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Abstract 

Presented are results from geometric non-linear finite element analyses to examine the 

lateral torsional buckling (LTB) resistance of a Pultruded fibre reinforced polymer 

(FRP) I-beam when initial geometric imperfections associated with the LTB mode 

shape are introduced. A data reduction method is proposed to define the limiting 

buckling load and the method is used to present strength results for a range of beam 

slendernesses and geometric imperfections. Prior to reporting on these non-linear 

analyses, Eigenvalue FE analyses are used to establish the influence on resistance of 

changing load height or displacement boundary conditions. By comparing predictions 

for the beam with either FRP or steel elastic constants it is found that the former has a 

relatively larger effect on buckling strength with changes in load height and end 

warping fixity. The developed finite element modelling methodology will enable 

parametric studies to be performed for the development of closed form formulae that 

will be reliable for the design of FRP beams against LTB failure.    
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Notation 

ey  Load eccentricity displacement normal to the minor axis plane of the beam 

cross-section (mm) 

b Breadth of I-beam (mm) 

h Height of I-beam (mm) 

k   Restraint factor for lateral flexural bending at end supports; 0.5 for full 

restraint to 1.0 for fully unrestrained 

kw  Restraint factor for warping at end supports; 0.5 for full restraint to 1.0 for 

fully unrestrained 

C1 Factor to account for the type of moment distribution and support condition  

C2 Factor to account for the vertical position of the load with respect to the 

shear centre (centroidal axis) of the I-beam 

Cb Moment modification factor for non-uniform moment distribution for 

laterally unsupported span when both ends of the beam are braced  

E   Modulus of elasticity (kN/mm
2
)  

EL   Longitudinal modulus of elasticity (kN/mm
2
)  

ET   Transverse modulus of elasticity (kN/mm
2
)  

G  Shear modulus (kN/mm
2
)   

GLT  In-plane shear modulus (kN/mm
2
) 

 Poisson’s ratio (for steel)  

LT  Major Poisson’s ratio  

Iw  Warping rigidity (mm
6
) 

Iz   Second moment of area for flexure about the beam’s minor axis (mm
4
) 
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J  Torsional rigidity (mm
4
) 

L Span of beam or height of column for defining magnitude of out-of-

straightness (mm) 

w Vertical deflection of shear centre at mid-span (mm) 

Mcr   Elastic critical buckling moment of resistance (kNm) 

Mcrp Elastic critical buckling moment including the influence of  pre-buckling 

displacements (kNm) 

P Central point load (kN)  

Pcr   Elastic critical buckling load of simply supported beam subjected to centre 

point loading (kN) 

Pcr,FEA    Elastic critical buckling load obtained from linear (Eigenvalue) Finite 

Element Analysis (kN) 

PLimit   Limiting buckling load (kN) 

PLimit/Pcr Normalized buckling load for influence of geometric imperfections 

Pcr,T  Elastic critical buckling load when P is applied on Top flange (kN) 

Pcr,S  Elastic critical buckling load when P is applied at Shear centre (kN) 

Pcr,B  Elastic critical buckling load of beam  P is applied on Bottom flange (kN) 

Pcr,Fixed  Elastic critical buckling load of beam with end warping fully Fixed (kw = 

0.5) (kN) 

Pcr,Free  Elastic critical buckling load of beam with end warping fully Free (kw = 1.0) 

(kN) 

x  Distance along beam from one end the other end (mm) 

zg Distance (height) from the shear centre to the point of load application (mm) 
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s Maximum lateral deformation due to out-of-straightness geometric 

imperfection (mm) 

sx  Initial lateral deformation distribution along the beam due to out-of-

straightness geometric imperfection (mm)  

t Maximum angle of twist due to twist geometric imperfection (degrees) 

tx  Initial twist distribution along the beam due to twist geometric imperfection 

(degrees) 

Ux  Displacement in X-direction (mm) 

Uy  Displacement in Y-direction (mm) 

Uz    Displacement in Z-direction (mm) 

URx  Rotation about X-axis (degrees) 
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Introduction 

Shapes and systems of Fibre Reinforced Polymer (FRP) made by the pultrusion 

processing method [1] are finding applications in civil engineering works, alongside 

construction components of conventional materials such as steel, concrete and 

aluminium. Standard Pultruded FRP (PFRP) shapes are thin-walled and have the same 

cross-sectional shapes as found in conventional steelwork. They consist of E-glass fibre 

reinforcement (layers of unidirectional rovings and continuous mats) in a thermoset 

resin based matrix. Layers are not necessarily of constant thickness or flat. Technical 

information on the pultrusion process, and PFRP shapes themselves, is found in 

American pultruders’ Design Manuals [2, 3]. Pultruded material has a density at 1900 

kg/m
3
 that is under one-quarter the density of structural steel. Although these PFRP 

shapes are similar to steel sections, their structural behaviour is different. Direct 

strengths (in the direction of pultrusion) can be over 200 N/mm
2
 that is comparable with 

structural steel. However, the longitudinal (tensile or compressive) modulus of elasticity 

(EL) is up to 10 times lower at 20-30 kN/mm
2
. The modulus of elasticity perpendicular 

to the direction of pultrusion (ET) is about one-third of the longitudinal value [2, 3]. The 

in-plane shear modulus (GLT) can be between one-tenth and one-quarter of the value of 

EL. In terms of the material response to direct stress under static loading, it is virtually 

linear elastic to failure and can be taken as linear elastic under shear to the shear strains 

experienced in practice. If loading is over the long-term the viscoelastic nature of FRP 

will make the material response non-linear. Worldwide the number of engineering 

structures using pultruded standard shapes has increased in recent years, for the reasons 

given in Mottram [1] and Bank [4].  
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A major factor preventing greater penetration of standard PFRP shapes in civil 

engineering works is the lack of recognised guidelines for practitioners to have full 

confidence in their structural designs, say, for framed structures. One source of 

guidance is from the pultrusion companies who have Design Manuals [2, 3] specific to 

their range of pultruded shapes. Further guidance, that has no legal standing, can be 

found in the 1996 EUROCOMP Design Code and Handbook [5] and the more recent 

Italian publication [6] that is a guide for the design and construction of structures made 

of FRP pultruded elements. The Pultrusion Industry Council of the American 

Composites Manufacturers Association commenced an action, in 2007, of preparing a 

design standard for the ‘Load and Resistance Factor Design of Pultruded Fibre-

Reinforced Polymer Structures’ [7]. A pre-standard was finalised in 2010, and it is 

expected that the guidelines can be adopted in 2013 as a national ASCE standard.  To 

have confidence in the resistance formulae in a design standard it is desirable to have 

them evaluated by a combination of computational modelling and physical testing.  

Owing to high strength-to-stiffness ratio of the material, the design of PFRP members 

(in braced frames of simple construction) is normally governed by elastic deflections 

and/or elastic buckling instabilities and rarely by material strength limitations [5, 8]. In 

other words, to execute the Ultimate Limit State (ULS) design approach the different 

instability modes must be quantified by a combination of rigorous numerical analysis 

and physical testing. As a type of global instability, Lateral-Torsional Buckling (LTB) is 

commonly observed in laterally unrestrained beams of open thin-walled sections that 

are subjected to flexure about their major axis. The beam loses stability in the LTB 

mode when the member bends laterally and twists along its length, without any cross-

section distortion. Because a beam’s moment of resistance to LTB is influenced by 
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having relatively small lateral (minor-axis) flexure and torsional stiffness, it is observed 

that PFRP I-shapes are susceptible to this failure mode governing in ULS design [9].  

Researchers can determine LTB resistance, either by a theoretical treatment (analytical 

or computational) or by physical testing. Because the latter approach is expensive and 

technically challenging, for the reasons that are uncovered from assessing the reported 

test series [9-13], a theoretical treatment is always required to populate parameters that 

cannot be characterised by physical testing [13-15]. 

Numerical models can be divided into those that account for geometric imperfections 

and those that assume the beam’s geometry is perfect. It is the analytical solutions for 

the problem of a ‘perfect’ isotropic beam with constant moment along length that gives 

the well-known closed form formula for the elastic critical buckling moment of 

resistance (Mcr). This Mcr solution is the theoretical upper bound resistance that forms 

the basic strength value towards the preparation of guidelines for the reliable and safe 

design of structural steel I-beams, as given in design standards BS EN 1993-1-1:2005 

and ANSI/AISC 360-10.   

 For doubly symmetric cross-sectional (steel) beams, the lateral-torsional buckling 

resistance moment may be calculated using [16]:

 

       
 

 
 

2 22
2

wz
cr 1 2 g 2 g2 2

w z z

= + + -
kL GJIEI k

M C C z C z
k I EIkL

 
   

  
   

               (1) 

The variables in Equation (1) are defined in the Notation section. This equation can be 

used to determine Mcr when calculating LTB resistance in accordance with the design 

procedure in Eurocode 3 for steel (BS EN 1993-1-1:2005).  
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In the specific case, when loading is a vertical point load (P) at mid-span, and beam 

ends are free to warp (kw = 1.0) and allowed to rotate about major and minor axes (k = 

1.0), the buckling resistance load Pcr is given by:  

 
2 2

2
wz

cr g g3 2

z z

5.39
+ + 0.63 - 0.63

IEI L GJ
P z z

L I EI

   
  

  

           (2)

 

In Equation (2) zg is the height of the load from the shear centre. zg is 0.0 at the shear 

centre and positive when above and negative when below.    

According to American steel standard ANSI/AISC 360-10 Mcr may also be determined 

for I-beams from the simpler formula: 

              

2

w
cr b 2

z z

π
=

I L GJ
M C

L I EI
                                                          (3)             

Unlike Equations (1) and (2), Equation (3) is valid only when the level of loading 

coincides with the beam’s shear centre (i.e. for zg is zero). 

Italian guidelines of 2007 [6] recommend that Mcr be calculated using Equation (1) with 

both restraint factors k and kw equal to either 1.0 or 0.5. The Design Manuals from two 

American pultruders [2, 3] recommend that designers calculate Mcr using Equation (1), 

with k and kw  assumed to be equal to 1.0 (for the lowest LTB moment of resistance). 

Moreover because they take zg = 0.0, the allowable load tables in [2] and [3] are 

ignoring the reduction in strength from having load applied on the top flange. Reliable 

calculation of the elastic critical buckling strength does require the two elastic constants 

EL and GLT 
to be measured, either by testing coupons or full-sections [4]. 

 



 

10 

 

The American pre-standard for PFRP structures [7] recommends Mcr to be calculated 

using Equation (3), with the expression for Cb formula taken directly from ANSI/AISC 

360-10, and with the ‘full-section’ elastic constants of E and G replaced, respectively, 

by the Longitudinal modulus of elasticity EL and the in-plane shear modulus GLT for the 

PFRP material.   

The aim of the work reported in this paper is to use Finite Element Analysis (FEA) to 

study the change in LTB resistance of a, single sized, PFRP I-beam at different spans 

that is influenced by varying load height, end displacement boundary conditions and 

initial geometric imperfections. The shape is chosen from the standard range of I-beams 

pultruded in America [2, 3]. To be consistent with the set-up in a series of physical tests 

at the University of Warwick, the problem analysed, using ABAQUS, is that of a 

simply supported beam (for Major axis flexure) having a vertical point load at mid-span. 

Verification of the correct FE modelling methodology to simulate what can exist in 

practice will be done by combining results from the experimental and finite element 

work. Additional numerical results from FEA will be used with Equation (2) and the 

‘curve fitting’ method of Dutheil [17] to account for the modal interaction of local and 

global buckling modes [18,19], to prepare a calibrated closed form formula for clauses 

in a future Eurocode design standard for FRP material elements.   

To ensure the FEA results are appropriate when the beam possesses initial geometric 

imperfections it is necessary to use the geometric non-linear solver in ABAQUS. It 

will be shown that the calculated vertical load against vertical deflection response of a 

PFRP beam does not always give a distinct buckling (bifurcation) point to signal the 

onset of LTB failure. To overcome the absence in numerical calculations of a definite 
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elastic critical buckling load (for the classical bifurcation point) a data reduction method 

is presented by the authors that will provide the limiting buckling load from the finite 

element (FE) results. 

Finite element modelling methodology 

In this study the nominal geometry of the cross-section for the PFRP I-beam is 101.6 

50.86.4 mm (or 421/4 in. [2, 3]). The height has the notation h, which is used to 

define beam slenderness through non-dimensional ratio L/h. In Figure 1 the global 

Cartesian (XYZ) co-ordinate system is shown. The Y-axis is for the section’s major axis, 

the Z-axis is for the minor axis and the X-axis is along the beam’s centroidal axis. The 

nominal values for the sectional properties are: Iz is 1.4110
5
 mm

4
, Iw is 3.1610

8
 mm

6
 

and J is 1.5910
4
 mm

4
. These are required later when Equation (2) is used to calculate 

the elastic critical buckling load, Pcr. The flanges and web panels are given orthotropic 

properties, defined by the four elastic constants of EL, ET, GLT and LT [5, 10]. 

ABAQUS [20] offers several options to input mechanical properties including: a 

‘microscopic’ approach (micromechanical modelling requiring constituent matrix and 

fibre reinforcement properties); a ‘macroscopic’ approach (where a layer or panel is 

taken to be a single orthotropic material); a ‘mixed’ approach (the panel is modelled as 

a lamination comprising a number of discrete ‘macroscopic’ orthotropic layers). 

Because the four elastic constants have previously been determined by coupon testing 

and micro-mechanical modelling [19, 21] the ‘macroscopic’ approach is appropriate for 

this FE work.  

It is observed that mechanical properties of PFRP shapes can change with pultruder. 

This change is due to differences in: how a property is measured; processing conditions; 
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the matrix; the number of reinforcement layers; the fibre arrangement and the fibre 

volume fractions. To illustrate the likely differences, Table 1 collates test data for the in-

plane shear modulus (GLT). Listed in column (2) are ranges of values taken from the 

nine sources defined in column (1). Shear modulus is difficult to measure because it is 

challenging to have a representative volume of PFRP material subject to pure shearing. 

Using knowledge of measurements of the elastic constants and the findings of the 

review by Mottram [28], for the determination of in-plane shear modulus, engineering 

judgement has been used to establish that, for this FE work, EL is 24 kN/mm
2
, ET is 8 

kN/mm
2
, GLT is 4 kN/mm

2
 and LT is 0.3. It is noted from the literature that the 

mechanical properties of flange and web material are actually slightly different. Since 

flanges and web thin-walled panels are assumed to be of the same orthotropic material, 

any influence this secondary difference might have on FE result has been ignored. 

Moreover, EL and ET are for direct tension (or direct compression) and, because of the 

layered construction, are not the moduli if the panel is subjected to flexure. By correctly 

assuming that the material response is linear elastic to a strain that will exceed the strain 

at LTB failure, the FEA does not need to consider a material failure criterion. Moreover, 

the influence, if any, of residual stresses throughout the cross-section, which are 

unknown in pultruded FRP shapes, is neglected too.   

The choice of element to create a mesh is between solid and shell types of elements. 

Linear elastic flat shell elements have successfully been adopted in previous FE studies 

with thin-walled FRP structures [10, 12, 29, 30]. The element chosen is the second-

order ABAQUS/Standard thick shell element S8R, having 8-nodes and six degrees of 

freedom per node. The formulation for the element stiffness matrix adopts the Mindlin 

plate theory (for first-order shear deformation) and so this thick shell element has 
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displacement compatibility that avoids there being any discontinuities between element 

sides. This FE modelling attributes is known to give a more accurate shell element in a 

coarser mesh [31].  

Following the boundary conditions defined by Trahair [32] for a simply supported 

beam, both ends are fully restrained for Y and Z translational displacements (Uy and Uz) 

and rotation about the X-axis (URx). Ends are free to rotate about major and minor axes 

(for k = 1.0) and allowed freely warp (kw = 1.0). Because effective length factors k and 

kw may vary from 0.5 to 1.0, a parametric study could consider a number of distinct 

displacement boundary conditions. FEA results will be presented later for the two end 

conditions of either having both k and kw = 1.0, or having k =1.0 and kw = 0.5. In what 

follows these two displacement boundary conditions are given labels BC1 and BC2. 

BC1 is specified in the FE modelling by setting Uy = Uz = URx = 0 for all the nodes in the 

cross-section, at both ends. At one end, the node located at the cross-section’s shear 

centre has its Ux nodal displacement set to zero to remove a rigid-body movement. To 

model the BC2 end condition the ends are fixed against warping. As Figure 1 shows a 

vertical plate, comprising of R3D4 rigid surface elements, is added at the ends. Because 

the beam flanges must deform in accordance with the movement of the ‘rigid’ plate this 

modelling feature fully restrains the warping. As the movement of the rigid plate is 

controlled by a single reference node at each end, translational and rotational 

displacement restraints are imposed to the node at the I-beam’s centroid. Figure 1 shows 

that to obtain BC2 one end requires this node have Ux = Uy = Uz = URx = 0, while at the 

other end the equivalent node has Uy = Uz = URx = 0. 
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Mesh specification has the shell elements constructed with an aspect ratio close to one, 

as this can eliminate any loss in numerical reliability due to computation for the 

inclusion of shear flexibility. To create the beam’s mesh the shell elements are placed at 

the mid-planes of the two flanges and web panels. Equally spaced, there are five nodes 

(four shell elements) across the 50.8 mm flange width and nine nodes (eight elements) 

over the web’s height of 95.6 mm. This mesh specification gives an element with side 

lengths of 12.7 by 12.7 mm for flanges and 11.9 by 12.7 mm for web. As shown in 

Figure 1 one metre length of the 101.650.86.4 mm I-shape requires 1108 elements.  

Table 2 reports the elastic critical buckling load (Pcr,FEA) as the mesh size is refined. 

These FE results are from Eigenvalue analyses with a perfectly straight beam, BC1 end 

conditions and shear centre point load (P) at mid-span. It can be seen that there is 

insignificant change in Pcr,FEA when the element side length is < 12.7 mm. However, it 

is seen that on doubling the side length to 25.4 mm the calculated bifurcation load is 

increased by 10%. Shell elements with side lengths of 12.7 mm or less are used in the 

mesh specification for the FE results presented next.  

The parametric studies have numerical simulations for both linear Eigenvalue analyses 

and geometric non-linear analyses. Eigenvalue buckling analysis predicts the elastic 

critical buckling load (Pcr,FEA) of a linear elastic beam where the change in beam 

geometry is neglected on increasing loading, up to the bifurcation. By applying 

perturbations to the mesh geometry of the unloaded beam, and looking for local and 

global deflections that could promote the onset of instability due to second-order 

effects, the FEA gives load factors (the Eigenvalues) for buckling failures. The inputted 

load in the FE model is multiplied by the outputted load factor to obtain the elastic 

critical buckling load. The associated eigenvector to each Eigenvalue establishes the 

https://wiki.csiberkeley.com/display/kb/P-Delta
https://wiki.csiberkeley.com/display/kb/P-Delta
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corresponding mode shape. The mode shape describes how the structure buckles, but 

gives no information for actual load-deflection response. It can be expected that the 

lowest Eigenvalue is for the mode having the lowest Pcr,FEA. 

In contrast, a non-linear geometric analysis predicts the actual load-deflection response 

by applying the load in small increments and evaluating the current (static equilibrium) 

deformation state at each increment. The load follows the deformation of the linear 

elastic beam until instability occurs, and this corresponds to what will happen in 

practice. There is no material non-linearity as it is assumed the PFRP material behaves 

perfectly linear elastic. This modelling assumption is acceptable, providing loading (to 

failure) is short-term and deformations from material viscoelasticity remain small. 

ABAQUS [33] will solve the problem of a geometric non-linear structural problem, 

having a falling load-deflection branch, following instability failure, by employing a 

modified Riks method. This commonly used non-linear numerical method, also known 

as the arc-length method, was originally derived by Riks [34], following on from 

pioneering work by Wempner [35]. Later the arc length method was improved for 

computational efficiency by Crisfield [36].  

As the post-buckling response is not the main topic under consideration, the Riks 

analysis was terminated a few increments after the beam had become unstable and its 

deformation was progressing into the post-buckling region.  

Initial geometric imperfection is introduced into the beam’s FE mesh by modifying the 

nodal coordinates through the adoption of a vector field. The out-of-straightness 

imperfection was obtained by scaling the first Eigenvalue buckling mode shape for 

Euler (flexural) buckling of a perfectly straight concentrically loaded column. The 
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deformed shape (exaggerated) from the Eigenvalue analysis is shown in Figure 2. The 

geometric definition for the twist imperfection was acquired from the deformed shape of 

an ‘imperfection-free’ beam subjected to a pure ‘twisting’ moment, that was generated 

by a torque at the free end, created by applying there a couple of magnitude Pb (Figure 

3). The static analysis deformation for twisting along the length of the I-shape is shown 

in Figure 4. 

Influence of load height  

LTB resistance is influenced by the vertical distances of load (zg) from the shear centre 

due to the additional torque about the longitudinal (centroidal) axis that is generated 

from the lateral movement of the vertical point load when instability happens. Because 

the torque acts in the opposite sense to the LTB twist rotation when the load is applied 

below the shear centre the buckling resistance will increase. Likewise, when load acts 

above the shear centre, the additional torque acts with the beam’s rotation to decrease 

buckling resistance. This behaviour has been confirmed by Sapkás and Kollár [37] and 

Machado and Cortínez [38] in their numerical studies on the same instability mode of 

failure. 

In this study, the effect on resistance of changing load height zg is established by 

Eigenvalue analyses that obtain the bifurcation load with displacement boundary 

conditions BC1. The span (L) varies from 1.0 to 5.0 m; which is for slenderness (L/h) 

ratios from about 10 to 50. In the FE model the mid-span point load is positioned along 

the Z-Z axis at the top flange and web junction (zg = 47.6 mm), shear centre (zg = 0.0 

mm) and at bottom flange and web junction (zg = -47.6 mm). Note that these values of 

zg are 3.2 mm below what they will be when the actual beam section is loaded.  By 
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changing the elastic constants to those for structural steel (E is 210 kN/mm
2
 and is 

0.3) the effect on Pcr,FEA for a beam of this isotropic material is established. To 

distinguish between the Pcr,FEAs for the three load heights they are given the notation 

Pcr,T, Pcr,B and Pcr,S for load at Top flange, at Shear centre and at Bottom flange, 

respectively. The subscript FEA has been removed from the notation for these three 

critical elastic buckling loads.  

Plotted in Figure 5 are LTB load ratios Pcr,T/Pcr,S and Pcr,B/Pcr,S against slenderness for 

the beam of either FRP or steel. It is obvious that for the same beam configuration, the 

closer the buckling load ratios are to 1.0, the less significant is the load height influence. 

The higher Pcr,B/Pcr,S is, and the lower Pcr,T/Pcr,S is for PFRP compare to steel shows that 

the change of load height is more significant for the composite material. The maximum 

difference between the steel and PFRP curves is 11% at the lowest slenderness ratio of 

9.8, and the minimum difference is 4%, when L/h is 49.2.  

Plotted in Figure 6 is the normalized LTB load Pcr,FEA/Pcr versus L/h for the PFRP 

beam. Pcr was calculated using Equation (2). Because the normalised load does not 

deviate significantly from 1.0, the three curves in the figure confirm that Equation (2) 

gives Pcr,FEAs similar to those from the Eigenvalue FEA with the same parameter values. 

When slenderness L/h is < 15 the reliability of Equation (2) in predicting LTB 

resistance is seen to decrease.  

Figure 7 is for plots of mid-span vertical point load (P) with mid-span vertical 

deflection (w) for a virtually straight beam. The beam has a span of 2 m and the out-of-

straightness geometric imperfection has maximum amplitude of span/20000. From the 

three load-deflection curves in the figure it can be seen that Pcr,FEA (for the onset of LTB 
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failure) depends on zg. Instability happens when the beam’s vertical stiffness (P/w) 

dramatically reduces. It is observed that until the instability starts to develop, the three 

P-w curves are identical, and so initial vertical stiffness is not influenced by the load 

height. Mohri et al. [39] recorded a similar observation when analyzing the buckling 

behaviour of steel beams. It is also worth noting that, from a designer’s point of view, 

when the load is applied below shear centre (i.e. zg is negative), the governing limit state 

for the PFRP beam section can be a serviceability deflection limit. 

Influence of end warping fixity 

When a thin-walled cross-section has an open shape its stiffness under torsion, acting 

about the centroidal axis, is the sum of torsional stiffnesses from uniform (St. Venant) 

torsion (governed by torsional rigidity GLTJ or GJ) and from non-uniform torsion 

(controlled by warping rigidity ELIw or EIw). When the ends of the beam have warping 

fully fixed the state of non-uniform torsion will be dominant and because the stiffness to 

twisting deformation increases, so does the resistance to LTB failure. On the other hand 

if warping at the ends is free, the state of non-uniform torsion reduces (it will be present 

either side of the mid-span when a torque is generated by P) and the LTB resistance is 

the lower bound for this end displacement boundary condition. It is because the free 

warping condition is for lowest strength that kw is specified to be 1.0 in design, such as 

given by the closed form Equations (2) and (3).  Minghini et al. [40] investigated by 

analysis the critical load of a PFRP portal frame, where the column ends were either 

free warping or fully warping fixity. They found that there was a 40% increase in 

buckling load between these two bounds on a displacement boundary condition.  
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Plotted in Figure 8 is the ratio of elastic critical buckling loads with BC2 for end 

warping fully restrained (Pcr,Fixed) and BC1 for warping fully free (Pcr,Free), for 

slenderness ratios from 9.8 to 49.2. For convenience the subscript FEA has been 

removed from these two FE Eigenvalue solutions. The top curve is for FRP and the 

lower curve is for steel elastic constants. It is noted that the contribution of non-uniform 

torsion stiffness to the total torsional stiffness (defined by ELIw/(ELIw+GLTJ) or 

EIw/(EIw+GJ)) is bigger for FRP, and so the effect of changing the warping restraint 

from free to fixed is greater for the same beam geometry and displacement and loading 

boundary conditions. It can be seen from the figure that Pcr,Fixed/Pcr,Free for FRP varies 

from 1.13 to 1.66 and for steel from 1.07 to 1.48. The maximum difference between 

steel and FRP is 13%, when L/h is 14.8. The minimum difference of 4.3% is found to be 

at the slenderness ratio of 44.3.  

It is well-known [32] that the effect of warping torsion reduces as the span gets longer, 

such that its influence on buckling resistance reduces too. As the contribution of 

warping torsion (on total torsion) is highest with end warping fixed, the reduction in 

buckling resistance is biggest when kw = 0.5. As consequence the ratio Pcr,Fixed /Pcr,Free  is 

higher for stockier beams. The result of interaction of the two torsional stiffnesses on 

LTB strength is seen from the curves plotted in Figure 8. 

Influence of initial geometric imperfections  

In this study only the influence of expected manufacturing imperfections on the 

geometry of the PFRP I-shape are considered in a FE parametric study. Another 

‘imperfection’ that is inherent will be the eccentricity of load from having the vertical 

load offset a distance, ey, from the Z-Xplane. This imperfection introduces a ‘secondary’ 
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moment of magnitude Pey that will either act with, or against the beam deformation 

induced by the presence of geometric imperfections [41]. In other words the presence of 

a larger geometric imperfection can be employed to account for the load eccentricity 

that is due to tolerances found on on-site or in laboratory testing. As a result this 

particular form of imperfection is not included in the FE modelling. Structural PFRP 

shapes are pultruded to possess acceptable geometric imperfections in the form of out-

of-straightness, flatness, twist, angularity, etc. It is imperative to include these geometric 

imperfections in the FE modelling methodology as their existence in practice will lower 

the LTB buckling resistance. It could be argued that an acceptable approach in FEA is 

to scope geometric imperfections, residual stresses and load eccentricity by modelling 

the dominant type of imperfection with a relatively high magnitude. Investigated next is 

the influence on LTB resistance of changing the two key geometric imperfections of 

minor axis out-of-straightness and (longitudinal) twist. These two geometric 

imperfections are directly linked to the two (governing) LTB deformations of lateral 

flexural and cross-section twist, respectively.  

The question to next address is how large are the two geometric imperfections to be? 

Maximum allowable magnitudes can be based on ASTM D3917-11 for Standard 

Specification for Dimensional Tolerance of Thermosetting Glass-Reinforced Plastic 

Pultruded Shapes [42]. Table 3 reports information taken from Tables 3 and 4 in ASTM 

D3917-11 to give the ‘allowable deviation from straight’ per unit length. Column (1) 

lists the type of imperfection and column (2) provides an illustration. In column (3) the 

values of the allowable deviation from straightness (s) or twist (T) is reproduced. The 

standard has made the assumption that the initial lateral out-of-straightness (sx), along 

a beam of length L, to be defined by the geometric relationship 
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For the initial twist imperfection the assumed distribution along the length is given by 
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In Equations (5) and (6) x is the distance along the beam from one end to the other end.  

It is noted that the maximum twisting allowance in 2011 version of ASTM D3917 is 

three times larger than in the previous version of 2002. The reason for this significant 

change has not been given provenance by the drafting committee. A maximum limit on 

the twist angle is not given in ASTM D3917-11; it was stated to be 3 degrees in 2002.  

Table 4 reports measured values for the magnitude of geometric imperfections, in terms 

of L, for a range of standard pultruded standard shapes [2, 3]. In column (1) the source 

to the data is given. Column (2) gives the form of shapes characterised by an ‘in-house’ 

measurement method of the research centre, and results are listed in column (3). It is 

noted that no measurements for the twist imperfection have been made. Table 4 reports 

that the minor axis out-of-straight straightness imperfection (s in Equation (5)) can 

have a magnitude in the range of L/800 to L/4500. These measurements are found to be 

significantly lower than the maximum allowed in ASTM D3917-11 of L/240. 

Figure 9 presents plots of P against w for the FRP beam at 2 m span for three initial 

minor axis out-of-straightnesses in the range of L/10000 to L/240. The smallest is for a 

virtually straight beam and the largest corresponds to the maximum allowed in 

manufacture. For the non-linear FEA the three-point bending load case has the 

displacement boundary conditions BC1 (for free warping and free lateral flexure at both 
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ends). Note that inspection of the deformation shape of the beams analysed did not find 

any signs for the development of a local instability near the sections with a shear force 

concentration. The three curves plotted in the figure show that, as the geometric 

imperfection increases, the load for LTB failure become less distinct. This FE buckling 

load is not the critical load it is a limiting value (PLimit). It is seen from the P-w curves in 

Figure 9 that with the FRP material remaining linear elastic in the post-buckling region, 

the secondary load path has a positive slope. The curves show that, following instability, 

the beam develops post-buckling strength and so onset of LTB instability does not result 

in member collapse. This is an important finding when developing guidelines to design 

against LTB failure as a ULS, as its presence is analogous to the additional reliability 

given to design provisions in BE EN 1993-1-1:2005 and ANSI/AISC 360-10 from 

having the ultimate strength of steel higher than yield strength; the lower (yield) 

strength is used in the design calculations for LTB resistance.  

Focusing on the shape of the three P-w curves in Figure 9, when P is close to 2.5 kN 

and w is about 10 mm, it is observed that there is no clear buckling bifurcation (for 

Pcr,FEA) when the out-of-straightness is L/1000 and larger. Singer et al. [44] explains that 

there are a number of data reduction methods that can be employed to estimate what the 

limiting buckling load (PLimit) is. A review of methods previously employed by 

researchers studying pultruded shapes is given next. Lee [45], in his PhD work on the 

flexural-torsional buckling of T-sections, suggested that buckling load should be 

estimated by the intersection point of extrapolating the two ‘linear’ lines for the ‘pre-

buckling’ and ‘post-buckling’ parts to the P-w response. In his LTB experiments with I-

beams, Stoddard [12] choose to define the limiting buckling load to be the load when 

the mid-span rotation (twist) of the top flange attained 5 degrees. To determine the LTB 
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resistance of an end-loaded cantilever beam Brooks and Turvey [10] recorded their 

buckling load as the load at which the end-rotation started to grow rapidly. In a series of 

tests to determine flexural buckling of concentrically loaded columns Mottram et al. 

[41] terminated an increase to axial load when the mid-span lateral deflection reached 

height/100. Using measurements for column load and lateral mid-span deflection they 

employed the Southwell plot method to get an improved estimate to the elastic critical 

buckling load. Based on results from non-linear FE analyses with ANSYS, Afifi [46] 

obtained column buckling loads by applying the Southwell plot method. This is known 

[44] to be an effective data reduction method when estimation to the elastic critical 

buckling load, for the perfect member, is required.  

Returning to the FE results in Figure 9 it is seen that the beam’s stiffness, given by P/w, 

is very similar during pre-buckling. The load and deflection when non-linearity occurs 

is dependent on the amplitude of the out-of-straightness geometric imperfection. Using 

these observations, the authors define the limiting buckling load PLimit as the point on 

the load-deflection curve when the secant stiffness has been reduced by X%. Figure 10 

illustrates how PLimit can be obtained using this stiffness reduction method. As can be 

seen the initial constant stiffness is common to establishing PLimit for the two non-linear 

P-w curves that give a lower prediction as the size of the geometric imperfections 

increases.   

The question is, how large a percentage is X to be? To establish the answer it will be 

prudent to determine PLimit at or near the point where the secant stiffness is changing 

rapidly with a small increase in w. For the 2 m beam with initial out-of-straightness of 

L/10000, Table 5 presents, in columns (1) to (3), the values of P, w and the 

instantaneous secant stiffness P/w. For this virtually straight beam the results show that 
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the ‘pre-buckling’ stiffness is constant at 0.262 kN/mm to P up to 2.31 kN. Secant 

stiffness is then found to start reducing and can be seen to be very rapidly falling away 

when P is 2.47 kN. At this load the ‘post-buckling’ stiffness is 0.138 kN/mm 

(highlighted in bold font), giving a secant stiffness reduction of around 50%. Based on 

this evaluation PLimit is determined as the value of P when the secant stiffness reduction 

X is 50%.   

Taking a constant 1.0 m span the FRP beam is analysed with either out-of-straightnesses 

of L/10000, L/1000, L/500 and L/240 or twists of 0.1
o
, 1

o
, 2

o
 and 3.28

o
. Note that L/240 

and 3.28
o
 are the maximum allowable in accordance with ASTM 3917-11 (refer to 

Table 3). Presented in Figure 11 is PLimit, presented as a load ratio in terms of Pcr from 

using Equation (2). FE modelling has boundary conditions BC1 and shear centre load 

(zg = 0.0 mm). For the parameters chosen PLimit/Pcr lies between 0.95 to 1.05 for the full 

range of the minor axis out-of-straightness and from 1.01 to 1.05 for the potential range 

in the twist imperfection. 

The FE results in Figure 12 are for a constant out-of-straightness of L/1000 and a 

constant initial twist of 1
o
. It is believed that these geometric deviations are likely to be 

typical for pultruded I-shapes. The parameter changed in the FE study is the span, which 

varies from 1.0 m (L/h of 9.84) to 4.0 m (L/h of 39.4). Ratio PLimit/Pcr is seen to lie 

within the range of 1.02 to 1.08. Being always > 1.0, the results show that PLimit is 

higher than that calculated by Equation (2). A feasible explanation for why the limiting 

value is found to be higher is that the closed form formula ignores the increase in 

instability resistance due to beam curvature [32]. Robert [47] found this influence is 

significant giving 4% increase with narrow-flange beam (i.e. height twice the flange 
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breadth). If this influence factor is taken into account, the buckling resistance can be 

determined as [46]: 

cr
crp

z

y

=

1-

M
M

I

I

         (4) 

For the single beam section in this FE study Equation (4) gives 
crp cr=1.04M M . This 

means that a resistance increase of 4% can be from the pre-buckling deformation. 

It is also observed that PLimit/Pcr, for ‘slender’ beams with L/h > 20, is fairly constant at 

1.07 to 1.10. When the beam becomes ‘stocky’ (with slenderness ratio < 15), PLimit/Pcr 

is now found to be in range 1.02 to 1.05. The transition in buckling resistance can be 

explained by the presence of a growing contribution from shear deformation as the 

beam gets shorter. The model for the development of Equation (2) does not account for 

shear flexibility. 

Concluding remarks 

Linear Eigenvalue and geometric non-linear Finite Element (FE) analyses have been 

performed to study the Lateral-Torsional Buckling (LTB) resistance of the I-beam (of 

size 101.650.86.4 mm) under the influence of load height, displacement boundary 

conditions and the geometric imperfections of minor axis out-of-straightness and 

longitudinal twist. It is found that changing the load height relative to the shear centre is 

more significant for a beam of Pultruded Fibre Reinforced Polymer (PFRP) than of 

structural steel. It is found that the change in resistance is significant when the beam is 

‘stockier’, as given by span/height ratio < 15. When the Eigenvalue results are 

normalized using the prediction for the elastic critical buckling load from a closed form 
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formula it is found that the ratio remains close to 1.0 (between 0.94 and 1.02). The FE 

study on influence of load height with the PFRP beam does show that the post-buckling 

load path is significantly affected by this parameter. 

By studying the influence of the degree of end warping fixity on LTB resistance it is 

found to be more significant when the beam is of FRP material. The level of influence is 

reduced as the beam span increases and an explanation for the finding is developed in 

the paper. 

To simulate pre-buckling response in the presence of geometric imperfections, 

emanating during the pultrusion process, it is necessary to perform a geometric non-

linear analysis. It is found that the vertical load against vertical deflection curve does 

not show a clear buckling (bifurcation) point for LTB failure. A data reduction method 

is proposed to allow an acceptable prediction of the limiting buckling load. It is given 

by the point on the load-deflection curve at which the secant stiffness has reduced by 

50% from its initial constant value. By adopting this method, limiting buckling loads are 

obtained for a 1.0 m long FRP beam having initial geometric imperfections of out-of-

straightness from span/10000 to span/240 and twist along span from 0.1
o
 to 3.28

o
. 

Normalized buckling load is shown to be in the range of 0.95 to 1.05 and 1.01 to 1.05, 

respectively. A value of 1.0 means the FE result is identical to that from a closed form 

equation developed for the design of isotropic (steel) members in bending. By setting 

the two imperfections constant at span/1000 and 1
o
 the buckling load ratio, from 

increasing spans from 1.0 to 4.0 m, is found to be 1.03 to 1.08 and 1.04 to 1.1, 

respectively. The lowest ratios are for slenderness ratio < 15 and can be explained by 

the growing influence of shear deformation. The physical explanation for why the FE 
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results for the FRP I-beam are above that calculated by the closed form equation is 

given.  

The authors recommend their FE modelling methodology for PFRP beam problems 

with geometric imperfection failing with the lateral-torsional buckling mode. 

For the development and calibration of a closed form formula for inclusion in a design 

standard other geometric imperfections such as flatness, angularity and residual stress 

might have an important role to play in reducing LTB resistance. Based on the 

relevance of the results from the work reported in this paper the authors believe that the 

inclusion of all ’field’ imperfections can be scoped by modelling a single (dominant) 

imperfection with appropriate magnitude. The most practical to work with is that of out-

of-straightness about the minor-axis, having maximum amplitude of, say, span/200.    
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Figure caption 

Figure 1. FE Cartesian coordinate system, and mesh with displacement end boundary 

conditions BC2 (for k = 1 and kw = 0.5). 

Figure 2. Eigenvalue analysis for initial Minor axis out-of-straightness geometric 

imperfection shape along the I-beam. 

Figure 3. Model for ‘twisting’ couple applied at free ends of I-beam. 

Figure 4. Initial geometric imperfection shape from pure torsion and linear elastic small 

displacement FEA. 

Figure 5. Effect of load height on elastic critical buckling load when beam is of FRP or 

steel. 

Figure 6. Normalized buckling load (Pcr,FEA/Pcr) versus slenderness ratio (L/h) for a 

simply supported I-beam subjected to a vertical point load at mid-span and positioned  

either on top flange, at the shear centre or on bottom flange. 

Figure 7. Vertical load (P) with vertical deflection (w) for the PFRP beam, having span 

of two metres and load applied at either Top flange, Shear centre or Bottom flange. 

Figure 8. Influence of end warping fixity boundary condition on LTB resistance.   

Figure 9. Load (P) and vertical displacement (w) for the FRP beam at 2.0 m span having 

an initial Minor axis out-of-straightness deformation from L/10000 to L/240. 

Figure 10. Illustration to show the secant stiffness reduction method to establish the 

limiting buckling load when imperfections negate a bifurcation buckling failure. 

Figure 11. Influence of magnitude of initial geometric imperfections on LTB resistance 

of a pultruded beam of size 101.650.86.4 mm at span of 1.0 m. 

Figure 12. Influence of having constant geometric imperfections and varying beam span 

from 1.0 to 4.0 m. 
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Table 1. Previous test or micromechanical values for the in-plane shear modulus (GLT) 

of PFRP material in standard shapes.  

Author(s) or pultruder’s 

design manual 

In-plane shear modulus, GLT 

kN/mm
2
 Test or prediction method Pultruder 

(1) (2) (3) (4) 

Strongwell [2] Null   

Creative Pultrusion Inc [3] 2.9 Full-section Creative Pultrusions Inc.  

Bank [22] 2.4-2.8 Isopescu Creative Pultrusions Inc. 

Sonti and Barbero [23]  3.9-4.5 Isopescu and Torsion  Creative Pultrusions Inc. 

Zureick and Scott [24]  4.1-4.8 Isopescu Strongwell 

Steffen [25] 3.5-4.5 
Modified (Isopescu)  

V-notched beam  
Strongwell 

Turvey [26]  3.0-3.6 Torsion  Strongwell 

Roberts and Al-Ubaidi 

[27]  
4.4-4.9 Torsion  Fiberforce Composites 

Lane [19] 3.2-3.7 

Resin burn-off and 

Micromechanical 

modelling 

Creative Pultrusions Inc. 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Elastic critical buckling load for lateral-torsional buckling with mesh 

refinement.  
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Shell element  

side lengths (mm) 

Number of elements  

per metre Elastic critical buckling load, Pcr,FEA (kN) 

25.4  280 11.0 

12.7  1108 9.96 

8.5  2478 9.95 

6.4  4368 9.95 

5.1  6860 9.95 

  

 

Table 3. Allowable deviation from straightness and twist according to Tables 3 and 4 in 

standard ASTM D3917-11.  

Type of 

imperfection 
Illustration of geometric tolerance  

 

Allowable deviation from 

straight 

 

(1) (2) (3) 

Out-of-

straightness 

 

D = 4.167 x L (length in 

meters)  

Twist 

 

Y/L = 3.281 degree / m 

 

 

 

 

 

Table 4. Measured initial geometric imperfections for pultruded standard shapes.  

Author(s) Structural shape Maximum imperfection in terms of length L  
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(1) (2) (3) 

Brooks and 

Turvey [10] 
I Out-of-straightness for flanges and web is L/900.  

Zureick and 

Scott [24] 
I and box 

Out-of-straightness of:  

I-beam lies between L/812 to L/1835;  

Box lies between L/1103 to L/8053.  

Maximum did not always exist at mid-span.  

Mottram et al. 

[41] 
Wide flange I Maximum out-of-straightness is L/4500. 

Lane and 

Mottram [43] 
Wide flange I Minor-axis out-of-straightness is L/3200.  
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Table 5. Vertical deflection (w) with vertical load (P) at 2 m span with out-of-

straightness geometric imperfection of L/10000 (see Figure 9). 

Load P (kN) Deflection w (mm) Secant stiffness P/w (kN/mm) 

 (1) (2) (3) 

0.070 0.267 0.262 

0.140 0.534 0.262 

0.245 0.934 0.262 

0.403 1.53 0.262 

0.639 2.44 0.262 

0.993 3.79 0.262 

1.53 5.81 0.262 

2.31 8.80 0.262 

2.35 9.18 0.256 

2.36 9.53 0.248 

2.37 10.0 0.236 

2.38 11.1 0.215 

2.41 13.3 0.182 

2.47 17.8 0.138 

2.54 23.7 0.107 

2.63 30.7 0.086 

2.73 38.5 0.071 

2.85 47.0 0.061 

2.98 56.0 0.053 

 

 

 


