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FORMULATION AND OPTIMIZATION OF THE

ENERGY-BASED BLENDED QUASICONTINUUM METHOD

M. LUSKIN, C. ORTNER, AND B. VAN KOTEN

Abstract. We formulate an energy-based atomistic-to-continuum coupling
method based on blending the quasicontinuum method [14] for the simulation

of crystal defects. We present optimal choices of approximation parameters
(blending function and finite element grid) and confirm our analytical predic-

tions in numerical tests.

1. Introduction

A major goal of materials science is to predict the macroscopic properties of
materials from their microscopic structure. For this purpose, it is necessary to un-
derstand the behavior of defects in these materials. We propose a computational
tool, the energy-based blended quasicontinuum method (BQCE), for understand-
ing defects such as cracks, dislocations, vacancies, and interstitials in crystalline
materials.

Accurate modeling of the region near a defect requires the use of computationally
expensive atomistic models. Such models are practical only for small problems.
However, a defect may interact with a large region of the material through long-
range elastic fields. Thus, accurate simulation of defects requires the use of a large
computational domain; typically, the size required rules out the use of atomistic
models for the entire region of interest.

Fortunately, the long-range elastic fields generated by a defect are well described
by continuum models which can be efficiently computed using the finite-element
method. Thus, defects can be accurately and efficiently simulated by coupled mod-
els which use an atomistic model near the defect and a continuum model elsewhere.
We call any such model an atomistic-to-continuum coupling.

Many atomistic-to-continuum couplings have been proposed in recent years [1–
3, 8, 11, 14, 19, 21]; see [13, 22] for a survey of atomistic-to-continuum couplings
and computational benchmark tests. These couplings fall into two major classes:
energy-based and force-based. Energy-based couplings provide an approximation
to the atomistic energy of a configuration of atoms. Force-based couplings provide a
non-conservative force-field which approximates the forces on each atom under the
atomistic model. Our BQCE method is an energy-based coupling. Both types of
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couplings have intrinsic advantages; the development of energy-based couplings is
especially important for finite-temperature applications since equilibrium statistical
properties and transition rates can be directly approximated [5, 12].

The primary source of error for most energy-based couplings is the ghost force.
We say that a coupling suffers from ghost forces if it predicts non-zero forces on the
atoms in a perfect lattice. Although many attempts have been made to develop an
energy-based coupling free from ghost forces such couplings are currently known
only for a limited range of problems [6, 18,19,21].

Shapeev’s method [19] applies to one and two-dimensional simple crystals with
an atomistic energy based on a pair interaction model, and can be extended to 3D
if a modified “continuum model” is used [20]. GR-AC was proposed in [6, 21], and
has recently been implemented for a two dimensional crystal with nearest neighbor
multi-body interactions in [18]. No ghost force free methods are currently known
for three-dimensional crystals, for multi-lattice crystals (except in 1D [15]), or for
atomistic models with general multi-body interactions. The field-based coupling of
Iyer and Gavini [11] is another interesting approach; however, it is unlear at present
whether it is competitive in terms of computational complexity and generality.

In our BQCE method, the ghost forces cannot be eliminated but can be con-
trolled in terms of an additional approximation parameter (the blending width).
BQCE applies to a wide range of problems for which no ghost force free methods
are known; these problems include three-dimensional crystals with general multi-
body interactions as well as multi-lattices. We believe that BQCE is an attractive
method for such challenging and physically important problems.

The key feature of BQCE is a blending region where the atomistic and continuum
contributions to the total energy are smoothly mixed. The ghost forces of the BQCE
method can be made arbitrarily small by increasing the size of this blending region.
BQCE shares the idea of a blending region with the bridging domain method [3],
the AtC coupling [1], and the Arlequin method [2]. By contrast, the energy-based
quasicontinuum method (QCE) [14], Shapeev’s method [19], and GR-AC [6,18,21]
exhibit an abrupt transition between the atomistic and continuum models. We call
any method with a blending region a blended method, and we call the weights which
mix the atomistic and continuum contributions to the energy a blending function.

Both the bridging domain method and AtC coupling are very general formula-
tions, each of them incorporating BQCE and QCE as special cases. Our BQCE for-
mulation provides a set of specific instructions for the successful implementation of
a blended method. We identify two important practical differences between BQCE
and the bridging domain and AtC coupling methods. First, the BQCE method
specifies a strong coupling between the atomistic and continuum regions, whereas
weak couplings based on Lagrange multipliers or the penalty method have been used
in most work involving the bridging domain and AtC coupling methods. Second, in
BQCE, we blend the atomistic site-energy with a continuum site-energy based on
the continuum site-energy defined in some formulations of the QCE method (see
Section 3). This guarantees that BQCE correctly predicts the total energy of a
perfect lattice subjected to uniform strain.

Our approach to blending is supported by rigorous analysis. In [23], we showed
that the ghost force error of BQCE in 1D does indeed decrease with the size of
the blending region, and we found that the error is minimized when the blending
function is a cubic-spline. We also found that the error of the BQCE method in
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predicting lattice instabilities can be reduced by increasing the size of the blending
region.

More recently, we have shown similar consistency results in higher dimensions [17].
We have conjectured error estimates based on these consistency results, and we use
our conjectured estimates to derive complexity estimates which bound the error
of the BQCE method in terms of the number of degrees of freedom used in the
simulation. We then use these complexity estimates to derive optimal approxima-
tion parameters for the BQCE method [17]. Implementation of BQCE requires the
choice of two approximation parameters: a blending function β and a finite-element
mesh T which is used to compute the continuum contribution to the energy. In
Section 4.3, we give optimal choices of β and T for the problem of a point defect
in a 2D crystal.

In the present work, we demonstrate the validity of our analysis in a computa-
tional test problem in which we simulate a micro-crack in a two-dimensional crystal
(see Figure 1). In Section 4, we give a precise formulation of BQCE for simple lat-
tices with a general multi-body interaction model. We will present a formulation of
BQCE for multi-lattice crystals in a forthcoming work [17]. In Section 4.3, we offer
advice on choosing the blending function β and the mesh T based on our analysis
in [17]. The results of this analysis are summarized in Table 4.3.

In Section 5, we describe the details of our numerical experiment. We use an
atomistic energy based on the Embedded Atom Method. We did not choose our
atomistic energy to model any specific physical material; instead, the atomistic
energy is a toy model chosen for its simplicity. Finally, we present the results of our
experiment in Section 5.3. The observed rates of convergence are in agreement with
the rates predicted in Section 4.3. In particular, the error of BQCE in the W 1,2

semi-norm decreases as DoF−
1
2 where DoF is the number of degrees of freedom.

2. The Atomistic Energy

Let Λ be a d-dimensional Bravais lattice. We call Λ the reference lattice, and we
refer to points ξ ∈ Λ as atoms. Let

Y := {y : Λ→ Rd; y(ξ) 6= y(η) for all ξ 6= η}

be the set of deformations of Λ. Let Ωa ⊂ Λ be a finite subset of Λ. We call Ωa

the atomistic computational domain.
In the Embedded Atom Method (EAM), the energy of Ωa subjected to deforma-

tion y takes the form

(2.1) Ea(y) :=
∑
ξ∈Ωa

{∑
η∈Λ
η 6=ξ

1

2
φ
(
|y(η)− y(ξ)|

)
+G

(∑
η∈Λ
η 6=ξ

ρ
(
|y(η)− y(ξ)|

))}
,

where φ is a pair potential, ρ is an electron density function, and G is an embedding
function. We call the inner sum

(2.2) Ea
ξ (y) :=

∑
η∈Λ
η 6=ξ

1

2
φ
(
|y(η)− y(ξ)|

)
+G

(∑
η∈Λ
η 6=ξ

ρ
(
|y(η)− y(ξ)|

))

the atomistic site-energy of atom ξ. We observe that the sum defining the energy of
an atom is finite in practice even though summation ranges over the infinite lattice
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Λ. This is because the pair potential φ and electron density function ρ are taken
to have a cut-off radius rc such that

φ(r) = ρ(r) = 0 for all r ≥ rc.

When defining the Blended Quasicontinuum Energy (BQCE), we will consider
a more general class of potentials than EAM. Roughly speaking, we will require
only that the total energy can be decomposed into a sum of localized site-energies
associated with each atom. By localized, we mean that the energy associated with
an atom ξ does not depend on the positions of atoms beyond a certain cut-off
distance. Such an assumption may be violated for certain energies arising from
quantum mechanics, but does hold for most empirical potentials including EAM,
the bond-angle potentials, and so forth. In addition, we require that the site-
energies are homogeneous; that is, the energies of atoms which have the same local
environment are the same.

To make these assumptions precise, we let Ea
ξ (y) denote the site-energy associated

with atom ξ under deformation y and require that it is of the form

(2.3) Ea
ξ (y) := V

({
y(η)− y(ξ) : η ∈ Λ \ {ξ}, |y(η)− y(ξ)| ≤ rc

})
,

where V the site-energy potential. We assume that the resulting site-energies are
twice continuously differentiable, that is, Ea

ξ ∈ C2(Y ). The restricted dependence
of Ea

ξ on atoms within the cut-off radius may also be expressed in the form

∂Ea
ξ

∂y(η)
(y) = 0 for all η with |y(η)− y(ξ)| ≥ rc.

This quantifies the requirement that the site-energy is localized.
Given Ea

ξ we define the energy of Ω subjected to y by

(2.4) Ea(y) :=
∑
ξ∈Ω

Ea
ξ (y).

We call an energy of the form (2.4) where Ea
ξ satisfies (2.3) homogeneous. When we

define the Cauchy–Born strain energy density corresponding to (2.4) in Section 3,
we use that Ea is homogeneous: if Ea is not homogeneous, the energy per unit
volume in a perfect lattice subjected to uniform strain may not be well defined.

Remark 2.1. The locality assumption can, in principle, be replaced by an assump-
tion that the interaction strength decays sufficiently rapidly with increasing distance
between atoms.

Remark 2.2. Homogeneity of the site-energy is our main assumption that is vio-
lated for multi-lattices. We show in [17] how to generalize our formulation for that
scenario.

3. The Cauchy–Born Site Energy

BQCE is a coupling of an atomistic energy based on (2.4) with a coarse-grained
continuum elastic energy based on the Cauchy–Born strain energy density (3.1).
Let vor(ξ) denote the Voronoi cell of a site ξ ∈ Λ. Then the Cauchy–Born strain
energy density W : GL(Rd)→ R corresponding to V is defined by

(3.1) W (F ) :=
1

|vor(0)|
Ea

0 (yF ),
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where yF ∈ Y is the homogeneous deformation yF (ξ) = Fξ. W (F ) may be inter-
preted as the energy per unit volume in Λ subjected to strain F . Note that the
assumption of homogeneity (2.3) ensures that Ea

ξ (yF ) = Ea
0 (yF ) for all ξ ∈ Λ.

We will use the Cauchy–Born strain energy density (3.1) to derive a coarse-
grained continuum energy suitable for coupling with the atomistic energy (2.4).
First, we define a space of coarse-grained deformations. Choose representative
atoms (repatoms) in Λ, and let Λrep denote the set of repatoms. Let T be a
triangulation of Λrep, and let P 1(T ) denote the set of all functions y : Rd → Rd
that are continous and piecewise affine with respect to T . We call P 1(T ) the set of
coarse-grained deformations. The Cauchy–Born energy of a deformation y ∈ P 1(T )
in a domain Ω is then given by

Ec(y) :=

∫
Ω

W (∇y(x))dx.

The Cauchy–Born approximation is analyzed, for example, in [4, 7, 10].
The definition of the QCE method [14] and our construction of the BQCE

method in the next section use a Cauchy–Born site-energy Ec
ξ , which is analogous

to the atomistic site-energy Ea
ξ . For y ∈ P 1(T ) and ξ ∈ Λ, we define Ec

ξ by

Ec
ξ (y) : =

∫
vor(ξ)

W (∇y(x))dx

=
∑
T∈T
|vor(ξ) ∩ T |W (∇y|T ).(3.2)

In formula (3.2), |vor(ξ) ∩ T | denotes the volume of the intersection of vor(ξ) with
the element T . We observe that the sum on the right hand side of equation (3.2)
is finite because only finitely many elements T ∈ T can intersect vor(ξ).

4. The Blended Quasicontinuum Energy

4.1. Formulation of the BQCE method. The Blended Quasicontinuum En-
ergy (BQCE) is an atomistic-to-continuum coupling based on the Quasicontinuum
Energy (QCE) of Tadmor et al. [14]. In QCE, the reference domain Ωa is parti-
tioned into an atomistic region A and a continuum region C, and the QC energy
EQC : P 1(T )→ R is defined by

(4.1) EQC(y) :=
∑
ξ∈A

Ea
ξ (y) +

∑
ξ∈C

Ec
ξ (y).

In BQCE, the atomistic and continuum energies per atom are weighted averages.
Given a blending function β : Ωa → [0, 1] the BQCE energy Eβ : P 1(T ) → R is
defined by

(4.2) Eβ(y) :=
∑
ξ∈Ωa

β(ξ)Ec
ξ (y) + (1− β(ξ))Ea

ξ (y).

We observe that the QC energy with continuum region C is the same as the BQCE
energy with β chosen as the characteristic function of C. Our formulation of BQCE
is similar in spirit to the bridging domain method [3], the AtC coupling [1], and
the Arlequin method [2].
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The BQCE energy can be rewritten in the form

Eβ(y) =
∑
ξ∈Ωa

β(ξ)

∫
vor(ξ)

W (∇y) dx+ (1− β(ξ))Ea
ξ (y)

=
∑
ξ∈Ωa

∑
T∈T

β(ξ)|vor(ξ) ∩ T |W (∇y|T ) +
∑
ξ∈Ωa

(1− β(ξ))Ea
ξ (y)

=
∑
T∈T

vβTW (∇y|T ) +
∑
ξ∈Ωa

(1− β(ξ))Ea
ξ (y),(4.3)

where the BQCE-effective volume of the element T is defined by

(4.4) vβT :=
∑
ξ∈Ωa

β(ξ)|vor(ξ) ∩ T |.

Remark 4.1. The triangulation T need not cover the entire domain Ωa. For T a
triangulation which covers only part of Rd, define

Ω(T ) : = ∪T∈T T, and

P 1(T ) : = {y : Ω(T ) ∪ Λ→ Rd : y piecewise affine w.r.t. T on Ω(T )}.

We observe that Eβ(y) is defined for y ∈ P 1(T ) if for every ξ ∈ Ωa such that
β(ξ) > 0 we have vor(ξ) ⊂ Ω(T ). In particular, it is not necessary to assume that
the triangulation T is refined to atomistic scale anywhere in the domain Ωa. It is
possible that the use of a mesh which is not refined to atomistic scale may make the
implementation of BQCE easier and more efficient in some cases.

4.2. Far-field boundary conditions. A typical application of the BQCE method
is the simulation of a defect or defect region in an infinite crystal. To that end,
we require far-field boundary conditions at the domain boundary. We propose two
choices.

4.2.1. Dirichlet boundary conditions. Let S ⊂ T be a finite subset of T , and let
Ω(S) := ∪S∈SS be a polygonal domain. When Dirichlet boundary conditions are
imposed, the deformation of the boundary ∂Ω(S) of Ω(S) is fixed to agree with
some y0 ∈ P 1(T ). Precisely, we let

(4.5) Adm :=
{
y ∈ P 1(T ) : y(x) = y0(x) for all x ∈ ∂Ω(S)

}
denote the space of admissible deformations. We then solve the problem

(4.6) Find y ∈ argmin
z∈Adm

Eβ(z),

where we interpret argminz∈Adm Eβ(z) as the set of local minimizers of Eβ .

4.2.2. Periodic boundary conditions. A popular method to construct artificial far-
field boundary conditions is to formulate the problem in a periodic cell. To that
end, suppose that Ω(T ) = Rd, T is periodic, and let S ⊂ T be the finite element
mesh on one periodic cell. That is, suppose that there exists a matrix A ∈ GL(Rd)
such that

T =
⋃
n∈Zd

{
An+ S

}
,

and that this union is disjoint.
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Given a homogeneous far-field macroscopic strain F ∈ GL(Rd), we then define
the admissible set as

(4.7) Adm :=
{
y ∈ P 1(T ) : y(x+An) = y(x) + FAn for all x ∈ Rd

}
.

The associated variational problem can again be stated as (4.6).

4.3. Complexity and optimal parameters. In [17], we conjecture an error es-
timate for BQCE in 2D and 3D. The conjecture is based on our error analysis of
BQCE in 1D [23] and on the consistency estimates for BQCE in 2D and 3D in [17].
Following [16, Sec. 7.1], we use our conjectured error estimate to derive complexity
estimates, which are bounds on the error of the BQCE method in terms of the
number of degrees of freedom. We use our complexity estimates to guide the choice
of optimal approximation parameters T and β.

Let ya be an equilibrium of the atomistic energy, and let yβ be an equilibrium of
BQCE with the same boundary conditions as ya. Let h be the mesh size function
of the triangulation T (h(x) = diam(T ) for a.e. x ∈ T ), and let β be the blending
function. Then we conjecture an estimate of the form:

Err := ‖Dya −Dyβ‖Lp . ‖hD2ya‖Lp(C) + ‖D2β‖Lp
=: CG + GF,

(4.8)

for all p ∈ [1,∞] (however, for p ∈ {1,∞}, it is unclear in what generality this
result may hold). In (4.8), D2ya and D2β should be interpreted as the second
derivatives of smooth interpolants of ya and β, and C := supp(β). The first term,
CG = ‖h∇2ya‖Lp(C), is the finite element coarsening error, while the second term,

GF = ‖D2β‖Lp , measures the effect of the ghost forces.
We now describe the problem of a point defect in a 2D crystal. To quantify the

notion of a point defect, we assume that for some α > 0,

(4.9) |D2ya(x)| ' r−α, where r = |x|.
It has been observed in numerical experiments that α = 2 for a dislocation, and
that α = 3 for a vacancy [9, 16]. We assume that the reference domain Ω is a
roughly circular region of radius N atomic spacings centered at the origin. We let
K0 > 0 be the radius of the atomistic region surrounding the defect, and we let
K1 > 0 be the width of the blending region. We then choose a radial blending
function β of the form

(4.10) β(x) :=


0 if r < K0,

β0

(
|x|−K0

K1

)
if K0 ≤ r < K0 +K1,

1 if K0 +K1 ≤ r,

where β0 : [0, 1]→ [0, 1] is a twice continuously differentiable function with β0(0) =
β′0(0) = β′0(1) = 0 and β0(1) = 1.

We summarize our complexity estimates for BQCE in Table 4.3. These estimates
are proved in [17]. We distinguish three cases based on the value of γ := αp

p+2 . In the

second column, we give the optimal rates of convergence for BQCE. The optimal
rates are attained when K1 is given in terms of K0 by the formula appearing in the
third column and when the mesh size function h is given by

(4.11) h(x) =

(
|x|
K0

)γ
.
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Table 1. Complexity estimates and optimal approximation pa-
rameters for BQCE [17]. The estimates above are for the problem
of a point defect in a two-dimensional crystal. The variables K0,
K1, N , and α are defined in Section 4.3, and γ := αp

p+2 . In all cases,

the optimal rate of convergence is attained when h =
(
|x|
K0

)γ
and

when K1 is given in terms of K0 by the formula in the third column
above.

Case Complexity Estimate Optimal Parameters

γ > 1 ‖∇ya −∇yβ‖Lp . DoFmax{ 1
p−1, 1p−

α
2 } K1 = K0

γ = 1 ‖∇ya −∇yβ‖Lp . DoFmax{ 1
p−1,− 1

2} K1 = K0 ln
(
N
K0

) 1
2

γ < 1 ‖∇ya −∇yβ‖Lp . DoFmax{ 1
p−1,− 1

2} K1 = Kγ
0N

1−γ

Remark 4.2. The rates of convergence depend on the geometry of the problem and
on the norm in which the error is measured. We observe that the error of BQCE
does not decrease with DoF when measured in the W 1,1-seminorm. This is because
the W−1,1-norm of the ghost force does not decrease as the size of the blending
region increases.

Remark 4.3. When α is small, the rate of convergence of BQCE is the same as
the rate of convergence of Shapeev’s method in some norms. In fact, if α ≤ 2

(e.g., a dislocation), then the W 1,2-error of Shapeev’s method decreases as DoF−
1
2

with the number of degrees of freedom [16]. We predict the same rate of conver-
gence for BQCE when α ≤ 2. On the other hand, when α is larger, a patch
test consistent coupling such as Shapeev’s method may converge faster than BQCE.
When α > 2 (e.g., a vacancy, micro-crack, or dislocation dipole), the W 1,2-error of

Shapeev’s method decreases as DoF
1
2−

α
2 , whereas the W 1,2-error of BQCE decreases

as DoF−
1
2 . Roughly speaking, this is because when α is small, the coarse-graining

error dominates, but when α is large, the ghost force error dominates.

5. Numerical Example

5.1. Setup of the atomistic model. In the 2D triangular lattice defined by

Λ :=

(
1 1/2

0
√

3/2

)
· Z2

we choose a hexagonal domain Ωa with embedded micro-crack as described in Fig-
ure 1. The sidelength of the domain is N = 300 atomic spacings, and a “micro-
crack” is introduced by removing a segment of nine atoms Λcrack := {−4e1, . . . , 4e1}
at the center of Ωa.

The domain is supplied with periodic boundary conditions (4.7) with macro-
scopic strain given by

F :=

(
1 γII

0 1 + γI

)
· F0,

where F0 ∝ I minimizes the Cauchy–Born stored energy function W and γI, γII are
small loading parameters. Thus, the crack is loaded in mixed mode I & II. We solve
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Figure 1. Deformed configuration in atomic units of a BQCE
solution for a microcrack in a computational domain with approx-
imately 3N2 atoms (N = 100 in this figure, but N = 300 in the
benchmark described in Section 5.3). The color and size of the
atom positions indicate the value of the blending function.

the atomistic model (for the computation of errors) in the same periodic domain
in order to avoid taking into account additional approximation errors due to the
choice of far-field boundary condition.

The site energy is given by the EAM toy-model (2.2), with

φ(r) = η(r)
[
e−2a(r−1) − 2e−a(r−1)

]
, ρ(r) = η(r)e−br, and

G(ρ̄) = c
[
(ρ̄− ρ̄0)2 + (ρ̄− ρ̄0)4

]
,

where a, b, c, ρ̄0 ∈ R are parameters of the model and η ∈ C2,1(R) is a cut-off
function defined through

η(r) = 1, for r < rcut
1 ,

η(r) ∈ [0, 1], for rcut
1 < r < rcut

2 ,

η(r) = 0, for r > rcut
2 ,

and the requirement that η is a quintic polynomial in [rcut
1 , rcut

2 ], where rcut
1 , rcut

2 are
additional parameters of the model. In our computational experiment we choose

a = 4.4, b = 3, c = 5, t0 = 6e−b, rcut
1 = 1.8, rcut

2 = 2.5.

5.2. Setup of the BQCE method. Our implementation of the BQCE method is
based on (4.3), using standard finite element assembly techniques. The construction
of the blending function is governed by two approximation parameters:

• K0 ∈ N denotes the number of atomic layers surrounding the micro-crack
where β = 1;
• K1 ∈ N denotes the number of atomic layers in the blending region.

For the micro-crack problem we expect α = 3 in the context of Section 4.3.
Hence, according to Table 4.3, the choice K1 := K0 (so that the number of atoms
in the atomistic region and blending region are comparable) is quasi-optimal for
both p = 2 and p =∞.
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Let dhop(ξ, η) denote the hopping distance in the triangular lattice (with natural
extension to sets), then we define

Λa :=
{
ξ ∈ Ωa : dhop(ξ,Λcrack) ≤ K0

}
, and

Λb :=
{
ξ ∈ Ωa : K0 < dhop(ξ,Λcrack) ≤ K0 +K1

}
.

We consider three choices of the blending function, which are all easily defined for
general interface geometries:

• QCE: choosing β to be the characteristic function of the atomistic region
Λa, and K1 = 0, yields the QCE method defined in (4.1).

• Linear Blending: Let d(ξ) denote the hopping distance from the atomistic
region, then we choose

βlin(ξ) := max(1, d(ξ)/K1).

• Smooth Blending: Let ∆2
iβ(ξ) := β(ξ + ai) − 2β(ξ) + β(ξ − a1), and let

Φ(β) :=
∑
ξ∈Ωa

∑3
i=1 |∆2

iβ(ξ)|2, then we define

βsmooth := argmin
{

Φ(β) : β(ξ) = 0 in Λa and β(ξ) = 1 in Ωa \ Λa ∪ Λb
}
.

The third approximation parameter is the finite element mesh in the continuum
region. We coarsen the finite element mesh away from the boundary of the blending
region according to the rule suggested by the complexity estimates in Table 4.3. As
a matter of fact it turns out that the mesh size growth is too rapid to create shape-
regular meshes, hence we also impose the restriction that neighbouring element
can at most grow by a prescribed factor; this introduces an additional logarithmic
factor in the complexity estimates [16, Sec. 7.1].

The resulting energy functional is minimized using the preconditioned Polák–
Ribière conjugate gradient algorithm described in [22]. We removed the termination
criterion in this algorithm and allowed it to converge to its maximal precision, that
is, until the numerically computed descent direction ceases to be an actual descent
direction for the energy; this occurs at an accuracy of 10−5 to 10−6 in atomic units.

5.3. Rates of Convergence. In our numerical experiment, we choose γI = γII =
0.03 (3% shear and 3% tensile stretch), solve the BQCE problem (to be precise,
the QCE and the BQCE problems for linear and smooth blending functions) for
increasing parameters K0, and compute the error relative to the exact atomistic
solution.

The relative errors in the W 1,2-seminorm are displayed in Figure 2; the relative
errors in the W 1,∞-seminorm are displayed in Figure 3; the errors in the energy are
displayed in Figure 4. We observe clear qualitative agreement with our theoretical
predictions.

However, it is worth pointing out that the advantage of a smooth blending func-
tion is less pronounced than our theory might suggest. As a matter of fact, it
appears that smooth blending functions only become advantageous for fairly wide
blending regions. (The two last datapoints in the graphs for the BQCE methods
correspond, respectively, to K1 = 22 and K1 = 32.
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