∣∣ψS

)
(ω) and ωQ ∼ (Q?

T |ψS )(ω) in such a way that
every ωP-green edge is also ωQ-green.

Suppose for some T ⊃ S we have constructed a coupling ωT =(
ωT

P , ωT
Q

)
with ωT

P ∼
(
ψT

(
Pp̃
) ∣∣ψS

)
(ω) and ωQ ∼ (ψT(Q?

T ) |ψS )(ω)

such that every ωP-green edge is also ωQ-green. This is trivial
for T = S.

We have chosen p̃ so that 1− π(η̄) = (1− p̃ · π(η̄))k and in par-
ticular that Pp̃[e ↓∞] = π(η̄) = Q?

T
(
e ↓∞

∣∣J{e ). Notice that by
stochastic domination we have

Pπ(τ)[e ↓∞] ≤ Q?
T
(
e ↓∞

∣∣J{e ) ≤ Pτ[e ↓∞]. (4.64)

Therefore π(τ) ≤ p̃ ≤ τ.

Now choose an edge e ∈ ΛT. We use the generalized series
and parallel laws of Theorem 2.23 to construct ωT+e with the
properties above.

Recall the graphs Dk,τ,η from Subsection 2.4.4. Set DP = Dk,p̃,π(η)

and DQ = Dk,τ,η̄ . Then DP and DQ are isomorphic to χ?(e),
weighted appropriately for Pp̃ and Q?

T respectively.

Next choose independent uniform random variables x1, . . . , xk

and y1, . . . , yk from (0, 1) and N from J1, kK. We will choose ωT+e

according to the recipe in Subsection 2.4.4.

Set

α = η̄ ≥ α′ = π(η̄), (4.65)

β =
1− π(τ)

1− π(τ)π(η)
≥ β′ =

1− p̃
1− p̃π(η)

, (4.66)

γ =
(1− π(τ))π(η)

1− π(τ)π(η)
≥ γ′ =

(1− p̃)π(η)

1− p̃π(η)

(4.67)

and recall the function

θ(α, x) =
(

1− 1− α

1− αx

)1/k

. (4.68)
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Now ωT is such that every ωT
P -green edge is ωT

Q -green. In par-
ticular, as e? is green if and only if it is open, we have ωT

Q (e?) ≥
ωT

P (e?).

For f ∈ T? ∩ (T + e)? set ωT+e
P ( f ) = ωT

P ( f ) and ωT+e
Q ( f ) =

ωT
Q ( f ).

For the remaining edges number χ(e) = { f1, . . . , fk} and follow-
ing Subsection 2.4.4 set

ωT+e
Q ( fN) = 1[xi>β] ∨ωT

Q (e) (4.69)

ωT+e
Q ( fi) = 1[xi>β] ∨

(
ωT

Q (e) ∧ 1[yi<θ(α,yN)]

)
(4.70)

ωT+e
Q ( f ?N) = 1[xi<γ] ∨ωT

Q (e) (4.71)

ωT+e
Q ( f ?i ) = 1[xi<γ] ∨

(
ωT

Q (e) ∧ 1[yi<θ(α,yN)]

)
(4.72)

and similarly

ωT+e
P ( fN) = 1[xi>β′] ∨ωT

Q (e) (4.73)

ωT+e
P ( fi) = 1[xi>β′] ∨

(
ωT

Q (e) ∧ 1[yi<θ(α′,yN)]

)
(4.74)

ωT+e
P ( f ?N) = 1[xi<γ′] ∨ωT

Q (e) (4.75)

ωT+e
P ( f ?i ) = 1[xi<γ′] ∨

(
ωT

Q (e) ∧ 1[yi<θ(α′,yN)]

)
(4.76)

So ωT+e
P ∼

(
ψT+e

(
Pp̃
) ∣∣ψT

)
(ωP)

T and ωT+e
Q ∼ (ψT+e(Q?

T ) |ψT )(ωQ)
T

and it is easy to check that every ωP-green edge of χ?(e) is
ωQ-green. Furthermore ωT

P (e) = 1 if and only if ωT+e
P ( fN) =

ωT+e
P ( f ?N) = 1 (and similar for ωT

Q , ωT+e
Q ) therefore the colours

of edges in T? ∩ T + e? agree under ωT and ωT+e so we have
constructed ωT+1 as required.

Now letting T ↑ T we have a coupling (ωP, ωQ) with ωP ∼(
Pp̃
∣∣ψS

)
(ω) and ωQ ∼ (Q?

T |ψS )(ω) in such a way that every
ωP-green edge is also ωQ-green.

For vertices u, v, ρ ∈ S suppose ωQ ∈ [u⇐=⇒ v]. The event [u⇐=⇒ v]
is ψS-measurable and so ωP ∈ [u⇐=⇒ v] as well. As Pp̃ has the −̂_
single cluster property, ωP ∈ [u −̂_ v] and arguing as in the proof
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of Theorem 4.19 we may find a tree T ∈ Tρ containing S with
leaf vertices u0, . . . un−1 and v1, . . . , vn such that

ωP ∈ [u←−→ u0 ↓↓ v1←−→ u1 ↓↓ . . . ↓↓ vn←−→ v] . (4.77)

We argue that the above path is also open in ωQ.

First ωP ∈ [u←−→ u0]. Consider the path between u and u0. We
may split this path into two components, those edges in on the
path from ρ to u and those edges on the path from ρ to u0. As
u ∈ S ∈ Tρ the first group of edges are all in S hence are open
in ωQ as ωQ agrees with ωP on S. The second group of edges are
directed away from ρ and as ωP ∈ u0 ↓↓ v1 there is an ωP-green
path from v to infinity, hence all edges in the second part of
the path are ωP-green so open in ωQ. Therefore ωQ ∈ [u←−→ u0].
Similarly we have ωq ∈ [vn←−→ v] and for each pair ui, vi the path
between ui and vi comprises green edges on the path from ρ to ui

and green edges on the path from ρ to vi and so ωQ ∈ [ui←−→ vi].

It remains to argue that ωQ ∈ [vi ↓↓ ui+1] for each i. As we have
chosen vi and ui+1 to be leaf vertices of T, the path between
vi and ui+1 is contained in T hence the sigma algebra G ?

vi ,ui+1
is

contained in the sigma algebra generated by events [e is green]
for e ∈ Eρ(T ) \ Eρ(T).

As the event [vi ↓↓ vi+1] is increasing and G ?
vi ,ui+1

-measurable for
the strong boundary condition ↓↓ and as every ωP-green edge
is ωQ-green we must have ωQ ∈ [vi ↓↓ ui+1]. Therefore ωQ ∈
[u −̂_ v] whenever ωQ ∈ [u⇐=⇒ v].

As ωQ ∼ (Q?
T |ψS )(ω) for arbitrary ω ∈ ΩS? so Q?

T has the −̂_-
single cluster property and in particular the events L?

e and L −̂_e
are Q?

T -indistinguishable.

Therefore

Q?
T (Je |Te )(ω) = π(τ) + (τ − π(τ)) 1L?e (ω) (4.78)

= π(τ) + (τ − π(τ)) 1L −̂_e
(ω) (4.79)

for Q?
T -almost every ω therefore Q?

T ∈ R −̂_
T .
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COROLLARY 4.24
If −̂_ is a strongly connected random connection generated by
some strong boundary condition ↓↓ such that 1

k < τU < 1 then
there exists some qc ∈ R+ such that whenever q > qc there exists
τ̃U < τU where R −̂_

T ,q ⊇
{

Pπ(τ), Q?
T

}
whenever τ ∈ (τ̃U , τU).

PROOF
Set ζ = PτU [e ↓∞] for arbitrary e ∈ E and recall from (3.36) the
function

Fτ,q,k(η) = 1− (1− π-1(π(τ)π(η)))
k (4.80)

From Theorem 4.23 we have that Q?
T ∈ R −̂_

T whenever π(η̄) > ζ;
where η̄ is the largest fixed point of η̄ = f (η̄). From Theorem
4.22 Pπ(τ) ∈ R −̂_

T ,q whenever π(τ) < τC .

Now as Fτ,q,k is continuous and Fτ,q,k(1) < 1 then if Fτ,q,k(π
-1(ζ)) >

π-1(ζ) for some τ < π-1(τC) then we must have π(η̄) > ζ and so
R −̂_
T ,q ⊇

{
Pπ(τ), Q?

T

}
.

The function τ 7→ Fτ,q,k(π
-1(ζ)) is continuous and increasing

hence if for sufficiently large q we have Fπ-1(τC ),k,q(π
-1(ζ)) > π-1(ζ)

then we may find an interval I −̂_q = (τ̃U , π-1(τC)) such that R −̂_
T ,q ⊇{

Pπ(τ), Q?
T

}
for any τ ∈ I −̂_q .

Rearranging (4.80) we must find q large enough so that

1− π-1(ζ) > (1− π-1(ζτC))
k . (4.81)

To see that such q exists observe that

(1− π-1(p)) q =
(1− p)q

pq + (1− p)
(4.82)

→ 1− p
p

as q→ ∞. (4.83)

Therefore the left hand side of (4.81) decays as q-1 and the right
as q-k and (4.81) is satisfied for sufficiently large q.



5 G R I M M E T T A N D J A N S O N ’ S B O U N D -
A R Y C O N D I T I O N S

In this chapter we return to the boundary conditions described by
Grimmett and Janson [36]. In that paper the authors categorized equiv-
alence relations according to their topological properties. Here we take
an alternative but equivalent view by categorizing equivalence rela-
tions according to their quotient spaces.

Using this approach we consider two examples of canopies that are not
connected, the open boundary conditions of [36] and a new “paired tree
model.” We continue the work of [36] by providing a complete descrip-
tion of the behaviour of random cluster models with open boundary
conditions.

Lastly we introduce a random connection �−� inspired by the weak
limit in Chapter 1 on a d-dimensional quad tree. This may be described
by the map from the set of rays to the “canopy” [0, 1]d associated with
the “canonical curdling” process of Mandelbrot [51].

We are able to calculate the critical probabilities for this random con-
nection exactly and by combining this with the results in Chapter 4

we demonstrate that the �−�-random cluster model exhibits all three
possible phases for every q > 1.
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5.1 EQUIVALENCE RELATIONS AND TOPOLOGY 136

We have a partially complete phase picture of the random clus-
ter model for strongly connected random connections. In this
chapter we take a closer look at boundary conditions described
by equivalence relations.

Recall that T is some infinite tree and R = Rρ is the set of half
infinite paths on T started at some nominated root ρ. We may
defineRv for any vertex v ∈ V(T ) and there is a natural bijection
R : Ru → R such that Π and R(Π) differ on only finitely many
edges.

Recall also that for an equivalence relation ∼ on R we may de-
fine [u �∼� v] to be the event that there exists some pair of open
rays Πu ∈ Ru and Πv ∈ Rv with R(Π)u ∼ R(Π)v.

We say an equivalence relation is measurable if the event [u �∼� v] ∈
FT for every pair u, v ∈ V. From Lemma 4.18 every measurable
equivalence relation is a strong boundary condition and so gen-
erates a random connection −̂−∼_.

5.1 EQUIVALENCE RELATIONS AND TOPOLOGY

Grimmett and Janson [36] classify random equivalence relations
according to the topology on the set of rays R. We may describe
this topology by representing a ray as a configuration and inher-
iting the topology of ΩT .

Identify a ray Π ∈ ΠT with a configuration ωΠ ∈ ΩT where
ωΠ(e) = 1 if and only if e is on the path Π. Let ΩR ⊂ ΩT be the
set of configurations {ωΠ : Π ∈ R} and let R have the topology
of ΩR under the subspace topology. It is easy to check that the
set ΩR is closed, hence compact and Hausdorff.

We say an equivalence relation is open (respectively closed, Borel)
if the set S∼ = {(Π, Π′) : Π ∼ Π′} is open (respectively closed,
Borel). The classification of equivalence relations as open, closed,
Borel and measurable is due entirely to Grimmett and Janson
[36]. Furthermore it is proved in [36] that these classifications
form a hierarchy as follows.
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THEOREM 5.1: GRIMMETT-JANSON

Every open equivalence relation is closed.

Every closed equivalence relation is measurable.

Every measurable equivalence relation is Borel.

We include a proof of this statement for completion and as a
vehicle to introduce some new terminology. The underlying ar-
gument is unchanged from that in [36]

PROOF
The first statement will follow directly from the forthcoming The-
orem 5.4.

For a pair of rays Π1, Π2 ∈ R define the thread ϑ(Π1, Π2) ∈ ΩT to
be the configuration such that

1Je(ϑ(Π1, Π2)) = |ωΠ1(e)−ωΠ2(e)| . (5.1)

That is ϑ(Π1, Π2) ∈ Je if and only if e is on exactly one of the
paths Π1, Π2. Let Θ = ϑ

(
R2) be the set of threads and notice

that the set Θ does not depend on our choice of root vertex ρ.

Say a thread ϑ(Π1, Π2) is a stitch if Π1 ∼ Π2 and a darn otherwise.
Let Σ be the set of stitches and Σ{ the set of darns. Now ϑ

is a continuous (hence closed and measurable) map R2 → ΩT .
Therefore if ∼ is a closed equivalence relation the set of stitches
Σ is closed and if Σ ∈ FT then ∼ is Borel.

First notice that for each u, v ∈ V(T ) the set [u←−→ v] ∩ Θ is
exactly the set of bi-infinite paths that pass through both u and
v. Now for any ray Π the set of stitches Σ contains ϑ(Π, Π) which
is the empty configuration. The set of darns however contains
only bi-infinite paths and so for any darn ϑ ∈ Σ{ there is some
pair of vertices u, v ∈ V(T ) with ϑ ∈ [u←−→ v]. Furthermore we
have

Σ{ ∩ [u←−→ v] = Θ ∩ ([u←−→ v] \ [u �∼� v]) . (5.2)
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Thus if [u �∼� v] ∈ FT we may take a union over the countable
set of pairs (u, v) and Σ{ ∈ FT . Therefore for any measurable
equivalence relation ∼ on R the set Σ ∈ FT hence ∼ is Borel.

Now for a finite tree T ∈ Tρ let AT
u,v be the event that there exists

some stitch ϑT ∈ Σ that passes through both u and v such that
every bond e ∈ (T \ Πu,v) on the thread ϑT is open. We claim
that if Σ is closed then [u �∼� v] =

⋂
T∈Tρ

AT
u,v.

First if u �∼� v then we may set ϑT = ϑ(Πu, Πv) for some pair of
open rays Πu ∈ Ru and Πv ∈ Rv, hence [u �∼� v] ⊆ ⋂

T∈Tρ
AT

u,v.
Conversely if we have AT

u,v for every T ∈ Tρ then if Σ is closed
we may choose some limit point ϑ ∈ Σ such that for any T ∈
T there exists T′ ⊃ T such that ϑT′ agrees with ϑ on T, hence
every e ∈ (T \ Πu,v) on ϑ is open and as T is arbitrary we have
ϑ = ϑ(Πu, Πv) for some pair of open rays Πu ∈ Ru and Πv ∈ Rv

hence [u �∼� v] =
⋂

T∈Tρ
AT

u,v ∈ FT .

Therefore [u �∼�
′ v] =

⋂
T∈Tρ

AT
u,v ∈ FT for any closed equivalence

relation ∼.

Now we take an alternative view of Grimmet-Janson type bound-
ary conditions. Rather than considering the equivalence rela-
tions themselves we focus on the quotient spaces.

DEFINITION 5.2

Let ∼ be some equivalence relation on the set RT define the
canopy of ∼ to be the set

C∼ =
{{

Π′ ∈ ΠT : R
(

Π′
)
∼ Π

}
: Π ∈ R

}
.

There is an obvious bijection between C∼ and the quotient space
R/∼ and we equip C∼ with a topology such that the two spaces
are homeomorphic.

The canopy gives us an alternative view of the random connec-
tion. For a vertex v ∈ V(T ) and a point C ∈ C∼ write u ↓C if there
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exists an open ray Π ∈ C ∩Rv. Notice that we may express the
event [u �∼� v] =

⋃
C∈C [u ↓C , v ↓C ].

We may extend the random connection −̂_ to the canopy.

First we define a random neighbour relation on C by defining
events [C1 xy C2] to be the event that there exist rays Π1 ∈ C1 and
Π2 ∈ C2 such that the thread ϑ(Π1, Π2) is open.

We wish to extend the relation xy to an equivalence relation on
C. This idea is easiest to visualize when C is a discrete space and
we explore this idea in more detail below. First we write down
the equivalence relation generated by xy.

LEMMA 5.3

For C1 6= C2 ∈ C set

[C1 −̂_ C2] =
⋃

u,v∈V(T )

([u ↓C1 ] ∩ [u −̂_ v] ∩ [v ↓C2 ]) (5.3)

with C −̂_ C for every C ∈ C.

Then −̂_ is the smallest random equivalence relation on C such
that C1 −̂_ C2 whenever C1 xy C2.

PROOF

First if C1 xy C2 then there is some open thread ϑ(Π1, Π2) with
Π1 ∈ C1 and Π2 ∈ C2. Then for any pair of vertices u, v on the
thread we have u ↓C1 , u←−→ v and v ↓C2 hence C1 −̂_ C2. It is
easy to see that the relation −̂_ is symmetric, for transitivity
suppose C1 −̂_ C2 and C2 −̂_ C3. Then we may find vertices u ↓C1 ,
v ↓C2 , v′ ↓C2 and w ↓C3 with u −̂_ v and v′ −̂_ w. In this case we
have v ↓↓ v′ and so u −̂_ w. Therefore −̂_ is indeed a random
equivalence relation on C.

Now suppose there is some smaller equivalence relation −̂?_ on
C, satisfying the above. Then we may describe a second equiva-
lence on V(T ) by setting u −̂?_ v if u←−→ v or there exist C1 −̂?_ C2

with u ↓C1 and v ↓C2 .
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It is easy to check that −̂?_ is an equivalence relation on V(T ) and
that u −̂?_ v whenever u �∼� v. Therefore as −̂_ is the smallest such
equivalence relation on V(T ) we see that if for any C1 6= C2 ∈ C
we have

[C1 −̂_ C2] ⊆ [u ↓C1 ] ∩ [v ↓C2 ] ∩ [u −̂_ v] (5.4)

⊆ [u ↓C1 ] ∩ [v ↓C2 ] ∩ [u −̂?_ v] (5.5)

⊆ [C1 −̂?_ C2] . (5.6)

So −̂_ is indeed the smallest random equivalence relation on C
that satisfies the conditions of the lemma.

A canopy gives an alternative method of specifying an equiv-
alence relation, and hence a random connection. Rather than
defining an equivalence relation and then determining the canopy
and its topology we may describe the canopy directly as a topo-
logical space and specify a continuous map R → C. This defines
an equivalence relation and if that equivalence relation is mea-
surable we may define a random cluster model on the pair (T , C).
We use this method in the next section where we define a ran-
dom cluster model based on the map from R → [0, 1]d implicit
in the definition of the QuadTree.

First we state a relationship between the topological properties
of the canopy and the equivalence relation.

THEOREM 5.4

i). An equivalence relation ∼ is open if and only if C∼ is a
discrete topological space.

ii). An equivalence relation ∼ is closed if and only if C∼ is
Hausdorff.

iii). The random connection −̂−∼_ is connected if and only if C∼

is connected.
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PROOF OF I.
Let q : R → C∼ be the quotient map, combined with an appro-
priate homeomorphism (R/∼)→ C ∼.

If C∼ is a discrete space then the set {Π′ : Π′ ∼ Π} = q-1 · q(Π) is
the pre-image of a single point in the canopy which is open in
the discrete topology. Therefore {(Π1, Π2) : Π1 ∼ Π2} is a union
of open rectangles and is open.

Alternatively if {(Π1, Π2) : Π1 ∼ Π2} is open then for any Π ∈ R
we may find some open rectangle a× b ⊂ {(Π1, Π2) : Π1 ∼ Π2}
with (Π, Π) ∈ a× b. In particular Π ∈ a ∩ b ⊂ {Π′ ∈ R : Π′ ∼ Π}
thus each equivalence class is open. As the equivalence classes
form a disjoint open cover of the compact set R there may be
only finitely many of them, thus each equivalence class is both
open and closed and C∼ is a finite discrete space.

PROOF OF II.
If C∼ is Hausdorff then for any pair Π1 � Π2 we may choose a
pair of disjoint open sets O1 3 q(Π1) and O2 3 q(Π2) ⊂ C∼. As
the sets O1 and O2 are disjoint then q-1(O1)× q-1(O2) is an open
rectangle with

(Π1, Π2) ∈ q-1(O1)× q-1(O2) (5.7)

⊂
{(

Π′1, Π′2
)

: Π′1 � Π′2
}

. (5.8)

Therefore {(Π′1, Π′2) : Π′1 � Π′2} is open in R2 and in particular
{(Π′1, Π′2) : Π′1 ∼ Π′2} is closed.

Alternatively suppose the set {(Π′1, Π′2) : Π′1 � Π′2} is closed and
choose x1 = q(Π1), x2 = q(Π2).

The equivalence class q-1(x1) is the projection of the compact set
({Π1} ×R) ∩ {(Π′1, Π′2) : Π′1 ∼ Π′2} and is closed.

So for any ray Π′2 ∼ Π2 the rectangle q-1(x1)× {Π′2} is a compact
subset of the open set {(Π′1, Π′2) : Π′1 � Π′2} and we may choose a
finite cover of q-1(x1)×{Π′2} by some finite set of open rectangles
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{ai × bi : i = 1 . . . n} with ai × bi ⊂ {(Π′1, Π′2) : Π′1 � Π′2}. Then
we may choose a open rectangle

q-1(x1)×
{

Π′2
}
⊂
( ⋃

i=1...n

ai

)
×
( ⋂

i=1...n

bi

)
(5.9)

⊂
{(

Π′1, Π′2
)

: Π′1 � Π′2
}

. (5.10)

The rectangles above are open and cover the closed rectangle
q-1(x1)× q-1(x2) thus we may choose a finite subcover and, com-
bining in the same fashion as above, we may find a open rectan-
gle

q-1(x1)× q-1(x2) ⊂ A× B ⊂
{(

Π′1, Π′2
)

: Π′1 � Π′2
}

. (5.11)

We finish the proof by arguing that q is a closed map. Let S
be any closed set in R and assume without loss of generality
that q(S) contains x1 but not x2. From above we may choose
disjoint open sets A, B with q-1(x1) ⊂ A and q-1(x2) ⊂ B. As x1

is an arbitrary point of S we may choose a finite set of such pairs
Ai, Bi with S ⊂ ⋃n

i=1 Ai and q-1(x2) ⊂
⋂n

i=1 Bi. The set
⋂n

i=1 Bi is
open and as x2 is an arbitrary point ofR\ S the set q-1(C∼ \ q(S))
is open in R, hence q(S) is closed.

So for arbitrary x1 6= x2 ∈ C∼ we may choose disjoint open sets
A ⊃ q-1(x1) and B ⊃ q-1(x2). As q is a closed map the sets
C∼ \ q(R \ A) 3 x1 and C∼ \ q(R \ B) 3 x2 are disjoint open sets
and C∼ is Hausdorff.

Before we prove the last statement we state and prove a prelimi-
nary lemma.

LEMMA 5.5

Subsets A, B ⊂ C∼ have disjoint closures if and only if there
exists a tree T ∈ T such that any thread ϑ ∈ ϑ

(
q-1(A)× q-1(B)

)
passes through T.
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PROOF
First assume A and B are closed sets, then ϑ

(
q-1(A)× q-1(B)

)
is

a continuous image of a compact set, hence is compact.

If in addition there exists some sequence Tn ↑ T and threads ϑn ∈
ϑ(A× B) such that ϑn does not intersect Tn. then the sequence
ϑn converges weakly to the empty configuration, ξ0 ∈ Σ. Thus
there is some ray Π ∈ q-1(A) ∩ q-1(B) and A and B cannot be
disjoint. Conversely if A and B are not disjoint then then there
is some ray Π with q(R) ∈ A ∩ B and so ϑ

(
q-1(A)× q-1(B)

)
contains the empty configuration.

PROOF OF THEOREM 5.4(III)
Let T ∈ T be a finite subtree and let ωT be that configuration
with ωT(e) = 0 iff e ∈ T. Now consider the equivalence relation
−̂−ωT_ on C∼ and write Π1

T∼ Π2 if q(Π1) −̂−ωT_ q(Π2). Notice that the
measure concentrated on ωT has the single cluster property if
and only if the quotient space C∼/ −̂−ωT_ consists of a single point.

Now suppose Π1
T∼ Π2 and let Π′1 and Π′2 be any two rays such

that neither Π1 and Π′1 nor Π2 and Π′2 differ on T. Then the
threads ϑ(Π1, Π′1) and ϑ(Π2, Π′2) do not intersect T and so are
open in ωT. Therefore q(Π1) −̂−ωT_ q(Π′1) and q(Π2) −̂−ωT_ q(Π′2) so
we have Π′1

T∼ Π′2 and in particular the relation T∼ is open.

Therefore the quotient space C∼/ −̂−ωT_ is a discrete space. Hence
if C is connected C∼/ −̂−ωT_ is a single point and the measure con-
centrated on ωT has the single cluster property. As T is arbitrary
the random equivalence relation −̂−∼_ is connected whenever C∼

is connected.

Alternatively if C∼ is not connected we may partition C∼ into
two disjoint closed sets A and B. From Lemma 5.5 we may
choose T ∈ T such that any thread ϑ ∈ ϑ(A× B) passes through
T. Therefore the configuration ωT does not contain any open
thread ϑ ∈ ϑ(A× B) and the equivalence relation T∼ is contained
within (A× A) ∪ B× B. Therefore the measure concentrated on
ωT does not have the single cluster property and −̂−∼_ is not con-
nected.
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5.2 NONCONNECTED RANDOM CONNECTIONS

Our analysis of random connections in the last section was re-
stricted to strongly connected random connections. In particular
we have shown that for any strongly connected random connec-
tion −̂_ the wired random cluster model satisfies DLR condi-
tions for −̂_ when τ is sufficiently high. If a random connection
is not strongly connected then the wired random connection will
not satisfy DLR conditions for high τ and we must take an al-
ternative approach. In this section we will look at two examples
of disconnected canopies where we may still describe the phase
diagram.

5.2.1 Open Boundary Conditions

If ∼ is an open equivalence relation then the canopy C∼ is a
finite discrete space. Therefore the random equivalence relation
−̂−∼_ divides C∼ into finitely many “boundary clusters.” Each

boundary cluster corresponds to exactly one infinite cluster of
the tree, informally then the random cluster model on a pair
(T , C∼) has in some sense only finitely many more clusters the
the wired random cluster model.

Can we then weight the wired random cluster model according
to the number of boundary clusters in the same way that we
weight percolation on a finite graph according to the number of
percolation clusters to obtain a −̂−∼_ random cluster model?

Our next theorem gives a positive answer to this question.

THEOREM 5.6

Suppose C = C∼ for some open equivalence relation ∼ Let κC :
ΩT → N be the number of equivalence classes of C under the
equivalence relation −̂−ω_ defined above.
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A measure ϕ on ΩT is a −̂_ random cluster model if and
only if there exists ϕ? ∈ R?

T such that

ϕ(A) = Z-1
ϕ

∫
1A(ω)qκC (ω)dϕ?(ω) (5.12)

for the normalizing constant Zϕ = ϕ(qκC ).

For a configuration ξ ∈ ΩTwe have wlimT↑T Q −̂ξ_
T = ϕ ∈

R −̂_
T if and only if wlimT↑T Q

ξ
T = ϕ? ∈ R?

T with ϕ and ϕ?

related as above.

PROOF
First let C1 6= C2 be any two distinct points of the canopy. As C
is a discrete space the points C1 and C2 are closed disjoint sets
hence there is some tree S ∈ T such that any ϑ ∈ ϑ(C1 × C2)

passes through S.

As there are only finitely many such pairs then we may assume
that S above is large enough that any darn ϑ ∈ Σ{ must pass
through S.

Now let T be any finite tree with S ⊂ T ∈ T and recall the
map ψT : ΩT → ΩT? . We claim that for any vertex v ∈ T and
for any pair C1 6= C2 ∈ C the events [v ↓C1 ] and [C1 xy C2] are
ψT-measurable.

As the root ρ is arbitrary we may assume without loss of gener-
ality that ρ = v so that R = Rv.

For a ray Π ∈ R recall the configuration ωΠ ∈ ΩT . Let R ⊂ ΩT?

be the set of configurations

R = {ψT(ωΠ) : Π ∈ R} . (5.13)

Now as R ⊂ ΩT? is finite we may choose finitely many represen-
tatives {ΠT

1, . . . , ΠT
n} such that for any Π ∈ R we have ψT(ωΠ) =

ψT

(
ωΠT

i

)
for exactly one i ∈ J1, nK.
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Notice that for any ray Π ∈ R if ψT(ωΠ) = ψT

(
ωΠT

i

)
then ωΠ

and ωΠT
i

agree on T and so ϑ(Π, ΠT
i ) ∈ Je

{ for every edge e ∈ T.
Hence the thread ϑ(Π, ΠT

i ) does not intersect T and so Π ∼ ΠT
i .

In particular we may partition R into subsets

R =
⊔
C∈C

RC (5.14)

where

RC =
{

ψT

(
ωΠT

i

) ∣∣∣ΠT
i ∈ C

}
. (5.15)

Furthermore ω ∈ [v ↓C ] if and only if ψT(ω) ≥ ψT(ωi) for some
ωi ∈ RC . Therefore [v ↓C ] is ψT-measurable and as every darn
intersects T we have

[C1 xy C2] =
⋃

v∈T
[v ↓C1 , v ↓C2 ] (5.16)

is ψT-measurable.

Now the equivalence relation −̂_ is generated by xy and is ψT-
measurable. In particular for u, v ∈ V(T) the event [u −̂−∼_ v] is
ψT-measurable also.

Say a point C ∈ C is T-isolated if there exists no v ∈ T with
T ↓C . Define a random variable `T to be the number of T-isolated
points in the canopy.

Notice that from (5.16) if C is T-isolated for T ⊃ S there can be
no C′ with C xy C′. Furthermore for any ξ ∈ ΩT the random
variable `T is constant on Ωξ

T.

Recall that κ?T (ω) is the number of finite←−−ω→ clusters that intersect
T. Now as each −̂_-equivalence class of C is either a T isolated
point or corresponds to exactly one −̂−−ω,∼_-cluster that intersects
T we have

κ]
T + `T = κ?T + κC . (5.17)
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In particular for every ξ ∈ ΩT , from the definition of the cylinder
random cluster models Q −̂ξ_

T and Q
ξ
T we have

Q −̂ξ_
T (ω)

Q
ξ
T(ω)

=

(
Z −̂

ξ_
T

)-1
PT(ω) · qκ]

T (ω)(
Zξ?

T

)-1
PT(ω) · qκ?T(ω)

(5.18)

=

(
Zξ?

T

Z −̂
ξ_

T

q−`T(ω)

)
qκC (ω) (5.19)

=
(

Q
ξ
T(q

κC )
)-1

qκC (ω) (5.20)

where the last line follows from the observation that the quan-

tity
(

Zξ?

T

Z −̂
ξ_

T

q−`T(ω)

)
is TT-measurable and hence is a normalizing

constant.

We may express (5.20) in the form

Q
ξ
T(X · qκC ) = Q −̂ξ_

T (X)Qξ
T(q

κC ) (5.21)

for any FT-measurable random variable X.

Now suppose ϕ? ∈ R?
T ,q is a wired random cluster model and

set

ϕ(A) = ϕ?(qκC )-1
∫

1A(ω)qκC (ω)dϕ?(ω). (5.22)

We claim that ϕ is a −̂_-random cluster model. To see this
let X and Y be ϕ?- integrable random variables, with Y TT-
measurable. We have

ϕ(XY) = ϕ?(qκC )-1
∫

X(ξ)Y(ξ)qκC (ξ)dϕ?(ξ) (5.23)

= ϕ?(qκC )-1
∫

ϕ?(XqκC |TT )(ξ)Y(ξ)dϕ?(ξ) (5.24)

= ϕ?(qκC )-1
∫

Q
ξ
T(X · qκC )Y(ξ)dϕ?(ξ) (5.25)

= ϕ?(qκC )-1
∫

Q −̂ξ_
T (X)Qξ

T(q
κC )Y(ξ)dϕ?(ξ) (5.26)

= ϕ?(qκC )-1
∫

Q −̂ξ_
T (X)qκC (ξ)Y(ξ)dϕ?(ξ) (5.27)

=
∫

Q −̂ξ_
T (X)Y(ξ)dϕ(ξ). (5.28)
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So (ϕ |TT )(ξ) = Q −̂ξ_
T for sufficiently large T ∈ T, hence ϕ ∈

R −̂_
T . The converse is identical replacing qκC with q−κC and so

ϕ ∈ R −̂_
T if and only if ϕ? ∈ R?

T .

Now given ξ ∈ ΩT such that Q
ξ
T
W→ϕ? as T ↑ T from Lemma 3.12

ϕ? is a Markov chain and ψT′

(
Q

ξ
T

)
→ ψT′(ϕ?) as T ↑ T for every

T′ ∈ T.

In particular for any continuous simple function X we have

Q −̂ξ_
T (X) =

(
Q

ξ
T(q

κC )
)-1

Q
ξ
T(X · qκC ) (5.29)

W→ (ϕ?(qκC ))-1 ϕ?(X · qκC ) as T ↑ T (5.30)

= ϕ(X). (5.31)

Conversely if Q
ξ
T does not converge then by compactness we

may choose sequences of trees Tn and T′n such that Q
ξ
Tn

W→ϕ? and
Q

ξ
Tn

W→ϕ̃? with ϕ? 6= ϕ̃?. Then setting ϕ and ϕ̃ as above we have

wlim Q −̂ξ_
Tn

= ϕ 6= ϕ̃ = wlim Q −̂ξ_
T′n

.

5.2.2 The paired tree model

Open boundary conditions concern discrete canopies containing
only finitely many points. For our next example we consider a
totally disconnected infinite canopy.

We will consider a random connection on a forest containing
a pair of identical trees. We have not defined the apparatus
of random connections on a forest. However we may consider
such a forest as a single tree with one edge removed, either by
conditioning it to be closed or by setting the bond strength to be
very low.

Let T1 and T2 be a pair of trees such that there exists a graph
homomorphism ζ : V(T1) ↔ V(T2). For simplicity, assume that
both T1 and T2 have isotropic bond weights γ(e) ≡ τ. Set F =
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T1 ∪ T2, we interpret ζ as a reflection on F by setting ζ = ζ-1. We
abuse notation by allowing ζ : E(F) → E(F) to be the induced
map on the set of edges.

We introduce a random neighbour relation {[u ↓↓ v] : u = ζ(v)}
on F where u ↓↓ v is the event that there exists a ray Π ∈ Ru

such that both Π and ζ(Π) are open and let −̂_ be the random
connection generated by ↓↓.

We leave it to the reader to convince himself that the random
relation ↓↓ generates a random connection. This may easily be
seen by noting that by nominating a root ρ ∈ V(T1) arbitrarily
and adding an extra edge 〈ρ, ζ(ρ)〉. We may describe the random
connection generated by ↓↓ in terms of an equivalence relation
on the new tree.

THEOREM 5.7

Set τ̃ = π-1
(

π(τ)2
)

= τ2

τ(2−τ)+(1−τ)2q
and let T̃ be the tree iso-

morphic to T1 but with edge weights γ(e) ≡ τ̃.

Then the sets R −̂_
F and R?

T̃ are homomorphic.

Before proving Theorem 5.7 we will examine the random con-
nection −̂_ more closely. In particular we wish to show that for
a bond e = 〈u, v〉 ∈ E(T1)

L −̂_e = Jζ(e) ∩ [u ↓↓ ζ(u)] ∩ [v ↓↓ ζ(v)] . (5.32)

Choose u, v ∈ V(T1) and suppose u −̂_ v. We may find a se-
quence of vertices u0, . . . , un ∈ V(T1) such that

u←−→ u0 ↓↓ ζ(u0)←−→ ζ(u1) ↓↓ . . . ↓↓ un←−→ v. (5.33)

Now suppose there exists some i such that ui above is not on
the direct path from ui−1 to ui+1. Let u′i be the vertex closest to
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ui on the direct path from ui−1 to ui+1. Assume without loss of
generality that i is even, then we have

ui−1←−→ ui ↓↓ ζ(ui)←−→ ζ(ui+1) (5.34)

⇔ ui−1←−→ u′i←−→ ui ↓↓ ζ(ui)←−→ ζ
(
u′i
)
←−→ ζ(ui+1) (5.35)

⇔ ui−1←−→ u′i ↓↓ ζ
(
u′i
)
←−→ ζ(ui+1). (5.36)

So we may assume without loss of generality that each ui is on
the direct path from u to v. Now if 〈u, v〉 ∈ E(T1) then there are
only two vertices (u and v) on this path. Therefore if we have
u −̂_ v then either u←−→ v or u ↓↓ ζ(u)←−→ ζ(v) ↓↓ v.

Now we may use this observation, specifically in the form of
equation (5.32) to describe the random cluster model on the
paired tree.

PROOF OF THEOREM 5.7

Let T̃ be the tree isomorphic to T1 but with edge weights γ(e) ≡
τ̃ as in the statement of the theorem.

Ignoring edge weights, T̃ is isomorphic both to T1 and T2. For
an edge e ∈ T̃ let e1 and e2 be the corresponding edges in T1 and
T2 respectively.

Now we define a second tree S by replacing each edge e ∈ E
(
T̃
)

with two edges ẽ1 and ẽ2 in series. Specifically we let V(S) =

V
(
T̃
)
∪
{

ve : e ∈ E
(
T̃
)}

. For definiteness we direct T̃ arbitrarily.
For each e = |u, v〉 ∈ E

(
T̃
)

we set ẽ1 = 〈u, ve〉 and ẽ2 = 〈ve, v〉
and let E(S) =

{
ẽi : e ∈ E

(
T̃
)
, i ∈ {1, 2}

}
. Assign S isotropic

edge weights γ(ẽi) ≡ τ.

Now we create homomorphisms between the sets of random
cluster models.

Define ψ : ΩF → ΩS and ψ̃ : ΩS → ΩT̃ by setting

ψ-1(Jẽi) = Jei , (5.37)

ψ̃-1(Je) = Jẽ1 ∩ Jẽ2 . (5.38)

The theorem follows from two claims
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ϕ is a random cluster model on S if and only if ψ̃(ϕ) is a
random cluster model on T̃ and

ϕ =
∫ (

Pπ(S)

∣∣∣ψ̃)(ω)dϕ(ω). (5.39)

ϕ is a random cluster model on F if and only if ψ(ϕ) is a
random cluster model on S.

The first claim follows from the generalized series and parallel
laws. For T ∈ TT̃ let S ∈ TS be the tree containing ẽ1 and ẽ2

for every e ∈ T and let ψ̃T : ΩS? → ΩT? be the map defined
by setting ψ̃-1

T (Je) = Jẽ1 ∩ Jẽ2 for e ∈ E(T) and ψ̃T(Je?) = Jẽ?i for
ẽi ∈ Λ(S). (Recall only one of ẽ1, ẽ2 is a leaf of S.)

From Theorem 2.23 (applied once to each edge e ∈ T) for every T̃
entrance law H there is a coupling ω = (ωS, ωT) ∼ µH such that
ωS ∼ QH

S , ωT = ψ̃T(ωS) ∼ QH
T and µH(ωS |ωT ) ∼

(
PS?

∣∣ψ̃T

)
(ωS).

Letting T ↑ T̃ the first statement holds for all extremal random
cluster models and hence ψ̃ is a homomorphism between R?

S

and R?
S .

For the second claim choose some u ∈ V
(
T̃
)
⊂ V(S). Then

there is a pair of vertices v1 = ζ(v2) ∈ F corresponding to v.
Now v ↓∞ in S if and only if there is some v-ray Π in T̃ such
that both ẽ1 and ẽ2 are open for every edge e on Π. Therefore we
have ψ-1[v ↓∞] = [v1 ↓↓ v2].

From (5.32) we have

ψ-1(L?
ẽ1

)
= ψ-1[u ↓∞] ∩ ψ-1(Jẽ2) ∩ ψ-1[v→ ∞] (5.40)

= [u1 ↓↓ u2] ∩ Je2 ∩ [v2 ↓↓ v1] (5.41)

= L −̂_e1
. (5.42)

Therefore if ψ(ϕ) ∈ R?
S we have

(ϕ |Te1 ) = (ψ(ϕ) |Tẽ1 )(ω) (5.43)

= π(τ) + (τ − π(τ)) 1L?ẽ1
(ω) (5.44)

= π(τ) + (τ − π(τ)) 1L −̂_e1
(ω) (5.45)
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and so ϕ ∈ R −̂_
F .

It is easy to see that the induced maps ψ : R −̂_
F → R?

S and
ψ̃ : R?

S → R?

T̃ are homomorphisms hence R −̂_
F is homomorphic

to R?

T̃ as claimed.

5.3 PERCOLATION WITH MANDELBROT BOUND-
ARY CONDITIONS

Recall from Chapter 1 we defined a informally a random connec-
tion �−� on a rooted 2d tree by considering the small λ limit of
the QuadTree.

The QuadTree is a graph whose vertices are a set of pixels, dyadic
subcubes of [0, 1]d. For clarity we will use Pv to represent the
pixel associated with a vertex v.

Now we recall some terminology from Chapter 1. For a set of
pixels P , T(P) is the set of tree edges in the form e = |M(v), v〉
where M(v) is the unique mother pixel of v. L(P) is the set
of lattice edges of the QuadTree, these will not be bonds in our
probability space, but will be useful is navigating the underlying
tree. Recall a screen S is a rectangle in Rd that may be partitioned
up to a set of measure zero by a set of pixels P0

S ⊂ Pn
Rd where n

is the resolution of the screen.

Now let Π = (v1, v2, . . .) be a directed path on T(Q). For each
i < j ∈ N we have vj ∈ D(vi) and so Pvi

⊃ Pvj
, furthermore the

sidelengths of Pvi
decrease to zero, so by compactness of [0, 1]d

there exists some point

Ψ(Π) =
∞⋂

i=1

Pvi
∈ [0, 1]d . (5.46)

Set T =
(
P J0,∞K
[0,1]d

, T
(
P J0,∞K
[0,1]d

))
with bond weights γ(e) ≡ τ. We

have defined a continuous map Ψ : R(T ) → [0, 1]d this defines
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FIGURE 10

The QuadTree structure from Chapter 1, this time we are interested in
the underlying tree together with a random connection defined by the
canopy [0, 1]d.

an equivalence relation on R which, as [0, 1]d is Hausdorff, is
closed by Theorem 5.4 hence measurable from Theorem 5.1.

The results in Chapter 4 concern regular unrooted trees. T is a
rooted tree, that is it has one vertex with only 2d adjacent vertices.
However the difference between rooted and unrooted trees is
in this case only cosmetic. We have used the symmetry of the
regular tree only once, in the proof of Theorem 4.21. It is easy to
check that this theorem holds for the rooted tree as well as for
the unrooted tree.

NOTATION

Define the canopy of T , C = [0, 1]d. Let M∼ be the equivalence
relation on R generated by the map Ψ : R → C described in
(5.46) and let�−� be the random connection generated by M∼.

Now define a strong boundary condition ↓�↓� that generates �−�.
Recall the subnetworks P n

C of pixels of resolution n. For u, v ∈ P n
C

let [u ↓�↓� v] be the event that there exists some C ∈ Pu ∩ Pv such
that u ↓C and v ↓C .

It is clear that ↓�↓� is a strong boundary condition and generates
the random connection�−�. To see this notice that for u, v ∈ P n

C

we have u ↓�↓� v if and only if u �∼�
′ v where u �∼�

′ v is the strong
boundary condition in Lemma 4.18. It is easy to see that if u ∈
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Pm
C and v ∈ P n

C with m < n then there exists some u′ ∈ P n
C with

u←−→ u′ and u′ ↓�↓� v.

The map Ψ is clearly surjective and the canopy C = [0, 1]d is
connected. Therefore the random connection �−� is connected
also.

The aim of this section is to show

THEOREM 5.8

If d = 1 the random connection �−� is connected but not
strongly connected.

If d > 1 the random connection�−� is strongly connected.

The critical percolation probabilities are

τ�−�C = τ�−�U = 2
1−d

2 . (5.47)

The first two statements follow directly from the third. We will
prove the third statement as two lemmata, a lower bound in
Lemma 5.9 and an upper bound Lemma 5.14.

5.3.1 Mandelbrot’s Percolation process and τC

The map Ψ is not new. The image of the set of open ρ-rays
{C ∈ C : ρ ↓C} corresponds exactly to the famous canonical cur-
dling process of Mandelbrot [51]; often refered to simply as Man-
delbrot’s percolation process. The tree was not explicitly men-
tioned in [51] and Mandelbrot’s arguments were in places non-
rigorous.

Chayes et al. [16] formalized the study of Mandelbrot’s percola-
tion process relying heavily on the percolation process PT . The
authors were especially interested in connectivity properties of
the image {C ∈ C : ρ ↓C}, which are not a concern here. How-
ever the paper contains the quantity 2

d−1
2 as a lower bound for
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the connectivity threshold of Mandelbrot percolation and their
argument may easily be adapted for our purposes.

LEMMA 5.9

PT has the�−�-loopless property if and only if τ ≤ 2
1−d

2 , that is

τ�−�C = 2
1−d

2 .

PROOF
We follow Chayes et al. [16]. We will be brief as we are only
adapting an existing argument to a new setting. A more detailed
version of this argument appears in [16].

Suppose τ < 2
1−d

2 now choose u, v ∈ P n
C . If Pu ∩ Pv is empty then

the event [u ↓�↓� v] = ∅. If Pu ∩ Pv is not empty then it must be
some d̃-dimensional subcube of C with d̃ < d.

Now choose a point C ∈ Pu ∩ Pv, and let Πu = (u = u0, u1, . . .) ∈
Ru and Πv = (v = v0, v1, . . .) ∈ Rv be directed rays with Ψ(Πu) =

Ψ(Πv) = C.

Now for each i ∈ N we have
(
Pui
∩ Pvi

)
⊃
(
Pui+1
∩ Pvi+1

)
3 C.

Therefore there is some decreasing sequence of integers di such
that Pui

∩ Pvi
is a di dimensional cube.

As di is decreasing it is eventually constant. Let
[
u ↓�↓�d̃ v

]
be the

event that there exist open directed rays Πu, Πv as above with
di = d̃ for every i ≥ 0.

In particular if u ↓�↓�d̃ v then for each i ∈ N, Pui
is the orthogonal

reflection of Pvi
in the d̃-dimensional hyperplane containing Pu ∩

Pv. Now the subtree Tu∩v with vertices {ũ : Pu ⊃ Pũ ⊃ Pu ∩ Pv}
is a rooted 2d̃-tree and u ↓�↓�d̃ v if and only if there exist some
path Πu = (u = u0, u1, . . .) such that both Πu and the orthogonal
reflection of Πu are open. Therefore PT

[
u ↓�↓�d̃ v

]
> 0 if and only

if τ2 > 2−d̃.

As d̃ ≤ d− 1 then PT [u ↓�↓� v] > 0 if and only if τ > 2
1−d

2 .
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5.3.2 One-dependent percolation and jungles

We move on to the upper bound. Our aim is to use renormal-
ization techniques to construct a giant cluster far from the root
that is large enough to intersect any infinite cluster with high
probability.

For any screen S ⊂ Rd we may define a forest
(
P J0,∞K

S , T
(
P J0,∞K

S

))
.

We interpret the rays of this forest R(S) to be the set of half infi-
nite paths started at some P ∈ P0

S .

Now associate with each screen a jungle JS consisting of the
forest JS =

(
P J0,∞K

S , T
(
P J0,∞K

S

))
together with the canopy map

Ψ : R(S)→ S and induced random connection�−� on JS.

We will be particularly interested in the jungles induced by lat-
tice edges of the QuadTree. For an edge e = 〈u, v〉 ∈ L set
Je = JPu∪Pv . It will be convenient to stage our argument not on
T but on a jungle consisting of two trees isomorphic to Je for
arbitrary e ∈ L. So denote the cuboid 2C = [−1, 1] × [0, 1]d−1

and set J = J2C .

We name the two root vertices of the forest J , ρ and ρ′ where
Pρ = [0, 1]d and Pρ′ = [−1, 0]× [0, 1]d−1.

Now for any edge e ∈ L
(
P J0,∞K

2C

)
we have Je ⊂ J We may

consider FJe to be a subset of FJ .

We wish to define block events, that is a set of similar events{
Ae

∣∣∣e ∈ L
(
P J0,∞K

2C

)}
with Ae ∈ FJe . These should be inter-

preted as copies of an event A ∈ FJ occurring on the subgraph
Je.

We will construct such events using a recursive renormalization
argument due to Balister et al. [3]. To this end it will be con-
venient to define our block events formally in such a way as to
make use of the recursive structure of the QuadTree.

For any isometry f : 2C → 2C there is an induced homomor-
phism f̃ : ΩJ → ΩJ which preserves the random connection



5.3 PERCOLATION WITH MANDELBROT BOUNDARY CONDITIONS 157

�−�. Let G ⊂ FJ be σ-algebra of events invariant under all such
homomorphisms.

For an edge e ∈ L
(
P J0,∞K

2C

)
choose an arbitrary similitude g :

2C → (Pu ∪ Pv) and extend to a map J → Je in the obvious way.
We may then define g̃ : ΩJ → ΩJ by setting g̃-1(Je′) = Jg(e′).

Now define a map Te : G → FJ by setting Te(A) = g̃-1(A). As
we have restricted ourselves to the invariant σ-algebra G the map
Te does not depend on our choice of similitude.

To prove the remaining part of Theorem 5.8 we will consider
events defined recursively by mapping ΩJ onto the configura-
tion space of a smaller graph G.

Let G =
(
P J0,1K

2C , T
(
P J0,1K

2C

)
∪ L
(
P1

2C

))
be the graph G with vertices

ρ, ρ′ and the 2d+1 vertices of P1
2C together with the associated tree

edges and the lattice of the bottom layer.

For an event A ∈ G we define a map ΦA : ΩJ → ΩG by setting

Φ-1
A (Je) =

Je : if e ∈ T(G),

Te(A) : if e ∈ L(G).
(5.48)

Informally then the states of the tree edges of G are preserved.
The remaining lattice edges are opened if the event A occurs in
the jungle Je.

Now consider a second event B ∈ FG . If B is invariant under the
group of symmetries of 2C then we may define a map WB : G →
G by setting

WB(A) = {ω ∈ ΩJ : ΦA(ω) ∈ B} . (5.49)

It will be crucial to our argument that if two lattice edges e =

〈u, v〉 and edge e′ = 〈u′, v′〉 do not share a common vertex then
the forests Je and Je′ are disjoint and so the events Te(A) and
Te′(A) are independent under PJ .

Our proof of the upper bound for Theorem 5.8 will involve re-
cursive applications of maps in the form WB, in particular we



5.3 PERCOLATION WITH MANDELBROT BOUNDARY CONDITIONS 158

FIGURE 11

0 0.9 1p

Plots of the function (1− p)τ2
−
(

1− τ2 p (1 + (1− τ) p)2
)

with τ = 2
d−1

2

for integer d. The darker line is the case when d = 2.

will establish lower bounds on the probabilities PJ (WB(A)) as
functions of PJ (A).

Now let us consider the event [ρ�−� ρ′].

We have seen that when τ ≤ 2
d−1

2 we have PT [ρ�−� ρ′] = 0. Next
we show that this probability as a function of τ displays a dra-
matic discontinuity at the critical point.

LEMMA 5.10

If τ > 2
1−d

2 then PT [ρ�−� ρ′] > 0.9.

The heart of the proof is to observe that for any ω ∈ ΩJ we have
ρ�−−ω� ρ′ if and only if Φ[ρ�−�ρ′](ω) ∈ [ρ←−→ ρ′]. Therefore the event
[ρ�−� ρ′] is invariant under the transformation W[ρ←−→ρ′].

Before proceeding we state a numerical inequality.

LEMMA 5.11

If τ = 2
1−d

2 for some d ∈ J2, ∞K then for every p ∈ (0, 0.9]

1− τ2 p (1 + (1− τ) p)2 < (1− p)τ2
.

Figure 11 shows plots of (1− p)τ2
−
(

1− τ2 p (1 + (1− τ) p)2
)

for a
few values of τ ≤ 1√

2
. We may see that for every value of τ

pictured there is a single root larger than 0.9. The bound of 0.9 is
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FIGURE 12
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τ
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A subgraph of G for d = 2 and d = 3. The inequality in Lemma
5.11 comes from considering independent bond percolation with the
probabilities indicated on the left hand graph.

necessary for the next part of our argument and is not tight. We
will delay the proof of Lemma 5.11 until the end of this section.

PROOF OF LEMMA 5.10

Set p = PJ [ρ�−� ρ′]. We estimate the probability PJ
(

W[ρ←−→ρ′](A)
)

in terms of PJ (A) and show that p must satisfy the inequality
in Lemma 5.11.

Consider the set of pixels P1
2C . The pixels have a grid structure

isomorphic to J0, 3K× [0, 1]d−1 ⊂ Zd. We relabel the vertices

P1
2C = {u0, u1, v1, v0} × {0, 1}d−1 . (5.50)

With the convention that the vertices u0, u1, v1, v0 run from left
to right.

For each x ∈ {0, 1}d we name the left,middle and right edges
connecting the pixels {u0, u1, v1, v0} × {x}

`x = 〈(u0, x) , (u1, x)〉, (5.51)

mx = 〈(u1, x) , (v1, x)〉, (5.52)

rx = 〈(v1, x) , (v0, x)〉. (5.53)

We consider only subgraphs of G in particular we include only
tree edges T(G) and the named edges

⋃
x∈{0,1}d−1 {`x, mx, rx} par-

allel to the edge 〈ρ, ρ′〉.

The subgraphs in Figure 12 may be divided into 2d−1 indepen-
dent “arms”, we calculate first the probability of an open path
across each arm.
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Name events Lx, Mx and Rx in FJ

Lx = J〈ρ,(u1,x)〉 ∪
(

J〈ρ,(u0,x)〉 ∩Φ`x

[
ρ�−� ρ′

])
, (5.54)

Mx = Φmx

[
ρ�−� ρ′

]
(5.55)

Rx = J〈ρ′,(v1,x)〉 ∪
(

J〈ρ′,(v0,x)〉 ∩Φrx

[
ρ�−� ρ′

])
, (5.56)

Ex = Lx ∩Mx ∩ Rx (5.57)

Now the tree bonds J〈ρ,(u0,x)〉 and J〈ρ,(u1,x)〉 are independent of
FJ`x

and so we have

PJ (Lx) = τ + τ (1− τ) p. (5.58)

By symmetry we have PJ (Rx) = PJ (Lx) and as the events Lx,
Mx and Rx are increasing then by the FKG inequality we have

PJ (Ex) ≥ PJ (Lx) ·PJ (Mx) ·PJ (Rx)

= τ2 p
(
1 + (1− τ) p2)

≥ τ2
C p
(
1 + (1− τC) p2)

where τC = 2
1−d

2 .

Now for each x ∈ {0, 1}d−1

Ee ⊆
[
ρ�−� u1�−� v1�−� ρ′

]
⊆
[
ρ�−� ρ′

]
. (5.59)

Furthermore the set of events
{

Ex

∣∣∣x ∈ {0, 1}d
}

are indepen-
dent and so we have

p ≥ PJ

 ⋃
x∈{0,1}d−1

Ex

 (5.60)

1− p ≤
(
1− τ2

C p
(
1 + (1− τC) p2))2d−1

(5.61)

(1− p)τ2
C ≤ 1− τ2

C p
(
1 + (1− τC) p2) . (5.62)

And so by Lemma 5.11 we have PJ [ρ�−� ρ′] > 0.9.
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It remains to prove Lemma 5.11. We have seen in Figure 11 that
the inequality holds for a variety of choices of τ, and we would
expect that the lemma holds for every τ ∈

(
0, 1√

2

)
, not just

for integer d. However by restricting ourselves to a sequence
of values we my use an induction argument which avoids the
exponent τ2 on the right hand side.

PROOF OF LEMMA 5.11

First consider the case when d = 2, then τ2 = 1
2 and by squaring

both sides of the inequality we need only check that

0 < (1− p)−
(

1− p
2

(
1 +

(
1− 1√

2

)
p
)2
)2

(5.63)

= G(p)p2 (5.64)

for some polynomial G. Careful expansion gives us

G(p) = 17−12
√

2
16

[
92 + 64

√
2−

(
56 + 40

√
2
)

p

−
(

36 + 24
√

2
)

p2 −
(

8 + 4
√

2
)

p3 − p4
]

.

(5.65)

Now 17−12
√

2
16 > 0 so G is decreasing in p we need only check

that G(0.9) > 0 and we may calculate

G(0.9) =
17− 12

√
2

16
× 59519 + 56440

√
2

10000
> 0. (5.66)

Now we argue inductively in d, set τ = 2
1−d

2 and τ̃ = 2
2−d

2 ,
assume that

(1− p)τ̃2
> 1− τ̃2 p (1 + (1− τ̃) p)2 (5.67)

and notice that τ̃2 = 2τ2.
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Hence

(1− p)τ2
=
(
(1− p)τ̃2

) 1
2

(5.68)

>
(

1− τ̃2 p (1 + (1− τ̃) p)2
) 1

2
(5.69)

=

(
1− 2τ2 p

(
1 +

(
1−
√

2τ
)

p
)2
) 1

2

. (5.70)

So combining (5.70) with (5.67) and squaring it is enough to
show

1− 2τ2 p
(

1 +
(

1−
√

2τ
)

p
)2

>
(

1− τ2 p (1 + (1− τ) p)2
)2

(5.71)

for 0 < τ ≤ 2
3−1

2 = 0.5 and 0 < p ≤ 0.9.

Set

f (τ, p) =

(
1−2τ2 p(1+(1−

√
2τ)p)

2)−(1−τ2 p(1+(1−τ)p)2)
2

τ2 p
(5.72)

We prove (5.71) by first showing f (0.5, p) > 0 for 0 < p ≤ 0.9
and then showing that f is decreasing in τ for 0 < τ < 0.5,
0 < p < 0.9.

First we have

f (0.5, p) = 4
√

2− 9
2
−
(

6− 4
√

2
)

p− 3p2

4
− p3

4
− p4

32
. (5.73)

The right hand side is decreasing in p and we have

f (0.5, 0.9) =
2432000

√
2− 3427281

320000
> 0. (5.74)

Hence f (0.5, p) > 0 for every p ≤ 0.9.

Next

∂ f
∂τ

(0.5, p) = −1− 2p +
3p2

2
+ p3 +

3p4

16
(5.75)



5.3 PERCOLATION WITH MANDELBROT BOUNDARY CONDITIONS 163

The right hand side is convex in p and we have

∂ f
∂τ

(0.5, p) ≤ p
∂ f
∂τ

(0.5, 1) + (1− p)
∂ f
∂τ

(0.5, 0) (5.76)

= −p− 5
16

(1− p) (5.77)

< 0 (5.78)

And so ∂ f
∂τ (0.5, p) < 0 for every p ∈ [0, 1].

Lastly if 0 < τ ≤ 0.5 and 0 < η < 1 we have

∂2 f
∂τ2 (τ, p) = 4p (2 (1 + p)− 5pτ) (1− (1− τ) p)2 (5.79)

≥ 4p
(

2− p
2

)
(1− (1− τ) p)2 (5.80)

> 0. (5.81)

Therefore ∂ f
∂τ is increasing and so by (5.78) we see that f is de-

creasing in τ whenever 0 < τ < 1
2 and 0 < p ≤ 0.9. This

competes the inductive step.

5.3.3 The Balister, Bollobás and Walters Recursion

We have shown that if τ > τ�−�C the event [ρ�−� ρ′] occurs with
probability much higher than the critical probability for indepen-
dent percolation on the lattice. Consider the finite grid PN

2C for
large N. Setting Je = Te[ρ�−� ρ′] we would expect PN

2C to contain
a single “giant” cluster that is an order of magnitude larger than
the second largest cluster. That is we might expect there to exist
a cluster CN so large that if ρ←−→∞ there must be some vertex
u ∈ C with ρ←−→ u.

Such phenomena are known to occur for independent bond per-
colation, and even for the random cluster model, see for example
Barsky et al. [4], Pisztora [54]. However the percolation process
above is not independent as if two edges e, e′ ∈ L

(
PN

2C

)
share a
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common vertex the bonds Je and Je′ are clearly dependent and
we do not know how the dependence operates.

However the process above is one-dependent in the sense that if
e and e′ do not share a common vertex then the jungles Je and
Je′ do not intersect an the events Te[ρ�−� ρ′] and Te′ [ρ�−� ρ′] are
independent.

Balister et al. [3] have studied one-dependent bond percolation
on Z2 and were able to prove that any one dependent size perco-
lation with the property that each edge is open with probability
at least 0.9 exhibits an infinite cluster. Clearly then any such one
dependent percolation process in Zd exhibits an infinite cluster
and if the process is translation invariant the argument of Burton
and Keane [15] shows that the infinite cluster is unique.

As we are considering clusters of finite graphs it is not enough
simply to state the result. However we may apply the argument
directly to the tree setting and construct large finite clusters that
are regular enough to intersect any infinite cluster in J .

We note that the bound on the critical probability in [3] is better
than 0.9. The 0.9 bound in fact comes from a warm up argument
which is simpler and better suits the structure of the QuadTree.

We say a subgraph G of PN
2C is a (depth-N) k-net of a vertex v if

G is connected and the vertices V(G) form the leaves of some
regular k-tree rooted at v.

For d = 2 our aim is to show that for any n ∈ N we may
choose some N such that with high probability there exists some
subgraph C ⊂ PN+n

2C such that we have Te[u�−� v] for every
e = 〈u, v〉 ∈ E(C) and that for every v ∈ Pn

2C C contains some
3-net of v.

For d = 2 we have 2
1−d

2 > 1
3 hence this observation will be

enough to construct a path from u to v for any pair of vertices
u←−→∞ and v←−→∞. For d > 2 a 3-net will not suffice for this
argument and as we must construct a larger cluster the bound
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FIGURE 13

E1 E2 E3

E4 E5 E6

E7 E8 E9 E10

The ten pairs of bonds from [3].

of 0.9 will not be sufficient. For higher dimensions we will con-
struct a block event K ∈ G which occurs with very high proba-
bility. We may then argue as for the two dimensional case but
with the event K in place of [ρ�−� ρ′].

Define a function

N(d) =

10 : if d = 2,(
4d2 + 4d + 1

)
22d−3 −

(
4d2 + 2d + 1

)
2d−2 : otherwise.

(5.82)

We note that for d ≥ 3 N(d) is the number of pairs of disjoint
lattice edges of the graph P1

2C . It is an easy exercise to calculate
the formula in (5.82) although the exact value will not matter. It
will be convenient in the argument below that N(d) is not an
overestimate.

LEMMA 5.12

Let Θn(A) be the event that there exists some subgraph C of Pn
2C

such that Te(A) occurs for every e ∈ E(C) and C contains both a(
2d − 1

)
-net of ρ and a

(
2d − 1

)
-net of ρ′.

If PJ (A) > 1− 1
N(d) we have ∑∞

n=1 (1−Θn(A)) < ∞.
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PROOF
We define a recursion as for the proof of Lemma 5.10. Let
B ⊂ ΩG be the event that the largest connected component of the
graph

(
P1

2C ,
{

e ∈ L
(
P1

2C

) ∣∣Je = 1
})

contains at least 2d− 1 vertices
of P1

C and P1
−C , with C = [0, 1]d and −C = [−1, 0]× [0, 1]d−1.

Now for e = 〈u, v〉 and e′ = 〈v, u′〉 ∈ L
(
P1

2C

)
if both Te(Θn(A))

and Te′(Θn(A)) occur then there is some large cluster which con-
tains a depth n

(
2d − 1

)
-net of u and of v and some large cluster

which contains a depth n
(
2d − 1

)
-net of v and of u′. As any two

depth n
(
2d − 1

)
-nets of v must intersect then there exists one

large cluster that contains depth n
(
2d − 1

)
-nets of u, v and u′.

So if WB(Θn(A)) occurs there is some large cluster that contains
depth n

(
2d − 1

)
-nets of 2d − 1 vertices in each of P1

C and P1
−C .

That is to say that cluster contains both a depth n + 1
(
2d − 1

)
-

net of ρ and of ρ′.

In particular we have

WB(Θn(A)) ⊆ Θn+1(A). (5.83)

So we are interested in the probability of WB(A) for A ∈ G .

First suppose d = 2. Figure 13 shows ten copies of P1
2C with

highlighted pairs of disjoint bonds.

Notice that if at least one bond from each pair is open then there
must exist a cluster as described above containing at least three
pixels from each side of P1

2C . We leave it to the reader to convince
himself of this. The full argument may be found in [3].

So, let Ei be the event that at least one of the bonds in the ith
pair is open. Then B ⊃ ⋂10

i=1 Ei.

For d > 2 we will not attempt to choose pairs in an intelligent
way. Suppose that at least one bond out of each of the N(d)
pairs of disjoint pairs of edges is open. Then, as P1

2C contains no
triangles; any set of mutually disjoint edges, and hence the set
of all closed edges must have a common vertex. Therefore there
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must exist a giant cluster containing either all or all but one of
the vertices of P1

e .

In general we may order disjoint pairs of edges arbitrarily and
we have

B ⊃
N(d)⋂
i=1

Ei (5.84)

If a pair of edges e, e′ ∈ L
(
P1

2C

)
are disjoint then the events Te(A)

and Te′(A) are independent and so

1−PJ (WB(A)) ≤ N(d) (1−PJ (A))2 . (5.85)

In particular if PJ (A) > 1 − 1
N(d) then 1 − PJ

(
Wn+1

B (A)
)
≤

1−PJ (A)
N(d) (Wn

B (A)) and so

∞

∑
n=1

1−PJ (Θn(A)) =
∞

∑
n=1

1−PJ (Wn
B (A)) (5.86)

≤
(

1− 1−PJ (A)

N(d)

)−1

(1−PJ (A)) .

(5.87)

For the case when d = 2 we are nearly done. If τ > τ�−�C

then for any pair of vertices u, v there must exist some large
�−� cluster which contains a 3-net of u and a 3-net of v. As
τ�−�C > 1

3 then with positive probability both u and v are con-
nected to this cluster, and this probability is bounded strictly
above zero for all pairs u, v. It is easy to complete the proof
that u�−� v whenever u←−→ ∞ and v←−→ ∞. For d ≥ 3 how-
ever the estimate that PJ [ρ�−� ρ′] > 0.9 is not high enough and
as N(d) grows so quickly in d we would not expect to satisfy
PJ [ρ�−� ρ′] > 1− 1

N(d) for large d.

Instead we will construct a block event K ∈ G in such a way
that if e = 〈u, v〉 and e′ = 〈v, u′〉 ∈ L

(
P1

2C

)
and both Te(K) and



5.3 PERCOLATION WITH MANDELBROT BOUNDARY CONDITIONS 168

Te′(K) occur then there is some (identifiable) large cluster that
intersects all three pixels Pu, Pu′ and Pv. We will then ensure that
K may be chosen with high enough probability to apply Lemma
5.12.

Consider the cube C. For a face f of C let Pn
f be the subset of Pn

C

consisting of cubes that intersect f .

Now let Kn be the event that there exists some subgraph Ce of
Pn

2C such that for every edge e ∈ C we have Φe[ρ�−� ρ′] and that
Pn

f contains some 3-canopy of ρ for every 2-face f of C and Pn
f

contains some 3-canopy of ρ′ for every 2-face f of −C.

LEMMA 5.13

If PJ [ρ�−� ρ′] > 0.9 then PJ (Kn)→ 1 as n→ ∞.

PROOF

First let µ be any one-dependent percolation measure on Z2 such
that for any edge e we have µ(Je) > 0.9. We say a subgraph of
the grid Ja, a + 2nK× Jb, b + 2nK is a 3-net if it is isomorphic to
some 3-net of the pixel set Pn

C .

Notice that a 3-net must contain both a left–right crossing and
an up–down crossing of the grid Ja, a + 2nK× Jb, b + 2nK.

The original argument of Balister et al. [3], which we have adapted
for Lemma 5.12 states that for any ε > 0 there is some N large
enough so that if n > N then with probability at least 1− ε there
exists some large cluster C such that

C ∩
q

0, 2n+1 − 1
y
× J0, 2n − 1K is connected,

C contains some 3-net of J0, 2n − 1K2,

C contains some 3-net of
q

2n, 2n+1 − 1
y
× J0, 2n − 1K.
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As both 3 nets contain left–right crossings of their respective
grids this cluster must contain a left–right crossing of the grid
q

0, 2n+1 − 1
y
× J0, 2n − 1K.

Similarly there is some cluster C′ such that C′∩ J1, 2nK× J0, 2n − 1K
contains a 3-net and this cluster contains some up–down cross-
ing of

q
0, 2n+1 − 1

y
× J0, 2n − 1K.

Therefore the cluster C ∩
q

0, 2n+1 − 1
y
× J0, 2n − 1K and the clus-

ter C′ ∩
q

0, 2n+1 − 1
y
× J0, 2n − 1K intersect hence with probabil-

ity at least 1− 2ε there is some cluster C̃ such that

C̃ ∩
q

1, 2n+1 − 1
y
× J0, 2n − 1K is connected,

C̃ contains some 3-net of J1, 2nK× J0, 2n − 1K,

C̃ contains some 3-net of
q

2n, 2n+1 − 1
y
× J0, 2n − 1K.

Note: it is not the case that any 3-net of J1, 2nK× J0, 2n − 1K inter-
sects any 3-net of

q
2n, 2n+1 − 1

y
× J0, 2n − 1K.

Now let f and f ′ be two 2-faces of C such that f ∩ f ′ is a line.

Then the pixels Pn
f ∩ Pn

f ′ are exactly those pixels that intersect
the line f ∩ f ′. It is easy to see that the set Pn

f ∪ Pn
f ′ is a grid

isomorphic to
q

1, 2n+1 − 1
y
× J0, 2n − 1K. So if n > N then with

probability at least 1− 2ε there exists some cluster D f , f ′ such that
D f , f ′ ∩

(
Pn

f ∪ Pn
f ′

)
is connected and both D f , f ′ ∩Pn

f and D f , f ′ ∩Pn
f ′

contain 3-nets of ρ.

As there are only d · 2d−1 edges of C then with probability at least
1− dε · 2d there is some cluster D such that D ∩ Pn

f contains a
3-net of ρ for every 2-face f of C. Similarly with probability at
least 1− dε2d there is some cluster D′ such that D′ ∩Pn

f contains
a 3-net of ρ′ for every 2-face f of −C.

Now let ` be some 1-face of the cube {0}× [0, 1]d−1, then [−1, 1]×
` is a two-face of the cuboid 2C and with probability 1− ε there
is a third cluster D′′ such that D′′ ∩ Pn

[0,1]×` contains a 3-net of ρ

and D′′ ∩ Pn
[−1,0]×` contains a 3-net of ρ′.

If all three clusters exist they must intersect and so PJ (Kn) ≥
1− ε

(
1 + d · 2d+1) and as ε is arbitrary we have PJ (Kn)→ 1.
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Now we are ready to finish the proof of Theorem 5.8.

LEMMA 5.14

τ�−�U ≤ 2
1−d

2 .

PROOF

Assume τ > 2
1−d

2 .

For d ≥ 3 we have described an event Kn with PJ (Kn) → 1 as
n → ∞. In particular we may choose K = KM1 where M1 is so
large that PJ (K) > 1− 1

N(d) .

Now for every ω ∈ K there exists some cluster C(ω) which
contains depth M1 3-nets on every 2-face of the cube [0, 1]d and
we may set

δ = inf
ω∈K

PJ [ρ←−→ C(ω)] > 0. (5.88)

In the case d = 2 we may set K = [ρ�−� ρ′] with M1 = 0 and
δ = 1.

Next set Fτ(λ) = (τλ + 1− τ)2d−1 and let p ∈ (0, 1) be the
largest root of Fτ(p) = p. Then we may choose M′2 such that
FM′2

τ (1− δ) >
p+1

2 .

In particular we have chosen M′2 such that for any M2 ≥ M′2 and
ω ∈ WM2(K) there exists some large set C2(ω) ⊂ PM2+M3

C with
u�−−ω� v for every u, v ∈ C2 and PJ

(⋃
v∈C2(ω) [ρ←−→ v]

)
> 1−p

2 .

Now choose arbitrary vertices u, v ∈ V(T ). We need to show
that PJ [u�−� v] ≥ PJ [u⇐=⇒ v].

It is a well known and obvious result of Bernoulli percolation
theory that for any sequence of finite trees Tn ↑ T if we set
Xn,v(ω) to be the number of leaf vertices v′ of Tn with v←−−ω→ v′

then the sequence Xn,v(ω)→ ∞ as n→ ∞ and only if v←−−ω→∞.

So choose ε > 0. We may choose some M3 so large that with
probability 1− ε one of the following occurs
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u←−→ v, u←−/→∞ or v←−/→∞

There exist at least log ε
log 1+p−log 2 vertices u′ in Pn

C with u←−→
u′ and at least log ε

log 1+p−log 2 vertices v′ in Pn
C with v←−→ v′.

To simplify the argument later we colour a vertex v′ ∈ Pn
C green

if u←−→ v′ and blue if v←−→ v′. If it is the case that there are fewer
than log ε

log 1+p−log 2 green (respectively blue) vertices colour some
arbitrary extra vertices green’ (respectively blue’) so that there
are always at least log ε

log 1+p−log 2 green or green’ edges.

Let

E(M) =
⋂

e∈L
(
PM3
C

) Te(ΘM(K)) (5.89)

and choose E = E(M2) with M2 > M′2 such that PT (E) > 1− ε.

So for ω ∈ E there is some large set of vertices C̃(ω) ⊂ PM1+M2+M3
C

such that u�−−ω� v for every u, v ∈ C̃ and for every v ∈ PM3
C we

have PT

[
v←−→

(
C̃ ∩ PM1+M2

Pv

)]
> 1−p

2 .

Hence we may colour vertices of PM3
C red independently with

probability 1−p
2 in such a way that if ω ∈ E we have v←−−ω→ C̃(ω)

for every red vertex v. Notice that the event that a vertex is red
is independent of the event that it is blue or green.

So if we have [u⇐=⇒ v] \ [u�−� v] one of the following must occur.

The event E does not occur.

There are fewer than log ε
log 1+p−log 2 green vertices or fewer

than log ε
log 1+p−log 2 blue vertices Pn

C .

No green or green’ vertex is red.

No blue or blue’ vertex is red.

Each of these event occurs with probability at most ε and so we
have PT [u⇐=⇒ v]−PT [u�−� v] < 4ε.



6 D I S C U S S I O N A N D C O N C L U S I O N S

We conclude by returning to the problem in Chapter 1. We show that
when the random cluster model with Mandelbrot boundary conditions
is unique then the small λ limit on the QuadTree agrees with the ran-
dom cluster model on the tree.

We consider some techniques that may shed light on the small λ limit
in the nonuniqueness phase and set out a research agenda to address
some questions we have encountered but not answered in previous
chapters.
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6.1 BACK TO THE QUADTREE

The motivation for this work was to investigate the random clus-
ter model on a tree with boundary conditions defined by the
QuadTree. We have carried out our investigation in as general
terms as possible, in particular the construction in Chapter 4 is
general enough to cover a variety of objects that may be called
random cluster models.

The Mandelbrot boundary conditions of Chapter 5 were moti-
vated by the limiting random cluster model on the QuadTree.
We have a picture of the set R�−�

τ,q for different values of τ and
q ≥ 1, but what may we say about the weak limit Q

q
Q(τ,λ) as

λ→ 0?

Recall the measure Q
q
Q(τ,λ) on the QuadTree and the unique wired

random cluster model Q?
τ,q on the tree edges of Q.

For those values of τ, q for which R�−�
τ,q is a singleton it can be

shown that that the small λ limit of the QuadTree must agree
with the random cluster model on the tree.

THEOREM 6.1

If τ < 2
1−d

2 then the random cluster models Q
q
Q(τ,λ) converge

weakly to Bernoulli percolation with bond probability π(τ)

as λ→ 0.

If π(τ) ≥ 2
1−d

2 then the random cluster models Q
q
Q(τ,λ) con-

verge weakly to the unique wired random cluster model
on the tree as λ→ 0.

PROOF
For a configuration ω ∈ ΩQ say u←−−ω→ v if there is an open
QuadTree path and u�−−ω� v if there is a “Mandelbrot” path on
the tree T(Q).

If τ < 2
1−d

2 then the random cluster model is stochastically dom-
inated by independent percolation with probabilities τ and λ.
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Therefore it is enough to show that PQ(τ,λ)(Le) → 0 as λ → 0.
We have already seen that Pτ(L�−�e ) = 0, but this is not quite
enough.

To see what may go wrong consider the critical case τ = 2
1−d

2 .
For any λ > and some edge e = 〈u, v〉 ∈ L the probability
Pτ[u←−→ v] ≥ λ > 0. From Lemma 5.10 the probability Pτ[u←−→ v]
must satisfy the inequality (5.67) of Lemma 5.11.

In particular if Pτ[u←−→ v] is non zero it must be at least 0.9 and
we may continue the proof that there is a unique infinite cluster
as for the case where τ > 2

1−d
2 .

To control the probability PQ(τ,λ)(Le) we must use a further re-
sult from Kendall and Wilson [46]. For vertices u, v ∈ V(Q) and
an edge e ∈ L let Ae

u,v be the event that e is on some open, self
avoiding path from u to v.

Notice that for any edge f = 〈u, v〉 ∈ T(Q) we must have

PQ(τ,λ)(Le) ≤ ∑
f∈L(Q)

PQ(τ,λ)

(
A f

u,v

)
. (6.1)

Theorem 2.4 of [46] shows that if τ < 2
1−d

2 and λ is sufficiently
small then the right hand side of (6.1) is finite.

This was used in [46] to show that there is no unique single
cluster for τ < 2

1−d
2 and small λ. For our purposes we must go

a step further.

Given ε > 0 we may simulate PQ(τ,ε·λ) by choosing ω according
to PQ(τ,λ) and switching off each lattice edge e ∈ L(Q) with
probability 1− ε. Hence, trivially we have

PQ(τ,ε·λ)
(

Ae
τ,ελ

)
≤ ε ·PQ(τ,λ)

(
Ae

τ,ελ

)
(6.2)

for every e ∈ L(Q) and the sum in (6.1) decreases to zero as
λ→ 0.

Now suppose q > 1 and π(τ) > 2
1−d

2 . If λ > 0 then we must
have Q

q
Q(τ,λ)(u←−→ v |u�−� v ) = 1. In particular we must have
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Q
q
Q(τ,λ)(Je |Te )(ω) ≥ Q?

τ,q(Je |Te )(ω) for almost every ω. There-
fore we must have Q

q
Q(τ,λ) � Q?

τ,q for every λ > 0.

Conversely for a finite subnetwork G ⊂ Q the cylinder measure
Q

ξ1
G(τ,λ) � Q

q
Q(τ,λ). Therefore we must have

wlimλ→0 Q
q
Q(τ,λ) ≺ inf

λ>0
Q

ξ1
G(τ,λ)

W→Q?
τ,q as G ↑ Q.

So if π(τ) > 2
1−d

2 the random cluster models Q
q
Q(τ,λ) converge

weakly to the unique wired random cluster model on the tree.

This result represents an advance on the work of Kendall and
Wilson. In addition to improving the bound on the onset of the
single cluster phase for Bernoulli percolation The results on the
tree that we have considered allow us to describe in detail the
behaviour of the random cluster model when λ is close to 0.

We may summarize Theorem 6.1 by identifying four behavioural
phases of the weak limit; pictured in Figure 14 on the next page.

I There exist no infinite clusters and Q̃τ,q = Pπ(τ).

II There exist many infinite clusters and Q̃τ,q = Pπ(τ).

III The behaviour of Q̃τ,q is unknown.

IV There exists a unique infinite cluster and Q̃τ,q = Q?
τ,q.

For the sake of completeness we make a conjecture concerning
the behaviour in phase III

CONJECTURE 6.2

For q > 1 and τ < 2
1−d

2 we have Q
q
Q(τ,λ)

W→Pπ(τ) as λ→ 0.

At present we have no evidence for this conjecture and are pre-
pared to be proved wrong. Methods discussed in 6.2.2 below
may shed some light on this question.
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FIGURE 14

0 1 q

τ

2−d

2
1−d

2 I

IV

II

π-1
(
2−d)

III

π-1
(

2
1−d

2

)

Phase diagram for the small λ limit of the random cluster model on
the QuadTree.

6.2 RESEARCH AGENDA

Finally we discuss topics that have not been covered in this thesis
and which would constitute interesting and significant avenues
for further research.

6.2.1 Further problems on the QuadTree

Our initial focus in preparing this thesis was on the random clus-
ter model on the QuadTree. By considering the random cluster
model on the tree we have made progress towards describing the
behaviour of the random cluster model on the QuadTree, par-
ticularly when λ is small. However there remain unanswered
questions about the behaviour of the random cluster model on
the QuadTree when λ is not small.

We have conjectured in Chapter 1 that when τ is small the ran-
dom cluster model behaves in a similar way to percolation. That
is if λ is greater than the critical bond strength for the random
cluster model on Zd then the random cluster model exhibits a
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single cluster phase from every value of τ. and conversely if λ

is less than the critical value then we may always find τ small
enough that the random cluster model exhibits only finite clus-
ters.

There are two obstacles to adapting the percolation results of
Kendall and Wilson [46] to the random cluster model in this
situation. Firstly, even when τ is very small, the layers Pn

[0,1]d
grow

large enough to lose independence. Secondly not as much is
known about the random cluster model on Zd as is known about
Bernoulli percolation.

We believe that for subcritical λ we may recover the finite cluster
property for sufficiently small τ under the assumption that the
distribution of the size of cluster at the origin decays exponen-
tially, this is conjectured to hold for the random cluster model
on Zd for all λ < pc(q).

For supercritical λ we may have some success adapting the 1-
dependent recursion argument of [3]. Pisztora [54] adapted the
block renormalization arguments of Grimmett [33] to the ran-
dom cluster model on Zd under the assumption that λ was
greater than the slab critical point. and it may be possible to
adapt these methods to fit the argument of Lemma 5.12 to small
τ situation.

An original motivation for this work was the following ques-
tion concerning the Ising model on the QuadTree. Specifically
suppose that for some large N we condition on the colours of
the pixels P ∈ PN

[0,1]d
to be black when P ∈ PN

[0,0.5]×[0,1]d−1 and white
for P ∈ PN

[0.5,1]×[0,1]d−1 . what can we say about the distribution of
the colours of some fixed layer Pn

[0,1]d
under this conditioning as

N → ∞?

This question has been considered on Z3 for the Ising model by
Dobrushin [19] and in more generality by Gielis and Grimmett
[30]. Both methods rely heavily on the structure of Zd and we
have been unable to adapt them to the QuadTree. The recursion
of Lemma 5.12 may be used to describe the structure of the in-
finite cluster in the uniqueness phase and so may provide an
alternative approach to this problem.
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6.2.2 Non-uniqueness of the Mandelbrot random cluster model
and the Worm’s Eye QuadTree

The arguments in Section 6.1 both use stochastic domination
to calculate the small λ weak limit on the QuadTree. When
the random cluster model may not be dominated effectively by
Bernoulli percolation we have no argument to suggest that the
small λ limit satisfies DLR conditions for the Mandelbrot bound-
ary.

One possible approach is to consider the local weak convergence
technique of Aldous and Steele [1]. Consider a large truncated
QuadTreeQJ0,NK and choose a pixel P uniformly at random from
the pixel set P J0,NK

[0,1]d
. If N is large we may factorize the distribu-

tion of v into two parts. Choose x ∈ [0, 1]d uniformly and chose
K independently with P[K = k] = 2−kd

(
1− 2d−1

2d+1−1

)
.

It is easy to check that if we set P to be the almost surely unique
pixel with x ∈ P ∈ PN+1−K

[0,1]d
then P is chosen uniformly from

P J0,NK
[0,1]d

. As N → ∞ the random variable K converges in probabil-
ity to a geometric random variable with mean 1

1−2d .

What does the QuadTree look like from the point of view of
the random pixel P? In Remark 1.6 we constructed a random
pixellation P−n

Rd to extend the QuadTree to negative resolutions
while preserving some form of translation invariance. It may be
shown that the QuadTree viewed from a random pixel as above
converges in the local weak sense to the random graph defined by
adding tree and lattice edges to the random pixel set P J−∞,KK

Rd .

As K is almost surely finite and independent of the pixellation
we may factor it out and consider instead the random graph
defined by P J−∞,0K

Rd which we name the Worm’s Eye QuadTree. Let
W be the distribution of the random graph F J−∞,0K

Rd ; we use W to
represent an instance of the worm’s eye QuadTree.

We may define a random cluster model on any instance W of
the worms eye QuadTree. Furthermore W-almost every W is
amenable. Does this mean that the random cluster model is
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unique on almost every instance W? Grimmett [32] proved that
for any q > 0 the (p, q) random cluster model on Zd is unique
for all but countably many q. The key techniques in that paper
relied on the amenability and transitivity of Zd.

The worm’s eye QuadTree recovers these properties and a first
reading of [32] does not reveal any reason why the techniques in
that paper may not be applied, mutatis mutandis, to the worm’s
eye QuadTree.

If it is the case that the random cluster model is unique on W

almost every W what may we conclude about the random cluster
model on the QuadTree?

Here is a bold conjecture.

CONJECTURE 6.3

Q
q
Q(τ,λ) exhibits a unique infinite cluster if and only if the (τ, λ, q)

random cluster model exhibits an infinite cluster on W almost
every W.

It is almost the definition of a nonamenable graph that if we
choose a vertex uniformly from a large ball the vertex chosen
will lie close to the boundary with high probability. If Conjec-
ture 6.3 can be resolved on the QuadTree, might a similar phe-
nomenon occur on other nonamenable graphs?

For the case of the small λ limit we note that if the random
cluster model in unique on each W then we may consider the
wired random cluster model on the worm’s eye QuadTree rather
than the free. The small λ limit for the wired model may be
defined with respect to two decreasing sequences; rather than
one increasing and one decreasing for the free model. Therefore
we may reverse the order of the limits and the small λ random
cluster model on the worms eye QuadTree converges weakly to
Bernoulli-π(τ) percolation on T(W) for W-almost every W. This
argument alone is not enough to conclude that Q

q
Q(τ,λ) converges

to Bernoulli percolation as λ → 0 but some progress could be
made by considering problems in this area.
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6.2.3 Anti-ferromagnetic models and robust entrance laws

We have only partially considered the case where q < 1. For the
wired model on the tree Häggström [38] constructed measures
on the homogeneous regular tree satisfying wired DLR condi-
tions for all q > 0. We have seen that Häggström’s measures
correspond to measures defined by constant entrance laws and
in Theorem 3.13 we have shown that this is unique.

For the general tree we have not been able to show that the max-
imal entrance law is always robust. For a homogeneous tree we
were able to show in Lemma 3.14 that any constant entrance law
is robust.

Where a constant entrance law is a number that satisfies a par-
ticular equation 3.13 a non-constant entrance law is a more com-
plicated object which bears some similarities to a flow on the
tree. There are a variety of powerful techniques on trees which
may be used to investigate such objects. See for example [53, 64]
and references therein. It may be possible to adapt the proof
of Lemma 3.14 to the general case and we would conjecture the
following.

CONJECTURE 6.4

For any weighted tree and any q > 0 the maximal entrance law is
robust and there exists at least one wired random cluster model.

For general random connections we cannot guarantee the exis-
tence of a random cluster model when q < 1. Example 4.13

provides a counterexample. In fact it is easy to come up with
counterexamples using the method discussed in Remark 4.9, for
if q < 1 we may choose some increasing tail measurable event
A with Pπ(τ)(A) = 1 and Q?

τ,q(A) = 0 then set [u −̂_ v] =

[u←−→ v] ∪ (A ∩ [u⇐=⇒ v]).

Then for any extremal random cluster model µ we must have
µ(A) ∈ {0, 1}. If µ(A) = 1 then µ satisfies wired boundary
conditions and µ(A) = Q?

τ,q(A) = 0 and if µ(A) = 0 then µ
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satisfies free boundary conditions and µ(A) = Pπ(τ)(A) = 1.
Hence there can be no extremal random cluster measures and
hence no random cluster measures at all.

Example 4.13 uses this idea and effectively sets A above to be the
event that there exist infinitely many open 2-trees. A little more
work was involved to set up −̂_ to be defined by a boundary
condition.

Can we find a Grimmett-Janson equivalence relation for which
some pair τ, q with q < 1 admits no random cluster model?
A candidate may be the Mandelbrot boundary conditions dis-
cussed in Chapter 5.

Suppose we fix π(τ) > 2
d−1

2 , then the free random cluster model
(that is Bernoulli percolation with probability π(τ)) has the sin-
gle cluster property. The partial domination of percolation from
Theorem 4.23 may be reversed for q < 1 and we may choose
q small enough so that the wired random cluster model has
Q?

τ,q[u�−� v] = Q?
τ,q[u←−→ v].

In this case then neither the free nor the wired random cluster
models may satisfy DLR conditions for the Mandelbrot connec-
tions and it is not obvious that any random cluster model exists.

If it is the case that no such measure exists what can we say
about small λ limits for the QuadTree? (When q < 1 it may
not be the case that Q

q
Q(τ,λ) converges weakly as λ → 0, but by

compactness we may choose some sequence λn → 0 for which a
weak limit exists.) It is an intriguing possibility that there may
be some λ so small that no free random cluster model exists on
the QuadTree.

6.2.4 Density of Open Boundary Conditions

Theorems 4.22 and 4.23 allow us to describe the behaviour of a
random connection if it is “strongly connected.”
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Loosely a random connection is strongly connected if it is indis-
tinguishable from⇐=⇒ for high probability Bernoulli percolation.
If ∼ is some open boundary condition it is possible that some
random connection −̂_ is weaker than −̂−∼_ but for sufficiently
high bond percolation −̂_ and −̂−∼_ are indistinguishable. Say
if −̂_ is defined with respect to a canopy consisting of finitely
many connected components. Theorems 4.22 and 4.23 may eas-
ily be adapted to this case.

Conversely for the Mandelbrot boundary connections when d =

1 the canopy of the random connection�−� is a line, hence�−� is
connected, but we have seen that in this case�−� is not strongly
connected. This may easily be seen by noting that as the canopy
is a line we may disconnect the canopy by removing a countable
set of rays. As the probability of any single ray being open is
zero we may conclude directly that when d = 1 the random
connection �−� is indistinguishable from −̂_ for any Bernoulli
percolation measure.

In both cases we may identify an “upper bound” for the random
connection by considering the behaviour under high probability
Bernoulli percolation. Is it possible to generalise this the results
of Theorems 4.22 and 4.23 and specify the behaviour of a ran-
dom connection for high bond strength in terms of some simpler
bounding random connection?

We have seen that the question of when a sequence of random
cluster models converges weakly to another random cluster model
is far from obvious. Let us consider this question in a different
form.

Suppose n∼ is a sequence of equivalence relations on R. There
are at least two ways in which n∼ may be said to converge to a
limiting equivalence relation ∞∼. Firstly the equivalence relations
may converge pointwise, that is Π1

∞∼ Π2 if and only if Π1
n∼ Π2

eventually. Secondly the canopies may converge, in the sense
that if O is an open set of rays in the quotient topology of ∞∼ then
O is eventually open in the quotient topology of n∼.
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Can we choose a topology on the set of equivalence relations
whereby if µn is a −̂−

n∼_ random cluster model then any weak
limit is a −̂−

∞∼_ random cluster model?

Of particular interest would be the closure of the set of open
equivalence relations under such a topology. An interesting as-
pect of this would be the case where T is a regular k-tree and
π(τ) > 1

k . In this case any open equivalence relation specifies a
random cluster model uniquely, but a sequence of open equiv-
alence relations may converge to an equivalence relation that is
not open and not have a unique random cluster model.

In this case may we specify the set of random cluster models as
limits of different convergent sequences of equivalence relations
that converge to the same limit, but specify sequences of random
cluster models with different weak limits?
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