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Abstract

In this thesis we study approximation algorithms for optimization problems, which 
is one of the core areas of modern theoretical computer science. We focus on two areas 
of approximation. First we consider geometric problems, and we present approximation 
algorithms for the capacitated location routing problem and the capacitated network design 
problem in the Euclidean plane. Next, we investigate two well known caching and scheduling 
problems, the generalized caching problem and the reordering buffer management problem. 
We do this in an online setting, i.e. when instead of getting the whole input data at once, 
the data arrives in parts, during the execution of the algorithm.

In the capacitated location routing problem a fleet of vehicles with bounded capacity 
must serve a set of customers. The goal is to choose the depots for the vehicles from a set 
of possible locations, and fix the routes of the vehicles, to minimize the cost of opening the 
depots and the length of the routes. We present a quasi-polynomial time approximation 
scheme for the problem, and a polynomial time approximation scheme for some range of 
input parameters.

In the capacitated geometric network design problem we are given two sets of points 
in the plane, sources and sinks, where each source wants to send and each sink wants to 
receive a given amount of flow. The goal is to construct a minimum-length network with 
bounded edge capacity that allows to route the requested flow from sources to sinks. In 
addition to the sources and sinks, any other points in the plane can be used as vertices of 
the network. We present a quasi-polynomial time approximation scheme for the problem, 
and a polynomial time approximation scheme when the edge capacity is not too large.

The generalized caching problem is a classical problem in the area of online algo­
rithms. We are given a set of pages, each page with an arbitrary size and fetching cost, and 
a cache of bounded size. At each time step a specific page is requested. If the page is not in 
the cache, it must be fetched into the cache, possibly evicting some other pages. The goal 
is to design an algorithm that specifies which pages to evict from the cache, minimizing the 
total cost incurred on the request sequence. We give a randomized online algorithm for the 
generalized caching problem which is asymptotically optimal, solving a long standing open 
problem.

The reordering buffer management problem is also a well known problem in the area 
of online algorithms. A  stream of colored items arrives at a service station equipped with 
a reordering buffer of a given capacity. The cost for servicing the items depends on the 
processing order: servicing an item, when the previous item had a different color, incurs a 
context switching cost depending on the color of the current item. A  scheduling strategy has 
to decide which item to service next, to minimize the cost of the output sequence. We show 
lower bounds on the competitive ratio of a deterministic and randomized online algorithm, 
and a deterministic online algorithm which nearly matches the lower bound.

vi



Chapter 1

Introduction

1.1 Approximation Algorithms

Many practical optimization problems are NP-hard, and so it is unlikely that optimal 
solutions for them can be found in polynomial time. If we want to solve these 
problems in a reasonable amount of time, we have to give up optimality and aim for 
getting a solution with a value as close as possible to the value of an optimal solution. 
Algorithms which find efficiently sub-optimal solutions, and give a guarantee on the 
quality of the solution for any input instance, are called approximation algorithms.

Definition 1.1 ([86]). An «-approximation algorithm for an optimization problem is 
a polynomial time algorithm which for all instances of the problem outputs a solution 
whose value is within a factor of a of the value of an optimal solution.

- The parameter a  is called the approximation ratio or approximation factor 
of the algorithm.

We follow the convention that a >  1 for minimization problems, and a  <  1 
for maximization problems. The goal is to construct approximation algorithms with 
the approximation ratio a  as close to 1 as possible.

Optimization problems differ a lot with respect to approximability. There 
are some problems which cannot be approximated at all, many others can be ap­
proximated within a factor which is a function of the input size n, e.g. «  =  n °d ) or 
a =  log n. Many problems admit an «-approximation algorithm for some constant 
«  — the class of such problems is called APX. Some problems have a polynomial 
time approximation scheme, i.e'. they can be approximated arbitrarily well.

D efinition 1.2. A polynomial time approximation scheme (PTAS) is an algorithm, 
which for any fixed e >  0:
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• for any problem, instance finds a solution with value within a (1 +  e) factor of 
the value of an optimal solution, and

• has running time polynomial in the size of the problem instance.

■ A polynomial time approximation scheme is essentially the best we can get 
for NP-hard optimization problems. For some problems we can get a similar approx­
imation scheme, but with a quasi-polynomial running time, i.e. with a running time 
nO((logn)c) for inpUt instances of size n, where c is a constant (possibly depending 
on the parameter e).

D efinition 1.3. A quasi-polynomial time approximation scheme (QPTAS) is an 
algorithm, which for any fixed e >  0:

• for any problem instance finds a solution with value within a (1 4- e) factor of 
the value of an optimal solution, and

• has running time quasi-polynomial in the size of the problem instance.

Approximation algorithms for various problems have been studied since 1970s, 
see eg. [55; 84; 86] for an overview. Some of the techniques used in the design of 
approximation algorithms include combinatorial techniques, dynamic programming, 
linear and semidefinite programming, randomization.

In the thesis we study approximation algorithms for geometric problems. 
Optimization problems for which the input consists of points in a metric space have 
their geometric versions :— the metric is then the constant-dimensional, or in the 
simplest case two-dimensional, Euclidean metric. Geometric versions of NP-hard 
problems usually remain NP-hard, but the structure of the Euclidean space often 
makes them simpler to approximate. For many geometric problems the existence 
of a polynomial time approximation scheme has been shown, although their metric 
versions are APX-hard, i.e. they do not admit a polynomial time approximation 
scheme unless P  =  N P.

The most known result of this kind has been shown independently by Arora 
[10] and Mitchell [69]. They designed polynomial time approximation schemes for 
the geometric version of the traveling salesman problem (TSP), as well as for the 
minimum Steiner tree problem (MST), fc-TSP and A;-MST. These results have been 
followed by polynomial time approximation schemes for geometric versions of many 
other problems, like the fc-medians [12], minimum cost /c-connected spanning sub­
graph for constant k [39], node-weighted geometric Steiner tree [77] and Euclidean 
Steiner forest [26]. They use the techniques introduced by Arora [10] and Mitchell
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[69], but they also introduce many new ideas. For some geometric problems for 
which no polynomial time approximation scheme is known, the existence of a quasi­
polynomial time approximation scheme has been shown —  e.g. for the minimum 
latency problem [11], the minimum weight triangulation problem [76] and the ca­
pacitated vehicle routing problem [42].

We study geometric versions of some vehicle routing problems and of the 
capacitated network design problem.

1.1.1 Vehicle Routing Problems with Capacities

The vehicle routing problem, the problem of finding the optimal set of routes for 
a fleet of vehicles to serve a given set of customers, is one of the most important 
combinatorial optimization problems. It models the real-world problems of delivery 
or collection of goods, as well as more general transportation problems, such as waste 
collection, street cleaning, dial-a-ride systems or routing of maintenance units. There 
are many versions of the problem, which model different practical applications. In 
many applications the most important constraint is the capacity of the vehicles, and 
therefore one of the most important versions of the vehicle routing problem is the 
capacitated vehicle routing problem.

In the capacitated vehicle routing problem (CVRP) a fleet of vehicles with a 
limited capacity k located at a depot must serve a set of customers. The objective 
is to minimize the total distance traveled by the fleet.

The solution to the problem consists of a set of tours (cycles), where each 
tour corresponds to a route of a single vehicle. The length of a tour T  is denoted by 
|Tj. For a set T  of tours, we define |T| =  Y^TeT 1̂ 1-

The problem is defined formally as follows.

D efinition 1.4. In the capacitated vehicle routing problem we are given a set of 
points P, a point o and a distance function 5 : (P  U {o })2 —► R>o- A solution 
consists of a set of tours T  covering all the points from P , such that each tour visits 
the point o and at most k points from P.

The goal is to find a solution which minimizes \T\.

The point o is called the origin or depot. The set P  represents the customers, 
and the tours —  routes of the vehicles. An example of a solution to the CVRP 
problem can be seen in Figure 1.1. The problem is also known as a k-tour cover 
problem.

In the multiple depot capacitated vehicle routing problem (MDCVRP) we have 
multiple depots instead of a single one, and a customer can be served by a vehicle
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Figure 1.1: A solution to the CVRP problem for k =  3. The black dots represent the 
points from P, and the grey dot is the depot. The solution consists of three tours 
covering all the points from P, where each tour visits at most 3 points from P.

from an arbitrary depot.

Definition 1.5. In the multiple depot capacitated vehicle routing problem we are 
given sets of points P  and O, and a distance function 6 : (P u O )2 —► R>o. A solution 
consists of a set of tours T  covering all the points from P, such that each tour visits 
a point from O and at most k points from P.

The goal is to find a solution which minimizes \T\.

We can consider a version of the problem called MDCVRP with non-fixed 
return, when the vehicles can finish their routes in a different depot from where they 
started. Then a solution consists of a set of paths, each starting and ending in O 
and visiting at most k points from P.

The CVRP problem is a special case of the MDCVRP problem, when the set 
O consists of a single point o.

In the capacitated location routing problem (CLRP) again we have to serve 
a set of customers with a fleet of vehicles of limited capacity k located at the depots, 
but first we have to choose a set of depots to be opened from a given set of locations 
O. We can open as many depots as we want, but opening each depot generates cost. 
The problem is defined formally as follows.

Definition 1.6 . In the capacitated location routing problem we are given sets of 
.points P  and O, a distance function S : (P  U O)2 —► R>o and a cost function 
<j> : O —► R>0. A solution consists of a set of points D  C O and a set of tours 
T  covering all the points from P, such that each tour visits a point from D and at 
most k points from P.

The goal is to find a solution which minimizes YldeD 4(d) +  \T\> *-e- the cost 
of opening the depots plus the total length of the tours.

As before, we can consider a version of the problem called CLRP with non- 
fixed return, when the vehicles can finish their routes in a different depot from where
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they started.
The CLRP problem combines the MDCVRP problem with the uncapacitated 

facility location problem (UFL), where for a given set of customers and possible 
facility locations we have to decide on the set of facilities to be opened to minimize 
the total cost of opening the facilities and connecting each client to the closest open 
facility. The problem is defined formally as follows.

Definition 1.7. In the uncapacitated facility location problem we are given sets 
of points P  and O, a distance function 5 : P  x O —» R>o and a cost function 
<t> : O —> R>0. The goal is to find a set of points D  C O that minimizes the cost 

52deD 0(°O + Spgp ${Pi D)-

The sets of points P  and O represent the clients and the possible facility 
locations, and D  the set of facilities to be opened.

The MDCVRP problem is a special case of the CLRP problem, when the 
cost of opening each depot is 0.

We consider the above problems in the two-dimensional Euclidean setting, 
where the input points correspond to points in the Euclidean plane R2, and the 
distances between them are the Euclidean distances.

1.1.2 Capacitated Network Design

The area of network design, problems of designing low cost networks satisfying some 
predefined constraints, plays a fundamental role in operational research and graph 
algorithms. We consider one important class of problems in this category, the capac­
itated network design. Here the goal is to find a multiset of edges in a given input 
network that will allow sending a predetermined amount of flow from a set of sources 
to a set of sinks subject to the capacity constraints on the edges.

While network design problems have been extensively studied in operational 
research and combinatorial optimization, the main focus has been on problems mod­
eled by arbitrary graphs. However, many applications require to consider network 
design problems in the geometric setting.

In the capacitated geometric network design problem (CGND) we are given an 
integral edge capacity k and two sets of points on the Euclidean plane, sources and 
sinks, with an integral demand for each point. The demand of each source specifies 
the amount of flow that has to be shipped from the source, and the demand of each 
sink specifies the amount of flow that has to be shipped to the sink. The goal is to 
construct a minimum-cost network for which the requested flow from the sources to 
the sinks is feasible, and where each edge in the network has capacity k. The cost
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of a network is defined as a sum of the lengths of the network edges. The vertices of 
the network are not constrained to the sets of sinks and sources —  any point on the 
Euclidean plane can be used as a vertex. The flow is splittable and parallel edges 
are allowed.

An example of a solution to the CGND problem can be seen in Figure 1.2.

Figure 1.2: A solution to the CGND problem for the edge capacity k =  5. The 
sources and the sinks are denoted respectively by grey and black dots, and the 
demands are given next to the dots.

A special case of the CGND problem is a single-sink capacitated geometric 
network design problem (SCGND), where there is only one sink.

1.2 Online Algorithms

For many practical algorithmic problems we do not get the entire input sequence at 
once. Instead, new input data arrives in parts, and the decisions have to be made 
based on the data received so far. These problems are called online problems, and 
the algorithms for them are called online algorithms.

Among the most important classes of online problems are caching and schedul­
ing problems. In a caching problem we have to maintain a two-level memory system 
consisting of a small fast memory and a large slow memory. Requested pages need 
to be fetched into the fast memory. The goal is to maintain the set of pages to stay 
in the fast memory, without knowing which pages will be requested in the future, to 
minimize the total fetching cost. In a scheduling problem a sequence of jobs must 
be scheduled on a set of machines, such that a given objective function is optimized. 
The jobs arrive one by one and must be scheduled, without any information about 
the jobs that will arrive later.

The performance of online algorithms is evaluated using competitive analysis. 
The idea is to compare the output of an online algorithm to the output of an optimal 
offline algorithm, which knows the whole input sequence in advance and finds an 
optimal solution for it. We consider deterministic and randomized online algorithms.

8
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D efinition 1.8. An online algorithm is «-competitive if there is a constant (3 such 
that for all finite input sequences I  the cost of the solution output by the algorithm 
is at most

a  • O P T (I) +  0  ,

where O P T (I) denotes the cost of a solution output by an optimal offline algorithm 
for I.

The parameter a is called the competitive ratio of the algorithm.

In the above definition we assume that the algorithm is a deterministic online 
algorithm. For a randomized online algorithm instead of the cost of the solution we 
take the expected cost of the solution, where the.expectation is taken over the random 
choices made by the algorithm.

One of the difficulties of the competitive analysis is that often the offline 
versions of the problems are NP-hard, which can make estimating the cost of the 
sequence output by an optimal offline algorithm difficult.

Online algorithms have been considered already in the 1970s, but the area 
has been extensively studied since the 1980s, when Sleator and Tarjan introduced 
the framework of competitive analysis [80]. An overview of the results in the area of 
online algorithms can be found e.g. in [25; 7; 27].

We study the reordering buffer management problem and the generalized 
caching problem in the online setting.

1.2.1 Reordering Buffer Management Problem

In the reordering buffer management problem a stream of colored items arrives at a 
service station and has to be processed. The cost for servicing the items depends 
heavily on the processing order: servicing an item with color c, when the most 
recently serviced item had color d  ^  c, incurs a context switching cost wc}

In order to reduce the total processing cost, the servicing station is equipped 
with a reordering buffer able to store k items. This buffer can be used to reorder 
the input sequence in a restricted fashion to construct an output sequence with a 
lower processing cost. At each point in time, the buffer contains the. first k items 
of the input sequence that have not yet been processed. A scheduling strategy has 
to decide which item to service next. Upon its decision, the corresponding item is 
removed from the buffer and serviced, while the next item from the input sequence 
takes its place in the buffer.

1 There exists a more general version of the problem, where the context switching cost for switch­
ing from an item with color c' to an item with color c depends on both c and c' (see Section 4.1.1).
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This simple and versatile framework has many important applications in areas 
like production engineering, computer graphics, storage systems, and information 
retrieval, among others [16; 23; 51; 63; 74]. We give two examples.

In the paint shop of a car manufacturing plant, switching colors between two 
consecutive cars induces non-negligible cleaning and set-up costs. Therefore, paint 
shops are preceded by a reordering buffer (see [51]) to reorder the stream of incoming 
cars into a stream with a lower number of color changes. This setting is well modeled 
by the reordering buffer framework with uniform costs, i.e., wc =  1 for all colors c.

In a 3D graphic rendering engine [63], a change in attributes between two 
consecutively rendered polygons slows down the GPU, as, for instance, the shader 
program needs to be replaced. A reordering buffer can be included between appli­
cation and graphics hardware in order to reduce such state changes. This setting 
can be modeled by the reordering buffer framework with non-uniform costs. Non- 
uniform costs are required as the cost for a state change depends on the size of the 
program that has to be loaded.

We focus on the online version of the reordering buffer management problem, 
in which when the buffer becomes full, one has to decide which item to service next, 
without knowing the rest of the input sequence (see Figure 1.3). Instead, in the 
offline version the whole input sequence is known in advance, and the information 
about the colors of the items which will arrive later can be used to decide which 
items should be removed from the buffer.

buffer: output:

C1 C-2 C3

C2 C3 C3

? ?

?

C‘2 C3 Cl

C2 Cl

C2

Cl

Cl C3 

Cl C3 C3 

Cl C3 C3 Cl 

Cl C3 C3 Ci C2

Figure 1.3: Solving an instance of the reordering buffer management problem. Here 
the size of the buffer k =  3. The item to be removed from the buffer is underlined. 
The cost of the generated output sequence is 2wCl +  wC2 +  wC3, and an optimal output 
sequence C2C3C3C1C1 has cost wCl +  wC2 +  wC3.
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1.2.2 Generalized Caching Problem

In the basic two-level caching problem we are given a collection of n pages and a 
cache (a fast access memory). The cache has a limited capacity and can store up to 
k pages. At each time step a request to a specific page arrives and can be served 
directly if the corresponding page is in the cache; in that case no cost is incurred. If 
the requested page is not in the cache, a page fault occurs and, in order to serve the 
request, the page must be fetched into the cache, possibly evicting some other page, 
and a cost of one unit is incurred. The goal is to design an algorithm that specifies 
which page to evict in case of a fault such that the total cost incurred on the request 
sequence is minimized.

This classical problem can be naturally extended to the generalized caching 
problem, by allowing pages to have non-uniform fetching costs and to have non- 
uniform sizes. In the general model we are given a collection of n pages. Each 
page p is described by a fetching cost Cp >  0 and a size wp >  1. The cache has 
limited capacity and can only store pages up to a total size of at most k. The 
framework of generalized caching has been motivated by applications in web caching 
and networking. The non-uniform sizes of the pages can correspond to the scenarios 
of caching web pages of different sizes, and the non-uniform costs of fetching a page 
can model scenarios in which the pages have different locations in a large network.

Various special cost models have been proposed in the literature. In the bit 
model [20; 58], each page p has Cp =  wp, and thus, for example, minimizing the 
fetching cost can correspond to minimizing the total traffic in the network. In the 
fault model [20; 58], for each page we have the fetching cost cp =  1 and the size wp 
may be arbitrary; in this case the fetching cost corresponds to the number of times 
a user has to wait for a page to be retrieved. In the weighted caching model [19; 58], 
for each page p we have the size wp =  1 and the fetching cost cp may be arbitrary; 
this models situations where some pages are more expensive to fetch than others 
because they may be on far away servers, or slower disks.

We consider the online version of the generalized caching problem. In this 
version as soon as a page which is not in the cache is requested, it has to be loaded 
into the cache, and while processing the request we have no information about the 
sequence of pages which will be requested later.

1.3 Thesis Organisation

In Chapter 2 we study two-dimensional Euclidean versions of the capacitated vehicle 
routing problem, the multiple depot capacitated vehicle routing problem and the

9



capacitated location routing problem. We first present a quasi-polynomial time 
approximation scheme for the capacitated location routing problem. Then we show 
a polynomial time approximation scheme for the capacitated vehicle routing problem 
for k <  2log°(1) n, where n is the number of input points, and we extend it to work for 
the multiple depot capacitated vehicle routing problem and the capacitated location 
routing problem when k, \0\ <  2log°(1) n. Part of the chapter is based on joint work 
with Artur Czumaj and Andrzej Lingas [5].

In Chapter 3 we study the capacitated geometric network design problem 
and the single-sink capacitated geometric network design problem. We show that if 
the demands are polynomially bounded in the number of input points n, and the 
edge capacity k satisfies k <  2° ^ logn\ the single-sink capacitated geometric network 
design problem admits a polynomial time approximation scheme. If the capacity k is 
arbitrarily large, then we design a quasi-polynomial time approximation scheme for 
the capacitated geometric network design problem. Our results rely on a derivation 
of an upper bound on the number of vertices different from sources and sinks (the 
so called Steiner vertices) in an optimal network. The bound is polynomial in the 
total demand of the sources. The chapter is based on joint work with Artur Czumaj, 
Andrzej Lingas and Jakub Onufry Wojtaszczyk [6].

In Chapter 4 we study the reordering buffer management problem in an online 
setting. We present the first non-trivial lower bounds for this problem by showing 
that deterministic online algorithms have a competitive ratio of i i ^ l o g  A:/log log fc) 
and randomized online algorithms have a competitive ratio of Q(log log k). We com­
plement this by presenting a deterministic online algorithm for the reordering buffer 
management problem that obtains a competitive ratio of 0 (\/log k), almost matching 
the lower bound. The chapter is based on joint work with Artur Czumaj, Matthias 
Englert and Harald Racke [3].

In Chapter 5 we study the generalized caching problem in an online set­
ting. We give a randomized 0(log /^-competitive online algorithm for the generalized 
caching problem, improving the previous bound of 0 (log2 k) by Bansal, Buchbinder, 
and Naor [20]. This improved bound is tight and of the same order as the known 
bounds for the classic problem with uniform weights and sizes. The chapter is based 
on joint work with Artur Czumaj, Matthias Englert and Harald Racke [4].
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Chapter 2

Vehicle Routing Problems with 
Capacities in the Euclidean Plane

2.1 Introduction

In this chapter we study the capacitated vehicle routing problem, the multiple depot 
capacitated vehicle routing problem and the capacitated location routing problem. 
We consider the above problems in the two-dimensional Euclidean setting, where 
the input points correspond to points in the Euclidean plane R2, and the distances 
between them are the Euclidean distances.

2.1.1  Previous Results

Table 2.1 presents an overview of the results for the problems discussed in this 
chapter.

Capacitated vehicle routing problem . The CVRP problem is one of the 
most important special cases of a more general vehicle routing problem, introduced 
by Dantzig and Ramser [40] more than fifty years ago, and studied very extensively 
in the literature ever since (see e.g. [64; 82; 49] for an overview).

The CVRP problem contains the traveling salesman problem (TSP) as a spe­
cial case, when k =  |P|, and so it is NP-hard. When the capacity of each vehicle 
k is 2, the problem can be reduced to a minimum weight matching and can be 
solved in polynomial time. However, the problem is known to be NP-hard for all 
k >  3 [14; 15]. For this reason, the research has focused on heuristic algorithms 
and approximation algorithms. The most extensively studied variants of CVRP are 
the metric one, when the distance function is symmetric and satisfies the triangle 
inequality, and in particular the two-dimensional Euclidean one, when the points are
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metric
2-dimensional
Euclidean

CVRP 2.5-approximation [52; 34] 
APX-hard for k >  3 [14; 15]

(2 +  ^-approximation [52; 10] 
QPTAS [42]
PTAS for k =  o(log log n) [52] 
PTAS for * =  0 ( ^ ) 1 1 5 1  
PTAS for k =  0 (n ) [15] 
PT A S for k <  2,og°(1)»

MDCVRP 4-approximation [65] 
APX-hard for k >  3 [14; 15]

QPTAS [41]
PTAS for
k3 ■ l ° l2 =  [31] 
PT A S for k, |0| <  2log°(1)n

MDCVRP with 
non-fixed return

2.5-approximation [65] 
APX-hard for k >  3 [14; 15]

Q PTAS
PTAS for
kl ■ l ° l2 =  O (lH ifc )  131]
PT A S for fc,|0| <  2log°(1) n

CLRP
4.38-approximation [53] 
APX-hard for k >  3 [14; 15]

(4 +  ^-approximation [53] 
Q PTA S
PT A S for A:, |0| <  2Iog°(1)Tl

CLRP with 
non-fixed return

APX-hard for k >  3 [14; 15]
Q PTA S
PT A S for fc,|0| <  2log°(1) n

Table 2.1: An overview of the results for the vehicle routing problems considered in 
this chapter. The new results are presented using bold font.

placed in the plane and the distance is Euclidean.
The metric case of CVRP for any k is in APX, i.e. it admits a constant 

factor approximation. A simple iterated tour partitioning heuristic, introduced by 
Haimovich and Rinnooy Kan [52], has an approximation ratio 1+a , where a  is an ap­
proximation ratio of the traveling salesman problem. That gives a 2.5-approximation 
for the metric case (using the 1.5-approximation for the metric TSP by Christofides 
[34]) and a (2 + ^-approximation for the constant-dimensional Euclidean case (using 
the (1 +  ̂ -approximation for the Euclidean TSP by Arora [10] or Mitchell [69]). We 
describe the iterated tour partitioning heuristic in detail in Section 2.2. The general 
idea of the heuristic is to find a TSP tour visiting all points from the set PU  {o }, cut 
it into paths visiting at most k points from P  each and then connect the endpoints 
of the paths with the depot o to create tours.

For k >  3 the metric case of CVRP is APX-complete [14; 15], i.e. complete
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for the class of optimization problems admitting constant factor approximation. In 
[14] Asano et al. show a reduction from the maximum bounded //-matching problem 
(i.e. the problem of determining the maximum number of vertex-disjoint copies of 
a fixed graph H  in a given graph) which works for constant k >  3. For larger k, 
there is a reduction from TSP (see [15]).

The approximability status of the two-dimensional Euclidean CVRP problem, 
in particular, the problem of the existence of a PTAS, has not been completely settled 
yet.

One of the first studies of two-dimensional Euclidean CVRP has been due 
to Haimovich and Rinnooy Kan [52], who presented several heuristics for the metric 
and Euclidean CVRP, including a PTAS for the two-dimensional Euclidean CVRP 
with k =  o(loglogn), [52, Section 6]. The idea of the algorithm is as follows. They 
divide the set of points from P  into inside and outside points, depending on their 
distance from the origin, and they find solutions for the sets of inside and outside 
points independently. They show that the points can be divided into the two sets 
in such a way, that the number of outside points is at most 2° ( fc/£), for the inside 
points the iterated tour partitioning heuristic gives a solution with a near-optimal 
cost, and the increase in cost due to solving the problems for the outside and inside 
points separately is small. As the number of outside points is small, they find an 
optimal solution for them using an exponential-time algorithm. For the inside points 
they use the iterated tour partitioning heuristic. The algorithm finds a (1 +  e)- 
approximate solution for the two-dimensional Euclidean CVRP problem in time 
22° (fc/£) +  0 (n logn ), where n =  \P U {o}|, giving a PTAS for k =  o(loglogn).

Asano et al. [15] substantially improved the above result by designing a 
PTAS for k =  0 (logn /loglogn ). As in [52], they divide the set of points P  into 
inside and outside points, depending on their distance from the origin. They want 
to keep the same properties for the set of inside points, i.e. that the iterated tour 
partitioning heuristic finds for it a solution with a near-optimal cost. However, to 
decrease the number of outside points to 0 (k 2/e2), they have to give up solving the 
outside and inside problems separately. Instead, they consider outer tours, which 
cover outside points together with some inside points. The remaining inside points 
are then covered using the iterated tour partitioning heuristic. They show that 
a nearly optimal solution using 0(k/e2) outer tours gives a (1 +  ̂ -approximation to 
the CVRP problem. The algorithm finding such a solution is based on the Arora’s 
scheme for geometric optimization problems [10]. The difference is that as the outer 
tours cover only 0 (k 2/e2) points, the size of the grid in the randomized dissection 
depends only on k and £, and not on n. As the cost of an optimal solution for
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the set of inner points not included irf the outer tours can be approximated well 
by knowing the sum of their distances from the origin, the dynamic programming 
as in Arora’s scheme can be used to find a nearly optimal solution with 0(fc/e2) 
outer tours. The running time is (k/e)° ( fe/e3) +  0 ( n log n), which is polynomial for 
k =  0 (log n j  log log n ).

Asano et al. [15] also observed that Arora’s [10] or Mitchell’s [69] PTAS for 
the two-dimensional Euclidean TSP implies a PTAS for the corresponding CVRP 
problem for k =  0 (n).

There has not been any significant progress since the paper by Asano et 
al. [15] until recently, when Das and Mathieu [42] showed a quasi-polynomial time 
approximation scheme for the two-dimensional Euclidean CVRP for every k. Their 
algorithm combines the approach developed by Arora [10] for Euclidean TSP with 
some new ideas to deal with CVRP (in particular, how to handle a large number 
of possible values of the lengths of the subtours arising in the subproblems of the 
original CVRP), and gives a (1 + ^-approximation for the two-dimensional Euclidean 
CVRP in time nloe°(1/e)n.

M ultiple depot capacitated vehicle routing problem . Li and Simchi-Levi [65] 
consider the MDCVRP problem in the metric setting. They present constant factor 
approximation algorithms for both the MDCVRP problem and the MDCVRP prob­
lem with non-fixed return. They show that the MDCVRP problem with non-fixed 
return can be approximated by reducing it to the CVRP problem. The reduction 
works as follows. Let I  =  (P , O , S) be an instance of the MDCVRP problem with 
non-fixed return. We modify I  to create an instance I' of the CVRP problem. To 
do it, we merge the set of depots O into a single depot o, and set the distance be­
tween each point p G P  and the depot o as the minimum distance between p and 
a depot. The distance function in the modified problem instance might not satisfy 
the triangle inequality. To fix this, we substitute the distance between each pair 
of points by the shortest path distance. An approximate solution S' for I' can be 
found e.g. using the iterated tour partitioning heuristic. Each edge in the solution 
S' corresponds to a path in I  of the same length, where all the intermediate points 
on the path are the depots. We transform S' into a solution S for I  by changing the 
edges of S' into paths in I  and deleting the edges between the depots. The cost of 
S' is the same as the cost of S. As the optimal solutions for I  and I' have the same 
cost, the above algorithm for the MDCVRP problem with non-fixed return has the 
same approximation ratio as the algorithm for the metric CVRP, i.e. 2.5. Notice 
that if we perform the above reduction for an Euclidean instance of the problem, the
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instance of the CVRP problem obtained will be metric but not Euclidean, and the 
obtained approximation ratio of the Euclidean MDCVRP problem with non-fixed 
return is also 2.5.

Li and Simchi-Levi [65] present also a constant factor approximation algo­
rithm for the MDCVRP problem. The algorithm first finds an approximate solution 
to the MDCVRP problem with non-fixed return for the same problem instance, us­
ing the algorithm described above. Then the solution is modified by transforming 
each path between a pair of depots into a tour, i.e. a path starting and ending in the 
same depot. It can be shown that the increase in cost caused by the modification is 
not too large, and the approximation ratio of the algorithm is 4.

As MDCVRP is an extension of the capacitated vehicle routing problem, its 
metric version is APX-complete.

In [31] Cardon et al. show that both the PTAS by Haimovich and Rinnooy 
Kan [52] and the PTAS by Asano et al. [15] for the two-dimensional Euclidean ver­
sion of CVRP can be extended to work for the two-dimensional Euclidean MDCVRP 
problem and for the two-dimensional Euclidean MDCVRP problem with non-fixed 
return when the number of depots is small. The algorithm which is an extension of 
the result from [15] works as follows. The points from P  are divided into outside 
and inside points depending on their distance to the nearest depot. The number of 
outside points is 0 (k 2m2/e2), where m is the number of depots. The inner points are 
grouped into m sets according to their closest depot. The near-optimal
solution consists of the outer tours covering outside points together with some inside 
points and found by a modification of the Arora’s scheme (similarly as in [15]), and 
of independent approximate solutions for the inner points from each set Pi which 
were not covered by the outer tours. The algorithm finds a (1 +  e)-approximate 
solution in time (km /£ )° ( fc3m2/e2), which is polynomial for small k and m, i.e. when 
k3 • m2 =  0 (log n / log log n).

In [41] Das extends the QPTAS from [42] to work for the constant-dimensional 
Euclidean MDCVRP problem. The running time of the algorithm is nlog° (1/£) n.

Capacitated location  routing problem . The location routing problem is a gen­
eralization of the vehicle routing problem, where the costs of opening the depots 
(called also facilities) are considered together with the costs of the routes of the ve­
hicles. Different versions of the problem have been widely studied for over 40 years 
and the overview of the results can be found e.g. in [71].

The capacitated location routing problem is an important special case of 
the general location routing problem. It contains as a special case the multiple
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depot vehicle routing problem, when the costs of opening all depots are 0, and the 
uncapacitated facility location problem, when the vehicles have capacity k =  1.

The uncapacitated facility location problem has been extensively studied. 
Hochbaum [56] presented a greedy O(logn) approximation algorithm for the general 
(i.e. not restricted to metric distances) version of the problem. Shmoys, Tardos and 
Aardal [79] gave the first constant factor approximation algorithm for the metric 
version of the problem, with a constant 3.16. In a series of results [50; 36; 33; 59; 
81; 67; 29] the constant has been improved and currently the best result is 1.488- 
approximation by Shi Li [66]. On the negative side, there is a lower bound of 1.463 on 
the approximation factor for the metric uncapacitated facility location problem (see 
[85], Section 4.4). The two-dimensional Euclidean uncapacitated facility location 
problem admits a polynomial time approximation scheme [12].

Harks et al. [53] present a constant factor approximation algorithm for the 
CLRP problem, which achieves 4.38 approximation ratio in the metric case and 
(4 +  e) approximation ratio in the two-dimensional Euclidean case. They construct 
two lower bounds on the cost of an optimal solution. One is the cost of the optimal 
UFL solution for the same problem instance, with the costs of all the edges scaled 
down by a factor depending on k. The other is the cost of a minimum spanning tree of 
a graph on the set of the input points with weights representing the distances between 
the points, where the possible depot locations O are connected with edges of length 
0, and the other edges going out from O have an increased cost, incorporating the 
cost of opening the depots. Then the solution is constructed from an approximate 
solution to the above UFL problem and from the MST of the above graph: the 
tree is split into subtrees, which are then transformed into tours and connected to 
the depots opened by the UFL solution or by the spanning tree. The algorithm is 
described in more detail in Section 2.2. The difference in the approximation ratio for 
the metric and two-dimensional Euclidean case comes from the accuracy with which 
we can approximate the UFL problem.

2.1 .2  Overview of the New  Results

In Section 2.3 we present a quasi-polynomial time approximation scheme for the two- 
dimensional Euclidean capacitated location routing problem and the two-dimensional 
Euclidean capacitated location routing problem with non-fixed return. The MD- 
CVRP problem is a special case of the CLRP problem, so that gives a QPTAS for 
the two-dimensional Euclidean MDCVRP problem and MDCVRP problem with non- 
fixed return. The algorithm is a modification of the QPTAS for the two-dimensional 
Euclidean capacitated vehicle routing problem by Das and Mathieu [42].
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In Section 2.4 we first present a polynomial time approximation scheme for 
the two-dimensional Euclidean capacitated vehicle routing problem for k <  2log°(1)n. 
The PTAS relies on a reduction of an instance of CVRP with a set of n points to 
an instance or a small number of independent instances of the problem with a small 
number of points. The first reduction takes any instance of CVRP on n points and 
reduces it to an instance of the problem with (k/e)°^  • 0(log2n) points. Then 
we present a refinement, where the instance of CVRP is reduced to a small set of 
instances of CVRP, each with (k/e) ° ^  points. These results, when combined with 
the QPTAS due to Das and Mathieu [42], give the aforementioned PTAS. This part 
is based on joint work with Artur Czumaj and Andrzej Lingas [5].

At the end of Section 2.4 we present modifications needed to obtain a PTAS 
for the two-dimensional Euclidean capacitated location routing problem and the two- 
dimensional Euclidean capacitated location routing problem with non-fixed return 
for fc, |0| < 2log°(1)n. In this part we use the results from Section 2.3.

2.2 Bounds on the Cost of an Optimal Solution and Con­
stant Factor Approximation Algorithms

In this Section we present some simple bounds on the cost of optimal solutions for 
the metric versions of the CVRP, MDCVRP and CLRP problems. We also present 
constant factor approximation algorithms for these problems.

N otation . For an instance I  of the CVRP, MDCVRP or CLRP problem, OPT(I)  
is the cost of an optimal solution for I. When the instance is clear from the context, 
we write O PT  instead of OPT(I).  For a solution S for an instance of the CVRP, 
MDCVRP or CLRP problem, we define C(S ) to be the cost of S. For a set P  of 
points, TSP(P)  is the length of the shortest tour through all the points from P. For 
a graph G, MST(G)  denotes the cost of a minimum spanning tree of G.

The distance between a pair of points p and q is denoted by 6(p,q). For the 
CVRP problem we set r(p) =  6(p,o), i.e. the distance between p and the origin o. 
For a point p and a set of points Q we denote by S(p, Q) the distance between p and 
the set Q, i.e. S(p,Q) =  min{S(p,q) : q € Q}.  For two sets of points P  and Q the 
distance between the sets 5(P,Q)  is the minimum distance between the points from 
the sets, i.e. S(P, Q ) =  min{<5(p, q) :p  € P,q € Q}.

We set: np =  |P|,no =  |0|, n =  np +  no  (in the case of MDCVRP and 
CLRP) and n =  np +  1 for CVRP.
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Capacitated vehicle routing problem . The following simple lower bound plays 
a very important role in the previous approaches to the CVRP problem, see [15, 
Proposition 2] and [52, Lemma 1].

Lem m a 2.1. For an instance I  =  (P,o,8 ) of the metric CVRP problem

OPT(I) > i ] T r ( p )  .
peP

Proof. Let T  be a tour from an optimal solution for 7, and p € P  any point on 
T. We have |T| > 2 • r(p). As the tour visits at most k points from P,  we get 
|T| > | • Ylper r (p)- Summing up over all tours from the optimal solution gives the 
desired inequality. □

Here is another simple lower bound from [52, Lemma 1].

Lem m a 2.2. For an instance I  =  (P, o, 5) of the metric CVRP problem

OPT(I)  > T S P (P  U {o })  .

Proof. A set of tours from an optimal solution for 7 can be transformed into a single 
tour by shortcutting (see Figure 2.1). □

Figure 2.1: Shortcutting the solution for the CVRP problem to obtain a traveling 
salesman tour.

The iterated tour partitioning heuristic [52] can be implemented as follows. 
We find a near-optimal TSP tour T  for the set of points P  U {o }. Then for any 
i € { 1 , . . . ,  k} we transform the tour T  into a solution Si to the CVRP problem in 
the following way. We split the tour into paths by removing every fc-th edge of the 
tour, starting with the ¿-th edge. We then add the edges connecting the endpoints
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of each path with the origin o (see Figure 2.2). We output the least expensive of the 
solutions S%. .

Figure 2.2: Transforming a TSP tour into a solution Si to the CVRP problem in the 
iterated tour partitioning heuristic. Here k =  3 and i =  3.

Lem m a 2.3. The cost of the solution to the CVRP problem output by the iterated 
tour partitioning heuristic is at most

where T  is the TSP tour used by the heuristic.
The iterated tour partitioning heuristic is an (1 + a)-approximation algorithm 

for the CVRP problem, where a is the approximation ratio of the algorithm used for 
solving the TSP problem.

Proof. Each edge of the tour T  is present in exactly k — 1 of the k solutions Si, as 
an Ath edge of the tour is removed from the solution Si if and only if t =  ¿(mod k) 
and i G { 1 , . . . ,  k}. An edge between a point p € P  and the origin o is added in two 
of these solutions —  when one of the edges incident with p on the tour T  has been 
removed. Therefore

¿|S i|  = ( i  —l)| T | + 2^ r(p ) .
¿=1 p&P

The least expensive of the solutions Si has cost at most (1 — |)|T| +  | J2pepr(p).
We take as T  an »-approximate solution for the TSP problem on. P  U {o}. 

The cost of the obtained solution for the capacitated vehicle routing problem is at 
most Q 'T 5 P ( P U { o}) +  f  YjpeP r (p)- Fro™ Lemma 2.1 and Lemma 2.2 we get that 
it is at most (1 +  a) • OPT.  □

C apacitated location  routing problem . Similar lower bounds as for the capac­
itated vehicle routing problem can be shown for the metric version of the CLRP
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problem.
We can show a lower bound on the cost of a solution for the CLRP problem 

based on the set of depots opened by the solution.

Lem m a 2.4. Let S =  (D , T) be a solution for an instance I  =  (P, 0 , 8,4i) of the 
metric CLRP problem. Then

peP

Proof. Let T  e T  and p be a point on T. As T  visits some point from D, we 
have |T| >  28(p,D). A tour can visit at most k points from P,  and therefore |T| > 
| YlpeT (̂P> D). Summing up over all tours from T  we get |T| > | Y2pep 8{p, D). □

The following two lower bounds on the cost of a CLRP solution have been 
shown in [53].

Lem m a 2.5. Let I  =  (P , O, 8, 4>) be an instance of the metric CLRP problem, and I' 
an instance of the UFL problem, with the same sets of points P  and O, the same cost 
function 4> and with the distance function S' defined as: 8'(p,o) =  |<5(p, 0) Vpep)OGo • 

The cost of an optimal solution for I' is not greater than OPT(L).

Proof. Let S =  (D , T ) be an optimal solution to the instance I  of the CLRP problem. 
Let S’ be a solution for I 1, in which the set of opened facilities is D.

Prom Lemma 2.4 we obtain that the cost of the tours in S is not smaller than 
I YlpeP (̂Pi D) =  YhpeP ^(P) which is the cost of the edges in S'. The total cost 
of S is at least as large as the cost of S'. □

Lem m a 2.6. Let I  =  (P , O, S, 4>) be an instance of the metric CLRP problem. Let 
G be a weighted complete graph on P  1)0 ,  where the weights of the edges represent 
the distances 8 between the pairs of points, with the weights within O set to 0, and 
the weights of the edges between each pair of points o G O and p G P  increased by 
\4>{o).

The cost of the minimum spanning tree for G is not greater than OPT(I).

Proof. Let 5  =  (D , T ) be an optimal solution for I. We will construct a spanning 
tree of G  with a small cost. First we create an arbitrary spanning tree of the set O, 
which has cost 0. Then for each d € D  we take the set of tours from T  starting in 
d and transform them into a path visiting the same set of vertices, by shortcutting 
the set of tours into one tour and then removing one of the edges of the tour incident 
with d (see Figure 2.3). The cost of the path Td in G can be greater than the cost
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(in I) of the corresponding tours from T  by at most \()>{d), as the path contains one 
edge incident with the depot d.

Figure 2.3: Transforming a solution for the CLRP problem (for k =  3) into a span­
ning tree of G (Lemma 2.6). The points from the sets P  and O are denoted by black 
and grey dots respectively. The grey edges have cost 0 in G. The bold edges have 
cost increased by \4>(o). Notice that only 3 out of the 4 depots have been opened 
by the CLRP solution.

A collection of paths for d G D, together with the spanning tree of O, 
gives a spanning tree of G. The cost of the spanning tree is at most  ̂YldeD +  
Z r e T  m  <  OPT(I).  □

We now present the constant factor approximation algorithm for the metric 
CLRP problem by Harks et al. [53]. Let I  =  (P,0,S,4i) be an instance of the 
CLRP problem. Let I' be an instance of the UFL problem as in Lemma 2.5, i.e. 
I' =  (P, O, 8', 4>), where the distance function 8' is defined as: Vpepi0eo  8'(p,o) =  
|<5(p, o). Let S' be a solution for I', and let D\ C O be the set of depots opened by 
S'.

Let G be a graph as in Lemma 2.6, i.e. a weighted complete graph o n P u O ,  
where the weights of the edges represent the distances 8 between the pairs of points, 
with the weights within O set to 0, and the lengths of the edges between each pair of 
points o € O and p € P  increased by \<t>{o). We find a minimum spanning tree T  of 
G and set D? to be the set of vertices from O which are incident in T  with a vertex 
from P.

In a solution to the CLRP problem we open the depots D =  D iU  D 2. We 
create the tours in the following way. As T  is a minimum spanning tree of G, after 
removing the edges within O and then the trees consisting only of single points o G O, 
it becomes a forest covering P  U D 2, where each connected component contains one 
point d € D2. We divide each tree into subtrees in such a way, that each subtree 
has at least | and at most k points from P  (except the subtree containing d, which
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can be smaller). Some of the subtrees might share a vertex, but they do not share 
an edge. We transform each subtree into a tour visiting the nearest depot from D.

That gives a feasible solution to the instance of the CLRP problem with cost 
at most 2C(S') +  2|T| (or, if we want to be more precise, at most YhdtDx 0(^) +  2 • 

€p ¿'(p, Z?i) +  2|T|). Lemma 2.5 and Lemma 2.6 give bounds on the values of 
C(S') and |T|. Using a bifactor approximation algorithm to the UFL problem by 
Byrka and Aardal [29], which provides separate approximation ratios for the cost 
of opening the facilities and connecting the clients, to find the solution S' for UFL 
guarantees a 4.38 approximation ratio for the metric CLRP problem. Using a (1 +  e) 
approximation algorithm for the two-dimensional Euclidean UFL by Arora et al. [12] 
gives a (4 +  s) approximation guarantee for the two-dimensional Euclidean CLRP 
problem.

M ultiple depot capacitated vehicle routing problem . The results for the 
capacitated location routing problem can be simplified for MDCVRP, by setting 
4>{o) =  0 for each o G O. Then the optimal solution for the UFL problem opens the 
facilities in all possible locations. Frpm Lemma 2.5 and Lemma 2.6 we instantly get 
the following results.

Lem m a 2.7. For an instance I  =  (P , O , 8) of the metric MDCVRP problem

O P T ( / ) > | ^ i ( p ,0 )  .
peP

Lem m a 2.8. Let I  =  (P , O, 8) be an instance of the metric MDCVRP problem. Let 
G be a weighted complete graph on P U O ,  where the weights represent the distances 
8 between the points, with the distances within O set to 0.

The cost of the minimum spanning tree for G is not greater than OPT(I).

From the approximation algorithm for the CLRP problem we instantly get 
an approximation algorithm for the MDCVRP problem. The UFL problem is solved 
optimally by opening all possible facilities. We get the following result.-

Lem m a 2.9. There is a A-approximation algorithm for the metric MDCVRP prob­
lem. R outputs a solution with cost at most

2 - l j 2 5(P'°) + 2 -MSTW  >
peP

where G is a weighted complete graph on P\JO, in which the weights represent the 
distances 8 between the points, with the distances within O set to 0.
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2.3 A QPTAS for the Two-Dimensional Euclidean Ca­
pacitated Location Routing Problem

In this section we present a quasi-polynomial time approximation scheme for the 
two-dimensional Euclidean capacitated location routing problem. The algorithm is 
based on the QPTAS for the two-dimensional Euclidean capacitated vehicle routing 
problem by Das and Mathieu [42]. At the end of the analysis we describe the changes 
needed to obtain a QPTAS for the two-dimensional Euclidean CLRP problem with 
non-fixed return.

We want to prove the following result.

Theorem  2.10. There is a randomized quasi-polynomial time approximation scheme 
for the two-dimensional Euclidean capacitated location routing problem. For any 
e >  0 the algorithm finds a solution with expected cost at most (1 +  e)OPT in time
n log°(1/£)n_

In this part, by CLRP we denote the two-dimensional Euclidean CLRP prob­
lem, unless stated otherwise.

Note that we can assume 1/e =  O(logn), as otherwise a simple exponential 
time algorithm finds an optimal solution in time nn =  nlog° (1/E) n.

Idea o f  the algorithm . We use Arora’s scheme for geometric optimization prob­
lems [10]. We first shift the input points onto a grid of polynomial size and per­
form a randomized dissection of the square containing the input points into smaller 
squares, until we obtain unit squares containing at most one input point each, or 
more than one point, but all of them in the same position. We then introduce portals 
on the boundaries of the squares and consider only solutions, in which the tours cross 
the boundaries of the squares only in portals, and in which a tour does not cross a 
boundary of a single square too many times. We show that for an appropriate choice 
of parameters, i.e. the size of the grid, the number of portals and the maximum 
number of crossings of the boundaries, we can consider only solutions satisfying the 
above properties, and the cost of an optimal solution can increase only by a factor 
(1 +  0(e)) .  This part is described in detail in Section 2.3.2. We then want to find a 
nearly optimal solution satisfying the above conditions using dynamic programming.

Using. Arora’s scheme, in particular shifting the input points onto a grid of 
polynomial size, requires the cost of the optimal solution to be not too small with 
respect to the maximum distance between a pair of input points. This might not be 
the case for an instance of the CLRP problem, as an optimal solution might consist 
of independent parts situated arbitrarily far from each other. To avoid this problem,
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we first partition the set of input points P U  O into subsets Pi U Oi, for which we 

solve the CLRP problem independently and which satisfy:

• the optimal solution for the original problem instance consists of independent 
solutions for the smaller problem instances,

• for each problem instance defined by Pi U Oi the cost of an optimal solution is 
not too small compared to the maximum distance between any pair of input 
points.

Creating such a partition is a standard step in the approximation schemes for ge­
ometric optimization problems based on Arora’s scheme, where the solution does 
not have to be connected (as for the Steiner forest problem [26]) or does not have to 
contain all the input points (as in the case of fc-TSP and fc-MST [10]). Our approach 
resembles the one by Borradaile et al. [26] and is described in detail in Section 2.3.1. 
To approximate the cost of an optimal solution, we use the constant factor approxi­
mation algorithm by Harks et al. [53], which is described in Section 2.2.

The dynamic program is very similar as for the capacitated vehicle routing 
problem [42]. As we want the algorithm to run in quasi-polynomial time, we can­
not afford to remember the exact number of points from P  visited by each tour 
inside a given dissection square. Instead, we round down the number of points from 
P  visited by a tour to one of the logarithmic number of thresholds, keeping only 
a small number of tours with unrounded number of points. As a result of the dy­
namic program we get a solution with a cost not much greater than the cost of an 
optimal solution, but with tours which visit slightly more than k points from P. The 
dynamic program is described in detail in Section 2.3.3.

The last part of the algorithm, described in Section 2.3.4, deals with the 
excessive points from the tours. We remove the excessive points from the tours 
in such a way, that covering them with additional tours (using a constant factor 
approximation algorithm) does not generate a large cost compared to the cost of 
an optimal solution. That part resembles the idea from [42]. However, the analysis 
has to be modified, as the lower bounds on the cost of an optimal solution for the 
CVRP problem do not hold for the CLRP problem. Instead, we use the lower bounds 
introduced in Section 2.2. In the CLRP problem we have one additional difficulty 
—  we have to deal with the opening costs for the depots. However, we show that we 
can restrict the set of depots used by the additional tours to the ones already opened 
by the solution output by the dynamic program, and still get a small additional cost 
compared to the cost of an optimal solution.
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To simplify the analysis, we present a ( l + 0 ( e ) )  approximation algorithm. To 
obtain a (1 +  e) approximation algorithm it is enough to divide e by an appropriate 
constant.

2.3.1 Dividing into Subproblems

Lem m a 2.11. Let I  =  (P,0,5,(j)) be an instance of the CLRP problem. In poly­
nomial time we can partition the set of input points P  U O into sets Pi U Oi such 
that every optimal solution consists of the disjoint solutions for the problem instances 
Ii =  (Pi, Oi, 8\(piVj0i)2, <j>\Oi), and the cost of an optimal solution for any instance Ii 
is at least (4+e)fpiuO<| > where ti is the side length of the smallest square containing 
all points from Pi U 0*.

Proof Let ap(7) be the cost of the solution found by the (4 +  e) approximation 
algorithm for the CLRP problem ([53], presented in Section 2.2) for the instance I. 
We have

OPT(I)  <  ap ( /)  <  (4 +  e) • OPT(I)  .

If the distance between two input points is more than ap(7), in an optimal solution 
the points have to be in different connected components. We create a graph on 
the vertex set P  U O by connecting each pair of vertices with an edge if the distance 
between them is at most ap(7). We divide the set PUO into subsets, each containing 
vertices from one connected component of the graph, and create a separate problem 
instance 7j =  (Pi, Oi, «^(puo,)2) 0|o,) for each subset Pi U Oj.

As long as the above operation returns more than one problem instance, we 
repeat it with each instance as the input. At some point the operation ends and we 
get a collection of problem instances I\ , . . . , I j ,  representing a partition of the set 
P  U 0  into subsets Pi U Ol. By the construction of the instances Ii we know that 
any optimal solution for 7 consists of disjoint solutions for each 7j. All the points 
from Pi U Oi are contained in a square of length

ti <  |Pi U Oi\ • ap(/<) <  |Pi U Oil • (4 +  e) • OPT(h)  .

That gives the required lower bound on the cost of an optimal solution for each 
instance 7j. □

We divide the original problem instance according to Lemma 2.11. An ex­
ample can be seen in Figure 2.4. We can now assume that all the input points are 
inside a square t  x l  and the cost of an optimal solution is at least •
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Figure 2.4: On the left is an instance of the CLRP problem, where the points from 
the sets P  and O are denoted by black and grey dots respectively. On the right is 
its partition into independent subproblems, as described in Lemma 2.11.

2.3.2  Perturbation, Randomized Dissection and Portals

Perturbation. We show that we can modify the problem instance by moving all 
the input points onto a grid of size polynomial in n. To prove the following lemma 
we will use the result from Lemma 2.11.

Lem m a 2.12. Let I  — (P, 0 ,6 ,4 !>) be an instance of the CLRP problem, and S 
a solution for I. Moving each point from the set P u O  by a distance at most 4(4̂ n2 
changes the cost of S by at most £ • OPT(I).

Proof. In a solution to the CLRP problem each point from P  is visited by exactly 
one tour. Therefore the number of edges in S is at most 2np <  2n. Moving each 
input point by a distance at most 4(4̂ g)n2 changes the length of a single edge by 
at most 2 • 4(4+g)„2, and so it changes the total length of the edges by at most

4n - m k ?  = E • £  £ • 0 W W -  D

Let L be the smallest power of 2 such that |f >  \ye divide the i  x l
square containing all the input points into a grid of ^ x ^ unit squares and move each 
input point to the nearest centre of a unit square (see Figure 2.5). Ties are resolved 
arbitrarily. Notice that multiple points can be moved into the same position.

From Lemma 2.12 we immediately get

Lem m a 2.13. Let I  =  (P,0,8,4>) be an instance of the CLRP problem, and S 
a solution for I . Moving each point from the s e t P u O  to the nearest centre of a unit 
square of the j  x ^ grid changes the cost of S by at most e • OPT(I).

We can now assume that all the input points are in the centres of the grid 
squares of a ^ x ^ grid for L =  0 ( ^ ) .
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Figure 2.5: Perturbation performed on an instance of the CLRP problem. The points 
from the sets P  and O are denoted by black and grey dots respectively. The dashed 
lines represent the grid lines.

R andom ized dissection. We put the f  x ^ grid inside a L x  L grid with a random 
shift —  the grid is shifted horizontally and vertically by a number of unit squares 
chosen independently and uniformly at random from the set {0 ,1 , . . . ,  L — 1}. We 
perform a dissection of the L x L grid —  a recursive partitioning of a square into 
four dissection squares, performed until we obtain the unit squares (see Figure 2.6). 
Here we use the fact that L is a power of 2.

Figure 2.6: Randomized dissection —  a 4 x 4 grid is shifted randomly inside a 8 x 8 
grid; the grid is then recursively divided into unit squares. The width indicates the 
level of the grid lines. The points from the sets P  and O are denoted by black and 
grey dots respectively.

Number of levels of the dissection is log L =  0 (log =  O(logn). A dissec­
tion square has level i if it has been created during the i-th iteration of the dissection. 
The original L x  L square has level 0, and the unit squares have level logL. In a 
similar way we assign levels to the grid lines. A grid line has level i, if it is a bound-' 
ary for level i dissection squares, but not for level i — 1 dissection squares. The 
probability over the random shift in the randomized dissection that a particular grid 
line of the x ^ square becomes a level i line for i =  1 , . . . ,  log L is
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Portals and portal-respecting tours. Let m be the smallest power of 2 such that 
m >  f  • log L. On the boundary of each dissection square we put m +  1 equidistant 
points called portals, in such a way that the corners of the dissection squares are 
covered by the portals. We choose m to be a power of 2 so that the portals of a level 
i dissection square are also portals of the level i +  1 dissection squares contained in 
it. •

A tour is called portal-respecting if it crosses the boundaries between dis­
section squares only in portals. A solution for the CLRP problem is called portal- 
respecting if it consists only of portal-respecting tours. We can transform any solu­
tion to a portal-respecting one as in [10], by creating detours. Instead of crossing a 
boundary of a square outside of the portals, the tour goes along the boundary of the 
square to the nearest portal (see Figure 2.7).

Notice that as the additional part of the tour goes along a boundary of a dis­
section square, it can cross the boundaries of other dissection squares (i.e. the 
squares which are contained in the original square), but only in the corners of the 
squares. Therefore by creating detours we do not introduce any crossings outside of 
the portals.

Figure 2.7: Making a tour portal-respecting. Portals are denoted by light-grey dots. 
Here m =  4.

Light tours. We call a tour r-light if it crosses each side of each dissection square 
at most r times. A solution is r-light if it consists only of r-light tours. We set 
r = M  +  5 =  0 ( I).

We can modify a solution to be r-light using patching, which has been used 
by Karp in the analysis of his dissection heuristic [60], and is made explicit in [10]., 
We use the following lemma.

Lem m a 2.14 (Patching lemma, [10]). Let S be any line segment and T  a tour that 
crosses S at least three times. By adding line segments on S of total length at most
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6 • 151, where |S| denotes the length of the segment S, we can change T  into a tour 
T' that crosses S at most two times.

Any point on S belongs to at most 6 of the added segments.

Proof. Let s i , . . . ,  st (where t >  3) be the points where T  crosses the line segment 
S. We substitute each s* with two points, s} and sf, one at each side of S. We cut 
T  in the places where it crosses S (i.e. we remove the edges s}sf),  so that it falls 
apart into t paths connecting the points {s}, s f , . . . ,  sj, s?}•

We create a graph G on the vertex set . . . ,  sj, s*} in the following
way. We add to G t edges representing the t paths obtained from T. For i — 1,2 
we add to G a TSP tour on {s| ,. . . ,  4 }  (e.g. a cycle 4  — 4  — . . .  — s\ — s\). If t 
is even, we add to G  the edges 4 - i st -i  and s]s^, and a minimum cost matching on 
{ « i , . . . ,  4 -2 }  f°r * — 1)2. If t is odd, we add to G.the edge 4 st> and a minimum 
cost matching on { 4 , . . . ,  4 _ i }  for i =  1,2.

Graph G  is connected and 4-regular. Tour T' is an eulerian cycle on G , which 
crosses S in one or two places, depending on the parity of t. The total length of the 
added segments is at most 6|S| (2|S| for each TSP tour and |S| for each matching). 
Any point on 5  belongs to at most 6 of the added segments. □

The value 6 • |5| in the statement of Lemma 2.14 is not optimal —  it can be 
substituted with 3 • |5|, with a more complicated proof (see [10]).

Let T  be a tour which we want to make r-light. First we modify T  in such 
a way, that it does not cross two grid lines, a horizontal and a vertical one, at once 
at an intersection of a horizontal and a vertical line. For every such crossing we 
decide arbitrarily which of the lines is crossed first. Then, when we consider a level 
j  line and level i >  j  segments of the line, corresponding to the sides of the level i 
dissection squares, each crossing belongs to one segment. Also observe that if a tour 
crosses a segment in the same point at least three times, we can modify it, without 
introducing any new crossings, to reduce the number of crossing in that point to at 
most two.

Now we will present an algorithm from [10] that transforms a tour T  into an 
r-light tour with a small expected increase in |T|. For each dissection level i from 
log L to 1 (we can ignore level 0, as we consider only tours that are contained in the 
bounding box) we perform the following operation. We consider all grid lines of level 
j  < i ,  and all segments of these lines corresponding to the sides of level i dissection 
squares. For each such segment S we check the number of times the tour T  crosses 
S outside of the corner portals. If the number of crossings is more than r — 4, we 
apply patching (Lemma 2.14) for the segment S.
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Notice that adding new segments when applying patching at the z-th level of 
dissection can introduce new crossings, but only at level £ > i lines, in the corner 
portals of the dissection squares. It does not introduce any crossings which could 
have any influence on patching at the levels j  <  i. It also does not destroy the 
property of each level £ >  i segment having at most r — 4 crossings outside the 
corner portals.

We then consider all level logL segments, and check the number of times 
the tour crosses the segment in each of the corner portals. Whenever the number 
of crossings in a portal is at least 3, we reduce it to at most 2. (We do not have 
to consider the level j  <  logL corner portals, as they are also level logL corner 
portals.) After this operation all the tours are r-light.

Light, portal-respecting solutions. Following [42], we introduce a new cost 
function C ', that additionally to the cost C  of the edges and of opening the facilities 
penalizes a solution by ^  for each crossing of a boundary of a level i dissection 
square. We need this technical detail in the proof of Lemma 2.23.

D efinition 2.15. Let I  =  (P, 0 , 5,4>) be an instance of the CLRP problem, and 
S =  (D ,T )  a solution for it. We define the extended cost of S as

log L j.

c ' ( s )  =  £  m + £  m + £  ^ * ( > ) .
deD TeT  i=  1

where tt (i) denotes the number of times the tours from S cross the boundary of level 
i dissection squares.

Notice that the extended cost depends on the random shift in the dissection 
of the input square chosen at the beginning of the algorithm. We can show the 
following result.

Lem m a 2.16. Let S be a solution for an instance of the CLRP problem. Then

E [ C ( S ) \ < ( l + e ) C ( S )  .

Proof. We scale the distances between the points so that the unit squares have sides 
of length 1. Let T  be any tour from S. T  crosses at most 2|T| grid lines. A grid line 
has level i with probability If a grid line has-level i, crossing it means crossing 
a boundary of level log L, log L — 1 , . . . ,  i dissection squares. The expected increase
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in cost of T  is at most

2|T|-

as m > | • logL. Summing up over all tours gives the desired result. □

Following Arora [10], we show that modifying a solution S to be r-light and 
portal-respecting generates, in expectation over the random shift in the randomized 
dissection, only a small cost. We modify the tours in the way described earlier, first 
by making them r-light, and then portal-respecting. We consider the extended cost 
function C'.

Lem m a 2.17. Let S be a solution for an instance of the CLRP problem, and S' an 
r-light solution created from it. Then

Proof. We will show that the expected increase in the extended cost of a single tour 
T  from S is small.. Let t  be a horizontal grid line. We fix the vertical shift in the 
randomized dissection, to fix the level i segments of t  for all the dissection levels i. 
We want to compute the expected increase in the extended cost of T  due to patching 
the segments of £. We scale the distances between the points so that the unit squares 
have sides of length 1.

For each dissection level i we set c(£, i) to be the number of times that patch­
ing would be applied to the segments of t  at the i-th level of dissection, assuming 
that the level of i  is at most i. Let t{£) be the number of times T crosses i. As each 
patching operation decreases the number of crossings on a segment of £ by at least

We now upper bound the additional cost for crossing the boundaries of the 
dissection squares generated by the parts of the tour introduced during patching.

i segment generates additional crossings with level j  >  i lines. A segment of level 
i crosses 2-7-1-1 lines of level j  for i <  j  <  log L. From Lemma 2.14 each line is 
crossed at most 6 times. The additional cost generated by one patching operation 
at level i is at most

£[C"(S')] < C'(S) +  e • C(S ) .

r -  5, we have c(£,i) <

Crossing a grid line of level j  generates cost <  • Patching a level

,7=1+1

log L

E 21
6L 6Llo§ 

m2* ~ m2’
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as m >  | • log L.
The length of a level i segment is and from Lemma 2.14 we get that 

patching a level i segment increases the length of a tour by at most 6 • Probability 
that a line has level at most * is The expected increase in the extended cost of 
T  due to patching the segments of £ is at most

i=1 1=1

We can perform the same computation for vertical grid lines. As the unit 
squares have sides of length 1, we have Yli- -grid line <(0 <  2IT I> we Set that the 
expected increase in the extended cost of S due to making a tour T  r-light is at 
most

We now transform the r-light solution into a portal-respecting one by creating 
detours, as described earlier. The detours can create crossings in the corner portals of 
the dissection squares. In each corner we can then decrease the number of crossings 
to at most 2 without increasing the cost. The resulting solution is both r-light and 
portal-respecting.

Lem m a 2.18. Let S be a solution to the CLRP problem, and S' the r-light solution 
obtained from S using patching. The expected increase in the extended cost of S' 
while making it both r-light and portal-respecting is at most e • C(S).

Proof. All the additional crossings created while making the tours from S r-light 
are in the portals. The only crossings of S' that might be outside of the portals are 
therefore the original crossings of S which have not been removed during patching.

We scale the distances between the points so that the unit squares have sides 
of length 1. Let c(£) be the number of times S crosses a grid line £. If £ has level i, 
the distance between two consecutive portals on £ is and making a detour for 
a single crossing increases the length of the solution by at most

Making a detour at a level i line introduces new crossings, all in the corners 
of level j  >  i +  log m dissection squares, as at the intersection of a level i line with 
a level j  line for i <  j  <  i +  log m there is a portal. For j  >  i +  log m the number 
of lines of level j  between two adjacent portals of a level i line is 2J?_,_logm_1. The

¿—grid line

as r =  y  +  5.
Summing up over all tours T  from S gives the desired result. □
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cost charged for crossing them is

log L

E QÌ—i—logm—1

j=i+logm +l

L
m2?-1

log L

E
j=i+logm +l

log L- L L
m2 2l ~  2 m21 ’

as m >  \ • log L.
As a line l  has level i with probability the expected increase in the 

extended cost of S' is at most

£—grid line ¿=1 ¿—grid line

□

We can now prove the following result.

Theorem  2.19. Let I  =  (P,0,8,(ji) be an instance of the CLRP problem. Let S 
be an r-light, portal-respecting solution for I  minimizing the extended cost function 
C\S). Then

£[C '(S )] <  (1 +  3e) • OPT(I)  .

Proof. Let Si be an optimal solution for I. From Lemma 2.16

E[C'(Si)] <  (1 +  e) ■ C(Si) =  (1 +  e) • OPT(I)  .

Let S2 be an r-light solution obtained from Si using patching. From Lemma 2.17

£[C"(S2)] <  E[C"(Si)] +  e • C(Si)  <  (1 +  2e) • OPT(I)  .

Let S3 be an r-light portal-respecting solution created from S2 using detours. From 
Lemma 2.18

£[C"(S3)] <  E[C'{S2)} +  e • C (SX) <  (1 +  3e) • OPT(I)  .

We instantly get the theorem. □

In the following part we consider only tours that are r-light and portal- 
respecting, and use the extended cost function C' instead of C.
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2.3.3  Dynamic Program with a (Slightly) Infeasible Output

We want to find a (nearly) optimal r-light, portal-respecting solution using dynamic 
programming. To compute the cost we use the extended cost function C'. As 
we want the algorithm to run in quasi-polynomial time, we cannot remember the 
exact number of points on each tour in the dynamic programming tables. Instead, 
we define a set of thresholds, and at each level of dissection we round down the 
remembered number of points visited by each tour within a dissection square to the 
nearest threshold value, remembering the unrounded number of points only for a 
small number of tours.

The output generated by the dynamic program will not be a feasible solution 
—  because of the rounding it can have tours visiting more than k points from the 
set P. However, the set of thresholds is chosen in such a way, that the number of 
excessive points in a tour cannot be large. The extended cost of a solution generated 
by the dynamic program is not greater than the cost of an optimal, with respect 
to the extended cost function C' , feasible r-light, portal-respecting solution, and 
from Theorem 2.19 we get that the expected cost of such a solution is at most 
(1 +  3e) • OPT.

We define the set X  of thresholds in [1, k] in the following way.

The number of thresholds equals

m  = i + \ + Liog1+t/1„g„(te)j -  o  ( 1+log(f )logn)  .

Later we will have to transform the solution output by the dynamic program 
into a feasible solution. That will require removing the excessive points from the 
tours, and covering them by newly created tours. The operation is described in 
detail in Section 2.3.4. As we want the cost of the additional tours to be small, we 
want to have either no excessive points in a dissection square, or have many of them 
at once. Therefore we only round the remembered number of points visited by the 
tours inside a given dissection square in large groups.

We set 7 =  [ lô  n ]. In each dissection square we will keep the unrounded . 
information about at most 7 tours. Whenever the number of unrounded tours ex­
ceeds 7 , we will round down the remembered number of points for all the tours to 
the closest value in X.
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Now we are ready to describe the dynamic program.

Interface o f  a dissection square. The interface of each dissection square consists 
of the information about all the tours visiting the square. Each tour can contain 
at most 2r paths (i.e. fragments of tours, starting and ending in the portals) from 
a given dissection square, as it crosses each side of the square at most r times.

In a dissection square there are at most 7 unrounded tours. For each of 
them we remember the number of points from P  visited by the tour, the pairs of 
portals where the tour enters and leaves the square, plus the information whether 
the tour visits an open depot within the square. The number of possibilities is 
(k-mr)°W = n O (i°g"A )0(1).

For a set of at most 2r pairs of portals and a threshold x  € X  there can be 
some rounded tours entering and leaving the square in the given portals, visiting the 
given number of points from P  (after rounding) and passing, or not passing, through 
an open depot. In each square we can therefore have t =  m ° ^  • \X\ =  log0 ^ £) n 
different types of rounded tours.

A solution to the CLRP problem consists of at most n tours. Each rounded 
tour can have one of the t types. The interface consists of the information about the 
unrounded tours, and the number of rounded tours of each type. The number of pos­
sible interfaces is n0 (logn/£)0( } • nlog° (1/£)n =  nlog° (1/e)n, which is quasi-polynomial 
in n.

Com puting the solution: leaves. For each unit square and an interface we check 
if the interface is feasible for the given square and if so, compute the minimum cost 
of a solution satisfying it. All the points from P l l O  that are inside the square are 
in the same position —  in the centre of the square.

We check the feasibility of an interface in the following way. From the inter­
face we reconstruct the number of tours of each type inside the dissection square. 
If some tour from the interface requires an open depot, we check if there is a point 
from O in the unit square. We then check if the number of points from P  visited by 
the tours equals the number of points from P  in the square (possibly after rounding; 
if the rounding took place, we check that at least 7 tours have been rounded and 
that there are no unrounded tours left).

If the interface is feasible, we compute its cost. If some tour from the interface - 
requires an open depot, we open the least expensive depot available. Otherwise, we 
do not open any depot inside the square. We then compute the cost of all tours, 
where the tours visiting at least one point from P u O  have one path passing through
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the centre of the square, and all the other paths are intervals connecting the portals. 
At this stage we do not add the cost for crossing the boundaries of the dissection 
squares.

The total time of computing the feasibility and the costs of the interfaces of 
the unit squares is nlog° (1/£)n, which is quasi-polynomial in n.

C om puting the solution: non-leaves. For each dissection level i <  log L and all
dissection squares of level i we do the following operation. We take all combinations 
of feasible interfaces of the four level i +  1 dissection squares contained in the level 
i square, and check which interfaces of the level i square can be obtained from 
them. For each interface we remember the cost of the cheapest solution yielding 
that interface.

From each of the level i + 1  interfaces we get information about the tours vis­
iting it —  the number of rounded tours with each of the t types, and the information 
about the at most 7 unrounded tours. A tour in a level i square is obtained from at 
most four parts, each from a different level i +  1 square. The number of possibilities 
for obtaining a tour is therefore at most (t +  7)4 =  log0 1̂/ 1̂  n.

As each tour can have at most 2r paths in a level i +  1 dissection square, 
there are at most r ° ^  — ( i ) 0 !1/ )̂ possibilities of putting them together to obtain 
a level i tour. Such tour can consist of at most 2r paths, or be a complete tour 
within the level i square. We consider each possibility and check if the endpoints 
of the consecutive parts of a path or tour are in the same portal and whether all 
complete tours contain an open depot. We also check that all tours are r-light, and 
that the number of points visited by them does not exceed k.

As there are at most (t +  7)4 • r ° ^  =  log°^1//£̂  n possible tour types at level 
i, they can generate at most nl0g°(1/e)n interfaces of the level i square. We check 
which of these interfaces can be obtained, possibly after rounding all the tours.

The cost of a level i interface equals the sum of the costs of the level * +  1 
interfaces from which it has been created, plus the cost of crossing the boundaries 
of the level i +  1, i +  2 , . . . ,  log L dissection squares in the level * +  1 portals.

For each dissection square the operation takes time nl0eo<1/£) which is quasi­
polynomial in n.

O utput o f  the dynam ic program . The algorithm outputs the least expensive 
solution for the L x L square with an empty interface. The solution consists of 
r-light, portal-respecting tours covering all the points from P  and containing open 
depots, but might be infeasible, as the tours can contain more than k points from P.
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The running time of the algorithm is nlog° (1/e) n, which is quasi-polynomial
in n.

Lem m a 2.20. Let I  =  (P , 0 , 5, <f>) be an instance of the CLRP problem, and S a 
solution output for I  by the dynamic program. Then

E[C'(S)] <  (1 +  3e) • OPT(I)  .

Proof. Let Smin be an r-light, portal-respecting feasible solution for I  minimizing 
the extended cost function C '. From Theorem 2.19 we get that E[C'(Smin)} < 
(1 +  3e) • OPT(I).

We will show that C'(S) <  C'{Smin). For each dissection square there is an 
interface corresponding to the solution Smin. As Smin is a feasible r-light solution 
satisfying that interface, for each dissection square the dynamic program finds a 
(possibly slightly infeasible) solution for the given interface. The cost of the dynamic 
program solution is not greater than the cost of Smin on each dissection square. The 
dynamic program finds a solution for the L x  L square with an empty interface with 
an extended cost not greater than C'{Smin). We get that E[C'(S)] <  E[C'{Smin)\ <  
(1 +  3e) • OPT{I).  □

Lem m a 2.21. Each tour from a solution output by the dynamic program visits at 
most (1 +  0(e ) )k  points from P.

Proof. At each of the log L =  O(logn) dissection levels the remembered number of 
points in a tour can be rounded down, but at most by a fraction. The total 
number of points in the tour is therefore not greater than

/  _ \ 0 (logn)
= * * ° ( ! ) = * ( i + o (£)) .

□

2 .3 .4  Repairing the Solution

As a result of running the dynamic program from Section 2.3.3, we get a solution 
where each tour visits at most (1 +  0(e))k  points from P. We have to transform it 
into a feasible solution.

We do it by removing excessive points from the tours. We remove an ap­
propriate number of points from the tours, for which the dynamic program rounded 
down the remembered number of points. Then, using a constant factor approxima­
tion algorithm, we construct additional tours covering the removed points.
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We have to ensure that the expected cost of the additional tours is at most 
0(e )  • OPT.  To show that the removed points can be covered with tours of a small 
cost, we will use the property, that whenever the remembered number of points on 
a tour has been rounded down, it has been done for at least 7 tours from a dissection 
square at once. Here we consider the cost C  of the additional tours, and not the 
extended cost C'.

Choosing the points to  be  rem oved from  the tours. Let S be a solution output 
by the dynamic program. For all unit squares, and then for all other dissection 
squares in the bottom-up fashion, we reconstruct the interfaces of the dissection 
squares for S. Whenever the remembered number of points visited by a tour T  
inside a dissection square T is rounded down by some integer x, we remove x  points 
from the tour T  in T. After performing this operation, the number of points on each 
tour is at most k, and at most an 0(e )  fraction of points have been removed from 
the tours.

We choose the x  points to be removed from T  in the dissection square T as 
follows. We choose a point p € P  uniformly at random from all the points visited 
by T  in T, and we drop x  consecutive points from T  that are within T, starting at 
p. If we encounter the end of T, we continue dropping points from the start of the 
tour. See Figure 2.8 for an example.

Figure 2.8: Removing 6 points from a tour T  within a dissection square T. The point 
p has been chosen randomly from all points visited by T  in T, and 6 consecutive points 
have been removed, starting from p. The removed points are represented by large 
grey dots.

Properties o f  the rem oved points. We can show that the following holds. 

Lem m a 2.22. Let I  =  (P, O, S, <j>) be an instance of the CLRP problem, and S =
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(D , T) the dynamic program solution for I. Let R he the set of excessive points 
removed from the tours T . Then

E =  0(e )  • OPT(I)  .

Proof. Let p be an arbitrary point from P. At each level of the dissection p is 
removed from its tour with probability at most As the number of dissection 
levels is O(logn), the probability that p G R  is 0(e) .

As each tour in S visits at most A:(l +  0 ( e ) ) points, from Lemma 2.4 we get 
that C(S) >  (1+o(£))fe SpeP^(Pi -P)- On the other hand, from Lemma 2.20 we get 
that £[C (S)] <  (1 +  3e) • OPT(I).  We get

E - J 2 s(p , e>)
L peR

=  0(e )  ■ E
L peP

<  0(e )  ■ E[C(S)] <  0 (e )  ■ OPT(I)

□

Lem m a 2.23. Let I  =  (P, O, S, <fi) be an instance of the CLRP problem, S =  (D , T) 
the dynamic program solution for I, and R the set of excessive points removed from 
the tours T. Let G be a weighted complete graph on R U  D, where the weights 
represent the distances 5 between the points, with the distances within D set to 0. 
Then

E[MST(G)]  =  0(e )  • OPT(I)  .

Proof. We consider separately points from R  removed from the tours when processing 
dissection squares of different levels. Let i?* C R  be the set of points removed at the 
i-th dissection level.

Let Gi be the subgraph of G induced by Ri U D. A spanning tree of G can be 
constructed from the spanning trees of all Gi. We will show that there is a spanning 
tree of Gi with expected cost 0 ( ^ ^ ) - C ' ( S ) .  As there are O(logn) dissection levels, 
and from Lemma 2.20 we get i?[C', (S')] <  (1 +  3e) • OPT(I),  the lemma follows.

We partition the set Ri into sets Rf, R f , . . . ,  Rf of points from different level 
i dissection squares T l, T?, . . . ,  r f. Each set R\ C Ri contains points from at least 7 
tours, as rounding is always performed for large groups of tours.

We construct a spanning tree of Gi in the following way. For each R\ we 
construct a spanning tree T / of all the points R\. Edges constructed in this part are 
called the inner edges. We then connect the trees T- into a spanning tree of Gi with 
the outer edges. The inner and outer edges create a spanning tree of Gi.
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The inner edges. We want to show that for each level i dissection square 
we can construct a spanning tree of the set of points R\ with a small cost compared to 
the extended cost of the CLRP solution S within F -, which we denote by C'(S, 1^). 
The points in R\ have been removed from at least 7 tours. The points removed from 
a single tour T within have been chosen in such a way, that they were consecutive 
points on T within Tj. They were also at most a fraction of all points from T 
in T\.

We construct a spanning tree of R\ in two steps. First we connect each pair 
of points with an edge, if they were two consecutive points on some tour T. The 
expected length of these edges is at most • C'(S, r j) ,  as each edge from S which 
is inside Tj has been added with probability at most The added edges form
a collection of paths, i.e. a forest, on R\ (see Figure 2.9).

Figure 2.9: Constructing a spanning tree of R\. The points from R\ are denoted by 
large grey dots. The consecutive points removed from the tours are connected into 
paths (black edges in the right figure). Then the connected components are joined 
into a spanning tree of R\ (grey edges).

In the second step we connect the forest into a spanning tree of R\. Let a be 
the number of connected components. We have a > 7 , and we know that S consists 
of fi(a ) paths within T\. We choose one arbitrary point as a representative of each 
connected component and find a minimum spanning tree of these points. To upper 
bound the cost of the added edges we use the following lemma (see e.g. [52]).

Lem m a 2.24 ([45]). Let P be a set of n points lying inside a square of side length 
L. There is a path connecting the points from P of length 0 (L  • \/n).

As the side length of the square T\ is jf, the cost of the edges added in the
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second step is

olL 
2 lm

aL
2im ’

as m =  © (^ f2*) and y/a> y/ 7  =  ©(^fy^).
As for each crossing of a boundary of a level i dissection square the extended 

cost function C' charges and the tours cross the boundary of the dissection 
square f1(a) times, the total cost of the edges added to connect the trees into a
spanning tree of R{ is O ( j ^ )  • C'(S, r j) .

The expected cost of the inner edges at level i is 0 (^ ^ )  ■ C'(S).
The outer edges. We construct a weighted multigraph M  on the sets of 

points {/?), Rf , . . . ,  Rf} U D , where the weights of the edges represent the Euclidean 
distances between the sets of points with the weights within D set to 0.

We add the edges to M  as follows. We consider each tour T from the dynamic 
program solution S and we connect with edges the sets of points from the sets 
{Rf,Rf,  • • •, Rf} U D, which have been visited consecutively by T (see Figure 2.10). 
We also connect each pair of points from D with 7 edges. As in each dissection 
square F? some points from at least 7  different tours have been removed, the resulting 
multigraph M  is 7 -edge-connected. The total weight of the edges of M  is not greater 
than C(S).

T rf

Figure 2.10: Constructing a multigraph M. The left figure shows a tour T\ the 
fragments where points have been removed from T (i.e. the fragments where T 
visited points from the sets R\) are denoted with a thick grey line. In the right 
figure are the edges of the multigraph constructed from T. Note that the weight of 
these edges is not greater than |T|.

We will show an upper bound on the cost of a minimum spanning tree of M. 
We will use the following theorem by Tutte [83] and Nash-Williams [72],
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Theorem  2.25 ([83; 72]). A multigraph M  =  (V,E) contains m edge-disjoint span­
ning trees if and only if every partition of the vertex set V  into sets Vi, V2, . . . ,  Ve 
contains at least m • (i  — 1) cross-edges.

Lem m a 2.26. Let a >  2 and let M  be an a-edge-connected weighted multigraph 
with total weight w(M). Then the weight of the minimum spanning tree of M  is 
0 ( ^ 1).

Proof. Let M  =  (V, E), and let Vi, V2, . . . ,  Ve an arbitrary partition of V. Each set 
Vi has at least a  outgoing edges, so the number of cross-edges is at least ^  \i.
From Theorem 2.25 M  has [|J edge-disjoint spanning trees. One of these spanning 
trees has weight 0 ( w^ ). • □

From Lemma 2.26 we get that the weight of the minimum spanning tree of 
M  is 0 ( 2 ® )  =  0 ( ^ )  ■ C(S).

From the minimum spanning tree T  of M  we generate the set of outer edges 
of Gi. For each pair of sets Rj and Rj , if there is an edge in T  connecting Rj and 
Rj , we create an edge in Gi between the closest pair of points from Rj and R j . 
We do the same for edges between a set Rj and d, and the edges between d and d! 
for d, d' £ D. The set of outer edges has the same cost as the tree T, and the inner 
edges together with the outer edges create a spanning tree of Gi with expected cost

0 ( s f e ) - c W  D

Covering the rem oved points w ith additional tours. We cover the set 
of removed points R  with tours starting in the set of already opened depots D. That 
lets us avoid the cost for opening new facilities. To find a set of tours covering R, 
we use a constant factor approximation algorithm for the multiple depot capacitated 
vehicle routing problem (see Section 2.2), giving as the input the set of customers R 
and the set of depots D.

From Lemma 2.9 the cost of the solution S found by the constant factor 
approximation algorithm is at most 2 • | <5(p, D) +  2 • MST(G),  where G is
a weighted complete graph on the set of vertices R\JD, with weights representing the 
distances between the points, with the distances within D  set to 0. From Lemma 2.22 
and Lemma 2.23 the expected cost of S is 0(e )  • OPT.

We get the following result.

Lem m a 2.27. We can transform the solution returned by the dynamic program into 
a feasible solution for the CLRP problem with an additional expected cost 0 ( e ) - 0 P T .

As the dynamic program runs in time nlog° (1/£> n and we can divide e by an 
appropriate constant, Lemma 2.20 and Lemma 2.27 give Theorem 2.10.
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2.3.5  Extension to the C LR P  Problem with Non-Fixed Return

A solution for the CLRP problem is also a solution for the CLRP problem with 
non-fixed return. Moreover, the cost of an optimal solution for the CLRP problem 
with non-fixed return is at least half of the cost of an optimal solution for the 
CLRP problem. Therefore a constant factor approximation algorithm for the CLRP 
problem (see Section 2.2) gives constant approximation for the CLRP problem with 
non-fixed return.

The QPTAS for the CLRP problem with non-fixed return is very similar 
to the QPTAS for the CLRP problem. The dynamic program has to be slightly 
modified, as it has to allow paths which start in an opened depot inside a dissection 
square, and have only one endpoint in a portal. The modification is straightforward. 
The randomized dissection, as well as repairing the solution, are done in the same 
way as for the CLRP problem.

We get the following result

Theorem  2.28. There is a randomized quasi-polynomial time approximation scheme 
for the two-dimensional Euclidean capacitated location routing problem with non- 
fixed return. For any e >  0 the algorithm finds a solution with expected cost at most 
(1 +  e )OPT in time nlog° (1/e)n.

2.4 A PTAS for the Two-Dimensional Euclidean Capaci­
tated Location Routing Problem for Moderately Large 
k and |0|

In this Section we first present an algorithm, which for any e > 0 and k <  2logt(f) n, 
where c(e) is some constant depending on e, gives a (1 +  e)-approximate solution for 
the two-dimensional Euclidean capacitated vehicle routing problem in polynomial 
time. This yields a PTAS for k <  2log°(1)n, and in particular for k =  polylog(n). 
The algorithm is a result of joint work with Artur Czumaj and Andrzej Lingas [5].

In Section 2.4.4 we extend the result to work for the two-dimensional Eu­
clidean capacitated location routing problem, and therefore also for the multiple 
depot capacitated vehicle routing problem, where the number of possible depot lo­
cations |0| < 2logC(e)n. The same result holds for the capacitated location routing 
problem with non-fixed return.

In this section by CVRP we denote the two-dimensional Euclidean CVRP, 
unless stated otherwise. For simplicity of the presentation, we present (1 +  0 (e ))- 
approximation algorithms; reduction to (1 +  e)-approximation is straightforward.
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2.4.1 R e d u c in g  th e  N u m b e r  o f  In pu t P o in ts

We present a reduction that takes as an input any instance of the capacitated vehicle 
routing problem on a set of n points in the Euclidean plane and reduces it to an 
instance of the problem with (k/e)°d) • O(log2 n) points. Our construction uses 
a series of transformations that eliminate most of the input points and reduce the 
input problem instance to one significantly smaller.

Rem oving close points. Let L be the maximum distance from a point in P  to 
the origin o, that is, L =  maxpep r(p). Since OPT > 2L, we can ignore any point 
that is at a distance at most ^  from the origin — we cover each such point p with 
a tour visiting only p and the origin o (see Figure 2.11), generating additional cost 
not greater than n • 2 ^  < e • OPT. Therefore, from now on, we assume that for 
each point p G P  we have r(jp) >

L

Figure 2.11: All points at a distance at most from the origin o (i.e. the points 
within the inner circle) are covered by tours visiting only one point each.

Circles, rays, and locations. Let us create circles around the origin, the ¿-th 
circle Ci with a radius

Ci = for 0 <  i <
rv

togp+e/fc) 7

Let us draw rays from the origin with the angle between any pair of neigh­
boring rays equal to (that is, partition the space into s sectors) with s =
(see Figure 2.12a).

Define a location to be any point on the plane that is the intersection of
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locations

Figure 2.12: The structure of circles, rays, and locations. The point labeled o is the 
origin. Other fat dots represent the points from P. Figure a) presents the original 
position of the points from P. In Figure b) each point from P  has been moved to its 
nearest location.

a circle and a ray. Since

i n lo§ 7  r ^ (k , n \
|oSd+e/t) -  =  log(1 +  £ A ) =  S?J ’

there are 0  (| log(n/e)) circles and 0  (|) rays. Therefore we obtain

Lem m a 2.29. The total number of locations t satisfies t — 0(/c2e~2 log(n/e)).

We can show an upper bound on a distance of any point p G P to its nearest 
location.

Lemma 2.30. The distance between any p G P and a location closest to p is at most 
| -r(p).

Proof. Let p be a point in P. As the distance between p and the origin o is in the 
interval [Le/n, L\, there is an index i such that p lies between the circles Ci and Ci+\. 
The distance between these circles equals Cj+i — Cj =  | • Cj. The distance between 
two consecutive locations at the i-th circle is less than 2nci/s < | -Cj. Therefore the 
distance between p and its nearest location is at most | • Cj <  | • r(p). □

Now, we modify P  by moving each point p G P  to its nearest location (see 
Figure 2.12b). The following Lemma gives an upper bound on the cost of the oper­
ation.
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Lem m a 2.31. Let I  =  (P,o,S) be an instance of the CVRP problem, and S a solu­
tion for it. The operation of moving each point p £ P  to the nearest location changes 
the cost of S by at most e • OPT(I).

Proof. Moving a point p £ P  by a distance at most | • r(p) changes the cost of a 
tour visiting p by at most 2| • r(p). The total change in cost generated by moving 
each point in P  to the nearest location is therefore upper bounded by 2| ’ YlpeP r (p)- 
Lemma 2.1 gives a lower bound of | • ^Zpep r {p) for the cost of a solution for the 
CVRP problem. We get that the total cost of moving all the points is at most 
e ■ OPT(I).  □

Prom a solution S' for the modified instance of the CVRP problem, i.e where 
all points have been moved to their nearest locations, we can easily get a solution S 
for the original version of the problem such that C(S ) <  C(S') +  £ • OPT.  Therefore 
a (1 +  0 (e))-approximate algorithm for the modified version yields a (1 +  0 (e))- 
approximate algorithm for the original version. In the rest of this chapter we consider 
the modified version of the problem, i.e. we assume that all points from P  are 
situated in locations.

Trivial and nontrivial tours. We say that a tour T visits a location £ if T  contains 
at least one point from £. If an edge of a tour T  passes trough a location £, but T  
does not contain any point from £, then T  does not visit l.

We call a tour trivial if it visits only a single location in P; it is nontrivial 
otherwise.

Theorem  2.32. For any instance I  =  (P, o, 5) of the CVRP problem therg is an 
optimal solution with at most t nontrivial tours, where t is the number of locations.

Proof. We say that a sequence of tours T\, T2, . . . ,  Tm (m > 2) forms a cycle if there 
is a set of locations £i ,£2, • • • ,£m,£m+1 =  £\ such that each tour 7) visits locations 
£i and £{+1. Note that the origin o is not considered as a location.

To prove the theorem we need the following

Lem m a 2.33. For any instance I  =  (P, o, 6) of the CVRP problem there is an 
optimal solution with no cycles.

Proof. Let T  be an optimal solution for I  which minimizes the sum over all nontrivial 
tours T £ T  of the number of locations visited by T.

Let us suppose that T  has a cycle, and let Ti ,T2, . . . ,Tm be a cycle with 
a minimum number of tours m. Let l\, £<).,... ,£m be the locations in which the
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consecutive tours meet. Prom the minimality of m we get that both tours and 
locations are pairwise distinct.

Let v(T, £) denote the number of points from a location l  visited by a tour T. 
Let a  =  minie{ li iTn} v(Ti,£i). Now we are ready to swap points between the tours: 
the *-th tour, instead of visiting ) points in the location £i and v(Ti,£i+i)
points in the location £i+i will now visit (v(Ti,£i)—a ) points inf* and (u(Ti,^i+i)+o:) 
points in £i+\. Here £m+i denotes £\.

Observe that the modification does not change the number of points visited 
by each tour. It also does not increase the length of any tour. Therefore, we obtain 
another optimal solution, in which the sum over all nontrivial tours of the number 
of locations visited by the tour is smaller than in T , as each tour T* for which 
v(Ti,£i) =  a  visits one location less than before. This contradicts the minimality of 
the above sum in T.

Therefore the optimal solution T  has no cycles. □

Consider an optimal solution without cycles. Note that the lack of 2-cycles 
means that no two tours visit the same pair of locations. To each nontrivial tour 
we can assign a pair of distinct locations visited by the tour. The chosen pairs are 
in one-to-one correspondence with the nontrivial tours and they induce an acyclic 
undirected graph on the locations.

Hence, we can have at most t — 1 nontrivial tours in an acyclic solution, where 
t is the number of locations. Using Lemma 2.33 we get the theorem. □

R eduction  to  an instance o f  C V R P  with (k/e)0 ^  • 0 (log2n) points. We are 
now ready to prove the following theorem.

Theorem  2.34. Let I  =  (P, o, 5) be an instance of the CVRP problem. We can 
reduce I  to an instance I' =  (P' ,o ,5') of  the CVRP problem, where |P'| <  t2k =  
{k/ e ) °^  • 0 (log2n).

Proof. Theorem 2.32 implies that there is an optimal solution 5  in which at most 
tk points are covered by nontrivial tours. In particular, if the number of points 
in a location £ is greater than tk, S covers some of them with trivial tours. We 
may assume, without loss of generality, that among all trivial tours visiting a given 
location there is at most one that visits less than k points. Moreover, if at least one 
point from some location is visited by a nontrivial tour, we can assume that all trivial 
tours visiting that location contain exactly k elements. Therefore, for each location 
£ containing x  points, we only have to consider at most min{x,:r — k • <  tk
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points for nontrivial tours. After finding a (1 +  e)-approximate solution for the 
reduced case, we add trivial tours covering all the remaining points. That gives us 
a (1 +  e )—approximate solution for the original problem. □

2 .4 .2  P T A S  fo r  the C a p a cita ted  V eh icle  R o u tin g  P ro b le m  w ith  k <
2log°W n

We use Theorem 2.34 to reduce any instance I  =  (P,o,S) of the CVRP problem to 
an instance I' of the CVRP problem with N  <  (k/ e ) °^  • 0 (log2 n) input points. 
For the instance I' we apply the quasi-polynomial time approximation scheme for 
the CVRP problem due to Das and Mathieu [42] (see also Section 2.3, as the CVRP 
problem is a special case of the CLRP problem). The algorithm returns a (1 +  e)- 
approximate solution for I' in time V log° <1/E) N, and we transform it into a (1 +  e)- 
approximate solution for I  by adding trivial tours. The running time of the algorithm 
is polynomial for k <  2logC(£) n for some constant c(e) >  0 depending on e. Hence, 
we have the following theorem.

Theorem  2.35. There is a polynomial time approximation scheme for the two- 
dimensional Euclidean capacitated vehicle routing problem provided thatk <  2Iog°(1) n.

2 .4 .3  R efin em en t: R e d u c t io n  to  (k/e)0 ^  P o in ts

We have demonstrated that the problem of close approximation of the CVRP prob­
lem on an input set of n points in the Euclidean plane reduces to that for a set of 
points of size polynomial in k/e and polylogarithmic in n, situated in the relevant 
locations. In this section, we shall eliminate the polylogarithmic dependency of n 
in the reduction. For small values of k this leads to a faster PTAS. Our approach 
resembles Baker’s method [18] of closely approximating several hard problems on 
planar graphs and the shifting strategy by Hochbaum and Maas [57].

For a given e >  0 we make a clustering of the circles (Cf) into rings of 
[log1+e (6/e )] consecutive circles.

Our result relies on the following separation lemmas.

Lem m a 2.36. Let I  =  (P, o, 5) be an instance of the CVRP problem, where the 
points P  are situated in locations. If we mark an arbitrary set of rings, any solution 
S for I  can be transformed into a solution S' for the points in the unmarked rings 
such that

1. no tour in S' visits two points in P  separated by a marked ring, and 

i . C(S') <  (1 +  f)C (S ).
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Proof. Let T denote a tour, and T a path obtained from it by removing the edges 
of T incident to o. Suppose that F crosses one of the marked rings (i.e. it visits 
points from P  separated by the ring). Let C* be the innermost circle of the ring. 
As a ring consists of [log1+| (6/e )] consecutive circles, and the j-th  ring has radius 

Ci =  "rf ‘ ( l -+ |)\ each minimal fragment of F crossing the aforementioned ring has 
length at least | • c*. We split the path F along the circle Ci whenever T crosses the 
marked ring. Notice that the paths obtained from T do not cross the marked ring. 
We transform the paths into tours by connecting their endpoints with the origin o 
(see Figure 2.13). The total length of the additional edges is 2Cj£, where x is the

Figure 2.13: Splitting a tour T into five smaller tours. The grey area is the marked 
ring. In the left picture dashed lines represent the lines which will be added to the 
solution. The right picture shows the separate tours obtained from the original tour, 
before the short-cutting. The tours visiting the points in the area bounded by the 
marked ring are pictured as solid lines, and the tours visiting the points outside the 
marked ring are pictured with a dashed line.

number of times T crosses the marked ring. The cost of the added edges is therefore 
at most | of the total length of the aforementioned fragments of T.

We can iterate the elimination of the crossings of the smaller resulting tours 
but for their edges incident to o with more marked rings. Note that then other 
disjoint fragments of T will be charged with the increase of the length of the union 
of the resulting smaller tours. Finally, by applying short-cutting, we can drop the 
points in the marked rings from the resulting tours.

We conclude that we can transform S into a solution S' for the points in P 
in the unmarked rings such that no tour in S' crosses a marked ring and C(S') <

(l +  § )C(S).  □

Lem m a 2.37. Let I — (P, o, <5) be an instance of the CVRP problem, where the
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points P are situated in locations. There are integers l < b < a — 0 (e~1) such that 
if we mark each (b + j  ■a)-th ring then the points in the marked rings can be covered 
with tours visiting at most k points each of total length at most |0P T(7) produced 
by the iterated tour partitioning heuristic from [52] (see Section 2.2).

Proof. Let Rj  denote the set of points from P  lying in the j - th ring. Set a to [■ ■  For 
each h S {1 , . . . ,  a}, let Pft be the set of points in P  in the marked rings for the given 
choice of b, i.e. Pi =  Y ĵ=b mod a Rj- We wiU show that there is some b G { 1 , . . . ,  a} 
such that the iterated tour partitioning heuristic using a 2-approximate TSP tour 
generates for the set of input points Pi a solution with cost at most ^OPT(I).

We mark every second ring and we apply almost the same transformation as 
in Lemma 2.36 to an optimal TSP tour T on the set of points P  U {o }, with the 
exception that after cutting a path T into several paths, instead of connecting each 
path by two rays to o, we connect the paths directly to obtain two tours, one visiting 
all points in the area bounded by the ring, and the other in the area outside the ring 
(see Figure 2.14).

Figure 2.14: Splitting a TSP tour T into two tours, visiting all points from the 
areas separated by the marked ring. The grey area is the marked ring. In the left 
picture dotted lines represent the lines which will be added to the solution. The 
right picture shows two separate tours obtained from T — the tour visiting the 
points in the area bounded by the marked ring is pictured as a solid line, and the 
tour visiting the points outside the marked ring is pictured as a dashed line — before 
the short-cutting.

As a result, after short-cutting the tours, we get a collection of TSP tours, 
each covering a set of points Rj from one unmarked ring. The total length of these 
TSP tours is at most (1 +  |) -TSP(P). Assuming first that the unmarked rings are

50



the even ones, and then conversely, that the unmarked rings are the odd ones, and 
that e <  1, we conclude that

^ 2  TSP(Rj ) <  3 • TSP(P)  . 
j

Prom Lemma 2.3 we get that the cost of the solution found by the iterated 
tour partitioning heuristic using a 2-approximate TSP tour for a set of points Pb 
satisfies

c * ( n ) < f £  r(p) +  2 -T S P (P b) .
pePb

As Pb =  moda Rj, we get

E Q<(a)<|Er(p)+2E rspW )£lErW+6 rSp(p) •
be{i,...,o} peP i peP

Using Lemma 2.1 and Lemma 2.2 we obtain

Cit(Pb) < 7 - O P T ( I )  .
6 € {l , . . . ,a }

There must be some b e  { 1 , . . . ,  a} for which

Cit(Pb) <  -  • OPT{I) <  ^OPT{I)  , a 2

as a =  [-^l- . □

Theorem  2.38. An instance I  =  (P, o, S) of the CVRP problem on the Euclidean 
plane can be reduced to a collection ofO(\ogn) disjoint instances of the CVRP prob­
lem, each on 0 ( k / e ) ° ^  points and each having the maximum distance to the origin 
at most larger than the minimum one, such that (1 +  e)-approximate so­
lutions to each of the latter problems yield a (1 +  0(e))-approximation to the original 
CVRP problem. The reduction can be done in time 0 (n  log n) for a fixed e.

Proof. We move the points to the locations and compute the sets Rj of input points 
lying in the rings. This all can be easily done in time 0 (n  log n) by using standard 
data structures for point location [73].

Next, we compute the value a (i.e. the distance between marked rings) and 
for each fee {1 , . . .  ,a }  compute a solution for the set Pb of points contained in the 
marked rings, using the iterated tour partitioning heuristic with a 2-approximate

51



TSP tour. Using the minimum spanning tree heuristic for TSP we can find a 2- 
approximation of the optimal TSP tour in time 0 (n logn ). Given a TSP tour, 
the iterated tour partitioning heuristic can be implemented in time 0 {k ^ +  n) by 
repeatedly updating the previous partition and the solution to the next one in time 
O(jr). Therefore all the a computations take O(a-nlogn) =  0 (n log  n) time. We fix 
b to that minimizing the cost of the aforementioned solution, which from Lemma 2.37 
is at most | OPT(I).

Next, we compute approximate solutions for each maximal sequence of con­
secutive not marked rings. As the number of circles Cj is © (| log j ) ,  and a ring con­
tains pog1+f (6/5)1 circles, we have q =  O(logn) such sequences. For i =  
let Pi denote the set of points contained in the i-th sequence of rings. Note that the 
point sets Pi can be also easily computed in time 0 (n log n).

It follows from Lemma 2.36 that if we compute (1 +  e)-approximate solution 
for each set Pi, the union of the coverings will have length at most (1+ 0 ( e ) ) 0 P T ( I ) .

Note that for a given i, the number of locations in Pi is 0(a  • | • log(1+£) ¿) =  
0 ( k 2e~3 log ^). Hence, by the discussion in Section 2.4.1, we can decrease the number 
of points in each location to 0 ( k 3e~3 log ¿). Thus, for each Pi we can reduce the 
problem to one with 0 (fc5e~6(log ^)2) =  (k/s)0 ^  points.

Each Pi contains points from 0 ( s ~ 1) consecutive rings and for a point in 
a ring the maximum distance to the origin is at most 0 (e-1 ) times larger than the 
minimum one. Hence, for a point in Pj the maximum distance to the origin is at 
most ( l / e ) ^ 1/'5) times larger than the minimum one.

The appropriate q sets of points can be computed in time 0 (n  log n) and 
they specify the problems to which we approximately reduce the original CVRP 
problem. □

2 .4 .4  E x ten sion  fo r  th e  T w o-D im en sion a l E u clid ean  C a p a c ita te d  
L o ca t io n  R o u tin g  P ro b le m  w ith  |0| <  2log°(1)n

Let m =  |0| be the number of possible depots in an instance I  =  (P, O, S, 4>) of the 
CLRP problem. We set L =  maxpep S(p, O) and create a set of locations around each 
point from O in the same way as in the CVRP problem. As we have OPT(I)  >  2L, 
moving each point to the nearest location changes the cost of a solution for the CLRP 
problem by at most e -OPT(I) .  The number of locations t' =  ( k / e ) ° ^ -O(mdogn).

The analysis of trivial and nontrivial tours can be done in the same way as 
in the CVRP problem, and we can reduce the problem to one with N' < t'2k =  
(k/s)0 ^  • 0 ( m 2 • log2 n) points.

For the reduced problem instance we use the QPTAS from Section 2.3 (The­
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orem 2.10). The algorithm returns a (1 +  e)-approximate solution for the reduced 
problem instance in time yv,log° (1/£> N>, and we transform it into a (l+e)-approximate 
solution for the original problem instance by adding trivial tours. The running time 
of the algorithm is polynomial for k,m  <  2logC(e)n for some constant c(e) >  0 de­
pending on e. Hence, we have the following theorem.

Theorem  2.39. There is a polynomial time approximation scheme for the two- 
dimensional Euclidean capacitated location routing problem provided that k, \0\ <
2logo(1) n

The same result holds for the capacitated location routing problem with non- 
fixed return. Here, instead of using the QPTAS from Theorem 2.10, we use the 
QPTAS from Theorem 2.28. We get the following result.

Theorem  2.40. There is a polynomial time approximation scheme for the two- 
dimensional Euclidean capacitated location routing problem with non-fixed return 
provided that k, \0\ <  2log°(1)n.

2.5 Open Problems

PT A S for C V R P  for all values o f  k. The central open question left is whether 
there is a PTAS for the CVRP problem for all values of k. While we have enlarged 
the set of values of k for which a PTAS exists, we still do not know how to reach 
polynomial values for k, even k =  n0 001. In particular, a PTAS for CVRP for k =  
Q(\/n) is elusive. For arbitrary values of k, the best currently known result is either 
a quasi-polynomial time approximation scheme by Das and Mathieu [42] that runs 
in time ni°g°(1/e) ny 0r the polynomial-time constant-factor approximation algorithm 
due to Haimovich and Rinnooy Kan [52]. We believe that the case k =  Q(y/n) is 
the hardcore of the difficulty in obtaining a PTAS for all values of k.

Following [52], let us observe that if we divide the range of k into a logarithmic 
number of intervals of the form [e_2l,£~2(l+1)), then for k in at most one of the 
intervals none of the inequalities TSP(P)  < £ • | E p epKp)> I E PeP r(p) <  e -  
TSP(P)  hold. Note that if any of the inequalities holds then by plugging any 
PTAS for TSP in the iterated tour partitioning heuristic, we obtain an (1 +  0 (e ))- 
approximation of CVRP. Thus, the aforementioned heuristic is in fact a PTAS for 
a substantial range of k depending on P : for every set of points P  there is ko such 
that there is a polynomial-time (1 +  0 (e )  ̂ approximation algorithm for CVRP for 
every k <  ekg and for every k >  ko/e. Despite this observation and despite recent 
progress in [15; 42], the problem of designing a PTAS for all k remains open.
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PT A S for M D C V R P  (C L R P ) for larger num ber o f  depots (possible depot 
locations). The question is whether there is a polynomial time approximation 
scheme for the MDCVRP (CLRP) problem for all values of |0|.

PT A S for C V R P  for random  points. Another interesting question is finding 
a nearly optimal solution (or even estimating the cost of such a solution) when the 
customers are represented by independent and uniformly distributed points in the 
unit disc centered at the origin. The only interesting case is when k =  G(y/n), as 
otherwise the iterated tour partitioning heuristic gives a good approximation with 
high probability:

• if k =  o(-v/n), then the cost of the TSP is negligible compared to the radial 
cost f  Epept(P>°)>

• if k =  u>(y/n), then the radial cost | YhpeP <Kp> °) is negligible compared to the 
cost of the TSP.

As the case k =  Q(y/n) seems to be the most difficult one to get a PTAS for, solving 
it for random points might be a step towards getting a PTAS for the CVRP problem 
for the whole range of k.

The CVRP problem where the customers are independent and uniformly 
distributed over the unit disc centered at the origin or over a unit square has been 
studied in [75; 24].

In [75] Rhee proves that the cost of the optimal solution for this model for a 
fixed integer k satisfies with high probability the inequality: \OPT— | YlpeP (̂p> 0 )  — 
£i/n| < A '(n logn )1/ 3, where £ and K  are constants depending on k. That provides 
a good estimation of the cost of the solution for small values of k. However, K  grows 
fast with k, and for k =  &(\/n) the right handside is of the order u>(y/n), so the 
inequality does not give us any information in that case.

In [24] Bompadre et al. show that for random points the iterated tour par­
titioning heuristic has whp. approximation ratio 2 — c for some c >  0. They show 
it by providing a better lower bound on the cost of the optimal solution that holds 
with probability 1 as the number of customers goes to oo. They also generalize 
the iterated tour partitioning heuristic for the case of multiple depots and show the 
same asymptotic result for MDCVRP, where the depots are fixed in advance, and 
the customers are independent and uniformly distributed over the unit square.

D istance constrained (capacitated) vehicle routing problem . Another in­
teresting version of the vehicle routing problem is the distance constrained problem.

54



Here instead of (or together with) the capacity constraint we have a bound on the 
maximum length of each tour. It is not known if this problem admits a PTAS.

Other m etrics. We can study the above problems in more general metrics, starting 
from the constant-dimensional Euclidean metric. For which metrics can we prove 
the existence of a PTAS (for some range of input parameters)?
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Chapter 3

Capacitated Geometric Network 
Design

3.1 Introduction

In this chapter we study the capacitated geometric network design problem and the 
single-sink capacitated geometric network design problem.

Even the SCGND problem is NP-hard, as it includes as a special case the 
minimum Euclidean Steiner tree problem [48]. We can model the Steiner tree prob­
lem by the SCGND problem, by taking one of the input points as a sink, all other 
points as sources of unit demand, and set the edge capacity to n — 1, where n is the 
number of input points.

In this chapter we focus on the design of approximation schemes for the 
CGND and SCGND problem.

3.1.1  Difficulties

Even in the case when there is only one sink, a near optimal capacitated geometric 
network is not necessarily a forest (see Figure 3.1 for an example). Similarly as in 
[78] we can show, that for the CGND problem a minimum cost of a network which 
is a forest is at most twice larger than the cost of an optimal solution. However, 
as we are interested in constructing approximation schemes, we cannot restrict the 
solution to be a forest.

Another major difficulty in deriving approximation schemes for the CGND 
and SCGND problem is caused by the Steiner vertices, i.e. the vertices of the 
network other than the sources and the sinks. Since Steiner vertices can be arbitrary 
points on the plane, one can consider all points in the vicinity of sources and sinks
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2 k

Figure 3.1: An instance of the SCGND problem (a), where the minimum cost of 
a network which is a forest (6) is significantly larger than the cost of an optimal 
solution (c). The sources and the sink are denoted respectively by grey and black 
dots. There is one source with demand k, k unit sources, and a single sink with 
demand 2k.

as potential candidates for Steiner vertices. In the very special case of minimum 
Euclidean Steiner tree the number of Steiner vertices in an optimal solution can 
be easily upper bounded by n — 2, where n is the number of input points. If the 
network edges are required to be vertical or horizontal, then the Steiner vertices 
can be constrained to the quadratic number of intersections between vertical and 
horizontal straight-lines passing through the sources and sinks, the so called Hanan 
grid [38; 88]. However, in the general Euclidean case that we consider here, the 
problem of bounding the number of Steiner vertices in terms of the total demand of 
the sources has been open [38].

It has not even been settled if there is always an optimal network minimizing 
the cost, or if we can find solutions using more and more Steiner vertices, with the 
cost converging to a limit that cannot be achieved by any finite network.

An upper bound on the number of Steiner vertices in an optimal (or at least 
in a near optimal) solution is needed, if we want to use Arora’s framework [10] for 
geometric optimization problems. The first step in this framework, perturbation, 
consists of creating a grid and shifting all input points and Steiner points to the grid 
corners. The grid size has to be chosen in such a way, that shifting all the points does 
not increase the total length of the edges by too much compared to the cost of the 
network. However, without a bound on the number of Steiner vertices, and therefore 
also without a bound on the number of edges of the network, we cannot give any 
upper bound on .the increase of cost caused by shifting the points, and therefore we 
cannot perform perturbation.
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3.1 .2  Previous Results

Salman et al. [78] initiated the algorithmic study of the buy-at-bulk network design 
problem, where the goal is to construct a network that can send a specified amount 
of flow from the sources to the sinks, using a discrete set of types of edges with 
different costs and capacities. They argued that the problem is especially relevant 
in practice in the geometric case. They provided an algorithm for a version of a 
single-sink buy-at-bulk network design problem on an Euclidean graph, i.e. on a 
graph where vertices correspond to points in the Euclidean plane and the weights of 
the edges represent the Euclidean distance between the corresponding points, with 
an approximation ratio of 0(log(D /ki)), where D  is the total demand of the sources 
and ki is the smallest edge capacity. Besides allowing the use of many edge types, 
their model differs from ours in that it does not allow a flow to be split (i.e. the 
whole flow from each source has to use one path), and only permits a given finite 
set of points in the Euclidean plane to be used as vertices by the network.

Czumaj et al. [38] consider the geometric buy-at-bulk network design prob­
lem, where the only input is the locations of sources and sinks, their demands, and 
a set of types of edges, and any point on the Euclidean plane can be used as a ver­
tex. They present a QPTAS for the rectilinear version of the geometric buy-at-bulk 
network design problem with polynomially bounded total demand, where the edges 
have to be horizontal or vertical. Their QPTAS relies on the observation that in 
the rectilinear case Steiner vertices can be constrained to lie on the Hanan grid of 
the input points, i.e. on the grid formed by the vertical and horizontal lines passing 
through the input points. That yields a polynomial upper bound on the number of 
Steiner vertices and the number of edges needed in an optimal solution to the prob­
lem, which allows using Arora’s framework [10] for geometric optimization problems. 
A near optimal solution is found using dynamic programming, as in each dissection 
square it is enough to consider 0 ( logn /e) portals, and the amount of flow passing 
through each portal is not greater than the total demand of the sources.

Observe that the CGND problem can be considered as a special case of the 
geometric buy-at-bulk network design problem, in which only a single type of edge 
is available.

3 .1 .3  Overview of the New  Results

In Section 3.2 we study structural properties of (near) optimal solutions for the 
instances of the CGND problem. The main result is an upper bound on the number 
of Steiner vertices in an optimal solution that is polynomial in the total demand of
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the sources.
In Section 3.3 we present a quasi-polynomial time approximation scheme for 

the CGND problem with polynomially bounded demands of sources and sinks. The 
result is obtained by combining the upper bound on the number of Steiner vertices 
from Section 3.2 with Arora’s framework [10] for geometric optimization problems.

In Section 3.4 we derive a polynomial time approximation scheme for the 
SCGND problem when the edge capacity is at most 2 ° ^ lo&n\ and the demands of 
the sources and the sinks are polynomially bounded. The result relies on a geometric 
partition of the sources combined with a TSP-based heuristic and the QPTAS from 
Section 3.3 applied to an instance of the problem with a small number of points.

The results are based on joint work with Artur Czumaj, Andrzej Lingas and 
Jakub Onufry Wojtaszczyk [6].

3 .1 .4  Notation

We now give a formal definition of the problem.

Definition 3.1. In the capacitated geometric network design problem we are given 
a set of sources S =  { s i , . . . , s nj} and a set of sinks T  =  {t\ ,. . .  , tnt}  on the 
Euclidean plane, together with an integral demand S(sj), D(tj) for each source and 
sink, and an integral edge capacity k.

The goal is to construct a minimum-cost network that can (simultaneously) 
route the demanded flow from the sources to the sinks, such that each edge in the 
network has capacity k. The network can use any points on the Euclidean plane as 
Steiner vertices, the flow is splittable and parallel edges are allowed.

The number of input points is denoted by n, i.e. n =  n3 +  n*. We assume 
that =  and define D  =  JA5(si) to be the total demand. We can
assume that no two input points are coincident, as otherwise we can merge them 
into a single source or sink.

A solution for an instance I  =  (S , T, i), k) of the capacitated geometric net­
work design problem is represented by a multigraph M  embedded in R2. The vertex 
set of M  consists of the sources S  and the sinks T , and potentially other vertices 
(called Steiner vertices). For technical reasons in Section 3.2 we consider directed 
multigraphs, where the direction of an edge represents the direction of the flow within 
the edge. The weights of the edges represent Euclidean distances between the ver­
tices. The cost of a multigraph M , denoted by C(M),  is the sum of the lengths of 
all the edges of M.
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A multigraph satisfying the above properties is a feasible solution for /  if there 
is a flow in M  from the sources to the sinks that is consistent with the directions of 
the edges, satisfies the demands 0 of the sources and the sinks, and never exceeds 
the capacity k in an edge.

. If M  is a feasible solution for I  then one can find such a flow in polynomial 
time using standard algorithms for the maximum-flow problem with multiple sources 
and multiple sinks. Furthermore, since the demands and the edge capacity are 
assumed to be integral, we can presume, without loss of generality, that the flow 
found is integral.

If the set of sinks is a singleton then the problem is termed the single-sink 
capacitated geometric network design problem.

3.2 Bounding the Number of Steiner Vertices in an Op­
timal Solution

In this section we show that for any instance of the CGND problem there is an 
optimal solution with the number of Steiner vertices upper bounded by a polynomial 
function of the total demand D.

For this purpose, we fix an instance I  of the CGND problem and we consider a 
special class of multigraphs that are feasible solutions for / ,  which we call minimizers. 
We show that for any e > 0 there is a minimizer that gives a (1 +  e)-approximate 
solution for I. We then analyze geometric properties of the minimizers, and show that 
each minimizer has a special geometric structure, namely it can have only three types 
of Steiner vertices. We then define an operation of shifting a cycle in a minimizer. 
We show that this operation transforms a minimizer into another minimizer without 
increasing the cost, can be performed on a minimizer only a finite number of times, 
and when the operation cannot be performed any more, the resulting minimizer has 
a small number of Steiner vertices. We get that for any e >  0 there exists a minimizer 
that gives a (1 +  ^-approximate solution for I  and has a small number of Steiner 
vertices.

We then take a set of multigraphs that are feasible solutions for I  and satisfy 
some additional properties, and equip the set with a metric, such that the corre­
sponding metric space is compact, and the cost is a continuous function in it. Then 
any sequence of multigraphs from that space has a subsequence converging to a 
multigraph, which is a feasible solution for I. We choose the multigraphs for the se­
quence as minimizers which give (1 + ^-approximate solutions for I , where the value 
of e decreases towards 0, and each of the minimizers has a small number of Steiner
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vertices. The multigraph obtained in the limit is an optimal solution for I  (from the 
continuity of the cost function), and has a small number of Steiner vertices.

3.2.1 Minimizers

We consider multigraphs that are feasible solutions for the instance I  of the CGND 
problem, together with associate integral flows certifying the feasibility. For a multi­
graph M  =  (V, E) we define the value of M a s

val(M) =  ^ (d e g (u )  -  2) .
v€V

Among the solutions with the same cost, we prefer the one with the minimum value.
Without increasing the cost or the value we can modify the multigraph M  

and an associated integral flow /  in M  to satisfy the following properties:

• all Steiner vertices in M  have degree at least 3,

• all Steiner vertices are contained in the smallest square containing all sources 
and sinks (this property can be satisfied by moving each Steiner vertex from 
outside the square to the closest point on the boundary of the square),

• if two vertices of M  are coincident, then there is no edge between them (oth­
erwise we merge them into one vertex),

• each edge of M  is used by / ,

• the amount of flow entering and leaving each vertex is at most D.

For technical reasons, and without loss of generality, in this section we consider only 
pairs (M, / )  satisfying the above properties.

The degree of any vertex is upper-bounded by 2D. Each Steiner vertex has 
degree at least 3, so it contributes at least 1 to val(M). The only vertices that have 
negative contribution to val(M) are non-Steiner vertices of degree 1, and there are 
at most 2D of them (as we can split each source and sink into unit sources and 
sinks), so the number of Steiner vertices in M  is not greater than val(M) +  2D  and 
\V\ <  val(M) +  4D. Since 2\E\ =  we 6et t îat

|£?| =  ^val(M) +  |V| < |val(Af) +  4D .
¿t ¿i
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For any e >  0 and integer t>, let M% denote the set of all multigraphs that 
together with some flow give a (1 +  e)-approximate solution for I  and which have 
value at most t). We now show a technical lemma.

Lem m a 3.2. For any £ >  0 and 0 G N we can equip the set M l  with a metric 5 
such that the metric space (M l ,  8) is compact, and the network cost is a continuous 
function in (M l ,  S).

Proof. We allow the following operations on multigraphs, and define a cost for them:

• moving a Steiner vertex by some distance A. The cost of the operation is A.

• merging a Steiner vertex v with some vertex w connected to v with at least 
one edge. We remove the edges that contract to the loops. The cost is the 
distance by which we move v to merge it with w.

• splitting a vertex v into two vertices v and w and connecting them with at 
least one edge. The edges that were incident with v can be arbitrarily divided 
between v and w. The cost is the distance by which we move w away from v.

• adding or deleting an edge between two non-Steiner vertices. The cost is the 
distance between the vertices. As two non-Steiner vertices cannot be coinci­
dent, the cost is greater than 0.

If a multigraph M ' G M l  can be obtained from M  G M l  by a sequence of 
the above operations, we denote the distance 6(M,M')  as the infimum of the costs 
of such sequences. Notice that the intermediate multigraphs in the sequence do not 
have to belong to M £0.

The distance function 8 satisfies the following properties.

• For each M  G M l  we have 8 (M ,M ) =  0.

• For each M, M'  G M s0 we have 8(M, M') =  5(M', M).

Each operation modifying a multigraph is reversible and the dual operation 
has the same cost.

• The distance function 8 satisfies the triangle inequality.

For each M, M', M "  G M l  we have 8(M, M")  <  8(M, M')  +  8(M', M "), as a 
sequence of operations transforming M  into M'  together with a sequence of 
operations transforming M'  into M "  transforms M  into M " .
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• For each M, M'  £ M% the distance 8(M, M')  is well defined (i.e. it is not 
infinite).

Let Mo be a multigraph with the set of all non-Steiner vertices as a vertex 
set and an empty edge set. Every graph M  £ M l  can be transformed to Mo 
using a sequence of the following operations: merging a Steiner vertex with any 
neighboring vertex and deleting an edge between two non-Steiner vertices. The 
number of these operations is upper bounded by |V(M)| +  \E(M)\, and the 
cost of each operation is upper bounded by the maximum distance between 
two points in M . The distances 5(M,M q) and 8(M',M q) are finite and so 
8(M, M ') is finite.

• For M, M'  £ M l ,  M  7̂  M ', we have 8(M, M ') >  0.

Let A  be the smallest distance between two non-coincident vertices in any of 
the multigraphs M, M '. The sequences that transform M  into M ' and have 
cost smaller than A  are the ones that only move points. That requires M  
and M'  to be isomorphic. Since M  and M'  are finite, there can be only a 
finite number of isomorphisms between M  and M ' , and transforming M  into 
M'  according to each of them has a cost greater than 0 (as M /  M'). The 
infimum over them is also greater than 0.

That shows that (M l ,  8) is a metric space.
Next we show that the metric space (M l ,  8) is compact. To do it we need to 

show that every sequence of multigraphs (Mj)i6N, for Mj £ M l ,  has a convergent 
subsequence. As the number of vertices and edges of all the multigraphs from M l  
is upper bounded by a function of 0, there is only a finite number of isomorphism 
classes in where we additionally require the isomorphism to be identity
on the non-Steiner vertices. We choose from (Mi)i£N an infinite subsequence of 
isomorphic multigraphs and we remove the remaining multigraphs. We order the 
vertices of the graphs according to the isomorphism.

The vertices of all graphs from M l  are inside some closed square T. With each 
multigraph Mj we associate a sequence s* of points in F representing the positions 
of the vertices. The edges of the multigraphs are obtained from the isomorphism. 
A set of sequences of points, where the points belong to a compact set, the length 
of the sequence is fixed and the distance 8' between two sequences is the sum of the 
distances between the pairs of corresponding points, is compact. As the total flow in 
the graphs from (M j)i£pj is D, we get that 8(M{1, Mi2) <  D • 8'(sit , Sj2), and the set 
of isomorphic graphs with the vertices in T is compact. Let M  be the multigraph 
that is the limit of some subsequence (Maj) from (M j)j€N —  the sequence of the
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vertices of M  is a limit of the sequence (scTj) and the edges are obtained from the 
isomorphism. Some vertices connected by an edge might be coincident in M  (if the 
sequences of points converge to the same point). In this case we merge them into 
one vertex.

Now it is enough to show that M  € M%. The value of M  is not greater 
than the value of any Ma., so val(M) <  D. The same flow that is feasible for any 
multigraph Maj is feasible for M.  The cost of Mffj converges to the cost of M  and 
each Maj is a (1 +  e)-approximate solution for the instance of CGND, so M  is also a 
(1 +  e)-approximate solution for the instance of CGND. We get that M  G M.% and 
the space {M%, <5) is compact.

We now show that the cost C(M)  is a continuous function in (A/Iq,$). Let 
M  € M% and take arbitrary eo > 0. We have to show that there is some Ao > 0 such 
that for any multigraph M ' € M.% if < A q then \C(M) — C(M') \ < £q.
Let A  be the shortest distance between two non-coincident vertices in M.  We set 
Ao =  min (A, 3/20+4/3 )• Let M'  € M% such that 6(M,M')  <  Ao- In a sequence 
of operations transforming the multigraph M  into M ’ with cost smaller than Ao no 
edge of M  can be contracted or deleted. Each edge from M  can change its length 
by less than Ao- Some new edges can appear in M ' , each of them of length smaller 
than Ao- The total number of edges in M'  is upper bounded by |o +  4D, therefore 
\C(M) -  C{M')\ <  (|d +  AD) • A 0 <  e0. □

Definition 3.3. A multigraph M  is a minimizer if it is a feasible solution for the 
given instance I  of the CGND problem and satisfies the conditions:

• there is no feasible solution M ' s.t. C(M') <  C (M) and val{M') <  val{M),

• there is no feasible solution M ' s.t. C(M')  =  C ( M ) and val{M') <  val(M).

Lem m a 3.4. For any e >  0 and an instance I  of the CGND problem there is a 
(1 +  e) -approximate solution for I  which is a minimizer.

Proof. Consider any multigraph M  which gives a (1 +  e)-approximate solution for
I. It has some finite value t>. Let (M%,6) be the metric space from Lemma 3.2. 
The metric space (M%,6) is compact and the cost is a continuous function in it, 
therefore there exists a multigraph with a minimum cost in M%. The multigraph 
with a minimum value amongst all multigraphs with the minimum cost in M% is the 
desired minimizer. □

In the remaining part of this section we will prove the following theorem.
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Theorem  3.5. For any e >  0 and an instance I  of the CGND problem there is a 
minimizer M  which is a (1+e)-approximate solution for I  and for which |Ks| +  |Vcj <  
32D4 +  4D2, where Vs is the set of Steiner vertices of M  and Vc is the set of points 
on the plane where the edges of M  cross without a Steiner vertex.

Theorem 3.5, together with Lemma 3.2, yields the main result of this section.

Theorem  3.6. Any instance I  of the CGND problem has an optimal solution M o p t  

which satisfies the following properties. The number of Steiner vertices is at most 
32D4 +  AD2, there are no two coincident vertices, the degree of each vertex is at most 
2D and the edges cross only in vertices.

Proof. Let £* =  A for i G N. From Theorem 3.5 we know that for each £* there is 
a (1 +  £j)-approximate solution M£i, for which the number of Steiner vertices plus 
the number of points where the edges of MSi cross without creating vertices is upper 
bounded by 32D4 +  AD2. We create a multigraph M '. by adding Steiner vertices 
in all points where the edges of Me< cross. (The flow in the modified multigraph 
M'e, is the same as in M£j —  in the introduced vertices the flow does not change 
the direction.) We also join any two coincident vertices of the multigraph into one 
vertex. We can assume that the degree of every vertex in M'ei is upper bounded by 
2D, as we can enforce this condition by removing edges.

Let 0 =  (32.D 4 +  AD2 +  2D) • 2D. Let (Ml,S) be the metric space from 
Lemma 3.2. All the graphs M '. belong to that metric space. As (M J ,  S) is compact, 
the sequence of multigraphs (M '.) igN has a subsequence converging to some multi­
graph M  G (Ml,6). Network cost is a continuous function in (Mev°,S), and each 
M'e. is an (1 +  ^-approximate solution for I, so M  is an optimal solution for I.

From the construction of the limit subgraph in the proof of Lemma 3.2 we 
know that the number of Steiner vertices in M  is not greater than the maximum 
number of Steiner vertices in a graph from (A f'.).gN, so it is upper bounded by 
32D4+ 4 jD2. The degree of each vertex is at most 2D, as otherwise by removing some 
edge we could get a solution with a smaller cost, which contradicts the optimality 
of M.  The edges of the graphs M'e. cross only in vertices, and the same holds for 
M.  □

3.2 .2  Vertex Types of a Minimizer

We proceed by an analysis of a minimizer. We aim to prove that there can be only 
three types of Steiner vertices in a minimizer.

Definition 3.7. Let M  =  (V', E) be a multigraph with a flow f .  A vertex v € V is 
called a real vertex if there is an integer c >  0 and a direction a  G [0,27r) such that:
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Figure 3.2: A real vertex, a crossing and an optional vertex (all for c =  2).

• the edges incident with v are exactly: c edges with the direction a, c +  1 edges 
with the direction a  +  tv, and two single edges with the directions a ±  7t/3  (see 
Figure 3.2),

• the group of c +  1 edges is directed in one way (out of the vertex or into the 
vertex), and all the remaining edges are directed in the opposite way,

• the flow in either of the single edges is smaller than the flow in any of the c + 1 
edges.

Definition 3.8. Let M  =  ( V ,  E) be a multigraph with a flow f .  A vertex v (E V 
is called a crossing if there is an integer c >  1 and directions a,(3 E  [0,27r) s.t. 
¡3 ot, a +  7r and:

• the edges incident with v are exactly: c edges with the direction a, c edges 
with the direction a  +  tv, and single edges with the directions (3 and (3 + it (see 
Figure 3.2),

• all the c edges in one group are directed in one way, the directions of the two 
groups of edges are opposite, the directions of the two single edges are opposite,

• if c >  2 then the flow in any single edge is smaller than the flow in any of the 
non-single edges with the opposite direction.

Definition 3.9. Let M  =  (V, E) be a multigraph with a flow f .  A vertex v € V is 
called an optional vertex if there is an integer c > 2 and a direction ot E  [0,27r) such 
that:

• the edges incident with v are exactly: c edges with the direction a and c edges 
with the direction a  +  7r (see Figure 3.2),

• all the c edges in one group are directed in one way, the directions of the two 
groups of edges are opposite.
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We specify some properties which the Steiner vertices of a minimizer must
fulfill.

Fact 3.10. Let M  =  (V,E) be a minimizer, v € V, and let e\,e2 G E  be edges 
incident with v and directed in opposite ways. Then the angle between e\ and e2 is 
at least 27t/3.

Proof. Assume that the angle between e\ and e2 is smaller than 27t/ 3. Let y and z 
be the endpoints of e\ and e2 other than v. Let /  be the flow in the multigraph. We 
can assume that the amount of flow in the edges ei and e2 is different —  otherwise 
we can remove the edges e\ and e2 from the graph and replace them with an edge 
yz. Let M' be the modified graph. We have C(M') <  C { M ) and val(M') <  val(M). 
The multigraph M'  has a feasible flow, as the flow that was sent using the edges ei 
and e2 in M  can be sent using the added edge in M '. We get contradiction, as such 
a graph M'  cannot exist if M  is a minimizer.

Let x  be the Torricelli point of the triangle vyz —  the point that minimizes 
the total distance to v, y and z. If the angle at the vertex y (z) is greater or equal 
27r/3, then x is coincident with y (z). Otherwise it is inside the triangle vyz. In any 
case x  is not coincident with v, so \xv\ +  \xy\ +  \xz\ <  |to| +  \vy\ +  \vz\.

V  v

Figure 3.3: Reducing a graph when the flow in two edges with a small angle between 
them is directed in opposite ways. An example of a flow is given in grey.

Let M ' be a multigraph created from M  by introducing a new Steiner vertex 
x, removing edges e\ and e2 and adding edges xv ,xy  and xz  (see Figure 3.3). The 
cost of M ' is smaller that the cost of M , and the value is the same (the degree of v 
decreases by 1 and a new vertex with a degree 3 is added).

As the direction of the flow in e\ and e2 is opposite, the flow /  can be modified 
to a feasible flow in M '. We set the flows on the edges xy  and xz  equal to the flow 
in e\ and e2 and use the additional edge vx to take care of the balance, which is 
no larger than k. We get contradiction, as such a graph M'  cannot exist if M  is a 
minimizer. □
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Fact 3.11. Let M  =  (V,E ) be a minimizer with a flow f .  Let v £ V  and let 
e i,e2 £ E  be edges incident with v and directed in the same way. If the angle 
between e\ and e2 is smaller than 2n/3, then f ( e  1) +  / ( e 2) >  k.

Proof. If the angle between e\ and e2 is smaller than 27r/3 and f ( e  1) +  / ( e 2) <  k, 
then the same reduction as in the proof of Fact 3.10 (Figure 3.3) gives a multigraph 
M ' with the same value and a smaller cost than M . There is a feasible flow in M' 
—  the amount of the balance flow on the added edge vx  equals f ( e  1) +  / ( e 2) <  k. 
We get contradiction, as such a graph M ' cannot exist if M  is a minimizer. □

Fact 3.12. Let M  =  (V,E) be a minimizer with a flow f .  Let v £ V and let 
eu e2i e3 £ E be edges incident with v contained in an open halfplane with v lying on 
its boundary. If e\ and e2 are directed in the same way and opposite to the direction 
of e3, then f ( e  1) +  / ( e 2) -  / ( e 3) >  k and, in particular, f (ez)  <  / ( e i ) , / ( e 2).

Proof. We can assume that the angle between the edges e\ and e3 is greater than or 
equal to the angle between e2 and e3. If the angle is the same, we can assume that 
the edge e\ is at least as long as e2- We call v\,V2,vz respectively the endpoints of 
e\, e2, e3 different from v. We choose a point w in the following way: if the interval 
[t>i,n3] crosses the interval [v,v^}, we set w to be the intersection point. Otherwise 
we set w =  V2-

Let M ' be a multigraph obtained from M  by removing the edges v\v and vzv 
and adding the edges v\w and vzw. If w ^  V2 we also substitute the edge W 2 with 
edges vw and WV2 (see Figure 3.4).

Figure 3.4: Reducing a multigraph in the proof of Fact 3.12.

The cost of M ' is smaller than the cost of M . U w ^-V 2 then |tqu;| -f |u3u;| =  
|uiU3| < \viv\ +  |u3u|. If w =  V2 let z be the intersection point of the interval [v,wi] 
and the line containing V2 and u3. We have |ui«;| +  |u3u;| < \viz\ +  \zw\ +  |u3u;| =  
\v\z\ +  \zvz\ <  |iqu| +  |u3u|.

The value of M ' is the same as the value of M . The degree of v drops by 2 
and either we get a new Steiner vertex of degree 4 or the degree of i>2 increases by
2. In both cases the value remains unchanged.
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If f ( e i) +  f ( e 2) — f { e 3) <  A: then there is a feasible flow / '  in M'. The flow 
on all the common edges of M  and M ' is the same as in / ,  there is a flow f ( e  1) on 
the added edge v\w (the direction of the flow with respect to v\ is the same as the 
direction of /  on ei), a flow / ( e 3) on the added edge v^w (the direction of the flow 
with respect to U3 is the same as the direction of /  on a flow / ( e 2) on WV2 (if
w ^  t>2‘, again the direction of the flow with respect to V2 is the same as the direction 
of /  on ef) and a balancing flow |/(ei) f { e f )  — / ( e 3)| on the edge wv2. That yields 
a solution with a smaller cost and the same value as M.  We get contradiction, as 
such a solution cannot exist if M  is a minimizer.

Therefore we must have / ( e  1) +  f ( e 2) — f ( e 3) >  k and / ( e 3) <  / ( e i ) , / ( e 2).
□

Let M  =  (V, E) be a minimizer. For a vertex v we call an edge e incident 
with v incoming (outgoing) if it is directed towards v (out of v).

Lem m a 3.13. Let M  =  {V,E) be a minimizer. Let v € .V  be a Steiner vertex such 
that all outgoing (or incoming) edges have the same direction a  € [0,27r). Then v is 
a real vertex or an optional vertex.

Proof. Let /  be the flow in the multigraph. Assume without losing generality that 
all outgoing edges have the same direction a. From Fact 3.10 there are no edges 
incident with v with directions in the interval (a — 27t/ 3, a) or (a, a +  2-n/Z).

Assume that v has only one outgoing edge e. The minimizer has no Steiner 
vertices of degree smaller than 3, so v has at least two incoming edges. The total 
flow entering v is the same as the total flow leaving v, so the amount of the flow 
entering v is not greater than k. From Fact 3.11 we get that the angle between any 
two incoming edges is at least 2tt/3. The only possibility is that there are exactly 
two incoming edges, with directions exactly a — 27t/ 3 and a +  2ir/3. The flow in any 
of these edges is smaller than the flow in e. We get that v is a real vertex for c =  0.

Now assume that v has at least two outgoing edges. Let e\ and e2 be the 
two of them with the minimum amount of flow. Let e be any incoming edge with 
a direction different from a  and a  +  7r. Then e, e\ and e2 are contained in an 
open halfplane with the borderline passing through v. From Fact 3.12 we get that 
/(e )  <  / ( e i ) , / ( e 2). Using Fact 3.12 again we get that for each of the intervals 
(a — 7r, a) and (a, a  +  7r) there can be at most one incoming edge with a direction 
in the given interval. All the other edges have a direction a  +  7r.

As M  is a minimizer, moving the Steiner vertex v by some distance A in the 
direction a  or a +  7r does not decrease the cost. We have to consider the following 
cases.
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1. The only edges incident with v have directions a and a +  7r.
The number of outgoing and incoming edges must be the same (and greater 
or equal 2) and v is an optional vertex.

2. There is exactly one incoming edge with a direction different from a  and a +  7r. 
This situation cannot happen. If the number of outgoing edges was at least 
as large as the number of incoming edges, moving v in the direction a  would 
decrease the cost. Otherwise moving v in the direction a  +  7r would decrease 
the cost.

3. There are exactly two incoming edges with directions different from a +  tt — 
one with a direction in (a — tt, a — 27r/3] and the other in [a +  27t/ 3, a  +  7t). 
Let c be the number of edges with a direction a  +  7r. The only possibility that 
moving v in any of the directions a  and a  +  7r does not increase the cost is 
when the number of edges with a direction a  is c +  1. Then the single edges 
must have directions a — 2tt/3 and a  +  27r/3, because otherwise moving v in 
the direction a +  tt would decrease the cost. The vertex v is a real vertex.

□

Lem m a 3.14. Let M  =  (V ,E ) be a minimizer. Let v E V  be a Steiner vertex such 
that both incoming and outgoing edges have multiple directions. Then v is a crossing.

Proof. Let /  be the flow in the multigraph. Without losing generality we assume 
that the edge with a maximum flow is an outgoing edge. Let us denote it by e ^ t. 
Let a  € [0,2 tt)  be the direction of elout. From Fact 3.12 we get that in each of the 
intervals ( a  — tt, a) and ( a ,  a +  7r) there can be at most one incoming edge.

Assume that there are no incoming edges with a direction a  +  7r. We have at 
most two incoming edges, each of them with a flow at most f{e\ut). We must have 
exactly two incoming edges, as there are at least two different directions of incoming 
edges. Let us denote the two incoming edges by e]n and efn. Let e2ut be an outgoing 
edge different from elout. Then one of the incoming edges, let’s say e}n, is in the same 
halfplane with elout and e20Ut. From Fact 3.12 we get that f (e ]n) <  / ( e ^ ) .  We also 
know that f (e fn) <  /(e^ut), as the edge e ^ t has a maximum flow. We get that the 
total flow into v is smaller than the total flow out of v, which gives a contradiction.

We must have at least one incoming edge with a direction a  +  tt. Let us call 
it e\n. Assume that in one of the halfplanes (a — -jt, a) or ( a ,  a  +  7r) there is both an 
incoming edge efn and an outgoing edge efut. The edges e\n, efn and e2out are in the 
same halfplane, so from Fact 3.12 we get that f { e 2ut) <  f (e fn). The edges efn, ejut 
and e j^  are in the same halfplane, so from Fact 3.12 we get that f (e fn) <  / ( e ^ t).
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That gives a contradiction. As we have both incoming and outgoing edges in more 
than one direction, we must have exactly one incoming edge in one of the halfplanes 
(a — 7T, a) and (a, a  +  7r), and at least one outgoing edge in the other halfplane.

Assume that there are at least two outgoing edges e^ut and e^ut with directions 
different from a. The edges together with the incoming edge e\n (with a direction 
a  +  7r) are in one halfplane, so from Fact 3.12 we get that f (e}n) <  / ( e ^ ) ,  f(e%ut). 
Using Fact 3.12 again we get that there is only one incoming edge with the direction 
a +  it. There are exactly two incoming edges in total and we have /(e¿n) <  f(e^ut) 
and /(e?n) <  / ( e ^ t). The total flow into v is smaller than the total flow out of v, 
which gives a contradiction.

Therefore we must have some outgoing edges in the direction a  and one 
outgoing edge in a different direction, as well as some incoming edges with the 
direction a  +  7r and one incoming edge with a different direction. One of the single 
edges is in the halfplane (a — ir, a) and the other in (a, a +  n).

As M  is a minimizer, moving the Steiner vertex v by some distance A in the 
direction a  or a  +  tt does not decrease the cost. The only possible case is when the 
number of incoming edges equals the number of outgoing edges. Also the degree 
between the single outgoing and incoming edge must be 7r.

If the number of edges with a direction a  (and also a +  7r) is greater than 
one, then from Fact 3.12 we get that the flow in any single edge is smaller than the 
flow in any of the non-single edges with a flow directed in the opposite way. Vertex 
v is a crossing. □

From Lemma 3.13 and Lemma 3.14 we instantly get

Theorem  3.15. Each Steiner vertex in a minimizer is a real vertex, a crossing or 
an optional vertex.

3 .2 .3  Graph Analysis and Cycle Argument

From Theorem 3.15 we know that a Steiner vertex in a minimizer is a real vertex, 
a crossing or an optional vertex. We can easily remove optional vertices from a 
minimizer.

Lem m a 3.16. For any minimizer M  there is a corresponding minimizer M ' with the 
same cost, value, number of real vertices and crossings and with no optional vertices.

Proof. We remove optional vertices one by one in the following way. Let v be any 
optional vertex and w a neighbor of v closest to v. We move v towards w and merge 
the two vertices together. As M  is a minimizer, the vertices v and w were connected
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by one edge (otherwise merging would decrease the value), and the merged vertex 
does not change its type (e.g. a real vertex remains a real vertex). The operation 
does not change the cost, value and the number of real vertices and crossings of the 
multigraph. □

In this section we prove Theorem 3.5 —  for any instance I  of the CGND 
problem we show the existence of a minimizer which gives a (1 +  «^-approximate 
solution and has a small number of Steiner vertices. To do it, we introduce a pro­
cedure modifying minimizers to decrease the number of real vertices. We also show 
that if we cannot decrease the number of real vertices any further, the total number 
of Steiner vertices must be small.

D efinition 3.17. Let M  be a minimizer without optional vertices. A cycle C in M  
is called a Steiner cycle if:

• C passes only through Steiner vertices,

• if C passes through a crossing vertex v, then C does not change the direction in 
v (i.e. the angle between two consecutive edges of C incident with v is it),

• if C passes through a real vertex v, then C either does not change the direction, 
or changes it by 7r/3  (i.e. the angle between two consecutive edges ofC incident 
with v is either ir or 2tt/3),

• C does not pass through an edge more than once.

Lem m a 3.18. Let M  be a minimizer without optional vertices, Vs the set of Steiner 
vertices of M  and Vc the set of points on the plane where the edges of M  cross 
without a Steiner vertex. If M  has no Steiner cycle, then |V̂ | +  \ Vc\ <  32D4 +  AD2.

Proof. Let M' be a multigraph obtained from M  by performing the following op­
erations. We remove all crossings and join pairs of edges that were incident with a 
crossing and had opposite directions arbitrarily into single edges (see Figure 3.5a). 
We also decrease the degree of every real vertex to 3 by pairing arbitrarily all the c 
edges with a direction a  with any c edges with a direction a  +  tt and merging them 
into single edges (see Figure 3.56).

We then split each non-Steiner vertex v into deg(u) vertices of degree 1. As 
in the original multigraph there are at most 2D non-Steiner vertices and each of 
them has a degree at most 2D, the number of vertices with a degree 1 after splitting 
is at most AD2. A simple cycle in M'  is a Steiner cycle in M.  As there is no Steiner 
cycle in M , the resulting graph M'  is a forest with at most AD2 leaves and all inner
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Figure 3.5: Removing a crossing and decreasing degree of a real vertex.

vertices of degree 3. Therefore the number of real vertices in M' (and also in M ) 
is upper bounded by 4D2, and the number of all vertices in M 1 is upper bounded 
by 8D2. The number of edges in M' is also upper bounded by 8D2. Each of the 
at most 32£>4 pairs of edges in M' can generate at most one crossing in M  or one 
point in Vc■ As each Steiner vertex in M  is either a real vertex or a crossing, we get 
\VS\ +  \Vc\ <  32D4 +  AD2. □

We introduce an operation of shifting a Steiner cycle C by some distance 
A > 0 in a minimizer M  with no optional vertices. First we orient the edges of 
C in one of the two possible directions. We then shift each edge of the cycle by a 
distance A to the left according to the direction chosen. The real vertices where the 
cycle changes direction are moved to the intersection points of the shifted edges (see 
Figure 3.6). Notice that a Steiner cycle has no repeating edges, so we never have to 
shift an edge in two directions at once.

Figure 3.6: Shifting a Steiner cycle. Only the real vertices where the cycle changes 
direction have been pictured. The obtained cycle depends on the orientation of the 
original cycle.

Moving the real vertices as described above requires us to make some other 
modifications to the graph. We do not want to shift or change directions of edges 
not belonging to C — they can only become longer or shorter. To achieve this, in 
some cases instead of moving a real vertex we split the vertex into a real vertex of
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degree 3 and a crossing, and then we only move the vertex of degree 3 to the required 
position. We also move the real vertices and crossings of C, on which C does not 
change the direction, possibly after splitting the vertices in two.

The case analysis in Section 3.2.4 shows that shifting a Steiner cycle neither 
changes the cost and the value of the minimizer nor the number of the real vertices. 
The resulting graph has a feasible flow and is a minimizer.

When a vertex from C hits a vertex with which it is incident (i.e. after we 
move a vertex v from C, it becomes coincident with some vertex w such that there 
is an edge connecting v and id), we merge the two vertices. In Section 3.2.5 we show 
that the shifting operation can be performed until one of the following happens: a 
vertex from C gets merged with a non-Steiner vertex or two real vertices get merged 
(e.g. when a cycle edge gets contracted to a single point). The resulting multigraph 
has the same cost and value and either a smaller number of real vertices, or the same 
number of real vertices and a larger sum of degrees of non-Steiner vertices.

We are now ready to prove Theorem 3.5.

Proof o f Theorem 3.5. Fix an e > 0. By Lemma 3.4, there is a (1 +  e)-approximate 
solution which is a minimizer. Let M q be such a minimizer that also minimizes the 
number of real vertices —  we cannot decrease the number of real vertices of Mo 
without increasing the cost or the value of M q . Let Mi be the minimizer obtained 
from M q by removing the optional vertices, as in Lemma 3.16. The number of real 
vertices, the cost and the value of Mi is the same as in Mo-

Suppose that Mi has a Steiner cycle. We shift the cycle as far as possible. As 
a result, we obtain a minimizer with the same cost and value, where the shifted cycle 
is not a Steiner cycle any more, and the resulting multigraph has the same number of 
real vertices and a larger sum of degrees of non-Steiner vertices (any other result of 
shifting a cycle would decrease the number of real vertices, and that cannot happen 
for M i).

As long as Mi has some Steiner cycle left, we shift it as far as possible. We 
can perform this operation only a finite number of times, as each time the sum of the 
degrees of the non-Steiner vertices increases, and in a minimizer it is upper bounded 
by AD2. At some point there will be no Steiner cycle left. The graph obtained from 
M i will be a minimizer with no Steiner cycles, and from Lemma 3.18 we know that 
in such a minimizer |Vs| +  |Vci <  32DA +  D 2. □

3 .2 .4  Detailed Analysis o f Shifting a Steiner Cycle

We have to consider the following cases:
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• Moving a real vertex v of degree 3.

The operation is shown on Figure 3.7. The vertex v is moved to the desired 
place along the non-cycle edge of v.

Figure 3.7: Moving a real vertex v of degree 3. The bold edges represent the cycle 
edges. On the right hand-side the dashed edges and the white dots show the previous 
positions of the edges and vertices.

The non-cycle edge becomes longer or shorter and balances the change of the 
length of the cycle edges (see Figure 3.8). The cost and the value of the solution 
do not change. The same flow is feasible. •

Figure 3.8: The change of the length of the non-cycle edges (y ) balances the change 
of the length of the cycle edges (2x). The bold edges represent the cycle edges before 
and after the shifting operation. Dashed lines are orthogonal to the cycle edges. As 
the shaded triangles are right-angled triangles with the other angles 7r/6 and 7r /3 , 
we get that x/y =  1 / 2 .

• Moving a real vertex v of degree greater than 3 when the cycle goes along the 
two single edges.

The new position of the real vertex is on one group of non-cycle edges incident 
with v. We move the vertex v along this group of edges into the required 
position. The operation is shown on Figure 3.9. Some of the non-cycle edges 
become longer and some shorter. The total cost does not change, as the changes 
in the lengths of the non-cycle edges balance the change of cost of the cycle
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edges, as in the previous case. The value does not change and the same flow 
is feasible.

Figure 3.9: Moving a real vertex of degree greater than 3 when the cycle goes along 
the single edges.

• Moving a real vertex v of degree greater than 3 when the cycle goes along one 
single edge and one group of edges.

This situation requires splitting the vertex v into two vertices connected with 
an edge: a real vertex vr of degree 3 and a crossing vc of degree deg(w) — 1 . 
We direct the edge vrvc so that its direction with respect to vr is the same as 
the direction of the single edges with respect to v.

We have to consider two cases. The first case (the middle picture in Figure 3.10) 
is when the real vertex is moved towards the smaller angle created by the cycle 
edges. In this case the real vertex vr is moved and the crossing vc stays on 
the previous place of v. The vertex vr is incident with the two cycle edges and 
with the edge vrvc. The vertex vc is incident with all the non-cycle edges of v 
and with the edge vrvc. Notice that vr lies on a line containing the non-cycle 
single edge of t>, so vc is a crossing (the directions of the edges incident with 
vc satisfy the conditions of a crossing). As one of the cycle edges is incoming 
to vr and the other one is outgoing, and the amount of flow in a single edge is 
smaller than in the one from a group of edges, the balance flow that needs to 
be sent through the edge vrvc is at most k and its direction is consistent with 
the direction of the edge vrvc. There is a feasible flow in the modified part of 
the graph.

Figure 3.10: Moving a real vertex v of degree greater than 3 when the cycle goes 
along one single edge and one group of edges.

The second case (right picture in Figure 3.10) is when the real vertex is moved
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towards the larger angle created by the cycle edges. In this case the real vertex 
vr is moved towards its required position, and the vertex vc is moved along the 
group of edges incident with v to the new intersection point with the cycle. 
The vertex vr is incident with the cycle edge belonging to the group of edges, 
with the edge vrvc (which becomes part of the cycle) and with the non-cycle 
single edge of v. The vertex vc is incident with vrvc and with the remaining 
edges that were incident with v. Vertex vc is a crossing. The cycle now passes 
through both vr and vc. Similarly as before, the balance flow that needs to be 
sent between vr and vc is at most k and its direction is consistent with with 
the direction of the edge vrvc, so there is a feasible flow.

In both cases the cost of the solution stays the same (the changes in the lengths 
of the edges are the same as in the earlier cases considered). The value also 
stays the same, as deg(ty) =  3 and deg(wc) =  deg(u) -  1.

The other vertices we have to consider are the real vertices and crossings that 
belong to the shifted cycle C, on which the cycle does not change the direction. We 
deal with these vertices in the following way.

• The single edges of a crossing are shifted.

In this case the crossing is moved accordingly (see Figure 3.11). The cost, 
value and flow stay the same.

Figure 3.11: Moving a crossing.

• Two of the multiple edges of a crossing are shifted.

A new crossing is created at the additional intersection point (see Figure 3.12). 
A single edge is divided into two edges. Their directions are the same as the 
direction of the original edge. The cost and the value stay the same. The 
new crossing vertex is incident with three edges that were incident with the 
previous crossing: two cycle edges and a single edge. The flow in the cycle 
edges is directed in the opposite ways. The flow in the single edge is smaller 
than the flow in the cycle edge where the flow is directed in the opposite way. 
We get that the amount of flow needed to be transferred between the two
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crossings is at most k and its direction is consistent with the direction of the 
edge, so there is a feasible flow in the modified part of the graph.

Figure 3.12: Splitting a crossing into two crossings.

• Two edges of a real vertex with opposite directions are shifted (a cycle was 
going straight through the real vertex).

The real vertex is not moved. A new crossing is created at the intersection 
point of the shifted cycle edges with a single edge incident with the real vertex 
(see Figure 3.13). A single edge is divided into two edges. Their directions are 
the same as the direction of the original edge. The cost and the value stay the 
same. The same flow is feasible as again the flow on a single edge of a real 
vertex is smaller than the flow on any other edge where the flow is directed in 
the opposite way. The amount of flow that needs to be transferred between 
the two vertices is at most k and its direction is consistent with the direction 
of the edge, so there is a feasible flow in the modified part of the graph.

Figure 3.13: Splitting a real vertex into a real vertex and a crossing.

3.2.5 Detailed Analysis of Shifting a Steiner Cycle —  Stopping 
Conditions

In the analysis we use the following properties. If two vertices are coincident and 
connected by an edge, they can be merged into one vertex without increasing the 
cost or the value. All Steiner vertices in a minimizer have edges incident with them 
in at most four different directions. If as a result of merging two coincident Steiner 
vertices we get a vertex with edges leaving in at least five directions, the resulting
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multigraph, as well as the original multigraph, is not a minimizer. If a Steiner vertex 
in a minimizer has two batches of edges (groups of at least two edges with the same 
direction), then the angle between the batches is n. If as a result of merging two 
coincident Steiner vertices we get a vertex with two non-opposite batches of edges, 
the resulting multigraph, as well as the original multigraph, is not a minimizer.

We assume that the original graph is a minimizer. We check which of the 
following situations can happen. Notice that the only vertices that are moved when 
a cycle is shifted are real vertices in which the cycle changes direction and crossings.

1. A crossing hits a crossing with which it is incident.

We merge the two crossings into one vertex. The only case when the resulting 
vertex has only four incident directions is when the two crossing have edges 
incident with them with the same directions. As we cannot obtain two non­
opposite batches of edges, the edge along which the crossing was moved was a 
single edge. This case is pictured in Figure 3.14. After hitting the intersection 
point we can continue shifting the cycle.

Figure 3.14: Moving a crossing over a crossing.

2. A crossing hits a real vertex with which it is incident.

We merge the two vertices into one vertex. The only case when the resulting 
vertex has only four incident directions is when a group of edges incident with 
the real vertex (or one edge if the degree of the real vertex is 3) is parallel to the 
cycle edge. This case is pictured in Figure 3.15. After hitting the intersection 
point we can continue shifting the cycle.

3. A crossing hits a non-Steiner vertex with which it is incident.

We merge the two vertices into one non-Steiner vertex. We do not shift the 
cycle any further, as it is not a Steiner cycle any more (the cycle crosses a 
non-Steiner vertex). The degree of the non-Steiner vertex increases, but it is 
still upper-bounded by 2D, as the graph is a minimizer.
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Figure 3.15: Moving a crossing over a real vertex.

4. A real vertex hits a crossing with which it is incident.

We merge the two vertices into one vertex. The only case when the resulting 
vertex has only four incident directions is when a group of the edges incident 
with the crossing (or an edge if the degree of a crossing is 4) is parallel to one 
of the cycle edges (see Figure 3.16). In this case the merged vertices create a 
real vertex and the cycle can be shifted further.

Figure 3.16: Moving a real vertex over a crossing.

5. A real vertex hits a real vertex with which it is incident.

We merge the two vertices into one vertex. The only case when the resulting 
vertex has only four incident directions and there are no non-parallel batches 
of edges is shown in Figure 3.17. In this case the merged real vertices create 
a single crossing — the number of real vertices decreases. We do not shift the 
cycle any further, as it is not a Steiner cycle any more (it changes direction in 
a crossing).

Figure 3.17: Merging two real vertices into a crossing.

6. A real vertex hits a non-Steiner vertex with which it is incident.

We merge the two vertices into one non-Steiner vertex. We do not shift the 
cycle any further, as it is not a Steiner cycle any more (the cycle crosses a
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non-Steiner vertex). The number of real vertices decreases.

7. A cycle edge is contracted to a zero-length edge.

We merge the two real vertices that are the endpoints of the edge into a single 
vertex. We get a crossing, similarly as in Figure 3.17. The number of real 
vertices decreases. We do not shift the cycle any further, as it is not a Steiner 
cycle any more (it changes direction in a crossing).

After performing the above operations there is still a feasible flow in the 
graph. Each operation consists of merging two incident vertices and then possibly 
splitting a real vertex or a crossing into two vertices, in the same way as considered 
in Section 3.2.4. The flow that was feasible before the operation is still feasible in 
the modified graph.

We shift the cycle as far as possible. The only possibilities that we cannot 
shift the cycle any further is when we obtain one of the cases 3, 5, 6 and 7. As a 
result we get a minimizer with the same cost and value and either a smaller number 
of real vertices (cases 5, 6 and 7) or the same number of real vertices and a larger 
sum of the degrees of the non-Steiner vertices (case 3). The shifted cycle is not a 
Steiner cycle any more —  it either crosses a non-Steiner vertex or changes direction 
in a crossing.

3.3 A Quasi-Polynomial Time Approximation Scheme

In this Section we consider the capacitated geometric network design problem with 
total demand D < nc for some constant c >  0. We design a quasi-polynomial time 
approximation scheme that works for an arbitrary edge capacity k. We can assume 
that k <  D.

In Section 3.3.4 we present a modified quasi-polynomial time approximation 
scheme for a version of the CGND problem when the sinks have unbounded demands.

From Theorem 3.6 we know that for any instance of the CGND problem 
there is an optimal solution Mopt — (V,E) that satisfies the following properties: 
the number of Steiner vertices is at most 32D4 +  4D2, there are no two coincident 
vertices, the degree of each vertex is at most 2D and the edges cross only in vertices. 
We have |V| < 38n4c, \E\ <  38n5c. These bounds make it possible to use Arora’s 
framework [10] for geometric optimization problems.
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3.3.1 Dividing into Subproblems

Lem m a 3.19. Let I  =  (S,T,D,k) be an instance of the CGND problem. In polyno­
mial time we can partition the set of input points S U T  into sets Si U p  such that 
every optimal solution consists of the disjoint solutions for the problem instances 
p  =  and the cost of an optimal solution for any instance p  is at
least ^ ^ ¿7-1, where p  is the side length of the smallest square containing all points 
from the set SiUTi.

We first show the following result.

Lem m a 3.20. One can find in polynomial time a k-approximate solution to an 
instance of the CGND problem.

Proof. We split each source and sink into a set of coincident sources or sinks with 
demand 1. As a result we get the set of at most D unit (i.e., with demand 1) sources 
and sinks. With each solution we can associate a matching between the unit sinks 
and sources, describing where the flow from a given source ends up. Each matching 
M  has a corresponding cost cost (At), which is the sum of the distances between the 
matched pairs. As the edges have capacity k, a solution to which corresponds the 
matching M  has cost at least cost(M) ,

Finding a minimum cost matching and connecting the source-sink pairs by 
. direct edges gives a solution with a cost cost(Ai) <  k • OPT.  □

Proof of Lemma 3.19. Let ap(J) be the cost of the fc-approximate solution for I  from 
Lemma 3.20. We have

OPT(I)  <  ap( /)  <  k ■ OPT(I)  .

If the distance between two input points is more than ap( /) , in an optimal solution 
the points have to be in different connected components. We create a graph on 
the vertex set S  U T  by connecting each pair of vertices with an edge if the distance 
between them is at most ap(7). We divide the set <SUT into subsets, each containing 
vertices from one connected component of the graph, and create a separate problem 
instance p  =  (Si, p ,  f|5tuTt; k) for each subset Si U p .

As long as the resulting operation returns more than one problem instance, 
we repeat it with each instance as the input. At some point the operation ends and 
we get a collection of problem instances J i, . . . ,  I j ,  representing a partition of the set 
SUP into subsets Si U p. By the construction of the instances p we know that any 
optimal solution for I  consists of disjoint solutions for each p. All the points from
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Si U Ti are contained in a square of length

i% <  |«Sj U %\ • ap(7j) <  |5j U %\ • k • OPT(Ii) .

That gives the required lower bound on the cost of an optimal solution for each 
instance /¿. v □

We divide the original problem instance into a collection of independent in­
stances, according to Lemma 3.19. We can now assume that all the input points are 
inside a square 7 x 7 and the cost of an optimal solution is at least

3 .3 .2  P e rtu rb a tio n , R a n d o m iz e d  D issection  an d  P orta ls

We divide the 7x7 square into unit squares using a uniform grid of size polynomial in 
n and D. We modify the problem by shifting all input points to the nearest gridpoint 
(i.e. intersection of grid lines), possibly merging coincident sinks and sources into a 
single sink or source or removing them if the balance flow is 0.

The multigraph M o p t  is an optimal solution for the instance of the CGND 
problem as in Theorem 3.6. Let M 'O P T  be a multigraph obtained from M o p t  by 
moving each vertex to the nearest gridpoint and merging vertices that became co­
incident by this operation. Notice that the edges in M 'O P T  cross only in Steiner 
vertices, similarly as the edges of M o p t -

Lem m a 3.21. If the size of the grid is at least • n6c+1 x y  • n6c+1, we have

C(Mopr)  5: (1 +  £) ■ C(M o pt ) •

Proof For the multigraph M o p t  =  (F, E) we have \E\ <  40n5c. A vertex can be 
moved by a distance at most 80n£/ I+i , so the total change in the length of the edges 
is at most 2\E\ • 80n££+r < y|r < • On the other hand, C ( M o p t ) >  and the
total change of cost is at most e - C { M o p t ) - □

We make a randomized dissection of the square —  a recursive partitioning 
of the square into four equal squares, performed until we obtain the unit squares. 
The size of the grid is the smallest power of 2 which is at least 2 • * w6c+1. Also,
instead of starting with the original i  x i  square, we start with a 27 x 27 square 
with the original square shifted randomly inside. A more detailed description of 
the randomized dissection can be found in [10; 38], as well as in Section 2.3.2. The 
number of levels of the dissection is £  =  0 (log(2 • y  • n6c+1)) =  0 (c • log j ) .
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Let m be the smallest power of 2 such that m >  ^  =  0 (| log ^ ). Similarly 
as in [10; 38] and in Section 2.3.2, on the boundary of each dissection square we put 
m +  1 equidistant portals, in such a way that the corners of the dissection squares 
are covered by the portals.

We modify the solutions to the CGND problem in such a way, that the edges 
can cross the boundaries of the squares only in portals (i.e. we create additional 
Steiner vertices in portals). Notice that all the input points are in portals. We do 
not allow any Steiner vertices outside of portals, and we do not allow the edges to 
cross outside of the portals. In the remaining part of this section we will present 
a quasi-polynomial time algorithm that finds an optimal solution to the modified 
problem.

First we show the following lemmas.

Lem m a 3.22. An optimal solution to the modified problem has expected cost at most 
(1 +  e)2 • C(M o p t )-

Proof. Let us scale the distances such that the length of the unit square side is 
1. Consider the multigraph M'OPT and a multigraph MqPT obtained from M'opT 
by substituting all edges with portal-respecting paths. Notice that all the Steiner 
vertices of MqPT are in portals and the edges do not cross outside of the portals.

Let xy  be an edge in M'0PT. The number of times where the edge xy  crosses 
a boundary of some dissection square is at most 2\xy\. The expected increase in cost 
caused by crossing a single boundary is not greater than ' m =  m • The edge
\xy\ is modified into a path of the expected cost at most |:ry| +  2\xy\ • £  <  \xy\(l +£) 
and the expected cost of the multigraph MqPT is at most (1 +  s) • C {M 'OPT) < 
(1 +  e)2 • C(M o p t )- Therefore the expected cost of the optimal solution is at most 
(1 +  e j2 ■ C{Mo p t ). □

Lem m a 3.23. From an optimal solution to the modified problem we can get a solu­
tion for the original problem with an expected cost at most (1 +  e)3 • C(M o pt )-

Proof. Let M  be an optimal solution to the modified problem. From Lemma 3.22 
we know that the expected cost of M  is at most (1 -|-e)2 - C ( M o p t ) - To obtain from 
M  a solution to the original problem it is enough to put a Steiner vertex into the 
position of each sink and source after the perturbation and connect these points with 
the sinks and sources of the original problem by as many single edges as required by 
the demand of the sink or source.

We have to add at most 2nc edges, each of length at most 3-̂ + 1, so the cost 
of the obtained solution is at most C(M)  +  2nc • 80rf/c+i <  C(M )  +  e • C (M o pt )- 
The expected cost of the obtained solution is at most (1 +  e)3 • C{M q p t )- □

84



3.3.3 Dynamic Programming

We want to find an optimal solution to the modified problem, i.e., where all sinks 
and sources are in portals, the Steiner vertices can be created only in portals and the 
edges do not cross outside of the portals. We can consider only solutions (multigraphs 
with a specified flow) where the flow through each portal goes in one direction only 
(into or out of the square) and the amount of it is at most D.

We find an optimal solution using dynamic programming. The interface of a 
square specifies the amount of flow and the direction of it (into or out of the square) 
for each portal. The number of interfaces of a square is (1+2Z))4m =  nP^c2e 1'1°s(n/e))) 
which is quasi-polynomial in n. For each square and for each interface we want to 
find the solution with the minimum cost satisfying the interface (if there is a feasible 
solution for a given interface). Since we have doubled the size of the original square 
enclosing the input points, we may assume that no input points are on the perimeter 
of this square. Hence, the solution to the problem is the minimum cost solution for 
the doubled original square with an empty interface.

We start with finding the minimum cost solutions to the interfaces of the unit 
squares.

Lem m a 3.24. The minimum cost solutions to the leaf-subproblems, i.e., to the in­
terfaces of the unit squares, can be found in time n °^ 2e llog(n/ £)).

Proof. As we consider only solutions where all sinks, sources and Steiner vertices are 
in portals, and the edges do not cross outside of the portals, the edges inside the 
unit squares do not cross. That means that in each solution the edges go along some 
triangulation of the square, where the vertices of the triangulation are the portals. 
The number of triangulations for a given interface I  is a Catalan number, it is smaller 
than 44m =  (S)O(ce *) and we can list all of them in time 4°(mk

For each of the aforementioned triangulations Q, we generate all possible 
multigraphs whose multiedges are in one-to-one correspondence with the edges of Q 
and have multiplicity in the range [0, \D/k]].

The number of such multigraphs corresponding to Q is n °(cm) and they can 
be generated in time n ° (cmb Next, for each of the multigraphs we verify whether or 
not it is a feasible solution to the interface I  and if so, compute its length.

To perform the test, for each multiedge of the multigraph, we define its capac­
ity as the product of its multiplicity and k. Now, it is sufficient to run a maximum 
flow algorithm to see if there is an integral flow from the sources to the sinks equal 
to the total demand of the sources in the original multigraph. Thus, the test and 
computation of the total length take 0 (m3) time per multigraph.
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Finally, we return the shortest among the feasible multigraphs for I  as a 
solution to I. We conclude that we can find a solution to a given interface in time 
n °(cm).

Since the number of interfaces is also n0(-cm\ and m =  0 (|  log j ) ,  the lemma 
follows. • □

Lem m a 3.25. The minimum cost solutions to the remaining subproblems, i.e., to 
the interfaces of the non-unit dissection squares can be found in time n °^ 2e 1 lo&(n/£)).

Proof. For the non-unit squares computing the solutions for all interfaces is straight­
forward. Each such a square consists of four smaller squares, for which the solutions 
have been computed earlier. We consider all possible configurations of interfaces of 
the four squares, check whether they are consistent (i.e. in the Steiner points inside 
the larger square —  the places where the portals of the smaller squares meet —  the 
total flow must balance with the demands of the sinks or sources located there). 
We know the cost of the solutions for the smaller squares, so we can compute the 
cheapest solutions for all feasible interfaces of the larger square. For each square it 
is done in time n °^ 2e 1-1°g(n/e)) and the number of dissection squares is | • n °(c\ □

By applying Lemmas 3.23 -  3.25 with e divided by an appropriate constant, 
we obtain our main theorem in this section.

Theorem  3.26. For any e >  0, there is a randomized n ° (c2e 1 ios(n/e)) -time algo­
rithm for capacitated geometric network design with a total of n sources and sinks 
and total demand upper bounded by nc, which yields a solution whose expected cost 
is within (1 +  e) of the optimum.

The QPTAS of Theorem 3.26 can be derandomized as the one in [10].

3.3.4 A  QPTAS for Unlimited Demands of Sinks

The approximation scheme is very similar to the previous one. We know that there 
is an optimal solution satisfying the same properties as before (from Theorem 3.6). 
The only modifications in the approximation scheme are:

• We use a different /^-approximate solution from the one in Lemma 3.20 — 
connecting each source to the closest sink. •

• In the dynamic programming part, if a portal contains a sink, an arbitrary 
amount of flow going into the portal can be balanced with the sink. We also 
admit no flow coming to the sink (i.e. it can be an isolated vertex).
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Theorem  3.27. For any e >  0, there is a randomized n °^ 2e 1 togWO)-time algo­
rithm for capacitated geometric network design with unlimited demands of the sinks, 
with a total of n sources and sinks and total demand of the sources upper bounded 
by nc, which yields a solution whose expected cost is within (1 +  e) of the optimum.

3.4 A Polynomial Time Approximation Scheme for Sin­
gle Sink

In this section we consider the single-sink capacitated geometric network design 
problem with a total demand D < n c for some constant c. Throughout this section 
we assume that the edge capacity k <  2 °(v/logn). We design a polynomial time 
approximation scheme for this problem.

The idea of the algorithm is as follows. We partition the set of sources S into 
two subsets, depending on their distance from the sink t. The set of outer sources has 
a total demand upper bounded by a polynomial function of k. Using the algorithm 
from Section 3.3 we construct a near-optimal network which can transfer the flow 
from the outer sources to some Steiner vertices closer to the sink. These Steiner 
vertices now become new sources. As the number of points and the total demand 
is much smaller than n, the running time is polynomial in n. We then solve the 
problem for the inner sources together with the new sources. We show that for such 
a set of points the cost of the minimum TSP tour is small compared to the cost of 
an optimal solution. That allows us to use a simple algorithm to find a near-optimal 
solution. Combining the two networks together gives a near-optimal solution to the 
SCGND problem.

Let L be the maximum distance between a source and the sink t, i.e. L =  
maxs£s  8(s, t). Let O PT  be an optimal solution for the SCGND problem, and TSP  
be the shortest traveling salesman tour for S U {i} .

Similarly as for the CVRP problem in Section 2.2, we can show the following
result.

Lem m a 3.28. There is a polynomial time algorithm that outputs a solution with 
cost at most

(1 +  e ) -C (T S P )  +  ^ 8 ( s , t ) - t ) ( S) .

We get the following result
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Furthermore, the following inequalities hold

1
k Y  *(«, t) • D(s) <  C(OPT) <  C(TSP) +  i  Y  S(s>*) • 0 (s) •

Proof. Sending a unit of flow from a source s € S to the sink t requires the use of 
some edges of the network with total length at least 8(s, t). As each edge can be 
used by at most k units of flow, we obtain C(OPT) >  £ Y lses^(s^ ) ' s)•

Given a TSP  tour T  on S  U {£}, we can find a solution to the SCGND 
problem with cost upper bounded by C(T) +  lY!,seS^(s^ ) ’ K s) as follows. We 
consider a point s on the tour T  as D(s) consecutive points, connected by edges of 
length 0. We divide the tour into consecutive paths, each containing k consecutive 
points (except of the last path which might be shorter). Then, for each path, except 
for the first and the last one (which are already connected to the sink), we connect 
to the sink the point that is closest to the sink. The cost of this network is at most 
C (T ) +  £ YhseS ^(s> 0  ' ®(s)- There is a feasible flow in the network, as it consists of 
trees, each of them containing the sink t and at most k unit sources from <S. The 
trees can be used to transfer the flow from the sources to the sink. Taking an optimal 
TSP  tour as T  gives a bound C(OPT) <  C(TSP)  +  £ Ylses ^(s> 0  ' ^(s)-

If we take as T  a (1 +  e)-approximate solution to the TSP problem, which 
can be found in polynomial time [10; 69], we obtain the desired algorithm. □

If C(TSP) <  | ]T)s65 ^(s> Lemma 3.28 gives a polynomial time (1 +e)-  
approximation. Therefore, from now on we assume C(TSP)  >  | YlseS ¿ M s)- 

Working with this assumption, we use the following lemma to upper bound 
the sum of the distances from the sources to the sink.

Lem m a 3.29. If C(TSP) >  § J2seS^(s^ ) ' ^(s) ^ en there is a constant (3 such

Proof. In the proof, we use the following lemma developed by Haimovich and Rin- 
nooy Kan for the capacitated vehicle routing problem. The proof of the lemma can 
be found in [52].

Lem m a 3.30 ([52], Theorem 3). There is a constant ¡3 such that

that
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By combining the assumption about the cost of the TSP  tour with Lemma 3.30, 
we obtain the following chain of inequalities (with being the same constant as in 
Lemma 3.30)

£ • r E  %  ‘)'»W < C(TSP) < p ■ Il - ^ M  < P ■ /£-E<5(M)-»M ,
sE<S y s€«S y s€.S

which yields

■ < / ? • - •  vT  .
V ses £

□ '

Consider a closed disk Q of radius aL  with the center at the sink t, where
4

we set a  =  Let iS0Ui be the subset of points from S that are outside the disk
Q (i.e., for which 6(s,t) >  aL ), and let Sin =  S \ Sout• By Lemma 3.29, we have

Y,seSout 5(s>*) • 5(s) ^ ( ? ) 2 • L> and hence 'EseSout H*) < ( ? ) 2 • i-
We partition the optimal network into two parts —  OPTin and OPTout, which

consist of the edges lying respectively inside and outside Q. We add artificial Steiner 
vertices on the boundary of Q to divide the edges. Then C(OPT)  =  C(OPTin) +  
C (OPTout).

Lem m a 3.31. In time k°^e llos fc) we can find a set S'out of ^2sesout ®(s) points on 
the boundary of the disk Q and a network of cost at most C(OPTout) +  3e • C(OPT)  
that allows sending all the flow from Scut to the unit sinks <S t̂.

Proof. We know that Y,sesout — (^r)2 ' a =  Bet us create m =  
equidistant points, which we call portals, on the boundary of the disk Q.

We know that there is a solution with cost C(OPTout) which sends the flow 
from Sout to some unit sinks on the boundary (it is the network obtained from O PT  
by taking only the edges OPTout)- The distance between two portals is smaller than 

and the total flow is at most so the total increase of cost generated 
by moving each sink to the nearest portal will be at most e • L <  e • C(OPT).  There 
is a solution to the above problem with all the unit sinks in the portals and with a 
cost at most C(OPTout) +  £ • C(OPT).

Now we use the algorithm from Theorem 3.27 with at most unit sources 
and m sinks (the portals) with unlimited demand. The running time is /c°(e_1 logfc) 
and we get a solution with a cost at most (1 +  e)(C(OPTout) +  £ • C(O P T )) <  
C(OPTout) + 3£-C(OPT). □
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Lem m a 3.32. In polynomial time we can find a network which sends the flow from 
the points Sin U S ' ut to the sink t with cost at most C(OPTin) +  2e • C(O PT).

Proof. Let us consider the network OPT. Using the edges from OPTin, each source 
s E S  has a flow transported by a distance at least min{5(s, t),a L }. As each edge 
can be used by at most k units of flow, we get

C(OPTin) > j- • ^ 2 m m {5 (s ,t),a L } -D(s) =  i  <5(s,t) ■ d(s) .
ses sesinuS'0Ut

Let TSP' be an optimal traveling salesman tour for iSmLtS'ui. By Lemma 3.30 
and Lemma 3.29

C{TSP') <  0 -  f e l -  £  8 ( s , t )< p -  l a L - Y ' S M K
Y  se 5 inu 5 'ut V  ses

< t J i . ^ . L < t l h . ^ . C {OPT) .
£ £

Since a  =  jgj • p ,  we have C(TSP') <  e • C (O PT).
Using the algorithm from Lemma 3.28 we get in polynomial time a solution 

with cost at most

(1 +  e) • C{TSP') +  i  • 6(s ' ^  i1 +  £)£ • C(O PT) +  C{OPT in) .
s e 5 inU 5 'ut

□

Combining the algorithms from Lemma 3.28, Lemma 3.31 and Lemma 3.32 
yields a solution to the original SCGND problem with cost at most (1 +  5 e) -C(OPT) 
and running in time k°(e llo8fe) +  n°^l\ By dividing e by 5, we obtain our main 
result.

Theorem  3.33. For any e >  0, there is a deterministic algorithm for the SCGND 
problem with total demand polynomial in n and edge capacity k, which runs in time 
k°(e 11°6 fc) _). xfi(i) and yields a solution whose cost is within 1 +  e of the optimum. 
For k =  2°(v'losn); n runs in polynomial time.

3.5 Open Problems

G eom etric buy-at-bulk  network design. A natural extension of the geometric 
network design problem is the geometric buy-at-bulk network design problem, where
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instead of a single edge type of a given capacity k we are given multiple types of 
edges, where the cost of an edge depends on its length and type. The rectilinear 
version of that problem has been considered by Czumaj et al. [38], who present a 
QPTAS for it.

It is an interesting question of whether or not the upper bound on the number 
of Steiner vertices in an optimal solution to an instance of the CGND problem could 
be extended to include several types of edges. Such an extension would lead to 
corresponding extensions of our QPTAS and PTAS to work for the geometric buy- 
at-bulk network design problem.

B etter upper bound on the num ber o f  Steiner vertices. Can we get an
upper bound on the number of Steiner vertices needed by an optimal solution, which 
depends on the total number of sources and sinks, and not on the total demand of 
the sources?

P T A S for SC G N D  for all values o f  k. Another open problem is getting a 
polynomial time approximation scheme for the SCGND problem for all values of k.

P T A S for C G N D . Can we extend the PTAS for the SCGND problem to work for 
the CGND problem, when instead of a single sink we are given an arbitrary number 
of sinks?

O ther m etrics. What results can we show for the capacitated geometric network 
design problem, when the input points are in a constant-dimensional Euclidean space 
instead of the Euclidean plane? What results can we show for other metrics?
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Chapter 4

Reordering Buffer Management 
Problem

4.1 Introduction

In this chapter we study the reordering buffer management problem in an online 
setting.

4.1 .1  Related W ork

Table 4.1 presents an overview of the results for the reordering buffer management 
problem.

The reordering buffer management problem was introduced by Racke et 
al. [74], who developed an 0 (log2 ^-competitive online algorithm for the version 
with uniform costs. Englert and Westermann [44] improved the competitive ratio to 
O(logfc), and their algorithm is also able to handle non-uniform costs with the same 
bound. Their proof works in two steps. First, it is shown that an online algorithm 
with a buffer of size k is constant competitive w.r.t. an optimal offline algorithm 
with a buffer of size |. Then, it is shown that an optimal algorithm with a buffer of 
size | only loses a logarithmic factor compared to an optimal algorithm with buffer 
of size k.

It was shown in [1] that with this proof technique it is not possible to derive 
online algorithms with a competitive ratio o(log k), by presenting an input sequence 
where the gap between an optimal algorithm with a buffer of size | and an op­
timal algorithm with buffer size k is fi(log k). Nevertheless, Avigdor-Elgrabli and 
Rabani [16] were able to go beyond the logarithmic threshold by presenting an on­
line algorithm with a competitive ratio 0 ( i0g°ogfc) using linear programming based
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online offline

0 {  log2 /^-competitive, 
uniform costs [74]

algorithms
0(log /^-competitive [44]

0 (to|kifc)-comPetltlve t16l

0  (1 ̂ approximation, 
uniform costs [17]

0 (\ /lo g  fc)-com petitive, 
determ inistic

lower
bounds

"(v's&b)for
determ inistic algorithm s

fl(lo g lo g fc )  for 
random ized algorithm s

NP-hard for 
uniform costs [32; 13]

Table 4.1: An overview of the results for the reordering buffer management problem. 
The new results are presented using bold font.

techniques.
For the offline problem it was shown by Chan et al. [32] and independently by 

Asahiro, Kawahara, and Miyano [13] that the problem is NP-hard even for uniform 
costs. Recently Avigdor-Elgrabli and Rabani [17] gave a constant factor approxima­
tion algorithm for the offline problem with uniform costs.

There also exists a more general version of the problem. Instead of letting 
the context switching cost for switching from an item with color d  to an item with 
color c only depend on c, it is sometimes desirable to let it depend on d  and c. 
Khandekar and Pandit [61], and Gamzu and Segev [47] study the problem where 
the colors correspond to points in a line metric. Colors d  and c are integer points 
on the line and the cost for switching from d  to c is \d — c\. This version of the 
problem is motivated by disc scheduling. Khandekar and Pandit [61] give a random­
ized 0(log2 n)-competitive online algorithm for n uniformly spaced points on a line, 
and a constant factor offline approximation in quasi-polynomial time. Gamzu and 
Segev [47] improve the first result to O(logn). They also show a lower bound of 
2.1547 on the competitive ratio of deterministic online algorithms on the line. This 
is the only non-trivial lower bound that exists for any variant (i.e. metric) of the 
problem.

Englert et al. [43] consider a more general version where colors correspond to
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arbitrary points in a metric space (C, (5) and the cost for switching from color c' to 
color c is the distance 5(c', c) between the corresponding points in the metric space. 
They obtain a competitive ratio of 0 (log2 fclog |Cj).

Research has also been done on the maximization version of the problem, 
where the cost-measure is the number of color changes that the output sequence 
saved over the unordered input sequence. For this version there exist constant fac­
tor approximation algorithms due to Kohrt and Pruhs [62] and Bar-Yehuda and 
Laserson [22].

There is a whole area of scheduling that investigates scheduling problems with 
setup times or costs, which is related to the problem we consider in this chapter. In a 
scheduling problem involving setup times (costs) the goal is to schedule a set of tasks 
on a set of machines to optimize a given objective function, where together with the 
processing time (cost) of the tasks we have to consider the setup time (cost), which 
is incurred when a machine switches to a different task. There are a lot of papers 
studying many versions of this problem, for example the setup time can depend on 
or can be independent of the task processed previously on the machine, the tasks 
can be processed individually or in batches, and different objective functions can be 
considered. An overview of the results in the area can be found e.g. in [9].

4 .1 .2  Our Results

We improve the best known upper bound, as well as the best known lower bounds 
for the reordering buffer management problem.

In Section 4.2 we show how a change in the buffer size can affect the cost 
of an optimal solution for the reordering buffer management problem with uniform 
costs. Using these results we can obtain lower bounds on the competitive ratio of 
some online algorithms for the reordering buffer management problem which have 
been considered before, and for which no lower bounds were known.

In Section 4.3 we present first non-trivial lower bounds on the competitive 
ratio of online algorithms for the problem. We show that any deterministic online 
algorithm for the reordering buffer management problem has a competitive ratio of 
at least n ( V n l § i )  even in the uniform case. For randomized algorithms we are 
able to construct a lower bound of fI(log log k). Earlier no lower bounds were known, 
and it was quite conceivable that the existing algorithms might actually have a much 
better competitive ratio than what was proven about them, possibly even a constant 
competitive ratio [16].

In Section 4.4 we complement the lower bound for deterministic algorithms 
with a deterministic online algorithm whose competitive ratio nearly matches it. We
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present a deterministic online algorithm that obtains a competitive ratio of 0 (v lo g  k) 
for the non-uniform case in which the ratio between the smallest and the largest 
weight of a color is polynomially bounded in k. This improves upon the result of 
Avigdor-Elgrabli and Rabani [16] who obtained a competitive ratio of

All previous results [16; 44; 74] for the reordering buffer management problem 
used very similar algorithms with only subtle differences between them. The differ­
ences between the results were mostly based on the analysis. In contrast, our new 
result relies on an important modification in the algorithm. In addition to techniques 
similar to those used in [16; 44; 74], our algorithm also relies on classifying colors 
according to the number of items of the color in the buffer. Then, the algorithm tries 
to evict items of a color class that currently occupy a large fraction of the buffer. 
This algorithmic ingredient plays a crucial role in reducing the competitive ratio to 
O (\/log k) in our analysis.

The results are based on joint work with Artur Czumaj, Matthias Englert 
and Harald Racke [3].

4.2 Bounds for Modified Size of the Buffer

In this section we consider the reordering buffer management problem with uniform 
costs, i.e., where the cost of an output sequence equals the number of color-blocks 
in the sequence. A color-block (or a block) of a sequence is a maximal subsequence 
of consecutive elements with the same color. We show how a change in the size 
of the buffer can affect the cost of an optimal solution. We then explain how we 
can use these results to show lower bounds on the competitive ratio of some online 
algorithms.

By O P T f ( c r )  we denote an optimal solution, and by | O P T f ( c r ) |  the cost of 
the respective solution, for an instance a of the problem using a buffer of size l. 
When the problem instance cr is known from the context, we write OPTf instead of 
O P T  e(a).

Theorem  4.1. For any instance o  of the reordering buffer management problem 
with uniform costs and a parameter a  =  a{k ) such that 0 <  a  <  1 we have

|OiTu _ „ )4M| <  (3  +  2r ^ l o g ( ( l - a ) k ) )  ■ \OPTk(a)\ .

Proof It is enough to consider input sequences a for which an optimal solution with 
a buffer of size k outputs all elements having the same color in a single block. Any 
input instance a which does not satisfy this property can be modified in the following
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way. The sets of elements that are output by the optimal solution as single blocks 
are recolored with unique colors. This operation does not change the cost of OPT*,, 
and it does not decrease the cost of OPT(i_a)*..

Let a be an input sequence satisfying the property above. Assuming that we

which uses buffer of size (1 — a)k  and has the desired cost.
Let m be the number of colors appearing in the input sequence a. We order 

the colors based on the order in which they are output by the optimal solution with 
buffer of size k. Color c*, where i =  1 , . . . ,  m, is the *-th color output in the optimal 
solution.

We define a phase of algorithm ALG as follows. If ALG has already output 
all elements with colors c i ,. .. ,C j_ i ,  but there are still some elements of color c* 
which have not been output, the algorithm ALG is in the *-th phase.

The algorithm ALG works as follows. Let i be the index of the current phase 
of ALG. As long as there are some elements of color c* in the buffer, the algorithm 
outputs them. At some point it might happen, that the whole buffer is filled with 
elements with colors in {cj+i, Cj+2, . . . ,  cm}. The algorithm has to choose some color 
Cj (where j  >  i) to be output. Notice that if at least ak elements with colors 
in {c*+i,Ci+2, . . .  ,cm} have been output, the algorithm can finish outputting the 
elements with color c*.

For any j  >  i let Sj be the number of elements of color Cj currently in the 
buffer .of ALG. Let the potential of color Cj be pj :=  Sj • (j  — i). The intuition behind 
the potential is that outputting the elements of color Cj would free Sj slots of the 
buffer for ( j — i ) phases of the algorithm, so the total “gain” would be Sj • (j  — i). 
The algorithm ALG always outputs a color with the largest potential pj. Ties are 
resolved arbitrarily.

Lem m a 4.2. At each time when the buffer of ALG is full (i.e., when we are not 
running out of the input elements), there is a color with potential at least ¡c~g ■

Proof. Let p =  max{pj : j  >  i}, where i is the index of the current phase of 
ALG. From the definition of the potential pj we get that Sj+i <  p,S{+% <  2>si+3 <  
|, . . . ,  Si+p <  and in the buffer there are no elements with colors q  for £ > i +  p. 
The total number of elements in the buffer is (1 — a)k, therefore we must have

know the optimal solution for the buffer of size k, we will design an algorithm ALG

We get that p > and there is a color with potential p in the buffer. □
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For each color q  we set <j>(£) to be the number of elements with colors in 
{c£+1, C£+2, . .  •, cm} that are output by ALG before the last element of color c*. Let 
<f> =  YyjLi 4>{i)- We update the values of 4>(i) and (j) while running the algorithm. 
When elements with color Cj are output during the z-th phase of ALG, for j  ^  i, the 
value of 4> increases by pj, as the values of </>(z), 4>(i +  1 ) , . . . ,  (f>(j — 1) increase by Sj 
each. As we always choose a color with the largest potential, from Lemma 4.2 we 
get that the value of </> increases by at least

When the value of (j>(i) reaches ak, it means that at least ak elements with 
colors in {q + i, Cj+2, . . . ,  cm} have been already output, and the algorithm can finish 
outputting all the elements with color c,. The value of (¡>{i) does not increase any 
more. The number of times the value of (f> is increased is at most

m -a k  /  a ,
m + — a j t / i o g « !  -  c ) k) = n 1 +  log((1 ~ a)k ))  ■

Each time the value of <fi is increased, the cost of the algorithm increases by 
at most 2 —  first the algorithm outputs a block of elements of some color Cj, and 
then possibly a block of elements of the current color c*. Additionally, for each i, at 
the beginning of the z-th phase the algorithm can output a block of elements with 
color Cj without increasing the value of <f>.

The total number of color-blocks in a solution generated by ALG, and there­
fore also the cost of OPT(!_a)fc, is bounded from above by

m +  2 m (l +  j ? -  log((l -  a )k fj =  (3 +  2 ^ -  log((l -  a )k fj ■ |OPTfe| ,

as |OPTfc| =  m. □

Corollary 4.3. Let a =  for a constant c. We have

\OPT(1_a)k(a)\< 3 (1 +  c)-\OPTk(a)\ .

C orollary 4.4. Let 0 <  a <  1 be a constant. There is a constant c =  c(a) such that 
for any input sequence a we have

\OPT{1_ a)k(a)\<clogk-\O P T k(a)\ .

We now show a lower bound which is of the same order as the upper bound 
from Theorem 4.1 if the parameter a =  a (k ) satisfies 0 < a  <  c <  1 for some 
constant c.
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Theorem  4.5. For any parameter a =  a (k ) such that 0 <  a <  1 there are instances 
a of the reordering buffer management problem with uniform costs such that

\OPT{l_a)k(a)\ >  ( l  +  ia - lo g fc )  -\OPTk(a)\ .

Proof We will construct an input sequence a consisting of elements with colors 
c i , . . . ,  cm, such that using a buffer of size k we can output all the elements of each 
color in one block (i.e., |OPTfc| =  m), starting with the color ci and then continuing 
until Cm, but any solution generated using a buffer of size (1 — a )k has cost at least 
(1 +  • log A:) • m.

The number of elements of each color will be k +  For each color Cj
the last block of color Cj in the input sequence consists of k elements, to force all 
algorithms using buffer of size at most k to output the remaining elements of color 
Ci at the time of getting the last block of this color from the input sequence. As in 
the previous theorem, for any algorithm processing the input sequence we define the 
¿-th phase as the time when all the elements of colors {ci, c%, . . . ,  Cj_i} have been 
output, but not all the elements of the color Cj.

We construct the input sequence in such a way, that before the time the 
last block of color c* appears, the input contains exactly k — 1 elements with colors 
in {ci+i,Ci+2>. . . ,  Cj+p}1 for a parameter p =  p(k) that will be fixed later, and no 
elements with colors Ci+j  for j  >  p. For each 1 < j  <  p we want to have roughly ? 
elements'of color Cj+j before the last block of color Cj.

We proceed as follows. Let p be the smallest integer such that p- Hp > k — 1. 
We can easily check that p satisfies <  p <  2 j ^ .  As J2j=i  ̂ =  P ’ Hp > k  — 1, 
we can choose values n\, n2, . . . ,  np in such a way, that.for each j  we have: nj <  [? ], 
nj > nj+1 and Y lj= inj  =  fc — 1. We construct the input sequence in such a way, 
that for each i and i <  j  <  p there are exactly nj elements of color cl+j  before the 
last element of color c*. As the number of elements with colors in {cj+i, Cj+2>. . . ,  cm} 
before the last element of color c* is k — 1, we have |OPTfc| =  m.

The input sequence a, which satisfies the conditions above, is as follows:

(c
ni
1 n«i nn2 V 1-1) 4 ( m-ri2

C3
ri2—n3 

c4
U p - l —U p

cp+1
(n \- r i2  ri2-ri3
lci+l ci+2

T l p - l - t l p  U p  \  

ci+p- 1 Li+p/
.kl • •

Let ALG be an algorithm processing the input sequence a, and using a buffer

1 Except when we are approaching the end of the input sequence. However, as the number of 
colors m can be arbitrarily large, we can ignore the fact that we do not get any elements with colors 
Cj for j  > m.
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of size (1 — a)k. Let i be the index of the current phase of ALG, and let i +  1 < j  < 
i +  p. As before, let Sj denote the number of elements of color Cj currently in the 
buffer of ALG, and let the potential of color Cj be pj Sj ■ (j — i). As the number of 
elements of color Cj that appear in the input sequence before the last block of color 
Cj is rij-i, we have

Pj <  rij-i ■ (j - i ) < P
j - i ■ (j ~  i) <  2p < 4

k
log k

As before, let 4>(i) be the number of elements with colors in {cj+i, Cj+2, . . . ,  cm} that 
are output by ALG before the last element of color Cj, and let <j> =  ! (¡>{i)- When
ALG switches to color Cj, the value of <f> increases by pj <

As ALG uses a buffer of size (1 — a)k, we must have <f>(i) >  ak for each2 phase 
i, and therefore <j>>m-ctk. The number of color-blocks in a solution generated by 
ALG, and therefore also in an optimal solution OPT(1_a)fc, must be at least

m + (¡>
Ak/ log A;

> ( l  +  ^a-logA :).|O P Tfc|

□

The above theorem generalizes the result of Aboud [1], who shows that there 
are instances a of the reordering buffer management problem for which |OPTj./4(<7)| =  
Q(\ogk) • |OPTjfc(u)|. Aboud uses different sequences a from the ones we use in the 
proof of Theorem 4.5, and his analysis is based on linear programming techniques.

Results from this section allow us to obtain lower bounds on the competitive 
ratio of many online algorithms for the reordering buffer management problem with 
uniform costs. We can try to show a lower bound for an algorithm ALG using a 
buffer of size k in the following way. We fix a parameter a =  u  ( j ^ j ) , and we take an 
input sequence a, for which | O P T ( 1_ a )fc (c r)| =  f2(l +  a • log k) • |O P T f c ( c r ) | .  We then 
transform the input sequence a into a sequence a' by adding some artificial blocks 
with unique colors in such a way, that at each time the elements from the artificial 
blocks fill an a fraction of the buffer of ALG (if ALG is a randomized algorithm, we 
might need to proceed a bit more carefully). The size of the artificial blocks and the 
number of them has to be chosen depending on the algorithm ALG —  the goal is 
to put them into the input sequence in such a way, that ALG does not output the 
artificial elements too fast, as then the number of blocks needed is small. We then get 
that the cost of ALG on o' is at least | O P T ( 1_ a ) jt ( c r ) |  =  fl(l+ a -log  f c ) - |O P T f c ( a ) | .  O n

2We ignore the fact that the p last colors Cm-p+i, ■ • • ,cm have smaller values of as no 
elements with larger colors arrive. As m can be arbitrarily large, it does not affect our analysis.
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the other hand, the optimal algorithm for o ’ can output the artificial blocks as soon 
as it gets them from the input, and we have that |OPTfc(c/)| < |OPTfc(<r)| +  2N, 
where N  is the number of artificial blocks used. The factor 2 is needed here, as 
outputting an artificial block can force the algorithm to stop outputting the current 
block, which can be resumed only after the artificial block has been output. If 
we manage to get N  =  o (l +  a • log/c) • |OPTfc(a)|, we get a lower bound on the 
competitive ratio of ALG.

Consider for example a simple randomized algorithm RAN, which works as 
follows. In each step it chooses uniformly at random an element from the buffer, 
and then it outputs all elements with the same color as the chosen element. We set 
a =  and get an input sequence a such that

|OPT(1_a)fc(<r)| =  Q(a • log*) • |OPT*(a)| =  i)(\/IZ£k) • |OPTfc(a)

Each artificial block will have size ak. The expected time until an artificial block is 
removed by RAN is ^ =  \/log k color changes of RAN. Let C  be the expected cost of 
the algorithm RAN on the original input sequence <r, if RAN is using a buffer of size 
(1 — a)k  instead of k. We know that C >  |OPT(1_Q)fc(cr)| =  f2(v/logk) • |OPTfc(cr)|. 
It is enough to use N  =  0 ( ^ = ^ )  properly placed artificial blocks, and the expected 
cost of the algorithm RAN on a ' will be fl(C). As we get |OPTfc(cr')| < |0PTfc(<7)| +  
2N =  Q (^g^r), the competitive ratio of RAN is at least of the order of ¡. =  
v/log/c.

A similar lower bound can be obtained for many versions of the algorithms 
considered in [44] and [16].

4.3 Lower Bounds

In this section we give lower bounds on the competitive ratio of online algorithms for 
the reordering buffer management problem with uniform costs. We do this by care­
fully constructing an input sequence a for which any online algorithm ONL exhibits 
a large cost, while the optimal algorithm OPT can process a with a significantly 
lower cost.

4.3.1  Preliminaries

We first describe the general scheme for constructing a. For this we introduce pa­
rameters a,d  and iVj, whose precise values will be fixed later. For simplicity of 
notation we assume that k is sufficiently large, and chosen in such a way that no
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rounding issues occur.

The General Scheme for Constructing a

The input sequence a that we construct has the property that an optimal algorithm 
OPT' with a buffer of size (1 + a) k can process a in such a way that the cost of the 
output sequence equals the total number of different colors contained in a (i.e., all 
elements of a single color are output in one color-block). This means OPT' is truly 
optimal for the sequence, and even increasing the size of the buffer further cannot 
reduce the cost for processing a.

To specify the input sequence a further, we will view the buffer of OPT' as 
partitioned into d classes C\,... ,Cd (see Figure 4.1). Each class Ci can store 1̂+da^ 
elements (i.e., each class consists of a  ̂ fraction of the buffer space of OPT'). We 
further partition the buffer of each class Ci into Ni slots, where each slot can store 
Si =  elements (i.e., each slot consists of a fraction of the buffer space of
the class Ci). The number of slots in a class will be decreasing with the index of the 
class, i.e., for i < j  we have Ni > Nj.

C1 c2 c3 c4

Figure 4.1: Partitioning a buffer space of size (1 + a)k into d classes C\,.. . ,Cd (here 
d — 4). Each class Cj is further partitioned into Ni slots.

The main property of the input sequence a will be as follows:

Whenever OPT' has to make a color change while processing 
cr, the buffer of OPT' looks as follows. Each slot is com­
pletely filled with elements of the same color, and different 
slots contain elements of different colors.
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This means, e.g., that if nc denotes the number of elements with color c at a time 
right before a color change of OPT', then nc =  S{ for some i € { 1 , . . . ,  d}. Because 
of this property it makes sense to refer to the color of a slot as the color that every 
element in the slot has. Note that the color of a slot may change over time, but in 
the following proof the time will always be clear from the context.

We obtain the above property by constructing the sequence a as follows: The 
initial (1 +  a)k elements of o  fill up the buffer of OPT'. They are chosen in such 
way that the invariant is satisfied right before OPT' outputs its first element, i.e. 
amongst the first (1 +  a)k elements of a there are exactly iVj colors with s* elements 
for i =  1, ,d. The exact order in which these first (1 +  a)k elements appear in 
a is not important, but we assume that elements among them that share the same 
color appear consecutively.

Further elements in er are chosen in rounds in the following way. For each 
round we choose a slot Zi, i E {1 , . . .  ,d} from every class (see Figure 4.2a).

a) Ci C2 C3 C4 b) Ci C2 C3 C4
= =

co

H i c4
=====

C3
===== c2 Cl

==E

C3 C2 ■
=====

Figure 4.2: One round of creating the sequence a. Figure a) shows the chosen slots, 
and the colors of the elements that are currently occupying the slots. Figure b) 
shows how the contents of the buffer changes after the round. The sequence has 
been extended as follows: c4+1 C34_S3 C23-S2 c*2-51 Cq1, where co is the new color 
introduced in this round.

Then we first add k +  1 elements of the color of to cr, which will force any 
algorithm to switch to this color at this point. Then, for every i, starting from d — 1 
down to 1, we add Sj+i — Si elements of the color of slot Zi to a. Finally, we add Si 
elements of a completely new color to a. This finishes the round.

The algorithm OPT' works as follows. In the beginning of a round it switches 
to the color of slot Zd- This frees up space Sd in the buffer, and, hence, OPT' can 
hold all further elements appearing in the round without requiring any further color 
changes.
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In order to maintain the main property, we do the following. For i <  d — 1, 
all Si elements in slot z* plus the Sj+i — s* elements with the same color arriving in 
the round are moved to slot Zj+i (and completely fill this slot).3 We say that we 
promote slot z* in class C{. Finally, slot z\ holds the si elements of the new color 
(see Figure 4.2b).

This finishes the description of the construction of a up to the selection of 
the d slots for each round. Note that regardless of how we choose these slots, it 
follows from the above discussion that the cost of OPT' for processing a is equal to 
the number of different colors in the sequence.

A  Sketch of the Analysis

From the above description it is clear that the cost of OPT' for processing the 
sequence a is equal to the number of different colors in the sequence.

However, the online algorithm ONL and the optimal algorithm OPT only 
have a buffer of size k. Hence, at any time, these algorithms have already removed 
at least ak elements that are still held by OPT'. Suppose for the time being that 
these algorithms only remove whole slots (remember that we can simply view a slot 
as a set of elements that share the same color).

Clearly, if e.g. ONL removed all elements of a slot z*, and this slot is promoted, 
then ONL will have an additional color change that OPT' does not have. Now, if 
our aim is to maximize the ratio between the cost of ONL and the cost of OPT', it 
turns into a caching problem, where in each round the adversary has to pick a slot 
from every class in such a way that she hits many slots that ONL has removed.

For making this idea work we need to show

• that it is more or less optimal for ONL to remove whole slots,

• that an adversary can always promote a large number of slots that have been 
removed by ONL, and

• that OPT can handle the resulting input sequence fairly well (as we are not 
interested in the ratio between the cost of OPT' and ONL, but in the ratio 
between the cost of OPT and ONL).

3 Observe that the notion of a slot has only been introduced for illustration. Since it is irrelevant ' 
where in the buffer something is stored, it is also possible to simply view a slot as the set of all 
elements of a particular color that are currently stored by OPT'.
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The Caching Framework

In this section we make a formal connection of our problem to the caching-related 
problem hinted at in the above sketch.

We say that an algorithm ALG cleared slot z before round r, if right before 
the time ALG reads the first element of round r, there are no elements from the slot z 
in the buffer of ALG. This implies that ALG does not hold any elements of the color 
of slot z. Define the cost cost^LG of an algorithm ALG in round r as the number of 
slots promoted in round r that are cleared by ALG (i.e. cost^LG corresponds to the 
number of cache misses in round r).

A  lower bound for ONL. The following lemma gives a lower bound on the cost 
of the online algorithm in terms of costGNL.

Lem m a 4.6. The total cost of ONL on the generated input sequence a is at least

Y ? i=1N' +  H r COStrONL •

Proof. First observe that we can compute the cost of an algorithm by increasing its 
cost by 1 whenever an element arrives whose color is different from the last color 
that was appended to the output sequence (called the active output color) and also 
different from all colors present in the buffer.

Initially, the first (1 +  a)k  elements of the input sequence have Yh=i -Ni 
different colors, each of them contributing 1 to the cost of the algorithm.

Then, consider a slot z in class C* for i <  d — 1 that is cleared by ONL and 
promoted in round r. Since ONL cleared z before round r, ONL does not store any 
elements of the color of slot z in its buffer at the beginning of the round. On the 
other hand, z is promoted, which means that elements of the color of z appear in a 
in round r.

The first k + 1 elements of round r belong to some color c of a slot in class Cd- 
After they arrived, the active output color of ONL is c. As the slot z was cleared by 
ONL before round r, at the time the first element of the color of z appears in er in 
round r, the active output color of ONL has to be different from the color of z.

Therefore, each such slot z contributes 1 to the total cost of ONL and there 
are at least costGNL —1 such slots, where the —1 accounts for the slot in class Cd- 
The cost of ONL is further increased by one in every round r, because of the single 
element of a completely new color appearing in a.

By summing over all rounds and taking the first (1 +  a)k  elements into 
account, it follows that the total cost of ONL is at least Yli=i Ni +  costGNL. ^
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A n  upper bound for O P T . In order to give an analogous upper bound on the 
cost of OPT, we will present specific offline algorithms and analyze their cost. In 
order to do this analysis in a round-based manner, we further restrict these offline 
algorithms in the following way. We require that right before a new round, the 
algorithm has less than k — Sd elements stored in the buffer. To be more specific, we 
consider algorithms that process a round as follows.

1. Right before the first element of the round appears in a, the number of elements 
stored in the buffer is reduced to less than k — Sd- This is done by selecting 
aNi + 1  slots from each class C* and removing all of the elements in these slots 
from the buffer.

2. Let Z\,...,Zd denote the slots that are promoted during the round. The al­
gorithm outputs every element of the color of slot Zd- This includes the first 
A: +  1 elements arriving in the round and also elements of the same color that 
may be stored in the buffer.

3. Finally, the algorithm stores all other elements arriving during the round in 
the buffer. This is possible since the number of these elements is Sd-

In order to satisfy the buffer constraint for the first (1 +  a)k  elements of the input 
sequence, we assume that the algorithm immediately outputs elements from slots 
that get cleared from the buffer before the first round.

Lem m a 4.7. Given any offline algorithm OFF with the property above, the total 
cost of OPT on the generated input sequence a is at most

(costopp+ l) .

Proof. The proof is similar to the proof of Lemma 4.6. Again, we observe that we 
can compute the cost of an algorithm by increasing its cost by 1 whenever an element 
arrives whose color is different from the last color that was appended to the output 
sequence and also different from all colors present in the buffer.

Initially, the first (1 +  a) A; elements of the input sequence have Yli=i 
different colors, each of them contributing 1 to the cost of the algorithm OFF. The 
cost of OFF also increases by 1 in each round due to the single element of a completely 
new color that appears in every round. The sum of all these costs is Yli=i M  +  S r 1- 

All further increases in the cost of OFF are caused by a sequence of elements 
arriving in some round r that have a color which is not currently present in the buffer 
of OFF but which is present in the buffer of OPT'. Such a sequence of elements
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corresponds to the promotion of a slot Zi, where at the time of the promotion, and 
therefore also at the time the first element of the round is read from the input, OFF 
does not store any elements of the slot in the buffer.

In other words, each such increase in the cost of OFF is caused by a promotion 
of a cleared slot in some round r and therefore also contributes 1 to costQFF. Hence, 

costQFF is an upper bound on such increases to the cost of OFF.
Observing that the cost of OPT is upper bounded by the cost of OFF com­

pletes the proof. ' □

Choosing Parameters

For the remainder we fix the number of classes as d :=  2 iogSiog k an^ the size of a slot 
in class Ci as s* :=  log*-1 k. The parameter a  will be chosen differently depending on 
whether we want to derive lower bounds for deterministic or for randomized online 
algorithms. If we deal with deterministic algorithms we choose a' :=  ^ /lo|)1°|fe,

otherwise we set a  :=  •

A n  Im portant Lem m a

We now prove a lemma that shows that in the beginning of a round the online 
algorithm has many cleared slots and that these lie in different classes (so that the 
adversary can choose many of them). This lemma forms the basis of our analysis.

We first require a technical claim that essentially states that for our specific 
choice of the values of s* the online algorithm either has a slot cleared or has stored 
nearly all elements of the slot.

Claim  4.8. For a round r and a slot z in a class Ci at least one of the following is 
true:

(a) ONL cleared slot z before round r, or

(b)  The color of slot z is equal to the color of the element that ONL appended to 
the output sequence right before reading the first element of round r,

(c) ONL holds at least log*-1 k — log*-2 k of the log*-1 k elements O PT stores in 
slot z, right before ONL reads the first element of round r.

Proof. Consider a slot z in a class Ci. There are only two possible reasons that z is 
not cleared (i.e., we are not in Case a), but ONL does not store all log*-1 k elements 
of z. Either z is the active output color, which means that ONL is in the process
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of removing elements from 2 (Case b), or some elements of z have been previously 
removed by ONL.

In the latter case some elements have arrived after the removal, as otherwise 
z would be cleared. However, the last sequence of elements with the color of slot z 
was the sequence of length log1-1 k — log1-2 k. All these elements must still be in the 
buffer of ONL. This means we are in Case c. This proves the claim. □

Using the claim, we can now prove the desired bounds on the number of slots cleared 
by ONL.

Lem m a 4.9. Let ¿i be the number of slots from class Ci cleared by ONL before round 
r. The following holds:

M E U W o g ‘ - ' k z f .

(b) At least of the values Ix are not 0. In other words, at least different 
classes contain at least one cleared slot.

Proof. At the beginning of a round there must exist at least ak elements that ONL 
has already removed from its buffer while they are still held by OPT'.

Due to Claim 4.8, every slot of class Q  that is not cleared by ONL before 
round r and whose color is not the active output color of ONL, contains at least 
log*-1 k -  log*-2 k elements. Hence, the number of elements that are held by OPT' 
but not by ONL is at most

d d
logd-1 k +  ~  ti) log4' 2 log*-1 k ,

i = l  ¿=1

where the first term accounts for the active output color of ONL' and the second 
term accounts for the possible excess elements of OPT^ in slots that are not cleared. 
This, however, has to be at least ak. We get

ak <  logd—1 k +  ¿ (A T i -  if) log* 2 k +  Y  ** loS* 1 k
2 =  1 2=1

< k | (1 +  Qf)fc | lori -1 fr
-  log A: log A; ^  1i= 1

ak< ^  +  E W - 1 * ,
i = 1

where the last step follows since ^  HT ôr sufficien%  large k. This implies
the first claim.
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For the second claim assume that less than ^  of the values C are greater 
than 0. Then we obtain

Y V  w - 1 k <  (1 +  a)fc ad -  a (1 +  a )k <  SÈ.log k <  —  —  -  4 <  2 ,
i=i

which is a contradiction to the first claim. □

In the following sections we describe how to choose the slots to be promoted 
in a round in such a way that for ONL many cleared slots are promoted while for 
OPT this happens very rarely. This choice depends on whether we want to derive 
lower bounds for deterministic or for randomized algorithms.

4.3 .2  Lower Bound for Deterministic Algorithms

In this section we present a lower bound of on the competitive ratio of
any deterministic online algorithm for the reordering buffer management problem. 
For this section, we define a  to be * .

As we consider deterministic algorithms, while constructing the input se­
quence a we know what will be the exact contents of the buffer when the algorithm 
processes the input sequence up to the current round.

For every class Ci, we choose a slot for promotion as follows (see Figure 4.3):

If in class Ci there exists a slot cleared by ONL, we choose an 
arbitrary such slot to be promoted. Otherwise, we promote 
the first slot of class C*.

We present a randomized algorithm RND that processes a with a buffer of 
size k and has small expected cost compared to ONL. As in the general outline 
for our offline algorithms in the previous section, the algorithm ensures that at the 
beginning of a round at least aNi +  1 slots from class Ci are cleared. More precisely, 
for each class Ci, RND chooses aNi +  1 slots uniformly at random from all but the 
first slot in the class. At the beginning of each round, RND removes all elements 
belonging to the selected slots from the buffer.

Lem m a 4.10. The expected cost of RND in round r is

0
log log k 

log A;
• costrONL — 1 .
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a)  C l  C2 c3 ai b) C i  C 2 C 3 C4

Figure 4.3: Constructing a bad input sequence for a deterministic algorithm. Figure 
a) shows the slots cleared by ONL (marked in grey). The slots chosen to be promoted 
are pictured in Figure b). As there are no cleared slots in classes C\ and C3, the first 
slots of these classes have been chosen.

Proof. Since RND never chooses to evict the first slot of a class, this slot is never 
cleared by RND. The probability that a specific other slot of a class is cleared is 

< 2a. Therefore, the expected cost of RND in round r is at most 2acostQNL. 
This is because, due to the way the slots are chosen for promotion, at most costQNL 
slots are promoted that are not the first slots of a class.

From Lemma 4.9b we know that costQNL >  ef .  Now since a =  =

we get that the expected cost of RND is at most 2a ■ costQNL < lOu • 
costQNL - 1 , where the inequality holds since 8o:costoNL >  2a2d = 1 . □

The lemma implies the following theorem.

Theorem  4.11. Any deterministic algorithm for the reordering buffer management 
problem has a competitive ratio of Q  ̂ f>g fc )  •

Proof Clearly, the cost of OPT is at most the expected cost of RND which is, due 
to Lemma 4.7 and Lemma 4.10, at most Ya=i Ni +  ^ (v ^ ’Togf S r  costONL- Due 
to Lemma 4.6, the cost of ONL is at least Ya=\ Ni +  S r costONL- Therefore, the 
competitive ratio tends to as the number of rounds tends to infinity.

□

4.3.3 Lower Bound for Randomized Algorithms

In this section we provide a lower bound of f2(loglog/c) on the competitive ratio 
of any randomized online algorithm for the reordering buffer management problem. 
For this section, we define a to be •
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For the analysis in this section, for every class Cj, we choose a slot for pro­
motion in the following way:

For class Ci choose a slot z in the class uniformly at random.
Promote z.

We start by giving a bound on the expected cost of any online algorithm on 
the resulting input sequence.

Lem m a 4.12. For a randomized online algorithm ONL, for an input sequence con­
sisting of R rounds, and for sufficiently large k it holds that

E 5Z r  C0St f jN L
> R  log log k

Proof. Let ONL be an arbitrary online algorithm using a buffer of size k. We fix a 
round r and analyze E[costoNL]. For a class Cj, let denote the number of slots 
from Ci cleared by ONL before round r. Note that the £fs are (dependent) random 
variables, but the following holds for any valid fixed choice of values.

According to Lemma 4.9a we have 52i=i ^  -logi_1 k >  If during the round 
we promote one of the ti cleared slots in Ci, the value of costQNL increases by one. 
This happens with probability

h  p log1 1k - d  
Ni k( 1 +  a)

> ti • log* 1 k d_
2k '

Summing this over all classes we obtain E[costQNL] > Qf  =  Taking the sum
over all R rounds completes the proof. □

Next we need to show that the .expected optimal cost on the input sequence is 
significantly smaller.
Lem m a 4.13. There is an offline algorithm OFF using a buffer of size k such that 
for an input sequence consisting of R rounds, and for sufficiently large k,

E , COSt TQpp < 2 a £ ? = i  Ni +  0 (R )  .

Proof. We present an offline algorithm OFF using a buffer of size k that has the 
desired upper bound on the expected cost. The algorithm ensures that in the begin­
ning of a round at least aNi +  1 slots are cleared from every class C{. This means 
that the algorithm has more than ak +  logd_1 k elements removed that are held by 
OPT'.
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For a class Ci, one slot is promoted in each round. Consider the sequence 
of slots from Ci that are promoted over all rounds. We partition this sequence into 
phases such that each phase contains N{ — aNi — 1 pairwise different slots. Then, 
in the beginning of each phase, i.e., in the beginning of the round in which the first 
promotion of the new phase takes place, OFF clears all slots that are not contained 
in the phase. Note that due to the definition of a phase, exactly aNi +1 slots in class 
Ci are cleared. Also note that these slots remain cleared during the whole phase, 
since none of them is promoted.

Let costoFF(0  denote the contribution of class Ci to costQFF, i.e., costgFF(i) 
is 1 if a cleared slot in class Ci is promoted in round r, and 0 otherwise. Clearly 
Z ) f= iE r costOFF(0 =  E r costOFF- In the following we analyze E E r cost^FF(*)] 
for i € {1 , . . .  ,d}.

Observe that the contribution of one phase to the value of costgFF(i) is 
at most aNi +  1. Let pi be the total number of phases of class Ci, then we get 
E[X)r.costoFF(*)] <  E\pi](aNi +  1). Let X  be the length of a single phase (except 
the last phase which may be incomplete and, therefore, shorter). Clearly,

1 AR_  1 +  p r jx  > ^  ln (1 /a )/4 j • N . ln(1/Q) •

We first show the following:

Claim  4.14. Pr[X  > Nt ln (l/a )/4 ] >

Proof. The analysis of the random variable X  is based on a straightforward coupon 
collector type argument.

Consider a phase and let X j be the number of rounds between the promotion
of the (j  — l)-th distinct slot and the j - th distinct slot. Then X  — X i  +  X 2 H------- 1-
XN{—aNi — 1. The variable X j has value l  with probability for any
integer l  >  1. We have

E \Xj\
Ni

N i - j  +  V
E [Xj} =

Var[X,] =  E[X]} -  E[Xj}2

( N i + j - l ) N j  
( N i - j + 1)2 

(j ~  W i  
' ( iV i-J  +  l ) 2

and
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We get

E [X] =  %  +  J K  +  -  +
Ni

-  1Ni Ni — 1 ' aNi + 1
=  Ni(HNi- H aNi) -  1

> Ni • In Ni -  Ni • (ln{aNi) +  1) -  1 

=  Ni ln (l/a) -  (Ni +  1) >  Ni ln ( l /a ) /2  ,

where the first inequality uses the fact that In a <  Ha <  In a +  1 for a >  1, and the 
second inequality holds for sufficiently small a  (i.e., for sufficiently large k).

From Chebyshev’s inequality we get

P r [X < W iln ( l /a ) /4 ]

<  P r  [ \X  -  E[*]| >  Ni ln (l/a )/4 ]

< 16
ln2( l /a )

V a r [ X ]

16
N ?ln2(l/a)

< 16

(1 -a)Ni

Ej=1
(1 -a)Nt

~  w.2 E 1
ln2( l /a )  (N - j  +  i y

-  1„2
16

3
oo

• E - 2 ^
32

< 1 ,ln2(l/a;) pi32 ln2( l / a )  2

where the third step follows since the X j ’s are independent and the last step follows 
for sufficiently small a. □

The lemma follows since

d d
E X^rcos^OFF] =  X ^ E  [S r  cos^OFf (*)] ^  E[pj](adVj +  1)

16-Ra ' 
ln ( l /a ) ,

¿=l¿=1

<  E  2 EN «JVi <  E  ( 2aJvi +  ¡ ^ j )

£ 2a E  ̂ *+ = 2“  E  ̂ < + o (B )

Here, the second inequality uses the fact that aNi > 1, which follows from the 
integrality of aNi. □
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Theorem  4.15. Any online algorithm for the reordering buffer management problem 
has competitive ratio at least il(loglog k).

Proof. Combining Lemma 4.12 with Lemma 4.6 shows that the expected cost of 
an online algorithm ONL on the input sequence consisting of R rounds is at least 
]Cf=i Ni +  R • log g°g k'. Combining Lemma 4.13 with Lemma 4.7 shows that the 
expected cost of OPT on the input sequence consisting of R  rounds is at most 
(2a +  1) Ya =i Ni +  O(R). Therefore, the competitive ratio is at least

E ?.iiV i +  fl'log log fc /8  
(2o +  l ) £ U N i  +  0 (R )  '

Letting R tend to infinity gives the theorem. □

4.4 The Deterministic Upper Bound

In this section we present a deterministic, 0(\/log /^-competitive online algorithm 
for the reordering buffer management problem. The cost for switching to a color c 
can be described by a weight wc for this color. We assume that for all colors c it 
holds that 1 <  vuc < W , where W  is polynomially bounded in k.

4 .4 .1  T h e  A lg o r ith m

Without loss of generality we can assume that an algorithm for the reordering buffer 
management problem works according to the following general scheme. In each step 
the algorithm has an active output color, which is equal to the color of the last 
element that was appended to the output sequence. If there is at least one element 
with this active color in the buffer, the earliest among these elements is removed, 
appended to the output sequence, and the next element from the input sequence 
takes its place in the buffer. Otherwise, if there are no more elements of the active 
output color in the buffer, the algorithm performs a color change and chooses a new 
color (among the colors present in the buffer) to output next.

Note that the algorithm only has to make a decision if a color change is 
performed. Therefore, we describe our algorithm LCC (Largest Color Class) by 
specifying how the new output color is chosen when a color change is required. But 
first, we introduce some further notation. The i-th step of an algorithm is the step 
in which the algorithm appends the *-th element to the output sequence. The buffer 
content at step i for an algorithm ALG is the set of elements in ALG’s buffer right 
before the i-th element is moved to the output. For the analysis we will assume that
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the buffer always contains k elements. This may not be true at the end of the input 
sequence as the algorithm runs out of elements to fill the buffer. However, this part 
of the sequence does not influence our asymptotic bounds.

Let for a given color c at a given time t, 4>lc =  denote the cost effectiveness 
of color c at time t, where n* denotes the number of elements of color c that are in 
the buffer of LCC at time t. In the following we drop the superscript, as the time 
step t will be clear from the context.

For each time step, we partition the colors into classes according to their 
cost effectiveness. For i £ { — [log A:],. . . ,  [log VF]}, the class C* consists of colors 
with cost effectiveness between 2i and Let d =  0(log k) denote the number of 
different classes.

The general idea behind the algorithm is that it aims to remove colors from 
classes that occupy a large fraction of the space in the buffer. To this end the 
algorithm selects the class that currently occupies the largest space in the buffer 
(i.e., it contains at least | elements) and marks all colors in this class for eviction 
(Line 6 in Algorithm 4.1). Whenever a color change is required, one of these marked 
colors is chosen as the new output color, and unmarked. If there are no marked 
colors left, the new class that occupies the largest space is selected and the process 
is repeated.

This algorithmic idea is combined with a mechanism that penalizes colors 
for using up space in the buffer at the time a color change occurs. This is similar 
to techniques used e.g. in [74; 44; 16], and ensures that colors (in particular colors 
with a low weight) do not stay in the buffer for too long, thereby blocking valuable 
resources.

To realize all this, our algorithm LCC maintains a counter P  and additional 
penalty counters Pc for every color c. LCC also maintains a flag for every color 
that indicates if the color is marked. Whenever a color is not in the buffer, its 
penalty counter is zero. In particular, in the beginning of the algorithm all penalty 
counters, including the counter P , are zero. The formal description of our algorithm 
for selecting a new output color is given as Algorithm 4.1.

Before the algorithm selects a marked color cm as the new output color, it 
assigns a value of to the penalty counter P  (Line 8). In a post-processing phase 
(after outputting all elements of color cm) this penalty is distributed to penalty 
counters of individual colors, as follows. The penalty counter P  is continuously 
decreased at rate 1, while the penalty counters of colors in the buffer are increased 
at rate ^  where nc denotes the number of elements of color c that are in the buffer 
(Line 1 and Line 2). Note that we assume that the buffer is full, hence, the rate of
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A lgorithm  4.1 Largest Color Class (LCC)
O utput: a new output color

/ /  let nc denote the number of elements with color c in the buffer 
1: Vcolor c : tc <— \ t <— min({fc | color c} U {P });
2: P  «— P  — t; Vcolor c : Pc <— Pc +  ^  • t

/I the above ensures that t is small enough s.t. P  >  0 and Pc < wc for all c 
3: if  P  =  0 then
4: if  no marked color exists then
5: / /  let Cmax be the class that occupies the largest space in the buffer
6: mark all colors in Cmax
7: end if

/ /  let cm denote an arbitrary marked color

P  WCm
9: Pcm 0

10: unmark color cm
11: return color cm as the new output color
12: else
13: ca <— argminc ic / /  pick color ca such that PCa =  wCa
14: PCa <- 0 '
15: unmark color ca if it was marked
16: return color c0 as the new output color
17: end if

decrease of the P-counter equals the total rate of increase of Pc-counters.
When a counter Pc reaches wc the penalty distribution is interrupted; the 

Pc-counter is reset to 0; and the corresponding color c returned as the new output 
color (Lines 13-16). The penalty distribution resumes when all elements with color c 
have been removed and the next color change takes place. The penalty distribution 
and the post-processing phase ends once the P-counter reaches 0.

We note that the algorithm can be significantly simplified for the uniform 
cost model, i.e. when all colors c have weight wc =  1.

4.4.2 The Analysis

Let for a reordering algorithm ALG and an input sequence cr, ALG(ct) denote the 
output sequence generated by ALG on input a. A color-block of an output sequence 
is a maximal subsequence of consecutive elements with the same color. The cost of a
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color-block of color c is equal to the weight wc of c. The cost |ALG(cr)| of algorithm 
ALG on input a is defined as the sum of the costs taken over all color-blocks in the 
output sequence ALG(cr).

For a color-block b we use «start (&) and send(fr) to denote the start index of b 
and end index of 6, respectively, in the output sequence. This is the same as the time 
step when the first and the last element of b is appended to the output sequence.

A  Few Simple Cases

In this section we first identify different types of color-blocks for which we can fairly 
easily derive a bound on their respective contribution to the cost |LCC(cr)| of our 
online algorithm. Later we will introduce a technique that enables us to handle the 
remaining color-blocks.

We call a color-block of LCC that is not generated in a post-processing phase a 
normal color-block (these are the color-blocks produced when the algorithm switches 
to the respective color in Line 11). Other color-blocks are called forced color-blocks 
(the ones caused by Line 16). The following lemma shows that we can focus our 
analysis on normal color-blocks.

Lem m a 4.16. The sum of the costs of forced color-blocks is at most the sum of the 
costs of normal color-blocks.

Proof. The total cost for forced color-blocks does not exceed the total penalty that 
is distributed to colors during the post-processing phase of normal color-blocks. The 
penalty that is distributed during the post-processing phase of a (normal) color-block 
b with color c is equal to wc, i.e., the cost for b. Summing over all normal color-blocks 
gives the lemma. □

In the following we use OPT to denote an optimal offline algorithm. We 
say that an element is online-exclusive in step i, if in this step the element is in 
LCC’s buffer but has already been removed from OPT’s buffer. Similarly we call an 
element opt-exclusive in step i , if it is in OPT’s buffer but not in LCC’s buffer at 
this time. Note that by this definition in every step the number of online-exclusive 
elements equals the number of opt-exclusive elements, since the size of LCC’s and 
OPT’s buffer is the same.

We extend the above definition to colors. We say that a color c is online- 
exclusive in step i, if there exists an element of color c that is online-exclusive. 
Finally, we say that a color-block b is online-exclusive if its color is online-exclusive 
in step «start (b). The following lemma derives a bound on the cost of online-exclusive 
color-blocks.
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Lem m a 4.17. The cost ofLC C for online-exclusive color-blocks is at most \ OPT(a)\.

Proof. Let b denote an online-exclusive color-block in LCC(cr), let e denote its first 
element, and let c be the color of b. Let b' denote the color-block of color c that 
precedes b. In case b is the first color-block of color c we define sen(±(b') =  — 1 for the 
following argument. Note that element e is not yet in the buffer at step sen̂ (b') +  1 
as in this case it would be appended to the output sequence in step send(^) +  L

Let 60pt denote the color-block of OPT that contains the element e. Clearly, 
this block ends after step send(b') +  1 as e only arrives after this step. Since b is 
online-exclusive, its first element (i.e. e) is removed from the buffer of OPT before 
step Sstart(&)-

Altogether, we have shown that there exists a color-block 6opt in OPT(ct) 
which has color c and ends in the interval (send{b') +  1, send(b)). We match the 
online-exclusive block b to 60pt- In this way we can match every online-exclusive 
block to a unique block in OPT(cr) with the same color. This gives the lemma. □

Another class of color-blocks for which we can easily derive a bound on the 
contribution to the cost |LCC(<r)| is given by so-called opt-far color-blocks defined as 
follows. A normal color-block b from the sequence LCC(er) is called opt-far, if during 
its post-processing phase the number of online-exclusive elements never drops below 
-^==. This means that throughout the whole post-processing phase for b the buffers 
of LCC and OPT are fairly different. The following lemma derives an upper bound 
on the cost of opt-far blocks in an output sequence generated by LCC.

Lem m a 4.18. The cost of LCC for opt-far color-blocks is 0(\/log k) • \OPT(a)\.

Proof. Fix an opt-far color-block b, and let c denote the color of b. During the 
post-processing phase for b the number of online-exclusive elements is always at 
least • Therefore, at least a fraction of the penalty distributed during
the post-processing phase goes to online-exclusive colors. The total cost for online- 
exclusive color-blocks is at least as large as the penalty that these colors receive, 
since the penalty of a color c cannot increase beyond its cost wc.

Hence, the total penalty distributed during the post processing phases of opt- 
far color-blocks is at most \/log k times the cost for online-exclusive color-blocks. 
This in turn is at most as large as |OPT(cr)| due to Lemma 4.17. The lemma follows 
by observing that the total penalty distributed during post-processing phases of 
opt-far color-blocks is equal to the cost of these blocks. □
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The Potential

A crucial ingredient for the proof of the upper bound on the competitive ratio of the 
LCC algorithm is the way we handle normal color-blocks that are neither online- 
exclusive nor opt-far. For this we introduce the notion of potential. The idea is 
that, on the one hand, the total potential is bounded by some function in terms 
of the optimal cost |OPT(<r)| (see Claim 4.19a). On the other hand, we will show 
that normal color-blocks that are neither opt-exclusive nor opt-far generate a large 
potential. This allows us to derive a bound on the contribution of these color-blocks 
to the cost |LCC(<r)|.

The definition of potential is based on the differences in the buffer between 
LCC and OPT. In the following we use Tj to denote the start index of the j-th  
color-block of OPT.

For an element eT that is appended to the output sequence LCC(er) at time 
r  we define for Tj >  r

0 if OPT processed eT before step Tj,

1 otherwise.

ip(r,Tj) simply measures whether the element eT occupies a slot in OPT’s buffer at 
time Tj. We say that element eT generates potential wCj • <p(T,Tj) for time step Tj, 
where Cj denotes the color of the j-th  color-block in OPT(cr).

For technical reasons we also introduce a capped potential as follows. We
define

if OPT processed eT before step Tj or at least fc/v4og1E 
< elements eT< with r ' < r have <p(r',Tj) = I,

1 otherwise.V

ip(T, Tj) measures whether the element eT is one of the first elements to occupy 
a slot in OPT’s buffer at time Tj, where elements are ordered according to their 
appearance in LCC(er). We say that element eT generates capped potential wCj • 
ip(T,Tj) for time step Tj, where Cj denotes the color that is processed by OPT at 
time Tj.

We use <p(r) :=  Y j-r  >TWCjV(T' Ti)  to denote the total capped potential 
generated by the element at position r  in LCC(er). We define the total capped 
potential (p by <p :=  Y T vKr )-

Claim  4.19. The capped potential fulfills the following properties:
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\0PTi.a )\■

(b) Let t  < t <  Tj, and assume that the number of online-exclusive elements in 
step t is at most ■ Then <p{r,Tj) =  ^>{r,Tj), and, hence, the capped 
potential wCj • (p{r, Tj) generated by eT for Tj is equal to the potential. In other 
words the contribution of eT is not capped.

Proof. The first statement follows from the fact that the capped potential generated 
for a time step Tj cannot exceed ^   ̂ • wCj, where wCj is the cost of OPT in the 
step. This holds because of the cap. Since the potential is generated for time steps 
Tj that correspond to color changes by OPT, the statement follows.

Now, assume for contradiction that the second statement does not hold. Since 
obviously ip(T,Tj) <  <p(r,Tj), it must hold that <p(T,Tj) =  0 and ip(r, Tj) =  1. This 
means that element eT occupies a place in OPT’s buffer at time Tj, but there are at 
least \̂ogk elements er>, t' <  r  <  t, that also occupy a place in OPT’s buffer at time 
Tj, and therefore eT’s contribution is capped. But all these elements are opt-exclusive 
at time t. Since at any time step the number of opt-exclusive elements must be equal 
to the number of online-exclusive elements, we can conclude that in step t there are 
more than nk-s online-exclusive elements. This is a contradiction. □VlogK

The M ain Theorem

Theorem  4.20. LCC is a deterministic online algorithm with competitive ratio 
O(Vlogfc).

Proof. The algorithm LCC marks all colors in a class, and then selects an arbitrary 
marked color whenever it has to do a normal color change. When no marked colors 
are left, it again marks all colors in some class and continues.

We call the time between two marking operations, or after the last marking 
operation, a phase. Fix some phase P  and let C  denote the set of colors that get 
marked in the beginning of the phase. Let for c G C, sc denote the number of 
elements of color c in LCC’s buffer at the time of the marking operation that starts 
P. Further, let <f> denote the lower bound on the cost effectiveness of colors in C, i.e., 
(h <2<j) holds for all colors c € C. We call a color change normal (forced) if it 
starts a normal (forced) color-block in the output sequence LCC(<r). In LCC(cr) the 
phase consists of a consecutive subsequence of elements, starting with an element of a 
color in C  and ending with the last element of a color-block from the post-processing 
phase of the last normal color change of the phase.

Let cost(P) denote the cost incurred by LCC during the phase. This cost 
consists of color changes to colors in C  (either normal or forced), and of color changes
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to colors not in C  (these are forced). Let ncost(P) and fcost(P) denote the cost 
incurred by LCC during the phase for normal and forced color changes, respectively. 
Further, let ncost :=  ]Cphase pncost(P) denote the total normal cost summed over 
all phases. In the light of Lemma 4.16 it is sufficient to relate ncost to the optimal 
cost |OPT(<t)|. In order to do this we distinguish the following cases:

Case 1 The normal cost ncost (P) is at most ^  -fcost(P). Let ncostsmaii denote the 
normal cost summed over all phases P  that fulfill this condition and let ncostiarge de­
note the normal cost summed over other phases (i.e., ncostiarge =  ncost — ncostsmaii). 
Then

9 9 9
ncostsmaii <  Jq /  . fcOSt(P) <  nCOSt =  —  (nCOStsmall +  nCOStlarge) ,

where the second inequality follows from Lemma 4.16. This gives ncostsman < 
10ncostiarge. In the following cases we show that ncostiarge =  O(^logk)  • |OPT(a)|. 
Then we have that the normal cost ncostsmall generated by phases that fulfill the 
condition for Case 1 is 0 (\ /logk) • |OPT(cr)|.

Case 2 The cost of OPT during the phase is at least | -ncost(P). The total normal 
cost generated by phases that fulfill this condition is 0(|0PT(cr)|).

Case 3 The cost of online-exclusive color-blocks generated during the phase is at 
least \ • ncost(P). Then we can amortize the normal cost of the phase against the 
cost of online-exclusive color-blocks, which in turn can be amortized against the cost 
of OPT by Lemma 4.17. This gives that the total normal cost generated by phases 
that fulfill the conditions for this case is 0(|0PT(<r)|).

Case 4 The cost of opt-far color-blocks generated during the phase is at least 
\ • ncost(P). Then we can amortize the cost of the phase against the cost of opt-far 
color-blocks, which in turn can be amortized against the cost of OPT by Lemma 4.18.

Hence, the total cost for phases that fulfill the conditions for this case is 
0 ( V I 5 p )  • |OPT(ff)|.

Case 5 In the following we assume that none of the above cases occurs. This means 
there must exist a subset C' C C  of colors marked in the phase P  such that for each 
color c e C' its first color-block in the phase is

P roperty  a not online-exclusive,

P roperty  b  not opt-far, and

P roperty  c  not forced.
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Further, we have that

P roperty  d elements of colors in C' are not appended to the output sequence by 
OPT during the phase;

P roperty  e and cost(C') >  ygcost(C'),

where we use cost(S') :=  Ylce s wc f°r a set S of colors.
To see this we generate C' as follows. First take all colors from C (colors 

initially marked in the phase) and remove colors among them for which the first 
color change is forced (this ensures Property c). The cost of the remaining set of 
colors is exactly ncost(P). Then remove colors for which the first block of the phase 
is online-exclusive or opt-far, and colors that are requested by OPT during the phase. 
Since we are not in Case 2, Case 3 or Case 4, this step can only remove colors with 
a total cost of | ncost(P). After this Properties a, b and d hold. This gives the set
a .

Property e can be seen as follows. By the construction cost(C") >  | ncost(P). 
From the fact that Case 1 does not hold we get that ncost(P) >  yg fcost(P), and, 
hence, 2 ncost(P) >  yg cost(P) >  ygcost(C). This gives cost(C') >  ^ cost(C ).

Let S denote the set of elements with colors in C' that are in LCC’s buffer 
in the beginning of the phase. We will show that these elements generate a large 
potential after the end of the phase. From this it follows that we can amortize the 
cost of the phase against |OPT(er)| because of the following argument.

Assume that for some value Z  the elements in S generate a potential of at 
least Z  • cost(C1) after time t, where t is the index of the last time step of the phase. 
Observe that, according to Property b above, the (first) color-blocks of colors in C' 
that are generated during the phase are not opt-far. This means that during the post­
processing phase of each of these blocks, the number of online-exclusive items falls 
below at some point. This means that we can apply Claim 4.19b to all elements 
in S , which gives that elements in S also generate at least Z ■ cost(C/) >  ^  - cost(C) 
capped potential after time t, as their contribution to the potential is not capped.

Claim 4.19a tells us that the total capped potential is at most ^=^-|OPT(cr)|. 
Therefore, the total normal cost generated by phases that fulfill the conditions for

Case 5 is • l ° PTM i- .
By showing that elements in S generate at least Z • cost(C1) =  il(jg|-^) • 

cost(C") potential we get that the cost of the phases satisfying Case 5 is 0(y/logk) • 
|OPT(ct)|.

For completing the analysis of Case 5 it remains to show the above bound 
on the potential generated by the elements of S. For this, we first show that the
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cardinality of the set S is large. We have

|S| =  5 > > £
ceC' c e C '

Wç >  1
20 . “  200 ceC

sc >
k

20d
Q

where the first and third inequality follows since 0 <  ^  <  20; the second inequality 
holds since ^2ceC,w c =  cost(C1) >  ^ cost(C ) >  jqJ2c€Cwc- The last inequality 
follows since the algorithm LCC selects a class that occupies the largest space in the 
buffer, and, hence, occupies at least space |, where d denotes the number of classes.

Claim  4.21. Let S denote a set of elements that are opt-exclusive at time t, and let 
sc denote the number of elements of color c in S. Assume that there is a value 0 
such that 0 <  ^  < 20 holds for all colors with elements in S. Then the contribution 
to the potential by elements from S generated after time t is at least ||5| -cost(S).

Proof. Let c i , . . . ,  q  denote the colors of the elements in S, ordered according to the 
times t\ <  • • • < T£ at which the first element of a color is evicted by OPT. Let i 
denote the smallest number such that Y?j=l wcj — \ cost (5).

We show that the number of elements with colors Cj,. . . ,  q  is large. For any 
j  we have 0 < <  20, and, hence, cost(S) >  0|S|. ThereforeSc.-

E3=iAc, -  ¿ E E ^ i  £  ¿ c0St<s ) 2  ï l s l •40

Each element e of a color in { c j , . . .  q }  generates potential wCj at time Tj for 
1 < j  <  L The contribution of e to the potential generated after time t is therefore at 
least Y?j=i wcj >  | cost(S). As the number of elements with color in { c i , . . .  q }  is at 
least ||5|, the potential generated by them after time t is at least ||5| - cost(5). □

Applying the claim with t being the last step of the phase, gives that the 
elements from S generate potential ' cost(C") after the end of the phase.
This finishes the analysis of Case 5.

The above cases show that the contribution of all phases to the cost of LCC 
is 0(y/logic) • |OPT(cr)|. This gives the theorem. □

4.5 Open Problems

An interesting open problem is improving the upper or lower bound on the compet­
itive ratio of a randomized online algorithm for the reordering buffer management 
problem. In particular —  is there an algorithm with competitive ratio 0(log log k)l
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Chapter 5

Generalized Caching Problem

5.1 Introduction

In this chapter we study the generalized caching problem in an online setting.

5.1.1 Related Work

Table 5.1 presents an overview of the results for the online caching problem in the 
randomized setting.

The study of the caching problem with uniform sizes and costs ( the paging 
problem) in the online setting has been initiated by Sleator and Tarjan [80] in their 
work that introduced the framework of competitive analysis. They show that well 
known paging rules like LRU (Least Recently Used) or FIFO (First In First Out) 
are /c-competitive, and that this is the best competitive ratio that any deterministic 
algorithm can achieve.

Fiat et al. [46] extend the study to the randomized setting and design a 
randomized 2//fc-competitive algorithm, where IIk is the fc-th Harmonic number. 
They also prove that no randomized online paging algorithm can be better than 
//¿¡-competitive. Subsequently, McGeoch and Sleator [68], and Achlioptas et al. [2] 
design randomized online algorithms that achieve this competitive ratio.

Weighted caching, where pages have uniform sizes but can have arbitrary 
cost, has been studied extensively because of its relation to the fc-server problem. 
The results for the k-server problem on trees due to Chrobak et al. [35] yield a 
tight deterministic ^-competitive algorithm for weighted caching. The randomized 
complexity of weighted caching has been resolved only recently, when Bansal et 
al. [19] designed a randomized 0 (log /^-competitive algorithm.

The caching problem with non-uniform page sizes seems to be much harder.

123



uniform sizes arbitrary sizes

uniform
costs

2iffc-competitive [46] 

//^-competitive [68; 2] 

lower bound Hk [46]

0(log2 /^-competitive [58] 

O (log/^-competitive [20]

arbitrary
costs

0(log /^-competitive [19]
0 (log2 /^-competitive [20] 

0 (log /¡^-com petitive

Table 5.1: An overview of the results for the online caching problem in the random­
ized setting. The new result is presented using bold font.

Already the offline version is NP-hard [58], and there was a sequence of results [58; 
8; 37] that lead to the work of Bar-Noy et al. [21] which gives a 4-approximation for 
the offline problem.

For the online version, the first results consider special cases of the problem. 
Irani [58] shows that for the bit model and for the fault model in the deterministic 
case LRU is (k +  l)-competitive. Cao and Irani [30], and Young [87], extend this 
result to the generalized caching problem.

In the randomized setting, Irani [58] gives an 0 (log2 /¡^-competitive algorithm 
for both bit and fault models, but for the generalized caching problem no o(n)- 
competitive ratio was known until the recent work of Bansal et al. [20]. They show 
how to obtain a competitive ratio of 0 (log2 k) for the general model, and also a 
competitive ratio of 0 (log k) for the bit model and the fault model.

Since it has been known that no randomized online o(log /¡^-competitive al­
gorithm for generalized caching exists, the central open problem in this area was 
whether it is possible to design a randomized O(log/¡^-competitive algorithm.

5.1 .2  Result and Techniques

We present a randomized 0(log /¡^-competitive online algorithm for the generalized 
caching problem, improving the previous bound of 0 (log2 k) by Bansal et al. [20]. 
This improved bound unifies all earlier results for special cases of the caching prob­
lem. It is asymptotically optimal as already for the problem with uniform page sizes 
and uniform fetching costs there is a lower bound of il(log/c) on the competitive 
ratio of any randomized online algorithm [46].

Our approach is similar to the approach used by Bansal et al. in their results

124



on weighted caching [19] and generalized caching [20]. In both these papers the 
authors first formulate a packing/covering linear program that forms a relaxation 
of the problem. They can solve this linear program in an online manner by using 
the online primal-dual framework for packing and covering problems introduced by 
Buchbinder and Naor [28]. However, using the framework as a black-box only guar­
antees an 0 (log n)-factor between the cost of the solution obtained online and the 
cost of an optimal solution. They obtain an 0(log fc)-guarantee by tweaking the 
framework for the special problem using ideas from the primal-dual scheme. Note 
that this 0 (logfc)-factor is optimal, i.e., in general one needs to lose a factor of 
f!(log k) when solving the LP online.

In the second step, they give a randomized rounding algorithm to transform 
the fractional solution into a sequence of integral cache states. Unfortunately, this 
step is quite involved. In [20] they give three different rounding algorithms for the 
general model and the more restrictive bit and fault models, where in particular the 
rounding for the fault model is quite complicated.

We use the same LP as Bansal et al. [20] and also the same algorithm for 
obtaining an online fractional solution. Our contribution is a more efficient and 
also simpler method for rounding the fractional solution online. We first give a 
rounding algorithm for monotone cost models (where wp >  wp> implies cp > cpi) 
and then extend it to work for the general model. Our rounding algorithm only 
loses a constant factor and, hence, we obtain an 0 (log fc)-competitive algorithm for 
generalized caching.

The chapter is based on joint work with Artur Czumaj, Matthias Englert and 
Harald Racke [4].

5.2 The Linear Program

This section describes an LP for the generalized caching problem. It also shows how 
to generate good variable assignments which are used in the rounding algorithm of 
the next section. Although there are some minor notational differences, this largely 
follows the work of Bansal, Buchbinder, and Naor [20].

We assume that cost is incurred when a page is evicted from the cache, not 
when it is loaded into the cache. This means we will not pay anything for the pages 
remaining in the cache at the end. We may assume that the last request is always 
to a page of size k and zero cost. This does not change the cost of any algorithm in 
the original cost model. However, it does ensure that the cost in our alternate cost 
model matches the cost in the original model.

125



We begin by describing an integer program IP for the generalized caching 
problem. The IP has variables x p ( i )  indicating if page p has been evicted from the 
cache after the page has been requested for the *-th time. If x p ( i )  =  1, page p was 
evicted after the i - th request to page p and has to be loaded back into the cache when 
the page is requested for the (i  +  l)-st time. The total cost is then Yhp E i  CpXp {i ) .

Let B (t) denote the set of pages that have been requested at least once until 
and including time t and let r(p, t) denote the number of requests to page p until 
and including time t. In a time step t in which page pt is requested, the total size of 
pages other than pt in the cache can be at most k — wPt . Thus, we require

wP{ 1 -  xP(r(p, t))) < k — wPt .
peB{t)\{pt}

Rewriting the constraint gives

^ 2  wPxp{r{p,t)) >  Y 2  wp ~ k  . 
p€B(t)\{pt} p£B(t)

To shorten the notation, we define the total weight of a set of pages S as W (S) := 
Y^peSwP- Altogether, this results in the following IP formulation for the generalized 
caching problem.

min EpEiCp*p(0

s.t. Vt : EpeB(t)\{pt} wPxp(r (P^)) ^  W (B (t)) ~  k (IP1)

Vp,i = *p(0 e  { 0, 1}

To decrease the integrality gap of our final LP relaxation, we add additional, re­
dundant constraints to the IP.

min E p E iC p Z p W

s.t. VtVsCB(t):W(S)>k '• Yjp€S\{pt}WP Xp(r ( P 'i')) — ^(*5) “  k (IP 2)

Vp,j • xp{i) G {0,1}

Unfortunately, even the relaxation of this IP formulation can have an arbitrarily 
large-integrality gap. However, in an integral solution any wp >  W (S) — k cannot 
give any additional advantage over wp =  W  (S) — k for a constraint involving set 
S. Therefore, it is possible to further strengthen the constraints without affecting 
an integral solution. For this, we define tip :=  min{VF(/S') — k,wp}. Relaxing the
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Procedure 5.1 fix-set(S ,t,x ,y )
Input: Current time step t, current variable assignments x and y, a minimal set 

S C B{t).
O utput: New assignments for x  and y. Return if S becomes non-minimal or con­

straint t , S in primal-LP is satisfied.

1: while Epes\{pt} ' xp(r (P> 0 )  < W (S ) — k do // constraint for f, S violated 
2: infinitesimally increase ys(t)
3: for each p E S do

4’ . Sr:r(p,T)=r(p,i),p^pT ^ S C B ( T ) : p e S , W ( S ) > k ^ p  V s (t )  — Cp

// v is a violation- of the dual constraint for xp(r(p,t))
5: i f v >  0 then xp(r(p, t)) := | exp (^ )
6: i f  xp(r(p ,t)) =  1 then return // S is not minimal any more
7: end for
8: end while
9: return / /  the primal constraint for step t and set S is fulfilled

integrality constraint, we obtain an LP. As shown in Observation 2.1 of Bansal et 
al. [20], we can assume without loss of generality that xp(i) <  1. This results in the 
final LP formulation.

min E p E icPxpW

s-t. VtVscB'(.t):W(S)>k : Epes\{pt} ^p xp(r (P> 0 )  > W ( S ) - k  (primal-LP)

VPti : xp(i) ^  0 

The dual of primal-LP is

max J2tl2scB(t):W(S)>k(W(S) — k)ys{t) 

s.t. VPi, : Et:r(p,t)=i,p^pt EscB(t):pes,w(S)>fc ^p Vs{t) <  cp (dual-LP) 

VtVsCB(t):W(S)>k '■ ys(t) >  0 .

Procedure 5.1 will be called by our online rounding algorithm to generate 
assignments for the LP variables. Note that, as the procedure will not be called for all 
violated constraints, the variable assignments will not necessarily result in a feasible 
solution to primal-LP but will have properties which are sufficient to guarantee that 
our rounding procedure produces a feasible solution. We assume that all primal and 
dual variables are initially zero.
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For a time step t, we say a set of pages S is minimal if, for every p E S, 
xp(r(p,t)) <  1. We note that by Observation 2.1 of Bansal et al. [20], whenever 
there is a violated constraint t, S in primal-LP, there is also a violated constraint 
t ,S 'C .S  for a minimal set S'. The idea behind Procedure 5.1 is that it is called 
with a minimal set S. The procedure then increases the primal (and dual) variables 
of the current solution in such a way that one of two things happen: either the set 
S is not minimal any more because the value of xp(r(p ,t)) reaches 1 for some page 
p E S or the constraint t, S is not violated any more. At the same time, the following 
theorem guarantees that the primal variables are not increased too much, that is, 
that the final cost is still bounded by 0(logk) times the cost of an optimal solution. 
Its proof follows exactly the proof of Theorem 3.1 from Bansal et al. [20].

Theorem  5.1. Let xp(i) be the final variable assignments generated by successive 
calls to Procedure 5.1. The total cost J2PY!iicpxp{i) iS at most O(logfc) times the 
cost of an optimal solution to the caching problem.

5.3 The Online Algorithm

The online algorithm for the generalized caching problem works as follows. It com­
putes primal and dual assignments x  and y for LPs primal-LP and dual-LP, respec­
tively, by repeatedly finding violated primal constraints and passing the constraint 
together with the current primal and dual solution to Procedure 5.1. Procedure 5.2 
gives the outline of a single step of the online algorithm.

P roced u re 5.2 online-step(t)_________________________________
1: x(pt,r(pt, t )) :=  0 / /  put page pt into the cache 

II  some constraints may be violated 
2: S :=  {p E B{t) | 7 • x(p , r{p , t)) <  1}
3: while constraint for S is violated do 
4: fix-set(,i>, t,x , y) /I change the current solution
5: adjust distribution p to mirror new x
6: S :=  {p E B{t) | 7 • x(p ,r(p ,t)) <  1} //■ recompute S
7: end while

/ /  the constraints are fulfilled

Note that the primal “solution” may not be feasible. It may only fulfill a subset 
of the constraints, which, however, will be sufficient for our rounding procedure.

In addition to the fractional solutions x  and y, the online algorithm maintains 
a probability distribution over valid cache states. Specifically, p  will be the uniform
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distribution over k2 subsets —  each subset specifying a set of pages that are currently 
evicted from the cache. Some of the k2 subsets may be identical. A randomized 
algorithm then chooses a random number r from [1, . . . ,  k2] and behaves according to 
the r-th subset, i.e., whenever the r-th subset changes it performs the corresponding 
operations.

We will design the distribution p in such a way that it closely mirrors the 
primal fractional solution x. In Section 5.3.1 we will show that each set in the support 
of p is a complement of a valid cache state, i.e., the size constraints are fulfilled and 
the currently requested page is contained in the cache. In Section 5.3.2 we will show 
the way of updating p  in such way that a change in the fractional solution of the LP 
that increases the fractional cost by e is accompanied by a change in the distribution 
p with (expected) cost at most 0(e).

The rounding algorithm loses only a constant factor, which gives us a O(log k)- 
competitive algorithm for generalized caching.

5.3.1 Ensuring that Cache States are Valid

We will set up some constraints for the sets in the support of p, which guarantee 
that the sets describe complements of valid cache states. In order to define these 
constraints we introduce the following notation.

Let t denote the current time step and and set xp :=  x(p ,r(p ,t)). Let 7 > 
2 denote a scaling factor to be chosen later, and define zp :=  min{7xp, 1}. The 
variable zp is a scaling of the primal fractional solution xp. We also introduce a 
rounded version of the scaling: we define zp := |_k ■ zp\/k, which is simply the 
value of zp rounded down to the nearest multiple of 1/k. Note that due to the way 
the LP-solution is generated, zp >  0 implies that zp >  7/k. Therefore, rounding 
down can only change the value of zp by a small factor. More precisely, we have 

zp >  (1 ~  1/7) • zp.
We use S to denote the set of pages p that are fractional in the scaled solution,

i.e., have zp <  1 (or equivalently zp <  1). We divide these pages into size classes 
as follows. The class 5» contains pages whose size falls into the range [2i ,2i+1). See 
Figure 5.1 for an illustration.

We construct a set L C S of “large pages” by selecting pages from S in 
decreasing order of size (ties broken according to page-id) until either the values of 
z for the selected pages add up to at least 1, or all pages in S have been selected. 
We use W£ to denote the size of the smallest page in L, and to denote its class-id. 
Note that this construction guarantees that either 1 < ^2peL zp < 2  or L =  S. The 
following claim shows that the second possibility only occurs when the weight of S

129



L

m

Si

I I • • •
Figure 5.1: The size classes Si and the set of large pages L obtained from the set S.

is small compared to the size of the cache k or while the online algorithm is serving 
a request (for example when the online algorithm iterates through the while-loop of 
Procedure 5.2).

Claim 5.2. After a step of the online algorithm, we either have 1 < YhpeL*p < 2 
or W{S) <  k.

Proof. If W(S) < k there is nothing to prove. Otherwise, we have to show that we 
do not run out of pages during the construction of the set L. Observe that after 
the while-loop of Procedure 5.2 finishes, the linear program enforces the following 
condition for the subset S:

Y  m in{W (5) -  k, wp} ■ xp > W {S ) -  k .
pes

In particular, this means that YlPeSxp — 1 and hence Ylp&s^p >  (1 — 1 / 7)7  > 1, as 
7 > 2. Since the values of zp for the pages p in S sum up to at least 1 , we will not 
run out of pages when constructing L. □

Let D denote a subset of pages that are evicted from the cache. With a slight 
abuse of notation we also use D to denote the characteristic function of the set, i.e., 
for a page p we write D(p) =  1 if p belongs to D and D(jp) =  0 if it does not. We 
are interested whether at time t the set D describes a complement of a valid cache 
state.

Definition 5.3. We say that a subset D of pages 7 -mirrors the fractional solution 
x if:
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1. Vp € B (t) : zp =  0 implies D (p) =  0 (i.e., p is in the cache).

2. Vp G B (t) : zp =  1 implies D{p) =  1 (i.e., p is evicted from the cache).

3. For each class Si: LEpes, h\ ^  EpeS* d (p )- 

4• LEpei^pJ ^ E p e i - ^ W -

Here z is the solution obtained after scaling x by 7 and rounding down to multiples 
ofl/k.

We refer to the constraints in the first two properties as integrality constraints, 
to the constraints in the third property as class constraints, and the constraint in 
the fourth property is called the large pages constraint.

Lem m a 5.4. A subset of pages that 7 -mirrors the fractional solution x to the linear 
program, describes a complement of a valid cache state for 7 >  16.

Proof. Let D  denote a set that mirrors the fractional solution x. In order to- show 
that D  is a complement of a valid cache state we need to show that the page pt which 
is accessed at time t is not contained in D, and that the size of all pages which are 
not in D  sums up to at most k.

Observe that the fractional solution is obtained by applying Procedure 5.1. 
Therefore, at time t the variable xPt =  x(pt,r(p t, t)) has value 0. (It is set to 0 when 
Procedure 5.2 is called for time t, and it is not increased by Procedure 5.1 until time 
t +  1.) Hence, we have zPt =  0 and Property 1 in Definition 5.3 guarantees that pt 
is not in D.

It remains to show that the size of all pages which are not in D  sums up to 
at most k. This means we have to show

Y ™PD(p) >  W (B ( t )) -  k . (5.1)
peB(t)\{pt}

Because of the integrality constraints we have

Y ,  wPD(p) =  Y wpD (p ) +  Y WPD (P) =
pes(t)\{pt} p€ B {t)\S  p£S\{pt }

= Y wp+Ywpd(p) = w(bw~w(s)+Ywpd(p) ■
p e B (t)\s  pes Pe s

In order to obtain Equation 5.1 it suffices to show that

Y wpD (p ) >  W ( S ) - k  . .
pes
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For the case that W(S) <  k this is immediate, since the left hand side is always 
non-negative. Therefore in the following we can assume that VF(S) > k, and, hence, 
1 <  YhpeL Zp < 2  due to Claim 5.2.

If 2ie > W(S) -  k, then

D{p) >  2ie J 2  D (P) >  2* > W(S)  -  k ,
pes peL peL

where the third inequality follows from the large pages constraint, and the fact that 

ICpeL *p — 1-
In the remainder of the proof we can assume 2H <  W (S) — k. We have

Y ; WPD (P) wpd (p )
peS i<t<p65i

>E2<-Edm
i<it p£Si

-  £ 21 ■ ( ]C zp x)
i<ie xpeSi '

= ^ E E 2i+I% - E 2ii<it p€Si i<i(

>  \ wpip -  2*£+i
i<n peSi

^ i E E < %  -  2(W(S) -  k)
¿<i£ peSi

(5.2)

Here the second inequality follows since wp >  2l for p G S t\ the third inequality 
follows from the class constraints; the fourth inequality holds since wp <  2i+l for 
p € Si. The last inequality uses the fact that zp >  (1 — 1/ 7)7XP >  7/2 • xp for every 
p G S, and that wp > w p .
Using the fact that zp >  7/2 • xp we get

\  ^ ^ ^ ( s) - fc) E w(s) -  ̂ >
p € L\si( p e L  peL

where the last inequality uses the fact that $2 e£ zp < 2. Adding the inequality 
0 >  ̂H lp e L \S ie w p x p — (W(S) -  k) to Equation 5.2 gives

£  wpD(p) > I Y , ™ p xp ~  3( ^ ( 5 ) -  k) *  (7 /4  -  3 ) (W(S) - k ) >  W(S)  -  k ,
p e s  p zS
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for 7 >  16. Here the second inequality holds because after serving a request the 
online algorithm guarantees that the constraint ^pes™ pxp >  W(S) — k is fulfilled 
for the current set S. □

5.3.2  Updating the Distribution Online

We will show how to update online the distribution p, over subsets of pages in such 
a way, that we can relate the update cost to the cost of our linear programming 
solution x. We show that in each step the subsets in the support of /z mirror the 
current linear programming solution. Then Lemma 5.4 guarantees that we have a 
distribution over complements of valid cache states.

However, directly ensuring all properties in Definition 5.3 leads to a very 
complicated algorithm. Therefore, we partition this step into two parts. We first 
show how to maintain a distribution p\ over subsets D  that fulfill the first three 
properties in Definition 5.3 (i.e., the integrality constraints and the class constraints). 
Then we show how to maintain a distribution p2 over subsets that fulfill the first 
and the last property.

Prom these two distributions we obtain the distribution /z as follows. We 
sample a subset D\ from the first distribution and a subset from the second 
distribution, and compute D =  D\ U (or D =  max{Z?i, £>2}  if D  is viewed as the 
characteristic function of the set).

Clearly, if both sets Di and D 2 fulfill Property 1 from Definition 5.3, then the 
union fulfills Property 1. Furthermore, if one of Di, D 2 fulfills one of the properties 
2, 3, or 4, then the corresponding property is fulfilled by the union as these properties 
only specify a lower bound on the characteristic function D.

We will construct /zi and P2 to be uniform distributions over k subsets. Then 
the combined distribution p is a uniform distribution over k2 subsets, where some 
of the subsets may be identical.

In the following we assume that the values of zp change in single steps by 
l/k. This is actually not true. Consider for example Line 1 of Procedure 5.2 where, 
after the time step t is increased, the variable x(pt,r(p t,t)) is set to 0. As xPt is a 
shorthand for x(pt,r(pt,t)), the value of xPt, and therefore also the value of zPt, is 
set to 0. However, the drop in the value of zPt larger than 1 /k can be simulated by 
several consecutive changes by a value of l/k.
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Maintaining Distribution p,\

In order to be able to maintain the distribution p\ at a small cost we strengthen the 
conditions that the sets D in the support of pi have to fulfill. For each size class Si 
we introduce cost classes Cf, C} , . . . ,  where Cf =  {p G Si : Cp >  2s} (see Figure 5.2). 
Note that we have Si — Cf.

Figure 5.2: Cost classes.

For the subsets D in the support of //.i we require

A. For each subset D, for each size class Si, and for all cost classes Cf

< V  D(p) < -  pecl ~

B. For each page p
^ 2 d D(p) ■ pi(D) =  zp .

Note that the second constraint above ensures that the integrality constraints are 
fulfilled, and the first set of constraints ensures that the class constraints are fulfilled. 
An example of a distribution that satisfies the constraints A and B is in Figure 5.3.

Increasing zp. Suppose that for some page p the value of zp increases by 1 /k 
(see Figure 5.4 for an example). Assume that p G Si and cp € [2r,2r+1), i.e., 
p £ C f , .. . ,C f. As we have to satisfy the property C>(p)pi(D) = zp, we have to 
add the page p to a set D* in the distribution p,\, which currently does not contain 
p (i.e., we have to set D*(p) =  1 for this set). We choose this set arbitrarily.

However, after this step some of the constraints

corresponding to the cost classes Cf for s < r may become violated. We repair the 
violated constraints step by step from s — r to 0. We do that by moving the pages
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Figure 5.3: An example of distribution p\ for the cache of size k =  4 and the set of 
pages Si =  {p\,P2 , ■ ■ ■ ,Ps}- The values zPi are given at the top of the figure. p\ is 
a uniform distribution over 4 sets: D\ — {P2,P3,P5>P7>P8}, • ••, -D4 =  {pi,P 5,P7,pg}. 
Constraints A and B are satisfied.

between the sets D in such a way, that while repairing the constraints for the cost 
class Cf we keep the following invariant: all but one of the sets D from the support 
of p have the same number of pages from the set Cf, as they had before we increased 
the value of zp. The remaining set, which we denote by D+ , has one additional page. 
At the beginning D+ =  D*.

Notice that Y Pec?^p = Y o Y p e C 3 D{p) • p\{D) is equal to the average 
number of pages from Cf that a set in the support of p,\ has. If the number of pages 
from Cf in the sets D in the support of p\ differs by at most one, each set has either 

IX Pe c s h\ or \YPeCs h  \ PaSes from and a11 the constraints for Cf are satisfied.
Fix s and assume that the constraints hold for all s' > s, but some are 

violated for s. Let a := [S p ec / *v ~ £l> '-e-> before increasing the value of zp each 
set D contained at most a, and at least a -  1, pages from Cf. As the only set that 
has now a different number of pages from Cf is D+, and some constraints for Cf are 
violated, it must be the case that D+ has now a +  1 pages from Cf, and some set 
D' with positive support in pi has a — 1 pages from Cf. The constraints for Cf+1 
are satisfied, so the number of pages in class Cf "rl differs by at most 1 between D+ 
and D'. Hence, there must exist a page in Cf \ Cf+l that is in D+ but not in D'. 
We move this page to D', which incurs an expected cost of at most 2s+1/k. Now 
all the sets in the support of p\ have either a -  1 or a pages from Cf, and so all 
the constraints for Cf are satisfied. As we did not modify any pages from Cf+1, the
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Figure 5.4: In the setting as in Figure 5.3 the value of zP6 increases by 1 /k =  1/4.
a) To satisfy Constraint B, we add page pe to the set £>4 . After this modification 
Constraint A is not satisfied for the cost class Cf =  {P5,P6,P7,P8} and the set £>4 .
b) To satisfy Constraint A for the cost class Cf we move the page p5 from £>4 to £>3 . 

Now Constraint A is satisfied for the cost classes C f,C f and Cf, but it is violated 
for Cf and the sets £>3, £>4. c) To satisfy Constraint A for the cost class Cf we move 
the page P2 from £>3 to D\. Now all the constraints are satisfied.
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constraints for values s' >  s remain satisfied. Now the set D' has one additional 
page, and it becomes the new set D +.

Performing the above procedure incurs expected cost of 2s+1/k for s from 
r to 0. In total we have expected cost 0 {2 r/k). The increase of zp increases the 
LP-cost by at least 2r/k. Therefore, the cost in maintaining the distribution p\ can 
be amortized against the increase in LP-cost.

Decreasing zp. When for some page p the value of zp decreases, we have to delete 
the page p from a set D  in the support of that currently contains p. The analysis 
for this case is completely analogous to the case of an increase in zp. The resulting 
cost of 0 (2 r/k), where cp € [2r,2r+1), can be amortized against the cost of LP — 
at a loss of a constant factor we can amortize 0 (2 r/k) against the cost of LP when 
the value of zp increases, and the same amount when the value of zp decreases.

Change o f  the set S. The class constraints depend on the set S that is dynami­
cally changing. Therefore we have to check whether the constraints are fulfilled if a 
page enters or leaves the set S. When a page p with cp 6 [2r,2r+1) increases its zp 
value to 1 we first add it to the only set in the support of pi that does not contain 
it. This induces an expected cost of at most 2r+1/k. Then we fix Constraint A, 
as described in the procedure for increasing a zp value. This also induces expected 
cost 0 {2r/k). After that we remove the page from the set S. Constraint A will still 
be valid because for every cost class Cf that contains p and for every set D  in the 
support of the values of h  anc* Spec? ^ ( p) change by exactly 1.

M aintaining D istribution fj,2

We will show how to maintain a distribution ¿¿2 over subsets of pages, such that each 
set D in the support of p2 fulfills the large pages constraint and does not contain 
any page p for which zp =  0. Note that as J2pel *p <  2, the large pages constraint 
can be reformulated as follows: if YhpeL —  ̂then each subset D in the support of 
P2 contains at least one page from the set of large pages L.

In the following we introduce an alternative way of thinking about this prob­
lem. A variable zp can be in one of k +1 different states { 0, 1/k, 2/k, . . . ,  1 -  1/fc, 1}. 
We view the k — 1 non-integral states as points. We say that the i-th point for page 
p appears (or becomes active) if the value of zp changes from { £ - 1  )/k to i jk.  Points 
can disappear for two reasons. Suppose the ¿-th point for page p is active. We say 
that it disappears (or becomes inactive) if either the value of zp decreases from Ik to 
{£ -  1 )/k, or when the value of zp reaches 1.
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Note that if for a page p we have zp =  1, the page p is not in the set S, and it 
only enters S once the value of zp is decreased to 0 again. The appearance of a point 
for page p corresponds to a cost of cp/k of the LP-solution. At a loss of a factor of 2 
we can also amortize cp/k against the cost of the LP-solution when a point for page 
p disappears.

Observation 5.5. The set of pages with active points is the set of pages in S with 
the value zp ^  0.

The above observation says that if we guarantee that a set D in the support 
of can contain only those pages from S which have an active point, we guarantee 
one of our constraints — the set D does not contain any page p for which zp =  0.

We assign priorities to the active points, according to the size of the corre­
sponding page, where points corresponding to larger pages have higher priorities. 
Ties are broken first according to page-ids, and then to the point-numbers. Let at 
any time step the set Q denote the set of the k active points with highest priority, or 
all active points if there are less than k (see Figure 5.5). The following observation 
follows directly from the definition of Q and L, as we used the same tie-breaking 
mechanisms for both constructions.

Figure 5.5: Each page p € S with zp =  i/k has i corresponding points (here k =  6). 
The set of k points with highest priority (Q) and the set of large pages (L) are 
marked in grey.

O bservation 5.6. For any time step, the set of pages p in L that have a value of 
zp /  0 is exactly the set of pages that have at least one point in Q.

We assign to active points labels from the set {1 , . . .  ,k},  with the meaning 
that if a point q has label i, then the £-th set in the support of //2 contains the page 
corresponding to q. At each point in time the Ath set consists of pages for which 
one of the corresponding points has label t. In general we will allow a point to have 
several labels. Note that this definition of the sets in the support of /¿2 directly 
ensures that a page that has zp =  0 is not contained in any set in the support of /r2, 
because a page with this property does not have any active points.
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Adding a label to a point q increases the expected cost of the online algorithm 
by at most cp(q)/k, where p(q) is the page corresponding to the point q. Deleting 
a label is for free, and in particular if a point disappears (meaning its labels also 
disappear), the online algorithm has no direct cost while we can still amortize cp/k 
against the LP-cost.

The following observation forms the basis for our method of maintaining the 
distribution /¿2-

Observation 5.7. If the points in Q have different labels, then all sets in the support 
of the distribution p2 fulfill the large pages constraint.

This means that we only have to show that there is a labeling scheme that 
on the one hand has a small re-labeling cost, i.e., the cost for re-labeling can be 
related to the cost of the LP-solution, and that on the other hand guarantees that 
at any point in time no two points from Q have the same label. We first show 
that a very simple scheme exists if the cost function is monotone in the page size, 
i.e., wp < wpi implies cp <  cp>■ for any two pages p, p'. Note that the bit model 
and the fault model that have been analyzed by Bansal et al. [20] have monotone 
cost functions. Therefore, the following section gives an alternative proof for an 
0 (logfc)-competitive algorithm for these cost models.

M aintaining /x2 for M onotone Cost

We show how to maintain a labeling of the set Q such that all labels assigned to 
points are different. Assume that currently every point in the set Q has a single 
unique label.

Appearance o f  a point q. Suppose that a new point q arrives. If q does not 
belong to the k points with the highest priority, it will not be added to Q and we 
do not have to do anything.

If the set Q currently contains strictly less than k points, then the new point 
will be contained in the new set Q, but at least one of the k labels has not been 
used before and we can label q with it. In the new set Q all points have different 
labels. The online algorithm paid a cost of cp^/k, where p(q) denotes the page 
corresponding to the point q.

If Q already contains k pages, then upon appearance of q, a point q' with 
lower priority is removed from Q and q is added. We can assign the label of q' to 
the new point q, and then all points in the new set Q have different labels. Again 
the online algorithm pays a cost of cp^/k.
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cp(q)/k-

Disappearance o f  a point q. Now, suppose that a point q in the current set Q 
is deleted. This means that a point q' with a lower priority than q may be added to 
the set Q (if there are at least k points in total). We give q' the same label that q 
had. This incurs a cost of cp(qi)/k < cp(q)/k, where the inequality holds due to the 
monotonicity of the cost function. Since we can amortize cp^/k  against the cost of 
the LP-solution we are competitive.

In all cases the online algorithm pays at most cp^ / k  whereas the LP-cost is

M aintaining /¿2 for General Cost

We want to assign labels to points in Q in such a way that we are guaranteed to see 
k different labels if the set Q contains at least k points. In the last section we did 
this by always assigning different labels to points in Q. For the case of general cost 
functions we proceed differently.

Let Qi denote the set of k active points with the highest priority that corre­
spond to pages with cost at least 2\ In case there are less than k such points, Qi 
contains all active points corresponding to pages with cost at least 2i (see Figure 5.6).

Figure 5.6: Each page p € S with zp =  i/k has i corresponding points (here k =  6). 
The sets Qi of points with the highest priority that correspond to the pages with 
cost at least 2i have been marked. The sets Qo and Q\ have k points each, and the 
set Q2 has less than k points.

Essentially our goal is to have a labeling scheme with small re-labeling cost 
that guarantees that each set Qi sees at least \Qi \ different labels. Since Q =  Qo, this 
gives the desired result. However, for the case of general cost, it will not be sufficient 
any more to assign unique labels to points, but we will sometimes be assigning several 
different labels to the same point. At first glance, this may make a re-labeling step 
very expensive in case a point with a lot of labels disappears.
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To avoid this problem we say that a set Qi has to commit to a unique label 
for every point q contained in it, where the chosen label is from the set of all labels 
assigned to q (see Figure 5.7). The constraint for Qi is that it commits to different 
labels for all points contained in it. If a point currently has labels £ and £', then a 
set Qi may either commit to £ or £', but furthermore during an update operation 
it may switch the label it commits to for free, i.e., no cost is charged to the online 
algorithm. Recall that if a point corresponding to a page p has several labels then 
all sets D  corresponding to these labels contain the page p; therefore committing 
to a different label is for free as no change has to be made for any set D  from the 
support of p-2- The label to which a set Qi commits for a point q G Qi is denoted by

QM)-

{3 } { M }  { L 2} { 2} {2*3} {1} {4}

•
COW

-'

Qo ' • •
2 1

•
4

•
3

Qi- •
2

• •
3 1

•
4

Qi- • • • •
4 2 1 3

Figure 5.7: Labelings for the sets Qi (k =  4). The 8 active points are ordered 
increasingly with respect to the priority. The size of the dots corresponds do the 
cost of 1, 2 or 4 of the respective pages —  larger dots represent larger costs. Each 
point has a set of labels assigned to it. Each set Qi contains 4 points with the highest 
priorities amongst the points with cost at least 2 \  For each set Q i  we are given a 
valid labeling.

Appearance o f  a point q. Suppose that a point qo corresponding to a page p 
with cp G [2r,2r+1) appears. We assign an arbitrary label £q to this point and, as 
£0 is the only label of qo, we set Qs(qo) =  £o for all subsets Qs that contain qo. The 
sets Qa where s > r are not affected by the appearance of qo, and their labelings 
remain valid. We only have to fix the labelings for the sets Qs where s < r .

Assume that labelings for all sets Qs> where s' >  s are valid, but the labeling 
for Qa is violated. We want to fix it, paying only 0 (2 s/k). We call a label £ a 
duplicate label for Qs if there exist two points in Qs for which Qs commits to £. We 
call the corresponding points duplicate points. We call a label £ free for Qs if currently 
there is no point in Qs for which Qs commits to £. When we start processing Qs
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there exists exactly one duplicate label, namely the label ¿0 that we assigned to qo, 
and for which we have Qa(qo) =  ¿o-

Since the total number of labels is k and there are at most k points in Qs, 
there must exist a free label ¿free- We could fix the condition for Qs by assigning 
the label ¿free to one of the duplicate points q, and setting Qs{q) =  ¿free- However, 
this would create a cost that depends on the cost of the page corresponding to the 
chosen point q. This may be too large, as our aim is to only pay 0 (2s/k) for fixing 
the condition for set Qs. Therefore, we will successively switch the labels that Qs 
commits to for the duplicate points, until the cost.of one of the duplicate points q 
is in [2s,2S+1). During this process we will maintain the invariant that there are at 
most two duplicate points for Qs. Hence, in the end we can assign the free label ¿free 
for a duplicate point q with cost at most 2S+1, set Qa(q) =  ¿free> and obtain a valid 
labeling for Qa.

The process of switching the labels for the set Qa is as follows. Suppose 
that currently ¿ denotes the duplicate label and that the two duplicate points both 
correspond to pages with cost at least 2S+1. This means that both points are in the 
set Qs+1- As the labeling for Qs+i is valid, we know that Qs+i commits to different 
labels for these points. One of these labels must differ from l. Let q' denote the 
duplicate point for which Qs+i commits to a label £' ^  £. We set Qs(q') =  £’• Now, 
¿' may be the new duplicate label for the set Qa.

The above process can be iterated. With each iteration the number of points 
in the intersection of Qa and Qs+i for which both sets commit to the same label 
increases by one. Hence, after at most k iterations we either end up with a set Qa 
that has no duplicate points, or one of the duplicate points corresponds to a page 
with cost smaller than 2S+1.

An example of fixing the labeling after adding a new point can be seen in 
Figure 5.8. As we only pay cost 2s+1/k for fixing the labeling of Qs, the total 
payment summed over all sets Qa with s <  r is 0 (2r/k), which can be amortized to 
the cost of LP.

Disappearance o f  a point q. Now, suppose that a point q corresponding to a 
page p with Cp € [2r,2r+1) is deleted. Then a new point may enter the sets Qa for 
which s < r. The only case for which this does not happen is when Qa already 
contains all active points corresponding to pages with cost at least 2s. For each Qa 
we commit to an arbitrary label for this point (recall this doesn’t induce any cost, 
as any point, when it becomes active, gets a label). Now, for each Qa we have the 
same situation as in the case when a new point appears. The set either fulfills its
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Figure 5.8: In the setting as in Figure 5.7 a new point (marked in grey) arrives. The 
point is assigned label 4. The changes in the sets Qi, and the label changes made 
while fixing the labelings are marked in grey.

condition or has exactly two duplicate points. As before we can fix the condition for 
set Qs at cost 0(2s/k), and the total cost of 0(2r/k) can be amortized to the cost 
of LP.

5.4 Open Problems

For the caching problem with uniform sizes and costs there are randomized algo­
rithms with competitive ratio matching the lower bound H For the generalized 
caching problem the algorithm presented here is only asymptotically tight, i.e. it 
has competitive ratio 0 (log/c), while the lower bound on the competitive ratio is 
Hk, as in the uniform case.

Is there a better lower bound on the competitive ratio for the generalized 
caching problem? Can we design an algorithm matching the lower bound, as in the 
uniform case?
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