

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/57050

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to
cite it. Our policy information is available from the repository home page.

http://go.warwick.ac.uk/wrap
http://go.warwick.ac.uk/wrap/57050

JHG 05/2011

Library Declaration and Deposit Agreement

1. STUDENT DETAILS

Please complete the following:

Full name: …………………………………………………………………………………………….

University ID number: ………………………………………………………………………………

2. THESIS DEPOSIT

2.1 I understand that under my registration at the University, I am required to deposit my thesis with the
University in BOTH hard copy and in digital format. The digital version should normally be saved as a
single pdf file.

2.2 The hard copy will be housed in the University Library. The digital version will be deposited in the
University’s Institutional Repository (WRAP). Unless otherwise indicated (see 2.3 below) this will be made
openly accessible on the Internet and will be supplied to the British Library to be made available online via
its Electronic Theses Online Service (EThOS) service.
[At present, theses submitted for a Master’s degree by Research (MA, MSc, LLM, MS or MMedSci) are
not being deposited in WRAP and not being made available via EthOS. This may change in future.]

2.3 In exceptional circumstances, the Chair of the Board of Graduate Studies may grant permission for
an embargo to be placed on public access to the hard copy thesis for a limited period. It is also possible to
apply separately for an embargo on the digital version. (Further information is available in the Guide to
Examinations for Higher Degrees by Research.)

2.4 If you are depositing a thesis for a Master’s degree by Research, please complete section (a) below.
For all other research degrees, please complete both sections (a) and (b) below:

(a) Hard Copy

I hereby deposit a hard copy of my thesis in the University Library to be made publicly available to
readers (please delete as appropriate) EITHER immediately OR after an embargo period of
……….................... months/years as agreed by the Chair of the Board of Graduate Studies.

I agree that my thesis may be photocopied. YES / NO (Please delete as appropriate)

(b) Digital Copy

I hereby deposit a digital copy of my thesis to be held in WRAP and made available via EThOS.

Please choose one of the following options:

EITHER My thesis can be made publicly available online. YES / NO (Please delete as appropriate)

OR My thesis can be made publicly available only after…..[date] (Please give date)

 YES / NO (Please delete as appropriate)

OR My full thesis cannot be made publicly available online but I am submitting a separately
identified additional, abridged version that can be made available online.

 YES / NO (Please delete as appropriate)

OR My thesis cannot be made publicly available online. YES / NO (Please delete as appropriate)

JHG 05/2011

3. GRANTING OF NON-EXCLUSIVE RIGHTS

Whether I deposit my Work personally or through an assistant or other agent, I agree to the following:

Rights granted to the University of Warwick and the British Library and the user of the thesis through this
agreement are non-exclusive. I retain all rights in the thesis in its present version or future versions. I
agree that the institutional repository administrators and the British Library or their agents may, without
changing content, digitise and migrate the thesis to any medium or format for the purpose of future
preservation and accessibility.

4. DECLARATIONS

(a) I DECLARE THAT:

 I am the author and owner of the copyright in the thesis and/or I have the authority of the
authors and owners of the copyright in the thesis to make this agreement. Reproduction
of any part of this thesis for teaching or in academic or other forms of publication is
subject to the normal limitations on the use of copyrighted materials and to the proper and
full acknowledgement of its source.

 The digital version of the thesis I am supplying is the same version as the final, hard-
bound copy submitted in completion of my degree, once any minor corrections have been
completed.

 I have exercised reasonable care to ensure that the thesis is original, and does not to the
best of my knowledge break any UK law or other Intellectual Property Right, or contain
any confidential material.

 I understand that, through the medium of the Internet, files will be available to automated
agents, and may be searched and copied by, for example, text mining and plagiarism
detection software.

(b) IF I HAVE AGREED (in Section 2 above) TO MAKE MY THESIS PUBLICLY AVAILABLE

DIGITALLY, I ALSO DECLARE THAT:

 I grant the University of Warwick and the British Library a licence to make available on the
Internet the thesis in digitised format through the Institutional Repository and through the
British Library via the EThOS service.

 If my thesis does include any substantial subsidiary material owned by third-party
copyright holders, I have sought and obtained permission to include it in any version of
my thesis available in digital format and that this permission encompasses the rights that I
have granted to the University of Warwick and to the British Library.

5. LEGAL INFRINGEMENTS

I understand that neither the University of Warwick nor the British Library have any obligation to take legal
action on behalf of myself, or other rights holders, in the event of infringement of intellectual property
rights, breach of contract or of any other right, in the thesis.

Please sign this agreement and return it to the Graduate School Office when you submit your thesis.

Student’s signature: ..…… Date: ..

M
A

E
G
NS

I
T A T

MOLEM

U
N

IVERSITAS WARWICENSIS

Evaluating the Performance of Legacy

Applications on Emerging Parallel Architectures

by

Simon John Pennycook

A thesis submitted to The University of Warwick

in partial fulfilment of the requirements

for admission to the degree of

Doctor of Philosophy

Department of Computer Science

The University of Warwick

December 2012

Abstract

The gap between a supercomputer’s theoretical maximum (“peak”) floating-

point performance and that actually achieved by applications has grown wider

over time. Today, a typical scientific application achieves only 5–20% of any

given machine’s peak processing capability, and this gap leaves room for signif-

icant improvements in execution times.

This problem is most pronounced for modern “accelerator” architectures

– collections of hundreds of simple, low-clocked cores capable of executing the

same instruction on dozens of pieces of data simultaneously. This is a significant

change from the low number of high-clocked cores found in traditional CPUs,

and effective utilisation of accelerators typically requires extensive code and

algorithmic changes. In many cases, the best way in which to map a parallel

workload to these new architectures is unclear.

The principle focus of the work presented in this thesis is the evaluation

of emerging parallel architectures (specifically, modern CPUs, GPUs and Intel

MIC) for two benchmark codes – the LU benchmark from the NAS Parallel

Benchmark Suite and Sandia’s miniMD benchmark – which exhibit complex

parallel behaviours that are representative of many scientific applications. Using

combinations of low-level intrinsic functions, OpenMP, CUDA and MPI, we

demonstrate performance improvements of up to 7x for these workloads.

We also detail a code development methodology that permits application de-

velopers to target multiple architecture types without maintaining completely

separate implementations for each platform. Using OpenCL, we develop perfor-

mance portable implementations of the LU and miniMD benchmarks that are

faster than the original codes, and at most 2x slower than versions highly-tuned

for particular hardware.

Finally, we demonstrate the importance of evaluating architectures at scale

(as opposed to on single nodes) through performance modelling techniques,

highlighting the problems associated with strong-scaling on emerging accelerator

architectures.

ii

Acknowledgements

I am indebted to many people for the advice, support and friendship that they

have provided during my studies at the University of Warwick. It gives me great

pleasure to acknowledge them here.

First and foremost I need to thank my supervisor, Prof. Stephen Jarvis, for

guiding my research and professional development over the past three years.

Thank you for your confidence in me, your enthusiasm, and for giving me the

opportunity to undertake a PhD.

Thanks go to my colleagues in the Performance Computing and Visualisation

Group – David Beckingsale, Bob Bird, Dr. Adam Chester, James Davis, Henry

Franks, Dr. Matthew Leeke, Andrew Mallinson, Oliver Perks and others – for

making lunch interesting and a welcome break from work. I reserve special

thanks for my office mates, Dr. Simon Hammond, Dr. Gihan Mudalige and

Steven Wright; thank you for your encouragement, for proof-reading hundreds

of paper drafts, and for your undeniable roles in developing all of the ideas in

this thesis.

I also wish to thank the members of the Intel Parallel Computing Lab in

Santa Clara, in particular Pradeep Dubey, Chris Hughes, Jason Sewall and

Misha Smelyanskiy, for their support and guidance during (and beyond) my

internship. My experiences with Intel have given me a far greater understanding

of micro-architecture and “ninja” programming, and have shaped the latter half

of this thesis – thank you.

Collecting the experimental data for this thesis relied on access to a wide

range of supercomputing hardware, and I thank the staff of the Daresbury

Laboratory; the Centre for Scientific Computing at the University of Warwick;

and the Lawrence Livermore National Laboratory for their maintenance work

and for granting me access to their machines.

Outside of work, I would like to thank all of my friends at Warwick and

at home in Cornwall for reminding me that it’s okay to have fun occasionally;

Charlie, Mum, Dad, Grandma, Aunty and the rest of my family for their con-

tinued love and support; and finally, my girlfriend Louise – I dedicate this thesis

to you.

iii

Declarations

This thesis is submitted to the University of Warwick in support of the author’s

application for the degree of Doctor of Philosophy. It has been composed by the

author and has not been submitted in any previous application for any degree.

The work presented (including data generated and data analysis) was carried

out by the author except in the cases outlined below:

• Analysis of LU’s execution time (Chapter 4) was aided by Gihan Mudalige

(Oxford e-Research) and Simon Hammond (Sandia National Laborato-

ries).

• Execution times for miniMD on KNC (Chapter 5) were collected by Chris

Hughes (Intel Corporation), who also developed the message-passing level

of the code.

• Analysis of miniMD’s execution time on Intel hardware (Chapters 5 and

6) was aided by Chris Hughes and Misha Smelyanskiy (Intel Corporation).

• Execution times for the GTX 680 (Chapter 6) were collected by Chris

Hughes.

• Execution times for the A8-3850 and HD6550D (Chapter 6) were collected

by Simon Hammond.

• Execution times for the DawnDev, Hera and Sierra supercomputers

(Chapter 7) were collected by Simon Hammond.

Where possible, source code developed by the author is made available online:

• NAS-LU Optimisations:

http://www2.warwick.ac.uk/fac/sci/dcs/research/pcav/areas/hpc/

download/nas-lu-ports/

• miniMD Optimisations:

http://www2.warwick.ac.uk/fac/sci/dcs/research/pcav/areas/hpc/

download/minimd_opencl/

iv

http://www2.warwick.ac.uk/fac/sci/dcs/research/pcav/areas/hpc/download/nas-lu-ports/
http://www2.warwick.ac.uk/fac/sci/dcs/research/pcav/areas/hpc/download/nas-lu-ports/
http://www2.warwick.ac.uk/fac/sci/dcs/research/pcav/areas/hpc/download/minimd_opencl/
http://www2.warwick.ac.uk/fac/sci/dcs/research/pcav/areas/hpc/download/minimd_opencl/

Parts of this thesis have been previously published by the author:

• S. J. Pennycook, G. R. Mudalige, S. D. Hammond and S. A. Jarvis, Par-

allelising Wavefront Applications on General-Purpose GPU Devices, In

Proceedings of the UK Performance Engineering Workshop (UKPEW),

University of Warwick, UK, July, 2010 [130]

• S. J. Pennycook, S. D. Hammond, G. R. Mudalige and S. A. Jarvis, Ex-

periences with Modelling Wavefront Algorithms on Many-Core Architec-

tures, In Proceedings of the Daresbury GPU Workshop, Daresbury, UK,

September, 2010 [123]

• S. J. Pennycook, S. D. Hammond, G. R. Mudalige and S. A. Jarvis, Perfor-

mance Analysis of a Hybrid MPI/CUDA Implementation of the NAS-LU

Benchmark, In Proceedings of the International Workshop on Performance

Modeling, Benchmarking and Simulation of High Performance Computing

Systems (PMBS), New Orleans, LA, November, 2010 [124]

• S. J. Pennycook, S. D. Hammond, S. A. Jarvis and G. R. Mudalige, Perfor-

mance Analysis of a Hybrid MPI/CUDA Implementation of the NAS-LU

Benchmark, ACM SIGMETRICS Performance Evaluation Review, 38 (4),

ISSN 0163-5999 [125]

• S. J. Pennycook, S. D. Hammond, G. R. Mudalige and S. A. Jarvis, On

the Acceleration of Wavefront Applications using Distributed Many-Core

Architectures, The Computer Journal, 55 (2), pp. 138–153, ISSN 0010-

4620 [126]

• S. J. Pennycook, S. D. Hammond, S. A. Wright, J. A. Herdman, I. Miller

and S. A. Jarvis, An Investigation of the Performance Portability of

OpenCL, Journal of Parallel and Distributed Computing (JPDC), 2012

(to appear) [127]

• S. J. Pennycook, C. J. Hughes, M. Smelyanskiy and S. A. Jarvis, Explor-

ing SIMD for Molecular Dynamics, Using Intel Xeon Processors and Intel

Xeon Phi Coprocessors, In Proceedings of the IEEE International Paral-

lel and Distributed Processing Symposium (IPDPS), Boston, MA, May,

2013 [128]

• S. J. Pennycook, S. A. Jarvis, Developing Performance-Portable Molecular

Dynamics Kernels in OpenCL, In Proceedings of the International Work-

shop on Performance Modeling, Benchmarking and Simulation of High

Performance Computing Systems (PMBS), Salt Lake City, UT, Novem-

ber, 2012 [129]

v

Sponsorship and Grants

The research presented in this thesis was made possible by the support of the

following benefactors and sources:

• The University of Warwick, United Kingdom:

Warwick Postgraduate Research Scholarship (2009–2012)

• Intel Corporation, Santa Clara:

Summer Internship (2011)

• Royal Society:

Industry Fellowship Scheme (IF090020/AM)

• UK Atomic Weapons Establishment:

“The Production of Predictive Models for Future Computing

Requirements” (CDK0660)

“AWE Technical Outreach Programme” (CDK0724)

“TSB Knowledge Transfer Partnership” (KTP006740)

vi

Abbreviations

AoS Array of Structs

AVX Advanced Vector eXtensions

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

FLOP/s Floating-Point Operations per Second

GFLOP/s 109 FLOP/s

GPU Graphics Processing Unit

HPC High-Performance Computing

MIC Many-Integrated Core

MPI Message Passing Interface

PFLOP/s 1015 FLOP/s

SIMD Single Instruction Multiple Data

SoA Struct of Arrays

SDK Software Development Kit

SSE Streaming SIMD Extensions

TFLOP/s 1012 FLOP/s

vii

Contents

Abstract ii

Acknowledgements iii

Declarations iv

Sponsorship and Grants vi

Abbreviations vii

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Motivation . 3

1.2 Thesis Contributions . 5

1.3 Thesis Overview . 7

2 Performance Analysis and Engineering 9

2.1 Benchmarking . 10

2.2 Profiling . 11

2.3 Code Optimisation . 12

2.4 Performance Modelling . 14

2.4.1 Analytical Modelling . 15

2.4.2 Simulation . 16

2.5 Summary . 18

3 Parallel Hardware and Programming Models 19

3.1 Instruction-Level Parallelism . 20

viii

3.2 SIMD / Vectorisation . 20

3.3 Multi-threading . 23

3.4 Message Passing . 25

3.5 Benchmark Platforms . 26

3.5.1 Single Nodes . 26

3.5.2 Supercomputers . 28

3.6 Summary . 29

4 Optimisation of Pipelined Wavefront Applications 30

4.1 Benchmark Description . 31

4.2 Related Work . 33

4.3 Optimisation Challenges . 34

4.4 Experimental Setup . 34

4.5 Optimisations . 36

4.5.1 SIMD and Multi-threading 36

4.5.2 Message Passing . 41

4.6 Performance Results . 42

4.6.1 Performance Breakdown 42

4.6.2 Architecture Comparison 44

4.7 Summary . 47

5 Optimisation of Molecular Dynamics Applications 48

5.1 Benchmark Description . 50

5.2 Related Work . 51

5.3 Optimisation Challenges . 52

5.4 Experimental Setup . 53

5.5 Optimisations . 55

5.5.1 SIMD . 55

5.5.2 Multi-threading and Message Passing 63

5.6 Performance Results . 65

5.6.1 Performance Breakdown 65

ix

5.6.2 Thread Scaling . 67

5.6.3 Architecture Comparison 70

5.7 Summary . 73

6 Developing “Performance-Portable” Applications 74

6.1 “Single Source” Methodology . 75

6.1.1 Work-Item and Work-Group Distribution 76

6.1.2 Memory Layout . 78

6.1.3 Implicit vs. Explicit Vectorisation 79

6.1.4 Device Fission . 79

6.1.5 Communication . 81

6.2 Benchmark Parameterisation . 81

6.2.1 Memory Layout . 82

6.2.2 Implicit vs Explicit Vectorisation 83

6.2.3 Device Fission . 85

6.3 Performance Results . 86

6.4 Comparison with “Native” Implementations 87

6.4.1 Pipelined Wavefront . 87

6.4.2 Molecular Dynamics . 89

6.5 Summary . 92

7 Predicting Application Performance on Future Architectures 93

7.1 Adapting Models for Future Architectures 94

7.1.1 Single Node . 94

7.1.2 Multiple Node . 96

7.2 Communication Breakdown . 101

7.3 Machine Comparison . 101

7.3.1 Scalability . 101

7.3.2 Power Consumption . 105

7.4 Summary . 107

x

8 Conclusions and Future Work 108

8.1 Limitations . 110

8.2 Future Work . 112

8.2.1 k-blocking in Wavefront Applications 112

8.2.2 Conflict Resolution in Molecular Dynamics 115

8.2.3 Optimisation of Production Applications 119

Bibliography 120

Appendices 138

A Assembly Generated for OpenCL Gather Operations 138

xi

List of Figures

1.1 A hybrid supercomputing architecture viewed from the perspec-

tive of (a) hardware and (b) software. 2

3.1 Parallel software/hardware stack. 19

3.2 Comparison of scalar and intrinsics code for a simple loop. 21

3.3 SPMD code for a simple loop. 22

3.4 Fork-join model used by OpenMP. 23

4.1 Simple loop-nest exhibiting a wavefront dependency (ignoring

boundary conditions). 31

4.2 First three steps of a wavefront through a three-dimensional data

grid. 31

4.3 Comparison of three different k-blocking depths. 37

4.4 A mapping from a two-dimensional grid of work-items onto three-

dimensional data. 40

4.5 Comparison of speed-up for our optimised implementation of LU

running on different architectures. 45

5.1 An atom’s neighbourhood. 49

5.2 Combining a dot-product and AoS-to-SoA transpose in 128-bit

SIMD. 58

5.3 Using a packed store to append to a neighbour list. 61

5.4 The hardware/class hierarchy. 63

5.5 A subdomain split into dependent and independent volumes. . . 64

5.6 Weak-scaling results for miniMD with a cut-off of 2.5. 69

5.7 Strong-scaling results for miniMD with a cut-off of 2.5. 69

5.8 Absolute performance of miniMD in atom-steps/s (higher is better). 72

xii

6.1 OpenCL code-snippet for a kernel supporting all possible combi-

nations of work-item and work-group size. 77

6.2 A dual-socket, hex-core node fissioned into (a) two sub-devices of

six compute units; and (b) four sub-devices of three compute units. 80

6.3 Effect of neighbour list transposition on memory access pattern.

Each arrow represents a single load instruction. 82

6.4 OpenCL code-snippet for a force compute kernel storing atom

data in float4s. 83

6.5 Effect of using vector types on memory access pattern. 84

6.6 OpenCL code-snippet for a force compute kernel using vector

arithmetic. 85

6.7 Comparison of speed-ups for parameterised force calculation ker-

nel on various architectures. 86

6.8 OpenCL code-snippet for the gather of x, y and z positions in

the force compute kernel with 8-way unrolling. 90

7.1 Observed and predicted times for a wavefront kernel on a Tesla

C1060. 95

7.2 Observed times for a wavefront kernel on a Tesla C2050. 96

7.3 Breakdown of execution times for LU from the GPU model. . . . 101

7.4 Weak-scaling projections for LU. 102

7.5 Strong-scaling projections for LU. 104

8.1 First three wavefront steps for the new k-blocking policy. 114

8.2 Resolving conflicts using 128-bit SIMD. 116

A.1 Assembly from the vector gather kernel. 139

A.2 Assembly from the kernel with 8-way unrolling. 140

xiii

List of Tables

3.1 Hardware specifications of the CPUs used in this thesis. 27

3.2 Hardware specifications of the accelerators used in this thesis. . . 27

3.3 Hardware specifications of the integrated GPUs used in this thesis. 27

3.4 Hardware specifications of the Sierra and Minerva clusters. . . . 28

3.5 Hardware specifications of the DawnDev and Hera clusters. . . . 28

4.1 Compiler configurations for the wavefront optimisation study. . . 35

4.2 Performance breakdown for LU (Class C). 43

5.1 System configuration for the molecular dynamics optimisation

study. 54

5.2 Comparison of theoretical worst-case instruction counts for four

different force compute gather-scatter approaches. 57

5.3 Clock-cycles per neighbour and speed-up versus scalar for force

compute gather-scatter approaches. 59

5.4 Static instructions for force compute. 59

5.5 Static instructions for neighbour list build. 62

5.6 Performance breakdown for miniMD (2.048M atoms). 66

6.1 Comparison of execution times (in seconds) for Intel CPU imple-

mentations of LU. 87

6.2 Speed-up of LU for two device fission configurations, and three

kB values. 88

6.3 Comparison of execution times (in seconds) for NVIDIA GPU

implementations of LU. 89

6.4 Comparison of execution times (in seconds) for Intel CPU imple-

mentations of miniMD. 90

xiv

6.5 Comparison of execution times (in seconds) for NVIDIA GPU

implementations of miniMD. 91

7.1 Model and simulation validations for LU. Execution times are

given in seconds. 100

7.2 Compiler configurations for the LU model validation. 100

7.3 Cluster comparison for executing LU (Class E) within a fixed

execution time. 105

8.1 Comparison of execution times (in seconds) for LU (Class C)

using the old and new k-blocking policies. 113

8.2 Slow-down of conflict resolution approach. 117

8.3 Inefficiency of cross-neighbour and cross-atom SIMD. 118

xv

CHAPTER 1
Introduction

Computational modelling and simulation form a key part of today’s scientific

and engineering research, permitting the rapid validation of theories in place

of (or in addition to) physical experimentation. Where such experimentation is

costly, impractical or dangerous (e.g. aircraft design, climate research, nuclear

power), computational methods are essential, and there is an understandable

desire for simulations to be run as quickly as possible. To this end, many

researchers employ clusters and/or supercomputers, large machines typically

thousands of times more powerful than a single desktop computer. Computer

scientists in the field of high performance computing (HPC) seek to understand

and maximise the performance of these machines, through the development

of new hardware, better suited to arithmetic-intensive workloads; the design

of more efficient algorithms; and the optimisation of scientific and engineering

applications, to ensure that existing hardware is utilised effectively.

Over the past twenty years, the performance of supercomputers has improved

significantly. Measured in terms of arithmetic throughput, floating-point oper-

ations per second (FLOP/s), the fastest supercomputer today is almost 300,000

times more powerful than the fastest supercomputer in 1993 [103]. Many mod-

ern supercomputers are comprised of several thousand commodity processors

connected by some networking interface, and the key to effective utilisation of

these machines is dividing problems into sub-tasks that can be solved indepen-

dently and in parallel. Communication between sub-tasks (e.g. to satisfy data

dependencies) must be handled explicitly by the programmer, and a generation

of computer scientists has developed considerable expertise in the development

and optimisation of these so-called “message passing” codes. This is a drastically

1

1. Introduction

CPU
Accelerator

PCIe

(a) A CPU and an accelerator connected
via a PCI-Express interface.

AcceleratorCPU

"Device" Code

"Host" Code

"Host" Code

Data Transfer
(b) Offloading work to an accelerator.

Figure 1.1: A hybrid supercomputing architecture viewed from the perspective
of (a) hardware and (b) software.

different programming methodology from that required for the vector-processor-

based supercomputers of the 1970s and 1980s.

In 2008, HPC underwent another significant shift in technology, with the

introduction of a supercomputer named Roadrunner. This machine, built by

IBM for the Los Alamos National Laboratory, was noteworthy not only for

being the first supercomputer ever to achieve a sustained performance of one

petaflop per second (1015 FLOP/s), but also for its hybrid architecture – a

coupling of 7,000 traditional processors with 13,000 computational accelerators

(i.e. massively parallel co-processors1, to which the CPU can “offload” compu-

tation as shown in Figure 1.1). Four years later, the use of such accelerators

has become commonplace, powering some of the world’s fastest supercomput-

ers. These architectures promise high levels of raw performance, and a better

performance-to-power cost ratio (i.e. more FLOP/s per Watt), reflecting some

of the same motivations for the move away from vector machines in the 1990s.

Many believe that the continued use of accelerators is necessary to reach the

next big performance milestone – one exaflop per second (1018 FLOP/s) – within

an acceptable power budget.

1The terms “accelerator” and “co-processor” are used interchangeably throughout this
thesis.

2

1. Introduction

1.1 Motivation

The speed of scientific and engineering applications has not followed the same

trend as the speed of supercomputers. Rather, the gap between a supercom-

puter’s maximum (peak) floating-point performance and that achieved by ap-

plications has grown wider over time – today, a typical scientific application

achieves only 5–20% of any given machine’s peak FLOP/s rate. This gap leaves

room for significant performance improvements, and it is not unheard of for

codes to run an order-of-magnitude faster following optimisation for modern

architectures [12, 29, 78, 117, 145, 150, 162]. Such improvements in execution

time have the potential to impact the cost of science significantly, with direct

and measurable results: codes can be run in less time, or run in the same time

on fewer computational resources. The former accelerates scientific delivery

and reduces power costs, while the latter enables HPC sites to (i) purchase a

smaller machine, decreasing procurement and maintenance costs; or (ii) make

more efficient use of existing machines, by executing several small applications

simultaneously.

The widening of this performance gap is largely the result of the so-called

clock-speed “free lunch” [153] enjoyed by programmers during the early 1990s.

During this time, applications were able to benefit from the steadily increasing

clock-speed of CPUs afforded by Moore’s Law [104] (i.e. the doubling of the

number of transistors on a chip every two years). Due to issues concerning

power consumption and heat dissipation [112], hardware manufacturers even-

tually abandoned increasing clock-speeds in favour of alternative methods of

improving performance, placing multiple CPU cores on one die, and/or increas-

ing the number of operations per cycle using Single-Instruction-Multiple-Data

(SIMD) execution units. A large number of HPC codes have not yet adapted

to these changes: they often do not make any distinction between cores on the

same die and cores on a separate machine; and many do not make effective

use of SIMD. This problem is most pronounced for accelerators, many of which

3

1. Introduction

are essentially collections of hundreds of simple, low-clocked cores capable of

executing the same instruction on dozens of pieces of data simultaneously.

Complicating the matter further, the vast majority of supercomputers to

date have supported the same programming model across successive hardware

generations (i.e. a programming language like Fortran or C++, coupled with

a message passing library), providing the ability to run existing codes on new

machines without making any changes. Utilising accelerators, on the other

hand, typically requires the adoption of new development tools and program-

ming languages. Prior to the introduction of the Open Computing Language

(OpenCL) [76] and OpenACC [2] standards, each accelerator required the use of

its own proprietary programming model and, although this is largely no longer

the case, applications are still likely to require significant algorithmic and code

changes in order to make effective use of new architectures.

The HPC community is thus faced with the daunting task of updating two

decades-worth of “legacy” applications, typically hundreds of thousands of lines

of source code each, to utilise accelerators and new parallel programming mod-

els. The principle focus of the work presented in this thesis is the evaluation of

these emerging parallel architectures for representative scientific and engineering

codes, and the demonstration of a code development methodology that offers a

middle-ground between: (i) focusing on a single architecture today, hoping that

the resulting code will execute effectively on the hardware of the future; and

(ii) potentially wasting considerable effort writing efficient code for each new

hardware offering.

4

1. Introduction

1.2 Thesis Contributions

The research presented in this thesis makes the following contributions:

• We develop one of the first reported CUDA implementations of a three-

dimensional pipelined wavefront application, specifically the LU bench-

mark from the NAS Parallel Benchmark (NPB) Suite, detailing a num-

ber of general optimisations for this class of algorithm. We demonstrate

the effect of k-blocking on the amount of exploitable parallelism, and the

importance of choosing a k-blocking depth that is appropriate for the

target architecture. Furthermore, and in contrast to previous work on

two-dimensional wavefronts, we show that satisfying data dependencies

via implicit CPU synchronisation (i.e. launching one CUDA kernel per

hyperplane) can be the best parallelisation approach for some applica-

tions.

• We develop the first reported MIC implementation of a molecular dy-

namics application, specifically the miniMD benchmark from Sandia’s

Mantevo benchmark suite, and propose several novel improvements to

its SIMD and threading behaviour. We examine the impact of instruction

overhead on gather/scatter memory accesses, and show how storing data

as an array-of-structs (AoS) can improve execution times across CPU and

MIC hardware. Our results also highlight that redundant computation,

the conventional approach for avoiding scatter write-conflicts on accelera-

tor hardware, is not necessarily the best approach for molecular dynamics

codes. Gather/scatter accesses are common to other classes of application

(e.g. unstructured mesh) which we believe could benefit from optimisa-

tions similar to those presented here.

5

1. Introduction

• We demonstrate a methodology for writing “performance-portable” codes

using OpenCL, highlighting a number of important hardware and software

parameters that should be considered during application development. For

both wavefront and molecular dynamics applications, we show that it is

possible to maintain an application that is optimised for multiple micro-

architecture designs (if source code is sufficiently parameterised) without

a significant performance penalty on any one architecture. Our OpenCL

implementations of the LU and miniMD benchmarks are at most 2x slower

than versions individually optimised for a single platform – and faster than

the original Fortran and C codes.

• Finally, we utilise a combination of analytical performance modelling and

discrete event simulation to examine the performance of accelerator-based

supercomputers at scale. We extend two existing CPU modelling ap-

proaches by adding support for the prediction of PCI-Express transfer

times, and compare the performance of commodity CPU and GPU clus-

ters to that of an IBM Blue Gene/P. Our results highlight issues associated

with the strong-scaling of applications on GPU-based clusters, and there-

fore suggest that accelerators may not be a suitable architectural choice

for capability machines.

6

1. Introduction

1.3 Thesis Overview

The remainder of the thesis is structured as follows:

Chapter 2 presents an account of the concepts, principles and terminology

related to the field of high-performance computing, and more specifically that

of performance engineering. This account includes a detailed survey of related

literature, and describes many of the techniques at the core of this work.

Chapter 3 details the history of, and current state-of-the-art in, parallel hard-

ware and software technologies. The programming challenges addressed by this

research arise due to the many alternative forms of parallelism available across

a wide variety of different platforms, and the contents of this chapter highlight

the key differences between the micro-architectures compared and contrasted in

this work.

Chapter 4 and Chapter 5 present optimisation studies for the LU and miniMD

benchmarks, respectively. The optimisation challenges and performance bottle-

necks of both codes are identified, and we describe a number of novel optimisa-

tions designed to improve: (i) utilisation of SIMD execution units; (ii) multi-

threading behaviour; and (iii) communication between devices (and nodes). For

both benchmarks, we demonstrate that the same set of optimisations can ben-

efit multiple architecture types.

Chapter 6 proposes an incremental programming methodology that allows

HPC sites to develop “performance-portable” applications that adapt to mul-

tiple architectures at run- or compile-time. This methodology is evaluated for

both benchmark applications, and the performance of the resulting codes is

compared to that of the optimised implementations developed in previous chap-

ters.

7

1. Introduction

Chapter 7 demonstrates the application of traditional performance modelling

techniques to emerging parallel architectures. We use a combination of ana-

lytical modelling and simulation to facilitate the prediction of execution times

for accelerator-based supercomputers based on benchmark results from a single

node, ultimately permitting a comparison of application performance on future

machines.

Chapter 8 concludes the thesis, and discusses the implications of our research

for the designers of HPC applications. We identify the limitations of the work

presented here, and provide an outline of ongoing and future research.

8

CHAPTER 2
Performance Analysis and Engineering

As micro-architectures continue to evolve, and manufacturers introduce new

hardware features, programming languages must also adapt to support them.

The rapid development of supercomputing hardware thus poses a real challenge

for the developers of scientific and engineering codes – for best performance,

legacy applications representing several decades worth of development should be

updated to reflect current architectural trends. However, due to a combination

of application size (thousands to millions of lines of code) and the costs of

employing domain and computer scientists with sufficient expertise to re-write

code and re-validate results, significant code modification (in the worst case,

starting from scratch) is not an option for many HPC sites.

The result is an iterative development cycle trading off code maintainability

against performance, allowing codes to develop both in terms of functionality

and performance optimality over the course of several hardware generations –

domain scientists add new features to an existing code base as scientific knowl-

edge and code requirements change, while computer scientists (in particular,

performance engineers) work on identifying slow regions of code and accelerat-

ing them through the use of new languages and/or hardware.

The work in this thesis focuses on the latter process (i.e. performance anal-

ysis and engineering), which we consider here as consisting of four steps: bench-

marking, profiling, code optimisation and performance modelling.

9

2. Performance Analysis and Engineering

2.1 Benchmarking

The peak FLOP/s rate quoted by hardware manufacturers represents an archi-

tecture’s theoretical maximum arithmetic throughput. It is becoming increas-

ingly difficult for real-world applications to achieve this level of performance

– at a minimum, most current generation hardware requires the evaluation of

a single precision addition and multiplication on each of its SIMD execution

units in every clock cycle; some hardware also requires that these operations

are performed on the same values (i.e. a fused multiply-add), or the evaluation

of transcendental functions (e.g. sine, cosine, reciprocal, square root) in hard-

ware using special function units [92]. Many HPC codes make use of double

precision, typically with some imbalance in the number of addition and multi-

plication operations, and there is thus a clear motivation for the production of

alternative metrics which are more representative of the performance achieved

by real applications. Benchmarks are pieces of code written specifically to col-

lect such performance data, such that architectures can be compared in a more

meaningful way.

So-called “micro” or “kernel” benchmarks are small, simple, pieces of code

designed to extract low-level hardware information. The most famous of these

benchmarks is LINPACK [40], a linear algebra benchmark that is used to de-

termine a machine’s sustained (i.e. achievable) FLOP/s rate and also its place-

ment on the Top500 [103] list of the world’s fastest supercomputers. Simi-

lar benchmarks exist for the evaluation of sustained memory bandwidth (e.g.

STREAM [97]) and network communication performance (e.g. MPPTest [53]

and SKaMPI [142]). Benchmarks of this kind are useful for drawing conclusions

about general trends in hardware [82], and can also help to discover any dis-

crepancies between the hardware specification published by vendors and what is

experienced by users [33]. However, it is difficult to combine the simple metrics

produced by micro-benchmarks to draw conclusions about the performance of

more complex applications. The interaction of different hardware components

10

2. Performance Analysis and Engineering

and subsystems is likely to result in lower performance than that measured by

micro-benchmarks, and the behaviour of some components (e.g. data cache) is

too complex to be captured by these micro-benchmarks in a way that is repre-

sentative of all applications.

“Macro” or “application” benchmarks are more complex codes designed to

exhibit analogous computational behaviours to production applications. The

use of such a benchmark may be preferable to the use of the application it-

self: scientific applications may take days or weeks to complete a simulation;

and many applications are of a commercially sensitive (or classified) nature,

thus preventing them from being distributed. Popular examples of macro-

benchmarks are: the ASC benchmark suite [152] developed by the Los Alamos

and Lawrence Livermore National Laboratories; the NAS Parallel Benchmark

Suite developed by NASA Ames Research Centre [15, 16]; and the Mantevo

benchmark suite [61, 62] developed by Sandia National Laboratories. These

benchmarks typically output a breakdown of their execution time, such that

the performance bottlenecks of different application and architecture combina-

tions can be identified.

2.2 Profiling

Not all codes and benchmarks break down their execution time into component

parts and, even where they do, the breakdown may not be at a low enough level

to identify the root cause of poor application performance. In these situations, it

is usual to make use of a profiler – a tool that monitors an application as it runs,

and generates a profile of its execution. During performance analysis, the use

of profilers allows programmers to examine both high level performance metrics

(e.g. execution time [52, 116], memory consumption [131, 132, 157], network

communication costs [68] and time spent reading/writing from/to disk [163])

and low-level metrics (e.g. instructions retired, cache hits, cache misses) recorded

from performance counters [106].

11

2. Performance Analysis and Engineering

One method of profiling (used extensively in this thesis) is to instrument

source code directly, manually inserting calls to profiling functions and libraries

into particular sections of code. The use of such instrumentation is well-suited to

situations where performance engineers are only interested in the performance of

a small section of an application, or want to record only a few high-level metrics

(such as total execution time). For more general analysis, certain compilers

can insert calls to profiling functions at compile time (e.g. gprof [52]); other

profiling tools can be enabled at link time, wrapping system and library function

calls with code that records information about certain events [116, 132, 163],

thus allowing applications to be profiled without source code modification or

re-compilation.

2.3 Code Optimisation

Once the reasons for an application performing poorly have been identified,

performance engineers can begin the process of code optimisation. This can

take many forms: simple code transformations (e.g. loop unrolling, pipelining

and tiling) designed to reduce instruction count, increase throughput or improve

cache behaviour [39, 98]; code re-writes that make use of new hardware features

(e.g. loop vectorisation, SIMD intrinsics) [44]; and completely new algorithms,

with lower computational complexity or better suited to modern architectures

(e.g. being more amenable to parallelisation) [145].

When performing code optimisation studies on a single platform, there is

an obvious baseline against which to measure performance improvements – the

original code, run in the same configuration. Following the introduction of ac-

celerators, many code optimisations took the form of porting (or “offloading”)

arithmetic-intensive portions of an application to an accelerator: some studies

featured comparisons between parallel codes utilising accelerators and unop-

timised CPU codes [23]; some compared codes using different floating-point

precision, or running at different scales [69, 149]; and others ignored important

12

2. Performance Analysis and Engineering

data transfer overheads [51]. Taken out of context, the speed-up figures reported

in such studies can be misleading, and many papers have since disputed claims

that accelerators are several orders of magnitude faster than traditional archi-

tectures [21, 22, 92, 158]. In the optimisation studies presented in this thesis, we

strive to keep architectural comparisons as fair as possible – specifically, we: (i)

spend a significant amount of time optimising baseline codes before considering

accelerators; (ii) only draw comparisons between architectures running codes of

the same floating-point precision; and (iii) report full application times, rather

than focusing on sections of codes that may be more amenable to acceleration.

The introduction of hybrid supercomputer architectures has had another sig-

nificant effect on code optimisation – with a wide variety of micro-architectures

available even within a single machine, developers are now keen for their appli-

cations to exhibit good levels of performance across different hardware, with-

out maintaining separate implementations for each. Recent work has proposed

several alternative methodologies for the development of such “performance

portable” applications, aiming to achieve high levels of performance on multiple

architectures using a single source code.

“Directive”-based programming allows developers to mark (using pragmas)

the regions of code that they wish to be cross-compiled for an accelerator, and

is quickly becoming the programming model of choice for legacy application

developers. The HMPP [37] and OpenACC [2] standards are currently sup-

ported by compilers from CAPS, Cray and PGI, and the inclusion of similar

directives within OpenMP has also been proposed [4, 5, 89, 90]. Although this

approach allows applications developed on one architecture to be compiled for

alternative targets with relative ease, it does not necessarily make any guaran-

tees of performance portability – directives do not improve the performance of

the original CPU code, and recent work by Lee et al. [91] suggests that current

generation directives are not expressive enough to facilitate accelerator-specific

performance tuning.

13

2. Performance Analysis and Engineering

Another alternative is the use of domain specific languages (DSLs) and/or

“active libraries”, which permit application developers to express their problem

in a high-level and domain specific manner, leaving the actual code implementa-

tion to a library or smart compiler. For example, the OP2 [46, 47] and Liszt [35]

projects both provide abstractions for codes that operate on unstructured grids;

programmers write applications in terms of operations over constructs such as

nodes or edges, and the compiler transforms this representation into a binary

optimised for the target platform.

Other research (including that presented in this thesis) has investigated the

utility of using the recent OpenCL [76] standard to develop codes in a platform-

agnostic manner [42, 83, 159, 161], parameterising codes in a fashion that al-

lows them to adapt to hardware changes – this is discussed in more detail in

Chapter 6.

2.4 Performance Modelling

The term “performance modelling” describes a collection of techniques that

allow computer scientists to reason about and predict the performance of an

application. Models of sufficient accuracy can be used to augment performance

analysis and engineering activities, and their use has been demonstrated in

identifying performance bottlenecks [34]; evaluating the impact of code optimi-

sations ahead of implementation [109]; predicting the performance of applica-

tions when ported to new architectures [102]; and comparing the communication

behaviour of codes at scale on different machines [63, 72, 74].

This last point in particular forms an important part of this thesis. HPC

codes are rarely run on a single processor, instead running on hundreds or thou-

sands of compute “nodes” in parallel. There is a clear need to reflect this in

both benchmarking and code optimisation; benchmark results must be repre-

sentative of performance when codes are run at scale, and code optimisations

that only work at the level of a single node are unlikely to impact scientific

14

2. Performance Analysis and Engineering

delivery significantly. However, there are several reasons that it is desirable

to benchmark at much smaller scale (at least initially). Firstly, it allows for

new hardware and software to be evaluated without significant investment – an

HPC site can buy one or two small computers built on a new architecture, and

use these to carry out performance analysis before committing to purchasing

a much larger machine [57]. Secondly, and arguably more importantly from a

software development perspective, it allows programmers to avoid the problems

associated with debugging parallel programs running at scale [18].

Performance modelling in this context can be broadly divided into two al-

ternative techniques: (i) analytical modelling, where an application’s execution

time is represented mathematically as a series of equations; and (ii) simulation,

where a code (or a representation thereof) is run on a model of a machine that

is simulated in software. Several works have looked to use analytical models and

simulations together, to lend further credence to their predictions [55, 99, 107].

2.4.1 Analytical Modelling

Generally, an application’s execution time (Ttotal) can be represented by the

following equation [6]:

Ttotal = (Tcomputation + Tcommunication − Toverlap)

+ Tsynchronisation + Toverhead

(2.1)

That is, the sum of the time that the application spends performing computa-

tion and communication, minus the amount of time during which computation

and communication are performed concurrently. Tsynchronisation and Toverhead

account for communication costs that cannot be overlapped, such as processor

synchronisation and message overheads.

Each of these components is constructed from a series of sub-models, repre-

senting the contribution of an application’s functions to overall execution time.

Computation costs are typically measured empirically, via benchmarks, whereas

15

2. Performance Analysis and Engineering

per-message communication costs are usually predicted based on a simple set

of network parameters [10, 32, 105]. Analytical models of this form have been

demonstrated to achieve high levels of accuracy on a wide range of applications

from various scientific domains [7, 30, 34, 73].

The main advantage of this technique is that, once constructed and appro-

priately parameterised, an analytical model can be evaluated very quickly –

predicting application performance in a new configuration is as simple as sub-

stituting different parameter values into the model equations. However, the con-

struction and parameterisation of a model is a difficult task, requiring significant

understanding of the code’s behaviour in order to represent it mathematically.

Recent work, by Mudalige et al. [107, 110, 111], suggests that this process could

be greatly simplified by building upon pre-existing and pre-validated models

that capture the key performance behaviours of whole application classes (as

opposed to individual applications).

The analytical models contained in this thesis use LogGP [10] to model com-

munication behaviour, which characterises a network in terms of: latency (L);

overhead (o); bandwidth for small messages (g); bandwidth for large messages

(G); and the number of processors (P).

2.4.2 Simulation

Simulators aim to address the shortcomings of analytical modelling, shifting

the complexity away from individual application models and into a re-usable

package capable of representing machine and/or application state in software.

The models executed by simulators are much simpler than analytical models,

typically taking the form of either: (i) a trace, recorded from an application run

by some accompanying tool; or (ii) a representation of the application’s source

code.

“Micro” simulators replicate the behaviour of individual hardware compo-

nents at a very low level, tracking system state on a clock-by-clock basis. Such

simulators are often used to evaluate alternative hardware designs prior to the

16

2. Performance Analysis and Engineering

fabrication of silicon chips (both in research and industry); to evaluate the

performance impact of novel hardware features [8, 85]; or to identify the perfor-

mance bottlenecks of an application [99].

“Macro” simulators instead aim to capture the behaviour of a machine at

a much higher level, with changes to system state occurring in response to

particular events (e.g. network communications). Like analytical models, macro-

simulators typically require that computation times be collected empirically or

from a micro-simulator – however, they are able to couple these times with

additional system state information (e.g. processor/network load from other

users and applications) to produce more accurate results.

The increased accuracy of simulation comes at a cost, however, requiring sig-

nificant computational resources. At the micro-level, each executed instruction

must be simulated in software, while at the macro-level, events from thousands

of simulated processors must be handled. In both cases, a simulation will take

significantly longer to produce performance predictions than an equivalent an-

alytical model.

The research in this thesis makes use of the Warwick Performance Prediction

(WARPP) toolkit [55, 56], a macro-simulator similar to Sandia’s Structural

Simulation Toolkit (SST) [70] and successor to the University of Warwick’s

Performance Analysis and Characterization Environment (PACE) [26, 119].

17

2. Performance Analysis and Engineering

2.5 Summary

Due to the size and complexity of scientific and engineering applications, it is

becoming common for the performance analysis and engineering process to take

place at the level of macro-benchmarks, with optimisations only later applied

to production codes [62]. We adopt this methodology in this thesis, using two

macro-benchmarks to investigate the utility of alternative parallel hardware and

programming models.

This process allows for drastic changes to be made much more rapidly than

could ever be possible in the context of a legacy application. Although an ana-

lytical (or “paper and pencil”) exploration of the design space can typically label

a potential optimisation as either fruitless or promising, only micro-architectural

simulation or a real implementation (both of which require the algorithm to be

represented in code of some form) can provide concrete performance numbers.

18

CHAPTER 3
Parallel Hardware and Programming Models

Modern computer architectures are highly parallel, featuring hardware support

for many different types of parallelism. Figure 3.1 represents this parallelism

diagrammatically, mapped to a “stack” of hardware features: superscalar archi-

tectures provide instruction-level parallelism (ILP), executing multiple indepen-

dent instructions in a single clock cycle; SIMD architectures provide data-level

parallelism, with each instruction capable of executing on a vector of data el-

ements; and multi-core and cluster architectures provide task-level parallelism,

supporting several threads or nodes running independently of one another. As

suggested by the stack representation, each of these levels of parallelism can

make use of the level beneath it – each node in a supercomputer can run mul-

tiple threads, each thread can make use of SIMD instructions, and each SIMD

instruction can be scheduled alongside others.

Understanding these levels of parallelism, and how best to utilise them,

is key to achieving high levels of performance for scientific and engineering

applications. In the remainder of this section, we detail the programming models

used for the research in this thesis, and how they map to the parallelism available

in current generation hardware.

Instruction-Level

Task-Level

Data-Level

Parallelism

Cluster

Superscalar

SIMD

Multi-core

Hardware

Message Passing

Smart Compilers

Multi-threading

Vectorisation

Software

Instruction-Level

Task-Level

Data-Level

Cluster

Superscalar

SIMD

Multi-core

Message Passing

Smart Compilers

Multi-threading

Vectorisation

Figure 3.1: Parallel software/hardware stack.

19

3. Parallel Hardware and Programming Models

3.1 Instruction-Level Parallelism

Modern architectures support ILP in several forms. “Out-of-order” processors

are able to execute instructions as soon as their inputs are available, rather

than in the order in which they appear in a program; this is often coupled with

“speculative” execution, which allows a processor to execute instructions that

may or may not be required (based on the result of some branch condition).

Together, these two features allow a processor to utilise clock-cycles that would

otherwise be wasted if a program’s instructions were to be executed sequentially.

Writing code to maximise ILP is a difficult task, requiring a detailed under-

standing of both the application and the target architecture. Data dependencies

between instructions, instruction throughputs/latencies and the way in which

instructions are mapped to an architecture’s execution units must all be con-

sidered [141]. Furthermore, many of the techniques that a programmer could

employ in code to improve ILP (such as loop unrolling) [71] are now supported

by optimising compilers; we therefore focus on exploiting data and task level

parallelism in this research.

3.2 SIMD / Vectorisation

The SIMD execution units of modern processors are very similar conceptually

to the vector processors of the 1970s and 1980s, providing the capability to

perform the same operation on a number of data items simultaneously. The

number of values manipulated by each instruction (i.e. the SIMD “width”)

differs by architecture, and is typically considerably less than on old vector

processors, but has been following an upward trend: the 128-bit Streaming

SIMD Extensions (SSE) of x86 architectures have been augmented by 256-bit

Advanced Vector Extensions (AVX); the new Intel Many-Integrated Core (MIC)

architecture supports 512-bit SIMD; and GPUs typically support 1024- or 2048-

bit SIMD. We list SIMD widths in bits because a SIMD register can be used to

store data of multiple types – for example, a 128-bit SIMD register could store

20

3. Parallel Hardware and Programming Models

for (int i = 0; i < 128; i++) {

a[i] = b[i] + c[i];

}

(a) Scalar

for (int i = 0; i < 128; i += 4) {

__m128 _a;

__m128 _b = _mm_load_ps(&b[i]);

__m128 _c = _mm_load_ps(&c[i]);

_a = _mm_add_ps(_b, _c);

_mm_store_ps(&a[i], _a);

}

(b) SSE

Figure 3.2: Comparison of scalar and intrinsics code for a simple loop.

four 32-bit single precision floating-point values, or two 64-bit double precision

floating-point values.

Traditional programming languages used for HPC codes (such as C, C++

or Fortran) are scalar in nature, and thus do not make use of an architecture’s

SIMD execution units when compiled. In order to utilise these SIMD instruc-

tions, programmers must either: (i) use compilers supporting auto-vectorisation,

which transform scalar code into an equivalent vector representation; or (ii)

identify vectorisation opportunities explicitly, through extensions to the origi-

nal language or intrinsic functions.

Coding with intrinsic functions is often the best way to achieve maximum

performance, since each intrinsic maps directly to a hardware instruction (or

series of instructions). It also allows programmers to reason about potential

bottlenecks much more readily during development, since operations that do

not make efficient use of SIMD will have been written by hand. However, it is

for exactly these reasons that programmers often prefer not to use intrinsics –

they are less readable than scalar code and require an in-depth understanding

of an architecture’s SIMD execution capabilities. Further, intrinsic functions

differ by instruction set and may not be supported in the same way by all

compilers. Figure 3.2 compares scalar code for a simple loop written in C++

to an implementation using SSE intrinsics.

21

3. Parallel Hardware and Programming Models

__kernel simple_loop(...) {

int i = get_global_id(0);

if (i < 128) {

a[i] = b[i] + c[i];

}

}

Figure 3.3: SPMD code for a simple loop.

Many programmers thus prefer to rely on auto-vectorisation. Most auto-

vectorisation compilers (e.g. Cray, Intel, PGI, Sun) will attempt to apply vec-

torisation to a function’s inner-most loop, effectively unrolling the loop a number

of times to match the hardware’s SIMD width. This operation relies on the com-

piler being able to identify that the operations in the loop are independent, and

may require some programmer intervention (such as insertion of pragmas) [81]

to assert that auto-vectorisation is possible. This approach works well for sim-

ple loops, but programmers with sufficient domain and hardware knowledge are

likely to be able to construct a more efficient instruction sequence for complex

loops – the compiler has no knowledge of the problem domain or how the code

will be run, and therefore cannot make certain assumptions (e.g. that all inputs

will be valid and not NaN).

An alternative paradigm that targets SIMD execution units is that of Single-

Program-Multiple-Data (SPMD) programming, where programmers write code

from the perspective of an individual parallel task. The resulting code is much

more readable than when intrinsics are used, and also eases the process of auto-

vectorisation for the compiler, since each task is guaranteed to be independent.

This SPMD model has gained significant traction in HPC for programming

GPU architectures, in the form of NVIDIA’s CUDA [118] (which grew from

Buck’s earlier Brook [25] language), but recent developments have shown that

it is equally applicable to CPUs; the open-source ispc (Intel SPMD Program

Compiler) [135] and the Intel OpenCL compiler both support this form of auto-

vectorisation. Figure 3.3 shows how the loop from Figure 3.2 could be imple-

mented in OpenCL; each iteration of the loop is carried out by a separate task,

identified by a global index.

22

3. Parallel Hardware and Programming Models

Serial Execution

Parallel Execution

Parallel Execution

Parallel Execution

Serial Execution

Fork Join

Figure 3.4: Fork-join model used by OpenMP.

The research in this thesis utilises all three of these vectorisation approaches,

comparing the level of performance achieved for our benchmarks when using

auto-vectorisation, explicit vectorisation with intrinsics and SPMD program-

ming. For SPMD, we use OpenCL, which launches functions known as kernels

across a number of parallel work-items.

3.3 Multi-threading

The power (and cooling) required by an architecture increases more rapidly

with clock-speed than with number of cores [45]. Modern hardware designs

are thus typified by a high number of cores with low clock-speeds, and efficient

parallel execution relies on running parts of an application on all cores con-

currently. This is accomplished via multi-threading, which sees threads execute

some sub-problem or task independently using the resources of a separate core.

Many modern architectures also support simultaneous multi-threading (SMT)

or “hyper-threading”, allowing multiple threads to execute on and share the re-

sources of a single core: x86 CPUs typically support 2-way SMT; MIC supports

4-way SMT; and GPUs support a large number of threads per core (the exact

number differs by vendor and architecture revision).

A common model of parallel execution adopted by multi-threaded applica-

tions is called fork-join. As represented in Figure 3.4, a master thread exe-

cuting serially creates (“forks”) a number of additional threads during parallel

code sections, and waits for each thread to complete (“join”) before continuing

23

3. Parallel Hardware and Programming Models

with serial execution. This is the approach taken by OpenMP [4], which allows

programmers to mark (via pragmas) the loops in their program that can be

executed in parallel.

An alternative programming model is adopted by Cilk [20] and its successor,

Intel Cilk Plus [67], which allow programmers to identify (via extensions to the

C language) any dependencies that exist between functions. The result is a

dependency graph, which the Cilk scheduler uses to determine which functions

should be run by which threads. This approach is better suited to exposing

“nested parallelism” than the OpenMP approach of using threads to execute

independent loop iterations, since a function and the functions it calls can run

in parallel; it also potentially exposes more parallelism, since computation from

multiple functions (and hence multiple loops) can be performed simultaneously.

Using a low-level library such as POSIX threads (Pthreads) [114] gives a

programmer greater control over the threading behaviour of an application,

but at the expense of significantly more complicated code. OpenMP/Cilk are

therefore typically favoured because of their ease of use.

The SPMD model is also applicable to multi-threading. All tasks are known

to be independent at compile time, and compilers are thus free to distribute

work across threads in addition to (or instead of) SIMD execution units without

affecting correctness. Both CUDA and OpenCL allow for threads/work-items

to be grouped together into blocks/work-groups, providing certain guarantees

regarding synchronisation and memory access behaviours within a work-group,

but do not guarantee that all work-items will be executed by the same thread.

Neither programming model permits synchronisation between work-items in dif-

ferent work-groups.

24

3. Parallel Hardware and Programming Models

3.4 Message Passing

Whereas communication between SIMD execution units and threads is pos-

sible through shared memory, separate nodes in a supercomputer have only

one method of communication – the passing of messages back and forth across

some dedicated network interface. In HPC, such communication is most com-

monly performed through the use of communication libraries built upon the

standardised Message Passing Interface (MPI) [3], although recent work has in-

vestigated the use of Partitioned Global Address Space (PGAS) models [147]

and OpenCL [79] for programming clusters of machines.

Due to the ubiquity of MPI programs, and its familiarity to programmers,

many HPC codes use MPI not only for inter-node communication but also for

intra-node communication (i.e. in place of threading). This has been shown to

cause problems, such as increased memory overhead (due to redundant storage

and unnecessary communication buffers) [19, 28, 84] and increased communi-

cation times (due to multiple threads contending for use of a single network

interface) [54]. As such, much research has investigated the utility of so-called

“hybrid” MPI/OpenMP programming approaches [140, 151], providing a better

mapping from software to the underlying hardware.

Where accelerators are employed, message passing appears in two forms:

firstly, any communication between the host CPU and an attached accelerator

device must take place via explicit message passing over the PCI Express (PCIe)

interface that connects them; and secondly, any communication between devices

in separate nodes must travel over both PCIe and the network. Recent advances

in accelerator technology aim to alleviate these problems, by giving CPU and

accelerator cores direct access to the same memory (e.g. AMD Fusion, Intel HD

Graphics, NVIDIA Project Denver), or by giving the accelerator direct access

to the network interface [100].

25

3. Parallel Hardware and Programming Models

3.5 Benchmark Platforms

The research in this thesis makes use of a wide variety of different architectures,

from a number of hardware vendors. Not all machines are used in every study,

due to: (i) limited access to many of the large-scale machines, which are shared

resources external to the University of Warwick; (ii) incompatibilities between

programming techniques and hardware; and (iii) the rapid development of hard-

ware during the course of our work – we report results from the most recent

hardware iteration available at the time each study was performed.

3.5.1 Single Nodes

We divide the architectures used into three types: CPUs (Table 3.1); accelera-

tors and co-processors, including both discrete GPUs and Intel MIC (Table 3.2);

and “fused” architectures, featuring some combination of CPU and GPU cores

on the same chip (Table 3.3).

In all cases, performance is reported as peak GFLOP/s in single precision,

and bandwidth as peak transfer rate from main memory in gigabytes per second

(GB/s). As noted previously, these figures are not necessarily representative of

the level of sustained performance that can be achieved by an application. Power

is reported as thermal design power (TDP) in Watts, and for fused architectures

includes the power drawn by both the CPU and GPU cores. We additionally

list the instruction set supported by the CPUs.

As this thesis makes use of OpenCL, we also list the number of compute units

and processing elements for each device. On CPUs, each core is a compute unit

consisting of one processing element; with SMT, each hyper-thread appears as a

distinct compute unit (e.g. the Intel Xeon E3-1240 has 4 cores with 2-way SMT

and therefore has 8 compute units). GPUs from different vendors are divided

into compute units and processing elements in different ways: on the Intel GPUs

we use, each execution unit is a compute unit of 8 processing elements; on the

NVIDIA GPUs, each stream multiprocessor (compute unit) consists of 8, 32

26

3. Parallel Hardware and Programming Models

or 192 “CUDA cores” (processing elements) on the Tesla, Fermi and Kepler

architectures respectively; and on the discrete and integrated AMD GPUs, both

of which belong to the Evergreen series, a compute unit contains 16 stream cores

(compute units) of 5 simple processing elements each.

Intel AMD
X5550 E3-1240 E5-2660 A8-3850

Cores 4 4 8 4
Compute Units 4 8 16 4
Proc. Elements 4 8 16 4
Peak GFLOP/s 85 211 281 93

Bandwidth (GB/s) 32 21 51 30
TDP (Watts) 95 80 95 100

Instruction Set SSE 4.2 AVX AVX SSE 4a
Micro-architecture Nehalem Sandy Bridge Ivy Bridge Llano

Table 3.1: Hardware specifications of the CPUs used in this thesis.

NVIDIA AMD Intel
8400GS 9800GT C1060 C2050 GTX680 V7800 5110Pa

Cores 1 14 30 14 8 18 60
Compute Units 1 14 30 14 8 18 240
Proc. Elements 8 112 240 448 1536 1440 240
Peak GFLOP/s 33 504 933 1288 3090 2016 2022

Bandwidth (GB/s) 6 58 102 144 192 128 320
TDP (Watts) 25 105 189 238 195 150 225

Micro-architecture G98 G92 Tesla Fermi Kepler Cypress Knights
Corner

Table 3.2: Hardware specifications of the accelerators used in this thesis.

Intel AMD
HD4000 HD6550D

Compute Units 16 5
Proc. Elements 128 400
Peak GFLOP/s 147 480

Bandwidth (GB/s) 26 30
TDP (Watts) 77 100

Micro-architecture HD Graphics 4000 BeaverCreek

Table 3.3: Hardware specifications of the integrated GPUs used in this thesis.

aExperimental results were recorded from evaluation silicon, with slight differences from
the listed specification.

27

3. Parallel Hardware and Programming Models

3.5.2 Supercomputers

The studies contained in this thesis were performed using four supercomput-

ers: a cluster of dual-socket, hex-core Intel Xeon nodes (Sierra); an IBM Blue

Gene/P (DawnDev); a cluster of quad-socket, quad-core AMD Opteron nodes

(Hera); and the GPU partition of a cluster of dual-socket, hex-core Intel Xeon

nodes (Minerva). Sierra, DawnDev and Hera are housed in the Open Comput-

ing Facility at the Lawrence Livermore National Laboratory; Minerva is located

at the Centre for Scientific Computing at the University of Warwick.

The machines in Table 3.4 are used in Chapter 6 and those in Table 3.5 are

used in Chapter 7. All details were correct at the time of writing.

Sierra Minerva (GPU Partition)

Nodes 1,944 6
CPUs/Node 2 × Intel X5660 2 × Intel X5650
Cores/Node 12 12

Core Frequency 2.8 GHz 2.66 GHz
Peak TFLOP/s 261.3 16.9

Memory per Node 24 GB 24 GB
OS CHAOS 4.4 SUSE Enterprise Linux 11

Interconnect InfiniBand QDR (QLogic) InfiniBand TrueScale 4X-QDR
Accelerators/Node None 2 × NVIDIA M2050

Table 3.4: Hardware specifications of the Sierra and Minerva clusters.

DawnDev Hera

Nodes 1,024 864
CPUs/Node 4 × PowerPC 450d 4 × AMD Opteron
Cores/Node 4 16

Core Frequency 0.85 GHz 2.3 GHz
Peak TFLOP/s 13.9 127.2

Memory per Node 4 GB 32 GB
OS Compute Node Kernel CHAOS 5.0

Interconnect Blue Gene Torus + Tree InfiniBand DDR (Mellanox)
Accelerators/Node None None

Table 3.5: Hardware specifications of the DawnDev and Hera clusters.

28

3. Parallel Hardware and Programming Models

3.6 Summary

Modern micro-architectures support many forms of parallelism, each of which is

paired with a corresponding programming model or language feature. However,

many scientific and engineering codes (in particular, legacy applications) do not

utilise all levels of this parallel stack effectively. Most use MPI, since it is a base

requirement for the utilisation of large-scale supercomputing systems, but the

lower levels of the stack are often overlooked.

It is easy to map “embarrassingly parallel” codes to these lower levels ef-

ficiently, but realistic applications (such as the LU and miniMD benchmarks)

pose a greater challenge due to the presence of complex data dependencies and

irregular memory access patterns. The advent of accelerator-based supercom-

puters is a perfect opportunity to analyse the performance behaviours of such

codes and to explore the capabilities of modern architectures – an application

will typically require some degree of algorithmic change due to the limitations

of current accelerator hardware (e.g. no global synchronisation across threads,

fewer registers) and any optimisations identified as being beneficial to accelera-

tors are also likely to be applicable to modern CPU architectures.

29

CHAPTER 4
Optimisation of Pipelined Wavefront Applications

Pipelined wavefront applications are common to many areas of HPC, includ-

ing computational fluid dynamics [15, 16] and particle physics [1, 111]. These

applications are characterised by a particular data dependency pattern, which

we refer to henceforth as a “wavefront dependency”. The simple loop-nest in

Figure 4.1 demonstrates this dependency, with the computation of the value

for a grid point (i, j, k) depending upon the values of three of its neighbours,

computed by previous loop iterations: (i, j, k − 1), (i, j − 1, k) and (i− 1, j, k).

The hyperplane algorithm described by Lamport [86] allows for these loops

to be solved in parallel, in spite of the dependency. It is based on the key

observation that all of the data-points lying on a particular hyperplane can

be computed independently; for three-dimensional problems, this hyperplane

is defined as h = i + j + k, but the algorithm is applicable to problems of

any dimensionality. Figure 4.2 demonstrates the first three steps of a three-

dimensional wavefront, for h = 0, h = 1 and h = 2; the current step is coloured

light grey and previous steps in dark grey.

The performance of wavefront applications is well understood on clusters of

conventional multi-core architectures [65, 107, 109, 110, 111], but at the time

that the research presented in this thesis was performed, GPU-based imple-

mentations of three-dimensional wavefront applications (both on a single device

and at cluster scale) were scarce. To our knowledge, the work described in this

chapter constitutes the first port of the LU benchmark to a GPU. The princi-

ple use of this benchmark is comparing the suitability of different architectures

for production computational fluid dynamics applications [144], and thus the

results presented here have implications for large-scale production codes.

30

4. Optimisation of Pipelined Wavefront Applications

for (int k = 0; k < max_k; k++) {

for (int j = 0; j < max_j; j++) {

for (int i = 0; i < max_i; i++) {

a[k][j][i] = a[k-1][j][i] + a[k][j-1][i] + a[k][j][i-1];

}

}

}

Figure 4.1: Simple loop-nest exhibiting a wavefront dependency (ignoring
boundary conditions).

Step 1 Step 2 Step 3

Figure 4.2: First three steps of a wavefront through a three-dimensional data
grid.

4.1 Benchmark Description

The LU benchmark belongs to the NPB Suite, a set of parallel aerodynamic

simulation benchmarks. The code implements a simplified compressible Navier-

Stokes equation solver, which employs a Gauss-Seidel relaxation scheme with

symmetric successive over-relaxation (SSOR) for solving linear and discretised

equations. The reader is referred to [15] for a thorough discussion of the math-

ematics.

LU uses a three-dimensional data grid of size N3 (i.e. the problem is always

a cube). As of release 3.3.1, NASA provide seven different application “classes”

for which the benchmark is capable of performing verification: Class S (123),

Class W (333), Class A (643), Class B (1023), Class C (1623), Class D (4083)

and Class E (10203). The use of these standard problem classes in this work

ensures that our results are directly comparable to those reported elsewhere in

the literature.

31

4. Optimisation of Pipelined Wavefront Applications

In the MPI implementation of the benchmark, this data grid is decomposed

over a two-dimensional processor array of size Px × Py, assigning each of the

processors a stack of Nz data “tiles” of size Nx/Px ×Ny/Py × 1. Initially, the

algorithm selects a processor at a given vertex of the processor array which solves

the first tile in its stack. Once complete, the edge data (which has been updated

during this solve step) is communicated to two of its neighbouring processors.

These adjacent processors – previously held in an idle state via the use of MPI-

blocking primitives – then proceed to compute the first tile in their stacks, while

the original processor solves its second tile. Once the neighbouring processors

have completed their tiles, their edge data is sent downstream. This process

continues until the processor at the opposite vertex to the starting processor

solves its last tile, resulting in a “sweep” of computation through the data

array.

The pseudo-code in Algorithm 4.1 details the SSOR loop that accounts for

the majority of LU’s execution time. Each of the subroutines in the loop exhibit

different parallel behaviours: jacld and jacu carry out a number of indepen-

dent computations per grid-point, to pre-compute the values of arrays used in

the forward and backward wavefront sweeps; blts and buts are responsible for

the forward and backward sweeps respectively; l2norm computes a parallel re-

duction (on user-specified iterations); and rhs carries out three parallel stencil

update operations, which have no data dependencies between grid-points. The

number of loop iterations is configurable by the user at both compile- and run-

time, but is typically 250–300 in Classes A through E. The reader’s attention

is drawn to the location of the calls to the exchange 1 function – in the real

code, these calls occur as the first and last lines of code inside blts and buts;

we show them outside of blts and buts to facilitate later discussion.

32

4. Optimisation of Pipelined Wavefront Applications

Algorithm 4.1 Pseudo-code for the SSOR loop.

1: for iter = 1 to max iter do
2:

3: for k = 1 to Nz do
4: call jacld(k) . form lower triangular part of Jacobian matrix.
5: call exchange 1(k, recv) . receive data from north/west neighbours.
6: call blts(k) . perform lower triangular solution.
7: call exchange 1(k, send) . send data to south/east neighbours.
8: end for
9:

10: for k = Nz to 1 do
11: call jacu(k) . form upper triangular part of Jacobian matrix.
12: call exchange 1(k, recv) . receive data from south/east neighbours.
13: call buts(k) . perform upper triangular solution.
14: call exchange 1(k, send) . send data to north/west neighbours.
15: end for
16:

17: call l2norm()
18: call rhs() . compute steady-state residuals.
19: call l2norm()
20:

21: end for

4.2 Related Work

A number of studies have investigated the use of accelerator architectures for the

Smith-Waterman string matching algorithm (a two-dimensional wavefront algo-

rithm) [9, 93, 113], and two previous studies [48, 134] detail the implementation

of a different three-dimensional wavefront application (Sweep3D [1]).

The first of these Sweep3D studies [134] utilises the Cell Broadband Engine

(B.E.), exploiting five levels of parallelism in the implementation. The perfor-

mance benefits of each are shown in order, demonstrating a clear path for the

porting of similar codes to the Cell B.E. architecture. In the second [48], the

Sweep3D benchmark is ported to CUDA and executed on a single Tesla T10

processor. Four stages of optimisation are presented: the introduction of GPU

threads, using more threads with repeated computation, using shared memory

and using a number of other methods that contribute only marginally to per-

formance. The authors conclude that the performance of their GPU solution is

good, extrapolating from speed-up figures that it is almost as fast as the Cell

B.E. implementation described in [134].

33

4. Optimisation of Pipelined Wavefront Applications

4.3 Optimisation Challenges

The amount of parallelism available in a wavefront application depends upon the

problem size (i.e. the maximum values of i, j and k) and is variable throughout

an application run – as the value of h increases, more valid combinations of i,

j and k exist (i.e. the size of the hyperplane increases). How best to map this

limited parallelism to modern architectures is unclear, and the data dependency

must be satisfied at all levels of the parallel stack described in Chapter 3.

The memory access pattern exhibited by wavefront applications is very pre-

dictable, but is not well suited to SIMD execution. If the data grid remains

stored in its default memory layout (i.e. row-major form) then the values of all

of the grid-points satisfying h = i + j + k for a given value of h will not be

contiguous in memory, requiring expensive gather and scatter operations.

The memory requirements of LU (≈ 160 GB for a 10203 Class E problem)

are also considerably larger than the amount of RAM available per node in

commodity clusters, and the amount of memory available to many accelerators

is limited by their use of GDDR, thus necessitating the use of large distributed

machines. The MPI implementation of the original benchmark requires frequent

network communication, making the bandwidth and latency of the PCIe bus a

potential bottleneck.

4.4 Experimental Setup

Version 3.2 of the LU benchmark, on which our work is based, is written in For-

tran 77 and utilises MPI for communication between processing elements. The

GPU implementation makes use of NVIDIA’s CUDA. The standard language

choice for developing CUDA programs is C/C++ and, although the Portland

Group offer a commercial alternative (CUDA Fortran), the first stage in our

porting of LU was to convert the entire application to C. The resulting C code is

1.4x slower than the original Fortran; therefore, the performance improvements

discussed in the remainder of this chapter arise from utilisation of the GPU,

34

4. Optimisation of Pipelined Wavefront Applications

rather than from any optimisations introduced during the process of changing

language.

Although NASA explicitly requests the use of double precision in the bench-

mark suite, the ported version of the benchmark was instrumented to allow

the selection of floating-point precision at compile time. The accuracy of the

single precision implementation is lower (i.e. the error exceeds the default ep-

silon of 10−8), but the mathematics is otherwise identical, and can be executed

significantly faster than the double precision implementation on some GPUs.

We use four NVIDIA GPUs in these experiments. The GeForce 8400GS and

9800GT are consumer cards that are not designed for HPC – we include them

mainly out of interest, as a means of evaluating the use of typical workstation

GPUs for scientific workloads. The Tesla C1060 and C2050 are NVIDIA’s flag-

ship HPC cards, based on the “Tesla” and “Fermi” architectures respectively.

The compiler configuration for the experiments in this chapter are given in

Table 4.1. We note that, although it is more usual to use the flag -arch="sm 20"

for the Tesla C2050, we found that -arch="sm 13" resulted in better perfor-

mance for our code. We have since learned that this is due to several side-effects

of compiling with -arch="sm 13", specifically that the compiled code uses 32-

bit pointers (and hence fewer registers) and uses faster mathematical functions

with lower precision.

Device Compiler Options

Intel X5550 (Fortran) Sun Studio 12 (Update 1)

-O5 -native

-xprefetch -xunroll=8

-xipo -xvector

Intel X5550 (GPU Host) GNU 4.3 -O2 -msse3 -funroll-loops

GeForce 8400GS/9800GT NVCC -O2 -arch="sm 11"

Tesla C1060/C2050 NVCC -O2 -arch="sm 13"

Table 4.1: Compiler configurations for the wavefront optimisation study.

35

4. Optimisation of Pipelined Wavefront Applications

4.5 Optimisations

The focus of this study is the optimisation of wavefront applications for GPU

architectures. Although some of the optimisations we propose are also beneficial

to CPU architectures, we discuss them mainly in the context of NVIDIA’s GPUs.

We therefore divide the optimisations into two types: (i) those that affect the

SIMD and multi-threading behaviour of the application (since CUDA does not

make any distinction between SIMD and threading); and (ii) those that affect

the message-passing behaviour of the application, between nodes and over PCIe.

4.5.1 SIMD and Multi-threading

k-blocking

In the default version of LU’s SSOR loop (Algorithm 4.1), each processor solves

a “tile” of size Nx × Ny × 1 at each time step prior to communication. Our

implementation (Algorithm 4.2) employs an optimisation commonly known as

k-blocking – a name that arises from previous optimisation studies featuring the

Sweep3D code [64] – which instead partitions the z axis into tiles of height kB .

kB can be set to any value between 1 and Nz, but to simplify the discussion

and explanation of k-blocking we assume that it divides Nz.

Algorithm 4.2 Pseudo-code for the SSOR loop with k-blocking.

1: for iter = 1 to max iter do
2:

3: for b = 1 to Nz
kB

do

4: for k = (b− 1)× kB to b× kB do
5: call jacld(k) . form lower triangular part of Jacobian matrix.
6: end for
7: call exchange 1(b, recv) . receive data from north/west neighbours.
8: for k = (b− 1)× kB to b× kB do
9: call blts(k) . perform lower triangular solution.

10: end for
11: call exchange 1(b, send) . send data to south/east neighbours.
12: end for
13:

14:
... . repeat for jacu and buts.

15:

16: end for

36

4. Optimisation of Pipelined Wavefront Applications

Px
Py

kB

Sweep
Direction

(a) kB = 1

kB

(b) kB = min
(Nx

Px
,
Ny

Py

)

kB

(c) kB = Nz

Figure 4.3: Comparison of three different k-blocking depths.

This optimisation was implemented in Sweep3D to make more effective use

of network bandwidth (at the expense of delays to downstream processors) by

aggregating kB small messages into one larger message. We use k-blocking for a

fundamentally different reason: maximising the amount of parallelism available

in each hyperplane. The reader is reminded that a hyperplane is defined as

h = i + j + k; for a tile with a fixed value of k, exploitable parallelism is

restricted to the other two dimensions.

Figure 4.3 compares three potential k-blocking depths: (a) a k-block depth

of 1, which minimises the amount of time any processor spends waiting on its

first message and represents the behaviour found in the original benchmark;

(b) a k-block depth of min(Nx/Px, Ny/Py), which provides an approximately

cubic unit of computation and balances the need for a large k-block for compute

efficiency with a small k-block for MPI efficiency; and (c) a k-block of depth Nz,

which maximises the surface of the hyperplanes on each processor for as much of

the run as possible. The current sweep-step is shown in light grey, downstream

processors that are waiting for data are shown in white, and previous sweep

steps are shown in progressively darker shades.

Which of these kB values will be optimal on a given architecture is de-

pendent upon the level of parallelism available (i.e. SIMD width, number of

cores/threads) and, for multi-node runs, the behaviour of the network (i.e. its

latency and bandwidth). For current-generation CPUs, we believe that the

37

4. Optimisation of Pipelined Wavefront Applications

best configuration is kB = 1, since the x and y dimensions are likely to pro-

vide sufficient parallelism for the relatively small SIMD widths of SSE and

AVX. For GPUs, setting kB as large as possible maximises SIMD efficiency,

but causes too large a delay to downstream processors; we therefore choose to

set kB = min(Nx/Px, Ny/Py). It is important to note that this performance

trade-off is only a concern for multi-node runs – since a single node run requires

no MPI communication, we can set kB = Nz.

Loop-Unrolling and Fusion

The pseudo-code in Algorithm 4.3 describes the original loop structure of the

blts and buts methods. We also include the k loop and communication steps

from Algorithm 4.1, to highlight the reasoning behind the original design of

these loops – the first set of loops apply updates based on the results of the

previous tile (and could in theory be run in parallel), while the second set of

loops use a two-dimensional wavefront to compute the current tile.

Algorithm 4.3 Pseudo-code for the original blts.

1: for all k do
2:

3: call exchange 1(k, recv)
4:

5: for all j do
6: for all i do
7: for m = 0 to 4 do
8: call update (k, j, i, m) using (k − 1, j, i, m)
9: end for

10: end for
11: end for
12:

13: for all j do
14: for all i do
15: for m = 0 to 4 do
16: call update (k, j, i, m) using (k, j − 1, i, m) and (k, j, i− 1, m)
17: end for
18: end for
19: end for
20:

21: call exchange 1(k, send)
22:

23: end for

38

4. Optimisation of Pipelined Wavefront Applications

We fuse these two sets of loops over j and i into a single set of loops, thus

replicating the structure of the loop in Figure 4.1, which has several benefits:

it enables a single kernel to carry out the updates in all three dimensions; it

enables the GPU to hide memory latency more effectively, as fewer loads need to

be completed before the solution can be updated in the j and i directions; and

the number of registers required to hold intermediate values is decreased, which

may increase occupancy (i.e. the ratio of active work-items to the maximum

number of work-items supported on a single compute unit).

Thread Synchronisation

The lack of a method of global synchronisation across work-items makes it

difficult to implement the hyperplane algorithm in a näıve fashion. We consider

two alternative forms of work-item synchronisation, both making use of the

“implicit CPU synchronisation” [143] that occurs between kernel invocations:

1. Blocked Wavefront

In this first method, we decompose the total three-dimensional data grid

into a number of smaller sub-grids of size nx × ny × nz. Each sub-grid

can then be solved (without violating the data dependency) by following

a coarse wavefront sweep over sub-grids. Each of these coarse wavefront

steps corresponds to a kernel invocation, where each sub-grid is solved by

a work-group. The dependency is preserved within a work-group through

the use of local synchronisation (i.e. syncthreads).

2. SIMD Hyperplane

The second method is more in keeping with Lamport’s original hyperplane

method, in that all of the grid-points lying on a particular hyperplane are

solved in parallel in a SIMD fashion. We launch a separate kernel for each

hyperplane: the first kernel solves a hyperplane consisting of only a single

grid point, the next solves 3 grid points, followed by 6 grid points and so

on. There is no need for local synchronisation within a kernel.

39

4. Optimisation of Pipelined Wavefront Applications

0 2
1

0

2

2

5

7

0

5

6

3
4

1

Figure 4.4: A mapping from a two-dimensional grid of work-items onto three-
dimensional data.

Previous optimisation efforts for the Smith-Waterman algorithm by Aji et

al. [9] (featuring a similar “tiled wavefront” optimisation, in two-dimensions)

suggest that the blocked wavefront algorithm will be most performant, citing the

cost of implicit CPU synchronisation. The authors introduce a novel method of

global synchronisation within their kernel to alleviate this cost, and see a three-

fold increase in performance. However, these results do not match our own

– during our benchmarking (results not shown) the SIMD hyperplane method

out-performed the blocked wavefront approach in all configurations tested.

Memory Access Pattern

For each grid-point, the jacld and jacu methods (the preconditioning steps

of the wavefront sweep, shown in Algorithm 4.1) read in five solution values

and five values from three neighbours (20 values in total). These data are used

to populate four 5 × 5 matrices (100 values in total) per grid-point, which are

later used by the blts and buts methods. In our optimised code, we move this

calculation into the wavefront section; instead of loading 100 values per grid-

point, we load 20 values and perform the jacld and jacu calculations inline.

In addition to reducing the amount of memory required for each problem size,

this optimisation decreases the number of memory accesses made by the blts

and buts kernels, while also increasing their computational intensity.

We also ensure that each of our memory accesses is coalesced, with all work-

items accessing contiguous memory locations. For the wavefront sections, we

use a memory layout based on the mapping depicted in Figure 4.4, where each

work-item is responsible for a column of grid-points (i.e. i and j are fixed, but

40

4. Optimisation of Pipelined Wavefront Applications

k is variable); for the other sections of the code, we use the original row-major

form. We switch between layouts using a simple memory streaming kernel,

which reads from one memory layout and writes to the other – this is more

efficient than using a sub-optimal memory layout within the compute kernels,

which access each grid-point multiple times. The lack of global synchronisa-

tion within kernels prevents this rearrangement from being performed in place,

and we therefore make use of a separate rearrangement buffer on the GPU.

The amount of memory required for this buffer is significantly less than the

amount required to store temporary results prior to fusing the jacld/jacu and

blts/buts kernels.

4.5.2 Message Passing

Problem Decomposition

Under the two-dimensional domain decomposition used in the original CPU

implementation, if Nz increases then Nx/Px and Ny/Py must decrease in accor-

dance with the memory limit of a node. This is significant because the size of a

three-dimensional grid’s largest hyperplane is bounded by the product of its two

smallest dimensions – as Nx/Px and Ny/Py decrease, so too does the amount of

available parallelism. A three-dimensional domain decomposition would enable

us to deal with an increase in Nz by adding more processors, thus preventing a

decrease in parallelism.

To investigate this possibility, we model a 960× 960× 960 grid decomposed

over 64 processors. Firstly, we determine the number of grid-points per pro-

cessor: in a two-dimensional decomposition (i.e. an 8× 8× 1 processor array),

each processor is assigned a block of 120 × 120 × 960 grid-points; in a three-

dimensional decomposition (i.e. a 4×4×4 processor array), each processor has

a block of size 240× 240× 240. Secondly, we note that the solution of a block

of size Nx ×Ny ×Nz requires Nx +Ny +Nz − 2 wavefront steps.

41

4. Optimisation of Pipelined Wavefront Applications

As a corollary, a processor array of size Px × Py × Pz will have a compute

time of:

(
Px + Py +

⌈
dNz/Pze
kB

⌉
× Pz − 2

)
W (4.1)

where W represents the time that a processor takes to compute a block of size

Nx/Px ×Ny/Py × kB .

Thus an 8 × 8 × 1 processor array, with kB = 120, has a compute time of

22W120, whereas a 4×4×4 processor array, with kB = 240, has a compute time

of 10W240. In order for the performance of the three-dimensional decomposition

to match that of the two-dimensional decomposition, even when assuming zero

communication cost, the value of W240 cannot be more than 2.2x greater than

W120.

This will obviously not be the case for a serial processor, since a 2403 block

contains 8 times as many grid-points as a 1203 block – W240 ≈ 8 ×W120. The

result is less obvious for a parallel processor, depending upon the amount of

parallelism available; we find that, for our GPU implementation, the cost of

processing a 2403 block is approximately 6x greater than the cost of processing

a 1203 block, demonstrating that a 3D decomposition would not result in a

performance gain.

4.6 Performance Results

4.6.1 Performance Breakdown

Table 4.2 presents a breakdown of LU’s execution time, for a Class C problem

in double precision, into seven components: the four methods constituting the

wavefront sweeps (jacld, blts, jacu, and buts); the stencil operation (rhs);

data rearrangement between sections (Rearrangement); and all other compo-

nents of the simulation (Other). The reader is reminded that the CPU codes

do not rearrange memory, since they are serial and do not use the hyperplane

42

4. Optimisation of Pipelined Wavefront Applications

Component
X5550

C1060 C2050
Orig. Opt.

jacld % 18.02
26.68 18.57 19.54

blts % 17.40
jacu % 16.82

26.68 18.57 19.54
buts % 17.36
rhs % 27.84 43.92 43.37 43.17

Rearrangement % — — 12.18 11.16
Other % 2.57 3.48 6.77 8.48

Table 4.2: Performance breakdown for LU (Class C).

algorithm, and the optimised code combines the Jacobian pre-conditioning and

triangular solver steps into one function (i.e. the cost of jacld is absorbed into

blts, and that of jacu into buts).

In the original code, the wavefront section accounts for 70% of execution

time, and the stencil section the majority of remaining time. In our optimised

code, the wavefront section remains the most expensive component but accounts

for significantly less time (50%) due to the removal of the separate Jacobian pre-

conditioning steps. The rhs function benefits less from our optimisations, and

therefore its contribution to execution time increases.

On the GPUs, the wavefront section and stencil operation account for a very

similar fraction of execution time. Again, the wavefront kernels benefit most

from our optimisations – since they are the focus of this study – whereas the

stencil operation and other components are accelerated to a lesser degree, and

are thus relatively more expensive. The acceleration of stencil kernels on GPUs

has been addressed in other work [66, 117].

43

4. Optimisation of Pipelined Wavefront Applications

4.6.2 Architecture Comparison

The graphs in Figure 4.5 show the speed-up of our optimised implementations

of LU, executing on an Intel X5550 processor and on a range of NVIDIA GPUs,

compared to the original code executing on an Intel X5550 processor. We show

all results on one graph to highlight: (i) the impact of our optimisations on

CPU hardware; (ii) the difference between CPU and GPU performance for this

application; and (iii) the performance impact of architectural changes between

NVIDIA hardware generations.

Where possible, we present results in single and double precision, for three of

the seven application classes supported by LU: A (643), B (1023) and C (1623);

some of the GPUs do not appear in all comparisons due to limited memory

and/or hardware constraints. Specifically, the 8400GS only has enough memory

to executing the Class A problem, and only the C1060 and C2050 support double

precision floating-point arithmetic.

We see that the GPU solution comfortably outperforms both the original and

optimised Fortran benchmarks, for all three problem classes, when run on HPC

hardware. Unexpectedly, the GPU solution on such hardware appears to be

memory bound: the performance hit suffered when moving from single to double

precision is consistently around 2x, despite a 12x difference in theoretical peak

for single and double precision on the C1060; and disabling Error Correcting

Codes (ECC) on the C2050 increases performance for a Class C problem run

in double precision by almost 15% (which is roughly in line with the expected

change in bandwidth) [120].

We also see that the performance gap between the two architecture types

increases with problem size. This is a direct result of the increase in the number

of grid-points per hyperplane and thus the amount of exploitable parallelism.

Due to its lower-clocked cores, the GPU takes longer to solve a small number of

grid-points (in the worst case, the single grid-point at the beginning and end of

each wavefront sweep) than the CPU – the speed-up we see is due to the GPU

being faster at processing hyperplanes near the problem’s centre.

44

4. Optimisation of Pipelined Wavefront Applications

A (643) B (1023) C (1623)

0

2

4

6

8

Application Class

S
p
ee
d
-u
p
(x
)

X5550 (Original) X5550 (Optimised)

8400GS 9800GT C1060 C2050 (ECC) C2050

(a) Single precision.

A (643) B (1023) C (1623)

0

2

4

6

8

Application Class

S
p
ee
d
-u
p
(x
)

X5550 (Original) X5550 (Optimised)

8400GS 9800GT C1060 C2050 (ECC) C2050

(b) Double precision.

Figure 4.5: Comparison of speed-up for our optimised implementation of LU
running on different architectures.

45

4. Optimisation of Pipelined Wavefront Applications

Finally, we see that the performance gap between consecutive generations

of NVIDIA hardware is greater than the increase in either peak GFLOP/s or

peak global memory bandwidth (Table 3.2). Increased parallelism, relaxed coa-

lescence criteria and the introduction of an L2 cache all increase effective band-

width, and we believe that these hardware changes are responsible for the per-

formance improvements that we see; the increased number of cores and threads

enables more grid-points on the hyperplane to be worked on simultaneously,

and the cache decreases access times for memory locations used by more than

one work-item per hyperplane – the reader is reminded that, ignoring bound-

ary conditions, the memory location for a grid-point (i, j, k) is accessed by the

work-items assigned to (i+ 1, j, k), (i, j + 1, k) and (i, j, k + 1).

46

4. Optimisation of Pipelined Wavefront Applications

4.7 Summary

In this chapter, we present optimised implementations of the NAS LU bench-

mark for CPUs and GPUs. Benchmark results are provided for a wide range

of GPU hardware, including consumer cards and NVIDIA’s flagship HPC Tesla

and Fermi processors. We show that the same set of optimisations can bene-

fit wavefront applications running on both types of architecture, improving the

performance of the original Fortran benchmark by up to 1.7x, and demonstrate

the utility of combining (or “fusing” [164]) kernels to reduce an application’s

memory footprint and remove the cost of accessing temporary global arrays.

Our GPU implementation executing on an NVIDIA Tesla C2050 is up to

7x faster than an optimised Fortran implementation executing on an Intel

X5550, demonstrating (in contrast to previous work on two-dimensional wave-

fronts) that Lamport’s hyperplane algorithm can be ported effectively to new

accelerator-based architectures – a compelling argument in favour of the use

of GPUs for scientific three-dimensional wavefront codes in single workstation

environments.

As expected, the performance improvement afforded by the use of acceler-

ators for this class of application is highly dependent upon the amount of ex-

ploitable parallelism available. Many MPI-based three-dimensional wavefront

codes treat the problem grid as a stack of “tiles” of size Nx/Px × Ny/Py × 1,

artificially limiting the amount of such parallelism to two dimensions; the results

presented here demonstrate the importance of using k-blocking to regain this

lost parallelism. For a Class C problem, the performance difference between ap-

plication runs using kB = 1 and kB = 162 is ≈ 40x (results not shown), and we

expect that the importance of k-blocking will grow as the amount of parallelism

supported by hardware increases. It remains to be seen how the trade-off of

k-blocking depth against delay to downstream processors will impact upon the

code’s performance at scale – we examine this further in Chapter 7.

47

CHAPTER 5
Optimisation of Molecular Dynamics Applications

Molecular dynamics simulations can involve millions of atoms and, for a given

timestep, the forces acting between all pairs of atoms must be calculated. In

practice, the calculation of forces is split into two parts: short-range forces,

which tend to zero within a finite distance; and long-range forces, which do not.

The short-range force calculation accounts for the majority of execution time,

and is the focus of the research in this chapter.

During the calculation of the short-range forces, it is safe to assume that

the force between atoms separated by more than some “cut-off” distance (Rc)

is negligible. Therefore, it is not necessary to consider all atom-pairs at each

timestep – an approximate but sufficient answer can be reached by evaluating

only the forces between an atom and its near neighbours. For a simulation

with an average of k neighbours per atom, this reduces the complexity of force

calculation from O(N2) to O(Nk).

“Cell-based” simulations determine the set of neighbouring atoms by divid-

ing the problem domain into “cells”, evaluating the forces between an atom and

the contents of some set of surrounding cells (e.g. for cells of size Rc, there are 27

cells that could potentially contain atoms closer than Rc). In such simulations,

with a fixed atom density (ρ), k = ρ×27Rc
3. An alternative method is to make

use of a pre-computed Verlet list (“neighbour list”) [156] for each atom, which

contains the indices of all atoms separated by less than Rc + Rs (Figure 5.1).

Rs is a “skin distance” that allows a neighbour list to be re-used for several

iterations; it must be carefully chosen, based on other simulation parameters,

such that no atom can move more than Rs between neighbour list rebuilds.

This is the method we make use of in this work, since a neighbour list allows

48

5. Optimisation of Molecular Dynamics Applications

Rc

Rc + Rs

Figure 5.1: An atom’s neighbourhood.

for fewer atom-pairs to be evaluated each timestep: k = ρ× 4
3π(Rc +Rs)

3.

The number of distance calculations can be reduced further by utilising

Newton’s third law (N3) – the force that atom i exerts on atom j (Fi,j) is equal

in magnitude, but opposite in direction, to the force that atom j exerts on atom

i, and therefore only needs to be calculated once. A given atom pair (i, j) thus

appears only in the neighbour list for i or j, and the computed force is applied

to both atoms.

Molecular dynamics is an area of HPC that has seen significant applica-

tion speed-ups reported from the use of accelerators [11, 24, 27, 59, 122, 136,

154, 155], owing to the large amount of exploitable parallelism present in force

calculation. The work described in this chapter investigates the optimisation

of this class of application for CPUs, and also presents the first port (to our

knowledge) of a molecular dynamics code to the Intel MIC architecture. The

benchmark that we use (miniMD [61, 62]) is a simplified version of Sandia’s

LAMMPS [137, 139] package, intended for use in optimisation studies such as

this one – despite supporting only the Lennard-Jones (LJ) inter-atomic poten-

tial, miniMD therefore has performance and scaling behaviours that are repre-

sentative of a much larger and more complex code.

49

5. Optimisation of Molecular Dynamics Applications

5.1 Benchmark Description

Unlike LAMMPS, miniMD supports only one simulation, in which atoms are

spaced uniformly across a three-dimensional lattice, with random initial ve-

locities that are scaled in line with the desired temperature. The problem is

spatially decomposed across processors (i.e. each MPI task is responsible for all

atoms falling within some subvolume of space) and the main simulation loop is

repeated for a user-specified number of timesteps.

Each iteration of the loop (which is depicted as pseudo-code in Algorithm 5.1)

begins by updating atom positions based upon their current velocities. If the

neighbour list is deemed to be out of date (based on the number of iterations

since the last rebuild), all processors: check to see if any of the atoms in their

subvolume should be moved to another processor (atom exchange); construct

lists of atoms that need to be ghosted on neighbouring processors (i.e. atoms

near the borders of the subvolume); import/export atom positions based upon

this list; and then rebuild the neighbour list. If the neighbour list is not out

of date, then all processors import/export atom positions based upon the most

up-to-date list of border atoms. Following these communication steps, each pro-

cessor calculates the short-range forces exerted upon other atoms by those in

its subvolume; since such forces may affect atoms on other processors, a second

communication step (reverse communication, or “rcomm”) is necessary. Finally,

the current atom velocities are stored (to compute temperature, in user-specified

iterations) before being updated based upon their acceleration. The 48 on Line

22 is a hard-coded multiplier used by miniMD to convert force to acceleration.

For the default values of Rc and Rs provided by miniMD (2.5 and 0.3,

respectively), execution can be broken down as follows: force calculation is the

most expensive component, responsible for more than 80% of execution time; the

neighbour list build accounts for 10%; and the remaining time is split between

inter-node communication and time integration (to update atom velocities and

positions).

50

5. Optimisation of Molecular Dynamics Applications

Algorithm 5.1 Pseudo-code for miniMD’s main simulation loop.

1: for t = 1 to timesteps do
2:

3: for all atoms do
4: position ← position + dt × velocity
5: end for
6:

7: if neighbour list is out of date then
8: call exchange() . move atoms between processors
9: call borders() . update import/export lists

10: call comm() . import/export atom positions
11: call neighbour build() . rebuild neighbour lists
12: else
13: call comm() . import/export atom positions
14: end if
15:

16: call force update() . evaluate short-range forces
17:

18: call rcomm() . import/export atom forces
19:

20: for all atoms do
21: old velocity ← velocity
22: velocity ← velocity + 48dt × force
23: end for
24:

25: end for

5.2 Related Work

The most similar research to that presented in this thesis are two recent attempts

to optimise LAMMPS for execution on NVIDIA GPUs: LAMMPSGPU [24]

and LAMMPSCUDA [154, 155]. Both of these studies ultimately use single

precision floating-point when quoting their best speed-up figures, but it is not

clear whether the CPU code used as a baseline was run in single or double

precision. In [62], the authors allude to a performance study of miniMD in single

precision and note that there was “no appreciable performance enhancement”.

We verify that there is no significant performance benefit from using single

precision in scalar code, since the application is not memory bound. However,

the results in this chapter show that the use of single precision in SIMD can

lead to significant performance improvements.

Other research has focused on improving the algorithmic complexity of

molecular dynamics. One common aim is to reduce the number of distance

51

5. Optimisation of Molecular Dynamics Applications

comparisons made during the computation of short-range forces; extensions to

both Verlet’s original method [156] of maintaining a list of interacting atom

pairs [50, 60, 96] and the so-called “link-cell” method [49, 95, 165] have been

proposed, along with new approaches [13, 43, 94, 133] that make use of domain-

specific knowledge to improve the search for near-neighbours. Improvements to

communication complexity have also been investigated [148].

More hardware-focused optimisations have been considered, including: the

potential of scheduling molecular dynamics across heterogeneous systems fea-

turing some mix of CPU and GPU cores [24, 58]; sorting atoms according to

their position in space, to improve cache behaviour [11, 101]; using single and

“mixed” floating-point precision, to avoid expensive double precision opera-

tions [24, 88]; and the use of hardware purpose-built for molecular dynamics

simulations [41, 115].

5.3 Optimisation Challenges

The use of a neighbour list per atom makes it difficult to utilise SIMD execution

units effectively. Consider the case of W SIMD execution units, computing the

force between W atoms and their neighbours: the positions of the W neighbours

are unlikely to be stored contiguously in memory, thus requiring gather and

scatter operations. Such operations are costly on modern SIMD architectures,

both in terms of instruction overheads and memory accesses. These problems

affect both the short-range force calculation (which reads from the neighbour

list) and the building of the neighbour list itself.

Although each of the steps in a molecular dynamics simulation exhibit sig-

nificant amounts of parallelism, there is a strict dependency between them:

atom positions must be updated before forces can be calculated, and atom po-

sitions are dependent upon the forces calculated in the previous timestep. In a

multi-node simulation, both positions and forces are required from neighbour-

ing processors; this combination of dependency between timesteps and frequent

52

5. Optimisation of Molecular Dynamics Applications

network communication make the efficient use of accelerator architectures chal-

lenging, due to the latency and bandwidth of the PCIe bus.

5.4 Experimental Setup

For maximum performance on any modern architecture, it is important to make

use of single precision floating-point wherever possible. The SIMD units on In-

tel hardware are 2x wider for single precision than double precision, and per-

formance is typically ≈2x higher as a result; we use single precision here to

maximise performance, and to demonstrate that our algorithms can scale to

wider SIMD than is currently available for double precision. Early results from

our double and mixed precision implementations suggest that the performance

impact is what one would expect and is similar to that reported for GPU codes

(i.e. that the double precision code is twice as slow, and the mixed precision

code somewhere between).

Although the use of “fast math” flags and instructions could have provided

an additional boost to performance, their cumulative effect on long-running

simulations should ideally be examined by domain experts. Therefore, any per-

formance numbers that we report are from using exact, albeit single precision,

floating-point math and are on average 10–15% worse than when approximate

reciprocals are employed.

To ensure that we started from a strong baseline implementation, we applied

some previously proposed optimisations to miniMD before beginning our SIMD

analysis. A number of these optimisations are already present in some form

within LAMMPS: the aggregation of an atom’s forces takes place in registers;

atoms are sorted according to their position in space; and alignment is ensured

via the insertion of padding into the AoS layout used to store atom data. We

also improve the neighbour list build algorithm using optimisations proposed

in [60], which are not currently present in LAMMPS.

53

5. Optimisation of Molecular Dynamics Applications

Xeon E5-2660 Xeon Phi 5110Pa

Sockets×Cores×Threads 2× 8× 2 1× 60× 4
Clock (GHz) 2.2 1.053

Single Precision GFLOP/s 563 2022
L1 / L2 / L3 Cache (KB) 32 / 256 / 20,480 32 / 512 / -

DRAM 128 GB 8 GB GDDR
Bandwidth from STREAM [97] 76 GB/s 170 GB/s

PCIe Bandwidth 10 GB/s
Compiler Version Intel v13.0.030
Compiler Flags -03 -xHost -restrict -ipo -fno-alias

MPI Version Intel v4.0.3

Table 5.1: System configuration for the molecular dynamics optimisation study.

aExperimental results were recorded from evaluation silicon, with slight differences from
the listed specification.

The system configuration for the server used in our experiments is given in

Table 5.1. We use a Knights Corner (KNC) Intel Xeon Phi co-processor, which

has 60 x86 cores and hyper-threading support for four hardware threads per

core. The CPU and KNC binaries were compiled with the same compiler, and

in all experiments (except where noted) we use all of the available cores on both

architectures, running the maximum number of hyper-threads supported (two

per CPU core and four per KNC core). On the CPU, we use AVX for both our

128- and 256-bit SIMD experiments, to better isolate the effects of SIMD width

– any performance difference between 256-bit AVX and SSE will arise from a

combination of increased SIMD width and reduced register pressure due to the

three-operand instructions introduced by AVX.

To demonstrate the performance and scalability of our optimised code, we

present results for simulations with multiple atom counts and two different cut-

off distances (2.5 and 5.0). The first of these is the standard cut-off distance used

in miniMD’s LJ benchmark, whereas the second is used to investigate the effects

of inter-atomic potentials with larger cut-off distances. This approach matches

that of [24], and the number of neighbours per atom under these conditions

is similar to that of the LAMMPS Rhodopsin protein benchmark. All experi-

ments use cross-neighbour SIMD, since both cut-off distances provide sufficient

parallelism.

54

5. Optimisation of Molecular Dynamics Applications

All other simulation parameters are the defaults provided by miniMD:

ρ = 0.8442, T = 1.44, Nrebuild = 20, Rs = 0.3, timesteps = 100. We report per-

formance in atom-steps per second (i.e. # atoms×timesteps/execution time), to

enable direct comparison between our results and those of prior work [154, 155],

and report execution times in seconds.

5.5 Optimisations

The focus of this study is the optimisation of molecular dynamics applications

for x86 architectures. Although some of the optimisations we propose are also

beneficial to GPU architectures, we discuss them mainly in the context of Intel’s

CPU and MIC hardware. For this reason, we divide the optimisations into two

types: (i) those that affect the SIMD behaviour of the application; and (ii) those

that affect the threading and message-passing behaviour of the application. This

differs from the division found in the previous chapter, since x86 architectures

handle SIMD and threading very differently from GPUs.

5.5.1 SIMD

Short-Range Force Calculation

miniMD’s short-range force compute function is a simple loop-nest, iterating

over atoms and their neighbours (Algorithm 5.2). The loop computes the inter-

atomic distance between an atom i and each of its neighbours j, and updates

the forces of both i and j if the distance is less than Rc. The calculation of this

force is not arithmetic-intensive, requiring only 23 floating-point operations.

The reader’s attention is drawn to the fact that the force between two atoms is

computed in such a way as to avoid expensive square root calculations.

Kim et al. demonstrate that the force compute loop from GROMACS can

be auto-vectorised [80]; similarly, we find that Intel’s C++ compiler is able to

auto-vectorise miniMD’s loop with a little assistance. In particular, we must add

a compiler directive (#pragma ivdep) to the loop over neighbours to resolve the

55

5. Optimisation of Molecular Dynamics Applications

Algorithm 5.2 Pseudo-code for short-range force calculation.

1: for all atoms i do
2: for all neighbours k do
3: j = neighbour list[k]
4: delx = xi - pos[j+0]
5: dely = yi - pos[j+1]
6: delz = zi - pos[j+2]
7: rsq = (delx × delx) + (dely × dely) + (delz × delz)
8: if (rsq ≤ Rc) then
9: sr2 = 1.0 / rsq

10: sr6 = sr2 × sr2 × sr2
11: f = sr6 × (sr6 - 0.5) × sr2
12: fxi += f × delx
13: fyi += f × dely
14: fzi += f × delz
15: force[j+0] -= f × delx
16: force[j+1] -= f × dely
17: force[j+2] -= f × delz
18: end if
19: end for
20: end for

possible dependence in force array updates, since the compiler does not know

that each of an atom’s neighbours is unique. The auto-vectorised code can be

made more efficient by moving the force updates outside of the branch, so that

the compiler knows that the memory accesses involved are safe for iterations

that fail the if-check. We also pad the number of neighbours to the nearest

multiple of the SIMD width (W) using “dummy” neighbours – atoms placed

at infinity that always fail the cut-off check – to handle situations where the

number of neighbours is not divisible by W .

After auto-vectorisation, each of the arithmetic operations on Lines 4–17

operates at 100% SIMD efficiency. However, the branch on Line 8 and the

memory accesses on Lines 4–6 and 15–17 may introduce significant inefficiency.

The branch is handled via blending/masking, so Lines 9–11 are executed even

for neighbours that fail the cut-off check. The amount of inefficiency this causes

depends upon the skin distance Rs. More fundamental to this loop, the memory

accesses on Lines 4–6 (neighbour positions) and 15–17 (neighbour forces) are

to potentially non-contiguous memory locations and thus require gather and

scatter operations.

56

5. Optimisation of Molecular Dynamics Applications

Scalar L/S Scalar G/S
Vector L/S Vector L/S
+ Shuffles + Dot Product

Load Neighbour IDs W W W W
Gather j Positions 3W 48W 7 + W W

Compute delx, dely, delz 3 3 3 4
Compute rsq 5 5 5 7

Compare rsq to Rc 2 2 2 2
Compute f × del* 9 9 9 14

Update i Forces 3 3 3 4
Gather/Scatter j Forces 6W 96W 16 + 2W 2W

Update j Forces 3 3 3 4

Total Instructions 25 + 10W 25 + 145W 25 + 4W 35 + 4W

Table 5.2: Comparison of theoretical worst-case instruction counts for four dif-
ferent force compute gather-scatter approaches.

The auto-vectorised code is 1.7x faster than scalar code on the CPU, and

1.3x faster on KNC. As discussed, we expect to see smaller speed-ups than

W due to SIMD inefficiencies, but these results show that the inefficiency is

quite high. This is primarily due to the gather and scatter operations, which

implicitly transpose between AoS and SoA memory layouts. The overhead of

these gather and scatter operations lies not in the cost of memory access (as

might be expected) but in the number of instructions required by the transpose.

If the gathers and scatters were as cheap as vector loads and stores, then we

would see a significant speed-up – 7.04x (out of a maximum 8x) on the CPU

using 256-bit AVX. The remaining inefficiency is relatively small and, since it

comes from the branch, is a trade-off with neighbour list build cost.

To highlight the instruction overhead of gathers and scatters, we now con-

sider four alternative hand-vectorised gather-scatter implementations: using

scalar loads and stores (Scalar L/S) to populate SIMD registers (i.e. mimick-

ing the compiler’s auto-vectorisation); using the dedicated gather and scatter

instructions (Scalar G/S) on KNC; and two approaches that take advantage

of atom data being stored in AoS format, by loading/storing entire atoms us-

ing 128-bit instructions (Vector L/S). Table 5.2 lists the theoretical worst-case

number of instructions required by each approach (for SIMD width W , and

discounting instructions introduced due to hardware constraints).

57

5. Optimisation of Molecular Dynamics Applications

x0 y0 z0 0 x1 y1 z1 0 x2 y2 z2 0 x3 y3 z3 0

rsq0 rsq0 rsq0 rsq0 rsq1 rsq1 rsq1 rsq1 rsq2 rsq2 rsq2 rsq2 rsq3 rsq3 rsq3 rsq3

rsq0 rsq1 rsq2 rsq3

F0 F1 F2 F3

Figure 5.2: Combining a dot-product and AoS-to-SoA transpose in 128-bit
SIMD.

For Scalar L/S, each scalar memory access requires an instruction, as does

each insertion/extraction to/from a SIMD register. KNC’s dedicated gather

and scatter instructions do not help us in the worst case – we must execute the

gather instruction once for each cache line touched, thus incurring some loop

overhead (up to 16 iterations, for each gather of x, y or z). The Vector L/S

approach only requires W 128-bit loads/stores, and we can replace the scalar

insertion/extraction code with an efficient in-register transpose that uses shuffle

instructions. Alternatively, we can combine this transpose with the calculation

of rsq, as shown in Figure 5.2 (Vector L/S + Dot Product), decreasing the

number of instructions required for gathers/scatters at the expense of extra

compute. Which of these two transpose approaches will be faster depends upon

the target architecture; some architectures may lack support for dot-products or

fast horizontal adds entirely, or feature shuffle instructions that are significantly

cheaper than floating-point arithmetic.

Table 5.3 compares the number of clock cycles per neighbour (and speed-up

over a scalar implementation on the same hardware) for the four alternative

gather-scatter approaches, and Table 5.4 presents a breakdown of the number

of static instructions in the inner-most loop for our best approach. We now

58

5. Optimisation of Molecular Dynamics Applications

Approach
CPU KNC

128-bit SIMD 256-bit SIMD 512-bit SIMD

Scalar L/S 12.97 (2.02x) 11.48 (2.28x) 23.75 (2.59x)
Scalar G/S — — 15.82 (3.89x)
Vector L/S + Shuffles 10.89 (2.40x) 8.02 (3.26x) 12.94 (4.75x)
Vector L/S + Dot Product 10.34 (2.53x) 7.64 (3.43x) 11.78 (5.22x)

Table 5.3: Clock-cycles per neighbour and speed-up versus scalar for force com-
pute gather-scatter approaches.

Scalar 128-bit 256-bit 512-bit

Neighbours/Iteration 1 4 8 16

Load Neighbour IDs 1 4 8 16
Gather j Positions 0 4 8 16

Compute delx, dely, delz 3 4 4 4
Compute rsq 5 7 7 16

Compare rsq to Rc 2 2 2 1
Compute f × del* 9 14 14 7

Update i Forces 3 4 4 4
Gather/Scatter j Forces 6 8 16 32

Update j Forces 3 4 4 4
Other Instructions 6 3 3 52

Total Instructions/Neighbour 38.0 13.5 8.75 9.5

Table 5.4: Static instructions for force compute.

list instructions introduced by the compiler due to hardware constraints (e.g. a

finite number of registers); these instructions are listed as Other Instructions.

The reader’s attention is also drawn to the fact that KNC’s gather/scatter

instructions do improve performance in practice – due to our sorting of atom

positions, we are more likely to load several atoms from one cache line than to

touch 16 distinct cache lines.

In general, arithmetic-dominated operations scale well, and the number of

instructions is comparable across SIMD widths. Even following our optimisa-

tions, the number of instructions for gathers and scatters scales poorly with

SIMD width; ignoring “Other Instructions”, gathers and scatters account for

31%, 48% and 64% of the remaining instructions for 128-, 256- and 512-bit

SIMD respectively. KNC has a high number of “Other Instructions” due pri-

marily to register pressure on the general-purpose and mask registers; this may

not manifest for another instruction set with the same or higher SIMD width.

59

5. Optimisation of Molecular Dynamics Applications

To estimate the performance loss (in cycles) due to the high instruction over-

head for gathers and scatters, we use 256-bit AVX to evaluate the performance

of two “ideal” cases, where all of an atom’s neighbours are contiguous in mem-

ory. With data still stored in AoS format, and thus still needing transposition,

performance improves by 1.4x; with data stored in SoA, performance improves

by 2x.

Neighbour List Build

miniMD uses a “link-cell” approach to reduce the size of the set of potential

neighbours examined during the neighbour list build. First, atoms are placed

into subvolumes of space called “bins”, using a spatial hash. Then, the set

of potential neighbours for each atom is defined as those atoms that fall into

a “stencil” of surrounding bins pre-computed at the start of the simulation.

The majority of the neighbour list build’s execution time is spent in a loop

(Algorithm 5.3) that runs after this binning process. For each atom, this loop

iterates through the set of potential neighbours, storing in the neighbour list

those which are closer than Rc +Rs.

Algorithm 5.3 Pseudo-code for the neighbour list build.

1: for all atoms i do
2: numneigh = 0
3: for all potential neighbours k do
4: j = potential neighbour[k]
5: delx = xi - pos[j+0]
6: dely = yi - pos[j+1]
7: delz = zi - pos[j+2]
8: rsq = (delx × delx) + (dely × dely) + (delz × delz)
9: if (rsq ≤ Rc + Rs) then

10: neighbour[numneigh] = j
11: numneigh++
12: end if
13: end for
14: end for

As before, our vectorisation targets the inner-most loop over neighbours. The

core behaviour of this loop is very similar to that of the force compute – it

computes the distance between two atoms, and compares that distance to some

60

5. Optimisation of Molecular Dynamics Applications

0 0 1 1 0 1 0 1

j0 j1 j2 j3 j4 j5 j6 j7

j2 j3 j5 j7

Cut-off Mask

Indices

Packed Indices

Figure 5.3: Using a packed store to append to a neighbour list.

cut-off. However, the loop does not auto-vectorise due to a loop dependence on

Lines 10 and 11; the memory location to which each neighbour index should be

written depends upon the number of previous neighbours that pass the cut-off

check. An efficient way to vectorise appending to a list in this manner is to use

a packed store, the basic operation of which is demonstrated in Figure 5.3. For a

SIMD register packed with rsq values, the result of a comparison with Rc+Rs is

a W -bit mask, and a packed store writes a subset of indices (from another SIMD

register) to contiguous memory based upon this mask. KNC’s instruction set

includes a packed store instruction, which we can emulate on other hardware;

for both 128-bit and 256-bit AVX, we achieve it with a mask look-up, a single

shuffle and a vector store. We determine the number of neighbours appended

to the list by counting the number of bits set in the comparison mask.

For the force compute, each atom gathers a distinct set of neighbours, and

thus there is no opportunity to re-use any data transposed during the gather.

This is not true of the neighbour list build; surrounding the outer loop over

atoms with a new loop over bins enables us to gather (and transpose) the set

of potential neighbours once and then re-use it for several atoms. For the

architectures considered here, this is beneficial for two reasons: first, the cost

of the AoS-to-SoA transpose is amortised over several atoms; and second, the

transposed set of neighbours exhibits better cache behaviour. We believe our

approach to be applicable to GPU architectures also, since the transposed set

61

5. Optimisation of Molecular Dynamics Applications

Scalar 128-bit 256-bit 512-bit

Neighbours/Iteration 1 4 8 16

Load Positions & Compute rsq 8 8 8 6
Compare rsq to Rc +Rs 2 1 1 1

Load Neighbour IDs 1 1 2 1
Append to Neighbour List 2 8 17 5

Other Instructions 3 5 5 15

Total Instructions/Neighbour 16.00 5.75 4.13 1.75

Table 5.5: Static instructions for neighbour list build.

could be stored in shared local memory.

The choice of bin size is an important trade-off: with large bins, the gathered

SoA stencil receives more re-use but will contain more atoms; with small bins,

the SoA stencil receives less re-use but also contains fewer atoms. The best

choice depends on whether the cost of gathering atoms is more than that of extra

distance calculations – the CPU favours smaller bins, whereas KNC favours

larger. Besides this simple parameter change, the algorithm is the same across

both architectures.

Table 5.5 presents a breakdown of the number of static instructions in the

inner-most loop for our optimised approach. As before, “Other Instructions” ac-

counts for those introduced by the compiler due to hardware constraints. Since

the data transpose happens outside of the key loop, the number of instructions

to load positions and compute rsq remains constant across SIMD widths, ex-

cept for 512-bit SIMD on KNC; KNC has fewer instructions here because it has

fused multiply-add instructions, which eliminates two arithmetic instructions.

As before, KNC has a higher number of “Other Instructions” per neighbour,

but these are mostly software prefetches and mask manipulations (to handle

iterations with fewer than 16 neighbours).

The number of instructions required to append to the neighbour list is the

least consistent across architectures. Due to the lack of 256-bit integer support

in AVX, our implementation uses 128-bit stores, and thus this operation does

not scale with SIMD width. In contrast, KNC’s cost for this operation is very

low, due to its packed store instruction.

62

5. Optimisation of Molecular Dynamics Applications

Node

MICCPU CPU

CPU CPU

.

.

.

PCIe

Figure 5.4: The hardware/class hierarchy.

5.5.2 Multi-threading and Message Passing

Problem Decomposition

We augment the MPI decomposition found in the original miniMD with a hi-

erarchy of subdomains, as shown in Figure 5.4. At the first level, we divide the

problem domain amongst nodes, and each node runs a single MPI task. We

then further subdivide a node’s subdomain amongst sockets (where a socket is

either a CPU socket or a KNC socket/card), and finally we split each socket’s

subdomain amongst some number of threads. We specify the fraction of a node’s

subvolume assigned to the KNC hardware at run-time.

The use of such a hierarchy allows for communication between subdomains

to be specialised: threads running on the same socket can communicate directly

through shared memory; threads running on different sockets can communicate

either through shared memory or over PCIe; and all threads can pack their

off-node communication into a single MPI message rather than competing for

the network interface. Using a spatial decomposition at each level allows us to

use ghost atoms to handle the update-conflicts between threads, and helps to

reduce the size of messages sent between the CPU and KNC.

This arrangement of subdomains is represented in code as a hierarchy of

abstract C++ classes: an MPI Domain, a Socket Domain and a Thread Domain.

63

5. Optimisation of Molecular Dynamics Applications

Rc + Rs

Rc + Rs

Independent Atoms

Dependent Atoms

Ghost Atoms

Figure 5.5: A subdomain split into dependent and independent volumes.

These abstract classes contain all of the common functionality across CPU and

KNC hardware, and make up the bulk of the code. Where different code is

required (e.g. for performance reasons, or because of differing communication

mechanisms), this is implemented in a subclass. This minimises the code that

must be re-written for optimisation on a particular architecture.

Asynchronous Communication

A possible bottleneck for KNC performance is the latency and bandwidth of

the PCIe bus. To minimise the amount of PCIe communication, we adopt the

same communication mechanism as [24] and opt not to use N3 between different

sockets. Although this results in a small amount of redundant computation (for

those atom-pairs that cross socket boundaries), it reduces the amount of PCIe

communication by a factor of two since we can skip sending force contributions

back to the “owner” socket of each atom.

We further optimise PCIe communication by overlapping it with useful work.

Our decision to not use N3 across sockets means that we need only hide a

single exchange of messages between the CPU and KNC for each iteration of

the simulation loop (sending position updates for atoms used by neighbour

sockets) unless we need to rebuild the neighbour lists. To facilitate this, we

divide atoms into the three types shown in Figure 5.5: those that interact

64

5. Optimisation of Molecular Dynamics Applications

only with other atoms in the same subdomain (independent atoms); those that

potentially interact with atoms in another subdomain (dependent atoms); and

those that are copies of atoms in another subdomain (ghost atoms). We can

compute the forces for all atom-pairs not featuring ghost atoms without any

cross-domain communication; therefore, we overlap PCIe communication with

this computation, and hide it almost completely.

This optimisation could also be applied at the MPI level, but would require a

significant re-write of miniMD’s communication routines. The current commu-

nication scheme places an ordering on communication between processors, such

that only one communication step is required in each direction – for example,

a processor receiving an atom’s position from a neighbour in the x direction

may forward the information to a neighbour in the y direction. Although this

reduces the number of messages that are sent, it also complicates the use of

MPI’s asynchronous communication routines.

5.6 Performance Results

5.6.1 Performance Breakdown

Table 5.6 gives a breakdown of a 2.048M atom simulation into four compo-

nents: the calculation of short-range forces (Force); building the neighbour lists

(Neigh); communication (Comm), which includes force and position communi-

cation, as well as the exchanging of atoms across subvolume boundaries; and

any remaining time (Other), which comprises the integration steps for comput-

ing updated velocities and positions. The CPU+KNC breakdown is given from

the perspective of the CPU and KNC in separate columns.

For our versions of miniMD, the force compute remains the largest compo-

nent of execution time for both cut-offs. However, as the component that is most

accelerated by our use of SIMD, it takes a smaller fraction of time. For the AVX

implementation, we see speed-ups of 4.0x and 4.9x for the cut-offs of 2.5 and 5.0

respectively, and KNC provides an additional speed-up of 1.4x in both cases.

65

5. Optimisation of Molecular Dynamics Applications

Component Orig.
CPU

KNC
CPU+KNC

(AVX) (CPU) (KNC)

Cut-off of 2.5
Force % 82.0 63.9 63.2 55.8 62.4
Neigh % 9.0 13.5 12.6 10.7 12.1

Comm % 4.9 9.5 15.4 26.5 17.7
Other % 4.0 13.1 8.7 7.1 7.8

Cut-off of 5.0
Force % 90.3 86.0 85.4 78.9 80.5
Neigh % 6.7 6.9 6.4 6.2 6.7

Comm % 1.7 4.1 6.3 13.3 11.0
Other % 0.4 3.0 2.0 1.7 1.9

Table 5.6: Performance breakdown for miniMD (2.048M atoms).

We see a greater speed-up for the larger cut-off for two reasons: firstly, the time

spent in force compute is dependent upon the number of inter-atomic distances

that must be evaluated, which grows with the cube of the cut-off; and secondly,

due to our use of SIMD across neighbours, SIMD efficiency is improved.

Our SIMD acceleration of the neighbour list construction improves its perfor-

mance considerably; thus, its contribution to execution time remains relatively

constant. For the AVX implementation, we see speed-ups of 2.1x and 4.6x for

the cut-offs of 2.5 and 5.0 respectively, and KNC provides an additional speed-

up of 1.5x in both cases. One might expect this component of the simulation to

become relatively more expensive for larger cut-offs (as with the force compute),

since it also depends upon the number of atom-pairs. However, although the

distance computation costs scale similarly, a larger cut-off results in more atoms

per bin and therefore significantly lowers looping overheads.

KNC uses significantly more threads than the CPU, and thus spends a larger

fraction of time in inter-thread communication. Further, it spends time in PCIe

communication. Although the cost of exchanging updated atom positions every

iteration is mostly hidden, it remains exposed when moving atoms between

nodes and for the first exchange of position information after a neighbour list

build. We note that since our experiments here are on a single node, we could

have avoided all PCIe communication for KNC-only runs. However, our goal

66

5. Optimisation of Molecular Dynamics Applications

was to represent multi-node execution faithfully, and thus all data that would

be sent over MPI in a multi-node run is sent to the CPU over PCIe and handled

appropriately. These factors lead to KNC spending 19% and 7% more time in

communication than the AVX implementation on the CPU. For CPU+KNC,

we see that the CPU spends a much larger fraction of its time in communication

than when running without KNC; this increase is primarily due to time spent

handling PCIe communication not present in CPU-only runs.

The fraction of time spent in Other is larger in our versions of miniMD than

in the original, since it benefits least from the use of SIMD and threading. The

position/velocity updates (Lines 3–5 and 18–21, in Algorithm 5.1) scale very

poorly due to limited memory bandwidth – these operations involve very little

computation per atom, and require streaming through multiple large arrays

that do not fit in the on-die caches (e.g. for 2.048M atoms, the velocity update

touches 48 bytes per atom – a total of ≈ 98MB). As noted in Table 5.1, KNC’s

effective memory bandwidth is twice that of the CPU, and this is reflected in

its performance for this operation – KNC is 2.1x and 2.2x faster than the CPU

for the two cut-offs.

5.6.2 Thread Scaling

Figure 5.6 shows the execution times for the original miniMD and our imple-

mentation when weak-scaled, with a cut-off of 2.5. We made every effort to

ensure that the number of atoms per core remained as close to 32K as possible

(in line with the LAMMPS benchmark [138]) and that the total problem vol-

ume remained a cube. For AVX, the execution time grows by 24% from 1 to

16 cores; and for KNC, it grows by 24% from 1 to 60 cores. Scaling is better

for a cut-off of 5.0, due to the larger fraction of time spent in force compute

and the neighbour list build; for AVX, the execution time grows by 6% from

1 to 16 cores; and for KNC, it grows by 12% from 1 to 60 cores. The original

miniMD scales slightly better in both cases due to its much worse overall per-

formance. Its execution time grows by 15% and 5% going from 1 to 16 cores,

67

5. Optimisation of Molecular Dynamics Applications

for the cut-offs of 2.5 and 5.0 respectively.

The reader is reminded that if our code weak-scaled perfectly, execution time

would not be affected by a change in the number of threads. That execution

time increases here is due to increased communication costs between threads

– although the amount of computation per thread remains fixed, threads will

potentially need to exchange position and force data for more neighbouring

subdomains, and the cost of thread synchronisation will also increase.

Figure 5.7 shows the execution times for the original miniMD and our im-

plementation when strong-scaled on a 1.372M atom problem, with a cut-off of

2.5. The original code achieves a 14x speed-up on 16 cores, whilst our AVX

implementation achieves only 12x. This is due to the significant speed-up we

see for the force compute and neighbour list build; the other components do

not scale as well and are relatively more expensive. KNC achieves only a 40x

speed-up on 60 cores for the same reason – the force compute, neighbour list

build, communication and other components see speed-ups of 52x, 41x, 7x and

14x respectively. A cut-off of 5.0 leads to much better parallel efficiency, and our

implementation achieves a 14x speed-up on 16 CPU cores. We see a 50x speed-

up on 60 KNC cores – the force compute, neighbour list build, communication

and other components see speed-ups of 55x, 45x, 6x and 14x respectively.

With perfect strong-scaling, we would hope to see a 60x speed-up over-

all in both cases. As discussed previously, memory bandwidth does not scale

linearly with the number of threads; memory-bound operations, such as inte-

gration, inter-thread communication (through shared memory) and writing to

the neighbour list thus have much poorer strong-scalability than the force com-

pute. All components of the simulation are also affected by potential workload

imbalance (since the number of atoms in each subvolume of space depends on

runtime behaviour and simulation parameters) which will also contribute to

poor scalability.

68

5. Optimisation of Molecular Dynamics Applications

1 2 4 8 16 32 60
0

0.5

1

1.5

2

2.5

Number of Cores

E
x
ec
u
ti
o
n
T
im

e
(S

ec
o
n
d
s)

CPU (Orig.) CPU (AVX) KNC

Figure 5.6: Weak-scaling results for miniMD with a cut-off of 2.5.

1 2 4 8 16 32 60
1

2

4

8

16

32

64

128

Number of Cores

E
x
ec
u
ti
o
n
T
im

e
(S

ec
o
n
d
s)

CPU (Orig.) CPU (AVX) KNC

Figure 5.7: Strong-scaling results for miniMD with a cut-off of 2.5.

69

5. Optimisation of Molecular Dynamics Applications

5.6.3 Architecture Comparison

The graphs in Figure 5.8 compare the absolute performance (in atom-steps/s)

of our implementation with that of the original miniMD. For the problem sizes

shown, the performance of miniMD for a given cut-off distance is almost constant

– atom density is fixed, and thus the computational cost per atom remains

the same across problem sizes. Our implementations of miniMD, on the other

hand, improve as problem size increases. This is primarily because smaller

problems are dominated by inter-thread communication. For very small atom

counts (≈ 4K) the original miniMD exhibits the same behaviour; for some

simulations, it is quicker to run on less than the maximum number of cores (all

numbers in the graphs are for the maximum number of cores). For the AVX

implementation, performance starts to level off at 256K atoms, while KNC and

especially CPU+KNC see better performance from even larger simulations. For

a cut-off of 2.5, performance improves with the co-processor starting at 256K

atoms, and at 108K atoms for a cut-off of 5.0. Real-world implementations

should thus take problem size into account when choosing the number of threads,

cores and accelerators to use in order to avoid degrading performance on very

small problems.

Our optimised AVX code is consistently faster than the original scalar im-

plementation, although the gains grow with problem size, as already described.

For a cut-off of 2.5, it is up to 4x faster, and for a cut-off of 5.0 up to 5x faster

– a difference that can be attributed to the increased amount of parallelism

in problems with higher cut-off distances. One takeaway from this result, be-

sides the effectiveness of our particular optimisations, is the need to revisit and

re-tune CPU code when investigating the potential utility of accelerators.

KNC has a peak floating-point rate over four times that of the dual-socket

Intel Xeon used for these experiments (Table 5.1), but it achieves only 1.4x

higher performance. For force compute, the CPU has a significant per-thread

advantage over KNC; it requires fewer cycles per neighbour than the KNC im-

plementation (Table 5.3) and runs at a higher clock frequency. Many operations

70

5. Optimisation of Molecular Dynamics Applications

are either not implemented in SIMD, or do not achieve 100% SIMD efficiency

and, although these issues exist on the CPU, their effects are more prominent

on KNC due to its wider SIMD. Further, molecular dynamics (particularly the

LJ potential) is not dominated by fused multiply-adds, which leads to reduced

utilisation of the SIMD arithmetic hardware on KNC – every regular addi-

tion, subtraction or multiplication wastes 50% of the compute capability. The

CPUs do not have fused multiply-add hardware, but where the number of addi-

tions/subtractions and multiplications is not balanced, we also waste compute

capability. KNC threads (like those of GPUs and other accelerators) are also

more sensitive to exposed cache or memory latency due to the simplicity of

KNC cores – cache misses that cannot be hidden by other threads on the same

core are more expensive. This is problematic, since the access patterns of the

force compute and neighbour list build are too unpredictable to be captured by

a hardware prefetcher, and the overhead of software prefetching is too high.

71

5. Optimisation of Molecular Dynamics Applications

32 108 256 500 864 1372 2048

2.5× 107

5× 107

7.5× 107

1× 108

1.25× 108

Thousands of Atoms

A
to
m
-S
te
p
s/
s

CPU (Orig.) CPU (AVX) KNC CPU+KNC

(a) Cut-off of 2.5

32 108 256 500 864 1372 2048

0.5× 107

1× 107

1.5× 107

2× 107

2.5× 107

3× 107

Thousands of Atoms

A
to
m
-S
te
p
s/
s

CPU (Orig.) CPU (AVX) KNC CPU+KNC

(b) Cut-off of 5.0

Figure 5.8: Absolute performance of miniMD in atom-steps/s (higher is better).

72

5. Optimisation of Molecular Dynamics Applications

5.7 Summary

In this chapter, we present an analysis of the vectorisation of molecular dy-

namics codes, and demonstrate that gathers and scatters are one of the key

bottlenecks. We detail efficient implementations of the neighbour list build and

short-range force calculation functions that scale with both SIMD width and

number of threads, and also demonstrate a mechanism by which code can be

shared effectively across Xeon and Xeon Phi processors. The ability of Intel

MIC hardware to run existing codes with few changes, and for programmers to

explore the potential performance benefits of Intel’s SIMD instruction sets on

existing CPU hardware, should make it an attractive prospect for many HPC

centres.

We compare the performance of our optimised implementation to that of the

original miniMD benchmark, and show it to be consistently faster (by up to 5x

on the same hardware and up to 10x with the addition of an Intel Xeon Phi

co-processor) for a range of problem sizes and cut-off distances. This consider-

able performance increase highlights the need to optimise x86 codes and ensure

that SIMD is being used effectively on modern CPU architectures. For prob-

lems with a large amount of exploitable parallelism, we show that KNC is up

to 1.4x faster than a dual-socket, oct-core Intel Xeon E5-2660 server. Although

specialised for molecular dynamics, we believe that the techniques that we de-

scribe are applicable to other classes of scientific and engineering applications.

Other codes featuring gather-scatter memory access patterns (e.g. unstructured

mesh) could benefit from similar SIMD optimisations, while our methodology

of sharing computational work between the CPU and KNC could be utilised

by codes solving other spatially decomposed problems (e.g. computational fluid

dynamics).

73

CHAPTER 6
Developing “Performance-Portable” Applications

As demonstrated in the previous two chapters, the optimisation of codes for

modern SIMD architectures (including computational accelerators) presents sev-

eral challenges beyond constructing the initial message-passing structure of an

application. These challenges include:

(i) how and where to locate program data, since many accelerators have lo-

calised storage (data locality);

(ii) how to structure data to improve performance (memory layout);

(iii) how to transfer data between the host processor and any attached accel-

erator devices efficiently (data transfer cost); and

(iv) how to develop an application such that it can run across different archi-

tectures (portability).

We have shown, using benchmark applications from two different problem do-

mains, that optimisations designed to address the first three of these challenges

can be applied in a platform-agnostic manner, benefiting multiple architectures.

However, the performance-critical sections of our optimised codes have thus

far been written using platform-specific programming languages – CUDA for

NVIDIA GPUs, and SSE/AVX/KNC intrinsics for Intel CPUs and MIC. In

this chapter, we address the issue of performance portability, that is, develop-

ing applications that achieve a high level of performance on a wide range of

architectures from a single source code.

There are several reasons to assess the practicality of a single source approach

to application design: it is easier to maintain a single code that targets all

platforms, as opposed to separate hand-tuned versions of the same code for each

74

6. Developing “Performance-Portable” Applications

alternative platform; it reduces the risk of being locked into a single vendor

solution; it simplifies the process of benchmarking, since code does not need

to be ported before benchmarking can take place; and it represents a “safer”

investment for HPC sites, since new codes (and ported legacy codes) will run

on both existing and future architectures.

In the remainder of this chapter, we use OpenCL to develop performance-

portable implementations of both LU and miniMD, replicating the optimisations

discussed in previous chapters. A performance-portable code is clearly more de-

sirable if its performance is competitive with that of “native” implementations,

developed in a platform-specific language – we therefore compare the perfor-

mance of our OpenCL implementations to: (i) the original benchmarks (prior

to our optimisation efforts), allowing us to reason about the utility of our single-

source methodology for HPC sites starting from legacy scalar baselines; and (ii)

our optimised versions of the benchmarks, allowing a fairer comparison between

the levels of performance achievable through the use of OpenCL and “native”

programming methodologies.

6.1 “Single Source” Methodology

One of the issues associated with even simple CUDA and OpenCL programs is

that optimisation can be very difficult. The specifications of accelerators vary in

several respects (e.g. number of registers per work-item, amount of shared mem-

ory, coalescence criteria) and each kernel has a number of adjustable parameters

(e.g. the number of work-items and work-groups). The optimal values for these

parameters on one architecture may not be optimal on others, and several pa-

pers have suggested that this issue is best handled through “auto-tuning” – a

process that sees a code automatically searching a given parameter space as it

runs, tuning itself to maximise platform performance. Such a process is already

common in BLAS functions for new architectures [160], and has been applied to

other CUDA and OpenCL codes [42, 47, 83]. We adopt this parameterisation

75

6. Developing “Performance-Portable” Applications

approach in our OpenCL implementations of LU and miniMD, focusing on three

high-level criteria we believe to be important when targeting multiple platforms:

work-item/work-group distribution, memory layout, and effective SIMD width.

The choice of floating-point precision is also an important parameter. Across

CPUs and GPUs, double precision compute is approximately twice as slow

as single precision, and the cost of data movement (i.e. memory copies or

MPI/PCIe communication) is similarly affected. All of the LU results presented

use double precision, in keeping with the precision of the original benchmark; we

use single precision for the miniMD benchmark, for similar reasons. However,

supporting multiple precisions within a single-source application could very eas-

ily be achieved through the use of macros and the C pre-processor.

We also support one application-specific parameter for each benchmark: for

LU, the k-blocking depth, which we expect to have different optimal values for

different hardware; and for miniMD, whether or not N3 is used by the force

compute kernel. Similar parameters will exist for other classes of application,

and will need to be considered during algorithm design, but the identification

of such parameters is beyond the scope of this thesis.

6.1.1 Work-Item and Work-Group Distribution

The number of work-items that can execute in parallel differs by architecture.

On accelerator devices, it is typically very high, and a large number of work-

items are required in order to hide memory latency effectively; on CPU devices,

there is significantly less parallelism available, since each core can execute the

instructions of only one thread (or two, with hyper-threading) in parallel. We

consider two alternative methods of work-item and work-group distribution for

our implementation: fine-grained distribution, where one work-item is launched

for each grid-point that must be computed (regardless of how many compute

units and processing elements the device has); and coarse-grained distribution,

where one work-group is launched per compute unit, containing a number of

work-items equal to the compute unit’s SIMD width.

76

6. Developing “Performance-Portable” Applications

for (k = get_global_id(2); k < kmax; k += get_global_size(2) {

for (j = get_global_id(1); j < jmax; j += get_global_size(1) {

for (i = get_global_id(0); i < imax; i += get_global_size(0) {

// Kernel body

}

}

}

Figure 6.1: OpenCL code-snippet for a kernel supporting all possible combina-
tions of work-item and work-group size.

For codes that set work-group size manually, it is necessary to choose between

these two different distribution methods based on architecture type; CPUs prefer

coarse-grained distribution, whereas GPUs prefer fine-grained. Alternatively,

OpenCL allows for a null parameter to be supplied instead of a work-group

size, permitting the runtime to select the “best” distribution of work-items

based on kernel and hardware parameters – in our experiments, we saw no

difference between fine- and coarse-grained distribution when a null parameter

was supplied. However, it instead becomes necessary to round up the total

number of work-items such that it is a multiple of the runtime’s “preferred

work-group size multiple” (a value that can be queried from the device).

Supporting different values for this parameter at runtime is crucial for

performance-portability; hard-coding a “good” work-group size (or multiple)

based on the design of any single architecture or SDK is likely to have a signif-

icant impact upon the scheduling of work-items on another. For example, we

found during our benchmarking (results not shown) that neglecting to ensure

that the total number of work-items is divisible by 128 when using the Intel

SDK can lead to an order-of-magnitude slow-down for some kernels. Such a

slow-down is easily avoided, but only if the code is sufficiently parameterised.

Regardless of how work-group size is decided, kernels must be written in a

way that ensures correct results for any combination of work-item and work-

group size. Each of our OpenCL kernels is thus enclosed in a set of three nested

loops, as shown in Figure 6.1. imax, jmax and kmax refer to the maximum

grid-point co-ordinates considered by a given kernel in each dimension, and

get global id and get global size are two built-in OpenCL functions that

77

6. Developing “Performance-Portable” Applications

return a work-item’s ID and the total number of work-items in each dimension

respectively. These loops are structured in such a way that the kernel will

execute for every grid point from (0, 0, 0) to (imax, jmax, kmax), irrespective

of the number or configuration of the work-items and work-groups launched.

For example, we consider two extreme cases: a single work-group containing a

single work-item will loop from 0 to the maximum in steps of 1; and a set of

imax × jmax × kmax work-groups containing a single work-item will execute

the kernel for exactly one grid-point each.

6.1.2 Memory Layout

If contiguous work-items are mapped to SIMD execution units (as is the case on

GPUs, and for auto-vectorised code on CPUs) then accesses to non-contiguous

memory locations require a gather operation (i.e. an uncoalesced memory ac-

cess, in CUDA parlance). If work-items are not mapped to SIMD execution

units (as is the case for scalar code on CPUs), then a gather is not required; for

scalar code, it is more important to choose a memory layout that exhibits good

spatial and temporal cache locality.

Supporting multiple memory layouts within a single application is much

simpler than one might expect. In our benchmark codes, we replace all accesses

to arrays via particular indices with inline functions calls (in the C host code)

and macros (in the OpenCL C device code), and thus permit the selection of

memory layout at runtime. For example, the original code used to load the kth

neighbour index from miniMD’s neighbour list (neighbour list[k]) is replaced

by a call to a macro (NEIGHBOUR INDEX(k)); the behaviour of this macro can

be selected at run-time, on a per-device basis.

Complicating the matter, however, is the fact that the optimal memory

layout for one kernel is not necessarily the optimal memory layout for the next –

even when both kernels are running on the same hardware, different layouts will

be more efficient for different memory access patterns. It is therefore desirable to

support a different memory layout for each kernel, as discussed in the context of

78

6. Developing “Performance-Portable” Applications

LU in Section 4 (where we supported different layouts for the code’s wavefront

and stencil update sections). We currently detect such situations manually,

and hard-code kernels that switch between memory layouts, but this could be

improved in future work.

6.1.3 Implicit vs. Explicit Vectorisation

There are two forms of vectorisation supported by OpenCL compilers: implicit

vectorisation (or auto-vectorisation), which sees the compiler pack the work

of contiguous work-items into SIMD units; and explicit vectorisation, where a

kernel makes use of vector types (e.g. float4 or double2). On CPUs, the AMD

SDK generates SSE/AVX code only in the latter case, whereas the Intel SDK

attempts to auto-vectorise kernels. On GPUs all three SDKs auto-vectorise the

kernels; if a vector operation is encountered in a kernel, it is replaced by a series

of equivalent scalar operations and re-vectorised.

Although not all compilers benefit from the use of vector arithmetic, the use

of vector types within kernels is still encouraged for load and store operations.

Using vector types in this way serves as a hint to the compiler that certain

values are actually stored contiguously in memory, allowing for more efficient

gather/scatter instruction sequences to be generated.

6.1.4 Device Fission

Although a multi-socket CPU node can be treated as a shared memory system,

it is arguably unwise to do so in every case; platform-agnostic implementations

such as those considered here do not necessarily consider the system’s memory

hierarchy and are therefore unlikely to exhibit good memory behaviour. More

specifically, due to the fact that our OpenCL implementations have no control

over the order in which work-groups and work-items are executed, nor the com-

pute units to which they are allocated, we cannot guarantee that the set of

work-groups processed by any given compute unit will exploit either temporal

or spatial cache locality.

79

6. Developing “Performance-Portable” Applications

OpenCL Device

Socket

Memory

OpenCL Device

Socket

Memory

(a) Configuration 1

OpenCL Device

OpenCL Device

Socket

Memory

OpenCL Device

OpenCL Device

Socket

Memory

(b) Configuration 2

Figure 6.2: A dual-socket, hex-core node fissioned into (a) two sub-devices of
six compute units; and (b) four sub-devices of three compute units.

A recent addition to the OpenCL standard known as device fission may go

some way towards solving this problem, by allowing the runtime to “fission”

(i.e. split) a single device into multiple sub-devices. This grants an OpenCL

application the ability to assign work to specific CPU cores, but is not currently

supported by GPUs. However, Kepler’s ability to support multiple MPI tasks

feeding work to the same GPU could be used to the same effect.

In keeping with our policy of making only minimal changes to source, our

implementation couples device fission with existing MPI parallelism; instead of

running one MPI task per node as before, we run one MPI task per created

sub-device (Figure 6.2). The advantage of this approach is that the only new

code required is a simple check of whether fission is to be used in a given run,

detection of the number of sub-devices to create, and the assignment of sub-

devices to MPI tasks based on rank. As such, we argue that it is a logical way

to add support for device fission into an existing MPI-based code.

80

6. Developing “Performance-Portable” Applications

We acknowledge that there are likely to be some overheads introduced by

device fission, and that these may grow as the number of sub-devices created

increases. Each MPI task will consume additional system resources (compared

to a “pure” MPI implementation) to manage the task queue for its sub-device,

and there may be other scheduling conflicts between threads created and man-

aged by the OpenCL runtime. Specifically, it is unknown whether device fission

guarantees that the affinity of a created sub-device will remain fixed, or whether

it is possible for multiple MPI ranks to be assigned the same subset of cores.

6.1.5 Communication

Our performance-portable implementations do not make any distinction be-

tween integrated and discrete devices. As such, performance on the CPU and

integrated GPUs is likely to be decreased by the presence of unnecessary memcpy

operations – wherever a code would transfer data to a discrete device over PCIe,

it transfers a copy of the data to itself via shared memory. Although this is

inefficient, and will need to be addressed in future work, its effects on the exe-

cution times reported in this section are minimal, since our optimisations seek

to reduce the amount of communication between host and device.

6.2 Benchmark Parameterisation

In this section, we demonstrate the process of parameterising a scalar base-

line implementation of a code, detailing how each of the SIMD and threading

optimisations described for miniMD in Chapter 5 map to our single-source devel-

opment methodology. We do not detail this process for wavefront applications,

due to the similarities between CUDA and OpenCL – the implementation of

our OpenCL port is almost identical to the CUDA port already discussed in

Chapter 4. The optimisation process for our molecular dynamics code is more

complicated, owing to the significant differences between OpenCL and hand-

vectorisation with intrinsics.

81

6. Developing “Performance-Portable” Applications

j0 ... j1 ... j2 ... j3 ...

j0 j1 j2 j3

Gather from Original Neighbour List

j0 j1 j2 j3 ...

j0 j1 j2 j3

Contiguous Load from Transposed Neighbour List

Figure 6.3: Effect of neighbour list transposition on memory access pattern.
Each arrow represents a single load instruction.

6.2.1 Memory Layout

As shown in Chapter 5, storing atom positions in AoS is more efficient than

storing them in SoA, even when using SIMD execution, since any kernel that

accesses one component of the struct (i.e. x, y or z) will also access the other

two. We therefore do not make any changes to the layouts of the position, force,

velocity or old velocity arrays.

However, since the simplest method of mapping computation to work-items

is via cross-atom (as opposed to cross-neighbour) parallelism, we support the

selection of two alternative neighbour list layouts: storing each of the neighbours

for a given atom contiguously, as in the original benchmark; and storing the list

in transposed form (i.e. storing the 0th neighbour of W atoms, followed by

the 1st neighbour, and so on). For the transposed form, we insert “dummy”

neighbours as padding when W atoms have a different number of neighbours.

Supporting both neighbour lists is very simple, since the first storage format is

actually a special case of the second – the original neighbour list is equivalent

to a transposed neighbour list with W = 1.

Figure 6.3 demonstrates the benefit of this memory layout change: prior to

transposition, W contiguous work-items must read from memory with a stride

82

6. Developing “Performance-Portable” Applications

__kernel force_compute(float4* pos, float4* force...) {

int i = get_global_id(0);

float4 posi = pos[i];

float4 fi = (float4) (0.0, 0.0, 0.0, 0.0);

for (k = 0; k < number_of_neighbours[i]; k++) {

int j = NEIGHBOUR_INDEX(k);

float delx = posi.x - pos[j].x;

float dely = posi.y - pos[j].y;

float delz = posi.z - pos[j].z;

...

}

force[i] = fi;

}

Figure 6.4: OpenCL code-snippet for a force compute kernel storing atom data
in float4s.

of k (where k is the number of neighbours); and following transposition, all

neighbour list accesses become a single load from contiguous memory locations

(when W is set to the hardware’s SIMD width).

Surprisingly, the choice of memory layout can affect more than memory

behaviour. The Intel SDK attempts auto-vectorisation only when the compiler

expects it to improve performance (based on some heuristic), and we believe the

presence of a large number of gather operations in the original kernel caused

it to fail this check – storing the neighbour list in transposed form removes a

significant number of these gathers, and enables the compiler to auto-vectorise

our short-range force kernel.

6.2.2 Implicit vs Explicit Vectorisation

Defining the position and force arrays using vector types (Figure 6.4) serves as

a hint to the compiler that the x, y and z components of an atom’s position

are stored contiguously; for all of the hardware considered in this study, the full

position of a given atom can be loaded in a single memory access, and this hint

permits the compiler to employ a more efficient gather (Figure 6.5). On NVIDIA

GPUs, the accesses to x, y and z become coalesced; and the Intel compiler is

able to emit a more efficient sequence of instructions – an AoS-to-SoA transpose,

in place of a series of scalar loads – on both CPU and integrated GPU hardware.

83

6. Developing “Performance-Portable” Applications

x0 ... x1 ... x2 ... x3 ...

x0 x1 x2 x3

Scalar Gather of Positions

x0 y0 z0

x0 x1 x2 x3

Vector Gather of Positions

... x1 y1 z1 ... x2 y2 z2 ... x3 y3 z3 ...

y0 y1 y2 x3 z0 z1 z2 z3

Figure 6.5: Effect of using vector types on memory access pattern.

The reader is reminded that we were required to hand-code this same AoS-to-

SoA transpose with intrinsics when using standard C (Chapter 5), highlighting

that OpenCL is better-suited to expressing vectorisation opportunities than

traditional serial languages.

It may seem like a sensible next step would be to convert the kernel’s arith-

metic to vector form (Figure 6.6), potentially exposing intra-loop parallelism

to the compiler and resulting in a more succinct (and arguably more readable)

version of the code. However, it degrades performance on most of the hardware

considered here. On devices employing auto-vectorisation, our use of the dot-

product function introduces two additional instructions per loop iteration – the

compiler does not know that the last element of the float4 is 0, and so includes

it in the dot-product. On devices relying on explicit vectorisation, there are

SIMD inefficiencies: for CPUs supporting AVX, our explicit vectorisation uses

only four of the eight SIMD execution units available; and the majority of the

arithmetic (the calculation of the force, based on rsq) remains scalar.

Unrolling the loop over neighbours in our explicit vectorisation kernel, such

that it computes the force between i and several neighbours simultaneously,

allows us to regain this lost SIMD efficiency. Theoretically, compilers could

employ such an optimisation themselves, but we found that this is not yet the

84

6. Developing “Performance-Portable” Applications

__kernel force_compute(float4* pos, float4* force...) {

int i = get_global_id(0);

float4 posi = pos[i];

float4 fi = (float4) (0.0, 0.0, 0.0, 0.0);

for (k = 0; k < number_of_neighbours[i]; k++) {

int j = NEIGHBOUR_INDEX(k);

float4 del = posi - pos[j];

float rsq = dot(del, del);

float sr2 = 1.0 / rsq;

float sr6 = sr2 * sr2 * sr2;

float f = sr6 * (sr6 - 0.5) * sr2;

f = (rsq < cutoff) ? f : 0.0;

fi += del * f;

}

force[i] = fi;

}

Figure 6.6: OpenCL code-snippet for a force compute kernel using vector arith-
metic.

case. Our parameterised version of the kernel thus supports unrolling by two

different factors: 4-way unrolling, using float4 types, to improve utilisation

of SSE instructions and the very long instruction word (VLIW) architectures

of AMD GPUs; and 8-way unrolling, using float8 types, to make use of AVX

instructions.

6.2.3 Device Fission

In addition to improving memory behaviour, we can leverage fission to permit

the use of N3 on CPUs. By starting a single work-item per fissioned compute

unit, we replicate the behaviour of the original miniMD code – each MPI task

(and hence each work-item) operates in its own memory space, on its own atoms,

removing the potential for write conflicts.

We consider this optimisation only because it does not impact performance

portability – although we re-introduce the neighbour force updates, we guard

them with a pragma (i.e. #ifdef N3). Also, as discussed previously, the code

changes necessary to support fission in this way are minimal, affecting only the

initial OpenCL setup code.

85

6. Developing “Performance-Portable” Applications

E3-1240 A8-3850 HD4000 HD6550D C1060 C2050 GTX680 V7800

2

4

6

8

10

Device

S
p
ee
d
-u
p
(x
)

Baseline Transpose Vector Gather

Explicit Vec. 4-way Unrolling 8-way Unrolling

Figure 6.7: Comparison of speed-ups for parameterised force calculation kernel
on various architectures.

6.3 Performance Results

The graph in Figure 6.7 presents the total performance improvement of our

optimisations, relative to the original scalar baseline code. This performance

improvement is cumulative, since each optimisation builds upon the previous –

the only exception to this is 8-way unrolling, which replaces 4-way unrolling.

The speed-up of our best kernel (i.e. explicit vectorisation with unrolling) is con-

sistently greater than 2x across all architectures; these results show that it is pos-

sible to accelerate an OpenCL code significantly, on a wide range of hardware,

without focusing on development for any one particular micro-architecture.

Generally speaking, the GPUs see more benefit from the memory optimisa-

tions while the CPUs see more benefit from explicit vectorisation. This reflects

both the simpler cores of GPUs (which are more sensitive to memory laten-

cies, and are thus more impacted by the original memory access pattern) and

the immaturity of OpenCL compilers for CPUs. The AMD GPUs are the only

architecture to benefit significantly from both types of optimisation (with a

86

6. Developing “Performance-Portable” Applications

Implementation
Sweeps

rhs Other Total
Speed-up

blts buts (Orig.) (Opt.)

Original Fortran 138.21 133.37 108.66 10.04 390.28 1.00x 0.64x
Optimised Fortran 66.38 64.52 109.28 8.65 248.83 1.57x 1.00x

OpenCL (Intel) 78.19 77.09 131.49 55.83 342.60 1.14x 0.73x
OpenCL (AMD) 76.23 74.15 129.13 49.57 329.08 1.19x 0.76x

Table 6.1: Comparison of execution times (in seconds) for Intel CPU implemen-
tations of LU.

total speed-up of ≈ 11x). However, where a code change does not improve per-

formance, it does not significantly degrade it, demonstrating the performance

portability of our optimisations.

6.4 Comparison with “Native” Implementations

6.4.1 Pipelined Wavefront

CPU Comparison

Table 6.1 compares the performance of our OpenCL implementation of LU

with the original and optimised Fortran implementations, executing on an Intel

X5550. On a single node, our OpenCL implementation is up to 1.2x faster than

the original Fortran, but 1.4x slower than our optimised Fortran implementa-

tion.

There is not likely to be one single reason for this performance gap, but rather

several contributing factors. Firstly, we note that we see almost a 2x difference

in performance between the GNU Fortran compiler and the Sun Studio com-

piler used to collect our results; we attribute this difference to the latter’s ability

to apply intensive inter-procedural optimisations (IPO) across all source files,

increasing compile time significantly but often providing better performance.

OpenCL compilers currently do not support such functionality. Secondly, there

are differences in memory behaviour: the OpenCL runtime creates threads which

may operate on memory located in remote memory banks, whereas each of the

MPI tasks in the Fortran implementation operates only on its own, local, mem-

87

6. Developing “Performance-Portable” Applications

Configuration 1: 2-way Device Fission

Processor MPI
kB = 1 kB = min

(Nx

Px
,
Ny

Py

)
kB = NzCores Ranks

24 4 2.04x 1.06x 0.95x
48 8 1.91x 1.03x 0.89x
96 16 1.82x 0.97x 0.96x

Configuration 2: 4-way Device Fission

Processor MPI
kB = 1 kB = min

(Nx

Px
,
Ny

Py

)
kB = NzCores Ranks

12 4 3.03x 0.91x 0.78x
24 8 2.94x 1.05x 0.71x
48 16 3.03x 1.03x 0.77x

Table 6.2: Speed-up of LU for two device fission configurations, and three kB
values.

ory space. Finally, the implementations of blts and buts in the native code

are serial in nature, whereas their implementations in the OpenCL code use

Lamport’s hyperplane algorithm. The algorithm is much better suited to par-

allelisation (and thus to portability across architecture types), but may suffer

from increased synchronisation overhead (between kernels) [146] and other in-

efficiencies.

The latter two issues could be solved through the use of fission, and a coarse

wavefront across compute units. Unfortunately, our investigation into this pos-

sibility was limited by the restriction that LU must be run on a number of MPI

tasks that is a power of two. For the fission configurations we were able to test,

on the Sierra supercomputer, we see that the effect of fission depends on the

kB parameter: for kB = 1, 2-way and 4-way fission lead to speed-ups of 2x and

2.9x respectively; for kB = min(Nx/Px, Ny/Py), we see worse performance in

some configurations, with a maximum improvement of 1.2x; and for kB = Nz,

performance is always worse, due to an increase in pipeline fill time. These

results are listed in Table 6.2.

88

6. Developing “Performance-Portable” Applications

Device Implementation
Sweeps

rhs Other Total Speed-up
blts buts

C1060
CUDA 29.09 29.94 67.95 29.69 156.67 1.00x

OpenCL 31.86 32.32 70.23 35.26 169.67 0.92x

C2050
CUDA 10.09 9.11 22.29 10.14 51.63 1.00x

OpenCL 8.83 8.6 28.44 8.81 54.68 0.94x

Table 6.3: Comparison of execution times (in seconds) for NVIDIA GPU im-
plementations of LU.

GPU Comparison

Table 6.3 compares the performance of our OpenCL implementation of LU with

the optimised CUDA implementation, executing on an NVIDIA Tesla C1060 and

C2050. The CUDA implementation is marginally faster in both cases (1.08x and

1.06x). Neither of these gaps is as large as those reported elsewhere for initial

ports of CUDA codes [42, 83], but these have been shown to be due to differ-

ences between the optimisations carried out by NVIDIA’s CUDA and OpenCL

compilers – we believe that the small difference in performance shown here is a

reflection of the similarity between our CUDA and OpenCL implementations,

in particular the hand-unrolled and hand-inlined nature of our kernels.

6.4.2 Molecular Dynamics

CPU Comparison

Table 6.4 compares the performance of our OpenCL implementation of miniMD

with the two native C++ implementations, executing on an Intel E3-1240. The

AMD SDK provides the fastest runtime for our OpenCL application, beating the

Intel SDK by approximately 10%. This is also 1.5x faster than the original C++

version of miniMD, demonstrating that OpenCL is a suitable development tool

for utilising the SIMD architectures of modern CPUs. However, our OpenCL

implementation is 2x slower than our heavily-optimised version of miniMD;

its force compute and neighbour list build are 2x and 6x faster respectively.

The biggest causes of these performance gaps are: firstly, that the AVX code

generated by current OpenCL compilers is inefficient (compared to our hand-

89

6. Developing “Performance-Portable” Applications

Implementation Force Neigh Comm Other Total
Speed-up

(Orig.) (AVX)

Original C++ 2.77 0.26 0.19 0.21 3.42 1.00x 0.35x
C++ with AVX 0.76 0.11 0.12 0.20 1.19 2.87x 1.00x
OpenCL (Intel) 1.41 0.60 0.25 0.17 2.43 1.41x 0.49x
OpenCL (AMD) 1.33 0.58 0.16 0.17 2.25 1.52x 0.53x

Table 6.4: Comparison of execution times (in seconds) for Intel CPU implemen-
tations of miniMD.

float8 fxjtmp = (f[j1].x, f[j2].x, f[j3].x, f[j4].x,

f[j5].x, f[j6].x, f[j7].x, f[j8].x);

float8 fyjtmp = (f[j1].y, f[j2].y, f[j3].y, f[j4].y,

f[j5].y, f[j6].y, f[j7].y, f[j8].y);

float8 fzjtmp = (f[j1].z, f[j2].z, f[j3].z, f[j4].z,

f[j5].z, f[j6].z, f[j7].z, f[j8].z);

Figure 6.8: OpenCL code-snippet for the gather of x, y and z positions in the
force compute kernel with 8-way unrolling.

vectorised intrinsics); and secondly, that both the original miniMD and our

optimised AVX code make use of N3, and thus do half as much computational

work during the force compute and neighbour list build.

We believe that the first of these problems will be solved by future compiler

releases. OpenCL lacks gather/scatter and transpose constructs for its vector

types, and so we implement the gather of positions as shown in Figure 6.8

– neither the AMD or Intel compiler (currently) recognises that this can be

performed as an in-register AoS-to-SoA transpose, and we provide an in-depth

analysis of the assembly generated by the compiler for this code in Appendix A.

The second issue can be solved using fission, as discussed in Section 6.2.3: for

the Intel SDK, this improves force compute performance by 1.1x, and neighbour

list build performance by 2x, increasing the speed-up over the original miniMD

to 1.7x; for the AMD SDK, using fission results in worse performance than

the original miniMD, increasing communication costs by 9x – possibly due to

scheduling conflicts between the threads spawned by MPI and AMD’s OpenCL

runtime.

90

6. Developing “Performance-Portable” Applications

Device Implementation Force Neigh Comm Other Total Speed-up

C1060
CUDA 0.67 0.35 0.06 0.09 1.18 1.00x

OpenCL 1.69 0.31 0.34 0.07 2.40 0.49x

C2050
CUDA 0.36 0.22 0.05 0.06 0.70 1.00x

OpenCL 0.58 0.12 0.28 0.05 1.03 0.68x

Table 6.5: Comparison of execution times (in seconds) for NVIDIA GPU im-
plementations of miniMD.

GPU Comparison

Table 6.5 compares the performance of our OpenCL implementation of miniMD

and LAMMPSCUDA [154, 155]. As before, we use the kernel with explicit vectori-

sation and 4-way unrolling. For the complete application, our implementation is

2x slower than CUDA on the C1060, and 1.5x slower than CUDA on the C2050.

A large portion of this difference can be attributed to the poor communication

scheme used by our OpenCL code, which is almost 6x slower than that used

by LAMMPSCUDA. The CUDA code executes all communication routines on

the device and, since we are using a single node, is able to avoid all PCIe com-

munication; our OpenCL code, on the other hand, executes all communication

routines on the host.

For the force compute kernel alone, our OpenCL implementation is 2.5x and

1.6x slower than CUDA on the C1060 and C2050 respectively. Again, this is

partly due to documented differences between NVIDIA’s CUDA and OpenCL

compilers [42, 83]. LAMMPSCUDA also makes use of read-only texture memory,

which is cached, to store atom positions. Support for texture memory could be

added to our kernel and guarded with pragmas, enabled for GPUs in a similar

way to how fission is enabled for CPUs – we intend to explore this option in

future work.

91

6. Developing “Performance-Portable” Applications

6.5 Summary

In this chapter, we discuss the feasibility of using OpenCL to create platform-

agnostic, performance-portable, applications. We discuss a development method-

ology that allows for kernels to be parameterised based on key differences be-

tween architectures, highlighting the importance of designing codes that allow

for work-item/work-group distribution, memory layout and SIMD width to be

altered at runtime.

We report on the development of performance-portable versions of the two

benchmarks featured in Chapters 4 and 5, and demonstrate that they perform

well on a wide range of hardware from different vendors (including CPUs and

integrated GPUs from AMD and Intel, and discrete GPUs from AMD and

NVIDIA). We thus show that it is possible to develop an application that is op-

timised for multiple micro-architecture designs without sacrificing portability or

maintainability – an unexpected result that will be welcomed by the maintainers

of large, legacy, code-bases.

Our OpenCL implementations of the LU and miniMD benchmarks are at

most 2x slower than “native” implementations highly optimised for particular

platforms (on a single node), and whether this performance compromise is an

acceptable penalty for increased code portability is open to debate. We acknowl-

edge that there will be particular areas of large codes for which it is necessary

(or preferable) to maintain separate platform-specific source code for algorith-

mic reasons, or common functions (e.g. matrix operations) for which highly

optimised and platform-specific libraries are made available by vendors. How-

ever, we believe that the methodology demonstrated in this chapter is a simple

way to achieve acceptable levels of performance across different architectures –

and that such an approach is well suited to many parallel workloads.

92

CHAPTER 7
Predicting Application Performance on Future

Architectures

The procurement of a new supercomputer or cluster is an expensive and time-

consuming process. In addition to the price of hardware, HPC sites must budget

for power, cooling and maintenance throughout a machine’s lifetime, costing

millions of dollars each year. As we have demonstrated in previous chapters,

an increase in theoretical peak performance does not necessarily result in an

equivalent increase in application performance; there is an understandable desire

to evaluate the performance of applications on new hardware ahead of time.

For this reason, HPC sites are often given advance access to engineering

samples of new architectures, or remote access to existing machines, permit-

ting them to benchmark a small machine before committing to a larger order.

The utility of analytical modelling and simulation techniques for estimating the

performance of traditional machines at scale, based on these single node bench-

marks, has been demonstrated in previous work [57, 72]. The contents of this

chapter address the adaptation of these techniques for accelerator-based archi-

tectures. Specifically, we consider using models to predict the effects of: (i)

iterative performance improvements to a given architecture type (e.g. Tesla to

Fermi); and (ii) network communication and scaling behaviour. Our results

demonstrate that the significant speed-ups shown on single nodes do not nec-

essarily persist at scale, highlighting the importance of considering multi-node

runs when comparing architectures.

93

7. Predicting Application Performance on Future Architectures

7.1 Adapting Models for Future Architectures

7.1.1 Single Node

Several other works have demonstrated that it is possible to accurately model

the performance of select application kernels based on source code analysis, or

through low-level hardware simulation of GPUs [14, 17, 31, 36, 75, 166]. We

seek to produce a performance model at a higher level of abstraction, adopting

the analytical modelling approach of Mudalige et al. [107] – specifically, we

seek to derive a “grind-time” (Wg), so-called because it represents the time

spent working (or “grinding”), for each element of computation that must be

performed. The lowest level at which we can acquire times for many current-

generation accelerator devices is that of a complete kernel, and we thus cannot

benchmark a value of Wg directly. Instead, we time the value for the complete

kernel (W).

Essentially, our model states that the execution time of a kernel will stay

constant so long as the number of work-groups assigned to each compute unit

remains the same. An increase in the number of work-groups scheduled to each

compute unit will increase the execution time by some factor (based on the

ability to hide memory latency via time-slicing); any further blocks scheduled to

a compute unit after they have been saturated will require additional processing

steps, and we model these as occurring serially. We thus predict a stepping

behaviour in execution times, with steps occurring every (# compute units ×

work-group size) work-items. These steps will differ in size, based on whether

the addition of an extra work-group fully saturates a compute unit; this depends

upon register usage, work-group size and the amount of shared memory required.

We apply the model to the wavefront kernel from our GPU implementation

of LU, executing on a Tesla C1060. The C1060 has 30 compute units and each of

our work-groups contains 64 work-items, thus our model predicts an increase in

execution time every 30× 64 = 1920 work-items. The kernel uses 107 registers,

limiting the number of concurrent work-groups per block to 2, and so we expect

94

7. Predicting Application Performance on Future Architectures

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

1× 10−4

2× 10−4

3× 10−4

4× 10−4

5× 10−4

Number of Grid-Points

E
x
ec
u
ti
o
n
T
im

e
(s
ec
o
n
d
s)

Observed Predicted

Figure 7.1: Observed and predicted times for a wavefront kernel on a Tesla
C1060.

two different step sizes – we derive their values empirically, benchmarking the

kernel for 0–4000 grid-points.

The graph in Figure 7.1 compares the observed and predicted times for each

hyperplane step, from 1 to 18000 grid-points. Our model accurately predicts

the stepping points, and matches the observed times very closely. The model

error increases slightly for large numbers of grid-points, but we believe this to be

the result of memory contention issues not covered by this simple model (e.g.

partition camping). That such a simple analytical model has any predictive

accuracy at all is due only to the relative simplicity of early accelerator archi-

tectures. As the architectures have grown more complex (and arguably more

CPU-like), introducing features such as data caches, out-of-order execution, sup-

port for multiple concurrent kernels and, most recently, “dynamic parallelism”

(i.e. the ability for kernels to launch other kernels) [121], the complexity required

to accurately capture the performance of an individual work-item analytically

has increased.

To demonstrate this, we next apply the model to the same kernel executing

on a Tesla C2050. This GPU has 14 compute units, supporting a maximum

95

7. Predicting Application Performance on Future Architectures

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

5× 10−5

1× 10−4

1.5× 10−4

Number of Grid-Points

E
x
ec
u
ti
o
n
T
im

e
(s
ec
o
n
d
s)

Observed

Figure 7.2: Observed times for a wavefront kernel on a Tesla C2050.

of 8 work-groups, and is built on NVIDIA’s “Fermi” micro-architecture. As

before, and as shown in Figure 7.2, the increases in execution time correspond to

increases in the number of work-groups scheduled to each compute unit – every

14 × 64 × 8 = 7168 threads (marked in the graph by dashed lines). However,

the execution time between these stepping points is not fixed, instead increasing

linearly, thus violating the assumption underpinning our model.

7.1.2 Multiple Node

At the multi-node level, the use of such a high level of model abstraction re-

mains applicable. In theory, the MPI costs of an application should remain the

same (assuming that the same algorithm is used across architectures) and we

can thus model the performance of an accelerator at scale by substituting exe-

cution times benchmarked on an accelerator into an existing MPI-level model.

We first demonstrated the utility of this approach in [126], and it has since

been adopted by others to investigate the performance of computational fluid

dynamics applications running on GPUs [108].

The use of models allows us to investigate the performance of larger test

cases (Class D and Class E) than we were able to consider in previous chapters.

96

7. Predicting Application Performance on Future Architectures

These problem sizes are too large to be executed on a single GPU device, and

necessitate the use of multiple GPUs. All of the models in this section assume

one GPU per node; although other configurations are clearly possible, this as-

sumption simplifies the issue of PCIe contention (four GPUs per node would

commonly share two PCIe buses).

An Analytical Performance Model

We employ a simplified form of the reusable wavefront model of Mudalige et

al. [107], to model the coarse wavefronts over processors:

Tcomm =

[(
Px + Py +

Nz

kB
− 2

)
− 1

]
× Tc (7.1)

Tcomp =

(
Px + Py +

Nz

kB
− 2

)
×W (7.2)

where Tcomm represents the total communication time, and Tc the time per

communication phase; and where Tcomp represents the total computation time,

and W the time taken to compute a single block of depth kB . Essentially, the

model states that there are (Px + Py +Nz/kB − 2) coarse wavefront steps, and

that communication occurs after all such steps except for the last.

Tc is computed based upon a time-per-byte, calculated from network latency

and bandwidth in conjunction with message sizes derived from the problem

size and number of processors. We also augment the original network model

to include PCIe transfer times, representing the costs associated with read-

ing/writing data from/to a GPU:

TPCIe(bytes) = PCIe latency +
1

PCIe bandwidth
× bytes (7.3)

Tnetwork(bytes) = network latency +
1

network bandwidth
× bytes (7.4)

Tc = Tnetwork(MessageSizeNS) + TPCIe(MessageSizeNS)

+ Tnetwork(MessageSizeEW) + TPCIe(MessageSizeEW)

(7.5)

where MessageSizeNS and MessageSizeEW represent the message sizes for

97

7. Predicting Application Performance on Future Architectures

north-south and east-west sends/receives respectively. Network latency and

bandwidth are calculated based on results from a modified version of the p2p.ski

test included in the SKaMPI [142] benchmark, executed for a number of message

sizes on a varying number of core/node counts in order to account for contention.

PCIe latency and bandwidth are obtained using the bandwidthTest benchmark

in the NVIDIA CUDA SDK.

W is computed based on a “grind-time” per grid-point (Wg):

W = Wg ×
(
Nx

Px
× Ny

Py
× kB

)
(7.6)

which we collect empirically using benchmark runs.

A Simulation-based Performance Model

In order to verify our analytical model results, we also employ a performance

model based on discrete event simulation. We use the WARPP simulator [56],

which utilises coarse-grained compute models as well as high-fidelity network

modelling to enable the accurate assessment of parallel application behaviour

at large scale.

A key feature of WARPP is that it also permits the modelling of compute

and network noise through the application of a random distribution of noise to

compute or networking events. In this study, we present two sets of runtime pre-

dictions from the simulator: a standard, noiseless simulation; and a simulation

employing noise in data transmission times.

In the simulations including noise, the network events have a Gaussian distri-

bution (with a standard deviation consistent with benchmarked data) applied to

MPI communications. The simulator is therefore able to create a range in com-

munication costs, which reflect the delays caused by other jobs and background

networking events present in the machine. As with the analytical model, we

augment WARPP’s network model with a sub-model capturing the behaviour

of the PCIe bus. Due to WARPP’s modular design, this is a simple change; we

98

7. Predicting Application Performance on Future Architectures

increase network communication times for a given number of bytes based upon

a linear piece-wise regression of observed PCIe message times.

Model Validation

Validations of both performance models are presented Table 7.1. We compare

the execution times for LU on three clusters (a cluster of C1060 GPUs at the

Daresbury Laboratory, and the Hera and DawnDev machines at the Lawrence

Livermore National Laboratory) for two application classes (C and D) to the

predictions from the analytical model and discrete event simulator. The reader

is reminded that the GPU cluster has one C1060 per node; that Hera has 16

AMD Opteron cores per node; and that DawnDev is a Blue Gene/P with four

PowerPC cores per node. The simulation without noise is deterministic, but for

the simulation with network noise we also list the 95% confidence interval (C.I).

The compiler configurations for DawnDev and Hera are given in Table 7.2, and

the compiler configuration for the GPU implementation remains the same as in

previous chapters.

Model accuracy varies between the machines, but is between 80% and 90%

for almost all runs. When reading these accuracy figures it is important to

understand that the code is executed on shared machines, and validating the

models on contended machines tends to increase the error due to network con-

tention and machine load (the model error tends to be lower when the machine

is quieter). For this reason, the introduction of noise to the simulator for Hera

is important – this resource is much more heavily used (and contended), as

demonstrated by the inclusion of minimum and maximum values in Table 7.1.

A degree of inaccuracy in the models is to be expected on all machines,

as we do not capture issues such as process placement on the host machine; a

poor allocation by the scheduler will impact on runtime, and thus model error.

However, the high levels of correlation between the analytical and simulation-

based models – in spite of the presence of other jobs and background noise –

provide a significant degree of confidence in their predictive accuracy.

99

7. Predicting Application Performance on Future Architectures

Machine Nodes
Actual

Anal.
Simulation

Min. Mean Max. No Noise
With Noise

Mean 95% C.I.

C1060
(Class C)

1 153.26 153.30 153.37 153.26 147.15 147.17 (147.17, 147.17)
4 67.06 67.25 67.58 70.45 66.43 69.00 (68.82, 69.19)
8 52.72 52.92 53.08 52.72 50.50 53.92 (53.74, 54.12)

16 44.29 44.46 44.51 44.47 42.85 46.09 (45.98, 46.21)

C1060
(Class D)

4 1359.93 1367.65 1372.85 1417.57 1375.28 1393.32 (1390.88, 1395.75)
8 735.53 736.60 737.47 744.24 723.83 745.47 (744.88, 747.36)

16 414.31 414.97 415.45 424.65 413.13 432.88 (431.75, 434.00)

Hera
(Class C)

2 81.97 86.74 96.02 87.11 84.55 98.70 (98.60, 98.80)
4 58.37 60.22 62.14 47.13 45.05 59.34 (59.29, 59.39)
8 32.18 32.90 33.70 27.26 14.66 40.27 (40.20, 40.34)

Hera
(Class D)

8 472.67 539.25 561.55 428.58 417.49 461.43 (461.26, 461.59)
16 281.01 283.41 285.73 227.06 218.73 262.50 (262.44, 262.55)
32 192.40 195.52 197.35 122.42 115.51 160.46 (160.36, 160.57)
64 114.59 122.11 131.30 67.60 64.19 107.80 (107.68, 107.91)

DawnDev
(Class C)

32 49.76 49.81 49.91 55.50 55.87 60.46 (60.43, 60.48)
64 29.11 29.12 29.14 31.20 31.34 34.99 (34.97, 35.00)

128 19.55 19.56 19.56 19.26 19.24 22.7 (22.85, 22.88)
256 14.39 14.50 14.58 12.12 11.97 15.13 (15.11, 15.14)

DawnDev
(Class D)

32 736.84 736.84 736.85 720.84 723.66 745.10 (745.06, 745.13)
64 386.34 386.40 386.47 379.11 381.37 398.58 (398.54, 398.63)

128 217.43 217.63 217.93 200.86 201.87 217.64 (217.61, 217.67)
256 123.60 123.97 124.20 107.33 107.76 119.72 (119.69, 119.75)

Table 7.1: Model and simulation validations for LU. Execution times are given
in seconds.

Device Compiler Options

BlueGene/P IBM XLF

-O5 -qhot -Q

-qipa=inline=auto

-qipa=inline=limit=32768

-qipa=level=2

-qunroll=yes

AMD Opteron PGI 8.0.1

-O4 -tp barcelona-64

-Mvect=sse -Mscalarsse

-Munroll=c:4 -Munroll=n:4

-Munroll=m:4 -Mpre=all

-Msmart -Msmartalloc

-Mipa=fast,inline,safe

Table 7.2: Compiler configurations for the LU model validation.

100

7. Predicting Application Performance on Future Architectures

64 128 256 512 1024 2048 128 256 512 1024 2048
0

200

400

600

800

1000

1200

1400

1600

1800

C2050C1060

Number of Nodes

E
x
ec
u
ti
o
n
T
im

e
(s
ec
o
n
d
s)

Compute Network PCIe

Figure 7.3: Breakdown of execution times for LU from the GPU model.

7.2 Communication Breakdown

The graph in Figure 7.3 shows a breakdown of the execution times for a Class

E problem on different numbers of GPUs in terms of compute, network com-

munication and PCIe transfer times. Even at scale, the biggest contributor to

execution time is computation, followed by network communication and finally

PCIe transfers. These results are surprising, but reflect the optimised nature of

our GPU implementation of LU, which transfers the minimum amount of data

across the PCIe bus at each communication step.

7.3 Machine Comparison

7.3.1 Scalability

Weak Scaling

We investigate how the time to solution varies with the number of processors

for a fixed problem size per processor. This allows us to assess the suitability of

processors for capacity clusters, by exposing the cost of adding extra nodes to

solve increasingly large problems.

101

7. Predicting Application Performance on Future Architectures

0 50 100 150 200 250
0

500

1000

1500

Number of Nodes

E
x
ec
u
ti
o
n
T
im

e
(s
ec
o
n
d
s)

DawnDev (A) C1060 (A) C2050 (A) Hera (A)

DawnDev (S) C1060 (S) C2050 (S) Hera (S)

Figure 7.4: Weak-scaling projections for LU.

The reader is reminded that LU operates on grids of size N3 and uses a

2D domain decomposition across processors. This renders the seven verifiable

problem classes unusable in a weak-scaling study; it is impossible to fix the

subdomain of each processor at a given number of grid-points (Nx/Px×Ny/Py×

Nz) whilst increasing Nx, Ny and Nz. To compensate for this, we fix the height

of the problem grid to 1024. Although this prevents us from verifying the

solution reported against a known solution, we are still able to verify that both

implementations produce the same solution. The number of grid-points per

node is set to 64 × 64 × 1024, as this provides each GPU with a suitable level

of parallelism.

Figure 7.4 shows model projections for execution times up to a maximum

problem size of 1024×1024×1024 (corresponding to 256 nodes in each cluster).

Both the analytical model (A) and the simulation with noise applied (S) provide

similar runtime projections, as demonstrated by the close performance curves.

Typically, if a code exhibits good weak scalability, then the execution time will

remain largely constant as additional nodes are added. Our results show that,

across all the architectures studied, the execution time of LU increases with the

102

7. Predicting Application Performance on Future Architectures

number of nodes – a side-effect of the wavefront dependency. As the number of

nodes increases, so too does the pipeline fill time of each wavefront sweep.

It is apparent from the graph that the weak scalability of our GPU im-

plementation is worse than that of its CPU counterparts. This is due to the

selection of a relatively large kB for the GPU implementation, which we have

shown in previous chapters is necessary for good parallel efficiency. Since each

GPU must process more grid-points than a CPU prior to communication with

its neighbours, the addition of an extra node has a larger effect on pipeline fill

time; the same situation arises if a large kB value is chosen for the CPU im-

plementation. Increased communication times (due to PCIe transfers) will also

increase pipeline fill time.

The results in this section suggest that accelerators are a suitable architec-

tural choice for capacity clusters. Other scientific and engineering applications

may not weak scale as poorly as wavefront applications, and the increase in per

node performance afforded by accelerators persists during weak scaling.

Strong Scaling

We investigate how the time to solution varies with the number of processors for

a fixed total problem size, demonstrating the utility of adding an extra processor

for the acceleration of a given problem. This will be of interest when employing

capability clusters.

As the total problem size is fixed, we do not encounter the same problems

as we did with the weak-scaling study (i.e. we are able to use the standard

problem classes). Figure 7.5 therefore shows analytical model and simulation

projections for the execution times of (a) Class D and (b) Class E problems,

for increasing node counts. The modelled cluster of C2050 GPUs provides the

best performance at small scale for both problem sizes. However, DawnDev

and Hera demonstrate higher levels of scalability; the execution times for the

CPU-based clusters continue to decrease as the number of nodes is increased,

whereas those for the GPU-based clusters tend to plateau at a relatively low

103

7. Predicting Application Performance on Future Architectures

2 4 8 16 32 64 128 256
20

40

80

160

320

640

1280

2560

Number of Nodes

E
x
ec
u
ti
o
n
T
im

e
(s
ec
o
n
d
s)

DawnDev (A) C1060 (A) C2050 (A) Hera (A)

DawnDev (S) C1060 (S) C2050 (S) Hera (S)

(a) Class D

16 32 64 128 256 512 1024 2048
40

80

160

320

640

1280

2560

5120

10240

20480

Number of Nodes

E
x
ec
u
ti
o
n
T
im

e
(s
ec
o
n
d
s)

DawnDev (A) C1060 (A) C2050 (A) Hera (A)

DawnDev (S) C1060 (S) C2050 (S) Hera (S)

(b) Class E

Figure 7.5: Strong-scaling projections for LU.

104

7. Predicting Application Performance on Future Architectures

Nodes Time
Power Consumption Theoretical
Compute Total Peak

(s) (kW) (kW) (TFLOP/s)

C1060 1024 367.84 192.31 286.72 79.87
C2050 256 224.98 60.93 81.92 131.84

DawnDev 2048 217.32 32.77 69.96 27.85
Hera 256 239.12 97.28 137.00 38.44

Table 7.3: Cluster comparison for executing LU (Class E) within a fixed execu-
tion time.

number of nodes.

The results in this section suggest that accelerators are not necessarily a

suitable architectural choice for capability clusters, and demonstrates the impor-

tance of considering multi-node performance during the evaluation of emerging

architectures. Despite the high single-node performance of our GPU-accelerated

implementation, its strong scalability is limited; we see very minor speed-ups

from the introduction of additional nodes. We acknowledge that there are in-

herent issues with the strong scalability of pipelined wavefront applications (e.g.

the pipeline fill), which limit the ability of these codes to achieve high levels of

performance at scale even on traditional CPU architectures (other studies report

a percentage of peak around 5–10% on CPUs [74]). However, accelerators are

additionally affected by the decrease in problem size per node, which results in

a decreasing amount of exploitable parallelism – as shown in Chapters 4 and 5,

accelerators lose their advantage over traditional CPU architectures for small

problem sizes. This issue is not specific to the codes studied in this thesis.

7.3.2 Power Consumption

In addition to performance, another important metric to consider when com-

paring machines of this scale is power consumption, since this has a significant

impact on their total cost. Therefore, Table 7.3 lists the power consumption and

theoretical peak for each of the four machines modelled, for a fixed execution

time of a Class E problem. We present two different power figures for each ma-

chine: firstly, the TDP of the compute devices used, to represent the maximum

105

7. Predicting Application Performance on Future Architectures

amount of power each architecture could draw to perform computation on the

devices employed (and hence the amount of power the system must be provided

with in the worst case); and secondly, benchmarked power consumption, to rep-

resent the amount of power each architecture is likely to draw in reality and

also account for the power consumption of other hardware in the machine.

In the case of the Tesla C1060 and C2050 machines, the power consumption

of an HP Z800-series compute blade utilising a single Intel X5550 Nehalem pro-

cessor and one GPU was recorded during runs of a Class C problem. The figure

listed therefore represents the power usage of the entire blade: one Tesla C1060

or C2050 GPU, a single quad-core processor, 12GB of system memory and a sin-

gle local disk. It does not include the power consumption for a high-performance

network interconnect. For the supercomputers at Lawrence Livermore National

Laboratory (to which we do not have physical access), the benchmarked figures

are the mean recorded power consumption during typical application and user

workloads [87].

Of the four machines, DawnDev has the lowest power consumption and low-

est theoretical peak, yet also achieves the lowest execution time. The C2050 clus-

ter, on the other hand, has the second lowest power consumption and achieves

the second lowest execution time, yet has the highest theoretical peak. This

demonstrates that although GPU-based solutions are considerably more space-

and power-efficient than commodity CPU clusters, integrated solutions (such as

IBM’s Blue Gene) afford even higher levels of efficiency and scalability. Further-

more, the level of sustained application performance offered by GPU clusters

is closer than expected to that of existing cluster technologies – and lower as a

percentage of peak.

106

7. Predicting Application Performance on Future Architectures

7.4 Summary

This chapter presents the most comprehensive evaluation of LU’s performance

on emerging architectures to be published to date. We use two recently de-

veloped application performance models to project benchmark results from a

single node to larger systems and to deconstruct the execution times of our

solution, allowing us to examine the proportions of runtime accounted for by

communication between nodes and the extent to which PCIe communication is

a bottleneck.

While distributed accelerator clusters can deliver substantial levels of theo-

retical peak performance, achieving sustained application performance at scale

is still a challenge. Like-for-like comparisons to existing technologies such as

IBM’s Blue Gene platform also help to show that the power-efficiency of GPU

solutions – a much cited reason for their adoption – is in fact comparable for

this class of application. Our results also show that, for wavefront applications

at least, CPU and GPU-accelerated clusters currently offer comparable levels

of performance in spite of large differences in theoretical peak. The techniques

employed in this work demonstrate a low-cost and accurate method of assessing

application performance on contemporary and future HPC systems, and our re-

sults emphasise the importance of considering scale in application and machine

design, in contrast to benchmarking on single nodes or small clusters.

107

CHAPTER 8
Conclusions and Future Work

The gap between the level of performance achieved by legacy applications on

current-generation hardware and the potential performance of the same applica-

tions following optimisation is significant, and demonstrated by other research

to be as large as an order-of-magnitude for some workloads [12, 29, 78, 117,

145, 150, 162]. This gap will grow if left unchecked – trends suggest that SIMD

widths will continue to increase, along with the number of cores, and exascale

machines are predicted to have several orders of magnitude more parallelism

than current generation petascale machines [38].

The results in this thesis (specifically, those in Chapters 4 and 5) further

highlight the existence of this performance gap, but also demonstrate that a

number of optimisations are in fact common to multiple architecture types.

They also show that two applications which may initially appear poorly suited

to modern architectures, due to complex memory access patterns and data de-

pendencies, can in fact benefit from the increasing levels of parallelism avail-

able in recent micro-architecture designs. Even if the programming paradigm

changes (which we expect that it will), developers that explore optimisation

opportunities today are likely to have an easier task when exascale computing

arrives; those that do not, will likely see very poor performance on tomorrow’s

machines.

However, many HPC sites have traditionally been reluctant to tune their

codes, lest they become tied to a particular vendor; the ability to maintain

code is commonly seen as more important than achieving the best possible

performance. The results in Chapter 6 suggest that these goals are not mu-

tually exclusive, demonstrating that it is possible to develop and optimise an

108

8. Conclusions and Future Work

application (with a single source code) for multiple platforms simultaneously.

In our experience, OpenCL is also better suited to expressing parallelism and

vectorisation opportunities than traditional serial languages – for example, we

show that the Intel compiler is able to generate efficient AoS-to-SoA transpose

routines that have to be hand-coded in intrinsics in C – and our OpenCL im-

plementations of the LU and miniMD benchmarks are consistently faster than

the original scalar codes. Although we acknowledge that it is unlikely that such

platform-agnostic codes will exceed the performance of heavily optimised “na-

tive” implementations, the performance overhead we see (relative to our best

efforts) is much smaller than one might expect (2x). The ability of OpenCL

compilers to map work to hardware is likely to increase as compilers mature,

and we therefore expect this overhead to shrink over time.

In Chapter 7 we demonstrate that, although single-node benchmarking of

emerging architectures can deliver meaningful initial results, it is important to

consider the performance of applications running at scale. In particular, we

highlight the problems associated with strong-scaling on accelerator architec-

tures, due to the decreasing amount of exploitable parallelism per node. This

result suggests that there remains a place in HPC for serial, high-clocked cores,

and further motivates the need to write codes that adapt to multiple architec-

tures. Most accelerators are (currently) paired with traditional CPU cores, and

some CPUs even feature accelerator cores on the same die – codes should be

written in a way that enables them to fall back to traditional architectures for

serial tasks (and parallel tasks run at extreme scales) in order to make the best

use of these new heterogeneous architectures.

Taken together, the work presented in this thesis details a methodology for

the evaluation of scientific and engineering application performance on emerging

parallel architectures. This three-step process, consisting of: (i) code optimi-

sation for a new architecture; (ii) incorporation of new optimisations into a

platform-agnostic implementation; and (iii) projection of performance at scale;

demonstrates a clear development path for HPC sites seeking to maximise the

109

8. Conclusions and Future Work

performance of their applications on current- and future-generation hardware,

without wasting considerable effort maintaining multiple code-paths. Assum-

ing that hardware vendors continue to support the OpenCL standard (or an

equivalent open standard) and that the standard continues to incorporate new

hardware features, we believe that the use of single-source applications of the

kind we describe will bridge the gap between architectures, giving HPC sites

much greater vendor mobility, improving code maintainability across hardware

generations and significantly easing the process of benchmarking new architec-

tures.

8.1 Limitations

The primary limitation of this thesis is its focus upon two particular scientific

applications, specifically the LU and miniMD benchmarks. Although this may

limit the generality of the optimisations and programming techniques presented,

these codes were chosen because they are both representative of much larger and

more complex codes; LU of applications like Sweep3D [1] and Chimaera [111],

and miniMD of the popular LAMMPS package [137, 139]. Further, the parallel

behaviours of these codes are common to a wider range of scientific applications,

and our results thus have implications for scientific and engineering codes from

other problem domains (e.g. unstructured mesh, computational fluid dynamics).

A secondary limitation is that much of the work in this thesis evaluates

proposed optimisations and programming methodologies on a specific range of

hardware. Hardware and software both develop at an alarming rate, and as

such many of the systems used in this thesis have since been decommissioned,

or upgraded in ways that may lessen the impact of our optimisations. Never-

theless, our results provide an insight into the state of various hardware and

software packages at the time that the experiments were performed – and in-

sight into the huge upheaval in parallel architectures at the time this research

was undertaken. Further, we believe that our experiences are typical of those

110

8. Conclusions and Future Work

that will be experienced for any new architecture, and that the methodology

we describe for porting legacy codes (or benchmarks) to new systems will be a

useful case study for many HPC sites.

Another potential limitation is our use of the OpenCL programming model

for our performance portability study. At the time of writing, OpenCL host

code must be written in C and C++, with device kernels written in OpenCL

C (an extension of C99); since the majority of legacy HPC codes are written in

Fortran, developers may be reluctant to adopt this model. However, the most

recent version of the OpenCL standard introduces a Standard Portable Inter-

mediate Representation (SPIR) [77] designed as a possible target for compilers

of languages other than OpenCL C – we feel it is likely that other researchers

(or compiler developers) will leverage this SPIR to allow OpenCL kernels to be

written in Fortran.

The final limitation is that our optimisations focus on reducing time-to-

solution (by increasing arithmetic throughput). These metrics are arguably the

most important for the users of an HPC resource, as they have the most direct

impact on their ability to run simulations. However, there are a number of

additional metrics that we do not consider which are likely to be of interest

to the maintainers of such systems, such as machine size, cost and reliability.

Many of these are linked to machine performance (some indirectly), and could

thus be extrapolated from execution times – we demonstrate this for power

consumption in Chapter 7. The degree to which a code base is considered

maintainable (and readable) is another important concern, particularly when

dealing with legacy applications, but this is subjective and difficult to measure

quantitatively (e.g. counting lines of code does not account for code complexity,

or developer experience).

111

8. Conclusions and Future Work

8.2 Future Work

There are a number of potential avenues for future research building on the

work presented in this thesis. Specifically, we describe two optimisations (one

for each of the benchmarks studied) that require further validation on future

architectures; and discuss the need to re-evaluate our proposed optimisations in

the context of production applications.

8.2.1 k-blocking in Wavefront Applications

The size of the hyperplane in a wavefront application starts at one grid-point,

increases until some maximum (dependent on problem decomposition and kB),

and then decreases until it has passed through the last grid-point. Following

communication, the next time step executes another “mini-sweep” for the next

k-block, again starting from a single grid-point. Conducting computation in

this manner wastes parallel efficiency whenever the size of the hyperplane is less

than the number of work-items an architecture can execute in parallel.

To address this issue, we propose a new k-blocking algorithm that permits

a processor to operate on grid-points beyond the current k-block boundary,

thus maintaining the angle established during the start of the “mini-sweep”.

The parallel and SIMD efficiency achieved per node under this new k-blocking

policy is the same as that seen when using a kB value of Nz under the old policy,

but permits processors to communicate prior to the completion of their entire

Nx/Px ×Ny/Py ×Nz volume.

Early Results

Table 8.1 compares the execution times of the old and new k-blocking policies,

when this optimisation is applied to LU for a Class C problem on 4, 8 and 16

GPUs. We see that the performance of the new policy is significantly better than

the old policy for small values of kB , but slightly worse for large values. This

performance gap is the result of a combination of factors: increased pipeline fill

112

8. Conclusions and Future Work

Nodes kB Old Policy New Policy

4
1 759.99 80.81
81 67.25 77.13

8
1 554.34 74.94
41 52.92 61.34

16
1 381.06 77.50
41 44.46 55.60

Table 8.1: Comparison of execution times (in seconds) for LU (Class C) using
the old and new k-blocking policies.

time (due to increased communication costs); the cubic nature of LU problems

(which limits the number of wavefront steps operating at 100% efficiency); and

potentially unforeseen issues in our implementation of LU.

Future Architectures

To investigate the potential of our new k-blocking algorithm on future hardware

with wider SIMD, and to study its performance for other wavefront applications

besides LU, we again make use of the reusable wavefront model of Mudalige et

al. [107].

Old Policy:

Tcomm =

[(
Px + Py +

Nz

kB
− 2

)
− 1

]
× Tc (8.1)

Tcomp =

(
Px + Py +

Nz

kB
− 2

)
×

[(Nx

Px
+
Ny

Py
+ kB − 2

)
× Th

]
(8.2)

New Policy:

M =
min(Nz,

Nx

Px
+

Ny

Py
+ kB − 2)

kB
(8.3)

Tcomm =

[
M × (Px + Py − 3) +

(Nz

kB

)]
× Tc (8.4)

Tcomp =

[
(Px + Py − 1)×

(Nx

Px
+
Ny

Py
+ kB − 2

)
× Th

]
+

[(Nz

kB
− 1

)
× kB × Th

] (8.5)

where Tc represents some communication cost (as before), and where W is pre-

113

8. Conclusions and Future Work

Step 1 Step 2 Step 3

Figure 8.1: First three wavefront steps for the new k-blocking policy.

dicted analytically based on the computational cost per hyperplane (Th). Mod-

elling each hyperplane step as requiring the same time is arguably unrealistic,

but is representative of two different situations: (i) a large problem, decom-

posed over many processors (where there is little exploitable parallelism); and

(ii) using processors with infinite SIMD width (the best case for both policies).

The difference between these two models is quite simple. On the compute

side, the old policy executes a coarse wavefront (with Px + Py + (Nz/kB) − 2

steps) over blocks of size Nx/Px×Ny/Py×kB ; the new policy executes a similar

wavefront but pays the ramp-up cost (Nx/Px + Ny/Py + kB − 2 hyperplanes)

only once on each processor – the subsequent Nz/kB − 1 blocks require only

kB hyperplanes. On the communication side, the old policy sees each processor

receive only one message before it is able to complete its first k-block; the new

policy, as shown in Figure 8.1, requires each processor to instead receive M

messages. This change in communication behaviour is due to the fact that a

processor receiving kB tiles can only execute kB hyperplanes; a processor must

thus receive Nx/Px + Ny/Py + kB − 2 tiles from upstream before it is able to

complete its first k-block.

These models predict that there will be some situations in which we should

expect our new algorithm to out-perform the original. Specifically, there is much

greater potential for improved performance in problems where Nz is significantly

larger than Nx or Ny, such that the cost of the pipeline fill is amortised; and in

114

8. Conclusions and Future Work

situations where computational cost far outweighs that of communication. We

leave the application of this optimisation to other codes, and the validation of

these models, to future work.

8.2.2 Conflict Resolution in Molecular Dynamics

The SIMD analysis in Chapter 5 assumes that the number of neighbours per

atom is sufficiently large (compared to the SIMD width) that the amount of

padding required to make the number of neighbours a multiple of W is small.

This holds true for miniMD’s default simulation (≈ 28 neighbours per atom)

on the hardware we use, but architectures with wider SIMD, or simulations

with very small cut-off distances, require a different approach to achieve high

efficiency.

There are typically thousands of atoms in a molecular dynamics simulation,

and thus moving to “cross-atom” SIMD (i.e. vectorising the loop over atoms)

exposes significantly more parallelism than a “cross-neighbour” approach – and

sufficient parallelism for many hardware generations to come. For the force

compute loop, using SIMD in this fashion results in two changes compared to

our previous code: (i) gathers and scatters are potentially required at the level

of the outer loop, to accumulate forces into atoms; and (ii) there is a potential

for update conflicts, since several atoms may share a neighbour – if we attempt

to update the same neighbour multiple times simultaneously, only one of the

updates will take effect.

In the absence of fast atomic gather-scatter operations [85], we propose that

update-conflicts be handled by arranging the neighbour lists such that there are

no duplicate indices in any set of W neighbours. Detecting duplicates within

a group of W neighbours requires O(W 2) comparisons but, since comparison

hardware typically scales with SIMD width, we expect the number of needed

SIMD comparison instructions to be a more tractable O(W).

Our algorithm for conflict resolution is as follows. For every set of W indices,

check for a conflict (i.e. a duplicate index). If there are no conflicts, then this

115

8. Conclusions and Future Work

1 2 4 4 1 3 5 5

0 0 0 4 0 0 0 51 2 4 0 1 3 5 0

1 1 1 0 1 1 1 00 0 0 1 0 0 0 1

1 3 5 41 2 4 5

Conflict Sets

Masks

Figure 8.2: Resolving conflicts using 128-bit SIMD.

set of indices can be written to the neighbour list. If there are conflicts, we

split the set into at most W parts: one containing all of the indices that do not

conflict, and up to W − 1 sets containing one index each. As before, we insert

“dummy” neighbours (index 0) located at infinity as necessary, for padding.

These sets are then stored as conflict sets, along with a bit-mask denoting the

location of 0 indices. When all neighbour sets have been considered, conflict

sets are matched based upon their masks, combined if possible, and written to

the neighbour list. Figure 8.2 demonstrates this process for 128-bit SIMD, for

two sets of W indices with a single conflict each.

The operation of this conflict resolution algorithm is orthogonal to the neigh-

bour list build itself, and so we implement it as a post-processing step that

removes conflicts from an existing neighbour list. Since miniMD’s neighbour

list introduces an imbalance in the number of neighbours per atom, and the

amount of computation required for a group of W atoms is dependent upon the

maximum number of neighbours within the group, we also sort “windows” of

atoms according to their number of neighbours.

116

8. Conclusions and Future Work

Window Size
256k 2048k

1.5 2.5 5.0 1.5 2.5 5.0

Force Compute
1 0.89x 1.21x 1.25x 0.89x 1.20x 1.24x
64 0.73x 0.98x 1.05x 0.77x 0.98x 1.05x
infinite 0.84x 1.17x 1.16x 1.91x 3.03x 2.93x

Total Simulation
1 1.09x 1.30x 1.35x 1.04x 1.24x 1.37x
64 0.96x 1.06x 1.15x 0.96x 1.04x 1.15x
infinite 0.99x 1.17x 1.21x 1.50x 2.32x 2.72x

Table 8.2: Slow-down of conflict resolution approach.

Early Results

The results in Table 8.2 give the slow-down (relative to our best cross-neighbour

SIMD approach) of this cross-atom approach with conflict resolution on a CPU

with 256-bit AVX. We include results for three different window sizes, and six

different simulations: 256k and 2048k atoms, with Rc set to 1.5, 2.5 and 5.0

(giving an average of 6, 28 and 221 neighbours respectively). The window size

clearly has a significant impact upon the performance of the force compute: a

window size of 1 (i.e. not sorting atoms) exposes the cost of the imbalance in

neighbour list lengths, which increases with the size of the cut-off; an infinite

window size (i.e. completely sorting atoms based on their number of neighbours)

results in the least imbalance but significantly worse performance due to poor

cache locality, particularly for simulations with a large number of atoms; and

a window size of 64 strikes a balance between the two, consistently giving the

best performance.

Even with a window size of 64, our conflict resolution approach is 4–15%

slower overall for the larger two cut-off distances. This is not surprising; cut-off

distances of 2.5 and 5.0 have sufficient cross-neighbour parallelism that cross-

atom SIMD does not improve SIMD efficiency, and so the only significant change

to execution time comes from the overhead of conflict resolution. For a cut-off of

1.5, however, where atoms have fewer neighbours than the SIMD width, we see

a significant speed-up for the force compute (1.37x). The speed-up is less overall

117

8. Conclusions and Future Work

128-bit 256-bit 512-bit 1024-bit 2048-bit

Cross-Neighbour 3.19% 9.36% 18.21% 45.04% 71.60%
Cross-Atom (No CR) 1.44% 2.45% 4.51% 10.63% 26.28%
Cross-Atom (CR) 1.69% 3.50% 6.55% 13.74% 33.21%

Table 8.3: Inefficiency of cross-neighbour and cross-atom SIMD.

(1.04x), but this is because the contribution of force compute to execution time

is lower for this simulation.

Table 8.3 shows the percentage increase in the number of neighbours (due to

padding) for cross-neighbour SIMD and cross-atom SIMD, using a cut-off of 2.5

and a window of 64. For cross-atom SIMD, we give the amount of padding before

and after conflict resolution (no CR and CR). The cross-atom padding is much

lower than the cross-neighbour padding, but the inefficiency of both approaches

grows with SIMD width: for cross-neighbour, more padding is required to reach

a multiple of W ; for cross-atom, (i) the conflict rate increases with SIMD width,

requiring more padding to resolve conflicts, and (ii) the imbalance in the number

of neighbours per atom increases. For (i), if we compare the pre- and post-

conflict resolution padding amounts, we see that resolving conflicts introduces

little padding. For (ii), the amount of padding is modest except for 2048-bit

SIMD, but this is because our sorting window size is the same as W for 2048-bit

SIMD – a larger window is needed for wider SIMD.

Future Architectures

Implementations that use threading must also guarantee the independence of

tasks allowed to execute simultaneously. Our conflict resolution approach could

be used to guarantee independence beyond a single thread, but this is not prac-

tical for a many-core architecture; for KNC, we would need to resolve conflicts

for 3840 parallel tasks (60 cores×4 threads×16 SIMD units). It is thus unclear

how best to map this conflict resolution algorithm to a programming language

like OpenCL, since the notions of SIMD and threading are very similar. Most

probably, we would use a number of work-groups of W work-items each, where

118

8. Conclusions and Future Work

each work-group is treated as a thread and the W work-items are assumed

to be synchronous. The approach could apply to larger work-group sizes, but

this would require additional local synchronisation between threads, which may

prove too expensive.

That a post-processing step such as this one can be performed efficiently

on current hardware, and results in a speed-up where expected, demonstrates

that it is a suitable method for handling SIMD update-conflicts in molecular

dynamics simulations. However, we leave the implementation of this algorithm

within OpenCL (and hence its evaluation on GPU architectures) to future work.

8.2.3 Optimisation of Production Applications

The optimisations that we propose in this work, along with our single-source

development and performance modelling techniques, are evaluated exclusively

in the context of macro-benchmarks. There is a clear need to demonstrate that

the same process can be applied to a production application – however, due to

the complexity and size of these applications, such an undertaking is beyond

the scope of this thesis.

The application that LU is based upon is maintained by NASA, so any fur-

ther work in this space will likely have to be carried out in conjunction with them

– or through collaboration with the maintainers of another scientific wavefront

application, such as the UK Atomic Weapons Establishment. The exploration of

our SIMD and threading optimisations within the context of LAMMPS is more

accessible, since it is open-source and modular by design. There are already

several user-maintained “packages” targeting different programming paradigms

(e.g. OpenMP, CUDA and OpenCL), and work that is currently ongoing seeks

to add support for our SIMD and MIC implementations to LAMMPS in this

way.

119

Bibliography

[1] The ASCI Sweep3D Benchmark. http://www.llnl.gov/asci_

benchmarks/asci/limited/sweep3d/asci_sweep3d.html, 1995.

[2] OpenACC 1.0 Specification. http://www.openacc.org/sites/default/

files/OpenACC.1.0_0.pdf, November 2011.

[3] Message Passing Interface Forum. http://www.mpi-forum.org/, Octo-

ber 2012.

[4] OpenMP 4.0 Specification. http://www.openmp.org/mp-documents/

OpenMP4.0RC1_final.pdf, November 2012.

[5] Technical Report on Directives for Attached Accelerators. Technical Re-

port TR1, OpenMP Architecture Review Board, Champaign, IL, Novem-

ber 2012.

[6] V. S. Adve. Analyzing the Behavior and Performance of Parallel Pro-

grams. PhD thesis, University of Wisconsin-Madison, 1993.

[7] V. S. Adve and M. K. Vernon. Performance Analysis of Mesh Inteconnec-

tion Networks with Deterministic Routing. IEEE Transactions on Parallel

and Distributed Systems, 5(3):225–246, 1994.

[8] J. H. Ahn, M. Erez, and W. J. Dally. Scatter-Add in Data Parallel

Architectures. In Proceedings of the International Symposium on High-

Performance Computer Architecture, HPCA ’05, pages 132–142, San Fran-

cisco, CA, February 2005. IEEE Computer Society.

[9] A. M. Aji and W. C. Feng. Accelerating Data-Serial Applications on

GPGPUs: A Systems Approach. Technical Report TR-08-24, Blacksburg,

VA, 2008.

[10] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman. LogGP:

Incorporating Long Messages Into the LogP Model – One Step Closer

Towards a Realistic Model for Parallel Computation. In Proceedings of

the ACM Symposium on Parallel Algorithms and Architectures, SPAA ’95,

pages 95–105, Santa Barbara, CA, July 1995. ACM.

[11] J. A. Anderson, C. D. Lorenz, and A. Travesset. General Purpose Molec-

ular Dynamics Simulations Fully Implemented on Graphics Processing

Units. Journal of Computational Physics, 227(10):5342–5359, 2008.

120

http://www.llnl.gov/asci_benchmarks/asci/limited/sweep3d/asci_sweep3d.html
http://www.llnl.gov/asci_benchmarks/asci/limited/sweep3d/asci_sweep3d.html
http://www.openacc.org/sites/default/files/OpenACC.1.0_0.pdf
http://www.openacc.org/sites/default/files/OpenACC.1.0_0.pdf
http://www.mpi-forum.org/
http://www.openmp.org/mp-documents/OpenMP4.0RC1_final.pdf
http://www.openmp.org/mp-documents/OpenMP4.0RC1_final.pdf

BIBLIOGRAPHY

[12] N. Arora, A. Shringarpure, and R. W. Vuduc. Direct N-body Kernels for

Multicore Platforms. In Proceedings of the International Conference on

Parallel Processing, ICPP ’09, pages 379–387, Vienna, Austria, September

2009. IEEE Computer Society.

[13] S. Artemova, S. Grudinin, and S. Redon. A Comparison of Neighbor

Search Algorithms for Large Rigid Molecules. Journal of Computational

Chemistry, 32(13):2865–2877, 2011.

[14] S. S. Baghsorkhi, M. Delahaye, S. J. Patel, W. D. Gropp, and W.-m. W.

Hwu. An Adaptive Performance Modeling Tool for GPU Architectures. In

Proceedings of the ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming, PPOPP ’10, pages 105–114, Bangalore, India,

January 2010. ACM.

[15] D. Bailey et al. The NAS Parallel Benchmarks. Technical Report RNR-

94-007, NASA Ames Research Center, March 1994.

[16] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,

L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.

Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga. The

NAS Parallel Benchmarks. International Journal of High Performance

Computing Applications, 5(3):63–73, 1991.

[17] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt. Analyzing

CUDA Workloads Using a Detailed GPU Simulator. In Proceedings of the

IEEE International Symposium on Performance Analysis of Systems and

Software, ISPASS ’09, pages 163–174, Boston, MA, April 2009. IEEE.

[18] S. M. Balle, B. R. Brett, C.-P. Chen, and D. LaFrance-Linden. Extending

a Traditional Debugger to Debug Massively Parallel Applications. Journal

of Parallel and Distributed Computing, 64(5):617–628, 2004.

[19] S. Biswas, B. R. de Supinski, M. Schulz, D. Franklin, T. Sherwood, and

F. T. Chong. Exploiting Data Similarity to Reduce Memory Footprints. In

Proceedings of the IEEE International Parallel and Distributed Processing

Symposium, IPDPS ’11, pages 152–163, Anchorage, AK, May 2011. IEEE

Computer Society.

[20] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Ran-

dall, and Y. Zhou. Cilk: An Efficient Multithreaded Runtime System. In

Proceedings of the ACM SIGPLAN Symposium on Principles and Prac-

tice of Parallel Programming, PPOPP ’95, pages 207–216, Santa Barbara,

CA, 1995. ACM.

121

BIBLIOGRAPHY

[21] R. Bordawekar, U. Bondhugula, and R. Rao. Believe it or Not! Multi-

core CPUs Can Match GPU Performance for FLOP-intensive Application!

Technical Report RC24982, IBM Research Division, Thomas J. Watson

Research Center, Yorktown Heights, NY, 2010.

[22] R. Bordawekar, U. Bondhugula, and R. Rao. Can CPUs Match GPUs on

Performance with Productivity?: Experiences with Optimizing a FLOP-

intensive Application on CPUs and GPU. Technical Report RC25033,

IBM Research Division, Thomas J. Watson Research Center, Yorktown

Heights, NY, 2010.

[23] M. Boyer, D. Tarjan, S. T. Acton, and K. Skadron. Accelerating Leukocyte

Tracking using CUDA: A Case Study in Leveraging Manycore Coproces-

sors. In Proceedings of the IEEE International Parallel and Distributed

Processing Symposium, IPDPS ’09, Rome, Italy, May 2009. IEEE Com-

puter Society.

[24] W. M. Brown, P. Wang, S. J. Plimpton, and A. N. Tharrington. Imple-

menting Molecular Dynamics on Hybrid High Performance Computers –

Short Range Forces. Computer Physics Communications, 182:898–911,

2011.

[25] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and

P. Hanrahan. Brook for GPUs: Stream Computing on Graphics Hardware.

ACM Transactions on Graphics, 23(3):777–786, Aug. 2004.

[26] J. Cao, D. Kerbyson, E. Papaefstathiou, and G. Nudd. Performance Mod-

eling of Parallel and Distributed Computing Using PACE. In Proceed-

ings of the IEEE International Performance, Computing, and Communi-

cations Conference, IPCCC ’00, pages 485–492, Phoenix, AZ, February

2000. IEEE.

[27] D. Case et al. AMBER 11. http://www.ambermd.org, May 2011.

[28] L. Chai, A. Hartono, and D. Panda. Designing High Performance and Scal-

able MPI Intra-node Communication Support for Clusters. In Proceedings

of the IEEE International Conference on Cluster Computing, CLUSTER

’06, pages 1–10, Barcelona, Spain, September 2006. IEEE Computer So-

ciety.

[29] J. Chhugani, C. Kim, H. Shukla, J. Park, P. Dubey, J. Shalf, and H. D.

Simon. Billion-Particle SIMD-Friendly Two-Point Correlation on Large-

Scale HPC Cluster Systems. In Proceedings of the ACM/IEEE Interna-

tional Conference for High Performance Computing, Networking, Storage

122

http://www.ambermd.org

BIBLIOGRAPHY

and Analysis, SC ’12, pages 1–11, Salt Lake City, UT, November 2012.

IEEE Computer Society.

[30] S.-H. Chiang and M. K. Vernon. Characteristics of a Large Shared Memory

Production Workload. In Proceedings of the International Workshop on

Job Scheduling Strategies for Parallel Processing, JSSPP ’01, pages 159–

187, Cambridge, MA, June 2001. Springer-Verlag.

[31] S. Collange, M. Daumas, D. Defour, and D. Parello. Barra: A Parallel

Functional Simulator for GPGPU. In Proceedings of the IEEE Inter-

national Symposium on Modeling, Analysis Simulation of Computer and

Telecommunication Systems, MASCOTS ’10, pages 351–360, Miami, FL,

August 2010. IEEE Computer Society.

[32] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos,

R. Subramonian, and T. von Eicken. LogP: Towards a Realistic Model of

Parallel Computation. In Proceedings of the ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, PPOPP ’93, pages

1–12, San Diego, CA, May 1993. ACM.

[33] A. Danalis, P. Luszczek, J. Dongarra, G. Marin, and J. S. Vetter. Black-

jackBench: Portable Hardware Characterization. In Proceedings of the

International Workshop on Performance Modeling, Benchmarking and

Simulation of High Performance Computing Systems, PMBS ’11, pages

7–8, Seattle, WA, November 2011. ACM.

[34] J. A. Davis, G. R. Mudalige, S. D. Hammond, J. A. Herdman, I. Miller,

and S. A. Jarvis. Predictive Analysis of a Hydrodynamics Application on

Large-Scale CMP Clusters. Computer Science - Research and Develop-

ment, 26(3–4):175–185, June 2011.

[35] Z. DeVito, N. Joubert, F. Palacios, S. Oakley, M. Medina, M. Barrientos,

E. Elsen, F. Ham, A. Aiken, K. Duraisamy, E. Darve, J. Alonso, and

P. Hanrahan. Liszt: A Domain Specific Language for Building Portable

Mesh-Based PDE Solvers. In Proceedings of the International Conference

for High Performance Computing, Networking, Storage and Analysis, SC

’11, pages 9:1–9:12, Seattle, WA, 2011. ACM.

[36] G. Diamos et al. GPU Ocelot. http://code.google.com/p/gpuocelot/,

2012.

[37] R. Dolbeau, S. Bihan, and F. Bodin. HMPP: A Hybrid Multi-core Parallel

Programming Environment. In Proceedings of the Workshop on General-

Purpose Processing on Graphics Processing Units, GPGPU ’07, Boston,

MA, October 2007.

123

http://code.google.com/p/gpuocelot/

BIBLIOGRAPHY

[38] J. Dongarra et al. The International Exascale Software Project Roadmap.

International Journal of High Performance Computing Applications,

25(1):3–60, 2011.

[39] J. J. Dongarra and A. R. Hinds. Unrolling Loops in FORTRAN. Software

– Practice and Experience, 9:219–226, 1979.

[40] J. J. Dongarra, P. Luszczek, and A. Petitet. The LINPACK Benchmark:

Past, Present and Future. Concurrency and Computation: Practice and

Experience, 15(9):803–820, 2003.

[41] R. O. Dror et al. Exploiting 162-Nanosecond End-to-End Communica-

tion Latency on Anton. In Proceedings of the ACM/IEEE International

Conference for High Performance Computing, Networking, Storage and

Analysis, SC ’10, pages 1–12, New Orleans, LA, November 2010. ACM.

[42] P. Du, R. Weber, P. Luszczek, S. Tomov, G. Peterson, and J. Don-

garra. From CUDA to OpenCL: Towards a Performance-Portable Solution

for Multi-platform GPU Programming. Technical Report UT-CS-10-656,

Knoxville, TN, 2010.

[43] Q. F. Fang, R. Wang, and C. S. Liu. Movable Hash Algorithm for Search

of the Neighbor Atoms in Molecular Dynamics Simulation. Computational

Materials Science, 24:453–456, 2002.

[44] C. Garcia, R. Lario, M. Prieto, L. Pinuel, and F. Tirado. Vectorization

of Multigrid Codes Using SIMD ISA Extensions. In Proceedings of the

International Parallel and Distributed Processing Symposium, IPDPS ’03,

Nice, France, April 2003. IEEE Computer Society.

[45] D. Geer. Chip Makers Turn to Multicore Processors. Computer, 38(5):11–

13, May 2005.

[46] M. Giles, G. Mudalige, B. Spencer, C. Bertolli, and I. Reguly. Designing

OP2 for GPU Architectures. Journal of Parallel and Distributed Comput-

ing, 2012 (to appear).

[47] M. B. Giles, G. R. Mudalige, Z. Sharif, G. Markall, and P. H. Kelly.

Performance Analysis of the OP2 Framework on Many-core Architectures.

SIGMETRICS Performance Evaluation Review, 38(4):9–15, 2011.

[48] C. Gong, J. Liu, Z. Gong, J. Qin, and J. Xie. Optimizing Sweep3D for

Graphic Processor Unit. In Proceedings of the International Conference on

Algorithms and Architectures for Parallel Processing, ICA3PP ’10, pages

416–426, Busan, Korea, May 2010.

124

BIBLIOGRAPHY

[49] P. Gonnet. A Simple Algorithm to Accelerate the Computation of Non-

Bonded Interactions in Cell-Based Molecular Dynamics Simulations. Jour-

nal of Computational Chemistry, 28(2):570–573, 2007.

[50] P. Gonnet. Pairwise Verlet Lists: Combining Cell Lists and Verlet Lists

to Improve Memory Locality and Parallelism. Journal of Computational

Chemistry, 33(1):76–81, 2012.

[51] N. K. Govindaraju, B. Lloyd, Y. Dotsenko, B. Smith, and J. Manferdelli.

High Performance Discrete Fourier Transforms on Graphics Processors.

In Proceedings of the ACM/IEEE International Conference for High Per-

formance Computing, Networking, Storage and Analysis, SC ’08, Austin,

TX, November 2008. IEEE/ACM.

[52] S. L. Graham, P. B. Kessler, and M. K. Mckusick. Gprof: A Call Graph

Execution Profiler. In Proceedings of the SIGPLAN Symposium on Com-

piler Construction, pages 120–126, Boston, MA, June 1982. ACM.

[53] W. Gropp and E. L. Lusk. Reproducible Measurements of MPI Perfor-

mance Characteristics. In Proceedings of the European PVM/MPI Users’

Group Meeting on Recent Advances in Parallel Virtual Machine and Mes-

sage Passing Interface, PVM/MPI ’99, pages 11–18, Barcelona, Spain,

1999. Springer-Verlag.

[54] D. A. Grove and P. D. Coddington. Communication Benchmarking and

Performance Modelling of MPI Programs on Cluster Computers. The

Journal of Supercomputing, 34:201–217, 2005. 10.1007/s11227-005-2340-

2.

[55] S. D. Hammond. Performance Modelling and Simulation of High Perfor-

mance Computing Systems. PhD thesis, University of Warwick, 2011.

[56] S. D. Hammond et al. WARPP: A Toolkit for Simulating High-

Performance Parallel Scientific Codes. In Proceedings of the International

Conference on Simulation Tools and Techniques, SimuTools ’09, Rome,

Italy, March 2009. ICST.

[57] S. D. Hammond, G. R. Mudalige, J. A. Smith, A. B. Mills, S. A. Jarvis,

J. Holt, I. Miller, J. A. Herdman, and A. Vadgama. Performance Predic-

tion and Procurement in Practice: Assessing the Suitability of Commodity

Cluster Components for Wavefront Codes. IET Software, 3(6):509–521,

2009.

[58] S. S. Hampton, S. R. Alam, P. S. Crozier, and P. K. Agarwal. Optimal

Utilization of Heterogeneous Resources for Biomolecular Simulations. In

125

BIBLIOGRAPHY

Proceedings of the ACM/IEEE International Conference for High Perfor-

mance Computing, Networking, Storage and Analysis, SC ’10, pages 1–11,

New Orleans, LA, November 2010. IEEE/ACM.

[59] M. J. Harvey, G. Giupponi, and G. De Fabritiis. ACEMD: Accelerat-

ing Biomolecular Dynamics in the Microsecond Time Scale. Journal of

Chemical Theory and Computation, 5(6):1632–1639, 2009.

[60] T. N. Heinz and P. H. Hünenberger. A Fast Pairlist-Construction Al-

gorithm for Molecular Simulations Under Periodic Boundary Conditions.

Journal of Computational Chemistry, 25(12):1474–1486, 2004.

[61] M. Heroux and R. Barrett. Mantevo Project. http://software.sandia.

gov/mantevo/, May 2011.

[62] M. A. Heroux et al. Improving Performance via Mini-applications. Techni-

cal Report SAND2009-5574, Sandia National Laboratories, Albuquerque,

NM, 2009.

[63] A. Hoisie, G. Johnson, D. J. Kerbyson, M. Lang, and S. Pakin. A Perfor-

mance Comparison Through Benchmarking and Modeling of Three Lead-

ing Supercomputers: BlueGene/L, Red Storm, and Purple. In Proceed-

ings of the ACM/IEEE Conference on High Performance Networking and

Computing, SC ’06, Tampa, FL, 2006. ACM Press.

[64] A. Hoisie, O. Lubeck, and H. Wasserman. Performance and Scalability

Analysis of Teraflop-Scale Parallel Architectures Using Multidimensional

Wavefront Applications. International Journal of High Performance Com-

puting Applications, 14(4):330–346, 2000.

[65] A. Hoisie, O. Lubeck, H. Wasserman, F. Petrini, and H. Alme. A General

Predictive Performance Model for Wavefront Algorithms on Clusters of

SMPs. In Proceedings of the International Conference on Parallel Process-

ing, ICPP ’00, Toronto, Canada, August 2000. IEEE Computer Society.

[66] J. Holewinski, L.-N. Pouchet, and P. Sadayappan. High-Performance Code

Generation for Stencil Computations on GPU Architectures. In Proceed-

ings of the International Conference on Supercomputing, ICS ’12, pages

311–320, Venice, Italy, June 2012. ACM.

[67] Intel Corporation. Intel Cilk Plus. http://software.intel.com/en-us/

intel-cilk-plus, 2011.

[68] M. Itzkowitz and Y. Maruyama. HPC Profiling with the Sun Studio

Performance Tools. In Tools for High Performance Computing, pages 67–

93. 2010.

126

http://software.sandia.gov/mantevo/
http://software.sandia.gov/mantevo/
http://software.intel.com/en-us/intel-cilk-plus
http://software.intel.com/en-us/intel-cilk-plus

BIBLIOGRAPHY

[69] D. A. Jacobsen, J. C. Thibault, and I. Senocak. An MPI-CUDA Im-

plementation for Massively Parallel Incompressible Flow Computations

on Multi-GPU Clusters. In Proceedings of the AIAA Aerospace Sciences

Meeting, Orlando, FL, January 2010. AIAA.

[70] C. L. Janssen, H. Adalsteinsson, S. Cranford, J. P. Kenny, A. Pinar, D. A.

Evensky, and J. Mayo. A Simulator for Large-Scale Parallel Computer Ar-

chitectures. International Journal of Distributed Systems and Technolo-

gies, 1(2):57–73, 2010.

[71] N. P. Jouppi and D. W. Wall. Available Instruction-Level Parallelism for

Superscalar and Superpipelined Machines. In Proceedings of the Interna-

tional Conference on Architectural Support for Programming Languages

and Operating Systems, ASPLOS-III, pages 272–282, Boston, MA, 1989.

ACM.

[72] D. J. Kerbyson, H. J. Alme, A. Hoisie, F. Petrini, H. J. Wasserman,

and M. Gittings. Predictive Performance and Scalability Modeling of a

Large-Scale Application. In Proceedings of the ACM/IEEE International

Conference for High Performance Computing, Networking, Storage and

Analysis, SC ’01, pages 37–37, Denver, CO, 2001. ACM.

[73] D. J. Kerbyson, A. Hoisie, and S. D. Pautz. Performance Analysis and

Grid Computing. chapter Performance Modeling of Deterministic Trans-

port Computations, pages 21–39. Kluwer Academic Publishers, Norwell,

MA, 2004.

[74] D. J. Kerbyson, A. Hoisie, and H. J. Wasserman. A Comparison between

the Earth Simulator and AlphaServer Systems Using Predictive Applica-

tion Performance Models. In Proceedings of the International Symposium

on Parallel and Distributed Processing, IPDPS ’03, Nice, France, April

2003. IEEE Computer Society.

[75] A. Kerr, G. Diamos, and S. Yalamanchili. Modeling GPU-CPU Work-

loads and Systems. In Proceedings of the Workshop on General-Purpose

Processing on Graphics Processing Units, GPGPU 10, pages 31–42, Pitts-

burgh, PA, March 2010. ACM.

[76] Khronos OpenCL Working Group. OpenCL 1.2 Specification. http:

//www.khronos.org/registry/cl/specs/opencl-1.2.pdf, November

2011.

[77] Khronos OpenCL Working Group. SPIR 1.0 Specification for

OpenCL. http://www.khronos.org/registry/cl/specs/spir_spec_

1.0-provisional.pdf, November 2012.

127

http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
http://www.khronos.org/registry/cl/specs/spir_spec_1.0-provisional.pdf
http://www.khronos.org/registry/cl/specs/spir_spec_1.0-provisional.pdf

BIBLIOGRAPHY

[78] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D. Nguyen, T. Kaldewey,

V. W. Lee, S. A. Brandt, and P. Dubey. FAST: Fast Architecture Sensitive

Tree Search on Modern CPUs and GPUs. In Proceedings of the ACM

SIGMOD International Conference on Management of Data, SIGMOD

’10, pages 339–350, Indianapolis,IN, June 2010. ACM.

[79] J. Kim, S. Seo, J. Lee, J. Nah, G. Jo, and J. Lee. SnuCL: An OpenCL

Framework for Heterogeneous CPU/GPU Clusters. In Proceedings of

the International Conference on Supercomputing, ICS ’12, pages 341–352,

Venice, Italy, June 2012. ACM.

[80] S. Kim and H. Han. Efficient SIMD Code Generation for Irregular Kernels.

In Proceedings of the Symposium on Principles and Practice of Parallel

Programming, PPOPP ’12, pages 55–64, New Orleans, LA, February 2012.

ACM.

[81] M. Klemm, A. Duran, X. Tian, H. Saito, D. Caballero, and X. Martorell.

Extending OpenMP* with Vector Constructs for Modern Multicore SIMD

Architectures. In Proceedings of the International Workshop on OpenMP,

IWOMP ’12, pages 59–72, Rome, Italy, 2012. Springer-Verlag.

[82] P. M. Kogge and T. J. Dysart. Using the TOP500 to Trace and Project

Technology and Architecture Trends. In Proceedings of the ACM/IEEE

International Conference for High Performance Computing, Networking,

Storage and Analysis, SC ’11, pages 28:1–28:11, Seattle, WA, November

2011. IEEE/ACM.

[83] K. Komatsu, K. Sato, Y. Arai, K. Koyama, H. Takizawa, and

H. Kobayashi. Evaluating Performance and Portability of OpenCL Pro-

grams. In Proceedings of the International Workshop on Automatic Per-

formance Tuning, iWAPT ’11, Berkeley, CA, June 2010. Springer.

[84] M. Koop, T. Jones, and D. Panda. Reducing Connection Memory Require-

ments of MPI for InfiniBand Clusters: A Message Coalescing Approach.

In IEEE International Symposium on Cluster Computing and the Grid,

CCGRID ’07, pages 495–504, Rio de Janeiro, Brazil, May 2007. IEEE

Computer Society.

[85] S. Kumar, D. Kim, M. Smelyanskiy, Y.-K. Chen, J. Chhugani, C. J.

Hughes, C. Kim, V. W. Lee, and A. D. Nguyen. Atomic Vector Operations

on Chip Multiprocessors. In Proceedings of the International Symposium

on Computer Architecture, ISCA ’08, pages 441–452, Beijing, China, June

2008. IEEE.

128

BIBLIOGRAPHY

[86] L. Lamport. The Parallel Execution of DO Loops. Communications of

the ACM, 17:83–93, February 1974.

[87] Lawrence Livermore National Laboratory. Livermore Computing Sys-

tems Summary. https://computing.llnl.gov/resources/systems_

summary.pdf, 2010.

[88] S. Le Grand, A. W. Gotzx, and R. C. Walker. SPFP: Speed Without

Compromise – A Mixed Precision Model for GPU Accelerated Molecular

Dynamics Simulations. (to appear), 2012.

[89] S. Lee and R. Eigenmann. OpenMPC: Extended OpenMP Programming

and Tuning for GPUs. In Proceedings of the ACM/IEEE International

Conference for High Performance Computing, Networking, Storage and

Analysis, SC ’10, pages 1–11, New Orleans, LA, 2010. IEEE Computer

Society.

[90] S. Lee, S.-J. Min, and R. Eigenmann. OpenMP to GPGPU: A Compiler

Framework for Automatic Translation and Optimization. In Proceedings

of the ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, PPOPP ’09, pages 101–110, Raleigh, NC, 2009. ACM.

[91] S. Lee and J. S. Vetter. Early Evaluation of Directive-Based GPU Pro-

gramming Models for Productive Exascale Computing. In Proceedings of

the ACM/IEEE International Conference for High Performance Comput-

ing, Networking, Storage and Analysis, SC ’12, pages 1–11, Salt Lake City,

UT, November 2012. IEEE Computer Society.

[92] V. W. Lee et al. Debunking the 100X GPU vs. CPU Myth: An Evalua-

tion of Throughput Computing on CPU and GPU. In Proceedings of the

ACM/IEEE International Symposium on Computer Architecture, ISCA

’10, pages 451–460, Saint-Malo, France, June 2010. ACM.

[93] S. Manavski and G. Valle. CUDA Compatible GPU Cards as Efficient

Hardware Accelerators for Smith-Waterman Sequence Alignment. BMC

Bioinformatics, 9(Suppl 2):S10, 2008.

[94] D. R. Mason. Faster Neighbor List Generation Using a Novel Lattice

Vector Representation. Computer Physics Communications, 170:31–41,

2005.

[95] W. Mattson and B. M. Rice. Near-Neighbor Calculations Using a Modified

Cell-Linked List Method. Computer Physics Communications, 119:135–

148, 1999.

129

https://computing.llnl.gov/resources/systems_summary.pdf
https://computing.llnl.gov/resources/systems_summary.pdf

BIBLIOGRAPHY

[96] T. Maximova and C. Keasar. A Novel Algorithm for Non-Bonded-List

Updating in Molecular Simulations. Journal of Computational Biology,

13(5):1041–1048, 2006.

[97] J. D. McCalpin. Memory Bandwidth and Machine Balance in Current

High Performance Computers. IEEE Computer Society Technical Com-

mittee on Computer Architecture (TCCA) Newsletter, pages 19–25, De-

cember 1995.

[98] K. S. McKinley, S. Carr, and C.-W. Tseng. Improving Data Locality with

Loop Transformations. ACM Transactions on Programming Languages

and Systems, 18(4):424–453, July 1996.

[99] P. Mehra, C. H. Schulbach, and J. C. Yan. A Comparison of Two Model-

based Performance-Prediction Techniques for Message-Passing Parallel

Programs. SIGMETRICS Performance Evaluation Review, 22(1):181–

190, May 1994.

[100] Mellanox Technologies. NVIDIA GPUDirect Technology – Accelerating

GPU-based Systems. http://www.mellanox.com/pdf/whitepapers/TB_

GPU_Direct.pdf, May 2010.

[101] S. Meloni, M. Rosati, and L. Colombo. Efficient Particle Labeling in

Atomistic Simulations. Journal of Chemical Physics, 126(12), 2007.

[102] J. Meng, V. A. Morozov, K. Kumaran, V. Vishwanath, and T. D. Uram.

GROPHECY: GPU Performance Projection from CPU Code Skeletons.

In Proceedings of the ACM/IEEE International Conference for High Per-

formance Computing, Networking, Storage and Analysis, SC ’11, pages

14:1–14:11, Seattle, WA, 2011. IEEE/ACM.

[103] H. Meuer, E. Strohmaier, J. Dongarra, and H. Simon. Top 500 Supercom-

puter Sites. http://top500.org/, November 2012.

[104] G. E. Moore. Cramming More Components onto Integrated Circuits.

Electronics, 38(8):114–117, 19 April 1965.

[105] C. A. Moritz and M. I. Frank. LoGPC: Modeling Network Contention

in Message-Passing Programs. SIGMETRICS Performance Evaluation

Review, 26:254–263, June 1998.

[106] P. J. Mucci, S. Browne, C. Deane, and G. Ho. PAPI: A Portable Interface

to Hardware Performance Counters. In Proceedings of the Department

of Defense HPCMP Users Group Conference, pages 7–10, Monterey, CA,

June 1999. IEEE.

130

http://www.mellanox.com/pdf/whitepapers/TB_GPU_Direct.pdf
http://www.mellanox.com/pdf/whitepapers/TB_GPU_Direct.pdf
http://top500.org/

BIBLIOGRAPHY

[107] G. R. Mudalige. Predictive Analysis and Optimisation of Pipelined Wave-

front Applications Using Reusable Analytic Models. PhD thesis, University

of Warwick, 2009.

[108] G. R. Mudalige, M. B. Giles, C. Bertolli, and P. H. J. Kelly. Predic-

tive Modeling and Analysis of OP2 on Distributed Memory GPU Clus-

ters. SIGMETRICS Performance Evaluation Review, 40(2):61–67, Octo-

ber 2012.

[109] G. R. Mudalige, S. D. Hammond, J. A. Smith, and S. A. Jarvis. Pre-

dictive Analysis and Optimisation of Pipelined Wavefront Computations.

In Proceedings of the Workshop on Advances in Parallel and Distributed

Computational Models, APDCM ’09, pages 1–8, Rome, Italy, May 2009.

IEEE.

[110] G. R. Mudalige, S. A. Jarvis, D. P. Spooner, and G. R. Nudd. Predictive

Performance Analysis of a Parallel Pipelined Synchronous Wavefront Ap-

plication for Commodity Processor Cluster Systems. In Proceedings of the

IEEE International Conference on Cluster Computing, CLUSTER ’06,

pages 1–12, Barcelona, Spain, September 2006. IEEE Computer Society.

[111] G. R. Mudalige, M. K. Vernon, and S. A. Jarvis. A Plug-and-Play Model

for Evaluating Wavefront Computations on Parallel Architectures. In Pro-

ceedings of the IEEE International Parallel and Distributed Processing

Symposium, IPDPS ’08, pages 1–14, Miami, FL, April 2008. IEEE.

[112] T. Mudge. Power: A First-Class Architectural Design Constraint. Com-

puter, 34(4):52–58, 2001.

[113] Y. Munekawa, F. Ino, and K. Hagihara. Design and Implementation of the

Smith-Waterman Algorithm of the CUDA-Compatible GPU. In Proceed-

ings of the IEEE International Conference on Bioinformatics and Bio-

engineering, BIBE ’08, Athens, Greece, October 2008. IEEE.

[114] G. J. Narlikar and G. E. Blelloch. Pthreads for Dynamic and Irregular

Parallelism. In Proceedings the ACM/IEEE Conference on Supercomput-

ing, SC ’98, pages 1–16, Orlando, FL, November 1998. IEEE.

[115] T. Narumi, Y. Ohno, N. Okimoto, T. Koishi, A. Suenaga, N. Futatsugi,

R. Yanai, R. Himeno, S. Fujikawa, M. Taiji, and M. Ikei. A 55 TFLOPS

Simulation of Amyloid-Forming Peptides from Yeast Prion Sup35 with the

Special-Purpose Computer System MDGRAPE-3. In Proceedings of the

International Conference for High Performance Computing, Networking,

Storage and Analysis, SC ’06, pages 1–13, Tampa, FL, November 2006.

131

BIBLIOGRAPHY

[116] N. Nethercote and J. Seward. Valgrind: A Framework for Heavyweight

Dynamic Binary Instrumentation. In Proceedings of the ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI

’07, pages 89–100, San Diego, CA, June 2007. ACM.

[117] A. Nguyen, N. Satish, J. Chhugani, C. Kim, and P. Dubey. 3.5-D Blocking

Optimization for Stencil Computations on Modern CPUs and GPUs. In

Proceedings of the ACM/IEEE International Conference for High Perfor-

mance Computing, Networking, Storage and Analysis, SC ’10, pages 1–13,

New Orleans, LA, November 2010. IEEE Computer Society.

[118] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable Parallel Pro-

gramming with CUDA. Queue, 6(2):40–53, Mar. 2008.

[119] G. R. Nudd, D. J. Kerbyson, E. Papaefstathiou, S. C. Perry, J. S. Harper,

and D. V. Wilcox. PACE – A Toolset for the Performance Prediction of

Parallel and Distributed Systems. International Journal of High Perfor-

mance Computing Applications, 14(3):228–251, 2000.

[120] NVIDIA Corporation. Tesla C2050 / C2070 GPU Computing Proces-

sor Datasheet. http://www.nvidia.com/docs/IO/43395/NV_DS_Tesla_

C2050_C2070_jul10_lores.pdf, July 2010.

[121] NVIDIA Corporation. NVIDIA’s Next Generation CUDA Compute

Architecture: Kepler GK110 – The Fastest, Most Efficient HPC Ar-

chitecture Ever Built. http://www.nvidia.com/content/PDF/kepler/

NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf, May 2012.

[122] S. Olivier, J. Prins, J. Derby, and K. Vu. Porting the GROMACS Molec-

ular Dynamics Code to the Cell Processor. In Proceedings of the IEEE

International Parallel and Distributed Processing Symposium, IPDPS ’07,

Long Beach, CA, March 2007. IEEE.

[123] S. J. Pennycook, S. D. Hammond, G. R. Mudalige, and S. A. Jarvis. Expe-

riences with Porting and Modelling Wavefront Algorithms on Many-Core

Architectures. In Proceedings of the Daresbury GPU Workshop, Dares-

bury, UK, September 2010.

[124] S. J. Pennycook, S. D. Hammond, G. R. Mudalige, and S. A. Jarvis. Per-

formance Analysis of a Hybrid MPI/CUDA Implementation of the NAS-

LU Benchmark. In Proceedings of the International Workshop on Perfor-

mance Modeling, Benchmark and Simulation of HPC Systems, PMBS ’10,

New Orleans, LA, November 2010.

132

http://www.nvidia.com/docs/IO/43395/NV_DS_Tesla_C2050_C2070_jul10_lores.pdf
http://www.nvidia.com/docs/IO/43395/NV_DS_Tesla_C2050_C2070_jul10_lores.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf

BIBLIOGRAPHY

[125] S. J. Pennycook, S. D. Hammond, G. R. Mudalige, and S. A. Jarvis. Per-

formance Analysis of a Hybrid MPI/CUDA Implementation of the NAS-

LU Benchmark. ACM SIGMETRICS Performance Evaluation Review,

38(4), 2011.

[126] S. J. Pennycook, S. D. Hammond, G. R. Mudalige, S. A. Wright, and S. A.

Jarvis. On the Acceleration of Wavefront Applications using Distributed

Many-Core Architectures. The Computer Journal, 55(2):138–153, Febru-

ary 2012.

[127] S. J. Pennycook, S. D. Hammond, S. A. Wright, J. A. Herdman, I. Miller,

and S. A. Jarvis. An Investigation of the Performance Portability of

OpenCL. Journal of Parallel and Distributed Computing, (to appear),

2012.

[128] S. J. Pennycook, C. J. Hughes, M. Smelyanskiy, and S. A. Jarvis. Ex-

ploring SIMD for Molecular Dynamics, Using Intel Xeon Processors and

Intel Xeon Phi Coprocessors. In Proceedings of the IEEE International

Parallel and Distributed Processing Symposium, IPDPS ’13, Boston, MA,

May 2013.

[129] S. J. Pennycook and S. A. Jarvis. Developing Performance-Portable

Molecular Dynamics Kernels in OpenCL. In Proceedings of the Interna-

tional Workshop on Performance Modeling, Benchmark and Simulation

of HPC Systems, PMBS ’12, Salt Lake City, UT, November 2012.

[130] S. J. Pennycook, G. R. Mudalige, S. D. Hammond, and S. A. Jarvis.

Parallelising Wavefront Applications on General-Purpose GPU Devices.

In Proceedings of the UK Performance Engineering Workshop, UKPEW

’10, Warwick, UK, July 2010.

[131] O. Perks, S. D. Hammond, S. J. Pennycook, and S. A. Jarvis. WMTools

– Assessing Parallel Application Memory Utilisation at Scale. In Proceed-

ings of the European Conference on Computer Performance Engineering,

EPEW ’11, pages 148–162, Berlin, Heidelberg, 2011. Springer-Verlag.

[132] O. F. J. Perks, S. D. Hammond, S. J. Pennycook, and S. A. Jarvis. WM-

Trace – A Lightweight Memory Allocation Tracker and Analysis Frame-

work. In Proceedings of the UK Performance Engineering Workshop,

UKPEW ’11, Bradford, UK, July 2011.

[133] R. J. Petrella, I. Andricioaei, B. R. Brooks, and M. Karplus. An Im-

proved Method for Nonbonded List Generation: Rapid Determination of

133

BIBLIOGRAPHY

Near-Neighbor Pairs. Journal of Computational Chemistry, 24(2):222–

231, 2003.

[134] F. Petrini et al. Multicore Surprises: Lessons Learned from Optimizing

Sweep3D on the Cell Broadband Engine. In Proceedings of the IEEE

International Parallel and Distributed Processing Symposium, IPDPS ’07,

pages 1–10, Long Beach, CA, July 2007. IEEE.

[135] M. Pharr and W. R. Mark. ispc: A SPMD Compiler for High-Performance

CPU Programming. In Proceedings of Innovative Parallel Computing:

Foundations & Applications of GPU, Manycore and Heterogeneous Sys-

tems, InPar ’12, San Jose, CA, May 2012.

[136] J. C. Phillips, J. E. Stone, and K. Schulten. Adapting a Message-Driven

Parallel Application to GPU-Accelerated Clusters. In Proceedings of the

ACM/IEEE International Conference for High Performance Computing,

Networking, Storage and Analysis, SC ’08, pages 1–9, Austin, TX, Novem-

ber 2008.

[137] S. Plimpton. Fast Parallel Algorithms for Short-Range Molecular Dynam-

ics. Journal of Computational Physics, 117:1–19, 1995.

[138] S. Plimpton et al. LAMMPS Benchmarks. http://lammps.sandia.gov/

bench.html, May 2011.

[139] S. Plimpton et al. LAMMPS Molecular Dynamics Simulator. http://

lammps.sandia.gov/, May 2011.

[140] R. Rabenseifner, G. Hager, and G. Jost. Hybrid MPI/OpenMP Paral-

lel Programming on Clusters of Multi-Core SMP Nodes. In Proceedings

of the Euromicro International Conference on Parallel, Distributed and

Network-based Processing, PDP ’09, pages 427–436, Weimar, Germany,

February 2009. IEEE Computer Society.

[141] B. R. Rau and J. A. Fisher. Instruction-level Parallel Processing: History,

Overview, and Perspective. Journal of Supercomputing, 7(1-2):9–50, May

1993.

[142] R. Reussner, P. Sanders, L. Prechelt, and M. Müller. SKaMPI: A Detailed,

Accurate MPI Benchmark. Recent Advances in Parallel Virtual Machine

and Message Passing Interface, 1497:52–59, 1998.

[143] S. Ryoo et al. Optimization Principles and Application Performance Eval-

uation of a Multithreaded GPU Using CUDA. In Proceedings of the ACM

134

http://lammps.sandia.gov/bench.html
http://lammps.sandia.gov/bench.html
http://lammps.sandia.gov/
http://lammps.sandia.gov/

BIBLIOGRAPHY

SIGPLAN Symposium on Principles and Practice of Parallel Program-

ming, PPOPP ’08, pages 73–82, Salt Lake City, UT, February 2008. ACM.

[144] S. Saini and D. H. Bailey. NAS Parallel Benchmark (Version 1.0) Re-

sults 11-96. Technical Report NAS-96-18, NASA Ames Research Center,

November 1996.

[145] N. Satish, C. Kim, J. Chhugani, H. Saito, R. Krishnaiyer, M. Smelyanskiy,

M. Girkar, and P. Dubey. Can Traditional Programming Bridge the Ninja

Performance Gap for Parallel Computing Applications? In Proceedings of

the International Symposium on Computer Architecture, ISCA ’12, pages

440–451, Portland, OR, June 2012. IEEE.

[146] S. Seo, G. Jo, and J. Lee. Performance Characterization of the NAS Paral-

lel Benchmarks in OpenCL. In IEEE International Symposium on Work-

load Characterization, IISWC ’11, pages 137–148, Austin, TX, November

2011. IEEE.

[147] H. Shan, N. J. Wright, J. Shalf, K. Yelick, M. Wagner, and N. Wichmann.

A Preliminary Evaluation of the Hardware Acceleration of the Cray Gem-

ini Interconnect for PGAS Languages and Comparison with MPI. In Pro-

ceedings of the International Workshop on Performance Modeling, Bench-

marking and Simulation of High Performance Computing Systems, PMBS

’11, pages 13–14, Seattle, WA, 2011. ACM.

[148] D. E. Shaw. A Fast, Scalable Method for the Parallel Evaluation of

Distance-Limited Pairwise Particle Interactions. Journal of Computa-

tional Chemistry, 26(13):1318–1328, 2005.

[149] T. Shimokawabe et al. An 80-Fold Speedup, 15.0 TFlops Full GPU Ac-

celeration of Non-Hydrostatic Weather Model ASUCA Production Code.

In Proceedings of the ACM/IEEE International Conference for High Per-

formance Computing, Networking, Storage and Analysis, SC ’10, New

Orleans, LA, November 2010.

[150] M. Smelyanskiy, D. Holmes, J. Chhugani, A. Larson, D. Carmean, D. Han-

son, P. Dubey, K. Augustine, D. Kim, A. Kyker, V. Lee, A. Nguyen,

L. Seiler, and R. Robb. Mapping High-Fidelity Volume Rendering for

Medical Imaging to CPU, GPU and Many-Core Architectures. IEEE

Transactions on Visualization and Computer Graphics, 15(6):1563–1570,

November 2009.

[151] L. Smith and M. Bull. Development of Mixed Mode MPI/OpenMP Ap-

plications. Scientific Programming, 9(2,3):83–98, 2001.

135

BIBLIOGRAPHY

[152] T. Spelce. ASC Sequoia Benchmark Codes. https://asc.llnl.gov/

sequoia/benchmarks/, September 2012.

[153] H. Sutter. The Free Lunch is Over: A Fundamental Turn Toward Con-

currency in Software. Dr. Dobbs Journal, 30(3):202–210, 2005.

[154] C. R. Trott. LAMMPScuda - A New GPU-Accelerated Molecular Dynam-

ics Simulations Package and its Application to Ion-Conducting Glasses.

PhD thesis, Ilmenau University of Technology, 2011.

[155] C. R. Trott, L. Winterfield, and P. S. Crozier. General-Purpose Molecular

Dynamics Simulations on GPU-based Clusters. arXiv:1009.4330v2, 2010.

[156] L. Verlet. Computer “Experiments” on Classical Fluids. I. Thermodynam-

ical Properties of Lennard-Jones Molecules. Physical Review, 159(1):98–

103, 1967.

[157] J. S. Vetter and M. O. McCracken. Statistical Scalability Analysis of

Communication Operations in Distributed Applications. In Proceedings

of the ACM SIGPLAN Symposium on Principles and Practices of Parallel

Programming, PPoPP ’01, pages 123–132, Snowbird, UT, 2001. ACM.

[158] R. Vuduc, A. Chandramowlishwaran, J. Choi, M. E. Guney, and

A. Shringarpure. On the Limits of GPU Acceleration. In Proceedings of the

USENIX Workshop on Hot Topics in Parallelism, HotPar ’10, Berkeley,

CA, June 2010.

[159] R. Weber, A. Gothandaraman, R. J. Hinde, and G. D. Peterson. Compar-

ing Hardware Accelerators in Scientific Applications: A Case Study. IEEE

Transactions on Parallel and Distributed Systems, 22(1):58–68, January

2011.

[160] R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated Empirical

Optimizations of Software and the ATLAS Project. Parallel Computing,

27(1–2):3–35, 2001.

[161] S. Wienke, D. Plotnikov, D. an Mey, C. Bischof, A. Hardjosuwito,

C. Gorgels, and C. Brecher. Simulation of Bevel Gear Cutting with GPG-

PUs – Performance and Productivity. Computer Science - Research and

Development, pages 1–10, 2011.

[162] S. Williams, J. Carter, L. Oliker, J. Shalf, and K. Yelick. Optimization of a

Lattice Boltzmann Computation on State-of-the-Art Multicore Platforms.

Journal of Parallel and Distributed Computing, 69(9):762–777, September

2009.

136

https://asc.llnl.gov/sequoia/benchmarks/
https://asc.llnl.gov/sequoia/benchmarks/

BIBLIOGRAPHY

[163] S. A. Wright, S. D. Hammond, S. J. Pennycook, R. F. Bird, J. A. Herd-

man, I. Miller, A. Vadgama, A. Bhalerao, and S. A. Jarvis. Parallel File

System Analysis Through Application I/O Tracing. The Computer Jour-

nal, 2012.

[164] H. Wu, G. Diamos, A. Lele, J. Wang, S. Cadambi, S. Yalamanchili, and

S. Chakradhar. Optimizing Data Warehousing Applications for GPUs Us-

ing Kernel Fusion/Fission. In Proceedings of the Multicore and GPU Pro-

gramming Models, Languages and Compilers Workshop, Shanghai, China,

May 2012.

[165] Z. Yao, J.-S. Wang, G.-R. Liu, and M. Cheng. Improved Neighbor List

Algorithm in Molecular Simulations Using Cell Decomposition and Data

Sorting Method. Computer Physics Communications, 161:27–35, 2004.

[166] Y. Zhang and J. Owens. A Quantitative Performance Analysis Model

for GPU Architectures. In Proceedings of the International Symposium

on High Performance Computer Architecture, HPCA ’11, pages 382–393,

San Antonio, TX, February 2011. IEEE Computer Society.

137

APPENDIX A
Assembly Generated for OpenCL Gather Operations

Figures A.1 and A.2 list the assembly generated by the Intel SDK for two of

our miniMD kernels: the auto-vectorised vector gather kernel, and the kernel

with explicit vectorisation and 8-way unrolling, respectively. The instructions

have been re-ordered and grouped to improve readability, and any instructions

not directly related to the gather of positions have been removed.

Both listings begin in the same way, loading the positions of eight neighbours

into eight 128-bit (XMM) registers. These positions are stored in AoS format

({x, y, z, 0}) and both pieces of assembly transpose the gathered positions into

SoA format ({x1, x2, ...}, {y1, y2, ...} and {z1, z2, ...}), storing the result in three

256-bit (YMM) registers. During auto-vectorisation, the compiler recognises

that this operation can be performed by an in-register AoS-to-SoA transpose,

emitting a sequence of 14 shuffle and permute instructions. The sequence gen-

erated for our explicit vector kernel is significantly less efficient, containing 37

instructions.

Each of the vinsertps instructions in Figure A.2 extracts the x, y or z

component from one XMM register (in AoS), and inserts it into another (in

SoA). The result is six XMM registers, two for each of x, y and z, which are

then combined into three YMM registers using three vinsertf128s. These

inserts together account for 21 of the 37 instructions.

The vinsertps instruction has the capability to extract any 32-bit element

from an XMM register, and we were therefore surprised to see that each of

its uses here extracts the lowest 32 bits. This requires the generation of the

16 remaining instructions, to rearrange the XMM registers – each vpshufd in-

struction moves an atom’s y component to the lowest 32-bits of the register,

138

Assembly Generated for OpenCL Gather Operations

// Load {x, y, z, 0} for eight atoms.

vmovaps XMM7, XMMWORD PTR [R11 + R15]

vmovaps XMM9, XMMWORD PTR [R10]

vmovaps XMM10, XMMWORD PTR [R9]

vmovaps XMM11, XMMWORD PTR [R8]

vmovaps XMM12, XMMWORD PTR [RDI]

vmovaps XMM13, XMMWORD PTR [RSI]

vmovaps XMM14, XMMWORD PTR [RDX]

vmovaps XMM15, XMMWORD PTR [R12]

// Build SoA registers for x, y and z.

vperm2f128 YMM11, YMM11, YMM15, 32

vperm2f128 YMM9, YMM9, YMM13, 32

vshufps YMM13, YMM9, YMM11, 68

vperm2f128 YMM10, YMM10, YMM14, 32

vperm2f128 YMM7, YMM7, YMM12, 32

vshufps YMM12, YMM7, YMM10, 68

vshufps YMM14, YMM12, YMM13, -35

vpermilps YMM14, YMM14, -40

vshufps YMM12, YMM12, YMM13, -120

vpermilps YMM12, YMM12, -40

vshufps YMM9, YMM9, YMM11, -18

vshufps YMM7, YMM7, YMM10, -18

vshufps YMM7, YMM7, YMM9, -120

vpermilps YMM7, YMM7, -40

Figure A.1: Assembly from the vector gather kernel.

and each vmovhlps instruction does the same for z.

We believe that these behaviours are caused by a combination of compiler

immaturity and the way in which we have expressed the gather operation in

OpenCL (Figure 6.8). Future compiler releases or an alternative representation

of the gather in code may address these issues, leading to considerably better

performance for this kernel on hardware supporting AVX instructions.

139

Assembly Generated for OpenCL Gather Operations

// Load {x, y, z, 0} for eight atoms.

vmovdqa XMM3, XMMWORD PTR [R9 + R13]

vmovdqa XMM4, XMMWORD PTR [R9 + R13]

vmovdqa XMM6, XMMWORD PTR [R9 + R13]

vmovdqa XMM7, XMMWORD PTR [R9 + R13]

vmovdqa XMM8, XMMWORD PTR [R9 + R13]

vmovdqa XMM9, XMMWORD PTR [R9 + R13]

vmovdqa XMM11, XMMWORD PTR [R9 + R13]

vmovdqa XMM12, XMMWORD PTR [R9 + R13]

// Build SoA register for x component.

vinsertps XMM5, XMM4, XMM3, 16

vinsertps XMM5, XMM5, XMM6, 32

vinsertps XMM5, XMM5, XMM7, 48

vinsertps XMM10, XMM9, XMM8, 16

vinsertps XMM10, XMM10, XMM11, 32

vinsertps XMM10, XMM10, XMM12, 48

vinsertf128 YMM5, YMM10, XMM5, 1

// Build SoA register for y component.

vpshufd XMM13, XMM4, 1

vpshufd XMM14, XMM3, 1

vinsertps XMM13, XMM13, XMM14, 16

vpshufd XMM14, XMM6, 1

vinsertps XMM13, XMM13, XMM14, 32

vpshufd XMM14, XMM7, 1

vinsertps XMM13, XMM13, XMM14, 48

vpshufd XMM14, XMM9, 1

vpshufd XMM15, XMM8, 1

vinsertps XMM14, XMM14, XMM15, 16

vpshufd XMM15, XMM11, 1

vinsertps XMM14, XMM14, XMM15, 32

vpshufd XMM15, XMM12, 1

vinsertps XMM14, XMM14, XMM15, 48

vinsertf128 YMM13, YMM14, XMM13, 1

// Build SoA register for z component.

vmovhlps XMM4, XMM4, XMM4

vmovhlps XMM3, XMM3, XMM3

vinsertps XMM3, XMM4, XMM3, 16

vmovhlps XMM4, XMM6, XMM6

vinsertps XMM3, XMM3, XMM4, 32

vmovhlps XMM4, XMM7, XMM7

vinsertps XMM3, XMM3, XMM4, 48

vmovhlps XMM4, XMM9, XMM9

vmovhlps XMM6, XMM8, XMM8

vinsertps XMM4, XMM4, XMM6, 16

vmovhlps XMM6, XMM11, XMM11

vinsertps XMM4, XMM4, XMM6, 32

vmovhlps XMM6, XMM12, XMM12

vinsertps XMM4, XMM4, XMM6, 48

vinsertf128 YMM3, YMM4, XMM3, 1

Figure A.2: Assembly from the kernel with 8-way unrolling.

140

	coverpenny.pdf
	University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

	130513_104128_thesis_corrections2.pdf
	Abstract
	Acknowledgements
	Declarations
	Sponsorship and Grants
	Abbreviations
	List of Figures
	List of Tables
	Introduction
	Motivation
	Thesis Contributions
	Thesis Overview

	Performance Analysis and Engineering
	Benchmarking
	Profiling
	Code Optimisation
	Performance Modelling
	Analytical Modelling
	Simulation

	Summary

	Parallel Hardware and Programming Models
	Instruction-Level Parallelism
	SIMD / Vectorisation
	Multi-threading
	Message Passing
	Benchmark Platforms
	Single Nodes
	Supercomputers

	Summary

	Optimisation of Pipelined Wavefront Applications
	Benchmark Description
	Related Work
	Optimisation Challenges
	Experimental Setup
	Optimisations
	SIMD and Multi-threading
	Message Passing

	Performance Results
	Performance Breakdown
	Architecture Comparison

	Summary

	Optimisation of Molecular Dynamics Applications
	Benchmark Description
	Related Work
	Optimisation Challenges
	Experimental Setup
	Optimisations
	SIMD
	Multi-threading and Message Passing

	Performance Results
	Performance Breakdown
	Thread Scaling
	Architecture Comparison

	Summary

	Developing ``Performance-Portable'' Applications
	``Single Source'' Methodology
	Work-Item and Work-Group Distribution
	Memory Layout
	Implicit vs. Explicit Vectorisation
	Device Fission
	Communication

	Benchmark Parameterisation
	Memory Layout
	Implicit vs Explicit Vectorisation
	Device Fission

	Performance Results
	Comparison with ``Native'' Implementations
	Pipelined Wavefront
	Molecular Dynamics

	Summary

	Predicting Application Performance on Future Architectures
	Adapting Models for Future Architectures
	Single Node
	Multiple Node

	Communication Breakdown
	Machine Comparison
	Scalability
	Power Consumption

	Summary

	Conclusions and Future Work
	Limitations
	Future Work
	k-blocking in Wavefront Applications
	Conflict Resolution in Molecular Dynamics
	Optimisation of Production Applications

	Bibliography
	Appendices
	Assembly Generated for OpenCL Gather Operations

