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Abstract

Owing to its extraordinary electrical, optical, and mechanical properties, graphene

has emerged as a promising material for a variety of applications in the future. However,

not all these applications will be able to employ or require pristine graphene; hence

several alternative methods have developed for the mass production of graphene and

related materials. Graphene oxide (GO), a material closely related to graphene, allows

engineering of its chemical composition by means of chemical, thermal, and

electrochemical methods. This provides an opportunity to tune physical and chemical

properties of graphene. This work reports on investigations of the structure of chemically

modified graphenes (CMGs) derived from GO, interactions of metals and organic thin films

with CMG, and application of metal-CMG as a hydrogen gas sensor.

GO was fabricated by a modified Hummers method. GO, being insulating, was

reduced by hydrazine and thermal annealing to produce reduced graphene oxide (rGO).

The CMG sheets were deposited on TEM grids and on Si/SiO2 substrates for

characterization by atomic force microscopy, transmission electron microscopy (TEM), x-

ray photoelectron spectroscopy, and Raman spectroscopy. The structural analysis of GO

performed by TEM revealed that in GO, on average, the underlying carbon lattice

maintains the symmetry and lattice-spacings of graphene. Compositional analysis disclosed

that the as-produced GO is actually made of oxidized graphene like sheets strongly

attached with oxidative debris that make the as produced GO hydrophilic and insulating.

In the TEM, both GO and reduced GO (rGO) were nearly transparent and stable

under the electron beam and hence they made excellent supports to study the growth of

thin organic and metal films deposited by physical vapour deposition. The study revealed

the interactions of organic molecules, fluorinated copper phthalocyanine, with CMG and

packing of the molecules in the crystal structure. Film-thicknesses from sub-monolayer to

tens of monolayers were analysed. In the study of metal thin film growth, the factors

determining the growth and morphology of different metals-on-CMG were studied. Fine

control over the size and coverage of nanoparticles were achieved. This control was used

to combine Pd nanoparticles and rGO to design selective, highly sensitive, and practical

hydrogen gas sensor.
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calculated using a tight binding model, is shown in Figure 1.5 (reproduced from Castro

Neto et al.26). The two states, also known as the valence ( ) and conduction ( ∗) bands, of

the band are symmetric and touch at the corners of the K points also known as the Dirac

points. As a result graphene is a zero gap semiconductor or a semimetal. The bands appear

exactly conical, showing a linear dispersion, around the Dirac points.

1.2 Fabrication of graphene

History

Graphene is a name originally given to a planar sheet of carbon atoms possessing

graphitic structure.27 The earliest evidence of exfoliation of graphite can be traced back to

more than 170 years ago, when Schafhaeutl, reported exfoliation of graphite by treating

graphite with nitric acid and sulphuric acid in 1840.28 After more than a decade, in 1855,

Brodie reported synthesis of graphite oxide by treating graphite with nitric acid and

potassium chlorate.29 Today, graphene oxide, a material precursor to chemically modified

graphene (CMG), is most commonly prepared by the Hummers and Offeman method

(1958)30 and sometimes by the Staudenmaier method (1898)29 used for oxidising graphite.

Growth of graphene on metal surfaces also has a surprisingly long history.

Monolayer graphite like structures, formed as a result of segregation of carbon, on the

surface of Pt can be traced back to 1968.31, 32 Metals such as Ni, Pd, and Co also have been

used for growth of graphene in the past.33, 34

Also, growth of graphene by sublimation of silicon carbide (SiC) has been known

for a while. Low electron energy diffraction (LEED) patterns of monolayer graphite,

prepared by sublimation of SiC at high temperature and under ultra-high vacuum (UHV),

have been reported since 1975.35
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Mechanical exfoliation of highly oriented pyrolytic graphite (HOPG) to thin islands

have been reported by Ruoff and co-workers in 1999.36 Finally, Geim and co-workers

mechanically exfoliated graphite to achieve free standing graphene using a ‘scotch tape’ in

2004.37

Current methods of fabrication

Since the explosion of research in the field of graphene, versatile methods of

fabrication have been developed; as a result, the term graphene is used to refer to a

variety of planar hexagonal carbon materials with different compositions. At present, the

most commonly used methods for synthesizing graphene are (1) micromechanical

cleavage,37 (2) sublimation of SiC (001),38 (3) growth on metals and (4) exfoliation of

graphite oxide. Although, every method has its own advantages and disadvantages the

‘exfoliation of graphite oxide’ method stands out as it provides a simple and inexpensive

route to large scale production of solution processable graphene.

Micromechanical cleavage – this method involves peeling of HOPG layers using a

‘scotch tape’ and provides graphene sheets with the least number of defects.4 The quality

of graphene is excellent for fundamental studies; however, the method is too laborious

and expensive for large scale production.

Sublimation of SiC – this process involves heating the SiC substrates in ultrahigh

vacuum to 1000 – 1500 ; during annealing the Si sublimates and the carbon left behind

has been shown to have graphitic structure.39 This method facilitates large scale

production of graphene directly onto semiconducting or insulating substrates and hence

the devices are compatible with the existing micro-electronic technology. But this method

is expensive because SiC is expensive and it requires high temperature annealing and UHV

conditions.
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Growth on metals – crystalline graphene has been grown on a number of metals,

such as Ni, Pt, Pd, Co, Cu, Ir or Ru, by either precipitation of absorbed carbon or by physical

or chemical vapour deposition of gaseous precursors like methane.6, 40, 41 From these

metals, Cu has been shown to be promising because large area and mostly single layer

graphene sheets can be produced.42, 43

Exfoliation of graphite oxide – graphite is oxidised to graphite oxide via the

Hummers method which involves treating graphite with concentrated sulphuric acid and

potassium permanganate. A mild sonication of aqueous suspension of graphite oxide gives

exfoliated sheets of graphene oxide (GO).44 GO is a sheet of carbon atoms randomly

decorated with oxygen containing functional groups such as epoxy, hydroxyl, carbonyl and

carboxyl.45 These groups make as produced GO insulating. GO can be reduced to make it

conducting for device applications. Treatments with reducing agents such as hydrazine

and/or low temperature annealing result in conducting sheets named as reduced GO

(rGO).44

Reduction of GO – most commonly, GO is first deposited on a desired substrate by

spin coating, or drop-casting, and then reduction is carried out. Different techniques for

reducing GO include high temperature annealing in inert or reducing atmospheres,46, 47

using arc discharge method,48 microwave assisted reduction,49 reduction using hydrazine

and hydrazine plus annealing.44, 50, 51 The conductivity of rGO reduced by hydrazine alone is

rather low 10-2 – 101 S/cm; with a combination of hydrazine and annealing, the

conductivity has been increased to 102 S/cm.46 Hydrazine is highly toxic and flammable

hence a number of reports have come up with alternative approaches, for example

reduction by hydrohalic acid which results in conductivity 300 S/cm.52 The most

conductive films of rGO have been reported by vacuum annealing at 1100 ; the

conductivity was 1800 S/cm.53
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Although, several reducing methods have been developed, the conductivity in rGO

sheets is still a few orders of magnitude lower than that of pristine graphene sheets,

mainly because of the incomplete reduction and remaining defects. Yet, the inexpensive

method of fabrication and ability to provide stable suspensions in a variety of organic

solvents54, 55 make this technique extremely useful for large scale production of graphene

based materials.

Additionally, the functional groups make GO advantageous over pristine graphene

as the optical and electrical properties of these sheets can be tuned by using chemical and

heat treatments.56 The ability of these sheets to form covalent as well as non-covalent

(based on - interactions) bonds encourages the fabrication of a wide variety of hybrid

structures such as transistors, sensors, optoelectronic devices etc.57, 58

1.3 Structure of graphene oxide

Understanding the structure of GO is crucial for the development for applications

based on CMGs. As graphene oxide is obtained from exfoliation of graphite oxide its

structure can be related to the structure of a layer of graphite oxide. Although the first

evidence for the synthesis of graphite oxide in the literature is more than 170 years old28

the exact structure is still unclear. From a number of X-ray and electron diffraction studies,

it has been found out that the interlayer spacing varies with water content (ranging

between 0.5 to 1.1 nm).29, 59 However, the in-plane structure has been a matter of debate

for a long time.59-61
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delocalisation on the epoxy groups. All these models relied on the findings of elemental

analysis, chemical reactivity and X-ray diffraction studies.63 Lerf and coworkers used solid

state nuclear magnetic resonance and obtained a model similar to the Hofmann model but

with random epoxy and hydroxyl groups. The most recent model proposed by Szabo et al.,

is a mixture of Scholz-Boehm and Ruess models, suggesting a sp3 carbon backbone.

Previously, there have been a few reports on the electron diffraction studies of

graphite oxide and the presence of hexagonal structure with lattice parameters matching

those of graphite has been observed.59, 64 The models showing amorphous structure of sp3

carbon atoms (Ruess, Scholz-Boehm, Nakajima-Matsuo, and Szabo) would not produce

electron diffractions with lattice parameters of graphite. Clearly, these models are rather

incompatible and do not agree even on the basics of the structure such as the lattice

parameters or type of bonding between the carbon atoms.

Subsequently, investigations on the structure of graphene oxide have suggested it

to be mostly amorphous.65, 66 In studies, using high resolution TEM, the structure of GO on

average has shown disordered regions, and the regions containing sp2 carbon atoms are

only a few nanometers in dimensions.67, 68 For example, Figure 1.7 (reproduced from

Erickson et al.67) shows atomic resolution TEM image of graphene oxide displaying

nanoscopic graphitic regions in between amorphous regions.
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number of materials for applications such as transparent electrodes,44, 73 field effect

transistors,74, 75 catalysis,76 sensors,3, 57 etc. As much of the research is focussed on

electronic and organic based optoelectronic applications, the investigation of interactions

of metals and organic molecules with graphene is vital.

Metal-graphene structures

Metal morphology on graphene is affected by several factors, such as deposition

method used, graphene substrate, and deposition conditions such as rate and

temperature.77, 78 Metals on graphene have been deposited by physical79, 80 and chemical81,

82 methods and the metal morphologies have been significantly different in the two cases.

GO based metal-graphene structures produced by chemical processing have been

reported several times.81, 83 In chemical processing the metal based precursors directly

react with GO or rGO sheets, in suspension or on substrate, to give graphene-metal

nanoparticle composites with homogenous distribution of a uniform sized and predefined

shape of metal nanoparticles. In these cases the size, shape and distribution of the metal

nanoparticles are determined by the chemical approach and not by the graphene-metal

interactions. Additionally, these processes cause covalent modification of the graphene

sheet, which affects the intrinsic structure of the graphene.84

On the other hand, metals deposited by evaporation have been studied on

graphene grown on metal substrates.78, 85 However, in these situations the interaction

between graphene and the metal substrate dominates the electronic structure of

graphene.6 Hence the morphology of the metal deposited does not depend on the metal

and graphene interactions alone.

Theoretically, metal-graphene interactions have been studied more extensively.

For example, the sites acquired by the metal adatom on the graphene lattice; doping of
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the other hand a number of reports have found layer dependent morphology of metals,

including Au, evaporated on graphene80, 90, 92 (Figure 1.9 bottom, reproduced from Zhou et

al.80). The bottom of Figure 1.9 clearly demonstrates the effects of number of layers on the

morphology of Au-on-graphene. The layer dependence has been attributed to the

electrostatic interactions between the graphene and metal.90

More recently, there has been an increase in the number of reports on the

interaction between metal and graphene. Metal deposition via plasma sputtering has

resulted in random scattering and electron localisation in graphene;93 moreover, layer by

layer removal of graphene layers by sputter coating with zinc followed by dissolution in

acid has also been observed.94 Metal-mediated hole formation in suspended graphene has

been observed and is attributed to the lowering of the energy of vacancy formation in

graphene in the presence metal atoms.95

Another important aspect of the metal-graphene interaction is the understanding

of the type and level of doping in graphene due to the amount and type of the metal

deposited. In a recent report, the effect of the size of Au clusters on the type of doping in

graphene was demonstrated. It was found that the isolated Au nanoparticles result in n-

type doping while thin films result in p-type doping in graphene. The difference in the

doping properties were recognized as the difference in the interfacial interactions between

the graphene and Au nanoparticles or film.96

All these results indicate that for metal deposition by evaporation the metal-

graphene interactions play an important role in determining the final metal morphology on

graphene. However, the experimental evidence of the major factors governing the growth

and morphology of these metals on free standing graphene is still inadequate.
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Organic-graphene structures

Currently, the market standard for transparent electrodes is indium tin oxide (ITO),

and its use is faced with several issues. Besides being brittle, indium is inadequately

transparent in the infra-red region, unstable towards acid and base conditions, and also

expensive as the resources on the earth are depleting.97 Graphene, with its excellent

electrical properties, high stretchability, tunable work function and high transmittance, is a

promising candidate for transparent conductors in optoelectronic devices.97 A sizable class

of optoelectronic devices, like organic light emitting diodes (OLEDs), liquid crystal displays

(LCD), touch screens, organic field effect transistors (OFETs), involve organic materials.

To date, the most promising method to produce large area, highly conducting and

transparent graphene films for photovoltaic cells is the CVD method.42, 74 The high

efficiency (power conversion efficiency = 1.71 %) in these devices has been credited to the

non-covalent bonding of the graphene layer with the organic layer (pyrene buanoic acid

succidymidyl ester) in the layered structure of the cell.98 More recently, graphene based

devices with power conversion efficiency value of 8.6 % were fabricated and the

performance was attributed to the doping of the graphene sheets from the organic layer

(bis(trifluoromethanesulfonyl)amide [(CF3SO2)2NH]) in the device.99

Due to the simple solution processing, rGO films have been utilised as transparent

electrodes.44, 46 Fabrication of optoelectronic devices incorporating rGO sheets combined

with organic semiconductors has been reported.100 In the report on organic thin film

transistors, the rGO electrodes have shown lower contact resistance than Au electrodes

due to the π-π interaction between the semiconducting layer (organic molecules) and the

rGO.100 The major issue in using rGO as a replacement for ITO, is the high sheet resistance

in rGO. Although, GO possesses high optical transparency, it is insulating. The reduction

process makes GO conducting but does not fully recover the graphene lattice. As a result,
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rGO possesses remnant oxygen groups and defects and hence low conductivity values. GO

films reduced by vacuum annealing at 1100 have shown a lowest sheet resistance of

800 /sq. with transmittance of 82 % at 550 nm.53 The sheet resistance of ITO is 10 –

30 /sq. with transparency greater > 90 % at 550 nm.101 As already discussed in Section

1.2, the research is on-going and these issues have been the focus of several reports.

Moreover, the as-produced GO has also been used in polymer solar cells as a high

performance hole transport layer.102 Thus, CMG sheets with different functionality could

result in fully solution processed and flexible devices.

The important factor to be considered in fabrication of these devices is the

interaction of organic molecules with graphene sheets. The understanding of these

interfaces and ability to manipulate them is crucial to enhance the absorption of light and

to control the charge transport properties. One of the results in this thesis focuses on the

interaction of a molecular semiconductor, fluorinated copper phthalocyanine (F16CuPc)

with CMG.

1.5 Outline of thesis

The focus of the work in this thesis is the fabrication of graphene via exfoliation of

graphite oxide, understanding its structure and studying the interactions of the CMG with

other materials, like metals and organic molecules with relevance for applications. CMG

was prepared by the Hummers method and conventional TEM imaging and diffraction

were the most frequently used characterisation techniques.

The details of CMG synthesis and typical characterisations are given in Chapter 2.

One of the major questions in the study of the field of CMG is the structure of GO. The

investigations on the lattice structure and chemical composition of GO are discussed in

Chapter 3. The highly transparent nature of GO under TEM investigation, as discussed in
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Chapter 3, is utilised to perform the study on the interactions and growth of different

metals and the molecular semiconductor, F16CuPc, on CMG sheets. The results are

presented in Chapter 4. The insight on the metal-graphene interactions is utilised to

fabricate dense nanoparticle arrays on rGO for hydrogen gas sensing. In Chapter 5 the

fabrication and working of Pd coated rGO devices as hydrogen gas sensors is

demonstrated. Finally in Chapter 6, conclusions are drawn from the whole body of work

and suggestions made for future avenues of investigation.
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wavelength 0.025 Å is formed. This beam is restricted by the condenser aperture, which

excludes the electrons scattered at high angle. The beam then strikes the specimen and

parts of it are transmitted depending upon the thickness and electron transparency of the

specimen. As the electrons pass through the sample, they are scattered by the

electrostatic potential set up by the constituent elements in the specimen. After passing

through the specimen they pass through the electromagnetic objective lens which focuses

all the electrons scattered from one point of the specimen into one point in the image

plane (1st intermediate image I1). Optional objective apertures can be used to enhance the

contrast by blocking out the high-angle diffracted electrons. The final image magnification

is controlled by the intermediate and projector lenses. The image strikes the phosphor

screen and light is generated, allowing the user to see the image.

TEM images can be acquired in bright field or dark field imaging mode. A bright

field image is acquired by inserting an aperture in the objective lens which does not allow

the Bragg reflections to pass through to the final image and therefore the direct beam and

any low angle inelastic beams form the final image. Images can also be formed by

excluding the direct beam i.e. using one of the diffracted beams and the image so formed

is called the dark field image. The contrast in a TEM image is mainly of two types: mass-

thickness contrast and diffraction contrast. The areas in the specimen of higher thickness

or with atoms of greater atomic number (Z) scatter electrons more strongly and therefore

appear darker in bright field images and brighter in dark field images. Diffraction-contrast

arises when the electrons are Bragg scattered. The contrast is as a result of differences in

the intensities of the electrons scattered into Bragg reflections and is called diffraction

contrast.

As shown in Figure 2.1 (right) the focal plane of the objective lens is the place

where the electrons scattered in the same direction by the sample are collected into a
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single point and a diffraction pattern is formed. To view the diffraction pattern the

intermediate lens system can be set to focus on the focal plane of the objective; the

pattern is then magnified by the projector lens and observed on the screen. A pattern from

a selected area of the specimen can be obtained by inserting an aperture situated in the

plane of the first intermediate image. This gives selected area electron diffraction (SAED)

patterns.

2.2 Synthesis and characterisation

CMG provides a route to produce large scale, solution processable graphene and

opens possibilities for modification and further functionalization of graphene.84, 104 GO is a

member of the CMG family and is the first step towards fabrication of a wide variety of

CMGs.

2.2.1 Synthesis of graphene oxide

Graphene oxide can be synthesized by using the Brodie, Staudenmeir, or Hummers

method.50 In this work a modified Hummers method as reported by Eda et al., 44 is used.

Modified Hummers method: 5 g of graphite powder was mixed with a solution of

4.5 g of KNO3 and 169 ml of concentrated H2SO4 and placed in an ice bath. This mixture

was continuously stirred and 22.5 g of KMnO4 was slowly added over a period of 1 hour.

The mixture was left to stir for another 2 hours in the ice bath and then removed from the

ice bath and left to stir continuously for 5 days. This resulted in a black viscous liquid. To

this, 500 ml aqueous solution of 5 wt% H2SO4 was added over 1 hour while stirring

continuously. After stirring for a further 2 hours, 30 wt.% aqueous solution of 15 g of H2O2

was added to the mixture and left to stir for a further 2 hours. The oxidised mixture turned

dark brown in colour. This mixture was washed by adding 500 ml aqueous solution of 3 wt.
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Deposition on a substrate: GO can be deposited from an aqueous suspension

directly onto substrates such as silicon oxide (300 nm SiO2 on degenerately doped Si) for

further study. SiO2 is hydrophobic and has been previously treated with 3-amino-

propyltriethoxysilane prior to deposition of GO.68 Here, O2-plasma treatment (Quorum

Technologies Plasma Etcher-Asher-Cleaner) was used (100 W for 2 minutes), to make the

SiO2 hydrophilic. After this, two different approaches were used.

Spin Coating: graphene oxide suspension was placed on the substrate and the

substrate was rotated at 3000 rpm for 45 s. The acceleration and deceleration times were

0.1 s. This technique is efficient as it results in a controllable and uniform distribution of

GO sheets. As discussed in Section 2.2.2, a near monolayer coverage was obtained with GO

concentration of 1 mg ml-1. For higher concentrations of GO (5 – 10 mg ml-1) longer spin

coating time (60 s) was required for complete drying of the film.

TEM Grids: samples for TEM were prepared by drop casting GO dispersion on

lacey carbon grids. Prior to drop casting the lacey carbon grids were air-plasma cleaned for

20 s to make them hydrophilic. Some samples were also prepared by drop casting GO

dispersion on lacey carbon grids that were sputter coated with Au at rate of 5 nm/min.

These can be used to calibrate GO diffraction patterns (DP) against gold DP as will be

shown in Chapter 3.

Reduction of GO: in this study two techniques were used for reducing GO.

Reduction in suspension: 112 l of ammonia solution (35 wt. % Fisher Scientific)

and 17.6 l of hydrazine monohydrate solution (62 wt.%, Fisher Scientific) were added to

10 ml of 1 mg ml-1 GO suspension and the mixture was left to stir for 1 h at 90 .51 The

mixture slowly turned black over the hour. These rGO dispersions were used to coat TEM

grids by drop casting.
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The concentration of GO suspensions was varied from 0.2 to 10 mg ml-1 and the

thicknesses of spin coated GO films were measured using AFM. Note, for concentrations

below 1 mg ml-1 the effective thickness values were averaged over the substrate area. The

thickness of the GO films as a function of GO concentration in water is plotted in Figure

2.5d. The plot shows an approximately linear relationship between the measured thickness

and the GO concentration in water. A similar relationship between GO thickness and

concentration was obtained by Becerill et al.46

Thicker films were also made by multiple coating; double spin coating of 5 and 10

mg ml-1 GO suspensions resulted in films with thicknesses 15 2 and 32 2 nm

respectively.

Figure 2.6 shows a comparative study of GO and rGO (formed by exposure to

hydrazine and then thermal annealing in air at 300 ) using TGA, x-ray diffraction (XRD)

analysis and Raman spectroscopy. TGA measurements were done on a Metler-Toledo

TGA/DSC1 with a heating rate of 10 °C min-1 in air flow, XRD on a Panalytical X’Pert Pro

MRD (copper target, = 0.154 nm), and Raman spectroscopy on a Renishaw 1000

spectrometer with 633 nm laser excitation at low power of < 0.5 mW to avoid sample

damage.
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of the rGO structure as the reduction processes introduce irreversible defects in the lattice.

After this the rGO is thermally stable beyond 700 .

Figure 2.6b shows the Raman spectra of monolayer GO and rGO on the substrate

in the region 1100 – 1800 cm-1. The spectra are similar; for both GO and rGO the G peak at

1600 cm-1) indicates presence of graphite like structure while the D peak (GO – 1328 cm-1

and rGO – 1322 cm-1) arises as a result of disorder in the structure. Here, the ratio of the D

to G peaks for GO is 2.0 and that for rGO is 1.9, consistent with previous reports.68

For XRD the GO paper was used as prepared. The suspension of rGO was filtered

through an alumina membrane (pore size 0.02 µm, Whatman anodisc filter membrane)

and the rGO paper on the filter membrane was heated in air at 300 for 1 hr. Figure 2.6c

shows the XRD plot obtained for GO and rGO papers. GO shows a sharp peak at 2 = 10.4°,

a layer spacing of 0.85 nm, indicating presence of functional groups and intercalated water

molecules. rGO shows a peak around 23 – 24° corresponding to a significantly decreased

layer spacing in the range 0.37 – 0.39 nm. This peak is weak and broad as the rGO sheets

do not form a well dispersed suspension and hence result in less ordering in the rGO paper.

The layer spacing values in GO and rGO are consistent with previous reports.66, 106 The

weak peaks in rGO at around 35° and 45° are from the alumina filter membrane.

Figure 2.7 shows XPS spectra of GO and rGO films deposited on Au coated silicon

substrates. X-ray photoelectron spectroscopy (XPS) experiments were performed on a

Scienta ESCA300 spectrometer at the National Centre for Spectroscopy and Surface

Analysis, Daresbury Laboratory, UK. Samples for XPS were prepared by spin coating a 1 mg

ml-1 aqueous suspension of GO on Au coated silicon substrates. rGO samples were made by

following the reduction on the substrate method (Section 2.2.1).
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GO suspension (5 mg ml-1) was spin coated on the Si/SiO2 substrates with

predefined Cr/Au contacts. The thickness of the GO film was 5.0 ± 0.6 nm. After reduction

on the surface the thickness decreased to 2.9 ± 0.5 nm implying a decreased interlayer

spacing of 0.4 nm, consistent with the XRD results.

Figure 2.8a is an optical microscope image of a typical rGO device (thickness 3

nm) showing the electrode configuration for electrical characterisations (electrical

characterisation substrates were prepared by Dr. Neil Wilson, University of Warwick). The

plot in Figure 2.8b shows a linear relationship between device resistance and electrode

separation, implying that the resistances are intrinsic to rGO rather than just contact

resistances. From measurements over a number of similarly prepared devices, the

conductivity was found to be between 20 and 90 S/cm and the sheet resistance ranging

between 40 and 200 k/sq. consistent with other reports in the literature.47 Although

similarly prepared, the rGO devices always showed a wide range of electrical conductivity

values,46 presumably due to variations in amount of remnant oxygen groups, defects and

sizes of rGO platelets amongst the devices.

These devices were also measured before reduction but the resistance in the GO

films were too high for our measurement capabilities.

2.2.3 Growing graphene by chemical vapour deposition

Graphene was grown on Cu by chemical vapour deposition (CVD). Growth of

graphene on copper is a surface catalysed process and hence often self-limiting to a single

layer.42 In a typical procedure, a copper foil (99.5 % purity, 25 μm thick, Alfa Aesar product 

number 13382) was cut into 2×4 cm strips and loaded into a quartz tube placed inside a

tube furnace. The quartz tube was then evacuated to a base pressure of 10-3 mbar. Flow of

hydrogen gas (purity 99.999%) was established at 2 standard cubic centimetre per minute
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(sccm) (controlled by mass flow controllers) at all times during the growth process. The

copper foil was heated to 1000 at a rate 15 /min and annealed for 20 minutes before

flowing methane (purity 99.95 %) at 35 sccm for 10 min. The furnace was then cooled

down to 100 and the Cu strip was removed from the furnace.

Transfer of graphene to alternate substrate: graphene grows on both sides of the

copper. Layers of methylmethacryalate (MMA) and polymethylmethacyalate (PMMA) were

spin coated onto one side of the graphene on Cu and the whole stack was placed on top of

a solution of Cu etchant (FeCl3, Alfa Aesar 44583) with PMMA side up. The copper

substrate was dissolved in the Cu etchant within 2-3 hours and the stack of

graphene/MMA/PMMA was scooped out on a glass slide, rinsed in DI water, and finally

scooped out from the DI water on top of the desired substrate (Si/SiO2 or TEM lacey grids).

The substrate supported film was left to dry overnight in a vacuum desiccator. The

MMA/PMMA layer was then dissolved by washing the film-on-substrate in acetone and

then isopropanol (IPA). The graphene-on-substrate was finally dried under a nitrogen

stream.

Generally these graphene layers showed cracks after transfer hence for electrical

characterisation a second layer of graphene was deposited on top of the first graphene

layer following the above mentioned procedure again.
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measured. The lattice spacing d10 (corresponding to 1 100 spots) was measured to be

0.2128 0.0010 nm. The intensity plot across the marked spots in the pattern is shown in

Figure 2.10d. The ratio of the intensities of 1 100 to 21 10 type of spots was 1.1

consistent with single sheet of graphene as in reports25 and explained in Chapter 3.

2.3 Summary

Homogenous and stable suspensions of GO obtained by a modified Hummers

method were used throughout this work. AFM showed fully exfoliated sheets of GO and

the thickness of single GO sheets was found to range between 0.7 and 1.2 nm. The

interlayer spacing in a GO paper was 0.85 nm, measured using XRD. The XPS

measurements showed the presence of functional groups, such as hydroxyl, epoxy,

carbonyl and carboxyl; the carbon to oxygen ratio was roughly 2:1 in these samples. As a

result the GO sheets were found to be insulating. Raman measurements showed the

presence of D and G peaks indicative of the presence of disorder and graphite like

structure in GO. Thus the typical characterisations of GO and rGO samples gave results

consistent with the reports in literature.63, 68

Reduction of a GO paper resulted in a decreased interlayer spacing of 0.4 nm.

Raman spectra showed typical D and G peaks. XPS measurements showed a considerable

increase in the C:O ratio of rGO films, 5:1. As a result the conductivity in these sheets was

found to increase, between 20 – 90 S/cm consistent with previous reports.44, 46

Also, graphene sheets on Cu were prepared by CVD and typical characterisations

were performed. The Raman, XPS and TEM measurements showed the presence of

graphitic structure. The conductivity of these sheets was found to be 6000 900 S/cm.

The samples prepared and characterised in the way mentioned in this chapter

formed the basis of all the studies reported in this thesis.
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The study of the structure of GO is important for understanding its properties and

for applications. In this study the structure of GO was analysed to understand the local

arrangement of the carbon atoms, detect the presence of any ordering and get insight into

the average chemical and physical structure. This study of the structure of GO is divided

into two parts 1) TEM study of the structure of graphene oxide and reduced graphene

oxide (rGO) and 2) study of the effect of base washing of the as-produced graphene oxide.

Our TEM study showed that the as-produced GO possesses ordered graphene like regions

over length scales > 10 nm indicating that the oxygen groups form scattered regions of

disorder without affecting the average crystal lattice of the GO. The structure of GO was

also compared to that of rGO and was found to be similar to rGO. Further insight into the

structure of aGO was obtained by treating GO with NaOH; and it was found that the as

produced GO is composed of functionalized graphene sheets decorated by strongly bound

oxidative debris (OD).

3.1 Structural analysis of CMG in TEM

TEM investigations of graphene have shown that the crystal lattice and carbon to

carbon bond length in graphene is identical to that of the basal plane of graphite.23, 111

Here, TEM was used to analyse the structure of GO and rGO; it was found that GO and rGO

not only preserve the hexagonal lattice structure of the parent graphite but also the

carbon to carbon bond length.
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red are more intense than the 21 10 – type reflections (in green). For the hexagonal pattern

in Figure 3.1c the ratio of intensity of 1 100 to 21 10 type reflections was obtained to be

1.4 0.1. From 10 diffraction patterns containing a single set of hexagonal spots the ratio

was found to be 1.5 .

The SAED pattern revealed that GO not only exhibits a crystalline structure but also

possesses hexagonal symmetry. The presence of sharp spots indicates short range order in

GO, over length scales at least of the order of the coherence length of the electron beam (a

few nm under the conditions used here) as discussed later in this section. The single

hexagonal pattern without splitting of any of the spots indicates the occurrence of a long

range orientational order over at least the size of the selected area aperture which was 0.6

µm. Additionally, no spots other than those corresponding to a hexagonal structure are

visible, suggesting that oxygen groups in GO do not form any superlattice structure.

Although the as-prepared GO showed a significant oxygen content with C:O ratio of

approximately 2:1 (see Chapter 2), the functional groups do not significantly deform the

average underlying hexagonal structure inherent from graphite. A hexagonal crystal

structure has been observed for graphite oxide59 hence the hexagonal spot pattern here

alone does not prove the presence of graphene oxide rather than graphite oxide. In the A–

B stacked graphitic structures it has been found that the diffraction intensity of 21 10 – type

reflections is higher than that of 1 100 – type reflections because of interference between

the electrons from A – type and B – type layers;64 while for a single sheet of graphene the

intensity of 1 100 – type reflections is higher.113 The implications of the intensity ratios in

A–B stacked graphite, along with further analysis of the GO diffraction pattern, is

presented later in this section. The result that the GO here contains single sheets is also

consistent with the thickness of GO sheets measured by AFM and the XRD interlayer

spacings, (Chapter 2).
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Figure 3.1d shows a sheet of GO (right) on top of another sheet (left) with the lacey

support visible in the top right corner. The existence of the double layer of GO is identified

by the difference in contrast between the two layers in the bright field TEM image. The

SAED pattern (Figure 3.1e) obtained from the double layer of GO shows two sets of

hexagonal patterns superimposed upon each other and the angle of misalignment of the

patterns gives the angle of orientation between the double layers, here 4.8°. In Figure 3.1f

the SAED pattern is obtained from a thin film of GO produced by vacuum filtration (0.22

µm pore size Nitrocellulose filter membrane, Millipore) of a GO suspension. The pattern

shows concentric rings with the inner ring corresponding to 1 100 reflections more intense

than the outer ring corresponding to 21 10 reflections.

Single sheet regions can show splitting of spots due to wrinkles; but multisheet

regions always showed multiple sets of spots, with inner spots brighter than the outer

ones, suggesting complete exfoliation of the layers. Study of SAED patterns from several

multi-sheet regions did not indicate any preferential angle of orientation between the

sheets. The SAED from GO thin films displayed circular rings instead of a hexagonal set of

spots, as the hexagonal set of spots from each GO layer have merged to form rings with

the inner ring more intense than the outer. This implies that each sheet of GO in the film is

acting as a single crystal and there exists no preferential angle of orientation between the

overlapping sheets. This also explains some of the confusion over whether GO is

amorphous. The structure within a single sheet is crystalline, but the random stacking

between the layers results in a ring pattern for thin films (characteristic of

polycrystalline/amorphous materials)
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where, d i nhk
n

  (3.2)

Fhk is the structure factor, f( ) is the atomic scattering amplitude, kd and ki are the

diffracted and incident beam wavevectors and rn are the atom positions in the unit cell. To

calculate the intensity values, ௛௞, the structure factor is calculated using the scattering

amplitude value for carbon atoms from Doyle and Turner114 for the electron beam at 200

kV. Using the carbon atom positions rn in the unit cell of AB stacked graphite and the

number of layers 1,2,3,4… the intensity ratio ଵ଴
଴

ଵଵ
଴ at zero temperature is calculated to

be 1.1, 0.28, 0.37, 0.28… respectively. The factor of 4 difference between the ratios of

intensity for single and bilayer graphene makes this a useful signature of monolayer

graphene.

The intensity ratio ଵ଴ ଵଵ for GO obtained from Figure 3.1c is significantly higher

than the predicted values for a single layer of graphene at zero temperature. This

inconsistency is accounted for by the Debye-Waller factor that describes the influence of

lattice vibrations on the Bragg peak intensities. Since in TEM the interaction time of an

electron in the electron beam with the graphene sheet is far shorter than the thermal

oscillation periods (frozen phonon approximation), thermal oscillations and disorder

induced atomic displacements are treated equally in the Debye-Waller analysis. The

Debye-Waller factor modifies the structure factor by a term exponentially dependent upon

the mean square displacement of atoms from their equilibrium positions.115 Considering

the Debye-Waller factor, the intensity of a diffracted beam at finite temperatures is given

by

   0 2 2 2

10 10 (3.3)

where u is the root mean square displacement of the atom perpendicular to the Bragg

plane and is the Bragg angle. Since
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


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2

2

the intensity ratio can be written as
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0

2 210 10

0 2 2
11 11 11 10

(3.4)

From the intensity ratio obtained in Figure 3.1c and using Equation (3.4), the mean square

displacement (MSD) of the carbon atoms is 139 5 pm2 and hence the mean displacement

from the equilibrium position is calculated to be 12 2 pm which is just under 10% of the

carbon-carbon bond length. The value of MSD found here is considerably higher than that

found for mechanically exfoliated graphene (53 3 pm2) at a finite temperature116 and

that calculated for graphene at zero temperature (16 pm2).117 The substantial difference

between the MSDs of graphene and GO clearly reveals that the lattice distortion here is

also due to the functionalisation of the sheets and not just thermal oscillattions.

Another crucial piece of information about the crystal structure which that can be

obtained from the diffraction patterns is a lower bound on the size of the crystalline

regions. The full width at half maxima (FWHM) of the intensity distribution in the

reciprocal space gives the size of the crystal plate.103 However, the true size of the crystal is

larger than the measured value as the diffraction amplitude is affected by factors such as

inelastic scattering processes, instrumental errors, and Debye-Waller factor arising from

the thermal oscillations; leading to a reduced amplitude and greater FWHM. Hence the

measurement of crystallite size is limited to the spatial coherence length of the diffracted

beam.
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Figure 3.4b and c were taken. The SAED pattern in Figure 3.4b shows the characteristic

hexagonal set of spots and (c) shows the concentric circular pattern corresponding to the

polycrystalline Au nanoparticles. The red arrow is pointing toward the Au 111reflections.

A few layer graphite (FLG) suspension was also prepared by sonicating 2 mg of

graphite flakes in 20 ml of 1-methyl-2-pyrrolidinone (NMP) and sonicating for 30 minutes

before centrifuging at 500 rpm for 90 min to remove microscopic aggregates.118 The

suspension was drop-cast on a TEM lacey grid coated with Au. The lattice spacings were

calibrated using the Au 111 reflections. Figure 3.4d shows the TEM image of FLG on a Au

coated lacey grid and the SAED patterns of FLG and Au are shown in Figure 3.4e and f.

The Au 111 reflections corresponding to the lattice spacing of 0.235 nm were used

to calibrate the GO diffraction pattern. From 10 different SAED patterns the lattice spacing

corresponding to 1 100 reflections was found to be 0.2131 0.0010 nm. This corresponds

to an average in plane carbon – carbon bond length of 0.1421 0.0007 nm Using the

same procedure the lattice spacing for FLG was measured to be 0.2133 0.0010 nm.

Hence, within the experimental error the lattice spacing of GO is identical to that of

graphite and the average underlying structure in GO is planar with sp2 hybridised carbon

atoms similar to that of graphene.
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lattice spacing in rGO, Au coated lacey grids were used and the rGO SAED patterns were

calibrated accordingly. The central part of the TEM image of rGO on a gold coated lacey

grid (Figure 3.5d) shows 3 sheets of rGO with overlaps and wrinkles. The corresponding Au

and rGO SAED patterns from the encircled regions in the image are shown in Figures 3.5e

and f. After calibrating the rGO SAED patterns the lattice spacing corresponding to the

1 100 type reflection in rGO was found to be 0.2127 0.0003 nm and is identical to that

of GO and FLG within the limits of experimental error.

Thus rGO, like GO, preserves the hexagonal lattice structure and the carbon to

carbon bond length of graphite. The ratio of the intensity of 1 100 to 21 10 types of

reflection is higher than that for graphene113. As explained in the earlier section the

increase in the relative intensity of the1 100 spot is attributed to the remnant functional

groups resulting in the displacement of the carbon atoms from their equilibrium positions.
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aberration coefficient set to +1 µm and operated at 80 kV to avoid knock on damage.

Figure 3.6 shows the HR-TEM image of a GO sheet. SAED pattern (not shown) and a fast

Fourier transform (FFT) of the image (inset) indicate that the GO here consists of a single

sheet. The hexagonal crystal lattice in GO is clearly visible in many regions as well as in the

enlargements on the right. The image, on average, reveals a crystalline backbone with

superimposed disorders and defects. Similar regions of amorphous adsorbates, recognised

as adventitious carbon119 by surface scientists, have been observed in the HR-TEM of

graphene.20, 111 On the right of the image the region shown in blue has been digitally

compressed to 10 % of its width along the direction marked by the red lines; the clear

parallel lines demonstrate the consistent ordering in the crystal. At the bottom, the line

plot of the average intensity across the blue line in the digitally compressed image clearly

shows periodic arrangement of atoms. The spacing between the vertical gray lines matches

with the lattice spacing in GO (approx. 0.212 nm according to the microscope calibration)

indicating the existence of crystalline order over the length scales greater than 10 nm.

From TEM analysis here, the structure of the as-produced GO and rGO can be

summarised as follows:

(1) On average GO preserves the crystalline order with hexagonal symmetry of the

parent graphite.

(2) The carbon to carbon bond length in GO is 0.1421 0.0007 nm which is

identical to that in graphene.

(3) The size of the graphene like crystalline regions in GO is greater than 10 nm

which is observed from the coherence length of the electron beam as well as

in the HR-TEM image. Additionally, the range of the orientational order is over

the entire GO sheet as evident from the SAED patterns.

(4) The oxygen functionalities in GO do not show any regular arrangement.
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Hofmann model (1939)63 showing random epoxy groups on the basal plane of graphene;

the Ruess model (1946),63 with epoxy and hydroxyl groups attached randomly to a

wrinkled carbon structure; the Scholz-Boehm model (1957)63 which is similar to the Ruess

model but with carbonyl and hydroxyl groups; the Nakajima-Matsuo model (1988)60 similar

to the Scholz-Boehm model but with electron delocalization on the C O groups; the Lerf-

Klinowski (1998)62 model which is similar to the Hofmann model but with random hydroxyl

and epoxy groups and with the with and group at the edges; and the

model proposed by Szabo et. al.(2006)61 showing random distribution of epoxy, hydroxyl

and carbonyl groups on a wrinkled carbon structure.

Clearly, the models proposed by Nakajima-Matsuo, Ruess, Scholz-Boehm and

Szabo do not suggest a uniformly hexagonal crystal structure. The amount of sp3 carbon

atoms in these models would reduce the lattice spacing or give extra diffraction peaks. As

neither of these results is observed experimentally, we can deduce that these models are

not applicable to graphene oxide here. The Hofmann model is not consistent with the XPS

analysis which shows presence of hydroxyl, epoxy, carbonyl and carboxylic groups. Hence

the most appropriate model is the Lerf Klinowski model which is consistent with the TEM

analysis here as well as the complementary analysis techniques.

The electron diffraction studies of graphite oxide, a precursor to GO, have shown it

to exhibit hexagonal order with oxygen groups attached in a disordered array.64 From the

observations here, GO has a graphene like basal plane with attached functional groups.

Amongst the proposed models for graphite oxide the Lerf Klinowski model is the most

appropriate for GO. TEM analysis of rGO performed here shows that the low magnification

image and the SAED of rGO are indistinguishable from that of GO.
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3.1.3 Conclusions on TEM study of GO

The Lerf-Klinowski models is now widely accepted to be a model close to the

structure of GO and a consensus has been reached that GO consists of sp2 carbon atoms

randomly decorated by epoxy, hydroxyl, carbonyl and carboxyl groups.56, 67 Yet, the size of

the graphene like regions in GO is a matter of debate. Previously, studies based on STM

and TEM have indicated that the graphitic regions in GO are of the size of up to 6 nm67, 68;

however, in the STM and TEM images the effects of adsorbates and/ oxidative debris (as

will be discussed in the next section) cannot be neglected. The electron diffraction results,

here, have shown that the ordered regions are > 10 nm in size and the value is in

agreement with the HR-TEM images; however, graphene like regions > 10 nm are

incompatible with carbon to oxygen ratio of 2:1 suggesting that the structure of GO

must be re-examined. Hence in the next section the chemical and physical structure of the

as produced GO are further investigated.

3.2 The role of oxidative debris

The composition of the as produced GO is significantly dependent upon the degree

of oxidation which interdepends on the method of synthesis followed.63, 65 Although GO

forms a stable aqueous suspension, with the ratio of C:O roughly 2:163 when fully oxidised

the composition of GO has been reported to change with increasing temperature.63 A

recent report showed that the chemistry of GO evolved at room temperature with a

characteristic relaxation time of about one month.120 All these reports point towards the

indefinite composition and metastable nature of GO. Here, a detailed study on the

chemical structure of the as produced GO was made and it was found that the as produced

GO is composed of two components – one consisting of a graphene sheet randomly
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To 2.5 ml of 0.5 mgml-1 aGO suspensions in water, equal amounts of NaOH

solutions were added to get the final concentrations of NaOH in the mixtures as 0, 0.01,

0.1 and 1 M. As shown in the top photograph, the colour of the mixture with low

concentrations of NaOH rapidly darkened while near instantaneous coagulation was

observed with 1 M NaOH solution. After 3 hr (bottom photograph) the mixture with the

highest concentration of NaOH (1 M) displayed two distinct phases – a black aggregate and

a colourless supernatant. The mixtures with lower concentrations of NaOH also displayed

darkening of the colour and eventually separated into a black aggregate and a colourless

supernatant when heated at reflux for 1 hr (not shown here). The clear brownish colour of

the aGO in the mixture without NaOH did not change with time.

In order to measure the mass of the black aggregate, a base washing procedure

was followed. Dried aGO of known weight was sonicated in water to form a homogenous

suspension and then refluxed with 0.1 M NaOH solution for 1 hr. The resulting black

aggregate was separated from the colourless supernatant (1) by centrifugation at 11000

rpm for 30 min. The black aggregate was then reprotonated with 0.1 M HCl, followed by

washing with distilled water and again separating the black aggregate from the colourless

supernatant (2) by centrifugation as before. The black aggregate was then dried under

vacuum and weighed. This resulted in a black powder that could not be resuspended in

water by either stirring or sonication and was designated as base washed GO (bwGO). The

two supernatants (1) and (2) were combined and reprotonated with HCl before being

washed with distilled water and dried in vacuum. The resulting dried white powder was

designated as oxidative debris (OD, it will be shown later that it contains oxidative debris)

and mainly consisted of NaCl salt as a result of neutralisation of the NaOH used to wash

the aGO. Knowing the mass of NaOH and HCl added in the process, the mass of NaCl
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formed was calculated and it was found to be 97% of the OD. Table 3.1 presents the mass

of OD extracted after subtracting the calculated mass of NaCl in each run.

Table 3.1 The yield of bwGO and OD against the mass of aGO in 4 individual tests. Tests 2,3 and 4

courtesy of Joseph J Moore, University of Warwick.

Test 1 Test 2 Test 3 Test 4 Average

Mass of aGO 19.5 mg 0.1474 g 0.1545 g 0.1596 g

Yield of bwGO 13.2 mg 0.0928 g 0.0991 g 0.0997 g

Yield of OD 4.3 mg 0.0611 g 0.0281 g 0.0517 g

% of bwGO 68 % 63 % 64 % 62 %
64 2

%

% of OD 22 % 41 % 18 % 32 %
29 9

%

Table 3.1 shows 4 different tests of base washing of aGO, out of these, test 2, 3,

and 4 were done by Joseph J Moore as part of an undergraduate summer project,

Department of Chemistry, University of Warwick. From 4 different occasions of base

washing aGO (Table 3.1) the mass of bwGO was found to be 64 ± 2 % and, by separate

independent measurement the mass of OD was found to be 29 ± 9 % of the mass of aGO.

Another set of control experiments were performed but with water instead of

NaOH and the resulting supernatant and aggregate from the centrifugation were washed,

dried and weighed in the same way as base washing of aGO. No measurable mass

difference was observed between the aGO and dried aggregate while the yield of dried

supernatant was too low to quantify.
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discs. The spectra of aGO and OD are similar, while that of graphite and bwGO show fewer

features. The broad band in the spectra of aGO at 3000 to 3800 cm-1 appears sharper in

the OD spectra and significantly narrower in the spectra of bwGO and graphite. These

regions have been associated with the vibration modes of C–OH, COOH and H2O.122-124 In

the case of graphite it can be as a result of adsorbed water molecules. There are a number

of sharp bands in aGO and OD below 2000 cm-1 which have been assigned to epoxy,

carboxyl, carbonyl, hydroxyl groups and sp2 hybridized C=C bonding.122, 123 The peak at

1630 cm-1 in graphite, aGO and bwGO is assigned to sp2 hybridized C=C bonding. It is not

visible in OD. The FTIR spectra reveal that the degree of oxidation in OD is similar to aGO. A

significant decrease in the covalent functionalization of bwGO is observed.

OD was readily soluble in water. A solution of OD in water was passed through a

filter membrane of pore size 0.22 m leaving no residue behind, suggesting that there are

no large graphene like sheets in this component. The OD was also characterised by mass

spectrometry performed by Dr. Lijiang Song, Department of Chemistry, University of

Warwick. OD was found to comprise of oxidised carbon fragments such as C19H35O6 and

C18H33O9.

Similar oxidised aromatic carbon fragments have been obtained after base

washing of the oxidised CNTs and they have been referred to as oxidative debris or fulvic

acids.125 In a recent report on the alkaline treatment of graphene oxide, deoxygenation of

GO with irreversible colour change was reported however, no mass loss after the

treatment was stated and the supernatant was also not characterised.126 Darkening of the

colour upon base treatment had been previously observed for graphite oxide suspension

and was attributed to disaggregation or exfoliation of graphite oxide lamellae.127 However,

this cannot be true for the already exfoliated sheets of aGO.
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The mass balance, TGA, FTIR and mass spectrometry experiments, here, showed

that heavily functionalised, low molecular weight aromatic carbon fragments are present

in the aGO. These results indicate that OD is not the by-product of deoxygenation of GO as

that would result in small molecules such as CO2 and H2O.

Since in the control experiments, on washing aGO with water, these fragments

were absent, it is concluded that the basic medium detaches these carbon fragments/OD

from the graphene like sheets in the aGO, and suggests that the OD is firmly bound to the

graphene like sheets under acidic or neutral conditions. The strong bonding between the

aromatic carbon fragments and graphene like sheet in the aGO could be due to –

interaction and hydrogen bonds.125 In the presence of basic condition the interaction

between the OD and oxidised graphene like sheet becomes repulsive due to the negative

charge developed on the OD. After separation the bwGO and OD could not be recombined

to produce the GO indicating that the original structure was metastable. The amount of OD

in oxidized CNTs has been reported to be almost a quarter of the total mass122 while in aGO

here it is 1/3 The increased amount of OD in aGO could be attributed to the higher

surface area of aGO. Thus, in analogy with oxidised CNTs the aGO consists of OD that is

strongly adhered to the graphene like sheets in aGO.

Another important technique for characterising graphene like structures is Raman

spectroscopy. The Raman spectra of aGO, bwGO and OD powder shown in Figure 3.11

were acquired on a Reinshaw 1000 spectrometer with 633 nm laser excitation at low

power to avoid sample damage.
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bwGO spectrum is fitted with Voigt peak profiles at 284.6 eV corresponding to C-C sp2

bonding (blue), 285.3 eV to C-C sp3 bonding (green), 286.6 eV to epoxy and hydroxyl

groups (orange), 288.8 eV to carboxyl (pink) and 290.0 eV to carbon shake up (yellow). The

survey spectra for bwGO in Figure 3.12b shows sharp peaks for Au, C, O and a small N 1s

peak at 399 eV. Nitrogen is expected from NMP but is insignificant and of the same level as

the noise. No peak from sodium was observed.

The peaks other than C-C sp2 and sp3 correspond to the oxygen groups in the aGO.

Taking the ratio of areas of C-C to C-O peaks we get C:O ratio for aGO as 2:1 which is

consistent with previous reports.45, 105 In the same way the ratio of C:O from bwGO spectra

was found to be 4:1. Certainly, the C:O ratio in bwGO is lower than that in reduced and

annealed GO. The slight difference in the binding energy of C–C peak of aGO and bwGO

could be attributed to the charge transfer due to OD in aGO.128

However, these XPS measurements do not reflect the true stoichiometry of GO

because: (1) the adsorbed amorphous carbon and carbons attached to hydrogen are

accounted for in the carbon sp3 peak and (2) in the epoxy-hydroxyl peak for every carbon

atom, an oxygen atom is assumed although an epoxy group has 2 carbon atoms attached

to 1 oxygen atom (separation of hydroxyl and epoxy groups in XPS difficult). Further,

comparison of the C 1s to the O 1s peak does not give the true picture either, since O 1s

core level accounts for oxygen atoms attached to the graphene lattice as well as those

from adsorbed H2O and CO2 molecules. As a result caution must be used in quantitative

extraction of stoichiometries from XPS.
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Figure 3.15

filter membrane. An AFM height image of the edge of the bwGO film transferred onto a

silicon dioxide substrate is shown in

(Figure 3.1

thickness of the film,

filtering a suspension of bwGO in NMP (1 mg ml

membrane giving a black shiny fi

upon vacuum filtration, gave a deep brown dull film.

3.15 (a) Photographs of aGO (left) and bwGO (right) films on the alumina membrane. (b)

FM height image of the edge of bwGO film transferred on silicon dioxide substrate. (c)

Histogram plot of the height image showing a sharp peak (left) from the substrate and a small

broad peak (right) from the bwGO film. Gaussian peak fits are shown in red

Figure 3.15a is a photograph of aGO (left) and bwGO (right) films on the alumina

filter membrane. An AFM height image of the edge of the bwGO film transferred onto a

silicon dioxide substrate is shown in

Figure 3.15c) showing two peaks fitted with Gaussian peak fits (red curves) gives the

thickness of the film, 0.9 ± 0.2 µm

filtering a suspension of bwGO in NMP (1 mg ml

membrane giving a black shiny film. An equal amount of 1 mg ml

upon vacuum filtration, gave a deep brown dull film.

(a) Photographs of aGO (left) and bwGO (right) films on the alumina membrane. (b)

FM height image of the edge of bwGO film transferred on silicon dioxide substrate. (c)

Histogram plot of the height image showing a sharp peak (left) from the substrate and a small

broad peak (right) from the bwGO film. Gaussian peak fits are shown in red

is a photograph of aGO (left) and bwGO (right) films on the alumina

filter membrane. An AFM height image of the edge of the bwGO film transferred onto a

silicon dioxide substrate is shown in

) showing two peaks fitted with Gaussian peak fits (red curves) gives the

0.9 ± 0.2 µm.

filtering a suspension of bwGO in NMP (1 mg ml

lm. An equal amount of 1 mg ml

upon vacuum filtration, gave a deep brown dull film.

(a) Photographs of aGO (left) and bwGO (right) films on the alumina membrane. (b)

FM height image of the edge of bwGO film transferred on silicon dioxide substrate. (c)

Histogram plot of the height image showing a sharp peak (left) from the substrate and a small

broad peak (right) from the bwGO film. Gaussian peak fits are shown in red

is a photograph of aGO (left) and bwGO (right) films on the alumina

filter membrane. An AFM height image of the edge of the bwGO film transferred onto a

silicon dioxide substrate is shown in Figure 3.1

) showing two peaks fitted with Gaussian peak fits (red curves) gives the

.

71

filtering a suspension of bwGO in NMP (1 mg ml -1) through a 0.02 µm pore size alumina
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FM height image of the edge of bwGO film transferred on silicon dioxide substrate. (c)

Histogram plot of the height image showing a sharp peak (left) from the substrate and a small
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For conductivity measurement gold contacts were sputter coated on the thin film

on the alumina membrane using a shadow mask and the resistance of the film was

measured. From the AFM height images the thickness of the film was found at 3 different

places. The conductivity of bwGO from the measurements of 3 such films was 0.023

0.006 S/cm. This is a two terminal conductivity and so does not account for the contact

resistances; as a result it gives a lower bound on the actual conductivity. Thus, conductivity

in bwGO is 5 orders of magnitude higher than that in aGO and just an order of magnitude

lower than GO reduced by hydrazine or thermal annealing.63, 129

Since a homogenous suspension of bwGO was not yet obtained, a limited electrical

characterisation was performed. Similar to reduction of aGO on the substrate, attempts to

base wash GO film on the surface did not materialise as HCl corroded the substrate and

resulted in contamination of the film. Improvements in the stabilisation of bwGO in

solvents are needed for full structural and electrical characterisation as well as for

application purposes.

The Raman, XPS and TEM results show that the bwGO is composed of oxidised

graphene like sheets indicating that the base washing does not significantly change the

structure. In addition, vacuum filtration of the bwGO suspension in NMP resulted in a dark

shiny paper that is electrically conducting. Thus, the strong interaction between the

strongly bound OD and the graphene-like sheets in aGO alters the electronic structure of

aGO making it insulating.

3.2.3 Conclusions on the base treatment of aGO

We have demonstrated that base washing of the as produced GO decomposes it

into two components – oxidised graphene like material (bwGO) and oxidative debris (OD).

It was found that bwGO in the as produced GO is actually shiny, black, hydrophobic and an
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electrically conducting material. It forms 2/3 of the total mass of the as produced GO. XPS

investigations reveal that the amount of oxygen in bwGO is significantly less than aGO but

is still higher than rGO reduced by hydrazine and annealing. The carbon to oxygen ratio in

bwGO is 4:1 while aGO shows the ratio of 2:1. The lattice parameters obtained from the

SAED patterns of bwGO are identical to that in aGO/graphene. TEM and Raman results

confirm that the structure of bwGO is similar to the average underlying structure of the

aGO or rGO.

OD was found to constitute 1/3 of the total mass of the aGO and was water

soluble. From TGA and FTIR results it is found that OD consists of oxygen containing

functional groups and mass spectrometry suggests that OD consists of oxidised polycyclic

carbon fragments. Filtration of OD suspension in water through a 0.22 m filter membrane

indicated the absence of graphene like sheets. Raman spectrum further confirmed the

absence of graphene like ordered material in OD.

These results indicate that due to the OD the as produced GO is hydrophilic and

insulating. To summarise, we have found that the aGO is composed of functionalised

graphene like sheets that are strongly adhered with low molecular weight, functionalised,

carbon fragments referred to as oxidative debris. Thus the structure of aGO proposed in

the literature needs revisiting.

3.3 Conclusions on the structure of aGO

Our results show that the structure of GO mainly consists of a carbon backbone

with patches of graphitic regions at least 10 nm in size. The orientational order in GO is

over the entire GO sheet and the oxygen containing functional groups in GO do not exhibit

any long range ordering as evident in the SAED patterns. Further, there was no preferential

orientation between the overlapping sheets. The study on base washing reveals that the as



produced GO consists of an oxidised graphene like sheet to which is bound the

debris which acts as a surfactant and makes the aGO hydrophilic. Since the non

bonded oxidative debris was found to be an integral part of the as produced GO t

average structure of graphene oxide is re

Figure 3

the green patches are ODs.

Based on the results obtained here, I propose a model of the as produced GO as

shown in the

OD groups

shown to be randomly attached to the carbon structure.

Finally, GO was also found to be transparent and stable under the electron beam.

The stability, crystallinity and near transparent structure in TEM along with the

hydrophilicity make GO an excellent candidate

biomolecules and nanoparticles. In fact, recently there have been a number of reports on

oduced GO consists of an oxidised graphene like sheet to which is bound the

debris which acts as a surfactant and makes the aGO hydrophilic. Since the non

bonded oxidative debris was found to be an integral part of the as produced GO t

average structure of graphene oxide is re

3.16 Schematic of the as produced GO

the green patches are ODs.

Based on the results obtained here, I propose a model of the as produced GO as

shown in the Figure 3.16.

groups are shown as green patches. The epoxy, hydroxyl and carbonyl groups are

o be randomly attached to the carbon structure.

Finally, GO was also found to be transparent and stable under the electron beam.

The stability, crystallinity and near transparent structure in TEM along with the

hydrophilicity make GO an excellent candidate

biomolecules and nanoparticles. In fact, recently there have been a number of reports on

oduced GO consists of an oxidised graphene like sheet to which is bound the

debris which acts as a surfactant and makes the aGO hydrophilic. Since the non

bonded oxidative debris was found to be an integral part of the as produced GO t

average structure of graphene oxide is re

Schematic of the as produced GO

the green patches are ODs.

Based on the results obtained here, I propose a model of the as produced GO as

3.16. The oxidised graphene like skeleton is the bwGO sheet and the

are shown as green patches. The epoxy, hydroxyl and carbonyl groups are

o be randomly attached to the carbon structure.

Finally, GO was also found to be transparent and stable under the electron beam.

The stability, crystallinity and near transparent structure in TEM along with the

hydrophilicity make GO an excellent candidate

biomolecules and nanoparticles. In fact, recently there have been a number of reports on

oduced GO consists of an oxidised graphene like sheet to which is bound the

debris which acts as a surfactant and makes the aGO hydrophilic. Since the non

bonded oxidative debris was found to be an integral part of the as produced GO t

average structure of graphene oxide is re-examined here.

Schematic of the as produced GO:

Based on the results obtained here, I propose a model of the as produced GO as

The oxidised graphene like skeleton is the bwGO sheet and the

are shown as green patches. The epoxy, hydroxyl and carbonyl groups are

o be randomly attached to the carbon structure.

Finally, GO was also found to be transparent and stable under the electron beam.

The stability, crystallinity and near transparent structure in TEM along with the

hydrophilicity make GO an excellent candidate

biomolecules and nanoparticles. In fact, recently there have been a number of reports on

74

oduced GO consists of an oxidised graphene like sheet to which is bound the

debris which acts as a surfactant and makes the aGO hydrophilic. Since the non

bonded oxidative debris was found to be an integral part of the as produced GO t

examined here.

the oxidised graphene like material is bwGO and

Based on the results obtained here, I propose a model of the as produced GO as

The oxidised graphene like skeleton is the bwGO sheet and the

are shown as green patches. The epoxy, hydroxyl and carbonyl groups are

o be randomly attached to the carbon structure.

Finally, GO was also found to be transparent and stable under the electron beam.

The stability, crystallinity and near transparent structure in TEM along with the

hydrophilicity make GO an excellent candidate for a support film in TEM to study

biomolecules and nanoparticles. In fact, recently there have been a number of reports on

oduced GO consists of an oxidised graphene like sheet to which is bound the

debris which acts as a surfactant and makes the aGO hydrophilic. Since the non

bonded oxidative debris was found to be an integral part of the as produced GO t

the oxidised graphene like material is bwGO and

Based on the results obtained here, I propose a model of the as produced GO as

The oxidised graphene like skeleton is the bwGO sheet and the

are shown as green patches. The epoxy, hydroxyl and carbonyl groups are

Finally, GO was also found to be transparent and stable under the electron beam.

The stability, crystallinity and near transparent structure in TEM along with the

for a support film in TEM to study

biomolecules and nanoparticles. In fact, recently there have been a number of reports on

oduced GO consists of an oxidised graphene like sheet to which is bound the oxidative

debris which acts as a surfactant and makes the aGO hydrophilic. Since the non-covalently

bonded oxidative debris was found to be an integral part of the as produced GO t

the oxidised graphene like material is bwGO and

Based on the results obtained here, I propose a model of the as produced GO as

The oxidised graphene like skeleton is the bwGO sheet and the

are shown as green patches. The epoxy, hydroxyl and carbonyl groups are

Finally, GO was also found to be transparent and stable under the electron beam.

The stability, crystallinity and near transparent structure in TEM along with the

for a support film in TEM to study

biomolecules and nanoparticles. In fact, recently there have been a number of reports on

oxidative

covalently

bonded oxidative debris was found to be an integral part of the as produced GO t he

the oxidised graphene like material is bwGO and

Based on the results obtained here, I propose a model of the as produced GO as

The oxidised graphene like skeleton is the bwGO sheet and the

are shown as green patches. The epoxy, hydroxyl and carbonyl groups are

Finally, GO was also found to be transparent and stable under the electron beam.

The stability, crystallinity and near transparent structure in TEM along with the

for a support film in TEM to study

biomolecules and nanoparticles. In fact, recently there have been a number of reports on



75

the investigation of structure and properties of nanoparticles and biomolecules using GO

or graphene as a support in TEM.121, 130 In the next Chapter we use GO/rGO as a support to

investigate the growth of metal nanoparticles and understand the structure of a

technologically important molecular semiconductor – fluorinated copper phthalocyanine.
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background and well defined diffraction pattern for calibration in TEM. As a result,

accurate, reliable and reproducible results were obtained from images and diffraction

patterns of CMG hybrid structures. Analysis of TEM images revealed that the final

morphology of metals on CMG is governed by the interaction between graphene and the

metal. In addition, an organic hybrid structure consisting of CMG and organic thin films of

planar fluorinated copper phthalocyanine (F16CuPc) molecules, an air stable n-type organic

semiconductor, was also studied. The thin films were deposited on CMG by evaporation in

vacuum and the crystal structure and molecular orientation in the organic film were

examined. The molecules were lying perpendicular to the CMG substrate and the films

showed a fibre texture.

4.1.1 Metal-CMG hybrids

With the rise in research of graphene-electronics the importance of understanding

of the graphene-metal interaction cannot be disregarded. Graphene-on-metal has been

studied for more than 40 years;6, 33, 34 and the interactions between graphene and the

metal have been found to depend on the metal.6 However, due to the doping, the

properties of graphene-on-metal are different from those of pristine graphene.137 Although

there are a number of reports on the growth of metal-on-graphite (mainly HOPG)138-140 and

CNT141, using electron microscopy, growth of metal-on-graphene needs more intensive

study.

Computational studies86-88 have been made to understand the charge transfer

between different metals and graphene and the type of binding between the metal

adatom and graphene have been predicted. Experimental studies80, 89 using electron

microscopy have frequently concentrated on the growth of gold on graphene by PVD, but

their interaction still needs further investigations. A few more studies have focussed on
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the morphology of PVD gold nanoparticles on different number of graphene layers80, 90, 92

and the difference in the morphology depending on the number of layers has been

attributed to either quantum size effects80 or electrostatic interactions.90 Various other

experimental studies have focussed instead on fabrication of metal-graphene system using

solution phase deposition.136, 142 However, in these cases the size and distribution of metal

nanoparticles is dependent on the chemical approach rather than the interaction with

graphene.

In this study different metals were deposited on CMG by PVD and their interaction

with CMG was investigated by studying their growth morphologies. Metal-CMG hybrid

structures were prepared for examination by different techniques, in particular TEM.

For TEM, GO and rGO suspensions were drop-casted on lacey grids and left to dry

in air for 30 min. For AFM, SEM and XPS study the GO suspension was spin coated on

Si/SiO2 substrates as described in Chapter 2. rGO samples were prepared by reduction on

the substrate as described in Chapter 2. Two different sputter coaters were used for metal

deposition 1) a custom built DC magnetron sputterer at Leeds University (through

collaboration with Prof. Brian Hickey) with a base pressure of 10-8 mTorr and argon

pressure of 2.5 mTorr during sample growth and 2) a desktop sputter coater (Quorum

Technologies SC7640) with a base pressure of 10-2 Torr at the University of Warwick.
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size distribution (ISD) with a well-defined peak at around 3 nm and an increasing number

of particles below 1 nm. The main peak at around 3 nm was fitted with a Gaussian

distribution. The position of the main peak (i.e. the mean particle size) in the distribution

from the histogram of Figure 4.1b is dpeak = 3.6 nm and the FWHM of the fit is peak = 2.1

nm. Averaging over a number of such single sheet images the mean particle size was

extracted to be dpeak = 3.60 0.02 nm and the width of the Gaussian fit was found to be

peak = 2.19 0.09 nm. Due to the uncertainties in the thresholding procedure the particles

below 1 nm in diameter were disregarded and the island number density n was found to

be 25500 500 m-2.

The SAED pattern from the region of image in Figure 4.1a is shown in Figure 4.1c. A

single hexagonal set of sharp spots from the GO and a series of concentric rings from the

Au nanoparticles are clearly seen. In the GO pattern, the single set of spots with the inner

spots brighter than the outer ones, indicate that it is a single sheet of GO (as explained in

Chapter 3). To acquire SAED patterns an aperture of diameter size 0.6 µm was used so that

approximately 7000 nanoparticles contributed to the Au diffraction pattern shown here.

The ring pattern from Au indicates that the particles are not oriented in a particular

crystallographic direction in the plane of GO. The SAED pattern shown in Figure 4.1d is

obtained after tilting the sample by 30 relative to the electron beam along the tilt axis

shown in the red dotted line. As expected, the GO diffraction spots away from the tilt axis

disappear.25 The concentric rings do not change in shape or intensity indicating that the

nanoparticles are crystallographically randomly oriented relative to the GO.

Figure 4.1e shows the HR-TEM image of the Au nanoparticles on GO deposited for

θ 1 nm using the desktop sputter coater at Warwick. Lattice planes are clearly visible

with domains oriented in random directions. Also faceting is visible suggesting that the

atoms can diffuse and rearrange on the surface of the nanoparticle. Both sputter coaters
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density n decreases with nominal thickness . This suggests that as the deposition time

increases the probability of arriving atoms being captured by existing clusters increases as

does the probability of existing clusters coalescing.

Figure 4.3c is the comparison of the scaled volume* of ISDs for = 0.15 and 0.75

nm. Interestingly some of the ISDs show scale invariance i.e. when the island size and the

number density are appropriately normalized† to the mean island size and effective

coverage then all the coverages fall onto a universal curve.144 In other words, scale

invariance suggests that the microscopic processes are identical across a coverage range.

In Figure 4.3c the scaled volume ISDs appear similar for the two different values of for

the value V/Vpeak 1 nm; indicating that the growth processes for large clusters are similar

across this coverage range. For the value of V/Vpeak 0.5 nm the ISDs do not scale. The

scaled volume ISD has no clear dip for = 0.15 nm; and for = 0.75 nm the peak at lower

values of V/Vpeak is more pronounced. This suggests that different diffusion and

coalescence rates are dominant at different stages of growth. The existence of bimodal

ISDs suggests that there are two length scales on the surface at which the clusters interact:

possibly two diffusion lengths associated with migration of clusters and adatoms

respectively. This scale invariance was not observed in the ISD for 1.5 nm indicating

that it does not apply to the post coalescence regime. Note that these results are not

consistent with stationary clusters which is the standard assumption made in the classical

studies of film growth.

* The average nanoparticle volume, <V>, was calculated as the mean of (island area)3/2.
† Here, the volume distribution of the islands is rescaled by Vpeak (calculated from dpeak).
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As shown in Figure 4.5, a number of fundamental microscopic growth processes

are involved that govern the final morphology of the system. These processes involve

adatom adsorption, diffusion of adatoms, binding of adatoms to adatoms or to existing

clusters, dissolution into the substrate and capture at special or defect sites.146 Since

graphene has been found to be impermeable to gases including He,147 the possibility of

dissolution or interdiffusion of atoms is not valid for graphene as a substrate. Note that

this standard model does not include cluster diffusion. Above all the final morphology is

determined by the binding energies and energy barriers i.e. if the bulk cohesive energy EC

of the material is higher than its adsorption energy on the substrate EA the resulting

morphology is island like (droplets, clusters) while higher EA means a film like morphology.

Furthermore the diffusion energy barriers146 that hinder the growth of an existing cluster,

by slowing down diffusion of the adatoms to clusters, can be approximated by the

difference in the strongest binding energy site EA and binding energy of the lowest energy

site EW. Hence the diffusion rate for a single atom can be approximated as

W A

B

  
  

 

where kB is Boltzmann’s constant and T is temperature and EW - EA kBT. Diffusion

processes occur at several stages of growth and include movement of single atoms to form

clusters, coalescence of clusters and subsequent rearrangement of coalescing particles to

give the final morphology. The ratio of the diffusion rate D to incident flux F of atoms

decides the island growth kinetics and hence the final distribution of ISDs.

Close inspection of the images in Figure 4.4 clearly indicates the involvement of

different energetics depending on the metal. The circularity of these metals was measured

by using the formula C   ; hence a circular particle will give C = 1.

Using the definitions of dpeak, peak and n from above, a detailed analysis of the growth of
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Pt, Pd, Au and Ag on GO was extracted from the TEM images. The extracted information on

the growth morphology is summarised in Table 4.1.

Recently there have been a number of theoretical reports on metal adsorption on

graphene.86, 88, 148, 149 We have re-examined the energetics of adsorption represented by

EA/EC and EW - EA (from Chan et. al.88 and Hu et. al86) and compared them with the growth

morphologies of metals here.

Table 4.1 The peak position dpeak (particle size) and width peak along with density n and

circularity C for Ag, Au, Pt and Pd are given in the table. The theoretically predicted values of

EA/EC and EA - EW
* for Au, Pd, Fe and Ti are taken from Chan et al88 and those for Ag and Pt are

taken from Hu et. al.86

metal
dpeak

/nm

peak

/nm

n 104

/ m-2
C EA/EC

EW - EA

/ eV

Ag 6.9 0.2 4.9 0.2 0.61 0.04 0.84 0.02 0.008 0.001

Au 5.1 0.7 2.9 0.6 1.5 0.3 0.78 0.04 0.025 0.007

Pd 5 1 4 1 1.3 0.3 0.57 0.05 0.278 0.038

Pt 7 2 7 3 1.2 0.4 0.51 0.02 0.268 0.173

Fe – – – – 0.175 0.517

Ti – – – – 0.385 0.568

The theoretically predicted values for ratios of adsorption to bulk cohesive energy

EA/EC and approximate diffusion barriers EW - EA for Au, Pd, Fe and Ti shown in the table are

* In Chan et. al. as well as in Hu et. al. EA is designated as ∆E and EW as ୟ
୫ ୟ୶.
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extracted from Chan et. al88 and those for Ag and Pt are taken from Hu et. al.150 For most of

the metals above, the two reports are consistent with each other. As seen from the Figure

4.5, a higher ratio of EA/EC would mean the metal is relatively strongly bound to GO. If this

dominates the growth the final morphology would be connected islands or film like; and a

low value of the diffusion barrier EW - EA would mean higher diffusion rate i.e. increased

mobility of adatoms to form 3D clusters.

From Table 4.1, depending upon their energetics, the metals are divided into 3

groups–

1) Drop like – this morphology is observed for the metals with fast diffusion and

weak adsorption to graphene. It can be seen that the values of EA/EC and EW - EA are the

lowest for Ag, compared with the other metals studied here. This clearly indicates that Ag

poorly binds to GO and has a fast diffusion rate on the GO surface. As a result cluster

morphology is seen for Ag. Au shows similar energetics to Ag hence the cluster

morphology. However, Au shows a higher number density and lower circularity than Ag,

correlating well with the slightly higher EA/EC ratio.

2) Branched growth - this morphology is dominated by a stronger adsorption of

metal to graphene. The values of EA/EC and EW - EA for Pt and Pd are comparatively higher

than those of Ag and Au. Accordingly, these metals show stronger binding to the GO

surface and higher diffusion barrier resulting in the branched like cluster morphology.

Further, the Pd particles are smaller compared to Pt due to the comparatively smaller

diffusion barrier.

3) Film – this morphology is dominated by slow diffusion of metals on graphene.

The EA/EC value of Fe is lower than that of Pd and Pt but the diffusion barrier is significantly

higher and hence the grainy film like morphology is observed for Fe in the TEM images.
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at the National Centre for Spectroscopy and Surface analysis, Daresbury Laboratory, UK.

Samples for XPS were prepared by spin coating a 1 mg ml-1 aqueous suspension of GO on

Si/SiO2 substrates. The C 1s peaks corresponding to the samples of Au, Ti, and Fe with a

nominal thickness of 1.5 nm on GO are shown in Figures 4.7a, b and c respectively. The

corresponding metal spectra are shown in Figures 4.7d, e and f. The C 1s spectrum,

expected at 284.6 ± 0.2 eV, appears to have shifted to a higher B.E.; to 285.8, 285.3 and

285.4 in Au, Ti, and Fe coated GO respectively. The core level Au 4f spectrum in Au

deposited GO occurs at 85.2 eV (doublet splitting 3.67 eV) which is higher than the

expected position in bulk (84.0 eV).153 Ti 2p core level shows the spectrum at 459.2 eV

(doublet splitting of 5.7 eV) with a broad 2p1/2 peak characteristic of oxidized titanium.154

XPS spectrum from the Fe evaporated sample shows a well-defined peak at binding energy

of 706.9 eV for Fe 2p3/2 core level as expected for metallic iron. However another broad

peak at 710 eV gives the evidence of presence of oxidized iron.155

Previously, the shift in the B.E. of the C 1s has been found to be due to charge

transfer from metals to GO.156 The work function of GO (4.9 eV)102 is higher than that of Fe

and Ti (4.3 and 4.5 eV respectively)157 and lower than that of Au (5.1 eV)157 hence the

positive shift in the C 1s B.E. for of Fe and Ti coated samples is expected, but not for the Au

coated sample. In addition, the amount of positive shift in the B.E. of C 1s is around 1 eV

indicating that it could also be due to charging while scanning as GO is insulating and it was

deposited on Si/SiO2 substrates. Hence, these positive shifts in the B.E. of the C 1s could be

attributed to either the charging of the samples while scanning or charge transfer due to

the deposited metals.
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on GO indicating strong binding to graphene and slow diffusion; Pt and Pd showed

branched islands indicating strong binding and diffusion; and Au and Ag formed droplet

morphologies indicating weak binding and fast diffusion. When compared to amorphous

carbon145 the nucleation densities here are lower, but they are significantly higher than on

HOPG138, 139 and graphene89 due to the presence of functional groups and/or adsorbates. In

a recent report, metal atoms were shown to preferentially adsorb to hydrocarbons on

graphene.158 However, here the nucleation density and particle sizes are governed by the

metal graphene interaction, as is evident from the dependence of the morphology on the

number of graphene layers and the type of metal deposited. rGO showed similar metal

growth morphology indicating similar microscopic processes involved in the nucleation and

growth. The remarkable statistics and high resolution analysis that is readily possible with

these systems make them very appealing for studying non classical nucleation and growth.

Understanding the microscopic growth processes as a consequence of graphene

metal interactions is important for understanding charge transport, manipulation of

graphene band structure and to design graphene based devices. More recently integration

of graphene with organic molecules was widely investigated for opto-electronic

applications.97, 131 Theoretically, it was also suggested that the graphene-organic molecule

interaction could be enhanced by constructing molecule/metal/graphene sandwich

structures for graphene based sensing and switching devices.159 Hence study of the

interaction of organic molecules with graphene is vital for a wider scope of application and

in the next section we investigate the interaction of a widely studied organic

semiconductor, F16CuPc, with CMG.
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4.2 Organic thin films on CMG

Since graphene is a flexible, transparent electronic material, there has been a

growing interest in integrating graphene with organic molecules to construct organic opto-

electronic devices58, 97, 131, 160 and organic thin film transistors.100, 161 Recently, there have

been a few reports on integrating graphene or CMG with organic molecules for opto-

electronic devices100, 102, 160 For example, GO was used as a hole transport layer in organic

photovoltaic cells.102 Additionally, graphene was used as a template for the growth of small

molecule organic semiconductors (SMOS) to enhance the energy and charge transport

properties.162 Hence understanding the interaction of these molecules with graphene is

important for successful fabrication of the devices.

As a benefit over inorganic semiconductors, SMOS provide the ease of forming thin

films, cylinders, and clusters. In addition, SMOS provide low cost and flexible electronics; as

a result, they are used in photovoltaics, LEDs and organic field effect transistors.163, 164 Most

molecular semiconductors are p-type. To convert them to n-type semiconductors requires

modifications of the highest occupied molecular orbital, which makes them susceptible to

oxidation and hence they are unstable in air. F16CuPc was the first air stable, n-type, small

molecule organic semiconductor to be discovered.165 The charge transport properties of

these molecules are highly dependent on the orientation of the molecules relative to the

substrates166, 167 and on the crystallography of the molecular material. Hence, determining

the nanostructure and crystalline ordering of the molecule is important to better

understand and utilise the charge transport properties.

To date, a number of studies on the structure of F16CuPc have been done but no

consensus has been reached on the lattice parameters or the type of crystal structure.168-

170 Although thin films have been used in the organic devices, most techniques for studying
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crystallography require bulk films.168 Moreover, the crystal structure of F16CuPc thin films

has been reported to change with thickness170 and the film morphology also depends on

the substrate.171 Hence, it is important to understand the thickness dependence of the

structure of F16CuPc molecules to understand the charge transport properties. In this study

the film thickness dependence of the structure of F16CuPc on CMG was analysed using

electron diffraction. The crystal structure, of bulk F16CuPc172 was determined by Dr. Dean

Keeble and Dr. Richard Beanland (Department of Physics, University of Warwick) This

structure was used to understand the structure and orientation of F16CuPc on CMG. It was

found that the molecules of F16CuPc were nearly perpendicular to the surface of the CMG

in the form of textured films. At low thicknesses the film showed some change in texture,

however, no evidence for changes in the crystal structure with film thickness were

observed.

4.2.1 Fabrication of F16CuPc thin films on CMG.

All the growth of F16CuPc was carried out by Luke Rochford from the Department

of Chemistry, University of Warwick. For thin film growth of F16CuPc a custom built multi

chamber UHV system with base pressure better than 10-9 mbar was used. TEM substrates

were prepared by drop-casting a GO suspension (0.2 mgml-1) on carbon grids. For SEM and

AFM, a GO suspension (1 mgml-1) was spin coated on Si/SiO2. Thin films of F16CuPc

(obtained from Sigma Aldrich and further purified before use) were simultaneously

deposited on suspended and supported GO substrates on a specially designed substrate

holder. Thin films of thicknesses ranging from 1 to 80 nm were deposited at a growth rate

of 0.03 Ås-1 at ambient temperature. The growth rate and final thickness were controlled

by a quartz crystal microbalance (QCM) that was pre-calibrated ex-situ by AFM.
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does not necessarily correspond to a lattice plane in the crystal; although a lattice plane

close to the molecular plane would produce a higher intensity due to the increased

structure factor, the lattice plane corresponding to the intermolecular spacing will always

produce the strongest intensity. Since all of the deposited samples showed SAED’s with

as the most intense peak, this is consistent with the bulk structure analysis that the

planar F16CuPc molecules exhibit parallel stacking in the crystal.

The SAED pattern obtained after tilting the sample by 45° shows discontinuous

arcs and other diffraction arcs appear perpendicular to the tilt axis. This indicates that the

crystallites are not randomly oriented on the substrate but there exists a fibre texture i.e.,

a preferential orientation perpendicular to the substrate plane but random orientations in

the plane. As visible in the pattern in Figure 4.15b, the diffractions and split into a

pair of arcs equidistant from the tilt axis, indicating that the axis of the texture is along the

direction of intersection of these planes which is . This is perpendicular to

intermolecular plane, indicating the molecules are lying perpendicular to the GO sheet.
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on GO with nominal thicknesses θ from 1 to 80 nm. The kinematically simulated intensity

plots for randomly oriented molecules, molecules lying flat on the GO surface and with

fibre texture along are shown at the bottom in the red curves.

Although the relative intensities change, it is clearly visible that for all the film

thicknesses, including 1 nm, the major peaks do stay in roughly the same positions,

implying that at all the thicknesses neither the intermolecular distances nor the crystal

structure in the film changes significantly. The observed peak positions closely match the

kinematically simulated plot (assuming single electron scattering) for the textured film.

However, in most of the films additional peaks at and (or ) are visible,

suggesting that these films are a mixture of random orientation and fibre texture. The

intensity of the peak in the film with = 1 nm is relatively low suggesting a greater

amount of crystallites with molecules not lying perpendicular to GO. The model with flat

molecules on GO does not fit to any of the data. The mixture in the thinnest film consists of

a greater amount of random orientation along with the fibre texture. Thus an

evolution of the texture is seen from random to oriented crystallites with increasing film

thickness. Additionally, a small change in the relative orientation of the F16CuPc

significantly changes the diffraction pattern. As a result, accurately determining the

changes in crystal structure with a single diffraction pattern is not possible. From the

diffraction patterns obtained by tilting the sample by different angles relative to the

electron beam more information about the structure can be obtained.

In a recent report on growth of F16CuPc on epitaxial graphene, molecules were

found to lie flat on graphene in ordered stripes and it was credited to the –stacking

between the planar F16CuPc molecules and delocalised electrons in graphene.162

However, the sheet of GO is randomly functionalised with oxygen groups along with
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4.2.5 Conclusion on the study of F16CuPc thin films on graphene

While F16CuPc molecules can form a variety of structures such as thin films, fibres,

etc. the molecular orientation is important for determining charge transport properties.

The growth morphology and orientation of F16CuPc thin films on CMG was investigated

using a combination of microscopy techniques. CMG provided a low background and well

defined diffraction pattern for in situ calibration of F16CuPc diffraction patterns and the

calibrated diffraction patterns were analysed using the bulk crystal structure obtained

from the synchrotron X-ray analysis.172 The bulk structure of the crystal was retained even

in nm thin films. Analysis of the diffraction patterns of the sample tilted at different angles

to the incident electron beam enabled investigation of the orientation of the crystallites. A

fibre texture with the axis of texture along and molecules lying perpendicular to the

CMG sheet was found. Thin films ranging from a monolayer to 80 nm were deposited on

GO and no evidence of changes in the crystal structure with film thickness were found.

Although the texture direction was identical in all the films there was evidence of a mixture

of random orientations and fibre texture in the lowest thickness film. These results show

that it is possible to extract the crystallography of molecular thin films down to nominally

monolayer coverages, and suggest that it is also possible to adjust the orientation by

changing the functionalization of graphene.

4.3 Conclusions

For wider device applications of CMG sheets, their combination with metal and

organic material is essential, and, being an excellent TEM support, CMG sheets offer in situ

characterisation of these combined structures in TEM. CMG sheets have shown low

background and proved to be a highly transparent substrate for the study of nanoparticles
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and small molecules in TEM. In addition, TEM with an appropriate support film allows

acquisition of quantitative data required for statistical analysis. The interaction of metals

and organic thin films with CMG sheets was investigated using a combination of

microscopic techniques, mainly TEM.

The investigations of F16CuPc thin films of various thicknesses on GO have revealed

fibre texture growth with molecules lying perpendicular to the sheet of GO. The thinnest

film showed a mixture of random and textured growth, but the crystal structure of the

films remained the same across the range of thicknesses studied here. In the case of metal-

CMG, the role of the diffusion barrier and relative bulk cohesive to adsorption energy in

the formation of final morphology was investigated. It was found that the final morphology

of a metal on CMG in terms of particle size and density was governed by the metal-CMG

interaction and also depended on the number of CMG layers. The study on the growth of

metal-on-GO suggests that a fine control over the morphology of metal particles on CMG

can be obtained. This enables simple and structured fabrication of a variety of devices for

e.g., sensors. In the next chapter the fabrication and working of Pd-rGO/graphene

hydrogen gas sensors is presented.
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likely to find practical applications.175 Instead graphene can be coated with thin films or

nanoparticles that could show selective adsorption, with the electrical readout coming

from the induced change in the conductivity of the underlying graphene. In this work, Pd

coated rGO and graphene devices are shown to be highly selective and sensitive hydrogen

gas sensors.

Demand for clean energy source is ever increasing and hydrogen, as an energy

carrier, is one of the potential solutions for cutting down the carbon emission. However,

safe usage is crucial as hydrogen is an odourless and flammable gas. The lower explosive

limit for hydrogen gas is 4 %.176 Pd can dissolve large amounts of hydrogen atoms resulting

in changes in its work function; hence hydrogen gas sensors incorporating the Pd gate

devices (Pd metal-insulator-semiconductor, MIS devices) have been studied since the mid-

1970s.177-179 Currently, the commercially available hydrogen sensors either have limitations

such as cross sensitivity with CO, instability above 50 * or they are expensive.† Hence

there is need for a low cost, selective sensor that can be manufactured at a large scale.

More recently, there have been a few reports on Pt-rGO /graphene hydrogen sensors14, 82,

180, 181 but, these require either a high temperature181 or high concentration of hydrogen

(4% or 4000 parts per million).82 In a recent report room temperature response to H2 was

only observed on electrochemically deposited Pt on holey rGO and not on rGO devices.14 In

a comparative study of Pd and Pt as a gate metal in metal-oxide-semiconductor (MOS)

capacitor sensors Armgarth et al. have shown that Pd gated devices are superior in terms

of hydrogen detection at low concentrations in air.182 Accordingly, Pd functionalised

* https://www.citytech.com/PDF-Datasheets/3hye.pdf
http://www.figaro.co.jp/en/pdf/FCM6812ProductInfo1006.pdf

† https://www.fuelcellmaterials.com/site/index.php?option=com_virtuemart&Itemid=28
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A homogenous suspension of GO was spin coated on Si/SiO2 substrates with a

predefined array of gold interdigitated electrodes, as shown in Figure 5.1a. Since the as-

produced GO is an insulator, GO-on-substrate was reduced to rGO by exposing to

hydrazine vapour followed by a low temperature annealing for 1 h at 300 °C as described in

Chapter 2. The sample substrates were then cleaved to separate individual devices,

followed by sputter coating with Pd and wire bonding onto a printed circuit board (PCB)

(Figure 5.1b). This produced 32 similarly prepared devices from each initial chip to enable

comparative studies. Figure 5.1c shows an optical microscope image of one such device

with channel length 1 mm and width 25 µm. The AFM image (Figure 5.1d) is from a sample

made with GO suspension of concentration 5 mg ml-1. The image shows that these films are

continuous and homogeneous. Analysis of several such thin films by AFM showed a

roughness of 0.5 ± 0.2 nm, and thickness of 2.9 ± 0.5 nm equivalents to roughly 5 layers of

rGO. Fine control over the thickness of rGO films was readily achieved by spin coating

various concentrations of GO on the substrate as discussed in Chapter 2. The morphology

of the Pd-on-rGO was discontinuous and branched island-like, as shown in Chapter 4.

Hydrogen gas sensors incorporating CVD grown graphene were fabricated in a

similar fashion, except the deposition of graphene on the substrate. As the transfer of a

continuous layer of graphene from copper to substrate was not yet fully optimised, a

double transfer of graphene was utilised to obtain a continuous layer. In a double transfer

method another layer of graphene was transferred onto a substrate pre-coated with

graphene through the procedure described in Chapter 2. The samples were then cleaved

into individual devices and sputter coated with Pd before being mounted on the PCBs.
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Figure 5.4 shows data obtained from a device consisting of 2 nm rGO, i.e. roughly 4

layers of rGO (GO suspension concentration 4 mg ml-1), coated with 1 nm Pd and

measured at 75 °C with dry air as the carrier gas. When the device was exposed to a flow of

3300 ppm of hydrogen gas, a prompt increase in the resistance is observed, followed by a

slower response (Figure 5.4a). After the flow was stopped the resistance decreased

towards a baseline value, R2. For the flow of H2, shown in the shaded column, the exposure

time between t0 and t1 is 1200 s and the relaxation time between t1 and t3 is 1800 s. The

background of each response pulse was subtracted by fitting a straight line between times

(R0, t0) and (R3, t3) and then the change in resistance ΔR for each response was obtained as 

ଵ ଴
ᇱ. The sensitivity of a sensor is then defined by:

2


 (5.1)

Figure 5.4b shows the background subtracted response of the same device to

different hydrogen concentrations [H2] (200, 300, 600, 1100, 1900, 3300 ppm) in dry air;

raw data is shown in the inset. Evidently, with increasing hydrogen concentration the

resistance of the device increases monotonically. The plot of the sensitivity as a function of

hydrogen concentration on a logarithmic scale, Figure 5.4c, shows a linear trend. This

isotherm plot is well fitted by an equation of the form:

2
  (5.2)

where a is slope and b is a constant. Figure 5.4d shows the sensitivity as a function of H2

concentration for 6 similarly prepared devices operated at the same time. Using Equation

(5.2) for the set of data in Figure 5.4d, the values of H2 concentration at which the

sensitivities are zero are between 90 and 130 ppm. These values are far less than the lower

explosive limit of H2 gas in air, which is 4000 ppm. We see that although all the devices

show a logarithmic dependence of sensitivity on H2 concentration the fit parameters vary
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significantly; the sensitivities for 3300 ppm H2 in 6 similarly prepared Pd-rGO devices

ranged from 15 to 65 %.

The hydrogen sensing mechanism in Pd coated devices is due to the change in the

work function of Pd upon hydrogen exposure.177, 187, 188 The H2 molecules get adsorbed on

the Pd surface and dissociate to form atomic hydrogen lowering the Pd work function. For

these rGO sensors some of the dissociated hydrogen atoms move to the interface between

Pd and rGO to form a dipole layer, resulting in an effective electron transfer from Pd to

rGO. This charge transfer changes the carrier concentration in the rGO and hence its

resistance. The change in work function is detected as a change in the voltage dropped

across the device when operated at constant current.

For desorption it is also well known that in the presence of oxygen, dissociated

hydrogen atoms combine with oxygen to form H2O molecules and desorb.189 The reactions

that take place during the adsorption and desorption of hydrogen can be written as

follows:179

Adsorption H H
2 1

c1

d
 (5.3)

Desorption O H OH
2 2

c2

d
  (5.4)

2
OH H H O

3

c3

d
  (5.5)

where c1, c2, c3 and d1, d2, d3 are the respective forward and reverse reaction rate

constants. Thus, the hydrogen adsorption on these devices is a dissociative chemisorption

process.

From the plot of sensitivity it is clear that the change in device resistance is

logarithmically dependent on H2 concentration. A logarithmic dependence of Pd work
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function on hydrogen concentration has been observed for hydrogen adsorbed at Pd-SiO2

interfaces.187, 190 It has been found that the change in Pd work function depends

logarithmically on hydrogen pressure indicating that the hydrogen heat of adsorption at

the interface varies linearly with H2 concentration resulting in a Temkin type isotherm; this

behaviour has been suggested to be due to an increasing electrostatic interaction between

the dipoles at the interface with increasing H2 concentration.187, 189 The Temkin isotherm is

valid when the number of active sites at the interface is not the limiting factor for

adsorption of the molecules. In the range of H2 concentration studied here the isotherm

plots, Figure 5.4c and d, are consistent with the Temkin isotherm indicating that the

interface coverage is between low to intermediate.

The change in Pd work function changes the graphene carrier concentration and

hence the resistance of the device. In graphene the conductivity away from the Dirac point

varies roughly linearly with gate voltage37, 44 and the conductivity is related to mobility

and carrier concentration n in the following way

  ne (5.6)

where e is the electron charge. Thus, away from the Dirac point the device conductivity will

change linearly with the Pd work function, assuming that the change in carrier

concentration is linearly dependent on the change in work function (i.e. it acts like a gate

electrode).

The individual devices of the same type show a wide range of sensitivity values,

which could be due to a number of factors, such as the adsorbed species, film thickness,

size of rGO platelets, and defects introduced in rGO film during sputter coating of Pd.

These factors result in difference in the carrier concentration and mobility and hence the

conductivity in individual devices.
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Hydrogen dissociation by Pd has been considered as a second order reaction in a

few reports. Figure 5.6 is reproduced from a report by Sun et. al.192 Figure 5.6a and b show

the response of a Pd-CNT sensor to the flow of hydrogen gas in air. Figure 5.6c is the

sensitivity dependence of the device plotted against the square root of hydrogen

concentration. A linear relationship has been considered in this case. Figure 5.6d is the

relation between response time and hydrogen concentration.

The linear relationship between sensitivity and square root of hydrogen has been

attributed to the Langmuir isotherm theory for dissociative adsorption of gases. Sun et al.

have suggested that hydrogen adsorption changes the Pd work function which might be

proportional to the fractional coverage of hydrogen ( ) on the surface and linearly affects

the effective charge concentration in the nanotube film. Hence the resistance change,

ΔR/R0, is proportional to The suggested reaction for hydrogen dissociation on the Pd

surface is –

2 Pd PdH +2S 2HS

where SPd are available Pd surface sites and are suggested to be proportional to 1 - .

According to Langmuir isotherm,192 at equilibrium the desorption rate equals adsorption

rate such that,

or

 

 

2 2
1 1

1/2 1/2
1 1

1

/ (1 )

   

   





 

 

p

p
(5.10)

where and are the adsorption and desorption constants and p is the hydrogen partial

pressure. Using equation 5.10, at low coverage of hydrogen ( the resistance

change is given by

 
1/2 1/2

0 1 1/     R R p (5.11)
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Assuming that the dependence of desorption rate on temperature here follows

the Arrhenius equation:

 
 
 

a

B

E

k T
k Ae

(5.12)

and
2 0

 
   

 t

d R
k

dt R
(5.13)

Using Equations (5.7, 5.12 and 5.13) we get

   a

B

E
k A

k T
(5.14)

where k is the desorption rate, A is a constant, ௔ the activation energy and ஻ the

Boltzmann constant. Here, is the average time constant for desorption and its value is

extracted using Equation (5.8). The Arrhenius plot in Figure 5.8c is derived from 3300 ppm

hydrogen response pulses of 4 individual devices (same devices as in Figure 5.8b) The

straight line fits yield a desorption activation energy of 140 10 meV; significantly lower

than a recent report.183 Recently a theoretical report has predicted much higher binding

energies ( 1 eV) for dissociation of H2 on Pd coated graphene.193 It is important to note

that this interpretation must be considered with caution. The stretched exponential

implies that there is not one single response time, consistent with the Temkin isotherm not

having one single energy behaviour, so that the energy inferred above can only be

considered as an average or representative value. In addition the response of the sensor

rig (i.e., mixing time, turbulence, etc.) has not been carefully characterised. Nonetheless,

this activation energy can be used as an indicative guide for comparison with other

literature values.
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also been reported that water molecules attach to rGO in the case of Pd decorated rGO.
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To understand the effect of humidity on the response of Pd-rGO devices, air with

0, 10 and 30 % humidity was used as a carrier gas. The data in Figure 5.10 is from devices

consisting of 3 nm rGO (GO concentration 5 mg/ml) and 1 nm Pd operated at 50 °C.

Figure 5.10a shows the negative resistance responses of a device to a 3300 ppm pulse of

H2 as the humidity is varied from 0 to 30 %. A significant increase in the response is seen as

the humidity increases and this is observed for the whole range of the hydrogen

concentrations studied, as evident from the isotherm plot in Figure 5.10b for the same

device. Figure 5.10c shows a plot of the absolute isotherm slope values against humidity

averaged over 5 individual devices. The absolute isotherm slope values also increase with

increasing humidity; the presence of moisture in the air not only increases the overall

response but also shortens the recovery time as seen in the plot of desorption time for

3300 ppm of H2 versus humidity (Figure 5.10d).

As discussed in Section 5.3, water molecules readily attach to the remnant oxygen

defects on rGO resulting in a decrease in the device resistance upon exposure to H2. With

increase in humidity, the amount of water molecules attached to the surface increases and

hence a higher sensitivity. At higher concentrations of adsorbed hydrogen on the surface

the energy barrier for desorption is smaller hence a faster desorption.

5.4. Effect of Pd and rGO thickness on sensitivity

In order to understand the effect of device parameters such as Pd and rGO

thickness on sensitivity we made two different types of devices. One set maintained a

consistent thickness of rGO while varying the Pd thickness, and the other maintained

constant thickness of Pd while varying the rGO thickness.
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surface coverage against Pd thickness, Figure 5.11d, shows that the surface coverage

increases with Pd nominal thickness.

Figures 5.11e and f show the relationship between the isotherm slope values and

Pd surface coverage and thickness on rGO. A range of sensitivity and slope values were

obtained even if the devices were prepared in the same way and operated simultaneously.

The slope values, which average the sensitivity over hydrogen pressure, were considered

to obtain a relationship between sensitivity and Pd thickness. Figure 5.11e and f show that

the slope values increase with the surface coverage monotonically and follow a similar

trend with the Pd thickness, the exception is 10 nm Pd.

Table 5.1 Thickness of Pd on rGO devices and the corresponding resistance values averaged over

several devices of the same thickness.

Table 5.1 gives the values of resistances averaged over several devices of each Pd

thickness. As discussed in Section 5.2, with the increasing Pd thickness on rGO the

resistivity of the devices increased, as long as the Pd coverage was below the percolation

threshold. For 4 and 10 nm Pd devices the resistance values drop, suggesting that a

Pd thickness / nm Average Resistance / kΩ

Bare rGO 3 ± 2

0.5 3 ± 2

1 4 ± 2

2 20 ± 3

3 30 ± 20

4 1.0 ± 0.6

10 0.20 ± 0.09
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The thickness of the rGO film was controlled by varying the concentration of the

GO suspension. To investigate the effect of rGO thickness on the sensing mechanism,

devices were fabricated with thicknesses of 1.8 ± 0.5, 2.9 ± 0.5, and 7.2 ± 0.6 nm. Each of

these devices were coated with Pd of nominal thickness 1 nm and operated at 50 °C in dry

air. AFM images in Figure 5.12a, b and c show continuous and homogeneous thin films of

rGO in all three cases. Figure 5.12d shows representative data for sensitivity versus H2

concentration for three different rGO thicknesses. The slope values of the fits to the

isotherms are plotted as a function of rGO thickness in Figure 5.12e.

Since, the sensitivity is determined by the interaction between the target gas and

the surface of a sensor, the greater the surface area greater the sensitivity. Suppose the

rGO film consists of a surface and bulk layers with resistances Rs and Rb respectively. As the

thickness of the rGO film increases, the thickness of the bulk increases and hence Rb

decreases. As a result more current passes through the bulk than the surface layer. In

addition, successive graphene layers will electrostatically screen the dipole formed at the

Pd-rGO interface, decreasing the sensitivity even further. Thus, with increase in thickness

of the rGO film, the charge screening effect and the decreased resistance of the bulk

decrease the sensitivity of the surface layer.

Here the lowest possible thickness of rGO achieved was 2 nm since the devices

with thicknesses of rGO less than 1 nm did not conduct (the rGO did not form a continuous

layer as shown in Chapter 2). Considering the effects of Pd and rGO thicknesses it is found

that the devices having thinner films of rGO and higher coverages of Pd (below the

percolation threshold) provide the highest sensitivity values.
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layer of graphene with 1 nm thick Pd coating and operated at 75 °C in dry air. A prompt

increase in resistance of the device is observed upon flow of 3300 ppm of hydrogen (Figure

5.14a). Additionally, the increasing resistance with increasing concentration of hydrogen

(isotherm plot) shows a linear trend on a logarithmic scale (Figures 5.14b and c). Unlike

rGO devices, these devices always showed a positive resistance response upon exposure to

hydrogen. Again the sensitivity values of the individual devices of the same type differ from

each other as evident in Figure 5.14d.

The logarithmic dependence of sensitivity on hydrogen concentration indicates

that the sensing mechanism is likely to be the same for the Pd-graphene as that for Pd-rGO

devices. The response of graphene samples was always positive, consistent with the fact

that CVD grown graphene is more hydrophobic than rGO. For the set of data in Figure

5.14d, the values of hydrogen concentration at which the sensitivities are zero are

between 35 and 55 ppm. These values are less than those obtained for rGO (between 90

and 130 ppm). The average sensitivity from 9 similarly prepared Pd-graphene devices

( 0.6 nm thick graphene film and 1 nm thick Pd), for 3300 ppm hydrogen with 1 nm Pd, is

31 4 % and that from 6 Pd-rGO devices ( 2 nm thick rGO film and 1 nm thick Pd), for

3300 ppm Hydrogen, is 33 26 %.

Graphene devices, possessing continuous layers and lower defects compared to

rGO, showed less variation in the sensitivity values than the rGO devices. The thickness of a

graphene device is estimated to be 0.6 nm and that of the lowest thickness rGO device is

2 nm. The layer of rGO was found to be discontinuous for thicknesses below 2 nm.

Interestingly, the sensitivity of Pd-rGO is comparable to Pd-rGO, suggesting that the

mobility of the starting material is not the dominant factor for the sensitivity.
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5.7. Conclusions

Hydrogen gas sensors incorporating Pd–rGO devices were fabricated and studied

under various operation conditions. The devices showed a logarithmic dependence of

sensitivity on hydrogen concentration. In comparison with the widely studied hydrogen

gas sensors operated at temperatures above 100 197-199 these devices showed a fast

response at room temperature for hydrogen concentrations well below the lower

explosive limit. In order to improve sensing performance the device fabrication parameters

such as rGO thickness and Pd thickness were investigated and it was shown that sensitivity

is increased by decreasing the rGO thickness (whilst maintaining a continuous layer) and

increasing the Pd thickness (up to just below the percolation threshold). Further, although

previously reported hydrogen sensors have been found to be sensitive to other gases like

CO and alcohols or involve expensive production techniques,176, 179, 199 these Pd-rGO

devices showed no significant response to carbon monoxide, ethanol, or toluene and are

cheap to fabricate. A comparative study of Pd coated rGO with Pd coated CVD grown

graphene was also performed; a similar sensing mechanism was observed for both.

Although, graphene devices showed less variation between the devices and indicated

lower detectable limits than the rGO devices, their fabrication is more complex and

expensive.

In summary, the fabrication and application of Pd coated rGO and graphene as

hydrogen gas sensors was demonstrated. The sensors were capable of detecting < 200

ppm of H2 with reproducible performance across a wide range of temperature and

humidity. These devices have not been optimised yet and they are already a promising

candidate for commercial applications because of 1) the low cost and simple fabrication

technique of rGO devices, 2) room temperature operation, 3) fast response at ambient,
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and 4) selectivity. Further device optimisation may result in a higher sensitivity and lower

detectable limit for hydrogen. The selectivity, sensitivity and consistent performance of Pd-

rGO/graphene sensors have shown that with suitable coating a wide variety of graphene

sensors could be prepared.
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In TEM, GO sheets were found to be highly transparent, reasonably stable and

possessing crystalline structure. The study on the structure using TEM showed that GO, on

average, preserves the lattice structure and carbon–carbon bond length of the unmodified

graphene. The compositional analysis revealed that the as-produced GO is actually

composed of functionalised graphene like sheets (bwGO) to which oxidative debris is

strongly adhered. Unlike GO the functionalised graphene like material, called bwGO, on its

own is conducting and not suspendable in water. The oxidative debris strongly interferes

with the intrinsic properties of the bwGO and its effects should be considered in the

studies where direct covalent functionalization of the graphene lattice is required. To date,

no model of GO, suggested in the literature, has accounted for the facts demonstrated in

the study here, implying that the models for the as-produced GO need revisiting.

The growth and interactions of technologically important organic semiconductor

(F16CuPc) with GO was studied in TEM. GO acted as an excellent support for these

materials as it provided a low background and well defined diffraction pattern for

calibration. The study of F16CuPc molecules on GO showed thin film morphology showing

fibre texture down to sub-monolayer. The molecules lie perpendicular to the GO sheet;

however, evidence of the molecules lying flat on the rGO sheet is also found and is

attributed to the increase in the number of π-electrons in rGO. This suggests that by 

changing the functionalization of the CMG sheets the packing of the molecules can be

changed and desired charge transport properties can be obtained.

The results of metal-CMG structures indicated that the morphology of the metal

on CMG is determined by the metal-CMG interactions. A range of morphologies can be

obtained depending on the theoretically predicted values of cohesive binding energies of

the metal atoms and the energy diffusion barriers on graphene. Thus, by gaining

understanding of the interactions a fine control over the morphology of a metal on CMG
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could be obtained. This knowledge was utilised to fabricate a metal-rGO hydrogen gas

sensor. Pd-rGO hydrogen gas sensors showed fast response at room temperature over a

wide range of pressures well below the lower explosive limit of hydrogen. The study on

hydrogen sensors has illustrated a simple method of fabrication of CMG based sensors. By

applying a suitable coating to CMG devices, different types of sensors could be produced.

Future Works

From the study of GO in TEM the most obvious application was the use of these

sheets as a TEM support film for studying nanoparticles and biological objects. We have

already demonstrated successful usage of the GO support films for studying different

materials.130, 200 The first application of graphene discussed in the Nobel lecture by Prof.

Novoselov, is its use as TEM support films and our work has been mentioned.201 GO based

support films can be further developed by changing the functionality of the GO sheets to

make it applicable for a variety of materials. The technique of making TEM support films

could be further developed for low cost production. Also, graphene based TEM supports

are now commercially available.

The work in this thesis has opened several avenues to be explored and a number

of PhD projects have been undertaken to carry out the research. The study on the

structure and composition of GO and bwGO is taken further by Dr. Rourke’s group in the

Department of Chemistry, University of Warwick. The statistics on the growth of Au

nanoparticles on GO is being further analysed in the light of Monte-Carlo simulations, using

the data obtained in this study, in collaboration with Dr. Bell in the Department of Physics,

University of Warwick. CMG based sensors are being further developed for other analytes

and also to make the devices compatible with the existing technology. This work is carried

out by the group of Dr. Covington in the School of Engineering, University of Warwick.
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Abbreviations

aGO

AFM

as-produced graphene oxide

atomic force microscopy

bwGO base washed graphene oxide

CIF crystallographic information file

CMG chemically modified graphene

CNT carbon nanotube

CVD

DI

chemical vapour deposition

de-ionised

F16CuPc fluorinated copper phthalocyanine

FLG few layer graphene

FTIR Fourier transform infrared spectroscopy

GO graphene oxide – referred to as-produced graphene oxide

HOPG highly oriented pyrolitic graphite

HR-TEM high resolution transmission electron microscopy

ISD island size distribution

MFC mass flow controller
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MMA methylmethacryalate

NMP n-methyl-2-pyrrolidone

OD oxidative debris

PCB printed circuit board

PMMA polymethylmethacryalate

PPM parts per million

PVD physical vapour deposition

rGO reduced graphene oxide

SAED

SCCM

selected area electron diffraction

standard cubic centimetre per minute

SEM scanning electron microscopy

TEM transmission electron microscopy

TGA thermogravimetric analysis

UHV ultra high vacuum

XPS x-ray photo-electron spectroscopy

XRD x-ray diffraction
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