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Abstract

If decision-makers (DMs) do not always do what is in their best interest, what do

choices reveal about welfare? This paper shows how observed choices can reveal whether

the DM is acting in her own best interest. We study a framework that relaxes rationality

in a way that is common across a variety of seemingly disconnected positive behavioral

models and admits the standard rational choice model as a special case. We model

a behavioral DM (boundedly rational) who, in contrast to a standard DM (rational),

does not fully internalize all the consequences of her own actions on herself. We provide

an axiomatic characterization of choice correspondences consistent with behavioral and

standard DMs, propose a choice experiment to infer the divergence between choice and

welfare, state an existence result for incomplete preferences and show that the choices

of behavioral DMs are, typically, sub-optimal.
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Standard normative economics employs the revealed preference approach to extract wel-

fare measures from choice data alone. The preferences revealed from the individual’s choices

are assumed to be identical to the normative preferences representing the individual’s best

interest. There is, however, considerable empirical evidence that in an array of different sit-

uations, individuals do not appear to act in their own best interest, establishing a potential

wedge between normative and revealed preferences.1

How should welfare analysis be performed if choices do not always reveal decision-

makers’(DMs) best interest? One approach, advocated in an influential contribution by

Bernheim and Rangel (2009),2 is to construct a welfare criterion that never overrules choice:

x is (strictly) unambiguously chosen over y if y is never chosen when x is available. While

this approach can exploit the coherent aspects of choice in a variety of behavioral models,

they are silent about situations in which DMs impose an externality on themselves, acting

against their own best interest. That is, x may be unambiguously chosen over y, but still be

against DM’s best interest. This is particularly relevant for models of addiction, projection

bias, aspirations failure or overconfidence.

In light of the above, we propose a different approach. We focus on identifying the

choice structure of a framework that relaxes rationality in a way that is common across a

wide variety of seemingly disconnected positive behavioral models and admits the standard

rational choice model. We show that choice data is consistent with rational choice if and

only if they satisfy Arrow’s (1959) axiom of choice. Choice data that satisfy Chernoff ’s

(1954) axiom of choice (also Sen’s (1971) axiom α) is compatible with the behavior of a

DM who is not internalizing all the consequences of her choices on herself. In the latter

case, preferences revealed from choices may not be an appropriate foundation for making

welfare assessments. Choices may be coherent in Bernheim and Rangel’s (2009) sense, but

1Loewenstein and Ubel (2008) point out that in the "heat of the moment," people often take actions that

they would not have intended to take and that they soon come to regret (Loewenstein, 1996). Koszegi and

Rabin (2008) and Beshears et. al. (2008) review empirical evidence of systematic mistakes people make.

Bernheim and Rangel (2007) record situations in which it is clear that people act against themselves: an

anorexic’s refusal to eat; people save less than what they would like; people fail to take advantage of low

interest loans available through life insurance policies; they unsuccessfully attempt to quit smoking; they

maintain substantial balances on high-interest credit cards; etc.
2See also Rubinstein and Salant (2008).
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may not represent the true preferences of the individual.3

In our decision model, a DM makes decisions that affect her psychological states (e.g.„

a reference point) which, in turn, impacts on her ranking over available alternatives in the

first place. These psychological states can be interpreted as any pay-off relevant preference

parameters that are affected by own choices such us reference points, beliefs, emotions,

aspirations, temptations, moods, etc. The DM may fully internalize the effect of her choices

on her psychological states, or she may not. If she does fully internalize the feedback from

actions to psychological states, she chooses an action and, as a consequence, a psychological

state, that maximizes her underlying preferences: this is labelled as a Standard Decision

Problem (SDP). If she does not internalize the feedback from actions to psychological states,

she chooses an action taking as given her psychological state at the moment she decides,

although psychological states and actions are required to be mutually consistent: this is

labelled as a Behavioral Decision Problem (BDP).

For example, consider a DM who chooses a bundle consisting of both material status

and health status, who is fully aware of the risk to her health from a single minded pursuit

of material status and who has revealed her preferences for health by, for example, paying

for costly treatments. In an SDP the DM will internalize the possible trade-off between her

material status and health status when choosing her material status while in a BDP, the

DM will take her health status as given and strive to achieve the highest possible material

status without internalizing how her choice affects her health. We motivate and illustrate

the distinction between an SDP and BDP by means of examples on addiction, loss aversion

and dynamic inconsistency.

We relate a BDP to the steady-state preferences of an adaptive preference mechanism

where agents understand the short-term consequences of their actions but fail to predict

the more delayed consequences. We relate an SDP to the steady state preferences of an

adaptive preference mechanism where agents internalize all the dynamic consequences of

their actions. Using this interpretation, we argue that our general framework unifies seem-

ingly disconnected models in the literature, from more recent positive behavioral economics

models to older models. We also provide a new equilibrium existence result in pure actions

3Section 5, Remark 3 elaborates on this point.

3



without complete and/or transitive preferences. A result like that this is important, since

incomplete and non-transitive preferences are a common token in behavioral economics

models.

Next, we provide an axiomatic characterization, via choice correspondences, of both a

BDP and SDP, and study the link between choice and welfare. We show that observed

choices are compatible with a BDP if and only if the choice data satisfy Chernoff’s axiom

(also Sen’s axiom α): the choice correspondence is (weakly) increasing as the choice set

shrinks when all alternatives chosen in the larger set are also present in the smaller set. This

testable condition, which violates independence of irrelevant alternatives, is weaker than

the condition (Arrow’s axiom) that characterizes an SDP, i.e. the choice correspondence is

exactly the same as the choice set shrinks when all alternatives chosen in the larger set are

also present in the smaller set. We then propose a choice experiment where, on the basis of

choice data alone, it is possible to infer the divergence between choice and welfare. Notably,

it is possible to infer whether a DM could be better-off by choosing an available alternative

that she has never chosen.

We, then, derive the necessary and suffi cient conditions under which BDP and SDP

outcomes are indistinguishable from each other and show, in smooth settings, that the two

decision problems are, generically distinguishable and discuss the normative implications

of distinguishable decision problems. We briefly discuss some policy implications of our

analysis and relate them to the libertarian paternalism approach (Thaler and Sustein, 2003).

We highlight the value of interventions such as psychotherapy that directly affect the way

individuals internalize the feedback effect.

The rest of the paper is organized as follows. Section 2 motivates the framework of

decision-making by looking at examples of addiction, reference-dependent choice and dy-

namic inconsistency. Section 3 is devoted to the analysis and interpretation of the decision

model and contains the existence result. Section 4 characterizes, on the basis of choice cor-

respondences, Behavioral and Standard DMs. Section 5 focuses on distinguishability and

Section 6 contains a brief policy discussion. Section 7 relates the analysis reported here

to the related literature. The last section concludes and discusses directions for further

research. The details of the existence proof are contained in the appendix.

4



1 Some Examples

Example 1: Micro 101

Consider a consumer choice problem where the decision maker chooses a commodity

bundle (x, y) to maximize a standard utility function subject to a budget constraint. Assume

preferences are increasing in both x and y and represented by a utility function u(x, y). The

Micro 101 analysis of decision-making in such a setting formulates the maximization problem

as one where a fixed preference relation is maximized subject to a budget constraint, i.e.

max{x,y}u(x, y) s.t. pxx+ pyy ≤ w, x, y ≥ 0.

where px > 0 and py > 0 are the prices of x and y respectively and w is the wealth of the

individual. A different (but equivalent) formulation would be to assume that the DM only

chooses x, but internalizes that the amount of y consumed will go down if the amount of

x consumed is increased via the budget constraint rewritten as y = π(x) = w
py
− px

py
x. This

second formulation corresponds to a Standard Decision Problem (SDP). The function π(.)

is an example of a feedback effect from the action chosen by the DM (in this case x) to a

psychological state (in this case y). In contrast in a Behavioral Decision Problem (BDP) the

DM, mistakenly, takes y as given when choosing x, although a decision outcome is required

to be in some sense stable, i.e. the amount of y that the individual actually gets to consume

for any choice of x must be feasible determined by the budget constraint.

An outcome of a BDP in this example is any non-negative commodity bundle x, y on

the budget line i.e. x+ py = w. Clearly, the individual, except in exceptional cases, cannot

be utility maximizing at all these commodity bundles and therefore, most outcomes of a

BDP will be welfare dominated.

Although this example is somewhat artificial, it is a special case of general framework

where an individual chooses an action a to maximize preferences that, in turn, depend on

some psychological state p which is itself affected by the chosen action via a feedback effect

π(.). Examples of p include beliefs, moods, self-confidence, reference points, expectations,

temptations, etc.

In what follows, we present three more examples illustrating the distinction between

a BDP and an SDP. Intuitively, the key distinction between an SDP and a BDP can be
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stated as follows: in contrast to a standard DM, a behavioral DM compares actions using the

psychological state associated with their chosen action instead of varying the psychological

state (via the feedback function π) as they consider alternative actions. As such, a BDP

captures the psychological propensity to undertake actions without fully internalizing their

full (equivalently, long run) consequences.

Example 2: Addiction

Consider an agent who is considering whether to drink alcohol. The psychological state

will either be sober (if he does not drink) or inebriated (if he does). The payoff table below

provides a quick summary of the decision problem:

inebriated sober

alcohol 1− 2 1 + 0

no alcohol 0− 2 0 + 0

In this example, the payoffs are an additive function of the action-based payoff and the

psychological state-based payoff. Alcohol generates utility of 1; no alcohol generates utility

of 0. Sobriety generates utility of 0; inebriation generates utility of −2.

An agent who solves an SDP recognizes that he has to choose between the on-diagonal

elements. Alcohol goes together with the psychological state of inebriation. No alcohol

goes together with the psychological state of sobriety. Hence, the off-diagonal paths are not

options.

However, the behavioral agent mistakenly believes that (or at least acts as if) he can

change his alcohol consumption without changing his psychological state. Consequently,

the behavioral agent decides to consume alcohol (since alcohol is always better, conditional

on a fixed psychological state). Consequently, the BDP chooses to drink alcohol and ends

up inebriated (with net payoff −1). This is a mistake in the sense that the agent would be

better off if he chose to drink no alcohol and ended up sober (with net payoff 0).

Example 3: Reference Points with Loss Aversion

Consider an agent who is considering whether to switch to a different service provider

(e.g., gas and electricity) from her current one. The psychological state (in this case the

reference point) will either be her current supplier (if she sticks with the current supplier) or

the alternative supplier (if she makes the change). There are two payoff relevant dimensions
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of choice with outcome denoted by x1 and x2 and preferences u(x) = x1 + v(x1 − r1) +

x2 + v(x2 − r2) where v(.) is a Kahneman-Tversky value function with v(z) = z if z ≥ 0,

v(z) = αz, α > 2.5 if z < 0 and v(0) = 0. The cost of switching is equal to 0.5. The

status-quo option is defined by q = (0, 1) and the alternative option is a = (2, 0). The

payoff table below provides a quick summary of the decision problem:

status quo alternative

current supplier 1 2− 2α

alternative supplier 3.5− α 1.5

In this example, again, the payoffs are an additive function of the action-based payoff

and the psychological state-based payoff.

An agent who solves an SDP recognizes that she has to choose between the on diagonal

elements. Sticking with the current supplier goes with the reference point status quo.

Choosing the alternative supplier goes together with the reference point of the alternative.

Hence, the off-diagonal paths are not options and the outcome of an SDP will be to switch

to the alternative supplier.

However, the behavioral agent mistakenly believes that (or at least acts as if) she can

choose between the two suppliers without changing her psychological state. Consequently,

there are two payoff ranked outcomes: one where the behavioral agent sticks with the

current supplier and the reference point is status quo, and the other where the agent switches

suppliers and the reference point is the alternative. The former choice is a mistake in the

sense that the agent would be better off if she chose to switch and ended up with the

alternative as the reference point.

Example 4: Dynamic Inconsistency

Consider a three period problem t = 0, 1, 2 where a decision-maker has preferences

defined over a single consumption good ct, t = 0, 1, 2. The decision maker is endowed with

a single unit of the consumption good at t = 0 but has no endowment of the consumption

good in either of the subsequent two periods. The agent obtains no utility from consumption

at t = 0 but obtains utility from consumption at t = 1, 2 with an instantaneous linear utility

function c. Assume that the DM quasi-hyperbolically discounts the future with 0 < β < 1

and δ = 1.
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There are two assets: (i) an illiquid asset where one unit invested yields nothing at

t = 1 and R > 1 units of the consumption good at t = 2, (ii) a liquid asset where one unit

invested at t = 0 yields 1 unit of the consumption good if liquidated at t = 1 and nothing

at t = 2, or if not liquidated at t = 1 yields R′ > R units of the consumption good at t = 2.

We assume that β < 1
R′ .

The DM at t = 0 will choose which asset to invest in in order to maximize β (c1 + c2).

At t = 1 the current self of the DM will maximize c1 + βc2. To represent the above

decision-problem in our framework we proceed as follows. The psychological states of the

decision-maker at t = 0 will be p1 ="tempted to liquidate at t = 1", p2 ="not tempted to

liquidate at t = 1" (corresponding to not liquidate). Note that at t = 1, if L was chosen at

t = 0, the current self of the decision-maker will be tempted and liquidate if βR′ < 1 i.e.

β < 1
R′ . Clearly, the current self of the decision-maker cannot be tempted to liquidate if at

t = 0 the decision-maker has invested in the illiquid asset.

Therefore, the action "invest in the illiquid asset" goes with the psychological state

p2 ="not tempted to liquidate at t = 1" while the action "invest in the illiquid asset" goes

with the psychological state p1 ="tempted to liquidate at t = 1".

The DM at t = 0 has to decide whether to invest in the liquid or the illiquid asset. A

quick summary of the decision problem of the decision-maker at t = 0 is:

tempted not tempted

liquid 1 R′

illiquid R R

In an SDP, the decision-maker will correctly anticipate that the asset chosen today will

affect her psychological state at t = 1 and will choose to invest in the illiquid asset and

obtain a payoff of R > 1. In an SDP the decision-maker exhibits self-control by using a pre-

commitment device the illiquid asset. In a BDP, the decision-maker will believe (or act as

if) the asset chosen today will not affect her psychological state at t = 1. Interestingly, there

is no pure action solution to a BDP. If the psychological state is "tempted", she will choose

to invest in the illiquid, but if the psychological state is "not tempted" she will invest in

the liquid asset. There is, however, a random solution where the behavioral decision-maker

chooses to invest in the liquid asset with probability p = R′−R
R′−1 : if a behavioral DM believes
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that the distribution over psychological states is
{
R′−R
R′−1 ,

R−1
R′−1

}
, she is indifferent between

investing in either the liquid or the illiquid asset and is willing to randomize between the

two actions. By computation, it is easily checked that the expected payoff from such a

random action is less than R, the payoff of a standard decision-maker.

Remarks:

The above examples highlight a number of key features of our framework.

First, our framework is general enough to incorporate a wide range of applications in

behavioral economics and, in addition, to encompass the standard rational model as a

special case (SDP).

Second, as highlighted in the examples, in a BDP the DM imposes an externality on

herself and the outcomes of a BDP can be welfare dominated.

The rest of the paper works out the implications of the latter point. We first ask whether

it is possible with choice data alone to inform the planner about the type of decision problem

the DM is solving. Proposition 2 and 3 tell us that it is possible by observing very simple

conditions. Second, we ask whether it is possible with choice data alone to infer whether

the individual is choosing optimally or not. Proposition 4 tells us that in some situations,

this is possible too. Finally, we ask how likely it is that when the DM solves a BDP he

chooses a suboptimal action. Proposition 5 tells us that in smooth settings, the behavioral

DM typically chooses suboptimally.

2 The General Framework

2.1 The Model

A decision scenario D = (A,P, π) consists of a set A of actions, a set P of psychological

states and a map π : A → P modelling the feedback effect from actions to psychological

states. It is assumed that π (a) is non-empty for each a ∈ A. A decision state is a pair of

an action and psychological state (a, p) where a ∈ A and p ∈ P .

Although a natural starting point is to assume that preferences over A are indexed by

p, following Harsanyi (1954) we assume intra-personal comparability of utility. We assume,

not only that the decision-maker is able to rank different elements in A for a given p but
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also that she is able to assess the subjective satisfaction she derives from an action when the

psychological state was p, compared to the subjective satisfaction she derives from another

action when the psychological state is p′, i.e. to assume that the individual is able to

rank elements in A × P . This formulation is critical in order to make meaningful welfare

comparisons.

The preferences of the decision-maker are denoted by �, a binary relation ranking pairs

of decision states in (A× P ) × (A× P ). The expression {(a, p) , (a′, p′)} ∈� is written as

(a, p) � (a′, p′) and is to be read as "(a, p) is weakly preferred to (equivalently, weakly

welfare dominates) (a′, p′) by the decision-maker".

A consistent state is a decision state (a, p) such that p = π(a). Let

Ω = {(a, p) ∈ (A× P ) : p = π (a) for all a ∈ A}

be the set of consistent decision states.

The two decision problems studied here are:

1. A standard decision problem (SDP ) is one where the decision-maker chooses a pair

(a, p) within the set of consistent decision states. The outcomes of an SDP, denoted by S,

are

S =
{

(a, p) ∈ Ω : (a, p) �
(
a′, p′

)
for all

(
a′, p′

)
∈ Ω

}
.

2. A behavioral decision problem (BDP ) is one where the decision maker takes as given

the psychological state p when choosing a. Define a preference relation �p over A as follows:

a �p a′ ⇔ (a, p) �
(
a′, p

)
for p ∈ P .

The outcomes of a BDP , denoted by B, are

B =
{

(a, p) ∈ Ω : a �p a′ for all a′ ∈ A, p = π(a)
}
.

In both an SDP and a BDP, a decision outcome must be a consistent decision state.

In an SDP the decision-maker internalizes that her psychological state is determined by

her action via the feedback effect. In a BDP the decision-maker takes the psychological

state as given although the chosen action and the psychological state have to be mutually

consistent.
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2.2 A Dynamic Interpretation

Myopic vs. farsighted adjustments

We interpret the outcomes of an SDP and a BDP as corresponding to distinct steady-

states associated with an adaptive preference mechanism where the DM’s preferences over

actions at any t, denoted by �pt−1 , depend on her past psychological state pt−1. The state-

ment a �pt−1 a′ means that the DM finds a at least as good as a′, given the psychological

state from the preceding period.

Let h(p) = {a ∈ A : a �p a′, a′ ∈ A}. For ease of exposition, assume that h(p) is unique.

Fix a p0 ∈ P . Define a sequence of short-run outcomes as at ∈ h(pt−1) and pt = π(at) for

t = 1, 2, .... and assume that at each step the DM chooses a myopic best-response. Define

now a long-run outcome as a pair (a, p), where p = π(a) and a is the steady-state solution

to the short-run outcome functions, a = h(π(a)). In this setting, a BDP corresponds to the

steady state of an adjustment dynamics where the DM is myopic (i.e., does not anticipate

that the psychological state at t+1 is affected by the action chosen at t) and, thus, long-run

behavior corresponds to the outcome of a BDP.4

In contrast, in an SDP, the DM is assumed to be farsighted. The DM anticipates that

p adjusts to a according to π(.) and taking this into account, chooses a. Formally, the

outcome of an SDP is the steady state solution a satisfying a ∈
{
a ∈ A : a �π(a) a′, a′ ∈ A

}
and p = π(a). Note that, in this simple framework, the DM solving an SDP instantaneously

adjusts to the steady-state outcome. Therefore, the initial psychological state, p0, has no

impact on the steady state solution with farsightedness.5

Predicting short-run but not long-run psychological states

So far we have assumed that agents fail to anticipate the consequences of their choices

on their future psychological states, including those psychological states that are affected

in the immediate future. Arguably, there are situations in which DMs do understand and

anticipate the near-term consequences of their actions (e.g., getting a nicotine rush from

4See also Von Weizsacker (1971), Hammond (1976), Pollak (1978) who make a similar point for the case

of adaptive preferences defined over consumption.
5Non-trivial dynamics would be associated with farsighted behavior if underlying preferences or action

sets were time variant.
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smoking a cigarette) but fail to predict the more delayed consequences (e.g. developing

nicotine dependency or lung cancer from smoking).6 We account for these situations as

follows. Let h2(p) = h (π(h(p))) and define ht (p) = h
(
π(ht−1(p))

)
iteratively t = 1, 2, ....

Fix a p0 ∈ P and some finite T ≥ 1. Define a sequence of short-run outcomes compatible

with T -period forecasting as the relations at ∈ hT (pt−1) and pt = π(at), t = 1, 2, .... At each

step, the DM chooses a best-response that anticipates the short-run psychological states

within a T -period horizon. Define now the long-run outcomes compatible with T -period

forecasting as a pair a′, p′ with p′ = π(a′) and a′ being the steady-state solution to the short-

run outcome function i.e. a′ = hT (π(a′)). It follows that long-run behavior corresponds to

the outcome of a BDP where the feedback effect is π′(a) = π(hT−1(a)).

Partial prediction

There are situations in which DMs make only partial predictions of the changes in

their psychological states. For example, they may be uncertain about the mechanisms

through which high stress can be reduced. To model these situations we assume that the

DM predicts that her psychological state will respond to her chosen action with prob-

ability q, 0 ≤ q ≤ 1. For convenience, we assume that the binary relation � has an

(expected) utility representation u : A × P → <. Let v(a) = u(a, π(a)), h(p; q) =

{a ∈ A : a ∈ arg maxa∈A qv(a) + (1− q)u(a, p)} and assume that h(p; q) is unique. Fix a

p0 ∈ P . Again, we use the similar argument from above, and define a sequence of short-

run: at ∈ h(pt−1; q) and pt = π(at), t = 1, 2, .... where at each step, the DM chooses a

myopic best-response. We also define long-run outcomes as a pair a, p with p = π(a) and a

being the steady-state solution to the short-run outcome functions i.e. a = h(π(a); q). The

long-run behavior corresponds to the outcome of a BDP where the preferences are repre-

sented by a utility function w(a, p) = qv(a) + (1 − q)u(a, p). This formulation is formally

equivalent to the modelling of projection bias in Loewenstein et. al. (2003).

Note that the above representation is consistent with incomplete learning: as long as

the decision-maker doesn’t fully learn to internalize the feedback effect from actions to

psychological states, there is way of re-labelling variables so that the steady-state preferences

corresponding to an adaptive preference mechanism are the outcomes of a BDP.

6See for example Baron (2008) and Beshears et. al (2008) for evidence on these psychological patterns.
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2.3 Reduced form representation

Various interpretations can be given to p, e.g., psychological state, reference point, expecta-

tions or, more generally, any dimension of the object of choice that the individual, for some

reason, could take as given at the point of making a choice. Are all of these interpretations

consistent with our general theoretical framework?

Our analysis assumes that a DM’s well-being depends on both current action and psy-

chological state. In some cases, the action causes the psychological state (e.g., where an

emotion state (e.g., fear, anxiety, stress) or the reference point adjusts quickly to current

actions), but in others (e.g., where the state concerns expectations, endowments or beliefs)

the states precedes the action, and in this sense, our definition of “consistent decision state”

is an equilibrium concept.7

Consistent with the dynamic interpretation of the general framework, in the definition

of an SDP, internalization (i.e. rationally anticipating the actual effects of one’s actions) is

equivalent to the DM anticipating equilibrium (e.g., one’s own actions is what one expected

it to be, or what others expected it to be) and behaving accordingly.

It follows that our general framework, by allowing for a feedback effect from actions to

the psychological state and by making the distinction between an SDP and a BDP, uni-

fies seemingly disconnected models in the literature, from situations where the psychological

state corresponds to the decision maker’s status-quo (Tversky and Kahneman, 1991), beliefs

(Geanakoplos, Pearce and Stacchetti, 1989; Akerlof and Dickens, 1982), emotions (Bracha

and Brown, 2007; Loewenstein, 1996), future tastes (Loewenstein et. al., 2003), (endoge-

nous) reference points (Shalev, 2000; Koszegi, 2005; Koszegi and Rabin, 2006; 2007), aspi-

rations (Dalton et. al. 2010) or adaptive preferences over consumption (already referred to

above).

2.4 Stackelberg vs. Nash in an intra-self game

In a formal sense, we could also interpret the distinction between an SDP and BDP as

corresponding to the Stackelberg and Nash equilibrium of dual self intra-personal game

7A similar notion of equilibrium is used in Koszegui and Rabin (2006) and Geanakoplos, Pearce and

Stacchetti (1989).
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where one self chooses actions a and the other self chooses the psychological state p and

π(a) describes the best-response of the latter for each a ∈ A.

In a Stackelberg equilibrium, the self choosing actions anticipates that the other self

chooses a psychological state according to the function π(.). In a Nash equilibrium, both

selves take the choices of the other self as given when making its own choices. In this

interpretation, it follows that in the welfare analysis reported below, only the preferences

of the self that chooses actions is taken into account.

2.5 Existence

So far we have implicitly assumed that both SDP and BDP are well-defined i.e. lead to

well defined outcomes. In what follows, we check for the existence of solutions to an SDP

and a BDP in situations where the underlying preferences are not necessarily complete or

transitive and underlying action sets are not necessarily convex. Mandler (2005) shows

that incomplete preferences and intransitivity is required for "status quo maintenance"

(encompassing endowment effects, loss aversion and willingness to pay-willingness to accept

diversity) to be outcome rational. Tversky and Kahneman (1979, 1991) argue that reference

dependent preferences may not be convex. So we allow preferences to be incomplete, non-

convex and acyclic (and not necessarily transitive) and we show existence of a solution

to a BDP extending Ghosal’s (2010) result for normal form games to behavioral decision

problems.8

Proposition 1. Suppose the map π : A → P is increasing. Under assumptions of

single-crossing, quasi-supermodularity and monotone closure,9 a solution to a BDP exists.

Proof. See Appendix. �

The preceding existence result doesn’t cover situations with payoffs as in Example 4.

In such cases, where there are no pure action solutions to a BDP, what are the possible

outcomes?

Given that the outcome of a BDP can be interpreted as a Nash equilibrium of a two

8The seminal proof for existence of equilibria with incomplete preferences in Shafer and Sonnenschein

(1975) requires convexity both for showing the existence of an optimal choice and using Kakutani’s fix-point

theorem.
9These terms are all defined in the appendix below.
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person game, as long as A and P are finite, a behavioral decision outcome involving ran-

domization always exists.

A different possibility, referring back to the dynamic interpretation of model, is that

in such situations, the sequence of short-run outcomes will cycle. Moreover, under the

assumptions required to prove Proposition 1, as shown in the appendix, h(.) is an increasing

map of p so that the sequence of short-run outcomes is a (component-wise) increasing

sequence (as by assumption is contained in a compact set and therefore, converges to its

supremum which is necessarily a BDP). So the existence result covers not only cases where a

solution to a BDP (equivalently, a steady-state solution to the myopic preference adjustment

mechanism) exists, but also ensures that short-run outcomes converge to a BDP.

3 Axiomatic Characterization and Welfare

3.1 Choice data compatible with a BDP and an SDP

Our model is about two distinctive theories of individual behavior: one characterized as a

Standard Decision Problem (SDP) and the other as a Behavioral Decision Problem (BDP).

What is the choice structure that characterizes each of these theories? To answer this

question, we provide an axiomatic characterization of BDP and SDP outcomes on the basis

of choice data alone.10

Fix �, π : A → P and a family A of non-empty subsets of A. Define two correspon-

dences, S and B, from A to A as

S(A′) =
{
a : (a, p) �

(
a′, p′

)
for all a′ ∈ A′, p′ = π(a′) and p = π(a)

}
and

B(A′) = {a : (a, p) �
(
a′, p

)
for all a′ ∈ A′ and p = π(a)},

so, the choices corresponding to a standard and behavioral decision problem, respectively.

Suppose that we observe a correspondence C from A to A such that C(A′) ⊆ A′.

We say that SDP (respectively, BDP) rationalizes C if there exist P , π and � such that

C(A′) = S(A′) (respectively, C(A′) = B(A′)).

10We are grateful to Andres Carvajal for his helpful suggestions on this section of the paper.
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Consider the following condition introduced by Chernoff (1954) and Sen (1971) (Sen’s

Axiom α) (henceforth Chernoff’s axiom):

Chernoff ’s axiom. For all A′, A′′ ⊆ A, if A′′ ⊆ A′ and C(A′) ∩ A′′ is non-empty, then

C(A′) ∩A′′ ⊆ C(A′′).

The choice correspondence is (weakly) increasing as the choice set shrinks when all

alternatives chosen in the larger set are also present in the smaller set.

The following result provides an axiomatic characterization of choice data compatible

with a BDP.

Proposition 2. Choice data are rationalizable as the outcome of a BDP if and only if

Chernoff ’s axiom is satisfied.

Proof. (i) We show that if choice data are rationalizable as the outcome of a BDP,

then, Chernoff ’s axiom holds.

Fix �, π : A→ P . If

a ∈ B(A′) =
{
a : (a, p) �

(
a′, p

)
for all a′ ∈ A′, p = π(a)

}
and a ∈ A′′ ⊆ A′, it follows that

a ∈ B(A′′) =
{
a : (a, p) �

(
a′, p

)
for all a′ ∈ A′, p = π(a)

}
.

Therefore, C(A′) ∩A′′ ⊆ C(A′′) as required.

(ii) We show that if choice data satisfies Chernoff ’s axiom, it is rationalizable as the

outcome of a BDP.

To this end, we specify π : A→ P so that it is one-to-one and onto.

Next we specify preferences �: for each non-empty A′ ⊆ A and a ∈ C(A′), � satisfies

the condition that (a, p) � (a′, p) for all a′ ∈ A′, p = π(a).

Consider C(A′) for some non-empty A′ ⊆ A. By construction if a ∈ C(A′) ⇒ B(A′)

and therefore, C(A′) ⊆ B(A′).

We need to check that for the above specification of �, π : A → P , B(A′) ⊆ C(A′).

Suppose to the contrary, there exists a′ ∈ B(A′) but a′ /∈ C(A′). It follows that (a′, p′) �

(b, p′) for all b ∈ A′. Since a′ /∈ C(A′), by construction this is only possible if a′ ∈ C(B)

for some B with A′ ⊆ B. But, then, by Chernoff ’s axiom a′ ∈ C(A′), a contradiction.

Therefore, B(A′) ⊆ C(A′).
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As C(A′) ⊆ B(A′), it follows that C(A′) = B(A′) as required. �

Next, consider the following condition introduced by Arrow (1959) (henceforth Arrow’s

axiom):

Arrow’s axiom. If A′ ⊆ A and C(A) ∩A′ is non-empty, then C(A′) = C(A) ∩A′.

When the set of feasible alternatives shrinks, the choice from the smaller set consists

precisely of those alternatives chosen in the larger set and remain feasible, if there is any.

The following result provides an axiomatic characterization of choice data compatible

with an SDP.

Proposition 3. Choice data are rationalizable as the outcome of an SDP if and only if

Arrow’s axiom is satisfied.

Proof. (i) We show that if choice data is rationalizable as the outcome of an SDP, then,

Arrow’s axiom holds.

Fix �, π : A→ P . If

a ∈ S(A′) =

{
a : (a, p) � (a′, p′) for all a′ ∈ A′, p′ = π(a′)

and p = π(a)

}

and A′′ ⊆ A′, it follows that

a ∈ S(A′′) =

{
a : (a, p) � (a′, p′) for all a′ ∈ A′′, p′ = π(a′)

and p = π(a)

}
.

Therefore, C(A′) ∩A′′ ⊆ C(A′′).

It remains to check that C(A′′) = S(A′′) ⊆ C(A′) ∩ A′′ = S(A′) ∩ A′′. Suppose there

exists a′ ∈ C(A′′) = S(A′′) but a′ /∈ S(A′) ∩ A′′. Then,a′ ∈ A′ but a′ /∈ S(A′). However,

by construction, both (a′, p′) � (a, p) and (a′, p′) � (a, p) for p′ = π(a′) and p = π(a).

Therefore, a′ ∈ S(A′), a contradiction.

It follows that C(A′′) ⊆ C(A′) ∩A′′ and therefore, C(A′′) = C(A′) ∩A′′ as required.

(ii) We show that if choice data satisfies Arrow’s axiom, it is rationalizable as the

outcome of an SDP.

To this end, we specify π : A → P so that it is one-to-one and onto. Next we specify

preferences �: for each non-empty A′ ⊆ A and a ∈ C(A′), � satisfies the condition that

(a, p) � (a′, p′) for all a′ ∈ A′, p = π(a) and p′ = π(a′). Consider C(A′) for some non-empty

A′ ⊆ A. By construction if a ∈ C(A′)⇒ S(A′) and therefore, C(A′) ⊆ S(A′).
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We need to check that for the above specification of �, π : A → P , S(A′) ⊆ C(A′).

Suppose to the contrary, there exists a′ ∈ S(A′) but a′ /∈ C(A′). It follows that (a′, p′) �

(b, q) for all b ∈ A′ and q = π(b). Since a′ /∈ C(A′), by construction this is only possible

if a′ ∈ C(A′′) for some A′′ with A′ ⊆ A′′. But, then, by Arrow’s axiom a′ ∈ C(A′) a

contradiction. Therefore, S(A′) ⊆ C(A′). As C(A′) ⊆ S(A′), it follows that C(A′) = S(A′)

as required. �

Standard choice theory is falsifiable if Arrow’s axiom holds. Proposition 3 shows that

any choice data is compatible with SDP if and only if it is also compatible with the standard

choice theory.11

Next, by example, we show that if C(.) satisfies Chernoff ’s axiom but not Arrow’s axiom

it can be rationalized as the outcome of a BDP but not an SDP. Suppose A = {a1, a2, a3}. If

C(A) = {a1} but C({a1, a2}) = {a1, a2}, then C cannot be rationalized as the outcome of an

SDP. However, C can be rationalized as the outcome of a BDP by setting P = {p1, p2, p3},

π(a1) = p1, π(a2) = p2, π(a3) = p3, and � such that:

p1 p2 p3

a1 3 1 2

a2 2 2 1

a3 1 3 1

In this case, B (A) = {a1} and B({a1, a2}) = {a1, a2}.

Observe that if choice data satisfies the following condition namely that if A′ ⊆ A and

C(A)∩A′ is non-empty, then {C(A) ∩A′}∩C(A′) is the empty set, then such data cannot

be rationalized either as the outcome of a BDP or SDP. When the set of feasible alternatives

shrinks, the choice from the smaller set does not include any alternative selected from the

larger set and remains feasible, if there is any.

Manzini and Mariotti (2009) propose a decision-making procedure in which DMs cat-

egorize alternatives before choosing (CTC). CTC can rationalize pairwise cycles of choice.

For example, suppose A = {a, b, c} and C(A) = {a}, C ({a, b}) = {a}, C ({b, c}) = {b} but

C ({c, a}) = {c}. CTC can rationalize this choice data but BDP can’t as this data is in-

consistent with Chernoff ’s axiom. However, if C ({c, a}) = {c, a}, the resulting choice data
11Masatlioglu and Ok (2005)’s axiomatic characterization of rational choice with status quo bias (exoge-

nous to the actions chosen by the decision-maker) satisfies Arrow’s axiom among other axioms.
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is consistent with BDP. Masatlioglu, Nakajima and Ozbay (2009), Rubinstein and Salant

(2010) also can rationalize pairwise cycles of choice.

3.2 Choice and welfare

The recent work on welfare analysis of non-rational choice data relies on ordinal (i.e., choice

data) information alone to derive a partial preference ordering based on pairwise coherence

(Bernheim and Rangel, 2009; Rubinstein and Salant, 2008; Green and Hojman, 2008 and

earlier by Sen, 1971). The issue is whether it is possible, solely on choice data alone, to

allow for a divergence between choice and welfare.12 To this end, we examine the divergence

between choice and welfare while relying solely on choice data.

Fix A the set of alternatives. Let Ã denote the set of subsets of A consisting of singletons

so that for each a ∈ A, {a} ∈ Ã. The choice data we use is generated by the following

choice experiment involving two distinct choice scenarios:

Choice Scenario 1: Rank any two choice sets consisting of pairwise comparisons of

singleton choice sets, i.e. all pairs {a} and {a′} in Ã.

For example, if a is smoking and a′ is not-smoking, {a′} is a situation in which the

option of smoking is not available, and the only available option is "not smoking" (i.e. go

for dinner to a non-smoking restaurant) and {a} is a situation in which the option of "not

smoking" is not available and the only available option is to smoke (i.e. go for dinner to a

restaurant that only admits smokers).

Choice Scenario 2: Rank the two actions in the choice set where both actions used in

the preceding pairwise comparison are already available, i.e. actions in {a, a′} for each such

pair of actions.

For example, choose between smoking and not smoking over dinner in a restaurant where

both choices are already available.

The interpretation is as follows. Across all possible pairwise comparisons of actions

a, a′ ∈ A, in choice scenario 1, the decision maker is being asked to choose between a

12The result reported in the preceeding subsection suggests that when the observed choice data violates

Chernoff but not Arrow, there is at least an argument for further non-choice data (such as psychological

data) to potentially qualify the Pareto approach. For example, Green and Hojman (2008) study divergence

between choice and welfare which relies on use of cardinal information.
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situation where only action a is available and another one where only action a′ is available.

In choice scenario 2, the DM has to choose between a and a′ when both actions are already

available.

For each pair of actions a, a′ ∈ A, suppose we observe two non-empty correspondences

C̃({a} , {a′}) ⊆ (a, a′) and C(a, a′) ⊆ (a, a′). Consider the following two conditions:

C̃ 1 . C̃({a} , {a′}) = C(a, a′), for all a, a′ ∈ A;

C̃ 2 . C̃({a} , {a′}) ∩ C(a, a′) is empty for some a, a′ ∈ A.

Condition C̃ 1 states that in any pairwise comparison of {a} , {a′} ∈ Ã, the DM prefers

{a} to {a′} if and only if the DM chooses a over a′ when both actions are already available.

Condition C̃ 2 states that the DM’s choices are reversed when both actions are already

available relative to the DM’s choice between singleton sets.

The following proposition clarifies the relationship between choice and welfare in our

set-up:

Proposition 4. Suppose there is a pair of actions a, a′ such that C̃ 1 is violated and C̃ 2

is satisfied. Then, the decision-maker’s observed choice in the pairwise comparison between

a and a′ is welfare dominated.

Proof. In choice scenario 1, the DM, whether behavioral or standard, in any pairwise

comparison {a} , {a′} ∈ Ã, the DM is being forced to choose between the pair (a, π (a))

and (a′, π (a′)) , i.e. between consistent decision-states. Therefore, for any pair of actions

a, a′ ∈ A, C̃({a} , {a′}) = S(a, a′). It follows that if the DM solves an SDP, observed choice

must satisfy condition C̃ 1 .

On the other hand, if the DM is behavioral, C̃ 1 could be violated. We show this by

example. Let A = {a1, a2}, P = {p1, p2}, π(a1) = p1 and π (a2) = p2 and � is such that

p1 p2

a1 1 −1

a2 2 0

Clearly S(A) = C̃({a1} , {a2}) = C(a1, a2) = a1 but B(A) = a2.

Now, suppose C̃ 2 is satisfied for some pair of actions a, a′ ∈ A. Without loss of general-

ity, suppose C̃({a} , {a′}) = S(a, a′) = a but C̃({a} , {a′}) ∩ C(a, a′) is empty. Then, there

exists P and π : A→ P such that (a, π (a)) � (a′, π (a′)) but both (a′, π (a)) � (a, π (a)) and
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(a′, π (a′)) � (a, π (a′)) so that B(a, a′) = C(a, a′) = a′. Therefore, the decision maker can

do strictly better by choosing a different action a when both actions are already available.�

Note that the preference relation derived by pairwise coherence as in Bernheim and

Rangel (2009) would rank a′ over a. However, we conclude that the individual is better off

at a than at a′ even though the individual always chooses a′ when both a and a′ are already

available.

Continuing with the example of smoking, a behavioral smoker will prefer {a′} to {a} but

will smoke when both a, a′ are already available thus revealing a preference for not having

the alternative to smoke. A standard smoker (one who chooses to smoke after internalizing

the feedback effect) will never choose situation {a′} in which "smoking" is not a possibility.

4 Indistinguishability

How relevant is the distinction between a BDP and an SDP? In this section, we derive the

necessary and suffi cient conditions under which BDP and SDP outcomes are indistinguish-

able from one another and show, in smooth settings, that the two decision problems are,

generically, distinguishable.

A BDP is indistinguishable from an SDP if and only if B = S. Note that indistin-

guishability is, from a normative viewpoint, a compelling property. What matters for

welfare purposes is the ranking of consistent decision states, which is the preference relation

that a standard decision maker will use to make a decision. When B = S, the outcomes

(consistent decision states) of an SDP coincide with that of a BDP, and therefore whether

or not the decision maker internalizes the feedback effect has no normative implications at

all.

If π (a) = π (a′) for all a, a′ ∈ A, a BDP is, by construction, indistinguishable from an

SDP13. So suppose π(a) 6= π(a′) for some pair of distinct actions a, a′.

Consider the following conditions:

Ĉ 1 : For (a, p), (a′, p′) ∈ Ω if (a, p) � (a′, p), then (a, p) � (a′, p′);

Ĉ 2 : For (a, p), (a′, p′) ∈ Ω such that (a, p) � (a′, p′), (a, p) � (a′, p).

13 In this case, p is exogenous to individual choice and therefore, both, standard and behavioral decision

makers rank actions in the same way.
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Fix the consistent states (a, p), (a′, p′). Condition (Ĉ1) states that if the action a

weakly dominates the action a′ at the psychological state p, then the pair (a, p) also weakly

dominates the pair (a′, p′). Condition (Ĉ2) states that if the pair (a, p) weakly dominates

the pair (a′, p′), then the action a weakly dominates the action a′ at the psychological state

p.

Clearly under (Ĉ1), B ⊆ S and if B ⊆ S that (Ĉ1) has to hold is also immediate (from

negating (Ĉ1) and the definition of B and S). Similarly, under (Ĉ2), S ⊆ B and if S ⊆ B

(Ĉ1) has to hold is also immediate (from negating (Ĉ2) and the definition of B and S). It

follows that (Ĉ1) and (Ĉ2) are necessary and suffi cient conditions for indistinguishability:

Lemma 1. Suppose that both B and S are non-empty. Then, (i) B ⊆ S if and only if

(Ĉ1) holds. (ii) S ⊆ B if and only if (Ĉ2) holds.

Note that preferences in Example 1 violate (Ĉ1) but satisfy (Ĉ2) while the preferences

in Example 2 violate both (Ĉ1) and (Ĉ2). Shalev (2000) shows (in Theorem 1 of his paper)

that in the static case his loss averse preferences satisfy both (Ĉ1) and (Ĉ2). Geanakoplos,

Pearce and Stacchetti (1989) construct examples where, with one active player, both (Ĉ1)

and (Ĉ2) are violated.

To further understand the conditions under which indistinguishability occurs, it is con-

venient to look at smooth decision problems where decision outcomes are characterized by

first-order conditions. We show that for the case of smooth decision problems, behavioral

decisions are generically distinguishable from standard decisions.

A decision problem is smooth if (a) both A and P are convex, open sets in <k and

<n respectively, (b) preferences over A × P are represented by a smooth, concave utility

function u : A× P → < and (c) the feedback map π : A→ P is also smooth and concave.

A set of decision problems that satisfies the smoothness assumptions is diverse if and

only if for each (a, p) ∈ A × P it contains the decision problem with utility function and

feedback effect defined, in the neighborhood of (a, p), by

u+ λp

and

π − µ(a′ − a)
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for each a′ in a neighborhood of a and for parameters (λ, µ) in a neighborhood of 0.

A property holds generically if and only if it holds for a set of decision problems of full

Lebesgue measure within the set of diverse smooth decision problems.

Proposition 5: For a diverse set of smooth decision problems, a standard decision

problem is generically distinguishable from a behavioral decision problem.

Proof: Let v(a) = u(a, π(a)).

The outcome (â, p̂) of an SDP satisfies the first-order condition

∂av(â) = ∂au(â, π(â)) + ∂pu(â, π(â))∂aπ(â) = 0 (1)

while the outcome (a∗, p∗) of a BDP satisfies the first-order condition

∂au(a∗, p∗) = 0, p∗ = π(a∗). (2)

For (a∗, p∗) = (â, p̂), it must be the case that

∂pu(a∗, p∗)∂aπ(a∗) = 0. (3)

It is easily checked that requiring both (Ĉ1) and (Ĉ2) to hold is equivalent to requiring

that the preceding equation also holds.

Consider a decision problem with (a∗, p∗) = (â, p̂). Perturbations of the utility function

and the feedback effect do not affect (2) and hence (a∗, p∗) but they do affect (3) and via

(1) affect (â, p̂). Therefore, (a∗, p∗) 6= (â, p̂) generically. �

Eq. (3) shows in a simple quick way that BDP and SDP are indistinguishable only in

isolated cases (e.g., when π(a∗) or u(a∗, p∗) are just constants).14

Remarks on Distinguishability and Welfare:
14Note that if payoffs over actions have a value function component á la Kahneman and Tversky (where the

psychological state is a reference point), the decision problem isn’t necessarily smooth or even concave. We

note that the first-order approach adopted in Proposition 5 can be extended to non-smooth decision problems

as long preferences are concave overall (even though an individual component such as a value function may

be non-concave). This would cover cases where u(a, p) = f(a) + g(a− p) where g(.) is a Kahneman-Tversky
value function with loss aversion and u(a, p) is concave in a for any fixed p and v(a) = f(a) + g(a − π(a))
is concave in a. This would be the case when f(a) is concave and g(.) is piece-wise linear with a kink at

zero. Essentially, we will need to work with the subgradient of v(.) and u(.) and note that at an action a is

an interior optimum of v(.) if and only if it is contained in the subgradient of v(a) and for each fixed p, an

action a, p is an interior optimum of u(a, p) if and only if it is contained in the subgradient (with respect to

a) of u(a, p) (Hiriart-Urruty and Lemarechal (2001)).
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1. In a distinguishable decision problem, the outcomes of an SDP provide the relevant

normative benchmark. For example, in the three period decision-problem with the dynamic

inconsistency we studied in Section 2, the relevant benchmark was the preferences of the

DM at t = 0. Moreover, in a distinguishable decision problem, the outcomes of a BDP have

properties very similar to those of two person normal form games.

2. Given the above results on distinguishability, whenever a choice correspondence

satisfies Chernoff’s axiom (Proposition 2), there would seem to imply a strong case for

paternalistic interventions. However, the caveat to note is that the potential for welfare

improvement by adopting paternalistic interventions will be limited by the information a

social planner has.

3. The framework of decision making studied here takes the position that psychological

states are normatively relevant. In contrast, in an influential contribution, Bernheim and

Rangel (2009) adopt the normative position that what matters for welfare is a binary relation

constructed solely on actions. The issue is whether the ranking over actions using the binary

relation in BR constructed solely on the basis of observed choices coincides with the fixed

underlying preference relation % over the set of consistent decision states. Observe that

the ranking of the preference relation � over the set of consistent decision states directly

induces a unique ranking of actions (a, π(a)) � (a′, π(a′)). Does this make sense as a BR

ranking? Clearly, one necessary condition for this to make sense is that there are no a and

a′ such that (i) (a, π(a)) � (a′, π(a′)) and (ii) for all p, (a′, p) � (a, p) (as in this case for

BR a′ is preferred a). Notice that the conjunction of (i) and (ii) is ruled out whenever the

decision problems are indistinguishable. As already pointed out, Example 2 shows how this

condition may fail.15

15Dalton and Ghosal (2010) distinguish between a pre-decision and a post-decision frame and, using this

distinction, examine the relation between the normative implications of decision problems with endogeneous

frames to choice with frames and ancillary conditions studied by Bernheim and Rangel (2009) and Rubinstein

and Salant (2008).
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5 Policy Discussion

Although the aim of this paper is not to provide policy recommendations, we devote this

last section to mention some novel policy implications for behavioral economics which are

directly implied by our framework.

One policy recommendation that has attracted attention in the last years is what Thaler

and Sustein (2003) called libertarian paternalism. It is argued that, in the cases in which

the choice is reference-dependent (e.g., status quo bias or default option bias), the social

planner should choose the reference point or default option in order to steer people’s choices

in desirable directions. In this way, the social planner would achieve her goal of maximizing

people’s welfare without forcing anybody to do anything they wouldn’t normally do.

To what extent are Thaler and Sustein’s (2003) conclusions affected when reference

points adjust quickly to actions? The answer to this question depends on the number of

solutions of a BDP. If there are multiple welfare ranked BDP outcomes, as in Example 3

(status-quo), then the interventions that determine an initial reference point might have an

impact by selecting which steady-state preferences the decision-maker converges to.

However, if there is a unique BDP outcome or no pure action to a BDP, then the initial

policy-determined reference point will not have an impact on the steady state preferences

to which the decision-maker with adaptive preferences converges to. In such cases, any

intervention that increases the probability with which the DM internalizes the (sometimes

unconscious) mechanism guiding her behavior and affecting her welfare will be individual

welfare improving. An example of such intervention is psychotherapy, which has been

shown to be an effective device in helping people to learn how to cope with stress, anger,

fear, anxiety or low motivation (Lazarus, 1984; Hawton et. al, 1989). The case for such

intervention is stronger in cases in which the planner has incomplete information about

individuals’preferences.

To illustrate our point, consider Example 2 (addiction) where there is a unique outcome

of a BDP which is different from the unique outcome of the SDP. In this example, if

the individual doesn’t take the feedback effect from actions to psychological states into

account, she always chooses to drink alcohol; however, the reverse would be true, if she
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took the feedback effect (that being inebriated goes with drinking alcohol) into account.

Let α, 0 ≤ α ≤ 1, denote the probability with which the individual does take the feedback

effect into account. Then, given the psychological state of sober, the payoff from choosing

to drink is α(−1) + (1 − α)(−1) = −1 while the payoff from choosing not to drink is

α.0 + (1 − α)(−2) = −2(1 − α). Clearly, if α > 1
2 , the individual will not be tempted to

drink in the first place. To complete the computation note that given the psychological

state inebriated, the payoff from choosing to drink is α(−1) + (1 − α) = 1 − 2α while the

payoff from choosing not to drink is α.0 + (1 − α) = 1 − α so that again if α > 1
2 , the

individual will not choose to drink.

In Example 4, there is no pure action outcome to the BDP. If the individual takes the

feedback effect into account with probability α. Given the psychological state of "tempted",

the payoff from investing in the liquid asset is α(1) + (1− α)(1) = 1 while the payoff from

investing in the illiquid asset is α.R+(1−α)(R) = R. Since R > 1, the individual will always

choose to invest in the illiquid asset when she is tempted. Now, given the psychological

state of "not tempted", the payoff from investing in the liquid asset is α(1) + (1− α)R′ =

R′−α(R′−1) while the payoff from investing in the illiquid asset is R. Again, if α > R′−R
R′−1 ,

the individual will invest in the liquid asset.

6 Related Literature

There is emerging literature in economics aiming to understand how welfare analysis should

be performed in the presence of non-standard decision makers.16 This literature can be

divided into two different approaches. One approach maintains choices as a foundation for

normative analysis (Bernheim and Rangel, 2009 and Rubinstein and Salant, 2008) and an-

other approach rejects choice altogether as a foundation for normative analysis and proposes

alternative measures of individual welfare based on an individual’s happiness (Kahneman

et. al., 1997), opportunities (Sugden, 2004) or capabilities (Sen, 1985).

Our paper is somehow orthogonal to these two approaches. In our framework, choices

are valid for welfare analysis, not because they may reveal normative preferences, but more

16See Bernheim (2009) for a discussion of this literature.
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importantly because they allow us to distinguish typically suboptimal behavior from rational

behavior.

There is also emerging literature that provides axiomatic characterizations of decision-

making models with some particular behavioral flavour. Manzini and Mariotti (2009), for

example, assume that DMs categorize alternatives before choosing (CTC). They show that

choice data is rationalizable by CTC only if it is rationalizable by the Rational Shortlist

Method (Manzini and Mariotti, 2007). They also show that choice data is rationalizable by

CTC if and only if it can also be rationalized in the sense of Cherepanov, Feddersen and

Sandroni (2008). Unlike these models, which can rationalize pairwise cycles of choice, BDP

cannot, as it is inconsistent with Cherfnoff’s condition. Therefore, there are choice data

that can’t be rationalized as the outcome of a BDP but can be rationalized as the outcome

of a Rational Shortlist Method and also rationalized in the sense of Cherepanov, Feddersen

and Sandroni (2008).

We should mention Masatlioglu and Ok (2005), whose work is also related to our paper,

as they characterize a decision-making model that allows for the presence of a status quo

bias. Like us (as well as Manzini and Mariotti, 2007; 2009), Masatlioglu and Ok (2005)

adopt the revealed preference approach and incorporate the standard choice theory as a

special case. A major difference between their paper and the present work, however, is that

we allow problems with endogenous status quo as well in our domain of choice problems.

Our paper is also related to recent literature that aims at eliciting welfare preferences

of non-standard DMs. Masatlioglu, Nakajima and Ozbay (2009), for example, show how

preferences corresponding to a decision maker with limited attention can be identified.

Rubinstein and Salant (2010) elicit the individual’s welfare preferences when the decision

maker reacts to different payoff-irrelevant circumstances. Unlike these papers, our focus

here is not on the identification of normative preferences of the behavioral decision maker

but on the identification of the choice structure consistent with her behavior. In that

sense, our paper is more closely related to a recent paper by Manzini and Mariotti (2010),

who model mood-dependent choice and characterize their structure in terms of consistency

requirements of the observed choice data. Unlike us, their framework is silent about the

fact that choices also may affect mood.
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We should also mention the work of Koszegi (2010) and Koszegi and Rabin (2006) that

models endogenous reference-dependent preferences. While they focus on the positive im-

plications of their model, we focus on the normative implications. Moreover, we contribute

to this literature by providing testable restrictions against which actual choice data can in

principle be compared.

Finally, our framework has some shared features with the concept of projection bias

introduced by Loewenstein et. al. (2003). People with projection bias tend to exaggerate

the degree to which their future tastes will resemble their current state. Projection bias

provides a possible explanation of why DMs may solve a BDP instead of an SDP in some

particular situations. For example, projection bias can explain why behavioral DMs get

trapped in addiction or overconsumption of durable goods. However, projection bias cannot

account for all the models encompassed in BDPs. This is the case, for instance, for models

of cognitive dissonance or aspirations.

7 Concluding Remarks

Unlike much existing work that focuses on a specific behavioral procedure of choice, our

paper provides an axiomatic characterization of the choice theoretical structure of a large

set of seemingly disconnected behavioral procedures. We showed that if observed behavior is

consistent with Chernoff ’s axiom, it is consistent with a DM who doesn’t fully internalize all

the consequences of her actions. We showed that, typically, when this condition is satisfied,

individual behavior is distinguishable i.e., sub-optimal. In addition, we have proposed a

choice experiment that allows inferring the divergence between choice and welfare on the

basis of choice data alone.

This paper opens some interesting avenues for further research.

First, since our model is fully characterized in terms of a simple condition on observable

choices, this permits direct, simple and nonparametric tests of the model. It is possible

to design a choice experiment to test whether the observed behavior satisfies the axioms

characterizing behavioral and standard decisions in contrast to the axioms characterizing

other decision making procedures. Such an experiment should be able to elicit the entire
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choice functions from each subject, over the domain of all subsets of a grand set of all

alternatives.

A second route that one can take is to extend our framework to an N-person strategic

context in which players’payoffs are not only affected by individual actions and endogenous

psychological states but also by others actions and endogenous psychological states. For

example, one can define empathy as the capacity to forecast other players internal decision

process. A player who has the capacity to empathize should be able to predict and under-

stand others’actions and intentions, with important positive and normative implications.
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A Appendix

Proof of Proposition 1: Existence Result

Recall that the preferences of the DM is denoted by � a binary relation ranking pairs

of decision states in (A× P ) × (A× P ). As the focus is on incomplete preferences, in

this section, instead of working with �, we find it convenient to specify two other prefer-

ence relations, � and ∼. The expression {(a, p) , (a′, p′)} ∈� is written as (a, p) � (a′, p′)

and is to be read as "(a, p) is strictly preferred to (a′, p′) by the DM". The expression

{(a, p) , (a′, p′)} ∈∼ is written as (a, p) ∼ (a′, p′) and is to be read as "(a, p) is indifferent to

(a′, p′) by the DM". Define

(a, p) � (a′, p′)⇔ either (a, p) � (a′, p′) or (a, p) ∼ (a′, p′).
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Once � is defined in this way, the results obtained in the preceding sections continue to

apply. In what follows, we do not require either � or � or ∼ to be transitive

Schofield (1984) shows that if action sets are convex or are smooth manifolds with a

special topological property, the (global) convexity assumption made by Shafer and Sonnen-

schein (1975) can be replaced by a "local" convexity restriction, which, in turn, is equivalent

to a local version of acyclicity (and which guarantees the existence of a maximal element).

However, here, as action sets are not necessarily convex and are allowed to be a collection

of discrete points, Schofield’s equivalence does not apply.

Suppose � is

(i) acyclic i.e. there is no finite set
{

(a1, p1), ..., (aT , pT )
}
such that (at−1, pt−1) � (at, pt),

t = 2, ..., T , and (aT , pT ) � (a1, p1), and

(ii) �−1 (a, p) = {(a′, p′) ∈ A× P : (a, p) � (a′, p′)} is open relative to A× P i.e. � has

an open lower section17.

Suppose both A and P are compact. Then, by Bergstrom (1975), it follows that S is

non-empty.

Define

a �p a′ ⇔ (a, p) � (a′, p).

The preference relation �pis a map, �: P → A × A. If � is acyclic, then for p ∈ P , �pis

also acyclic. If � has an open lower section, then �−1p (a) = {a′ ∈ A : a � a′} is also open

relative to A i.e. �p has an open lower section. In what follows, we write a′ /∈�p (a) as

a �p a′ and a′ ∈�p (a) as a′ �p a.

Define a map Ψ : P → A, where Ψ(p) = {a′ ∈ A :�p (a′) = ∅}: for each p ∈ P , Ψ(p) is

the set of maximal elements of the preference relation �p.

We make the following additional assumptions:

(A1) A is a compact lattice;

17The continuity assumption, that � has an open lower section, is weaker than the continuity assumption
made by Debreu (1959) (who requires that preferences have both open upper and lower sections), which in

turn is weaker than the assumption by Shafer and Sonnenschein (1975) (who assume that preferences have

open graphs). Note that assuming � has an open lower section is consistent with � being a lexicographic
preference ordering over A× P .
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(A2) For each p, and a, a′, (i) if inf(a, a′) �p a, then a′ �p sup(a, a′) and (ii) if

sup (a, a′) �p a then a′ �p inf (a, a′) (quasi-supermodularity);

(A3) For each a ≥ a′ and p ≥ p′, (i) if a′ �p′ a then a′ �p a and (ii) if a �p a′ then

a �p′ a′ (single-crossing property)18

(A4) For each p and a ≥ a′, (i) if �p (a′) = ∅ and a′ �p a, then �p (a) = ∅ and (ii) if

�p (a) = ∅ and a �p a′, �p (a′) = ∅ (monotone closure).

Assumptions (A2)-(A3) are quasi-supermodularity and single-crossing property defined

by Milgrom and Shannon (1994).

Assumption (A4) is new. Consider a pair of actions such that the first action is greater

(in the usual vector ordering) than the second action. For a fixed p, suppose the two actions

are unranked by �p. Then, assumption (A4) requires that either both actions are maximal

elements for �por neither is.

The role played by assumption (A4) in obtaining the monotone comparative statics with

incomplete preferences is clarified by the following examples. There preferences and action

sets in each example satisfy assumptions (A1)-(A3). However, assumption (A4) fails to hold

in either example.

Example 1: (Ψ(p) needn’t be a lattice.)

P is single valued and A is the four point lattice in <2

{(e, e) , (f, e) , (e, f) , (f, f)}

where f > e. Suppose that (f, f) � (e, e) but no other pair is ranked. Then, Ψ consists

of {(f, e) , (e, f) , (f, f)} clearly not a lattice. Note that in this case, preferences satisfy

acyclicity and quasi-supermodularity (and trivially, single-crossing property). However,

preferences do not satisfy monotone closure: (f, e) ≥ (e, e), with � ((f, e)) = ∅ and (e, e) �

(f, e), but � ((e, e)) 6= ∅.

The preceding example demonstrates that without the additional assumption of monotone

closure, quasi-supermodularity on its own cannot ensure that the set of maximal elements

of � is a sublattice of A even when � is acyclic. The example also demonstrates that �
18For any two vectors x, y ∈ <K , the ussual component-wise vector ordering is defined as follows: x ≥ y

if and only if xi ≥ yi for each i = 1, ..,K, and x > y if and only if both x ≥ y and x 6= y, and x� y if and

only if xi > yi for each i = 1, ..,K.
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can be acyclic without necessarily satisfying monotone closure and therefore, the two are

distinct conditions on preferences.

Example 2: (No increasing selection from Ψ(.).)

P = {p, p′}, p < p′, and A is the five point lattice in <2

{(e, e) , (f, e) , (e, f) , (f, f) , (g, g)}

where g > f > e. Preferences are such that: (i) (g, g) �p (f, f) �p (e, e), , (f, e) �p (e, f),

(f, e) �p (g, g), (e, f) �p (g, g) but the pairs {(f, e) , (e, e)}, {(e, f) , (e, e)}, {(f, e) , (f, f)}

and {(e, f) , (f, f)} aren’t ranked by �p; (ii) (g, g) �p′ (f, f) �p′ (e, e), (e, f) �p′ (f, e),

(f, e) �p′ (g, g), (e, f) �p′ (g, g) but the pairs {(f, e) , (e, e)}, {(e, f) , (e, e)}, {(f, e) , (f, f)}

and {(e, f) , (f, f)} aren’t ranked by �p′ . Note that in this case, both �p and �p′ satisfy

acyclicity (but not transitivity), quasi-supermodularity and the single-crossing property. It

follows that Ψ(p) = {(f, e)} and Ψ(p′) = {(e, f)} (i.e. for both p and p′ the set of maximal

elements is a singleton and hence, trivially a lattice). Therefore, Ψ(.) does not admit an

increasing selection. Observe that neither �p nor �p′satisfy monotone closure: (f, f) ≥

(f, e), with �p ((f, e)) = ∅ and (f, f) �p (f, e), but �p ((f, f)) 6= ∅ and (f, f) ≥ (e, f), with

�p′ ((e, f)) = ∅ and (f, f) �p′ (e, f), but �p′ ((f, f)) 6= ∅.

The preceding example demonstrates that with incomplete but acyclic preferences,

quasi-supermodularity and single crossing on their own cannot ensure an increasing se-

lection from the set of maximal elements.

The following result shows that assumptions (A1)-(A4), taken together, are suffi cient to

ensure monotone comparative statics with incomplete preferences:

Lemma : Under assumptions (A1)-(A4), each p ∈ P , Ψ(p) is non-empty and a compact

sublattice of A where both the maximal and minimal elements, denoted by ā(p) and a(p)

respectively, are increasing functions on P .

Proof. By assumption, for each p, �p is acyclic, �−1p (a) are open relative to A and

A is compact. By Bergstrom (1975), it follows that Ψ(p) is non-empty. As Bergstrom

(1975) doesn’t contain an explicit proof that Ψ(p) is compact, a proof of this claim follows

next. To this end, note that the complement of the set Ψ(p) in A is the set Ψc(p) =

{a′ ∈ A :�p (a′) 6= ∅}. If Ψc(p) = ∅, then Ψ(p) = A is necessarily compact. So suppose
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Ψc(p) 6= ∅. For each a′ ∈ Ψc(p), there is a′′ ∈ A such that a′′ �p a′. By assumption,

�−1p (a′′) is open relative to A. By definition of Ψ(p), �−1p (a′′) ⊂ Ψc(p). Therefore,

�−1p (a′′) is a non-empty neighborhood of a′ ∈ Ψc(p) and it is clear that Ψc(p) is open

and therefore, Ψ(p) is closed. As A is compact, Ψ(p) is also compact. Next, it is shown

that for p ≥ p′ if a ∈ Ψ(p) and a′ ∈ Ψ(p′), then sup (a, a′) ∈ Ψ(p) and inf (a, a′) ∈ Ψ(p′).

Note that as a′ ∈ Ψ(p′), a′ �p′ inf (a, a′). By quasi-supermodularity, sup (a, a′) �p′ a.

By single-crossing, sup (a, a′) �p a. As a ∈ Ψ(p), �p (a) = ∅, and by monotone closure

sup (a, a′) �p a and �p (sup (a, a′)) = ∅, it follows that sup (a, a′) ∈ Ψ(p). Next, note

that as a ∈ Ψ(p), a �p sup (a, a′). By single-crossing, a �p′ sup (a, a′) and by quasi-

supermodularity, inf (a, a′) �p′ a′. As a′ ∈ Ψ(p′), �p′ (a′) = ∅, and by monotone closure

inf (a, a′) �p′ a′ and �p′ (inf (a, a′)) = ∅, it follows that inf (a, a′) ∈ Ψ(p′). Therefore, (i)

Ψ(p) is ordered, (ii) Ψ(p) is a compact sublattice of A and has a maximal and minimal

element (in the usual component wise vector ordering) denoted by ā(p) and a(p), and (iii)

both ā(p) and a(p) are increasing functions from P to A.

To complete the proof of Proposition 1, define a map Ψ : A × P → A × P , Ψ(a, p) =

(Ψ1(p),Ψ2(a)) as follows: for each (a, p), Ψ1(p) = {a′ ∈ A :�p (a′) = φ} and Ψ2(a) = π (a).

By Theorem 2, Ψ1(p) is non-empty and compact and for p ≥ p′ if a ∈ Ψ1(p) and a′ ∈ Ψ1(p
′),

then sup (a, a′) ∈ Ψ1(p) and inf (a, a′) ∈ Ψ1(p
′). It follows that Ψ1(p) is ordered and hence

a compact (and consequently, complete) sublattice of A and has a maximal and minimal

element (in the usual component wise vector ordering) denoted by ā(p) and a(p) respectively.

By assumption 1, it also follows that for each a, π (a) has a maximal and minimal element (in

the usual component wise vector ordering) denoted by π̄(a) and π(a) respectively. Therefore,

the map (ā(p), π̄(a)) is an increasing function from A × P to itself and as A × P is a

compact (and hence, complete) lattice, by applying Tarski’s fix-point theorem, it follows

that (ā, p̄) = (ā(p̄), π̄(ā)) is a fix-point of Ψ and by a symmetric argument, (a(p), π(a)) is

an increasing function from A × P to itself and
(
a, p
)

=
(
a(p), π(a)

)
is also a fix-point of

Ψ; moreover, (ā, p̄) and
(
a, p
)
are respectively the largest and smallest fix-points of Ψ.�
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