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ABSTRACT 

 

Knowledge elicitation is a well-known bottleneck in the development of Knowledge-
Based Systems (KBS).  This is mainly due to the tacit property of knowledge, which 
renders it unfriendly for explication and therefore, analysis.  Previous research shows 
that Visual Interactive Simulation (VIS) can be used to elicit episodic knowledge in the 
form of example cases of decisions from the decision makers for machine learning 
purposes, with a view to building a KBS subsequently.  Notwithstanding, there are still 
issues that need to be explored; these include how to make a better use of existing 
commercial off-the-shelf VIS packages in order to improve the knowledge elicitation 
process’ effectiveness and efficiency. 
 
Based in a Ford Motor Company (Ford) engine assembly plant in Dagenham (East 
London), an experiment was planned and performed to investigate the effects of using 
various VIS models with different levels of visual fidelity and settings on the elicitation 
process.  The empirical work that was carried out can be grouped broadly into eight 
activities, which began with gaining an understanding of the case study.  Next, it was 
followed by four concurrent activities of designing the experiment, adapting a current 
VIS model provided by Ford to support a gaming mode and then assessing it, and 
devising the measures for evaluating the elicitation process.   Following these, eight 
Ford personnel, who are proficient decision makers in the simulated operations system, 
were organised to play with the game models in 48 knowledge elicitation sessions over 
19 weeks.  In so doing, example cases were collected during the personnel’s interactions 
with the game models.  Lastly, the example cases were processed and analysed, and the 
findings were discussed. 
 
Eventually, it seems that the decisions elicited through a 2-Dimensional (2D) VIS 
model are probably more realistic than those elicited through other equivalent models 
with a higher level of visual fidelity.  Moreover, the former also emerges to be a more 
efficient knowledge elicitation tool.  In addition, it appears that the decisions elicited 
through a VIS model that is adjusted to simulate more uncommon and extreme scenes 
are made for a wider range of situations.  Consequently, it can be concluded that using a 
2D VIS model that has been adjusted to simulate more uncommon and extreme 
situations is the optimal VIS-based means for eliciting episodic knowledge. 
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1 Introduction 

 

1.1 BACKGROUND 

 

Developing useful models of complex systems is inherently difficult.  It is made worse 

when the systems interplay with human intent and action.  Whilst many authors such as 

Willemain (1994), Powell (1995) and Pidd (2003) argue that it is desirable to model 

simply, it is also widely conceded that such parsimony should be exercised with an eye 

on the models’ purposes.  In short, model fidelity should match model needs.  In this 

respect, if a model is intended for examining the effects of or even to be used as a 

means for improving human interaction with an operations system, then it should mimic 

the human decision makers’ behaviour in the system as closely as possible. 

 

Human decision-making and intervention is a significant element in most manufacturing 

systems.  Baines and Kay (2002) comment that a manufacturing system may involve 

any number of manual processes and many aspects of its operation such as scheduling 

of maintenance works and allocation of resources may require human decision-making.   

They also add that human decisions and interventions may have a great impact on the 

systems’ performances.  As such, manufacturing systems provide a legitimate context 

for investigating how to model human-operations system interaction appropriately. 

 

Towards this end, Robinson et al. (2005) undertook a project (Grant reference: 

GR/M72876) sponsored by the Engineering and Physical Sciences Research Council 

(EPSRC), which aims to identify and improve human decision-making in an operations 
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system.  Facilitated by a real-world case study set in a Ford Motor Company (Ford) 

engine assembly plant in Bridgend (Wales), the project ultimately led to the 

development and application of the Knowledge-Based Improvement (KBI) 

methodology.  Broadly, the KBI methodology is based on Visual Interactive Simulation 

(VIS) and Artificial Intelligence (AI).  It starts by eliciting episodic knowledge in the 

form of example cases of decisions from the human decision makers via a VIS model.  

Next, AI methods are used on these example cases to learn and represent the decision 

makers’ strategies for decision-making.  Then, the AI models are linked with the VIS 

model to predict the operations system’s performance under different strategies.  Lastly, 

the methodology ends with attempts to improve existing strategies. 

 

In their conclusion, Robinson et al. (2005) discover from the knowledge elicitation 

phase that human decision makers may make less realistic decisions in a simulated 

environment.  It is because they are likely to assume greater risks when there are no real 

consequences from their decisions.  In addition, the authors also recognise that the 

decision makers may find the experience of providing a full set of data that comprises of 

a very large number of useful example cases to be a very laborious and time-consuming 

one.  Consequently, these issues provide the impetus for another EPSRC-sponsored 

project (Grant reference: GR/R64841) that seeks to answer the following questions: 

i. Is VIS a valid tool for eliciting knowledge?  If there are successful demonstrations 

of using VIS to collect example cases for machine learning purposes such as rule 

induction, case-based reasoning, or neural network computing, then; 

ii. How can VIS be adapted to make for a better knowledge elicitation tool? 
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Similarly, this project was carried out with the help of a real-world case study set in a 

Ford engine assembly plant.  It enlisted real human decision makers to solve a real-

world case problem using a VIS model that mimicked the real-world operations system 

as closely as possible.  Unlike Bell and O’Keefe’s (1995) reservation on conducting an 

experiment in a laboratory setting that is detached from reality, all the decision makers 

employed in this project have a good understanding of the real-world system and the 

decision-making that takes place regularly in it. 

 

Eventually, the investigation that this project embarked on culminated in this thesis. 

 

1.2 AN OUTLINE OF THE THESIS 

 

This thesis begins by exploring the world of the Knowledge-Based Systems (KBS), a 

well-established domain where knowledge elicitation plays an integral and crucial role 

(Chapter 2).  It includes looking into the terminology that is commonly used in the KBS 

literature, as well as the KBS development life-cycle and its associated problems.  

Meanwhile, the subject of knowledge elicitation and the various techniques that can be 

used to support it are also reviewed.  Following this, the working relationship between 

KBS and VIS is explored (Chapter 3).  In so doing, the evidence of using VIS to collect 

data for building KBS is collated; this establishes VIS as a valid knowledge elicitation 

tool, and hence contributes to answering the first research question. 

 

Next, the scene is set for carrying out an investigation to find out if and how VIS can be 

improved as a knowledge elicitation tool (Chapter 4); which essentially aims to answer 

the second research question.  These include explicating the constructs for assessing 
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‘elicitation improvement’, and then using them as a basis for forming the research 

propositions and specifying the research hypotheses.  Furthermore, a methodology for 

executing the investigation and the following hypothesis tests is described briefly; it 

also serves to provide a structure for organising the subsequent chapters. 

 

The methodology is comprised of a series of processes.  Since some of them are 

independent of the others and can be activated in parallel with them, they are not 

entirely sequential.  The details and outcomes of all work carried out in each of these 

processes make up the rest of this thesis.  They are:  

i. Understanding the case study (Chapter 5); 

ii. Designing the experiment (Chapter 6); 

iii. Building and assessing the VIS model (Chapter 7); 

iv. Devising the measures for evaluating the four constructs (Chapter 8); and last but 

not least 

v. Collecting and analysing the data (Chapter 9 and 10). 

 

Finally, the thesis concludes with a summary and discussion of the results from the data 

analysis (Chapter 11).  In addition, the limitations that were encountered throughout the 

investigation are reflected upon.  Also, the opportunities that were identified for 

probable future research are discussed. 



 

2 Knowledge-Based Systems and 

Knowledge Elicitation 

 

This chapter provides a context, within which the research questions in Section 1.1 can 

be addressed.  In essence, the what, where, why and how of knowledge elicitation are 

explored and explicated.  It first begins with a background of knowledge-based systems, 

a well-established domain where knowledge elicitation plays an integral and crucial 

role.  Next, it endeavours to propose working definitions for the basic terms used in the 

knowledge-based systems literature; these include knowledge engineering, knowledge 

acquisition and knowledge elicitation.  Then, these terms are put into perspective 

through a basic knowledge-based systems development life-cycle model.  Later, the 

problems at each process of the life-cycle model are discussed briefly, with an emphasis 

on the knowledge elicitation process – the focus of this thesis.  Finally, a concise 

overview explaining how various techniques have been used to elicit knowledge is 

provided.  As well, the area wherein this thesis makes a positive contribution is also 

unveiled in the overview.  

 

2.1 KNOWLEDGE-BASED SYSTEMS 

 

Knowledge-Based Systems (KBS) or expert systems originated from a field of study 

known as Artificial Intelligence (AI).  The phase of the computer revolution that 

spawned KBS actually began in the early seventies, under the guise of computer 
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hardware advances destined to send the price of computers plummeting below even the 

most optimistic scientist’s prediction (Waterman, 1986).  Whilst computer hardware 

specialists were developing microchip technology, software specialists were laying the 

groundwork for a conceptual breakthrough in a fledging field of Computer Science 

known as AI. 

 

The goal of AI scientists has always been to develop computer programs that can solve 

problems in a way that is considered intelligent if done by a human.  The first period of 

AI research is dominated by a naïve belief that a few general laws of reasoning coupled 

with powerful computers would produce expert performance.  As experience accrued, 

the limited power of programs with general-purpose problem-solving strategies led to 

the conclusion that they were too weak to solve most complex problems (Newell, 1969).  

It seemed that the more classes of problems a single program could handle, the more 

poorly it did so on any individual problem (Waterman, 1986). 

 

In response, the AI scientists then decided to reduce the scope of application by 

developing programs with general-purpose problem-solving strategies for narrowly 

defined problems.  This new direction produced some successes but still no 

breakthroughs.  Later, it dawned upon the AI scientists that the problem-solving power 

of a program came from the knowledge it possessed.  That is, to make a program 

intelligent, it should be provided with lots of high quality knowledge that are specific to 

the problem area (Waterman, 1986).  This realisation (a conceptual breakthrough) led to 

the development of special-purpose programs that were expert in some narrow problem 

areas.  As these programs were meant to solve problems and explain solutions that 

would otherwise require an expert, they became known as expert systems.  Also, as 
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these programs possessed knowledge about some particular domains, they were also 

known as knowledge-based systems (Darlington, 2000). 

 

2.2 KNOWLEDGE-BASED SYSTEMS TERMINOLOGY 

 

In the KBS literature, knowledge engineering, knowledge acquisition and knowledge 

elicitation are three terms that are used frequently.  Cordingley (1989), and Johannsen 

and Alty (1991) comment that they are usually not well defined and often appear to 

overlap, whilst Firlej and Hellens (1991) even claim that these three terms are used 

interchangeably throughout the KBS literature. 

 

In most literature, knowledge engineering is a term used to describe the whole process 

of building a KBS: from the original investigation of the problem through to 

implementation (Edwards, 1991; Moody et al., 1998; Turban et al., 2005).  In other 

words, it is to KBS what software/systems engineering is to conventional systems.  A 

principle of knowledge engineering holds that whilst expert performance rarely 

conforms to some rigorous algorithmic process, it lends itself to computerisation.  

Hence, it follows that the essential tasks in knowledge engineering are expected to 

include those of ‘extracting, articulating and computerising’ the expert’s knowledge 

(Hayes-Roth et al., 1983).   

 

Unlike knowledge engineering, the definition of knowledge acquisition is more 

contentious.  Buchanan’s et al. (1983) original definition of knowledge acquisition as 

‘the transfer and transformation of problem-solving expertise from some knowledge 

source to a problem’ has lent itself to several interpretations.  Firstly, Cordingley 
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(1989), and Johannsen and Alty (1991) interpret it as sharing the same breadth as 

knowledge engineering to cover the whole process.  It includes the identification of the 

problem, its conceptualisation, formalisation, implementation, testing and prototype 

revision.  Secondly, Liang (1992) and Jackson (1999) restrict their interpretation to 

include eliciting knowledge from experts, storing it in some intermediate representation 

and compiling it into some machine executable format.  Thirdly, Edwards (1991) 

provides the narrowest interpretation by deeming knowledge acquisition as just the act 

of acquiring basic knowledge from the human expert. 

 

Likewise, the definition of knowledge elicitation is also disputable.  Firstly, Cordingley 

(1989) and Darlington (2000) define it simply as the process of obtaining knowledge 

about a domain from an expert; this is similar to Edward’s (1991) interpretation of 

knowledge acquisition.  Secondly, Johannsen and Alty (1991), and Moody et al. (1998) 

define it as one-half of a dichotomy of knowledge acquisition techniques that includes 

both manual (human-to-human) and semi-automatic (human-to-machine) means, with 

the other half being the automatic technique of rule induction.  Rule induction is a 

special case of autonomous machine learning techniques that encompasses heuristics for 

generalising data types, candidate elimination algorithms, methods for generating 

decision trees and rule sets, function induction and procedure synthesis.  It is described 

in more detail in Section 2.4.4. 

 

As such, it is evident that there is a grey area when it comes to making a distinction 

between knowledge engineering and knowledge acquisition, and between knowledge 

acquisition and knowledge elicitation.  Thus, taking advantage of the fact that KBS 

terminology is not cast in stone, a working definition for each of knowledge 
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engineering, knowledge acquisition and knowledge elicitation is proposed here for the 

purpose of this thesis.  Here, the general definition of knowledge engineering is 

adopted, where it is taken to mean the entire process of developing a KBS.  For 

knowledge acquisition, Jackson’s (1999) interpretation is adopted, where it is deemed to 

encompass knowledge elicitation, knowledge representation and knowledge execution.  

Finally, Darlington’s (2000) definition for knowledge elicitation is adopted, where it is 

the process of obtaining domain knowledge from an expert.  These definitions are 

illustrated more clearly through a basic KBS development life-cycle model described 

later in Section 2.3.2. 

 

2.3 KNOWLEDGE-BASED SYSTEMS DEVELOPMENT LIFE-

CYCLE 

 

There are a few essential activities that have to take place when a KBS is being 

developed.  These activities provide the basis for phases that collectively form the KBS’ 

development life-cycle.  To help establish the life-cycle of a KBS, Weitzel and 

Kerschberg (1989a and b), and Edwards (1991) suggest adopting a traditional Systems 

Development Life-Cycle (SDLC) model as a base first, on which modifications are then 

made to cater for the significant differences between the KBS and the conventional 

systems.  In this respect, a waterfall model of SDLC is introduced initially in the next 

section.  Then, some modifications are suggested, which later leads to the proposal of a 

basic KBS Development Life-Cycle (KBSDLC) model.  Also, the potential problems 

that may crop up in the KBSDLC are reviewed. 
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2.3.1 SYSTEMS DEVELOPMENT LIFE-CYCLE 

 

In the past, software development consisted of a programmer writing code to solve a 

problem or automate a procedure.  Nowadays, systems are so big and complex that 

teams of architects, analysts, programmers, testers and users are required to work 

together to create millions of lines of code to drive the enterprises (Computerworld, 

2007).  As a result, a number of SDLC models were created to manage such mammoth 

undertakings.  Dennis and Wixom (2003) observe that all SDLC models invariably have 

four fundamental phases: planning, analysis, design and implementation.  Different 

systems development projects may emphasise different parts of the SDLC or approach 

the SDLC phases in different ways, but all projects’ life-cycle will have elements of 

these phases.  Royce’s (1970) waterfall model is the oldest and the best known SDLC 

model, and a simplified version is shown in Figure 2.1.  The model shows a sequence of 

phases where the output of each phase becomes the input for the next.  In general, there 

are six phases in the model: 

i. Feasibility and requirements definition 

This planning phase establishes a high-level view of the intended project and 

determines its goals.  A feasibility study is next undertaken to determine whether 

the project should get the go-ahead.  If the project is to proceed, then a project plan 

with budgeted estimates for the future stages of development is produced; 

 

ii. Analysis 

This phase refines the project goals into defined functions and operations of the 

intended application.  Requirements for the system is gathered via detailed study of 

the organisation’s business needs, and analysis of end-users’ information needs; 
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iii. Design 

This phase describes the desired features and operations in detail, focusing on high-

level design (what programs will be needed, and how will they interact), low-level 

design (how will the individual programs work), interface design (how will the 

interfaces look like) and data design (what data will be needed); 

 

iv. Implementation 

This phase translates the design into code, using whatever computer languages that 

are appropriate.  Provisional versions of documentation, manuals and training 

materials will also be produced in this phase; 

 

v. Testing 

Normally, programs are written as a series of individual modules.  This phase will 

bring all the modules together as a system, to check for errors, bugs and 

interoperability in a special testing environment.  The system needs to be tested to 

ensure that interfaces between modules work (integration testing), the system works 

on the intended platform and with the expected volume of data (volume testing), 

and that the system does what the user requires (acceptance/beta testing); and 

 

vi. Maintenance 

This phase consists of making sure that the system runs in operational use and 

continues to do so for as long as is required.  It includes correcting any undetected 

errors, enhancing the functionality of the system, and even moving the system to a 

different computing platform. 
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Figure 2.1: A simplified waterfall model of SDLC (Royce, 1970) 

 

However, the waterfall model is not perfect and has its fair share of drawbacks.  Mainly, 

the model assumes that the only role for users is in specifying requirements, and that all 

requirements can be specified in advance.  It also assumes that system design is 

straightforward, and implementation is the real problem (Weitzel and Kerschberg, 

1989a and b; Computerworld, 2007).  Unfortunately, requirements do grow and change 

throughout the process and beyond, and a straightforward system design is rare.  
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Moreover, real projects seldom follow the sequential process illustrated in the model, 

which explain the feedback and iterative consultation allowed in Royce’s (1970) 

waterfall model.  In view of these drawbacks, many other SDLC models were 

developed later.  They are usually variants of Royce’s model (Weitzel and Kerschberg, 

1989a and b) and include fountain, spiral, build and fix, rapid prototyping, incremental, 

and synchronise and stabilise (Computerworld, 2007).  Nonetheless, in spite of its 

imperfections, the simpler original SDLC waterfall model will be used as a basic 

framework for adaptation into a provisional conceptual framework for developing KBS. 

 

2.3.2 A BASIC MODEL OF KNOWLEDGE-BASED SYSTEMS DEVELOPMENT LIFE-

CYCLE 

 

Knowledge acquisition is defined earlier (Section 2.2) to encompass knowledge 

elicitation, knowledge representation and knowledge execution.  Edwards (1991) 

identifies these activities as equivalent to the ‘Analysis’, ‘Design’ and ‘Implementation’ 

phases in a SDLC respectively.  The correspondence between the knowledge acquisition 

activities and the relevant SDLC phases can be summarised in Table 2.1. 

 

Knowledge 
acquisition activity Work involved Corresponding 

SDLC phase 
⋅ Knowledge 
elicitation 

⋅ Eliciting the basic knowledge 
from the human expert ⋅ Analysis 

⋅ Knowledge 
representation 

⋅ Organising and structuring the 
knowledge ⋅ Design 

⋅ Knowledge 
execution 

⋅ Codifying the knowledge into a 
machine-executable format ⋅ Implementation 

 

Table 2.1: Knowledge acquisition activities and their corresponding SDLC phases 
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Moreover, Weitzel and Kerschberg (1989a and b), and Edwards (1991) also suggest 

infusing the KBSDLC model with regular prototyping, which is characterised by 

iterative refinement that stresses fast development turnaround.  It is because as an 

expert’s conception of his1 knowledge (such as the intermediate concepts used to 

monitor the ‘state’ of the solution, or even the reasoning process) tends to change with 

the KBS evolvement, such fast development turnaround would allow him to discover 

any shortcomings more quickly.  Further to this, Weitzel and Kerschberg (1989a and b) 

suggest using the term ‘processes’ instead of (sequential) ‘phases’ to describe the 

BSDLC model in order to emphasise its flexibility.   

this way, 

e KBS is actually evolving incrementally (Weitzel and Kerschberg, 1989b). 

 

                                                

K

 

Applying these refinements onto the original SDLC waterfall model, a basic broad-

brush KBSDLC model may be as adapted in Figure 2.2.  The notions of knowledge 

engineering, knowledge acquisition and knowledge elicitation are illustrated clearly in 

the model.  As well, the iterative refinement that is expected in each process is signified 

by the ring of arrows that encircles it.  Processes in the life-cycle are activated initially 

by proceeding from the top of the model.  A process can be reactivated to correct 

problems, before other processes have been activated for the first time.  Also, the 

process in which problems are discovered does not necessarily constrain the process that 

needs to be activated.  Therefore, a process can run concurrently with processes that are 

already activated, or it can be deactivated and reactivated at a later time.  In 

th

 
1 The author recognises that a knowledge engineer or expert may be a female.  However, in light of 
making this thesis a more pleasant and consistent read, only masculine pronouns are used.  Any offence 
caused is deeply regretted. 
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Knowledge elicitation 

Knowledge representation 

 
Knowledge execution 

Testing 

Maintenance 

Feasibility & requirements 
definition 

Knowledge 
acquisition 

Knowledge 
engineering 

 

Figure 2.2: A suggested knowledge-based systems development life-cycle model 

 

Briefly, in the feasibility and requirements definition process, the knowledge engineer 

and expert will work together to identify the problem area and define its scope.  They 

will also determine the resources (human, time and computing facilities) required, as 

well as finalise the objectives of building the KBS.  During the knowledge elicitation 

process, the knowledge engineer and expert will explicate sufficient key descriptions, 

relationships and procedures to describe the problem-solving process.  In addition, 

strategies, subtasks, and constraints relating to the problem-solving activity are also 

specified.  In the knowledge representation process, the knowledge elicited above will 
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be organised and mapped into a formal representation.  Next, the representation will be 

used to formulate rules that are then encoded in the knowledge execution process.  

These coded rules should embody the expert’s knowledge and will define a prototype 

program capable of being executed and tested.  Finally, testing involves evaluating the 

performance of the prototype program and revising it to conform to the standards set in 

the first process (Hayes-Roth et al., 1983).   

 

Though the KBSDLC model presented in Figure 2.2 is not a definitive version, it does 

not vary much from other proposed models.  For instance, Barrett and Edwards (1995) 

mention that the BIS KBS methodology (from BIS Information Systems, a company) 

broadly resembles a waterfall approach to conventional development as it has the stages 

of feasibility, analysis, design, programming, testing and validation, and review.  Like 

the suggested basic model, the BIS KBS methodology also permits the use of 

prototyping within many of the stages.  In another instance, Madni (1988) suggests six 

stages in KBS development: knowledge elicitation, cognitive bias filtering, knowledge 

representation, software development and integration, system evaluation and validation, 

and advanced prototype expert system.  Apart from cognitive bias filtering and 

advanced prototype expert system, the remaining four stages appear to be in line with 

the basic model. 

 

2.3.3 POTENTIAL PROBLEMS IN DEVELOPING A KNOWLEDGE-BASED SYSTEM 

 

A number of problems have been uncovered in each process of the life-cycle.  

McDermott (1983), and Weitzel and Kerschberg (1989b) reflect that ad hoc solutions 

for the problems in early processes seem to create new and even bigger problems in 
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later processes.  In other words, problems propagate.  Notwithstanding, as the locus of 

this thesis lies within the knowledge elicitation process, this section (and the rest of the 

thesis) will concentrate mainly on its issues. 

 

Problems in knowledge acquisition/elicitation process 

 

The best known and most critical bottleneck in a KBS development lies within the 

knowledge acquisition phase, with particular stress on knowledge elicitation (Buchanan 

et al., 1983; Breuker and Wielinga, 1987; Byrd, 1995; Moody et al., 1998).  It is critical 

because the power and utility of a KBS depends on the quality of the expert knowledge 

that is elicited and reproduced.  Clancey (1986) points out that the process of eliciting 

knowledge from an expert entails more than the process of transferring a mental model 

lying within his brain into the mind of the knowledge engineer.  It also includes 

formalising the expert’s domain knowledge for the first time, which is an inherently 

difficult process due to the latter’s tacit nature. 

 

To incubate tacit knowledge, the expert needs to practice to become skilful, using rules 

of thumb or heuristics, learning which rules work and when they work.  Through 

experience, he then develops judgement, insight, and informed opinions.  It is the 

quality of this undocumented knowledge that is gleaned from his many years of 

experience in his particular field that determines his level of expertise (Kidd and 

Welbank, 1984).  Unfortunately, when the expert is posed with a problem, he may be 

able to tell you his decision or diagnosis, but not the details of his thought process.  He 

may even use certain knowledge without being aware that he has it.  It is also very 

likely that he has never been required to formulate his decision-making, and he may 
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have made many assumptions which are not stated explicitly.  Furthermore, the expert 

can be surprised and even alarmed when the simple consequences of these assumptions 

are pointed out, and consequently he may be reluctant to admit to them (Jackson, 1985).  

In contrast, when the expert is asked for the factors that he had considered, he may list 

those which he thinks he ought to use, albeit they will not necessarily be the same as 

those he had actually used.  However, this should not be construed deliberate deception; 

the expert will have learnt a lot of his knowledge through experience, and he may use it 

without being consciously aware of the explicit details.  As such, tacit knowledge is also 

often referred to as compiled knowledge, whose elucidation and reproduction is usually 

much more central and difficult to the knowledge acquisition process. 

 

At present, there is a wide range of techniques that are available to facilitate the 

knowledge elicitation process.  They are discussed in detail in Section 2.4. 

 

Problems in other life-cycle processes 

 

In addition, there are also problems in other KBSDLC processes.  They include 

determining whether the selected domain is appropriate for building a KBS (domain 

feasibility), and whether the expected costs and efforts are affordable (resource 

feasibility).  Another problem might be finding out why a newly-built KBS fails to be 

accepted in the intended working environment and even fails to satisfy preset 

performance criteria.  Last but not least, a KBS that requires extensive maintenance 

might also pose a problem if the system is so opaque and unstructured that it is hard to 

tell where updates and modifications should be applied (Breuker and Wielinga, 1987). 
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2.4 KNOWLEDGE ELICITATION TECHNIQUES 

 

The knowledge elicitation process has been identified as a very critical bottleneck in the 

development of a KBS.  This section looks at the ways that the elicitation process can 

be facilitated.  Ideally, a conceptual framework of problem solving behaviour should be 

established as a prerequisite to the knowledge elicitation process.  However, in its 

absence, the knowledge engineer can only try to use ad hoc means to understand in 

detail the concepts and relations used by the experts in their daily activities.  Hopefully, 

the knowledge engineer is then able to construct a knowledge model whose contents 

and structure is very similar to that used by the expert, so that it can be used to support 

clear explanations and be an important part of the interface between the KBS and the 

expert (Clancey, 1986). 

 

The types of knowledge that can be elicited are introduced first in the following 

sections.  Then, the different techniques that a knowledge engineer may use to elicit an 

expert’s knowledge are explained.  They range from manual, semi-automatic to 

automatic techniques.  Finally, these techniques, together with their strengths and 

weaknesses, are summarised appropriately. 

 

2.4.1 KNOWLEDGE CATEGORISATION 

 

Like the terminology used in the KBS literature (knowledge engineering, knowledge 

acquisition and knowledge elicitation), defining knowledge, information and data is also 

a disputable area.  On the one hand, Naylor et al. (2001) subsume information and data 

under knowledge as both of them, together with structured information and insight, are 
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considered to be different types of knowledge.  On the other hand, Darlington (2000) 

deems knowledge as a derivative of information, which in turn is deemed a distillate of 

data.  For the purpose of this thesis, the former and broader definition of knowledge is 

adopted.  As such, knowledge ranges from its most factual form (data) to its most 

abstract form (insight).   

 

Moreover, Turban et al. (2005) recognise that there are two major categories of 

knowledge: declarative and procedural.  On the one hand, declarative knowledge can be 

thought of as ‘knowing that’ type of knowledge, which is essentially a descriptive 

representation of knowledge.  It consists of related facts that can be organised and 

reorganised according to the occasion’s demands.  An operative term for declarative 

knowledge is description.  On the other hand, procedural knowledge can be thought of 

as ‘knowing how’ type of knowledge, which considers the manner things work under 

different situations.  It includes step-by-step sequences and how-to type of instructions, 

as well as explanations.  An operative term for procedural knowledge is procedure. 

 

2.4.2 MANUAL KNOWLEDGE ELICITATION TECHNIQUES 

 

Manual methods are basically structured around an interview of some kind.  These 

include document analysis, interview, on-site observation, questionnaire and rating 

scale, teach-back interview, protocol analysis, walkthrough, card-sort, and last but not 

least, solution-characteristic matrix.  As these methods are slow, expensive and 

sometimes inaccurate, there is a trend towards automating the knowledge elicitation 

process as far as possible.  Semi-automatic and automatic methods are discussed later in 

Section 2.4.3 and 2.4.4 respectively. 
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Document analysis 

 

Published documents such as books, papers and reports are good sources for acquiring 

general knowledge in well-established domains.  For instance, Duan and Burrell (1995) 

remark that using published documents as a major source of knowledge is actually quite 

common in the marketing area.  However, although documented knowledge may cover 

a wide range and is easy to access, it is limited to generalities.  As such, a knowledge 

engineer cannot expect to rely solely on published documents to build a sufficient 

knowledge base. 

  

Interview 

 

An interview consists of interactions involving questions and answers between a 

knowledge engineer and an expert.  In general, interviews provide a cheap but effective 

means of generating concepts, which are then used to produce a rough ‘map of the 

territory’ that covers the expert’s domain.  In addition, initial interviews also serve to 

develop some rapport between the knowledge engineer and the expert.  As it is 

important to get the expert to communicate fluently, the exact form that an interview 

may take is not critical.  Four possible types of interview are tutorial, unstructured, 

semi-structured or structured interviews.    

 

In a tutorial interview, the expert will be asked to prepare an introductory talk outlining 

his domain, and deliver it as a tutorial session to the knowledge engineer.  In an 

unstructured interview, where the control of the interactions lies mainly with the expert, 
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he is given the freedom to cover topics that he deems fit.  Here, the knowledge engineer 

only plays a facilitating role by encouraging the expert with general questions, probes 

and prompts.  As digressions are usually tolerated, any material elicited is usually 

unpredictable and at times incoherent.  Hence, the knowledge engineer has the 

additional burden of making the outcomes productive (Cordingley, 1989; Johannsen and 

Alty, 1991).  In a semi-structured interview, the knowledge engineer works to a list of 

topics to be covered in the interview session, which does not specify the precise 

questions to be asked of the expert.  In a structured interview, where the control of the 

interactions lies mainly with the knowledge engineer, he organises the communication 

between the expert and himself by working through a list of specific questions that are 

produced prior to the interview; thereby facilitating a systematic exchange of 

information.  As such, the knowledge engineer’s questions and the expert’s answers are 

more restricted here than in less structured interviews (Moody et al., 1998).  Normally, 

no single type of interview is used to the exclusion of the others.  It is because each 

interview type’s relative applicability changes as the development process progresses.  

At the earlier stages of knowledge acquisition, tutorial, unstructured and/or semi-

structured interviews are utilised to provide a general overview of the expert’s domain.  

Once the process of knowledge acquisition is more advanced, structured interviews may 

be introduced to provide more specific focus. 

 

Waterman (1986) mentions that the knowledge engineer may ask the expert to discuss, 

describe and/or analyse problems pertaining to his area of expertise during an interview.  

In a ‘problem discussion’ session, the knowledge engineer may pick a set of 

representative problems and discusses them with the expert.  The goal is to determine 

how the expert organises his knowledge about each problem, represents concepts and 
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hypotheses, and handles inconsistent, inaccurate, or imprecise data.  During this 

discussion, the expert may introduce new concepts and relations.  When this happens, 

the knowledge engineer will ask the expert to define these new constructs and relate 

them to the existing body of concepts and relations.  In a ‘problem description’ session, 

the knowledge engineer will require the expert to describe a typical problem for each 

main category of answer that may arise.  This helps the knowledge engineer to define a 

prototypical problem for each category of answer.  This exercise may also suggest ways 

to organise knowledge hierarchically in the KBS.  Finally, in a ‘problem analysis’ 

session, the knowledge engineer will ask the expert to solve a series of realistic 

problems and probe for the latter’s reasoning as the problems are solved.  Here, the 

expert is required to describe the solution process and disclose as many intermediate 

steps as possible.  The knowledge engineer will then question each step to determine the 

underlying rationale, including hypotheses that are entertained, strategies that are used 

to frame the hypotheses, and goals that are pursued to guide strategy selection. 

 

Moody et al. (1998) comment that interviews are a pervasive technique as they can be 

used to elicit all types of knowledge.  Nevertheless, depending on the dynamics of the 

interviews, the coverage of the expert’s area of expertise through interviews may still be 

incomplete and arbitrary.  Also, Barrett and Edwards (1995) add that the expert may say 

what they wish to say, or what they think they are expected to say, rather than what they 

actually do.  These suggest that interview aids or other complementary elicitation 

techniques should be used when possible.  They include recording the interviews for 

subsequent reference, using labelled diagrams to help the expert to construct his talk, or 

even analysing protocols generated from the interviews. 

 



 Knowledge-Based Systems and Knowledge Elicitation 24  

On-site observation 

 

Waterman (1986) explains that in on-site observation, a knowledge engineer will 

observe as an expert solves real problems on the job, rather than contrived but realistic 

problems in a laboratory setting.  Here, the knowledge engineer will be observing 

passively and recording all observed information as accurately as possible.  During the 

observations, the knowledge engineer will neither interfere with the expert’s work, nor 

require much participation from the expert.  In this way, the knowledge engineer may 

gain some insight into the complexity of the expert’s domain.  However, Barrett and 

Edwards (1995) warn that this technique is not feasible if the knowledge engineer and 

expert do not share a ‘common ground’.  Furthermore, on-site observation may not be 

practical for some domains, especially when there are time constraints or privacy 

concerns. 

 

In addition, Johannsen (1989) also suggests a special hybrid of the interview and 

observation techniques, known as observation interview.  In an observation interview 

session, the knowledge engineer will observe and note down the expert’s activities as 

usual, and then try to clarify with the expert any queries that he has with the 

observations at the earliest instance.  The queries may range from causes and reasons to 

consequences of the observed activities.  In this way, observation interview is a 

powerful technique as whilst empirical data are being collected through observation, the 

knowledge engineer is also eliciting decision-making strategies concurrently through his 

what, how and why questions. 
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Questionnaire and rating scale 

 

A questionnaire can be used instead of or in addition to an interview (Johannsen and 

Alty, 1991).  It can be standardised in question-answer categories or it can be applied in 

a more formal way.  In effect, a questionnaire is the equivalent of an interview in paper 

form, though it may not be as expansive or extensive.  Similarly, Barrett and Edwards 

(1995) advise that a requisite for using this technique is that the knowledge engineer and 

expert need to share a ‘common ground’. 

 

A rating scale is a formal technique for evaluating single items of interest by asking the 

expert to cross-mark a scale.  Verbal descriptions along the scale such as from ‘very 

low’ to ‘very high’, or from ‘very simple’ to ‘very difficult’ are used as a reference for 

the expert.  A rating scale can either be used alone, or together with an interview and/or 

questionnaire (Johannsen and Alty, 1991). 

 

Teach-back interview 

 

Teach-back interview is a ready-made checking device by definition (Johnson and 

Johnson, 1987).  It is a technique inspired by Ogborn and Johnson’s (1984) 

conversation theory, which is concerned with the notions of concepts and understanding 

as entities that are made public by an interaction between participants.  The theory 

posits that there are two levels of analysis to an interaction: Level 0 and Level 1.  At 

Level 0, concepts are explored; whilst at Level 1, Level 0 concepts are reconstructed.  

For instance, if a Level 0 answer is an explanation of how to do an algorithm, then a 

Level 1 answer may be an explanation of why the algorithm works.  That is, the latter is 
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an explanation of an explanation.  To begin, an expert must agree to be a participant in 

the role of interviewee, before a knowledge engineer can conduct an interview and 

attempt to find out what the expert knows.  Next, both the knowledge engineer and the 

expert must contract to play the same game.  Then, they must decide on the area of 

discussion (the domain) and on the medium of conversation (verbal, written, or doing 

something).   

 

At the Level 0 analysis, the expert will first describe a procedure to the knowledge 

engineer, who will then teach it back to the expert in his terms and to his satisfaction.  

When the knowledge engineer and the expert agree that the former is doing the 

procedure the latter’s way, it can be said that both of them share the same concept.  In 

this way, this ‘teach-back’ procedure is a checking device where the expert is the final 

judge.  It should be noted that both the knowledge engineer and the expert do not 

necessarily have the same thought process; they only agree that the same thing has been 

done.   

 

At the Level 1 analysis, the knowledge engineer will ask the expert to give an 

explanation of how he reconstructed that concept and the ‘teach-back’ process continues 

until the expert is satisfied with the knowledge engineer’s version.  By then, the 

knowledge engineer is said to have understood the expert. 

 

In essence, teach-back interview is an elaborated form of interview that takes place at 

two levels – generic and specific.  At the generic level (Level 0), procedures define 

concepts, which lead to shared concepts after ‘teach-back’.  At the specific level (Level 

1), reconstructions define ‘memories’, which lead to understanding after ‘teach-back’.  
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Therefore, teach-back interview is a technique that can be used to produce an expert-

authenticated database that is prejudiced minimally by the knowledge engineer’s 

preconceptions.  However, it is not a strongly structured technique that involves a lot of 

transcriptions and hence, consumes a lot of time.  Also, teach-back interview is not 

universally applicable, especially when the expert tries to describe a manual skill or 

perceptual task on a piece of equipment, and his demonstration is not video-recorded.  

In such a case, any dialogue will be too context-bound (with meaningless statements 

like ‘you press this and this happens’) to make for a clear transcription. 

 

Protocol analysis 

 

Newell and Simon (1972) advocate that only the full complexity of verbal behaviour, as 

captured in a verbatim transcript, can do justice to the complexity of knowledge.  This 

gives the premise on which (verbal) protocol2 analysis is based.  In essence, protocol 

analysis requires an expert to think aloud whilst working through a series of either 

simulated or real examples.  Audio-recording is likely to be used in order to facilitate 

subsequent analysis.   

 

In a ‘thinking aloud’ exercise, the expert is asked to report what he thinks about as he 

solves a problem as much as possible.  The knowledge engineer intervenes only with 

non-directive reminders to keep the expert thinking aloud.  In this way, the knowledge 

engineer hopes to conclude that the information reported is actually in the expert’s focus 

of attention at the time and is untainted by any retrospection that would provide the 

                                                 
2 There are two types of protocols: verbal and motor.  Motor protocol analysis involves observing, 
recording (on a suitable media format) and analysing the physical performance of an expert.  Most of the 
time, motor protocols are only useful when used in conjunction with verbal protocols. 
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opportunity for the expert to rationalise his thought processes.  Notwithstanding, Newell 

and Simon (1972) warn it is also probable that there is much in the expert’s mind that 

goes unreported as well.  Thus, it is not always possible to draw direct conclusions 

about the limits of the expert’s knowledge.  As such, the ‘thinking aloud’ session is 

occasionally complemented with a cross-examination, where the knowledge engineer 

will ask probing questions about the expert’s knowledge of particular topics.  Cross-

examination is particularly effective if the expert is highly articulate. 

 

Eventually, the aim of a ‘thinking aloud’ exercise is to produce a verbatim transcript of 

the expert’s explanation, from which knowledge is then elicited.  As the expert 

encounters decision points in the task, he would have perceived certain conditions that 

resulted in him taking an action, thereby performing in an if-then manner.  Hence, 

protocol analysis provides one method for capturing procedural knowledge (Moody et 

al., 1998). 

  

Nonetheless, protocol analysis does have its share of setbacks.  The expert, with his 

many years of experience, may have compiled his knowledge such that a long chain of 

inferences is reduced to a single association.  This feature makes it difficult for an 

expert to verbalise information that he actually uses to solve a problem. Further 

examples of knowledge that the expert may not think to mention include ‘common 

sense’ knowledge and general problem-solving strategies (Fox et al., 1987).  To worsen 

matters, Waterman (1986) cautions that if the expert is pushed to be more explicit, 

either during or after the problem-solving session, he may construct a line of plausible 

reasoning to explain his behaviour.  This line may or may not reflect the actual problem-

solving techniques used, hence incurring the risk of ‘tainting’ the knowledge elicited.  
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In addition, analysing verbatim transcripts is a laborious process that is both time-

intensive and expertise-intensive.  Last but not least, as protocol analysis is inherently 

an analysis of an individual expert, it is vulnerable to biases derived from his 

idiosyncrasies.  In this light, the knowledge engineer should not use protocol analysis as 

his primary tool to elicit knowledge.  Instead, he can use protocol analysis as a tool to 

elicit the broad structure of the expert’s knowledge and the way it is applied, and 

supplement his findings with other techniques to fill in the details. 

 

Walkthrough 

 

A walkthrough is a term that describes the consideration of a process that is carried out 

in the actual environment at an abstract level.  Johannsen and Alty (1991) comment that 

walkthrough is more detailed and often better than protocol analysis, as better memory 

cues are provided by being in the actual environment.  Nevertheless, a walkthrough 

needs not necessarily be carried out in real time; indeed, it is even more useful in a 

simulated environment where states of the system can be frozen and additional 

questions pursued. 

 

Card-sort 

 

Card-sort is a technique used for eliciting the structural criteria that an expert uses to 

organise domain elements.  It begins by typing elements of the problem domain (e.g. 

words, phrases, diagrams or pictures) on small individual index cards and spreading 

them randomly on a large table.  Next, an expert is asked to sort the elements into as 

many small, mutually exclusive groups as possible.  As most experts’ spontaneous 
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strategy in a card-sort exercise is to form slightly larger groups first before splitting 

them further, the expert will then be asked to split up the newly-formed groups into 

smaller sub-groups if there is a rationale to do so.  Following this, the expert is asked to 

label each group, before amalgamating them back into slightly larger groups and re-

labelling them.   

 

During the entire exercise, the expert will be encouraged to think aloud the rationale 

that he uses to (re)group the elements.  The expert’s ‘thinking aloud’ should be recorded 

if he is agreeable, as the knowledge engineer will find these recordings a helpful aide-

memoire for understanding the domain later. 

 

In practice, Gammack (1987) advises that this technique will require the expert to make 

repeated sorts, whilst the knowledge engineer tries to derive the rules and classification 

relationships from these sorts.  Gammack further adds that since the structural criteria 

are assumed to be derived from the expert’s familiarity with the domain elements, they 

should reflect groupings that he finds convenient.  Eventually, the elicited criteria are 

expected to be represented by a network of individual and/or groups of elements, and 

their relationships with each other. 

 

Solution-characteristic matrix  

 

Barrett and Edwards (1995) explain that a solution-characteristic matrix is used for each 

problem that may be faced by an expert.  In a typical matrix, each row corresponds to a 

potential solution, whilst the columns show various characteristics of the solution that 

might make it appropriate for solving the problem.  Also, these characteristics will be 
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rated by the expert using a suitable measurement scale.  In this way, a series of solution-

characteristic matrices will be collected for a range of problems, so that a network of 

many-to-many relationships between problems and solutions can be created.  As these 

matrices can be self-administered, the expert may be given the ‘homework’ of rating 

them to complement other elicitation efforts.  

 

2.4.3 SEMI-AUTOMATIC KNOWLEDGE ELICITATION TECHNIQUES 

 

Semi-automatic methods can be divided into two categories.  On the one hand, there are 

those that intend to support the experts by allowing them to build knowledge bases with 

little help from knowledge engineers.  On the other hand, there are those that intend to 

help the knowledge engineers by allowing them to execute the necessary tasks in a more 

effective or efficient manner.  Two examples of semi-automatic methods are multi-

dimensional scaling and repertory grid. 

 

Multi-dimensional scaling 

 

Multi-Dimensional Scaling (MDS) refers to a class of procedures that is used for 

extracting structure from a matrix of data.  Gammack (1987) explains that these data are 

typically measures of relatedness among a set of objects which are presumed to vary 

along a number of unknown but interpretable dimensions.  Since declarative knowledge 

(Section 2.4.1) often takes the form of related facts that can be organised and 

reorganised again as required by the situation, MDS is a suitable technique for eliciting 

it. 
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Broadly, an expert begins by comparing the objects with each other and provides some 

estimates of their perceived similarity.  Next, the objects are scaled in a chosen number 

of dimensions to deliver a global picture of the space in which they reside.  Then, using 

a spatial metaphor to represent similarity, the objects that are closer together are 

perceived to be more similar to each other than those that are further apart.  Lastly, the 

nature of the dimensions is interpreted using information on the objects and their 

locations in the pre-specified space.  

 

This technique works best when the objects are preselected on the basis that it is 

meaningful to rate their similarity.  Also, these objects should be representative of the 

larger domain from which they are selected, and should form a fairly uniform set 

without including obviously anomalous items. 

 

Repertory grid 

 

The theoretical foundations of the repertory grid rest upon Kelly’s (1955) Personal 

Construct Theory, which maintains that all human activity is a process of anticipating 

and interacting with events based on the framework of how one construes his past 

experiences.  Moody et al. (1998) note that the constructs which a person uses to ascribe 

meaning to his experience facilitate his ability to distinguish between elements in his 

world, and these constructs are being adjusted continually contingent on whether they 

match what really occur.  As the way a person interprets his experience determines how 

he sees the future, one needs to know the construct framework that supports the 

person’s behaviour in order to know him.  In this light, a repertory grid can be used to 

represent such a construct framework.   
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In essence, Shaw and Gaines (1987) explain that a repertory grid is a two-way 

classification of data which expresses part of a person’s system of cross-references 

between his personal observations or experience of the world and his personal 

classification of these observations/experience.  The repertory grid is composed of 

elements and constructs.  On the one hand, elements are the things that are used to 

define the area of the topic, and they can be concrete or abstract entities.  For example, 

in the context of interpersonal relations, the elements might be people.  Before choosing 

a set of elements, a knowledge engineer must think carefully about the area of the topic 

and relate the elements to his purpose.  In addition, these elements should be of the 

same type and level of complexity, and should span the topic as fully as possible.  Also, 

care should be taken to ensure that each element is well known and personally 

meaningful to the expert; that is, each element must be central to him in the context of 

the particular problem.  It is usual to start with about 6 to 12 elements.  On the other 

hand, constructs are the terms used by the expert for describing how the elements are 

similar to or different from each other, and can be organised in contrasting pairs.  They 

originate from various sources such as thoughts and feelings, objective and subjective 

descriptions, attitudes, and rules of thumb.  As these terms only serve as memory aids 

for eliciting the expert’s construct framework, their validity, label and description do not 

need public concurrence as long as they make sense to the expert.  Hence, a two-

dimensional grid of relationships can be produced by mapping the elements onto the 

constructs. 

 

The most common method used for eliciting a pair of contrasting constructs is the 

minimal context form or triad method.  The elements are first presented in groups of 
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three; three being the lowest number that will produce both a similarity and a difference.  

Next, using a triad of elements, the expert is asked to state how two of them are alike 

and therefore different from the third.  This is the emergent pole of the pair of 

constructs.  The implicit pole may be elicited by the difference method where the expert 

is asked to state how the singleton is different from the pair, or by the opposite method 

where the expert is asked what the opposite description of the pair would be.  Then, the 

remaining objects are rated along this dimension.  This chain of activities is repeated 

until the expert can think of no other constructs, after which the resultant rating grid is 

analysed using cluster analysis. 

 

In a way, a repertory grid encodes information about a person’s way of looking at the 

world.  Since the grid can be an aid for remembering the basis for decisions and actions, 

it is possible to use it in its own right for some purposes.  Also, it can be analysed in a 

variety of ways to bring out possible underlying structures of a person’s worldview and 

its relationship to those of others.  Thus, repertory grids are a good means of eliciting 

declarative knowledge (Section 2.4.1). 

 

Nonetheless, Cordingley (1989) warns that using repertory grid manually is tedious and 

time-consuming.  Fortunately, semi-automatic computer-based versions had been 

developed and these have proved to be very effective at eliciting knowledge for KBS.  

In addition, as the repertory grid technique models the constructs of an individual, it is 

very personal and subject to change as the individual’s experiences changes.  

Furthermore, Shaw and Gaines (1987) add that repertory grid appears to be more 

suitable for analysis (e.g. debugging, diagnosis, interpretation and classification) than 

for synthesis problems (e.g. design and planning). 
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2.4.4 AUTOMATIC KNOWLEDGE ELICITATION TECHNIQUES 

 

Automatic methods are those intended to minimise or eliminate both the knowledge 

engineers’ and the experts’ contributions.  In essence, these methods use computers to 

elicit or learn knowledge from existing data that preserve some historical decisions or 

experiences.  As such, they are also known as knowledge discovery or machine learning 

methods (Turban et al., 2005).  Compared with manual or semi-automatic techniques, 

automatic techniques will expect to use less time to generate more consistent knowledge 

bases (Liang, 1992; Raghunathan and Tadikamalla, 1992). 

 

Typical machine learning methods include rule induction, pattern matching, neural 

network computing and genetic algorithms.  However, as neural network computing is 

an opaque technique where a neural network is essentially a black-box that does not 

allow rules to be extracted easily from it, it cannot support the explanation facility in a 

KBS.  In addition, genetic algorithms are generally used for solving optimisation 

problems as opposed to the usual problems handled by a KBS (diagnostic, prediction or 

classification).  Therefore, neural network computing and genetic algorithms are 

actually outside the ambit of KBS and are not discussed further in this thesis. 

 

Rule induction 

 

Buchanan et al. (1983) observe that human experts normally have more difficulty in 

stating procedural knowledge than stating declarative knowledge (Section 2.4.1).  This 

varying difficulty may be attributed to at least two reasons.  Firstly, an expert is likely to 
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be less conscious of problem-solving strategies in their domain than they are of factual 

knowledge in the domain.  Secondly, since an expert needs to have a detailed 

understanding of the problem-solving framework embodied in the domain in order to 

express procedural knowledge, he will find it harder to deal with the details involved in 

understanding the effects of even a small change to procedural knowledge.  Hence, in a 

way, acquiring in-depth procedural knowledge may push the limits of the human 

expert’s cognitive abilities.  These limitations advocate the idea of using machine-based 

induction engines to develop procedural knowledge.  This is also known as rule 

induction. 

 

In principle, rule induction involves the use of an algorithm (induction engine) on a 

training set of example cases to induce a hierarchy of task-specific rules, which will 

constitute the knowledge base of a rule-based KBS.  This set of rules may be either 

production rules that take the form of ‘if-then’ statements, or classification rules that 

take the form of a decision tree.  Negnevitsky (2005) and Turban et al. (2005) define a 

decision tree as a map of the reasoning process; it describes a data set by a tree-like 

structure, and is composed of nodes representing goals and branches representing 

decisions. 

 

Generally, relative to other knowledge elicitation techniques, the expert will find it 

easier to give example cases of different types of decisions, or to describe example 

cases of decisions that are already documented.  These example cases are composed of 

decisions made by him and the characteristics or measurements (attributes) associated 

with them.  However, the example cases will not state any assumptions and beliefs that 
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the expert has made, nor any details of how he has assessed different evidence and 

resolved conflicts in order to reach his decisions (Hart, 1987). 

 

Depending on both the algorithm that is used and the training set of example cases 

obtained from the expert, the induced rules may or may not be correct.  Usually, if the 

algorithm is ‘efficient’, and the training set is ‘informative’, then the rules induced are 

expected to be ‘good’.  Hence, great attention should be paid to the training set of 

example cases’ composition and use.  Breiman et al. (1984) advise that an inadequate 

training set will produce results that are very sensitive to changes in the training set.  As 

a reference, 50 example cases are required for a simple problem that has three decision 

classes and ten associated attributes, and 215 example cases are required for a more 

complex problem that has two decision classes and 19 associated attributes.  

 

After the production or classification rules are generated, they are evaluated with both 

documented examples and expert interviews.  The purpose of the interviews is to 

compare the findings of the induction with the expert’s version, to discuss the way in 

which attributes are used in the rules, to explain why certain attributes do not feature in 

the rules, and to question him about the areas of interest raised by the induction.  All 

interviews should be recorded and a transcript drawn up.  A flow chart based on the 

content of the transcript is then produced for approval by the expert.  However, in 

practice, the expert might find it easier to test the rules by assessing their accuracy on 

actual examples rather than by examining them. 
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Pattern matching 

 

Traditional KBS are predominantly rule-based systems.  These systems are based on 

production rules (‘if-then’ statements) or classification rules (decision trees) that are 

either formulated directly from interactions with an expert, or induced from a collection 

of example cases provided by an expert.  Their popularity stems from the view that an 

expert relies on a system of rules to solve problems. 

 

Notwithstanding, it has also been observed that when an expert is posed with a problem, 

he may find it easier to provide a decision than to explain it.  This is because the expert 

may have internalised the entire decision-making process after many years of 

experience (Section 2.3.3), such that he is able to reach a decision without assessing any 

circumstantial evidence or resolving any conflicts when confronted with similar 

problems.  Hence, there is an alternative view that the expert may be using his 

experience instead of a system of rules to solve problems.  This gives rise to Case-Based 

Reasoning (CBR) systems, whose knowledge base is made up of example cases of 

decisions.  Like the example cases used for rule induction, an example case here also 

consists of a description (attributes) of a problem together with the decision that was 

taken in response to it. 

 

CBR systems use a method of inference that is fundamentally different from traditional 

KBS.  Instead of relying on a knowledge base composed of an intermediary 

representation of knowledge (e.g. the rules in rule-based systems), CBR systems are 

able to utilise the specific knowledge stored inside the example cases directly.  In 

essence, a new problem is solved in CBR systems by using an appropriate pattern 
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matching algorithm (inference engine) to retrieve an example case from a database of 

historical cases that resembles it most closely, and reusing the prior solution recorded in 

the retrieved example case.  Admittedly, there will be some situations where the 

retrieved example case is vaguely similar to the problem at hand, and the prior solution 

is not sufficient.  In these cases, the CBR systems will modify the prior solution 

appropriately and then put forward a proposed solution.  If the proposed solution 

manages to solve the problem, then they are stored into the database for future use 

(Turban et al., 2005).  In this way, the knowledge base in CBR systems is dynamic, 

since it is updated whenever it is used. 

 

Darlington (2000) comments that as the primary source of knowledge in CBR systems 

is experience (in the form of example cases) instead of theory, they are most useful in 

domains where the knowledge cannot be underpinned easily by any theoretical 

understanding.  In addition, Cunningham (1998) suggests that CBR systems are 

considered effective only when their solutions are reusable, rather than being unique to 

each situation.  Lastly, CBR systems are likely to be effective when the objective is to 

look for the best solution available, rather than a guaranteed exact solution. 

 

2.4.5 A SUMMARY OF KNOWLEDGE ELICITATION TECHNIQUES 

 

The various knowledge elicitation techniques discussed in the preceding sections show 

that there is no single technique which is able to elicit all types of knowledge by itself.  

Each technique has both advantages and disadvantages.  Therefore, a good knowledge 

elicitation exercise should always use a few techniques that complement each other.  

The strengths and weaknesses of the manual, semi-automatic and automatic elicitation 
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techniques discussed in the previous sections are summarised in Table 2.4, Table 2.3 

and Table 2.4 respectively. 

 

Manual technique 
(Rule of thumb) Strength Weakness 

Document analysis ⋅ Easy to access ⋅ May not be specific and 
detailed enough to build a 
good knowledge base 
⋅ May not be applicable to 
ill-defined domains 

 
Interview 
 
⋅ Use early to get 
terms of reference 
and possible 
framework) 
⋅ If interviewing 
comes naturally to 
both parties, then 
interview 
techniques may be 
fruitful 

⋅ Gives knowledge engineer 
orientation to domain 
⋅ Generates a lot of relevant 
material cheaply and in a 
natural manner 
⋅ Little demand on expert 
other than time 
⋅ Different types of 
interviews (tutorial, 
unstructured, semi-
structured and structured) to 
suit needs of occasion 

 

⋅ Incomplete and arbitrary 
coverage 
⋅ Requires training and/or 
social skills to be done 
properly 
⋅ Burden of representation 
and interpretation on 
knowledge engineer 

On-site observation 
 
⋅ Can be improved 
by including 
interview in an 
observational 
session to form 
observation 
interview 

 

⋅ Provides first-hand insight 
into complexity of expert’s 
domain 

 

⋅ Require ‘common ground’ 
with expert 
⋅ May not be suitable in cases 
with time or privacy 
concerns 

Questionnaire and 
rating scale 

 
⋅ Used separately or 
with interview 

 

⋅ Completion of 
questionnaire does not 
require presence of 
knowledge engineer 
(asynchronous efforts) 

⋅ Require ‘common ground’ 
with expert 
⋅ Does not cover as much 
depth or breadth as an 
interview can 
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Manual technique 
(Rule of thumb) Strength Weakness 

Teach-back 
interview 

 
⋅ Use to elicit global 
and specific 
structures 

⋅ Produces an expert’s 
conception minimally 
prejudiced with respect to 
the knowledge engineer’s 
preconceptions about the 
domain 
⋅ Produces an expert 
authenticated fund of data 
that can be analysed and 
represented in several ways 
⋅ A non-psychological, non-
judgemental technique 

⋅ Not a strongly structured 
technique, so requires 
general interview training 
⋅ Not appropriate when 
conversational approach 
becomes too long-winded 
⋅ Heavy cognitive load on the 
investigator, so not 
recommended for the faint-
hearted 
⋅ Interviews are cumulative 
with transcription in 
between, and therefore 
time-consuming 
⋅ Not universally applicable; 
especially when describing 
a manual skill or perceptual 
task on a piece of 
equipment 

 
Protocol analysis 
(featuring 
‘thinking aloud’ 
and cross-
examination) 

 
⋅ Use as an 
exploratory 
technique to build 
a knowledge base 

 

⋅ Yields a detailed picture of 
the representation of the 
expert’s knowledge 
⋅ Efficient way to elicit broad 
structure of knowledge and 
the way it is applied 
⋅ Control remains with the 
expert 

⋅ Difficult to verbalise 
higher-order knowledge 
that is used 
⋅ Time-intensive and expert-
intensive 
⋅ Subject to biases derived 
from individual expert’s 
idiosyncrasies 

Walkthrough 
 
⋅ More detailed than 
protocol analysis 

⋅ May be carried out in actual 
environment, hence 
providing better memory 
cues; or 
⋅ May use simulated 
environment, hence no need 
to be carried out in real 
time 

 

⋅ May be resource-intensive 
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Manual technique 
(Rule of thumb) Strength Weakness 

Card-sort 
 
⋅ Use to reveal 
possible 
hierarchical 
organisation and to 
reveal principles of 
that organisation 

 

⋅ Gives clusters of concepts 
meaningful to expert 
⋅ Indicates possible uniting 
principles across 
abstraction levels 
⋅ Provides hierarchical 
organisation, useful in 
indexing and placing new 
concepts 
⋅ Splits large domain into 
manageable sub-areas 
⋅ Easy for people to do, wide 
range of application 

 

⋅ Strict hierarchy may be too 
restrictive 
⋅ Permits only one view per 
sort 
⋅ Some aspects may become 
distributed and lost by 
technique 

Solution-
characteristic 
matrix 

 

⋅ May be self-administered 
⋅ Facilitates creation of a 
network between problems 
and solutions. 

 

⋅ Does not cover as much 
depth or breadth as an 
interview can 

Table 2.2: A summary of manual knowledge elicitation techniques 
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Semi-automatic 

technique 
(Rule of thumb) 

Strength Weakness 

Multi-dimensional 
scaling (on 
relatedness 
measures) 

 
⋅ Principled sets of 
objects should be 
used when trying 
to elicit criteria for 
differentiation 
⋅ Good in 
(sub)domains 
when words may 
be inadequate for 
describing 
distinctions 
⋅ Gives overall 
picture giving 
handle on domain, 
thus may be a 
useful alternative 
to rapid 
prototyping, e.g., 
for feasibility 

 

⋅ Provides global picture of 
similarity of domain 
concepts 
⋅ Indicates dimensions for 
distinguishing objects 
⋅ Knowledge engineer’s 
involvement unnecessary if 
suitable data already exist 
⋅ Many computerised 
analysis techniques 
available 
⋅ Allows comparison/ 
averaging across expert 
sources 

⋅ Results may be 
uninterpretable or not very 
useful 
⋅ Supplementary analysis 
may be required to 
represent local information 
faithfully 
⋅ Better at delivering 
‘structure’ than ‘content’ 

Repertory grid 
 
⋅ Use with single 
expert in small set 
of closely related 
concepts, 
especially where 
no agreed 
vocabulary already 
exists 

⋅ Captures distinctions 
among closely related 
concepts useful to the 
expert 
⋅ Elicits expert’s personal 
concepts in absence of 
public vocabulary 
⋅ Few, if any, constraints on 
subject matter, e.g., can be 
done on perceptual and 
non-verbal data 
⋅ Commercial software that 
enables repertory grid to be 
self-administered is 
available 

 

⋅ Distinctions may not be 
widely agreed 
⋅ Manual elicitation is 
tedious 
⋅ Larger concept sets require 
more expert time 
⋅ Very personal technique, 
and model subject to 
change as one’s experience 
changes 

 

Table 2.3: A summary of semi-automatic knowledge elicitation techniques 
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Automatic 
technique 

(Rule of thumb) 
Strength Weakness 

Rule induction 
 
⋅ Use when an 
expert finds it hard 
to give detailed 
descriptions of his 
tacit knowledge 
and how he uses it 

⋅ Consistent and unbiased 
⋅ Makes few assumptions 
about the underlying 
distributions in the data 
⋅ Repeatable and 
indefatigable 
⋅ May suggest or discover 
rules omitted by the expert 
⋅ Identifies difficult, 
interesting, or contradictory 
example cases 
⋅ Discovers knowledge away 
from the expert, providing 
the knowledge engineer 
with results, questions and 
hypotheses to form the 
basis of a consultation with 
the expert 

 

⋅ Uses only one form of 
reasoning 
⋅ Produces rules without 
explanations 
⋅ Cannot distinguish between 
necessary and confirmatory 
attributes 
⋅ Assumes training set to be 
complete and correct 
⋅ Cannot guarantee that 
induced rules are valid 
outside training set 
⋅ Knowledge representation 
schema is pre-selected by 
the software used for 
induction 

Pattern matching 
 
⋅ Use where 
experience, not 
theory, is the 
primary source of 
knowledge 
⋅ Use where 
solutions are 
reusable, rather 
than being unique 
to each situation 
⋅ Use where the 
objective is best 
solution available 

⋅ Supports problem-solving 
based only on experience, 
without recourse to any 
theoretical understanding 
⋅ Removes need for 
knowledge representation 
process in KBSDLC, as 
CBR systems do not rely on 
an intermediary 
representation of 
knowledge to work 
⋅ Provides rapid response 
when an exact solution is 
not required 
⋅ Supports an enhanced 
maintenance capability as 
knowledge base is dynamic 

 

⋅ Provides best solution 
available, which may be an 
approximated solution and 
therefore, sub-optimal 

Table 2.4: A summary of automatic knowledge elicitation techniques 
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2.5 CONCLUSION 

 

Knowledge elicitation is defined as the process of obtaining domain knowledge from an 

expert.  It is part of a wider process known as knowledge engineering, which includes 

feasibility and requirements definition, knowledge representation, knowledge execution, 

testing and maintenance.  In the knowledge engineering literature, the best known and 

most critical bottleneck in building a KBS is the knowledge elicitation process.  This is 

largely due to the tacit nature of knowledge that resides within the experts. 

 

At present, there are various techniques that are used to support the knowledge 

elicitation process.  They can be classified into manual (document analysis, interview, 

on-site observation, questionnaire and rating scale, teach-back interview, protocol 

analysis, walkthrough, card-sort, and solution-characteristic matrix), semi-automatic 

(multi-dimensional scaling and repertory grid) and automatic (rule induction and pattern 

matching) techniques.  These elicitation techniques should be regarded as 

complementary to each other, and not be used to the exclusion of others.  The eventual 

combination of techniques employed in the elicitation process depends on the actual 

resources that are available to the knowledge engineer, and the type of knowledge to be 

elicited. 

 

When automatic techniques are used, both the experts’ and the knowledge engineers’ 

participation in the knowledge elicitation process are minimised or even eliminated.  It 

is because computers are used to learn knowledge directly from existing historical data 

in the form of example cases.  If the example cases are not already available, then they 

have to be collected either manually, or via some computer-aided means.  In the next 
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chapter, the potential of using visual interactive simulation as a computer-aided means 

to collect example cases for machine learning is explored; this serves to answer the first 

research question in Section 1.1. 



 

3 Visual Interactive Simulation, 

Virtual Reality and Knowledge 

Elicitation 

 

Feigenbaum (1980), as paraphrased in Hayes-Roth et al. (1983), makes an empirical 

observation that a KBS derives its power from the knowledge it possesses, not from the 

particular formalisms and inference schemes it employs.  The formalisms and inference 

schemes only provide the mechanisms to use the power.  In other words, an expert’s 

knowledge per se seems both necessary and nearly sufficient for developing a KBS.  In 

the context of using automatic knowledge elicitation techniques (rule induction and 

pattern matching) to build a KBS, this empirical observation stresses the importance of 

collecting complete and accurate example cases to develop a powerful knowledge 

base3.  However, research on collecting such an informative set of example cases 

appears to be limited.  Liang et al. (1992) explain that this could be attributed to the 

assumption that the training data are readily available.  Unfortunately, this is often not 

true, as some expert knowledge is difficult to obtain or needs to be collected on a real-

time basis. 

 

                                                 
3 In the case of using rule induction as a knowledge elicitation technique, there is an additional 
requirement of using an efficient learning algorithm to develop a powerful knowledge base.  At present, 
most existing research about rule induction concentrates on developing and selecting induction methods 
(Liang et al., 1992).  Recent inductive learning algorithms developed include CLS, ID3, ACLS, C4.5 
(based on ID3) and last but not least, C5.0 (an improved version of C4.5) (Jackson, 1999). 
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Traditionally, a training set of example cases is assembled manually, an ongoing task 

that is both laborious and time-consuming.  Here, the expert may be asked for their 

decisions using the information that is presented in a physical document, such as an 

application form (Hart, 1987).  Alternatively, the training set can also be assembled 

interactively with the help of computers (Davis, 1985).  Although not more effective, 

this progress from manual to computer-aided assembly does provide some respite for 

the knowledge engineer by improving overall efficiency. 

 

This chapter continues the search for a better computer-aided means of collecting a 

training set of example cases.  It begins by turning the spotlight onto Simulation, a 

regular working partner with AI/KBS.  The different terms of simulation used in this 

thesis are first explained.  In addition, a brief section on virtual reality is also included to 

clarify any future references that are made to this area.  Following this, past 

collaborations between AI/KBS and Simulation are briefly reviewed, in an attempt to 

draw preliminary conclusions on the potential of using the latter as a knowledge 

elicitation tool.  These consequently contribute to answering the first research question 

in Section 1.1: Is visual interactive simulation a valid tool for eliciting knowledge? 

 

3.1 VISUAL INTERACTIVE (DISCRETE-EVENT) SIMULATION 

 

Computer simulation is defined as the simplified imitation (on a computer) of the 

operation of a real-world process or system over time, whose main objective is to 

facilitate experimentation for the purpose of better understanding and/or improving that 

system (Robinson, 2004; Banks et al., 2005).  As such, a simulation model is used as a 

vehicle for experimentation, through which the likely effects of various policies on a 
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real-world system are demonstrated.  Subsequently, the policy with the best results is 

implemented (Pidd, 2005). 

 

In the field of Operational Research (OR), Pidd (2003) mentions that there are three 

different approaches to dynamic simulation modelling – Discrete-Event Simulation 

(DES), continuous simulation and mixed discrete/continuous simulation.  Lately, agent-

based simulation has emerged as the fourth approach.  Notwithstanding, DES still 

appears to be the most popular approach as the majority of dynamic simulation 

applications uses it.  Indeed, since its emergence in the late 1950s, DES has grown 

steadily in popularity to be recognised as one of the classical OR techniques that is used 

most frequently across a range of industries, such as manufacturing, travel, finance and 

health (Jeffrey and Seaton, 1995; Fildes and Ranyard 1997; Robinson, 2005; Hollocks, 

2006).  DES is so-named because the models built using this approach consist of 

discrete entities which occupy discrete states that only change at pre-determined 

discrete points in time.  These discrete points in time are events that are decided upon 

when some conditions are fulfilled (Pidd, 2003; Banks et al., 2005). 

 

Hurrion (1976) introduces a new concept of DES known as Visual Interactive 

Simulation (VIS).  It is the method whereby a DES model drives a display that 

represents the dynamic workings of the simulation.  In addition, VIS also allows a user 

to interact with the model to view statistics and not least, carry out different experiments 

(O’Keefe and Pitt, 1991).  Proponents of VIS cited some of its advantages as a decision-

aiding tool to include better validation, increased credibility and model acceptance, 

better communication between the modeller and the client, incorporation of the decision 
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maker into the model via interaction, and learning via ‘playing’ with the VIS model 

(Hurrion, 1980 and 1986; O’Keefe and Pitt, 1991; Chau and Bell, 1995).   

 

Thus, it is imagined that if VIS makes the cut as a knowledge elicitation tool, these 

advantages would promote a reasonable level of good decision-making in the example 

cases collected.  This provides an impetus to investigate VIS’ potential as a knowledge 

elicitation tool.  At this juncture, a logical first port of call for this investigation is to 

look at past collaborations between AI/KBS and Simulation.  However, before then, it is 

helpful to digress momentarily from the main plot and introduce some basic terms 

related to virtual reality.  The latter is a subject that is associated closely with recent 

development in the visual aspect of VIS, and referenced regularly in the rest of this 

thesis. 

 

3.2 VIRTUAL REALITY SYSTEMS 

 

Virtual Reality (VR) is defined as a computer-generated three-dimensional environment 

created using virtual environment systems, and can be interactively experienced and 

manipulated by the participants (Barfield and Furness, 1995).  Stuart (2001) explains 

that a virtual environment system is a human-computer interface capable of providing 

‘interactive immersive multi-sensory three-dimensional synthetic environments’.  It is 

supported by ‘interactive computer simulations that sense the participants’ position and 

actions, and replace or augment the feedback to one or more senses, giving the feeling 

of being mentally immersed or present in the simulation’ (Sherman and Craig, 2003).  

Barnes (1996) terms this virtual environment that represents an existing or planned 
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environment realistically, wherein some or all of the objects are animated with 

behaviour controlled by a simulation engine, a VR world.   

 

To immerse these participants in a VR world, specialised VR equipment is used.  For 

instance, a head-based display known as the Head Mounted Display is used to provide 

stereoscopic VR views, and gloves that contain flexible fibre optic cabling plus sensors 

are used to register complex combinations of locational information in the VR world 

(Barnes, 1996).  Nowadays, the concept of a VR system is broadened to include non-

immersive VR.  Vince (1998) describes a non-immersive VR system as one that uses 

the desktop system, and does not require any specialised VR equipment.  As a result, the 

participants will not have any sense of immersion, nor any perception of scale.  

Interaction with the non-immersive VR world is facilitated by conventional means such 

as the keyboard, mouse and trackball. 

 

3.3 WORKING RELATIONSHIP BETWEEN AI/KBS AND 

SIMULATION 

 

There has always been considerable interest given to AI working with(in) Simulation, 

and vice versa.  To date, several taxonomies depicting such interest have been 

published, two of which are O’Keefe (1986) and Ören (1994).  Ören (1994) lists two 

types of activities that use Simulation in AI: use of simulation for applications of AI, 

like evaluating a KBS (Flitman and Hurrion, 1987; Shaw, 1989; Chryssolouris et al., 

1991; Liang et al., 1992); and cognitive simulation, where systems with cognitive 

abilities are simulated.  Such systems include humans and autonomous robots.  Also, 

Ören lists two types of activities that use AI in Simulation: AI-assisted simulation and 
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AI-based simulation.  On the one hand, in AI-assisted simulation, AI techniques are 

used to provide computer assistance in areas such as formulating models and designing 

simulation experiments.  On the other hand, in AI-based simulation, AI techniques are 

used to generate model behaviour in simulation runs (Flitman and Hurrion, 1987; 

O’Keefe, 1989; Williams, 1996; Lyu and Gunasekaran, 1997; Robinson et al., 1998; 

Kunnathur et al., 2004). 

 

In a similar vein, O’Keefe (1986) develops a taxonomy for combining KBS and 

Simulation, as shown in Figure 3.1.  In it, seven combinations are proposed: 

a. Embedding a KBS within a simulation model (Caprihan et al., 2006); 

 

b. Embedding a simulation within a KBS model; 

 

c. Separate KBS and simulation model working interactively in parallel, with the user 

having access to the simulation model (Flitman and Hurrion, 1987; O’Keefe, 1989; 

Williams, 1996; Lyu and Gunasekaran, 1997; Robinson et al., 1998; Kunnathur et 

al., 2004); 

 

d. Separate KBS and simulation model working interactively in parallel, with the user 

having access to the KBS (Shaw, 1989; Jeong and Kim, 1998; Mak et al., 2002); 

 

e. A KBS and a simulation model working in a cooperative manner, where the user 

has access to both KBS and simulation model (Flitman and Hurrion, 1987; Wu and 

Wysk, 1990); 
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f. A cooperative KBS and simulation model sub-system that is embedded in a larger 

system, where the user has access to both KBS and simulation model (Jeong, 2000); 

and finally 

 

g. Using KBS as an intelligent front end that sits between the user and a simulation 

package (Hurrion, 1991).  In this combination, the KBS serves to generate the 

necessary instructions to use the simulation package following a dialogue with the 

user, and interprets and explains results returned from the package to the user. 

 

3.4 EVIDENCE OF SIMULATION AS A KNOWLEDGE 

ELICITATION TOOL 

 

The evidence to support the use of simulation for knowledge elicitation purpose stems 

mainly from two collaborations coined by Ören (1994) in the last section: (1) Using 

simulation for applications of AI; and (2) AI-based simulation.  They are discussed and 

reflected upon further below. 

 

3.4.1 EVIDENCE FROM USING SIMULATION FOR APPLICATIONS OF AI 

 

Anecdotal evidence of using Simulation to elicit expert knowledge are found in Flitman 

and Hurrion (1987), Shaw (1989), Pierreval and Ralambondrainy (1990), Chryssolouris 

et al. (1991), Hurrion (1991), Liang et al. (1992), Tan et al. (2000), and last but not least 

Tan (2003).  These are a few examples of what Ören (1994) classifies as using 

Simulation for applications of AI.   

 



 Visual Interactive Simulation, Virtual Reality and Knowledge Elicitation 54 

S 

S S 

S 

a. 

user 

KBS S 

Figures a and b: Embedded 

b. 

user 

KBS 

c. 

user 

KBS S 

user 

KBS 

d. 

Figures c and d: Parallel 

user 

KBS 

e. 

user 

KBS 

f. 

Figures e and f: Cooperative 

user 

KBS 

S 

g. 

Figure g: Intelligent front end  

Figure 3.1: A taxonomy for combining knowledge-based systems (KBS) and 

simulation (S) (O’Keefe, 1986) 
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In Flitman and Hurrion (1987), and Hurrion (1991), the authors built a VIS model for 

the operations of a simple coal-yard depot.  Embracing a gaming mode, the user took on 

the role of a depot manager and controlled the depot’s operations in the model.  In the 

meantime, a KBS linked to the VIS model would monitor and record all user actions.  

The data thus obtained were then used for machine learning to develop the KBS’ 

knowledge base.  Also, Liang et al. (1992) employ VIS in a gaming mode to collect 

real-time scheduling decisions.  These decisions were then used to facilitate learning in 

an automated knowledge acquisition process which integrated semi-Markov processes 

with neural network computing.   

 

Shaw (1989) describes and demonstrates a ‘learning by experimentation’ methodology.  

Following the methodology, a flexible manufacturing system was simulated and 

alternative scenarios employing different scheduling rules were tested for each selected 

hypothetical state of the system.  The scheduling rule that produced the best 

performance for a state would become the rule to be deployed whenever the system 

assumed that state.  As such, a collection of state-rule pairs could be generated as a 

training set for learning scheduling knowledge.  A similar methodology is also applied 

by Pierreval and Ralambondrainy (1990) on a simplified flow shop example. 

 

Chryssolouris et al. (1991) begin the learning process for building a neural network by 

running several simulations of a job shop.  In these simulations, the operational policy 

(weights of the decision-making criteria) and the workload (mix and volume of job 

types) were varied, and performance measures were collected at the end of each run.  

The performance measures plus workload parameter values would constitute the input 
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component of an input-output pair, whilst the policy parameter values would constitute 

the output component.  In this way, a set of input-output pairs could be collected from 

these simulations to learn the knowledge of selecting operational policy.   

 

Lastly, Tan et al. (2000) planned to investigate the validity and reliability of using an 

interactive, simulation-driven immersive VR system for collecting data, which would 

then be used for learning human behavioural rules.  Subsequently, Tan (2003) 

performed some method-comparison studies between the data collected using the VR 

system with the data from direct observation, and concludes that there is some evidence 

supporting VR as a suitable technology for collecting data.  However, the original plan 

to learn human behavioural rules was not carried out. 

 

3.4.2 EVIDENCE FROM AI-BASED SIMULATION 

 

Further circumstantial evidence is found in a string of research that belongs to what 

Ören (1994) classifies as AI-based Simulation (Section 3.3).  In spite of Simulation’s 

success and its increasing use in a large number of application areas, modelling complex 

systems that include some elements of human decision-making has proved to be 

problematic (O’Keefe, 1989; Robinson, 2007).  It is this shortcoming that has fuelled 

research in AI-based simulation. 

 

AI-based simulation as defined by Ören (1994) can be regarded as an equivalent of the 

third combination (Figure 3.1c) proposed by O’Keefe (1986).  Under this combination, 

the author explains that the KBS and simulation model are designed, developed and 

implemented separately in parallel.  In addition, there is a facility between both of them 
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that supports interaction, enabling the simulation model to interrogate the KBS.  This 

form of collaboration is useful where a simulation model is developed for a complex 

system, and a KBS already exists for part of the decision-making within this system.  

Therefore, the simulation model can avoid the need to encode the decision rules from 

scratch and simply access the KBS to simulate the decisions. 

 

To date, Robinson (2003) remarks that much research has been carried out to link a 

bespoke simulation model with a bespoke KBS in various application areas (Flitman 

and Hurrion, 1987; O’Keefe, 1989; Hurrion, 1991; Williams, 1996; Lyu and 

Gunasekaran, 1997, Kunnathur et al., 2004).  However, none of the research seems to 

involve the use of standard Commercial Off-The-Shell (COTS) software packages.  

This view is also shared in Williams’ (1996) comment that there appears to be little 

work done in linking specialised software from disciplines like VIS and KBS.  In 

response, Robinson et al. (1998) then successfully linked a COTS VIS package 

(Witness) to another COTS KBS package (Xpertrule) for the purpose of representing 

human decision-making in a fictional truck loading bay example.  This research later set 

the stage to develop the Knowledge-Based Improvement (KBI) methodology (Robinson 

et al., 2001 and 2005; Alifantis, 2006), which applied Robinson’s et al. (1998) findings 

in a real-world setting.  Whilst the KBI research’s objectives are not to prove VIS’ 

knowledge elicitation capability, it did incidentally demonstrate that VIS can be used to 

collect example cases which are good enough for knowledge acquisition purposes. 
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3.4.3 A RETROSPECTION OF EVIDENCE 

 

The above examples illustrate that Simulation/VIS have been used to elicit episodic 

knowledge in the form of example cases from the experts.  They also show that the 

collected example cases have been used successfully for machine learning.  Therefore, 

using Simulation/VIS for knowledge elicitation/acquisition is a tried and tested concept, 

which affirmatively answered the first research question duplicated at the beginning of 

this chapter. 

 

In particular, Robinson’s et al. (1998, 2001 and 2005) and Alifantis’ (2006) work also 

point out that with appropriate adaptation, a COTS VIS package can be used for 

knowledge elicitation.  Moreover, Tan’s (2003) work on using an interactive, 

simulation-driven VR system to collect data suggests the idea of investigating the value 

of using VIS supported with an appropriate visual representation to create a quasi-VR 

system for eliciting expert knowledge.  Finally, Flitman and Hurrion (1987), Hurrion 

(1991) and Liang et al. (1992) demonstrate the idea of using VIS in a gaming mode to 

elicit expert knowledge. 

 

3.5 CONCLUSION 

 

VIS is a widely-used variant of DES, which is recognised as the most popular approach 

to dynamic simulation modelling in the field of OR.  In the former, a DES model drives 

a display that represents the dynamic workings of the simulation.  In addition, VIS also 

allows a user to interact with the model in order to view statistics and not least, carry out 
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different experiments to better understand and/or improve the real-world system that is 

simulated.   

 

Due in no small part to the many credits given by VIS proponents, there have been 

several attempts to widen the scope wherein VIS can be applied.  An area where VIS 

research has taken an interest, and vice versa, is AI/KBS.  A review of AI/KBS 

collaborations with Simulation/VIS shows that the latter has been used to collect data in 

the form of example cases to facilitate machine learning.  This finding establishes VIS 

as a valid knowledge elicitation tool, and hence contributes to answering the first 

research question (Section 1.1).  Also, it provides an important basis to support further 

research on improving VIS as such a means.  Moreover, the review identifies a few 

notions on where or how it might be conducted. 

 

In the next chapter, the scene is being set for carrying out a study to find out how VIS 

can be improved as a knowledge elicitation tool, which essentially aims to answer the 

second research question in Section 1.1.  To begin, some basic terms along with the 

constructs that will be used for assessing ‘elicitation improvement’ are explicated.  

Then, the two ways in which VIS might be improved are suggested.  Together, these 

provide the premise for laying down the research propositions and framing the 

hypotheses.  Lastly, the methodology that will be used to test the hypotheses is outlined. 



 

4 Research Propositions, Hypotheses 

and Methodology 

 

A review of published literature on AI/KBS and Simulation/VIS collaborations in the 

last chapter shows that Simulation/VIS has been employed to collect example cases, 

with an intention to use them for building a knowledge base.  Notwithstanding, the 

research on using Simulation/VIS to elicit expert knowledge is still considerably sparse.  

This apparent paucity of literature suggests that there is still a lot of margin for 

developing its use.  In view of this void, a next step would be to find out how VIS can 

enhance its ability to elicit expert knowledge.   

 

A lead is found in the ‘V’ and ‘I’ of VIS.  However, before this lead is explored in more 

depth, it is helpful to first explain the elements that make up an example case collected 

from using a VIS model as a knowledge elicitation tool.  As well, the constructs that 

will be used for assessing ‘elicitation improvement’ in the set of example cases 

collected are identified.  Together, these provide the basis for laying down the research 

propositions and framing the hypotheses for testing in this thesis.  Finally, the 

methodology used to test the hypotheses is introduced.  Essentially, the scene is being 

set for answering the second research question in Section 1.1: How can VIS be adapted 

to make for a better knowledge elicitation tool? 
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4.1 COMPOSITION OF AN EXAMPLE CASE 

 

An example case collected during a knowledge elicitation session describes the scene 

that was recorded when the expert interacted with the VIS model.  Each example case 

thus collected is made up of two parts: a decision element and an attribute element.  On 

the one hand, the decision element is a set of decisions made by the expert when he 

interacts with the VIS model.  On the other hand, the attribute element is a 

corresponding set of attributes that describes the state in the VIS model when the 

interaction takes place. 

 

4.2 CONSTRUCTS FOR ASSESSING ‘ELICITATION 

IMPROVEMENT’ 

 

There are two aspects in which a knowledge elicitation process can be improved: 

effectiveness and efficiency.  Whilst there are three distinct views of elicitation 

effectiveness: decision fidelity, state space and case quantity; there is only one view of 

elicitation efficiency: collection rate.  These views are elaborated below. 

 

4.2.1 CONSTRUCT ONE: DECISION FIDELITY 

 

In their work on the KBI methodology, Robinson et al. (2001 and 2005) and Alifantis 

(2006) carried out a collaborative study with Ford Motor Company to devise a VIS-

based means for identifying and improving human decision-making.  In their 

conclusions, the authors recognise that the experts may take less realistic decisions in a 

simulated environment, as they are quite likely to take greater risks when there are no 
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real consequences to their decisions.  This observation relates to the proximity to reality 

of the decisions elicited from experts, and provides the basis for the first view of 

elicitation effectiveness.  Therefore, an example case is considered to have a high 

degree of decision fidelity if its decision element bears close resemblance to the decision 

that the expert would have made in a reality described by the corresponding attribute 

element. 

 

4.2.2 CONSTRUCT TWO: STATE SPACE 

 

Negnevitsky (2005) states that ‘a training set (of example cases) must cover the full 

range of values for all inputs’.  This criterion relates to the adequacy of the range of 

situations from which the example cases are collected for training a knowledge base, 

and provides the basis for the second view of elicitation effectiveness.  Therefore, given 

the definition for attribute element in Section 4.1, a set of example cases is considered 

to have a large state space if their attribute elements collectively cover a wide range of 

values for all attributes. 

 

4.2.3 CONSTRUCT THREE: CASE QUANTITY 

 

Moreover, Negnevitsky (2005) also states that ‘the training set (of example cases) has to 

be sufficiently large’.  This criterion relates to the size of the set of example cases 

collected for training a knowledge base, and provides the basis for the last view of 

elicitation effectiveness.  Therefore, case quantity refers to the total number of example 

cases recorded in a knowledge elicitation session.   
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4.2.4 CONSTRUCT FOUR: COLLECTION RATE 

 

Finally, in Robinson et al. (2001 and 2005) and Alifantis (2006), the authors also 

recognise that the experts may find it a very laborious and time-consuming experience 

to provide a full set of data, comprising of a very large quantity of wide-ranging 

decisions.  As such, besides providing additional support for the second and third views 

of elicitation effectiveness, this observation relates to the expediency of the elicitation 

process in real-time, otherwise known as ‘elicitation efficiency’.  Therefore, collection 

rate is the number of example cases recorded per unit of real-time in a knowledge 

elicitation session.  In this thesis, a unit of real-time is taken to be one minute. 

 

4.3 FACTORS FOR IMPROVING VIS AS A KNOWLEDGE 

ELICITATION TOOL 

 

As the ‘V’ and ‘I’ of VIS suggest, there are two main factors that differentiate VIS from 

other forms of Simulation: (1) the Visual representation that is used to illustrate the 

dynamics of the simulation model; and (2) the facility that encourages and enables a 

user to Interact with the simulation model and experiment with different scenarios 

(Hurrion, 1986; O’Keefe and Pitt, 1991).  This visual interactive approach has ceased 

making Simulation a black-box technique, and opened up the method for management 

to look and experiment inside.  With this approach, Simulation becomes a transparent-

box that has greatly relieved the problems of communication and model credibility 

(Hurrion, 1980 and 1986).  Here, these two factors also provide the initial directions on 

where the investigation on improving VIS’ ability to elicit expert knowledge might 
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begin.  These factors, together with the associated research propositions being 

investigated in this thesis, are discussed further below. 

 

4.3.1 FACTOR ONE: VISUAL REPRESENTATION 

 

‘A picture is worth a thousand words’ is an adage, which refers to the idea that complex 

stories can be told with just an image, or that an image may be more influential than a 

substantial amount of text (for instance, if-then production rules used in DES).  Indeed, 

visualisation is thought to have elevated DES to another level, with Hurrion (1986) 

extending the adage to ‘a colour video sequence is worth a thousand pictures, whilst an 

animated interactive model is worth a thousand video sequences’.  Two perspectives to 

the concept of visual representation are discussed below: mode and dimension.   

 

Visual representation mode 

 

Hurrion (1986), and O’Keefe and Pitt (1991) have identified two forms of dynamic 

visual representation commonly used in VIS packages: schematic/iconic animation 

(iconic) and logical/dynamically changing graphic (graphical).  With an iconic 

representation, operational characteristics of the system under study are mimicked.  

Here, icons representing entities move through the display as time progresses.  This is 

the mode of visual representation used by most VIS applications.  On the other hand, 

with a graphical visual representation, logical representations such as bar charts, time 

series and histograms are used to summarise and display graphically the performance 

measures of the system as time progresses (Liang et al., 1992). 
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O’Keefe and Pitt (1991), and Bell and O’Keefe (1995) conclude that users have a strong 

preference for either the iconic or graphical visual representation, over the third mode of 

visual representation – a listing of performance measures (not mentioned above, and 

generally not used in VIS packages).  O’Keefe and Bell (1992), and Bell and O’Keefe 

(1994 and 1995) go further to conclude that iconic representation usage had consistently 

been related to a feasible (as opposed to correct or optimal) solution that was an 

improvement over that considered prior to using VIS.  From their conclusions, it can be 

inferred that decision makers have more confidence in solutions obtained from using 

iconic representation.   

 

In addition, Chau and Bell (1995) also conclude that more effective and efficient 

decision-making takes place when a visual display shows a ‘paired systems’ iconic VIS 

model which allows the comparative performance of two systems to be observed, in 

contrast with one that only shows a ‘single system’ iconic VIS model at any time.  The 

authors further conclude that in any case, the use of a VIS model promotes better 

decision-making than a traditional (non-iconic and non-graphical) simulation model 

embedded in an interactive interface does. 

 

These findings suggest that a simulation model with a visual representation is a superior 

decision-aiding tool to one without a visual representation in the contexts studied.  

Moreover, they show that VIS with an iconic representation is a better decision-aiding 

tool than VIS with other forms of visual representation.  As such, it is fair to claim that 

VIS with an iconic representation would make for a stronger candidate for eliciting 

expert knowledge than other forms of Simulation.  Nonetheless, one might still ask how 

an iconic representation can be improved further to enhance its ability to aid decisions 
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or elicit expert knowledge.  As previously mentioned in Section 3.4, Tan (2003) has 

reported some evidence in support of VR as a suitable technology for collecting data.  

This springs up the idea to investigate whether an enhanced visual fidelity is one such 

means. 

 

Visual representation dimension 

 

Ideally, it seems desirable to present information on the visual display with 

characteristics similar to the objects that are perceived in a real-world environment.  An 

expert can then use the same processes that he uses when perceiving objects in the real-

world environment.  However, generating real-time images incurs a high cost.  

Moreover, such a degree of realism is often unnecessary when considered against the 

actual needs of an application (Preece, 1994).  Using a flight simulator as an example, it 

is less important to deceive pilots into believing that they are flying through real terrain 

than it is to provide all the necessary information in the right format to allow them to 

function as if they are in a plane. 

 

Hence, the research will not be about improving VIS models to look as lifelike as 

possible.  Instead, the focus is on the efficacy of different representational dimensions in 

terms of the function(s) they are intended to support.  With respect to the visual 

representation dimensions that are currently available in COTS VIS packages, the 

influence of a low-level 2-Dimensional (2D), mid-level 2½-Dimensional (2½D), and 

high-level 3-Dimensional (3D) representation will be studied4.  Here, a 2½D 

representation consists of three-dimensional icons displayed against a plain, two-
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dimensional background, with no perspective projection (where more distant objects are 

drawn smaller relative to those that are closer to the eye) or any other efforts at creating 

photo-realism (Wenzel et al., 2003; Akpan and Brooks, 2005a).  On the other hand, 3D 

representation consists of three-dimensional photo-realistic icons displayed against a 

three-dimensional photo-realistic background, with perspective projection.  In addition, 

a user is able to manipulate the view of the virtual environment by using a mouse.  In 

effect, a VIS model supported with a 3D iconic representation (3D-VIS) resembles a 

non-immersive VR system (Section 3.2). 

 

The empirical evidence showing that a simulation model with a 2D iconic 

representation is a better decision aid than one without a visual representation, or with a 

2D representation of another mode is given in the last section.  However, there is a 

dearth of empirical studies committed to comparing simulation models with 2D, 2½D or 

3D representations (Akpan, 2005; Akpan and Brooks, 2005a and b).  This apparent lack 

of empirical evidence is in spite of the many praises that practitioners often heap onto 

3D (over 2D) representations (Barnes, 1996 and 1997; Waller and Ladbrook, 2002).   

 

First and foremost, Barnes (1996) mentions that an animated VR world (Section 3.2) 

can provide a participant with an experience that appears quite realistic.  Further to this, 

the participant would be expected to develop a strong sense of involvement and 

participation if the VR world is interactive as well.  Barnes further adds that if the 

facility supporting the interactions is able to quickly reflect any changes made to the VR 

world in the behaviour of the animated VR world, then these interactions would parallel 

closely with those in the real world.  As an extension to Barnes’ view, it may be argued 

                                                                                                                                               
4 See Section 7.3 for illustrations of equivalent VIS screen shots in these three visual representation 
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that the decisions made by an expert during his interactions with a 3D-VIS model 

(which resembles a non-immersive VR system) in a knowledge elicitation session 

would bear the closest resemblance to those in the real world.  This would be followed 

by a less realistic 2½D-VIS model (VIS model with a 2½D iconic representation) and 

then the least realistic 2D-VIS model (VIS model with a 2D iconic representation).  

This argument leads to the first proposition in the thesis: 

Proposition 1 – A higher dimension of iconic representation would demonstrably 

improve the degree of decision fidelity in the example cases collected in 

a knowledge elicitation session. 

 

In addition, Barnes (1996, 1997) mentions that simulation with a 3D iconic 

representation allows for a better communication and visualisation of ideas and 

concepts to the users.  Moreover, the author argues that the use of high dimension 

representation makes it easier to understand what the simulation represents.  These 

sentiments are also echoed by other practitioners (Waller and Ladbrook, 2002; Akpan, 

2005; Akpan and Brooks, 2005b).  In a survey study with 57 usable responses, it is 

found that a majority of respondents agreed a 3D-VIS model enhances communication 

between the modeller and user better than a 2D-VIS model can (Akpan, 2005; Akpan 

and Brooks, 2005b).  Likewise, the authors also find that a majority of respondents 

thought it is easier to understand the system that is mimicked in a 3D-VIS model than in 

a 2D-VIS model.  This ease of understanding might explain another finding, where a 

majority of respondents opined it is easier to uncover inaccuracies in a 3D-VIS model 

than in a 2D-VIS model.  Along with the survey study, Akpan and Brooks (2005a) also 

                                                                                                                                               
dimensions.  
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conclude from an experiment that it is easier and more efficient to uncover inaccuracies 

in a 2½D-VIS model than in a 2D-VIS model.   

 

From the sentiments and empirical evidence above, it can be argued that the traits which 

are responsible for a 3D-VIS model’s ability to communicate, ‘explain’ the model and 

‘highlight’ model inaccuracies better might also improve its ability to assist an expert in 

identifying the occasions in a knowledge elicitation session, during which the expert 

needs to intervene and interact with the model.  Extending this argument, it may be 

suggested that these traits are strongest in a 3D-VIS model, followed by a 2½D-VIS 

model and then a 2D-VIS model.  As such, ceteris paribus, an expert would identify the 

greatest number of occasions to intervene when shown a 3D-VIS model, followed by a 

2½D-VIS model and then a 2D-VIS model.  This argument leads to the second 

proposition: 

Proposition 2 – A higher dimension of iconic representation would demonstrably 

increase the quantity of example cases collected in a knowledge 

elicitation session. 

 

Furthermore, Akpan (2005), and Akpan and Brooks (2005b) find out from their survey 

study that there is strong support to the claim that a 3D-VIS model increases a user’s 

confidence in the simulation results than a 2D-VIS model does.  This has the 

implication that a 3D-VIS model lends itself to greater model credibility and acceptance 

than an equivalent 2D-VIS model does.  However, the authors also find out that the 

respondents could not agree if a 3D-VIS model is a better decision aid than a 2D-VIS 

model.  Last but not least, the authors find out that a majority of respondents agreed it is 

more difficult and takes more time to build a 3D-VIS model than a 2D-VIS model.   
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A non-significant but nonetheless noteworthy feedback in their survey study also 

mentions that a 3D-VIS model’s run speed is slower than a 2D-VIS model.  In fact, the 

3D-VIS model’s run speed is found to vary inversely with the level of photo-realism 

and resolution of its graphics (Rehn et al., 2004).  This immediately calls the integrity of 

Proposition 2 into question, if it turns out to be true.  In this case, one might challenge 

that even if a larger quantity of example cases is shown to be collected from using a 3D-

VIS model (than a 2½D-VIS or 2D-VIS model) in a knowledge elicitation session, the 

phenomenon might be due to its slower run speed instead of its higher fidelity.  This 

doubt is predicated on the reasoning that a slower-running model would allow an expert 

more time to process the information from the simulation run and identify the occasions 

that require his intervention and interaction.  However, the same cannot be said of 2½D-

VIS versus 2D-VIS model, as their run speeds are not differentiable.  Recognising that it 

is not possible to determine that one dimension of visual representation is generally 

more efficient than any other dimensions, this leads to the third proposition: 

Proposition 3 – Different dimension of iconic representation would have different 

impact on the efficiency with which the example cases are collected in a 

knowledge elicitation session.  

 

4.3.2 FACTOR TWO: MODEL PARAMETERS 

 

Simulation experimentation is one of the main phases in any simulation study 

(Robinson, 1994).  To reiterate, the main objective of computer simulation is to 

facilitate experimentation for the purpose of better understanding and/or improving the 

real-world system that is mimicked in the model (Robinson, 2004; Banks et al., 2005).  
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During an experiment, alternative scenarios of the real-world system are often tested by 

running its VIS model with different combinations of values from various model 

parameters (Robinson, 2004; Pidd, 2005).  The purpose is to search the solution space, 

which is made up of all possible combinations of various model parameter values, for a 

scenario that meets the objective(s) of the simulation undertaking.  However, as the 

authors have also pointed out, not all experiments are carried out with a purpose to look 

for an optimal solution to some objectives.  On some occasions, experiments are 

conducted to develop a better understanding of the real-world system. 

 

Bearing the second purpose in mind, the scenes developed in an experiment can range 

from mimicking the real-world system under normal operating conditions to very 

extreme conditions, contingent on the choice of model parameter values.  It should be 

emphasised that a scene of extreme operating conditions does not necessarily represent 

a trying state of affairs.  Instead, it simply means that the scene has a low chance of 

occurring in the real world. 

 

Using the same principle applied in the second purpose for simulation experimentation, 

it is imagined that if the model parameters are adjusted such that the VIS model would 

develop more uncommon and extreme scenes, then it is very likely that the range of 

situations from which the set of example cases is collected in a knowledge elicitation 

session would be larger.  This thread of thought leads to the fourth proposition: 

Proposition 4 – Model parameters that are adjusted to develop more uncommon and 

extreme scenes would demonstrably increase the size of state space 

occupied by the example cases collected in a knowledge elicitation 

session. 
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Further to this, with more uncommon and extreme scenes being developed in a 

knowledge elicitation session, the reservation that Robinson et al. (2005) and Alifantis 

(2006) have on inundating and consequently boring the expert with vaguely similar 

scenes is cleared.  It can be argued that these scenes would offer the expert more 

interesting situations that would retain his attention and induce his intervention.  As 

such, ceteris paribus, the expert is expected to identify more occasions to intervene and 

interact with the VIS model.  Following this argument leads to the fifth proposition: 

Proposition 5 – Model parameters that are adjusted to develop more uncommon and 

extreme scenes would demonstrably increase the quantity of example 

cases collected in a knowledge elicitation session. 

 

Finally, the situations described in these uncommon and extreme scenes would 

presumably require more unconventional and perhaps difficult decision-making.  This 

implies that an expert might need more time to consider the attributes that surrounded 

and provoked each intervention, before making a decision and interacting with the VIS 

model.  In this way, the knowledge elicitation session would expect to take more time.  

However, the effect from the additional time required for decision-making on the 

overall elicitation efficiency might be under or over-compensated by the increase in the 

quantity of example cases collected, if Proposition 5 turns out to be true.  In other 

words, the overall effect on elicitation efficiency is not clear.  Hence, this reasoning 

leads to the last proposition: 

Proposition 6 – Different sets of model parameters would have different impact on the 

efficiency with which the example cases are collected in a knowledge 

elicitation session. 
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4.4 HYPOTHESES FRAMED FOR INVESTIGATING 

PROPOSITIONS 

 

To recapitulate, six propositions have been suggested for investigation in the last 

section.  They are based on two factors (visual representation dimension and model 

parameters) and four constructs (decision fidelity, state space, case quantity and 

collection rate).  The propositions are as reproduced below and used to frame six sets of 

hypotheses, which are expressed in terms of these research factors and constructs.  

These hypotheses will be tested using a case study in this thesis. 

 

4.4.1 HYPOTHESES RELATED TO VISUAL REPRESENTATION DIMENSION 

(FACTOR ONE) 

 

Three propositions have been suggested for investigating the effect of the visual 

representation dimension on decision fidelity, case quantity and collection rate.  They 

are used to frame the first three hypotheses for testing in this thesis. 

 

Hypothesis One 

 

Proposition 1 is put forward as below: 

A higher dimension of iconic representation would demonstrably 

improve the degree of decision fidelity in the example cases collected in 

a knowledge elicitation session. 
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Therefore, an overarching set of null and alternative hypotheses that corresponds to the 

proposition above can be stated as follows: 

)0(1H  : The degree of decision fidelity in the example cases collected in a knowledge 

elicitation session is not affected by the visual representation dimension used; 

)(1 aH  : The degree of decision fidelity in the example cases collected in a knowledge 

elicitation session improves as a higher dimension of visual representation is 

used. 

 

Hypothesis Two 

 

Proposition 2 is put forward as below: 

A higher dimension of iconic representation would demonstrably 

increase the quantity of example cases collected in a knowledge 

elicitation session. 

 

Therefore, an overarching set of null and alternative hypotheses that corresponds to the 

proposition above can be stated as follows: 

)0(2H  : The size of case quantity of a knowledge elicitation session is not affected by 

the visual representation dimension used; 

)(2 aH  : The size of case quantity of a knowledge elicitation session increases as a 

higher dimension of visual representation is used. 
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Hypothesis Three 

 

Proposition 3 is put forward as below: 

Different dimension of iconic representation would have different impact 

on the efficiency with which the example cases are collected in a 

knowledge elicitation session.  

 

Therefore, an overarching set of null and alternative hypotheses that corresponds to the 

proposition above can be stated as follows: 

)0(3H  : The collection rate in a knowledge elicitation session is not affected by the 

visual representation dimension used; 

)(3 aH  : The collection rate in a knowledge elicitation session is affected by the visual 

representation dimension used. 

 

4.4.2 HYPOTHESES RELATED TO MODEL PARAMETERS (FACTOR TWO) 

 

Similarly, three propositions have been suggested for investigating the effect of model 

parameters on state space, case quantity and collection rate.  They are also used to frame 

the next three hypotheses for testing in this thesis. 
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Hypothesis Four  

 

Proposition 4 is put forward as below: 

Model parameters that are adjusted to develop more uncommon and 

extreme scenes would demonstrably increase the size of state space 

occupied by the example cases collected in a knowledge elicitation 

session. 

 

Therefore, an overarching set of null and alternative hypotheses that corresponds to the 

proposition above can be stated as follows: 

)0(4H  : The size of state space occupied by the example cases collected in a 

knowledge elicitation session is not affected by the model parameters used; 

)(4 aH  : The size of state space occupied by the example cases collected in a 

knowledge elicitation session increases as model parameters are adjusted to 

develop more uncommon and extreme scenes. 

 

Hypothesis Five 

 

Proposition 5 is put forward as below: 

Model parameters that are adjusted to develop more uncommon and 

extreme scenes would demonstrably increase the quantity of example 

cases collected in a knowledge elicitation session. 

 

Therefore, an overarching set of null and alternative hypotheses that corresponds to the 

proposition above can be stated as follows: 
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)0(5H  : The size of case quantity of a knowledge elicitation session is not affected by 

the model parameters used; 

)(5 aH  : The size of case quantity of a knowledge elicitation session increases as model 

parameters are adjusted to develop more uncommon and extreme scenes. 

 

Hypothesis Six 

 

Proposition 6 is put forward as below: 

Different sets of model parameters would have different impact on the 

efficiency with which the example cases are collected in a knowledge 

elicitation session. 

 

Therefore, an overarching set of null and alternative hypotheses that corresponds to the 

proposition above can be stated as follows: 

)0(6H  : The collection rate in a knowledge elicitation session is not affected by the 

model parameters used; 

)(6 aH  : The collection rate in a knowledge elicitation session is affected by the model 

parameters used. 

 

4.5 METHODOLOGY USED FOR TESTING HYPOTHESES 

 

At the outset, it is helpful to determine the research approach to be used in the 

investigation.  Following this, a methodology for testing the hypothesis is then worked 
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out.  It should be mentioned at this point that a case study based on a real-world system 

with experts making real decisions will be used to support the investigation. 

 

In a nutshell, the propositions are trying to establish the probable causal links between 

the factors and the constructs.  Ideally, this would entail an investigation where cause 

and effect are isolated and studied.  In this respect, an experimental research approach is 

chosen to lead the investigation.  Field and Hole (2006) explain an experimental 

research as a mode of research where experiments are designed and executed.  In these 

experiments, the causal variables (i.e. the factors, in this case) will be manipulated to 

study their effects on some variables of interest (i.e. the constructs, in this case), whilst 

all other confounding variables are controlled.  

 

Keeping the research approach to be used in mind, a methodology is then developed.  

Adopting Weitzel and Kerschberg’s (1989a and b) philosophy to use flexible 

‘processes’ instead of sequential ‘phases’ to describe the methodology, the investigation 

will be applying one with eight processes.  They are:  

i. Understanding the case study; 

ii. Designing the experiment; 

iii. Building the VIS model; 

iv. Assessing the VIS model; 

v. Devising the measures for evaluating the four constructs; 

vi. Collecting data; 

vii. Analysing data; and finally 

viii. Discussing the results. 
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These processes are flexible because they can be activated, deactivated and reactivated 

as necessary (Section 2.3.2).  It is stressed that these processes are not entirely 

sequential.  Some processes are independent of the others and can be activated in 

parallel with them.  Moreover, some working-in-progress processes may be deactivated 

(albeit not always necessary), if additional information is required from their preceding 

processes.  Consequently, the preceding processes will be reactivated and so forth, thus 

forming an iteration of activities.  A framework depicting the relationships between the 

processes is provided in Figure 4.1. 

 

The methodology begins with gaining an in-depth appreciation of the case study 

(process i).  This includes finding out about the physical and logical design of the real-

world system, on which the case study is based upon.  In addition, the decisional roles 

assumed by the experts working in the system are also determined.  Further to this, the 

types of decisions that the experts make regularly in the course of their work, and the 

information used by them to make these decisions are identified.  Last but not least, the 

experts’ commitment to participate in the investigation is also secured. 
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i. 
Understand case study 

iii. 
Build VIS model 

iv. 
Assess VIS model 

ii. 
Design experiment 

v. 
Devise measures 

vi. 
Collect data 

vii. 
Analyse data 

viii. 
Discuss results 

 

Figure 4.1: A framework depicting the research methodology 

 

With the above information in hand, three independent processes can be activated 

concurrently.  These processes are essentially equivalent to the when, how and what of 

data collection.  Firstly, using the hypotheses set out above and information pertaining 

to the experts’ commitment, an experiment is designed and a tentative schedule for the 

knowledge elicitation sessions is drawn up in advance (process ii).  Secondly, a VIS 

model of the real-world system is built and adapted to record the experts’ decision-

making episodes during the knowledge elicitation sessions (process iii).  If more 
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information is needed to complete the model, then the previous process of information 

gathering (i.e. process i) is reactivated to fill the gap.  This process is only deactivated 

after the missing information is gathered.  In the meantime, the modelling work may 

stop, if it cannot continue without the missing information, and recommence when the 

missing information is gathered.  Once the model is deemed to be complete, the next 

process of assessing it with a few experts is activated (process iv).  During these 

assessments, all appropriate observations made by the modeller and feedback furnished 

by the experts will be noted and used to fine-tune the model, before subjecting it to 

another session of assessments.  In effect, this series of activation, deactivation and 

reactivation between the three processes of understanding the case study, building and 

assessing the VIS model serve to refine the latter iteratively.  Thirdly, measures are 

devised to evaluate the four constructs that are used for assessing elicitation 

effectiveness and efficiency (process v).  These measures are conceptualised initially as 

if all data needs can be met by the real-world system and the knowledge elicitation 

sessions.   

 

Having designed the experiment, built and assessed the VIS model, and devised the 

necessary measures, the process of data collection is activated (process vi).  Here, two 

types of data are being collected: historical data from the real-world system and 

example cases from the experts’ interactions with the VIS model during the knowledge 

elicitation sessions.  If it is realised that certain historical data that is required for 

computing the measures cannot be obtained, or that the experts cannot afford the time to 

participate in all the knowledge elicitation sessions that are originally planned, then the 

process of devising measures (i.e. process v) will be reactivated to circumvent this 

problem.  Eventually, alternative measures based on data that can be collected are 
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devised to replace those unviable measures.  Although not as extensive as above, this 

series of activation, deactivation and reactivation between the two processes of 

collecting data and devising measures also serve to refine the measures iteratively.  

Subsequently, these alternative measures will lead to a new process of data collection 

being activated, on top of the original process that is activated earlier. 

 

Following the completion of the data collection process(es), the historical data and 

example cases collected are used to compute the measures for testing the hypotheses 

framed in Section 4.4 (process vii).  Finally, the results from the analysis are discussed 

in the last process (process viii). 

 

4.6 CONCLUSION 

 

Six propositions have been suggested for investigation in this chapter.  They are based 

on two experimental factors (visual representation dimension and model parameters) 

and four constructs (decision fidelity, state space, case quantity and collection rate).  On 

the one hand, the factors are identified for their potential to improve VIS’ ability in 

eliciting expert knowledge.  On the other hand, the constructs are conceived to assess 

elicitation effectiveness and efficiency.  In essence, the propositions call for an 

investigation into the postulated causal links between the factors (causes) and constructs 

(effects) as organised in Table 4.1. 
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Cause Effect 

Visual representation dimension 
(2D, 2½D and 3D) 

⋅ Decision fidelity 
⋅ Case quantity 
⋅ Collection rate 

Model parameters  
(Unadjusted and Adjusted) 

⋅ State space 
⋅ Case quantity 
⋅ Collection rate  

Table 4.1: Postulated cause and effect relationships 

 

These propositions are then used to frame the hypotheses, which will be tested with the 

help of a case study.  In addition, the methodology employed to test the hypotheses is 

also outlined.  Adopting Weitzel and Kerschberg’s (1989a and b) philosophy to use 

flexible ‘processes’ to describe the methodology, it comprises of eight processes that 

can be activated, deactivated and reactivated as necessary.  The details and outcomes of 

all work carried out in each process are provided in the subsequent chapters.  They are: 

understanding the case study (process i – Chapter 5), designing the experiment (process 

ii – Chapter 6), building and assessing the VIS model (processes iii and iv – Chapter 7), 

devising the measures for evaluating the four constructs (process v – Chapter 8), 

collecting data and analysing the data (processes vi and vii – Chapter 9 and 10), and 

finally discussing the results (process viii – Chapter 11).  Together, the work performed 

in these processes contributes to answering the second research question (Section 1.1).



 

5 A Case Study: Ford Puma Diesel 

Engine Hot-test Operations 

 

The hypotheses in this thesis will be tested using a real-world case study set in a Ford 

Motor Company (Ford) engine assembly plant located in Dagenham, East London.  The 

case study looks at the hot-test operations of the Puma diesel engine (a named line of 

engines) assembly line, wherein a team of dedicated experts monitor and manage the 

stream of engines passing through it.  This chapter relates to the first process of the 

methodology outlined in the last chapter, which is to gain an in-depth understanding of 

the case study.   

 

Whilst it is known at the beginning that having a clear picture of the case study is an 

essential step in the investigation, it is also realised later that gaining an appreciation of 

the decisional role played by the experts is pivotal in prescribing the way that the VIS 

model should go about eliciting expert knowledge.  Further to this, the decisions that the 

experts make regularly in the course of their work, and the information used by them to 

make these decisions are also identified.  Last but not least, the experts’ commitment to 

participate in the investigation is secured.  The work carried out in this process and its 

findings are described in detail below. 
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5.1 DISCOVERING THE HOT-TEST OPERATIONS 

 

The purpose of this first process is to lay the groundwork for the investigation.  To 

begin, there is a need to gain a high-level understanding of the entire Puma diesel 

engine assembly line and the circumstances in which an expert is required to make 

decisions.  Also, the decision and attribute variables that compose the decision-making 

process are identified.  In effect, this process is akin to the ‘broad and shallow’ phase 

suggested by Barrett and Edwards (1995), where the priority is to extend the breadth of 

background information as wide as feasible.  As no technique alone is sufficient to elicit 

all kinds of information (Rugg et al., 2000; Rugg et al., 2002; Coffey and Hoffman, 

2003), any techniques that complement each other in gaining such a broad overview 

will be used.  The techniques used in this process are document analysis, unstructured 

and semi-structured interview, and observation interview. 

 

First and foremost, paper documents like plant layout, versatility charts and log sheets 

are reviewed to gain a quick introduction to the hot-test operations.  The plant layout is 

used to locate the hot-test operations in the context of the entire engine assembly line.  It 

shows the activities before an engine enters and after the engine leaves the hot-test 

operations.  In addition, it also provides a record of the physical entities that make up 

the engine assembly line, including the hot-test operations.  Versatility charts are used 

to provide information on manpower status of the hot-test operations.  They show the 

responsibilities that each hot-test person in every shift is qualified to assume.  This 

information is especially useful when the experiment is being designed in the next 

process (Chapter 6).  Last but not least, log sheets are used to provide clues on the types 

of information that might be used to monitor the hot-test operations.  An instance of a 
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useful log sheet is one that records the number of engines that had been tested in each 

hot-test cell on an hourly basis.  

 

Next, informal interviews are conducted with the experts to collect any other pertinent 

undocumented information, and then to clarify any queries that are formed after 

reviewing the documents and preliminary interview materials.  Moreover, conducting 

these interviews in an informal setting also helps to create opportunities for establishing 

good rapport with the experts, whose co-operation in subsequent knowledge elicitation 

sessions might be crucial.  Initially, unstructured interviews are used where the experts 

are given the freedom to cover topics that they deem fit.  It is because at this early stage, 

a person who is not familiar with the hot-test operations will not have enough 

background information to ask specific questions (as in structured interviews), or even 

work to cover a list of topics (as in semi-structured interviews) in an interview session.  

After a few sessions of unstructured interviews, sufficient information should have been 

collated from both documents and interview materials to form a clearer picture of the 

hot-test operations.  At this point, a few queries may have surfaced, and these are 

answered via another few rounds of semi-structured interviews. 

 

Finally, observation interviews are conducted as a ‘catch-all’ attempt to collect 

additional information that is neither documented nor conversed in earlier efforts.  Here, 

the experts’ activities in the hot-test operations are observed and recorded.  If there are 

any queries in respect of the observations made, they will be clarified with the experts at 

the first instance.  These queries will range from the reasons behind the observed 

activities to the consequences as a result of them.  In this way, a rough idea of the 

experts’ decision-making strategies is conceived.  In addition, questions regarding the 
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physical and logical layout of the hot-test operations may also be asked.  The latter 

information is especially important in the next process of building a VIS model of the 

hot-test operations.  The aim of this ‘observe-query-observe’ activity sequence is to 

verify any assumptions that are made during the document analysis and interview 

efforts, and to reinforce one’s understanding. 

 

5.2 FINDING ONE: PHYSICAL AND LOGICAL LAYOUT OF THE 

HOT-TEST OPERATIONS 

 

As mentioned above, the case study is set in a Ford engine assembly plant in 

Dagenham, East London.  It is responsible for assembling an assortment of engines, a 

group of which is labelled as the Puma diesel engines.  The operations to assemble 

Puma diesel engines are carried out along two main assembly lines known simply as 

Assembly Line A and B.  The assembly operations start on Assembly Line A and 

continue onto Assembly Line B.  At the end of Assembly Line B, the assembled engines 

are loaded onto the hot-test operations, where they are filled with fuel and run to test 

their build quality.  If the engines meet the standards required to pass the hot-test, they 

are then sent to the Ultra-Violet (UV) booth to inspect for leakages before being 

dispatched to the After Test Dress (ATD) operations for some final touch-up and 

shipping out. 

 

The case study used in this thesis is based on the hot-test operations that follow the 

assembly operations in Assembly Line B.  A schema of the hot-test operations is shown 

in Figure 5.1.  The hot-test operations are made up of 20 pairs of hot-test cells and 

waiting stands (represented by the blue boxes), one path control panel (pink box), ten 
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cell/stand control panels (yellow boxes) and a set of conveyors (black lines with arrows 

to denote directions of conveyor movement). 

 

Broadly, assembled engines will arrive from Assembly Line B at the top of the schema, 

and enter the hot-test operations after being loaded onto the hot-test platens (metal 

pallets).  A picture of a (loaded) platen is displayed in Figure 5.2.  Upon reaching 

Junction J, these untested engines will be sent either along the path on the right (via 

Conveyor B, D, F and E) or straight down (via Conveyor C and E).  The actual path 

taken by them is controlled by the qualified hot-test personnel. 
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Figure 5.1: A schema of the hot-test operations 
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Figure 5.2: A platen (left) and a platen loaded with an engine (right) 

 

Regardless of the path taken, an untested engine will enter the nearest vacant hot-test 

cell or stand, provided the vacant cell or stand is not switched off.  When an occupied 

hot-test cell has completed hot-testing the engine inside it, the tested engine will exit the 

cell and an untested engine from the adjacent stand will enter the cell for testing.  A 

snapshot that shows a tested engine preparing to exit a hot-test cell, whilst an untested 

engine waits to enter from an adjacent waiting stand is displayed in Figure 5.3.  If there 

is no untested engine on the adjacent stand, then the vacant cell will wait for the next 

untested engine that comes along the conveyor.  As an illustration, the order of 

cell/stand by which an untested engine at Junction J that is sent along the path on the 

right will try to enter is Cell 9, Stand 9, Cell 11, Stand 11 and so on.  The eventual point 

of entry is the first vacant and switched-on cell/stand in this order that the untested 

engine comes across as it travels along the conveyor.  Albeit this defies commonsense, 

an untested engine will enter Stand 9 even if Cell 11 is vacant.  Similarly, the order of 

cell/stand considered by an untested engine sent straight down from Junction J is Cell 7, 

Stand 7, Cell 6, Stand 6 and so on.  In this way, the untested engines are assigned to one 
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of the 20 hot-test cells, where they are rigged to a testing machine and run for a few 

minutes.  Following the hot-test, defective engines are sent to a repair station for 

rectification (via Conveyor A4 and A2), whilst engines that passed the hot-test are sent 

to the ATD operations after a final inspection at the UV booth.  Defective engines that 

have been repaired are sent along Conveyor A3 to Junction J for re-assigning and re-

testing. 

 

 

Figure 5.3: A tested engine prepares to exit cell 13, whilst an adjacent untested engine 

waits to enter it 

 

The key decision maker or expert here is known as the switch operator, who is 

responsible for assigning untested engines to vacant hot-test cells.  His main objective is 

to maximise the number of engines that are tested and sent to ATD by the end of his 
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shift, through maintaining an efficient and smooth workflow with no bottlenecks.  In the 

meantime, he also aims to distribute the workload equitably among all hot-test cell 

operators, which entails manual rigging and de-rigging of engines onto/from the hot-test 

machines.  To aid him, the expert has access to a set of 21 basic switches comprising of 

a path control switch (on the path control panel), and 20 cell/stand control switches (on 

the cell/stand control panels).  The path control switch allows the expert to send 

incoming untested engines from Assembly Line B either to the path on the right of 

Junction J or straight down.  Alternatively, the expert may also use the same switch to 

opt for the automated cyclical mode of sending three engines to the right of Junction J 

followed by one straight down.  On the other hand, a cell/stand control switch allows 

the expert to either switch on or off a hot-test cell and its adjacent stand.  As only one 

cell/stand control switch is used for switching on or off both a hot-test cell and its 

adjacent stand concurrently, there are a total of 20 cell/stand control switches for the 20 

pairs of cells and stands. 

 

5.3 FINDING TWO: DECISIONAL ROLES OF THE HOT-TEST 

SWITCH OPERATORS (THE EXPERTS) 

 

Mintzberg (1973) breaks down management work into ten roles: monitor, disseminator, 

spokesperson, figurehead, leader, liaison, entrepreneur, disturbance handler, resource 

allocator and negotiator.  In addition, he realised that these roles can be arranged into 

three groups: informational, interpersonal and decisional.  The activities involved in 

these roles are as described by Boddy (2005) in Table 5.1. 
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Category Role Activity 

Informational 

⋅ Monitor 
 
 
⋅ Disseminator 
 
⋅ Spokesperson 

⋅ Seek and receive information, scan papers 
and reports, and maintain interpersonal 
contacts 
⋅ Forward information to others, send 
memos, and make phone calls 
⋅ Represent the unit to outsiders in speeches 
and reports 

Interpersonal 

⋅ Figurehead 
 
⋅ Leader 
 
⋅ Liaison 

⋅ Perform ceremonial and symbolic duties, 
and receive visitors 
⋅ Direct and motivate subordinates, train, 
advise and influence others 
⋅ Maintain information links in and beyond 
the organisation 

Decisional 

⋅ Entrepreneur 
 
⋅ Disturbance handler 
 
 
⋅ Resource allocator 
 
⋅ Negotiator 

⋅ Initiate new projects, spot opportunities, 
and identify areas of business development 
⋅ Take corrective action during crises, resolve 
conflicts amongst staff, and adapt to 
external changes 
⋅ Decides who get resources, schedule, 
budget, and set priorities 
⋅ Represent department during negotiations 
with unions, suppliers, and generally defend 
interests 

 

Table 5.1: Mintzberg’s ten management roles (Boddy, 2005) 

 

Under Mintzberg’s (1973) classification, four management roles are recognised to 

assume a decisional nature.  They are those of an entrepreneur, disturbance handler, 

resource allocator and negotiator.  Boddy (2005) describes an entrepreneurial role as 

one where the managers initiate change within the organisation.  They see opportunities 

or problems and create projects to deal with them.  Managers play this role when they 

introduce a new product or create a major change programme.  Managers play the 

disturbance-handler role when they deal with problems and changes that arise 

unexpectedly during daily routine.  This includes taking corrective actions during 

operational crises and resolving conflicts among subordinate staff.  In the resource 

allocator role, managers have to choose among competing demands for money, 
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equipment, personnel and perhaps their time.  Lastly, managers play the negotiator role 

when they have to reach agreement with other parties on whom they depend. 

 

The switch operators in the hot-test operations, who are the experts in the case study, 

play two roles.  They are mainly resource allocators, and occasionally disturbance 

handlers.  From the description of their responsibility in the last section, it is quite 

evident that they are primarily resource allocators.  However, they also assume the role 

of disturbance handlers every now and then.  For instance, as the hot-test operations has 

been around for at least 15 years at the time of this investigation, the conveyor-and-

platen system is not as free of problems as it used to be.  It is not uncommon for platens 

to be misaligned and stuck at conveyor intersections several times during a shift.  In this 

case, an expert would expect to stop his regular tasks and attend to the stuck platens as 

soon as possible.  In another instance, there might be a stream of untested engines that 

has just entered the hot-test operations, which need to be shipped out of the engine 

assembly plant urgently.  In this case, these untested engines will be given the highest 

priority in the hot-test operations.  Hence, the expert would expect to put aside his usual 

modus operandi for assigning engines to hot-test cells, and focus on testing these 

engines at the earliest opportunity available.  

 

5.4 FINDING THREE: MAKE-UP OF THE EXPERTS’ DECISION-

MAKING PROCESS 

 

In general, there are two groups of diesel engines of different capacity that are being 

assembled in the Puma engine assembly line at the time of this investigation.  The 

capacities are 2 litres (2l) and 2.4 litres (2.4l).  As mentioned earlier, when newly 
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assembled and untested engines first enter the hot-test operations at Junction J in Figure 

5.1, an expert can decide to send them either to the path on the right of Junction J (via 

Conveyor B, D, F and E) or straight down (via Conveyor C and E).  Alternatively, the 

expert may also use the same switch to opt for the automated cyclical mode of sending 

three engines to the right of Junction J followed by one straight down.  At this moment, 

the expert may use information on the quantity and type of engine on the conveyor, the 

type (2l versus 2.4l) of engine currently being or last tested in each hot-test cell and 

operational status of each hot-test cell to aid his decision.   

 

After deciding on the path that the engines will be dispatched, the expert has to decide 

where to assign each engine.  At this stage, the expert will execute his hot-test cell 

allocation plan by switching on/off various combinations of hot-test cells and their 

adjacent stands.  There are infinite different situations that may motivate the expert to 

carry out these series of switches.  At this moment, the expert may use the same set of 

information as above, as well as those on the type of engine parked on each waiting 

stand.  Finally, as the expert also aims to distribute the workload equitably among all 

hot-test cell operators, he may use information on the quantity of engines handled by 

each hot-test cell (and hence its operator) to bring his attention to any unintended 

allocation bias. 

 

The decisions that these experts make regularly in the course of their work, and the 

attributes that influence their decisions are summarised in Table 5.2.  The rationale 

behind why these decisions are made and attributes are used are illustrated further with 

two different scenes below, with frequent references made to Figure 5.1. 
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Decision Attribute 

⋅ Set path option at junction J to straight, 
left or automatic 

 
 
⋅ Switch hot-test cell/stand on or off 

⋅ Quantity of engines on each section of 
conveyor 
⋅ Type of engine on each section of 
conveyor 
⋅ Type of engine currently being/last tested 
in each hot-test cell 
⋅ Type of engine parked on each waiting 
stand 
⋅ Operational status of each hot-test cell 
⋅ Quantity of engines tested by each hot-
test cell operator 

 

Table 5.2: A summary of decision and attribute variables used in engine assignment 

 

5.4.1 SWITCHING OPERATIONS IN A STANDARD SCENE 

 

A standard scene in the hot-test operations is typified by an irregular flow of untested 

engines entering the hot-test operations.  A common sight from a standard scene is 

displayed in Figure 5.4.  This scene may be due to upstream problems such as a 

machine breakdown in Assembly Line B.  It may also be due to downstream problems 

such as a bottleneck in the ATD operations that results in a shortage of empty platens 

(unloaded of tested engines), which should otherwise be released for loading untested 

engines from Assembly Line B into the hot-test operations.  As a result, there are more 

vacant hot-test cells that are idling than there are untested engines to fill them.  Bearing 

in mind that an expert’s main concern is to maximise the number of engines tested by 

the end of his shift, he will therefore try to keep as many operational hot-test cells 

occupied as possible.  In this case, the expert will try to get an untested engine to a 

vacant hot-test cell using the quickest means.  There are mainly two ways that the expert 

may achieve this. 
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Figure 5.4: A snapshot of a standard scene 

 

Firstly, the expert may decide to send incoming engines at Junction J towards vacant 

hot-test cells using the shortest route.  This will depend on the operational status of each 

hot-test cell, and the quantity of engines that is currently on the conveyor.  For instance, 

if the operational hot-test cells along Conveyor E are vacant whilst those along 

Conveyor B and F are fully occupied, and there are no untested engines travelling along 

Conveyor E, then the expert might decide to send incoming engines at Junction J 

straight down to Conveyor E via Conveyor C (instead of the longer route on the right 

via Conveyor B, D and F).   

 

Secondly, the expert may decide to switch off occupied hot-test cells, which precede 

those that are operational but vacant.  This will effectively disengage the waiting stands 



 A Case Study: Ford Puma Diesel Engine Hot-test Operations 97 

adjacent to the occupied hot-test cells without affecting the latter’s current operations.  

Such a move serves two purposes: (1) to eject the untested engines parked on these 

waiting stands so that they can be transferred to succeeding vacant hot-test cells; and (2) 

to prevent any oncoming untested engines from parking on these waiting stands so that 

they will bypass to succeeding vacant hot-test cells.  Again, this will depend on the 

operational status of each hot-test cell, and the quantity of engines that is currently on 

the conveyor.   

 

Extending the example above, assume a case where there are untested engines that are 

parked on the waiting stands along Conveyor B and F, and incoming engines from 

Assembly Line B are sparse.  Thus, the expert might find it quicker to transfer these 

untested engines to the vacant hot-test cells along Conveyor E by switching off all the 

waiting stands along Conveyor B and F. 

 

5.4.2 SWITCHING OPERATIONS IN A NON-STANDARD SCENE 

 

A non-standard scene in the hot-test operations is typified by a regular flow of untested 

engines entering the hot-test operations.  More often than not, this means that the hot-

test operations will be swarmed with both tested and untested engines.  A common sight 

from a non-standard scene is displayed in Figure 5.5.  Unlike in the previous scene, an 

expert here will not be worried with keeping operational hot-test cells occupied.  It is 

because there are more untested engines than there are hot-test cells available to test 

them.  Instead, the expert will try to maintain the engine type that is being handled by 

each operational hot-test cell.  For example, the expert would prefer to assign a 2l 

engine to a hot-test cell that is currently testing or has just tested a 2l engine.  This is to 
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minimise the amount of unproductive changeover time that is lost when a hot-test cell 

changes from testing one type of engine to another.  As such, there will be more time to 

test the engines, thereby addressing the expert’s main concern to maximise the number 

of engines tested by the end of his shift.  Moreover, this also serves to keep the hot-test 

operators happy as fewer changeovers imply less work.  Similarly, there are mainly two 

ways that the expert may achieve this. 

 

 

Figure 5.5: A snapshot of a non-standard scene 

 

Firstly, the expert may decide to send an incoming engine at Junction J onwards a path 

that he thinks is appropriate.  This will depend on where the 2l/2.4l engines are being 

tested in the hot-test operations, the operational status of each hot-test cell, the quantity 

and type of engine that are currently on the conveyor, and the type of engine that is 
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arriving at Junction J.  For example, if the expert has arranged for 2l engines to be tested 

along Conveyor B only, and 2.4l engines to be tested along Conveyor F and E, then 

contingent on the operational status of hot-test cells and quantity of untested 2.4l 

engines along Conveyor F and E, the next 2.4l engine that turns up at Junction J would 

be sent either to the path on the right (towards Conveyor F), or straight down (towards 

Conveyor E). 

 

Secondly, the expert may decide to switch on/off an appropriate combination of hot-test 

cells/stands.  Hence, in addition to the information that is taken into account above, the 

expert will also consider the type of engine that is currently parked on each waiting 

stand.  Extending the example above, assume a case where there is a 2l engine that is 

parked on a waiting stand and is adjacent to a hot-test cell that is currently testing a 2.4l 

engine. Thus, if there is a 2.4l engine travelling on the conveyor section that precedes 

this waiting stand, then the expert might switch it off (without affecting the current 

operations in the adjacent hot-test cell) to eject the 2l engine and switch it on again to 

receive the oncoming 2.4l engine.  The untested 2l engine that is ejected will then travel 

along the conveyor and enter the next hot-test cell or waiting stand that is available. 

 

5.5 PROFILES OF THE PARTICIPATING EXPERTS 

 

There was a total of ten hot-test personnel who are qualified to assign engines to hot-test 

cells for testing.  Unfortunately, only eight of them were able to commit themselves to 

the investigation.  Furthermore, their participation was subject to the management’s 

consent on a daily basis.  In order to maintain their anonymity, the experts are identified 

as Subject A, B, C and so on up to H.  Their profiles are as summarised in Table 5.3.  
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These are compiled by administering pre-experiment questionnaires, a copy of which is 

available in Appendix A. 

 

Experience (yes or no) 
Subject Age (years) 

Experience in 
switch operations 

(years) 
With 

computers 
With game 
consoles 

Visual score 
(%) 

A 
B 
C 
D 
E 
F 
G 
H 

40-49 
40-49 
50-59 
50-59 
50-59 
40-49 
40-49 
50-59 

6 
N/A 

8 
3 
6 
8 

<1 
6 

Yes 
Yes 
No 
No 
No 
Yes 
Yes 
No 

No 
Yes 
Yes 
Yes 
No 
Yes 
Yes 
No 

80 
80 
77 
72 
85 
83 
72 
72  

Table 5.3: A summary of the experts’ profiles 

 

All eight experts range from 40 to 59 years in age, with half of them (Subject A, B, F 

and G) in their 40s and the rest (Subject C, D, E and H) in their 50s.  Moreover, with the 

exception of Subject B, all other experts are reasonably experienced in engine 

assignment and are therefore eligible to help with the investigation.  Nonetheless, as 

Subject B is a team leader whose responsibility is to run the entire hot-test operations, 

which includes standing in as a switch operator occasionally, he is also deemed fit to 

help with the investigation. 

 

Further to this, the experts have been asked if they have any prior experience of using a 

computer or game console.  The purpose is to detect the experts’ comfort level with 

using the VIS model.  With the exception of Subject E and H, all other experts have 

claimed to have some form of experience with a computer or game console, and also 

professed to be competent at executing point-and-click actions using a mouse.  On the 

other hand, Subject E and H have declared to have no experience with a computer or 
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game console, and also expressed their doubts with using a mouse to navigate the cursor 

on the visual display.  In this respect, these experts will be provided with a brief session 

to orientate them with the mouse in addition to the VIS model to ease any potential 

awkwardness. 

 

Last but not least, the experts have also been asked to self-assess their learning style by 

rating themselves on 12 psychological questions adapted from Akpan (2005).  

Following this, a visual score is computed for each expert to indicate if he is a visual 

learner.  The latter is described as a person who learns better and faster from what he 

sees than from what he hears.  Bearing in mind that visual representation dimension is a 

factor that is being investigated, it is desirable that the experts are visual learners.  It is 

because a non-visual learner’s decision-making might not be affected by a change in 

visual representation dimension since he does not rely primarily on what he sees to 

ingest information.  Consequently, a bias might be introduced into the investigation 

unwittingly, and lead to an insignificant finding.   

 

To compute an expert’s visual score, his ratings for all the questions are summed and 

then converted into a percentage.  As a guideline, Akpan (2005) mentions that a person 

with a visual score of 80% and above is considered a major visual learner, whilst a score 

of between 60% and 80% means that he is a minor visual learner.  However, a visual 

score of less than 60% is regarded to have no significant connotation.  The visual scores 

in Table 5.3 range from 72% to 85%.  Although these scores indicate some differences 

in the eight experts’ ability to handle visual information, they are fortunately quite 

small.  More importantly, these scores are all above the 60% benchmark, which show 



 A Case Study: Ford Puma Diesel Engine Hot-test Operations 102 

that all of the experts are visual learners.  As such, the reservation of the experts biasing 

the investigation as a result of them not being visual learners is laid to rest5. 

 

5.6 CONCLUSION 

 

This chapter attempts to gain an understanding of the hot-test operations and its 

environment by using an array of complementary techniques.  These include document 

analysis, unstructured and semi-structured interview, observation interview, and 

questionnaire survey.  Following this, four main findings are delivered from this series 

of activities.  Firstly, the constituents of the hot-test operations, and how they relate to 

each other are determined.  Secondly, the decisional roles that the experts play in their 

daily undertakings are established.  Thirdly, the decisions that these experts made 

regularly in their daily undertakings, and the information used by them to make these 

decisions is also identified.  These three findings are essential to design and build a VIS 

model that is fit-for-purpose.  Finally, the eight experts who have committed themselves 

to participate in the investigation are profiled.  In particular, a visual score is computed 

for each expert to assess their suitability to help with the investigation. 

 

In the next chapter, a quasi-experiment for testing the hypotheses is designed and 

planned.  It belongs to the process of designing the experiment (process ii in Figure 4.1) 

and is the first of three concurrent processes described in the research methodology in 

Section 4.5, which follow this initial process of understanding the case study. 

                                                 
5 As long as all experts are visual learners, the actual differences between their visual scores are not 
important in light of the experimental design to be adopted in Chapter 6. 



 

6 Experimental Design 

 

An experimental research approach is identified in Section 4.5 as the best way to 

establish cause and effect directly and unambiguously.  In a true experimental research, 

Field and Hole (2006) explain that the causal variables are manipulated to study their 

effects on some variables of interest, whilst all other confounding variables are 

controlled.  However, the authors also remark that it is not always possible to conduct 

true experiments in real-world situations, as the order by which the experiment trials are 

carried out cannot always be randomised completely.  As a result, bias might be 

introduced systematically into the findings.  On these occasions, a quasi-experimental 

design is used instead.  Campbell and Stanley (1963) define a quasi-experimental design 

as one that shares the logic and many features of the experimental method, but does not 

have as much control over some, if not all, of the variables.  As a result, cause and effect 

are not isolated as conclusively as with a true experimental design, albeit any 

subsequent findings can still be reasonably reliable and valid (Kowalski and Westen, 

2005; Field and Hole, 2006). 

 

Using the information gathered in the last chapter, the repeated measures experimental 

design is chosen for the research and is discussed below.  Following this, the design of 

the VIS-based means for eliciting knowledge from the experts is also described briefly.  

Finally, whilst every care is taken and effort is made to ensure that a true and 

appropriate experimental design is used, randomisation is still compromised in an aspect 

of the experiment.  This means that a quasi-experiment is carried out instead.  As a 
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mitigating measure, some actions are taken to diminish the effects from the compromise 

and they are presented as well. 

 

6.1 REPEATED MEASURES EXPERIMENTAL DESIGN 

 

In the last chapter, it is identified that there are eight experts who are able and 

committed to help with the entire experiment.  However, their actual participation is 

subject to management consent on a daily basis.  In respect of a sample size as small as 

this, Field and Hole (2006) recommend that the repeated measures experimental design 

be used if it is feasible to do so.  The latter is also commonly known as the within-

subjects experimental design.   

 

In a repeated measures design, each expert will be exposed to all conditions of the 

experiment, where an experimental condition is defined as a unique combination of the 

factors being investigated.  As the same set of participants is used in all conditions, the 

issue of random differences between participants exposed to one condition and 

participants exposed to another condition is eliminated.  Since there are fewer sources of 

random variations that can obscure the effects of experimental manipulations, any 

differences between an expert’s scores measured under different conditions are expected 

to be due mainly to them.  Hence, Field and Hole (2006) comment that this design is 

generally more sensitive than others such as the between-groups design, and will be 

more likely to detect any differences that exist between conditions. 

 

As mentioned in an earlier chapter, there are two factors that are being explored in this 

thesis: visual representation dimension, and model parameters (Section 4.3).  On the one 
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hand, there are three treatment levels that are considered under visual representation 

dimension: 2D, 2½D and 3D.  On the other hand, there are two treatment levels that are 

considered under model parameters: unadjusted parameters and adjusted parameters.  

Hence, there are altogether six unique combinations that can be formed from these two 

factors.  This implies that each expert will be exposed to six different conditions under 

the repeated measures design.  They are: 

I. 2D representation with unadjusted parameters; 

II. 2D representation with adjusted parameters; 

III. 2½D representation with unadjusted parameters; 

IV. 2½D representation with adjusted parameters; 

V. 3D representation with unadjusted parameters; and 

VI. 3D representation with adjusted parameters. 

 

6.2 VISUAL INTERACTIVE SIMULATION IN GAMING MODE 

 

It is known at the beginning of the experiment that a VIS model will be used as the 

vehicle for eliciting knowledge from the experts.  Hence, there is a need to design one 

for serving this purpose.  Preece (1994) observes from early computer applications that 

well-designed applications always supported the interaction style that matched the user 

and task requirements relatively well.  For instance, form-fill applications such as the 

Microsoft Office Access are designed at enabling clerical workers to carry out repetitive 

data entry tasks with relative ease, by using the same format as actual paper forms and 

retaining the characteristics of manual data entry as much as possible.  Thus, a logical 

first step to design the VIS model is to reflect on the tasks that are executed regularly by 

the experts in the hot-test operations. 
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Using Mintzberg’s (1973) definitions, it is recognised in Section 5.3 that the experts in 

the case study are primarily resource allocators. Their responsibility entails assigning 

untested engines to vacant hot-test cells for testing, with the main aim to maximise the 

number of engines that are tested and sent to ATD by the end of their shifts.  Further to 

this, they also aim to distribute the workload equitably among all hot-test cell operators.  

Also, it is realised that the hot-test operations are essentially a non-active system, in the 

sense that it does not actively seek the experts’ interventions.  Instead, most of the 

interventions performed by the experts are more likely to be initiated by them in order 

to maintain an efficient and smooth workflow, and prevent bottlenecks from 

developing.  In other words, the experts’ interventions are usually not performed in 

response to actual problems in the hot-test operations, but are performed to pre-empt 

problems from occurring in the first place.  As these interventions are often ad hoc in 

nature, it is inherently difficult to pinpoint and replicate the exact circumstances that 

would stir the experts to action.  Hence, the VIS model used in the experiment needs to 

be designed in such a way that the experts are given the ability to observe the simulated 

hot-test operations as they do with the real-world hot-test operations, as well as the 

freedom to determine when an intervention should take place and what it should be.   

 

In view of the nature of the experts’ interventions, Flitman and Hurrion’s (1987), 

Hurrion’s (1991) and Liang’s et al. (1992) idea of using the VIS model in a gaming 

mode to elicit expert knowledge comes to mind.  It is because in doing so, the experts 

are provided with a quasi-realistic environment that allows them to behave and function 

in the same manner as in the real-world hot-test operations.  That is, the experts are able 

to monitor the workflow in the simulated hot-test operations and intervene as necessary.  
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As a consequence, through their interactions with the VIS model, it is imagined that the 

experts will be conveying their knowledge in the most unadulterated and faithful form. 

 

6.3 MITIGATING MEASURES TO IMPROVE THE QUASI-

EXPERIMENTAL DESIGN 

 

A common concern with the repeated measures experimental design is the possibility of 

carrying over practice and fatigue effects from one experimental condition to another 

(Field and Hole, 2006).  As each expert will be exposed to all of the conditions of the 

experiment, there is a real chance that his exposure to one condition can affect his 

performance in another.  It is because the expert, being human, can become fatigued, 

bored, better practised at playing the VIS-based game model, and so on.  In this way, a 

systematic effect might be introduced into the experiment that would interact with the 

experimental manipulations and confound the findings. 

 

In order to suppress the influence of these carry-over effects, Field and Hole (2006) 

recommend randomising the order of the different conditions that each expert will be 

exposed to.  The authors further suggest that if complete randomisation is not possible, 

then mitigating measures should be taken to reduce any systematic differences that are 

produced between conditions as much as possible.  However in the latter case, the 

experiment will no longer be considered a true experiment and become a quasi-

experiment that is described at the start of this chapter.  Unfortunately, the experiment 

encountered time constraint and managerial resistance that limited the order of 

conditions which each expert is exposed to.   
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In order to expedite the experiment, the experts are arranged to begin playing with any 

game model that is completed first.  Furthermore, as the management generally resists 

the notion of losing productivity as a result of the experts absenting themselves to 

participate in the experiment, steps are taken to avoid incurring the former’s wrath by 

not removing the experts from their work for an extended period of time.  Since the 3D-

VIS models are expected to run very slowly relative to the 2D-VIS and 2½D-VIS 

models, the experts are arranged to play the 3D game models only after they have 

played with the rest.  Consequentially, as the 2D game models are produced first, 

followed by the 3D and then the 2½D game models, the experts are arranged to start 

playing the 2D game models (for experimental condition I – 2D representation with 

unadjusted parameters; and II – 2D representation with adjusted parameters), followed 

by the 2½D game models (for experimental condition III – 2½D representation with 

unadjusted parameters; and IV – 2½D representation with adjusted parameters), and 

finally the 3D game models (for experimental condition V – 3D representation with 

unadjusted parameters; and VI – 3D representation with adjusted parameters).  The 

actual knowledge elicitation timeline for the experiment is produced in Table 6.1. 

 

Week Subject 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

A     I     II     III IV  V 
VI  

B  I 
II  III IV   V VI           

C I  II III   
    IV   V   VI    

D I  II III   
  IV     V VI      

E I   II   
  III  IV    V   VI   

F   I 
II  III    IV       V  VI  

G         I   II   III 
IV  V VI  

H          I   II   III 
IV  V VI 

I to VI denote the six conditions (Section 6.1) in the experiment  

Table 6.1: The actual knowledge elicitation timeline for the experiment 
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Due to the constraints explained above, the experiment is relegated to being a quasi-

experiment.  Following Field and Hole’s (2006) suggestion, two measures are taken to 

mitigate the situation.  Firstly, there is an implicit randomising element at work when 

the VIS model is used in a gaming mode.  The mechanism behind a running VIS model 

is such that the states of the model are highly interdependent.  Whilst each state of the 

VIS model is related to and reliant on the states that preceded it, it also has a 

repercussion on the states that follow it.  Hence, when an expert decides to intervene 

with a running VIS model, his interaction at that point will inevitably alter the original 

course of the running model.  This will produce a knock-on effect as a different course 

will present a different set of situations that evokes a different set of interventions from 

the expert.  In this way, it is unlikely that a state will reappear exactly in another 

condition, which diminishes the danger that the expert might carry over any practice 

effects from participating in one condition to the next. 

 

Secondly, the knowledge elicitation schedule has been planned so that an expert will not 

participate in more than two knowledge elicitation sessions in a fortnight.  In addition, 

there is always a lapse of at least two days between two sessions.  Although this 

arrangement prolonged the entire data collection process, it is necessary in order to 

minimise any disruptions that would be imposed onto the hot-test operations by not 

availing the expert to work.  Besides, this also allows the expert to have sufficient time 

to recover between sessions, and perhaps undo any learning gained in the previous 

session.  As a result, the probability that the expert will carry over any practice and 

fatigue effects from participating in one condition to the next is reduced even further. 
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6.4 CONCLUSION 

 

This chapter explains the reasons behind choosing a repeated measures experimental 

design, as well as employing the VIS model in a gaming mode to elicit expert 

knowledge.  In addition, it also justifies how the latter, together with a deliberate 

knowledge elicitation schedule, could diminish any practice and fatigue effects that 

might arise from the experiment and undermine its findings. 

 

In the next chapter, the details of how a VIS-based game model is built and assessed are 

described.  It belongs to the process of building and assessing the VIS model (process iii 

and iv in Figure 4.1) and is the second of three concurrent processes described in the 

research methodology in Section 4.5, which follow the process of understanding the 

case study (process i) in Chapter 5. 



 

7 Visual Interactive Simulation 

Game Model 

 

It has been assumed that if the experts are able to perform their decision-making 

intuitively in a familiar setup, then they might be able to convey their knowledge in an 

unadulterated and faithful form.  Thus, in light of the experts’ decisional role and its 

nature in the hot-test operations, it is determined in Section 6.2 that employing the VIS 

model in a gaming mode affords the most congenial setup to elicit their knowledge.  It 

is because in so doing, the experts are provided with a quasi-realistic environment that 

allows and encourages them to behave and function in the same manner as they do in 

the real-world hot-test operations. 

 

To give the VIS-based game model building process a kickstart, Ford supplied a current 

and detailed 2D-VIS model of its entire Puma diesel engine assembly line in Dagenham.  

A screenshot of Ford’s 2D-VIS model is displayed in Figure 7.1.  The VIS model was 

developed using WITNESS, a COTS VIS software from Lanner Group Limited.  As 

such, instead of building a new game model entirely from scratch, Ford’s existing 

model could be adopted as a base model, on which all game model building efforts will 

concentrate on adapting it for the experiment’s needs.  Since Ford’s model was in use 

then, it could be assumed that any worries on its currency were unfounded at the time of 

this research.  In the midst of the various adaptations, additional attention was paid to 

ensure that the information offered in the game models is consistent with those in the 

real world.  In other words, the game model should provide neither more nor less 
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information than what an expert is able to obtain in the real-world working 

environment. 

 

 

Figure 7.1: The original 2D-VIS model provided by Ford that spans the entire Puma 

diesel engine assembly line.  The hot-test and ATD operations (Model B) are as circled. 

 

Using the information gathered from the fact-finding process in Chapter 5, the base 

model provided by Ford was first reduced in size and modified to improve its utility.  

Next, the base model’s code was removed of any decision rules that were originally 

included to represent the experts’ presumed decision-making in the hot-test operations.  

Then, further work was done to incorporate a gaming facility into the base model, 

thereby transforming it into a game model.  Following this, six versions of the game 

model were produced, with one for each experimental condition defined in Section 6.1.  

Lastly, the game models were assessed to make sure that they were sufficiently accurate 

for the experiment’s purposes.  These procedures are described in the sections that 

follow. 
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7.1 GAME MODEL CONSTRUCTION 

 

7.1.1 ADAPTATIONS MADE TO IMPROVE THE BASE MODEL’S UTILITY 

 

The first impression of the base model in Figure 7.1 is its great expanse, as it spans the 

entire Puma diesel engine assembly line.  This makes the base model unwieldy to 

manage, and causes it to run quite slowly.  Consequently, the base model is expected to 

impede the data collection process, if it is used as the vehicle for eliciting knowledge 

from the experts.  As Robinson et al. (2001 and 2005) and Alifantis (2006) have 

conceded previously that the VIS-based knowledge elicitation experience is a laborious 

and time-consuming one for participating experts in Section 4.2.4, it is pertinent that 

every effort is made to expedite the data collection process as much as possible.  A 

means to do so is by improving the base model’s running efficiency. 

 

There are two options to improve the base model’s efficiency, and both of them resort to 

simplifying the base model whilst upholding its credibility.  The first option entails the 

removal of a big section of the base model that mimics the pre-hot-test operations (the 

assembly operations on Assembly Line A and B).   Then, a ‘black-box’ that uses an 

appropriate time delay to imitate the time spent by an engine on the assembly operations 

is created as a replacement (Robinson, 2004).  In short, model entities like engine parts 

are made to enter the black-box and leave after some time as assembled engines, instead 

of entering into a model of the assembly operations.  The time duration between 

entering and leaving the black-box is sampled from a distribution that is built from the 

actual times spent by model entities in the assembly operations section of the base 

model.  Alternatively, the second option entails the splitting of the original model into 
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two sub-models.  The first sub-model (Model A) will mimic the pre-hot-test operations, 

whilst the second sub-model (Model B) will mimic the rest of the engine assembly line.  

This includes the hot-test and ATD operations, which are circled in Figure 7.1.  Under 

this option, when Model A is run, its output data such as the times when model entities 

leave it are collected and written to a data file.  The contents of the data file are then 

used as input data for Model B when it is run, to re-create the engine entities at the 

times they left Model A. 

 

Out of the two options described above, the latter option was preferred and executed.  It 

is because the experts do not rely on any information from the assembly operations to 

aid their decision-making, and hence including the black-box into the game model will 

not serve any particular purpose in subsequent knowledge elicitation sessions.  

Nonetheless, there is a limitation for using Model A’s output data file contents in its 

original, raw form as input data for Model B.  As the arrival rate of assembled engines 

entering Model B will be used as an instrument for an experimental factor (model 

parameters), it is better to use the raw values to construct a pseudo-empirical 

distribution that can be manipulated easily to cater for different experimental conditions.  

The distribution constructed in this way is not considered a bona fide empirical 

distribution, as the raw values used are output data from another simulation model 

(Model A) and not historical data collected on the grounds of the engine assembly line. 

 

7.1.2 ADAPTATIONS MADE TO IMPROVE THE BASE MODEL’S LOGIC 

 

Following the changes made to improve the base model’s efficiency, the smaller base 

model’s code was scrutinised for its logic.  This is necessary because the base model is 
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originally built for a purpose different from the experiment.  In the real world, there are 

several operations that actually require human supervision and intervention in practice, 

but these had been substituted by some pre-set decision rules in the base model’s code.  

Hence, there is a need to remove these decision rules from the section of the base model 

that mimics the hot-test operations, and augment the model code with functions to allow 

for the experts’ intervention and interaction.   

 

Further to this, there is also a need to configure the base model to enable it to record the 

experts’ interactions as well as the situations in the base model when the experts 

intervene during simulation runs.  As has been explained in Section 4.1, the set of 

decisions made in each interaction together with the set of attributes that describes the 

situation when an intervention takes place will constitute an example case.  These 

decisions and attributes are represented by a mixture of counts, binary and categorical 

values.  In this experiment, each expert will play with six different game models, with 

one being built for each experimental condition.  The example cases that are recorded in 

these knowledge elicitation sessions will be used subsequently to test the hypotheses in 

Section 4.4. 

 

7.1.3 ADAPTATIONS MADE TO OPERATIONALISE THE GAME MODEL 

 

The game model is basically a VIS model equipped with a control bar for gaming 

purpose.  In a nutshell, the control bar enables the experts to access the newly-

incorporated functions mentioned in the last section.  As shown in Figure 7.2, it has a 

small window to inform on the current simulated time in the game model, as well as 

four groups of buttons that an expert would expect to use frequently whilst playing with 
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the game model.  These buttons are described below with references made to Figure 5.1 

when necessary. 

 

 

Figure 7.2: The control bar used to facilitate the experts’ interventions and interactions 

 

Firstly, there are two grey buttons at the top left corner of the control bar with either a 

square or triangle on them.  These are standard buttons provided in WITNESS, where 

the button with a square is used to pause the running game model, and the triangle is 

used to resume running the game model. 

 

Secondly, there is a button next to the small window on the top row, which features a 

red palm.  It mimics the action of blocking Sensor 1 in the hot-test operations (Figure 

5.1), which will then allow excess untested engines that are routed to Conveyor A6 to 

pass through Conveyor A5 and A3 for reassignment at Junction J. 

 

Thirdly, there are two blue buttons with either a downward or rightward arrow drawn on 

them.  These are buttons whose collective function mimics that of the path control 

switch (Figure 5.1), which the experts can access in the real world to perform their 

duties.  On the one hand, the button with the downward arrow is used for electing to 

send incoming untested engines from Assembly Line B straight down to Conveyor C.  

On the other hand, the button with the rightward arrow is used for electing to send the 

incoming untested engines to the path on the right of Junction J.  Alternatively, by 
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depressing both blue buttons, the option for the automated cyclical mode of sending 

three untested engines to the right of Junction J followed by one straight down is 

activated. 

 

Lastly, there are 20 yellow buttons labelled from ‘1C’ to ‘20C’.  These are buttons 

whose functions mimic those of the 20 cell/stand control switches described in Section 

5.2, which the experts can access in the real world to perform their duties.  In essence, 

these buttons are used for switching on or off the hot-test cells and their respective 

adjacent waiting stands.  The number on a button’s label corresponds to the label value 

of the hot-test cell that the button purports to control.  For instance, the yellow button 

with label value ‘1C’ is used to switch on or off the hot-test cell with label value ‘1’. 

 

7.1.4 ADAPTATIONS MADE FOR THE EXPERIMENTAL CONDITIONS 

 

After adopting Ford’s 2D-VIS model as a base model and subjecting it to a series of 

adaptations before transforming it into a game model fit for the experiment’s purposes, 

it was adapted for the final time to produce six different versions.  Each version was 

tailored to investigate a different experimental condition defined in Section 6.1.  These 

six experimental conditions are: 

I. 2D representation with unadjusted parameters; 

II. 2D representation with adjusted parameters; 

III. 2½D representation with unadjusted parameters; 

IV. 2½D representation with adjusted parameters; 

V. 3D representation with unadjusted parameters; and 

VI. 3D representation with adjusted parameters. 
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In summary, the 2D game model was first reproduced in two other visual representation 

dimensions: 2½D and 3D.  Next, these three game models were checked for their 

adherence with the information consistency principle.  Then, each game model was 

duplicated with a different set of model parameters.  In this way, six different game 

models were produced for the experiment to be carried out later.  These adaptations are 

described in more detail below. 

 

Adaptations related to visual representation dimension (Factor One) 

 

At this juncture, it should be pointed out that the game model that was adapted 

originally from the base model is already in 2D form.  It was then decided that the game 

model was used as-is for the 2D version of the game models.  To reproduce the 2D 

game model into the 2½D and 3D versions, specialist drawing applications were used to 

first reproduce each icon in the 2D game model in 2½D and 3D forms.  Then, the 

newly-drawn 2½D and 3D icons were used to produce the respective 2½D and 3D 

versions of the game model.  For illustration purpose, the original 2D icon and its 2½D 

and 3D equivalents for representing a hot-test cell, its adjacent waiting stand and a small 

section of conveyor are depicted in Figure 7.3. 
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Figure 7.3: (Clockwise, from top-right) The 2D, 2½D and 3D icons used in the game 

model to represent a hot-test cell, its adjacent waiting stand and a small section of 

conveyor 

 

On the one hand, CorelDRAW and Microsoft Paint are the two specialist drawing 

applications that were used to draw the 2½D icons.  Drawing these 2½D icons is a 

relatively straightforward task, as they are basically three-dimensional icons drawn 

against a plain, two-dimensional background with no perspective projection (where 

more distant objects are drawn smaller relative to those that are closer to the eye).  Also, 

there is no need to make these 2½D icons look photo-realistic.  After these 2½D icons 

were drawn, they were used to replace the 2D icons in the 2D game model to produce 

the 2½D game model. 

 

On the other hand, mantra4D (Lanner, 2007) is the specialist drawing application that 

was used to create the 3D icons.  In comparison, creating these 3D icons is a more 
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tedious task, as they are three-dimensional photo-realistic icons created against a three-

dimensional photo-realistic background with perspective projection.  Briefly, each 

component of an icon was initially drawn separate from one another, using appropriate 

materials, textures, and lighting and shading effects to make the component look photo-

realistic.  Then, the finished components were oriented and aligned for assembly to 

create the 3D icon.  After these 3D icons were created, they were linked with the model 

entities in the 2D game model using the ‘fast build’ facility in WITNESS VR (an 

integrated module in the WITNESS software – Lanner, 2007) to produce a 3D 

representation.  As such, the 3D game model is actually a 2D game model with an 

alternative 3D display. 

 

Adaptations made to preserve information consistency 

 

It had been determined at the outset that the game models should provide neither more 

nor less information than what an expert is able to obtain in the real-world working 

environment.  This principle essentially requires the game models to provide 

information that approximates to those received by the experts in the real world.  For 

instance, due to the physical layout of the hot-test operations and its size in the real 

world, an expert is not able to capture the entire hot-test operations within his peripheral 

vision.  In reality, it was observed that the expert can only monitor around half of the 

hot-test operations at a time.  As such, the appearances of the game models on the 

computer’s visual display were adjusted to imitate the limited peripheral vision of the 

human eye.  In both 2D and 2½D game models, this limitation was replicated by 

enlarging them to the extent that the computer’s visual display only reveals half of them 

at a time.  However, no adjustment was made to the 3D game models’ appearances.  It 
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is because they use perspective projection that makes distant objects to appear smaller 

relative to those that are closer to the eye.  In this way, the 3D game models mimic the 

experts’ limited peripheral vision by making objects that are very far away to appear so 

small that the experts cannot have a clear view of them.  The adjustments made to the 

2D and 2½D game models, and the visual effect of perspective projection in the 3D 

game models can be viewed in the catalogue of game model screenshots displayed in 

Section 7.3. 

 

In another instance, there is a three-colour signal light (green-red-yellow) outside each 

hot-test cell that is used for indicating its operational state.  An example of this signal 

light can be viewed at the top-middle of Figure 5.3.  On the one hand, when the light 

turns green, this signals that the hot-test cell has finished testing the engine inside it, and 

it is safe to de-rig the newly-tested engine.  On the other hand, when the light turns red, 

this signals that there is an emergency in the hot-test cell, or it has broken down and is 

being repaired at the moment.  Lastly, when the light turns yellow, this signals that an 

engine is being currently tested in the hot-test cell.  This piece of information was 

replicated in the game models by applying a colour scheme similar to the signal light on 

the hot-test cell icons.  In both 2D and 2½D game models, the colours of the hot-test 

cell icons will change in accordance with their respective operational states.  Likewise, 

in the 3D game models, there is a small cylinder attached to each hot-test cell icon 

(above its label) that mimics the signal light’s function.  Using Figure 7.3 as an 

example, the 2D, 2½D and 3D icons’ current operational states are signalled by the 

yellow, green and green colours respectively. 
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Adaptations related to model parameters (Factor Two) 

 

After adapting for the different visual representation dimensions and adherence with the 

information consistency principle, there are now three game models for the following 

experimental conditions: 

I. 2D representation with unadjusted parameters; 

III. 2½D representation with unadjusted parameters; and 

V. 3D representation with unadjusted parameters. 

 

In general, there are two typical scenes in an expert’s work shift: standard and non-

standard.  These have been elaborated earlier in Section 5.4.  To recap, a standard shift 

in the hot-test operations is typified by an irregular flow of untested engines entering the 

hot-test operations.  As a result, there are normally more vacant hot-test cells that are 

idling than there are untested engines to fill them.  Conversely, a non-standard shift in 

the hot-test operations is typified by a regular flow of untested engines entering the hot-

test operations.  More often than not, this means that the hot-test operations will be 

swarmed with both tested and untested engines.  Both these scenes had been 

encapsulated in the base model’s original unadjusted parameters and can be mimicked 

by running it as-is.  Accordingly, the game model is expected to simulate these scenes 

when it is using the unadjusted parameters.  In addition, being imitative of the real 

world, it is also expected to simulate more standard scenes than non-standard ones. 

 

Following the adaptations made in the last two sections, the game models for 

experimental condition I, III and V were duplicated with the set of adjusted model 
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parameters.  Thus, another three game models were produced for the remaining 

experimental conditions.  They are: 

II. 2D representation with adjusted parameters; 

IV. 2½D representation with adjusted parameters; and 

VI. 3D representation with adjusted parameters. 

 

Like the game models with the unadjusted parameters, these game models with the 

adjusted parameters will also simulate both standard and non-standard scenes in a work 

shift.  However, the latter will simulate more non-standard scenes than standard ones.  

On the one hand, in the game models with the unadjusted parameters, the inter-arrival 

times between untested engines entering from Assembly Line B into the hot-test 

operations will be sampled randomly from the pseudo-empirical distribution constructed 

in Section 7.1.1.  On the other hand, in the game model with the adjusted parameters, 

the inter-arrival times between untested engines are kept constant for each period6 in the 

shift, in order to regulate the engine flow and simulate more non-standard scenes.  The 

distributions of inter-arrival times that were used in the unadjusted and adjusted 

parameters are plotted in Figure 7.4 and Figure 7.5 respectively.  

 

                                                 
6 There are four periods in each simulated work shift. 
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Figure 7.4: Distributions of inter-arrival times (simulated minutes) between untested 

engines used in the unadjusted model parameters 
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Figure 7.5: Distributions of inter-arrival times (simulated minutes) between untested 

engines used in the adjusted model parameters 

 

Furthermore, the game models with the adjusted parameters will also produce scenes 

that are more extreme and perhaps difficult than those that actually occur in the real 

world.  For instance, there will be a greater interspersion of untested 2l and 2.4l engines 

entering from Assembly Line B into the hot-test operations than in the real world.  The 
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distributions of engines that were used in the unadjusted parameters and adjusted 

parameters are tabulated in Table 7.1.  These distributions were actually applied in a 

repetitive order.  As an illustration, the first batch of untested engines that enters into the 

hot-test operations in a game model with unadjusted parameters will be made up of 381 

2l engines.  This will then be followed by a second batch of 30 untested 2.4l engines, 

and so on.  When the final batch of 52 untested 2.l engines enters into the hot-test 

operations, the distribution will be repeated with the next batch of untested engines 

being made up of 381 2l engines again. 

 

Quantity of engines Engine capacity 
(litres) Unadjusted Adjusted 
⋅ 2 l 381 10 
⋅ 2.4 l 30 20 
⋅ 2 l 120 40 
⋅ 2.4 l 30 10 
⋅ 2 l 100 20 
⋅ 2.4 l 161 40 
⋅ 2 l 150 10 
⋅ 2.4 l 56 20 
⋅ 2 l 52 40 
⋅ 2.4 l - 10 
⋅ 2 l - 60 

 

Table 7.1: Distributions of untested engines entering into the hot-test operations used in 

the unadjusted and adjusted model parameters 

 

As well, the game models with the adjusted parameters will have more engines detected 

as defective in the hot-test operations, and less so in the UV and ATD operations than in 

the real world.  Since all defective engines are eventually routed to the repair station 

within the hot-test operations for rectification (Figure 5.1), the defective rates in the 

post-hot-test operations (i.e. the UV and ATD) need to be reduced in order not to choke 
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the hot-test operations with defective engines and bring the simulation run to a possible 

standstill.  Lastly, the hot-test cells in the game models with the adjusted parameters 

will also break down more often than they actually do in the real world.  These 

differences are summarised in Table 7.2. 

 

Model parameter Unadjusted Adjusted 
⋅ Percentage of engines that fail in 
the hot-test operations, and 
require major (minor) repair 

5% (5%) 12% (15%) 

⋅ Percentage of engines that fail in 
the UV operations 2% 1.5% 

⋅ Percentage of engines that fail in 
the ATD operations 2% 1.5% 

⋅ Percentage of times a hot-test cell 
breaks down 

Value varies for each 
hot-test cell 

Larger of triple 
‘Unadjusted’ value, 

and 15% 
 

Table 7.2: A summary of engine defective rate and hot-test cell breakdown rate used in 

the unadjusted and adjusted model parameters 

 

As such, the overall effect from making these adjustments is to create more chaotic 

scenes of the hot-test operations being swarmed with an erratic mixture of untested 2l 

and 2.4l engines, tested 2l and 2.4l engines as well as an unusually high proportion of 

defective engines, and coupled with more frequent hot-test cell breakdowns. 

 

7.2 GAME MODEL ASSESSMENT 

 

Finally, the fully adapted game models for condition I (2D representation with 

unadjusted parameters) and V (3D representation with unadjusted parameters) were 

assessed for their face validity from the experts’ point of view (Pidd, 2005).  In addition, 

they were also assessed for their usability from the experiment’s point of view.  These 
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assessments were carried out with the help of two hot-test personnel.  They are the staff 

who are identified earlier in Section 5.5 as being qualified to perform switch operations, 

but whose commitment to participate in the experiment could not be secured.  The game 

model for condition III (2½D representation with unadjusted parameters) was not 

assessed, as it is identical to the game model for condition I except for the three-

dimensionality of its icons.  Likewise, the game models for condition II (2D 

representation with adjusted parameters), IV (2½D representation with adjusted 

parameters) and VI (3D representation with adjusted parameters) were not assessed, as 

they are all visual duplicates of the game models for condition I, III and V respectively. 

 

7.2.1 ASSESSMENT FOR MODEL FACE VALIDITY 

 

There are mainly two means of assessing a VIS model for its validity: black-box 

validation, and white-box validation (Robinson, 2004; Pidd, 2005).  On the one hand, 

black-box validation is about performing macro checks to determine whether the overall 

VIS model represents the real world with sufficient accuracy for the purposes at hand.  

However, as the experiment does not rely on the game models’ overall ability to mimic 

and/or predict the real world for its purposes, it is not material to establish black-box 

validity.  On the other hand, white-box validation is about performing micro checks to 

determine whether the constituent parts of the VIS model represent the corresponding 

real-world elements with sufficient accuracy for the purposes at hand.  In effect, it is 

establishing the model’s face validity.  As such, white-box validation is used as the 

means of assessment here. 
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It is crucial to recruit the assistance of the people who are knowledgeable about the real-

world system and tap their detailed knowledge for testing for white-box validity 

(Robinson, 2004; Pidd, 2005).  These people are the hot-test personnel described above, 

and they were enlisted to do so via verbal description and visual check.  Firstly, Pidd 

(2005) suggests that the static logic of the VIS model is checked by describing it 

verbally to the hot-test personnel using a natural-language (in this case, the English 

language).  The static logic in a VIS model comes in the form of decision rules that 

govern the behaviour of model entities during a simulation run.  Secondly, Robinson 

(2004) and Pidd (2005) also suggest that the dynamic logic of the VIS model is checked 

by running the model and asking the hot-test personnel to watch its behaviour.  In both 

cases, the hot-test personnel were asked to provide their feedback on the game models’ 

logic. 

 

7.2.2 ASSESSMENT FOR MODEL USABILITY 

 

The game models were assessed for their usability through observation interviews, a 

knowledge elicitation technique described in Section 2.4.2.  These were conducted in 

tandem with a series of trial runs.  Initially, the two hot-test personnel were asked to try 

out the game models and their activities with the game models were observed and 

noted.  In the meantime, the hot-test personnel were also asked to comment on the 

representativeness of the game models’ layouts, as well as the suitability and 

completeness of the information that were presented whilst the game models were 

running.  Lastly, they were also asked to provide their feedback on the game models’ 

run speed and ease of use. 
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7.2.3 OUTCOME OF ASSESSMENTS 

 

Following the assessments above, the game models were fine-tuned with the feedback 

that was received from the two hot-test personnel.  Overall, the hot-test personnel were 

satisfied with both the static and dynamic logic of the game models.  This established 

the game models’ white-box validity and hence, face validity.  Moreover, the hot-test 

personnel found it easy to use the control bar for executing their switching decisions in 

the game models.  However, they commented that the game models would be easier to 

manage, if they were running at a visibly slower pace.  Eventually, a slower run speed 

was agreed with the hot-test personnel after running the game models a few more times 

at various run speeds.  Although the game models are running slower now, they only 

take approximately 10 minutes more than the initial 30 minutes or so to complete their 

runs. 

 

In addition, they had been observed to display some degree of awkwardness when they 

tried to locate the corresponding cell/stand control switch for switching on or off a hot-

test cell and its respective adjacent waiting stand.  This was because the cell/stand 

control switches in the original control bar were not arranged in the same way as the 

hot-test cells in the game model (which were arranged in the same way as those in the 

real world).  A screenshot to contrast the arrangement of the hot-test cells in the real 

world against the arrangement of the original control bar is displayed in Figure 7.6.  In 

response, the cell/stand control switches were rearranged to give the improved control 

bar displayed earlier in Figure 7.2.  Now, the cell/stand control switches share the same 

arrangement as the hot-test cells in the game model now.  As such, locating a 
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corresponding cell/stand control switch had become more intuitive and takes much less 

effort than before. 

 

 

Figure 7.6: The original control bar set against a 2D game model 

 

7.3 A CATALOGUE OF GAME MODEL SCREENSHOTS 

 

A series of screenshots were captured from the finished 2D, 2½D and 3D game models 

after running them for 671.91 minutes part way through a shift, and displayed below.  

These are shown for comparing the different views that an expert can have under 

different visual representation dimensions, when the game model is paused at a certain 

point in simulated time.  Moreover, these screenshots are also shown for contrasting the 

overall visual effect of a full set of model icons under different visual representation 

dimensions. 
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7.3.1 SCREENSHOTS FROM A 2D GAME MODEL 

 

The appearances of the 2D game model in the screenshots had been restricted in 

keeping with the information consistency principle described in Section 7.1.4.  The left-

half, middle-half and right-half of the game model are shown in Figure 7.7, Figure 7.8 

and Figure 7.9 respectively.  Also, the hot-test cell icons in the 2D game model had 

been coloured differently, according to their respective operational states.  These 

colours were expected to change when the game model resumed running and the 

operational states changed. 

 

 

Figure 7.7: Screenshot 1 from the 2D model 
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Figure 7.8: Screenshot 2 from the 2D model 

 

 

Figure 7.9: Screenshot 3 from the 2D model 
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7.3.2 SCREENSHOTS FROM A 2½D GAME MODEL 

 

The appearances of the 2½D game model in the screenshots had been restricted in 

keeping with the information consistency principle described in Section 7.1.4.  The left-

half, middle-half and right-half of the game model are shown in Figure 7.10, Figure 

7.11 and Figure 7.12 respectively.  Also, the hot-test cell icons in the 2½D game model 

had been coloured differently, according to their respective operational states.  These 

colours were expected to change when the game model resumed running and the 

operational states changed. 

 

 

Figure 7.10: Screenshot 1 from the 2½D model 
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Figure 7.11: Screenshot 2 from the 2½D model 

 

 

Figure 7.12: Screenshot 3 from the 2½D model 
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7.3.3 SCREENSHOTS FROM A 3D GAME MODEL 

 

The visual effect of perspective projection is illustrated fully by the series of screenshots 

from the 3D game model.  Figure 7.14 to Figure 7.18 illustrate the view provided by the 

3D game model as one traverses from its left end to its middle.  Also, in keeping with 

the information consistency principle described in Section 7.1.4, the small cylinders 

attached to the hot-test cell icons (above their labels) in the 3D game model had been 

coloured differently, according to the respective hot-test cells’ operational states.  These 

colours were expected to change when the game model resumed running and the 

operational states changed. 

 

 

Figure 7.13: Screenshot 1 from the 3D model 
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Figure 7.14: Screenshot 2 from the 3D model 

 

 

Figure 7.15: Screenshot 3 from the 3D model 
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Figure 7.16: Screenshot 4 from the 3D model 

 

 

Figure 7.17: Screenshot 5 from the 3D model 
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Figure 7.18: Screenshot 6 from the 3D model 

 

7.4 CONCLUSION 

 

This chapter begins by adopting Ford’s current 2D-VIS model of the Puma diesel 

engine assembly line as a base model.  It continues by describing the various 

adaptations made on the base model to produce the game models for the experiment.  

Firstly, work was carried out to improve the base model’s utility and logic.  Secondly, 

the base model was transformed into a game model by equipping the former with a 

control bar for gaming purpose.  With this control bar, the experts will be able to access 

the gaming functions that were built earlier into the base model.  Lastly, the game 

model was reproduced and then duplicated to produce six different versions for 

investigating the experimental conditions defined in Section 6.1.  Whilst doing so, 

efforts were also made to ensure that the game models’ fidelity is in line with the 

information consistency principle.  Finally, the game models were assessed for their 

face validity and usability, followed by some finishing adjustments. 
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In the next chapter, four measures were conceived for evaluating the constructs that 

were used for assessing elicitation effectiveness and efficiency in the experiment.  

These constructs have been defined previously in Section 4.2.  The next chapter belongs 

to the process of devising the measures (process v in Figure 4.1) and is the last of three 

concurrent processes described in the research methodology in Section 4.5, which 

follow the process of understanding the case study (process i) in Chapter 5. 



 

8 Measures for Evaluating 

Elicitation Effectiveness and 

Efficiency 

 

Three constructs are identified in Section 4.2 for assessing improvement in knowledge 

elicitation effectiveness.  They are decision fidelity, state space and case quantity.  In 

addition, a fourth construct – collection rate – is also identified for assessing 

improvement in knowledge elicitation efficiency.  These are then used as the 

cornerstones for laying down the research propositions and specifying the hypotheses 

for testing in this thesis.  In this chapter, they will be used as the basis for devising 

measures that are then computed to test the hypotheses subsequently. 

 

To recall from Section 4.5, there is a series of activation, deactivation and reactivation 

between the process of devising measures and the next process of collecting data; the 

latter is described in the next chapter.  This implies that whilst some measures are 

determined directly from the constructs’ definitions before data collection (case quantity 

and collection rate), others are either improvised iteratively during data collection 

(decision fidelity), or derived after data collection (state space).  In the following 

sections, the constructs will be revisited briefly, and the measures devised for evaluating 

them are described in more detail. 
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8.1 MEASURE FOR EVALUATING DECISION FIDELITY 

(CONSTRUCT ONE) 

 

Decision fidelity is the first of three constructs identified for assessing knowledge 

elicitation effectiveness.  It relates to the proximity to reality of the decisions elicited 

from experts.  Hence, keeping in mind that an example case is made up of a decision 

element and an attribute element (Section 4.1), an example case is considered to have a 

high degree of decision fidelity if its decision element bears close resemblance to the 

decision that the expert would have made in a reality described by the corresponding 

attribute element. 

 

The attempt to measure decision fidelity met two inherent difficulties.  Firstly, the hot-

test operations had no facility to record the actual decisions made by the experts in the 

real world, nor the attributes that described the hot-test operations when these decisions 

are made.  As such, there was no basis that could be used to gauge the degree of 

decision fidelity in the example cases collected.  Secondly, due to the experts’ limited 

availability to participate in the experiment, the game models were only run for a 

simulated shift and an average of 56 example cases were collected from each 

knowledge elicitation session.  Since the decision and attribute elements in each 

example case are very large (with an initial 21 and 551 variates respectively – these are 

described in more detail in Appendix B), the decision model that might be developed 

from the example cases collected in a session would not be robust.  This implies that 

any evidence gained from using such a decision model to test the concept of decision 

fidelity will be weak.  Consequently, it was concluded highly unlikely that a method for 

measuring decision fidelity definitively could be devised.  Instead, it was deemed more 
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sensible to devise a method that could indicate the presence of a certain degree of 

decision fidelity. 

 

In the time spent to understand the hot-test operations and decision-making process, it 

was observed that each expert had a tendency to turn more switches (decisions) 

controlling one zone of the hot-test operations than other zones.  This observation is not 

surprising since it is in line with a basic assumption shared by many theories of 

learning: experience shapes behaviour (Kowalski and Westen, 2005).  Therefore, as the 

experts accrue their experiences on assigning untested engines to vacant hot-test cells 

(Section 5.2), they are also expected to form and consolidate certain switching 

behaviours.  In light of this motion, it is thought if the proportion of switches turned in 

each zone in a knowledge elicitation session is close to the corresponding proportion 

observed in the real world, then this indicates that the real-world switching behaviour 

has been replicated in the elicitation session and suggests a certain degree of decision 

fidelity in the example cases collected. 

 

Subsequently, four different zones of hot-test operations were determined.  They, 

together with the panels of switches for controlling them, are identified in Figure 8.1 

using a four-colour coding scheme.  The zones are: 

i. Zone 1 (Green) – Junction J; 

ii. Zone 2 (Red) – Section of hot-test operations along Conveyor B; 

iii. Zone 3 (Yellow) – Section of hot-test operations along Conveyor F; and 

iv. Zone 4 (Blue) – Section of hot-test operations along Conveyor E. 
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Figure 8.1: The four zones in the hot-test operations where decisions are made 

 

As such, the measures for evaluating decision fidelity are two differently-sourced sets of 

quantities of switches turned in the four zones determined above.  A set is determined 

from the decision element data collected in the knowledge elicitation sessions, whilst 

the other set is determined from the actual data collected in the real world.  These two 

sets of quantities are then compared in the data analysis process that follows (Chapter 

9). 

 

8.2 MEASURE FOR EVALUATING STATE SPACE (CONSTRUCT 

TWO) 

 

State space is the second of three constructs identified for assessing knowledge 

elicitation effectiveness.  It relates to the adequacy of the range of situations from which 

the example cases are collected for training a knowledge base.  At this juncture, it is 

helpful to reiterate that a situation is actually the state of the game model, which is 
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defined by and recorded as a set of attribute values when an example case is being 

collected.  Hence, if the example cases collected have -number of values in their 

respective attribute elements, then from a spatial point of view, each of them will have 

an exact location in a -dimensional space given by its set of attribute values.  Thus, it 

can be followed that a set of example cases is considered to occupy a large state space if 

their attribute elements collectively cover a wide range of values for all attributes, so 

that the example cases are well-scattered in the -dimensional space. 

k

k

k

 

Therefore, the search for a measure to evaluate the state space occupied by a set of 

example cases will entail finding a way to evaluate their scatter in a k -dimensional 

space.  A convenient place to begin the search is in the field of Descriptive Statistics.  

However, as prevalent descriptive statistics are formulated to describe quantitative 

univariate data only, there is a need to find reasonable alternative equivalents that can 

address a mixture of quantitative and qualitative multivariate data.  This quest 

eventually led to ideas being borrowed from the fields of Geostatistics and Cluster 

Analysis.  These are described in more detail in the following sections. 

 

8.2.1 DESCRIPTIVE STATISTICS 

 

Descriptive Statistics is a branch of statistics that includes any of the many techniques 

used to organise, summarise and present a set of data.  Two major characteristics that 

data are normally summarised with are their central tendency and dispersion.  The 

central tendency of a distribution is an estimate of the ‘centre’ of a distribution of 

values. There are three main measures of central tendency – mean, median and mode, 

with (arithmetic) mean being the most commonly used measure.  However, central 
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tendency does not necessarily provide enough information to describe data adequately, 

as two set of data with the same mean (a measure of central tendency) may have very 

dissimilar dispersions.   

 

Dispersion refers to the scatter of data points around the central tendency. It is this 

concept of dispersion that is used for measuring the magnitude of a set of example 

cases’ state space.  There are four main measures of dispersion – range, inter-quartile 

range, standard deviation and its square, the variance.  Out of these, the most commonly 

used measures of dispersion are standard deviation and variance, and this thesis will be 

using the former for measuring the scatter (or rather, the state space) of a set of example 

cases. 

 

8.2.2 MEASURE OF DISPERSION FOR UNIVARIATE DATA: STANDARD 

DEVIATION 

 

The sample standard deviation  for a sample of  univariate observations, comprising 

, is defined as the square root of the average squared deviation between the 

observations  and the sample mean

s n

nxxx ,,, 21 K

),,2,1( nii K= x : 
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Equation 1 

 

A quick interpretation given by Field (2006) states a small standard deviation (relative 

to the value of the mean itself) indicates that many data points are close to the mean.  
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Conversely, a large standard deviation (relative to the mean) indicates that many data 

points are distant from the mean.  A standard deviation of zero would mean that all the 

data points have the same value. 

 

Unfortunately, the decisions and attributes in the example cases are represented by a 

mixture of counts, binary and nominal values (Section 7.1.2).  This immediately poses a 

major challenge for using Equation 1 on the attribute element data collected, as it should 

be used only on univariate data that can be ranked meaningfully.  Hence, there is a need 

to derive an alternative measure of dispersion that is a reasonable equivalent of the 

univariate standard deviation, which can be used on any (ranked or otherwise) 

multivariate data. 

 

8.2.3 MEASURE OF DISPERSION FOR BIVARIATE DATA: STANDARD DISTANCE 

– A BACKGROUND 

 

The next port of call was to look for other measures of dispersion that are used on data 

with a higher dimension.  This attempt brought the search to the field of Geostatistics 

eventually, which has a measure that is commonly used to evaluate the dispersion of 

bivariate coordinates.  In essence, this measure known as Bachi’s standard distance  

is used to summarise the spatial dispersion of locations (cases) around a fixed central 

location (mean centre).  Rogerson (2006) interprets it as the square root of the average 

squared distance between the cases 

ds

),,2,1( nii K=  and their mean centre : c
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Equation 2 

where  represents the distance between case  and the mean centre . icd i c

 

When the standard distance is first put forward by Bachi (1962), he assumes that the 

geographical distribution of an entire population over a territory is known.  Each case of 

the population is indicated by an integer ),,2,1( nii K= , and its location is given by a 

pair of values ( .  Here,  and  are the coordinates of case i ’s place of 

residence, and are measured with regard to a system of orthogonal axes

)ii yx , ix iy

7 such as the 

longitude and latitude. 

 

Bachi (1962) proposes that a simple and intuitive measure of dispersion of the 

population over the territory can be obtained by averaging the distances  between all 

possible pairs of cases i  and .  In this way, if the population is widely dispersed, then 

the average distance 

ijd

j

D  will be high, and vice versa.  Whilst various formulae can be 

used to compute D , Bachi thinks it is most appropriate to do so by square-rooting the 

average squared distance between any pairs of cases for practical and theoretical 

reasons.  If the calculation is extended to all  distances, including those between each 

case and itself, the following expression is obtained: 

2n

                                                 
7 The orthogonal axes are assumed to be employed on a comparatively small territory that may be 
considered as a plane.  This assumption ignores the curvature of the Earth’s surface. 
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which can be shown to lead to: 
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Since the coordinates of the mean centre  of the geographical distribution are c ( )yx, , 

and that the Euclidean distance  between two cases  and ijd i j  is given by: 

( ) ( )22
jijiij yyxxd −+−=  

 

Therefore, Equation 4 can be re-expressed as: 
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Equation 5 

where  represents the Euclidean distance between case  and the mean centre . icd i c

 

Thus, the square root of the average squared distance between all pairs of cases is 

simply the product of 2  and the square root of the average squared distance between 

the cases ),,2,1( nii K=  and their mean centre .  Bachi (1962) then recognises the 

latter as the standard distance  (i.e. 

c

ds Equation 2), which he later promotes as a 
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measure of dispersion for bivariate geographical coordinates.  The standard distance 

appears to enjoy some important properties as a measure of dispersion, as well as some 

other distinct advantages like ease of calculation and algebraic manipulation.  More 

importantly, it bears a close resemblance to a spatial version of the standard deviation 

(compare Equation 4 against Equation 1), which makes it conceptually appealing. 

 

8.2.4 MEASURE OF DISPERSION FOR MULTIVARIATE DATA: STANDARD 

DISTANCE* – A PROOF 

 

Whilst the measures for evaluating the dispersion of univariate and bivariate data can be 

found, the same cannot be said for multivariate data.  As a result, Bachi’s standard 

distance is extended below to find a reasonable alternative measure.  To begin, consider 

a population of cases with  variates.  Let each case be denoted by an integer 

, and its location in a -dimensional Euclidean space (also known as a 

hyperspace for  > 3) be given by 

k

),,2,1( nii K= k

k ( )ikii xxx ,,, 21 K .  Using Bachi’s argument in the last 

section, Equation 3 is reproduced below: 
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Equation 6 

where * is added to denote that D  is computed in a -dimensional Euclidean space. k

 

As the Euclidean distance  between two cases i  and  in a k -dimensional 

Euclidean space is given by: 

ijd j
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Then, substituting Equation 7 into Equation 6, 
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By observation, the components under the square root of Equation 8 above have a 

generic form: 
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Since the location of the mean centre  in a -dimensional Euclidean space is c k

( kxxx ,,, 21 K ), the Euclidean distance between case i  and the mean centre  in a -

dimensional Euclidean space is given by: 

c k

( ) ( ) ( )22
22

2
11 kikiiic xxxxxxd −++−+−= K  

 

Hence, Equation 9 becomes: 

n

d
D

n

i
ic∑

== 1

2

* 2  

Equation 10 

 

As such, the square root of the average squared distance between all pair of cases (in a 

-dimensional Euclidean space) can be expressed similarly as k Equation 5, which is still 

simply 2  multiplied by the square root of the average squared distance between the 

cases  and their mean centre .  Like in Bachi (1962), the latter shall also 

be defined as the standard distance  (* is added to distinguish it from Bachi’s 

standard distance for bivariate data), and advocated as a measure of dispersion for 

multivariate data.  That is, 

),,2,1( nii K= c
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Equation 11 
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As a further extension, the standard distance  can also be expressed in term of the 

Sum of Squared Distances (SSD) between all pairs of cases.  It is formed by first 

substituting 

*
ds

Equation 11 into Equation 10, and then equating it with Equation 6, 
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Equation 12 

 

That is, 

2
*

2n
SSDsd =  

Equation 13 

 

However, in spite of finding a reasonable alternative measure of dispersion for 

multivariate data, another problem still exists: the Euclidean distance  between two 

cases  and  (as defined in 

ijd

i j Equation 7) that is used to compute the numerator in 

Equation 13 can be used only on quantitative variates made up of discrete or continuous 

values (Krzanowski, 2005).  It cannot be used on qualitative variates made up of binary 

or nominal values.  More importantly, it also cannot be used on variates that have a 

mixture of data types, as in the case of the attribute element data collected in the 

experiment.  Thus, there is a need to look for a more robust distance measure that can 

handle a mixture of quantitative and qualitative variates to substitute the Euclidean 

distance  used in ijd Equation 13. 
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8.2.5 DISTANCE MEASURE FOR MIXED DATA: GENERAL DISTANCE 

COEFFICIENT 

 

Cluster Analysis (CA) is a branch of multivariate data analysis, which is predicated on 

computing the distances between observations.  Briefly, Hair et al. (2006) explain that 

CA groups observations into clusters so that observations in the same cluster are more 

similar to one another than they are to observations in other clusters.  This attempt is to 

maximise the homogeneity of observations within the clusters whilst also maximising 

the heterogeneity between the clusters.  If the classification is successful, the 

observations within clusters will be close together when plotted geometrically, and 

different clusters will be far apart.  This gives rise to the notion that dissimilarity is 

closely linked to the idea of distance: greater (smaller) distance indicates greater 

dissimilarity (similarity). 

 

Krzanowski (2005) points out that various distance measures have been proposed in CA 

over the years for measuring dissimilarity between cases where the variates have the 

same type.  A sample of these measures includes the Euclidean distance and the 

Minkowski metric for quantitative (discrete or continuous) data, and the Jaccard 

coefficient and the Czekanowski coefficient for binary data.  On occasions where only 

similarity measures are available, then corresponding dissimilarity measures are 

obtained by using a monotonically decreasing transformation.  As a similarity measure 

usually ranges from zero to one, with a value of one being most similar, a simple 

transformation is to subtract the similarity measure from a value of one.  As an 
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illustration, if x is a similarity measure, then ‘1 - x’ will be the corresponding 

dissimilarity measure. 

 

Like this research, CA also faces the problem of measuring dissimilarity between cases 

where different types of data are measured for each case.  Typically, a case’s 

measurements may consist of a mixture of numeric values, counts, rankings, binary 

attributes and categorical variates.  Gower (1971) suggests a possible approach is to 

compute a separate dissimilarity value for each variate between any pair of cases, and 

then average these individual dissimilarity values to derive a final dissimilarity value for 

the two cases.  He then uses this approach to define a general coefficient of similarity 

that can be applied to cases with different types of data.  This is known as Gower’s 

general similarity coefficient. 

 

Later, Wishart (2001, 2006) adapts Gower’s general similarity coefficient to set forth a 

general distance coefficient.  It is essentially the converse of Gower’s general similarity 

coefficient and is able to compute the distances between cases with mixed data types.  

Wishart defines the squared general Euclidean distance between any pair of cases i  and 

j  as follows (* is added to distinguish it from the Euclidean distance in Equation 7): 

∑
∑

=

k
ijk

k
ijkijk

ij w

dw
d

*2

*2  

Equation 14 

where  is a distance component for the  variate.  Its determination is dependent 

on the scale that is used to measure the variate: 

*
ijkd thk
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i. Nominal scale –  if cases  and  have the same value for the variate (i.e. 

if ), and  if they have different values (i.e. if ); 

0*2 =ijkd i j

jkik xx = 1*2 =ijkd jkik xx ≠

ii. Binary scale –  if attribute k  is present or absent in both cases i  and , and 

 if attribute  is present in one case and absent in the other; and 

0*2 =ijkd j

1*2 =ijkd k

iii. Ordinal, interval or ratio scale –  takes the value of*
ijkd jkik xx − . 

 

ijkw  is a binary variable that has a value of 1, if the  variate has a valid value in the 

context of the measurement scale used, in both cases  i  and .  Otherwise,  has a 

value of 0.  For instance, if the  variate is measured on a binary scale and has a valid 

value of either 0 or 1 in cases  and

thk

j ijkw

thk

i j , then  = 1.  However, if the  variate has an 

invalid value that is neither 0 nor 1 in at least one of the cases, then  = 0.  At this 

point, it should be noted that the inclusion of  has the effect of averaging the 

squared general Euclidean distance over the number of valid variates, so that 

comparison of distances between different pairs of cases is fair. 

ijkw thk

ijkw

ijkw

 

Lastly, the Euclidean distance  between cases  and *
ijd i j  can be obtained by taking the 

square root of  in *2
ijd Equation 14. 

 

8.2.6 STANDARD DISTANCE* FOR MIXED MULTIVARIATE DATA 

 

A measure for evaluating the dispersion of mixed multivariate data is obtained by 

combining the distance measure for mixed data in Equation 14 with the dispersion 
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measure for multivariate data in Equation 12.  The standard distance per (square-rooted) 

valid variate for mixed, multivariate data thus formed is as expressed below: 
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Equation 15 

 

However, as all variates in the attribute element data are valid, the inclusion of  is 

actually irrelevant.  It is then removed from 

ijkw

Equation 15 to give a simpler and more 

meaningful standard distance for mixed, multivariate data in Equation 16: 
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d
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= ==  

Equation 16 

 

Finally, the expression in Equation 16 gives the measure for evaluating the state space 

occupied by a set of example cases.  The numerator, which is actually a protracted form 

of SSD, can be computed easily using a CA software known as Clustan (Clustan, 2007). 

 

8.3 MEASURE FOR EVALUATING CASE QUANTITY 

(CONSTRUCT THREE) 

 

Case quantity is the last of three constructs identified for assessing knowledge 

elicitation effectiveness.  It relates to the size of the set of example cases collected for 

training a knowledge base.  Hence, case quantity refers to the total number of example 
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cases recorded in a knowledge elicitation session.  As such, a self-evident measure for 

evaluating case quantity is the number of example cases that are collected in a 

knowledge elicitation session. 

 

8.4 MEASURE FOR EVALUATING COLLECTION RATE 

(CONSTRUCT FOUR) 

 

Collection rate is the only construct identified for assessing knowledge elicitation 

efficiency.  It relates to the expediency of the elicitation process in real time.  In this 

thesis, a unit of real time is taken to be one minute.  Hence, an obvious measure for 

evaluating collection rate is the average number of example cases recorded over an 

elicitation session. 

 

8.5 CONCLUSION 

 

This chapter describes the measures for evaluating the four constructs identified in 

Section 4.2.  They are decision fidelity, state space, case quantity and collection rate.  

Whilst the measures for case quantity and collection rate were determined before the 

data collection process, the measures for decision fidelity and state space were 

determined during and after the data collection process respectively.  In short, the 

process of devising measures began before the experiment, and ended after it. 

 

To summarise the work carried out so far, an understanding of the hot-test operations 

and its environment was first gained by using an array of complementary techniques 

(process i in Figure 4.1 – Chapter 5).  The information gathered from this was then used 
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to design the experiment to be carried out later (process ii – Chapter 6), build and assess 

the game models to be used in the experiment (processes iii and iv – Chapter 7), and 

lastly devise the measures in this chapter (process v).  In the next chapter, the outcomes 

from these earlier chapters will be pieced together to carry out the experiment (process 

vi).  Then, the data that are collected in the experiment will be used to compute the 

measures for subsequent analysis (process vii). 



 

9 Data Collection and Analysis  

(Hypothesis One) 

 

The foundation for the data collection and analysis processes is laid with the completion 

of the activities described in earlier chapters.  Next, the outcomes from these chapters 

will be put together to carry out the experiment, collect data and test the hypotheses in 

Section 4.4.  In a nutshell, the experimental design and knowledge elicitation schedule 

that are established in Chapter 6 will be implemented with the help of eight experts 

identified in Chapter 5 and six game models built in Chapter 7.  The data collected in 

the ensuing knowledge elicitation sessions are then used to compute the measures 

devised in Chapter 8.  Following this, the measures determined for testing Hypothesis 1 

are analysed, whilst the rest will be used to analyse Hypothesis 2 to 6 in the next 

chapter.  The work performed and its findings are described in more detail below.   

 

9.1 THE EXPERIMENT 

 

To recap, eight experts are identified in Chapter 5, a repeated measures design is 

established in Chapter 6 and six game models are built in Chapter 7 for the experiment.  

Under the repeated measures experimental design, each expert was exposed to all 

conditions of the experiment, where an experimental condition is defined as a unique 

combination of the factors that are being investigated.  These experimental conditions 

are reproduced from Section 6.1 as below: 
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I. 2D representation with unadjusted parameters; 

II. 2D representation with adjusted parameters; 

III. 2½D representation with unadjusted parameters; 

IV. 2½D representation with adjusted parameters; 

V. 3D representation with unadjusted parameters; and 

VI. 3D representation with adjusted parameters. 

 

Since there are six experimental conditions, a complete experiment trial with each 

expert comprises six knowledge elicitation sessions; an elicitation session was carried 

out for each experimental condition, with the game model that was adapted for that 

condition.  In order to standardise the way that the experiment was conducted, a set of 

procedures was developed and followed to carry out every knowledge elicitation 

session.  Notwithstanding all the planning that was undertaken, the elicitation schedule 

still took a significant time to complete.  These issues are discussed further below. 

 

9.1.1 STANDARD PROCEDURES 

 

Kowalski and Westen (2005) suggest that a set of standard procedures should be 

followed to carry out an experiment, so that the only things that vary from expert to 

expert are the experimental conditions and the experts’ behaviour in response to them.  

In so doing, these procedures will help to maximise the likelihood that any differences 

observed in the experts’ behaviour can be attributed to the experimental manipulation, 

allowing the experiment to draw inferences about cause and effect more conclusively.  

Subsequently, a set of standard procedures was developed and followed in each 

elicitation session, which addressed issues on the random number streams used, the 
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game model’s warm-up period and run speed, and the instructions for playing a game 

model. 

 

Firstly, an identical set of random number streams was used in each game model.  This 

is to ensure that the same sequence of events was recreated for every model entity that 

used random numbers.  However, as each game model’s run was subject to the player’s 

ad hoc interventions, these events would occur at different times in the simulation.  For 

instance, the event that a particular hot-test cell breaks down after testing a certain 

number of engines will be replicated in all elicitation sessions.  However, the 

breakdown will occur at a different simulated time in each session. 

 

Secondly, the game model was warmed up for a period of a shift (i.e. 480 minutes) 

before the knowledge elicitation session began.  This is to emulate the real-world 

conditions in the hot-test operations at the start of a shift. 

 

Thirdly, the run speed of the game model was also set to a pre-determined level (Section 

7.2.2), by using a fixed time scale factor.  The latter is a WITNESS function that adjusts 

the relationship between real time units and simulation time units.  In this case, the time 

scale factor used actually slowed down the game model such that the expert would have 

sufficient time to appreciate the information presented in the game model and respond 

appropriately without extending the model run-time excessively. 

 

Lastly, the expert participating in the knowledge elicitation session was given a brief 

refresher on how to play the game model before it began.  This is necessary because a 
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long period of time might have elapsed between the expert’s current and last elicitation 

sessions, and he might need to re-familiarise himself with the model’s functions. 

 

9.1.2 LET THE GAMES BEGIN! 

 

The game model was handed over to the expert after the standard procedures described 

above were performed.  This would officially mark the beginning of a knowledge 

elicitation session.  Then he was asked to play with the game model for a simulated 

shift, in which his interactions with the game model would be recorded as example 

cases (Section 7.1.2).  Also, the actual time taken by him to complete the elicitation 

session was recorded manually.  The actual times taken by the experts to complete all 

the sessions are summarised in Table 9.1. 

 

2D 2½D 3D 
Subject

Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted

A 30 37 27 24 73 93 
B 50 37 35 33 96 97 
C 45 30 34 33 64 87 
D 40 40 29 27 76 82 
E 20 25 22 28 65 80 
F 45 35 36 34 78 88 
G 50 45 30 32 79 90 
H 34 44 36 29 67 95 

 

Table 9.1: A summary of collection times 

 

It is known that management generally resists the notion of losing productivity as a 

result of the experts absenting themselves to participate in an experiment (Section 6.3).  

This consequently restricted the plan and initial schedule for carrying out the 48 

knowledge elicitation sessions (eight experiment trials of six knowledge elicitation 
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sessions each).  Unfortunately, the immense difficulty in getting the management to 

release the experts that were required to participate in the elicitation sessions for each 

week was not fully anticipated.  This is in spite of the fact that an elicitation session that 

involved either the 2D or the 2½D game model required only 34 minutes on average.  

Hence, the initial (static) schedule was turned into a rolling one, and was revised on a 

weekly basis.   

 

Subsequently, it seemed very unlikely that the management would release the experts to 

participate in elicitation sessions that involved the 3D game models, which would 

require 82 minutes on average on a current state of the art computer notebook.  Thus, 

after much deliberation, plans were made to request the experts to participate in these 

elicitation sessions outside their shifts.  Fortunately, as a strong rapport was already 

established with the experts from the beginning of the investigation (Section 5.1) and 

maintained throughout, they were happy to oblige.  Some even offered to do so pro 

bono.  Nevertheless, they were all compensated at a rate of £10 per hour for their help in 

the end. 

 

All 48 knowledge elicitation sessions were carried out over an extended period of 19 

weeks.  The actual timeline for the experiment is reproduced from Section 6.3 in Table 

9.2, where I to VI denote the six experimental conditions that the elicitation sessions 

were carried out under.  It can be seen from Table 9.2 that there were several periods of 

lull time between successive elicitation sessions.  These were used meaningfully to 

shadow the experts whilst they were working, and record any decisions made by them 

in the meantime.  The real-world data thus collected were used later for testing 

Hypothesis 1.  
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Week Subject 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

A     I     II     III IV  V 
VI  

B  I 
II  III IV   V VI           

C I  II III   
    IV   V   VI    

D I  II III   
  IV     V VI      

E I   II   
  III  IV    V   VI   

F   I 
II  III    IV       V  VI  

G         I   II   III 
IV  V VI  

H          I   II   III 
IV  V VI 

I to VI denote the six conditions (Section 9.1) in the experiment  

Table 9.2: The actual knowledge elicitation timeline for the experiment 

 

9.2 ANALYSIS FOR HYPOTHESIS ONE: DECISION FIDELITY & 

VISUAL REPRESENTATION DIMENSION 

 

The overarching pair of null and alternative hypotheses of interest are replicated below: 

)0(1H  : The degree of decision fidelity in the example cases collected in a knowledge 

elicitation session is not affected by the visual representation dimension used; 

)(1 aH  : The degree of decision fidelity in the example cases collected in a knowledge 

elicitation session  improves as a higher dimension of visual representation is 

used. 

 

Decision fidelity has been defined, in Section 4.2.1, as the resemblance that a decision 

element of an example case bears to the decision that the expert would have made in a 

reality described by the corresponding attribute element.  It is also explained in Section 

8.1 that two sets of quantities of switches turned in the four zones identified in Figure 
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8.1 will be used to evaluate decision fidelity.  The latter is reproduced in Figure 9.1 and 

the zones are: 

i. Zone 1 (Green) – Junction J; 

ii. Zone 2 (Red) – Section of hot-test operations along Conveyor B; 

iii. Zone 3 (Yellow) – Section of hot-test operations along Conveyor F; and 

iv. Zone 4 (Blue) – Section of hot-test operations along Conveyor E. 
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Figure 9.1: The four zones in the hot-test operations where decisions are made 

 

The first set of quantities was determined from the decision element of the example 

cases collected in the knowledge elicitation sessions, whilst the second set was 

determined from the real-world data collected by shadowing the experts (Section 9.1.2).  

It was thought that if the proportions of switches turned in the four zones in an 

elicitation session are close to the corresponding proportions that are observed in the 

real world, then this might indicate that a certain degree of decision fidelity is present in 

the example cases collected.  It was further thought that if this phenomenon was 
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observed repeatedly in elicitation sessions supported by game models that used a 

specific visual representation dimension, then these observations would constitute some 

evidence towards testing Hypothesis 1. 

 

The data that were used for determining the first set of quantities are from knowledge 

elicitation sessions supported by game models preset with the unadjusted set of model 

parameters only.  This includes elicitation sessions carried out under experimental 

conditions I (2D representation with unadjusted parameters), III (2½D representation 

with unadjusted parameters) and V (3D representation with unadjusted parameters).  

The data from elicitation sessions supported by game models preset with the adjusted 

set of model parameters are not used here, as the game models would produce more 

unlikely scenarios that are most probably not similar to those observed in reality, thus 

eroding the basis for comparison. 

 

The data that were used for determining the second set of quantities were collected 

manually by shadowing the experts whilst they were working.  Although there are eight 

experts who are qualified to participate in the experiment, only five of them were 

working as switch operators at the time of data collection.  They are Subject A, B, C, G 

and H.  This limited any real-world data collection efforts to revolve around these five 

experts.  The real-world data collected took the form of a sequence of switches that 

were turned whilst the experts were being observed.  Each of them was shadowed for 

different periods of time over several work-shifts in order to avoid bias in the data.    

They were eventually shadowed for 842 minutes on average (approximately 1.98 work-

shifts).  The actual times spent on shadowing the experts are summarised in Table 9.3. 
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Subject Total shadow time (minutes)
A 
B 
C 
G 
H 

811 
260 

1,309 
1,341 
490 

 

Table 9.3: A summary of total time spent to shadow Subject A, B, C, G and H 

 

Altogether, there are 15 sets of quantities that were determined from the knowledge 

elicitation sessions carried out under experimental condition I, III and V for Subject A, 

B, C, G and H.  Also, five sets of quantities were determined from shadowing the 

experts.  These are summarised in Table 9.4, Table 9.5, Table 9.6, Table 9.7 and Table 

9.8.  Next, these quantities are explored and used to test Hypothesis 1. 

 

Game model with Unadjusted model parameters Zone 
2D 2½D 3D 

Real-world 

1 
2 
3 
4 

17 
54 
36 
1 

13 
36 
21 
1 

17 
110 
34 
18 

103 
301 
204 
153  

Table 9.4: A summary of quantities of switches turned by Subject A 

  

Game model with Unadjusted model parameters Zone 
2D 2½D 3D 

Real-world 

1 
2 
3 
4 

24 
154 
148 
66 

20 
122 
126 
28 

27 
204 
188 
110 

54 
78 
86 
80  

Table 9.5: A summary of quantities of switches turned by Subject B 
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Game model with Unadjusted model parameters Zone 
2D 2½D 3D 

Real-world 

1 
2 
3 
4 

6 
88 
46 
20 

10 
50 
6 
20 

16 
120 
24 
36 

154 
390 
254 
204  

Table 9.6: A summary of quantities of switches turned by Subject C 

 

Game model with Unadjusted model parameters Zone 
2D 2½D 3D 

Real-world 

1 
2 
3 
4 

22 
60 
52 
25 

17 
58 
4 
4 

24 
114 
20 
12 

162 
617 
546 
335  

Table 9.7: A summary of quantities of switches turned by Subject G 

 

Game model with Unadjusted model parameters Zone 
2D 2½D 3D 

Real-world 

1 
2 
3 
4 

11 
28 
12 
1 

14 
25 
1 
2 

16 
40 
10 
2 

70 
195 
159 
102  

Table 9.8: A summary of quantities of switches turned by Subject H 

 

9.2.1 DATA EXPLORATION 

 

The quantities determined from data that were collected whilst shadowing Subject A, B, 

C, G and H are first converted into proportions and then compared with those 

determined from the knowledge elicitation sessions in Figure 9.2.  For ease of reference, 

the colours used in the graphs follow those used to differentiate the zones in Figure 9.1.  

As an illustration, the proportion of switches turned in blue-coloured Zone 4 in Figure 

9.1 is also coded in blue in the graphs. 
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Figure 9.2: A comparison of proportions of switches turned by Subject A, B, C, G and 

H 

 

It can be observed that the proportions of switches turned in the four zones by all five 

experts in reality are quite similar.  It is also immediately apparent for Subject G that his 

elicitation session supported by a 2D game model seemed to produce proportions that 

were very similar to those from the real world.  However, the same cannot be said for 

Subject A, B, C and H, as it is not obvious whether there was an elicitation session that 

produced proportions similar to those from the real world. 
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9.2.2 HYPOTHESIS TESTING 

 

The measures need to be tested statistically to support the observations made above.  

Here, a non-parametric chi-squared ( )2χ  goodness-of-fit test is used to compare the 

quantities of switches turned in the four zones during a knowledge elicitation session, 

against the expected quantities computed using the real-world proportions.  As this test 

was executed for each elicitation session carried out under either experimental condition 

I, III or V for the five experts, hence a total of 15  tests were executed subsequently.  

An appropriate pair of null and alternative hypotheses for each  test executed are 

given as follows: 

2χ

2χ

)0(,GSH : The proportions of switches turned in the four zones in the elicitation session 

are similar to those of the real world; 

)(, aGSH : The proportions of switches turned in the four zones in the elicitation session 

are not similar to those of the real world. 

where  denotes Subject A, B, C, G or H, and G  denotes 2D, 2½D or 3D game model 

with unadjusted model parameters.  

S

 

On the one hand, if the  tests consistently show that the quantities of switches turned 

in elicitation sessions supported by game models using a higher visual representation 

dimension are more similar to the expected quantities, then their results would construe 

sufficient evidence in support of the alternative hypothesis ( ).  On the other hand, 

if the  tests show otherwise, then their results would construe sufficient evidence in 

2χ

)(1 aH

2χ
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support of the null hypothesis ( ).  The test statistics computed for all 15  tests 

are summarised in 

)0(1H 2χ

Table 9.9. 

 

Game model with Unadjusted 
model parameters Subject 

2D 2½D 3D 
A 24.82 16.01 36.93 
B 82.33 99.28 95.76 
C 30.28 20.71 45.30 
G 4.31* 63.09 81.69 
H 15.43 33.64 29.09 

* Statistically insignificant at 5% 
 

Table 9.9: A summary of  test statistics 2χ

 

It is noted that all knowledge elicitation sessions, except for the one participated by 

Subject G using a 2D game model, have test statistics whose p-values are effectively 

zero.  Thus, in relation to each of these elicitation sessions, there is sufficient evidence 

to reject the null hypothesis ( ) at a 5% level of significance, and it is concluded 

that the proportions of switches turned in the four zones in the elicitation session are not 

similar to those of the real world.  However, as the test statistic’s p-value for the 

elicitation session participated by Subject G using a 2D game model is greater than 

0.05, there is insufficient evidence to reject the null hypothesis ( ) at a 5% 

level of significance, and it is concluded that the proportions of switches turned in the 

four zones in this elicitation session are similar to those of the real world. 

)0(,GSH

)0(2, DGSubjectH

 

Hence, whilst it is clear that a 2D representation is most effective in eliciting example 

cases with a high degree of decision fidelity from Subject G, such strong conclusions 

cannot be drawn for the other four experts.  Nonetheless, even if all test statistics are 

statistically significant, their magnitude might still provide some clues with regard to 
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which visual representation dimension is relatively more effective in eliciting example 

cases with a certain degree of decision fidelity.  Since a smaller test statistic suggests 

that the proportions of switches turned in the four zones in the knowledge elicitation 

session are closer to those of the real world, a 2D representation appears to be relatively 

more effective for Subject B and H, and a 2½D representation is relatively more 

effective for Subject A and C.  Also, even though it cannot be concluded whether a 2D 

or 2½D representation is more effective in eliciting example cases with a certain degree 

of decision fidelity, there is some corroborating evidence that signals the 3D 

representation to be the least effective. 

 

9.2.3 SUMMARY 

 

The overarching pair of null and alternative hypotheses of interest ( )0(1H  and ) 

were assessed through testing 15 pairs of null and alternative hypotheses (  and 

) on the knowledge elicitation sessions carried out under either experimental 

condition I, III or V for Subject A, B, C, G and H.  Each of these hypothesis tests was 

executed by comparing the quantities of switches turned in the four zones of the hot-test 

operations during a knowledge elicitation session, against the expected quantities 

computed using the real-world proportions. 

)(1 aH

)0(,GSH

)(, aGSH

 

Subsequently, 14 out of the 15 hypothesis tests had their null hypotheses ( ) 

rejected at a 5% level of significance.  Hence, it is concluded that the proportions of 

switches turned in the four zones in these 14 elicitation sessions are not similar to those 

of the real world.  Since these results indicate that the degree of decision fidelity is low 

)0(,GSH
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in the example cases collected across 14 knowledge elicitation sessions, and remains 

low regardless of the visual representation dimension used in the game models, they 

appear to construe strong, albeit negative evidence to support the overarching null 

hypothesis ( ).   )0(1H

 

Moreover, the results go further to present some weak evidence suggesting that the 

degree of decision fidelity in the example cases collected in a knowledge elicitation 

session improves as a lower dimension of visual representation is used.  This evidence 

essentially conspires to contradict Proposition 1 (Section 4.3.1), which is used to form 

Hypothesis 1.  In light of this, Proposition 1 might consider to be revised as follows:  

A lower dimension of iconic representation would demonstrably 

improve, if not maintain, the degree of decision fidelity in the example 

cases collected in a knowledge elicitation session. 

 

9.3 CONCLUSION 

 

This chapter describes the set of standard procedures that was executed before each 

knowledge elicitation session was carried out.  They pertain to the random number 

streams used, the game model’s warm-up period and run speed, and the instructions for 

playing a game model.  In addition, the difficulty encountered during the data collection 

process and its resolution are also elaborated. 

 

Following the end of the data collection process, the example cases collected were 

analysed.  In particular, Hypothesis 1, which postulates a causal link between visual 

representation dimension (cause) and decision fidelity (effect), was tested.  A series of 
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2χ  tests were executed subsequently, whose results support the null hypothesis ( ).  

Furthermore, the results present some weak evidence that suggests an inverse 

relationship between visual representation dimension and decision fidelity.   

)0(1H

 

In the next chapter, the data analysis process (process vii in Figure 4.1) continues with 

the testing of the remaining hypotheses (Hypothesis 2 to 6). 



 

10 Data Analysis (Hypothesis Two to 

Six) 

 

This chapter continues with the data analysis process started in Chapter 9.  As with 

Hypothesis 1 in the last chapter, the measures determined for Hypothesis 2 to 6 are 

analysed here.  The analysis that was carried out subsequently followed an established 

parametric framework for analysing data collected from repeated measures experiments.  

The framework is outlined briefly below, and described in more detail in Appendix B.  

In addition, the work performed to test the hypotheses and its findings are also 

discussed.  In order to minimise any unnecessary duplication, these are organised 

according to the constructs (Section 4.2) that the hypotheses are founded on.  They are 

state space (Hypothesis 4), case quantity (Hypothesis 2 and 5) and finally, collection 

rate (Hypothesis 3 and 6). 

 

10.1 AN OVERVIEW OF THE ANALYTICAL FRAMEWORK 

 

In general, Kowalski and Westen (2005) suggest that an analysis should use both 

descriptive and inferential statistics.  On the one hand, descriptive statistics are used to 

summarise the data’s essential features, which can also be depicted using appropriate 

line graphs.  Together, these constitute a preliminary exploration of the data to gain a 

quick appreciation of any trend or pattern underlying them.  On the other hand, 

inferential statistics are used to yield tests of statistical significance, which are then used 
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to ascertain whether the observations made above are meaningful.  Hence, in so doing, 

the hypotheses set out in this thesis are tested. 

 

As a repeated measures experimental design was used to collect the data for 

investigating two factors, the most apt inferential statistical test for assessing their 

effects is the two-way repeated measures ANalysis Of VAriance (ANOVA).  However, 

since ANOVA is a parametric test, the data need to show that they meet the criterion for 

normality before ANOVA can be applied on them.  The tests for this criterion include 

the Kolmogorov-Smirnov (K-S), Anderson-Darling (A-D) and skewness tests.  If the 

data initially failed to show that they meet the criterion for normality, then Field (2006) 

suggests executing a logarithmic transformation on them before putting them through 

another cycle of the K-S, A-D and skewness tests.  Moreover, the data also need to be 

assessed for the criterion of sphericity.  In this case, the test for this criterion is 

Mauchly’s test.  If the data failed to show that they meet the criterion for sphericity, 

then Field (2006) remarks that it is necessary to revise the critical values that are used 

for assessing the test statistics from the following ANOVA with a Greenhouse-Geisser 

correction. 

 

In the event that the ANOVA’s results are able to conclude a significant effect in a 

factor, a series of planned or post-hoc/pairwise comparisons are carried out to determine 

the specifics of the factor’s effect.  On the one hand, if the alternative hypothesis is 

specified to test a a priori prediction about the data and the preliminary data exploration 

that is completed earlier supports the trend/pattern described in the prediction, then 

planned comparisons are executed.  Otherwise, it is more meaningful to perform post-

hoc/pairwise comparisons to investigate the factor’s effect.  On the other hand, if the 
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alternative hypothesis is specified to explore the data for any differences due to 

treatment levels in a factor, then post-hoc comparisons are executed.  Finally, after the 

statistically significant effects are identified, their materiality and importance are 

determined by computing their sizes.   

 

10.2 ANALYSIS FOR HYPOTHESIS FOUR: STATE SPACE & 

MODEL PARAMETERS 

 

The overarching pair of null and alternative hypotheses of interest are replicated below: 

)0(4H  : The size of state space occupied by the example cases collected in a 

knowledge elicitation session is not affected by the model parameters used; 

)(4 aH  : The size of state space occupied by the example cases collected in a 

knowledge elicitation session increases as model parameters are adjusted to 

develop more uncommon and extreme scenes. 

 

State space has been defined, in Section 4.2.2, as the coverage collectively made by the 

attribute elements of a set of example cases in a hyperspace defined by the ranges of 

values possible for all attributes.  It is first mentioned in Section 8.2 that each example 

case’s attribute element describes the state of the game model when an expert interacts 

with it.  It is initially made up of 551 variates (Appendix B), which are measured using 

either binary, nominal or ratio scales.  However, many of these variates are actually 

redundant and should be removed.  In addition, many variates are actually components 

of various attributes or cover large ranges of values.  Therefore, there is also a need to 

recode or rescale these variates respectively.  Finally, the attribute element data are 
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screened for outliers, before they are used to compute the measures for evaluating state 

space. 

 

10.2.1 DATA PREPARATION 

 

Remove rogue and redundant data 

 

To begin, the values from all 48 sets of attribute element data collected (from eight trials 

of six knowledge elicitation sessions each) were compiled and profiled.  The profiles, 

which informed on the highest and lowest values in each variate, can then be used for 

the following two purposes.   

 

Firstly, the profiles can be used for identifying rogue attribute elements, which may 

arise from recording errors.  As the binary and nominal variates have known upper and 

lower limits, the highest and lowest values in their profiles are expected to fall within 

these limits.  Therefore, if a variate’s profile overlaps its known limits, then the attribute 

elements that contained the offending values are classified as rogue observations and 

will not be used in any subsequent analysis.  For instance, a binary variate is expected to 

have either a ‘0’ or ‘1’ value.  If a value other than ‘0’ or ‘1’ is discovered in the binary 

variate’s profile, then the attribute element that has the offending value is removed from 

further analysis.  Nonetheless, since the collected example cases were not recorded 

manually, rogue attribute elements are not expected.  Subsequently, no rogue data were 

detected. 
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Secondly, the profiles can also be and were used for identifying redundant variates, 

which were created mistakenly without realising that the information they were 

supposed to collect did not exist in the first place.  If a variate’s highest and lowest 

values are found to be zero, then it can be safely assumed to be redundant and will not 

be used in any subsequent analysis.  110 redundant variates were found and discarded 

subsequently, leaving behind 441 useful variates. 

 

Recode data 

 

It is mentioned earlier that many variates are actually components of various attributes, 

where related binary component-variates are organised and interpreted together to 

provide complete information on the attributes.  Hence, the number of variates in each 

attribute element can be reduced to a more manageable size by combining these binary 

component-variates appropriately to form nominal composite-variates without losing 

any vital information.   

 

As an illustration, assume that a pair of binary component-variates  are 

originally used to indicate the presence (yes or no) and type of engine (2l or 2.4l) on a 

conveyor section.  If there is a 2l or 2.4l engine on the conveyor section, then the binary 

variates will appear as  or 

( 21 , cc )

)( 0,1 ( )1,0  respectively.  However, if there is no engine on the 

conveyor section, then the variates will appear as ( )0,0 .  Notwithstanding, these variates 

can be combined to form a nominal composite-variate ( )c  where the latter takes the 

value of 0,1 or 2 to represent no engine, a 2l engine, or a 2.4l engine respectively. 

 

In this way, the remaining 441 cleaned variates were reduced further to 184 variates. 
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Rescale data 

 

It is determined in Section 8.2 that a standard distance measure will be used to evaluate 

state space.  In essence, the standard distance measure is predicated on computing the 

distances between pairs of example cases, which in turn is based on computing the 

distances between corresponding variates (distance components) from the pairs of 

example cases.  Krzanowski (2005) warns that if some variates exhibit a much greater 

range of values than the others, then they are likely to create larger distance 

components.  These will then go on to dominate and bias the distances computed 

between example cases, and ergo the standard distance.  The converse is also true. 

 

Fortunately, Wishart (2001, 2006) has defined the distance components based on binary 

and nominal variates in such a manner that they have a unit range (Section 8.2.5).  That 

is, they range from zero to one.  However, the same cannot be said for the distance 

component based on ordinal, interval or ratio variates; its value is simply the difference 

between the pair of ordinal, interval or ratio variates.  Hence, there is only a need to 

rescale ordinal, interval or ratio variates. 

 

In short, whilst the cleaned and recoded data include binary, nominal and ratio variates 

with varying ranges of values, only the latter need to be rescaled.  In order not to bias 

the distances that are computed subsequently, the ratio variates should be scaled such 

that the distance components based on them will share the same unit range as those 

based on the binary or nominal variates.   
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Consider an observation x  with a ratio  variate.  Therefore, a variate, , can be 

scaled down by performing the following operation: 

thk kx

min,max,

min,

kk

kk

xx
xx
−

−
 

 

where  and  are the respective empirical maximum and minimum values of 

 across all 48 sets of attribute element data.  These values are available from the 

profiling carried out earlier. 

max,kx min,kx

kx

 

Accordingly, a scaled down  with a value of 0 or 1 implies that its original value is 

the empirical minimum or maximum value respectively.  In this way, a distance 

component based on a pair of rescaled ratio variates is made to have a unit range. 

kx

 

Remove outlying data 

 

Finally, the cleaned, recoded and rescaled data were inspected for outliers using a series 

of Andrews plots.  Likewise, consider an observation x  with  variates.  The Andrews 

curve that corresponds to a typical observation, 

k

( )kxxx ,,, 21 K , can be obtained by 

computing the following function and plotting it over the range ππ <<− t : 

( ) K+++++= txtxtxtx
x

tf x 2cos2sincossin
2 5432
1  

 

Therefore, a set of observations will appear as a set of curves drawn across the plot.  

Subsequently, an Andrews plot was drawn for each set of attribute element data, and 

inspected for outliers.  An example of the Andrew plots drawn for the data collected 
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from Subject B is displayed in Figure 10.1; each line in the plot represents the attribute 

element of an example case.  The data used for the plot are collected from the 

knowledge elicitation session using the 2D representation with adjusted parameters. 
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Figure 10.1: An example of the Andrews plots drawn for Subject B (2D representation 

with adjusted parameters) 

 

Krzanowski (2005) advises that these Andrew plots have properties which make them 

suitable for detecting outliers in the data.  These properties will cause two observations 

with similar sets of variate values to be represented by curves that are close together.  

Conversely, two observations with different sets of variate values will be represented by 

curves that differ markedly in at least some parts of the curves.  Hence, if there is a 

curve in an Andrews plot that behaves very differently from the rest, then the 

observation represented by the curve will be regarded as an outlier. 
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Using Figure 10.1 for illustration, except for the spike in the middle, the Andrews 

curves do not appear to show a congruent pattern.  Nonetheless, since there is no curve 

that appears to deviate significantly from the others, it is concluded that there is no 

obvious outlier in the data used to draw the Andrews plot.   

 

Eventually, only a few apparent outliers were detected among the 48 sets of attribute 

element data, and these were deleted from subsequent analysis. 

 

10.2.2 STATE SPACE MEASURE COMPUTATION 

 

A suitable measure for evaluating the state space of a set of example cases is found in 

the standard distance for mixed, multivariate data (Equation 16, Section 8.2.6): 

2
1 1
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Equation 16

 

The numerator, also known as the SSD, can be computed easily using Clustan (a Cluster 

Analysis software) on the prepared data.  The denominator, , is simply the case 

quantity, which is defined as the total number of example cases recorded in a 

knowledge elicitation session (Section 

n

4.2.3).  The computed SSD values and case 

quantities for the entire experiment are summarised in Table 10.1 and Table 10.2 

respectively. 
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2D 2½D 3D 
Subject 

Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted 
A 84,996 203,537 38,813 32,433 241,920 664,667 
B 1,167,679 80,932 682,295 147,147 2,584,074 1,137,512
C 167,742 79,958 81,852 56,231 242,875 525,234 
D 184,507 390,663 78,699 46,316 466,446 196,604 
E 13,775 19,629 5,836 13,556 17,414 38,551 
F 581,905 72,448 57,841 45,206 98,853 431,166 
G 294,330 332,116 68,378 150,762 159,426 274,732 
H 30,915 27,342 21,377 17,618 85,929 369,860 

 

Table 10.1: A summary of computed SSD values 
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2D 2½D 3D 
Subject

Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted
A 42 55 29 22 70 97 
B 161 35 122 47 240 132 
C 59 34 42 29 71 89 
D 63 76 40 26 98 53 
E 17 17 11 14 19 24 
F 110 32 35 25 44 79 
G 79 70 37 48 55 63 
H 25 20 21 16 41 73 

 

Table 10.2: A summary of case quantities ( )  n

 

Putting the values from Table 10.1 and Table 10.2 into Equation 16, the standard 

distances for the 48 sets of attribute element data are computed and summarised in 

Table 10.3.  Next, these values are explored and used to test Hypothesis 4. 
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2D 2½D 3D 
Subject

Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted
A 4.908 5.800 4.804 5.788 4.968 5.943 
B 4.746 5.747 4.788 5.771 4.736 5.713 
C 4.909 5.881 4.817 5.782 4.908 5.758 
D 4.821 5.815 4.959 5.853 4.928 5.916 
E 4.882 5.828 4.911 5.881 4.911 5.785 
F 4.904 5.948 4.859 6.014 5.053 5.877 
G 4.856 5.821 4.997 5.720 5.133 5.883 
H 4.973 5.846 4.923 5.866 5.056 5.891  

Table 10.3: A summary of standard distances ( )*
ds  

 

10.2.3 DATA EXPLORATION 

 

The values from Table 10.3 can be described in Table 10.4. 

 

Statistics

8 8 8 8 8 8
0 0 0 0 0 0

4.874808 5.835828 4.882171 5.834337 4.961679 5.845775
.0682925 .0590546 .0771377 .0907099 .1219260 .0825873

-.749 .689 .188 .999 -.541 -.604
.752 .752 .752 .752 .752 .752

Valid
Missing

N

Mean
Std. Deviation
Skewness
Std. Error of Skewness

Standard
distance (2D,
Unadjusted)

Standard
distance (2D,

Adjusted)

Standard
distance (2.

5D,
Unadjusted)

Standard
distance (2.

5D, Adjusted)

Standard
distance (3D,
Unadjusted)

Standard
distance (3D,

Adjusted)

 

Table 10.4: Some descriptive statistics for the standard distances 

 

At first glance, it is obvious that the average standard distances can be split into two 

groups; the values from knowledge elicitation sessions using adjusted parameters are 

clearly larger than those from using unadjusted parameters.   

 

The main effects of the visual representation dimension and model parameters factors, 

and their interaction effect on standard distance were further assessed through a visual 
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inspection of the graphs in Figure 10.2 and Figure 10.3.  Figure 10.2 plots standard 

distance against visual representation dimension for both treatment levels of the model 

parameters factor, and Figure 10.3 plots standard distance against model parameters for 

all treatment levels of the visual representation dimension factor.  As eight experts had 

participated fully in the experiment carried out using three different visual 

representation dimensions and under two different sets of model parameters, there are 

16 groups and 24 pairs of data available for plotting Figure 10.2 and Figure 10.3 

respectively. 

 

4.5

5

5.5

6

2D 2½D 3D

Visual representation dimension

St
an

da
rd

 d
is

ta
nc

e

Unadjusted
Adjusted

 

Figure 10.2: Hypothesis 4 – A comparison of standard distances under different visual 

representation dimensions 

 

It can be observed in Figure 10.2 that the lines for unadjusted (purple) and adjusted 

(green) model parameters are roughly parallel; this indicates that the visual 

representation dimension and model parameters factors do not interact.  Also, it is noted 

that the purple and green lines are distinctly segregated from each other; this implies 

that the model parameters factor’s main effect is likely to be significant.  Moreover, as 

the green lines are well above the purple lines, this seems to provide some support for 
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the alternative hypothesis ( ).  Further to this, regardless of model parameters, the 

lines are generally flat; this suggests that the visual representation dimension factor’s 

main effect is probably not significant. 

)(4 aH
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Figure 10.3: Hypothesis 4 – A comparison of standard distances under different model 

parameters 

 

It can be observed in Figure 10.3 that the lines for the 2D (yellow), 2½D (blue) and 3D 

(red) representations appear to have a strong positive gradient; this reinforces the earlier 

observation that the model parameters factor’s main effect is likely to be significant, and 

that adjusted parameters might lead to a larger state space (measured by the standard 

distance).  Also, it is noted that all lines are parallel and close to each other; this implies 

that there is probably no interaction effect between the visual representation dimension 

and model parameters factors, and no main effect from the visual representation 

dimension factor. 
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10.2.4 HYPOTHESIS TESTING 

 

Test of normality 

 

Following the analytical framework, a histogram is generated for each experimental 

condition in Table 10.3 to provide an initial indication of whether the standard distances 

are normally distributed.  The six histograms generated are shown in Figure 10.4.  Due 

to the limited number of values plotted in each graph, none of them is seen to have a 

convincing bell shape. 

 

Given the graphs’ inability to show clearly if the distributions are close enough to 

normality to be useful, goodness-of-fit tests (K-S and A-D tests) are performed on each 

set of standard distances to ascertain their distributions.  The results from the series of 

K-S and A-D tests executed are summarised in Table 10.5.  The p-values for all six sets 

of standard distances in both tests are greater than 0.05.  Therefore, there is insufficient 

evidence to reject the null hypotheses that these six sets of standard distances are 

normally distributed at a 5% level of significance. 
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Figure 10.4: Hypothesis 4 – A summary of histograms generated for the standard 

distances 

 

 

 



 Data Analysis (Hypothesis Two to Six) 191 

Kolmogorov-Smirnov(a) Anderson-Darling   
Statistic df Sig. Statistic Sig. 

Standard distance 
(2D, Unadjusted) .186 8 .200(*) .318 .450 

Standard distance 
(2D, Adjusted) .181 8 .200(*) .300 .502 

Standard distance 
(2½D, Unadjusted) .177 8 .200(*) .248 .643 

Standard distance 
(2½D, Adjusted) .194 8 .200(*) .339 .397 

Standard distance 
(3D, Unadjusted) .205 8 .200(*) .284 .532 

Standard distance 
(3D, Adjusted) .274 8 .079 .420 .241 

*  This is a lower bound of the true significance. 
a  Lilliefors Significance Correction 

 

Table 10.5: Hypothesis 4 – A summary of results from the Kolmogorov-Smirnov and 

Anderson-Darling tests performed on the standard distances 

 

Further to this, a series of skewness tests are also performed on the six sets of standard 

distances to determine if their distributions are symmetrical.  Using the relevant 

descriptive statistics from Table 10.4, the test statistics for the skewness tests are 

computed and summarised in Table 10.6. 

 

 Skewness Standard Error Test Statistic 
Standard distance 
(2D, Unadjusted) -0.749 0.752 -0.996 

Standard distance 
(2D, Adjusted) 0.689 0.752 0.916 

Standard distance 
(2½D, Unadjusted) 0.188 0.752 0.250 

Standard distance 
(2½D, Adjusted) 0.999 0.752 1.328 

Standard distance 
(3D, Unadjusted) -0.541 0.752 -0.719 

Standard distance 
(3D, Adjusted) -0.604 0.752 -0.803 

 

Table 10.6: Hypothesis 4 – A summary of results from the skewness tests performed on 

the standard distances 
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The absolute values of the test statistics for all six sets of standard distances are less 

than 1.96.  Therefore, there is insufficient evidence to reject the null hypotheses that 

these six sets of standard distances are symmetrically distributed at a 5% level of 

significance. 

 

In short, it can be shown that the values in Table 10.3 meet the criterion for normality, 

and hence parametric tests can be used on them. 

 

Test of sphericity 

 

Whilst the results above sanction the use of parametric ANOVAs on the standard 

distance data, the latter still needs to be tested for sphericity.  This test is required for 

deciding whether it is necessary to revise the critical values that are used for assessing 

the test statistics from the ANOVAs that follow.  As outlined in the analytical 

framework, Mauchly’s test will be performed on the differences between the treatment 

levels of each possible main and interaction effect to assess the severity of departure 

from sphericity.  The results from the series of Mauchly’s tests performed are 

summarised in Table 10.7. 
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Mauchly's Test of Sphericityb

Measure: MEASURE_1

.871 .828 2 .661 .886 1.000 .500
1.000 .000 0 . 1.000 1.000 1.000

.944 .347 2 .841 .947 1.000 .500

Within Subjects Effect
Dimension
Parameters
Dimension * Parameters

Mauchly's W
Approx.

Chi-Square df Sig.
Greenhous
e-Geisser Huynh-Feldt Lower-bound

Epsilona

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to
an identity matrix.

May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the
Tests of Within-Subjects Effects table.

a. 

Design: Intercept 
Within Subjects Design: Dimension+Parameters+Dimension*Parameters

b. 

 

Table 10.7: Hypothesis 4 – A summary of results from the Mauchly’s tests performed 

on the relevant differences 

 

The p-values for the visual representation dimension factor’s main effect and the 

interaction effect between the latter and the model parameters factor are 0.661 and 

0.841 respectively.  Since these are more than 0.05, there is insufficient evidence to 

reject the null hypotheses that the variances of differences are not different at a 5% level 

of significance.  This means that the criterion for sphericity is met, and the 

corresponding critical values for the following ANOVAs need not be revised.  On the 

other hand, as the model parameters factor has only two treatment levels, the sphericity 

criterion is not relevant.  As such, the Mauchly’s test of sphericity and its results for the 

model parameters factor in Table 10.7 are not used. 

 

Test of main and interaction effects 

 

The results from the two-way repeated measures ANOVA performed are summarised in 

Table 10.8.  The output is split into sections that refer to the different effects and their 

associated error terms. 
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Tests of Within-Subjects Effects

Measure: MEASURE_1

.024 2 .012 2.259 .141

.024 1.772 .013 2.259 .149

.024 2.000 .012 2.259 .141

.024 1.000 .024 2.259 .177

.073 14 .005

.073 12.401 .006

.073 14.000 .005

.073 7.000 .010
10.433 1 10.433 1839.127 .000
10.433 1.000 10.433 1839.127 .000
10.433 1.000 10.433 1839.127 .000
10.433 1.000 10.433 1839.127 .000

.040 7 .006

.040 7.000 .006

.040 7.000 .006

.040 7.000 .006

.014 2 .007 2.070 .163

.014 1.894 .007 2.070 .166

.014 2.000 .007 2.070 .163

.014 1.000 .014 2.070 .193

.048 14 .003

.048 13.256 .004

.048 14.000 .003

.048 7.000 .007

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
Dimension

Error(Dimension)

Parameters

Error(Parameters)

Dimension * Parameters

Error(Dimension*
Parameters)

Type III Sum
of Squares df Mean Square F Sig.

 

Table 10.8: Hypothesis 2 – A summary of results from the two-way repeated measures 

ANOVA performed on the standard distances 

 

On the one hand, as the criterion for sphericity is met with respect to the visual 

representation dimension factor’s main effect and the interaction effect, the p-values 

that correspond to ‘Sphericity Assumed’ in Table 10.8 are used for each effect.  They 

are 0.141 and 0.163 respectively.  Since these are more than 0.05, there is insufficient 

evidence to reject the null hypothesis that if type of model parameters used is ignored, 

using different types of visual representation dimension does not affect state space at a 

5% level of significance.  Also, there is insufficient evidence to reject the null 

hypothesis that the effect which visual representation dimension (model parameters) has 

on state space is independent of the model parameters (visual representation dimension) 
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associated with it at a 5% level of significance.  That is, there is no interaction between 

the two factors in relation to state space. 

 

On the other hand, as the criterion for sphericity is not relevant for the model parameters 

factor, there is only one p-value for its main effect in Table 10.8: zero.  Since it is less 

than 0.05, there is sufficient evidence to reject the null hypothesis that if the type of 

visual representation dimension used is ignored, using different types of model 

parameters does not affect state space at a 5% level of significance. 

 

Planned comparison 

 

The preliminary data exploration in Section 10.2.3 seems to support the alternative 

hypothesis ( ) that state space (measured by the standard distance) increases in size 

as model parameters are adjusted to develop more uncommon and extreme scenes.  

Therefore, a planned comparison should be used instead of a post-hoc test to establish 

this observation. 

)(4 aH

 

Nonetheless, in view of the fact that there are only two treatment levels in the model 

parameters factor, this planned comparison is not necessary.  It is because the results 

from the planned comparison will not differ from that of the ANOVA in Table 10.8.  

That is, there is sufficient evidence to reject the null hypothesis that these treatment 

levels are not different in their effects on standard distance at a 5% level of significance. 

 

In addition, the earlier observation on the mean standard distances from knowledge 

elicitation sessions using adjusted parameters being clearly larger than those from using 
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unadjusted parameters suggests that the adjusted parameters lead to a larger state space 

than the unadjusted parameters. 

 

Effect size 

 

Substituting the relevant values from the SPSS output8 in Appendix E.1 into the 

expression for computing effect size, 

998.0
7127.839,1

127.839,1
=

+
=AdjustedvsUnadjustedr  

 

Since  is more than 0.50, it can be concluded that the effect between 

unadjusted and adjusted parameters is large. 

AdjustedvsUnadjustedr

 

10.2.5 SUMMARY 

 

The overarching pair of null and alternative hypotheses of interest are assessed by 

performing various tests prescribed by the analytical framework.  Subsequently, there is 

sufficient evidence to reject the null hypothesis ( ) at a 5% level of significance.  

Hence, it can be concluded that the size of state space occupied by the example cases 

collected in a knowledge elicitation session increases as model parameters are adjusted 

to develop more uncommon and extreme scenes.  Also, it can be concluded that using 

the adjusted set of parameters over the unadjusted set has a large effect on the size of 

state space. 

)0(4H

                                                 
8 The SPSS output is generated from performing appropriate planned contrasts.  In this case, the values 
are also available in Table 10.8. 
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10.3 ANALYSIS FOR HYPOTHESIS TWO: CASE QUANTITY & 

VISUAL REPRESENTATION DIMENSION, AND HYPOTHESIS 

FIVE: CASE QUANTITY & MODEL PARAMETERS 

 

The overarching pairs of null and alternative hypotheses of interest are replicated below: 

)0(2H  : The size of case quantity of a knowledge elicitation session is not affected by 

the visual representation dimension used; 

)(2 aH  : The size of case quantity of a knowledge elicitation session increases as a 

higher dimension of visual representation is used. 

 

)0(5H  : The size of case quantity of a knowledge elicitation session is not affected by 

the model parameters used; 

)(5 aH  : The size of case quantity of a knowledge elicitation session increases as model 

parameters are adjusted to develop more uncommon and extreme scenes. 

 

Case quantity has been defined, in Section 4.2.3, as the total number of example cases 

recorded in a knowledge elicitation session.  They are as summarised in Table 10.2. 

 



 Data Analysis (Hypothesis Two to Six) 198 

10.3.1 DATA EXPLORATION 

 

The values from Table 10.2 can be described in Table 10.9. 

 

Statistics

8 8 8 8 8 8
0 0 0 0 0 0

69.50 42.38 42.13 28.38 79.75 76.25
47.431 22.136 33.909 12.817 68.938 31.994
1.032 .553 2.283 .800 2.196 .155
.752 .752 .752 .752 .752 .752

Valid
Missing

N

Mean
Std. Deviation
Skewness
Std. Error of Skewness

Case
quantity (2D,
Unadjusted)

Case quantity
(2D, Adjusted)

Case quantity
(2.5D,

Unadjusted)

Case quantity
(2.5D,

Adjusted)

Case
quantity (3D,
Unadjusted)

Case quantity
(3D, Adjusted)

 

Table 10.9: Some descriptive statistics for the case quantities 

 

A quick review reveals that that the average case quantities from knowledge elicitation 

sessions using the 3D representation are larger than those from using the 2D 

representation, which in turn are larger than those from using the 2½D representation.  

Also, it is noticeable that the average case quantities from knowledge elicitation 

sessions using unadjusted parameters are larger than those from using adjusted 

parameters. 

 

The visual representation dimension and model parameters factors’ main effects, and 

their interaction effect on case quantity were further assessed through a visual 

inspection of the graphs in Figure 10.5 and Figure 10.6.  Figure 10.5 plots case quantity 

against visual representation dimension for both treatment levels of the model 

parameters factor, and Figure 10.6 plots case quantity against model parameters for all 

treatment levels of the visual representation dimension factor.  As eight experts had 

participated fully in the experiment carried out using three different visual 

representation dimensions and under two different sets of model parameters, there are 
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16 groups and 24 pairs of data available for plotting Figure 10.5 and Figure 10.6 

respectively. 
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Figure 10.5: Hypothesis 2 and 5 – A comparison of case quantities under different 

visual representation dimensions 

 

It can be observed in Figure 10.5 that the lines for unadjusted (purple) and adjusted 

(green) model parameters are roughly similar in shape: the lines appear to create a 

valley, being higher at both ends at the 2D and 3D representations.  This suggests that 

the visual representation dimension and model parameters factors do not interact.  Also, 

this suggests that the visual representation dimension factor’s main effect might be 

significant, and that a 2½D representation seems to be the least effective in encouraging 

the experts to interact with the game models.  In addition, it is noted that the purple and 

green lines are not distinctly segregated from each other; this implies that the model 

parameters factor’s main effect might not be significant. 
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Figure 10.6: Hypothesis 2 and 5 – A comparison of case quantities under different 

model parameters 

 

It can be observed in Figure 10.6 that the lines for the 2D (yellow), 2½D (blue) and 3D 

(red) representations do not display a strong pattern; this reinforces the earlier 

observation that the model parameters factor’s main effect might not be significant.  

Also, it is noted that the blue lines appear to congregate at the bottom of the graph, 

away from the red and yellow lines; this hints that the visual representation dimension 

factor might have a main effect. 

 

10.3.2 HYPOTHESIS TESTING 

 

Test of normality 

 

Following the analytical framework, a histogram is generated for each experimental 

condition in Table 10.2 to provide an initial indication of whether the case quantities are 

normally distributed.  The six histograms generated are shown in Figure 10.7.  Except 

for the histogram generated for the 3D representation with adjusted parameters, the 
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remaining graphs do not appear to have a convincing bell shape.  This is again due to 

the limited number of values plotted in each graph.   
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Figure 10.7: Hypothesis 2 and 5 – A summary of histograms generated for the case 

quantities 
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Given the graphs’ inability to show clearly if the distributions are close enough to 

normality to be useful, goodness-of-fit tests (K-S and A-D tests) are performed on each 

set of case quantities to ascertain their distributions.  The results from the series of K-S 

and A-D tests performed are summarised in Table 10.10.  On the one hand, the p-values 

for four sets of case quantities (2D representation with unadjusted parameters, and 

adjusted parameters with any visual representation dimension) are greater than 0.05 in 

both tests.  Therefore, there is insufficient evidence to reject the null hypotheses that 

these four sets of case quantities are normally distributed at a 5% level of significance.  

On the other hand, the p-values for the other two sets of case quantities (unadjusted 

parameters with 2½D or 3D representation) are less than 0.05 in both tests.  Therefore, 

there is sufficient evidence to reject the null hypotheses that these two sets of case 

quantities are normally distributed at a 5% level of significance.  That is, these two sets 

of case quantities are not normally distributed.   

 

Kolmogorov-Smirnov(a) Anderson-Darling  
Statistic df Sig. Statistic Sig. 

Case quantity 
(2D, Unadjusted) .180 8 .200(*) .294 .512 
Case quantity 
(2D, Adjusted) .255 8 .133 .388 .294 
Case quantity 
(2½D, Unadjusted) .376 8 .001 1.056 <.005 
Case quantity 
(2½D, Adjusted) .231 8 .200(*) .481 .163 
Case quantity 
(3D, Unadjusted) .301 8 .032 .918 .010 
Case quantity 
(3D, Adjusted) .133 8 .200(*) .158 .919 

*  This is a lower bound of the true significance. 
a  Lilliefors Significance Correction 

 

Table 10.10: Hypothesis 2 and 5 – A summary of results from the Kolmogorov-

Smirnov and Anderson-Darling tests performed on the case quantities 
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Further to this, a series of skewness tests are also performed on the six sets of case 

quantities to determine if their distributions are symmetrical.  Using the relevant 

descriptive statistics from Table 10.9, the test statistics for the skewness tests are 

computed and summarised in Table 10.11.   

 

  Skewness Standard Error Test Statistic 
Case quantity 
(2D, Unadjusted) 1.032 0.752 1.372 

Case quantity 
(2D, Adjusted) 0.553 0.752 0.735 

Case quantity 
(2½D, Unadjusted) 2.283 0.752 3.036 

Case quantity 
(2½D, Adjusted) 0.800 0.752 1.064 

Case quantity 
(3D, Unadjusted) 2.196 0.752 2.920 

Case quantity 
(3D, Adjusted) 0.155 0.752 0.206 

 

Table 10.11: Hypothesis 2 and 5 – A summary of results from the skewness tests 

performed on the case quantities 

 

Likewise, the test statistics for the same four sets of case quantities (2D representation 

with unadjusted parameters, and adjusted parameters with any visual representation 

dimension) have absolute values that are less than 1.96.  Therefore, there is insufficient 

evidence to reject the null hypotheses that these four sets of case quantities are 

symmetrically distributed at a 5% level of significance.  As well, the test statistics for 

the other two sets of case quantities (unadjusted parameters with 2½D or 3D 

representation) have absolute values that are more than 1.96.  Therefore, there is 

sufficient evidence to reject the null hypotheses that these two sets of case quantities are 

symmetrically distributed at a 5% level of significance.  That is, these two sets of case 

quantities are not symmetrically distributed. 
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In short, it can be shown that the values in Table 10.2 do not meet the criterion for 

normality, and hence parametric tests cannot be used on them.  As a remedy, Field 

(2006) and Hair et al. (2006) suggest executing a logarithmic transformation on the 

data, before putting them through another cycle of the K-S, A-D and skewness tests.  

The transformed case quantities are summarised in Table 10.12.   

 

2D 2½D 3D 
Subject

Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted

A 1.623 1.740 1.462 1.342 1.845 1.987 
B 2.207 1.544 2.086 1.672 2.380 2.121 
C 1.771 1.531 1.623 1.462 1.851 1.949 
D 1.799 1.881 1.602 1.415 1.991 1.724 
E 1.230 1.230 1.041 1.146 1.279 1.380 
F 2.041 1.505 1.544 1.398 1.643 1.898 
G 1.898 1.845 1.568 1.681 1.740 1.799 
H 1.398 1.301 1.322 1.204 1.613 1.863 

 

Table 10.12: Hypothesis 2 and 5 – A summary of transformed case quantities 

 

Likewise, a histogram is generated for each experimental condition in Table 10.12 to 

provide an initial indication of whether the transformed case quantities are normally 

distributed.  The six histograms generated are shown in Figure 10.8.  Unlike those in 

Figure 10.7, the histograms generated for the transformed data have a closer 

resemblance to a bell shape now.  To support this observation, the K-S, A-D and 

skewness tests were carried out, with the results summarised in Table 10.13 and Table 

10.14 respectively.  The values that were used to compute the test statistics for the 

skewness tests are available in Appendix D.1. 
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Figure 10.8: Hypothesis 2 and 5 – A summary of histograms generated for the 

transformed case quantities 
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Kolmogorov-Smirnov(a) Anderson-Darling  
Statistic df Sig. Statistic Sig. 

Transformed case quantity
(2D, Unadjusted) .156 8 .200(*) .154 .926 
Transformed case quantity
(2D, Adjusted) .172 8 .200(*) .270 .570 
Transformed case quantity
(2½D, Unadjusted) .253 8 .141 .411 .256 
Transformed case quantity
(2½D, Adjusted) .158 8 .200(*) .271 .566 
Transformed case quantity
(3D, Unadjusted) .177 8 .200(*) .258 .609 
Transformed case quantity
(3D, Adjusted) .177 8 .200(*) .370 .328 

*  This is a lower bound of the true significance. 
a  Lilliefors Significance Correction 

 

Table 10.13: Hypothesis 2 and 5 – A summary of results from the Kolmogorov-

Smirnov and Anderson-Darling tests performed on the transformed case quantities 

 

   Skewness Standard Error Test Statistic 
Tformed case quantity
(2D, Unadjusted) -0.305 0.752 -0.406 

Tformed case quantity
(2D, Adjusted) -0.084 0.752 -0.112 

Tformed case quantity
(2½D, Unadjusted) 0.334 0.752 0.444 

Tformed case quantity
(2½D, Adjusted) 0.175 0.752 0.233 

Tformed case quantity
(3D, Unadjusted) 0.384 0.752 0.511 

Tformed case quantity
(3D, Adjusted) -1.271 0.752 -1.690 

 

Table 10.14: Hypothesis 2 and 5 – A summary of results from the skewness tests 

performed on the transformed case quantities 

 

The p-values for all six sets of transformed case quantities in both tests in Table 10.13 

are greater than 0.05.  Therefore, there is insufficient evidence to reject the null 

hypotheses that these six sets of transformed case quantities are normally distributed at 

a 5% level of significance.  In addition, the absolute values of the test statistics 

computed for the skewness tests in Table 10.14 are all less than 1.96.  Therefore, there 
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is insufficient evidence to reject the null hypotheses that these six sets of transformed 

case quantities are symmetrically distributed at a 5% level of significance.  As such, it 

can be shown that the transformed values in Table 10.12 meet the criterion for 

normality, and hence parametric tests can be used on them. 

 

Test of sphericity 

 

Whilst the results above sanction the use of parametric ANOVAs on the transformed 

case quantity data, the latter still needs to be tested for sphericity.  This test is required 

for deciding whether it is necessary to revise the critical values that are used for 

assessing the test statistics from the ANOVAs that follow.  As outlined in the analytical 

framework, Mauchly’s test is performed on the differences between the treatment levels 

of each possible main and interaction effect to assess the severity of departure from 

sphericity.  The results from the series of Mauchly’s tests performed are summarised in 

Table 10.15.   

 

Mauchly's Test of Sphericityb

Measure: MEASURE_1

.639 2.689 2 .261 .735 .882 .500
1.000 .000 0 . 1.000 1.000 1.000
.523 3.891 2 .143 .677 .782 .500

Within Subjects Effect
Dimension
Parameters
Dimension * Parameters

Mauchly's W
Approx.

Chi-Square df Sig.
Greenhous
e-Geisser Huynh-Feldt Lower-bound

Epsilona

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to
an identity matrix.

May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the
Tests of Within-Subjects Effects table.

a. 

Design: Intercept 
Within Subjects Design: Dimension+Parameters+Dimension*Parameters

b. 

 

Table 10.15: Hypothesis 2 and 5 – A summary of results from the Mauchly’s tests 

performed on the relevant differences 



 Data Analysis (Hypothesis Two to Six) 208 

 

The p-values for the visual representation dimension factor’s main effect and the 

interaction effect between the latter and the model parameters factor are 0.261 and 

0.143 respectively.  Since these are more than 0.05, there is insufficient evidence to 

reject the null hypotheses that the variances of differences are not different at a 5% level 

of significance.  This means that the criterion for sphericity is met, and the 

corresponding critical values for the following ANOVAs need not be revised.  On the 

other hand, as the model parameters factor has only two treatment levels, the sphericity 

criterion is not relevant.  As such, the Mauchly’s test of sphericity and its results for the 

model parameters factor in Table 10.15 are not used. 

 

Test of main and interaction effects 

 

The results from the two-way repeated measures ANOVA performed are summarised in 

Table 10.16.  The output is split into sections that refer to the different effects and their 

associated error terms. 
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Tests of Within-Subjects Effects

Measure: MEASURE_1

.945 2 .473 22.960 .000

.945 1.469 .643 22.960 .000

.945 1.764 .536 22.960 .000

.945 1.000 .945 22.960 .002

.288 14 .021

.288 10.285 .028

.288 12.346 .023

.288 7.000 .041

.078 1 .078 1.821 .219

.078 1.000 .078 1.821 .219

.078 1.000 .078 1.821 .219

.078 1.000 .078 1.821 .219

.301 7 .043

.301 7.000 .043

.301 7.000 .043

.301 7.000 .043

.105 2 .053 3.180 .073

.105 1.354 .078 3.180 .099

.105 1.564 .067 3.180 .090

.105 1.000 .105 3.180 .118

.231 14 .017

.231 9.477 .024

.231 10.949 .021

.231 7.000 .033

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
Dimension

Error(Dimension)

Parameters

Error(Parameters)

Dimension * Parameters

Error(Dimension*
Parameters)

Type III Sum
of Squares df Mean Square F Sig.

 

Table 10.16: Hypothesis 2 and 5 – A summary of results from the two-way repeated 

measures ANOVA performed on the transformed case quantities 

 

On the one hand, as the criterion for sphericity is met with respect to the visual 

representation dimension factor’s main effect and the interaction effect, the p-values 

that correspond to ‘Sphericity Assumed’ in Table 10.16 are used for each effect.  They 

are zero and 0.073 respectively.  Since the former is less than 0.05, there is sufficient 

evidence to reject the null hypothesis that if type of model parameters used is ignored, 

using different types of visual representation dimension does not affect case quantity at 

a 5% level of significance.  However, as the p-value for the interaction effect is more 

than 0.05, there is insufficient evidence to reject the null hypothesis that the effect 

which the visual representation dimension (model parameters) has on case quantity is 

independent of the model parameters (visual representation dimension) associated with 
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it at a 5% level of significance.  That is, there is no interaction between the two factors 

in relation to case quantity. 

 

On the other hand, as the criterion for sphericity is not relevant for the model parameters 

factor, there is only one p-value for its main effect in Table 10.16: 0.219.  Since it is 

more than 0.05, there is insufficient evidence to reject the null hypothesis that if the type 

of visual representation dimension used is ignored, using different types of model 

parameters does not affect case quantity at a 5% level of significance. 

 

Post-hoc test 

 

The preliminary data exploration in Section 10.3.1 generally agrees that case quantities 

from knowledge elicitation sessions using the 2D representation are larger than those 

from using the 2½D representation.  As such, it does not appear to support the 

alternative hypothesis ( ) that case quantity increases as a higher dimension of 

visual representation is used.  Consequently, it is more meaningful to use a post-hoc 

test, instead of a series of planned comparisons, to investigate the visual representation 

dimension factor’s main effect on case quantity. 

)(2 aH

 

Having determined that using different types of visual representation dimension affect 

case quantity, the next step is to identify the visual representation dimension that leads 

to a larger case quantity.  The results from the pairwise comparisons performed on the 

visual representation dimension factor are summarised in Table 10.17.   
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Pairwise Comparisons

Measure: MEASURE_1

.186* .043 .010 .053 .319
-.157 .064 .132 -.358 .043
-.186* .043 .010 -.319 -.053
-.343* .042 .000 -.476 -.211
.157 .064 .132 -.043 .358
.343* .042 .000 .211 .476

(J) Dimension
2
3
1
3
1
2

(I) Dimension
1

2

3

Mean
Difference

(I-J) Std. Error Sig.a Lower Bound Upper Bound

95% Confidence Interval for
Differencea

Based on estimated marginal means
The mean difference is significant at the .05 level.*. 

Adjustment for multiple comparisons: Bonferroni.a. 
 

Table 10.17: Hypothesis 2 and 5 – A summary of results from the pairwise comparisons 

of the visual representation dimension factor 

 

Using a Bonferroni-adjusted critical value that maintains the overall Type I error rate at 

a 5% level of significance, SPSS was used to evaluate the mean differences between 

treatment level 1 (2D representation) and 2 (2½D representation), and between 

treatment level 2 and 3 (3D representation).  These were found to be significant.  Hence, 

there is sufficient evidence to reject the null hypotheses that these two pairs of treatment 

levels are not different in their effects on case quantity at an overall 5% level of 

significance.  Moreover, there is insufficient evidence to reject the null hypothesis that 

treatment level 1 and 3 are not different in their effects on case quantity at an overall 5% 

level of significance. 

 

Furthermore, the positive mean difference between treatment level 1 and 2 suggests that 

the 2D representation leads to a larger case quantity than the 2½D representation, 

whereas the negative mean difference between treatment level 2 and 3 suggests that the 

3D representation leads to a larger case quantity than the 2½D representation.   
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Effect sizes 

 

Substituting the relevant values from the SPSS output9 in Appendix E.2 into the 

expression for computing effect size, 

855.0
7069.19

069.19
½22 =

+
=DvsDr  

 

950.0
7971.65

971.65
3½2 =

+
=DvsDr  

 

Since both r2 and r ½2 re more than 0.50, it can be concluded that the effects 

between the 2D and 2½D representations, and between the 2½D and 3D representations 

are large. 

DvsD ½2  3  a

                                                

DvsD

 

10.3.3 SUMMARY 

 

The overarching pair of null and alternative hypotheses of interest are assessed by 

performing various tests prescribed by the analytical framework.   

 

In relation to Hypothesis 2, there is sufficient evidence to reject the null hypothesis 

( ) at a 5% level of significance.  However, it cannot be concluded that the size of 

case quantity of a knowledge elicitation session generally increases as a higher 

dimension of visual representation is used.  It is because whilst the 3D representation is 

)0(2H

 
9 The SPSS output is generated from performing appropriate planned contrasts. 
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shown to lead to a larger case quantity than the 2½D representation, the latter is not 

shown to lead to a larger case quantity than the 2D representation.  Instead, the 2D 

representation can be shown to lead to a larger case quantity than the 2½D 

representation.  Nevertheless, it can be concluded that using either the 2D or 3D 

representation over the 2½D representation has a large effect on the size of case 

quantity. 

 

In relation to Hypothesis 5, there is insufficient evidence to reject the null hypothesis 

( ) at a 5% level of significance.  Hence, it is concluded that the size of case 

quantity of a knowledge elicitation session is not affected by the model parameters used. 

)0(5H

 

10.4 ANALYSIS FOR HYPOTHESIS THREE: COLLECTION RATE 

& VISUAL REPRESENTATION DIMENSION, AND 

HYPOTHESIS SIX: COLLECTION RATE & MODEL 

PARAMETERS 

 

The overarching pairs of null and alternative hypotheses of interest are replicated below: 

)0(3H  : The collection rate in a knowledge elicitation session is not affected by the 

visual representation dimension used; 

)(3 aH  : The collection rate in a knowledge elicitation session is affected by the visual 

representation dimension used. 

 

)0(6H  : The collection rate in a knowledge elicitation session is not affected by the 

model parameters used; 
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)(6 aH  : The collection rate in a knowledge elicitation session is affected by the model 

parameters used. 

 

Collection rate has been defined, in Section 4.2.4, as the number of example cases 

recorded per unit of real-time in a knowledge elicitation session.  In this thesis, a unit of 

real-time is taken to be one minute.  Using the data in Table 9.1 and Table 10.2, the 

rates for the experiments can be computed and are summarised in Table 10.18. 

 

2D 2½D 3D 
Subject

Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted

A 1.400 1.486 1.074 0.917 0.959 1.043 
B 3.220 0.946 3.486 1.424 2.500 1.361 
C 1.311 1.133 1.235 0.879 1.109 1.023 
D 1.575 1.900 1.379 0.963 1.289 0.659 
E 0.850 0.680 0.500 0.500 0.292 0.300 
F 2.444 0.914 0.972 0.735 0.564 0.898 
G 1.580 1.556 1.233 1.500 0.709 0.700 
H 0.735 0.455 0.583 0.552 0.612 0.768 

 

Table 10.18: A summary of collection rates 

 

10.4.1 DATA EXPLORATION 

 

The values from Table 10.18 can be described in Table 10.19. 

 

Statistics

8 8 8 8 8 8
0 0 0 0 0 0

1.639375 1.133750 1.307750 .933750 1.004250 .844000
.8245868 .4839784 .9339486 .3661560 .6838466 .3158933

1.083 .245 2.192 .598 1.690 -.114
.752 .752 .752 .752 .752 .752

Valid
Missing

N

Mean
Std. Deviation
Skewness
Std. Error of Skewness

Rate (2D,
Unadjusted)

Rate (2D,
Adjusted)

Rate (2.5D,
Unadjusted)

Rate (2.5D,
Adjusted)

Rate (3D,
Unadjusted)

Rate (3D,
Adjusted)
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Table 10.19: Some descriptive statistics for the collection rates 

 

A quick scan reveals that that the average collection rates from knowledge elicitation 

sessions using the 2D representation are higher than those from using the 2½D 

representation, which in turn are higher than those from using the 3D representation.  

Also, it is noticed that the average collection rates from knowledge elicitation sessions 

using unadjusted parameters are higher than those from using adjusted parameters. 

 

The visual representation dimension and model parameters factors’ main effects, and 

their interaction effect on collection rate were further assessed through a visual 

inspection of the graphs in Figure 10.9 and Figure 10.10.  Figure 10.9 plots collection 

rate against visual representation dimension for both treatment levels of the model 

parameters factor, and Figure 10.10 plots collection rate against model parameters for 

all treatment levels of the visual representation dimension factor.  As eight experts had 

participated fully in the experiment carried out using three different visual 

representation dimensions and under two different sets of model parameters, there are 

16 groups and 24 pairs of data available for plotting Figure 10.9 and Figure 10.10 

respectively. 
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Figure 10.9: Hypothesis 3 and 6 – A comparison of collection rates under different 

visual representation dimensions 

 

Except for two uncharacteristic purple lines, it can be observed in Figure 10.9 that the 

remaining lines for unadjusted (purple) and adjusted (green) model parameters are 

otherwise roughly parallel to each other; this suggests that the visual representation 

dimension and model parameters factors do not interact.  Also, it is noted that the purple 

and green lines are not distinctly segregated from each other; this implies that the model 

parameters factor’s main effect might not be significant.  In addition, with the exception 

of the two uncharacteristic purple lines, the remaining lines are quite flat.  This suggests 

that the visual representation dimension factor’s main effect is probably not significant, 

though it might not be true for the experts represented by the two purple lines. 
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Figure 10.10: Hypothesis 3 and 6 – A comparison of collection rates under different 

model parameters 

 

It can be observed in Figure 10.10 that the lines for the 2D (yellow), 2½D (blue) and 3D 

(red) representations do not display a strong pattern; this reinforces the earlier 

observation that the model parameters factor’s main effect might not be significant.  

Also, it is noted that the yellow lines appear to congregate above the blue and red lines; 

this hints that the visual representation dimension factor might have a main effect. 

 

10.4.2 HYPOTHESIS TESTING 

 

Test of normality 

 

Following the analytical framework, a histogram is generated for each experimental 

condition in Table 10.18 to provide an initial indication of whether the collection rates 

are normally distributed.  The six histograms generated are shown in Figure 10.11.  

Except for the histogram generated for the 3D representation with unadjusted 
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parameters, the remaining graphs do not appear to have a convincing bell shape.  This is 

again due to the limited number of values plotted in each graph. 
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Figure 10.11: Hypothesis 3 and 6 – A summary of histograms generated for the 

collection rates 
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Given the graphs’ inability to show clearly if the distributions are close enough to 

normality to be useful, goodness-of-fit tests (K-S and A-D tests) are performed on each 

set of collection rates to ascertain their distributions.  The results from the series of K-S 

and A-D tests performed are summarised in Table 10.20.  The p-values for all but one 

set of collection rates (2½D representation with unadjusted parameters) are greater than 

0.05 in both tests.  Therefore, there is insufficient evidence to reject the null hypotheses 

that these five sets of collection rates are normally distributed at a 5% level of 

significance.  Conversely, there is sufficient evidence to reject the null hypothesis that 

the set of data from knowledge elicitation sessions using the 2½D representation with 

unadjusted parameters are normally distributed at a 5% level of significance.   

 

Kolmogorov-Smirnov(a) Anderson-Darling  
Statistic df Sig. Statistic Sig. 

Rate 
(2D, Unadjusted) .279 8 .067 .429 .229 
Rate 
(2D, Adjusted) .151 8 .200(*) .180 .876 
Rate 
(2½D, Unadjusted) .345 8 .006 .961 .008 
Rate 
(2½D, Adjusted) .218 8 .200(*) .356 .359 
Rate 
(3D, Unadjusted) .214 8 .200(*) .546 .109 
Rate 
(3D, Adjusted) .154 8 .200(*) .189 .853 

*  This is a lower bound of the true significance. 
a  Lilliefors Significance Correction 

 

Table 10.20: Hypothesis 3 and 6 – A summary of results from the Kolmogorov-

Smirnov and Anderson-Darling tests performed on the collection rates 

 

Further to this, a series of skewness tests are also performed on the six sets of collection 

rates to determine if their distributions are symmetrical.  Using the relevant descriptive 

statistics from Table 10.19, the test statistics for the skewness tests are computed and 

summarised in Table 10.21. 
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   Skewness Standard Error Test Statistic 
Rate 
(2D, Unadjusted) 1.083 0.752 1.440 

Rate 
(2D, Adjusted) 0.245 0.752 0.326 

Rate 
(2½D, Unadjusted) 2.192 0.752 2.915 

Rate 
(2½D, Adjusted) 0.598 0.752 0.795 

Rate 
(3D, Unadjusted) 1.690 0.752 2.247 

Rate 
(3D, Adjusted) -0.114 0.752 -0.152 

 

Table 10.21: Hypothesis 3 and 6 – A summary of results from the skewness tests 

performed on the collection rates 

 

In this case, the test statistics for four sets of collection rates (2D representation with 

unadjusted parameters, and adjusted parameters with any visual representation 

dimension) have absolute values that are less than 1.96.  Therefore, there is insufficient 

evidence to reject the null hypotheses that these four sets of collection rates are 

symmetrically distributed at a 5% level of significance.  As well, the test statistics for 

the other two sets of collection rates (unadjusted parameters with 2½D or 3D 

representation) have absolute values that are more than 1.96.  Therefore, there is 

sufficient evidence to reject the null hypotheses that these two sets of collection rates 

are symmetrically distributed at a 5% level of significance. 

 

In short, it can be shown that the values in Table 10.18 do not meet the criterion for 

normality, and hence parametric tests cannot be used on them.  As a remedy, Field 

(2006) suggests executing a logarithmic transformation on the data, before putting them 

through another cycle of the K-S, A-D and skewness tests.  The transformed collection 

rates are summarised in Table 10.22. 
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2D 2½D 3D 
Subject

Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted

A 0.146 0.172 0.031 -0.038 -0.018 0.018 
B 0.508 -0.024 0.542 0.154 0.398 0.134 
C 0.118 0.054 0.092 -0.056 0.045 0.010 
D 0.197 0.279 0.140 -0.016 0.110 -0.181 
E -0.071 -0.167 -0.301 -0.301 -0.535 -0.523 
F 0.388 -0.039 -0.012 -0.134 -0.249 -0.047 
G 0.199 0.192 0.091 0.176 -0.149 -0.155 
H -0.134 -0.342 -0.234 -0.258 -0.213 -0.115 

 

Table 10.22: Hypothesis 3 and 6 – A summary of transformed collection rates 

 

Likewise, a histogram is generated for each experimental condition in Table 10.22 to 

provide an initial indication of whether the transformed collection rates are normally 

distributed.  The six histograms generated are shown in Figure 10.12.  Unlike those in 

Figure 10.11, the histograms generated for the transformed data mostly have a closer 

resemblance to a bell shape now; two of them (2D representation with adjusted 

parameters, and 2½D representation with unadjusted parameters) still hint of bi-

modality.  To support this observation, the K-S, A-D and skewness tests were carried 

out, with the results summarised in Table 10.23 and Table 10.24 respectively.  The 

values that were used to compute the test statistics for the skewness tests are available in 

Appendix D.2. 
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Figure 10.12: Hypothesis 3 and 6 – A summary of histograms generated for the 

transformed collection rates 
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Kolmogorov-Smirnov(a) Anderson-Darling  
Statistic df Sig. Statistic Sig. 

Transformed rate 
(2D, Unadjusted) .194 8 .200(*) .242 .666 
Transformed rate 
(2D, Adjusted) .153 8 .200(*) .194 .839 
Transformed rate 
(2½D, Unadjusted) .229 8 .200(*) .396 .281 
Transformed rate 
(2½D, Adjusted) .152 8 .200(*) .248 .646 
Transformed rate 
(3D, Unadjusted) .143 8 .200(*) .170 .896 
Transformed rate 
(3D, Adjusted) .229 8 .200(*) .421 .240 

*  This is a lower bound of the true significance. 
a  Lilliefors Significance Correction 

 

Table 10.23: Hypothesis 3 and 6 – A summary of results from the Kolmogorov-

Smirnov and Anderson-Darling tests performed on the transformed collection rates 

 

 Skewness Standard Error Test Statistic 
Transformed rate 
(2D, Unadjusted) 0.157 0.752 0.209 

Transformed rate 
(2D, Adjusted) -0.546 0.752 -0.726 

Transformed rate 
(2½D, Unadjusted) 0.705 0.752 0.938 

Transformed rate 
(2½D, Adjusted) 0.011 0.752 0.015 

Transformed rate 
(3D, Unadjusted) 0.096 0.752 0.128 

Transformed rate 
(3D, Adjusted) -1.356 0.752 1.803 

 

Table 10.24: Hypothesis 3 and 6 – A summary of results from the skewness tests 

performed on the transformed collection rates 

 

The p-values for all six sets of transformed collection rates in both tests in Table 10.23 

are greater than 0.05.  Therefore, there is insufficient evidence to reject the null 

hypotheses that these six sets of transformed collection rates are normally distributed at 

a 5% level of significance.  In addition, the absolute values of the test statistics 

computed for the skewness tests in Table 10.24 are all less than 1.96.  Therefore, there 
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is insufficient evidence to reject the null hypotheses that these six sets of transformed 

collection rates are symmetrically distributed at a 5% level of significance.  As such, it 

can be shown that the transformed values in Table 10.22 meet the criterion for 

normality, and hence parametric tests can be used on them. 

 

Test of sphericity 

 

Whilst the results above sanction the use of parametric ANOVAs on the transformed 

collection rate data, the latter still needs to be tested for sphericity.  This test is required 

for deciding whether it is necessary to revise the critical values that are used for 

assessing the test statistics from the ANOVAs that follow.  As outlined in the analytical 

framework, Mauchly’s test is performed on the differences between the treatment levels 

of each possible main and interaction effect to assess the severity of departure from 

sphericity.  The results from the series of Mauchly’s tests performed are summarised in 

Table 10.25.   

 

Mauchly's Test of Sphericityb

Measure: MEASURE_1

.614 2.922 2 .232 .722 .859 .500
1.000 .000 0 . 1.000 1.000 1.000
.237 8.639 2 .013 .567 .603 .500

Within Subjects Effect
Dimension
Parameters
Dimension * Parameters

Mauchly's W
Approx.

Chi-Square df Sig.
Greenhous
e-Geisser Huynh-Feldt Lower-bound

Epsilona

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to
an identity matrix.

May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the
Tests of Within-Subjects Effects table.

a. 

Design: Intercept 
Within Subjects Design: Dimension+Parameters+Dimension*Parameters

b. 

 

Table 10.25: Hypothesis 3 and 6 – A summary of results from the Mauchly’s tests 

performed on the relevant differences 
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The p-values for the visual representation dimension factor’s main effect and the 

interaction effect between the latter and the model parameters factor are 0.232 and 

0.013 respectively.  On the one hand, as the p-value for the visual representation 

dimension factor’s main effect is more than 0.05, there is insufficient evidence to reject 

the null hypothesis that the variances of the differences are not different at a 5% level of 

significance.  This means that the criterion for sphericity is met, and the corresponding 

critical value for the following ANOVA needs not be revised.  On the other hand, as the 

p-value for the interaction effect is less than 0.05, there is sufficient evidence to reject 

the null hypothesis that the variances of differences are not different at a 5% level of 

significance.  This means that the criterion for sphericity is not met, and the 

corresponding critical value for the following ANOVA needs to be revised with a 

Greenhouse-Geisser correction (Field, 2006). 

 

Nevertheless, since the model parameters factor has only two treatment levels, this 

implies that the sphericity criterion is not relevant.  As such, the Mauchly’s test of 

sphericity and its results for the model parameters factor in Table 10.25 are not used. 

 

Test of main and interaction effects 

 

The results from the two-way repeated measures ANOVA performed are summarised in 

Table 10.26.  The output is split into sections that refer to the different effects and their 

associated error terms. 
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Tests of Within-Subjects Effects

Measure: MEASURE_1

.272 2 .136 6.664 .009

.272 1.443 .188 6.664 .020

.272 1.718 .158 6.664 .014

.272 1.000 .272 6.664 .036

.285 14 .020

.285 10.104 .028

.285 12.028 .024

.285 7.000 .041

.110 1 .110 4.228 .079

.110 1.000 .110 4.228 .079

.110 1.000 .110 4.228 .079

.110 1.000 .110 4.228 .079

.182 7 .026

.182 7.000 .026

.182 7.000 .026

.182 7.000 .026

.030 2 .015 1.331 .296

.030 1.134 .027 1.331 .290

.030 1.206 .025 1.331 .291

.030 1.000 .030 1.331 .286

.159 14 .011

.159 7.941 .020

.159 8.444 .019

.159 7.000 .023

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
Dimension

Error(Dimension)

Parameters

Error(Parameters)

Dimension * Parameters

Error(Dimension*
Parameters)

Type III Sum
of Squares df Mean Square F Sig.

 

Table 10.26: Hypothesis 3 and 6 – A summary of results from the two-way repeated 

measures ANOVA performed on the transformed collection rates 

 

On the one hand, as the criterion for sphericity is met with respect to the visual 

representation dimension factor’s main effect, the p-value that corresponds to 

‘Sphericity Assumed’ in Table 10.26 is used.  However, as the criterion for sphericity is 

not met in respect of the interaction effect, the p-value that corresponds to ‘Greenhouse-

Geisser’ is used instead.  The p-values for the main and interaction effects are 0.009 and 

0.290 respectively.  Since the former is less than 0.05, there is sufficient evidence to 

reject the null hypothesis that if type of model parameters used is ignored, using 

different types of visual representation dimension does not affect collection at a 5% 

level of significance.  However, as the p-value for the interaction effect is more than 

0.05, there is insufficient evidence to reject the null hypothesis that the effect which 
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visual representation dimension (model parameters) has on collection rate is 

independent of the model parameters (visual representation dimension) associated with 

it at a 5% level of significance.  That is, there is no interaction between the two factors 

in relation to collection rate. 

 

On the other hand, as the criterion for sphericity is not relevant for the model parameters 

factor, there is only one p-value for its main effect in Table 10.26: 0.079.  Since it is 

more than 0.05, there is insufficient evidence to reject the null hypothesis that if the type 

of visual representation dimension used is ignored, using different types of model 

parameters does not affect collection rate at a 5% level of significance. 

 

Post-hoc test 

 

It should be noted that Hypothesis 3 does not make any a priori predictions about the 

collection rates, and is only interested in exploring them for any differences due to the 

visual representation dimension used.  Consequently, it is more appropriate to use a 

post-hoc test instead of a series of planned comparisons to investigate the visual 

representation dimension factor’s main effect on collection rate. 

 

Having determined that using different types of visual representation dimension affect 

collection rate, the next step is to identify the visual representation dimension that leads 

to a higher collection rate.  The results from the pairwise comparisons performed on the 

visual representation dimension factor are summarised in Table 10.27. 
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Pairwise Comparisons

Measure: MEASURE_1

.100 .040 .128 -.026 .227

.184 .064 .072 -.017 .385
-.100 .040 .128 -.227 .026
.084 .043 .283 -.052 .220

-.184 .064 .072 -.385 .017
-.084 .043 .283 -.220 .052

(J) Dimension
2
3
1
3
1
2

(I) Dimension
1

2

3

Mean
Difference

(I-J) Std. Error Sig.a Lower Bound Upper Bound

95% Confidence Interval for
Differencea

Based on estimated marginal means
Adjustment for multiple comparisons: Bonferroni.a. 

 

Table 10.27: Hypothesis 3 and 6 – A summary of results from the pairwise comparisons 

of the visual representation dimension factor 

 

Using a Bonferroni-adjusted critical value that maintains the overall Type I error rate at 

a 5% level of significance, there are no significant results.  Hence, there is insufficient 

evidence to reject the null hypotheses that all three pairs of treatment levels are not 

different in their effects on collection rate at an overall 5% level of significance.  

Unfortunately, this conclusion differs from the preceding conclusion based on the 

ANOVA results, which implies that there is at least a pair of treatment levels that are 

different in their effects on collection rate. 

 

Nevertheless, if the overall level of significance for the two-tailed test is raised to at 

least 7.3%, then there is sufficient evidence to reject the null hypothesis that treatment 

level 1 and 3 are not different in their effects on collection rate.  In such a case, the 

positive mean difference between treatment level 1 and 3 would suggest that the 2D 

representation leads to a higher collection rate than the 3D representation. 
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Effect size 

 

Substituting the relevant values from the SPSS output10 in Appendix E.3 into the 

expression for computing effect size, 

735.0
7215.8

215.8
32 =

+
=DvsDr  

 

Since  is more than 0.50, it can be concluded that the effect between the 2D and 

3D representations is large. 

DvsDr 32

 

10.4.3 SUMMARY 

 

The overarching pair of null and alternative hypotheses of interest are assessed by 

performing various tests prescribed by the analytical framework.   

 

In relation to Hypothesis 3, there is sufficient evidence to reject the null hypothesis 

( ) at a 5% level of significance, and conclude that the collection rate in a 

knowledge elicitation session is affected by the visual representation dimension used.  

Moreover, there is sufficient evidence to conclude that the 2D representation would lead 

to a higher collection rate than the 3D representation at an overall 7.3% level of 

significance.  Further to this, it can be concluded that using the 2D representation over 

the 3D representation has a large effect on the collection rate.  However, no significant 

difference in collection rate can be established between using the 2D and 2½D 

representations, and between the 2½D and 3D representations. 

)0(3H
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In relation to Hypothesis 6, there is insufficient evidence to reject the null hypothesis 

( ) at a 5% level of significance.  Hence, it can be concluded that the collection rate 

in a knowledge elicitation session is not affected by the model parameters used. 

)0(6H

 

10.5 CONCLUSION 

 

This chapter describes the analysis carried out to test Hypothesis 2 to 6.  In a nutshell, 

these hypotheses postulate causal links between two factors (visual representation 

dimension and model parameters) and three constructs (state space, case quantity and 

collection rate).  They are as summarised in Table 10.28.  

 

Hypothesis Cause Effect 

⋅ 2 
⋅ 3 

Visual representation dimension 
(2D, 2½D and 3D) 

⋅ Case quantity 
⋅ Collection rate 

⋅ 4 
⋅ 5 
⋅ 6 

Model parameters  
(Unadjusted and Adjusted) 

⋅ State space 
⋅ Case quantity 
⋅ Collection rate 

  

Table 10.28: Postulated cause and effect relationships in Hypothesis 2 to 6 

 

The analysis begins by exploring the measures determined for the various hypotheses.  

Then, following the analytical framework, a series of normality tests, sphericity tests, 

two-way repeated measures ANOVAs and post-hoc tests are executed on the measures 

to mixed results. 

 

                                                                                                                                               
10 The SPSS output is generated from performing appropriate planned contrasts. 
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In essence, the results reject the null hypothesis for Hypothesis 2, 3 and 4, and fail to 

reject the null hypothesis for Hypothesis 5 and 6.  This means that state space has been 

found to be affected by the model parameters used.  Also, both case quantity and 

collection rate are found to be affected by the visual representation dimension used.  

However, they are not affected by the model parameters used.  

 

In the next chapter, the results from the entire data analysis process (process vii in 

Figure 4.1), which spans Chapter 9 and this chapter, are compiled and discussed 

(process viii).  In addition, the limitations that were encountered throughout this 

research are reflected on.  Last but not least, potential areas for further research are also 

explored. 



 

11 Conclusion 

 

An investigation was embarked upon to seek the answers to the research questions 

stated at the beginning of this thesis:  Is VIS a valid tool for eliciting knowledge?  If it 

is, how can it be adapted to make for a better knowledge elicitation tool?   

 

In doing so, the knowledge elicitation process was formally defined (Chapter 2), and 

VIS was also established as a valid knowledge elicitation tool (Chapter 3).  Following 

this, six propositions were suggested for leading the investigation on how to make a 

VIS-based knowledge elicitation tool better (Chapter 4).  These were then used to 

specify the hypotheses for subsequent testing.  Later, using a real-world case study set 

in a Ford engine assembly plant in Dagenham (East London), empirical work was 

planned (Chapter 5, 6, 7 and 8) and executed (Chapter 9 and 10).   

 

The propositions and hypotheses are revisited briefly in the next section.  Also, the 

results from the hypothesis tests are summarised and discussed.  Further to this, the 

limitations that were encountered throughout the investigation are reflected on, before 

closing this thesis with some suggestions for future research. 

 

11.1 FINDINGS FROM THE RESEARCH 

 

Two research factors and four constructs have been determined in Chapter 4 for forming 

the propositions and specifying the hypotheses.  The factors are the visual 
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representation dimension and model parameters; and the constructs are decision fidelity, 

state space, case quantity and collection rate. 

 

Three propositions have been suggested for investigating the effect of the visual 

representation dimension factor on decision fidelity, case quantity and collection rate.  

They are then used to frame the first three hypotheses (Hypothesis 1, 2 and 3) in this 

thesis.  Similarly, three propositions have been suggested for investigating the effect of 

the model parameters factor on state space, case quantity and collection rate.  They are 

also used to frame the next three hypotheses (Hypothesis 4, 5 and 6) in this thesis. 

 

As it was identified that the visual representation dimension factor does not interact 

with the model parameters factor at all (Chapter 10), the findings for these factors can 

be reported separately from each other.  Thus, the propositions, hypotheses and findings 

that pertain to the visual representation dimension factor will be addressed first, and 

then followed by those that pertain to the model parameters factor. 

 

11.1.1 RESEARCH PROPOSITIONS, HYPOTHESES AND FINDINGS FOR THE 

VISUAL REPRESENTATION DIMENSION FACTOR 

 

Proposition and Hypothesis One 

 

Proposition 1 is put forward as below: 

A higher dimension of iconic representation would demonstrably 

improve the degree of decision fidelity in the example cases collected in 

a knowledge elicitation session. 
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Therefore, the corresponding pair of null and alternative hypotheses are: 

)0(1H  : The degree of decision fidelity in the example cases collected in a knowledge 

elicitation session is not affected by the visual representation dimension used; 

)(1 aH  : The degree of decision fidelity in the example cases collected in a knowledge 

elicitation session improves as a higher dimension of visual representation is 

used. 

 

Proposition and Hypothesis Two 

 

Proposition 2 is put forward as below: 

A higher dimension of iconic representation would demonstrably 

increase the quantity of example cases collected in a knowledge 

elicitation session. 

 

Therefore, the corresponding pair of null and alternative hypotheses are: 

)0(2H  : The size of case quantity of a knowledge elicitation session is not affected by 

the visual representation dimension used; 

)(2 aH  : The size of case quantity of a knowledge elicitation session increases as a 

higher dimension of visual representation is used. 
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Proposition and Hypothesis Three 

 

Proposition 3 is put forward as below: 

Different dimension of iconic representation would have different impact 

on the efficiency with which the example cases are collected in a 

knowledge elicitation session.  

 

Therefore, the corresponding pair of null and alternative hypotheses are: 

)0(3H  : The collection rate in a knowledge elicitation session is not affected by the 

visual representation dimension used; 

)(3 aH  : The collection rate in a knowledge elicitation session is affected by the visual 

representation dimension used. 

 

Findings for Hypothesis One, Two and Three – A summary and discussion 

 

First and foremost, there is strong, albeit negative evidence to support the null 

hypothesis for Proposition 1 ( ).  Moreover, the results also appear to contradict 

Proposition 1 by suggesting that decision fidelity improves as a lower dimension of 

visual representation is used.  The latter is demonstrated most clearly by Subject G, 

when his decision-making demeanour in the knowledge elicitation session using the 2D 

game bore a very close resemblance to that in the real world (Section 

)0(1H

9.2.2).  Hence, 

prima facie, this finding goes against the belief that if the objects perceived in a real-

world environment are simulated faithfully with similar visual and behavioural 

characteristics on a visual display, then an expert can apply the same mental processes 
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which he uses for engaging the real-world objects onto his interactions with the 

simulation model (Section 4.3.1).  As importantly, the apparent absence of high fidelity 

decision-making in the knowledge elicitation sessions implies that VIS is not a be-all 

and end-all tool for eliciting episodic knowledge.  Subsequently, four factors that are 

thought to influence the extent of VIS’ usefulness as a knowledge elicitation tool can be 

inferred from observing this phenomenon: 

i. Replicability of real-world information 

VIS is more likely to be useful for eliciting knowledge if the contextual information 

that is vital for decision-making can be represented entirely and meaningfully by 

dynamic visual objects such as iconic animation and dynamically changing graphic 

(Section 4.3.1).  In this research, however, there are pieces of information relayed 

through the sense of touch that cannot be represented meaningfully in the game 

models.  This limitation might account for the discrepancy in decision fidelity and 

is mentioned again in Section 11.3. 

ii. Alignment of the experts’ motivation 

VIS is also more likely to be useful for eliciting knowledge when the motivation of 

the experts participating in the elicitation sessions is similar to their real-world 

motivation.  This notion is not new, as Robinson et al. (2005) have discover that 

human decision makers are likely to act differently when there are no real 

consequences from their decisions made in a simulated environment (Section 1.1).  

In this research, there are a few (dis)incentives influencing the experts’ decision-

making behaviour in the real world that cannot be reproduced meaningfully in the 

game models.  Hence, the experts’ motivation during the elicitation sessions may 

differ from those they have in their real-world operations, which might explain the 
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discrepancy in decision fidelity.  This limitation is also mentioned again in Section 

11.3.   

iii. Tacitness of the experts’ knowledge 

VIS is probably more useful for eliciting knowledge that has not become too tacit in 

the experts’ mind.  This view is supported by comparing Subject G’s experience 

level in the hot-test operations with the rest of the experts, and is discussed further in 

Section 11.4; and last but not least 

iv. Consistency of the experts’ decision-making 

It is probable that the experts are not consistent in making their decisions, which 

may result in many noisy example cases being collected in the elicitation sessions 

and cause the phenomenon observed above.  This drawback exposes a potentially 

serious weakness in VIS-based knowledge elicitation: the efficacy demonstrated by 

the latter as a computer-aided means to collect more example cases than other 

elicitation techniques does not necessarily imply there are as many valid example 

cases available for learning purpose.  This strongly suggests a need to use other 

complementary elicitation techniques to filter out the noisy example cases, and 

facilitate a more robust approach to knowledge elicitation.  These complementary 

techniques are likely to be manual methods (Section 2.4.2), which include 

document analysis, interview, on-site observation, questionnaire and rating scale, 

teach-back interview, protocol analysis, walkthrough, card-sort, and solution-

characteristic matrix. 

 

Secondly, there is sufficient evidence to reject the null hypothesis for Proposition 2 

( ) at a 5% level of significance.  However, although it can be shown that case 

quantity is affected by the visual representation dimension used [ ], it 

)0(2H

96.22)14,2( =F
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cannot be concluded that its size generally increases as a higher dimensional 

representation is used.  Instead, it can only be concluded that using either the 2D or 3D 

representation leads to a significantly larger case quantity than the 2½D representation 

[ 86.0,05.0 ½22,½22 =<− DvsDtailedoneDvsD rp ; 95.0,05.0 3½2,3½2 =<− DvsDtailedoneDvsD rp ].  This 

finding shows that the properties that make a 3D-VIS model a better communication 

tool than an equivalent 2D-VIS model (Section 4.3.1) do not make the former a better 

knowledge elicitation tool.  In addition, the finding above also forms an oblique contrast 

against Akpan and Brooks’ (2005a) conclusion that it is easier to uncover inaccuracies 

in a 2½D-VIS or 3D-VIS model than in a 2D-VIS model (Section 4.3.1), by showing 

that it is easier for the latter to elicit responses from the experts than the former. 

 

Last but not least, there is also sufficient evidence to reject the null hypothesis for 

Proposition 3 ( ) at a 5% level of significance.  As such, it can be shown that 

collection rate is affected by the visual representation dimension used [

)0(3H

66.6)14,2( =F ].  

Furthermore, there is also sufficient evidence to conclude that the 2D representation 

leads to a significantly higher collection rate than the 3D representation 

[ 74.0,05.0 32,32 =<− DvsDtailedoneDvsD rp ].   

 

In retrospect, it seems that the responses elicited through a 2D-VIS model are probably 

more realistic than those elicited through an equivalent 2½D-VIS or 3D-VIS model.  

Moreover, it also emerges that a 2D-VIS model is able to elicit significantly more 

responses from the experts than a 2½D-VIS model, and as many responses as a 3D-VIS 

model over a shorter time frame.  Hence, notwithstanding the earlier concern over the 

responses’ integrity and suitability for learning knowledge, it can be inferred from these 
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findings that a 2D-VIS model generally makes for a better knowledge elicitation tool 

than a 2½D-VIS or 3D-VIS model does in the context studied.   

 

11.1.2 RESEARCH PROPOSITIONS, HYPOTHESES AND FINDINGS FOR THE 

MODEL PARAMETERS FACTOR 

 

Proposition and Hypothesis Four  

 

Proposition 4 is put forward as below: 

Model parameters that are adjusted to develop more uncommon and 

extreme scenes would demonstrably increase the size of state space 

occupied by the example cases collected in a knowledge elicitation 

session. 

 

Therefore, the corresponding pair of null and alternative hypotheses are: 

)0(4H  : The size of state space occupied by the example cases collected in a 

knowledge elicitation session is not affected by the model parameters used; 

)(4 aH  : The size of state space occupied by the example cases collected in a 

knowledge elicitation session increases as model parameters are adjusted to 

develop more uncommon and extreme scenes. 

 

Proposition and Hypothesis Five 

 

Proposition 5 is put forward as below: 
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Model parameters that are adjusted to develop more uncommon and 

extreme scenes would demonstrably increase the quantity of example 

cases collected in a knowledge elicitation session. 

 

Therefore, the corresponding pair of null and alternative hypotheses are: 

)0(5H  : The size of case quantity of a knowledge elicitation session is not affected by 

the model parameters used; 

)(5 aH  : The size of case quantity of a knowledge elicitation session increases as model 

parameters are adjusted to develop more uncommon and extreme scenes. 

 

Proposition and Hypothesis Six 

 

Proposition 6 is put forward as below: 

Different sets of model parameters would have different impact on the 

efficiency with which the example cases are collected in a knowledge 

elicitation session. 

 

Therefore, the corresponding pair of null and alternative hypotheses are: 

)0(6H  : The collection rate in a knowledge elicitation session is not affected by the 

model parameters used; 

)(6 aH  : The collection rate in a knowledge elicitation session is affected by the model 

parameters used. 

 



 Conclusion 241 

Findings for Hypothesis Four, Five and Six – A summary and discussion 

 

On the one hand, there is sufficient evidence to reject the null hypothesis for Proposition 

4 ( ) at a 5% level of significance.  Thus, it can be concluded that adjusting the 

model parameters to develop more uncommon and extreme scenes leads to a 

significantly larger state space than the original model parameters [ , 

] preset in the VIS model. 

)0(4H

13.839,1)7,1( =F

00.1=AdjustedvsUnadjustedr

 

On the other hand, there is insufficient evidence to reject the null hypotheses for 

Proposition 5 and 6 (  and ) at a 5% level of significance.  Therefore, it can be 

concluded that case quantity and collection rate are not affected by the type of model 

settings used.  These findings show that although the uncommon and extreme scenes 

provided in the simulation might offer the experts with more interesting situations that 

would retain their attention throughout the knowledge elicitation sessions, they did not 

materialise in more responses being elicited from the experts.  Also, the experts did not 

find the unconventional decision-making required by these uncommon and extreme 

scenes more difficult, as they did not take more time to make the decisions. 

)0(5H )0(6H

 

In retrospect, it seems that the attribute elements of the example cases collected through 

a VIS model, which has been adjusted to develop more uncommon and extreme scenes, 

will collectively cover a wider range of values for all attributes than those from an 

unadjusted VIS model.  Also, the latter can be achieved without any adverse impact on 

the quantity or rate of responses elicited from the experts.  Hence, it can be inferred that 
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an adjusted VIS model generally makes for a better knowledge elicitation tool than an 

unadjusted VIS model in the context studied. 

 

All in all, a 2D-VIS model should always be chosen over a 2½D-VIS or 3D-VIS model 

to collect the example cases for machine learning in the context studied.  Also, the 

chosen VIS model should always be adjusted to develop more uncommon and extreme 

scenes.  Whilst a 2D representation does not interact with an adjusted set of model 

parameters to bring additional benefits into the knowledge elicitation efforts, the former 

will encourage a higher degree of decision fidelity in a larger set of example cases 

collected over a comparable period.  In addition, the latter will also push for the 

decisions to be elicited over a wider range of situations. 

 

11.2 CONTRIBUTIONS OF THE RESEARCH 

 

The research initially seeks to answer two research questions: Is VIS a valid tool for 

eliciting knowledge?  If it is, then how can VIS be adapted to make for a better 

knowledge elicitation tool?   

 

The thesis commences by defining a context for the research, before attempting to 

establish VIS’ validity as a knowledge elicitation tool.  In doing so, it is realised that 

there is limited research on collecting an informative set of example cases for training a 

knowledge base.  Liang et al. (1992) attribute this phenomenon to the flawed 

presumption that training example cases are either normally available, or easily 

collected.  Unfortunately, this realisation inevitably implies that there is even less 

evidence for supporting VIS as a computer-aided means of collecting example cases.  
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Hence, the first contribution in this thesis comes from extracting and organising the 

circumstantial evidence in existing AI/KBS-Simulation/VIS collaboration literature that 

demonstrates VIS’ suitability for such a purpose, and providing an affirmative answer to 

the first research question. 

 

Following this, the thesis proceeds to set the scene for carrying out an experiment in 

order to answer the second research question.  The experiment essentially investigates 

the effects (decision fidelity, state space, case quantity and collection rate) of using 

various VIS models with different levels of visual fidelity (2D, 2½D or 3D 

representations) and settings (unadjusted or adjusted model parameters) on the 

knowledge elicitation process.  As Akpan and Brooks (2005a and b) recognise there are 

little or no empirical studies committed to comparing simulation models with 2D, 2½D 

or 3D representations, it is believed that this experiment constitutes the first empirical 

comparative study carried out on all three visual representations. 

 

The experiment was carried out in Ford’s engine assembly plant in Dagenham, East 

London.  It involved eight real experts playing with VIS game models that had been 

adapted for six different experimental conditions (Section 6.1), and concluded with 48 

sets of very rich data.  Since the experts are actual decision makers who work in the 

real-world operations mimicked in the game models, their participation lend the data 

collected and any conclusions drawn from their analysis a rare quality of authenticity 

and legitimacy. 

 

Further to this, the collected data are used to test six hypotheses (Section 4.4) based on 

the two factors of interest mentioned earlier: visual representation and model 



 Conclusion 244 

parameters.  In the midst of doing so, a novel concept that brings together ideas from the 

fields of Descriptive Statistics, Geostatistics and Cluster Analysis is developed for 

evaluating decision fidelity in the data.  Basically, it measures the dispersion of mixed 

multivariate data. 

 

Last but not least, the most significant contribution from this thesis must lie with the 

conclusions drawn from the research, which provide an answer to the second research 

question.  These conclusions, as detailed in Section 11.1 above, show the effects of 

different visual representation levels and model parameters on the effectiveness and 

efficiency of VIS for knowledge elicitation.  Although the conclusions are specific to 

using VIS for collecting example cases to build a KBS via rule induction or pattern 

matching, they can also provide valuable insight into using VIS for aiding other 

techniques that elicit knowledge from example cases.  These techniques include other 

machine learning methods such as neural network computing and genetic algorithms.  

Finally, the conclusions may offer an alternative perspective on using VIS as an aid for 

actual (as opposed to optimal) decision-making. 

 

11.3 LIMITATIONS OF THE RESEARCH 

 

Like all research, the investigation detailed in this thesis is not without its fair share of 

limitations.  It is first mentioned that the order of experimental conditions, which each 

expert was exposed to, was not randomised sufficiently (Chapter 6).  This subsequently 

led to a quasi-experiment being carried out in this research.  Fortunately, the practice 

and fatigue effects that might have been developed from this lack of randomisation were 
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mitigated by the randomising mechanism of the running game models, and the time lags 

built in between the knowledge elicitation sessions. 

 

Next, as Field and Hole (2006) have pointed out, the small number of experts 

participating in this research might have posed a threat to its findings’ validity.  It is 

because using too few participants in an experiment will diminish its power to detect an 

effect in the sample that may actually exist in the population.  In addition, O’Keefe and 

Pitt’s (1991) comment that ‘as in all laboratory experiments, the motivation of subjects 

is questionable’ also rings true in this research.  Whilst it could be observed that some 

experts genuinely wanted to help with the experiment, others were not as keen.  Among 

the latter, they had started off being either curious about VIS modelling, or pressured by 

their peers to participate.  Nonetheless, the influence due from the reservations above 

was allayed partially by adopting a repeated measures experimental design for the 

research, and exposing every expert to all experimental conditions.  In so doing, the 

variation in scores between conditions that is due to the random differences between 

different participants is reduced dramatically.  These differences include those 

pertaining to motivation, among others.  Therefore, ceteris paribus, a repeated measures 

design will always be more sensitive than a non-repeated measures design (for instance, 

a between-groups design), and will be more likely to detect any differences that exist 

between conditions.  For most of the data analysis (Chapter 9 and 10), the benefit from 

the repeated measures design’s enhanced sensitivity indeed appears sufficient to offset 

the ramification from the loss in power due to a small sample and the experts’ dubious 

motivation.  This is because the conclusions drawn from the series of two-way repeated 

measures ANOVA tests and pairwise comparisons that were carried out for testing the 

hypotheses generally corroborate with each other.  However, the same cannot be said 
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for the borderline case of testing Hypothesis 3, where the conclusion drawn from the 

two-way repeated measures ANOVA test contradicts that drawn from the pairwise 

comparison at an identical significance level (Section 10.4.2).  The perplexing 

contradiction in the latter could be avoided if more experts were available to participate 

in the experiment, which should increase the tests’ statistical power to detect an effect 

and chance of reaching corroborating conclusions. 

 

Furthermore, in spite of making every effort to ensure that the information offered in the 

game models match those present in the real world (Chapter 7), there are still some 

deviations.  For instance, an expert may occasionally use the sense of touch to 

determine whether the engines have been tested.  If an engine was tested, then it would 

feel hot.  However, this information could not be incorporated into the game models 

realistically.  In another instance, a third group of diesel engines with a capacity of 2.2 

litres was introduced into the Puma engine assembly line mid-way through the 

experiment.  Hence, the game models’ currency was affected, albeit it might not alter 

the experts’ decision-making demeanour which was used to evaluate Proposition 1. 

 

Also, it was learnt that an expert will try to maintain the engine type that is being 

handled by each operational hot-test cell (Section 5.4).  This is to minimise the amount 

of unproductive changeover time that is lost when a hot-test cell changes from testing 

one type of engines to another.  As such, there will be more time to test the engines, 

thereby addressing the expert’s objective to maximise the number of engines tested by 

the end of his shift.  More importantly, this also serves to keep the hot-test operators 

happy as fewer changeovers imply less work; otherwise, the operators may lodge their 

complaints against the expert or even abuse him verbally.  However, even though the 
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latter is a very effective incentive for the expert to maintain the engine type in the real 

world, it could not be reproduced for the experiment.  Consequently, the decisions made 

by the expert in the experiment may not be as faithful to those made in reality as 

originally thought. 

 

Lastly, as Saunders et al. (2006) have warned, since the research is based on a case 

study, the findings that are made in this thesis are specific to the context studied and 

may not be generalised to other research settings.  They can, however, act as indicators 

for those who are researching in this domain and applying these ideas. 

 

11.4 SUGGESTIONS FOR FUTURE RESEARCH 

 

Several areas with potential for future research have been identified during the 

investigation detailed in this thesis.  Their origins range from the literature review at the 

beginning of the thesis, to the findings at the end. 

 

O’Keefe and Pitt (1991) show that the preference for a visual representation mode 

(Section 4.3.1) can be explained partially by cognitive style.  The latter can be measured 

with well-established instruments such as the Myers-Briggs Type Indicator (Myers, 

1977).  Thus, following their lead, a probable avenue for future research lies in studying 

if and how an expert’s cognitive style may influence the effectiveness of a visual 

representation dimension on VIS-based knowledge elicitation, or even VIS-based 

decision-making. 
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Next, it is noted in Figure 9.2 that Subject G’s decision-making demeanour in the 2D 

game bears an uncanny resemblance to that in the real world.  The significance of this 

observation was later confirmed by the  test results in 2χ Table 9.9.  However, the same 

cannot be said for Subject A, B, C or H.  A review of each expert’s profile (Table 5.3) 

reveals that apart from Subject G’s prior experience of using the computers and game 

consoles, he also has the least experience in switch operations (< 1 year).  Perhaps it 

may be suggested that Subject G’s relative inexperience means his knowledge of switch 

operations has not become too tacit for VIS-based elicitation.  If this is true, then 

another probable avenue for future research lies in determining the correct means 

(Section 2.4) for eliciting knowledge of varying levels of tacitness. 

 

Further to this, considering that the experts are better placed to process the information 

from the 3D-VIS model, which has a higher visual fidelity and runs slower than the 2D-

VIS model (Section 4.3.1), the findings for Proposition 2 and 3 suggest that a higher 

visual fidelity may actually make it more difficult for the experts to process information.  

Hence, if technological advances in the future can improve the 3D-VIS model’s run 

speed to be on par with a 2D-VIS model’s, then a similar experiment can be performed 

to find out whether case quantity will deteriorate as predicted by this deduction.  

Moreover, taking into account the contrasting views that a 3D-VIS model is a better 

communication tool than a 2D-VIS model, and also that it is easier to uncover 

inaccuracies in a 2½D-VIS or 3D-VIS model than in a 2D-VIS model (Akpan and 

Brooks, 2005a and b), it may be theorised that the mental processes used by the experts 

for understanding and validating the VIS models are different from those used for 

responding to VIS models.  This may provide another basis for future research. 
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As well, a speculation may be made from a confluence of the findings from Proposition 

2 and 5.  It is first found that no differences can be detected between the case quantity 

from a 2D-VIS model, and a slower-running 3D-VIS model which has a higher visual 

fidelity.  Then, it is found that case quantity is also not affected by the range of scenes 

that are developed in the VIS model.  Therefore, it might be that there is a constraint on 

the quantity of example cases which can be collected in a knowledge elicitation session, 

and it is likely to be imposed by some inherent factors in the expert.  These factors may 

include an onset of mental fatigue or limited attention span, and understanding their 

influence on the expert’s participation may provide another avenue for future research. 

 

Last but not least, it is worthwhile to extend this investigation on VIS-based knowledge 

elicitation by repeating this experiment in various case studies involving different 

contexts and hopefully, even more experts.  By doing so, the findings from these case 

studies might be threaded together to premise a more general and valid conclusion.  At 

this point, it is helpful to establish the contexts where VIS-based knowledge elicitation 

is expected to be useful, and also discuss the adaptations that might be needed when 

adopting the methodology used in this research.  Using Mintzberg’s (1973) 

classification of management roles in Table 5.1, VIS is deemed useful for eliciting 

knowledge from real-world decision-makers whose responsibilities include handling 

disturbances and/or allocating resources, and in contexts where information that is vital 

for decision-making can be represented entirely and meaningfully by dynamic visual 

objects such as iconic animation and dynamically changing graphic (Section 4.3.1).  An 

apt example would be the case study used by Robinson et al. (2005), in which they 

investigated how decision-makers in an engine assembly plant actually use various 

information (such as manpower availability, expected time required to remedy the 
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machine breakdowns and dependence of the plant’s operations on the broken machines) 

to prioritise the repair and maintenance needs of its operations. 

 

In general, the methodology outlined in Section 4.5 can be applied to the contexts 

described above after making a few sensible adaptations.  These adaptations are 

normally expected in the preliminary processes of the methodology as they help lay the 

context-specific groundwork for VIS-based knowledge elicitation and the experiment.  

They are: understanding the case study, and designing the experiment.  The 

methodology begins with gaining an in-depth appreciation of the case study by using a 

suitable selection of complementary elicitation techniques documented in Section 2.4.  

The selection that is used eventually is expected to differ from that used in this research, 

as it depends on the information that is needed and the resources that are made available 

to the knowledge engineer in the context studied.  Following this, the methodology 

continues with designing an efficient experiment and planning a bias-free elicitation 

schedule.  Notwithstanding the actual number of participants in the experiment, a 

repeated measures experimental design should always be used when feasible, as it is 

more sensitive and likely to detect any differences that exist between experimental 

conditions than other designs.   Finally, the order by which the experts are exposed to 

the different experimental conditions in the elicitation schedule should be randomised as 

far as possible.  Nevertheless, it is acknowledged that the latter is not always possible 

(as shown in this research) since it is contingent on the flexibility of the experts’ 

availability.  In this case, mitigating measures that are specific to the context studied 

should be implemented to reduce any systematic effects that might arise. 
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The End 
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APPENDICES 

 

A Pre-Experiment Questionnaire

 

The questionnaires that were used to establish the experts’ profiles in Table 5.3 are 

provided below. 

 

A.1 ABOUT YOURSELF 

 

i. Name :     

ii. Age (years) : � 30 – 39 � 40 – 49 � 50 – 59 � 60 – 69 

iii. Experience as Switch Operator (years) :     

  Very 
familiar  Not 

familiar
  5 4 3 2 1 

iv. Please rate your familiarity with computers. � � � � � 

v. Please rate your familiarity with video game 
consoles. � � � � � 
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A.2 LEARNING STYLE 

 

Please tick the option that best describes you. 

 

  Most like 
me  Least like 

me
  5 4 3 2 1 

i. I remember what I see better than what I hear. � � � � � 

ii. I understand information by visualising pictures. � � � � � 

iii. I use different colours to highlight, select and 
organise when writing or reading. � � � � � 

iv. I make notes using drawings, spacing, symbols 
etc. � � � � � 

v. I recall written information by visualising text 
pages, notes or study cards. � � � � � 

vi. I would rather read a story than listen to it. � � � � � 

vii. I understand numeric problems that are written 
better than those that I hear. � � � � � 

viii. A graph of numbers is easier for me to understand 
than written numbers. � � � � � 

ix. Written numeric problems are easier for me to 
solve than oral ones. � � � � � 

x. I learn better by reading than listening. � � � � � 

xi. Seeing a number makes more sense to me than 
hearing a number. � � � � � 

xii. I use visual cues to recall information. � � � � � 
 



 

B A Comprehensive Overview of 

the Example Case 

 

An example case is a unit of episodic knowledge, a collection of which is recorded 

during each knowledge elicitation session conducted for the research.  Every example 

case recorded describes the scene when the expert interacted with the Visual Interactive 

Simulation (VIS) model, and is made up of two parts: a decision element and an 

attribute element.  Briefly, the decision element is a set of decisions made by the expert 

when he interacts with the VIS model, whilst the attribute element is a corresponding 

set of attributes that describes the state in the VIS model when the interaction takes 

place.  These elements and their relationship are described in more detail in Section 5.4. 

 

On the one hand, the decision element is recorded as a set of 21 binary variates, which 

represents a set of 21 decisions made by the expert when he interacted with the VIS 

model.  These decisions include selecting the conveyor path for newly assembled 

engines that are entering the hot-test operations as well as for untested engines that have 

been rerouted in the hot-test operations (one variate), and switching on/off each of the 

20 hot-test cells/stands in the hot-test operations (20 variates).   

 

On the other hand, the attribute element is recorded as a set of 551 variates and contains 

values measured on a mixture of binary, nominal and ratio scales.  Together, these 

values represent the attributes that describe the state of the VIS model when the expert 
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interacted with it, and are believed to influence the decisions made by him during the 

interaction.  The attributes are: 

i. Quantity of 2l engines on each section of conveyor (87 variates); 

ii. Quantity of 2.4l engines on each section of conveyor (87 variates); 

iii. Quantity of repaired engines on each section of conveyor (87 variates); 

iv. Quantity of empty platens on each section of conveyor (87 variates); 

v. Type of engine (2l, 2.4l, faulty or empty platen) currently in each hot-test cell (80 

variates); 

vi. Type of engine (2l, 2.4l, faulty or empty platen) currently parked on each waiting 

stand (80 variates); 

vii. Operational status of each hot-test cell (20 variates); 

viii. Quantity of engines tested in each hot-test cell (20 variates); 

ix. Total quantity of engines tested in the hot-test operations (1 variate); and 

x. Shift period/break when an interaction takes place (2 variates). 

 

Nonetheless, many variates are later found to be redundant and removed.  In addition, 

several variates are actually components of various attributes or cover large ranges of 

values, and they are recoded or rescaled respectively.  The number of variates in each 

attribute element is reduced to 184 eventually.  The work carried out to clean and 

consolidate these variates is described in more detail in Section 10.2.



 

C A Framework for Data Analysis 

 

A repeated measures experimental design was used in this research, whereby two 

independent factors of interest (visual representation dimension, and model parameters) 

were investigated, and eight experts were exposed to all combinations of these factors 

(experimental conditions) in each complete experiment trial.   

 

Hines et al. (2003) comment that when two factors are being studied in an experiment, 

both the main effect of each factor and the interaction effects between the factors need 

to be considered.  The main effect of a factor is defined as the change in an expert’s 

behaviour in response to a change in the treatment level of the factor.  However, there 

might also be an interaction effect between the factors, such that the difference in 

behaviour between treatment levels of one factor is not the same at all other treatment 

levels of the other factor.  As a significant interaction effect can mask the significance 

of main effects, it is important to ascertain its influence.  This is done by determining 

and interpreting the main effect of a factor in relation to specific treatment levels of the 

other factor, as opposed to its general leverage across all values of the other factor.  

Hence, an analytical framework adopted for a repeated measures experiment must be 

able to serve the following two purposes: 

i. Look at the main effects of individual factors (the independent variables) on a 

behavioural measure (the dependent variable); and where possible 

ii. Provide insights on how the factors interact with each other, and what interaction 

effects these have on the dependent variable. 
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There are broadly two means to carry out an analysis:  parametric and non-parametric.  

The decision to use either means for the analytical framework will depend on whether 

the data fulfil the parametric criteria.  If the data meet the criteria, then a framework 

based on parametric tests is suitable, otherwise one that is based on non-parametric tests 

will be more appropriate.  In general, parametric tests are preferred over non-parametric 

tests as the former are believed to have more statistical power over the latter, though this 

is not always true (Toothaker and Newman, 1994; Field, 2006).   

 

The analytical framework that was used eventually for testing the hypotheses in this 

thesis is outlined in Figure C.1, and discussed in more detail below.  It is based on 

parametric tests only, since the data were found to meet the parametric criteria.  As well, 

the various tests used in the framework are also elaborated further in the sections 

following next. 

 

C.1 AN OVERVIEW OF THE PARAMETRIC ANALYTICAL 

FRAMEWORK 

 

Before subjecting any data to a parametric analysis, they must first meet four main 

criteria: 

i. The data for each experimental condition must be from a normally distributed 

population (criterion of normality); 

ii. The dependent variable should be measured on at least an interval scale (criterion of 

minimum measurement level); 

iii. The data for each experimental condition must have the same variance as one 

another (criterion of homogeneity of variance); and 
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iv. The data are independent of each other (criterion of independence). 

 

Start 

Is data normally 
distributed (K-S, A-D 

& skewness tests)?

Perform two-
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ANOVA with 

correction 

Perform two-
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effect size 
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Yes

Yes

No 

No 
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for data (Mauchly’s 
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Test of normality 
Is transformed data 
normally distributed 

(K-S, A-D & skewness 
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Perform a 
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transformation 
on data 

Yes 

No 

 
 
 
 
 
 
 
 
 

Alternative means based on 
non-parametric tests 

 

Figure C.1: The analytical framework for testing the hypotheses in this research 

 

However, Field (2006) points out that as the experiment used a repeated measures 

design with full participation from each expert, the last two criteria (criterion of 

homogeneity of variance and independence) do not need to be tested.  Thus, as long as 

the data satisfy the first two criteria (criterion of normality and minimum measurement 
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level), a parametric analytical framework based on the two-way repeated measures 

ANalysis Of VAriance (ANOVA) can be employed. 

 

Instead, Field (2006) and Howell (2007) suggest that the data be assessed for another 

criterion known as sphericity.  It determines if the relationships between different pairs 

of treatment levels of a factor are similar.  In effect, it can be likened to the criterion of 

homogeneity of variance required in between-group ANOVA.  However, the sphericity 

criterion is not relevant if there are only two treatment levels in the factor.  It is because, 

by definition, the factor needs at least a third treatment level before a comparison can be 

made between different pairs of treatment levels.  Subsequently, the results from this 

assessment are used to decide whether it is necessary to revise the critical values that are 

used for assessing the test statistics from the ANOVA that follows. 

 

Under the parametric analytical framework, a two-way repeated measures ANOVA is 

performed on the data to work out concurrently if any of the factors affects the 

dependent variable, and if the factors interact at all.  Field (2006) explains that the latter 

is known as a two-way ANOVA because two factors are being analysed in a single test, 

and it is a repeated measures ANOVA (also known as within-subjects ANOVA) 

because all factors are measured using the same experts.  Also, Field (2006) and Howell 

(2007) note that ANOVAs are omnibus, as they test for an overall experimental effect 

due to a factor and do not provide any clues on the nature of the effect.  As an 

illustration, consider a single factor experiment with more than two treatment levels. 

Whilst ANOVA may detect that the single factor affects the dependent variable, it does 

not provide any insights on whether a particular treatment level has a greater effect on 
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the dependent variable than the rest, or a combination of treatment levels of the factor 

has an unequal effect on the dependent variable. 

 

Further to this, Field (2006) suggests that a series of planned or post-hoc comparisons 

are carried out on the treatment levels, in order to ascertain the specifics of a factor’s 

effect.  On the one hand, planned comparisons, which are also known as planned 

contrasts, are performed when the alternative hypotheses are specified to test some a 

priori predictions about the data.  Likewise, as planned comparisons were not used in 

the eventual analysis, they shall not be discussed further.  On the other hand, post-hoc 

comparisons, which are also known as pairwise comparisons, are performed when the 

alternative hypotheses are specified to explore the data for any differences due to 

treatment levels in the factors.  A series of post-hoc/pairwise comparisons are carried 

out by performing a dependent t-test on every pair of treatment levels of the factor.  As 

such, they are not applicable if the factor has only two treatment levels.  In the event 

that a treatment level is found to have a statistically significant effect relative to other 

treatment levels, the effect’s materiality and importance are determined by computing 

its size.   

 

Siegel and Castellan (1988) point out that one may find the test for an overall 

experimental effect due to a factor to be redundant in light of the post-hoc comparisons 

that follow.  However, they argue the former can be justified by adopting the view that 

it is only when there are positive results supporting an overall effect’s presence, then 

will the latter be carried out subsequently.  The formal tests for normality, sphericity, 

main and interaction effects are described in more detail in the following sections.  In 

addition, the post-hoc test and the computation of effect size are explained.  However, 
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the test for minimum measurement level will not be elaborated upon, as it is effectively 

done by classifying each variable as nominal, ordinal, interval or ratio. 

 

C.2 TEST OF NORMALITY 

 

To begin, a histogram of the data is plotted to give an initial assessment of its 

distribution.  This is then followed by executing statistical tests to support the initial 

assessment.  There are two statistical tests that can be used to check whether a 

distribution deviates from a comparable normal distribution; they are the one-sample 

Kolmogorov-Smirnov (K-S) test, and the Anderson-Darling (A-D) test.  On the one 

hand, the K-S test compares the data to a normally distributed set of values with the 

same mean and standard deviation as the data.  On the other hand, the A-D test is a 

modification of the K-S test that gives more weight to the tails than does the latter.  

Also, the A-D test is a more sensitive test than the K-S test. 

 

An appropriate pair of null and alternative hypotheses for each K-S or A-D test 

executed are given as follows: 

0H  : The data are normally distributed; 

aH  : The data are not normally distributed. 

 

Using a 5% level of significance, the result of the K-S or A-D test is insignificant if the 

p-value is greater than 0.05.  This implies that the data are normally distributed.  

Conversely, the result is significant if the p-value is less than 0.05, which implies that 

the data are not normally distributed.   
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However, Motulsky (1999) comments that the K-S test might have little statistical 

power to determine if the data are from a normal distribution, when the sample size is 

small (less than 12 in size).  It is because a small sample does not contain enough 

information for inferring the shape of the population’s distribution.  Also, D’Agostino 

and Stephens (1986) comment that the A-D test might be unsuitable when the sample 

size is smaller than eight.  Instead, O’Brien and Griffiths (1967) suggest that the 

skewness test appears to be sufficient for detecting departures from normality when the 

sample is less than 100 in size.  This is despite the fact that the skewness test is strictly a 

test of symmetry, which is not able to distinguish a normal distribution from other 

symmetrical distributions.  Notwithstanding, the latter reservation is not a major issue, 

as the ANOVA is quite robust; it is able to accommodate moderate departures from 

normality (Howell, 2007).  Therefore, in view of the above, the skewness test will be 

used alongside the K-S and A-D tests to ascertain whether it is appropriate to apply 

ANOVAs on the data.  

 

An appropriate pair of null and alternative hypotheses for each skewness test executed 

are given as follows: 

0H  : The data are symmetrically distributed; 

aH  : The data are not symmetrically distributed. 

 

The test statistic  for the skewness test and its distribution are provided by 

Field (2006) as below: 

( skewnessΖ )

( )1,0~ N
StdError

Skewness

skewness
skewness =Ζ  
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Using a 5% level of significance, the result of a skewness test for small samples is 

insignificant if the absolute value of the test statistic is less than 1.96.  This implies that 

the data are symmetrically distributed.  Conversely, the result is significant if the 

absolute value is greater than 1.96, which implies that the data are not symmetrically 

distributed. 

 

Field (2006) and Hair et al. (2006) further remark that if the data’s distribution is too 

skewed to be deemed not normal by the K-S and A-D tests, nor symmetrical by the 

skewness test, the problem might be corrected by using one of the following three 

transformations: logarithm, square-root or reciprocal.  These transformations have an 

effect of reducing the impact of outliers that causes the skewness, and yet still manages 

to retain the relationships within variables.  That is, the relative differences between 

experts for a given variable stay the same.  Then, the transformed data are put through 

another cycle of the K-S, A-D and skewness tests to assess for normality.  In the event 

that there are more than one transformation that work, the optimal transformation will 

be the one that reduces the data’s skewness by an extent that is just adequate for it to be 

assessed as being normally distributed. 

 

C.3 TEST OF SPHERICITY 

 

When there are at least three treatment levels, the simplest way to check for sphericity is 

to compute the differences between pairs of data in all combinations of the treatment 

levels, and compare the variances of these differences between treatment levels.  If 

these variances are approximately equal, then sphericity is present.  As an illustration, 

consider a single factor experiment with three treatment levels labelled as A, B and C.  
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Hence, three sets of differences comprising ‘A – B’, ‘B – C’ and ‘A – C’ are computed.  

As such, sphericity for this experiment will hold if: 

VarianceA-B ≈ VarianceB-C ≈ VarianceA-C

 

A test known as Mauchly’s test can be used to assess whether the variances of the 

differences between treatment levels are equal.  An appropriate pair of null and 

alternative hypotheses for each Mauchly’s test executed are given as follows: 

0H  : The variances of differences are not different; 

aH  : The variances of differences are different. 

 

Using a 5% level of significance, the result of Mauchly’s test is insignificant if the p-

value is greater than 0.05.  This implies that the variances of differences are not 

different and sphericity holds for the experiment.  Conversely, the result is significant if 

the p-value is less than 0.05, which implies that the variances of differences are 

different, and sphericity does not hold for the experiment. 

 

C.4 TEST OF MAIN AND INTERACTION EFFECTS 

 

A two-way repeated measures ANOVA is performed on the data to work out 

concurrently if any of the factors affects the dependent variable, and if the factors 

interact at all.  After it is performed, the test statistics are compared against the relevant 

critical values, which are dependent on the results from the sphericity test above.  If the 

sphericity criterion for a factor is found to be violated in the previous test, then a 

revision factor known as the Greenhouse-Geisser correction will be applied onto the 

corresponding degree of freedom to revise the critical value for the factor. 
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An appropriate pair of null and alternative hypotheses for each ANOVA executed to 

assess the main effect of visual representation dimension or model parameters are given 

as follows: 

0H  : The factor (by itself) does not affect the dependent variable; 

aH  : The factor (by itself) affects the dependent variable. 

 

Also, an appropriate pair of null and alternative hypotheses for each ANOVA executed 

to assess the interaction effect between visual representation dimension and model 

parameters are given as follows: 

0H  : There is no interaction between visual representation dimension and model 

parameters associated with it; 

aH  : There is interaction between visual representation dimension and model 

parameters associated with it. 

 

Using a 5% level of significance and depending on the pair of hypotheses used, the 

result of the test is insignificant if the relevant p-value is greater than 0.05.  This implies 

that there is no evidence of any main/interaction effect being present.  Conversely, the 

result is significant if the p-value is less than 0.05, which implies that there is evidence 

of main/interaction effect being present. 
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C.5 POST-HOC TEST 

 

A post-hoc test consists of a series of pairwise comparisons that is designed to compare 

all different combinations of treatment levels of a factor.  In essence, a dependent t-test 

is performed on every pair of treatment levels of the factor.  As there is a particular 

danger of inflating the overall Type I error rate (also known as familywise error rate) 

across the tests carried out in a series of pairwise comparisons, a revision known as the 

Bonferroni adjustment is applied to the error rate.  In the SPSS output of the two-way 

repeated measures ANOVA, a Bonferroni adjustment is already incorporated into the p-

values to control the overall Type I error rate to a 5% level of significance. 

 

An appropriate pair of null and alternative hypotheses for each pairwise comparison 

executed are given as follows: 

0H  : The pair of treatment levels are not different in their effects on the dependent 

variable; 

aH  : The pair of treatment levels are different in their effects on the dependent 

variable. 

 

Using an overall 5% level of significance, the result of a pairwise comparison is 

insignificant if the relevant p-value is greater than the value given by ‘0.05/number of 

comparisons’.  This implies that the pair of treatment levels are not different in their 

effects on the dependent variable.  Conversely, the result is significant if the p-value is 

less than the aforementioned value, which implies that the pair of treatment levels are 

different in their effects on the dependent variable.  In the latter case, the identity of the 

treatment level with a larger effect can be determined from the sign of the ‘mean 
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difference’ in the statistical output.  As an illustration, if the mean difference between 

treatment level 1 and treatment level 2 is positive, then it can be concluded that level 1 

has a greater effect on the dependent variable, and vice versa. 

 

C.6 EFFECT SIZE 

 

An effect size is a standardised measure of the magnitude of the statistically significant 

effect observed between two treatment levels.  A common effect size measure is 

Pearson’s correlation coefficient ( )r , which can be computed using relevant values in 

the SPSS output generated from performing a planned comparison between the two 

treatment levels.  It is expressed as: 

RR

R
treatmentvstreatment dfdfF

dfF
r

+
=

),1(
),1(

21  

where  is the residual degrees of freedom, and  is the F-ratio for the 

contrast between treatment level 1 and 2. 

Rdf ),1( RdfF

 

As a guideline, Field (2006) suggests that: 

i. If , then the effect is small; or 30.010.0 <≤ r

ii. If , then the effect is medium; or 50.030.0 <≤ r

iii. If , then the effect is large. 50.0≥r

 



 

D SPSS ‘Frequencies’ Output 

 

The values that were used for computing the test statistics for the skewness tests in 

Section 10.3.2 and 10.4.2 are provided in the tables below. 

 

D.1 SPSS ‘FREQUENCIES’ OUTPUT FOR TRANSFORMED CASE 

QUANTITY 

 

Statistics

8 8 8 8 8 8
0 0 0 0 0 0

1.745960 1.572306 1.531244 1.415165 1.792893 1.840189
.3225074 .2376271 .2955743 .1932988 .3189897 .2212127

-.305 -.084 .334 .175 .384 -1.271
.752 .752 .752 .752 .752 .752

Valid
Missing

N

Mean
Std. Deviation
Skewness
Std. Error of Skewness

Transformed
case quantity

(2D,
Unadjusted)

Transformed
case quantity
(2D, Adjusted)

Transformed
case quantity

(2.5D,
Unadjusted)

Transformed
case quantity

(2.5D,
Adjusted)

Transformed
case quantity

(3D,
Unadjusted)

Transformed
case quantity
(3D, Adjusted)

 

 

D.2 SPSS ‘FREQUENCIES’ OUTPUT FOR TRANSFORMED 

COLLECTION RATE 

 

Statistics

8 8 8 8 8 8
0 0 0 0 0 0

.168916 .015546 .043479 -.059152 -.076375 -.107280
.2127060 .2043404 .2568476 .1717542 .2781715 .1970505

.157 -.546 .705 .011 .096 -1.356

.752 .752 .752 .752 .752 .752

Valid
Missing

N

Mean
Std. Deviation
Skewness
Std. Error of Skewness

Transformed
rate (2D,

Unadjusted)

Transformed
rate (2D,
Adjusted)

Transformed
rate (2.5D,

Unadjusted)

Transformed
rate (2.5D,
Adjusted)

Transformed
rate (3D,

Unadjusted)

Transformed
rate (3D,
Adjusted)

 



 

E SPSS ‘Tests of Within-Subjects 

Contrasts’ Output 

 

The values that were used for computing the effect sizes in Section 10.2.4, 10.3.2 and 

10.4.2 are provided in the tables below. 

 

E.1 SPSS ‘TESTS OF WITHIN-SUBJECTS CONTRASTS’ OUTPUT 

FOR STANDARD DISTANCE 

 

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

6.90E-005 1 6.90E-005 .020 .890
.019 1 .019 3.207 .116
.024 7 .003
.041 7 .006

6.955 1 6.955 1839.127 .000
.026 7 .004
.001 1 .001 .046 .836
.047 1 .047 4.331 .076
.095 7 .014
.077 7 .011

Parameters

Level 2 vs. Level 1
Level 2 vs. Level 1
Level 2 vs. Level 1
Level 2 vs. Level 1
Level 2 vs. Level 1
Level 2 vs. Level 1

Dimension
Level 2 vs. Level 1
Level 3 vs. Level 1
Level 2 vs. Level 1
Level 3 vs. Level 1

Level 2 vs. Level 1
Level 3 vs. Level 1
Level 2 vs. Level 1
Level 3 vs. Level 1

Source
Dimension

Error(Dimension)

Parameters
Error(Parameters)
Dimension * Parameters

Error(Dimension*
Parameters)

Type III Sum
of Squares df Mean Square F Sig.
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E.2 SPSS ‘TESTS OF WITHIN-SUBJECTS CONTRASTS’ OUTPUT 

FOR TRANSFORMED CASE QUANTITY 

 

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

.277 1 .277 19.069 .003

.198 1 .198 6.015 .044

.102 7 .015

.231 7 .033

.052 1 .052 1.821 .219

.201 7 .029

.027 1 .027 .515 .496

.391 1 .391 3.523 .103

.361 7 .052

.776 7 .111

Parameters

Level 2 vs. Level 1
Level 2 vs. Level 1
Level 2 vs. Level 1
Level 2 vs. Level 1
Level 2 vs. Level 1
Level 2 vs. Level 1

Dimension
Level 2 vs. Level 1
Level 3 vs. Level 1
Level 2 vs. Level 1
Level 3 vs. Level 1

Level 2 vs. Level 1
Level 3 vs. Level 1
Level 2 vs. Level 1
Level 3 vs. Level 1

Source
Dimension

Error(Dimension)

Parameters
Error(Parameters)
Dimension * Parameters

Error(Dimension*
Parameters)

Type III Sum
of Squares df Mean Square F Sig.

 

 

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

.198 1 .198 6.015 .044

.943 1 .943 65.971 .000

.231 7 .033

.100 7 .014

.052 1 .052 1.821 .219

.201 7 .029

.391 1 .391 3.523 .103

.214 1 .214 5.946 .045

.776 7 .111

.251 7 .036

Parameters

Level 1 vs. Level 2
Level 1 vs. Level 2
Level 1 vs. Level 2
Level 1 vs. Level 2
Level 1 vs. Level 2
Level 1 vs. Level 2

Dimension
Level 1 vs. Level 3
Level 2 vs. Level 3
Level 1 vs. Level 3
Level 2 vs. Level 3

Level 1 vs. Level 3
Level 2 vs. Level 3
Level 1 vs. Level 3
Level 2 vs. Level 3

Source
Dimension

Error(Dimension)

Parameters
Error(Parameters)
Dimension * Parameters

Error(Dimension*
Parameters)

Type III Sum
of Squares df Mean Square F Sig.
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E.3 SPSS ‘TESTS OF WITHIN-SUBJECTS CONTRASTS’ OUTPUT 

FOR TRANSFORMED COLLECTION RATE 

 

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

.080 1 .080 6.125 .043

.271 1 .271 8.215 .024

.092 7 .013

.231 7 .033

.073 1 .073 4.228 .079

.121 7 .017

.021 1 .021 .662 .443

.120 1 .120 1.415 .273

.218 7 .031

.594 7 .085

Parameters

Level 2 vs. Level 1
Level 2 vs. Level 1
Level 2 vs. Level 1
Level 2 vs. Level 1
Level 2 vs. Level 1
Level 2 vs. Level 1

Dimension
Level 2 vs. Level 1
Level 3 vs. Level 1
Level 2 vs. Level 1
Level 3 vs. Level 1

Level 2 vs. Level 1
Level 3 vs. Level 1
Level 2 vs. Level 1
Level 3 vs. Level 1

Source
Dimension

Error(Dimension)

Parameters
Error(Parameters)
Dimension * Parameters

Error(Dimension*
Parameters)

Type III Sum
of Squares df Mean Square F Sig.
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