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Understanding the calculus

David Tall

Mathematics Education Research Centre
University of Warwick
COVENTRY CV4 7AL

A number of significant changes have have occurred recently that give
us a golden opportunity to review the teaching of calculus. The most
obvious is the arrival of the microcomputer in the mathematics
classroom, allowing graphic demonstrations and individual
investigations into the mathematical ideas. But equally potent are new
insights into mathematics and mathematics education that suggest new
ways of approaching the subject.

In this article I shall consider some of the difficulties encountered
studying the calculus and outline a viable alternative approach suitable
for specialist and non-specialist mathematics students alike.

Students’ views of the calculus

The first encounter with the calculus is usually through considering two
points A,B on a graph and seeing how the chord AB tends to the tangent
at A as B approaches A. (Figure 1.)

A

T

B

Figure 1: what happens as B→A ?

The informal language used at this stage can cause unforseen
difficulties. There are problems interpretating in phrases such as ‘tends
to a limit’ or ‘as close as we please’ which pervade the initial stages of
the calculus5. Bernard Cornu2 has noted corresponding difficulties in
the French language. One of his most engaging observations is that
many students say that the sequence 0.9, 0.99, 0.999, ... has limit 1 but
tends to ‘nought point nine recurring’. The explanation is that 1 is a
limit in the sense of a ‘speed limit’: it is something that cannot be be
passed. The expression ‘nought point nine recurring’ is a dynamic
process, going on for ever and this is what the sequence ‘tends’ to do: it
never reaches 1 in the process. Thus ‘nought point nine recurring’ is
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considered to be just less than one, though in a strict mathematical sense
the two expressions are equal.

Students observing a chord approaching a tangential position are likely
to have similar feelings: the chord nearly gets there, but not quite. As
one sixth-former explained patiently to me: ‘The chord line doesn’t get
close to the tangent because the line is infinite; even if the lines look
close, far away at infinity they are still a long way apart.’ This deeply
perceptive remark shows that we mathematicians must be careful how
we phrase our explanations. It is quite possible for students to have
intelligent interpretations of mathematics which differ fundamentally
from ours.

Sometimes a student gives an explanation that appears utterly strange to
a mathematician and yet is a perfectly logical deduction in his own
terms. Based on the idea of a limit as something that cannot be passed,
one student noted the chord lay on both sides of the tangent and insisted:
‘The tangent can’t be a limit because you can’t get past a limit and part
of the chord is already past it .’

A very common difficulty occurs because the term ‘chord’ is used in
circle geometry to mean the line segment between two points on the
curve. Students see the chord as a finite line segment which tends to
zero length as the points get close together, so ‘the chord tends to the
tangent’ because the vanishing chord gets closer to the tangent line. The
gradient of chord and tangent are irrelevant and the formal explanation
of the limiting process is regarded as true for quite the wrong reason.

Some students faced with figure 1 see a static picture with no
movement, others (quite sensibly) see B move along the chord to A.

With this variety of interpretations, it is no wonder that the statement:

as B→A, the line through AB tends to the tangent at A

is regarded as false by a significant minority (around 30% in samples
taken). A more precise, but slightly more complex statement:

as B→A the limit of the gradient of the chord AB is the
gradient of the tangent AT

produces more confusion. In some classes less than 50% regard this
statement as being true before studying the calculus and a sizeable
minority still consider it false after their first dose of theory.

A significant number of students are therefore bemused by the initial
explanations of the derivative as a limiting process. They are shown a
few simple examples, such as the derivative of x2, developed from ‘first
principles’ and a number of others are studied using the ‘delta notation’.
Here the Cornu phenomenon arises again, as I have detailed elsewhere 8:
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students looking at the expression dy/dx tending to dy/dx often imagine
dx tending to dx and dy tending to dy. A significant number think of dx
and dy as extremely small numbers that are not zero. But they are told
that dy/dx is a single symbol, not a ratio.

No wonder there is an air of relief when they move from ‘first
principles’ to the formal algorithm for differentiating polynomials. As
one bright student said: ‘It’s typical of teachers to show us a lot of
difficult methods before getting on to the easy way to do it.’

As they move through the calculus further conflicts and contradictions
arise. In the ‘function of a function rule’:

 

dy

dt 
 = 

dy

dx
 
dx

dt

they will be told that they cannot cancel the dx, it has no separate
meaning, but in

 ∫ f(x) dx

dx now means ‘with respect to x’. Later a complete volte-face occurs
with a differential equation such as

 

dy
dx

 = –
x
y .

Now the indivisible symbol dy/dx is separated but dy, dx are not
quantities, they are ‘with respect to something-or-other’ concoctions in
the equation

 ∫ y dy = ∫ –x dx.

Faced with such a bewildering variety of ideas is it any wonder that
students are sometimes confused?

A cognitive approach to the calculus

In his paper ‘Why calculus cannot be made easy’ Rolph
Schwarzenberger 4 argued that the mathematical difficulties of classical
analysis do not admit a simple explanation. According to this thesis, any
intuitive formulation of these ideas will implicitly contain the
underlying difficulties to haunt the students. However, this argument
demonstrates the mathematical difficulties of analysis, not the cognitive
difficulties of the calculus. It shows that any ‘talking down’ of high-
powered mathematics will contain inherent difficulties for the learner.
It does not address itself to the alternative possibility of seeing the
matter from the students’ viewpoint and attempting to help them build
up to the ideas from their current position.



– 4 –

To see the difference between the two possible approaches, consider the
logical steps we take in explaining the derivative f'(x) of a function f(x).
The derivative is itself a function, but we don’t attack it immediately at
this level: we ‘simplify’ the theory by first concentrating on what
happens at a point. We fix x and consider the gradient from x to x+h
for variable h, then we take the limit as h tends to 0 (with all the hidden
difficulties this implies) and when this is done we vary x again to get the
derivative function. What a palaver!

In presenting the ideas in this logical order the mathematician feels that
he is making the approach as ‘intuitive’ as possible. But he is not. A
mathematician uses the term ‘intuitive’ as the antithesis of ‘rigorous’. A
psychologist uses the term ‘intuitive’ to signify an immediate response to
a situation. There is a fundamental mismatch between the two uses of
the word.

If the idea of calculating the gradient of a tangent by a limiting process
were intuitive in a psychological sense then students faced with the
problem would respond immediately with a limiting argument. This
patently does not happen. In the current research several hundred
students have answered questionnaires on the calculus. One question
was:

On the graph y=x2, the point A is (1,1), the point B is
(k,k2) and T is a point on the tangent to the graph at A.

 (i) Write down the gradient of the straight line through
A,B...

(ii) Write down the gradient of AT...

Explain how you might find the gradient of AT from first
principles.

B

A

k

2k

1

1 x

y T

Figure 2: finding the gradient of the tangent
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To date no-one who has not studied the calculus has offered a ‘limiting’
argument for the gradient of the tangent. This could be attributed to the
use of the technical term ‘from first principles’ which they may regard
with suspicion or not understand. But there are those with no knowledge
of the calculus who are able to express the gradient of the chord for k ≠
1 as

 

k2–1
k–1

 = k+1

and calculate the gradient of the tangent by eye as 2. When shown that
as k tends to 1, so k+1 tends to 2, the idea appears to them as a
revelation.

My conclusion is that the limiting process may be ‘intuitive’ in a
mathematical sense but not in a cognitive sense. To distinguish between
the two meanings of the term I suggest that the word ‘cognitive’ be used
to describe mathematical ideas that appeal to the intuition. The Latin
root of the word is the verb cognoscere, to know. The aim of the
mathematics educator should be to provide a range of experiences that
develop the ideas of the calculus in a cognitive manner, so that the
learner both knows and understands. The desired goal is relational
understanding in the sense of Skemp 6, with the concepts fitting together
in a coherent, mutually supportive manner. The non-specialist may
benefit from this relational understanding as an end in itself, whilst the
specialist may use it as a basis for a subsequent logical understanding of
the formal arguments in the sense of Skemp 7. An appropriate cognitive
development should eventually lead to proofs that are both intuitive (in
a psychological sense) and rigorous. There need be no dichotomy
between intuition and rigour. But how is this to be done?

The major difference between the mature mathematician and the learner
is that the mathematician already has a global picture of the concept, so
that when he breaks it down into a number of stages, he can see each
stage as part of the whole. The learner, on the other hand sees only the
part in the context of his limited understanding. He colours this part
with his own meanings and places obstacles in the way of his
understanding the total concept.

If somehow the learner were to get an intimation of the whole concept
first, then he would be in a better position to organise his thinking
processes to cope with it. Ausubel called such an intimation an ‘advance
organiser’ 1. Other schools of psychology refer to the ‘gestalt’ or
wholeness of a concept being greater than the sum of its parts. Is there
an approach to the calculus which provides the student with an advance
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organiser for the concept of derivative to give him a gestalt to guide the
development of ideas?

The micro computer

The micro offers a resource in the mathematical classroom undreamt of
not long ago. It enables a cognitive approach to the calculus without the
pre-requisites of limiting processes, chords approaching tangents and so
on, based on the simple fact that the derivative is not just the gradient of
the tangent, it is the gradient of the graph itself.

Give a group of students a computer program capable of magnifying
graphs over tiny ranges and ask them what they can find. A typical
response will be that when a graph is magnified it looks ‘less curved’.
(Figure 3.) Small portions of most graphs that students magnify tend to
approximate to straight lines. Thus the notion of the gradient of such a
curved graph becomes reasonable: highly magnify the graph and take
the gradient of the resulting (approximately) straight line segment.

Figure 3: magnifying a small part of a graph

In this way it is possible to ‘see’ the gradient of a curved graph without
any use of tangents, chords or any other superstructure. But chords
prove a helpful way of representing the gradient on a computer screen
by taking two points a, b close together and drawing the extended chord
through (a,f(a)), (b,f(b)). (Figure 4.)
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Figure 4: the extended chord through two close points

To obtain a global understanding of the derivative, draw the chord
through (x,f(x)), (x+c,f(x+c)), keep the value of c a small constant and
plot the chord gradient as x moves from left to right. Figure 5 shows a
‘freeze-frame’ of the gradient function of f(x)=x2 being built up. (It is
far more easy to see when the picture is growing dynamically!)

Figure 5: Building up the gradient function

This kind of approach allows students to investigate idea of gradient of a
curved graph and gain a cognitive understanding of concepts that are
mathematically difficult. For instance, they could look at functions
which are not differentiable at certain points: the graph of f(x)=|x2–x|
magnified around x=1 gives two line segments meeting at an angle. At
x=1 it has a clear gradient to the left and a different gradient to the
right: a simple example of a function which is not differentiable at some
point. (Figure 6.)
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Figure 6: a graph not locally straight at certain points

In my software Graphic Calculus I 9 there is a program to draw of a
function which is nowhere differentiable: it is so wrinkled that it
nowhere magnifies to give a straight line. The theory necessary to prove
this result is mathematically difficult but cognitively simple: if the
cognitive ideas are followed through in a sensible way, they eventually
lead to a simple, but rigorous, mathematical proof!

Students of all abilities can use appropriate software to investigate the
gradient functions for x, x2, x3 to see if there is a pattern and conjecture
the formula for the derivative of xn. Having suggested a formula it may
be tested for other values of n, say n=4, n=5 or n=32. Negative values
such as n=–1, –2 or fractional values such as n=1/2, n=3/4 or n=–5/6
may be investigated, giving a good feeling for the ideas before formal
proof is possible. It will not be long before students see the limitations
of guessing the derivative from a global picture and respond positively
to a formula derived from a limiting argument. But now they have the
advance organiser of the notion of derivative to guide their thinking.

As the theory progresses, further investigations will be possible which
allow students to take an active part in the learning instead of passively
receiving the theory. A good example is the definition of the
mathematical constant e and the derivative of ex. A formal proof of the
derivative of ex requires an explanation of how e is defined together
with the calculation of the limit

 

ex+h – ex

h

as h tends to zero. Instead, start with the function f(x)=2x and plot the
approximate gradient function. (Figure 7.) It is clearly the same shape
as that of 2x but a little lower. A similar investigation with y=3x gives a
graph whose gradient is the same shape, but this time a little higher. Is
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there a graph y=kx with k between 2 and 3 whose gradient is identical to
the original? It is easy to narrow the search down a little more to give k
between 2.5 and 3. The number e is defined as the value such that y=ex

has the derivative dy/dx=ex.

Figure 7: A graph with a similar shaped gradient

These investigations offer precisely the kind of cognitive development I
mentioned earlier, helping students to get a coherent relational
understanding of the ideas as they gain experience of the subject. The
vast majority of students do not go on to study formal mathematical
analysis and will surely benefit from a coherent feeling for geometric
ideas of rate of change. Those who become mathematics specialists will
benefit from more in-depth investigations that allow them to obtain
insight into some of the subtler problems of the mathematical analysis.

Tony Orton 3 has noted that students find great difficulty with the
concept of the integral

 
f(x) dx⌡

⌠
a

b

when f(x) is negative or b is less than a. Interpreted geometrically a
profound cognitive demonstration of the ideas can be given.
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Figure 8: positive and negative area calculations

Figure 8 shows the area between the x-axis and the graph of sinx being
calculated from 0 to 2π using the midordinate rule and step width 1/2.
The area of each strip is calculated as the step-size times the ordinate
and the result is negative where the step is positive and the ordinate
negative. It is shown in the picture by shading the rectangles differently.
Taking a large number of strips, it is clear that the sum gets close to the
area under the graph (figure 9) and the areas are given the appropriate
signs. The case where b is to the left of a, and the step-length is
negative, also gives a logical choice of sign.

Figure 9: area calculation with tiny steps

A geometric approach using a computer should not be thought of as a
lower form of mathematical experience than a formal logical
development. On the contrary, it can prove to have direct benefits in
understanding mathematical theory that is inadequately handled in the
current A-level.

As an example, consider the solution of the differential equation

 

dy

dx
 = 1

x2



– 11 –

The analytic method is to try to think of a function y=f(x) so that
f '(x)=1/x2. This is fairly straightforward in this case and is usually
given as

 y=–1/x+c.

But this is not the most general solution. Geometric insight shows that
two solution curves have the same gradients and therefore a solution
curve may be shifted up or down by a constant amount to give another
solution. But if the domain of the function is in separate parts, then
different shifts are possible on each part, so a more general solution of
the given problem is

 
y = 



 –1/x+k (for x<0)
–1/x+c (for x>0)

where c and k may be different.

A second fundamental flaw in the attempt to solve differential equations
by spotting formulae for the solution is that it only leads to a number of
isolated techniques for a small number of particular equations. There
are equations such as

 

dy
dx

 = x2+y2

which have no solutions as formulae in the standard functions. But from
a geometric viewpoint a solution curve y=s(x) through a point (a,b) in
the plane must have gradient s'(a)=a2+b2. By drawing short line
segments with the appropriate gradient at each point, it is possible to
visualize the direction taken by solution curves. These are drawn in
figure 10 and the computer has been used to follow along one of them.
Using the computer, accurate numerical approximations to solution
curves may be easily found.
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Figure 10: The numerical solution of a differential equation

In the real world the theory of calculus is used to solve differential
equations by numerical methods in weather-forecasting, aerodynamic
design and many other areas where solutions using formulae are totally
inappropriate. It is time for us to make our mathematics more relevant
to its applications.

In subsequent articles I will look at this approach to the calculus in
greater detail, tracing the development from a geometric idea of
differentiation through integration and on to differential equations. At
an elementary level geometric insight can prove helpful for students of
all ranges of ability. For more able students we will see the ideas give
insight into more difficult theorems of mathematical analysis.
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