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vi. ABBREVIATIONS 

 

 

aa  Amino acids 

ACN  Acetonitrile 

AU  Absorbance units 

ATR-FTIR Attenuated total reflectance Fourier transform infrared 

spectroscopy  

 

 

β-OG  β-Octyl glucoside 

BMRB  Biological magnetic resonance databank 

BPV  Bovine papilloma virus 

 

 

CD  Circular dichroism 

CHI   CNS searching of helix interactions 

CMC  Critical micelle concentration 

CP  Cross polarisation 

CP MAS Cross polarisation magic angle spinning 

CSA  Chemical shift anisotropy 
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1D   one-dimensional 

2D   two-dimensional 

3D   three-dimensional 

DARR  Dipolar assisted rotational recoupling 

dH2O   Distilled water 

DDM  Dodecylmaltoside 

DHPC  1,2-Dihexanoyl-sn-glycero-3-phosphocholine 

DLS  Dynamic light scattering 

DMPC  1,2-Dimyristoyl-sn-glycero-3-phosphocholine 

DPC  Dodcylphophocholine 

 

 

 

EM  Electron microscopy 

ESI-MS  Electrospray ionisation mass spectrometry 

 

 

FT  Fourier transform 
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g  Grams 

GpA  Glycophorin A 

 

 

HEPES  4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HPLC   High performance liquid chromatography 

hr  Hours 

HSQC  Hetronuclear single quantum coherence  

Hz  Hertz 

 

 

IPA   Isopropanol 

 

 

kDa   kilo Dalton 

kHz  Kilo Hertz 

 

 

Lα   Lamellar liquid crystalline phase 

Lβ   Lamellar gel phase 
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K 
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Lo   Lamellar liquid ordered phase 

LD   Linear dichroism 

LPR  Lipid to protein ratio 

 

 

MALDI-TOF  Matrix-assisted laser desorption ionisation time of flight 

MAS  Magic angle spinning 

mg  Milligram 

MHz  Mega Hertz 

mL  Millilitre 

mM  Millimolar 

ms  Millisecond 

 

 

NMR  Nuclear magnetic resonance 

nm  Nanometre 

NOE  Nuclear Overhauser enhancement 

NOESY Nuclear Overhauser spectroscopy 
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OCD   Oriented circular dichroism 

OG   octyl-glucoside 

 

 

ppm  Parts per million 

 

 

REDOR Rotational echo double resonance 

RF  Radio frequency 

RPM  Revolutions per minute 

RT  Room temperature 

 

 

SDS  Sodium dodecyl sulphate 

ssNMR Solid state NMR 

 

 

T1  Longitudinal relaxation time 

T2  Transversal relaxation time 

TEDOR Transferred echo double resonance 
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TFA  Trifluoroacetic acid 

TFE  2,2,2-Trifluroethanol 

TOCSY Total correlation spectroscopy 

TM  Transmembrane 

TRIS  tris (hydroxymethyl) aminomethane 

 

 

UV   Ultraviolet 

 

 

w/v   Weight per volume 

 

 

Greek symbols 

 

ε   Extinction coefficient 

λ   Wavelength 

µg  Micro gram 

µL  Micro litre 

µM  Micro molar 

U 

W 
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vii. SUMMARY 

Membrane proteins represent over a third of all proteins encoded for by the human 

genome and play a vital role in the functionality of the cell, by controlling a vast number of 

cellular processes. With over half of pharmacological drugs targeting membrane proteins, 

their importance is not to be under estimated. Yet the number of three-dimensional 

membrane protein structures reported to date falls well short of that of their water soluble 

counterparts. This discrepancy can directly be attributed to the difficulties involved in 

studying membrane protein structure due to their hydrophobic nature, resulting in a 

number of challenges in the production and purification of protein, whilst requiring the use 

of a suitable membrane mimetic upon extraction from their native membrane.  

Solid state NMR (ssNMR) as a technique for studying membrane protein structure is well 

placed in being able to obtain structural information for membrane proteins in “native-like” 

lamellar bilayer environments but there are challenges involved in preparing suitable 

samples for analysis. As there is no “one suit fits all” method for preparing membrane 

protein samples for ssNMR analysis, conditions that result in fully reconstituted protein, that 

also allow for high resolution structural analysis have to be trialled.  

This study presents work on sample preparation methods for the reconstitution of the small 

alpha helical transmembrane (TM) proteins, using the well characterised TM protein 

Glycophorin A (GpA) as a model peptide. Established biophysical and NMR techniques were 

used to characterise DMPC lipid embedded peptides prepared using two reconstitution 

techniques. The limited site specific labelling at key positions of the GpA homodimer was 

used to evaluate the feasibility of using similar sample preparation and labelling schemes 

when applied to that of the Bovine Papillomavirus E5 (BPV E5) TM protein, for which no 

solved three-dimensional structure exists. Characterisation of the DMPC membranes into 

which membrane proteins where reconstituted was also conducted. To compliment ssNMR 

analysis of BPV E5, preliminary work on the use of fast tumbling isotropic bicelles to study 

membrane protein structure by solution NMR is also presented. 
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1 INTRODUCTION 

  

 

 

1.1 Membrane proteins 

 

An integral part of a biological cell is the lipid membrane. In addition to sequestering 

the contents of the cell, the lipid membrane provides an interface through which the cell 

can interact with its external environment. The properties of the lipid membrane are 

influenced by membrane proteins which span across the lipid bilayer. Membrane proteins 

account for over 30% of the proteins expressed by the human genome (Wallin and von 

Heijne 1998) and play a vital role in controlling a vast number of cellular functions such as; 

cell signalling, signal transduction and the trafficking of molecules across the cell 

membrane. Membrane proteins therefore play a key role in the functionality of the cell and 

the organism as a whole, as defects in their function can be associated to many diseases 

and causes of tumorigenesis in eukaryotes (Sanders and Nagy 2000; Sanders and Myers 

2004; Aperia 2007). It is for these reasons in particular that membrane proteins are of such 

significant interest due to their huge potential as pharmaceutical targets in the 

development of novel therapies against a range of diseases. Currently it is estimated that up 

to 50% of current drug pharmacological drugs target membrane proteins for their action 

(Russell and Eggleston 2000), with G-protein coupled receptors (GPCRs) representing the 

most popular membrane protein target (Russell and Eggleston 2000). Therefore obtaining 

structural information for membrane proteins is highly beneficial in characterising their 

functionality and towards designing more effective drugs that are more specific towards 

their membrane protein targets. 

1 
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Despite their importance, the number of three-dimensional structures determined for 

membrane proteins to date remains relatively small when compared to that of soluble 

proteins, comprising less than one in a hundred structures that have been deposited in the 

Protein Data Bank (PDB) (www.pdb.org, (Berman, Westbrook et al. 2000)). The membrane 

protein data bank (MPDB) (Raman, Cherezov et al. 2006) lists only 407 unique membrane 

protein structures that have been solved and deposited to date  and as such membrane 

proteins are vastly under-represented. Although the rate at which structures are determined 

increases year by year exponentially, the number of membrane protein structures falls well 

below the tens of thousands of soluble structures that are available.  

1.1.1 Challenges when studying membrane proteins 

The relatively small number of membrane protein structures determined to date can 

be directly attributed to the experimental difficulties involved in working with membrane 

proteins due to their hydrophobic nature. With their domains inserted in lipid bilayers, the 

production of membrane proteins for characterisation presents a challenge in comparison 

to soluble proteins that can be readily solubilised and expressed using typical over 

expression techniques and purification techniques for studying protein in vitro. As 

membrane proteins natively exist in a non-polar environment of the lipid bilayer, upon 

extraction from the membrane the three-dimensional structure is typically lost upon 

solubilisation, as membrane proteins will aggregate in solution unlike water soluble 

proteins, making techniques for characterisation of the three-dimensional structure a 

challenge unless a suitable membrane mimetic is used (Warschawski, Arnold et al. 2011). The 

areas of particular challenge when preparing hydrophobic membrane proteins for structural 

analysis can be identified as explained in the following section with regards to; the 

expression, purification, solubilisation and eventual reconstitution of the protein into a 

suitable mimetic system. 

1.1.2 Expression 

Membrane proteins are typically expressed at low levels in the native host system 

and this is therefore a problem for structural studies as high resolution structure 

determination methods typically require high concentrations (milligram quantities) of 
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protein. Therefore overexpression of the membrane protein being studied is typically 

employed. Overexpression of functional eukaryotic membrane proteins is a challenge (Tate 

2001) as the prokaryotic host systems commonly employed used for expression of soluble 

proteins, such as Escherichia  coli  (E. coli) typically do not result in high expression yields 

due to a number of contributing factors.  Of the factors that can result in poor yield, most 

are attributed to the differences between prokaryotic and eukaryotic cellular systems. Unlike 

soluble proteins which are accumulated in the cytoplasm when expressed in bacteria, 

membrane proteins are targeted for insertion into membranes due to their hydrophobic 

nature and therefore the lipid composition of bacterial membranes, which differ 

considerably from that of eukaryotic membranes, can result in an inhospitable environment 

for the expressed protein to be inserted into leading to aggregation or toxicity resulting in 

cell death. Prokaryotic expression system also typically lack the necessary cellular host cell 

machinery for post translation modification of expressed proteins and therefore 

modifications such as glycosylation of the expressed protein are not possible and can result 

in lack of functionality. Prokaryotic expression systems also lack the appropriate chaperones 

for correct folding and therefore can lead to incorrectly folded or aggregated protein being 

produced. In some cases where expression of the target membrane protein is high, the 

expressed protein may be targeted to inclusion bodies containing aggregated protein 

(Wagner, Baars et al. 2007). Whilst it common place to solubilise and refold soluble proteins 

isolated from inclusion bodies, the hydrophobic nature of membrane proteins this is 

generally much harder in practice.  

Other expression systems such as yeast (Sreekrishna, Brankamp et al. 1997) and 

insect cells, that offer eukaryotic expression systems which allow for post translational 

modification whilst not as popular as bacterial expression systems are now more common 

place for membrane protein expression. Cell Free Expression systems have also recently 

been developed (Jermutus, Ryabova et al. 1998; Sawasaki, Ogasawara et al. 2002) that 

circumvent complications arising from membrane protein toxicity, refolding or 

reconstitution into lipids. Using cell lysates and a mixture of tRNA, enzymes, nucleotides and 

amino acids, specifically labelled proteins can be prepared on an mg scale. Additionally the 
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use of synthesised peptides, using solid phase chemistry is also a viable option for the 

preparation of short hydrophobic membrane proteins. 

1.1.3 Solubilisation 

Following successful production for the target membrane protein the next challenge 

is the solubilisation of the expressed protein from the host system followed by purification.  

Solubilisation of the target membrane protein requires extraction from the host membrane, 

this step is usually conducted with the use of detergents. Detergents are amphipathic 

(containing both polar (water-soluble) and nonpolar (not water-soluble)) molecules that 

consist of a polar head group and a hydrophobic tail. When placed in an aqueous solution 

at a concentration above that of their corresponding critical micelle concentration (CMC), 

they spontaneously form spherical micellar structures (Figure 1.1). 

 

 

Figure 1.1 Cartoon representation of a detergent micelle 

Schematic representation of a detergent micelle, the polar head group (blue balls) generally 

occupy a larger area than the hydrophobic tails (red lines) and therefore have a cone like shape, 

these individual detergent molecules then pack together above the critical micelle concentration 

(CMC) to form detergent micelles. 

 

 These micellar structures can be used to shield the hydrophobic membrane protein 

from the aqueous environment and mimic the native lipid bilayer.  The choice of detergent 

used for solubilisation is crucial in maintaining the structure of the membrane protein but 

also its function. Whilst detergents can be exchanged through processes such as dialysis, 
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thought also has to be given to the compatibility with the purification process and 

subsequent structure determination method with which the membrane protein is to be 

studied. Proteins are typically solubilised with detergent, whilst maintaining some of the 

original host membrane, in which the protein was expressed in order to surround the 

protein and prevent it from aggregating. No one detergent is universal in for successful 

solubilisation and therefore a detergent screen is generally required to identify the most 

suitable detergent that will solubilised the protein in an unaggregated state.  

1.1.4 Purification 

Protein purity and sample homogeneity are important factors for structural analysis 

studies, therefore it is important to purify over expressed samples and even those obtained 

from natural membranes, in order to remove unwanted proteins that may result in sample 

contamination such as bacterial proteins in the case of over expression. It is important that 

during the purification process the membrane proteins structural integrity is maintained so 

as to avoid aggregation, here again the choice of solubilising detergent plays an important 

role as certain detergents are incompatible with certain purification methods. For example, 

charged detergents such as Sodium Dodecyl Sulfate (SDS) are incompatible with ion-

exchange methods. The high detergent concentrations typically used in the solubilisation 

stage can also have a negative effect on the purification of membrane proteins and 

therefore excess detergent is often required to be removed prior to purification. Detergent 

exchange (or removal) can be achieved either by dialysis methods or by using on column 

chromatographic techniques such as affinity/ion-exchange chromatography, or size 

exclusion. These techniques can also be used in the purification of detergent solubilised 

over expressed protein.  A common method, that has been successfully used for many years 

now is the use of affinity tags such as poly-histidine (His tag) that have been incorporated 

into the expressed target membrane protein, so as to aid purification using affinity 

chromatography. Using affinity tags the target protein can be bound to a column, such as a 

Nickel chelating column (in the case of His-tagged proteins). Another challenge when 

purifying membrane proteins is to also ensure the functionality of the purified protein is 

maintained following successful expression and solubilisation, in the case of enzymes, the 

enzymatic activity can be assayed in order to confirm the functionality of the purified 
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protein. Once purified, the target membrane protein then needs to be reconstituted into a 

suitable membrane mimetic system for further structural studies. 

1.2 Membrane mimetic systems 

The lipid membrane is a complex heterogeneous environment composed not only of 

phospholipids but also numerous other components such as cholesterol, carbohydrates, 

glycolipids and membrane proteins that exist in the fluid state, as first proposed by Singer 

and Nicholson (Singer and Nicolson 1972). Therefore to study the three-dimensional 

structure of a membrane protein a suitable mimetic, representative of the native membrane 

in which it is found is generally required. This is not always a possibility in particular when 

using detergents as they do not form bilayers but rather single layered micelles and as such 

a chosen membrane mimetic system must serve to relate as closely as possible to that of 

the native environment of which the membrane protein is found, whilst also allowing for 

high-resolution structural information to be acquired on the embedded protein.  The 

challenge of finding a suitable mimetic for the solubilisation of membrane proteins is made 

even harder due to lack of a single universally applicable mimetic, with proteins behaving 

differently, in different mimetics based upon their biological properties, therefore a typical 

prerequisite for obtaining structural information for solubilised membrane proteins is the 

screening of different mimetics in order to find the system most suited for not only the 

protein being studied but also the characterisation technique being used. Properties of the 

membrane that need to be considered when identifying a suitable mimetic system include; 

charge, the acyl chain length and saturation of the acyl chains as these factors dictate the 

properties of the membrane such; as the propensity to form bilayers, the fluidity, curvature 

and thickness. Thickness of the membrane mimetic is important as the orientation and tilt of 

transmembrane helices is affected by the thickness, as having a thinner bilayer due to 

shorter acyl chains for example, can cause an hydrophobic mismatch, as a result an 

excessive tilt angle can occur as the transmembrane helices try to accommodate their 

hydrophobic regions within the membrane of the mimetic system. 
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1.2.1 Detergent micelles 

Of all the methods for solubilising membrane proteins for solution NMR, detergent 

micelles are the most commonly used membrane mimetic for the study of membrane 

protein structure and function (Kang and Li 2011).  Detergent micelles are commonly used to 

solubilise hydrophobic membrane proteins and can be screened in order to identify suitable 

detergents that can also preserve native structure and biophysical function. Since detergent 

micelles have a much smaller overall diameter than that of liposomes, typically ~3 - 5 nm 

(30 - 50 Å) (Warschawski, Arnold et al. 2011) this allows the protein embedded micellar 

complex to tumble faster, making detergent micelles suitable for studying membrane 

proteins by solution NMR and also X-ray crystallography, allowing for high resolution 

structural information to be obtained. Although detergent micelles are much smaller and 

tumble faster on the NMR time scale than large lipid complexes, the smaller diameter of 

micelles in comparison to that of liposomes can often result in curvature stress (i.e. lateral 

pressure on the surface of the micelle) and increased lateral pressure on the embedded 

membrane protein, causing minor or in some cases major alterations to the protein fold as 

it tries to accommodate itself within the micellar structure (Cross, Sharma et al. 2011). In 

addition to causing curvature stress and lateral pressure to embedded proteins, detergent 

molecules are not representative of the native lipid bilayer environment in which membrane 

proteins are found, making them less than ideal membrane mimetic systems (Poget and 

Girvin 2007). 

1.2.2 Liposomes 

Of all membrane mimetic systems available, the system that most resembles the 

native environment in which membrane proteins are found are liposomes, also referred to 

as lipid vesicles. Liposomes are membranes made up of phospholipids, molecules that are 

made up of a phosphate head group, a diglyceride and an organic molecule such as a 

choline. Like detergents, they are mostly amphipathic with polar and non-polar ends and 

therefore when placed in an aqueous solution will spontaneously form liposomes. These 

lipid molecules form bilayers as found in native membranes and can be made up of a either 

a single lipid type or a more complex composition, through the use of membrane extracts. 

In both plant and animal membranes the most commonly occurring lipid is 
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phosphatidylcholine (PC) which has a polar choline head group and can make up to 60% of 

the membrane of cellular organelles such as the Golgi apparatus and Endoplasmic reticulum 

(van Meer 1998). Phosphatidylethanolamine (PE) is the second most abundant phospholipid 

found in cell membranes (~30 %) with an ethanolamine head group is a neutral 

(zwitterionic) lipid and is the major component of microbial membranes. 

Phosphatidylinositol (PI), with an inositol head group is another common lipid found in 

plant and animal cell membranes (~25 %) and also plays a role in cell signalling. Other lipids 

commonly found in the cell membrane include phosphatidylserine (PS) (~ 10%), an acidic 

lipid due to its serine head group and also Sphingomyelin (SM) a Sphingolipid derived from 

sphingosine (van Meer, Voelker et al. 2008).   The type of lipid used can influence the 

properties of the lipid bilayer and thereby the liposomes that they makeup. As mentioned 

earlier in the chapter the length and saturation of the lipid acyl chains together with the 

type of head group dictate properties of the membrane such the fluidity, curvature and 

thickness.  Membranes formed of lipids with phosphatidylethanolamine (PE) head groups, 

will tend to form curved membranes, as the smaller head group results in a more conical 

shaped molecule and therefore forms bilayers with negative curvature.  Membranes formed 

of lipids with more cylindrical shaped molecules such as with phosphatidylcholine (PC) head 

groups will form flat, planer bilayers as the molecules stack together laterally (Frolov, 

Shnyrova et al. 2011). Lipid preparations can be used in order to reconstitute membrane 

proteins in a range of vesicle sizes dependent upon the nature of the lipids and sample 

preparation methods used. Liposomes can vary in size from 1-2 nm to over 300 nm in 

diameter. Various preparation methods can be used such as ultra-sonication in order to 

form small unilamellar vesicles (SUV) or freeze-thaw methods to form large multilamellar 

vesicles (LMV).   

Although liposomes are more biologically relevant membrane mimetics, their large 

size results in slow tumbling making them unsuitable for analysis of membrane proteins by 

solution NMR but ideal for solid state NMR methods. Although static NMR spectra are 

generally broad with poor resolution, interactions between the embedded protein and the 

lipid membrane can be monitored through 
31

P and 
2
H NMR NMR to gain information about 

dynamics and lipid/protein interactions (Marius, de Planque et al. 2012). Using magic angle 
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spinning the resolution of spectra obtained can be greatly improved. MAS-NMR has been 

used to solve or provide information about the three-dimensional structures of a number of 

membrane proteins including the viral Influenza M2 channel protein (Wang, Kim et al. 2001),  

Glycophorin A (GpA) (Smith, Jonas et al. 1994) in DMPC bilayers. One of the issues with 

using liposomes for the solubilisation of membrane proteins is the oversimplification of the 

membrane environment, as using a single lipid component in artificial membranes is not as 

representative of the native bilayer as using more complex mixtures that more closely 

resemble the native membrane. The use of more complex mixtures to more closely 

resemble the native membrane, whilst appears more idea, can result in complications due to 

the complex phase diagrams for mixed lipid membrane systems that can cause issue when 

working at certain temperatures whilst studying the structure of the embedded membrane 

protein and due to the increase in unwanted background signals that may interfere and 

complicate the signals of interest when using techniques such as NMR.  

 

1.2.3 Amphipols and nanodiscs 

Methods for the solubilisation of hydrophobic membrane proteins, that allow for 

analysis by solution NMR whilst also more closely resembling the native membrane 

environment have recently been developed (Warschawski, Arnold et al. 2011). These 

membrane mimetic systems include amphipols, a family of synthetic amphipathic polymers 

developed to replace detergent molecules for membrane protein solubilisation (Tribet, 

Audebert et al. 1996). Amphipols contain a number of hydrophobic chains that surround 

solubilised membrane proteins with a greatly reduced number of molecules in non-micellar 

form, which reduces the viscosity of the solution that can lead to slow tumbling and can be 

tuned to specific length and charge.  Nanodiscs (Bayburt and Sligar 2003) are another 

recently developed membrane mimetic system that more closely resembles the native 

environment of a membrane bilayer (Denisov, Grinkova et al. 2004). Nanodiscs are 

composed of small portions of phospholipid bilayers that have been stabilised by the 

addition of stabilising amphipathic helical membrane scaffold proteins (MSPs) (Figure 1.2). 

These scaffold proteins result in the formation of disc-shaped soluble portions of 
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biomembranes, with a typical diameter of ~10 nm and a thickness of ~ 4nm (Warschawski, 

Arnold et al. 2011) suitable for the solubilisation of membrane proteins. With an increased 

lateral diameter this makes nanodiscs more suitable than detergent micelles for studying 

membrane protein structure due to reduced curvature (Lyukmanova, Shenkarev et al. 2008). 

 

 

Figure 1.2 Schematic representation of a nanodisc 

Representation of a nanodisc with an embedded membrane protein. A small section of a lipid 

bilayer (blue) surrounding the embedded membrane protein forms a disc like structure which is 

held in place by helical membrane scaffold proteins (MSP) shown in green. 

 

1.2.4 Bicelles 

Although newer membrane mimetic systems such as nanodiscs have been developed, 

in the last ten years the most popular lipid based membrane mimetic for studying small and 

multi-spanning membrane proteins by solution NMR are lipid bicelles (Marcotte and Auger 

2005) whilst larger alignable bicelles have also been used with ssNMR. Bicelles (bilayered 

micelles) are disc shaped lipid aggregates prepared from a mixture of long chain 

phospholipids and detergents or short chain phospholipids.  The morphology of bicelles 

depends upon the ratio of long to short chain lipids, total phospholipid concentration and 

temperature (Gabriel and Roberts 1984; Sanders and Prosser 1998). The long chain 

phospholipids form a central planar bilayer, with the short chain detergents/lipids forming a 

rim around the circumference that shields the long chain hydrophobic lipid tails from water 
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(Figure 1.3). The planar structure with an increased lateral diameter and thickness of ~ 4 nm 

(40 Å) resembling that of a native bilayer (Luchette, Vetman et al. 2001) and the presence of 

natural lipids, which more closely mimic in vivo membranous structures, make bicelles a 

more attractive membrane mimetic system for the solubilisation of membrane proteins. 

Bicelles can typically be produced in two different sizes, with small isotropic bicelles being 

more suitable for high resolution solution NMR studies due to their rapid tumbling in 

solution  (Vold, Prosser et al. 1997) and larger bicelles that are magnetically alignable with 

the magnetic field of the spectrometer and can be used for studying orientation and 

crossing angles of embedded membrane proteins (Sanders and Schwonek 1992; Sanders 

and Prosser 1998). Larger magnetically alignable bicelles are also suitable for solid state 

NMR analyses, providing high resolution data for structural assignment (De Angelis, 

Nevzorov et al. 2004). Whilst the classical description of isotropic bicelles is that of disc like 

shape with a DMPC bilayer closed by DHPC molecules at the rim, is the accepted 

morphology for smaller bicelles below the phase transition temperature Tm of DMPC, the 

structure of larger bicelles formed with higher amounts of long chain to short chain ratios, 

above the Tm of DMPC is debated. Evidence suggests that at higher temperatures, these 

larger magnetically alignable bicelles fuse together to form large lamellar bilayer sheets of 

DMPC with perforated holes that are lined with short chain DHPC molecules (Nieh, 

Raghunathan et al. 2004), this bicelle morphology is referred to at the Swiss cheese model. 

At even higher temperatures bicelles have been observed to form ‘worm-like’ micelles in the 

liquid crystalline phase (Harroun, Koslowsky et al. 2005). 
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Figure 1.3 Cartoon representation of a bicelle. 

Representation of a discoid like lipid bicelle, made up of long chain lipid molecules (typically 

DMPC) represented with orange acyl chains at the centre and short chain detergent molecules 

(typically DHPC) represented with green hydrophobic tails at the outer rim. 

 

1.3 Methods for structure determination 

Although the number of membrane protein structures determined to date is relatively 

low, recent advances in technology such as Synchrotron sources for X-ray crystallography, 

high field NMR and high resolution electron microscopy have led to increased knowledge in 

the area of membrane protein biochemistry. Each technique presents its own set of 

advantages and disadvantages. 

1.3.1 X-ray crystallography  

  X-ray crystallography is currently the most popular method for obtaining the three-

dimensional structure of membrane proteins, accounting for over 80% of all membrane 

protein structures deposited at the PDB (Berman, Westbrook et al. 2000; Raman, Cherezov 

et al. 2006). Structures obtained by X-ray crystallography are typically of high resolution, 

much more so than of those obtained using other structure determination methods, 

although a prerequisite is often the requirement of diffraction quality crystals that can be 

hard to grow and often require screening of a large number conditions in order to find 

those in which crystal growth occurs. Analysis of membrane proteins using X-ray 

crystallography also presents difficulties as preparation of crystals requires the solubilisation 

of membrane proteins prior to crystallisation, whilst maintaining the structural integrity of 

the solubilised protein. Typically membrane proteins are solubilised in detergent, but the 
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presence of detergent when crystallising can prevent the formation of crystal contacts and 

can also result in distorted structures due to curvature stress induced by the small diameter 

of detergent micelles. X-ray crystallography is also more suited to larger multi-spanning 

membrane proteins as larger proteins crystallise more readily than smaller proteins, as the 

larger the protein the greater the surface area for which crystal contacts can form that are 

required for crystal growth. For smaller proteins the surface area is greatly reduced thereby 

reducing the possibility of forming electrostatic contacts between unit cells in a crystal 

thereby reducing the possibility of forming diffraction quality crystals for analysis, although 

in recent years the crystallography of membrane proteins in lipid membranes has become 

viable by the growth of crystals in lipidic mesophases (also referred to as Lipid cubic phase 

(LCP) crystallisation (Landau and Rosenbusch 1996; Cherezov 2011; Caffrey, Li et al. 2012). 

Lipids in the LCP form highly curved bilayers that form cubic lattice structures. First used to 

obtain high resolution structural data for bacteriorhopdsin (Landau and Rosenbusch 1996) 

this method has now been used to crystallise a variety of bitopic membrane proteins 

including GPCRs and helical proteins (Cherezov, Rosenbaum et al. 2007; Jaakola, Griffith et 

al. 2008; Wu, Chien et al. 2010). Therefore whilst X-ray crystallography is positioned to 

provide high resolution structures at atomic resolution, the strategies involved in producing 

viable crystallisation conditions can often result in structures that differ vastly from their 

native form (Cross, Arseniev et al. 1999).   

 

1.3.2 Solution NMR  

Next to X-ray crystallography, solution NMR is the second most popular method for 

the determination of membrane protein three-dimensional structure. Solution NMR 

techniques allow the possibility of exploring protein-protein and protein-ligand interactions 

in a dynamic environment without the need for protein crystals. Unlike X-ray crystallography 

solution NMR can be used in order to study the dynamics of a protein rather than in a fixed 

state within a crystal. Typically, membrane proteins are studied in detergent micelles, but 

this is not ideal as detergent micelles have been identified to cause curvature stress to 

embedded membrane proteins altering the structure of proteins when compared to bilayer 
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bound samples (Chou, Kaufman et al. 2002).  In addition the resolution and sensitivity of the 

spectra obtained by solution NMR is strongly affected by how fast a molecule tumbles in 

solution.  Due to rapid random tumbling rates of small molecules on the NMR timescale (of 

typically nano/picoseconds), orientation dependant anisotropic interactions are averaged 

out to zero resulting in sharp resonances. As the size of the molecule in solution increases 

as does the rate of tumbling, as such larger molecules therefore have much slower tumbling 

rates and correspondingly shorter spin-spin (transverse) T2 relaxation times due to 

enhanced spin-spin interactions. Shorter T2 relaxation times result in line broadening and 

intensity loss as a result in of the reduction in the sensitivity of complicated multi-pulse 

NMR experiments that often use long delays for the necessary coherence transfer steps 

between nuclei. Therefore whilst the protein of interest to be studied by NMR may be small, 

once reconstituted into a detergent micelle or lipid embedded environment, the size of the 

complex typically becomes much larger, thereby tumbling much more slowly (Watts and 

Spooner 1991; Marcotte and Auger 2005), and in the case of proteins embedded in lipid 

vesicles can exceed the size limit (100 kDa) for this technique resulting in severe line 

broadening and signal intensity loss. 

 

1.3.3 Solid state NMR (ssNMR) 

In contrast to solution NMR, solid state NMR (ssNMR) is not restricted by an upper 

molecular weight size limit, thereby making it a powerful technique for the study of higher 

molecular weight proteins and of those embedded in lipid environments.  Therefore, unlike 

solution NMR, this allows for the study of membrane proteins in hydrated lipid bilayers, 

thereby representing a more “native-like” environment and therefore resulting in high 

resolution structures in more biologically relevant confirmations.  Typically high resolution 

ssNMR spectra have been obtained for microcrystalline or amyloid fibril samples with high 

structural homogeneity (Bockmann and Meier 2010), whereas spectra obtained in hydrated 

bilayers are often much broader in comparison.  As such ssNMR has become an invaluable 

tool for obtaining structural information of membrane proteins under physiological 

conditions (Watts, Burnett et al. 1999) such as Gramicidin (Ketchem, Hu et al. 1993), Influenza 
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M2 (Cady, Mishanina et al. 2009; Luo, Cady et al. 2009) and human Phospholamban (Verardi, 

Shi et al. 2011).  

In spite of the numerous advantages of studying membrane protein structure by 

ssNMR, a number of disadvantages are also associated with the technique, in particular the 

resolution of ssNMR spectra recorded in comparison to solution NMR spectra is greatly 

reduced. Inherently, ssNMR spectra are much harder to interpret and assign as they are 

much more complicated in their nature when compared to solution NMR spectra as the full 

effect of orientation-dependant (anisotropic) interactions are still present and observed in 

the spectra obtained. These anisotropic interactions which are normally averaged out in 

solution for small rapid tumbling molecules are still present in solid samples, as molecular 

motions are restricted with rotational correlation times much longer than in solution i.e. 

nanosecond to seconds. In addition, in solid samples, molecules are simultaneously present 

in a large number of orientations. The presence of anisotropic interactions in solid samples 

results in considerable broadening of resonances (typically 0.5 – 2 ppm) in comparison to 

those recorded in solution NMR spectra, often leading to complicated, difficult to resolve. 

These anisotropic interactions that are still present in ssNMR experiments are listed below. 

1.3.4 Chemical shift anisotropy (CSA) 

In solid (powder) samples all molecular orientations are present in random 

orientations, with random distribution, which gives rise to powder patterns in recorded 

spectra. These powder patterns arise as a result of each different molecular orientation (with 

respect to the applied magnetic field B0,) having its own chemical shift, with each 

orientation giving rise to its own (sharp) resonance. The overlapping of these individual 

resonances gives rise to the broad axially symmetrical unresolvable powder patterns 

typically observed in solid samples.  

1.3.5 Dipolar coupling 

When spins from individual nuclei come into close contact with each other in a 

sample, the magnetic field generated by each nucleus can act through-space to have an 

influence on the spin energy of neighbouring nuclei. Dipolar coupling can occur between 
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nuclei of the same type i.e. homonuclear dipolar coupling between 
13

C and 
13

C, or between 

nuclei of different atoms i.e. heteronuclear dipolar coupling between 
13

C and 
1
H. In ssNMR 

dipolar coupling can lead to a detrimental effect on the spectra recorded due to signal 

broadening and decay of magnetisation through effect such as dipolar truncation 

(Hodgkinson and Emsley 1999). Dipolar interactions can also be useful for probing distance 

measurements between nuclei due to its r
3 

dependence, where r is the inter nuclear 

distance, therefore making the strength of the dipolar coupling between nuclei a good 

measure for the distance between them. Dipolar coupling can and also for signal 

enhancement through transfer of magnetisation such as through cross polarisation, as 

described further in Section 1.5.2.  

1.3.6 Quadrupolar coupling 

For nuclei which have spin greater than ½, these nuclei are referred to a 

quadrupolar, i.e. they possess a nuclear electronic quadrupole moment. The quadrupole 

moment in the nucleus arises from the non-spherical distribution of charge within. This 

quadrupole moment is, in addition to the magnetic dipolar moment as possessed by nuclei 

with spin ½. Electric quadrupoles interact with electric field gradients therefore such nuclei 

not only interact with the applied and local magnetic fields, but also with any electric field 

gradients within the nucleus, thereby affecting the nuclear spin energy levels. The strength 

of the interaction depends upon the magnitude of the quadrupole moment. The effect of 

the quadrupolar interaction is observed as a substantial broadening of the observed ssNMR 

spectra. 

Therefore, whilst the broad lines in ssNMR spectra contain a wealth of information 

regarding structure and dynamics of the protein (Warschawski, Traikia et al. 1998), they 

typically have detrimental effects on spectra recorded, obscuring peaks and leading to the 

poor resolution of resonances observed, making it difficult to resolve individual resonances 

due to spectral overcrowding. Therefore in order to avoid spectral crowding, a number of 

elaborate labelling schemes can employed, such as the use of 1,3-
13

C labelled glycerol when 

expressing membrane proteins, that give rise to specific cross peak patterns that make the 

assignment process easier. 
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1.4 NMR Theory 

1.4.1 Spin 

Nuclear magnetic resonance (NMR) spectroscopy can be used to exploit the intrinsic 

property possessed by certain atomic nuclei of “spin” Figure 1.4 and the fact that those 

nuclei that poses spin can undergo transitions between nuclear spin energy levels defined 

by the Zeeman quantised spin angular momentum, in order to determine the magnetic 

environment of the nuclei.  

 

Figure 1.4 Single spin angular magnetic moment 

An isolated nucleus has spin angular momentum and a precession frequency dependant only 

upon the type of nucleus (gyromagnetic ratio) and upon the strength of the applied magnetic 

field B0 

 

Quantum mechanically sub atomic particles have intrinsic angular momentum, which 

is characterised by its spin quantum number I, where I is an integer or half integer. In a 

number of atoms e.g. 
12

C, 
16

O, spins are paired, cancelling each other out and result in an 

atom with no overall spin (I=0) and are therefore NMR-inactive. If the number of neutrons 

and the number of protons in an atom are even then the nucleus has no spin, if the number 

of neutrons in addition to protons is odd then the nucleus will have half-integer spin (e.g. I= 

1/2, 3/2, 5/2). If both protons and neutrons are odd in number, then the nucleus has integer 
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spin (e.g. I= 1, 2, 3). The spin quantum number dictates magnitude of the angular magnetic 

moment (μ) for the nucleus as related by Equation 1. 

 

                                                                  (1) 

  

Where γ is the gyromagnetic ratio, this ratio is characteristic unique to each nuclear isotope. 

When an external magnetic field of strength B0 is applied, a spinning nucleus will align its 

nuclear magnetic moment in a quantised number of orientations, given by 2I+1, either with 

or against the magnetic field. For example in the case of a nucleus with spin I= ½, only one 

transition is possible between two energy levels, the energetically favourable, aligned with 

the applied magnetic field (spin m= +½) also referred to as α and a higher energy 

orientation aligned against the applied magnetic field (spin m = -½) or β orientation 

(Figure 1.5), The splitting of these nuclear spin energy levels by the applied magnetic field is 

due to the Zeeman Effect, responsible for an identical splitting between each of the nuclear 

spin energy levels and is the dominant interaction in NMR. The distribution of these nuclear 

spin energy levels is governed by the Boltzmann distribution (Equation 2), where N values 

are the number of  nuclei in each respective spin state, ΔE the energy level difference 

between each spin state (= ħω0) the strength of the external magnetic field, k the Boltzmann 

constant and T the absolute temperature. 

 

      

      
     

  

  
 
       (2)  

              

NMR spectroscopy is used to probe the transitions between these two energy levels, since 

the difference between the two energy states and the number of nuclei in each state is 

minimal in comparison to techniques such as UV/Vis spectroscopy, where the energy 

separation between each state is comparatively larger, this renders NMR an insensitive 

technique. This means that NMR experiments give rise to relatively weak signals, requiring a 
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large number of spectra to be collected in order to obtain adequate signal to noise. To 

improve sensitivity of NMR experiments, higher field strength magnets, that result in an 

increase in the size of the applied magnetic field, as well as decreasing the temperature at 

which experiments are conducted are two of the most common methods used in order to 

increase the Boltzmann distribution between the two energy states, thereby resulting in 

higher sensitivity. 

 

 

Figure 1.5 Zeeman splitting of energy levels 

Illustration of Zeeman splitting of energy levels for a nucleus with spin I= ½. There are two 

possible Eigenstates for such nuclei, a low energy + ½ and a high energy – ½ state, The 

transition energy between the two states is related to the strength of the applied magnetic field 

and is described by the equation ΔE= ħω0. When a magnetic field is applied there is a Boltzmann 

distribution of the spins in two states  

 

1.4.2 Magnetisation 

When a nucleus with angular momentum is placed in a magnetic field of strength B0 , the 

nucleus will precess about the external magnetic field z-axis, due to the torque generated 

by the interaction of the nuclear angular momentum with the magnetic field, at the nuclide 

specific Larmor frequency defined by Equation 3. 
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                    (3) 

 

Where ω is the angular velocity of precession, γ is the gyromagnetic ratio of the nuclide, Bo 

is the external, static magnetic field and the sign denotes the direction of motion of the 

magnetic moment about the static field. In a real sample there are a large number of 

nuclear spins in the system, all pressing about the z-axis (Figure 1.6), this ensemble of 

nuclei of the same kind, would precess around the applied magnetic field with a common 

angular frequency, giving rise to a net resultant bulk magnetisation, i.e. the sum of all 

individual magnetic moments, M0. 

 

 

Figure 1.6 Orientation and precession of nuclear spins 

An ensemble of nuclear magnetic moments (red arrows) distributed across the two spin energy 

levels, will precess around the magnetic field B0 without any phase coherence. The excess 

population of spins in the lower energy level gives rise to the bulk nuclear spin magnetisation 

M0. 
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1.4.3 R.F pulses and the Rotating Frame 

Once a sample is placed the NMR spectrometer, the nuclear spins will align with the applied 

magnetic field B0 where they will reach equilibrium with a bulk magnetisation. Nuclear 

magnetic resonance occurs when electromagnetic radiation with a frequency matching with 

the Larmor frequency of the nuclei of interest is applied in order to perturb the magnetic 

moments (as shown in Figure 1.7), causing the nuclei to change its spin state. Using the 

rotating frame coordinate system (x’, y’ and z), where the external magnetic field is 

considered to be along the z-axis, a radio frequency (RF) pulse of radiation is applied along 

the x’-axis (B1), this will impose a torque on the bulk magnetisation vector (M0) resulting 

from the precessing nuclei (B1 and M0 are stationary and at right angles in the rotating 

frame of reference).  

 

 

Figure 1.7 Magnetisation and rotating frame of reference 

(A) Bulk magnetisation M0 at thermal equilibrium precessing in the z-axis in the magnetic field 

B0. (B) Application of a 90° (π/2) RF pulse in the B1 x’-axis causes perturbation of the bulk 

magnetisation vector, rotating it into the y’-axis. (C) Once the RF pulse is switched off, the bulk 

magnetisation vector relaxes back gradually to thermal equilibrium, precessing around the y,z 

plane giving rise to the FID signal recorded in the detector. 

 

This torque will be perpendicular to the external field vector and rotates the bulk 

magnetisation vector M0 away from its equilibrium position along B0 and around into the y’-

axis with the appropriate pulse length. The spins will then begin to precess about the x’y’ 
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plane (in which the detector is placed), causing a very weak oscillating voltage to be 

induced in the coil surrounding the sample, which is responsible for the observed NMR 

signal. The angle of rotation (θ), is dependent upon the gyromagnetic ratio of the nucleus γ, 

the amplitude of the B1 RF pulse and upon the length time (t) that the pulse is applied, (as 

given in Equation 4), the example of a 90° or π/2 pulse is given in Figure 1.7 B. Once the 

applied RF pulse is switched off, the system undergoes relaxation, with the bulk 

magnetisation vector gradually returning back to its thermal equilibrium state along the z-

axis, this is referred to as longitudinal (T1) relaxation. Whilst T1 relaxation describes the decay 

of signal back into the z-axis, transverse (T2) relaxation characterises the relaxation in the 

transverse (xy) plane as a result of excited nuclei exchanging spins or loosing coherence 

with each other and is therefore also referred to as ‘spin-spin’ relaxation. This relaxation 

back to thermal equilibrium causes the signal observed in the receiver coil to decay with 

time.  

 

               (4)  

 

This decaying signal consists of contributions from all the different target nuclei in 

the sample. This signal cannot be digitised directly due to its high frequency and is 

therefore mixed with a lower frequency signal in order to produce an interferogram of low 

frequency.  This interferogram is digitised and is responsible for the detected NMR response 

called a Free Induction Decay (FID) (Figure 1.8). Fourier transformation of this FID yields a 

frequency domain spectrum. 
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Figure 1.8 Free Induction Decay (FID) 

A Free Induction Decay (FID) signal produced as a result of relaxation of excited spins in an NMR 

experiment, Fourier transformation of which gives rise to a frequency domain spectrum. 

 

1.4.4 Chemical Shift 

NMR frequencies are set as chemical shifts in units of parts per million (ppm). Nuclei 

in the sample are eminent by differences in their chemical shift, as nuclei of different 

elements have different gyromagnetic ratios, which yield signals at different frequencies 

dependant on magnetic field strength. However nuclei of the same element can also give 

rise to signals of different frequencies. This is due to the Larmor frequency of a nucleus 

being dependent upon its local electronic environment. The applied external magnetic field 

induces currents within the electron cloud surrounding the nucleus, thereby inducing a 

small local magnetic field. This induced local magnetic field is opposed to the applied 

magnetic field and in effect shields the nucleus from the applied field. By this effect nuclei 

of the same type in different chemical environments experience slightly different local 

magnetic fields and therefore have different Larmor frequencies. Although this induced 

local field is considerably small in comparison to the applied external field, the difference in 

Larmor frequency between nuclei in different environments is still measurable as relative 

signals in the NMR spectrum. A reference compound is typically chosen and the difference 
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between the position of the signal of interest and that of the reference is termed the 

chemical shift. 

NMR chemical shift values are typically expressed in ppm rather than in Hz, so as to 

remove the dependency of the magnetic field strength (operating frequency) at which the 

sample was recorded using Equation 5. 

 

 

     
       

    
     

      (5) 

 

Where      is the Larmor frequency for a reference compound, e.g. 

tetramethylsilane (TMS) for 
1
H or 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS) for 

13
C. 

This results in a scale that is independent of the applied external magnetic field B0 used for 

the experiment. As nuclei in a complex sample such as a protein will experience different 

chemical environments resulting in differing Larmor frequencies, the resultant dispersion 

one dimensional (1D) NMR spectrum obtained can be much more complicated to interpret 

in comparison to simple ingle molecule samples due to the crowding and over lapping of 

signals, therefore multidimensional (two or three dimensional 2D/3D) experiments are 

typically used in order to simplify assignment of the chemical shifts recorded. 

 

1.4.5 Two dimensional (2D) NMR 

A number of homo-nuclear 2D experiments exist, all of which share the same basic 

principle. There are four steps to a 2D NMR experiment; in the first step (called the 

preparation time), all nuclei in the sample are excited simultaneously using one or more 

pulses, creating magnetisation in the xy plane. The resulting magnetisation is allowed to 

evolve during the evolution period (t1) during which time encoding is carried out in the 

indirect dimension (F1) and the chemical shift of the first nucleus (e.g. A) is recorded. This is 
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followed by a mixing time (tmix) in which magnetisation is allowed to transfer to the second 

nucleus (e.g. B) using either a combination of pulses or delay periods. The final stage is 

detection where the chemical shift of the second nucleus is recoded in the direct dimension 

(F2). Raw data from a 2D NMR experiment consists of a series of FIDs, each one acquired 

with a slightly longer t1 duration than the previous; the 2D data can then be Fourier 

transformed in order to produce a 2D NMR spectrum. By selectively labelling specific 

residues of interest, the presence of cross-peaks off the diagonal in the 2D spectrum 

(Figure 1.9) obtained can provide information about which amino acids are close together 

in space. Such experiments make use of the structural information contained within 

through-space dipolar couplings by applying a recoupling sequence during the mixing time.  

 

 

 

 

 

Figure 1.9 2D NMR experiment.  

Representation of a 2D NMR spectrum shown on left, and a representation of peptide dimer 

with isotopic labels indicated as A, B and C. At short mixing times (green circle) magnetisation 

travels only far enough to see short range correlations (green cross peaks). At longer mixing 

times (red circle) the magnetisation is allowed to travel further and as such longer range 

correlations are observed (red cross peaks). 
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1.5 Solid state NMR 

In solid state NMR (ssNMR) the samples being analysed are typically powder 

samples i.e. samples consisting of many crystallites in random orientations. The anisotropic 

nuclear spin interactions that affect ssNMR spectra such as; CSA, dipolar and quadrupolar 

coupling (as detailed in Section 1.3.4-6) are all dependent upon the orientation of 

crystallite orientations. In solution NMR this is not a problem as anisotropic interactions are 

averaged to zero, as molecules in solution exhibit Brownian motion, tumbling faster than 

the frequency of the interactions and reorientation of molecules occurs on the NMR 

timescale i.e. pico/nanoseconds (dependent upon the size of the molecule). By contrast, 

ssNMR experiments concentrate on solid samples with restricted molecular motion (i.e. 

milliseconds to seconds on the NMR timescale) where fast molecular tumbling does not 

exist, therefore the effect of anisotropic interactions, that are averaged out in solution NMR 

are still present in spectra obtained by ssNMR. Additionally, in solid samples molecules exist 

simultaneously in a number of orientations and as a result ssNMR spectra exhibit broad 

features, powder patterns composed of a superposition of signals from a number of 

different orientations.  As a result ssNMR spectra contain significant structural information 

that is typically lost in solution NMR, although due to the lack of resolution in ssNMR 

spectra obscures any information that the spectrum may contain. Additionally due to the 

strong dipolar coupled network of spins, protons are generally not the preferred nuclei for 

observation in solid state NMR as these interactions typically result in broadened spectra. 

For ssNMR of protein samples structural details are primarily obtained from low-γ and 

dilute I=½ spins i.e. 
13

C and 
15

N. The detection of low γ nuclei typically requires isotope 

enrichment for sensitivity enhancement. Therefore in order to obtain high resolution NMR 

spectra of solid samples, techniques such magic angle spinning (MAS) have been 

developed, whist methods such as cross-polarisation (CP) and high power proton 

decoupling, in order to remove 
1
H-

13
C and 

1
H-

15
N couplings that are too strong to remove 

by sample rotation alone, are commonly used to improve sensitivity. 
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1.5.1 Magic angle spinning (MAS) 

 Magic angle spinning (MAS), first introduced by Andrew and Lowe (Andrew, 

Bradbury et al. 1959) is routinely used in solid state NMR to mimic the rapid isotopic 

tumbling that occurs in solution that does not occur in solid samples via mechanical 

rotation of the sample. MAS is essential for obtaining high resolution ssNMR spectra and is 

used to remove the effects of chemical shift anisotropy and to assist the removal of 

heteronuclear dipolar coupling. As shown in Figure 1.1 typically the sample filled rotor is 

spun about its axis at β = 54.74°, “the magic angle”, with respect to the magnetic field B0, 

and is rotated at a rate    . Spinning at the magic angle simulates the rapid isotropic 

tumbling that occurs in solutions, which averages the molecular orientation dependence of 

the transition frequencies to zero on the NMR timescale. Chemical shielding and dipolar 

coupling both contain a molecular orientation dependence term of the form            

with respect to the magnetic field B0. In solution the rapid tumbling averages this 

component to zero thereby removing their effects, whereas in ssNMR this angular 

component can be averaged to zero by mechanically rotating and spinning at the magic 

angle. 

 

 

 

 

B0 

54.7° 

Figure 1.10  Illustration of rotor assembly in a magic angle spinning experiment 

The rotor containing sample is spun at 54.7° (magic angle) with respect to the magnetic field B0, 

the sample can be cooled whilst spinning in order to reduce the mobility of the packed sample 

which can lead to improved line width. 
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In order for MAS to reduce a powder pattern to a single line at the isotropic 

chemical shift, the rate of sample spinning     must be around 3 to 4 times greater than the 

frequency of the interaction to be able to average it out to zero. With current spinning 

speeds reaching approximately 70 kHz, it is possible to suppress CSA and dipolar 

interactions but not quadrupolar couplings. When spinning slower and line broadening is 

not completely suppressed, this results in the appearance of spinning sidebands, set at the 

spinning rate apart, in addition to the peak at the isotropic chemical shift. This limits MAS 

when applied to high gamma nuclei such as protons, which have dipolar coupling in excess 

of 100 kHz, as such spinning speeds are much more difficult to achieve.  

1.5.2 Cross polarisation (CP) 

In addition to MAS, cross polarisation (CP) (Urbina and Waugh 1973) is another 

commonly used technique central to ssNMR. CP is used in order to improve the signal 

intensity of dilute spins (S-spins) by transferring magnetisation from abundant nuclei (I-

spins), with high gyromagnetic ratios such as 
1
H, and 

31
P to dilute nuclei with low 

gyromagnetic ratios, for example 
13

C or 
15

N. The use of CP also overcomes the problem of 

long T1 (longitudinal) relaxation times, when using direct polarisation of dilute spin nuclei 

with low abundance and low-γ, which typically result in longer experimental times, as using 

CP, the repetition time of the experiment is dictated by the shorter relaxation rate of the 

more abundant, high-γ nuclei (i.e. 
1
H) allowing for shorter experimental times. The CP 

transfer is mediated by the dipolar interaction between 
1
H and X spins and uses the 

principle that when two nuclei are brought close together, magnetisation tends to travel 

from more highly polarised nuclei to nuclei with lower polarisation. In the CP experiment, 

the field strengths of both nuclei (e.g. 
1
H and 

13
C) are set to the Hartmann-Hahn Matching 

condition (Equation 6) the dipolar spin pair system is considered in a doubly rotating 

frame, in which 
1
H and 

13
C magnetisation precess about B0.  CP begins with an initial 90° RF 

pulse creating transverse 
1
H magnetisation along the –y axis, which is maintained along the 

rotating frame (spin-locked) using a contact pulse over a contact time period. Spin locking 

involves applying a continuous pulse along this axis which is known as the spin-lock field 

and is labelled B1(
1
H). Simultaneously a 90° contact pulse is also applied to the 

13
C channel 

to maintain magnetisation in the transverse frame B1(
13

C). The amplitude of the two contact 
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pulses is then carefully set in order to achieve the Hartmann-Hahn Matching condition. 

Magnetisation transfer then occurs between the spins (i.e. from 
1
H to 

13
C nuclei) provided 

that there is dipolar coupling between them.  

 

                       (6) 

 

1.5.3 Proton decoupling 

MAS is sufficient to remove the effect of dipolar coupling for the majority of nuclei, 

but for nuclei with large gyromagnetic ratios such as 
1
H, which are also in high abundance, 

the dipolar coupling is too strong to be removed by MAS alone, resulting in broad peaks 

and low resolution and over complicated spectra. This is a problem particularly with protein 

samples where the large number of high γ protons interfere with the low abundance 
13

C, 
15

N 

low γ nuclei typically being detected. It is therefore necessary to remove these residual 
1
H-

13
C dipolar couplings in order to improve the resolution of the spectra being collected, 

therefore high power decoupling is typically used.  The simplest method of decoupling 

involves the continuous application of an high power RF pulse (usually 80 – 100 KHz) during 

acquisition of the FID. This high power RF pulse causes the 
1
H spins to flip between the α-β, 

parallel-antiparallel state. As the influence of 
1
H dipolar coupling on 

13
C is determined by the 

z-component of the 
1
H magnetization, if the α-β state transition is faster than the 

1
H-

13
C 

dipolar coupling frequency, then the 
1
H-

13
C dipolar coupling will be averaged to zero.  The 

continuous application of high power RF can result in sample heating and also damage to 

the NMR probe and therefore more sophisticated decoupling methods such as Two-pulse 

phase modulation (TPPM) (McGeorge, Alderman et al. 1999) and SPINAL-64 have been 

developed which significantly improve the efficiency of decoupling and in which the 

decoupling pulses are divided up into a sequence of pulses with varying phase, which result 

in narrower line widths than continuous wave (CW) decoupling. 
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1.5.4 Recoupling 

Whilst MAS is used to average away the anisotropic interactions that lead to broad 

unresolvable spectra, the wealth of structural information regarding orientation and inter 

nuclear distance is also removed from the resulting spectra obtained. Dipolar coupling for 

example can provide distance constraint information regarding nuclei that are close 

together in space due to its r
3
 dependence as a factor of inter nuclear distance between 

dipolar coupled nuclei. Therefore it can be beneficial to run experiments that simultaneously 

provide high resolution whilst also selectively reintroducing (recoupling) anisotropic 

interactions. A number of different techniques have been developed for recoupling dipolar 

interactions that typically incorporate the application of RF pulse trains to disrupt the 

averaging of these interactions due to sample rotation. 

1.5.5 Dipolar Assisted Rotational Recoupling (DARR) 

Dipolar Assisted Rotational Recoupling (DARR) (Takegoshi, Nakamura et al. 2001)  is 

a recoupling mechanism that uses a combination of mechanical rotation of the sample and 

the 
13

C-
13

C dipolar interaction in order to reintroduce homo-nuclear dipolar couplings that 

are averaged out by MAS (Figure 1.11). This is achieved by the application of continuous low 

power 
1
H ‘recoupling’ pulses with the frequency ω1, satisfying the rotary resonance 

condition ω1 = ωR during the mixing period tmix, where ωR is the MAS spinning frequency.  

DARR has been previously applied to a number of membrane protein samples and has been 

used to observe long range, through-space correlations (Crocker, Patel et al. 2004; Abdine, 

Verhoeven et al. 2010).  

 

 

 

 

 

 

 

 

 



Chapter 1: Introduction 

 

P a g e | 31  

 

 

 

Figure 1.11 Dipolar Assisted Rotational Resonance (DARR) pulse sequence.  

Pulse sequence for 2D Dipolar Assisted Rotational Resonance (DARR) experiment. A 90º pulse on 

the proton channel flips 
1
H magnetisation into the X-Y plane which is transferred to 

13
C via a 

ramped CP pulse and 
1
H decoupling applied during the t1 evolution period. Following the 

evolution period, magnetisation is placed along the z-axis with a 90º pulse and mixing occurs 

longitudinally, with a low power 
1
H DARR recoupling pulse equal to that of the MAS sample 

spinning speed is applied. A final 90º pulse is applied and high power 
1
H decoupling applied 

during detection. 

 

 

 

Figure 1.12 Schematic of the magnetisation transfer within a protein in a DARR 

experiment.  

Pink atoms indicate those observed and blue atoms indicate those through which magnetisation 

flows between residues i and i-1 in a protein chain. Black arrows show magnetisation transfer 

and grey arrows indicate magnetisation that is normally only observed through longer mixing 

times (image taken from http://www.protein-nmr.org.uk/spectra_ssnmr.html). 
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1.6 Glycophorin A (GpA) as a model TM 

The helical TM erythrocyte protein Glycophorin A is an example of a membrane 

protein that has been very well-characterised using both solution (MacKenzie, Prestegard et 

al. 1997) and ssNMR (Smith, Jonas et al. 1994; Liu, Crocker et al. 2003).  The incorporation of 

both 
13

C and 
15

N isotopic labels into the protein has been used to obtain structural 

information at atomic resolution for the GpA transmembrane (TM) domain dimer (Smith, 

Jonas et al. 1994) and has provided information such as inter-helical interactions in the lipid 

bilayer (Smith, Song et al. 2001). The structural model obtained in the bilayer by ssNMR was 

shown to differ from that obtained by solution NMR with a decrease in crossing angle 

(Smith, Eilers et al. 2002), where the crossing angle is the angle between the two helix axes 

when projected onto their plane of contact (Chothia, Levitt et al. 1981). This demonstrates, as 

with other comparatively studied membrane proteins (Cross, Tian et al. 1999; Cady, 

Mishanina et al. 2009) that protein conformation is altered in a micelle when compared to 

its more native-like lipid bilayer environment. ssNMR was used to provide the first direct 

measurements of helix to helix contacts in the GpA TM domain by demonstrating close 

packing of side chain methyl groups of valine and glycine residues across the dimer 

interface (see Figure 1.13) (Smith and Bormann 1995).  
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Figure 1.13 Structural model of the Glycophorin A TM domain dimer  

Structural model of GpA homodimer obtained from 
13

C-
13

C distances, showing close packing of 

valine and glycine residues at the dimer interface. Reproduced from Smith et al 2001 

 

1.7 Bovine Papillomavirus E5 (BPV E5) 

Viruses have evolved a number of mechanisms in order to transform host cells so as 

to ensure continual replication of infected host cells. Bovine Papillomavirus BPV is a non-

enveloped double stranded DNA virus belonging to the family Papillomaviridae which 

causes fibropapillomas in cattle (Lancaster and Olson 1982). BPV efficiently transforms 

healthy cells via the action of the product of the E5 gene (Figure 1.14) producing what is 

currently the smallest known viral oncoprotein: the E5 protein.  E5 is a highly hydrophobic 

44 amino acid type II transmembrane oncoprotein which forms a 7 kDa membrane-

spanning homodimer (Schlegel, Wade-Glass et al. 1986).   

 

NH2 -MPNLWFLLFLGLVAAMQLLLLLFLLLFFLVYWDHFECSCTGLPF-COOH 

Figure 1.14 Peptide sequence encoded for by Type I BPV E5 gene 

 



Chapter 1: Introduction 

 

P a g e | 34  

 

The BPV E5 protein is composed of an α-helical amino terminal transmembrane 

domain followed by a 14 amino acid hydrophilic carboxyl terminal region (Burkhardt, 

DiMaio et al. 1987).  As suggested by its hydrophobic character, BPV E5 has been shown by 

immunoelectron microscopy to localise primarily to the Golgi and plasma membranes as a 

type II membrane protein, with its carboxyl-terminus facing the Golgi lumen (Burkhardt, 

Willingham et al. 1989). Expression of E5 alone, in the absence of other viral gene products 

has been shown to be sufficient to transform immortalised murine cells. Mutational studies 

(DiMaio, Guralski et al. 1986; Windisch, Hoffmann et al. 2010) have demonstrated E5 to be 

fairly insensitive to single point residue mutations, but have identified a small number of key 

residues (i.e. a glutamine at position 17 (Klein, Polack et al. 1998), aspartate at position 33, 

and two carboxyl-terminal cysteine residues) that are thought to be critical to maintaining 

its function. 

The oncogenic transmembrane E5 protein has been shown to exhibit its cell 

transforming ability by targeting the platelet derived growth factor beta receptor (PDGFβR) 

(Petti, Nilson et al. 1991),  a receptor tyrosine kinase. In virally transformed cells, E5 binding 

to PDGFβR (Drummond-Barbosa, Vaillancourt et al. 1995) causes sustained activation of the 

receptor leading to uncontrolled cell growth and tumour formation.  Although other E5 

targets such as epidermal growth factor receptor (EGFR) (Martin, Vass et al. 1989) and the 

16K subunit of vacuolar H
+
 ATPase (Goldstein, Finbow et al. 1991) have been suggested, E5 

has been identified as binding preferentially to PDGFβR (Petti and DiMaio 1994; Freeman-

Cook, Edwards et al. 2005). 

No three-dimensional structure for E5 exists to date; however, molecular dynamics 

simulation, polarised IR and mutagenesis studies (Surti, Klein et al. 1998; Adduci and 

Schlegel 1999) have been used to produce a simplified model of the E5 dimer and its 

complex with PDGFβR. E5 is believed to interact with the transmembrane domain of 

PDGFβR (Figure 1.15), bringing two PDGFβR molecules together and resulting in trans-

phosphorylation and activation of the tyrosine kinase domain (Mattoon, Gupta et al. 2001). 

Although this model exists, alternative models have also previously been suggested (Adduci 

and Schlegel 1999) proposing that the E5 dimer is asymmetrical. 
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Figure 1.15 Schematic of the symmetrical model of the BPV E5 dimer  

Schematic of the BPV E5 homodimer (red) and its interaction with the PDGFβR (yellow), adapted 

from Talbert-Slagle and Dimaio 2008. 

 

1.8 Aims and objectives of this study 

This project aims to evaluate and optimise sample preparation methods for 

reproducible and reliable reconstitution of small TM proteins for ssNMR and solution NMR 

analyses. Using a range of biophysical techniques in order to assess sample quality and 

reconstitution methods, we aimed to identify the ideal conditions to prepare samples for 

the development of protein solid state and solution NMR methods. In collaboration with the 

solid state NMR group in the Department of Physics here at Warwick University, we hoped 

to gain structural information for the Glycophorin A (GpA) homodimer in a lipid bilayer 

environment using fewer selective uniformly labelled amino acids at the homodimer 

interface. Once established using GpA, we then hoped to apply these techniques to the 

Bovine Papillomavirus (BPV) E5 protein, for which no structure exists and which is of 

biological interest due to its oncogenic properties. In conjunction with ssNMR methods, 

Using BPV E5, we aimed to evaluate sample preparation conditions for the reconstitution of 

small TM proteins into bicelles for solution NMR studies. It is hoped that by developing 

such methods for studying membrane proteins, critical information will be obtained that will 
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facilitate the development of rationally-designed drugs based upon target protein structure 

for a wide variety of diseases in which membrane proteins play a key role. 
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2 MATERIALS AND 

METHODS 

 

2.1 Reagents and Chemicals 

All reagents and chemicals used in this study unless stated otherwise were 

purchased from Fisher Scientific (Loughborough, Leicestershire, UK) or Sigma-Aldrich 

(Gillingham, Dorset, UK). All lipids were obtained from Avanti Polar Lipids (Alabaster, AL, 

USA). All chemicals were of the highest grade available for use in analytical and chemical 

biology studies and used without any further purification. 

 

2.2 Buffers 

All buffers used in this study were prepared from distilled water (dH2O) (MilliQ) 

and were filtered through 0.22 µM filters (Millipore).  Phosphate buffer solution (20 mM 

sodium phosphate, 20 mM NaCl, 3 mM NaN3 at pH 7.4) was used to prepare samples 

for solid state nuclear magnetic resonance (ssNMR) and circular dichroism (CD) 

measurements. Phosphate buffered detergent solution (20 mM sodium phosphate, 20 

mM NaCl, 3 mM NaN3 and 34 mM octyl-glucoside (OG) at pH 7.4) was used in the 

preparation of ssNMR samples using the detergent removal method.  HEPES buffer 

solution (20 mM HEPES, 20 mM NaCl, 3 mM NaN3 at pH 6.8/7.4) and TRIS buffer (20 mM 

TRIS, 20 mM NaCl, 3 mM NaN3 at pH 7.4) were used to prepare samples for 
1
H and 

31
P 

ssNMR experiments.  HEPES buffer solution (20 mM HEPES, 20 mM NaCl, 3 mM NaN3 at 

pH 6.8/7.4) was used to prepare samples for solution-state NMR experiments. 

 

2 
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2.3 Peptide design 

2.3.1 Glycophorin A (GpA) peptides  

Three peptides derived from the transmembrane (TM) domain of Glycophorin A 

(GpA) (Jokinen, Andersson et al. 1985) were synthesised with the sequence 

KKITLIIFGVMAGVIGTILLISYGIKK and containing additional non-native end terminal lysine 

residues (indicated by underlining). Peptides were N-terminally acetylated and C-

terminally amidated to aid solubility (Morozova and Weiss 2010). Peptides were 

synthesised using solid phase 9-fluorenylmethyl carbamate (Fmoc) chemistry (Carpino 

and Han 1972) at the Yale University W.M KECK Facility (New Haven, CT, USA). Uniformly 

13
C/

15
N labelled valine and glycine residues were introduced at position 80 (GpAV), 

position 83 (GpAG), or at both positions (GpAVG), and unlabelled peptide was also 

prepared (GpAU), as shown in Table 2.1. 

 

Table 2.1 List of isotopically labelled GpA peptides used in this study 

 

 

 

 

 

 

2.3.2 Bovine Papillomavirus E5 peptides  

Five peptides corresponding to the TM domain of the BPV E5 protein (Goldstein, 

Finbow et al. 1991; Mattoon, Gupta et al. 2001) were prepared with the sequence 

KKKFLGLVAAMQLLLLLFLLLFFLVYWDHK containing additional non-native end terminal 

lysines (indicated by underlining) to aid solubility. These peptides were synthesised in a 

similar manner to GpA peptides at the Yale University W.M KECK Facility. Uniformly 
13

C 

and 
15

N-labelled Fmoc protected amino acids purchased from Cambridge Isotope 

Laboratories were incorporated at Leu 24 (BPV E5L), Phe 28 (BPV E5F), Tyr 31 (BPV E5Y), 

KKITLIIFGV80MAGVIGTILLISYGIKK GpAV 

KKITLIIFGVMAG83VIGTILLISYGIKK GpAG 

KKITLIIFGV80MAG83VIGTILLISYGIKK GpAVG 

KKITLIIFGVMAGVIGTILLISYGIKK GpAU 
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and unlabelled (BPV E5U) was also prepared. BPV E5V2 was specifically designed for 

solution NMR studies (the justification of which is given in Section 3.2) and was 

therefore labelled at multiple positions as shown below in Table 2.2 

 

Table 2.2 List of isotopically labelled BPV E5 peptides used in this study 

 

 

 

 

 

 

 

2.4 Peptide purification using reverse-phase high 

performance liquid chromatography  

Synthetic peptides were supplied as crude reaction products, and as such the 

crude peptides were subsequently purified by reverse-phase high performance liquid 

chromatography (RP-HPLC), using protocols previously reported for hydrophobic 

peptides (Lew and London 1997; Fisher and Engelman 2001). Typically, for each RP-HPLC 

run, 3-5 mg of crude peptide was weighed out and dissolved in 200 µL trifluroacetic acid 

(TFA) (Sigma), 200 µL trifluroethanol (TFE), 400 µL isopropanol (IPA) and drop wise 

addition of 70:30 HPLC grade water: isopropanol equilibration buffer to a final volume of 

2 mL.  

Samples were injected onto a semi-preparative Jupiter C4 5u (300 Å, 250 × 10.0 mm) RP-

HPLC column (Phenomenex, Macclesfield, Cheshire, UK) connected to a purpose built 

two pump HPLC system (Jasco UK, Great Dunmow, Essex, UK). A flow rate of 1.5 mL min
-1 

was used throughout.  A two component gradient (as indicated in Table 2.3 for GpA 

and Table 2.4 for BPV E5) was used in the separation, with solvent A composed of HPLC 

grade water (Fisher Scientific) and solvent B composed of isopropanol (Fisher Scientific), 

KKKFLGLVAAMQLLLLLFL24LLFFLVYWDHK BPV E5L 

KKKFLGLVAAMQLLLLLFLLLFF28LVYWDHK BPV E5F 

KKKFLGLVAAMQLLLLLFLLLFFLVY31WDHK BPV E5Y 

KKKFLGLVAAMQLLLLLFLLLFFLVYWDHK BPV E5U 

KKKFLG11LV13A14AMQLL19LLLFL24LLFFLV30YWDHK BPV E5V2 
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each containing 0.1% TFA. The column was initially equilibrated with 70% solvent A, 30% 

solvent B. The organic phase was linearly increased to a final condition of 0% solvent A, 

100% solvent B. The elution was monitored at a wavelength of 280 nm at which aromatic 

amino acids within the peptides absorb UV light. Multiple runs of RP-HPLC were 

required to obtain an adequate amount of pure peptide for subsequent experiments 

with a typical yield of ~30%. Fractions containing purified GpA or BPV E5 peptides were 

collected and analysed by mass spectrometry (as described in section 2.5).  

 

Table 2.3 Gradient used for the purification of GpA peptides by RP-HPLC 

 

 

 

 

 

 

 

 

 

Table 2.4 Gradient used for the purification of BPV E5 peptides by RP-HPLC 

 

Time (mins) % Solvent A % Solvent B 

0 70 30 

15 70 30 

35 20 80 

65 0 100 

75 0 100 

85 70 30 

Time (mins) % Solvent A % Solvent B 

0 70 30 

15 70 30 

50 0 100 

70 0 100 

90 70 30 
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2.5 Mass Spectrometry 

2.5.1 Electrospray Ionisation (ESI) Mass spectrometry 

Fractions obtained from RP-HPLC were analysed using an electrospray ionisation 

time of flight (ESI-MS) MicroTOF mass spectrometer (Bruker Daltonics, Coventry, UK) to 

identify which contained pure peptide and to confirm purity of the fractions collected. 

HPLC fractions were prepared for analysis by addition of 10 µL of 10% formic acid to 90 

µL of purified peptide. The addition of formic acid to a final concentration of 1% aids 

flight of peptides in the mass spectrometer. Samples prepared for ESI mass 

spectrometry were analysed by direct infusion of the sample into the spectrometer and 

spectra recorded in positive ion mode, measuring between 500 and 3000 m/z 

(mass/charge) for an average of 2 min. Individual collected spectra were averaged and 

deconvoluted using the data analysis software provided by the manufacturer (Bruker 

Daltonics) to obtain the mass of the singly charged species in the sample. Those HPLC 

fractions which contained pure (>95%) peptide were pooled and lyophilised before 

storage in TFE. 

 

2.5.2 Matrix Assisted Laser desorption Ionisation (MALDI) Mass 

spectrometry 

Crude peptides and selected purified fractions were also analysed by matrix-

assisted laser desorption ionisation (MALDI) mass spectrometry, which is a soft 

ionisation technique allowing the detection of singly charged species as opposed to the 

multiply charges species observed by ESI MS.  Samples obtained from HPLC purification 

were prepared by combining 5 µL of purified peptide with 5 l of matrix solution (10 

mg/mL alpha-cyano-4-hydroxycinnamic acid (α-CHCA) in 50% acetonitrile (ACN), 50% 

H2O and 0.1% TFA). 1 µL of the sample/matrix solution mix was spotted onto a MALDI 

plate (Bruker Daltonics) and allowed to air dry for 30 minutes before being loaded into 

the MALDI mass spectrometer (Bruker MALDI-ToF). MALDI-MS spectra were recorded in 

positive ion and linear mode between the mass range of 2000 to 5000 m/z, calibrated 

externally with polyethyleneglycol (PEG) 2000. 
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2.6 Peptide preparation and characterisation 

2.6.1 Lyophilisation 

Upon confirmation of peptide purity all fractions containing pure peptide were 

pooled into a 100 mL round bottom flask to which a small quantity of distilled H2O was 

added. The flask was swirled in a Dewar of liquid nitrogen to form a thin layer around 

the bottom of the flask before being placed on dry ice and attached to a vacuum line. 

The flask was left under high vacuum until all organic solvent had been removed. The 

resulting lyophilised peptide powder/film was then dissolved in TFE and aliquoted into 

small glass vials stored at −20 ºC ready for use.  

 

2.6.2 Protein concentration determination 

The concentration of purified peptides was estimated using UV absorbance at 

280 nm using the Beer-Lambert Law (Equation 7) where A is the absorbance at 280 nm, 

ε is the extinction coefficient (M
-1
 cm

-1
), l is the path length of the cuvette (cm) and c the 

concentration (mol L
-1
) (Grimsley and Pace 2004). 

 

         (7) 

 

For each peptide the extinction coefficient at 280 nm was calculated (Gill and Vonhippel 

1989) by inputting the amino acid sequence into the tool ProtParam on the ExPASy 

website, http://www.expasy.org (Wilkins, Gasteiger et al. 1999). For all Glycophorin A 

peptides the extinction coefficient (ε280) was calculated to be 1490 M
-1
 cm

-1
 and for all 

BPV E5 peptides ε280 was calculated to be 6990 M
-1
 cm

-1
. 

The UV absorbance of 50 µL of purified peptide in TFE was measured using a UV/Vis 

spectrophotometer (Biomate, Thermo Scientific) and the resulting protein concentration 

was estimated. Whilst TFE is optically transparent at these wavelengths, the weak 

polarity of the solvent can have an effect on the absorptive energy in UV and may 

therefore have an effect on ε) 
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2.6.3 SDS-PAGE analysis of purified peptides 

Purified peptides were visualised by SDS-polyacrylamide gel electrophoresis 

(SDS-PAGE) in order to estimate molecular weight and oligomeric state. Peptides were 

separated using NuPAGE 12% Bis-Tris precast gels in an XCell Sure Lock™ vertical mini-

cell electrophoresis system, run in MES SDS running buffer (Invitogen). 15-20 µL of each 

sample was typically loaded onto the gel and run alongside 5 µL of SeeBlue® Plus2 Pre-

Stained Standard (Invitrogen) molecular weight marker. Electrophoresis was generally 

carried out for 30 minutes at room temperature at 120 A and 200 V. 

Samples were prepared by taking the required amount of stock protein in TFE and 

aspirating off all solvent before being resuspended in SDS sample loading buffer (125 

mM Tris-HCl, 20% glycerol, 4% SDS, 0.02% bromophenol blue, 5% β-mercaptoethanol, 

pH 6.8) before being boiled in a heating block for 10 mins. 

 

2.6.4 Coomassie staining 

Following gel electrophoresis, separated protein bands were visualised by 

Coomassie staining (Fazekas de St Groth, Webster et al. 1963). Coomassie dye interacts 

with positive protein amine groups through Van der Waals attractions and ionic 

interactions between sulfonic acid groups (Tal, Silberstein et al. 1985). Gels were soaked 

in 50 mL of fixing solution (50% methanol, 10% acetic acid) for approximately 30 minutes 

and then transferred to 50 mL of Coomassie staining solution (0.025% Coomassie G250, 

10% acetic acid) with gentle shaking for between 6-12 hours at room temperature. Gels 

were then de-stained (20% methanol, 7% acetic acid) for 3-6 hours with several changes 

of de-staining solution to ensure a minimal background so that protein bands could be 

visualised, after which the de-staining solution was removed and the gel rinsed with and 

stored in dH2O.  

2.6.5 Silver staining 

Following gel electrophoresis, proteins were also visualised by silver staining 

(Switzer, Merril et al. 1979).  Silver staining is more sensitive than Coomassie staining and 

can detect 0.5-5 ng protein concentrations, as compared to 5-50 ng for Coomassie 

(Chevallet, Luche et al. 2006).  Gels were placed in a fixing solution (60 mL 50% acetone, 
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1.5 mL 50% TCA, 25 µL formaldehyde) for 15 minutes with gentle shaking. Gels were then 

washed with three quick washes in dH2O before being soaked in dH2O for 5 minutes. 

After soaking, gels were washed a further three times in dH2O. Gels were then briefly 

soaked in a sodium thiosulphate solution (10 mg Na2S2O3 in 60 mL dH2O) for one 

minute before being washed quickly three times with dH2O and being soaked in stain 

solution (0.26% (w/v) silver nitrate, 0.37% formaldehyde in 60 mL dH2O) for 8 minutes. 

Following staining gels were washed twice briefly in dH2O before being placed in a 

developer solution (1.2g Na2CO3, 25 µL formaldehyde, 25 mg  Na2S2O3 in 60 mL dH2O) 

for 5-15 seconds whilst bands developed. The development of protein bands was 

quenched by soaking gels with 1% acetic acid, before being rinsed and stored in dH2O. 

2.7 Peptide reconstitution into lipid vesicles 

2.7.1 Detergent solubilisation of peptides 

Synthetic GpA and E5 peptides used in this study were solubilised in a number 

of detergents for optimisation of the detergent removal method for production of solid 

state NMR samples. Dodecylphosphocholine (DPC), n-Dodecyl β-D-maltoside (DDM) 

and dimyristoyl-sn-glycerso3-phospcholine (DHPC) was purchased from Avanti Polar 

lipids (Alabaster AL, USA) and β-D-glucopyranoside (OG) from Fisher Scientific (UK). 

In order to correctly solubilise synthetic peptides, detergents were used at 

concentrations above their critical micelle concentration (CMC), above which detergent 

micelles are formed. Table 2.5 gives the molecular weight (MW) and CMC for all 

detergents used in this study. 
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Table 2.5 List and properties of detergents used in this study 

 

 

2.7.2 Detergent removal 

Various reconstitution conditions were tested in order to form optimal 

proteoliposomes for solid state NMR analysis, lipid vesicles with well folded peptide 

inserted. The first preparation method tested for formation of proteoliposomes was 

referred to as the “detergent removal method” (Rigaud and Lévy 2003).  In this method 

a total of 5 mg of purified, lyophilised GpA  peptide was dissolved in 5 mL of detergent 

buffer solution (20 mM sodium phosphate, 20 mM NaCl, 3 mM NaN3 and 34 mM octyl-

glucoside (OG) at pH 7.4) to which 200 µL of TFE and 4 µL TFA was added to aid 

solubilisation of the peptide. TFE was removed by evaporation under nitrogen gas. To 

this peptide detergent buffer solution, 4.75 mL of 2 mg/mL 1,2-dimyristoyl-sn-glycero-3-

phosphocholine (DMPC) lipid (Avanti Polar lipids) and 250 µL cholesterol (Sigma) (5%) in 

chloroform was added at a 8.6 : 0.75 : 1 lipid:cholesterol:peptide molar ratio. The 

lipid/peptide/detergent solution was vortexed briefly to form mixed micelles and was 

allowed to mix with gentle agitation at room temperature for 30 minutes. The solution 

was then transferred to 4 °C with shaking for 20 minutes before being diluted with 10 

mL of phosphate buffer (in order to dilute the detergent concentration and reduce the 

CMC) and left for another 30 minutes, the solution was then further diluted with 20 mL 

of phosphate buffer and left shaking for an hour at room temperature. At each dilution 

step, a 20 µL aliquot was taken for analysis by electron microscopy (EM). 

Detergent was removed using SM2 Bio-Beads (BioRad). Bio-beads are small polystyrene 

macro porous beads that can be used to remove small detergent molecules (Rigaud, 

Detergent 

Molecular 

Weight 

(MW) 

Critical Micelle 

Concentration 

(CMC) mM 

Aggregation 

number 

β-D-glucopyranoside (OG) 292 19-25 84 

Dodecylphosphocholine (DPC) 352 1.5 50-60 

n-Dodecyl β-D-maltoside 

(DDM) 

511 0.2 98 

dimyristoyl-sn-glycerso3-

phospcholine (DHPC) 

454 15 30 
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Levy et al. 1998). Detergent molecules are small enough to enter the pores within the 

Bio-beads and become trapped due to hydrophobic interactions whilst lipid and protein 

molecules are too large to enter and as such detergent is selectively removed.  

Before mixing with the sample, the Bio-beads were first washed in ethanol followed by 

three washes with dH2O. 250 mg of beads were added to the lipid/peptide/detergent 

solution and left with agitation for two hours at 4C. This step was repeated, after which 

a further 500 mg of beads were added and the solution left overnight to ensure full 

removal of detergent.  The following day biobeads were removed by decanting and the 

resulting proteoliposome solution produced by detergent removal using biobeads was 

transferred into fresh 1.5 mL microcentrifuge tubes in preparation for centrifugation and 

transfer into a solid state NMR rotor as outlined in section 2.7.4. 

2.7.3 Co-solubilisation 

A more straightforward means to produce proteoliposomes was also tested, and 

is referred to as the “co-solubilisation method”.  In this method, DMPC lipid was 

dissolved in TFE and combined with cholesterol dissolved in chloroform at a cholesterol 

to DMPC molar ratio of 0.08:1 (5% w/w ratio). For samples containing the doubly 

labelled GpA peptide (GpAVG), 5.5 mg of peptide was dissolved in 1 mL of TFE and mixed 

with 5.5 mL of 2 mg/mL DMPC in TFE (11 mg total) and 275 µL of 2 mg/mL cholesterol in 

chloroform (0.55 mg total) at a 8.6 : 0.75 : 1  lipid:cholesterol:peptide molar ratio, or a 2 : 

0.1 : 1 w/w ratio. For samples containing singly labelled GpA peptides, 2.2 mL of 2.2 

mg/mL GpAV and 1.9 mL of 2.6 mg/mL GpAG dissolved in TFE, were mixed together at a 

1:1 molar ratio (5 mg of each peptide for 10 mg total) before being combined with 10 mL 

of 2 mg/mL DMPC (20 mg total) and 500 µL of 2 mg/mL cholesterol  in chloroform (1 

mg total) at the same lipid to cholesterol to protein molar ratio and w/w ratio as the 

doubly labelled GpA sample. 

For BPV E5 samples, using singly labelled 
13

C/
15

N labelled Leu 24 and Phe 28 peptides, 

754 µL of 3.6 mg/mL BPV E5L and 1.1 mL of 3.6 mg/mL BPV E5F dissolved in TFE, were 

mixed together at a 1:1 molar ratio (4 mg of each peptide for 8 mg total) before being 

combined with 5 mL of 4 mg/ mL DMPC (20 mg total) and  500 µL of 2 mg/mL 

cholesterol  in chloroform (1 mg total) at a 13.5:  1.1  :  1 lipid:cholesterol:protein molar 

ratio, or a 2.5 : 0.1 : 1 w/w ratio.  
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For the sample using 
13

C/
15

N labelled Phe 28 and Tyr 31 (BPV E5F and BPV E5Y), the same 

amount of protein was used as above but a much higher cholesterol content was tested. 

1.1 mL of 3.6 mg/mL BPV E5F and 1.5 mL of 2.6 mg/mL BPV E5Y were dissolved in TFE and 

mixed together at a 1:1 molar ratio (4 mg of each peptide for 8 mg total) before being 

combined with 5 mL of 4 mg/ mL DMPC (20 mg total) and 1.7 mL of 4 mg/mL 

cholesterol  in chloroform (7 mg total) to yield a 14  :  8.4  :  1 lipid:cholesterol:protein 

molar ratio and 2.5 : 0.8 : 1 w/w ratio.  

Lipid/cholesterol/peptide mixtures were mixed using a vortex mixer and lyophilized 

using a high vacuum line, and the resulting films were then kept under vacuum 

overnight in order to remove all traces of organic solvent. The films were resuspended in 

4 mL of buffer (20 mM sodium phosphate, 20 mM NaCl, 3 mM NaN3, pH 7.4) and 

sonicated briefly before being subjected to five rapid freeze thaw cycles to form 

proteoliposomes. 

 

2.7.4 Transfer of samples to solid state NMR rotor 

Proteoliposomes formed by either by detergent removal or co-solubilisation 

methods were then centrifuged at 19,000 rpm (45,000×g) for 30 minutes and the 

supernatant removed. To remove residual water, the pellets obtained were transferred 

to 1.5 mL microcentrifuge tubes (Beckman Coulter, High Wycombe, UK) and centrifuged 

again for an hour at 70,000 rpm (267,000×g) in an Optima™ TLX ultracentrifuge 

(Beckman Coulter).  The resulting gel-like, hydrated proteoliposomes were then 

transferred to 4 mm MAS rotors (Bruker) ready for solid state NMR measurements. 

 

2.8 Characterisation of proteoliposomes 

2.8.1 Circular Dichroism (CD) spectroscopy 

Circular dichroism (CD) is a spectroscopic technique that is commonly used to 

characterise the secondary structure of proteins. CD is used to measure the difference in 

absorbance of left and right-handed circularly polarised light in order to obtain a CD 

spectrum.  This spectrum can be compared to those obtained for -helical, -sheet, and 
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random coil proteins in order to estimate the secondary structure (Kelly and Price 2000; 

Bulheller, Rodger et al. 2007). CD experiments were carried out at room temperature 

(RT) (~25 ºC) using a Jasco J-815 spectropolarimeter (Jasco UK, Great Dunmow, Essex, 

UK) and 1 mm path-length quartz cuvettes (Starna; Optiglass Ltd., Hainault, UK) 

requiring a sample volume of 200 µL. Spectra were recorded in the far UV region 

between 190 and 260 nm, with a data pitch of 0.2 nm, a 1 nm bandwidth, 50 nm min
−1

 

scanning speed and a response time of 2 s.  

Samples for CD were typically prepared with a final peptide concentration of 

0.25 mg/mL in buffer (20 mM sodium phosphate, 20 mM NaCl, 3 mM NaN3, pH 7.4), and 

8 or 16 individual spectra were collected and averaged. In cases where the high tension 

[HT] voltage rose above 600 mV at wavelengths below 200 nm, indicating excessive light 

scattering and potentially unreliable results, the data were truncated to 200 nm. For 

each sample, a blank containing all sample constituents apart from the peptide was 

subtracted to obtain final spectrum. 

 

2.8.2 Attenuated Total Reflection Fourier Transform Infrared (ATR-

FTIR) spectroscopy 

Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) is 

a technique which is used to obtain an infrared spectrum of absorption, emission, 

photoconductivity or Raman scattering of membrane proteins in a lipid environment 

(Vigano, Manciu et al. 2000). A schematic of the ATR-FTIR experiment is given in Figure 

2.1. ATR-FTIR spectra were recorded on a Jasco FTIR-470 spectrometer equipped with a 

liquid nitrogen cooled MCT detector purged with dried compressed air. Stacked bilayers 

were used for ATR spectroscopy by pipetting 400 µL of proteoliposome suspension onto 

a trapezoidal zinc selenide (ZNSe) crystal (Specac, Orpington, Kent, UK) and dried under 

a stream of diffused nitrogen gas. Spectra were recorded between 4000-1000 

wavenumbers (cm
-1
) as an average of 1000 interferograms. A schematic of the ATR-FTIR 

experiment is given in Figure 2.2. An initial spectrum was recorded followed by 

deuterium exchange measurements, for which the stacked bilayers were then exposed 

to D2O saturated nitrogen gas over of the dried film. A spectrum was recorded 1 hour 

following exposure to D2O and a second measurement was taken 22 hours later.  
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From the spectra recorded, the amide I and II peaks from both the initial and 

D2O exposed spectra were compared by integration of the amide peaks using the 

GRAMS/AI software (Thermo Scientific). The ratio of the amide II to amide I peaks was 

calculated for each sample to account for sample swelling that can occur following 

exposure to D2O, which leads to a reduction in overall absorbance of the signal 

observed as described previously (Beevers, Damianoglou et al. 2010). Comparison of this 

ratio for measurements taken before and after D2O exposure enables the degree of 

peptide insertion to be calculated. To obtain secondary structure information, spectra 

were peak fitted using the GRAMS/AI software (Thermo Scientific) as described (Beevers 

and Kukol 2006). 

 

 

Figure 2.1 Schematic of ATR-FTIR setup  

In ATR-FTIR the proteoliposome sample is pipetted onto the top of an ATR crystal and 

allowed to dry to a film (green strip). This crystal is then placed into the FTIR spectrometer 

and an I.R beam is fired at the crystal. Internal reflection within the ATR crystal occurs and an 

evanescent wave that extends beyond the surface of the crystal into the sample is created. 

The sample absorbs energy which is then passed back into the IR beam, which exits the 

crystal and is collected by the detector to give an IR interferogram. 

 

 

2.8.3 Electron Microscopy (EM) 

Lipid vesicles were analysed using transmission electron microscopy (TEM) in order to 

check for vesicle formation or protein aggregation. Proteoliposome solutions prepared 

using the detergent removal method were diluted to a concentration of 0.04 mg/mL 

lipid to ensure sufficient physical separation of lipid vesicles observed. Typically 4 L of 

diluted (1 in 50) lipid solution was spotted onto a glow discharged Formvar-Carbon 

DetectorIR beam

Sample

ATR Crystal
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coated copper 300 mesh grid (Agar Scientific Ltd. Essex, UK) and incubated for 30 

seconds. Grids were stained six times with drops (10 l) of uranyl acetate solution, and 

residual stain was removed by blotting off excess staining solution between each step. 

Grids were then loaded into the transmission electron microscope (JEOL 1200 EXII) for 

visualisation.  

Negative stained vesicles were photographed using the microscopes CCD camera at 

varying levels of magnification in order to visualise lipid vesicle size, shape and sample 

uniformity and to see if any reconstitution conditions resulted in protein aggregation. 

 

2.9 Magic Angle Spinning (MAS) Solid state NMR 

spectroscopy 

2.9.1 Solid state NMR experimental procedure 

13
C cross polarisation (CP) magic angle spinning (MAS) NMR spectra were 

recorded on a wide bore Bruker Avance III 500 MHz solid state NMR spectrometer 

(Bruker, Karlsruhe, Germany) operating at 500.1 MHz for 
1
H, 125.7 MHz for 

13
C and 50.68 

MHz for 
15

N. The spectrometer was equipped with a 4 mm triple resonance magic angle 

spinning (MAS) probe (Bruker) running in double resonance mode for 
1
H/

13
C 

experiments and in triple resonance mode for 
1
H/

13
C/

15
N experiments. Samples were 

cooled with a Bruker BCU Xtreme unit to 258 K (-15°C) to reduce internal lipid motions, 

and the spinning frequency set to 8.5 kHz ± 5 Hz maintained by a Bruker BVT 3000 MAS 

controller unit. External 
13

C chemical shift referencing was carried out with respect to the 

carbonyl peak of natural abundance alanine (177.9 ppm) on the DSS scale (Morcombe 

and Zilm 2003; Harris, Becker et al. 2008). 
15

N referencing was carried out with respect to 

external 
15

N labelled histidine (46.4 ppm). Samples containing DMPC lipid vesicles 

containing 0 - 0.6 molar ratio cholesterol were prepared in order to study the lipid phase 

transition at experimental temperatures. 
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2.9.2 1D 31P/1H lipid NMR experiments 

Static wide line 1D 
31

P and MAS 
1
H spectra were recorded on a Bruker Avance II+ 

solid state NMR spectrometer (Bruker, Karlsruhe, Germany) operating at 599.40 MHz for 

1
H and 242.64 for 

31
P and equipped with a 4 mm triple resonance magic angle spinning 

(MAS) probe running in double resonance mode. For 
1
H MAS experiments the spinning 

speed was set to 5 kHz ± 5 Hz maintained by a Bruker MAS controller unit
 
. External 

31
P 

chemical shift referencing was carried out with respect to the phosphorous peak of 

adenosine di-hydrogen phosphate (ADP) (0.9 ppm) on the DSS scale and 
1
H referencing 

to Hα of natural abundance alanine (4.2 ppm). For 1D 
31

P experiments a standard Hahn 

Echo pulse sequence (Rance and Byrd 1983) was used with an echo delay of 50 µs and 

80 kHz two pulse-phase modulated (TPPM) proton decoupling during the 40 ms 

acquisition, and a recycle delay of 5 seconds for 256 co-added transients. Spectra were 

acquired using a π/2 (90º) pulse for excitation of 
1
H and 

31
P of 2.5 µs and 4 µs 

respectively. 
31

P spectra were acquired with 8k complex data points in F1 with a spectral 

window of 412 ppm, and data were Fourier transformed into 16k complex data points. 1D 

1
H spectra were recorded for 20k complex points in F1 using a single proton pulse for 128 

co-added transients with a 3 sec recycle delay with a spectral window of 834 ppm, data 

were Fourier transformed into 65k complex data points and EM line broadening of -1.0 

Hz was applied during processing. Spectra were recorded at temperatures ranging from 

253-298 K (20 - 25°C). 

 

2.9.3 1D 13C NMR experiments 

1D 
13

C spectra were recorded with a 10 ms acquisition time, with 1k complex data 

points in F1 for 1024 co-added transients, and a spectral window of 397 ppm. A 
1
H-

13
C 

cross polarisation (CP) at 73 kHz with a contact time of 1 ms was used, along with 100 

kHz proton decoupling during acquisition. Data were Fourier transformed into 65k 

complex data points and GM line broadening of 20 Hz was applied during processing. 

Unless otherwise stated, spectra were acquired using a 3 s recycle delay and a π/2 (90º) 

pulse for excitation of 
1
H and 

13
C of 2.5 µs and 4 µs respectively. 
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2.9.4 2D 13C-13C DARR NMR experiments 

Dipolar-assisted rotational recouping (DARR) spectroscopy (Takegoshi, Imaizumi 

et al. 2000) assists the spin diffusion process by using a combination of physical rotation 

of the sample and the application of continuous pulses on the proton channel during a 

mixing time (mix) to reintroduce homonuclear dipolar coupling that is normally 

averaged out by magic angle spinning, thereby allowing the observation of long range 

13
C-

13
C contacts at long mixing times.  In the DARR experiments, carbon magnetisation 

was produced by using a (50-100%) ramped proton CP pulse of 1 ms with RF field 

strengths of 100 kHz for 
1
H and 80 kHz for 

13
C and transferred using dipolar-assisted 

rotational resonance (DARR). Proton decoupling was performed during signal 

acquisition at ~100 kHz by using the SPINAL-64 (Fung, Khitrin et al. 2000) (small phase 

incremental alteration with 64 steps) method employed during signal acquisition 

periods of 10 ms in the direct dimension and 5 ms in the indirect dimension, with 

decoupling field strengths of approximately 83 -100 Hz. Experiments were conducted 

with a range of mixing times (typically 10 - 600 ms) in order to probe short and long 

distance spin interactions. All 2D 
13

C-
13

C DARR spectra were acquired with 994 complex 

data points in F2.  Measurements of the mixture of GpA peptides (GpAV & GpAG) were 

performed with 339 F1 increments and 308 co-added transients, while measurements of 

the doubly-labelled GpA (GpAVG) were performed with 120 increments in F1 and 112 co-

added transients. For all 2D DARR experiments the spectral window for F2 and F1 was set 

to 397 and 270 ppm respectively. The data were Fourier transformed to 4k (F2) × 2k (F1) 

and GM (Lorentz-Gauss) line broadening of 1.0 Hz in F2 and QSINE line broadening 

(SSB=0.3) applied. Spectra obtained were processed and analysed using Bruker Topspin 

2.1 software. Cross peak integrals (obtained from cross peak volumes in 2D spectra) 

were plotted against mix to obtain build-up curves of cross peak intensity for intra- and 

inter-helical correlations. 

 

2.9.5 2D 13C-15N NMR experiments 

In order to probe through-space carbon and nitrogen coupling between labelled 

amino acids at the GpA dimer interface, Transfer Echo DOuble Resonance (TEDOR) 

experiments were used (Fyfe, Mueller et al. 1992; Jaroniec, Filip et al. 2002). Experiments 

were conducted with a range of mixing times (typically 5-10 ms) in order to probe both 
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short and long-range spin interactions. All 2D 
13

C-
15

N TEDOR spectra were acquired with 

3k complex data points in F2 and 20 points in F1.  The spectral windows for F2 and F1 

were set to 397 and 49 ppm, respectively. Measurements of the mixture of GpA peptides 

(GpAV & GpAG) were acquired with 3840 co-added transients. The data were Fourier 

transformed to 4k (F2) × 128 (F1) and GM (Lorentz-Gauss) line broadening of -1.0 Hz in F2 

and QSINE (SSB =0.3) line broadening of 0.3 Hz applied. 

 

2.10 Solution NMR experiments 

2.10.1 Bicelle preparation 

Isotropic bicelles (Sanders and Schwonek 1992; Vold, Prosser et al. 1997) 

prepared from long chain phospholipids and short chain detergents were prepared for 

solution NMR studies as follows; 20 mg of 1,2-dihexanoyl-sn-glycero-3-phosphocholine 

(DHPC) was dissolved in 2 mL of TFE and 10 mg of DMPC in 1 mL of TFE to form 10 

mg/mL stock solutions for producing bicelles. For q = 0.25 bicelles, where 

q=[DMPC]/[DHPC – 15mM] (Vold, Prosser et al. 1997), 681 µL of DHPC in TFE was mixed 

with 380 µL of DMPC to prepare a lipid bicelle suspension. Bicelles with a q = 0.33 were 

prepared by combining 681 µL of DHPC and 500 µL of DMPC. Once the two components 

were mixed, TFE was evaporated off using a stream of nitrogen and samples were 

placed in a desiccator under high vacuum overnight in order to remove all traces of 

organic solvent. The resulting lipid film was then rehydrated in 1 mL of HEPES/TRIS 

buffer.  

For BPV E5V2 samples, 321 µL of purified peptide (4 mg/ mL) in TFE was pipetted 

into a glass vial. TFE was removed by a stream of nitrogen gas and the sample was 

placed in a desiccator under high vacuum overnight to remove all traces of organic 

solvent. To the resulting peptide film, 180 µL of q= 0.25 or q = 0.33 bicelles was added 

followed by brief sonication to resuspend the film and vortexing before being subjected 

to five freeze/thaw cycles (liquid nitrogen/40 °C water bath) to form bicelles with a final 

peptide concentration of 1 mM, a lipid to protein molar ratio of 30:1 (40:1 w/w) and a 

total amphiphile concentration of 2%. Samples were then transferred to 3 mm bore 

NMR tubes (Bruker) for analysis by NMR. 
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2.10.2 Solution NMR experimental procedure  

Solution NMR spectra were recorded on a Bruker Avance II 700 MHz solution 

state NMR spectrometer (Bruker, Karlsruhe, Germany) operating at 700.1 MHz for 
1
H, 

70.94 MHz for 
15

N and 176.04 MHz for 
13

C. The spectrometer was equipped with a 

cryoprobe (Bruker) running in triple resonance mode for 
1
H/

13
C/

15
N experiments. 

Experiments were typically run at 313 K (40 °C) using samples in 3 mM bore NMR tubes 

(Bruker). 
1
H chemical shift referencing was carried out with respect to water (4.7 ppm) on 

the DSS scale (Wishart, Bigam et al. 1995). Samples contained 10% D2O which was used 

to lock onto the spectrometer field during acquisition.  

 

2.10.3 1D 1H NMR spectroscopy 

1D 
1
H spectra were recorded with a 400 ms acquisition time, 1.25 s recycle delay, 

16 co-added transients, and a typically a 7.5 µs π/2 pulse for excitation of 
1
H with a power 

level of 5.9 dB. Spectra were acquired with 32k complex data points in F1 and a spectral 

window of 20 ppm. Data were Fourier transformed into 65k complex data points and 

GM line broadening of -0.2 Hz was applied during processing 

 

2.10.4 2D heteronuclear NMR spectroscopy 

2D 
1
H-

15
N heteronuclear single quantum coherence (HSQC) spectra (Schleucher, 

Schwendinger et al. 1994) were recorded with 2k data complex data points in F2, 64 

increments in F1, and 16 co-added transients per plane. A spectral width of 15 ppm in F2 

and 40 ppm in F1 was used. Spectra were recorded at a range of temperatures (25-50 

ºC), but typically 40 ºC was used. Spectra were acquired using a π/2 (90º) pulse for 

excitation of 
15

N of 2.5 µs and 4 µs with a power level of −1.30 dB, with 16.80 dB 
13

C 

decoupling. The raw data were Fourier transformed (2k (F2) × 256 (F1) complex data 

points) and QSINE line broadening (SSB =0.3) in both F2 and F1 applied before peak 

picking and subsequent analysis in Topspin 2.1 software. 
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2.10.5 3D heteronuclear NMR spectroscopy 

3D 
15

N edited 
1
H-

1
H-heteronuclear TOCSY-HSQC (Hwang and Shaka 1995) (TOtal 

Correlation SpectroscopY) experiments with spin lock times of 40, 60 and 70 ms were 

recorded to aid assignment of the backbone amide chemical shifts in BPV E5V2. 
15

N 

edited 
1
H-

1
H NOESY-HSQC (Nuclear Overhauser Effect SpectroscopY) experiments with 

mixing times of 20-300 ms were also recorded to investigate intra- and intermolecular 

interactions between peptide monomers. Spectra were acquired as pseudo-3D spectra 

with 2k data complex data points in F3, 256 increments in F1, and only one increment in 

F2.  The spectral widths for F3, F2 and F1 were set to 15, 40 and 15 ppm, respectively. A 

total of 256 co-added transients were acquired for HSQC-TOCSY experiments and 96 

co-added transients for HSQC-NOESY experiments. HSQC-TOCSY raw data was Fourier 

transformed into 2k (F3) × 1 (F2) x 512 (F1) complex data points and QSINE line 

broadening of SS1 Hz (F3) and 0.3 Hz (F2) applied. For HSQC-NOESY experiments, raw 

data was Fourier transformed into 2k (F3) × 1 (F2) x 256 (F1) complex data points and 

QSINE line broadening (SSB =1) (F3) and 0.3 Hz in F2 and F1 applied. Experiments were 

typically acquired at 40 °C and all 3D experimental data were processed in Bruker 

Topspin 2.1.  
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3 PEPTIDE DESIGN, 

PREPARATION AND 

CHARACTERISATION  

 

3.1 Introduction 

 

Membrane proteins can be extremely difficult to express in bacterial host systems 

and equally challenging to subsequently purify due to their inherent hydrophobic 

nature. As such, a commonly used strategy for studying small transmembrane proteins 

is the use of peptides, prepared synthetically using solid phase 9-fluorenylmethyl 

carbamate (Fmoc) chemistry, that have been derived from the transmembrane protein 

of interest but are much easier to produce for biological studies (Oates, Hicks et al. 

2008; Beevers and Dixon 2010; King, Oates et al. 2011) In this work, the structures of two 

membrane proteins have been investigated in a lipid environment using the above 

strategy, namely the major sialoglycoprotein found in the membrane of red blood cells 

(Glycophorin A, or GpA) and the product of the smallest known viral oncogene (the E5 

protein from bovine papillomavirus (Surti, Klein et al. 1998).  Both proteins are known to 

form strong -helical homodimers via protein-protein interactions in the 

transmembrane (TM) domain (Popot and Engelman 1990). GpA was selected to act as 

well-characterized “standard” that could be used to validate the sample preparation and 

experimental methods used in this work since it has been heavily studied in the past  

(Smith, Jonas et al. 1994; MacKenzie, Prestegard et al. 1997; Smith, Song et al. 2001) and 

a good deal of structural information exists for this protein.  The lessons learned from 

analysis of GpA were then been applied to study of the E5 protein, for which no three-

dimensional structure exists.    

3 
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3.2 Peptide design and purification for ssNMR analyses 

 The first step in designing the peptides used in this study was the 

incorporation of any existing information on the structures of the transmembrane 

homodimers into a molecular model for the system.  Any information about the 

secondary structure, residues that lie at the homodimer interface and residues that may 

interact with the lipid was incorporated into models of the GpA and E5 homodimers.  In 

the case of GpA, a solution NMR structure of the TM homodimer is available (PDB 

reference 1AFO, (MacKenzie, Prestegard et al. 1997)) and was used in this work, as shown 

in Figure 3.1. 

 

 

Figure 3.1 3D structure of the alpha-helical homodimer transmembrane Glycophorin A 

(GpA) 

3D structure of GpA  produced from pdb file (1AFO) (MacKenzie, Prestegard et al. 1997) 

deposited at the Protein Databank, structure obtained by solution NMR in DPC micelles, the 

transmembrane region is highlighted in orange. 

 

 Once a working model for the GpA TM homodimer was obtained, a synthetic 

peptide corresponding to the TM domain of human Glycophorin A, containing the 

sequence shown in Figure 3.1, was synthesised at the KECK Facility (Yale University, 
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USA).   Using synthetic peptides allows the incorporation of isotopically labelled amino 

acids in key positions (e.g. within the dimer interface) in the peptide.  For GpA, Val 80 

and Gly 83 have previously been reported to pack tightly at the GpA homodimer 

interface (Smith and Bormann 1995) which is also confirmed by the solution NMR 

structure, as shown in Figure 3.2 where this is highlighted. These residues have also 

been shown to be important in stabilisation of the dimer (MacKenzie, Prestegard et al. 

1997; Smith, Song et al. 2001), as mutation of Gly 83 to Ile results in a substantial 

decrease in GpA dimer formation (Lemmon, Flanagan et al. 1992; Lemmon, Treutlein et 

al. 1994). 

 

 

 

Figure 3.2 Ball and stick representation of the GpA homodimer interface 

3D model produced from solution NMR structure (1AFO, Mackenzie et al., 1997). Valine 80 

and Glycine 83 are both amino acids at the homodimer interface which have been shown to 

interact and pack tightly together at the dimer interface, and have been highlighted above. 
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Therefore uniformly labelled 
13

C/
15

N amino acids were inserted at positions Val 

80 and Gly 83 (GpAVG) (Figure 3.3) in synthetic peptides prepared for this study.  A 

number of GpA peptides were synthesised for this project as detailed in (Table 2.1, 

Chapter 2), containing U-
15

N/
13

C amino acids at one (GpAV & GpAG) or both (GpAVG) of 

the above named positions in the sequence. Peptides containing only one labelled 

amino acid per chain were mixed together and used to confirm that any interactions 

between labelled amino acids were fully attributable to inter-helical interactions as 

opposed to intra-helical interactions. 

 

 

 

 

 

 

Figure 3.3. Isotopically labelled GpA TM domain peptide sequences 

Uniformly labelled 
13

C/
15

N labelled amino acids in bold type 

 

In the case of the E5TM dimer, no three-dimensional structural data was available, 

since the structure has not been solved to date, so a model of the E5 homodimer was 

created (Figure 3.4) by using the CHI molecular dynamics software (Adams, Arkin et al. 

1995). The CHI software uses in vacuo computational modelling combined with 

molecular dynamics to search for energetically favourable inter-helical interactions by 

systematic rotation of the helices at varying degrees of crossing angle between the 

central plane of axis for each helix. During the search of interactions for TM domain 

dimers, the two helices were simultaneously rotated about their central axis in 30° 

increments from 0 to 360°. Molecular dynamic simulations are then used in order to 

produce a 3D model of the energy minimised homodimer of the E5TM protein based 

upon the amino acid sequence. 

 

GpAVG: KKITLIIFGV80MAG83VIGTILLISYGIKK 

GpAV: KKITLIIFGV80MAGVIGTILLISYGIKK 

GpAG: KKITLIIFGVMAG83VIGTILLISYGIKK 
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Figure 3.4 Molecular model of BPV E5 transmembrane protein generated from CHI 

Model of BPV E5TM putative homodimer interface. Amino acids at the dimer interface are 

indicated in stick form. Generated using the molecular modelling software CHI to produce an 

energy minimised structure of the homodimer using the peptide sequence supplied. Face on 

model to the left, rotation by 90° represented on the right. 

 

 

As with GpA, when deciding upon which amino acids to label at the proposed 

dimer interface, we chose to label only one amino acid per chain of the dimer. This way 

any interactions observed between the labelled amino acids could be fully attributed to 

an inter-helical interaction with no possibility of it arising through an intra-helical 

interaction. The CHI generated E5.pdb file was analysed in the molecular modelling 

software MOLMOL (Koradi, Billeter et al. 1996) in order to obtain a comprehensive list of 

intra and inter molecular distances between the individual carbon atoms in the E5 

homodimer (Table 3.1) to identify which amino acid pairings would be predicted to 

have the smallest inter-helical distances that would be observable by ssNMR. This list of 

distances, alongside previous knowledge of which amino acids are believed to lie at the 

dimer interface based upon mutagenesis data (DiMaio, Guralski et al. 1986) (Klein, Polack 

et al. 1998), were used to pick which amino acids to label. The only amino acids in E5 
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that (i) were at the interface (ii) had the shortest inter-helical distance pairings (< 5.5 Å) 

(iii) were economically viable to obtain with isotopic labels were leucine 24, 

phenylalanine 28 and tyrosine 31. Therefore three different peptides with 
13

C/
15

N 

uniformly isotopically labelled amino acids at these positions were synthesised. Due to 

the large number of leucines at dimer interface, there was a limited choice of amino acid 

sites that were available to label. Glutamine 17 which has been shown to be important in 

forming dimers (Klein, Polack et al. 1998) would be an ideal choice but due to the cost of 

ordering 
13

C/
15

N isotopically labelled glutamine it was not economically viable. 

 

Table 3.1 Table of the shortest inter-helical distance between amino acids at the E5 

dimer interface 

Intra-helical distances between labelled pairs are also indicated. Distances were measured 

between both chains of the BPV E5 homodimer (chain A and Chain B). Distances were 

measured from chain A-B and also from chain B-A with inter-helical distances coloured in 

green to red, for shorter to longer range interactions. Distances generated from CHI 

molecular model of BPV E5 using MOLMOL modelling software. 

 

 

Residues 

  

Inter (Å) Intra  (Å) 

A - B B - A Average  A-B B-A  Average 

24 Leu CD1 - Phe 28 

CG 
4.00 5.82 4.91 7.00 9.20 8.10 

24 Leu CD1 - Phe 28 

CD2 
3.66 5.50 4.58 7.80 9.90 8.85 

28 Phe CD1 - Tyr 31 

CD1 
4.93 3.98 4.46 7.70 8.80 8.25 

28 Phe CD1 - Tyr 31 

CE1 
4.89 3.82 4.36 8.50 8.90 8.70 

28 Phe CE1 - Tyr 31 

CD1 
4.49 3.71 4.10 8.80 9.10 8.95 

28 Phe CE1 - Tyr 31 

CE1 
4.08 3.19 3.64 9.60 10.10 9.85 

28 Phe CE1 - Tyr 31 

CZ 
5.19 3.51 4.35 10.70 11.30 11.00 

28 Phe CZ - Tyr 31 

CE1 
4.93 3.68 4.31 10.90 11.20 11.05 

28 Phe CZ - Tyr 31 

CZ 
5.87 3.75 4.81 11.90 12.44 12.17 
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Using these three peptides allowed for the possibilty to measure any inter-helical 

interactions from Phe 28 to both Leu 24 and Tyr 31(see Figure 3.5). The sequences of 

each peptide with respective isotopic labels are shown below in Figure 3.6. 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Isotopically labelled E5 TM domain peptide sequences 

 

 

E5L: KKKFLGLVAAMQLLLLLFL24LLFFLVYWDHK 

E5F: KKKFLGLVAAMQLLLLLFLLLFF28LVYWDHK 

E5Y: KKKFLGLVAAMQLLLLLFLLLFFLVY31WDHK 

Figure 3.5 Molecular model of selected E5 dimer interfacial regions generated using 

CHI 

Using the amino acid sequence a 3D model of the E5 homodimer was generated from 

which using the software MOLMOL amino acids with the shortest inter-helical distances 

with long intra helical distances were selected. Three sites were identified which were 

suitable for labelling and the following pairings were chosen; leucine 24 and 

phenylalanine 28 and phenylalanine 28 and tyrosine 31. Carbon atoms from the selected 

amino acids with the shortest distances are indicated. 
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The synthetic peptides chosen for this study were supplied as crude products 

and required further purification to remove unwanted contaminants such as truncated 

peptides and protecting groups left over from the synthesis process, and this was 

achieved using reversed-phase HPLC (RP-HPLC) (for details on the column and 

conditions used, see Section 2.4). Owing to their hydrophobic nature, these synthetic 

peptides can be difficult to purify as they can bind strongly to the stationary phase of a 

RP-HPLC column and may be very difficult to elute off.  This leads to broad unresolved 

peaks that lack clear baseline separation.  To minimise this effect, the conditions for 

peptide purification were optimised by changing the gradient of organic solvent that 

was used as the mobile phase and the flow rate at which the mobile phase was passed 

over the column when eluting purified peptides 

 Representative RP-HPLC chromatograms for both GpA and BPV E5 peptides are 

shown in Figure 3.7 and 3.8, respectively. For each peptide, the corresponding 

chromatograms were almost identical from run to run, irrespective of labelling, 

demonstrating the reproducibility.  As shown in Figure 3.7, a number of peaks were 

eluted during the linear isopropanol (IpOH)/H2O gradient phase and a single peak 

relating to purified GpA eluted during the isocratic phase of the run (mobile phase 

composed of 100% ACN or isopropanol) at 62 minutes. Figure 3.8 shows the 

chromatogram for the purification of E5 which eluted during the linear gradient of 

solvent B at 47 minutes. 
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Figure 3.7 Representative RP-HPLC chromatogram of crude GpA purification 

GpA peptide was purified by RP-HPLC using a Phenomenex Jupiter C4 column. Separation of 

crude peptide was monitored using a UV/Vis detector set to 280 nm (blue line). Crude 

peptide was purified by increasing the percentage of solvent B (IpOH) over time (green line) 

The peak at 62 minutes (indicated by *) corresponds to pure GpA peptide.   

 

Figure 3.8 Representative RP-HPLC chromatogram of crude BPV E5 purification 

BPV E5 peptide was purified by RP-HPLC using a Phenomenex Jupiter C4 column. Separation 

of crude peptide was monitored using a UV/Vis detector set to 300 nm (blue line). Crude 

peptide was purified by increasing the percentage of solvent B (IpOH) over time (green line) 

The peak at 47 minutes (indicated by *) corresponds to pure BPV E5 peptide. 
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Figure 3.9 RP-HPLC chromatogram of purified BPV E5 peptide 

BPV E5 peptide purified by RP-HPLC was re-injected onto a Phenomenex Jupiter C4 column 

in order to confirm purity. Purified peptide was run using the same conditions as crude 

peptide and the run monitored using a UV/Vis detector set to 300 nm (blue line).The peak at 

47 minutes (indicated by *) corresponds to pure BPV E5 peptide with no contaminant 

shoulder peaks. 

 

Fractions obtained from RP-HPLC believed to contain pure peptide were 

analysed using an electrospray ionisation (ESI) MicroTOF mass spectrometer (Bruker, UK) 

to confirm identity and purity. The purest fractions for a given peptide were pooled, and 

a final HPLC chromatogram (Figure 3.9) and mass spectrum was acquired before 

lyophilisation.  In the resulting mass spectra, multiple charge states of each peptide were 

observed and summarised in Table 3.2 for all peptides. These values correlate to +4, +3, 

+2 and +1 charge states, respectively, of the expected mass of purified GpA and BPV E5 

peptides. 
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Table 3.2 Summary of observed charge states for peptides used in this study analysed 

by ESI-MS 

List of all peptides purified and tested by ESI-MS to confirm peptide identity and purity. 

Table indicates the observed m/z charge states observed by ESI-MS for each peptide used in 

this study along with the predicted mass of each synthetic peptide. 

 

 

The mass spectra obtained suggest a difference in mass between observed and 

expected by an average of 2 Da. This difference can be accounted for by calibration of 

the mass spectrometer. The raw mass spectra also suggest some degree of impurity is 

present in the E5 peptide fractions, most likely consisting of deletion products arising 

from the solid phase synthesis of the peptides. A sodium (Na
+
) adduct is seen in the 

mass spectrum of GpA peptides, whilst the E5 peptides show no sodium adducts but 

appear to have minor peaks arising from deletion products arising from the synthesis 

process. Deconvoluted mass spectra for each of the peptides used in this study are 

shown in Figure 3.10 for GpA peptides and Figure 3.11 for BPV E5. 

 

Synthetic peptide +4 +3 +2 Observed 

mass (+1) 

Predicted 

mass 

GpA doubly labelled 735.96 980.94 1470.90 2940.10 2941.76 

GpA 
13

C/
15

N Val 80 735.20 979.92 1469.35 2936.78 2938.77 

GpA 
13

C/
15

N Gly 83 734.46 978.93 1467.85 2933.80 2934.47 

GpA unlabelled 733.91 978.07 --- 2931.20 2933.45 

BPV E5 
13

C/
15

N Leu 24 918.53 1224.36 1836.03 3669.09 3671.65 

BPV E5 
13

C/
15

N Phe 28 919.30 1225.39 1837.57 3672.34 3674.65 

BPV E5 
13

C/
15

N Tyr  31 919.10 1225.47 1838.19 3672.39 3674.65 

BPV E5 unlabelled 916.75 1222.00 --- 3662.00 3664.60 
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Figure 3.10 GpA Deconvoluted ESI-MicroTOF mass spectra 

Isotopic distribution of deconvoluted mass spectra obtained from Micro-TOF ESI-MS of 

fractions of RP-HPLC purified unlabelled GpA and U-
13

C/
15

N doubly labelled GpAVG and 

singly labelled GpAV and GpAG peptides.                                                                                                                                                                                                                                                                                                                                                                                                                                                       
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Figure 3.11 BPV E5 Deconvoluted ESI-MicroTOF mass spectra 

Isotopic distribution of deconvoluted mass spectra obtained from Micro-TOF ESI-MS of 

fractions of RP-HPLC purified unlabelled BPV E5 and U-
13

C/
15

N E5L, E5F and E5Y peptides 

 

Following lyophilisation, purified peptide was solubilised in TFE and the concentration 

was estimated using UV/Vis spectrometry and the Beer-Lambert law (Equation 1 in 

Methods, Section 2.6). The extinction coefficients were calculated using the amino acid 

sequence for each corresponding peptide and the ProtParam tool at the ExPASy website 

(http://expasy.org/) yielding values of 1490 mol
-1
 cm

-1
 for GpA peptides and 6990 mol

-1
 

cm
-1
 for BPV E5 peptides.  
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3.3 Reconstitution of GpA peptide into lipid vesicles 

In order to obtain structural information for the GpA and BPV E5 TM domain 

peptides in a lipid environment using solid-state NMR, the preparation of 

proteoliposomes was required. The choice of lipid to use in these studies was based on 

several ssNMR reports for small transmembrane proteins in the literature, with the most 

commonly used lipid being DMPC in a number of cases when studying small 

transmembrane peptides (Ketchem, Hu et al. 1993; Smith, Song et al. 2001; Wang, Kim et 

al. 2001; Cady, Mishanina et al. 2009).  However, a single component bilayer is not 

representative of a native bilayer, as biological membranes are typically composed of 

several different lipid types. The structure of the erythrocyte membrane in which GpA is 

located, is composed of up to 52% membrane proteins, 40% lipid bilayer and 8% 

carbohydrates (Smith 1987). The outer monolayer lipid composition of the bilayer 

consisting of uncharged Phosphatidyl choline (PC) and Sphingomyelin (SM) and the 

inner monolayer consisting of charged Phosphatidyl ethanolamine (PE) and 

Phosphatidyl serine (PS). In addition to these lipids unesterified cholesterol is also found 

between the bilayers, dictating membrane fluidity and permeability (Borochov, Abbott et 

al. 1979). Therefore, whilst in keeping with published literature DMPC was chosen for 

initial studies, in order to slowly move towards a more complex membrane environment, 

the decision was made to also add cholesterol to the lipid vesicles. Cholesterol is a major 

component of biological lipid membranes making up as much as 10-50 % of the total 

composition of the Golgi body and plasma membrane (van Meer, Voelker et al. 2008). At 

physiological temperatures, cholesterol intercalates between phospholipid tails causing 

the vesicles to become more rigid. This rigidification is believed to have a positive effect 

on NMR measurements due to the reduced internal Brownian motions of lipids and 

peptides embedded in the lipid bilayer, resulting in improved spectral resolution and 

better line shape. 

 Once the lipid composition was decided upon, the most suitable method for peptide 

reconstitution into the bilayer needed to be established.  Two basic methods for protein 

reconstitution into bilayers for structural studies were found in the literature at the time the 

project was started, and both were tested for the GpA TM peptide in this work.  The first 

method (which will be referred to as the Detergent Removal method) is based on the slow 

removal of detergent from a detergent-solubilised peptide/lipid solution using Bio-beads 
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(Rigaud, Levy et al. 1998; Rigaud and Lévy 2003). Bio-beads are small porous polystyrene 

beads that trap and selectively remove detergent from solution due to the size of the pores 

being large enough to only allow detergent molecules to enter.  Once trapped inside the 

bead, the hydrophobic effect prevents detergent release back into solution.  This slow 

removal of detergent molecules from solution drives the formation of lipid vesicles as the 

hydrophobic tails of the lipid molecules come together to form bilayers.  At the same time, 

the hydrophobic peptide partitions into the hydrophobic core of the newly-formed bilayer in 

order to maintain the non-polar environment it requires.  

3.3.1 CD for screening of detergents 

Due to the hydrophobic nature of the GpATM peptide, the most suitable 

detergent for solubilising GpA was screened that would promote the correct secondary 

structure (-helical) and oligomeric state (dimer) of solubilised peptide in order to 

facilitate correct insertion of peptide into lipid vesicles and to avoid any peptide 

aggregation. A number of different detergents were screened, namely β-D-

glucopyranoside (OG) a non-ionic detergent which was chosen due to its high CMC, 

allowing for efficient removal by Bio-beads, Dodecylphosphoglycol (DPG) a mild anionic 

detergent and n-Dodecyl β-D-maltoside (DDM) another non-ionic detergent similar to 

OG but with increased alkyl chain length and lower CMC.  Circular dichroism (CD) 

spectroscopy was then used to measure the secondary structure of the detergent 

solubilised peptide. CD is a simple biophysical technique for determination of secondary 

structure of proteins and peptides via the differential absorption of circularly polarised 

light. Figure 3.12 shows the CD spectrum obtained by solubilisation of GpA peptide in 

the organic solvent TFE which promotes alpha helicity through promoting hydrogen 

bonding.  The results of the detergent screen using CD are shown in Figure 3.13.  Using 

CD it was observed that, when solubilised in 20 DDM, the peptide took on a β-sheet 

secondary structure as evidenced by the peak at 217 nm, therefore DDM was 

discounted. Solubilisation in 20 mM DPC gave a slightly more α-helical spectrum, and 15 

mM OG co-solubilised in TFE gave the most α-helical spectrum out of all detergents 

tested as seen by the negative minima at 210 and 222 nm, slightly red shifted from the 

expected 208/222 nm minima for alpha helical proteins due to being embedded in a 

detergent environment.  
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Further analysis of the CD spectra was carried out by fitting the data obtained 

using the DichroWeb website (Whitmore and Wallace 2004; Whitmore and Wallace 

2008) using the K2D algorithm with reference set 4 (190-240 nm) the results of which are 

shown in Figure 3.14. These results indicated that OG was the best detergent for 

solubilisation of GpA peptide, with co-solubilisation of OG in TFE and peptide in TFE 

giving rise to an alpha helix content of 68% whilst OG alone gave 63% helicity. With DPC 

this figure dropped to 48% and out of the three detergents tested DDM gave the lowest 

value of 43% helicity and an increasing percentage of beta sheet structure suggesting 

that these two detergents were unsuitable for use in preparing GpA samples. OG also 

has the beneficial property of a high critical micelle concentration (23 mM), which allows 

for efficient removal by Biobeads and as such was the detergent we chose to use for 

preparing GpA samples for ssNMR.  
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Figure 3.12 CD spectra of GpA peptide dissolved in TFE 

CD spectrum recorded between 200-260 nm obtained by solubilising 0.25 mg of GpA 

peptide in TFE. Negative peaks at 208 and 220 nm indicate an α-helical structure of GpA.  

 

 

Figure 3.13 CD spectra of GpA peptide dissolved in varying detergents 

CD spectra recorded between 200-260 nm obtained by solubilising 0.25 mg of GpA peptide 

in varying detergents in sodium phosphate buffer. Negative peaks at 210 and 224 nm (red 

shifted in detergent environment) indicate an α-helical structure for GpA in detergent 

micelles in OG solubilised samples (green line). A single negative peak at 217 nm indicates a 

β-sheet structure for DDM (red line) 
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The second method (which will be referred to as the co-solubilisation method) 

substitutes an organic solvent such as trifluoroethanol (TFE), which can be easily and 

almost completely removed by lyophilisation, for detergent as the initial peptide and 

lipid solubilisation agent.  TFE also promotes helix formation for the GpA peptide 

(Figure 3.12). TFE-solubilised peptide and lipid are mixed, followed by removal of TFE by 

evaporation to form a film.  This film is then rehydrated in aqueous buffer, following 

which the rehydrated film is briefly sonicated resulting in the formation of small 

unilamellar vesicles (SUV). Once fully resuspended in buffer, the solution is then freeze 

thawed in a liquid nitrogen/water bath for several cycles. This freeze-thaw cycling causes 

the vesicles to fuse and form large multi lamellar (LMV) and giant unilamellar vesicles 

(GUV) containing inserted peptide. An overview of the process for proteoliposome 

formation using both the detergent removal and co-solubilisation methods is shown in 

Figure 3.15.  

Figure 3.14 Secondary structure analysis of CD data 

CD data recorded for GpA TM peptide solubilised in OG, TFE +OG, DDM and DPC were 

analysed using the DichroWeb website. Data was fit using the CDSSTR method and 

reference set 4 to give an estimation of the secondary structure content, alpha helix (blue), 

beta sheet (red) and random coil (green) content are shown for each of the detergents 

used.  
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Figure 3.15 Overview of reconstitution protocols 

DMPC lipid, OG detergent, GpA peptide and cholesterol were used to make ssNMR samples. 

For the detergent removal method, lipid and peptide were dissolved in detergent, which 

results in the formation of various micelles as shown above. Mixed micelles are produced 

upon mixing lipid and peptide together in detergent. To remove the detergent, Bio beads 

were added stepwise and samples agitated overnight at 4°C. The removal of detergent leads 

to the formation of proteoliposomes.  For the co-solubilisation method, lipid and protein 

were dissolved in TFE and cholesterol in chloroform, mixed   together and dried to a film 

before being resuspended in buffer to form proteoliposomes 

 

Resuspend in buffer 
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3.3.2 Electron Microscopy 

For samples prepared using the detergent removal method, the integrity of the 

vesicles formed was investigated using transmission electron microscopy (TEM).  TEM is 

a powerful technique that allows visualisation of microscopic structures on a nanometre 

scale, as such it is ideal for screening lipid vesicles. We used EM in order to directly 

visualise the proteoliposomes produced by the reconstitution method in order to 

ascertain if our conditions favoured insertion of peptide in liposomes or if they resulted 

in unwanted protein aggregation. Figure 3.16 below shows the observed images 

relating to the samples we prepared for solid state NMR from aliquots taken at various 

points during the reconstitution process. From the images obtained we can see that at 

the initial stage, whilst detergent is still present in the solution, small vesicles are formed 

(less than 100 nm). These small mixed detergent/lipid/peptide micelles increase in size as 

detergent is gradually removed upon stepwise addition of Biobeads, resulting in the 

formation of large proteoliposomes (>1000 nm) as shown in Figure 3.16 C. By directly 

viewing the proteoliposomes produced, we can see that the conditions used are likely to 

result in insertion of peptide into lipid vesicles. Previous experiments aimed at 

identifying ideal conditions (data not shown) identified conditions that resulted purely in 

peptide aggregation. Although the majority of the EM grid surveyed for the NMR 

sample contained liposomes, a small proportion contained what appears to be 

aggregated peptide/lipid (Figure 3.16 D).  However, from EM images alone it is difficult 

to know the composition of the aggregates observed. Following EM, further biophysical 

characterisation of the proteoliposomes produced was carried out.  

 

 

Figure 3.16 Images obtained by TEM using negative staining 

Samples relating to A) mixed micelles formed during initial stage of detergent removal, B) 

proteoliposomes produced upon full removal of detergent, C) large proteoliposome formed 

in the final sample and D) aggregation observed in final sample. Scale bar relates to size.  
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In order to confirm whether the reconstituted GpATM peptide had correctly 

folded into its native alpha-helical secondary structure when inserted into DMPC 

liposomes using each of the protocols summarised in Figure 3.15, we again used CD. A 

CD spectrum for an aliquot of proteoliposomes prepared for solid state NMR was 

collected before proteoliposomes were pelleted in the ultracentrifuge. As shown in 

Figure 3.17, the results obtained show a typical α-helical spectrum with negative 

maxima at 210 and 224 nm. This is a slight red shift from what is typically seen for α-

helices (208 and 222 nm) and can be attributed to the lipid environment in which the 

peptide is inserted (Oates, Hicks et al. 2008). As such the results obtained by the CD 

spectrum indicated a α-helical secondary structure for GpA reconstituted into lipid 

vesicles using the detergent removal method. 

 

 

Figure 3.17 CD spectrum of GpA proteoliposome solution obtained by Capillary CD 

A CD spectrum obtained using 5µl of GpA proteoliposome solution prepared using the 

detergent removal method for solid state NMR. Negative peaks at 210 and 224 nm (red 

shifted in lipid environment) indicate an α-helical structure of GpA in the lipid bilayer. Light 

scattering from the sample results in unreliable data below 205 nm, as such the negative 

peak at 200 nm is an artefact of this light scattering.   
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GpA samples prepared for ssNMR using the co-solubilisation method were also 

tested by CD to determine secondary structure (Figure 3.18). The sample prepared by 

this method showed an improvement in the spectra obtained due to an increase in 

alpha helical content from 59 to 63% as indicated by fitting the CD spectra obtained 

using DichroWeb, as such suggested an improvement over using the detergent removal 

method for sample preparation. 

 

 

Figure 3.18 CD spectrum of GpA proteoliposome solution prepared using the co-

solubilisation method 

Negative peaks at 210 and 224 nm (red shifted in lipid environment) indicate an α-helical 

structure of GpA in the DMPC lipid bilayer. Light scattering from the sample results in 

unreliable data below 200nm. 

 

3.3.3 ATR-FTIR analysis of reconstituted peptides 

Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) 

was also used to confirm the secondary structure and insertion of GpATM into DMPC 

lipid bilayers for samples prepared for ssNMR by the detergent removal method. ATR-

FTIR is a well-established technique for assessing secondary structure and orientation of 

TM domains in stacked lipid bilayers (see section 2.8.3). The amide I and amide II bands 
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that link amino acid residues within a peptide have characteristic absorption 

wavelengths based on the amide I C=O bond stretching and amide II N-H bending 

(Herrebout, Clou et al. 2003). From the spectrum obtained in Figure 3.18, for GpA 

samples prepared using the detergent removal method, the position of the Amide I 

peak at 1680 cm
-1
 indicates the GpATM peptide has β-sheet secondary structure while the 

presence of a peak at 1650 cm
-1 

also indicates α-helical secondary structure in the 

peptide inserted in DMPC liposomes. GpA samples prepared by the co-solubilisation 

method were also analysed by FTIR as seen in Figure 3.19 in order to compare the two 

sample preparation methods.  Using co-solubilisation appeared to give better signal to 

noise in the spectrum obtained in comparison to the sample prepared by the detergent 

removal method. The Amide I peak was centred on 1630 cm
-1 

which again would indicate 

some β-sheet secondary structure. Due to high amount of noise in the data obtained 

these peaks cannot be correctly fitted in order to gain a more quantitative result as to 

the percentage helicity and beta sheet structure. This is an issue that has consistently 

been observed for the GpA peptide, as repeating experiments did not seem to improve 

the data and the peptide has also been shown to give poor results when using other 

techniques such as CD in comparison to other hydrophobic peptides.  

Using FTIR we can also assess the insertion of peptide into bilayers, by monitoring 

changes in the Amide II peak upon exposure to deuterium oxide.  When dissolved in 

water, hydrogen atoms attached to the amide nitrogen can exchange with those 

attached to water molecules, however if the protein is inserted into a membrane this 

exchange is very slow or does not occur. By exposing the dried proteoliposome film to 

D2O saturated nitrogen gas, we can monitor any exchange that occurs by observing the 

magnitude of the Amide II peak at 1550 cm
-1
 over a period of time.  If the amide 

hydrogens exchange with deuterium, the wavelength of absorption changes (due to the 

increased mass of deuterium) and the Amide II peak will shift.   

Both methods of sample preparation resulted in peptides that appear to be 

inserted into lipid bilayers. This can be seen in Figures 3.19 and 3.20 from the initially 

recorded spectrum (blue solid line) which was then followed by the recording of a 

second spectrum (indicated by the green line) which shows that there was no change in 

the intensity of the Amide II band after exposing the sample to D2O for over 22 hours, 
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suggesting that there was no exchange and the GpATM peptide is fully inserted into the 

lipid membrane and therefore protected from deuterium exchange. 

 

 

Figure 3.19 FTIR spectrum of the GpA peptide in DMPC liposomes containing 5% 

cholesterol prepared using the detergent removal method 

The blue line represents the initial recorded spectrum, and the green line was recorded 22 

hours after exchange with D2O by passing saturated nitrogen gas over the sample in a sealed 

chamber. The position of the Amide I peak at 1680 cm
-1
 (green arrow) indicates β-sheet 

secondary structure, the presence of a peak at 1650 cm
-1
 (red arrow) also suggests some α-

helix secondary structure. The magnitude of the Amide II peak at 1550 cm
-1
 (purple arrow) 

after 22 hours of D2O exposure indicated complete bilayer insertion. 
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Figure 3.20 FTIR spectrum of the GpA peptide in DMPC liposomes containing 5% 

cholesterol prepared using the co-solubilisation method 

The solid blue line represents the initial recorded spectrum, and the green line was recorded 

22 hours after exchange with D2O. The position of the Amide I peak at 1630 cm
-1
 (green 

arrow) indicates some β-sheet secondary structure, and the magnitude of the Amide II peak 

at 1550 cm
-1
 (purple arrow) after 22 hours of D2O exposure indicated complete bilayer 

insertion. 

 

Using the results described thus far for the reconstitution of the GpA peptide 

into bilayers, it was decided that the co-solubilisation method produced samples 

containing helical peptides fully inserted in lipid bilayers without requiring the much 

longer sample preparation times and increased beta sheet content that appeared to 

occur with the detergent removal method as evident also by a comparison of 1D 
13

C 

spectra obtained using the detergent removal method and the co-solubilisation method  

Figure 3.21 shows an improvement in the overall homogeneity of the sample prepared. 

The secondary species observed in the sample prepared using detergent removal 

method were significantly reduced in the samples produced by co-solubilisation, and 
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the signal to noise was also improved. Therefore, the co-solubilisation method was also 

used for BPV E5 samples. 

 

 

 

 

 

 

 

 

 

 

 

3.3.4 Co-solubilisation of E5 peptides 

For E5, samples prepared using this method were also tested by FTIR to confirm 

that the samples were suitable for further analysis by ssNMR. As seen in Figure 3.22, E5 

samples prepared using the co-solubilisation method also resulted in the formation of 

liposomes with alpha helical peptides as indicated by the Amide I peak at 1650 cm
-1
, 

although this peak has a slight shoulder at 1675 cm
-1
 which also has a contribution to 

the Amide I region. This shoulder can be attributed to residual trifluroacetic acid (TFA) 

from the peptide purification process that interferes with this result, as is evidenced by 

the reduction in this peak following exposure to D2O saturated nitrogen gas. From the 

area beneath the Amide II peak the insertion of E5 into DMPC liposomes can be 

Figure 3.21 1D 
13

C spectra obtained from samples prepared by detergent removal (blue) 

and co-solubilisation (red) 

1D 
13

C spectra obtained from samples prepared by detergent removal (blue) and co-

solubilisation (red) with a 2:1 (w/w) LPR. Peaks from labelled valine and glycine carbon atoms 

are indicated, peaks arising from secondary species indicated with *, DMPC lipid peaks 

indicated by green dots. 
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calculated. It can been seen that the Amide II peak does not shift position following 22 

hours of exposure to D2O but the magnitude of the peak does decrease, as does that of 

the overall spectrum. This decrease in overall intensity can be attributed to sample 

swelling. To account for sample swelling the ratio of the area beneath the Amide II peak 

can be normalised to that of the area beneath the Amide I peak, any decrease in this 

ratio following D2O exchange would suggest that the peptide was not fully inserted and 

exchange with deuterium was occurring. For BPV E5 the initial AAmideII:AAmideI ratio at 0 

hours was 0.53, after 22 hours this ratio was 0.25, this represents a value of 52.8% 

exchange. This value may have been affected by the presence of the TFA shoulder to the 

Amide I peak, making integration difficult resulting in a higher apparent exchange value. 

 

 

Figure 3.22 FTIR spectrum of the E5TM peptide in DMPC liposomes prepared using the 

co-solubilisation method 

The blue line represents the initial recorded spectrum, and the green line was recorded 22 

hours after exchange with D2O saturated nitrogen passed over the sample in a sealed 

chamber. The position of the Amide I peak at 1650 cm
-1
 (green arrow) indicates α-helical 

secondary structure, and the ratio of the magnitude of the Amide II peak at 1550 cm
-1
  

(purple arrow) to Amide I after 22 hours of D2O exposure indicated bilayer insertion with 

some exchange. 
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In order to further confirm whether the reconstituted BPV E5 peptide had 

correctly folded into its native alpha-helical secondary structure when inserted into 

DMPC liposomes, we again used CD spectroscopy. A CD spectrum for an aliquot of 

proteoliposomes prepared for solid state NMR was collected before proteoliposomes 

were pelleted in the ultracentrifuge. As shown in Figure 3.23, the results obtained show 

a typical α-helical spectrum with negative maxima at 210 and 224 nm. This is a slight red 

shift from what is typically seen for α-helices (208 and 222 nm) and can be attributed to 

the lipid environment in which the peptide is inserted. As such the results obtained by 

CD spectroscopy indicated a predominantly α-helical secondary structure for BPV E5 

reconstituted into lipid vesicles.  

 

 

Figure 3.23 CD spectrum of BPV E5 proteoliposome solution prepared for solid state 

NMR using the co-solubilisation method 

Negative peaks at 210 and 224 nm (red shifted in lipid environment) indicate an α-helical 

structure of GpA in the lipid bilayer. Light scattering from the sample results in unreliable 

data below 205 nm, as such the negative peak at 200 nm is an artefact of this light 

scattering.   
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3.4 Summary 

In this chapter, results are presented for two methods which were used to prepare 

proteoliposome samples for ssNMR. The two methods tested were (i) a well-established 

detergent removal method (Rigaud, Levy et al. 1998) and (ii) a method based upon co-

solubilisation using organic solvents. Both methods were tested, but initially samples 

were prepared using the more popular detergent removal method.  

The detergent removal method was, at the start of this study one of well-

established method for reconstitution of membrane proteins into lipid vesicles and 

currently is still a popular method when expressing membrane proteins, which typically 

require that they be detergent solubilised in order to extract them from cell membranes. 

Typically the detergent removal method utilises some form of dialysis in order to 

remove detergent molecules from solution resulting in the formation of lipid vesicles 

into which hydrophobic peptides partition. This can be done using dialysis membranes, 

but the small volumes used in such sample preparations make this method difficult and 

as such Bio-beads can be used. Bio-beads also result in faster detergent removal, 

thereby cutting down the time required to produce samples. 

Bio-beads were used to prepare samples for ssNMR when using the detergent 

removal method which was optimised in a number of ways such as the stepwise 

addition of Bio-beads in order to more slowly remove detergent and produce well 

formed proteoliposomes. Proteoliposomes formed in this manner were then 

characterised using a number of bio-physical techniques such as CD and FTIR, as well as 

electron microscopy (EM) in order to confirm the insertion and fold of peptides 

reconstituted into lipid vesicles and to ensure the conditions used did not result in 

aggregation of peptides. From the bio-physical characterisation it was seen that whilst 

the ssNMR samples prepared using the detergent removal method resulted in peptides 

that were inserted into lipid vesicles, and the majority of peptide reconstituted into 

proteoliposomes was α-helical there was also a small population of peptide that was 

incorrectly folded into β-sheet form. This beta sheet population was likely due to 

aggregation of peptide as a result of the detergent removal process as it was less visible 

in earlier steps of the reconstitution process. The most likely explanation would be the 

aggregates form due to the cholesterol interactions in the sample, as unlike the other 
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components of the solution was much harder to solubilise. This was also seen to 

manifest itself in the form of a secondary species resulting in a second set of ssNMR 

signals suggesting a second chemical environment for the peptide. Therefore, another 

method for sample preparation was investigated. 

Using the co-solubilisation method we prepared samples by solubilising 

lipid/cholesterol and peptide in organic solvent, which was then fully removed, followed 

by resuspension in buffer to form proteoliposomes. Just as with samples prepared by 

the detergent removal method, the samples prepared by co-solubilisation were also 

characterised using CD, FTIR and NMR spectra. Samples prepared with this method 

showed an improvement in the form of a reduced beta-sheet population by CD 

spectroscopy and improved overall spectral quality by FTIR spectra although the results 

for GpA from FTIR suggested that both methods resulted in the formation of a β-sheet 

secondary structure. It has been shown that CD is more sensitive to alpha helical 

secondary structure than FTIR and this could explain why CD indicates that the co-

solubilisation method lead to an increase in helical content. This improvement in 

reduction in β-sheet secondary species in samples produced using the co-solubilisation 

method when compared to GpA samples prepared by the detergent removal method, 

was most evident when analysing each sample by ssNMR. From 1D 
13

C experiments (see 

Chapter 4, Section 4.2) it could be seen that samples prepared using the co-

solubilisation method resulted in improved signal to noise and a much reduced β-sheet 

secondary species. 

The co-solubilisation method not only resulted in more homogenous samples 

with improved secondary structure but also resulted in a lower loss of peptide from the 

sample as seen with the detergent removal method, which due to having to decant bio-

beads from resuspended solution also appeared to result in loss of sample. Overall the 

co-solubilisation method was found to be a much simpler sample preparation method 

to use and was the method of choice for the preparation of BPV E5 and GpA ssNMR 

samples. 

 

 

 



Chapter 3: Peptide design, preparation and characterisation 

 

 

P a g e | 92  

 

 

3.5 References 

Adams, P. D., I. T. Arkin, D. M. Engelman and A. T. Brunger (1995). "Computational 

searching and mutagenesis suggest a structure for the pentameric 

transmembrane domain of phospholamban." Nat Struct Biol 2(2): 154-162. 

Beevers, A. J. and A. M. Dixon (2010). "Helical membrane peptides to modulate cell 

function." Chem Soc Rev 39(6): 2146-2157. 

Borochov, H., R. E. Abbott, D. Schachter and M. Shinitzky (1979). "Modulation of 

erythrocyte membrane proteins by membrane cholesterol and lipid fluidity." 

Biochemistry 18(2): 251-255. 

Cady, S. D., T. V. Mishanina and M. Hong (2009). "Structure of amantadine-bound M2 

transmembrane peptide of influenza A in lipid bilayers from magic-angle-

spinning solid-state NMR: the role of Ser31 in amantadine binding." J Mol Biol 

385(4): 1127-1141. 

DiMaio, D., D. Guralski and J. Schiller (1986). "Translation of open reading frame E5 of 

bovine papillomavirus is required for its transforming activity." Proc Natl Acad 

Sci U S A 83(6): 1797-1801. 

Herrebout, W., K. Clou, H. Desseyn and N. Blaton (2003). "Vibrational characterization of 

the peptide bond." Spectrochim Acta A Mol Biomol Spectrosc 59(1): 47-59. 

Ketchem, R. R., W. Hu and T. A. Cross (1993). "High-resolution conformation of 

gramicidin A in a lipid bilayer by solid-state NMR." Science 261(5127): 1457-1460. 

King, G., J. Oates, D. Patel, H. A. van den Berg and A. M. Dixon (2011). "Towards a 

structural understanding of the smallest known oncoprotein: investigation of the 

bovine papillomavirus E5 protein using solution-state NMR." Biochim Biophys 

Acta 1808(6): 1493-1501. 

Klein, O., G. Polack, T. Surti, D. Kegler-Ebo, S. Smith and D. DiMaio (1998). "Role of 

glutamine 17 of the bovine papillomavirus E5 protein in platelet-derived growth 

factor beta receptor activation and cell transformation." J Virol 72(11): 8921-8932. 

Koradi, R., M. Billeter and K. Wuthrich (1996). "MOLMOL: a program for display and 

analysis of macromolecular structures." J Mol Graph 14(1): 51-55, 29-32. 

Lemmon, M. A., J. M. Flanagan, H. R. Treutlein, J. Zhang and D. M. Engelman (1992). 

"Sequence specificity in the dimerization of transmembrane alpha-helices." 

Biochemistry 31(51): 12719-12725. 

Lemmon, M. A., H. R. Treutlein, P. D. Adams, A. T. Brunger and D. M. Engelman (1994). "A 

dimerization motif for transmembrane alpha-helices." Nat Struct Biol 1(3): 157-

163. 

MacKenzie, K., J. Prestegard and D. Engelman (1997). "A transmembrane helix dimer: 

structure and implications." Science 276(5309): 131-133. 

Oates, J., M. Hicks, T. R. Dafforn, D. DiMaio and A. M. Dixon (2008). "In vitro dimerization 

of the bovine papillomavirus E5 protein transmembrane domain." Biochemistry 

47(34): 8985-8992. 

Popot, J. and D. Engelman (1990). "Membrane protein folding and oligomerization: the 

two-stage model." Biochemistry 29(17): 4031-4037. 

Rigaud, J. and D. Lévy (2003). "Reconstitution of membrane proteins into liposomes." 

Methods Enzymol 372: 65-86. 

Rigaud, J. L., D. Levy, G. Mosser and O. Lambert (1998). "Detergent removal by non-polar 

polystyrene beads - Applications to membrane protein reconstitution and two-

dimensional crystallization." European Biophysics Journal with Biophysics Letters 

27(4): 305-319. 



Chapter 3: Peptide design, preparation and characterisation 

 

 

P a g e | 93  

 

 

Smith, J. E. (1987). "Erythrocyte membrane: structure, function, and pathophysiology." 

Vet Pathol 24(6): 471-476. 

Smith, S. and B. Bormann (1995). "Determination of helix-helix interactions in 

membranes by rotational resonance NMR." Proc Natl Acad Sci U S A 92(2): 488-

491. 

Smith, S., R. Jonas, M. Braiman and B. Bormann (1994). "Structure and orientation of the 

transmembrane domain of glycophorin A in lipid bilayers." Biochemistry 33(20): 

6334-6341. 

Smith, S., D. Song, S. Shekar, M. Groesbeek, M. Ziliox and S. Aimoto (2001). "Structure of 

the transmembrane dimer interface of glycophorin A in membrane bilayers." 

Biochemistry 40(22): 6553-6558. 

Surti, T., O. Klein, K. Aschheim, D. DiMaio and S. Smith (1998). "Structural models of the 

bovine papillomavirus E5 protein." Proteins 33(4): 601-612. 

van Meer, G., D. R. Voelker and G. W. Feigenson (2008). "Membrane lipids: where they 

are and how they behave." Nat Rev Mol Cell Biol 9(2): 112-124. 

Wang, J., S. Kim, F. Kovacs and T. A. Cross (2001). "Structure of the transmembrane 

region of the M2 protein H(+) channel." Protein Sci 10(11): 2241-2250. 

Whitmore, L. and B. A. Wallace (2004). "DICHROWEB, an online server for protein 

secondary structure analyses from circular dichroism spectroscopic data." 

Nucleic Acids Res 32: W668-W673. 

Whitmore, L. and B. A. Wallace (2008). "Protein secondary structure analyses from 

circular dichroism spectroscopy: Methods and reference databases." 

Biopolymers 89(5): 392-400. 

 



Chapter 4: ssNMR analysis of reconstituted GpA 

 

P a g e | 94  

 

 

4 SOLID STATE NMR 

ANALYSIS OF 

RECONSTITUTED GPA 

4.1 Introduction 

The first section of this chapter describes the use of the doubly labelled GpA 

peptide initially used for study by solid-state NMR (ssNMR), and a comparison between 

the sample preparation methods used in order to produce samples for ssNMR. Initial 

one- and two-dimensional data were used to determine whether through space 

couplings could be observed between the labelled amino acids and identify some of the 

challenges involved in sample preparation. Following this, the use of singly labelled 

peptides and the rationale behind this method is described, in addition to further 

evidence for the observation of through space inter-helical interactions between 

labelled amino acids. Finally some preliminary data making use of isotopically labelled 

nitrogen atoms obtained using z-filtered TEDOR experiments are also presented. 

GpA was selected as a model transmembrane peptide to compare sample 

preparation methods developed for studying small transmembrane peptides in lipid 

environments. GpA was chosen since it has been well characterised by solution NMR 

(with a 3D structure already deposited at the protein databank (pdb file: 1AFO, 

(MacKenzie, Prestegard et al. 1997)) and also by ssNMR (Smith, Jonas et al. 1994; Smith, 

Song et al. 2001; Smith, Eilers et al. 2002). This makes GpA ideal for use as a model 

system for our ssNMR experiments and also allows us to exploit the strategy of using 

synthetic peptides for this study. Synthetic peptides allow for the selective uniform 

labelling of individual amino acids at key positions in the GpA peptide, and the 

interaction of these labelled amino acids upon dimerisation of the peptides in lipid 

vesicles can be studied by ssNMR.  

Due to the inherent broadness of peaks in solid state NMR, the uniform isotopic 

labelling of amino acids in protein samples (especially those studied in fully hydrated 

4 
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lipid bilayers) is less commonplace due to the spectral crowding that occurs, making 

assignment of resonances difficult. The problem of spectral crowding is often combated 

by the use of 1, 3 
13

C labelled glucose in the case of expressed membrane proteins. This 

yields specific amino acid labelling patterns which, when used in conjunction with 

various 3D experiments (NCOCX, NCACX etc.), makes the assignment process easier 

(Higman, Flinders et al. 2009). Our aim was to use selective labelling at a TM homodimer 

interface in order to observe through space couplings between chosen amino acids, 

thereby reducing spectral crowding. To test this method, we used the well characterised 

membrane protein GpA to see if we could observe interactions between those amino 

acids predicted to lie at the dimer interface as previously published (MacKenzie, 

Prestegard et al. 1997; Smith, Song et al. 2001). The rationale behind selecting the amino 

acids to label is given in the previous chapter (Chapter 3.1.1). Once a working protocol 

was established for studying small transmembrane proteins in this manner, we hoped to 

apply the same labelling techniques to the Bovine Papillomavirus E5 protein for which 

no current 3D or atomic structure currently exists. 

 

 

4.2 13C NMR of doubly labelled GpAVG peptide reconstituted 

using the detergent removal method 

Magic angle spinning (MAS) solid state NMR ( MAS ssNMR) was used to study the 

structure of the homodimeric GpATM peptide in a lipid bilayer environment, using a 

peptide (GpAVG) corresponding to the TM region of GpA into which uniformly 
13

C and 

15
N-labelled valine 80 and glycine 83 (Figure 4.1) residues were incorporated.  This 

peptide was reconstituted into DMPC lipid vesicles using the detergent removal method 

as described in the Chapter 2 Methods section. 2.7.2. Solid state NMR is advantageous 

as it allows the study of membrane proteins in a “native-like” lipid environment, unlike 

solution NMR which most commonly makes use of detergent micelles for solubilisation 

of hydrophobic membrane proteins. These micelles, due to their spherical shape and 

small diameter, can cause curvature stress to the embedded transmembrane protein 

resulting in distortion of the membrane protein structure. For systems that yield spectra 

containing few peaks (such as selectively-labelled peptide), one-dimensional (1D) NMR 
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can be used to gain initial structural information about the environment of labelled 

amino acids through measurement of chemical shifts.  

 

 

 

 

 

 

 

 

 

 

4.2.1 1D 13C ssNMR spectra of doubly labelled (GpAVG) peptide  

One-dimensional 
13

C NMR measurements were used to gain chemical shift 

information for the GpA peptide in DMPC lipid bilayers for each of the labelled amino 

acids valine 80 and glycine 83. Due to the inherent low sensitivity of solid state NMR, 

cross polarisation (CP) is a technique that is used to transfer magnetisation from highly 

abundant nuclei with a high gyromagnetic ratio (e.g. 
1
H) to a less abundant nucleus with 

a lower gyromagnetic ratio (e.g. 
13

C) in order to increase sensitivity and obtain better 

signal-to-noise ratios for the low abundance nuclei. The CP experiment uses Hartmann-

Hahn matched RF pulses in order to transfer magnetisation. A 1D 
13

C MAS ssNMR 

spectrum of the GpAVG sample obtained using a cross polarisation (CP) experiment is 

shown in Figure 4.2. All experiments were carried out at low temperature (−15 ºC) 

where DMPC is in the gel phase (Needham and Evans 1988) so that internal motions 

within the protein, such as side-chain dynamics are reduced to a minimum in order to 

improve line widths and to allow for efficient polarisation transfer. (Abdine, Verhoeven 

et al. 2010) 

Valine Glycine 

Figure 4.1 Chemical structure of valine and glycine.  

Chemical structures of U-
13

C/
15

N labelled valine and glycine are shown, with isotopically 

labelled carbons and nitrogens indicated in colour. 
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Figure 4.2 1D proton-decoupled 
13

C CP-MAS spectrum of doubly labelled GpAVG in 

DMPC liposomes prepared using the detergent removal method 

Doubly labelled GpAVG sample prepared using the detergent removal method (as described 

in Chapter 2.7.2). Spectrum recorded at 500 MHz with 8.5 kHz MAS at 258 K (−15 ºC) for 

1024 co-added transients. Resonances arising from U-
13

C labelled valine and glycine are 

labelled accordingly with resonances arising from a secondary species labelled in red. 

Resonances arising from natural abundance 
13

C lipid are indicated by red circles (•). 

 

In the 1D 
13

C spectrum of GpA, in addition to resonances arising from labelled 

amino acids we can observe a number of resonances which arise from the large number 

of DMPC lipid molecules in the sample which result from natural abundance 
13

C. As such 

a natural abundance 
13

C spectrum of a DMPC and 5% cholesterol only, sample was 

recorded (Figure 4.3) and the resonances observed, assigned based on previously 

reported chemical shifts for DMPC (Lee and Griffin 1989) (summarised in Table 4.1).  

 The 
13

C chemical shifts of added cholesterol in the sample were undetermined, 

but due to the low concentration of cholesterol present in the sample, any contribution 

was deemed too small to be visible in the obtained spectra. 
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Figure 4.3 1D proton-decoupled 
13

C CP-MAS spectrum of DMPC with 5% cholesterol 

Spectrum of natural abundance 
13

C signals from DMPC liposomes containing 5% cholesterol. 

Recorded at 500 MHz with 11 kHz MAS at 258 K (25 ºC). A CP contact time of 750 µs was 

used, a 2.5 second recycle delay with 100 kHz proton decoupling during acquisition was 

applied and 512 co-added transients recorded. −1.00 Hz GM line broadening was applied 

before Fourier transformation. Chemical structure of DMPC is shown in the inset. 
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Table 4.1 List of previously assigned dimyristoyl-sn-phosphatidylcholine (DMPC) 

resonances 

13
C DMPC chemical shift data as assigned from previously published experimental data on 

DMPC only lipid bilayers studied by MAS ssNMR (Lee and Griffin 1989). 

 

 

 

 

 

 

 

 

 

 

 

 

 

The resonances arising from U-
13

C labelled valine and glycine within the GpA 

sample were assigned using published average chemical shift values for valine and 

glycine as found at the Biological Magnetic Resonance Databank (BMRB) 

http://www.bmrb.wisc.edu/ (Ulrich, Akutsu et al. 2008). The corresponding Cα, Cβ, 

Cγ1/Cγ2 and CO chemical shifts for 
13

C labelled carbon atoms in valine and CO and Cα 

for glycine incorporated into the GpA peptide, (given in Table 4.2) were found to match 

well with those values published at the BRMB. Whilst resonances observed arising from 

DMPC appeared as sharp peaks (typically 0.6-1.5 ppm/83-194 Hz peak width at half 

height), due to the fast internal Brownian motions of the lipid molecules (Saffman and 

Delbruck 1975), resonances arising from the labelled amino acids were observed to be 

broader in general (typically 1.2-2.6 ppm/152-337 Hz peak width at half height). Due to 

Assignment 
13

C chemical shift (ppm) 

R-CH3 14.84 

C13 methylene 24.11 

C3 methylene 26.07 

-(CH2)n- 31.44 

C12 methylene 33.39 

C2 methylene 35.34 

R-N(CH3)3 55.36 

α-methylene 60.73 

c1/c3-glycerol 64.15 

β methylene 67.08 

C2-glycerol 71.86 

C=O (carbonyl) 174.50 
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the broadness of these peaks, some of the resonances had considerable overlap.  For 

example, the valine and glycine carbonyl carbon atoms and the valine Cγ1/2 carbons 

were unresolvable as single peaks and rather gave just a single peak with a slight 

shoulder. A few resonances arising from labelled amino acids were seen to overlap with 

those arising from DMPC, namely valine Cγ1/2 and valine Cβ. All other resonances were 

reasonably well-resolved with good peak shape and with an average signal to noise 

ratio of 46.9. 

 

Table 4.2 
13

C chemical shift data for labelled GpA Val 80 and Gly 83 

 

 

 

 

 

 

 

 

 

 

In addition to the expected resonances arising from labelled amino acid carbons 

as discussed above, an additional number of secondary resonances were also observed 

within the spectra. These had slightly different chemical shifts compared to the peaks of 

the major species, suggesting the presence of a second species arising from protein in a 

second environment within the sample. The chemical shifts for this secondary species 

are given in Table 4.3. This secondary set of peaks suggested the presence of protein in 

an alternative second environment and therefore in order to understand these two 

environments secondary shift analysis was used.  

 

Val 80 
13

C chemical shifts (ppm) 

CO 176.10 

Cα 64.77 

Cβ 29.55 

Cγ 1,2 20.93 

Gly 83 
13

C chemical shifts (ppm) 

CO 173.81 

Cα 45.71 
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Table 4.3 
13

C chemical shift data for secondary species in labelled GpA Val 80 and Gly 

83 

 

 

 

 

 

 

 

 

 

4.2.2 Secondary shift analysis 

 Using the chemical shift index (CSI) method (Spera, Ikura et al. 1991) and data 

from the Biological Magnetic Resonance Databank (BMRB), the experimental chemical 

shifts observed for Cα, Cβ, Cγ 1,2 and CO can be compared to those values published for 

random coil amino acids in order to get an approximation of the secondary structure of 

the protein. By comparing the shifts for the two species with those in the published 

database, secondary chemical shifts    
  can be calculated using Equation 8, where     

  

is the observed chemical shift and    
  is the random coil value. Since the chemical shift 

values stated in the BMRB are referenced to DSS (4,4-dimethyl-4-silapentane-1-sulfonic 

acid) whereas our experimental shifts are referenced to alanine on the TMS 

(Tetramethylsilane) scale, these values have to be converted to DSS referenced shifts by 

adding 2 ppm (Wishart 2011). 

 

   
      

     
     (8) 

 

 

Val 80’ 
13

C chemical shifts (ppm) 

CO’ 172.73 

Cα’ 58.26 

Cβ’ 33.27 

Cγ 1,2’ 19.48 

Gly 83’ 
13

C chemical shifts (ppm) 

CO’ 169.04 

Cα’ 43.83 
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Chemical shifts for all labelled carbons in GpA are given in Table 4.4 alongside 

those for the corresponding average random coil chemical shifts published at the BMRB. 

Using this method and Equation 8, it is suggested that if the secondary shift for Cα and 

CO is positive, that residue is part of an α-helical secondary structure. Should the protein 

have a β-sheet secondary structure, then the secondary chemical shifts should be 

negative. 

As can been seen in Table 4.4 and in the graph shown in Figure 4.4, the major species 

yields positive values for the secondary shifts of valine CO, Cα and Cγ, a negative 

secondary shift for valine Cβ, and positive secondary shifts for glycine CO and Cα. This 

would suggest a predicted α-helical secondary structure for the primary species 

observed in our ssNMR GpA sample. The peaks arising from the secondary species 

present in our GpA ssNMR sample yields very different secondary shift values, with 

negative values for valine CO, Cα and Cγ, a positive value for valine Cβ, and a negative 

value for glycine CO (a slightly positive value is observed for glycine Cα). These results 

suggest that the secondary species that we observe in our GpA ssNMR samples 

prepared using the detergent removal method has β-sheet secondary structure or is a 

result of aggregated peptide, in an alternative chemical environment as seen in the 

electron microscopy images in Chapter 3 Figure 3.16 D. 
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Table 4.4 Comparison of experimental GpA chemical shifts compared to random coil 

values 

Averaged GpA chemical shifts from experimentally derived major (top half of table) and 

secondary species, denoted by ‘ (bottom half of table). Chemical shift values obtained by 

extraction of rows from 2D experiments. Chemical shift values were converted to DSS 

referenced values by the addition of +2 ppm. BMRB average chemical shift values (random 

coil) then subtracted to give secondary shift values. 

 

 

Carbon 
GpA shifts 

(TMS) 
GpA (DSS) 

BMRB random 

coil (DSS) 

Secondary 

chemical shift 

Val CO 176.10 178.10 175.62 2.48 

Val CA 64.77 66.77 62.5 4.27 

Val CB 29.55 31.55 32.75 -1.20 

Val CG1,2 20.93 22.93 21.52 1.41 

Gly CO 173.81 175.81 173.85 1.96 

Gly CA 45.71 47.71 45.38 2.33 

          

Val CO' 172.73 174.73 175.62 -0.89 

Val CA' 58.26 60.26 62.5 -2.24 

Val CB' 33.27 35.27 32.75 2.52 

Val CG1,2' 19.48 21.48 21.52 -0.04 

Gly CO' 169.04 171.04 173.85 -2.81 

Gly CA' 43.83 45.83 45.38 0.45 
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Figure 4.4 Experimentally derived secondary chemical shifts for GpA  

Bar chart showing the result of experimentally observed chemical shifts from the major and 

minor species observed in our GpA ssNMR minus those of random coil shifts from the BMRB. 

Positive and negative values are indicated at the bottom of the graph. Valine chemical shifts 

shown in blue and glycine chemical shifts shown in green. 

 

4.2.3 1D 13C ssNMR of GpAVG prepared using the co-solubilisation 

method 

Following on from the 1D 
13

C experiments carried out on the GpAVG ssNMR 

sample prepared using the detergent removal method (as described in Chapter 2 

section 2.7.2), the same set of experiments were recorded for the GpAVG peptide 

reconstituted into DMPC liposomes prepared using an alternative method based on co-

solubilisation (as described in Chapter section 2.7.3). In agreement with results from 

biophysical characterisation of samples prepared using the detergent removal and co-

solubilisation methods as detailed in Chapter 3, the 1D 
13

C CP MAS spectrum shown in 

Figure 4.5 indicates that the sample prepared by co-solubilisation of peptide along with 

lipid and cholesterol resulted in a marked reduction of any observable secondary 

species within the sample. In addition to the reduction in secondary species, indicating 

improved sample homogeneity and a reduction in incorrectly folded β-sheet or 
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aggregated protein, the spectrum obtained also showed an improvement in overall 

signal to noise ratio (56 verses 46.9 for detergent removal method) and decreased line 

widths of the protein resonances observed.  

 

 

Figure 4.5 1D proton-decoupled 
13

C CP-MAS spectrum of doubly labelled GpAVG in 

DMPC liposomes prepared using the co-solubilisation method.   

Doubly labelled GpAVG sample prepared using the co-solubilisation method (as described in 

Chapter 2.7.3). Spectrum recorded at 500 MHz with 8.5 kHz MAS at 258 K (-15 ºC) with 1024 

co-added transients recorded. Resonances arising from U-
13

C labelled valine and glycine are 

labelled accordingly and those arising from natural abundance 
13

C from DMPC lipid indicated 

by a red circle (•), spinning sideband indicated by ss. 
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4.2.4 2D 13C-13C DARR ssNMR 

Following the acquisition and assignment of the 1D 
13

C GpA spectrum, two-

dimensional (2D) MAS NMR experiments were performed on the sample in order to 

observe any dipolar coupling between the two labelled amino acids of the doubly 

labelled GpAVG peptide. 1D protein NMR spectra were not sufficient to resolve all 

resonances due to overlap of signals, and as such NMR experiments were extended to a 

second dimension to increase resolution and simplify interpretation of the spectra.  

 

In order to see if couplings between isotopically labelled valine and glycine 

residues predicted to lie at the GpA homodimer interface could be observed, 2D 
13

C-
13

C 

Dipolar Assisted Rotational Resonance (DARR) (Takegoshi, Nakamura et al. 2001) 

experiments were recorded using the hydrated lipid-reconstituted GpAVG peptide 

sample. A short mixing time (20 ms) 2D 
13

C-
13

C DARR spectrum of doubly labelled GpAVG 

peptide reconstituted into hydrated DMPC liposomes using the co-solubilisation 

method is shown in Figure 4.6. From the 2D spectrum obtained a number of cross 

peaks were observed off the diagonal (with strong diagonal signals arising from labelled 

amino acids in GpA and also from background natural abundance 
13

C from DMPC lipid). 

Due to the use of selective labelling, the spectral crowding that can occur when using 

uniformly labelled protein samples was avoided, leading to well-resolved peaks in both 

the aliphatic and carbonyl regions. Signals from all labelled carbon atoms can be 

accounted for, with only cross peaks arising from valine Cγ1/2 atoms being unresolvable 

as individual separate resonances due to their similar chemical shifts and the broadness 

of the peaks. From the short (20 ms) mixing time DARR spectrum, a number of cross 

peaks are observed that arise from intra-residue correlations between the U-
13

C carbon 

atoms within each labelled valine and glycine in the sample. These intra-residue cross 

peaks can be seen at shorter mixing times due to the short one and two bond 

(~1.5/3.0Ǻ) distances between nuclei. As shown in Figure 4.6, intra-residue cross peaks 

could be observed between valine Cα – Cβ, valine Cα - Cγ1/2, valine Cα - CO, valine Cβ- 

Cγ1/2, valine Cβ - CO and valine Cγ1/2 – CO. For glycine, the sole Cα – CO intra-residue 

cross peak was also observed. 
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Figure 4.6 20 ms 2D 
13

C-
13

C DARR spectrum of doubly labelled GpAVG in DMPC 

liposomes.  

2D 
13

C-
13

C DARR correlation spectrum of doubly labelled (GpAVG) GpA, acquired over 48 

hours with a mixing time of 20 ms. Spectrum was recorded at 500 MHz with 8.5 kHz MAS at 

258 K (-15 ºC) with 112 scans. At short mixing times only intra-residue cross peaks are 

observed. Cross peaks are labelled according to the amino acid spin system, with cross peaks 

arising from valine 80 labelled in blue and from glycine 83 in green. 

 

As the DARR mixing time was increased from 20 ms to 400 ms (Figure 4.7), the 

number of cross peaks observed off the diagonal increased, since at longer mixing times 

magnetisation travels further allowing longer range through space couplings to be 

observed. As such, in addition to the intra-residue cross peaks, we also observed inter-

residue cross peaks from those labelled carbon atoms that are close together in space at 

the dimer interface. From the chemical shifts, these additional inter-residue cross peaks 

were attributed to coupling between Val-Cγ1/2 to Gly-Cα and Val-Cβ to Gly-Cα. Figure 

4.8 shows an enlargement of the aliphatic region of the 2D 
13

C-
13

C DARR spectrum 

where these additional long range cross peaks can be observed. 
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Figure 4.7 Overlay of 20 & 400 ms 2D 
13

C-
13

C DARR spectra of doubly labelled GpAVG in 

DMPC liposomes.  

2D 
13

C-
13

C DARR correlation spectrum of doubly labelled (GpAVG) GpA, acquired over 48 

hours with a mixing time of 20 ms (red) and 400 ms (black). Spectra were recorded at 500 

MHz with 8.5 kHz MAS at 258 K (-15 ºC) with 112 scans. At short mixing times (20 ms) only 

intra-residue cross peaks are observed. At longer mixing times (400 ms), inter-helical cross 

peaks are observed. Cross peaks are labelled according to the amino acid spin system, with 

cross peaks arising from valine 80 marked in blue and from glycine 83 in green. 

 

The appearance of these additional cross peaks at long mixing times would 

suggest that there was an interaction between labelled valine and glycine amino acids at 

the GpA homodimer interface, resulting in coupling between the two residues. This 

result fits in well with previously published studies of the GpA transmembrane protein 

homodimer ((MacKenzie, Prestegard et al. 1997; Smith, Song et al. 2001; Smith, Eilers et 

al. 2002)) which have shown that valine 80 and glycine 83 pack closely together at the 

dimer interface through van der Waals interactions (MacKenzie, Prestegard et al. 1997). 

The GpA homodimer interface has also previously been studied in pure DMPC 

liposomes using ssNMR REDOR experiments in order to study the dimer interface using 

isolated spin pairs ((Smith, Jonas et al. 1994; Smith, Hamilton et al. 1994; Smith, Song et 
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al. 2001)).  This work also suggested that these two residues are in close contact within 

the GpA homodimer. 

The presence of these inter-residue cross peaks between isotopically labelled 

valine and glycine, taken together with the CD and 1D 
13

C NMR results, would suggest 

that reconstitution of the GpAVG peptide into DMPC/cholesterol liposomes using our co-

solubilisation method successfully produced correctly folded alpha-helical protein that 

forms homodimers within the hydrated lipid bilayers. The addition of cholesterol to our 

lipid vesicles is a step forward towards making the lipid environment in which the GpA 

peptide is embedded more biologically relevant than single lipid systems that have been 

previously reported.  
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Figure 4.8 Aliphatic regions of 2D 
13

C-
13

C DARR spectra of doubly labelled GpAVG at 

short and long mixing times.  

2D 
13

C-
13

C correlation spectrum of GpAVG labelled at both valine 80 and glycine 83, using 

mixing times of 20 ms (top panel) and 400 ms (bottom panel). In the short mixing time 

spectrum, short range intra-residue cross peaks assigned are labelled in the top panel, whilst 

long range inter-helical cross peaks, only arising at long mixing times, are labelled in the 

bottom panel. Secondary species attributed to incorrectly folded protein indicated by *. 
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4.2.5 Relating cross peaks observed to existing GpA structure 

To confirm that the inter-residue cross peaks observed in long mixing time 2D 

13
C-

13
C DARR spectra between valine and glycine carbon atoms were a result of inter-

helical dipolar couplings between individual peptide chains, as opposed to intra-helical 

couplings within the same peptide chain, we compared the average distances between 

interacting atoms using the previously published data for the solution NMR structure of 

the GpA dimer in DPC detergent micelles (MacKenzie, Prestegard et al. 1997). Average 

carbon-carbon inter-atomic distances, along with standard deviations of the twenty best 

structures taken from the GpA solution structure (pdb file: 1AFO) are shown in Table 4.5. 

Those inter-atomic distances shorter than 5.5 Å are highlighted in bold type, as 

distances above this are unlikely to be detected due to the limitations of the DARR NMR 

experiment (Crocker, Patel et al. 2004).  

 

Table 4.5 Average distances between valine 80 and glycine 83 carbon atoms in the 

published GpA homodimer structure 

List of inter-atomic distances in Angstroms, obtained from the solution structure of the DPC 

detergent micelle-solubilised transmembrane domains of GpA obtained from solution-state 

NMR (pdb file: 1AFO (MacKenzie et al 1997)). 20 models within the solution NMR structure 

deposited were averaged to give the mean distance. Those distances within a single helix 

(intra-helical) are shown on the left and those between helices (inter-helical) on the right. 

Highlighted in bold type are those distances that are shorter than 5.5Ǻ. 

 

Intra-helix Distances Inter-helix Distances 

Interacting 

atoms 

Mean 

Distance 

(Å) 

Standard 

Deviation 

Interacting 

atoms 

Mean 

Distance 

(Å) 

Standard 

Deviation 

V Cα G Cα 5.15 0.06 V Cα G Cα 4.56 0.28 

V Cα G CO 5.82 0.06 V Cα G CO 5.76 0.22 

V Cβ G Cα 6.50 0.07 V Cβ G Cα 4.62 0.26 

V Cβ G CO 6.99 0.06 V Cβ G CO 6.03 0.23 

V Cγ1 G Cα 6.54 0.07 V Cγ1 G Cα 3.49 0.27 

V Cγ1 G CO 6.75 0.08 V Cγ1 G CO 4.97 0.25 

V Cγ2 G Cα 7.36 0.08 V Cγ2 G Cα 5.25 0.22 

V Cγ2 G CO 8.03 0.08 V Cγ2 G CO 6.70 0.21 

V CO G Cα 4.54 0.05 V CO G Cα 4.56 0.30 

V CO G CO 4.94 0.04 V CO G CO 5.57 0.24 
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The inter-residue correlations observed in the 400 ms DARR spectrum of GpAVG 

(Val80 Cγ1 – Gly83 Cα; Val80 Cα – Gly83 Cα; and Val80 Cβ - Gly83 Cα) are highlighted in 

yellow in Table 4.5.  From the inter-atomic distances calculated from the solution NMR 

structure, it can be seen that for all three of the correlations observed, that the inter-

helical distance is significantly shorter than the intra-helical distance.  For example, for 

the Val80 Cγ1 – Gly83 Cα cross peak, the inter-helical distance in the detergent 

solubilised dimer is 3.49 Å whereas the intra-helical distance within a single GpA helix is 

6.54 Å. This is illustrated in Figure 4.9. The same trend is observed for the remaining 

inter-residue cross peaks.  It should be noted that, from the table of distance calculated, 

it was also expected inter-helical cross peaks between Val80 CO – Gly83 Cα and Val80 

Cγ1 – Gly83 Cα should be observable, but due to the broadness of the cross peaks 

arising from intra-residue couplings the resolution was not there to be able to 

differentiate these cross peaks. Another reason for the inability to observe these longer 

range cross peaks could be due to the effects of dipolar truncation. As the dipolar 

coupling between two nuclei is related to the distance between them (r
3
) the transfer of 

spin magnetisation between more weakly coupled nuclei is affected by that of more 

strongly coupled nuclei of the same species. This effect results in the truncation of 

magnetisation transfer and therefore weaker inter-helical cross peaks are much less 

likely to be detected when using U-
13

C labelled samples (or amino acids). From the 

distances calculated and the cross peaks identified in the DARR spectra, we can say with 

reasonable confidence that the cross peaks assigned likely arise from the shorter inter-

helical distances and not the longer (> 5 Å) intra-helical distances between the same 

atoms, which are unlikely to be observed using DARR ssNMR (Crocker, Patel et al. 2004). 
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Figure 4.9 Molecular model of human GpA homodimer 

Molecular model of the GpA homodimer produced using coordinates from the solution 

NMR protein data bank file 1AFO (MacKenzie, Prestegard et al. 1997). Protein backbone and 

labelled amino acid residues are shown in ball and stick form. Labelled valine chain A (blue) 

and glycine chain B (green) residues have been coloured. The intra-helical distance of 6.5Å 

and inter-helical distance of 3.4 Ǻ have both been indicated by orange and red arrows, 

respectively. 

 

4.3 Alternative peptide labelling scheme.  

Although the inter-helical cross peaks observed in the 400 ms 2D 
13

C-
13

C DARR 

spectrum were between carbon atoms that lie < 5 Ǻ from one another at the 

homodimer interface in the detergent-solubilised GpA solution structure, the possibility 

still existed that the observed peaks could be due to intra-helical interactions in 

DMPC/cholesterol bilayers. Different membrane protein structures have been observed 

depending on the chemical environment (i.e. detergent vs. lipid) (Poget and Girvin 

2007). Furthermore, since the aim of the work was ultimately to apply the sample 

preparation and ssNMR experimental procedures to proteins for which no structural 

data exists, such as the Bovine Papillomavirus E5 protein (BPV E5), any approach which 

relied heavily on existing structural/distance information in order to draw conclusions 
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about inter- versus intra-helical coupling would be flawed. As such, an alternative 

peptide labelling scheme was proposed which would give rise to unambiguous 

assignments. 

This alternative labelled scheme (referred to from now on as singly labelled) differed 

from our original labelling scheme (doubly labelled) in that only one amino acid was 

labelled within a synthetic peptide (outlined in Figure 4.10). Therefore, to investigate Val 

- Gly couplings as before, two peptides were required, one containing a U 
13

C/
15

N 

labelled Val 80 and one containing a U 
13

C/
15

N labelled Gly 83. This labelling scheme had 

a major advantage over the previous doubly labelled scheme in that any inter-residue 

cross peaks observed between the two isotopically labelled amino acids could be 

unambiguously attributed to inter-helical coupling. The major disadvantage of this 

method is that when preparing samples for ssNMR, peptides that have been labelled at 

different positions have to be mixed together before reconstitution into liposomes.  This 

results in formation of the heterodimers of interest, but also results in formation of 

homodimers that will yield no inter-residue coupling information.  If it is assumed a 

statistical mix of homo- and heterodimers, then when using singly labelled peptides a 

loss of 50% signal intensity is expected when compared to using doubly labelled 

peptides, where all dimers formed are heterodimers. 
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4.3.1 ssNMR of singly labelled GpA peptides.  

Given that the advantage of using singly labelled peptides meant that any cross 

peaks observed between the labelled amino acid sites could be attributed 

unambiguously to inter-helical interactions (and thus would be applicable to future work 

with the BPV E5 peptide), we tested this approach using the GpA TM peptide.  We had 

GpA peptides synthesised (as described in Chapter section 2.3.1) that were singly U-

13
C/

15
N labelled at either valine 80 (GpAV) or glycine 83 (GpAG) positions. The sample 

prepared using this labelling scheme was then compared to that of the previously 

recorded doubly labelled sample to see if the same inter-helical cross peaks could be 

observed. 

A 1D 
13

C CP-MAS spectrum of a GpA sample reconstituted into 

DMPC/cholesterol liposomes using a mixture of singly labelled GpAV and GpAG 

peptides, as described in Chapter section 2.7.3, prepared using the co-solubilisation 

AA

BB

A

B B

A

A

B
B

A A

B

Heterodimers observable Homodimers not observable 

Doubly labelled Singly labelled 

Figure 4.10 Diagrammatic form of alternative peptide labelling scheme 

Peptides labelled at sites A and B on double labelled peptides (top left), where both A and 

B are labelled within a peptide chain. Singly labelled peptides (top right) are labelled at 

either position A or B. When singly labelled peptides are mixed, statistically there is a 50% 

chance of forming hetero dimers (bottom left) which are NMR observable and a 50% 

chance of forming homo dimers (bottom right) which are not observable in DARR spectra. 
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method is shown in Figure 4.11. As shown in this figure, the new singly labelled sample 

yielded the same 
13

C chemical shifts and the same number of signals as observed for the 

doubly labelled GpAVG peptide, and no evidence of a misfolded secondary species. Line 

widths at half height of 1.2-2.7 ppm/163-350 Hz were observed for protein resonances 

for the singly labelled sample, which were slightly broader than those observed in the 

doubly labelled sample prepared by co-solubilisation.  The signal to noise ratio was 

comparable to the doubly labelled sample, but overall signal obtained was, as expected, 

approximately 46% lower than that of the doubly labelled GPAVG sample using the same 

number of co-added transients (1024).  

 

Figure 4.11 1D proton-decoupled 
13

C CP-MAS spectrum of singly labelled GpAV + GpAG 

mixture in DMPC liposomes prepared using the co-solubilisation method 

Spectrum recorded at 500 MHz with 8.5 kHz MAS at 258 K (−15 ºC). Resonances arising from 

U-
13

C labelled valine and glycine are labelled accordingly and those arising from natural 

abundance 
13

C from DMPC lipid indicated by •, spinning sideband indicated by ss. 
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Following 1D experiments, 2D 
13

C-
13

C DARR correlation spectra were again 

recorded with both short (20 ms) and long (400 ms) mixing times. Due to the decrease 

in overall signal intensity in comparison to the doubly labelled GpAVG sample, when 

recording the 2D 
13

C-
13

C DARR spectra we chose to increase the number of scans from 

112 to 308 in order to ensure that if any inter-helical cross peaks were present, they 

would be observable. At short mixing times (data not shown) in the singly labelled GpA 

sample we observed the same intra-residue cross peaks that were previously present in 

our doubly labelled sample, albeit at much lower intensity in comparison to our doubly 

labelled GpAVG sample. 

More interestingly, in the 400 ms DARR spectrum of the singly labelled sample, the 

same three inter-residue cross peaks between valine and glycine were observed 

(overlaid in Figure 4.12) that were seen in the doubly labelled GpAVG sample. These 

results allowed us to unambiguously and confidently attribute the inter-residue cross 

peaks to long range, through-space, inter-helical dipolar couplings between the two 

amino acids at the homodimer interface of GpA. These data also suggest that the inter-

nuclear distances over which DARR cross peaks can be observed do not extend much 

above 4.6 Å for our samples, as only inter-nuclear distances predicted to be less than or 

equal to this value produced cross-peaks in our DARR spectra.  
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Figure 4.12 Overlaid 400 ms 2D 
13

C-
13

C DARR correlation spectrum of doubly labelled 

GpA (GpAVG) vs. singly labelled GpAV + GpAG 

2D 
13

C-
13

C correlation spectrum with a mixing time of 400 ms for doubly labelled GpAVG (red 

spectrum) and singly labelled GpAV + GpAG (blue spectrum) peptides reconstituted into 

DMPC liposomes. Inter-helical cross peaks between labelled valine and glycine are indicated. 

Spectra were recorded at 8.5 kHz MAS at 258 K (−15 ºC) with 112 co-added transients for 

doubly labelled GpAVG and 280 for singly labelled GpAV + GpAG 

 

 

4.3.2 Singly labelled GpA build-up curves 

 In order to further investigate the inter-helical cross peaks observed between 

valine 80 and glycine 83, a series of 2D 
13

C-
13

C DARR experiments at a range of mixing 

times (20, 100, 200, 400 and 600 ms) (experimental time for each experiment: 4.5 days) 

were recorded in order to produce build up trajectories for each cross peak observed 

from dipolar couplings between labelled carbon atoms in each labelled amino acid. 

Figure 4.13 shows the build-up curves for intra- (top panel) and inter-residue cross peak 

intensities (bottom panel) for the singly labelled GpA sample. Inter-helical cross peak 
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intensities were normalised to the glycine Cα diagonal cross peak intensity for each 

mixing time, to account for the slight variations between each experiment. 

As can be seen from the graphs of intensities vs. mixing time, the cross peak arising 

from the shortest inter-helical distance (3.49 Å)  between Val80 Cγ1 and Gly 83 Cα, has 

the highest intensity at each mixing time and builds up the fastest of all inter-residue 

cross peaks observed. The next shortest inter-helical distance between Val80 Cα and 

Gly83 Cα (4.56 Å) results in a cross peak that has a lower intensity than the Val80 Cγ1 - 

Gly83 Cα cross peak, but has a slightly higher intensity than that of the Val80 Cβ – Gly83 

Cα, which has a slightly longer inter helical distance of 4.62 Å. In this way, the DARR-

derived build-up curves for inter-residue cross peaks show very good correlation with 

inter-atomic distance as predicted from the GpA solution structure for inter-helical 

interactions. For cross peaks arising due to the shorter intra-residue dipolar couplings, 

maximum cross peak intensity was observed at 100 ms, followed by a steady decrease in 

intensity for mixing times between 100-600 ms (Figure 4.13, top panel) due to decay of 

magnetisation through transfer into the surrounding system further removed from the 

protein spin system.  
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Figure 4.13 Build-up curves for intra-residue and inter-residue GpA cross peaks 

Build up curves from 2D 
13

C-
13

C DARR experiments for intra-residue (top panel) and inter-

residue cross peaks (bottom panel) at increasing mixing time from 20, 100, 200, 400 to 600 

ms. Spectra were recorded with 308 scans, taking 4 and a half days each. Cross peak intensity 

was normalised to the Gly CA cross peak for each experiment. In the bottom panel the 

average inter-helical distance between each labelled carbon atom, as obtained from the GpA 

solution NMR structure is also given alongside each curve. 
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4.4 15N GpA ssNMR  

In addition to 
13

C isotopically labelled carbon atoms within selected amino acids 

in the GpA peptides, which allowed for 
13

C-
13

C homonuclear 2D measurements, the 

same valine and glycine amino acids contained isotopic 
15

N labels for amide nitrogen’s. 

Using the 
15

N isotopic labels within singly labelled GpA peptides, the aim was to confirm 

the formation of GpA TM homodimers by observing 
15

N-
13

C any dipolar coupling 

between valine and glycine backbone nitrogen’s and carbons in the side chains at the 

GpA dimer interface.   

4.4.1 1D 15N ssNMR of singly labelled GpA sample 

One-dimensional (1D) 
15

N CP MAS NMR spectra were initially acquired for the 

singly labelled GpA sample reconstituted into DMPC/cholesterol lipid bilayers in order 

to gain 
15

N chemical shift information for the labelled valine and glycine amino acids. As 

with the 
13

C experiments, all 
15

N experiments were carried out at low temperature (−15 

ºC) where DMPC lipid is in the gel phase.  

The two expected 
15

N resonances arising from the isotopically labelled valine 

and glycine residues within the GpA peptide are shown in the 1D 
15

N CP-MAS NMR 

spectrum (Figure 4.14). There was no observable signal arising due to natural 

abundance 
15

N from the choline head group of DMPC phospholipid.  The resonances 

arising from valine and glycine (given in Table 4.6) agreed well with the published 

average chemical shift values for these amino acids as found at the BMRB. Resonances 

arising from the labelled amino acids were well resolved with distinct chemical shifts 

(120.70 ppm for valine NH and 104.48 ppm for glycine NH). Line widths for each 

resonance were relatively broad with peak widths at half height of 3.01 ppm/152.93Hz 

and 3.1 ppm/157.47 Hz for valine and glycine NH, respectively, after 4096 scans. Due to 

the low gyromagnetic ratio of 
15

N nuclei, the signal to noise ratio was poor (4.6 for 

valine and 4.4 for glycine), requiring a much larger number of scans per experiment in 

order to observe any signal for labelled nitrogen within the GpA sample.  
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Figure 4.14 1D proton-decoupled 
15

N CP-MAS spectrum of singly labelled GpA in DMPC 

liposomes prepared using the co-solubilisation method 

The spectrum was recorded at 500 MHz with 12.5 kHz MAS at 258 K (-15 ºC). A CP contact 

time of 1000 µs was used, a 2.5 second recycle delay with 100 kHz proton decoupling during 

acquisition and 4096 co-added transients recorded. Resonances arising from 
15

N labelled 

valine and glycine are labelled accordingly. -1 Hz GM line broadening was applied before 

Fourier transformation  

 

Table 4.6 
15

N chemical shift data for labelled GpA Val 80 and Gly 83 

 

 

Val 80 
Observed chemical 

shift (ppm) 

BMRB chemical 

shift TMS (ppm) 
Δ 

N 120.70 119.26 1.44 

Gly 83 
Observed chemical 

shift (ppm) 

BMRB chemical 

shift TMS (ppm) 
Δ 

N 104.48 107.82 -3.34 
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4.4.2 2D 15N-13C ssNMR of singly labelled GpA sample 

Triple resonance 1H-13C-15N experiments were setup with the help of Fredrick Romer 

(Department of Physics, Warwick University) 

In order to measure heteronuclear 
15

N-
13

C interactions, a number of ssNMR 

methods have been developed including the more popular rotational echo double 

resonance (REDOR) (Gullion and Schaefer 1989) and transferred echo double resonance 

(TEDOR) (Hing, Vega et al. 1992) for recoupling dipolar interactions between isolated 

hetero-nuclear spin ½ pairs (e.g. 
13

C, 
15

N) in MAS experiments. The use of such 

experiments in distance measurements has been well established (Hing, Vega et al. 1992; 

Fyfe and Lewis 2000). The challenge when directly applying such techniques arises when 

using U-
13

C,
15

N labelled samples, due to 
13

C and 
15

N labelled nuclei experiencing multiple 

through bond (J-coupling) and through space (dipolar couplings) from neighbouring 

spins.  These stronger one/two bond couplings can result in the complication of 

magnetisation transfer pathways which can lead to degradation of spectral sensitivity 

and resolution, as well as interfering with accurate determination of weaker couplings 

(Fyfe and Lewis 2000; van Rossum, de Groot et al. 2000)). 

A number of experiments based upon REDOR and TEDOR have been developed 

in order to get around the issue of multiple spin-systems when using U-
13

C, 
15

N labelled 

NMR samples. These include frequency selective REDOR (FSR) (Jaroniec, Tounge et al. 

2001) and three-dimensional (3D) z-filtered TEDOR (Fyfe, Mueller et al. 1992; Jaroniec, 

Filip et al. 2002) The z-filtered TEDOR experiment is a modification of the TEDOR 

experiment and addresses a number of issues associated with using U-
13

C, 
15

N labelled 

samples and the problems arising from homonuclear J-couplings that interfere with 

measurement of weak 
13

C-
15

N dipolar couplings. The use of a z-filter period to suppress 

anti-phase and multiple quantum coherences, results in 2D 
15

N-
13

C correlation spectra 

with pure absorption mode peaks at all TEDOR mixing times and provides information 

about carbon-nitrogen distances. 

 2D 
15

N-
13

C z-filtered TEDOR correlation spectra at short (6 ms) and long (10 ms) 

mixing times are shown in Figure 4.15. From the 2D correlation spectra obtained, 

number of cross peaks were observed arising from intra-residue dipolar coupling 

between 
15

N and 
13

C labelled atoms within valine and glycine. For the spectrum acquired 

with a 6 ms mixing time, the shorter distance coupling between Val80 Cα –N (1.49 Å) 
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and Val80 Cβ –N (2.46 Å) give rise to relatively intense cross peaks.  These cross peaks 

are no longer observable in the 10 ms mixing time experiment. The Val80 CO – N (2.46 

Å) cross peak has a similar intensity at both mixing times, whilst the Val80 Cγ1/2 

(3.81/2.90 Å) cross peak intensity increases at the longer mixing time (magnetisation is 

allowed to travel further). Both the Gly83 CO – N (1.49 Å) and the Gly83 Cα – N (2.46 Å) 

cross peaks are observable at both short and long mixing times, although at the longer 

mixing time, the Gly83 Cα – N cross peak decreases in intensity. This decrease/increase 

in signal intensities can be seen more clearly in extracted rows from each of the two 

mixing time experiments, with each 
15

N row showing correlations to 
13

C (Figures 4.16 

and 4.17). 
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Figure 4.15 2D 
15

N-
13

C TEDOR spectra of singly labelled GpAV + GpAG peptides in 

DMPC/cholesterol liposomes 

2D 
15

N-
13

C TEDOR correlation spectra of singly labelled GpA, acquired over 36 hours with a 

TEDOR mixing time of 6 ms (top panel) and 10 ms (bottom panel). Spectra were recorded at 

500 MHz with 10 kHz MAS at 258 K (−15 ºC) with 3048 scans. Intra residue cross peaks are 

labelled according to amino acid spin system, with cross peaks arising from valine 80 

labelled in blue and from glycine 83 in green.  
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Figure 4.16 1D extracted rows from 2D 
15

N-
13

C TEDOR spectra of valine resonances in 

singly labelled GpAV + GpAG peptides 

1D row extracted from 2D 
15

N-
13

C TEDOR correlation spectrum of singly labelled GpA, with a 

TEDOR mixing time of 10 ms (black spectrum) and 6 ms (blue spectrum). Spectra were 

recorded at 500 MHz with 10 kHz MAS at 258 K (-15 ºC) with 3048 scans. Resonances from 
13

C labelled valine carbon atoms with correlation to valine 
15

N are labelled. 

 

 

 

 

 

 

 

 

 

Val CO Val CA Val CB  Val CG1,2
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Figure 4.17 1D extracted row from 2D 
15

N-
13

C TEDOR spectra of glycine resonances in 

singly labelled GpAV + GpAG peptides 

1D row extracted from 2D 
15

N-
13

C TEDOR correlation spectrum of singly labelled GpA, with a 

TEDOR mixing time of 10 ms (black spectrum) and 6 ms (green spectrum). Spectra were 

recorded at 500 MHz with 10 kHz MAS at 258 K (-15 ºC) with 3048 co-added transients. 

Resonances from 
13

C labelled glycine carbon atoms with correlation to valine 
15

N are labelled.  

 

 

Figures 4.16 and 4.17 show extracted rows from the 2D 
15

N-
13

C z-filtered TEDOR 

experiments for valine 80 and glycine 83 respectively, at short (6 ms) and long (10 ms) 

TEDOR mixing times. From the 1D extracted rows, it can clearly be seen which carbon 

resonances decrease with increasing mixing time and which increase as magnetisation is 

allowed to travel further at longer mixing times (allowing for longer range couplings to 

be observed). Line widths for each of the carbon resonances were obtained from the 

extracted rows and are given in Table 4.7. 

 

 

Gly CO Gly CA
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Table 4.7  
13

C line widths for GpA Val 80 and Gly 83 extracted from rows of 2D 
15

N-
13

C 

z-filtered TEDOR experiments 

 

 

 

 

 

 

 

In both the 2D 
15

N-
13

C z-filtered TEDOR spectra, and extracted 1D rows, it is clear 

that no long range, inter-residue (i.e. inter-helical) cross peaks between labelled valine 

and glycine were observed at either mixing time. The shortest inter-helical 
15

N-
13

C 

distance predicted from the GpA solution structure is between Val80 Cγ1 – Gly 83 Cα, 

with a distance of 3.51 Å in the solution NMR GpA structure. The fact that no inter-

residue 
15

N-
13

C coupling was observed is likely due to the poor sensitivity of 
15

N labelled 

nuclei and the performance of the spectrometer when running in triple resonance mode, 

which resulted in a marked decrease in spectral sensitivity when switching from double 

to triple resonance mode. This is not surprising when the signal to noise ratio of the 

TEDOR spectra is compared to that obtained in the 
13

C-
13

C DARR spectra. The average 

signal to noise value for rows extracted from 2D 
13

C-
13

C DARR experiments of 33.1 for 

resonances arising from intra residue couplings and 8.48 for cross peaks arising from 

inter helical couplings in our original doubly labelled GpA sample. This value is reduced 

to 13.4 for intra residue cross peaks and 1.68 for inter helical cross peaks for our singly 

labelled GpA peptides which required twice as many scans per DARR experiment. These 

values when compared to the much lower signal to noise values of 5.21 for intra residue 

couplings for 
15

N-
13

C experiments requiring almost ten times as many scans per 2D 

experiment. As such we were unable to detect the presence of GpA homodimer 

formation in our hydrated lipid bilayers using 
15

N-
13

C TEDOR measurements. With 

further work to improve signal to noise ratios in TEDOR measurements, it is hoped that 

Carbon atom Line widths (ppm) 

6 ms 10 ms 

Val 80 CO 0.82 0.82 

Val 80 CA 1.80 -- 

Val 80 CB 1.10 -- 

Val 80 CG 1,2 1.39 1.82 

Gly 83 CO 1.37 1.44 

Gly 83 CA 1.56 1.65 
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the same inter-helical interactions between labelled valine and glycine at the GpA dimer 

interface could be confirmed using the 
15

N labels contained within our peptides.  

4.5 Summary 

In this chapter, ssNMR data for the homodimeric GpA peptide reconstituted into 

hydrated DMPC lipid bilayers containing 5% cholesterol was presented. The addition of 

cholesterol made our lipid bilayers more biologically relevant in comparison to a single 

lipid system, as the native environment of the GpA peptide can contain as much as 60% 

cholesterol (van Meer, Voelker et al. 2008). We showed that GpA peptide could be 

reconstituted into DMPC liposomes containing cholesterol successfully using a co-

solubilisation method, as using the frequently reported detergent removal method 

(Rigaud, Levy et al. 1998) for reconstitution of peptide resulted in the formation of a 

minor secondary species giving rise to a second set of chemical shifts. Using secondary 

shift analysis, the minor secondary species observed in this sample was predicted to be 

due to peptide incorrectly folded into a β-sheet secondary structure, whilst the major 

species was correctly folded α-helix. The co-solubilisation method described here 

resulted in a marked reduction of this secondary species with the majority of peptide in 

a correctly folded α-helical state. 

Following 1D 
13

C ssNMR analyses of the GpA peptide in DMPC/cholesterol 

liposomes, 2D 
13

C - 
13

C DARR spectra were acquired in order to observe any inter-

residue, inter-helical interactions between the two labelled amino acids at the GpA 

homodimer interface. At short (20 ms) mixing times, we observed short-range 1- and 2-

bond coupling interactions between isotopically labelled carbon atoms within the same 

amino acid. At longer mixing times, inter-residue couplings between the labelled Val80 

and Gly83 amino acids were observed. Using the published solution structure of the 

GpA TM homodimer in detergent micelles as a model, these long range couplings were 

attributed to inter-helical interactions at the homodimer interface rather than intra-

helical couplings. The possibility of measuring intra-helical interactions at long mixing 

times still existed due to through bond spin-diffusion within the helix in the double 

labelled sample, and as such an alternative labelling scheme was sought. 

Switching from labelling both amino acids (valine and glycine) within a single 

peptide chain to a scheme in which only one or the other amino acid was labelled (i.e. 
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singly labelled), the DARR experiments were repeated to unambiguously assign the 

inter-residue cross peaks. Using singly labelled peptides ruled out any possibility of 

measuring intra-helical interactions at longer mixing times and would be a benefit when 

applying similar techniques to proteins with no pre-existing structure (i.e. BPV E5).  In 

the 2D 
13

C-
13

C DARR experiments using singly labelled peptides, the same set of inter-

residue cross peaks were observed arising from long-range dipolar coupling between 

valine and glycine.  These cross peaks had a lower intensity, thus requiring longer 

experimental times to be observed, due to loss of signal from formation of homodimers 

of similarly labelled peptides. From these results, the inter-residue cross peaks observed 

were assigned with confidence to inter-helical interactions between Gly and Val 

suggesting that the GpA TM domain forms helical homodimers in DMPC lipid bilayers 

containing 5% (w/w) cholesterol.  Comparison of the DARR build-up curves to distances 

derived from the solution structure of GpA also indicates that the homodimers formed 

in DMPC/cholesterol are very similar if not identical to those formed in DPC detergent 

micelles and pure DMPC bilayers. DMPC bilayers containing cholesterol represent a 

more “native-like” and more biologically relevant membrane mimetic than detergent 

micelles or bilayers composed of pure DMPC. By obtaining these results indicating 

dimer formation and the interaction of labelled amino acids through dipolar couplings, 

it would suggest that the GpA homodimer is able to form stable dimers in a number of 

membrane mimetics; from detergent micelles (MacKenzie, Prestegard et al. 1997) to 

liposomes containing pure DMPC (Smith, Jonas et al. 1994) and now in liposomes 

containing cholesterol, that can significantly alter the properties of the lipid membrane.  

Finally, preliminary 
15

N-
13

C TEDOR data for the singly labelled GpA peptide sample 

was presented. Making use of the 
15

N labels within the peptides, we aimed to again 

confirm the presence of GpA homodimers via measurement of inter-helical dipolar 

couplings between 
15

N and 
13

C labelled atoms. Whilst successful at obtaining intra-

residue cross peaks, we were unable to detect inter-helical couplings (even with longer 

mixing times). As these spectra appeared to be dominated by intra-residue 
15

N-
13

C 

couplings, this made the observation of weaker inter-helical couplings a more difficult 

task, therefore the use of frequency selective REDOR as opposed to z-filtered REDOR 

may have been more beneficial in order to observe specific hetero nuclear couplings 

between the two labelled amino acids. In addition the relatively low signal to noise ratio 
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in these spectra meant that a much larger number of scans was required; thereby 

increasing the experimental time significantly. 

Having been able to successfully apply an optimised sample preparation protocol 

and 2D 
13

C-
13

C DARR methods to analysis of the GpA TM homodimer, we then moved 

onto applying the same techniques to the BPV E5 protein as described in the following 

chapter (Chapter 5) in order to gain structural information about the E5 homodimer 

interface. 
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5 

 

5 SOLID STATE NMR 

ANALYSIS OF BPV E5  

 

5.1 Introduction 

The Bovine Papillomavirus E5 (BPV E5) protein is currently the smallest known 

viral transforming oncogenic protein (Venuti, Paolini et al. 2011), which is 44 amino acids 

in length, and forms a small alpha-helical transmembrane homodimer, similar to GpA 

(Schlegel, Wade-Glass et al. 1986). No three-dimensional structure for BPV E5 exists to 

date; however as described in Chapter 1.6, techniques such as molecular dynamics 

simulation, polarised IR, solution NMR (King, Oates et al. 2011) and mutagenesis studies 

have all been used to predict the structure of the E5 homodimer and its complex with 

the transmembrane domain of its cellular target, the platelet-derived growth factor- β 

receptor (PDGFβR). Using the singly U-
13

C/
15

N labelled peptides detailed in Chapter 2.3 

and Chapter 3, we aimed to investigate the  BPV E5 homodimer interface and feed any 

structural information obtained by ssNMR into our molecular model in order to further 

refine its structure. 

This chapter summarises analyses of the E5 protein in lipid bilayers by applying 

the sample preparation and ssNMR experimental techniques previously optimised using 

GpA (Chapter 4). One and two-dimensional ssNMR data are presented for singly 

labelled E5 peptides to probe possible through space interactions between isotopically 

labelled leucine and phenylalanine (BPV E5LF) residues as well as  phenylalanine and 

tyrosine residues (BPV E5FY).  The rationale for labelling these resides is given in Chapter 

3. One-dimensional 
13

C CP-MAS spectra of BPV E5FY were acquired and used to optimise 

signal to noise ratios when collecting 2D 
13

C-
13

C correlation spectra. Experimental 

parameters such as temperature, cross polarisation contact time, as well as pulse length 

and power level and their effect on the signal and resolution of 1D 
13

C spectra is 
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detailed. In an attempt to improve spectral resolution of the aromatic ring carbons of 

phenylalanine and tyrosine residues in the E5 peptide, the effects of changes in bilayer 

composition (specifically with respect to cholesterol content) were explored using 
31

P 

and 
1
H ssNMR spectra. 

 

5.2 1D 13C ssNMR of BPV E5 labelled at leucine and 

phenylalanine (BPV E5LF) 

E5 peptide samples were reconstituted into DMPC/cholesterol lipid vesicles for 

ssNMR using the co-solubilisation method, as this method was shown for the GpA 

peptide to produce a more homogenous sample with an increase in correctly folded α-

helical protein (Chapter 3.2). The rationale behind the amino acids that were isotopically 

labelled was explained in Chapter 3.1 and was based upon CHI molecular modelling of 

the BPV E5 homodimer to identify those amino acids at homodimer interface which 

were predicted to be in close proximity upon dimerisation. The first BPV E5 ssNMR 

sample was prepared by mixing equal amounts of peptides labelled at leucine 24 (BPV 

E5L) and phenylalanine 28 (BPV E5F) (Figure 5.1) in a similar manner to that of our co-

solubilised GpA sample, with a 2.5:1 lipid to protein ratio and similar cholesterol content 

of 0.08 molar (5% w/w).  

 

 

 

 

 

 

 

 

 



Chapter 5: ssNMR analysis of BPV E5 

 

P a g e | 135  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

One-dimensional 
13

C ssNMR measurements were used to obtain chemical shift 

information for the BPV E5 peptide in DMPC/cholesterol lipid bilayers for the labelled 

amino acids leucine 24 and phenylalanine 28. A 1D 
13

C CP-MAS spectrum is shown in 

Figure 5.2. As with our GpA sample, experiments were carried out at sub-zero 

temperatures (−15 ºC).  

U-
13

C labelled leucine and phenylalanine within the BPV E5LF sample gave rise to 

resonances which were assigned using average chemical shift values as found at BMRB. 

Resonances arising from labelled amino acids matched well with published BRMB values 

and had good line shape, with an average line width at half height of 1.57 ppm/ 201.64 

Hz, and a signal to noise ratio of 23.9.  Due to the relatively small difference in chemical 

shift between a number of carbon atoms (specifically aromatic carbons) and due to the 

broadness of peaks, a number of resonances were unresolvable due to considerable 

overlap between resonances, far more than in spectra recorded for GpA. In particular the 

carbonyl carbons of leucine and phenylalanine (176.95 and 175.39 ppm), leucine Cγ and 

Cδ 1,2 (26.81 and 24.73/24.09 ppm) and the aromatic carbons of phenylalanine; Cδ 1,2, 

Leucine Phenylalanine 

Figure 5.1 Chemical structure of leucine and phenylalanine 

Chemical structures of U-
13

C/
15

N labelled leucine and phenylalanine are shown, with 

isotopically labelled carbons and nitrogen’s indicated in colour. 
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Cε 1,2 and Cζ (131.32/131.38, 130.46/130.55 and 128.5 ppm respectively) unfortunately 

resulted in peaks that were unresolvable, and appeared as a single broad peak. The 

origin for this broadness of the aromatic carbons may be due to the dynamics of the 

aromatic ring, with internal motions such as ring flips occurring at the ssNMR time scale 

(micro seconds). The broadness of the aromatic carbon signals in phenylalanine may be 

increased further as a consequence of the amino acid adopting multiple conformations 

at the homodimer interface resulting in a much broader signal than when in a single 

fixed confirmation. Remaining carbon resonances were reasonably well-resolved and 

were assigned based upon their chemical shift values as summarised in Table 5.1.  

From the 1D 
13

C spectrum it was also observed that the phenylalanine Cγ carbon 

had a much lower intensity in comparison to other labelled carbons within 

phenylalanine. The Cγ carbon atom of phenylalanine is a quaternary carbon with no 

directly bound hydrogen atom from which to transfer magnetisation from in CP 

experiments, as such the intensity is greatly reduced in comparison. From initial 1D 
13

C 

experiments (data not shown) it was also observed that at 10 kHz MAS the spinning side 

band from DMPC –(CH2)n- (lipid acyl tails) fell in the same region as the phenylalanine 

ring carbons, as such the spinning speed was increased from 10 to 11 kHz to remove any 

artefacts from running experiments at this speed. Unlike the GpA sample that was also 

prepared using the co-solubilisation method, BPV E5 samples showed no evidence in 

the 1D 
13

C spectrum of any observable secondary species, with all protein correctly 

folded in one single environment in agreement with our biophysical characterisation of 

BPV E5 samples (Chapter 3.2). 
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Figure 5.2 1D proton-decoupled 
13

C CP-MAS spectrum of singly labelled BPV E5LF in 

DMPC liposomes 

Spectrum recorded at 500 MHz with 11 kHz MAS at 258 K (-15 ºC). A CP contact time of 1000 

µs was used, a 2.5 second recycle delay with 100 kHz proton decoupling during acquisition 

for 1024 scans. Resonances arising from U-
13

C labelled leucine and phenylalanine are labelled 

accordingly and those arising from natural abundance 
13

C from DMPC indicated by •.   
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Table 5.1 
13

C chemical shift data for labelled BPV E5 Leu 24 and Phe 28 

 

 

 

 

 

 

 

 

 

 

 

Leu 24 
Observed chemical 

shift (ppm) 

BMRB chemical 

shift TMS (ppm) 
Δ 

CO 175.98 174.97 1.01 

Cα 55.70 53.64 2.06 

Cβ 39.41 40.30 -0.89 

Cγ 23.94 24.81 -0.87 

Cδ 1,2 23.94 24.72 -0.78 

Phe 28  
Observed chemical 

shift (ppm) 

BMRB chemical 

shift TMS (ppm) 
Δ 

CO 174.77 173.42 1.35 

Cα 59.88 56.11 3.77 

Cβ 36.58 37.99 -1.41 

Cγ 136.54 134.86 1.68 

Cδ 1,2 128.68 128.49 0.19 

Cε 1,2 128.68 128.49 0.19 

Cζ 128.68 128.57 0.11 
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5.2.1 2D 13C-13C ssNMR of BPV E5LF  

Once 1D 
13

C spectra were collected and assigned, two-dimensional (2D) 
13

C-
13

C 

DARR experiments were recorded on the BPV E5LF sample in order to probe any possible 

through-space interactions between labelled leucine and phenylalanine at the 

homodimer interface in the singly labelled peptides. As with GpA, 2D 
13

C-
13

C DARR 

experiments were run at both short and long mixing times (20 and 400 ms) in order to 

observe both short range and longer range correlations within and between the two 

labelled amino acids. Figure 5.3 shows the 2D 
13

C-
13

C DARR spectrum obtained at a 20 

ms mixing time. At this short mixing time, in addition to the strong diagonal peaks that 

were observed, multiple cross peaks off the diagonal arose due to intra-residue 

correlations within each labelled amino acid. Intra-residue cross peaks were observed 

between; leucine Cα – Cβ, leucine Cα – Cδ1/2, leucine Cα – CO, leucine Cβ –  Cδ1/2, 

leucine Cβ – CO, leucine  Cδ1/2 – CO, phenylalanine Cα – Cδ/ε/ζ, phenylalanine Cα – CO, 

phenylalanine Cβ – Cδ/ε/ζ, phenylalanine Cβ – CO, and phenylalanine Cδ/ε/ζ – Cγ CO. 

Unlike GpA samples where labelled carbon atoms on valine and glycine had distinct 

chemical shifts, the BPV E5LF sample yielded a number of carbon atoms with similar 

chemical shifts and as a direct result there was considerable overlap between a number 

of cross peaks, in particular those from the aromatic carbons in phenylalanine. As with 

the 1D 
13

C spectrum, resonances from leucine Cγ and Cδ 1,2 were also indistinguishable 

in the 2D DARR spectrum and as such no cross peaks between leucine Cγ were assigned. 
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Figure 5.3 20 ms 2D 
13

C-
13

C DARR spectrum of singly labelled BPV E5LF in DMPC 

liposomes.  

2D 
13

C-
13

C DARR correlation spectrum of singly labelled BPV E5LF, acquired in 48 hours with a 

mixing time of 20 ms. Spectrum was recorded at 600 MHz with 11 kHz MAS at 258 K (-15 ºC) 

for 160 scans. Cross peaks are labelled according to amino acid spin system, with cross peaks 

arising from Leucine 24 in red and Phenylalanine 28 in dark blue. 

 

At longer DARR mixing times (400 ms) (Figure 5.4), only two additional cross 

peaks were observed and these are attributable to the intra-residue correlations within 

phenylalanine of Cα – Cβ and Cδ/ε/ζ – CO. Figure 5.5 shows an overlay of short and 

long mixing time spectra.  Unlike singly labelled GpA, at long mixing times we observed 

no inter-helical cross peaks in E5 due to through space dipolar couplings between 

leucine 24 and phenylalanine 28 and only intra-residue cross peaks were observed.  
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Figure 5.4 400 ms 2D 
13

C-
13

C DARR spectrum of singly labelled BPV E5LF in DMPC 

liposomes. 

 2D 
13

C-
13

C DARR correlation spectrum of singly labelled BPV E5LF, acquired in 48 hours with 

a mixing time of 400 ms. Spectrum was recorded at 500 MHz with 11 kHz MAS at 258 K (-15 

ºC) for 160 scans. Cross peaks are labelled according to amino acid spin system, with cross 

peaks arising from Leucine 24 in red and Phenylalanine 28 in dark blue. 
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Figure 5.5 Overlay of 20 and 400 ms 2D 
13

C-
13

C DARR spectra of singly labelled BPV 

E5LF in DMPC liposomes.  

Overlay of 2D 
13

C-
13

C DARR correlation spectra of singly labelled BPV E5LF, acquired with a 

mixing time of 20 ms (red spectrum) and 400 ms (black spectrum). Spectra recorded at 500 

MHz with 11 kHz MAS at 258 K (-15 ºC). At both short and long mixing times only intra-

residue cross peaks were observed. 

 

This was an unexpected result, since the current model of the BPV E5 

homodimer suggests that leucine 24 and phenylalanine 28 are in close proximity at the 

E5 homodimer interface. There are a number of reasons that could explain why we were 

unable to observe any inter-helical correlation between the two labelled amino acids. 

The first reason may be simply that the current model for the E5 homodimer is wrong 

and that leucine and phenylalanine are not in close proximity to one another at the 

homodimer interface. The second reason may be that the model is wrong, but only 

slightly. Looking again at the CHI model of the E5 homodimer, which is in very good 

agreement with mutagenesis studies (Horwitz, Weinstat et al. 1989; Meyer, Xu et al. 1994; 

Mattoon, Gupta et al. 2001) originally used to construct the current model of the E5 

dimer, a number of carbon atoms within leucine and phenylalanine were predicted to be 
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close together in space (as detailed in Table 3.1 in Chapter 3). The dynamic of the 

aromatic ring, such as ring flips that can occur may also be a reason for the fact of an 

observable cross peak as the motional process that occurs interrupts the recoupling of 

the dipolar interaction.  Leucine Cδ1 and phenylalanine Cδ2 gave the shortest predicted 

inter-helical distance of 4.58 Å, with leucine Cδ1 and phenylalanine Cγ yielding the next 

shortest inter-helical distance of 4.91 Å. If the NMR data obtained using the GpA sample 

are used as a gauge of what distances are observable using DARR under these 

conditions, then we know that inter-helical coupling over a distance predicted to be 4.62 

Å (between labelled valine and glycine) was observable. As such, inter-helical coupling 

over a distance of 4.58 Å between labelled leucine and phenylalanine in the very similar 

E5 sample should have yielded a cross peak at long mixing times. However, at 4.91 Å the 

chances of observing a cross peak as a result of inter-helical coupling between leucine 

Cδ1 and phenylalanine Cγ is greatly reduced as this distance was starting to approach 

the limits of those that were detectable in the GpA experiments. Therefore, a very slight 

rotation of the helices in the E5 homodimer may render the inter-helical coupling 

unobservable.  A third reason for not observing inter-helical coupling is the fact that, in 

addition to longer range distances having weaker signals, phenylalanine Cγ is a 

quaternary carbon atom with a much lower signal intensity in comparison to other 

carbon resonances as a result of decreased signal from the CP transfer and as the 
1
H-

13
C 

heteronuclear couplings that are reintroduced by the DARR pulse sequence are weaker 

due to the lack of a directly bound proton. These two strikes make the possibility of 

observing this inter-helical coupling very low. Finally, due to equipment availability and 

time constraints the number of scans recorded for E5 samples was much lower than that 

of singly labelled GpA, and as such this may have been another reason for the lack of 

inter- helical cross peaks observed.  

Having been unable to observe any inter-helical coupling between labelled 

leucine and phenylalanine in our BPV E5LF ssNMR sample, we then moved onto using 

our next pairing of isotopically labelled peptides. From the findings observed with our 

BPV E5LF ssNMR sample, such as low signal intensity for phenylalanine Cγ and the 

broadness of phenylalanine aromatic ring carbons which resulted in a single 

unresolvable peak, we sought to make some changes to our next sample in an attempt 

to improve the resolution of the resonances observed and to try and improve signal to 
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noise ratio values so that when running 2D 
13

C-
13

C experiments any weak inter-helical 

couplings could be observed. 

 

5.3 1D 13C ssNMR of BPV E5 labelled at tyrosine and 

phenylalanine (BPV E5FY) 

 A ssNMR sample containing an equimolar mixture of singly labelled E5 peptides, 

isotopically labelled at phenylalanine 28 (BPV E5F) or tyrosine 31 (BPV E5Y) as shown in 

Figure 5.6, was prepared. As before, these residues were selected because they were 

predicted to be in close contact at the E5 homodimer interface from the CHI molecular 

model and previous studies. 

 

 

 

 

 

 

 

 

 

 

 

. 

 

Having observed with BPV E5LF that resonances arising from the aromatic 

carbons of phenylalanine gave rise to a single broad peak (Figure 5.5), rather than 

Phenylalanine Tyrosine 

Figure 5.6 Chemical structure of phenylalanine and tyrosine. 

Chemical structures of U-
13

C/
15

N labelled leucine and phenylalanine are shown, with 

isotopically labelled carbons and nitrogens indicated in colour 
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being resolvable as separate individual resonances, it was decided to change the sample 

composition in an attempt to improve the resolution.  This was important because in the 

E5FY sample the shortest inter-helical cross peaks were predicted to be between 

aromatic carbons. One way to improve resolution is to decrease motion of embedded 

peptides by increasing the rigidity of the lipid membrane. A recent study (Luo, Cady et 

al. 2009) showed that using lipid mixtures and increasing the cholesterol content, in 

order to mimic the native membrane system more closely, can increase the rigidity of 

the membranes and reduce uniaxial rotational diffusion, allowing for ssNMR 

experiments to be recorded at physiological temperatures (37 ºC). Typically, running 

ssNMR experiments at low (< 0 C) temperature is used to help improve spectral 

resolution by reducing Brownian motions within the lipid bilayer.  This reduces internal 

motions within proteins embedded within the bilayer and freezes uniaxial diffusion, 

which could otherwise complicate ssNMR spectra due to intermediate timescale line 

broadening (Luo, Cady et al. 2009). By reducing motions within the protein, multiple side 

chain conformations that can lead to line broadening are “frozen out” and line widths 

improved. Although by reducing the temperature, T1 relaxation times and dipolar 

couplings are increased, which can lead to increased line width (Abdine, Verhoeven et al. 

2010). Furthermore, the cooling of the sample to sub-zero temperatures may also result 

in line broadening by introducing heterogeneous line broadening as a result of sample 

inhomogeneity due to the freezing out of multiple side chain conformations.  Therefore 

it would be beneficial to reduce motions within the lipid bilayer whilst also running 

experiments at physiological temperatures.   

By increasing the cholesterol content in ssNMR samples, it was believed that in 

addition to making the DMPC lipid membrane in ssNMR samples more rigid, it would 

also make the membranes more biologically relevant. Cholesterol is a major component 

of mammalian cell membranes, accounting for up to 50 mol% of the membrane lipids of 

the plasma membrane (van Meer, Voelker et al. 2008) and serves a wide range of 

functions such as controlling membrane fluidity, reducing passive permeability and 

increasing mechanical strength of the membrane (Bittman, Clejan et al. 1984; Urbina, 

Pekerar et al. 1995) .  It was hoped that by increasing the cholesterol content of lipid 

bilayers in samples prepared for ssNMR, membranes would become more rigid, since 

the DMPC lipid acyl tails become more ordered as cholesterol intercalates between 
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them, thereby introducing local order within acyl chains on lipid tails and reducing side 

chain flexibility of the phenylalanine and tyrosine aromatic rings in both labelled amino 

acids.  This would potentially reduce the line width of carbon resonances and allow us to 

then observe the expected inter-helical couplings as predicted from the CHI molecular 

model and assign them unambiguously.  

Therefore, the cholesterol content of the DMPC lipid bilayers used for the  BPV 

E5FY sample was increased from the 5% w/w cholesterol (0.08:1 molar ratio) used in 

previous samples to 30% w/w (0.60:1 molar ratio). This ratio is much more in line with 

the actual molar ratio found at the plasma membrane (1:1) and Golgi apparatus (0.2:1 

(van Meer 1998)) to which E5 locates (Burkhardt, Willingham et al. 1989), making these 

samples more biologically relevant. A 1D 
13

C CP MAS ssNMR spectrum of BPV E5FY 

sample is shown in Figure 5.7. Initial 1D 
13

C experiments were carried out at a more 

physiologically relevant temperature of 25 ºC (as detailed later in this chapter, section 

5.3.3), however only resonances from DMPC lipid were observed at this temperature. 

Therefore, as with previous samples, 1D 
13

C spectra were recorded at low temperature 

(−15 ºC).   
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Figure 5.7 1D proton-decoupled 
13

C CP-MAS spectrum of singly labelled BPV E5FY in 

DMPC liposomes 

Spectrum recorded at 600 MHz with 11 kHz MAS at 258 K (-15 ºC). A CP contact time of 1000 

µs was used, a 2.5 second recycle delay with 80 kHz proton decoupling during acquisition for 

1024 scans. Resonances arising from U-
13

C labelled phenylalanine and tyrosine are labelled 

accordingly and those arising from natural abundance 
13

C from DMPC indicated by •.  

 

Phenylalanine and tyrosine carbon resonances were assigned using BMRB 

average chemical shifts, with resonances in good agreement with published values. 

Having increased the cholesterol content of lipid bilayers, an improvement in the 

resolution of 1D 
13

C spectra was expected, in particular in the aromatic carbon region of 

the spectrum. As can be seen in the 1D 
13

C spectrum obtained (Figure 5.7), the 

additional cholesterol did not appear to improve the spectral resolution of this region. 

The average signal to noise ratio of 17.4 was lower than that achieved with BPV E5FY 

(23.9) and the average peak width at half height of 1.73 ppm was slightly larger than that 
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produced by BPV E5LF at 500 MHz (1.57 ppm). This increase may have been due in part 

to the broad peak from phenylalanine and tyrosine aromatic carbons which were still 

unresolvable due to overlap between resonances even with increased cholesterol 

concentration. Furthermore, the two samples were not directly comparable due to 

having been recorded at different spectrometer field strengths (500 vs. 600 MHz), where 

at higher field the effects of chemical shift anisotropy (CSA) are much stronger. The 

additional resonances from tyrosine Cδ 1,2 and Cγ over those found in the BPV E5LF 

sample may also have contributed to the broad aromatic peak having a larger peak 

width in BPV E5FY, even with a higher cholesterol content. 

The larger number of peaks in the BPV E5FY spectrum led to a higher degree of 

spectral overlap, particularly in carbonyl (175.39 ppm for Phe and 175.33 ppm for Tyr CO) 

and aromatic regions of the spectrum (Phe Cδ 1,2, Cε 1,2 and Cζ of 131.32/131.38, 

130.46/130.55 and 128.5 ppm respectively vs. Tyr Cδ 1,2 = 132.40/132.39 ppm and Cγ = 

127.34 ppm). This resulted in unresolvable signals that appeared as broad single peaks. 

Phenylalanine Cα (60.14 ppm) appeared as a single peak with a distinguishable shoulder 

for tyrosine Cα (56.66 ppm). Although the majority of resonances arising from labelled 

phenylalanine and tyrosine overlapped, there were a few resonances which had distinct 

chemical shifts such as phenylalanine Cγ (135.60 ppm), tyrosine Cε 1,2 (117.69, 117.77 

ppm) and tyrosine Cζ (152.46). These distinct chemical shifts should allow for the 

predicted inter-helical couplings to be observed. Remaining carbon resonances and 

were assigned based upon their chemical shift values as summarised in Table 5.2.  
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Table 5.2 
13

C chemical shift data for labelled BPV E5 Phe 28 and Tyr 31 

 

 

The increased membrane cholesterol content had no obvious effect on the 

homogeneity of the peptide, as there was no evidence from the 1D 
13

C spectrum that 

any secondary species was present in the samples prepared. The spectrum suggested 

homogeneous protein correctly folded in one single environment, as was seen with the 

BPV E5LF sample, and that there was no detrimental effect of increasing the cholesterol 

content of lipid bilayers on protein fold. 

5.3.1 Optimisation of experimental parameters in 1D CP experiments 

Once initial 1D 
13

C experiments were recorded, we set about to optimise 

experimental parameters in order to try and improve signal to noise values and 

resolution in the regions of our spectra where we expected to observe inter-helical cross 

peaks in 2D 
13

C-
13

C DARR experiments. Due to the inherent low sensitivity of ssNMR 

experiments in comparison to its solution counterpart, it is commonplace to optimise 

Phe 28 
Observed chemical 

shift (ppm) 

BMRB chemical 

shift TMS (ppm) 
Δ 

CO 175.57 173.42 2.15 

Cα 60.14 56.11 4.03 

Cβ 37.1 37.99 -0.89 

Cγ 137.92 134.86 3.06 

Cδ 1,2 128.94 128.49 0.45 

Cε 1,2 128.94 128.49 0.45 

Cζ 128.94 128.57 0.37 

Tyr 31 
Observed chemical 

shift (ppm) 

BMRB chemical 

shift TMS (ppm) 
Δ 

CO 175.57 173.56 2.01 

Cα 56.66 56.13 0.53 

Cβ 37.18 37.33 -0.15 

Cγ 128.94 126.51 2.43 

Cδ 1,2 128.94 130.42 -1.48 

Cε 1,2 115.72 115.77 -0.05 

Cζ 156.18 152.56 3.62 
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radio frequency (RF) pulses and power level of pulses used, within the experiments 

within limits of the probe, in order to achieve the optimal amount of signal. In addition 

to optimising power levels and pulse lengths, the effect of temperature can also be 

optimised in order to improve signal to noise values and resolution.  

5.3.2 Optimisation of experimental parameters: temperature 

It has been noted that decreasing the temperature at which ssNMR experiments 

are conducted can result in an increase in NMR signal leading to much better signal to 

noise, by slowing molecular motions and improving the efficiency of proton decoupling 

and cross polarisation (Abdine, Verhoeven et al. 2010) (Hiller, Krabben et al. 2005; Cady, 

Mishanina et al. 2009) A reduction in temperature is also a commonly used method to 

improve Boltzmann polarisation to improve signal to noise. Although it has also been 

shown that by increasing the rigidity of the membranes, experiments can be conducted 

at higher, more physiological temperatures (Luo, Cady et al. 2009). Increasing the 

cholesterol content of the lipid membrane used in ssNMR samples prepared should 

allow for experiments to be run at higher temperatures by increasing order within the 

membrane.  

In order to investigate the effect of temperature on samples prepared using a 

higher cholesterol content, we ran a series of 1D 
13

C CP MAS experiments on our  BPV 

E5YF sample which was prepared with an increased cholesterol content of 30% w/w (0.60 

molar ratio). 1D 
13

C experiments were recorded over a range of temperatures (Figure 

5.8), starting at 25 °C, above the phase transition temperature (Tm) of DMPC lipid, at 

which the membrane should be in the liquid-crystalline phase (Lα), through to −20 °C, at 

which membranes should be in the gel phase (Lβ). At 25 °C, signal intensity was relatively 

low with only nuclei from DMPC lipid molecules giving observable, sharp peaks, with 

average line widths of 1/2 = 0.74 ppm. Decreasing the temperature from 25 °C to 10 °C 

showed an improvement in the magnitude of the NMR signal obtained, with sharp 

peaks from lipid (1/2 = 0.86 ppm) and the appearance of broad resonances from 

phenylalanine and tyrosine carbonyl and aromatic ring carbons. At this temperature, 

signals from aromatic ring carbons were unresolvable with a single broad peak at 

around 130 ppm.  
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Figure 5.8 1D proton-decoupled 
13

C CP-MAS spectra of singly labelled BPV E5FY at 

decreasing temperature 

Spectra recorded at 600 MHz with 11 kHz MAS. A 2.5 second recycle delay and a CP contact 

time of 1000 µs was used with 80 kHz proton decoupling during acquisition each for 512 

scans. The sample cooling gas temperature was decreased from 25 to -20 ºC between each 

experiment as indicated alongside individual 1D spectra.  

 

Cooling the sample further to 0 °C, showed no significant improvement in 

signal-to noise, line widths, or resolution observed.  Recording spectra at sub-zero 

temperatures from −10 °C - −20 °C resulted in steady improvement in signal to noise.  

However, at −10 °C the resolution of the 1D spectrum was reduced (1/2 = 1.31 ppm on 

average) and overlap was more pronounced. Decreasing the temperature further to 

−15 °C saw a further decrease in resolution (and increase in signal-to noise), in particular 

in the aliphatic region of the spectrum where previously it was possible to differentiate 

between individual resonances. At −15 °C there was also a decrease in the number of 

resonances arising from DMPC lipid in the aliphatic region, likely due to the reduced 
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internal motions within the lipid molecules causing these resonances to broaden out to 

the point at which they become unobservable. At −20 ºC there was no significant 

change in either signal-to-noise or resolution compared to the spectrum acquired at 

−15 °C and, as such, all further experiments were recorded at −15 °C.   Figure 5.9 

summarises the effect of sample cooling on average peak width at half height of 
13

C 

resonances observed. Although the effect on the average peak width appears to be 

dominated by the width of lipid resonances rather than of those arising from protein 

signals. 

 

 

Figure 5.9 Average peak width of 
13

C BPV E5FY resonances as a function of temperature 

The average peak width at half height of 
13

C resonances arising from labelled phenylalanine 

and tyrosine in addition to those arising from natural abundance DMPC, were measured and 

plotted as a function of the experimental temperature at which spectra were recorded. 

Spectra were recorded at 25 - −20 °C. 

 

The results obtained from the 1D 
13

C spectra recorded suggest increasing the 

cholesterol content of the membranes did not facilitate use of higher more physiological 

temperatures for ssNMR measurements, with higher temperatures only yielding signals 

for natural abundance nuclei in DMPC lipid molecules although with sharp well resolved 

peaks. At higher temperatures lipid molecules undergo fast Brownian motions, with fast 
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uniaxial rotational diffusion resulting in sharpening of peaks. To understand why the 

addition of increased cholesterol resulted in the loss of protein signal at higher 

temperature an analysis of the effect of increasing cholesterol content on DMPC lipid 

membrane composition was conducted, as described later in this chapter (section 5.4). 

 

5.3.3 Optimisation of experimental parameters: contact time 

For 
13

C ssNMR experiments, cross polarisation (CP) was used in order to transfer 

magnetisation from highly abundant protons with a high gyromagnetic ratio to less 

abundant carbon atoms which have a lower gyromagnetic ratio, in order to improve 

sensitivity. The experimental parameter in the pulse program that relates to the transfer 

of this magnetisation is the so called contact time. The build-up of magnetisation for 

each individual carbon is dependent on the proton dipolar coupling network to which it 

belongs and the degree of protonation of each carbon as well as molecular kinetics such 

as methyl group rotation or aromatic ring flips (THC)(Kolodziejski and Klinowski 2002). 

The larger the number of protons, the stronger the dipolar coupling and therefore the 

faster the cross polarisation transfer. Molecular motions that occur on the microsecond 

time scale may average the dipolar coupling used to transfer magnetisation resulting in 

a decay in build-up intensity. For example protonated carbons, with reduced mobility, 

build-up at a faster rate, methyl groups which have higher rotational mobility and build 

up more slowly Additionally, at longer CP contact times, more magnetisation is allowed 

to be transferred to the carbon atoms, therefore improving sensitivity of the experiment, 

up until a point at which the protons begin to relax as a function of T1ρ.  As a result 

different peaks will cross polarise and build up at different rates. Therefore when 

choosing the optimal CP contact time, the entire spectrum as a whole has to be 

considered and a compromised contact time chosen based upon the overall intensity of 

resonances of interest from labelled amino acids within the sample. In order to optimise 

signal to noise, a range of 1D 
13

C CP MAS spectra of BPV E5FY were recorded with 

increasing CP contact times, from 100 to 1500 µs (Figure 5.10).   
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Figure 5.10 1D proton-decoupled 
13

C CP-MAS spectra of singly labelled BPV E5FY at 

increasing CP contact time 

Spectra recorded at 600 MHz with 11 kHz MAS at 258 K (-15 ºC). A 2.5 µsec 
1
H 90º with a 2.5 

second recycle delay was used with 100 kHz SPINAL-64 proton decoupling during acquisition 

for 512 scans. The cross polarisation (CP) contact time was increased from 100 to 1500 µs 

between each experiment as indicated alongside 1D spectra.  

 

As can be seen from the 1D 
13

C spectra obtained in Figure 5.10 and the graph of 

plotted signal intensities at increasing CP contact time (Figure 5.11) using shorter 

contact times, resulted in improved signal for phenylalanine (Cδ 1,2/Cε 1,2/Cζ) and 

tyrosine (Cδ 1,2) aromatic ring carbons. As the contact time was increased, from 100 to 

250 µs the intensity of these resonances increased, but beyond 250 µs the intensity of 

these aromatic carbon resonances decreased at a fast rate as a function of increasing 

contact time. A similar trend was also seen for tyrosine Cε 1,2 carbon atoms, although 

the initial starting intensity was much lower and the rate at which the signal intensity 

decreased was much slower. For the resonance relating to phenylalanine and tyrosine 

CO carbonyl carbons, which have no directly-bound 
1
H atom, the opposite trend was 

observed. At lower contact times the carbonyl peaks had a much lower intensity, but as 
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the CP contact time was increased the signal intensity increased up until 1000 µs, at 

which point the signal intensity remained the same upon further increase to 1500 µs. For 

tyrosine Cζ, signal was only observed at contact times of 750 µs and above, before 

which no distinguishable peak was detected. Increasing the contact time resulted in an 

increase in the signal intensity for this peak between 750 and 1000 µs after which there 

was little increase in signal. 

A CP contact time of 750 µs was selected for use in all further 1D and 2D 
13

C 

experiments, so as to ensure that all inter-helical cross peaks were observable between 

the predicted interacting atoms of each labelled amino acid. 

 

 

 

 

 

 

Figure 5.11 Graph of 1D 
13

C resonance signal intensity at increasing cross polarisation 

(CP) contact times 

Absolute intensity of assigned phenylalanine and tyrosine aromatic ring and carbonyl carbon 

resonances, plotted against increasing cross polarisation (CP) contact time. Resonance 

intensities were obtained from 1D 
13

C spectra (as shown in Figure 5.10) recorded at 

increasing contact time.  
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5.3.4 2D 13C-13C ssNMR of BPV E5 labelled at phenylalanine & tyrosine 

(BPV E5FY) 

Following optimisation of ssNMR experimental parameters to obtain optimal signal 

intensity, 2D 
13

C-
13

C DARR correlation spectra were recorded at short and long mixing 

times (20 and 400 ms) to probe any possible inter-helical, through-space interactions 

between the two labelled amino acids in the BPV EFFY ssNMR sample. 

A 2D 
13

C-
13

C DARR spectrum obtained using a 50 ms mixing time is shown in Figure 

5.12, and a number of off diagonal cross peaks were observed. Although experimental 

parameters were optimised in order to achieve optimal signal to noise and to increase 

signal in the region of interest in the 
13

C spectrum, in moving to higher field we 

observed a decrease in signal to noise compared to spectra recorded at 500 MHz. 

Therefore, the intensity of these cross peaks was much lower than that observed in our 

previous BPV E5LF sample at lower field (500 MHz). As observed in the 1D 
13

C spectrum 

(Figure 5.7), there was considerable overlap between signals obtained for phenylalanine 

and tyrosine, making assignment of individual cross peaks difficult. From the 2D 

spectrum recorded at short mixing time, intra-residue cross peaks were observed 

between; phenylalanine Cα – Cβ, Cα – (Cδ 1/2, Cε 1/2, Cζ), Cα – CO, Cβ – (Cδ 1/2, Cε 1/2, 

Cζ), Cβ – CO, and (Cδ 1/2, Cε 1/2, Cζ) – CO, no intra-residue cross peaks to phenylalanine 

Cγ were observed. For labelled tyrosine; Cα – Cβ, Cα – (Cδ 1/2, Cγ), Cα – CO, Cβ – (Cδ 

1/2, Cγ), Cβ – CO, (Cδ 1/2, Cγ) – Cε, (Cδ 1/2, Cγ) – CO intra-residue cross peaks were 

observed. 
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Figure 5.12 50 ms 2D 
13

C-
13

C DARR spectrum of singly labelled BPV E5YF in DMPC 

liposomes 

2D 
13

C-
13

C DARR correlation spectrum of singly labelled BPV E5YF, acquired in 48 hours with a 

mixing time of 50 ms. Spectrum was recorded at 600 MHz with 11 kHz MAS at 258 K (-15 ºC) 

for 148 scans. Cross peaks are labelled according to amino acid spin system, with cross peaks 

arising from phenylalanine 28 in dark blue and tyrosine 31 in orange. 

 

Increasing the DARR mixing time from 50 ms to 400 ms (Figure 5.15) yielded 

only two additional intra-residue cross peaks, namely phenylalanine Cγ – Cα and 

tyrosine (Cδ 1/2, Cγ) to Cζ. As with our BPV E5LF sample, no inter-helical cross peaks 

were observed at long mixing times between labelled phenylalanine and tyrosine, with 

all cross peaks observed arising from intra-residue correlations between carbon atoms 

within each of the two labelled amino acids. 

From the CHI molecular model of the BPV E5 homodimer, it was expected that 

side chains of phenylalanine 28 and tyrosine 31 would be in close proximity to each 

other at the homodimer interface, with the coupling between phenylalanine Cε1 and 

tyrosine Cε1 predicted to have the shortest average inter-helical distance of 3.64 Å. 

Additional inter-helical couplings between phenylalanine Cδ1, Cε1 and Cζ to tyrosine 
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Cδ1, Cε1 and Cζ, as detailed in Table 3.1, (Chapter 3) were all predicted to have inter-

helical couplings with inter-atomic distances shorter than 4.5 Å. Based upon the results 

obtained with singly labelled GpA, coupling over these distances should be detectable at 

long mixing times. Only the coupling between phenylalanine Cζ and tyrosine Cζ was 

predicted to have an inter-helical distance (4.81 Å) near the limits of the observable 

range.  

 

Figure 5.13 400 ms 2D 
13

C-
13

C DARR spectrum of singly labelled BPV E5YF in DMPC 

liposomes 

2D 
13

C-
13

C DARR correlation spectrum of singly labelled BPV E5YF, acquired in 48 hours with a 

mixing time of 400 ms. Spectrum was recorded at 600 MHz with 11 kHz MAS at 258 K (-15 ºC) 

for 512 scans. Cross peaks are labelled according to amino acid spin system, with cross peaks 

arising from phenylalanine 28 in dark blue and tyrosine 31 in orange. 
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Figure 5.14 50 vs 400 ms 2D 
13

C-
13

C DARR spectrum of singly labelled BPV E5YF in DMPC 

liposomes 

2D 
13

C-
13

C DARR correlation spectrum of singly labelled BPV E5YF, with a mixing time of 50 

ms (red) and 400 ms (black). Spectra was recorded at 600 MHz with 11 kHz MAS at 258 K (-15 

ºC). Cross peaks are labelled according to amino acid spin system, with cross peaks arising 

from phenylalanine 28 in dark blue and tyrosine 31 in orange. 

 

As seen from both 1D and 2D 
13

C-
13

C experiments recorded on BPV E5YF, the 

aromatic region of the 
13

C spectrum was unresolvable and appeared as a single broad 

peak, consisting of resonances from both phenylalanine and tyrosine carbon signals. 

This greatly hampered any chances of being able to identify any inter-helical cross 

peaks, due to spectral overlap of resonances, making potential intra and inter-helical 

cross peaks extremely difficult to differentiate between.  Although the Cε and Cζ carbon 

atoms of tyrosine had distinct chemical shifts (115.7 and 156.1 ppm respectively) that 

would theoretically allow for any inter-helical couplings between phenylalanine and 

tyrosine to be observed, the similarity in chemical shift between phenylalanine Cδ 1/2 

and tyrosine Cδ 1/2 made it impossible to differentiate between a cross peak arising 

from couplings between phenylalanine Cδ 1/2 to tyrosine Cε and tyrosine Cδ 1/2 to Cε. 
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Therefore it was not possible to confidently state that any observed cross peaks arising 

between the two were solely due to an inter-helical coupling rather than an intra-

residue coupling, even when using singly labelled peptides. As such, since the 2D 
13

C-
13

C 

DARR spectra of BPV E5FY at both short and long mixing times yielded only intra-residue 

couplings and no cross peaks arising from possible inter-helical couplings, we were 

unable to find any evidence of inter-helical interactions through dipolar couplings 

between labelled phenylalanine 28 and tyrosine 31 at the BPV E5 homodimer interface. 

 

5.4 ssNMR characterisation of DMPC/cholesterol lipid 

membranes  

In order to better understand the effect of increasing the cholesterol content of 

the BPV E5FY sample prepared for ssNMR, specifically why this increase did not yield an 

improvement in spectral resolution at high or low experimental temperatures, ssNMR 

samples of the DMPC liposomes were prepared with increasing molar ratios of 

cholesterol, ranging from no cholesterol to 0.60:1 cholesterol:DMPC (as used in our BPV 

E5FY sample), for analysis by 
31

P and 
1
H ssNMR.  

 

5.4.1 Characterisation of lipid membranes by static 31P ssNMR 

31
P is commonly used in NMR studies of lipid membranes due to the high 

natural abundance of phosphate nuclei, since the majority of phospholipids carry a 

phosphate moiety in their polar head group. In addition 
31

P is a good spin ½ NMR 

nucleus, with 100% natural abundance and a high gyromagnetic ratio making it ideal for 

studying lipid membranes without having to attach additional non-native reporter 

groups. Static 
31

P NMR spectra are generally recorded in order to gain information 

about the morphology of the lipid bilayer and can be used to determine whether 

lamellar bilayers are correctly formed or whether non-lamellar, hexagonal (HII) cylindrical 

structures or isotropic micellar lipid phases have been formed (Cullis and de Kruijff 

1979). As such, 
31

P ssNMR is a great tool for confirmation of the correct formation of 

lipid bilayers in the presence or absence of cholesterol/peptides, as the phase of the 
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lipid structures formed can easily be determined using simple two-pulse/decoupling 

experiments, requiring only a small number of scans and short experimental times.  

 

 

Figure 5.15 Lipid polymorph and phase behaviour 

Lipid morphologies that can occur include; A) gel phase B) fluid lamellar phase C) micelle 

phase D) hexagonal phase E) cubic phase  

 

A number of DMPC lipid samples containing a range of cholesterol 

concentrations were prepared for analysis by 
31

P and 
1
H ssNMR in a similar manner to 

GpA and BPV peptide-containing samples. DMPC liposomes were prepared with; no 

cholesterol (DMPC only), 5% w/w (0.08 molar) cholesterol as used with GpA and BPV 

E5LF ssNMR samples, 15 w/w (0.30 molar cholesterol) and 30% w/w (0.60 molar) 

cholesterol as used in our BPV E5_FY sample. As shown in Figure 5.16, static wide line 
31

P 

ssNMR spectra were recorded at a range of temperatures, starting at 25 ºC, above the 

phase transition temperature (Tm) for DMPC, through to −20 ºC, which was near the 

typical temperature at which previous ssNMR experiments on GpA and BPV E5 were 

recorded. 
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Figure 5.16 1D proton-decoupled static 
31

P spectra of DMPC liposomes with increasing 

cholesterol concentration at varying temperature 

Static wide line 
31

P spectra of DMPC liposomes composed of A) pure DMPC B) 0.08 C) 0.30 

and D) 0.60 :1 molar ratios of cholesterol were recorded at 600 MHz at temperatures ranging 

from 25 to -20 ºC.  Spectra were recorded using a Hahn Echo pulse sequence with a 
1
H 90º 

pulse length of 4 µs, an echo delay of 50 µs, 80 kHz SPINAL64 proton decoupling and a 5 

second recycle delay with 80 kHz proton decoupling during acquisition for 256 co-added 

transients.  

 

From static 
31

P experiments recorded (Figure 5.16) we saw typical wide line 

spectra, which are dominated by the large chemical shift anisotropy (CSA) range that 

showed characteristic broad axially symmetric 
31

P line shape arising from the phosphate 

head group of DMPC, with a high field peak and a low field shoulder (width of 50 ppm), 

indicative of lamellar bilayer structure, with rapid axial rotation in the bilayer resulting in 

such patterns. As such all DMPC lipid samples prepared were observed to be correctly 

forming lamellar lipid bilayers, without cholesterol and at both low and high cholesterol 

concentrations.  At 25 ºC, above the phase transition temperature for DMPC, all lipid 

samples prepared showed similar axially symmetrical 
31

P line shapes, with a sharp high 

field component suggesting that at this temperature all DMPC samples were in the 

liquid-crystalline phase (Lα). In the liquid–crystalline phase there is low conformational 
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order within the hydrophobic lipid carbon chains and low translational order within the 

membrane and as such this phase is also referred to as the liquid disordered phase (Ld). 

As the temperature of the cooling gas was decreased in order to cool the sample below 

the phase transition temperature, the line shape of the spectra obtained began to 

change with an increase in broadness of the CSA width, indicative of changes within the 

polar lipid head groups. The change in line shape at 10 ºC however was only observed in 

pure DMPC and 0.08:1 cholesterol:DMPC samples. In samples with higher cholesterol 

content no observable change was recorded upon decreasing the temperature to 10 ºC. 

At 0 ºC the line shape changed considerably with a loss of the sharp uniaxial peak, 

becoming much broader and lower in intensity, representing a change in phase from the 

liquid-crystalline phase to a more ordered gel phase (Lβ) in which the lipid hydrocarbon 

chains are ordered in an all-trans conformation, with translational order preventing 

diffusion within the bilayer. This phase is also referred to as the solid ordered phase (SO). 

At −10 ºC, pure DMPC and 0.08:1 cholesterol:DMPC samples showed a distinct loss of 

line shape with increased broadening of CSA line width and decrease in overall signal 

intensity. It was at this temperature (−10 ºC) that changes in the spectra for 0.3:1 and 

0.6:1 cholesterol:DMPC samples were first observed. These spectra looked similar to 

those of pure DMPC and 0.08:1 cholesterol:DMPC recorded at 0 ºC, although the spectra 

still had a sharp asymmetrical component to the 
31

P line shape. Decreasing the cooling 

gas temperature further to −20 ºC saw a total broadening out of 
31

P signal for pure 

DMPC and 0.08:1 cholesterol:DMPC samples. For samples containing 0.3:1 and 0.6:1 

cholesterol:DMPC, the signal although broadened out, still maintained some 

characteristic features of lamellar bilayer spectra in the Lβ phase, similar to those 

recorded at −10 ºC for DMPC only and DMPC + 0.08 molar cholesterol. The results from 

the 
31

P spectra recorded suggest that liposomes prepared with no or little (0.08 molar) 

cholesterol undergo a change in lipid phase from a disordered liquid-crystalline (Lα) to a 

more ordered gel phase (Lβ) between 25 and 10 ºC. For samples where the membrane 

was composed of higher cholesterol content, such as the DMPC + 0.30 and 0.60, there 

appeared to be no distinction in lipid phase to a more ordered gel phase, as from the 
31

P 

spectra obtained the results suggest that there is still axial rotation of the phospholipid 

head groups, resulting in the presence of a sharp asymmetric peak that is still visible at 

low temperature.  
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Figure 5.17 Variation of 
31

P chemical shift anisotropy of DMPC/cholesterol liposomes 

with temperature 

Chemical shift anisotropy component (in ppm) of wide line 
31

P static NMR spectra of DMPC 

liposomes with varying cholesterol content as a function of temperature. CSA (measured as a 

function of the width of the powder pattern) from individual 
31

P spectra plotted against 

sample cooling gas temperature. 

 

These results compare well with previously published studies (in the 0-25 °C 

range) that have concentrated on the effects of cholesterol on phosphocholine bilayers. 

The ordering effects of cholesterol on the lipid acyl chains at higher temperatures has 

been previously noted as has the increase in membrane fluidity at higher cholesterol 

concentrations at low temperatures due to the lack of an gel phase (Lβ) (Vist and Davis 

1990; de Meyer, Benjamini et al. 2010), although in this present study much lower 

temperatures were used in order to obtain a more accurate representation of the 

membrane fluidity at experimental temperatures. 
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5.4.2 Characterisation of lipid membranes by 1H MAS ssNMR 

In order to investigate the effect of cholesterol on the lipid hydrocarbon acyl 

chains (as opposed to the phospholipid head groups), the same samples that were 

analysed using 
31

P NMR were also analysed using 
1
H MAS ssNMR (Figure 5.18). As with 

31
P experiments, 

1
H spectra were recorded at a range of temperatures from 25 ºC - −20 

ºC. 

 

 

Figure 5.18 1D 
1
H spectra of DMPC liposomes with increasing cholesterol concentration 

at varying temperature 

 
1
H spectra of DMPC liposomes composed of A) DMPC only, and liposomes with the addition 

of B) 0.08 C) 0.30 and D) 0.60 molar equivalent cholesterol. Spectra were recorded at 600 

MHz at temperatures ranging from 25 to -20 ºC.  A proton one pulse program was used with 

a 90º pulse length of 2.5 µsec, a 3 second recycle delay and individual spectra acquired for 

128 scans each.  

 

1
H MAS NMR can be used to study membrane lipids due to the fast intrinsic 

reorientation of lipids, which allows restoration of resolution at low spinning speeds 

(Oldfield, Bowers et al. 1987).  A number of proton resonances arising from the 

hydrophobic hydrocarbon tails and the polar head group were observed, and were 

assigned (as listed in Table 5.3) based upon previously reported 
1
H chemical shifts 

(Schuh, Banerjee et al. 1982; Nomura, Lintuluoto et al. 2011). 
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Table 5.3 
1
H chemical shift data for DMPC natural abundance lipid resonances 

 

 

 

 

 

 

 

 

 

From the spectra obtained (Figure 5.18) it was again observed that the 

cholesterol concentration in DMPC lipid membranes affects the membrane structure as 

a function of temperature. At 25 ºC the pure DMPC spectra produced the most and 

sharpest resonances, with both signals from hydrocarbon tails and the polar head group 

being observable.  The sharp and high intensity peak from the hydrocarbon lipid tails 

indicated rapid internal motion from the lipid chains when in the Lα phase. As the 

cholesterol composition of the membranes was increased to 0.08:1, the hydrocarbon 

chain resonances appeared to broaden considerably and decrease in signal intensity, 

indicating a reduction in motion of the lipid tails within the membrane, whilst 

resonances from the polar head group remained relatively sharp at this temperature. 

The same was also observed for liposomes composed of 0.30 and 0.60 molar 

cholesterol. As the temperature was decreased below the phase transition temperature 

to 10 ºC, the changes to the 
1
H spectra recorded were more pronounced. At 10 ºC in the 

spectra recorded for 0.08:1 cholesterol:DMPC, all resonances apart from signals arising 

from the polar head group broadened out to a point where they were no longer 

observable, whilst a small broad hump was still visible in the 0.30 and 0.60 molar 

cholesterol samples. This would indicate that at this temperature the hydrocarbon lipid 

chains were immobilised whilst the polar head group still showed signs of motion. 

Unlike the lipid tails, the signal from the head group (2.39 ppm) was still present. Upon a 

DMPC 
1

H chemical shifts (ppm) 

H2 2.39 

H3 1.61 

H4-13 1.34 

H14 0.94 

HG1 4.06 

HG2 5.35 

HG3 3.93 

Hα 4.36 

Hβ 3.75 

Hγ 3.27 
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further decrease in temperature to 0 ºC, all resonances from lipid hydrocarbon tails were 

broadened out and non-observable for all samples. At this temperature the spectra for 

all samples looked almost identical, with the only resonance observable being that from 

the polar head group. Upon reducing the cooling gas temperature further to sub-zero 

temperatures, it was observed that for samples containing cholesterol the resonance 

arising from the polar head group was still present and appeared as broad peak with 

reasonable signal intensity, with the resonance in the 0.60 molar cholesterol sample 

appearing moderately sharp in comparison to other samples. This would suggest that at 

sub-zero temperatures in the absence of cholesterol, the DMPC lipid molecules in the 

gel-phase (Lβ) showed little internal movement of either hydrocarbon chains or the polar 

head group. With the addition of cholesterol to the lipid bilayers, at sub-zero 

temperatures, membranes still appeared to have little internal motion and disorder 

within hydrocarbon tails but, unlike membranes containing pure DMPC, there was still 

motion within the polar head groups of the bilayer. 

 These results in combination with the results obtained by 
31

P analysis of our 

liposome preparations would indicate that membranes composed solely of DMPC, go 

thorough typical phase transitions of Lα with both lipid chain and translational disorder 

above the phase transition temperature. Below the phase transition temperature, both 

31
P and 

1
H spectra indicated reduced motion in the Lβ phase by line broadening of 

resonances as the lipid molecules had local order within the lipid chains and phosphate 

head groups. For liposomes containing cholesterol, the results from 
31

P spectra indicate 

that above the Tm, the phosphate head groups behaved similar to membranes lacking 

cholesterol. Below this temperature however, membranes containing cholesterol showed 

increased disorder and internal motion of the phosphate head group. From the 
1
H 

recorded, samples prepared with cholesterol above the Tm showed an increase in lipid 

chain order with reduced motion in the Lα phase. Upon cooling, these cholesterol-

containing membranes showed similar hydrocarbon chain ordering as membranes 

lacking cholesterol but, as seen with 
31

P experiments, 
1
H signals from the head group 

showed disorder and motion. 

 These results are indicative of liposome samples prepared using cholesterol as 

being in the liquid-ordered phase (Lo). In the liquid-ordered phase, hydrophobic lipid 

acyl chains are ordered as in the Lβ phase, as cholesterol molecules intercalate between 
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the acyl chains interacting with the hydrocarbon tails resulting in reduced internal 

motions and disorder between chains. Although there is high conformational order 

within the lipid acyl chains as in the Lβ phase (shown in the 
1
H spectra), in the Lo phase 

there is still high translational disorder allowing for lateral movement within the bilayer 

(as in the Lα phase, depicted in Figure 5.18 and seen from 
31

P spectra). The addition of 

cholesterol to lipid bilayers has been shown to expand the cross sectional head group 

area of lipid molecules, thereby increasing the head group mobility (Shepherd and Buldt 

1979). 
31

P spectra given in Figure 5.16 show that for cholesterol containing membranes 

below the Tm, the lamellar bilayers appeared to have increased disorder within the head 

groups,  as increasing cholesterol into lipid membranes below the Tm reduces the 

amount of Lβ phase and increased the amount in Lα and Lo phase. It has previously been 

reported that incorporation of cholesterol into sphingomyelin (SM) lipids gradually 

disrupts bilayers in the Lβ phase, and can even eliminate the Lβ phase when the molar 

concentration of cholesterol was above 15% (Lund-Katz, Laboda et al. 1988) with the Lo 

transition temperature estimated to be completed below 10 – 15 ºC for DMPC bilayers 

with 30% molar cholesterol (McMullen, Lewis et al. 1993).  
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Therefore increasing the cholesterol content of DMPC membranes in the BPV 

E5FY sample and acquiring spectra at −15 ºC had a detrimental effect on bilayer rigidity. 

In our hands, higher experimental temperatures produced poor spectra containing only 

resonances from DMPC lipid, and peptide resonances were only observed at low 

temperature. At low temperature, rather than making the bilayers more rigid, the 

addition of cholesterol had the opposite effect, yielding bilayers in an Lα phase rather 

than the Lβ phase, and this increased motion may explain why aromatic peaks were 

DMPC only DMPC + cholesterol

High temperature

Low temperature

Figure 5.19 Cartoon of cholesterol intercalating between lipid molecules at high and 

low temperatures 

Diagrammatic representation of the effect of cholesterol on DMPC lipid bilayers at high and 

low temperatures. The left side of the figure shows DMPC bilayers only whilst on the right 

the effect of the addition of cholesterol on lamellar lipid bilayers. At temperatures above the 

DMPC phase transition Tm, DMPC only bilayers exist in the liquid crystalline (Lα) phase, 

where there is lipid chain and translation disorder within the membrane. Below the Tm for 

DMPC only, lamellar bilayers exist in the gel-phase (Lβ) where lipid acyl chains are ordered 

and there is little translation diffusion within the bilayer. With the addition of cholesterol, 

above the Tm DMPC bilayers exist in the liquid ordered phase (Lo) where lipid acyl chains are 

ordered but there translation diffusion within the bilayer still occurs. Below the Tm the 

addition of cholesterol prevents the phosphocholine head groups from packing together 

whilst acyl chains are still ordered as cholesterol intercalates between them. 
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broadened, the signal to noise ratio was lower, and no inter-helical cross peaks were 

observed between labelled phenylalanine and tyrosine. 

  

5.5 Summary 

In this chapter, 
13

C ssNMR for the viral oncogenic membrane protein BPV E5 that 

had been reconstituted into DMPC lipid bilayers with the addition of cholesterol at 

varying compositions, as well as the effect of the addition of cholesterol on lipid bilayers 

as analysed by 
31

P and 
1
H ssNMR was presented. Although the BPV E5 protein has been 

well characterised using a number of biochemical and biophysical techniques in order to 

gain information about the method of interaction with its cellular target PDGFβR, there 

currently exists no 3D structural model. Although a number of studies have identified 

key amino acid residues within the sequence of E5 that are required for correct homo-

oligomerisation and interaction with PDGFβR, such as glutamine 17 and aspartate 33 

cysteine 37 and 39 in the C-terminal portion that form disulphide bonds between two 

helices for homodimerisation . Only molecular models produced by computational 

analysis of BPV E5 exist, although attempts have been made to study E5 by solution 

NMR (Windisch, Hoffmann et al. 2010; King, Oates et al. 2011) 

Having produced an energy minimised predicted structure of the BPV E5 

homodimer using CHI, that was in close agreement with the current understanding of 

the dimer from many other studies, this model was then used to identify suitable amino 

acids to isotopically U-
13

C/
15

N label for ssNMR analysis. Amino acids that had short inter-

helical but long (> 5 Å) intra-helical distances were identified and their suitability for 

labelling explored. This presented a challenge due to the high leucine content of the 

BPV E5 peptide, with a large number of leucine side chains predicted to be at the dimer 

interface, reducing the number of labelling sites available to just a few, as multiple 

leucines could not be labelled due to spectral overlap. Glutamine 17 that has been 

shown to play a key role in dimerisation was not a viable site for labelling as 

economically the cost of obtaining U-
13

C/
15

N labelled glutamine for incorporation into 

peptides was too high. As such three amino acids at the dimer interface that fit the 

criteria were identified as leucine 24, phenylalanine 28 and tyrosine 31. Using these three 
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amino acids the interaction between leucine and phenylalanine and phenylalanine and 

tyrosine couplings could be probed. 

Using isotopically labelled leucine and phenylalanine a BPV E5LF ssNMR sample 

was prepared in a similar manner to singly labelled GpA. Using 1D 
13

C analysis of BPV E5 

in DMPC/cholesterol liposomes, resonances and chemical shift values of labelled amino 

acids were assigned. Following which 2D 
13

C - 
13

C DARR spectra were acquired in order 

to observe any inter-residue, inter-helical interactions between the two labelled amino 

acids at the BPV E5 homodimer interface. At short (20 ms) mixing times, only intra-

residue cross peaks within leucine and phenylalanine were observed. Increasing the 

mixing time to 400 ms, the only additional couplings observed were intra-residue 

couplings between phenylalanine carbon atoms that were not observed at short mixing 

time or had higher signal intensity. For BPV E5LF no inter-helical couplings at long mixing 

time between labelled leucine and phenylalanine were observed, suggesting that either 

they are not close together in space, as they were predicted to be from the CHI 

molecular model of the dimer interface or due to experimental reasons we were unable 

to observe any such inter-helical coupling. Whereas for singly labelled GpA, we were 

able to run 2D 
13

C-
13

C DARR experiments for longer times, due to spectrometer 

availability, the number of scans recorded in 2D experiments for BPV E5LF were not as 

high.  In addition all previous experiments on GpA had been recorded at 500 MHz, for 

BPV E5 due to equipment down-time we had to switch to recording spectra at 600 MHz, 

which appeared to give lower signal to noise ratios than at lower field. 2D 
13

C-
13

C DARR 

spectra were recorded for twice the number of scans at 600 MHz but again due to low 

signal to noise no improvement in data was seen and no additional inter-helical cross 

peaks were observed. 

With BPV E5LF it was also observed from both 1D and 2D 
13

C spectra that 

resonances arising from phenylalanine aromatic ring carbons were unresolvable 

appearing as an unassignable single broad peak in the spectra recorded. Knowing that 

the next sample to be prepared contained phenylalanine and tyrosine, both of which 

had aromatic ring carbons in the structure of their side chains and knowing that the 

inter-helical interactions predicted to occur between the two amino acids was between 

the two aromatic rings, a method to improve the resolution of theses resonances was 

sought.  
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As such in the next sample prepared using labelled phenylalanine and tyrosine 

(BPV E5FY) in an attempt to improve the resolution of 
13

C spectra recorded and to make 

the lipid bilayers in the samples prepared more biologically relevant, the cholesterol 

composition of samples prepared for ssNMR analysis was increased greatly from 5% 

w/w (0.08 mol ratio) to 30% w/w (0.60 mol ratio) which was a compromise value 

between that of the cholesterol level found in the Golgi apparatus and plasma 

membrane to which BPV E5 locates in vitro. Increasing the cholesterol composition of 

the bilayer was thought to rigidify the membrane and allow for spectra to be recorded 

at more physiological temperatures. From 1D 
13

C experiments it was seen that running at 

higher temperatures saw no improvement in spectra resolution as at this temperature 

only resonances for DMPC lipid were observed, decreasing the temperature saw an 

improvement in signal but as with BPV E5LF, resonances arising from the aromatic ring 

carbons were still unresolvable. Having optimised experimental parameters such as 

temperature and CP contact time, short and long mixing time 2D 
13

C - 
13

C DARR 

experiments were recorded on BPV E5FY. Again for this sample at long mixing times only 

intra-residue cross peaks were observed, with no inter-helical cross peaks between 

phenylalanine and tyrosine. After recording BPV E5FY spectra it was concluded that using 

both phenylalanine and tyrosine in one sample was a poor choice of pairings, not only 

due to the aromatic ring carbons giving rise to broad peaks, but also due to very similar 

chemical shift values between phenylalanine and tyrosine, this pairing of amino acids 

would not give rise to cross peaks that could be fully attributed to inter-helical 

couplings without ruling out the possibility of observing intra-residue couplings due to 

chemical shift values of phenylalanine Cδ 1/2 and tyrosine Cδ 1/2  being so similar. 

The effect of increasing cholesterol content of DMPC lipid membrane was 

investigated further using 
31

P and 
1
H ssNMR in order to understand why no 

improvement in spectral resolution was observed with BPV E5FY. From the results 

obtained using 
31

P and 
1
H spectra obtained it was observed from static 

31
P spectra that 

the addition of cholesterol to DMPC liposomes had no detrimental effect on the correct 

formation of lamellar bilayers. At high temperature above the Tm the addition of 

cholesterol to bilayers resulted in membranes being in the liquid ordered phase (Lo) 

whereas at low temperature below the Tm the addition of cholesterol resulted in loss of 

the more ordered gel-phase (Lβ) as 
1
H data indicated the reduced ordering of lipid acyl 
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chains and higher mobility of protons in the inter-facial and polar head group regions of 

DMPC molecules. The data presented here for DMPC bilayers in the presence of 

cholesterol can be used to gain a better understanding of the effect of cholesterol on 

DMPC membranes at sub-zero temperatures as although well studied, typically literature 

surrounding the effect of cholesterol on lamellar bilayers concerns work conducted 

above 0 ° C.  
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6 SOLUTION NMR 

ANALYSIS OF BPV E5 

 

 

6.1 Introduction 

In this chapter, solution-state NMR analyses of the 
15

N isotopically labelled BPV 

E5V2 peptide are presented. The first section of this final results chapter details the use of 

both one-dimensional 
1
H and two-dimensional 

15
N – 

1
H heteronuclear solution NMR 

experiments to study the BPV E5V2 peptide in both organic solvent (TFE) and 

reconstituted into DMPC/DHPC bicelles. The BPV E5V2 was specifically designed for 

solution NMR studies, with multiple N
15

 labels at key sites at the homodimer interface 

and control sites away from the interface. For bicelle samples, the effect of changing the 

short:long chain lipid ratio on the spectra obtained was investigated using 
1
H, 

15
N and 

31
P NMR. 

15
N-edited three-dimensional NOESY and TOSCY experiments were also 

acquired in an attempt to aid the assignment of resonances observed from BPV E5V2 

peptide reconstituted in bicelles. Bicelle samples prepared for solution NMR analysis 

NMR were also analysed by dynamic light scattering, to better understand how the size 

of the peptide/bicelle complex affected the signals obtained in the NMR spectra. Finally, 

preliminary two- and three dimensional solution NMR results for bicelle-solubilised 

13
C/

15
N leucine and phenylalanine labelled E5 peptides (originally designed for ssNMR 

studies) are presented. 

Whilst ssNMR is a powerful technique when applied to the study of membrane 

proteins in a lipid environment, allowing for the analysis of membrane protein structure 

in a “native-like” environment, it would be impossible to study membrane proteins 

embedded in liposomes by solution NMR due to the extremely large size of the protein 

liposome complex (Watts and Spooner 1991). As solution NMR techniques have fast 

tumbling requirements in order to average out the CSA effects that cause line 

6 
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broadening in the spectra obtained, liposomes tumble much too slowly on the NMR 

timescale (Watts and Spooner 1991). Therefore suitable membrane mimetic systems that 

allow for solubilisation of hydrophobic membrane proteins, while also satisfying the fast 

tumbling requirement of solution NMR and maintaining correct biophysical function 

have been sought.  

First introduced by Sanders et al. (Sanders and Prestegard 1990; Sanders and 

Schwonek 1992), bicelles composed of DMPC as the long chain phospholipid 

component and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) as detergent are 

the most commonly used and most characterised bicellar systems used for the study of 

single and multi-span membrane proteins by solution NMR (De Angelis, Howell et al. 

2006; Bocharov, Pustovalova et al. 2007; Bocharov, Mineev et al. 2008). These binary 

bilayered mixed micelles can also be doped with phospholipids with different polar head 

groups such as 1,2-dihexanoyl-sn-glycero-3-phosphoglycerol (DMPG), which carries a 

negative charge on the head group that can be used to alter the charge properties of 

DMPC/DHPC bicelles as well as improve the stability of bicelles (Struppe, Komives et al. 

1998; Struppe, Whiles et al. 2000).  This modification allows samples to be used for 

longer periods of time and for more complex 3D NMR experiments to be recorded.  

By varying the ratio of long to short chain phospholipids (referred to as the q 

ratio) (Equation 9), two forms of bicelle can be prepared. At temperatures above the Tm 

of DMPC (25 °C), q ratios above 2.5 and at lipid concentrations of 3-60% w/v, large 

bicelles that spontaneously align with the magnetic field (B0) are formed (Sanders and 

Schwonek 1992). These slower tumbling, magnetically alignable bicelles can be used to 

orient embedded membrane proteins in solution (De Angelis, Nevzorov et al. 2004; Park, 

Prytulla et al. 2006; Triba, Zoonens et al. 2006) and can also be used to measure residue 

dipolar couplings (RDCs) that can aid protein structure determination through the 

measurement of angles between two atoms  (Bax and Tjandra 1997). Larger bicelles have 

also been used for ssNMR analysis of embedded membrane proteins (De Angelis, 

Howell et al. 2006) making it possible to collect both solution and ssNMR data in similar 

membrane mimetic environments. 

 

  
                      

                              
   (9) 
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Whilst larger alignable bicelle lipid aggregates can be formed by using higher q 

ratios, using q ratios less than 0.5 results in the production of small discoid isotropic 

bicelles that undergo fast tumbling molecular motion in the magnetic field, which allows 

for the structure determination of membrane proteins embedded within the bicelle by 

solution NMR techniques. Although smaller in diameter (~8 – 10 nm)  (Vold, Prosser et 

al. 1997), isotropic bicelles have been shown to have a similar structure to that of larger 

magnetically alignable bicelles, consisting of a central planar bilayer region capped by 

short chain phospholipids (Andersson and Maler 2005), whilst maintaining a similar 

bilayer thickness of ~ 4 nm. Though larger than detergent micelles, the smaller overall 

diameter of isotropic bicelles in comparison to larger alignable bicelles allows them to 

tumble relatively fast on the NMR time scale and can be used to obtain high resolution 

NMR spectra (Vold, Prosser et al. 1997; Luchette, Vetman et al. 2001). Although the 

spectra obtained in lipid bicelles are generally broader than those recorded in detergent 

micelles, the larger diameter of isotropic bicelles offers an advantage over detergent 

micelles as the increased diameter leads to a reduction in curvature stress that can affect 

protein structure and in some cases the functionality of the embedded membrane 

protein. An example of membrane protein functionality being retained when 

reconstituted in bicelles can be found with the enzyme diacylglycerol kinase. 

Diacylglycerol kinase has been shown to retain correct enzymatic activity when 

embedded in isotropic bicelles whereas enzymatic activity is lost when reconstituted into 

detergent micelles (Sanders and Landis 1995).  

Small isotropic bicelles have been used to elucidate the structure of a number of 

small membrane proteins or TM domains, such as the dimeric TM domain of the growth 

factor receptor ErbB2 (Bocharov, Mineev et al. 2008) and the apoptotic protein BNip3 

(Bocharov, Pustovalova et al. 2007). As such, fast tumbling isotropic bicelles present a 

more attractive membrane mimetic system than that of the more commonly used 

detergent micelle system. 
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6.2 Solution NMR analysis of BPV E5V2 

By preparing DMPC/DHPC lipid bicelle samples, it was hoped that solution NMR 

spectrometry could be used to the study the BPV E5 homodimer in a “native-like” lipid 

environment, more representative than that of the detergent micelle environment (King, 

Oates et al. 2011) or the organic solvent trifluroethanol (TFE) (Windisch, Hoffmann et al. 

2010; King, Oates et al. 2011) in which previous attempts to characterise the BPV E5 

protein have been presented. For solution NMR analysis of BPV E5, the sequence of the 

synthetic peptide incorporating multiple
 15

N isotopic labels designed by Dr Gavin King 

(previously of the Dixon Group, Department of Chemistry, the University of Warwick) for 

the study of BPV E5 in TFE and in SDS micelles, was used and is shown in Figure 6.1. 

Due to the spectral overlap that can occur due to the broadness of resonances observed 

in the solid state, peptides that were designed for ssNMR studies only incorporated a 

single 
13

C/
15

N labelled amino within each peptide (see Table 2.2 in Chapter 2.3). For 

solution NMR, where experimental line widths obtained are much narrower, multiple 

amino acid sites containing 
15

N labels were appropriate.  

 

Figure 6.1 Peptide sequence of 
15

N labelled BPV E5V2 peptide 

Transmembrane region of synthesised BPV E5 peptide with 
15

N isotopically labelled amino 

acids indicated in blue. Additional end terminal lysine resides were incorporated to improve 

peptide solubility. 

 

The BPV E5V2 peptide was synthesised with 
15

N labelled residues incorporated at 

multiple sites within the peptide at Gly 11, Val 13, Ala 14, Leu 19, Leu 24 and Val 30.  A 

molecular model of the predicted E5 transmembrane domain, produced using the CHI 

software, with all 
15

N labelled sites highlighted is shown in Figure 6.2. In this model, Val 

13, Ala 14 and Leu 24 are predicted to be at the homodimer interface while Gly 11, Leu 19 

and Val 30 are predicted to be outside of the homodimer interface.  This model of the 

E5 homodimer is in agreement with current accepted models of the E5 homodimer 

 KKKFLG11LV13A14AMQLL19LLLFL24LLFFLV30YWDHK 
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determined using mutagenesis in vivo (Mattoon, Gupta et al. 2001). Therefore, these 

amino acid residues within the BPV E5 peptide were chosen as key sites to label, as sites 

predicted to interact and as non-interacting controls. 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.2.1 Solution NMR analysis of BPV E5V2 in TFE 

In preparation for the characterisation of BPV E5V2 peptide in bicelles, the 

peptide was first analysed by solubilisation in the organic solvent trifluroethanol (TFE) as 

it was hoped that the spectra recorded in TFE would help with the assignment of 

resonances observed when reconstituted into DMPC/DHPC lipid bicelles and would also 

Val 13 

Val 30 
Val 30 

Leu 19 Leu 19 

Leu 24 Leu 24 

Val 13 

Ala 14 Ala 14 

Gly 11 Gly 11 

Figure 6.2 Molecular model of BPV E5V2 homodimer with 
15

N labelled amino acids 

indicated 

Predicted energy minimised molecular model of the BPV E5 homodimer generated using the 

CHI molecular modelling software. Amino acids predicted to be at the homodimer interface 

(Mattoon, Gupta et al. 2001) and those predicted to point outwards away from the interfacial 

region are shown in stick form. 
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allow us to compare the spectra obtained with that of previously published data 

recorded in TFE and SDS micelles (King, Oates et al. 2011). Initial water-supressed 1D 
1
H 

NMR experiments (Hwang and Shaka 1995) were recorded on the BPV E5V2 peptide 

solubilised in 80% deuterated TFE (TFE-d3) and 20% H2O, as shown in Figure 6.3. A 

number of well resolved resonances with good signal to noise were observed, with 

those in the amide and aliphatic region of the spectrum arising from BPV E5 peptide.  

 

Following 1D analysis, a 2D 
15

N – 
1
H heteronuclear single quantum coherence 

(HSQC) (Schleucher, Schwendinger et al. 1994) spectrum was recorded. In the HSQC 

experiment, magnetisation is transferred to a second nucleus, which can either be 
15

N or 

13
C via an INEPT transfer (Insensitive Nuclei Enhanced by Polarisation Transfer). 

Following a t1 delay, magnetisation is transferred back to the proton and the NMR signal 

recorded. In a HSQC experiment, the t1 delay is incremented whilst a series of 

experiments is recorded in order to produce a 2D spectrum where the 
1
H chemical shift 

is recorded in the direct dimension and the 
15

N or 
13

C chemical shift recorded in the 

Figure 6.3 1D 
1
H spectrum of BPV E5V2 in deuterated TFE 

1D 
1
H spectrum of BPV E5V2 peptide in 80:20 TFE-d3:H2O. Spectrum recorded on 700 MHz 

spectrometer (Bruker, Avance II) at 40 °C (313 K) with a 7.71 µsec 
1
H 90° pulse length for 16 

co-added transients. 
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indirect dimension. In a 
15

N -
1
H HSQC spectrum each amide proton attached to a 

15
N 

labelled nitrogen in the peptide bond gives rise to an observable cross peak (with the 

exception of proline which has no amide proton). The spectrum obtained from a 
15

N 

HSQC experiment is often referred to as a “fingerprint” of a protein, as each protein will 

give rise to a unique pattern of resonances, with a well dispersed spectrum indicative of 

a folded protein, whereas unfolded proteins form a narrow line down the centre of the 

spectrum.  As such, a 2D 
15

N – 
1
H HSQC spectrum of the BPV E5V2 peptide was recorded 

in 80:20 TFE-d3:H2O (Figure 6.4) allowing for 
15

N labelled amide groups within the BPV 

E5V2 peptide to be observed.  

 

 

Figure 6.4 2D 
15

N-
1
H HSQC spectrum of BPV E5V2 in deuterated TFE 

2D 
15

N – 
1
H HSQC spectrum of BPV E5V2 peptide in 80:20 TFE-d3:H2O. Spectrum recorded on 

a 700 MHz spectrometer (Bruker, Avance II) at 40 °C (313 K) with a 7.71 µsec 
1
H 90° pulse 

length with 4K planes in F2 and 64 planes in F1 for 16 co-added transients. 
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A number of well dispersed resonances were observed in the 
15

N – 
1
H HSQC 

spectrum obtained, with the number of resonances matching that of the expected 

number of 
15

N labels in BPV E5V2 peptide. Six major resonances were observed, 

indicating that the incorporation of 
15

N labels into the BPV E5V2 peptide was successful, 

and that the majority of peptides were forming a single species in TFE with an alpha-

helical secondary structure. The peptide structure in TFE was predicted to be a 

monomeric helix as TFE promotes the formation of hydrogen bonding and secondary 

structure but also disrupts oligomerisation via helix-helix interactions (Luo and Baldwin 

1997). The presence of a number of minor resonances, of much lower signal intensity, 

was also observed suggesting the possible formation of a minor species in a second 

chemical environment. The 
15

N – 
1
H HSQC spectrum recorded matched well with that of 

BPV E5V2 peptide previously reported in 80:20 TFE-d3:H2O (King, Oates et al. 2011). The 

only resonance observed that was tentatively assignable based upon previously 

published chemical shift data was glycine 11 due to the relatively low 
15

N chemical shift 

(103.27 ppm) in comparison to the other labelled amino acids within the peptide.   

 

6.3 Solution NMR analysis of BPV E5V2 in bicelles 

Having recorded 1D 
1
H and 2D 

15
N – 

1
H spectra of BPV E5V2 in TFE, the BPV E5V2 

peptide was reconstituted into DMPC/DHPC bicelles that represented a more native-like 

environment than that of TFE. DMPC/DHPC bicelle samples were prepared using BPV 

E5V2 (as described in more detail in Chapter 2.10.1). As is the case with ssNMR 

membrane protein samples, no single sample preparation is universally applicable to the 

production of successfully reconstituted protein into bicelles that can be used to obtain 

good, high resolution NMR spectra. In order to find the best sample preparation 

method a number of bicelle samples were prepared for analysis by solution NMR. When 

preparing bicelle samples, a number of important variables were taken into account 

such as the lipid to protein ratio, the percentage total amphiphile (the total percentage 

weight of DMPC + DHPC in solution) and q. As described earlier in this chapter, the q is 

the ratio of long to short chain lipid in the sample, where typically DMPC is used as the 

long chain lipid and DHPC the short chain lipid. As DHPC can be classified as a 

detergent, it has an associated critical micelle concentration (CMC). The CMC value is the 
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concentration above which a detergent forms micelles, and in the case of DHPC the 

CMC value is quite large (15 mM). As such, when preparing bicelle samples with different 

q values, it is important to take the CMC of DHPC into account in order to account for 

the free detergent population below the CMC within the solution that is not in bicelle 

form.  This is accomplished by subtracting 15 mM DHPC when calculating q, as this free 

detergent population also has an effect on the total amphiphile value of the solution. 

There have been a number of studies that have reported an “apparent q” ((Bocharov, 

Pustovalova et al. 2007; Bocharov, Mineev et al. 2008; Morrison and Henzler-Wildman 

2012) where the free detergent population below the DHPC CMC value has not been 

accounted for. When preparing bicelle samples for the reconstitution of BPV E5V2 

peptides, a number of sample variables were trialled in order to identify the ideal 

conditions to obtain high resolution solution NMR spectra, whilst also maintaining the 

correct secondary structure and oligomeric state. For DMPC/DHPC bicelles, we tested 

the effects of the q ratio, lipid to protein ratio (LPR), total percentage amphiphile in 

solution and temperature on the quality of the solution NMR data. 

An initial solution NMR sample for BPV E5V2 peptide reconstituted into 

DMPC/DHPC bicelles was prepared with a q value of 0.5, a lipid to protein ratio of 80:1 

w/w (220:1 molar) and a percentage total amphiphile value of 10% in 20 mM TRIS buffer 

(as described in more detail in Chapter 2.10.1). To assess the quality of the sample, a 2D 

15
N – 

1
H HSQC spectrum was recorded (Figure. 6.5). Whereas previously reported 

spectra obtained for the BPV E5V2 peptide in SDS micelles showed a presence of two 

oligomeric species (monomer/dimer) dependent upon SDS micelle concentration (King, 

Oates et al. 2011), in the 2D 
15

N – 
1
H HSQC spectrum recorded in q=0.5 bicelles only six 

resonances were observed for the six 
15

N labelled amino acids within the E5V2 peptide.  

The cross peak tentatively assigned as arising from glycine 11 was of a much lower signal 

intensity compared to the other five. 2D 
15

N – 
1
H HSQC spectra were recorded at a range 

of temperatures, from 25 °C (the Tm temperature for DMPC) to 50 °C. By extracting a 1D 

plane from each 2D experiment signal to noise was compared (Figure 6.6). 
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Figure 6.5 2D 
15

N – 
1
H HSQC spectra of BPV E5V2 in DMPC/DHPC bicelles at increasing 

temperature 

2D 
15

N – 
1
H HSQC spectra of BPV E5V2 peptide reconstituted into q= 0.5 DMPC/DHPC 

bicelles. Spectra recorded on a 700 MHz spectrometer (Bruker, Avance II) at 25 (red), 40 

(blue) and 50 °C (black) (298, 313 and 323 K) with a 7.84 µsec 
1
H 90° pulse length with 4K 

planes in F2 and 64 planes in F1 for 16 co-added transients. 
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Figure 6.6 Extracted planes from 2D 
15

N-
1
H HSQC spectra at increasing temperatures 

1D row extracted from 2D HSQC experiments at each of the temperatures recorded, at 50 °C, 

signal and line width were much improved over that of those resonances recorded at 25 °C.  

 

A temperature of 50 ºC resulted in 2D 
15

N – 
1
H HSQC spectra with the best line 

shape and highest signal to noise ratio of all 2D experiments recorded, this was even 

more evident in the 1D trace extracted, where the signal to noise ratio appeared to 

double with each increase in temperature. Signal to noise ratios of 32.3 for 50 °C, 15.9 

for 40 °C and 8.5 for 25 °C were measured. Similarly, the peak widths at half height for 

cross peaks observed were narrower at 50 °C (0.040 ppm/28.20 Hz) than at lower 

temperature (40 °C: 0.052 ppm/37.95 Hz; 25 °C: 0.054/38.46 Hz). Although running 2D 

15
N – 

1
H HSQC at 50 °C gave the best signal to noise ratio and sharper resonances, this 

temperature could not be sustained on our current spectrometers over a number of 

days, and a compromise temperature of 40 °C was used to acquire all further bicelle 

experiments. Solution NMR data for q=0.5 bicelles resulted in the observation of the 

correct number of resonances for each of the labelled amino acids within BPV E5V2, but 

with lower signal to noise for the cross peak arising from glycine 11. Therefore a second 

bicelle sample was prepared in an attempt to improve the signal to noise ratio of 
15

N 

labelled amide groups and the dispersion of resonances in the spectra, as there 
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appeared to be some spectral overlap for two of the unassigned resonances within the 

sample (in contrast to samples prepared in TFE where all signals were well dispersed).  

 

6.3.1 Solution NMR of BPV E5V2 in q=0.33 bicelles. 

The second bicelle sample was prepared with an increased DHPC concentration 

in order to lower the q ratio to 0.33, as a lower q ratio should result in bicelles with a 

smaller diameter that tumble faster in solution, leading to an improvement in the 

spectra obtained. In addition to reducing the q ratio, the peptide concentration was 

increased and the lipid concentration decreased from 10% total amphiphile to 2% in 

order to decrease the lipid to protein ratio considerably (from 80:1 to 30:1 w/w).  This 

reduced the viscosity of the sample solution in a further attempt to improve bicelle 

tumbling rates. A third bicelle sample was also prepared with a q=0.33 ratio, but using 

an alternative method for reconstitution of peptide into bicelles. For q=0.5 bicelles, 

lipids were weighed out individually and dissolved directly into TRIS buffer prior to 

being mixed together at the correct quantities to form bicelles of the required q ratio, 

which was then added to a dried film of BPV E5V2 peptide. For the third bicelle sample, 

both DMPC and DHPC were dissolved in TFE and the correct volumes, mixed together 

and dried down to a film before being resuspended in buffer to form a stock 2% total 

amphiphile solution of q = 0.33 bicelles. This stock bicelle solution was then added to a 

dried BPV E5V2 peptide film in order to form bicelles with a 30:1 w/w (40:1 molar ratio) 

lipid to protein ratio. All of the bicelle samples were then analysed in order to compare 

whether any of the changes made in the sample preparation yielded an improvement in 

signal intensity or line width in the spectra recorded.  

An overlay of the 2D HSQC spectra for all three bicelle samples is shown in 

Figure 6.7. When comparing the two q=0.33 bicelle samples, the sample prepared by 

co-dissolving lipids in TFE to prepare a bicelle stock solution in HEPES buffer appeared 

to have slightly higher signal intensity and sharper resonances than that of the sample 

prepared using the original method and in TRIS buffer. Therefore this sample was the 

one used for further analysis of the BPV E5V2 peptide. Comparing the three spectra, it 

was seen that by decreasing the q value from 0.5 to 0.33 and by reducing the lipid to 

protein ratio to 30:1 w/w, whilst also decreasing the percentage total amphiphile in 
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solution from to 2%, had a positive effect on the spectrum obtained. The resonances 

observed from 
15

N labelled amide groups had greatly improved signal intensity, in 

particular the resonance tentatively assigned as arising from glycine 11 in the BPV E5V2 

peptide was now clearly visible above the noise, as was the case in spectra recorded in 

TFE. Again six resonances were observed for the six isotopic 
15

N labels incorporated into 

the peptide. 

 

Figure 6.7 Overlay of 2D 
15

N - 
1
H HSQC of BPV E5V2 reconstituted into q=0.33 and 

q=0.5 bicelles 

2D 
15

N – 
1
H HSQC spectra of BPV E5V2 peptide reconstituted into DMPC/DHPC bicelles 

with a q of 0.5 (red), 0.33 in TRIS (blue) and 0.33 in HEPES (black). Spectra recorded on 

a 700 MHz spectrometer (Bruker, Avance II) at 40 °C (313 K). Signal intensity of the 

q=0.33 bicelle sample was much higher, with the resonance arising from glycine 11 

much more apparent than in the q=0.5 bicelle sample. 
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6.3.2 3D HSQC TOCSY and NOESY analysis of BPV E5V2 

To assign the resonances observed in the 2D 
15

N – 
1
H HSQC spectra recorded for 

BPV E5V2 peptides reconstituted into bicelles, 
15

N edited 
1
H – 

1
H HSQC NOESY and HSQC 

TOtal Correlation SpectroscopY (TOCSY) spectra were acquired. By running experiments 

using 
15

N as the third dimension, signals from DMPC and DHPC lipids in addition to any 

signal from HEPES buffer were filtered out, enabling only those resonances which were 

isotopically 
15

N labelled to be observed. 3D experiments were recorded as “pseudo 3D” 

experiments, as only a single plane was recorded in the 
15

N dimension. Since only six 

amino acids were isotopically labelled within BPV E5V2 peptide, the resolution obtained 

by running “full” 3D experiments was not required and as such experimental time was 

reduced greatly allowing for a larger number of co-added transients to be recorded.  

The 
1
H-

1
H TOCSY sequence is a homonuclear experiment, from which through 

bond information for protons that are coupled together within the same spin system (i.e. 

all protons within a single amino acid) can be obtained from scalar couplings, the 

magnitude of which depend upon the number of intervening bonds. Protons from 

different amino acids give rise to different spin systems as there is no scalar coupling 

across the amide bond. Analysis of cross peaks arising from different spin systems can 

be used for the assignment of each amino acid based upon the chemical shifts within 

each system and known resonance patterns. 
15

N edited 
1
H – 

1
H TOCSY-HSQC spectra 

were recorded for BPV E5V2 in bicelles using short (30 ms) and long (100 ms) TOCSY 

mixing times. A 
15

N edited 
1
H – 

1
H TOCSY spectrum with a 60 ms spin-lock time is shown 

in Figure 6.10. From 
1
H – 

1
H TOCSY-HSQC spectra recorded, a number of broad TOCSY 

cross peaks were observed, but the number of resonances observed fell short of the 

number of resonances expected. Tentative assignments of cross peaks observed were 

made based upon published chemical shift data at the BMRB in conjunction with 

NOESY-HSQC spectra recorded, however these assignments need verification in the 

future. Assignment of resonances observed in TOCSY and NOESY spectra of BPV E5V2 in 

bicelles was difficult due to the increase in signal broadening when compared to those 

recorded in TFE, as lipid bicelles tumble at a slower rate than that of TFE or detergent 

micelles. At 40 °C (data not shown) weak TOCSY signals were only observed for coupling 

of HN - αH nuclei in each of the 
15

N labelled amino acids within the BPV E5V2 peptide. 

Increasing the temperature to 50 °C resulted in a slightly improved spectrum, in which in 
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addition TOCSY cross peak from a βH proton was observed in the tentatively assigned 

valine 13/30 spin system. At longer TOCSY mixing times (100 ms), which should allow for 

longer-range through bond correlations to be observed, no additional cross peaks were 

observed. 
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Figure 6.8  
15

N edited 
1
H-

1
H HSQC TOCSY of BPV E5V2 reconstituted into q=0.33 

bicelles 

2D plane of a 3D 
15

N edited 
1
H-

1
H  HSQC TOCSY spectrum with a 60 ms TOCSY mixing 

time of BPV E5V2 peptide reconstituted into q=0.33 bicelles. Spectrum recorded on a 700 

MHz spectrometer (Bruker, Avance II) at 50 °C (323 K) Tentative assignments were made 

based upon published chemical shift and resonance pattern data. 
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The 
1
H-

1
H NOESY sequence is used to gain information for protons that interact 

through space that are coupled together by dipolar couplings. The intensity of NOE 

signals observed depends upon the distance between coupled nuclei (where distance is 

proportional to r
-6

) with closer nuclei giving higher intensity NOE cross peaks. As with 

TOCSY experiments, analysis of the cross peaks arising from different spin systems for 

which NOEs are observed can be used for the assignment of each amino acid based 

upon the chemical shifts of the resonances observed. However, at longer NOESY mixing 

times, ambiguity can arise when NOESY spectra are used for assignment purposes. 

15
N edited 

1
H – 

1
H NOESY-HSQC spectra were recorded for BPV E5V2  over a 

range of NOESY mixing times from 20 ms to 200 ms. Figure 6.11 shows a 
15

N edited 
1
H – 

1
H NOESY spectrum recorded with a 50 ms mixing time. A number of resonances were 

observed arising from intra-residue NOEs between protons within each amino acid spin 

system. Cross peaks observed were broad and overlapping, particularly at longer mixing 

times. Tentative assignments of cross peaks were made based upon published chemical 

shift data at the BMRB. Assignment of glycine 11 and alanine 14 spin systems was 

particularly straightforward based upon the chemical shift of resonances observed. No 

alanine αH cross peak was observed, but a cross peak for alanine βH was assigned.  

Although cross peaks were broad and with some overlap of resonances due to 

similar chemical shift values, in particular of those thought to arise from labelled leucine 

19/24 and valine 13/30, assignment was still attempted. Based upon the predicted 

molecular model of the BPV E5 homodimer prepared in CHI, the leucine 19 spin system 

was tentatively assigned as being distinguishable from leucine 24, since leucine 24 

residues are predicted to lie at the homodimer interface whereas leucine 19 resides face 

away from the interface. This could result in a larger signal intensity for interacting 

leucines with a similar chemical shift and as such tentatively assigned leucine spin 

system with the higher signal intensity was assigned to leucine 24. The presence of a 

potential cross peak arising from an NOE between valine 13 and alanine 14, was used to 

distinguish between valine spin systems. A potential cross peak arising from an NOE 

between glycine 11 and alanine 14 was also observed. 
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Figure 6.9 
15

N edited 
1
H-

1
H NOESY-HSQC spectrum of BPV E5V2 reconstituted into 

q=0.33 bicelles 

2D plane of a 3D 
15

N edited 
1
H-

1
H  NOESY-HSQC spectrum of BPV E5V2 peptide reconstituted 

into q=0.33 bicelles recorded with a 50 ms NOESY mixing time. Spectrum recorded on a 700 

MHz spectrometer (Bruker, Avance II) at 50 °C (323 K) Tentative assignments were made 

based upon published chemical shift and resonance pattern data. Coloured lines are used to 

differentiate between observed spin systems. 
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A combination of chemical shift data from both 
15

N edited 
1
H-

1
H TOCSY and 

NOESY-HSQC spectra were used to tentatively assign the 2D 
15

N - 
1
H HSQC spectrum of 

BPV E5V2 in q=0.33 bicelles (Figure 6.12). The majority of resonances were assigned with 

confidence, in particular those arising from glycine 11 and alanine 14, with the 

resonances arising from valine 13/30 and leucine 19/24 assigned with reasonable 

confidence. A chemical shift table based upon experimental data is given in Table 6.1. In 

order to be able to assign all resonances unambiguously data from TOCSY experiments 

would be required. 

 

Figure 6.10 2D 
15

N - 
1
H HSQC of BPV E5V2 reconstituted into q=0.33 bicelles 

with tentative amino acid assignments 

2D 
15

N-
1
H HSQC spectrum of BPV E5V2 peptide reconstituted into q=0.33 bicelles. 

Spectrum recorded on a 700 MHz spectrometer (Bruker, Avance II) at 40 °C (313 K) 

Tentative assignments shown on the spectrum were made based upon published 

chemical shift and TOCSY/NOESY data. 
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Table 6.1 Chemical shift assignments for 
15

N labelled amino acids in BPV E5V2 

reconstituted in DMPC/DHPC bicelles 

Experimental chemical shifts (in ppm) for tentatively assigned amino acids derived from 2D 
15

N – 
1
H HSQC and 

15
N edited 3D 

1
H -

1
H HSQC TOCSY and NOESY spectra of BPV E5V2 

reconstituted into DMPC/DHPC bicelles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 N NH αH βH γH 

Gly11 105.88 8.33 3.75 -- -- 

Val13 118.39 8.06 4.03 1.74 0.80 

Ala14 120.57 8.43 3.97 1.44 -- 

Leu19 118.85 8.47 4.03 1.98 0.86 

Leu24 118.70 8.24 4.03 1.80 0.86 

Val30 116.51 8.10 3.82 2.09 0.92 
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6.4 Solution NMR analysis of BPV E5LF in bicelles 

An advantage of solution NMR over that of ssNMR is the much narrower line 

width of resonances obtained in solution NMR spectra in comparison to the broad line 

widths observed in solid samples. To exploit this property, solution NMR was used to 

analyse the E5LF peptides originally designed for ssNMR studies. The preliminary results 

obtained from the singly labelled 
13

C/
15

N BPV E5 peptides are presented in this section. 

In order to probe for any potential through space couplings between labelled leucine 

and phenylalanine at the BPV E5 homodimer interface using hetero nuclear solution 

NMR experiments making use of 
13

C isotopically labelled carbon atoms, a bicelle sample 

was prepared using the singly labelled BPV E5 peptides originally designed for ssNMR 

analysis. Peptides labelled at leucine 24 (BPV E5L) and phenylalanine 28 (BPV E5F) were 

mixed (BPV E5LF) and reconstituted into q= 0.25 deuterated DMPC/DHPC bicelles at a 

30:1 (w/w) lipid to protein ratio for analysis by solution NMR. For the BPV E5LF bicelle 

sample, deuterated d54-DMPC and d22-DHPC were used, so as to explore the use of 
1
H-

1
H TOCSY and NOESY experiments without interference of proton signals from lipid and 

detergent acyl chains. An initial 
15

N – 
1
H HSQC spectrum of BPV E5LF reconstituted into q 

= 0.25 bicelles was recorded (Figure 6.13). From the 2D HSQC spectrum obtained, two 

resonances were observed for the two 
15

N labelled amide groups within the sample. 

Using published chemical shift data an initial assignment of resonances was made 

(Table 6.2). Although the chemical shift values of resonances observed were similar to 

one another in the 
1
H dimension, resonances were resolvable in the 

15
N dimension.   
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Figure 6.11 2D 
15

N - 
1
H HSQC of BPV E5LF reconstituted into q=0.25 bicelles  

2D 
15

N – 
1
H HSQC spectra of 

13
C/

15
N labelled BPV E5LF peptide reconstituted in 

DMPC/DHPC bicelles with a q of 0.25 at a lipid to protein ratio of 30:1 and 2% total 

amphiphile. Spectrum recorded on a 600 MHz spectrometer (Bruker, Avance III) at 50 °C 

(323 K). Two resonances were observed for isotopically labelled leucine 24 and 

phenylalanine 28 amide groups. 
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Table 6.2 Tentative chemical shift assignments for labelled BPV E5 Leu 24 and Phe 28 

in bicelles 

 

 

 

 

 

 

 

 

Following initial 2D 
15

N – 
1
H HSQC experiments, homonuclear 1H – 

1
H -TOCSY 

experiments were acquired for assignment of resonances and 
1
H – 

1
H -NOESY 

experiments to investigate potential interactions between labelled leucine and 

phenylalanine through dipolar couplings (data not shown). These data, recorded at 

lower field (600 MHz), showed a considerable lack of cross peaks off the diagonal, and 

no improvement upon increase of temperature, as such the physical properties of 

isotropic bicelles were investigated.  

 

6.5 Characterisation of DMPC/DHPC bicelles 

In an attempt to understand why bicelle samples gave rise to cross peaks in 
15

N – 

1
H HSQC and 

15
N edited 

1
H – 

1
H HSQC-NOESY spectra, but very few cross peaks in the 

15
N edited 

1
H – 

1
H TOCSY-HSQC and homonuclear correlation spectra, bicelles were 

analysed by 
31

P NMR and Dynamic light scattering (DLS). Using 
31

P solution NMR, the 

formation of isotropic bicelles at q=0.33 was assessed. DLS was used to measure the 

approximate size of the bicelle-peptide aggregates formed at this q ratio.  

Leu 24 
15

N chemical shifts (ppm) 

N 118.85 

NH 8.48 

Phe 28 
15

N chemical shifts (ppm) 

N 117.76 

NH 8.51 
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6.5.1 Analysis of bicelles by 31P solution NMR 

To confirm the presence of isotropic bicelles in samples prepared using a q of 

0.33, 
31

P solution NMR spectra were recorded on empty bicelle samples prepared with a 

2% total amphiphile solution. These empty bicelles were analysed by 
31

P NMR over the 

range of temperatures previously used when collecting 
15

N-
1
H HSQC spectra. In the 

31
P 

solution NMR spectra obtained (Figure 6.12), two distinct resonances were observed. At 

all temperatures, the downfield peak intensity was found to be three times that of the 

upfield peak, similarly the integrated area beneath the higher intensity peak was three 

times that of the lower intensity upfield peak and integrated area under the downfield 

peak. Therefore the higher intensity, downfield peak was assigned to the phosphate 

head group of DHPC and the upfield peak was assigned to DMPC. The intensity and 

integral volumes correlate well with the experimental q ratio of 0.33 used to prepare 

bicelle samples. As has been previously demonstrated, DHPC and DMPC 
31

P spectra 

recorded in isolation result in resonances of identical chemical shift values, therefore the 

presence of two distinguishable resonances suggests that the phosphate head groups of 

DHPC and DMPC are in two distinctly different chemical/magnetic environments 

(Glover, Whiles et al. 2001). 

Figure 6.12 
31

P solution NMR spectra of q=0.33 bicelles at increasing temperature 

31
P solution NMR spectra of q = 0.33 bicelles in 2% total amphiphile solution in 20 mM TRIS 

buffer, pH 7.4. Spectra were recorded at 600 MHz over a range of temperatures with a 

spectral window of 100 ppm and referenced by placing the carrier frequency at the centre of 

the spectrum. 
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The presence of a downfield resonance is characteristic of the isotropic 

behaviour of non-aligned bicelles (Marcotte and Auger 2005). The presence of two 

resonances (from DMPC and DHPC) at all temperatures suggests that when using a q 

ratio of 0.33, isotropic bicelles were formed. 

 

6.5.2 Analysis of bicelles by DLS 

 To assess the size of DMPC/DHPC isotropic bicelle samples prepared, and to 

observe the effect of insertion of BPV E5V2 peptide on the size of bicelles following 

reconstitution, empty and peptide-loaded bicelle samples were analysed using DLS. DLS 

is a biophysical technique that is commonly used to measure the size of particles in 

solution by measuring the Brownian motion of particles and correlating that to particle 

size. The relationship between particle size and its diffusion coefficient due to Brownian 

motion is defined by the Stokes-Einstein equation (Equation 10) and is used to report 

the hydrodynamic radius of particles. In Equation 10, Dt is the translational diffusion 

coefficient (m
2
/s), kB is the Boltzmann constant, T the absolute temperature (K), η the 

viscosity of solution and Rh the hydrodynamic radius. 

 

 

   
   

     
   (10) 

 

Equation 10 can be rearranged to give the hydrodynamic radius of a sphere (Equation 

11) 

   
   

     
   (11) 
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The hydrodynamic radii of empty q=0.33 bicelles in 2% total amphiphile solution, 

prepared in both TRIS and HEPES buffer, as well as bicelles containing BPV E5V2 

peptide are given in Table 6.3. 

 

 

  

 

 

 

 

 

 

Empty bicelle samples prepared in TRIS buffer resulted in bicelles of the smallest 

diameter (4.39 nm) and a low PI value of 0.30, indicating that the bicelles in solution 

were uniform in size.  In contrast, bicelles prepared in TRIS buffer and containing BPV 

E5V2 peptides were much larger (13.77 nm) and had a high PI value indicating a lack of 

homogeneity in the sample, as evidenced by the multiple populations of differing 

particle sizes observed. For samples prepared in HEPES buffer (as used in solution NMR 

experiments), the hydrodynamic radii of both empty and peptide-loaded bicelles were 

similar with empty bicelles at 5.64 nm and with peptide-loaded (7.97). As aggregate size 

increased, so did the PI, making interpretation of DLS measurements difficult due to 

heterogeneity of the sample. Ideal PI values in the range of 0.3-0.6 indicate sample 

homogeneity, with values closer to 1 indicative of highly polydisperse samples, generally 

not suited to characterisation by DLS. It should be noted that samples were unfiltered so 

as to not affect bicelle concentration through any potential loss of bicelles via 

interactions with membranes. As such, non-filtered dispersions may be affected by the 

Table 6.3 Hydrodynamic radii of empty and bicelles with inserted BPV E5V2 peptides 

Hydrodynamic radii (Rh) of q=0.33 bicelles in 2% total amphiphile solution measured at 40 

ºC. Values were averaged over three measurements and the standard deviation given. The 

polydispersity index (PI) as a measure of sample homogeneity is also given. 

 

Sample Rh (nm) SD PI 

E5V2 (HEPES) 7.97 0.67 0.85 

Empty (HEPES) 5.64 0.24 0.54 

E5V2 (TRIS) 13.77 0.79 0.80 

Empty (TRIS) 4.39 0.80 0.30 
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presence of interfering dust particles that may also result in a non-representative 

average hydrodynamic radius of bicelles size measured.  

The hydrodynamic radii of empty bicelle samples, as detected using DLS, appear 

to be in the range of those in the literature for isotropic bicelles of similar q ratios and 

total % amphiphile values. Bicelle diameters of 3-6 nm have been reported for empty, 

q=0.5 isotropic bicelles in 10 % total amphiphile solution and 4-10 nm when % 

amphiphile is reduced to 2.5% (Glover, Whiles et al. 2001). For isotropic bicelles of q = 

0.3 ratios, diameters of 12 -17 nm have been reported (Lu, Van Horn et al. 2012). The 

much larger diameters observed in bicelle samples prepared before and after 

reconstitution of BPV E5V2 peptide may be a result of aggregated bicelles/peptide which 

causes the fusion of bicelles. The larger diameter of the resulting bicelle/protein 

complexes would tumble at a much slower rate in comparison to smaller isotropic 

bicelles, leading to reduced signal intensity and broadening of resonances in the spectra 

recorded. Although larger diameters have been reported, those of peptide-loaded 

bicelles used to obtain high resolution NMR spectra have been reported to be much 

smaller, at around 2.7-3 nm (Bocharov, Mineev et al. 2008), suggesting that the bicelles 

used in this study are just on the edge of this size useable, hence the lack of TOCSY 

data. 

 

6.6 Summary 

Although a powerful technique, ssNMR is a less well established method for 

protein structure determination in comparison with solution NMR, and is inherently less 

sensitive resulting in lower resolution spectra. In particular, the use of 3D heteronuclear 

experiments is commonplace for solution NMR studies, therefore the use of solution 

NMR for investigating the structure of the BPV E5 membrane protein as a 

complimentary technique to ssNMR was investigated.  

  In this chapter the preliminary results for BPV E5 peptide reconstituted into 

DMPC/DHPC bicelles were presented. Previously to date, solution NMR data obtained 

for BPV E5 has only been reported in the organic solvent TFE and in SDS detergent 

micelles (Windisch, Hoffmann et al. 2010; King, Oates et al. 2011). Using fast tumbling 
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isotropic bicelles as a membrane mimetic system for the reconstitution of BPV E5 

peptides for solution NMR studies, we were able to record NMR spectra in a more 

“native-like” lipid environment, resulting in more biologically relevant data. HSQC 

spectra of BPV E5V2 in isotropic bicelles showed well dispersed resonances for 
15

N 

labelled amide groups indicating that reconstituted BPV E5V2 peptide was adopting a 

folded secondary structure in isotropic DMPC/DHPC bicelles. When reconstituted into 

bicelles only a single species for BPV E5 peptide was observed, and this is contrast to 

SDS micelles, where dependant on the detergent concentration the presence of a 

secondary set of resonances was reported (King, Oates et al. 2011) indicating the 

presence of protein in a different chemical environment. These secondary resonances 

were suggested to arise from BPV E5V2 monomers upon increasing detergent 

concentration. For BPV E5V2 bicelle samples only a single set of resonances were 

observed at all q ratios and temperatures tested, suggesting that in isotropic bicelles, 

stable BPV E5V2 dimers were being formed.  

Resonances observed in 2D 
15

N-
1
H HSQC spectra of BPV E5V2 were tentatively 

assigned using a combination of 3D 
15

N edited 
1
H-

1
H TOCSY-HSQC and NOESY-HSQC 

experiments. Typically the data from COSY and TOCSY type experiments are required in 

order to assign spectra with confidence. Unfortunately, our TOCSY-HSQC spectra 

contained significantly fewer cross peaks than expected. From TOCSY-HSQC 

experiments recorded at 40 °C, only NH coupling to αH protons was detected, whereas 

recording experiments at 50 °C some NH-βH coupling was also observable. Due to 

spectrometer limitations, 
15

N edited 
1
H-

1
H HSQC-TOCSY and NOESY spectra were only 

able to be acquired at 40 °C. The slower tumbling of bicelles at lower temperature may 

have been a reason for the lack of TOCSY signals, as increasing the temperature to 50 °C 

saw a moderate improvement in signal intensity as well as more observable cross peaks 

(e.g. βH protons). Therefore running all experiments at 50 °C would have been beneficial 

when attempting to improve signal to noise for 3D experiments, as running at higher 

temperatures is a method commonly used for improving the resolution of slower 

tumbling molecules in solution. Elevating the temperature leads to an overall increase in 

molecular tumbling rate and reduces the transverse (T2) relaxation rate of slow tumbling 

molecules, leading to improvement in the line-width of spectra recorded.  
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Due to unforeseen equipment reliability issues, experiments that were originally 

recorded at 700 MHz on a spectrometer equipped with a cyroprobe, which cools the 

probe coil and preamplifier with a stream of helium gas, reducing the thermal noise 

generated by the electronic within the probe, thereby increasing sensitivity up to 

tenfold, then had to be recorded at lower field (600 MHz) due to equipment failure. 

Although it was possible to record experiments at higher temperatures (above 40 °C), 

the lower field and the lack of a cryoprobe ultimately resulted in increased experimental 

times and a reduction in signal to noise. This was evident in 
13

C/
15

N experiments 

recorded on BPV E5LF bicelle samples where a distinct lack of NOE and TOCSY signals 

were observed. 

As slower tumbling bicelles were thought to be the reason for the lack of TOCSY 

signals observed, the presence and size of isotropic bicelles were analysed by 
31

P 

solution NMR and DLS. The results from 
31

P spectra of bicelle samples, indicated that at 

all temperatures above the Tm of DMPC, isotropic bicelles were present, although the 

size of which were not ascertainable without the use of experiments to measure the 

translational diffusion rate of bicelles (Andersson and Maler 2005; Lu, Van Horn et al. 

2012). DLS analyses of bicelles was used to estimate the size of bicelles in solution, both 

empty and with peptide inserted. In order to analyse bicelle samples with a q of 0.33 and 

a total % amphiphile value of 2%, samples had to specifically be prepared for DLS 

analysis as solution NMR samples could not be used directly due to the high 

concentration of particles in the sample. DLS analysis of empty bicelles would suggest 

that those prepared in HEPES buffer, as used for solution NMR experiments, had an 

increased hydrodynamic diameter in comparison to those prepared in TRIS buffer. Upon 

the addition of peptide to bicelles the diameter of the bicelles recorded almost doubled 

in size. This may be as a result of peptide aggregation, though not visible from NMR 

spectra recorded which indicate the presence of a protein in a single chemical 

environment, therefore the increase in size may be due to the fusion of bicelles in 

solution. 

It has been shown that bicelles in dilute solutions (<15% total amphiphile) grow 

at a much larger rate than of those in concentrated sample preparations as free DHPC 

detergent is sequestered from solution into bicelles that have been formed in order to 

maintain the inaggregate “free” DHPC concentration (Cohen, Thurston et al. 1998). In 
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this study an initial concentration of 10% total amphiphile was used which was then 

reduced to 2% for further studies. For future analysis of BPV E5 peptides in bicelles it 

would be advisable to not only screen for a ratio of q values but also adjust the q value 

of bicelles in conjunction with the % total amphiphile of solution in an attempt to obtain 

spectra of higher quality.  
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7  DISCUSSION AND 

FUTURE WORK 

 

7.1 Discussion 

The determination of membrane protein structure is a challenging process, as is 

evident by the extremely low number of structures solved to date, in comparison to 

water soluble proteins. Given their importance, membrane proteins are particularly 

underrepresented with the total number of unique structures deposited at the Protein 

data bank (PDB), accounting for less than 1% of all unique structures deposited to date. 

Solid state NMR (ssNMR) is well placed to provide the means to determine the structure 

of membrane proteins in “native-like” lipid bilayers, allowing for the study of membrane 

proteins that would either be too large to study by solution NMR methods, due to the 

slow tumbling of proteins in a large detergent/protein complex. 

The challenge presented when using ssNMR is the preparation of homogenous 

samples that give rise to well resolved spectra, particularly when the membrane protein 

structure being studied is embedded in fully hydrated lipid bilayers, which tend to result 

in spectra with increased resonance line widths over micro/nano crystalline samples, 

therefore optimal sample preparation methods were sought.  

The aim of this study was to evaluate and develop reliable and reproducible 

sample preparation methods for the reconstitution of small TM proteins into liposomes, 

in order to study the structure of membrane proteins by ssNMR. Using selectively 

uniformly 
13

C/
15

N labelled amino acids incorporated at key positions at the homo dimer 

interface of synthetically prepared peptides, the problem of spectral over-crowding was 

sought to be overcome. In this study, sample preparation methods for the reconstitution 

of small α-helical TM proteins into hydrated DMPC/cholesterol lipid bilayers by ssNMR 

were investigated, using the well characterised membrane protein Glycophorin A (GpA), 

as a model small α-helical TM protein that has previously been characterised by both 

7 
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solution and solid state NMR methods, making it an ideal choice as a membrane protein 

to work with when developing standard protocols. Using GpA, samples were prepared 

for ssNMR using two separate methods; a “detergent removal” method, which was 

based upon a previously documented sample preparation method using Bio-beads to 

reconstitute membrane proteins by removal of detergent from solution. The second 

method was based upon co-solubilisation of protein and lipids in organic solvent.  

Using a range of biophysical techniques, samples prepared using the detergent-

removal method were compared alongside those prepared by co-solubilisation. From 

the biophysical characterisation and solid state NMR spectra obtained using both 

sample preparation methods, samples prepared by co-solubilisation of peptide with 

lipid/cholesterol in TFE were of visibly better quality. Samples prepared using the 

detergent removal method, had resonances arising from a second chemical 

environment, which using secondary chemical shift analysis was predicted to be due to 

incorrectly folded or aggregated protein in β-sheet form. Samples prepared using the 

co-solubilisation method showed little to no sign protein in a secondary environment 

and was concluded to be the better method for sample preparation. 

Using uniformly labelled valine 80 and glycine 83 within GpA peptides, we were 

able to observe dipolar couplings between the two amino acids through the presence of 

cross peaks at long mixing times in 2D 
13

C-
13

C DARR correlation spectra. These 

correlations were attributed to inter-helical interaction as they were only present at long 

mixing times, but due to the effects of spin diffusion within the peptide chain the 

possibility of measuring an intra-helical coupling could not be ruled out. Therefore a 

new labelling strategy was employed using “singly” labelled peptides, with only one 

labelled amino acid per chain. Using singly labelled GpA peptides, samples prepared by 

co-solubilisation showed the presence of the same inter-helical couplings, as seen in 

doubly labelled GpA samples and therefore it was concluded that without doubt that 

inter-helical couplings were being observed. Therefore we have demonstrated for that 

GpA in DMPC liposomes with the addition of cholesterol to the lipid bilayers still form 

dimers similar to those observed in pure DMPC (Smith, Jonas et al. 1994; Smith, Song et 

al. 2001) and DPC detergent micelles (MacKenzie, Prestegard et al. 1997), this makes the 

lipid environment in which the GpA protein is embedded more biologically relevant. A 



Chapter 7: Discussion and future work 

 

P a g e | 208  

 

 

positive step towards making the membrane in which GpA protein is studied more 

biologically relevant. 

Having shown that inter-helical couplings can be observed between singly and 

doubly labelled peptides, the next step would be to see if we could increase the number 

of labels incorporated further, thereby reducing the number of samples that would have 

to be prepared. An advantage of this labelling scheme over using peptides designed 

with sole spin pairs, is that the number of samples that need to be tested when 

attempting to study a protein with no existing structure beneficially for when the 

structure of the protein is unknown as is the case with BPV E5 where no structural data 

exists only a model prepared from computational analysis using data from mutagenesis 

studies. Although using singly labelled peptides prepared for the study of the BPV E5 

homodimer returned no conclusive results, this was a result of a poor choice of amino 

acids to label within the peptide. Although limited by choice, the decision to label 

phenylalanine and tyrosine both of which gave rise to broad unresolvable resonances 

was in hindsight the wrong decision. In future the incorporation of 
19

F phenylalanine in 

the aromatic ring could be used in order to obtain longer range dipolar couplings 

(Hong, Zhang et al. 2012). 

 In an attempt to improve the spectral resolution of BPV E5 samples, the effects 

of increasing the cholesterol on DMPC lipid membranes was investigated as it had 

previously been reported (Cady, Mishanina et al. 2009) that using higher cholesterol 

content in conjunction with additional phospholipids such as sphingomyelin (SM) in 

membranes reduced the fluidity of the membrane at physiological temperatures, 

allowing for experiments to be conducted at higher temperature. For our samples we 

chose not to change too many sample parameters from those observed to work for GpA 

and therefore only the cholesterol content of samples was increased. With no protein 

signals observable at high temperature, experimental data was recorded at low 

temperature (<0 °C) as with our previous samples. At low temperature the addition of 

increased cholesterol lead to the opposite effect of that desired, with an increase in 

membrane fluidity rather than a decrease. Therefore for future experiments, an 

investigation on the effect of the addition of increased cholesterol alongside the 

addition of SM and other phospholipids would be of interest. 
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 For future investigations, the effect of reconstituting GpA into bilayers other than 

that of DMPC would be of interest. Difference phospholipids have different acyl chain 

lengths and therefore the thickness of the bilayers that they form are also effected 

(Gallova, Uhrikova et al. 2004).  

In order to complement our solid state NMR work, we investigated the use of 

bicelles for studying membrane protein structure. This was a preliminary study to 

investigate the feasibility of using solution NMR to compliment data obtained by 

ssNMR. Previous work in our group had concentrated on the use of SDS detergent to 

solubilise BPV E5 peptides (King, Oates et al. 2011). For this study, bicelles were used as 

they represent a more “native-like” membrane mimetic environment than that of 

detergent micelles that can induce curvature stress and effect structure, function or 

oligomerisation. With SDS detergent micelles our group had reported observing two 

separate chemical environments upon increasing the SDS concentration. This second 

population was believed to be due to BPV E5 monomers at high detergent 

concentrations. In contrast when using bicelles, only one single population was 

observed at all q ratios. Whilst we were able to obtain heteronuclear HSQC spectra that 

indicated the presence of a single well folded species whereas in detergent the 

appearance of a second chemical environment was reported, we were unable to obtain 

TOCSY data for full assignment of resonances. The cause of the lack of TOCSY signals 

was believed to be due to bicelles being larger than the fast tumbling isotropic bicelles 

required for high resolution NMR. DLS data suggests that the bicelle samples prepared 

were just bigger than those reported in the literature, therefore for future studies the 

effect of total amphiphile in addition to that of q ratio would be beneficial, as it has 

been reported that using a lower % total amphiphile in solution can lead to bicelles 

growing at a faster rate than of that at higher concentrations(Lu, Van Horn et al. 2012). 

The use of larger allignable bicelles for ssNMR could also be a venue for investigation 

complimentary structural data by both solution and solid state NMR. 
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