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Abstract 

In the present research study, a comprehensive spur gear lubrication analysis has 

been carried out to understand the gear contact behaviour under lubrication 

conditions. The modelling works have been extended to consider the effects of 

thermal mechanical, non-Newtonian fluid, surface roughness, transient squeeze and 

dynamic load conditions.  

First, the elastohydrodynamic lubrication theory is studied and relevant 

numerical approaches are introduced. The reduced Reynolds equation technique is 

applied to deal with any potential "asperity contacts" or any other ultra-thin film 

situations. Those situations could be a result of the surface roughness or the dynamic 

load effect. This approach allows us to capture local information about pressure, 

traction, film thickness, etc., within the nominal contact zone. Influence of working 

conditions, i.e. load, rolling speed, as well as the sliding to roll ratio are discussed 

with those models (Newtonian or non-Newtonian fluids, isothermal or thermal 

conditions). The non-Newtonian fluid effect has been investigated with a 

Ree-Eyring fluid model and a power-law fluid model and the thermal effect is 

studied by solving energy equations of interacting solids and the film numerically 

with the sequential sweeping technique. 

The dynamic effect on contact performance is also studied. The dynamic load is 

calculated using a two degree-of-freedom lumped parameter system dynamic model 

in which the varying mesh stiffness is considered as the excitation. The dynamic 

model is solved using the Runge-Kutta method. The effects of the dynamic load 

effect on pressure distribution and film thickness in a whole mesh period are 

discussed. The normal contact stiffness of a spur gear pair is also predicted based on 

the deterministic tribology models. 

The main contributions from the present research could be summarized as 



 
 

XXII 

follows: 

i. An elastohydrodynamic lubrication model for a spur gear pair is developed 

by taking into account the effects of transient squeeze, the non-Newtonian fluid, the 

rough surface and the thermal mechanical contacts which makes the proposed model 

one of the most advanced models currently evaluating gear lubrication performance. 

This model can also be applied to bearings, cams, or other gear types with some 

modifications.  

ii. The friction behaviour, which is not investigated as extensively as the film 

thickness in existing work, is studied. The effects of the working conditions (the 

load, the rolling speed, the slide/roll ratio), the non-Newtonian conditions, the rough 

surface conditions, as well as the thermal conditions on friction behaviour are 

discussed. The conclusions suggest controlling surface topography patterns and 

working conditions aiming at a reduced friction coefficient and a longer service life. 

iii. The dynamic effect on lubrication performance and effect of lubrication on 

normal contact stiffness of a spur gear pair are studied. The work provides a 

potential gateway for a more comprehensive evaluation of spur gear pair working 

performance using a tribology-dynamic coupled method which is the next area this 

author would like to explore. 
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Abbreviations 

 

LOA      Line of action 

BC      Boundary condition 

LPSTC      The lowest point of single tooth contact 

HPSTC      The highest point of single tooth contact 

DF      Dynamic factor 

DTE      Dynamic transmission error 

EHL      Elastohydrodynamic lubrication 

DOF      Degree-of-freedom 

SAP      Start of active profile along the line of action 

RMS      Root mean square 

FEM      Finite element method 

CFD      Computational fluid dynamics 
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Nomenclature 

 

a , b  two solid surfaces contacting with each other 

Amp  the dimensionless amplitude of sinusoidal waviness on surfaces 

b  the half Hertzian contact width 

b  the gear backlash, m  

B  the width of the gear tooth  

c  the gear tooth damping factor, /Ns m  

md  the mean deformation within the nominal contact zone  

maxd  the maximum deformation within the nominal contact zone  

'E  the equivalent elastic modulus, Pa  

1E , 2E  the elastic modulus of the two solids, Pa  

sF  the static load carried only by one gear pair 

G  the dimensionless material parameter, 'G E  

h  the film thickness or the gap, m  

0h  the rigid body displacement, m  

xh  the grid mesh size in x  direction 

k  the gear mesh stiffness, /N m  

ck  the gear normal contact stiffness, /N m  

H  the dimensionless film thickness or dimensionless gap, 2/H hR b  

0H  the dimensionless rigid body displacement, 2
0 0 /H h R b  

1 2,I I  the rotational inertia of the pinion and the wheel, respectively 

i , k  the grid indices in x  and z  direction, [0, ] xi n , [0, ] zk n  

gi  the gear ratio 
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K  the kernel for contribution to the elastic deformation  

L  the Moes dimensionless speed parameter, 1/4(2 )L G U  

M  the Moes dimensionless load parameter, 1/2(2 )M W U  

m  the module of the gear pair 

m  the power law viscosity index 

em  the equivalent mass of the lumped parameter system 

n  the number of grid points in a direction 

1n , 2n  the rotation speed of the pinion and the wheel, respectively, unit / minr   

1N , 2N  the tooth number of the pinion and the wheel, respectively 

dn  the number of node pairs with a non-zero elastic deformation 

xn  the number of grid points in x  direction 

zn  the number of grid points in z  direction 

Tn  the number of discretized points along the line of action 

bp  the transverse base pitch of the gear 

Hp  the Hertzian maximum pressure 

np  the normal base pitch 

P  the dimensionless pressure, / HP p p  

1br , 2br  the base circle of the pinion and the wheel, respectively 

rr  the surface roughness, m  

RR  the dimensionless surface roughness, 2/RR rrR b  

1R , 2R  the radius of the two solids, m  

R  the equivalent radius, m  

1R , 2R  the radii of the two interacting subjects, respectively 
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qR  the root mean square value of surface roughness height, m  

qaR , qbR  the root mean square value of two solids’ surface roughness height m  

s  the viscosity-temperature factor 

sr  slide/roll ratio, / s rsr u u  

S  the viscosity modifying factor for the non-Newtonian fluid 

t  the time, s  

T  the temperature, C  

1T , 2T  torque of the pinion and the wheel, respectively, Nm  

t  the dimensionless time 

T  the dimensionless temperature 

w  the general under-relaxation factor 

u  the velocity of the flow, /m s  

1u , 2u  velocity of the lower surface and the upper surface, respectively, /m s  

ru  the rolling velocity /m s  

su  the sliding velocity, /m s  

u  the dimensionless speed, / ru u u  

U  the dimensionless speed parameter, 0( ) / ( ' ) rU u E R  

W  the load per length 

W  the dimensionless load parameter, / ( ' )W F E R  

Wav  the dimensionless wavelength of sinusoidal waviness on surfaces 

x , y , z  the coordinates, x  represents the flow direction, z  represents the 

direction across the film, y  represents the direction normal to x  and z  

direction.  

X , Y , Z  the dimensionless coordinates, /X x b , /Z z h  



 
 

XXVII 

z  the pressure-viscosity index 

z  the length of the line of action (LOA) of the gear pair 

  the pressure viscosity index, 1Pa  

1 , 2  the rotation angle of the pinion and the wheel, respectively 

  the viscosity-temperature factor 

1  the principal shear stress in the subsurface field 

1 m  the maximum shear stress in the subsurface field 

 x  the principal stress along x  direction 

 z  the principal stress along z  direction 

  the elastic deformation, m  

0  the viscosity of ambient pressure, Pas  

  viscosity with Newtonian fluid, Pas  

x  the equivalent viscosity with non-Newtonian fluid, Pas  

  the dimensionless viscosity, 0/    

  the dimensionless parameter in Reynolds equation, 2 3
0(12 ) / ( )  r Hu R b p  

  the dimensionless parameter in Reynolds equation, 3 / ( )   H  

  the density of the lubricant, 3/kg m  

0  the density of the lubricant at ambient pressure, 3/kg m  

  the dimensionless density, 0/    

 y  the third principal stress in subsurface field, Pa  

  the shear stress in the film, Pa  

  the friction coefficient, /  F W  

F  the total traction, N  
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  the shear stress in the film, Pa  

  the dimensionless shear stress, /  Hp  

0  the Ree-Eyring stress, Pa  

1  the shear stress on the interface between the film and the surface of the lower 

solid, Pa  

1  the dimensionless form of 1 , 1 1 /  Hp  

0  the dimensionless Ree-Eyring stress, 0 0 /  Hp  

1 , 2  the Poisson ratio of the two solids 

  the lambda ratio, 2 2
1 2/  q qh R R  
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Chapter 1 Introduction 

1.1. Background 

Spur gear drives are extensively used in industries such as the automobile industry, 

the wind power industry, and others. Mainly, there are two research topics about gear 

working performance which draw much attention from engineers and researchers: 

one is the contact (including lubrication) performance of engaging gear teeth and the 

other is the dynamic behaviour of gear drives. The first determines the tooth surface 

failures which commonly occur in gear drives, and the latter determines the vibration 

and noise of the system which influences the service life and the comfortableness. 

Currently there is little work focusing on the coupling effect of contact performance 

and dynamic performance of a gear pair. In this work the contact performance, 

mainly lubricated contact performance of a spur gear pair, and effect of dynamic 

behaviour on contact performance of a spur gear pair are investigated. This topic is 

chosen as the subject of this thesis for the following reasons: 

i. Gear drives transmit power and movement through the contacting behaviour 

between teeth of the pinion and the wheel. If the contact performance of a gear pair is 

not acceptable, it is probable that the service life would be shorted owing to 

premature surface failures and low transmission accuracy. A complete contact 

analysis would be the prerequisite for a further surface failure analysis. 

ii. Theoretically, solving contact problems, especially lubricated contact problems 

in which surface roughness effects and thermal effects are considered, requires more 

advanced algorithms and more computation costs to deal with real contact problems. 

There is still a long way to go towards developing a more advanced contact model 

which is accurate enough and requires acceptable computational time. For several 

decades, the elastohydrodynamic lubrication (EHL) problem, which applies if a spur 

gear pair is lubricated adequately, has been believed to be one of the most difficult 
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one to handle in the area of tribology. If it reaches to the mixed lubrication situation, 

which often occurs in gear drives owing to the roughness effect or severe operating 

conditions such as ultra-low speeds or ultra-heavy loads, the problem becomes even 

more complicated. Currently, some models are developed to handle mixed 

lubrication problems, however, a complete, efficient, and physically-meaningful 

model is yet to be developed. In addition, non-Newtonian effects and thermal effects 

on lubrication performance of gear pairs also require deep investigation. 

iii. Gear drives often experience some dynamic behaviours which would affect the 

load carried by the engaging gear pairs. This effect will be more evident if the 

working frequency (meshing frequency) is close to the natural frequency of the 

system or its harmonic components. The dynamic load effect is assumed to cause 

significant variation for the film thickness, friction, etc. Also, the lubricated contact 

performance of the gear pair affects the dynamic performance through the meshing 

stiffness, transmission error, tooth friction and meshing damping.  

Gear tooth contacts have been recognized as one of the most complicated and 

important applications in the field of tribology. Before conducting a gear contact 

analysis, several typical characters of gear drives should be recognized first. Gear 

parameters such as the contact radius, the rolling speed, the slide/roll ratio, and 

others, all vary during the meshing process, which makes the geometries and the 

kinematics of gear pairs more complicated than those of rolling bearings. 

Furthermore, since the contact ratio is not always an integer, the load carried by a 

gear pair will suddenly change when the meshing makes a transition from the 

double-gear-pair-engaging zone to the single-gear-pair-engaging zone, or from the 

single-gear-pair-engaging zone to the double-gear-pair-engaging zone.  

Gear tooth contacts are classical forms of non-conformal contacts. That means a 

small portion on the tooth profile will undertake the load which will lead to high 
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pressures in the contact area. In a lubrication case, high pressures will cause two 

distinct characteristics: a rapid increase of the fluid viscosity and considerable elastic 

deformations of tooth surfaces within the nominal contact zone. For a hydrodynamic 

lubrication (HL) problem, if the two factors are ignored, the predicted film thickness 

will be too small to maintain a film between two surfaces. It was reported that when 

the main propulsion gears of the transatlantic linerm the ‘Queen Mary’ were 

examined after eleven years’ operation, “no wear could be detected on the gear 

teeth” [1]. With the development of EHL theory, it is now possible to explain the 

existence of a film between concentrated contacts like the gear tooth contacts. 

When dealing with rolling element bearings, it is feasible to ignore the surface 

topography since finely finished surfaces are used and the amplitude of the surface 

roughness is small enough compared with the film thickness. Surface roughness will 

not affect the pressure distribution and the film thickness profile within the nominal 

contact zone significantly. However, as for gears, the manufacturing processes 

currently employed tend to leave relatively rough surfaces on gear teeth so that the 

amplitude of roughness is comparable with film thickness. As a gear meshes with its 

counterpart, it is possible to make direct asperity contacts happen, or at least cause 

ultra-thin film at local areas within the nominal Hertzian contact. For a gear 

lubrication analysis, a model should be able to handle ultra-thin film situations. 

Fortunately there exist some methods to deal with this which will be introduced in 

the literature review in detail. 

 

1.2. Objective and Layout of the Thesis 

The objectives of the thesis can be summarized into three aspects. First, the working 

conditions (the load, the speed, the slide/roll ratio) effects, the non-Newtonian effects, 

surface topography effects and the thermal effects on pressure distribution, film 
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thickness and friction coefficient are studied in detail through a line contact model. 

Second, a comprehensive lubricated contact analysis of a spur gear pair is proposed 

based upon the developed mixed lubrication line contact model which incorporates 

thermal effects, transient squeeze effects, and non-Newtonian effects. Third, this 

work tries to develop a coupled tribological-dynamic gear model. This objective will 

be conducted from two works: one is the study of dynamic load effects on the 

lubrication performance of an engaging gear pair, and the other is the study of effects 

of contact/lubrication conditions of a gear pair on contact stiffness. To achieve those 

research objectives, knowledge on contact mechanics, lubrication mechanics, fluid 

rheology, thermodynamics, and system dynamics should be synthetically used and 

problems should be solved systematically. A general technique route of this work is 

depicted in Fig. 1.1.  

 

Fig. 1.1 Flow chart of this work 

 

The choices of modelling approach, structural steps, and software strategy are 

described here. For the numerical modelling of dry contact problems and classical 



 
 

5 

EHL problems, the distributed relaxation scheme and the hybrid relaxation scheme, 

introduced by Venner and Lubrecht [2], are used respectively. The generalized 

Reynolds equation, proposed by Yang et al. [3] is applied for taking the 

non-Newtonian constitutive equations into the Reynolds equation easily. The 

reduced Reynolds technique, proposed by Hu and Zhu [4], is used to deal with any 

potential "asperity contact" within the nominal contact zone which would be caused 

by surface roughness or a sudden working situation change. For thermal 

elastohydrodynamic lubrication (TEHL) problems, the temperature field within the 

solids and the film are calculated by solving energy equations of the solids and the 

film numerically. A lumped parameter model is developed to predict the dynamic 

load of a spur gear pair. The mesh stiffness variation is taken as the exclusive 

excitation of the dynamic system. The Runge–Kutta iterative method is used for 

solving the dynamic equations of the system with the aid of Matlab. The whole 

contact/lubrication model is implemented in the C++ frame.  

In Chapter 2, a literature review illuminates the development of the lubrication 

theories and the applications of those theories on gear drives. The highlights of the 

current proposed model are outlined. 

Chapter 3 mainly illuminates the dry contact theory and the classical EHL 

theory and relevant numerical models. A dry contact model is developed based upon 

the influential coefficient method which is solved through direct summation since for 

a line contact problem the calculation cost is acceptable with available computer 

resources. Essential notices about the multigrid method, used to speed up the 

convergence process, are presented. 

Chapter 4 introduces non-Newtonian effects by deriving lubrication models for 

the Ree-Eyring fluid and the power-law fluid. The effects of the characteristic Eyring 

stress for the Ree-Eyring fluid and the effects of power index for the power-law fluid 
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are introduced. The results are compared with Newtonian-based solutions. 

Chapter 5 mainly introduces the rough surface EHL and mixed lubrication 

problems. Rough surfaces may cause asperity contacts within the nominal Hertzian 

contact zone. The reduced Reynolds technique is applied to handle ultra-thin 

lubrication problems or mixed lubrication problems. First, regular sinusoidal 

wavinesses are assumed on contacting surfaces to investigate their wavelength and 

amplitude on lubrication performance. Second, digitalized surface roughnesses 

which follow Gaussian distribution, are generated to study the effect of the root mean 

square (RMS) value of surface roughness. 

Chapter 6 studies the thermal effects on the pressure profile and the film 

thickness, as well as the traction using the developed TEHL model. The energy 

equation and the Reynolds equation are iteratively solved. With the help of the 

sequential sweeping technique, energy equations are solved for the solids and the 

film.  

Chapter 7 applies the proposed model in a spur-gear-pair application and its 

lubrication performance in a whole meshing period is evaluated by getting the 

pressure distribution, traction, film thickness, and the temperature field at each 

discretized location along the line of action (LOA). 

Chapter 8 studies the effects of the dynamic behaviour of the chosen spur gear 

pair on its lubrication performance. Dynamic loads are calculated through a 

two-degree-of-freedom (DOF) dynamic model.  

Chapter 9 investigates the normal contact stiffness of a spur gear pair based on 

the deterministic dry contact model and the EHL model. 

Chapter 10 offers the main conclusions of this work and recommendations for 

future work. 

Parts of this thesis work have been published by the author and coworkers [5-7]. 
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Chapter 2 Literature Review 

The chapter contains a literature review on the development of contact theory and 

lubrication theory, and existing gear lubrication analysis. Research on 

non-Newtonian effects, thermal effects, surface roughness effects, and others, on 

lubrication and contact performance are introduced. A review on gear lubrication 

theoretical analysis is also presented. Based on this review, highlights of this work 

are emphasized. 

 

2.1. Contact Theory and Lubrication Theory 

When lubrication is not applied between interacting contact surfaces owing to the 

working environment requirement, a dry contact situation occurs. Dry contact studies 

emerged earlier than lubrication studies and relevant work should be introduced back 

from Hertz's work. 

 

2.1.1. Dry Contact Theory 

Based upon some assumptions, Hertz [8] presented the first analytical solution for 

contact problems. Hertz was attempting to understand how the optical properties of 

multiple, stacked lenses might change with the force holding them together. Hertzian 

contact stress refers to the localized stresses that develop as two curved surfaces 

come into contact and deform slightly under the imposed loads. The amount of 

deformation is dependent on the modulus of elasticity of the material in contact. It 

gives the contact stress as a function of the normal contact force, the radii of 

curvature of both bodies and the modulus of elasticity of both bodies. Hertzian 

contact stress forms the foundation for the equations of load bearing capabilities and 

fatigue life in bearings, gears, and any other bodies where two surfaces are in contact. 

Until now, the Hertz solution has often been used in engineering practice owing to its 
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simple form. Hertz opened the door for a systematic subject called “contact 

mechanics”. The physical and mathematical formulation of the subject of contact 

mechanics is based upon the mechanics of materials and continuum mechanics and 

focuses on computations involving elastic, viscoelastic, and plastic bodies in static or 

dynamic contact. The central aspects in contact mechanics are the pressures and 

adhesion acting perpendicular to the contacting bodies' surfaces, the normal direction, 

and the frictional stresses acting tangentially between the surfaces. 

Since Hertz, the development of contact mechanics mainly focuses on 

eliminating assumptions made by Hertz, such as removing the friction between 

interacting surfaces. Bowden and Tabor [9] were the first to study the effects of 

surface roughness on bodies in contact. Through the investigation of the surface 

roughness, the true contact area between friction partners is found to be less than the 

apparent contact area. Such understanding also drastically changed the direction of 

undertakings in tribology. The works of Bowden and Tabor yielded several theories 

in contact mechanics of rough surfaces. Archard’s work [10] should also be 

mentioned because he concluded that even for rough elastic surfaces, the contact area 

is approximately proportional to the normal force. This work was followed by 

Greenwood and Williamson [11] and others. In the 1970s, Johnson et al. [12], among 

others, proposed their adhesive elastic contact model. The work by Greenwood and 

coworkers [13] is used for reference for EHL researchers studying statistical rough 

surface EHL models, which will be mentioned later. 

In the early days, owing to the limit of computation ability, researchers used 

statistical models [14, 15] as the main tool to study rough surface contact problems. 

However, statistical models ignore the interaction between neighboring asperity 

micro-contacts, which becomes prominent at high contact loads [16]. Additionally, 

those models cannot represent the essentially multiscale nature of surface roughness 
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[17]. Despite some work [18] which also took the multiscale nature of roughness into 

account, the asperity interaction effects are nevertheless neglected.  

It is fair to argue that if the real surface topography is explicitly considered in 

the model, the problem occurring in statistical models would disappear. As the 

development of computer technology progressed, more work focused on the 

deterministic models, such as work done by Lai and Cheng [19]. Among those 

numerical methods, two advanced algorithms should be emphasized: the multi-level 

multi-integration (MLMI) method [20], and the FFT-based method [21, 22]. The 

MLMI and FFT-based methods have their own advantages and both of them could 

save computation time significantly compared with the direct summation method. 

 

2.1.2. Elastohydrodynamic Lubrication (EHL) 

EHL problems refer to those hydrodynamic lubrication cases in which the 

viscosity-pressure effect and the elastic deformations of solid surfaces cannot be 

neglected. This kind of lubrication may occur in gears, bearings, cam drives, etc. 

Even though researchers agree that the most popular state for gear drives and other 

components is the mixed lubrication, it is necessary to study the mechanism of EHL 

to understand mixed lubrication. EHL has been studied extensively since the 1950s, 

both theoretically and experimentally, and many achievements have been obtained. 

For example, several empirical formulas of minimum film thickness are developed 

which are quite useful for engineering practice. However, there is still a great deal of 

work yet to be done to consider the real fluid rheology behaviours or the relationship 

between lubricated contact conditions and surface failure behaviours, and other 

aspects. The development of easy calculation tools is required so that engineers can 

evaluate lubrication performance more quickly. 

Owing to the advanced algorithms and rapid development of computer ability, 
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numerical models and related approaches provide an effective way to study the 

successful operation mechanism of EHL, as well as failure analyses of EHL. There 

are many numerical methods which are able to solve EHL problems: the inverse 

method, the direct method, the Finite Element Method (FEM) [23], the Computer 

Fluid Dynamics (CFD) method [24], and the multigrid method [25], amongst others. 

Until now, the multigrid method is believed to be one of the “standard” methods for 

EHL problems, which is also applied in this work. 

 

2.1.3. Non-Newtonian Behaviour 

Rigorously speaking, every lubricant would represent the non-Newtonian behaviour 

in practice. That is, more or less, the relationship between the shear rate and the shear 

stress deviates from the linear line, which is the case for a Newtonian fluid. In the 

early days of EHL studies, a Newtonian fluid is often assumed owing to its simple 

and straightforward constitutional expression. This is fair when evaluating the 

minimum film thickness with the Newtonian assumption because people realize that 

it is the inlet zone condition of the contact region that determines the minimum film 

thickness the most, whereas non-Newtonian behaviours may affect the film thickness 

in a more limited way [26]. However, the Newtonian-based solution would 

overestimate the friction coefficient between the interacting surfaces.  

Evans [27] presents four types of friction curves which depend on the 

rheological behaviour of the lubricant. These curves usually present three distinct 

regions. In the first part, limited by low shear rates, the shear stress varies linearly 

with the shear rate, so the lubricant behaves as a Newtonian fluid. In the second 

region the shear stress deviates from the linear curve at higher shear rates; it 

increases less rapidly because of non-Newtonian behaviour. Eventually, at even 

higher shear rates, thermal effects cause a reduction in viscosity, and thus also in the 
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friction. This implies a reduction of the shear stresses. The slope of the linear part of 

the curves can be described adequately by the viscous Newtonian behaviour of the 

lubricant. The coefficient of viscosity is given by the viscosity-pressure relation 

according to Roelands, provided the pressure is not too high. At higher pressures the 

lubricant starts to behave as a visco-elastic and eventually as an elastic solid material. 

Shear-thinning is only a single aspect of non-Newtonian response. 

Shear-thinning is accompanied by normal stress differences in the principal shear 

directions. In particular, an extra tensile stress will appear in the direction of motion, 

which may augment the load capacity of a bearing [28], although the relative 

improvement has been debated.  

Researchers proposed many rheology models to describe the shear behaviour of 

fluids, such as the Ree-Eyring model, the power-law model, the Johnson-Tevaarwerk 

model [29], and others. In the following, the Ree-Eyring model and the power-law 

model are introduced： 

i. Ree-Eyring model: The constitutive equation is, in fact, the sinh-law which was 

mistakenly assumed to be constitutive by Henry Eyring in 1936 [30]. Eyring 

recognized his error. The constitutive equation accurately describes the thermal 

reduction of viscosity owing to viscous heating in Poiseuille flow, and is not a 

description of shear-thinning. The real Ree-Eyring equation was introduced in a 

series of papers [31, 32] in the 1950s in the Journal of Applied Physics in which 

many real examples of its use were presented. Among those, the Ree-Eyring model is 

recommended by many researchers [29, 33, 34] for traction studies and is applied 

extensively [5, 35, 36] for lubrication performance studies of, for example, gears and 

cams. The advantage of the Ree-Eyring equation lies in its ability to describe 

accurately the complex behaviour of mixtures [37].  

ii. Power-law model: Compared with those Ree-Eyring literatures, work performed 
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with a power-law fluid assumption is less. Some researchers [38] recommended that 

for shear stress greater than some critical value, the relationship between viscosity 

and rate or stress is best described by a power law. Bhattacharjee and Das [39] 

considered a general solution including EHL for different values of power law 

exponent. Chu et al. [40] derived a modified Reynolds equation for power-law fluids 

from the viscous adsorption theory. Recently, Chu et al. [41] analyzed the coupled 

effects of surface roughness and flow rheology for a homogeneous mixture of 

Newtonian base oil and power law fluids on EHL performance. However, in Ref. [40] 

and [41] a particular complicated Reynolds equation is derived which is difficult to 

modify for a traction study of other rheology models. 

 

2.1.4. Thermal EHL (TEHL) 

TEHL theory deals with thermal phenomena in EHL contacts, such as temperature 

distribution inside solids and the film, a thermal effect on traction and film profile, 

and other phenomena. A thermal effect within the contact causes frictional heat and 

may lead to surface failures owing to the film failure. Even though currently a full 

understanding about this thermal effect on surface failures is not available, it is 

confirmed that the thermal effect is worth noticing, and in fact, significant 

achievements on this subject have been obtained [42, 43]. 

Chang et al. [44] concluded that there are several types of approaches to solve 

thermal EHL problems:  

i. The simplest approach is based upon the concept of “effective viscosity”, which 

is obtained at the average cross film temperature. The effective viscosity is employed 

in a generalized Reynolds equation which retains some integral expressions to 

accommodate the viscosity variation in the transverse direction of the oil film. This 

approach was used by Chang [45] and others. 
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ii. A complete model uses discretized energy equations so that the whole 

temperature field can be calculated. This approach, of course, increases 

computational costs. Further difficulties appear owing to the instabilities that are 

initiated when a reverse flow appears at the entrance of the oil film. This approach 

was used by Yang et al. [46, 47], Sadeghi et al. [48, 49], and others. 

iii. The temperature is assumed to have a parabolic variation across the oil film. The 

quadratic temperature expression is inserted into the energy equation which is next 

integrated analytically across the film. This approach was used by Salehizadeh and 

Saka [50] and by Wang et al. [51] and others; 

iv. Elrod and Brewe [52] realized that the regular numerical solutions of the full 

thermal distribution within the flow field are costly and they proposed an alternate 

approach based on the Labatto points interpolation. This approach was first limited to 

inlet zone analysis with incompressible lubricants [53]. Moraru then applied this 

approach to compressible lubricants applications [54].  

As the computer technology develops rapidly, it is more reasonable to use the 

complete numerical model in which energy equations are solved, since this kind of 

model predicts the most accurate results for the temperature field. In this work this 

approach is applied. 

Several thermal reduction factor formulae [53, 55, 56] are proposed based on 

numerical or analytical or experimental solutions to help engineers gather a quick 

consideration of thermal effects in engineering practice. 

 

2.1.5. Rough Surface EHL and Mixed Lubrication 

For many components such as gears, the surface topography has a significant 

influence on EHL performance, especially when the RMS value of the surface is 

comparable to the film thickness. In this case, direct metal-to-metal contact may 
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occur within the nominal Hertzian contact zone. This situation is referred to as the 

mixed lubrication. The concept of mixed lubrication first appeared at the proceedings 

of the eleventh Leeds-Lyon Symposium on Tribology, with the topic “Mixed 

lubrication and lubricated wear”. Mixed lubrication occurs between boundary and 

hydrodynamic lubrication, as the name would suggest. The fluid film thickness is 

slightly greater than the surface roughness, so there is very little asperity (high point) 

contact, but the surfaces are still close enough together to affect each other. In a 

mixed lubrication system, the surface asperities themselves can form miniature 

non-conformal contacts.  

Rough surface EHL and mixed lubrication have been studied in the last decades 

mainly with two types of approaches. The first is the statistical approach. In the early 

days of rough surface EHL studies, owing to the limitation of computing abilities and 

lack of advanced algorithms, some statistical parameters of the surface topography 

were used to describe the roughness effect on contact performances. This is why this 

type is called the statistical approaches. Greenwood and Williamson [11] proposed a 

basic elastic model considering rough surfaces. They based this on the assumption 

that all asperities can be represented by paraboloids, and calculated the separation of 

the surfaces, as well as the nominal pressure between two surfaces. This nominal 

pressure is not the real pressure, but should be interpreted as the average statistical 

pressure. In their calculations, they gave the asperities a Gaussian height distribution. 

The model works well when the load is such that the asperity tips of the rough 

materials are compressed within the elastic limit. Using the G-W model it is 

important to know its restrictions. One of the most important features of the model is 

that it is a statistical analysis, and therefore a very large number of asperity contacts 

are expected within the nominal contact area. Accordingly, the model deals with the 

part of the roughness spectrum where the wavelengths are small compared with the 
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contact area. Another assumption made in the GW model is that the asperities 

deform independently from each other, so the asperities may therefore not merge. 

The GW model is also extended by others. Greenwood and Tripp [13] extended this 

model to the contact of two nominally flat rough surfaces, and the 

Chang-Etsion-Bogy model [57] can separate the plastic and the elastic supported 

loads, to name a few. Asperity interactions can also be treated with the statistical 

approach. Johnson et al. [58] used the Fourier series to study a bi-sinusoidal isotropic 

surface in contact with a flat plate case, while Vergne et al. [59] used an integral 

formulation of the elasticity theory to study the elastic contact between two and three 

asperities and a flat plate. Zhao and Chang [60] modelled the asperity interaction in 

elastic-plastic contact of rough surfaces using the Saint Venant’s Principle and 

Love’s formula [61]. The average flow model, first proposed by Patir and Cheng [62], 

is also used extensively. Zhu et al. [63] developed a mixed line contact EHL model, 

and Zhu and Cheng [64] subsequently studied mixed point contact EHL. In the two 

studies the metal-to-metal asperity pressure was computed using the GT model. 

Epstein et al. [65] used an improved flow factor method in a micro-macro approach 

to study the effect of roughness on the fatigue life in a mixed EHL contact. 

Reference [66] contains a detailed review on progresses in the area of probabilistic 

EHL modelling, as well as a review on the most recent EHL studies that utilized 

probabilistic modelling.  

The second approach is the deterministic approach. Owing to the rapid 

development of computer ability and advanced numerical algorithms, the 

deterministic approach has been widely used recently. This approach can capture 

details of asperity deformation and interaction because the roughness information is 

expressed in the model explicitly; however, it requires more computation time. When 

the roughness does not have a definite lay direction, the analysis requires the use of a 
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three-dimensional roughness profile. In the case of a heavily loaded line contact, the 

Hertzian contact width can be wider than 1 mm, while the length of the line contact 

is several centimeters. A typical measurement performed on an optical profilometer 

at 1 m  lateral resolution gives about 5 MB of double precision data for less than 

half a square millimetre of rough surface [66]. Despite this, the deterministic 

approach can provide detailed information inside the nominal contact area, which is a 

must for a further surface failure analysis. 

Key issues encountered when developing mixed EHL models are discussed by 

Zhu [67]: 

i. How to handle surface roughness. Two main approaches are used when dealing 

with surface roughness: stochastic and deterministic. Stochastic approaches use a 

small number of statistic parameters to describe the rough surface characteristics and 

their influences on contact and lubrication. They cannot predict localized details and 

peak values within nominal contact regions. This information may be directly 

correlated to surface failures such as micropitting. The other methods are the 

deterministic approaches, which have drawn more attention in the last twenty years 

owing to advancements in computer technologies.  

ii. How to model surface contact and hydrodynamic lubrication simultaneously. 

Currently there are two types of models. One simulates contact and lubrication 

separately with different approaches. For instance, a dry contact model can be used 

for asperity contact areas and the Reynolds equation applies to the areas where the 

lubricant exists. In this approach, it may be difficult to determine borders and handle 

boundary conditions between contact and lubrication areas, especially when random 

or irregular surface roughness is involved. The other approach is the unified way 

proposed by Hu and Zhu [4]. This approach based upon the fact that dry contact is a 

special case of lubricated contact at ultra-low viscosity or ultra-low speed. Therefore, 
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dry contact can be simulated with lubrication models as long as the numerical solver 

is sufficiently robust to handle ultra-low viscosity and ultra-low speed. 

The progress of mixed lubrication studies mainly relies on the development of 

knowledge in two fields: an integrative knowledge of fluid film and boundary 

lubrication, and a sufficient recognition of rough surface interaction. 

 

2.2. Lubrication Analysis of Spur Gear Pairs 

In order to protect gear tooth surface and reduce the frictional power loss, lubrication 

is also applied between the interacting gear tooth. Gear lubrication problems have 

been studied for a long time. After obtaining their first numerical solution for EHL 

line contacts. Dowson and Higginson [68] applied the empirical minimum film 

thickness formula into spur gear lubrication problems. Since more advanced 

algorithms and more advanced lubrication models have been proposed, the gear 

lubrication analysis continues. Initially, researchers could only deal with 

two-dimensional steady-state isothermal lubrication models for spur gears; now, 

researchers can handle the three-dimensional transient thermal non-Newtonian 

models for non-spur gear pairs with surface roughness. Table 2.1 lists some of works 

on lubrication studies of gear drives. 

 

Table 2.1 Some of works on lubrication studies of gear drives 

 

Reference Effects Notes 

1966 

Dowson, 

Higginson [69] 

Thermal: No 

Transient: No 

Roughness: No 

They applied minimum film thickness 

formula to gear lubrication problems. 
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1970 

Gu [70] 

Thermal: Yes 

Transient: No 

Roughness: No 

Modified mean-viscosity for the surface 

temperature rise determination. 

1971 

Vichard [71] 

Thermal: No 

Transient: Yes 

Roughness: No 

Squeeze-film effect is studied using the 

complete Reynolds equation. 

1976 

Wellauer, 

Holloway [72] 

Thermal: No 

Transient: No 

Roughness: Yes 

Gears operating in a EHL regime with 

  greater than 2 run virtually without 

surface distress, and many gear drives 

operate at   less than 0.7, which is 

mixed lubrication. 

1980 

Jackson,  

Rowe [73] 

Experimental The value of lubrication parameters can 

accurately be determined by direct 

measurement of the oil film thickness in 

an optical EHL apparatus. 

1980 

Wang,  

Cheng [74] 

Thermal: No 

Transient: No 

Roughness: No 

Dynamic load: 

Yes 

Dynamic load analysis is proposed 

which shows the dynamic load effect on 

lubrication without the squeeze effect. 

1982 

Sato [75] 

Thermal: Yes 

Transient : No 

Roughness: No 

The TEHL model is developed for a 

spur gear pair and the effect of the inlet 

temperature of the fluid is studied. 
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1984 

Lin,  

Medley [76] 

Thermal: No 

Transient: Yes 

Roughness: No 

Effect of the modification to the contact 

geometry is studied. 

1987 

Tieu,  

Worden [77] 

Thermal: No 

Transient: Yes 

Roughness: No 

Dynamic: Yes 

However, the dynamic load was 

simulated by an arbitrary input either as 

a step input or a sine wave to cater for 

any of the above dynamic loads. 

1991 

Wu,  

Cheng [78] 

Thermal: Yes 

Transient: Yes 

Roughness: Yes 

The major power losses in spur gears 

owing to sliding and rolling friction 

have been analyzed by applying a 

simplified analytical friction model in 

the partial-EHL contacts where the 

friction is affected by both asperity 

interactions and hydrodynamic effects. 

1995 

Hua,  

Khonsari [79] 

Thermal: No 

Transient: Yes 

Roughness: No 

A parametric study was conducted to 

investigate effects of geometry factors 

on the lubrication behaviour of a gear 

transmission. Results show that the 

equivalent curvature radius of gear teeth 

plays an important role on EHL film 

formation. 

1997 

Larsson [80] 

Thermal: No 

Transient: Yes 

Roughness: No 

The multigrid method is applied.  
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1998 

Scott,  

Hargreaves [81] 

Thermal: No 

Transient: No 

Roughness: Yes 

The work looks at the roughness 

profiles of gear tooth surfaces and 

attempts to put the subject of surface 

topography into context with EHL. 

2003 

Mihailidis, 

Panagiotidis [82] 

Thermal: Yes 

Transient: Yes 

Roughness: No 

A transient, TEHL model is presented 

that has been used to study the 

lubrication parameters at 250 contact 

points along the path of a contact. 

2003 

J. Tao,  

et al. [83] 

Thermal: No 

Transient: Yes 

Roughness: Yes 

The conclusion is made that the 

different fluid models considered lead 

to significantly different pressure and 

film thickness behaviour within the 

contact. 

2004 

Wang,  

et al. [84] 

Thermal: Yes 

Transient: Yes 

Roughness: No 

The thermal effect is considered with a 

TEHL model in which the energy 

equations are solved numerically. 

2006 

Sharif,  

Evans,  

Snidle [85] 

Thermal: No 

Transient: Yes 

Roughness: No 

A wear pattern prediction is made based 

upon a full EHL solution in which the 

detailed distribution of wear on the 

tooth surfaces during meshing is 

summed to determine the calculated 

wear per meshing cycle. 
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2007 

Kumar, 

et al. [86] 

Thermal: No 

Transient: Yes 

Roughness: No 

The lubricant is assumed to be 

couple-stress fluid and the transient 

Reynolds equation for the compressible 

couple-stress fluid is derived using the 

Stokes theory. The EHL characteristics 

computed for couple-stress fluids are 

found to have strong dependence on 

couple-stress parameter. 

2008 

Akbarzadeh, 

Khonsari [87] 

Thermal: Yes 

Transient: No 

Roughness: Yes 

The load sharing concept is used for a 

statistical analysis of lubrication 

performance of a spur gear pair. 

2009 

Evans,  

Snidle,  

Sharif [88] 

Thermal: No 

Transient: Yes 

Roughness: Yes 

The paper discusses the effect of 

surface roughness when the EHL film 

thickness developed between the gear 

tooth surfaces is small compared to the 

heights of the roughness features. 

2010 

Brandão,  

Seabra,  

Castro [89, 90] 

Thermal: No 

Transient: No 

Roughness: Yes 

A numerical model for the prediction of 

surface initiated damage on gear tooth 

flanks is presented. This model hinges 

on a model of the mixed film 

lubrication regime and on the 

application of the Dang Van high-cycle 

multi-axial fatigue criterion. 
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2010 

Li,  

Kahraman [91] 

Thermal: No 

Transient: Yes 

Roughness: Yes 

The reduced Reynolds technique is 

applied to deal with mixed lubrication 

line contacts. 

2010 

Wang,  

Yi [36] 

Thermal: Yes 

Transient: Yes 

Roughness: No 

The Ree-Eyring model is incorporated 

into the TEHL model. 

2011 

Li,  

Kahraman [92] 

Thermal: No 

Transient: Yes 

Roughness: Yes 

A non-linear vibratory model is used to 

study the effects of dynamic conditions. 

2012 

Anuradha,  

Kumar [93] 

Thermal: Yes 

Transient: Yes 

Roughness: No 

Carreau's shear-thinning model and 

Doolittle’s free volume based 

pressure-viscosity relationship are 

adopted. 

2012 

Evans,  

et al. [94] 

Thermal: No 

Transient: Yes 

Roughness: Yes 

The mixed lubrication of gear contacts 

is calculated for a further fatigue failure 

prediction.  

2012 

Liu, et al. [5] 

Thermal: No 

Transient: Yes 

Roughness: Yes 

The reduced Reynolds technique is 

applied to show the coupled effects of 

roughness, speed and load. 

2012 

Liu, et al. [95] 

Thermal: No 

Transient: Yes 

Roughness: No 

The gear dynamic loads effect on 

lubrication performance is studied. 

 

From the listed studies it is seen that, earlier studies consider Newtonian fluids, 

isothermal, smooth surface cases, while now people are trying to deal with 

non-Newtonian, thermal, rough surface case for spur gear pair lubrication problems. 
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However, until now a complete spur gear pair lubrication model which takes into 

account the thermal effect, non-Newtonian effect, surface topography effect, 

transient squeeze effect, and dynamic load effect, is yet to be developed. This work 

aims to develop this kind of model and each effect is studied in detail. The results are 

proposed by contact pressures, film profiles, frictions, temperature fields, etc. This 

work is believed to provide some valuable suggestions for spur gear pair lubrication 

engineering problems, and this approach can be extended to other gear type 

applications or bearings, amongst others.  



 
 

25 

Chapter 3 Contact Analysis Using Classical Approach 

In this chapter, the classic dry contact theory and EHL theory are introduced. A dry 

contact model as well as a classical EHL model are developed and the numerical 

approaches are introduced. Fundamental equations of the EHL model such as the 

Reynolds equation, film thickness equation, force balance equation, 

viscosity-pressure-temperature equation and density-pressure-temperature equation 

of the fluid are introduced in detail. Typical EHL characteristics such as the inlet 

pressure build up and the outlet second pressure spike are described. 

 

3.1. A Dry Contact Model 

Physically, a classical dry contact problem can be described as such: given two solid 

bodies with known geometry pressed against each other with a force (or a pressure 

distribution) which caused deformations of the bodies. A theory of contact is 

required to predict the shape of the contact area and how it grows in size with 

increasing load, as well as the distribution of tractions, etc. Finally, it should enable 

the components of deformation and stress in bodies to be calculated in the vicinity of 

the contact region. Before the problem in elasticity can be formulated, a description 

of the geometry of the contact surfaces is necessary. With assumptions of parabolic 

surface profiles and linear elastic, frictionless materials, Hertz [8] proposed the first 

analytical solution for dry contact problems which laid the foundation for the subject 

of contact mechanics. Since then, the developments of contact theories mainly focus 

on eliminating assumptions made in the Hertz contact theory. Before giving the 

general dry contact model, Hertz analytical results are provided for the first insight of 

contact mechanisms. 

 



 
 

26 

3.1.1. Hertz Contact Theory 

Hertz introduced the simplification that, for the purpose of calculating local 

deformations, each body can be regarded as an elastic half-space loaded over a small 

region of its plane surface. By this simplification, generally followed in contact stress 

theory, the highly concentrated contact stresses are treated separately from the 

general distribution of stress in the two bodies, which arises from their shape and the 

way in which they are supported. In order for this simplification to be reasonable, 

two conditions should be satisfied: the dimensions of the contact area must be small 

compared (a) with the dimensions of each body and (b) with the relative radii of 

curvature of surfaces. The first condition is necessary to ensure that the stress field 

calculated on the basis of a solid which is infinite in extent is not seriously influenced 

by the proximity of its boundaries to the highly stressed region. The second condition 

is to ensure firstly that the surfaces just outside the contact region approximate 

roughly to the plane surface of a half-space, and second that the strains in the contact 

region are sufficiently small to lie within the scope of the linear theory of elasticity. 

Hertz also assumed the surfaces to be frictionless so that only the normal pressure is 

transmitted between two bodies.  

With those preparations, Hertz was able to give the analytical solution to 

classical dry contact problems. A line contact problem (a line contact problem is 

defined as two cylindrical bodies, with their axes lying parallel, pressed in contact by 

a force per unit length, which is the case assumed for a spur gear pair) can be 

simplified as Fig. 3.1 in which 1,2R  represents the contact radius of the solids, and 

1,2u  represents the speed of the two solids, respectively. The coordinates are defined 

as follows: the x  direction represents the direction of the rolling speed, for a 

lubrication case, it also represents the flow direction of the lubricant; the z  
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direction is the direction across the gap between the interacting surfaces (for a 

lubrication case, it represents the direction across the film); and the y  direction is 

vertical to the x z  plane. This coordinate set is used elsewhere in the work. 

 

Fig. 3.1 Simplification of a line contact problem 

 

For line contact problems, the maximum pressure occurred in the nominal contact 

region, also known as the Hertzian pressure, Hp , is expressed as 

 
' 4 2
  

  m
H

E F p Fp
R b

  (3.1) 

Where mp  is the mean contact pressure across the contact region. F is the load per 

unit width, and 'E  is the equivalent elastic modulus, which is derived from 

 
2 2
1 2

'
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2 1 1  
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E E E
  (3.2) 

Where 1  and 2  are the Poisson ratio of the two subjects, respectively, and 1E  

and 2E  are the elastic modulus of the two subjects, respectively. 

The reduced radius of curvature R  is given by 

 
1 2

1 1 1
 

R R R   (3.3) 

With 1R  and 2R  are radii of the two subjects, respectively. The half contact width 

b  is expressed as 
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The pressure distribution within the Hertzian contact zone can be calculated with 

 2 2
2

2( )


 
Fp x b x
b

  (3.5) 

The pressure falls to zero at the edge of the contact region. 

By using the elastic mechanics theory, it is easy to find that at the contact interface 

the stress ( )  x p x ; outside the contact region all the stress components at the 

surface are zero. Along the z  direction, the principal stresses are given by 

 1 2 0  su u u   (3.6) 

 2 2 1/2( )   H
z

p b z
b

  (3.7) 

For plane strain, the third principal stress ( )    y x z . 

Where  x ,  y  and  z  are stresses along x , y  and z  direction, respectively. 

The principal shear stress 1  therefore can be calculated by 

 2 2 2 1/2
1 [ ( ) ]    Hp z z b z

b
  (3.8) 

The Hertz contact theory is introduced here is because (a) the theory is still the basis 

for surface contact strength standard for gears, bearings, etc., and (b) the Hertz 

contact parameters are chosen for the dimensionlessness of the following EHL 

model. 

 

3.1.2. A General Dry Contact Model 

In fact, most engineering contact problems are not Hertzian contact problems - for 

example, those cases in which surface topography cannot be neglected. Assuming a 

parabolical approximation of the two bodies with equal reduced radii of curvature in 
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x direction, the gap between two surfaces can be expressed as 

 
2

0
4( , ) ( , ) ln ' ( ', ) '

2 '



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xh x t h rr x t x x p x t dx
R E

  (3.9) 

Where 0h  is a constant, R  is the equivalent radius, ( , )rr x t  represents the surface 

topography, 0x  is the distance where the displacement is zero and t  is the time, 

( ', )p x t  is the pressure at location 'x  and time t . For the smooth surface case, 

( , ) 0rr x t . 

When the surfaces are loaded, the gap h  should remain non-negative. 

Neglecting adhesion this implies positive local pressure (in contact) or zero local 

pressure (no contact). p  is determined by the equation 0h  with the condition 

that 0p . In mathematical terms, this lead to a complementarity problem that can 

be expressed as 

 
( ) 0, ( ) 0, ( )
( ) 0, ( ) 0, ( )

  
  

h x p x non contact
h x p x contact

  (3.10) 

The applied load per length is balanced by the integral over the contact pressure 

distribution 

 ( , )



 F p x t dx   (3.11) 

If no surface features are considered, this contact problem has been solved by Hertz 

analytically. However, many non-Hertzian contact problems do not permit analytical 

solutions in closed form. It has led to the development of various numerical methods 

such as the matrix inversion method [96], variational methods [97], and others. A 

non-Hertzian contact problem is, for example, the case if the shape of the 

undeformed surfaces differs from a paraboloide, or if the surfaces are not perfectly 

smooth. In the latter case their nominal shape may still be well approximated by 

paraboloides, but the roughness of the surface or its micro-geometry introduces a 
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roughness term [2].  

For a numerical solution it is convenient to introduce a dimensionless set of 

variables to reorganize the equations. A convenient choice is using the Hertzian 

contact parameters. Introducing: 

 
H
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/
/

/
/ (2 )


 



  s

X x b
P p p

H hR b
T tu b

  (3.12) 

Where x  is the distance from the place where the maximum Hertzian pressure 

locates, b  is the Hertz half width, Hp  is the maximum Hertzian pressure, and R  

is the equivalent (reduced) radius. 

Then the dimensionless gap equation reads 

 
( ) 0, ( ) 0, ( )
( ) 0, ( ) 0, ( )

  
  

H X P X non contact
H X P X contact

  (3.13) 

with 

 
2

0
1( ) ( , ) ( ', ) ln ' '

2 



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XH X H RR X T P X T X X dX  (3.14) 

The value of 0H  is determined by the force balance equation 

 ( )
2



 P X dX   (3.15) 

Where 2( , ) / RR X T rr R b . Mathematically speaking, the contact equations, the 

force balance equation and the inequality constraints lead to a linear complementarity 

problem. The problem can be discretized using an equal-spaced mesh size along X  

direction.  

An approximation of the pressure profile by a piecewise constant function with 

value ( )j jP P X  in the region / 2 ' / 2   j jX h X X h  on a uniform grid 

with mesh size ( ) / b ah X X n , the elastic deformation in grid point i  
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( ) i aX X ih  can be expressed as 

 ,
1( )


  i i j j
j

d X K P   (3.16) 

with the coefficients defined by 
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These coefficients can be calculated analytically and finally they can be expressed as 
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  (3.18) 

Thus the discrete contact equation reads 

 
0, 0, ( )
0, 0, ( )

  
  

i i

i i

H P non contact
H P contact

  (3.19) 

with 

 
2

0 ,2
   i

i i i j j
j

XH H RR K P   (3.20) 

The discrete force balance equation reads 

 / 2 i
i

h P   (3.21) 

The Jacobi or Gauss-Seidel relaxation scheme could be used for iteration of this 

system. In order to calculate fast, the triple Jacobi relaxation scheme, introduced in 

Ref. [2], is applied. As a first step, a simple Jacobi relaxation is studied. Given an 

initial pressure distribution 'P , a new approximation P  can be obtained according 

to 

 1'   i i iP P   (3.22) 

Where 1  is an under-relaxation coefficient. i  is solved from the requirement 

that the equation at the point iX  is satisfied after making this change. It is given by 
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 0,0/ i ir K   (3.23) 

Where ir  is the residual and for Jacobi relaxation changes already made to points 

previously relaxed are not taken into account and the residual is given by 

 
2

0 , ' '
'

/ 2 '      i i i i i i i
i

r H RR X K P H   (3.24) 

Where K  is the kernel and the expression can be found in Ref. [98]. The Jacobi 

relaxation is unstable for the contact problem. The reason for this is that the kernel 

K  is non-zero for all values of 'i i . As a result, changing the value of the 

pressure P  at a point iX  will affect the deformation and thus the gap H  in all 

points of the domain. Moreover, at each point the changes applied to all points 

accumulate. As a result, for each point the positive effect of making the residual zero 

when relaxing that point may be outweighed by the accumulated negative effect in 

this point of the changes made in all other points. The residual then may become 

larger at the end of the sweep than it was before the sweep. Since it is related to the 

integrals in the equation, this kind of instability shows up as an amplification of low 

frequency error components. Distributive relaxation schemes may act better for this 

case. When relaxing the equation at a given point iX , not only the value of the 

current approximation at that point is changed, but also the value of the current 

approximation in a few neighbouring points. A second order distribution scheme, 

also referred to as a triple change, is described as follows 
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  (3.25) 

Triple operation decays faster than the dipole one. However, in that case the equation 

reduces to the steady state ( ) 0H X  and then dipole is the equivalent of tripole for 
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the dry contact. When the updated pressure value is less than zero, it is set to zero to 

satisfy the compatibility condition. 

Once the pressure is updated, the gap is updated accordingly. Then the force 

balance equation is used to adjust the value of 0H . This kind of iteration going on 

leads to final convergence of the dry contact problem very quickly, even for a rough 

surface problem. 

 

3.2. An EHL Line Contact Model 

For a concentrated contact, like a line contact or a point contact, even if sufficient 

lubricant is supplied to form a film separating the surfaces, the shape and thickness 

of the film will be strongly affected by the deformation of the contacting elements. 

Since the 1950s, the study of this film formation has evolved into a separate subject 

known as EHL. Currently, classical EHL theories have been developed completely 

and the main interests of researchers have been transferred to fluid rheology 

behaviours, thermal behaviours and mixed lubrication problems. Typically, an EHL 

model is made up of the Reynolds equation, the film thickness equation, the force 

balance equation and relations describing the viscosity-pressure behaviour and the 

density-pressure behaviour of the lubricant. Compared with the previous dry contact 

model, an EHL model adds the Reynolds equation to describe the fluid film 

formation.  

A classical EHL model comprises an equation describing the flow of the fluid 

such as a Reynolds equation or a Navier-Stokes equation (in this work the Reynolds 

equation is applied), the film thickness equation (also refers to the elastic 

deformation equation), the force balance equation, and equations describing the 

viscosity-pressure-temperature and density-pressure-temperature relations. 
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3.2.1. The Reynolds Equation 

The Reynolds equation, first proposed by Reynolds [99] in 1886, is a special kind of 

Navier-Stokes equation to describe (elasto)hydrodynamic lubrications. The Reynolds 

equation relates the pressure in the lubricant film to the geometry of the gap and the 

velocities of the moving surfaces. In the first place, the Reynolds equation was 

derived under those assumptions: constant viscosity, Newtonian lubricant, thin film 

geometry, negligible inertial, and negligible body forces, etc. It should be noted that 

the assumption of the Newtonian lubricant is not necessary. For a line contact case, 

the Reynolds equation with the Newtonian assumption reads 

 
3 ( ) ( )( ) 12 12 12  




    
  

      

r
r

wedge stretch squeeze

h p h u hu h
x x x x t   (3.26) 

Where x  represents the fluid flow direction, the rolling velocity is 1 2( ) / 2 ru u u , 

1u  and 2u  are rolling velocity of the two surfaces, p  is the fluid pressure, h  is 

the film thickness,   is the density of the lubricant.  

The boundary condition of the Reynolds equation reads 

 
( , ) 0

( , ) ( , ) 0



 

  

a

out out

p x t
pp x t x t
x

  (3.27) 

outx  is the position where the cavitation condition satisfies and it is a function of 

time. The cavitation condition can be treated directly by setting the negative pressure 

values to zero.  

The three terms in the right hand side of Eq. 3.18 represent different effects that 

account for the pressure generation in the film and are commonly referred to as the 

wedge effect, the stretch effect and the squeeze effect, respectively. From the 

mathematic point of view, the Reynolds equation is a non-homogeneous partial 

differential equation, from which it is difficult to get its analytical solution. 
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In order to consider the non-Newtonian effects and the thermal effect on film 

formation, a generalized Reynolds equation proposed by Yang et al. [3] is preferable. 

A detailed derivation of the generalized equation can be found in Yang et al. [3]. The 

generalized Reynolds equation for an EHL line contact can be written as 

 
*

3 ( ) ( )(( ) ) 12 12  


   
 
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e

e r
p h hh u

x x x t
  (3.28) 

Where  
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h

e

zdz
h   (3.35) 

This generalized equation considers the variation of viscosity and density along the 

direction across the film. It can incorporate most of the rheological laws found in the 

literature and is quite suitable for the complete solutions of the non-Newtonian 

thermal EHL problems.  

It should be reminded that the fluid inertia force can be neglected for EHL line 

contacts or EHL point contacts. The modified Reynolds number for an EHL line 

contact is defined as 
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 * 20

0

Re ( )


 ru b b
R   (3.36) 

It is estimated that the order of magnitude of *Re  for an EHL line contact is no 

more than 0.0001 which means the fluid inertia force can be ignored in EHL studies. 

 

3.2.2. Film Thickness Equation 

The film thickness equation reads 

 
2

0
4( , ) ( , ) ln ' ( ', ) '

2 '



    

xh x t h rr x t x x p x t dx
R E

  (3.37) 

Its form is similar to the gap equation of the dry contact model. 

 

3.2.3. Viscosity-Pressure Equations of Fluids 

The approximately exponential increase of viscosity as the pressure goes up is one of 

the two dominant effects (the other is that the elastic deformation cannot be 

neglected) accounting for the film formation in nominal Hertz contact regions. The 

thermal effect on viscosity is sometimes neglected in part of investigations on EHL. 

In this case, the two most widely used viscosity-pressure relations are introduced: the 

exponential Barus equation and the Roelands equation. The isothermal Barus 

equation reads 

 0( )   pp e   (3.38) 

Where 0  is the viscosity under ambient pressure, and   is the pressure-viscosity 

coefficient, typically its value is in the range 8 1 8 11 10 3 10      Pa Pa . In this 

work its value is defined as 8 12 10    Pa . The Barus equation is applied 

extensively in early days owing to its simplicity. However, the predicted viscosities 

for pressures larger than approximately 0.1 GPa  are too high. For heavy load cases, 

Roelands equation is preferable and reads 
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 0 0 0( ) exp{[ln( ) 9.67][ 1 (1 / ) ]}       zp p p   (3.39) 

Where z  is the pressure-viscosity index, typically in the range (0.5,0.7)z . In this 

work 0.68z  is applied. 0p  is a constant and in this work its value is chosen as 

9
0 5.1 10 p Pa . 

Those two relations are acceptable for the prediction of film thickness, however, 

they greatly overestimated the friction and hence power loss in the lubricated 

conjunctions [26]. It is well known that the effective viscosity of most lubricants 

decreases substantially as the shear rate increases at constant pressure and 

temperature. This makes it necessary to consider the non-Newtonian fluid behaviour 

when calculating tractions within the nominal contact region. The non-Newtonian 

behaviour will be discussed in another section. When the thermal effect is taken into 

account, the thermal effect on viscosity of fluid should also be considered. If the 

thermal effect is taken into account, for the Barus relation, it becomes 

 0( )
0( )      p T Tp e   (3.40) 

Where T  is the temperature of the fluid and 0T  is the temperature at the ambient 

environment.   is the viscosity-temperature factor whose value is often chosen in 

the range 0.03 ~ 0.06 / K . In this work it is fixed at 0.048 /  K . 

The Roelands viscosity-pressure-temperature relation reads 

0 0 0
0

138( , ) exp{[ln( ) 9.67][ 1 (1 / ) ( ) ]}
138

   
    


z sTp T p p

T   (3.41) 

Where s  is the viscosity-temperature factor. 

It is worth noting that when the pressure drops to zero and the temperature goes 

to the ambient temperature 0T , the above two equations equal to each other. In this 

way, the relationship between z  and  , as well as the relationship between s  and 

 , can be derived as 
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 9
0/ [5.1 10 (ln 9.67)]   z   (3.42) 

 0 0( 138) / (ln 9.67)   s T   (3.43) 

If not specified explicitly, the Roelands relation is applied anywhere in the thesis. 

 

3.2.4. The Density-Pressure Equation 

Generally, the compressibility of the lubricant under high pressures should not be 

neglected. One of the most cited relations is the one proposed by Dowson and 

Higginson [69], which reads 

 
9

0 9

0.59 10 1.34( )
0.59 10
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 


 

pp
p

  (3.44) 

Where 0  is the density at the ambient pressure. This density-pressure relation is 

depicted in Fig. 3.2. From this figure it is seen that the compressibility of the 

lubricant is less than approximately 30%, which indicates that the effect of the 

compressibility of the lubricant on the film formation will be much smaller than the 

effect of the elastic deformation and the effect of the viscosity. 

 

Fig. 3.2 Dowson-Higginson density-pressure relation 

 

When the thermal effect on density is taken into account, the Dowson-Higginson 

density equation becomes 
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  (3.45) 

 
3.2.5. A Classic EHL Line Model 

Together with the force balance equation - which is the same as the one used in the 

dry contact model - those pre-described equations form a classical EHL model. With 

an appropriate numerical method, the pressure and film thickness could be solved 

from those equations. Similar to the dry contact problem, it is much easier to solve if 

the model is dimensionless, for example using the Hertz parameters. Besides those 

used in dry contact problems, two additional dimensionless parameters are 

introduced: 

 0

0

/

/

  

  
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


  (3.46) 

Where   and   are real density and viscosity of the lubricant, respectively, 0  

and 0  are density and viscosity of the lubricant at atmospheric pressure, 

respectively. 

The dimensionless Reynolds equation then reads 

 
3 ( ) ( )[ ] 0  
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  (3.47) 

With  
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  (3.48) 

The dimensionless Reynolds equation follows the cavitation condition 0P  and 

the boundary condition 

 ( ) ( ) 0 a bP X P X   (3.49) 

The dimensionless Roelands viscosity-pressure equation reads 
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 0

0

( ) exp{( )[ 1 (1 ) ]}     zHp PpP
z p   (3.50) 

The dimensionless Dowson-Higginson density-pressure equation reads 
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  (3.51) 

The dimensionless film thickness equation can be expressed as 

 
2

0
1( ) ( , ) ( ', ) ln ' '

2 



    
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XH X H RR X T P X T X X dX  (3.52) 

Where 0H  is the integration constant determined by the force balance condition, 

( , )RR X T  is the dimensionless surface feature geometry term. The solution is also 

subject to the condition of force balance, i.e. the integral over the pressure equals the 

externally applied contact load. The dimensionless form of this force balance 

equation for a line contact reads: 

 ( )
2



 P X dX   (3.53) 

Until now, a complete dimensionless EHL model has been developed. Once 

discretized, the next step is to seek an effective numerical method. Owing to the 

mathematical characteristic of the Reynolds equation, for the EHL model, a different 

relaxation scheme is suggested to be chosen compared with the distributive 

relaxation scheme used for the dry contact model. Venner et al. [100] proposed a 

hybrid relaxation scheme where in the Hertzian-contact region the simple 

Gauss-Seidel relaxation scheme is applied and in the far-away-Hertzian-contact 

region the dipole Jacobi relaxation scheme is applied. This hybrid relaxation scheme 

not only avoids the amplification of the low frequency error components, which may 

cause divergence, but also is good at reducing high frequency error components. This 

makes it a good “smoother” in the multigrid framework. In this section this hybrid 
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relaxation scheme is applied for the EHL model, and for the Reduced Reynolds 

model will appear in the next chapter as well. 

It should be also noted that three parameters are often used in the literature, to 

characterize a given contact. For the point contact problem, they are referred to as the 

Hamrock and Dowson parameters [101], defined as 

 0
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  (3.54) 

And the associated dimensionless film thickness is defined as /HDH h R . The 

disadvantage of using these parameters is that it is not the minimum set of 

parameters. One reason mentioned in favour of these parameters is that they 

represent parameters that one generally varies independently in experiments, i.e. load, 

speed, and lubricant. However, this advantage does not outweigh the extra work 

needed in parametric studies. Also, in terms of these parameters the different 

asymptotic regimes are not so clearly defined. To present the results in design charts 

or survey diagrams, a convenient set of dimensionless variables for EHL problems 

was proposed by Blok and co-workers. For the line contact they were pointed out by 

Moes [102] and for the point contact by Moes and Bosma [103]. They are now often 

referred to as the Moes dimensionless parameters and for the line contact they are 

defined as 
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  (3.55) 

 



 
 

42 

3.2.6. The Discretized Form and the Numerical Approach 

One popular discretized form of the line contact problem is to make the Couette 

terms the second order and the Wedge term the first order, as follows 
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Where 
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1/2 i  and 1/2 i  denote the value of   at the intermediate locations 

( 1 / 2)   aX X i X  and ( 1 / 2)   aX X i X , respectively. They can be 

expressed as 
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  (3.59) 

For the force balance equation and the film thickness equation, there is no evident 

difference between previous works; they can be discretized as 
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Fig. 3.3 shows an example for the kernal ,i jK  with ( 4.5,1.5) X , 257nX . It 

is seen, however, that the influence factor does not go to zero for the 1d problem 

when i j  goes to infinity. Strictly there should be a 0ln( / )x y x  where 0x  is 

the distance at which the elastic deformation is zero. However, when writing out the 

equation, the part 0( ) ln( ) p y x dy  associated with this term integrated over the 

entire domain will be some constant that can be added to the integration constant that 

occurs anyway. This explains why, with increasing load for line contacts, the 0H  

does not go to -1 as it does for the line contact problem, but to something like -0.56. 

So, if we do not enter the constant in the other constant, then we would have to 

specify this distance separately. This has been done, but physically is not particularly 

nice. The fact that it is controlled by force balance now is much more realistic. 

Details can be found in KL Johnson [104].  

 

Fig. 3.3 The values of the kernel 

 

In fact, the kernel K  can be expressed as the function of the distance between two 

points and can be pre-stored in an array KK , such as shown in Fig. 3.4. This is very 

useful for the multi-dimensional problems like the point contact EHL problem, since 

the kernel is four-dimensional and will be hard to store in the original form.  
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Fig. 3.4 The value of kernel as the distance varies 

 

For the discretization problem, several relaxation approaches can be applied, such as 

the Jacobi dipole relaxation, the Newton-Raphson relaxation, and the Gauss-Seidel 

approach, etc. However, if only one relaxation is utilized, the convergence process 

may be not so satisfactory, especially for some special conditions (like a very heavy 

load condition or a very light load condition, for example). Venner [98] has applied 

the hybrid relaxation approach to suit a large variety of working conditions. The 

hybrid relaxation scheme, proposed by Venner [98], and used for solving the EHL 

model, is described as follows.  

Look back to the steady state classical Reynolds equation in which the transient 

squeeze effect is not considered: 
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We can see the coefficient   decides the property of the equation. Owing to the 

exponential viscosity-pressure relation, the coefficient varies many orders of 

magnitude over the domain. In the inlet and outlet region,   is very large, while in 

the centre area of Hertizian contact, region   is very small. 
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When it is small enough, the Reynolds equation reduces to  

 ( ) 0



H

X
  (3.64) 

Because the film thickness is given by an integral equation, this behaves like an 

integral problem. When   is large enough, the Reynolds equation reduces to 
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  (3.65) 

This looks like a Poisson problem: the differential aspects as represented by the 

second order derivative of the pressure determine the behaviour. 

Understanding how to solve this model problem for large and small values of 

 , respectively, forms the key to understanding how to construct an efficient solver 

for the complete EHL problem. It is believed that, when   is large, the 

Gauss-Seidel relaxation is an efficient way to solve the problem. When   is small, 

the distributive relaxation can take care of the stability problem. This is just the 

essence of the hybrid relaxation scheme proposed by Venner. This hybrid scheme is 

described in the following. In regions of large 2/ X  new approximations to iP  

read 
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Where ir  is the dynamic residual of the discrete Reynolds equation at the location 

iX  
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Recalling the expression of the film thickness iH , the equation becomes 
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  (3.69) 

While in regions of small 2/ X , the dipole change i  to be added to iP  and 

subtracted from 1iP  are calculated from 
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Since 
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this leads to 
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It is worth noting that the dynamic residual ir  for the two relaxation schemes is 

slightly different because the one for the Gauss-Seidel relaxation scheme already 

incorporates the changes applied in the previous grid point. Fig. 3.5 shows the 

flowchart of this hybrid relaxation scheme. 
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Fig. 3.5 Flowchart of the hybrid relaxation scheme proposed by Venner [98] 

 

This hybrid relaxation scheme acts as an effective “smoother” in the multigrid 

framework. Combined with the hybrid relaxation scheme and the multigrid approach, 

convergence will be achieved very fast in a large regimes of operating conditions. 

Fig. 3.6 shows the way using the multigrid method can solve EHL problems.  
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Fig. 3.6 Flowchart of the multigrid method solving EHL problems 

 

The core idea of the multigrid method is that relaxations on different grid levels can 

help to eliminate all frequencies of error quickly, compared with a single grid level. 

The high frequency components of the error represent local behaviours, which result 

from the interactive coupling of the adjacent calculational nodes and are not closely 

related to boundary information or information of far-away nodes. On the other hand, 

the low frequency components of the error represent global behaviours. Some 
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traditional iterative methods, like a Gauss-Seidel relaxation method or a Jacobi 

method with an under-relaxation factor, are effective to eliminate high frequency 

error components while having little effect on low frequency error components. 

When a traditional iterative method is applied, the error components with high 

frequency will be eliminated very quickly in the first several iterations. Since then 

the error represents a smooth behaviour - i.e. only low frequency components are 

exist. Solvers which can make the error smooth are referred to as smoothers. Given 

that the smoother can reduce errors of the frequency of the grid size, lower frequency 

errors can be eliminated by use of a coarser grid comparable to the order of the error. 

This approach can be extended to multiple levels. In this way, all kinds of frequency 

errors can be reduced quickly and convergence is achieved sooner. Details on 

implementing the multigrid method in dry contact and EHL problems can be found 

in Ref. [2]. Below are notes to remind readers to pay attention: 

i. It should be realized that the multigrid method is just a way to speed up the 

convergence process. The elimination of error still relies on an appropriate smoother. 

If the high frequency components of the error decay faster than the low frequency 

components, then the iterative method is referred to as a smoother. In a multigrid 

process, the applied iterative method should be a smoother who can reduce the high 

frequency components of the error quickly. Error reduction can be evaluated by 

checking the iteration matrix and its eigenvalues [2] or conducting a local mode 

analysis, first proposed by Brandt [105].  

ii. There are several ways to organize the coarse grid correction cycle, i.e. the V 

cycle, the W cycle, etc. Generally speaking there should be a limited number of 

iterations before transfer to a finer grid or a coarse one. Suppose 1  relaxation 

sweeps are carried out before they are transferred to a coarser grid and 2  relaxation 
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sweeps carried out after they are transferred back from the coarser grid level, and 0  

relaxation sweeps are conducted on the coarsest grid. If a coarse grid level is visited 

once before going back to a finer grid level, then the cycle is called V cycle, and 

noted with 1 2( , ) V  cycle. On the other hand, if a coarse grid level is visited twice 

before going back to a finer grid level, the cycle is named W cycle, and noted with 

1 2( , ) W  cycle. It has been proven that W cycle holds a better convergence 

performance compared with V cycle, at least for the EHL problems where a global 

constraint - the force balance condition - exists. When a transient EHL problem (the 

transient effect should be taken into account in many cases, such as investigating a 

surface feature effect or a dynamic working condition effect on lubrication 

performance) is to be solved, an F cycle type is preferred because this kind of cycle 

could provide a first approximation with accuracy to the level of the truncation error 

for the next step. The only difference between the F cycle and others (like a V cycle 

or a W cycle) lies in the first approximation on the finest grid level. A more detailed 

description of the F cycle can be found in Ref. [106]. 

iii. When the cycle type is determined, the number of iterations - i.e. the 

pre-relaxation number 1 , the post-relaxation number 2v  and the relaxation number 

on the coarsest grid level 0  - should be determined as well. Fewer iterations will 

not eliminate all kinds of frequency components satisfactorily while more iterations 

will consume much more computer time without significant improvement of the 

accuracy. In order to find proper iteration numbers, the error reduction of the 

multigrid cycle should be evaluated. An accurate error reduction can be obtained 

with a two level analysis, which has been described by Brandt [107], Hemker [108], 

and others. This approach analyzes the effect of relaxations on the Fourier 

components of the error. The error reduction per cycle is given by the spectral radius 
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of the two-level amplification matrix. 

iv. Transfer operators, i.e. the restriction operator H
hI  and the prolongation 

operator h
HI , are characterized by their orders. A rule of thumb is that the sum of the 

orders of the prolongation and of the restriction should at least be equal to the order 

of the differential equation solved [108]. When transferring the error to a coarser grid, 

the error is already smooth enough owing to the relaxations on a finer grid. In this 

case, a low order, say the first order, should be enough. For restriction operators, the 

most widely used are the injection ones and the full weighting ones. For prolongation 

operators, the most widely used are the linear (or multi-linear for multi-dimensional 

problems) ones. However, if multi-integration is used to calculate the elastic 

deformations, the order to treat the kernel should be higher owing to the character of 

the kernel, as explained by Brandt and Lubrecht [20]. The rougher the surface, the 

lower the order for multi-integration one should use to stay within discretization 

error. For detailed descriptions of the multi-integration on the elastic deformation 

calculation, or other applications such as the subsurface stress calculation, the reader 

can refer to Ref. [109, 110]. 

v. A basic EHL model, either a line contact problem or a point contact problem, 

can be written as a system of three main equations: the Reynolds equation, the film 

thickness equation, and the force balance equation. Those three equations form a 

nonlinear system with two basic unknowns - the pressure P  and the film thickness 

H . Treating a nonlinear problem with the multigrid method is called the full 

approximation scheme (FAS). This implies that all three basic equations (the 

Reynolds equation, the film thickness equation and the force balance equation) 

should all be treated in the FAS scheme. Other equations appearing in EHL models, 

such as the density-pressure relation or the viscosity-pressure relation, can be 
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implemented inside the relaxation scheme. Those equations do not need to be 

transferred between grids. 

The multigrid iteration scheme may fail to converge for surfaces that are sufficiently 

rough to produce highly disconnected contact areas, although it does converge for 

smoother surfaces producing relatively simple contact areas. Thus, the applicability 

of the MG on rough surface EHL problems should be treated carefully. 

 

3.3. Results and Discussions 

3.3.1. Characteristics of EHL Solution 

The EHL solution, as well as the dry contact solution are obtained for the case with 

the following parameters: 11' 2 10 E Pa , 21 10 R m , 1 /ru m s , 

51 10 / F N m , 1sr . In the following work, if the value of the parameters 'E  

and R  are not explicitly specified, they are defined as identical to the ones used 

here. The dimensionless calculational domain is chosen as [ 4.5,1.5] X  and this 

domain is used elsewhere in this work except explicitly specified. Fig. 3.7 shows the 

difference between the EHL solution and the dry contact solution. The black solid 

line and the blue solid line represent the pressure distribution of the EHL solution 

and the dry contact solution, respectively, while the black dotted line and the blue 

dotted line represent the film thickness (or the gap height) of the EHL solution and 

the dry contact solution, respectively. For this smooth surface case, the dry contact 

solution is identical to the one obtained with the Hertzian contact theory. From Fig. 

3.7 it is seen that there are several significant characteristics for an EHL solution; 

there is a pressure spike at the outlet zone of the Hertzian contact region; there is a 

gradually pressure built up at the inlet zone of the nominal contact zone; and for the 

Newtonian EHL, the film thickness is almost parallel with the Hertzian contact 
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region, except there is a constriction at the outlet zone of the Hertzian contact region. 

 

Fig. 3.7 Characteristics of a dimensionless EHL solution compared with dry contact 

solution 

 

3.3.2. Effect of Calculation Domain and Mesh Density 

Since for a light load case the calculation domain should be large enough to avoid 

any potential "numerical staving", the effect of the inlet zone on solutions is 

investigated. The light load case is chosen as: 42 10 / F N m  and four calculation 

domains are studied: X [-4.5,1.5], [-6.5,1.5], [-8.5,1.5], and [-10.5,1.5]. As is seen 

from Fig. 3.8, variations of dimensionless pressure and film profile for those four 

domain cases are not quite remarkable which means it is fair to use [-4.5,1.5] for the 

light load cases studied in this thesis.  

 



 
 

54 

Fig. 3.8 Effect of calculation domain on pressure and film thickness 

 

When the rolling speed is high, the "numerical staving" might also occur. In this 

work, a high speed case 30 /ru m s  is studied and the effect of calculation domain 

on this case is shown in Fig. 3.9. As is seen from Fig. 3.9, there is little variation of 

the pressure profile and the film profile for the four domains: X [-4.5,1.5], 

[-6.5,1.5], [-8.5,1.5], and [-10.5,1.5]. X [-4.5,1.5] is enough for the speed regime 

studied in this work. 

 

Fig. 3.9 Effect of calculation domain on pressure and film profile 

 

Fig. 3.10 shows the effect of mesh density for the case 1 /ru m s , 

51 10 / F N m , 1sr . It is seen if attention is not paid to local, detailed 

information such as the location of the pressure spike - the mesh density with 

1025nx  is enough to represent accurate results. In the following work, if not 

explicitly specified, mesh density with 1025nx  is used. 
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Fig. 3.10 Effect of mesh density on solution for the given case 

 

3.4. Chapter Summary 

A dry contact model and a classic EHL model are developed numerically in this 

chapter. Fundamental equations of the models are introduced. Typical characteristic 

behaviours of an EHL problem are described by comparison with the dry contact 

solution. The following conclusions can be made in this chapter: 

 Compared with the dry contact solution, the EHL solution will show the pressure 

built up at the inlet zone and the second pressure spike and the film contraction at the 

outlet zone. 

 For the working conditions studied - 4 6[2 10 / ,3 10 / ]  F N m N m  and 

[0.1 / ,30 / ]ru m s m s  - the calculation domain [ 4.5,1.5] X  used in this work is 

enough for avoiding "numerical starving". The mesh density chosen, 1025nx , is 

enough for representing basic characteristic behaviours of solutions. 
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Chapter 4 Lubricant Non-Newtonian Behaviours 

In this chapter, two non-Newtonian EHL models - the Ree-Eyring EHL model and 

the power-law EHL model - are developed to compare with the Newtonian model. 

The effects of non-Newtonian behaviours on pressure, film thickness, and shear 

stress distribution, amongst others, are studied. The influence of load, rolling speed 

and slide/roll ratio are shown for the Newtonian fluid, the Ree-Eyring fluid and the 

power-law fluid, respectively. The generalized Reynolds equation introduced in the 

previous chapter is used for considering those non-Newtonian fluid behaviours. 

 

4.1. The Newtonian EHL Model 

The classical Newtonian EHL model has already been described in the previous 

chapter. Here, in order to make a comparison with non-Newtonian models, essential 

formulae are given in terms of parameters of a generalized Reynolds equation. The 

way to calculate the shear stress and flow velocity for a Newtonian fluid is outlined 

below. For a Newtonian fluid, in terms of its constitutive equation, we have 
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The shear stress on surface a , represented by  a , can then be calculated as 
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e  and ' e  are parameters from the Yang-Wen generalized Reynolds equation and 

their expressions have been outlined previously.  

The velocity of the film can be expressed as 

 * * *0 0 0

' 1 ( ) 1( ' ) '
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 
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Introduce the dimensionless parameters 
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/X x b , H/P p p , 2/H hR b , /Z z h , 0/   , 0/   , /  Hp , 

/ a a Hp , * *
0/    

We get the dimensionless form of  a  for the Newtonian fluid 
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The dimensionless gradient of velocity of the Newtonian film is 
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4.1.1. Effect of Load with the Isothermal Model 

The working condition is chosen as: 1 /ru m s , 1sr . Fig. 4.1 shows the effect of 

load on pressure and film profile for a Newtonian fluid. As the load increases, the 

pressure profile becomes close to the Hertzian solution. As the load increases, the 

second pressure spike gets smaller and closer to the outlet edge; meanwhile, the inlet 

zone gets smaller, as does the film thickness. 

 

Fig. 4.1 Effect of load on pressure and film profile with the isothermal Newtonian 

model 

 

Film thickness is one of the most popular parameters used in industry to evaluate the 
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lubrication performance of gears, cams, bearings, etc. The effect of load on minimum 

film thickness is studied for the isothermal, Newtonian fluid. Fig. 4.2 shows the 

minimum film thickness within a large load regime for the case: 1 /ru m s , 1sr . 

As is seen, for both the numerical solutions and the Dowson-Higginson empirical 

results, the minimum film thickness varies exponentially with the load, 

approximately. The Dowson-Higginson formula [111] reads: 

 0.7 0.54 0.132.65 mh RU G W   (4.6) 

where R  is the equivalent contact radius, U , G  and W  are the speed parameter, 

material parameter and load parameter, respectively. Those dimensionless 

parameters are already defined in the previous chapter. The exponential value of W  

used by Dowson and Higginson for this relation is -0.13, while others may choose a 

different exponential value.  

For the load cases studied, the minimum film thicknesses are with the scale of 

sub-micrometres. This film thickness might have the same magnitude as the surface 

roughness for most gear tooth surfaces, which would be worth noticing because film 

failure may occur within the nominal contact zone for those sliding rough surface 

cases. 

 

Fig. 4.2 Effect of load on minimum film thickness with the isothermal Newtonian 

model 
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Fig. 4.3 shows the load effect on the dimensionless shear stress on the interface 

surface a ,  a , with the isothermal Newtonian model. It is seen that as the load 

increases, the value of  a  within the contact zone increases as well which would 

lead to a larger traction. 

 

Fig. 4.3 Effect of load on  a  with the isothermal Newtonian model 

 

The tangential force behaviour could be studied more clearly from a friction 

coefficient curve, as shown in Fig. 4.4. Fig. 4.4 shows the effect of load on friction 

coefficient for a Newtonian fluid under the isothermal condition. It shows that the 

friction coefficient value increases significantly with the load. When the load is high, 

the friction coefficient value obtained under the isothermal, Newtonian assumption 

exceeds unity, which is physically impossible. It shows clearly that in terms of 

friction coefficient, the isothermal Newtonian model is clearly not a good idea. The 

thermal effect, as well as the non-Newtonian effect, should be considered in a 

friction analysis because those factors affect the friction behaviour in a remarkable 

way, as is seen in the following sections. 
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Fig. 4.4 Effect of load on friction coefficient with the isothermal Newtonian model 

 

Fig. 4.5 shows the effect of load on the dimensionless viscosity of the film   with 

the isothermal Newtonian model. It is seen that, as the load increases, the value of   

inside the contact zone increases. This increase of the viscosity is believed to be 

responsible for the increase of traction. 

 

Fig. 4.5 Effect of load on   with the isothermal Newtonian model 

 

Fig. 4.6 shows the effect of load on the velocity field of the film with the isothermal 

Newtonian model. It shows that the value of the velocity at the inlet zone within the 

film may become negative, which is referred to as the “inverse flow”. In order to 
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study the load effect on velocity more clearly, information about the velocity 

distribution at the central layer of the film is given in Fig. 4.7. It is seen that, as the 

load increases, the “inverse flow” zone moves towards the central area of the 

nominal contact zone. The absolute maximum value of the velocity of the “inverse 

flow” zone does not change significantly when the load varies.  

 

Fig. 4.6 Effect of load on velocity field of the film with the isothermal Newtonian 

model 

 

 

Fig. 4.7 Effect of load on distribution of u  at the central layer of the film with the 

isothermal Newtonian model 

 

4.1.2. Effect of Rolling Speed with the Isothermal Model 

The effect of rolling speed with the isothermal Newtonian model is studied. Fig. 4.8 
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shows the effect of rolling speed on the pressure and film profile for a Newtonian 

fluid. It is seen that, as the rolling speed decreases, the pressure profile becomes 

close to the Hertzian solution. As the rolling speed decreases, the second pressure 

spike gets smaller and closer to the outlet edge; meanwhile, the inlet zone gets 

smaller, as does the film thickness. 

 

Fig. 4.8 Effect of rolling speed on pressure and film profile with the isothermal 

Newtonian model 

 

The effect of rolling speed is also studied for the isothermal, Newtonian case. The 

effect of rolling speed on minimum film thickness is studied by showing the 

numerical results and their Dowson-Higginson counterparts. As is seen from Fig. 4.9, 

the minimum film thickness increases as the rolling speed goes up. At high speeds, 

the Dowson-Higginson formula overestimates the minimum film thickness slightly. 
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Fig. 4.9 Effect of rolling speed on minimum film thickness for an isothermal, 

Newtonian fluid 

 

Although in the load effect section we conclude that it is not reasonable to predict 

friction with the isothermal Newtonian model, the effect of rolling speed on friction 

is still studied to help readers understand the relationship between rolling speed and 

the friction. Fig. 4.10 shows the effect of rolling speed on  a  with the isothermal 

Newtonian model. It is seen that as the rolling speed increases, the value of  a  

within the contact zone increases as well which would lead to a larger traction.  

 

Fig. 4.10 Effect of rolling speed on  a  with the isothermal Newtonian model 

 

Fig. 4.11 shows the effect of the rolling speed on the friction coefficient with the 

isothermal Newtonian model. It is seen that, as the rolling speed increases, the value 

of the friction coefficient increases almost linearly.  
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Fig. 4.11 Effect of rolling speed on friction coefficient with the isothermal 

Newtonian model 

 

Fig. 4.12 shows the effect of the rolling speed on   with the isothermal Newtonian 

model. It is seen when the rolling speed is not high, as the rolling speed increases, the 

value of   does not change significantly; however, when the rolling speed is high, 

the second spike of the   profile is more evident. 

 

Fig. 4.12 Effect of rolling speed on   with the isothermal Newtonian model 

 

Fig. 4.13 shows information on the distribution of u  at the central layer of the film. 

It can be seen from Fig. 4.13 that, as the speed decreases, the “inverse flow” zone 

moves towards the central area of the nominal contact zone. The absolute maximum 
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value of the velocity of the “inverse flow” zone does not change significantly when 

the rolling speed varies.  

 

Fig. 4.13 Effect of rolling speed on distribution of u  at the central layer of the film 

with the isothermal Newtonian model 

 

4.1.3. Effect of Slide/Roll Ratio with the Isothermal Model 

The effect of the slide/roll ratio with the isothermal Newtonian model is studied in 

this section. Fig. 4.14 shows the effect of the slide/roll ratio on the pressure and film 

profile for a Newtonian fluid. It is seen that for the working condition chosen, the 

slide/roll ratio has almost no effect on pressure and film profile at all.  

 

Fig. 4.14 Effect of slide/roll ratio on pressure and film profile with the isothermal 

Newtonian model 

 

The effect of the slide/roll ratio on the minimum film thickness is studied and the 
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result is shown in Fig. 4.15. It is seen that the slide/roll ratio has a very limited 

influence on the minimum film thickness for an isothermal, Newtonian fluid. The 

minor fluctuation of the minimum film thickness value as the slide/roll ratio varies is 

believed to be caused by the numerical convergence process. 

 

Fig. 4.15 Effect of slide/roll ratio on minimum film thickness for a Newtonian fluid 

 

Fig. 4.16 shows the effect of the slide/roll ratio on  a . It is seen that as the slide/roll 

ratio increases, the value of  a  within the contact zone increases. 

 

Fig. 4.16 Effect of slide/roll ratio on  a  with the isothermal Newtonian model 

 

Fig. 4.17 shows the effect of the slide/roll ratio on the friction coefficient with the 

isothermal Newtonian model. It is seen that, the value of friction coefficient goes up 

linearly with the slide/roll ratio. This is easy to understand because the shear stress 
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within the nominal contact zone is directly determined by the velocity difference 

between the two interacting solid surfaces. 

 

Fig. 4.17 Effect of slide/roll ratio on friction coefficient with the isothermal 

Newtonian model 

 

Fig. 4.18 shows the effect of the slide/roll ratio on   for a Newtonian fluid. It is 

seen that the slide/roll ratio does not affect   at all for a Newtonian fluid. 

 

Fig. 4.18 Effect of slide/roll ratio on   with the isothermal Newtonian model 

 

Fig. 4.19 shows the effect of the slide/roll ratio on the distribution of u  at the 

central layer of the film. It is seen that the slide/roll ratio does not affect the velocity 

distribution in the film at all. 
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Fig. 4.19 Effect of slide/roll ratio on distribution of u  at the central layer of the film 

with the isothermal Newtonian model 

 

4.2. The Ree-Eyring EHL Model 

4.2.1. Governing Equations 

The constitutive equation of a Ree-Eyring fluid can be expressed as 
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Where 
.
  is the shear strain rate, 0  is the Eyring stress. If 0  goes to infinity, the 

constitutive equation becomes close to the Newtonian one because mathematically 

we have 
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Regardless of whether a Newtonian fluid or a non-Newtonian fluid is assumed, the 

shear stress inside the film can always be expressed as 
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  (4.9) 

Substituting this equation into the Ree-Eyring constitutive equation and integrating 

along the z  direction (across the film) we get 
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It is important to remember the non-sliding condition, that is at 0z ,  au u  and 

at z h ,  bu u , is used to get the above equation. 

Since mathematically 

 sinh( ) sinh cosh cosh sinh  x y x y x y   (4.11) 

Equation 4.10 can then be rewritten as 

 0 1 0 2sinh( / ) cosh( / )     a a b aF F u u   (4.12) 

Where 
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If / p x  and   are known, then for a given x , 1F  and 2F  can be calculated 

through numerical integration, which makes Eq. 4.12 with only one variable  a .  a  

can be solved analytically for the Ree-Eyring fluid 
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Once  a  is calculated, the shear stress distribution   across the film can be 

obtained using Eq. 4.9. Then the equivalent viscosity *  can be solved as below 

 *
0 0( / ) / sinh( / )        (4.15) 

The equivalent viscosity can be used in the generalized Reynolds equation for 

pressure updating.  

Once the shear stress   is solved, / u z  can be calculated using the fluid 

constitutive equation. The fluid velocity field can be expressed as 
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And of course, for the Ree-Eyring fluid, the velocity could also be calculated using 

the parameters of the generalized Reynolds equation as 
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4.2.2. Dimensionless Equations 

Beside the dimensionless parameters introduced in the Newtonian EHL model, 

additional parameters are introduced to describe the dimensionless Ree-Eyring EHL 

model: 

 0 0 /  Hp   (4.18) 
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 2
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The dimensionless shear stress on surface a  is expressed as 
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The dimensionless velocity gradient can be expressed as 
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The dimensionless flow velocity then reads 
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4.2.3. Results and Discussion 

Fig. 4.20 shows the pressure and film profiles of the Newtonian-based solution and 

Ree-Eyring-based solution under the case 1 /ru m s , 51 10 / F N m , 1sr . 

The Eyring stress is chosen as 7
0 1 10   Pa  and unless it is specified explicitly 

this value is used elsewhere. It is seen that compared with the Newtonian solution, 

two main differences are shown for the Ree-Eyring results. The film profile is not as 

parallel as the Newtonian one within the Hertzian contact region, while the minimum 

film thickness at the outlet zone does not change significantly compared with the 

Newtonian value. In addition, the second pressure spike at the outlet zone is not as 

significant as the Newtonian one. 

 

Fig. 4.20 Comparison of Newtonian-based solution and Ree-Eyring with 

7
0 1 10   Pa  solution 

 

4.2.3.1. Effect of Load with the Isothermal Ree-Eyring Model 

The effect of the load for a Ree-Eyring fluid is studied with the following parameters: 

1 /ru m s , 1sr . The minimum film thicknesses have been investigated by other 

researchers extensively and their numerical results are compared with empirical 

formulas such as the Dowson-Higginson formula [111] and the Moes formula, which 

can be found in Ref. [98]. In this work, more attention is paid to the tangential force 
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bahaviour. 

Fig. 4.21 shows the effect of load on the pressure profile and film profile with the 

isothermal Ree-Eyring model. For the pressure profile, the effect of load for a 

Ree-Eyring fluid is similar to the effect of load for a Newtonian fluid. That is, as the 

load increases, the second spike is less evident and the location of the second spike 

comes close to the outlet edge of the nominal contact zone; the inlet zone shrinks 

when the load increases. In terms of the film thickness, the effect of load for a 

Ree-Eyring fluid is also similar to the effect of load for a Newtonian fluid. 

 

Fig. 4.21 Effect of load on pressure and film profile with the isothermal Ree-Eyring 

model 

 

Fig. 4.22 shows the effect of load on the friction coefficient with the isothermal 

Ree-Eyring model. The x  scale of the left subfigure is linear while the x  scale of 

the right one is given in its logarithmic form. When the load is light, the value of the 

friction coefficient increases significantly. When the load is high and as the load 

keeps increasing, the value of the friction coefficient does not change too 

significantly. If the load is very high (such as 61.5 10 / F N m ) and it keeps 

increasing, the friction coefficient will drop gradually. 
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Fig. 4.22 Effect of load on friction coefficient with the isothermal Ree-Eyring model 

 

Fig. 4.23 shows the effect of load on u  at the central layer of the film with the 

isothermal Ree-Eyring model. It is seen that, the load affects the fluid velocity 

distribution of the inlet zone significantly. The fluid velocity in the nominal contact 

zone does not change significantly as the load changes. It is worth noting that for 

some cases shown in Fig. 4.23, the fluid velocity might become negative, which is 

referred to as "reverse flow". The reverse flow in the inlet zone will cause some 

numerical difficulty for thermal EHL solutions which will be discussed in the 

following thermal EHL chapter. 

 

Fig. 4.23 Effect of load on u  at the central layer of the film with the isothermal 

Ree-Eyring model 
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4.2.3.2. Effect of Rolling Speed with the Isothermal Ree-Eyring Model 

Fig. 4.24 shows the effect of rolling speed on the pressure and film profile for an 

isothermal Ree-Eyring fluid. The trend is similar to the Newtonian one.  

 

Fig. 4.24 Effect of rolling speed on pressure and film profile with a Ree-Eyring fluid 

with 7
0 1 10   Pa  

 

Fig. 4.25 shows the effect of rolling speed on  a  for a Ree-Eyring fluid. As the 

speed increases, the value of  a  inside the nominal contact zone increases first and 

if the speed keeps increasing, the value of  a  within the nominal contact zone does 

not change significantly. 

 

Fig. 4.25 Effect of rolling speed on dimensionless shear stress for a Ree-Eyring fluid 
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with 7
0 1 10   Pa  

 

Fig. 4.26 shows the effect of rolling speed on the friction coefficient for a 

Ree-Eyring fluid. To help readers understand the trend, two scales of x  are given: a 

linear scale on the left and a logarithmic scale on the right. It is seen that when the 

speed is not high, as the speed goes up, the value of the friction coefficient goes up 

significantly and if the speed goes up more, the value of the friction coefficient 

increases much more slowly. 

 

Fig. 4.26 Effect of rolling speed on friction coefficient for a Ree-Eyring fluid with 

7
0 1 10   Pa  

 

Fig. 4.27 shows the effect of rolling speed on u  at the central layer of the film for a 

Ree-Eyring fluid. It is seen that, like the Newtonian solutions, the fluid velocity 

inside the nominal contact zone does not change significantly as the rolling speed 

changes. Reverse flow at the inlet zone still might occur under some speed 

conditions.  
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Fig. 4.27 Effect of rolling speed on u  at central layer of the film for a Ree-Eyring 

fluid with 7
0 1 10   Pa  

 

4.2.3.3. Effect of Slide/Roll Ratio with the Isothermal Ree-Eyring Model 

The effects of the slide/roll ratio on the pressure profile, shear stress and friction 

coefficient are studied. Fig. 4.28 shows the effect of slide/roll ratio on pressure and 

film profile. For the pressure profile, the slide/roll ratio only affects the second spike 

at the outlet zone. While referred to the film profile, the slide/roll ratio does not 

affect the film thickness remarkably. 

 

Fig. 4.28 Effect of slide/roll ratio on pressure and film profile with a Ree-Eyring 

fluid with 7
0 1 10   Pa  
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Fig. 4.29 shows the effect of the slide/roll ratio on  a  for a Ree-Eyring fluid. As is 

seen, the value of  a  within the nominal contact zone increases with the increasing 

slide/roll ratio. However, this trend is slower when the slide/roll ratio is high. 

 

Fig. 4.29 Effect of slide/roll ratio on  a  for a Ree-Eyring fluid with 7
0 1 10   Pa  

 

Fig. 4.30 shows the effect of the slide/roll ratio on the friction coefficient for a 

Ree-Eyring fluid. It is seen that the value of the friction coefficient goes up when the 

slide/roll ratio increases. However, this trend becomes slower when the slide/roll 

ratio is high. 

 

Fig. 4.30 Effect of slide/roll ratio on friction coefficient for a Ree-Eyring fluid with 

7
0 1 10   Pa  
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Fig. 4.31 shows the effect of the slide/roll ratio on fluid velocity for a Ree-Eyring 

fluid. It shows that there is almost no difference on fluid velocity inside the nominal 

contact zone between different slide/roll ratio cases. However, the reverse flow might 

occur in some cases in the inlet zone.  

 

Fig. 4.31 Effect of slide/roll ratio on u  for a Ree-Eyring fluid with 7
0 1 10   Pa  

 

4.2.3.4. Effect of Eyring Stress with the Isothermal Ree-Eyring Model 

In principle, the use of a shear thinning non-Newtonian lubricant formulation allows 

the calculation of realistic values of fluid traction. For the Ree-Eyring fluid, the main 

difficulty in applying the analysis is the choice of the Eyring stress value for the 

lubricant [112]. Wang et al. [113] use 2 MPa, Bou-Chakra et al. [114] use 2.6 MPa, 

Britton et al. [112] use 3-4 MPa, Jacod et al. [115] use 4 MPa, Chang and Zhao [116] 

use 5-50 MPa, Morales-Espejel et al. [117] use 8 MPa, Olver and Spikes [118] use 9 

MPa, Kumar et al. [119] use 10 MPa, Sottomayor et al. [120] use 18.06 MPa, Wang 

and Yi [36] use 18.7 MPa. 

Fig. 4.32 shows the effect of the characteristic Eyring stress on the pressure and 

film profile for the working case described in the figure. It is seen that Eyring stress 

affects the second pressure spikes at the outlet zone significantly, while its effect on 

the film profile is much less. 
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Fig. 4.32 Effect of Eyring stress on pressure and film profile 

 

Fig. 4.33 shows the effect of Eyring stress on fluid viscosity. The upper subfigures 

represent the viscosity distribution across the film, while the lower subfigures 

represent the viscosity at the central layer of the film. In lower subfigures the dashed 

lines represent the original Newtonian viscosity, while the solid lines represent the 

viscosity obtained using the Ree-Eyring assumption. Fig. 4.33 (a) and (e) correspond 

to 6
0 1 10   Pa , (b) and (f) correspond to 7

0 1 10   Pa , (c) and (g) correspond to 

8
0 1 10   Pa , while (d) and (h) correspond to 9

0 1 10   Pa . It is seen that the 

viscosities of a Ree-Eyring fluid are smaller than their Newtonian counterparts. As 

the Eyring stress decreases, the viscosities decrease significantly. When the Eyring 

stress is high, such as 9
0 1 10   Pa  shown in Fig. 4.33 (h), the difference between 

the Ree-Eyring solution and the Newtonian one is negligible. 
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Fig. 4.33 Effect of Eyring stress on viscosity with the isothermal Ree-Eyring model 

 

Figs. 4.34 and 4.35 show the traction on the interface and the friction coefficient, 

respectively, with the isothermal Ree-Eyring model. It is seen from Fig. 4.35 that 

when the Eyring stress is not high, the friction coefficient increases as the Eyring 

stress goes up. When the Eyring stress is between the value 7
0 1 10   Pa  and the 

value 9
0 1 10   Pa , the increase of the friction coefficient is rapid. However, when 

the Eyring stress is above 9
0 1 10   Pa , the friction coefficient almost does not 

change, since the solutions are quite similar to the Newtonian solution.  

 

Fig. 4.34 Effect of Eyring stress on shear stress with the isothermal Ree-Eyring 
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model 

 

 

Fig. 4.35 Effect of Eyring stress on friction coefficient with the isothermal 

Ree-Eyring model 

 

It is seen from the previous analysis that the characteristic Eyring stress should be 

chosen carefully, since it may affect the pressure spikes, viscosities, traction 

distribution and the friction coefficient significantly. 

 

4.3. The Power-Law EHL Model 

4.3.1. Governing Equations 

It is somewhat difficult to calculate  a  for a power-law fluid because its value 

should be determined iteratively. In the following the derivation of the expression of 

 a  for the power law fluid is given. 

The constitutive equation of a power-law fluid reads 
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Where m  is the viscosity index and n  is the flow index. Fluids with 1n , 1n , 

and 1n  correspond to a dilatant fluid, Newtonian fluid, and pseudoplastic fluid, 

respectively. 

The viscosity index m  should be a function of the pressure and the 

temperature. If the Roelands equation is applied, m  can be expressed as 

 09
0 0exp{(ln 9.67)[(1 5.1 10 ) 1]}    zm m m p   (4.25) 

Where 0m  is the viscosity index at ambient pressure and ambient temperature. 

When 1n , we have 0 0m . However, for cases with 1n , we still assume 

0 0m  owing to the lack of relevant empirical data. 0z  is the pressure-viscosity 

index and it is chosen as 0 0.6z . 

Substitute Eq. 4.25 into Eq. 4.24, and  a  can finally be expressed as 
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  (4.26) 

 a  appears at both sides of this equation and it should be calculated 

iteratively - usually for each updated pressures, dozens of iterations of  a  are 

required to satisfy the convergence criteria. It is seen that the calculation of  a  of 

the power-law fluid is more complex than that of the Ree-Eyring fluid, which can be 

calculated analytically. 

Once the shear stress field is obtained, the equivalent viscosity of a power-law 

fluid can be calculated using 

 ( 1)/* 1/   n nnm   (4.27) 
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4.3.2. Dimensionless Equations 

Introducing new parameters: 

 0/m m m   (4.28) 

The expression of  a  for a power-law fluid can be calculated as 
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If 1n  the expression of  a  is simplified to 
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which corresponds to the Newtonian one. 

 

4.3.3. Results and Discussion 

4.3.3.1. Effect of Power-Law Index with the Isothermal Power-Law Model 

Fig. 4.36 shows the effect of the power-law index n  on the pressure and film 

profile for a power-law fluid. It is seen that as n  increases, the second pressure 

spike becomes weaker, and the film becomes thinner. 
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Fig. 4.36 Effect of power-law index on pressure and film profile with the isothermal 

power-law model 

 

Fig. 4.37 shows the effect of the index on shear stress distribution with the 

isothermal power-law model. It is seen that as the index increases, the absolute value 

of shear stress within the nominal contact zone decreases. For the cases 0.90n  

and 0.95n , the predicted value of the friction coefficient exceeds unity, which is 

physically impossible. Special attention should be paid when attempting to use the 

power-law model for traction studies. 

 

Fig. 4.37 Effect of the index on shear stress distribution with the isothermal 

power-law model 

 

4.3.3.2. Effect of Load with the Isothermal Power-Law Model 

Fig. 4.38 shows the effect of load on the pressure and film profile for a 1.05n  

power-law fluid. It is seen that, as the load increases, the pressure profile becomes 

similar to the Hertzian contact solution. As the load increases, the film thickness 

becomes lower. These conclusions are similar to those with a Newtonian fluid or a 

Ree-Eyring fluid. 
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Fig. 4.38 Effect of load on pressure and film profile for a power-law fluid with 

1.05n  

 

Fig. 4.39 shows the effect of load on  a  for a 1.05n  power-law fluid. It shows 

that, for a power-law fluid with 1.05n , as the load increases, the absolute value of 

 a  within the nominal contact zone increases, which would lead to a higher friction 

coefficient value. Fig. 4.40 shows the variation of friction coefficient along the load. 

The value of the friction coefficient increases exponentially as the load increases. 

 

Fig. 4.39 Effect of load on dimensionless shear stress for a power-law fluid with 

1.05n  
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Fig. 4.40 Effect of load on friction coefficient for a power-law fluid with 1.05n  

 

Fig. 4.41 shows the three-dimensional velocity field of the film for different load 

cases with the power law fluid. In order to see the effect of load on velocity 

distribution more clearly, a two-dimensional velocity distribution at the central layer 

of the film is extracted from Fig. 4.41 and is shown in Fig. 4.42. 

 

Fig. 4.41 Effect of load on velocity field within the film for a power-law fluid with 

1.05n  

 

It is seen from Fig. 4.42 that the load affects the velocity field at the inlet zone of the 

nominal contact area significantly while it affects little within the nominal contact 
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area. At the outlet zone the velocity also varies slightly between different load cases. 

 

Fig. 4.42 Effect of load on velocity field at central layer of the film for a power-law 

fluid with 1.05n  

 

4.3.3.3. Effect of Rolling Speed with the Isothermal Power-Law Model 

Fig. 4.43 shows the effect of rolling speed on the pressure and film profile for a 

1.05n  power-law fluid. It is seen that, as the rolling speed goes up, the pressure 

profile deviates from the Hertzian contact solution; that is, both the inlet zone and the 

second pressure spike are getting larger. As the rolling speed increases, the film 

thickness also increases. 

 

Fig. 4.43 Effect of rolling speed on pressure and film profile for a power-law fluid 
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with 1.05n  

 

Fig. 4.44 shows the effect of rolling speed on  a  for this power-law fluid. As the 

rolling speed increases, the absolute value of  a  within the nominal contact zone 

increases, which would lead to a larger friction coefficient value. The spike at the 

outlet zone also gets bigger when the speed increases.  

 

Fig. 4.44 Effect of rolling speed on dimensionless shear stress for a power-law fluid 

with 1.05n  

 

Fig. 4.45 shows the effect on the friction coefficient. As the speed increases, the 

value of the friction coefficient increases almost linearly.  

 



 
 

89 

Fig. 4.45 Effect of rolling speed on friction coefficient for a power-law fluid with 

1.05n  

 

Fig. 4.46 shows the effect on velocity distribution at the central layer of the film for 

this power-law fluid. It is seen that, the rolling speed also affects the velocity field at 

the inlet zone but affects little within the nominal contact zone. The velocity at the 

outlet zone also is affected by the rolling speed. 

 

Fig. 4.46 Effect on velocity distribution at the central layer of the film for a 

power-law fluid with 1.05n  

 

4.3.3.4. Effect of Slide/Roll Ratio with the Isothermal Power-Law Model 

Fig. 4.47 shows the effect of the slide/roll ratio on the pressure and film profile for 

the 1.05n  power-law fluid. It is seen that the slide/roll ratio does not affect the 

pressure and film profile at all for a power-law fluid. 
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Fig. 4.47 Effect of slide/roll ratio on pressure and film profile for a power-law fluid 

with 1.05n  

 

Figs. 4.48 and 4.49 show the effect of the slide/roll ratio on the shear stress 

distribution and on the friction coefficient for a power-law fluid with 1.05n , 

respectively. It is seen that as the slide/roll ratio increases, the absolute value of  a  

within the nominal contact zone increases, which would lead to a larger friction 

coefficient value, as is seen from Fig. 4.49. For the power-law fluid with 1.05n , 

the friction coefficient varies almost linearly with the slide/roll ratio. As mentioned 

before, the Newtonian one also holds this linear relationship between the slide/roll 

ratio and the friction coefficient. 
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Fig. 4.48 Effect of slide/roll ratio on dimensionless shear stress for a power-law fluid 

with 1.05n  

 

 

Fig. 4.49 Effect of load on friction coefficient for a power-law fluid with 1.05n  

 

Fig. 4.50 shows the effect on velocity distribution at the central layer of the film. It is 

seen that there is no effect on velocity distribution for the slide/roll ratio parameter at 

all for a power-law fluid.  

 

Fig. 4.50 Effect of slide/roll ratio on velocity field within the film for a power-law 

fluid with 1.05n  
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4.4. Chapter Summary 

In this chapter, two non-Newtonian models, the Ree-Eyring model and the 

power-law model, are incorporated in the lubrication model by using the generalized 

Reynolds equation. The following conclusions can be made in this chapter: 

 For the Ree-Eyring fluid, the minimum film thickness within the nominal 

contact zone does not change significantly from the Newtonian solution. However, 

for a power-law fluid, the minimum film thickness changes significantly with the 

power-law index n . The second pressure spikes for the Ree-Eyring solution, as well 

as the power-law solution with 1n , are much more alleviated than the Newtonian 

solution owing to the decrease of the equivalent viscosity within the nominal contact 

zone. 

 Compared with the Newtonian solution, the Ree-Eyring solution gives a lower 

fluid viscosity which will cause a lower friction coefficient when the same working 

condition is considered. Similar conclusions can be made for the power-law fluid 

with 1n . 

 For the Newtonian fluid, the Ree-Eyring fluid, and the power-law fluid with 

1.05n , as the load increases, the pressure profile becomes similar to the Hertzian 

contact solution. As the load increases, the film thickness becomes lower. For the 

Newtonian fluid and the power-law fluid with 1.05n , the friction coefficient value 

increases significantly with the load. For the Ree-Eyring fluid, when the load is light, 

the value of the friction coefficient increases significantly. When the load is high and 

as it keeps increasing, the value of the friction coefficient does not change too 

considerably at first; if it keeps increasing, the friction coefficient will drop 

gradually. 

 For the Newtonian fluid, the Ree-Eyring fluid, and the power-law fluid with 

1.05n , as the rolling speed goes up, the pressure profile deviates from the Hertzian 
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contact solution: that is, the inlet zone is getting larger and the second pressure spike 

is getting bigger as well. As the rolling speed increases, the film thickness increases. 

For the Newtonian fluid, as the rolling speed increases, the value of the friction 

coefficient increases almost linearly. For the Ree-Eyring fluid, when the speed is not 

high, as the speed goes up, the value of the friction coefficient goes up significantly 

and if the speed continues to increase, the value of the friction coefficient increases 

much more slowly. The friction coefficient is almost linear with the logarithmic form 

of rolling speed, while for the power-law fluid with 1.05n , as the speed increases, 

the value of the friction coefficient increases almost linearly; 

 As for the effect of slide to roll ratio on pressure and film profile, there is almost 

no difference on pressure and film profile for the Newtonian one and the power-law 

with 1.05n . For the Ree-Eyring fluid, the slide to roll ratio affect the second 

pressure spikes while it has a very limited influence on the other part of the pressure 

profile and the whole film profile. For the Newtonian fluid and the power-law fluid 

with 1.05n , the value of friction coefficient goes up linearly with the slide to roll 

ratio. For the Ree-Eyring fluid, the value of friction coefficient goes up when the 

slide to roll ratio increases. However, this trend becomes slower when the slide to 

roll ratio is high.  
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Chapter 5 Rough Surface EHL and Mixed Lubrication 

In this chapter, rough surface EHL problems and mixed lubrication problems are 

studied. Ultra thin film problems are handled using the Hu-Zhu unified approach [4]. 

Numerical cases are given with this type of deterministic model. 

5.1. Reduced Reynolds Technique for Line Contacts 

Zhu and Hu [4] presented a unified approach that is capable of simulating the entire 

transition from the full film, mixed, down to boundary lubrication. The Reduced 

Reynolds technique has been proven to be robust with no convergence problem when 

handling rough engineering surfaces under severe operating conditions [121]. To 

understand the Reduced Reynolds technique, we should look again at the classical 

Reynolds equation 

 
3 ( ) ( )( ) 12 12  


   

 
   r

h p h hu
x x x t

  (5.1) 

The Reynolds equation implies the balance of fluid flow. The first term on the 

left-hand side of Eq. 5.1 represents the lubricant flow owing to the hydrodynamic 

pressure, while the other two terms represent the flow caused by surface motion. The 

essence of the Reduced Reynolds techniques lies in that when the film thickness 

becomes zero - the regions where two surfaces are in direct contact - the pressure 

flow vanishes, and a reduced Reynolds equation still applies to the direct-contact 

regions: 

At 0h  

 
( ) ( ) 0  
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h hu
x t

  (5.2) 

When solving the Reynolds equation, a very small value - e.g. =0.00001  - is used 

as a criterion for checking if 0h . When the dimensionless film thickness is less 

than  , it is considered that the film thickness is practically zero, and the pressure 
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flow term in the Reynolds equation should be turned off. In this way, a unified 

Reynolds model can be used to describe the mixed lubrication problems and both 

hydrodynamic and contact pressures can be obtained through the same iteration loop 

without requiring boundary conditions between the hydrodynamic and contact 

regions. This technique was first proposed by Hu and Zhu [4] for point contact 

problems, and in this chapter it is used for line contact problems. 

 

5.2. Numerical Cases with Wavinesses 

Sinusoidal waviness is considered to show the effects of amplitude and wavelength 

of the waviness on pressure, film profile, traction, etc. If the steady-state condition is 

considered, the form of the dimensionless waviness expression reads 

 cos(2 / ) RR Amp x Wav   (5.3) 

where Amp  is the dimensionless amplitude and Wav  is the dimensionless 

wavelength. This term will be added to the film thickness equation. Fig. 5.1 shows 

some of the dimensionless waviness terms studied in this work. The effect of 

amplitude and wavelength on pressure, film thickness, friction, etc., are studied. 

 

Fig. 5.1 Three dimensionless wavinesses studied 
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5.2.1. Effect of Amplitude 

The effect of amplitude is studied first for the cases with working condition 

51 10 / F N m , 1 /ru m s  and 1sr . Fig. 5.2 shows the pressure profiles and 

film profiles for an isothermal, Newtonian case. It is seen that for a Newtonian 

isothermal case, the waviness causes relevant fluctuation on pressure and film 

thickness within the nominal contact zone. The larger the amplitude, the more 

evident the fluctuations on pressure profile and film profile. The wavelengths of the 

fluctuations are in accordance with the original waviness profile.  

 

Fig. 5.2 Effect of amplitude on pressure and film profile for a Newtonian, isothermal 

fluid with dimensionless wavelength 0.2Wav   

 

Fig. 5.3 and 5.4 show solutions for a Ree-Eyring fluid and a power-law fluid with 

1.05n , respectively. It is seen that the larger the amplitude, the more evident the 

fluctuations on pressure profile and film profile. However, comparing the 

Ree-Eyring solution and the power-law solution with the Newtonian one, the 

pressure fluctuation amplitudes are far smaller. 
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Fig. 5.3 Effect of amplitude on pressure and film profile for a Ree-Eyring, isothermal 

fluid with dimensionless wavelength 0.2Wav  

 

 

Fig. 5.4 Effect of amplitude on pressure and film profile for a power-law n=1.05, 

isothermal fluid with dimensionless wavelength 0.2Wav  

 

Fig. 5.5 shows the effect of amplitude on the dimensionless traction  a  for the 

Newtonian, Ree-Eyring, a power-law 1.05n , and isothermal fluid with 

0.2Wav . Subfigures 5.5a, 5.5b, and 5.5c represent the Newtonian solution, 5.5d, 

5.5e, and 5.5f represent the Ree-Eyring solution, while 5.5g, 5.5h, and 5.5i represent 

the power-law solution. It is seen that for the Newtonian and the power-law solutions, 

the waviness causes rapid peaks on  a  at local nominal contact areas. For the 
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Ree-Eyring solution, the fluctuation of  a  within the nominal contact region has a 

regular pattern according to the original waviness.  

 

Fig. 5.5 Effect of amplitude on traction for a Newtonian, Ree-Eyring, a power-law 

n=1.05, isothermal fluid with dimensionless wavelength 0.2Wav  

 

Figs. 5.6 to 5.8 show the effect of amplitude on the friction coefficient for the 

Newtonian, Ree-Eyring, and power-law fluid, respectively. For the Newtonian 

solution and the power-law solution, the friction coefficient increases rapidly as the 

amplitude of the waviness goes up. Even though the power-law fluid values are 

lower than their Newtonian counterparts, they are still too large to be physically 

meaningful. It is interesting to see from Fig. 5.7 that for the Ree-Eyring fluid, with 

0.2Wav , as the amplitude of waviness increases, the friction coefficient first 

decreases a little and then increases constantly when the amplitude is larger than 

0.05Amp . This phenomenon is interesting because it implies that a carefully 

controlled artificial surface roughness pattern with a small amplitude may lead to a 

less frictional power loss. In order to assure this conclusion, another two cases with 

0.1Wav  and 0.05Wav  are studied using the Ree-Eyring assumption, the 

results of which are shown in Figs. 5.9 and 5.10, respectively. 
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Fig. 5.6 Effect of amplitude on friction coefficient for a Newtonian fluid with 

dimensionless wavelength 0.2Wav  

 

 

Fig. 5.7 Effect of amplitude on friction coefficient for a Ree-Eyring fluid with 

dimensionless wavelength 0.2Wav  
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Fig. 5.8 Effect of amplitude on friction coefficient for a Power-law fluid with 

1.05n  with dimensionless wavelength 0.2Wav  

 

It is seen from Figs. 5.7, 5.9 and 5.10 that at a small-amplitude range, as the 

amplitude of waviness increases, the friction coefficient will not increase, and 

sometimes a small amplitude will reduce the friction coefficient. For the cases where 

0.2Wav  and 0.1Wav , the turning points also differ from each other. This 

means if artificial surface roughness is applied which is trying to decrease the friction, 

special attention should be paid to the amplitude of the waviness. 

 

Fig. 5.9 Effect of amplitude on friction coefficient for a Ree-Eyring fluid with 

dimensionless wavelength 0.1Wav  
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Fig. 5.10 Effect of amplitude on friction coefficient for a Ree-Eyring fluid with 

dimensionless wavelength 0.05Wav  

 

5.2.2. Effect of Wavelength 

The effect of wavelength is studied for the working condition 51 10 / F N m , 

1 /ru m s  and 1sr . Fig. 5.11 shows the effect of wavelength on pressure and 

film profile for a Newtonian, isothermal fluid with the dimensionless roughness 

amplitude 0.2Amp . It is seen that as the wavelength increases, the amplitude of 

the pressure fluctuation becomes a little more remarkable. The minimum film 

thickness does not vary greatly with the wavelength of wavinesses. 

 

Fig. 5.11 Effect of wavelength on pressure and film profile for a Newtonian, 
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isothermal fluid with dimensionless roughness amplitude 0.2Amp  

 

Figs. 5.12 and 13 show the pressure and film profile for the Ree-Eyring fluid and the 

power-law fluid with 1.05n . Just like the Newtonian solution, as the wavelength 

increases, the amplitude of the pressure fluctuation might become more remarkable. 

 

Fig. 5.12 Effect of wavelength on pressure and film profile for a Ree-Eyring, 

isothermal fluid with dimensionless roughness amplitude 0.2Amp  

 

 

Fig. 5.13 Effect of wavelength on pressure and film profile for a power-law n=1.05, 

isothermal fluid with dimensionless roughness amplitude 0.2Amp  

 

Figs. 5.14 to 5.16 show the effects of wavelength on the friction coefficient for the 



 
 

103 

three fluids. From the three figures It is seen that when the wavelength is small, such 

as smaller than 0.05Wav , the trend of the friction coefficient along the 

wavelength is unstable. This is probably caused by the fact that the mesh density 

used is not enough to represent such high-frequency components of the waviness. 

For the Newtonian solution and the power-law solution, when the wavelength is 

above 0.05Wav , the friction coefficient first increases and then decreases as the 

wavelength increases. The peak of the friction coefficient curves occur at around 

0.2Wav  for both fluids. For the Ree-Eyring fluid, when the wavelength is above 

0.05Wav , the friction coefficient first decreases rapidly and then increases 

gradually as the wavelength goes up.  

 

Fig. 5.14 Effect of wavelength on friction coefficient for a Newtonian, isothermal 

fluid with dimensionless roughness amplitude 0.2Amp  
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Fig. 5.15 Effect of wavelength on friction coefficient for a Ree-Eyring, isothermal 

fluid with dimensionless roughness amplitude 0.2Amp  

 

 

Fig. 5.16 Effect of wavelength on friction coefficient for a power-law n=1.05, 

isothermal fluid with dimensionless roughness amplitude 0.2Amp  

 

Fig. 5.17 shows solutions for the Ree-Eyring fluid with the dimensionless roughness 

amplitude 0.05Amp . It is seen that there is no evident trend for the friction 

coefficient prediction when the wavelength changes.  
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Fig. 5.17 Effect of wavelength on friction coefficient for a Ree-Eyring, isothermal 

fluid with dimensionless roughness amplitude 0.05Amp   

 

Fig. 5.18 shows the effect of wavelength on the friction coefficient for a power-law 

with 1.05n , isothermal fluid and with a dimensionless roughness amplitude 

0.05Amp . It also shows that the friction coefficient first increases and then 

decreases as the wavelength increases.  

 

Fig. 5.18 Effect of wavelength on friction coefficient for a power-law with 1.05n , 

isothermal fluid with dimensionless roughness amplitude 0.05Amp  
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5.3. Numerical Cases with Digitalized Roughness 

5.3.1. Comparison Between Dry Contact Model, Newtonian EHL Model and Eyring 

EHL Model 

The case studied is still used here: 1 /ru m s , 51 10 / F N m , 1sr . Only the 

surface topography term RR  is changed. The surface roughnesses are generated 

randomly and follow the Gaussian distribution. Fig. 5.19 shows the steady state 

dimensionless pressure and the film profile of a rough surface with the dimensionless 

RMS 0.2qR , under dry contact, Newtonian fluid or Ree-Eyring fluid, respectively. 

Under dry contact condition, the surface roughness has significant effects on pressure 

ripples. The highest pressure within the nominal Hertzian contact region can reach 

more than fifteen times the maximum Hertzian pressure. Gaps exist within the 

nominal Hertzian contact region which means that the surface roughnesses are not 

flattened completely within the nominal contact area. The pressure ripples are 

alleviated significantly if lubrication is considered between contacting surfaces. With 

a roughness value of 0.2qR , the film thickness within the whole calculation 

domain is always above zero and never reaches the limiting threshold value of 

=0.00001  defined in the Reduced Reynolds model. If the Ree-Eyring behaviour is 

considered, the pressure fluctuation is alleviated further.  
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Fig. 5.19 Pressure and film profile with 0.2qR under dry contact condition, 

Newtonian fluid, and Ree-Eyring fluid, respectively 

 

5.3.2. Steady-State Solutions and Transient Solutions 

Fig. 5.20 shows the pressure distribution at different moments: 0t , 5 t t  and 

10 t t . The dimensionless time interval t  is chosen to be   t X . The 

pressure distribution displays a shifting which is caused by surface topography. Fig. 

5.21 shows the film profile at those three moments. The three film distributions also 

display a shifting with time. 

 

Fig. 5.20 Pressure distribution at three chosen moments with a Newtonian fluid 

 

 

Fig. 5.21 Film profile at three chosen moments with a Newtonian fluid 
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5.3.3. Effect of RMS Value of Surface Roughness 

In this section, the isothermal Ree-Eyring EHL model is used to study the effect of 

the RMS value of surface roughness. A smooth surface and four surface roughnesses, 

as shown in Fig. 5.22, are chosen to make a comparison. Fig. 5.23 shows the effect 

of the RMS value on pressure and film profile with a Ree-Eyring fluid. It is seen as 

the RMS value increases, the fluctuation of both the pressure and the film thickness 

become more evident. The maximum pressure may exceeds five times of the 

maximum Hertzian pressure in the case that 0.2qR . In the case of 0.15qR  and 

0.2qR , the film thickness may drop almost to zero, which means "asperity 

contact" may occur within the nominal contact zone. 

 

Fig. 5.22 Dimensionless surface roughness with different RMS values 
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Fig. 5.23 Effect of RMS value on pressure and film profile using a Ree-Eyring fluid 

with 7
0=1 10  Pa  

 

Fig. 5.24 shows the effect of the RMS value on the pressure and film profile for a dry 

contact. Compared with Fig. 5.23, it is seen that the fluid between contacting 

surfaces could alleviate the pressure fluctuation within the nominal contact zone if 

surface roughness is considered. For the dry contact case with 0.2qR , the 

maximum pressure within the nominal contact zone can reach as high as almost 

twenty times the Hertzian maximum pressure, while for the Ree-Eyring fluid case, 

the maximum pressure within the nominal contact zone only reaches six times the 

Hertzian maximum pressure. 

 

Fig. 5.24 Effect of RMS value on pressure and film profile for a dry contact 
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The effect of the RMS value on the friction coefficient with a Ree-Eyring fluid is 

also studied. Fig. 5.25 shows the effect of the RMS value on the friction coefficient 

for the Ree-Eyring fluid. It is seen that when the RMS value is large, say 0.15qR , 

the friction coefficient starts fluctuating as the RMS value keeps increasing. While 

the value is small, the friction coefficient will at first decrease, and then go up as the 

RMS value increases. This phenomenon is similar to the one found when evaluating 

the effects of the amplitude of a regular sinusoidal waviness on the friction 

coefficient using a Ree-Eyring fluid in a previous section. This indicates that a 

controlled surface pattern with small RMS value may be helpful for reducing the 

friction. 

 

Fig. 5.25 Effect of RMS value on friction coefficient for a Ree-Eyring fluid 

 

As a comparison, the Newtonian-based friction coefficient prediction is also given in 

Fig. 5.26. It is seen if the Newtonian fluid is assumed, the friction coefficient will 

generally increase as the RMS value of the roughness increases. The 

Newtonian-based friction coefficient is still lacking of physical meaning owing to 

their values being too large. 
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Fig. 5.26 Effect of RMS value on friction coefficient for a Newtonian fluid 

 

5.4. Chapter Summary 

A rough surface is considered in this chapter in two ways: first with the regular 

sinusoidal waviness, and second with the randomly generated roughness following 

Gaussian distribution. The surface roughness term is added to the film thickness 

equation. The Reduced Reynolds equation technique is applied to deal with local 

ultra-thin film situations. The following conclusions can be made: 

 With the regular waviness, the larger the amplitude of the waviness, the more 

evident the fluctuations, which have the same frequency as the original waviness, on 

the pressure profile and film profile. For the Newtonian solution and the power-law 

solution, the friction coefficient increases rapidly as the amplitude of the waviness 

goes up. Even though the power-law fluid friction coefficient values are lower than 

their Newtonian counterparts, they are still too large to be physically meaningful. For 

the Ree-Eyring fluid, as the amplitude of waviness increases, the friction coefficient 

at first decreases slightly or stays constant, and when the amplitude is high the 

friction coefficient increases gradually as the amplitude keeps increasing. 

 For the Newtonian solution and the power-law solution, when the wavelength is 

above a certain level - e.g. 0.05Wav  in the studies - the friction coefficient first 
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increases and then decreases as the wavelength increases. However, for the 

Ree-Eyring fluid, the relationship between the friction coefficient and the wavelength 

of the waviness depends on the amplitude of the waviness. A more detailed analysis 

of the waviness wavelength effect is yet to be studied. 

 If the digitalized roughness is considered, as the RMS value increases, the 

fluctuation of both the pressure and the film thickness become more evident. The 

maximum pressure within the nominal contact zone may exceed several times that of 

the maximum Hertzian pressure, and the minimum film thickness within the nominal 

contact zone may drop almost to zero locally which leads to the "mixed lubrication" 

situation. 
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Chapter 6 A Thermal EHL Model 

In this chapter, TEHL models considering different fluid rheology models are 

developed. The generalized Reynolds equation proposed by Yang and Wen [3] is 

used, within which it is easy to incorporate the thermal effect. This method has been 

applied by Yang and co-workers for starved EHL analysis [122], the size effect of 

roller pairs [123], the thermal conductivity effects of contacting surfaces [124], and 

vibration effects [125], amongst others. 

Compared with point contact problems, solving temperature distribution for line 

contact problems is easier for the following reasons: 

i. The y  direction, which is normal to the flow direction and the direction across 

the film, does not need to be considered which decreases the computational cost 

significantly. 

ii. The type of energy equation describing the fluid and the solids is the same. 

iii. The temperature at the boundary in x  direction does not to be calculated again 

for a line contact, which means the forms of those differential equations are identical 

and can be treated in a single way. 

 

6.1. A TEHL Model with Energy Equations 

6.1.1. Energy Equation 

The fluid will generate heat owing to the viscous shearing and compression which 

would cause the rising of temperature. Meanwhile, the heat generated would 

dissipate owing to the convection effect and the conduct effect. These effects lead to 

a steady state of temperature distribution once the thermal balance is achieved. The 

temperature field then can be determined by solving energy equations of solids and 

the film. 

The energy equation for the film is with a complicated form and the 
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dimensionless process of this equation is necessary to reproduce here, which stems 

from Ref. [126].  

If no transient effect is taken into account, the energy equation for the fluid can 

be written as 

 

2
2
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Where c  is specific heat of the fluid ( / ( )J kgK ),   is the density of the fluid 

( 3/kg m ), k  is the thermal conductivity of the fluid ( / ( )W mK ). T is the 

temperature ( K ), and u  is the velocity of the fluid along the flow direction. 

The first term on the left side of Eq. 6.1 represents the heat transfer by convection. 

The first term of the convection heat transfer can be expressed as 
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if the dimensionless parameter T  is defined as 

 0/T T T   (6.3) 

While the second term of the convection heat transfer reads 
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When deriving the above equation the following differential relation is used 
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The total convection heat transfer term then reads 
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In which 
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6.1.2. Calculation Scheme 

The temperature domain is divided into three sub-domains including the film region 

and the two solid regions. At constant load and constant surface velocities, when 

thermal equilibrium has been reached, the temperature field is time-independent. 

Therefore, the energy equation for the film region can be written as 
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Where c  is specific heat of the fluid ( / ( )J kgK ),   is the density of the fluid 

( 3/kg m ), k  is the thermal conductivity of the fluid ( / ( )W mK ), T is the 

temperature ( K ), and u  is the velocity of the fluid along the flow direction. It is 

noted that the velocity at the bottom interface is au  and at the upper interface is bu .  

The term w  could be eliminated with the continuity equation 
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Hence 
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The thermal conductivity relation can be taken as a fixed parameter [3], or a varying 

one [127]. Based upon experimental data of lubricants, the pressure dependence of 

the thermal conductivity can be written as 

 8
0(0.75 0.25 1 2 10 )   k k p   (6.11) 

Where 0k  is the thermal conductivity at ambient pressure. 

For di-(2-ethyl-hexyl)-sebacate [128], it can be expressed as 
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8
0(0.56 0.44 1 2 10 )   k k p  for mineral oils [129]. Fig. 6.1 shows the variation 

of thermal conductivity along pressure. In this work the thermal conductivity is taken 

as a constant value.  

 

Fig. 6.1 Two thermal conductivity relations 

 

The energy equations for the two solids are 
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  (6.12) 

Where c ( , )i i a b , ρ ( , )i i a b  and ( , )ik i a b  are specific heat, densities and 

thermal conductivities of the solids. Directions of az  and bz  are the same as the 

direction of z  defined in an isothermal THL model. Equation 6.12 is generated by 

assuming that the moving solids are fluids. This equation is a simplified form of the 

energy equation given before. Equation 6.12 is used for predicting the temperature 

field inside the solid bodies. The temperature of the solid and that of the film should 

be the same at the interface. This heat flux continuity condition reads 
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The domain is given by  b ax x x , 0  z h , 0  ad z  and 0  bz d . d  is 

the thickness of the thermal layers in the bodies and is often given by / 3.15d b  

[122] because this distance inside the solids is considered to be far away enough 

from the surfaces and the temperatures there are assumed to be the temperature of the 

environment. 

The temperature boundary condition at the upstream of the film is 

 0(0, , ) T z t T   (6.14) 

when (0, , ) 0u z t . 

At the counter flow area in the upstream of the film, there is no need to set the 

boundary condition, which is the same situation at the downstream of the film. For 

solids a  and b , the temperature boundary conditions along az  and bz  direction 

are 
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Similar to the boundary condition of the film, there is no need to set a boundary 

condition for energy equations of solids at the downstream  bx x , while at the 

upstream  ax x , the boundary condition for Eq. 6.13 is not necessary, which could 

be chosen as 0T T  or / 0  T z . 

It is worth noting that those thermal equations were also applied in the exit 

cavitation region. Since in the cavitation region the film is not continuous, the solved 

temperature in this region is not accurate. Fortunately this inaccuracy has no effect 
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on the solution in the full film region [122].  

Additionally, if the quasi-steady state is considered, the transient energy 

equations of the contact bodies do not need to be solved [125]. Thus the quasi-steady 

state surface conditions become 
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  (6.16) 

Where ac , bc  are specific heats of the two solids ( / ( )J kgK ), a , b  are 

densities of the two solids ( 3/kg m ), ak , bk  are thermal conductivities of the two 

solids ( / ( )W mK ), respectively.  

The approach applied for TEHL problems here is that proposed by Yang et al. 

[47]. Fig. 6.2 shows the flow chart of the TEHL calculation process. 
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Fig. 6.2 Flow chart of the TEHL model solving process 

 

6.1.3. Dimensionless Scheme 

Define the following parameters 
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The dimensionless energy equation of the film is derived as 
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Where 
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Energy equations for solids could be dimensionlessed with the following set of 

dimensionless parameters, as defined by Yang [126]: 
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Then the dimensionless energy equations of solids are  
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The dimensionless continuity heat flux equations at the interfaces are 
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Where 
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It is clear that once dimensionlessed, the calculation domain of the temperature field 

becomes rectangular with no relation to time or film shape. The boundary condition 

of the temperature domain is 1T  at four boundaries  aX X ,  bX X , 0Z  

or 1Z . 

 

6.1.4. Discretization and Differential Scheme 

6.1.4.1. Grid Discretization 

In order to get differential equations, a discretized scheme should be chosen. Along 

the x  direction, the discretization scheme for pressure and film thickness, etc., 

applied in a thermal EHL model, is identical to the isothermal EHL model. The 

discretization along z  direction is determined like this: the grid used along z  

direction is set to be equally spaced within the film while it is unequally spaced 

within the solid bodies, as shown in Fig. 6.3. In z  direction there are 21 points set 

in total, of which 11 points are located equally within the film and 5 points are 

located within each solid. 
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Fig. 6.3 Configuration of aZ , Z , bZ  for the temperature field 

 

6.1.4.2. Differential Schemes of the Temperature  

Since the heat conduction along x  direction is neglected in the energy equation, the 

temperature of a point bears no business to the ones downstream. Therefore, an 

appropriate differential scheme of / T X  inside the film can be expressed as 
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In the z  direction, a central differential scheme is often applied 
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Differential equations at the interface should be determined according to the 

continuity condition of heat flux. Differential schemes for the temperature prediction 

inside solids are often chosen as a central differential one.  

The discretization terms used in this work are listed as follows: 
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Where    0 1
  a a aZ Z Z ,    11 10

  b b bZ Z Z , 0.1 Z . ,i jT  means the 

previous value of ,i jT  at time  t t . 

The new differential coefficients are 
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Using those discretization forms and those coefficients, six differential equations are 

derived to describe different regions for the temperature prediction.  

When the speed is slow and load is light, the inverse flow zone is small, while 

when the speed is high or the load is heavy, the inverse flow zone becomes bigger 

and the terminating point of this zone moves towards the nominal contact centre. The 

inverse flow phenomenon introduces two difficulties for TEHL solving. First, since 

the fluid flows in an inverse way, the temperature distribution at the inlet boundary 

will be unknown; second, it may make the solving process of energy equations being 

instability. Fig. 6.4 shows the boundary conditions for the temperature calculation. 

The inverse flow zone is treated separately. 

 

Fig. 6.4 Boundary conditions for temperature calculation  

 

 For the points inside the solid a : 
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 For the points on the interface between solid a  and the film: 
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 For the points inside the film:  
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 While for the points inside the film with , 0i ju  
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 For the points on the interface between solid b  and the film: 
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 For the points inside the solid b  ( 11,12,...,15)j  
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Where 
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Where 3 00.00065C T . 

The temperature terms on the right hand side of those equations are treated as the old 

ones, while the terms on the left hand side of the equations are handled as unknowns. 

 

6.1.4.3. Matrix Solving 

The coefficient matrix of the set of equations can be written as a 21 21  tridiagonal 

matrix which is a diagonally dominant matrix. Hence, this set of equations (21 

equations for a iX ) can be solved efficiently with the chasing method. Equation 

6.47 is the system of equations for temperature prediction at iX . Once the equations 

for iX  are solved, solutions for 1iX  can be solved similarly until the temperature 

field is calculated completely.  
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Fig. 6.5 shows the calculation flow chart of the temperature field.  
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Fig. 6.5 Calculation flow chart of the temperature field 

 

In order to guarantee the numerical stability in the iteration process, the new 

temperature distribution can act as the initial values for the next time with an 

under-relaxation factor such as 0.2 0.4 Tw . 

 , , , ,' ( '' ' )  i j i j T i j i jT T T T   (6.49) 

As found by Yang [126], in the first several relaxation loops, values less than 1 may 

occur for the updated dimensionless temperature which is physically unreasonable. It 

is fair to let those values equal 1 immediately when they are discovered. A 

convergence check is performed after all iX  are scanned. The convergence 

criterion is defined as 
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Once the temperature is converged, the density and viscosity of the fluid can be 
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updated which are used in the pressure updating process. This outside iteration needs 

to be done with just several iterations. It is much easier to get a converged solution 

for the temperature field than for the pressure field. If the multigrid method is not 

used, the pressure may need more than thousands of iterations to converge, while the 

temperature will probably converge within several iterations. 

 

6.2. Numerical Cases 

Numerical cases are provided to help readers gain some understanding about thermal 

effects. The parameters used in this case are chosen as follows: 

0 300T K , 0 0.08  Pas , 2000 /c J kgK , 0.14 /k W mK , 3
0 870 /  kg m , 

3
, 7850 / a b kg m , , 470 /a bc J kgK , , 46 /a bk W mK . 

Fig. 6.6 shows the distribution of   for a Newtonian fluid under thermal conditions. 

It is seen that the profile of   varies along z direction for the thermal solution while 

it keeps constant along z direction for the isothermal case. The values of   for the 

thermal case are smaller than the values for the isothermal case. This indicates that 

the thermal effect would reduce the equivalent viscosity of the fluid.  

 

Fig. 6.6 Comparison of   for the isothermal solution and the thermal solution with 

a Newtonian fluid 
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Fig. 6.7 shows the distribution of   for the isothermal solution and the thermal 

solution. It is seen that for both cases, the   profile along z direction doesn’t 

change significantly, which indicates that the frictional behaviour can be studied 

simply by just checking the traction on the interface  a . For the given conditions, 

the values of the shear stress reduce remarkably if the thermal effect is considered. 

The thermal effect on frictional behaviour is studied in detail later. 

 

Fig. 6.7 Comparison of   for the isothermal solution and the thermal solution with 

a Newtonian fluid 

 

Fig. 6.8 shows the comparison of the distribution of the dimensionless flow velocity 

u . Thermal action does not have a significant effect on the velocity field of the fluid.  
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Fig. 6.8 Comparison of u  for the isothermal solution and the thermal solution with 

a Newtonian fluid 

 

Fig. 6.9 shows the details of the u  distribution. Three positions across the 

film - surface a  , the centre in the film, and surface b  - are chosen. For both 

positions, there is only a slight variation of the u  profile between the isothermal 

solution and the thermal solution. At the surface nearby, the values of u  at the inlet 

zone are above zero, while in the centre area across the film, the values of u  at the 

inlet zone fall to negative values for the chosen working condition. 

 

Fig. 6.9 Distribution of u  at three layers across the film 

 

Fig. 6.10 shows the pressure profile and the film profile. It shows that the profile of 
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the pressure varies only slightly when comparing the thermal solution to the 

isothermal solution. In terms of pressure, only the amplitude and location of the 

second pressure spike vary when the thermal effect is considered under this working 

condition. The minimum film thickness and the average film thickness of the thermal 

solution change only slightly compared with the isothermal solution. This can be 

explained as follows: the thermal effect on film thickness can be neglected because 

the film thickness is mainly dominated by the lubricant entraining action in the inlet 

zone where the gap is still large and the effects of thermal behaviours are still limited 

in most cases [26]. 

 

Fig. 6.10 Comparison of P  and H  for the isothermal solution and the thermal 

solution with a Newtonian fluid 

 

Fig. 6.11 shows the temperature distribution for the Newtonian thermal case. It is 

seen that the temperature at the outlet zone is higher than the one in the inlet zone. 

Within the nominal contact zone, similar to the pressure profile, the temperature 

profile also has a second spike at the outlet zone. Along the z direction across the 

film, the highest temperature occurs at the central layer of the film. 
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Fig. 6.11 Temperature field for the Newtonian thermal case 

 

6.2.1. Effect of Load Under Thermal Condition 

6.2.1.1. The Newtonian Fluid 

The effect of load for a Newtonian thermal EHL model is studied. Fig. 6.12 shows 

the friction coefficient for different load cases. It is seen that for the working 

condition selected, there is almost no difference between the isothermal friction 

coefficient values and their thermal counterparts. The friction coefficient still 

increases almost exponentially as the load increases.  

 

Fig. 6.12 Variation of   with load for a Newtonian fluid 

 

Fig. 6.13 shows the distribution of dimensionless temperature T  for a Newtonian 
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fluid. The right side subfigures show the temperature at the central layer of the film. 

It is seen that, under the working condition studied - 1 /ru m s , 1sr  - the 

temperature does not change significantly as the load increases.  

 

Fig. 6.13 Temperature field for a Newtonian fluid  

 

Fig. 6. 14 shows a comparison of the pressure and film profiles of isothermal and 

thermal solutions. It is seen that for this case, there is almost no difference between 

isothermal and thermal solutions for all five load sets. 
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Fig. 6.14 Pressure and film profiles for a Newtonian fluid under thermal and 

isothermal conditions 

 

6.2.1.2. The Ree-Eyring Fluid 

Fig. 6.15 shows the distribution of  a  for five different load cases: 42 10 F , 

45 10 , 51 10 , 55 10  and 59 10 / N m  with a Ree-Eyring fluid. It is seen that as 

the load increases, the shear stress within the nominal contact area increases, and the 

difference between the distribution of  a  of the thermal solution and the isothermal 

solution becomes evident, which indicates that, for a Ree-Eyring fluid, the thermal 

effect on traction is more remarkable when the load is heavy. Fig. 6.16 shows the 

friction coefficient for different load cases. It is seen that, compared with the 

isothermal solutions, the friction coefficient is smaller for the thermal solutions, 

which is caused by the decrease of equivalent viscosity. The thermal effect is more 

remarkable for the heavier load. When the load is heavy and if the load continues to 
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increase, the friction coefficient drops slightly. 

 

Fig. 6.15 Distribution of  a  for five load cases for a Ree-Eyring fluid 

 

 

Fig. 6.16 Variation of   with load for a Ree-Eyring fluid 

 

Fig. 6.17 shows the distributions of temperature for those load cases. As the load 

increases, the temperature rise is more evident.  
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Fig. 6.17 Distributions of temperature for a Ree-Eyring fluid 

 

Fig. 6.18 shows a comparison of pressure and film profiles between isothermal 

solutions and thermal solutions for those load cases. It can been seen that for the 

given working condition, thermal action doesn’t change the pressure profile and the 

film profile significantly for all the chosen load conditions. 
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Fig. 6.18 Pressure profile and film thickness for a Ree-Eyring fluid 

 

6.2.2. Effect of Roll Velocity Under Thermal Condition 

6.2.2.1. The Newtonian Fluid 

Fig. 6.19 shows the variation of the friction coefficient along a rolling speed for a 

Newtonian fluid. It is seen that as the speed goes up, the friction coefficient of the 

thermal solution reduces more remarkably. For the isothermal solutions, the value of 

the friction coefficient increases as the speed goes up; however, for the thermal 

solutions, the value of the friction coefficient first increases and then decreases as the 

rolling speed increases.  
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Fig. 6.19 Variation of friction coefficient with rolling speed for a Newtonian fluid 

 

Fig. 6.20 shows the distribution of temperature for five speed cases: 0.1ru , 0.5 , 

1 , 5  and 10 /m s . As the speed goes up, the temperature at the nominal contact 

zone rises. 

 

Fig. 6.20 Temperature field with different rolling speed for a Newtonian fluid 
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Fig. 6.21 shows comparisons of pressure and film profile between the isothermal 

solutions and thermal solutions. The differences between the two solutions for all the 

chosen speed cases can be neglected. It can be concluded that the thermal effect does 

not affect the pressure profile and the film thickness for the given working 

conditions. 

 

Fig. 6.21 Pressure and film profile for a Newtonian fluid 

 

6.2.2.2. The Ree-Eyring fluid 

In this section the Ree-Eyring fluid is studied. Fig. 6.22 shows the distribution of  a  

for the Ree-Eyring fluid with different rolling speeds. It shows that as the rolling 

speed increases, the value of  a  for the thermal cases decreases more significantly 

compared with the one for isothermal cases. This means that at a high rolling speed, 

the thermal effect should not be neglected. 



 
 

139 

 

Fig. 6.22 Distribution of  a  with different rolling speed for a Ree-Eyring fluid 

 

Fig. 6.23 shows the variation of friction coefficient with different rolling speed for 

isothermal cases and thermal cases. For thermal solutions, the value of the friction 

coefficient first increases and then decreases as the rolling speed increases. At higher 

speeds, the thermal effect on the friction coefficient for the Ree-Eyring fluid is more 

remarkable. 

 

Fig. 6.23 Variation of friction coefficient for the Ree-Eyring fluid under isothermal 

and thermal conditions 



 
 

140 

 

Fig. 6.24 shows the effect of the rolling speed on the temperature distribution at the 

central layer of the film within the contact area. It is seen that, as speed increases, the 

temperature within the film rises. This is easy to understand, since if the slide/roll 

ratio is constant, the sliding velocity increases as the rolling speed increases. The 

sliding action between interacting surfaces is responsible for the temperature rise. 

 

Fig. 6.24 Effect of rolling speed on temperature field for the Ree-Eyring fluid under 

thermal conditions 

 

Fig. 6.25 shows a comparison of pressure and film profile between thermal solutions 

and isothermal solutions for a Ree-Eyring fluid. It also shows that for the Ree-Eyring 

fluid, the thermal effect does not significantly influence the pressure and the film 

thickness. 
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Fig. 6.25 Pressure and film profile with different rolling speed for a Ree-Eyring fluid 

under isothermal and thermal conditions 

 

6.2.3. Effect of Slide/Roll Ratio Under Thermal Condition 

6.2.3.1. The Newtonian Fluid 

The effect of the slide/roll ratio for a Newtonian fluid is studied in this section. Fig. 

6.26 shows that for the given cases, there is no evident deviation between isothermal 

solutions and thermal solutions at the whole slide-to-roll ratio range. The friction 

coefficient increases linearly as the slide/roll ratio increases.  

 

Fig. 6.26 Variation of friction coefficient with slide/roll ratio for a Newtonian fluid 
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under isothermal and thermal conditions 

 

Fig. 6.27 shows the temperature field of the film and solids at different cases. As the 

slide/roll ratio increases, the temperature rise within the nominal contact zone 

increases as well.  

 

Fig. 6.27 Temperature field with different slide/roll ratio for a Newtonian fluid under 

thermal conditions 

 

6.2.3.2. The Ree-Eyring Fluid 

The Ree-Eyring fluid is considered in this section. Fig. 6.28 shows the distribution of 

 a  with five slide/roll ratio cases: 0.1sr , 0.5 , 1.0 , 1.5  and 2.0 . It is seen that 

as the slide/roll ratio increases, the distribution of  a  deviates more significantly for 

the thermal solution compared with the isothermal solution.  
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Fig. 6.28 Distribution of  a  with different slide/roll ratio for a Ree-Eyring fluid 

 

Fig. 6. 29 shows the variation of the friction coefficient for both isothermal cases and 

thermal cases with different slide/roll ratios. It is seen that for thermal solutions, as 

the slide/roll ratio increases, the value of the friction coefficient first increases and 

then decreases. This means that the thermal effect in high slide/roll ratio cases is 

more remarkable. 

 

Fig. 6.29 Variation of friction coefficient with different slide/roll ratios for a 

Ree-Eyring fluid under isothermal and thermal conditions 
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Fig. 6.30 shows a comparison of pressure and film profile of isothermal solutions and 

thermal solutions. It shows that the thermal effect still has a very limited effect on the 

pressure and film profile for a Ree-Eyring fluid for the given cases. 

 

Fig. 6.30 Pressure and film profile with different slide/roll ratio for a Ree-Eyring 

fluid under isothermal and thermal conditions 

 

Fig. 6.31 shows the temperature field for those slide/roll ratio cases. As the slide/roll 

ratio increases, the temperature at the nominal contact zone rises as well. 
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Fig. 6.31 Temperature field with different slide/roll ratios for a Ree-Eyring fluid 

 

6.3. Chapter Summary 

The thermal effect is studied in this chapter and a thermal EHL model is developed 

by numerically solving energy equations for the solids and the film. The following 

conclusions can be made in this chapter: 

 TEHL results with a Newtonian fluid still overestimate the friction coefficient 

between contacting surfaces.  

 For the Ree-Eyring fluid, compared with the isothermal solutions, the friction 

coefficients are smaller for the thermal solutions if the working condition is the same. 

This is caused by the decrease of equivalent viscosity within the nominal contact 

zone.  

 Referring to the load effect, for the Ree-Eyring fluid, as the load increases, the 

temperature rise is more evident. When the load is heavy and if the load continues to 

increase, the friction coefficient drops slightly, which means that the thermal effect is 

more evident for heavier loads. 
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 Referring to the rolling speed effect, for the Ree-Eyring fluid, the value of the 

friction coefficient for the TEHL model first increases and then decreases as the 

rolling speed increases. This means that the thermal effect in high rolling speed cases 

would be more significant owing to the high sliding speed. 

 Referring to the slide to roll ratio effect, for the Ree-Eyring fluid, the value of 

the friction coefficient of the TEHL model first increases and then decreases as the 

slide to roll ratio increases. This means that the thermal effect in high slide to roll 

ratio cases would be more significant owing to the high sliding speed. 
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Chapter 7 A Spur Gear Pair Application with Quasi-Steady Loads 

In this chapter, a spur gear pair lubrication analysis is proposed based on 

quasi-steady loads assumption. Pressure distributions, film profiles, and temperature 

fields are calculated along the LOA. The information along the LOA indicates the 

lubrication performance of the gear pair in a complete meshing period. The 

quasi-static load is assumed along the LOA, which means the dynamic load effect is 

not considered in this chapter. The dynamic load effect will be discussed in a later 

chapter in which a system dynamic model is developed for predicting the dynamic 

loads along the LOA.  

It is acceptable to assume that spur gears are 2-dimensional. The contact 

between the gear teeth can be represented by two circular cylinders of radii rotating 

with the same angular velocities as the wheels themselves [130]. Indeed, this 

assumption forms the basis of the two-disk machine that has been used extensively 

and effectively.  

 

7.1. Gear Geometry and Kinematics 

Gear contacts experience a number of time-varying contact parameters: 

i. The radii of curvature of the contact tooth surfaces vary periodically. When a 

tooth of the pinion initiates the contact with its mating tooth, it has the lowest radius 

of curvature 1 1minR R . As the meshing process continues, 1R  increased until 

reaching its maximum value at the tip. Conversely, the radius of curvature of the 

wheel gradually decreases as the gear drive engages.  

ii. The tangential velocities of those interacting tooth surfaces vary as well. For any 

contact position below the pitch point of the driving gear, the tangential velocity of 

the pinion is smaller than that of the wheel, i.e. 1 2u u , which makes the sliding 
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velocity negative 1 2 0  su u u . At the pitch point, the tangential velocities of 

those two surfaces are identical and there is no sliding at all when engaging at this 

position. As the gear drive engages, the tangential velocity of the pinion is higher 

than the one of the wheel which makes the sliding velocity positive 0su . The 

equivalent rolling velocity 1 2( ) / 2 ru u u  also varies along the LOA.  

iii. Even if the torque is constant, the normal load taken by a single gear pair is not 

constant owing to the change of number of gear pairs that engage simultaneously. 

The intentional tooth profile modifications and unavoidable manufacturing errors and 

assembly errors also affect the load distribution along the LOA. More importantly, 

the dynamic effect of a gear drive system on the normal load should be emphasized, 

especially at certain speeds. This aspect will be described in another chapter. In this 

chapter, the solutions are obtained by ignoring the dynamic load effect, the profile 

modification and the errors caused by manufacturing and assembling. The load per 

unit width is assumed that when two tooth pairs are simultaneously engaged, the load 

carried by a single gear pair varies from one third to two thirds of the load per unit 

width when only one pair is engaged. This implies that at the LPSTC point and 

HPSTC point, a sudden load change exists. A similar method of dealing with the 

load distribution is also used by Larsson [80] , Wang et al. [84], and Li and 

Kahraman [91]. 

Essential formulae for gear contact parameters calculation can be found in any 

gear design manuals and standards. The LOA is discretized into points. The number 

of discretized points along the LOA should not be too small. A small time step size 

should be used to capture the transient effects caused by the squeeze effects and the 

variation of working conditions (such as sudden load change).  

The geoemtry equations for external spur gears are given in the following 
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according to the information sheet AGMA 908-B89. All angles are given in terms of 

radians, unless otherwise specified. The following variables must be made 

dimensionless by dividing with the normal module nm , or multiplying with the 

normal diametral pitch ndp , because the equations are derived in terms of unity 

normal module ( 1nm ) or unity normal diametral pitch.  

The standard (reference) pitch radius for the pinion 1pR  reads 

 1 1 / (2cos )pR n   (7.1) 

Where   is the standard helix angle, for spur gear pairs, its value is zero. 1N  is 

the teeth number of the pinion. The standard pitch radius for the wheel 2 pR  reads 

 2 1p p gR R i   (7.2) 

Where gi  is the gear ratio. 

The standard transverse pressure angle   is 

 1tan (tan / cos )   n   (7.3) 

Where n  is the standard normal pressure angle. 

The pinion base radius 1bR  

 
1 1

2 1

cos
 

b

b b g

R R
R R i   (7.4) 

Operating transverse pressure angle r  

 1 1 2cos ( )  
 b b

r
R R

c
  (7.5) 

Where c  is the operating centre distance. 

The transverse base pitch bp  reads 

 1 12 /b bp R n   (7.6) 
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The normal base pitch np  is 

 cos n np   (7.7) 

The base helix angle b  

 1cos ( / ) b n bp p   (7.8) 

Fig. 7.1 shows the LOA in the transverse plane. The lengths 1c  through 6c  are 

derived in the following way: 

 

Fig. 7.1 Transverse plane view of the LOA 

 

Sixth distance along LOA 6c  

 6 = sinrc c   (7.9) 

First distance along LOA 1c  

 2 2
1 6 2 2  o bc c R R   (7.10) 

Where 2oR  is the addendum radius of the wheel. 

Third distance along LOA 3c  
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 3 6 / ( 1) gc c i   (7.11) 

Fourth distance along LOA 4c  

 4 1  bc c p   (7.12) 

Fifth distance along LOA 5c  

 2 2
5 1 1 o bc R R   (7.13) 

Where 1oR  is the addendum radius of the pinion. 

Second distance along LOA 2c  

 2 5  bc c p   (7.14) 

Active length of LOA z  is then 

 5 1 z c c   (7.15) 

Distance 2c  locates the lowest point of single tooth contact (LPSTC) and distance 

4c  locates the highest point of single tooth contact (HPSTC). 

The equivalent radii for the pinion and the gear at any meshing point can be 

determined with 

 
1 1

2 2

sin
sin
 

 

 
  

p

p

R R
R R   (7.16) 

Where   means the distance from the current engaging point to the pitch point 

along the LOA. The equivalent comprehensive radius R  can be expressed as 

 1 2

1 2




R RR
R R   (7.17) 

The tangential velocities of the pinion and the wheel are 

 1 1 1

2 2 2

/ 30
/ 30





 

u n R
u n R

  (7.18) 

with unit /m s . The rolling speed ru  and the sliding speed su  can be expressed as 
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1 2

1 2

( ) / 2 
  

r

s

u u u
u u u   (7.19) 

7.2. Contact Parameters of the Gear Pair Sample 

The parameters of the gear pair sample used in this work are listed in table 7.1. Since 

the effects of the load and the speed will be studied, the input speed and the load per 

unit width for single gear engage are allocated several values. Those gear parameters 

can be used to give dimensionless working condition parameters, i.e. the set of 

Dowson dimensionless parameters W , U  and G , or the set of Moes' 

dimensionless parameters M  and L  [131], which act as input data for lubrication 

models. 

For an involute spur gear set the tooth contact occurs along the LOA. A typical 

spur gear set has a contact ratio of 1 2 ci  and therefore, for the finite section 

along the LOA within a mesh cycle, only one pair of teeth is carrying the full load. 

The transition points where the contact shifts from one pair of teeth to two pairs are 

critical for gear strength calculations. The lowest point of single tooth contact 

(LPSTC) is defined as the location where is the smallest diameter on a spur gear at 

which a single tooth of one gear is in contact with its mating gear. Typically, the 

gear’s contact stress is calculated with the load applied at this point. The HPSTC is 

the largest diameter on a spur gear at which a single tooth of one gear is in contact 

with the mating gear. Typically a gear’s bending stress is determined by the load 

applied at this point.  

 

Table 7.1 Gear geometry parameters 

 

Number of pinion teeth 1 28N  
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Gear ratio 3gi  

Module 0.003175m m  

Pinion pitch radius 1 0.0445pR m  

Gear width 0.1B m  

Pressure angle 20    

 

Fig. 7.2 shows some of parameters of the gear pair sample using the data listed in 

Table 7.1 with the case 1 100T Nm , 1 300 / minn r . It is seen that for the gear 

drive with a transmission ratio 3gi , the radius of the wheel is always higher than 

that of the pinion. As the mesh process continues, the radius of the pinion increases 

while that of the wheel decreases. The rolling speed of the pinion increases and that 

of the wheel decreases. The crossing point of the two rolling speed lines is located at 

the pitch point where the sliding speed is absolutely zero if no manufacture or 

assembly error is considered. There is a sudden change of the contact width and the 

Hertzian maximum pressure at LPSTC and HPSTC. Specifically, at the LPSTC, the 

contact width and the Hertzian maximum pressure suddenly increase, while at the 

HPSTC those two parameters suddenly decrease, owing to the sudden load jumping 

assumed at those locations. 



 
 

154 

 

Fig. 7.2 Variations of gear parameters along LOA 

 

The load carried per unit width F  can be related to the input torque 1T  using the 

following equation 

 1 1/ ( ) bF T Br   (7.20) 

Where 1br  represents the base radius of the pinion. Fig. 7.3 shows the comparison of 

the load per unit width F  of three torque cases, while Figs. 7.4 and 7.5 show the 

comparison of the contact width and Hertzian maximum pressure, and Moes 

parameters for the three torque cases. Fig. 7.6 shows the comparison of M  and L  

with different speeds. It is seen that with different speeds, both the value of M  and 

L  vary.  
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Fig. 7.3 Variation of F  with different torques 

 

 

Fig. 7.4 Variation of b  and Hp  with different torques 
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Fig. 7.5 Variation of M  and L  with different torques 

 

 

Fig. 7.6 Variation of M  and L  with different speeds 

 

7.3. Lubrication Solutions for Spur Gear Pairs 

Fig. 7.7 shows the comparison of the steady-state solution and the transient solution. 

The steady-state solution does not consider the transient squeeze effect in the 

Reynolds equation. It shows that the transient squeeze effect causes an opposite 

sudden fluctuation at LPSTC and HPSTC point while a sudden load change occurs. 

In the following work, if not specified explicitly, the transient solutions are given. 
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Fig. 7.7 Comparison between transient solution and steady solution 

 

In order to show the effect of the mesh density of time interval on solutions, the 

minimum film thickness variations with different mesh densities are predicted with 

the case 1 5sF e Nm , 1 300 / minn r . sF  represents the load per unit width when 

only one gear pair is carrying a load. The case 1 5sF e Nm  means the input torque 

is 1 1 83.6 s bT F r B Nm . Fig. 7.8 shows the minimum film thickness along the LOA 

with different mesh densities for this situation. It shows for cases with 257nt , 513, 

and 1025, the differences are not evident in all the ranges along the LOA. In this 

work, if not explicitly specified, the mesh density is chosen as 257nt . 

 

Fig. 7.8 Effect of mesh density of time interval on minimum film thickness 
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Fig. 7.9 shows the comparison of minimum film thickness between the Newtonian 

solution and the Ree-Eyring solution for this case. It shows that under this condition, 

there is little difference in the minimum film thickness along the LOA for those two 

fluids. In the following work, if not explicitly specified, the Ree-Eyring behaviour is 

assumed for the fluid. Fig. 7.9 also shows that the film thickness is small at the recess 

point, as well as at the HPSTC point if the transient squeeze effect is considered. The 

sudden load drop at HPSTC causes the sudden film thickness drop by the transient 

squeeze effect.  

 

Fig. 7.9 Minimum film thicknesses along the LOA for the Newtonian solution and 

the Ree-Eyring solution 

 

7.3.1. Pressure, Film and Temperature in a Meshing Period 

The pressure and film profile along the LOA are studied in detail for the case 

1 5sF e Nm , 1 300 / minn r . Figs. 7.10 and 7.11 show the pressure profile and the 

film profile of five locations: the approach point, LPSTC, the pitch point, HPSTC, 

and the recess point, respectively. Fig. 7.11 shows that the film at the recess point is 

thicker than the others. Minimum film thickness occurs at the approach point among 

those five cases which can be also represented by Fig. 7.9. This means the lubrication 
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condition at the approach point requires special attentions owing to the thinnest film.  

 

Fig. 7.10 Pressure distribution within a meshing period 

 

Fig. 7.11 Film profile within a meshing period 

 

Temperature fields are also obtained using the developed thermal Ree-Eyring EHL 

model. Fig. 7.12 shows the dimensionless pressure distributions at the five 

characteristic mesh points under the working condition: 1 5 /sF e N m , 
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1 300 / minn r . Fig. 7.13 shows the comparison of the temperature distribution of 

those five cases at the interfaces of solids and the central layer of the film. It is seen 

that the maximum temperature rise occurs at the approach point while the minimum 

temperature rise occurs at the pitch point owing to the zero slide/roll ratio. Along the 

LOA, not only the minimum film thickness but also the maximum temperature rise 

occurs at the approach point. This means special attention should be paid to this 

meshing position, under the operating conditions considered.  

 

Fig. 7.12 Temperature field with the given case 

 

 

Fig. 7.13 Comparison of temperature distribution with different meshing locations 
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7.3.2. Effect of Speed 

Fig. 7.14 shows the effect of the pinion speed on the minimum film thickness with 

51 10 / sF N m . As the speed goes up, the minimum film thickness increases as 

well. This is true and can be explained by the empirical formula given by Dowson 

and Higginson [111]. For all those cases, film thickness fluctuation occurs at LPSTC 

and HPSTC. Film thicknesses under those conditions mainly have an order of 

sub-micrometres.  

 

Fig. 7.14 Effect of rotation speed on minimum film thickness 

 

Fig. 7.15 shows the pressure distribution in a meshing period at four speed cases. It is 

seen that, for the four cases, the load changes abruptly when the number of 

simultaneously engaging gear pair(s) varies at the HPSTC and LPSTC. The higher 

the speed, the more evident the inlet zone pressure build up.  
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Fig. 7.15 Effect of speed on pressure distribution within a meshing period 

 

Fig. 7.16 shows the dimensionless pressure distributions at the five characteristic 

mesh points under the working condition: 1 5 /sF e N m , 1 3000 / minn r . 

Compared with results shown in Fig. 7.12, It is seen that the temperature rise 

increases as the pinion speed goes up.  

 

Fig. 7.16 Temperature field with 1 5 /sF e N m , 1 3000 / minn r  
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7.3.3. Effect of Load 

Fig. 7.17 shows the effect of the load on the minimum film thickness with 

1 300 / minn r . Compared with the speed effect, the load effect on the minimum 

film thickness is weaker. This could also be explained with the empirical 

Dowson-Higginson formula.  

 

Fig. 7.17 Effect of load on minimum film thickness within a mesh period 

 

Fig. 7.18 shows the pressure distribution in a meshing period at four load cases. It is 

seen that, for the four cases, the load changes abruptly when the number of 

simultaneously engaging gear pair(s) varies at the HPSTC and LPSTC. The lighter 

the load, the more remarkable the second pressure spikes and the inlet zone pressure 

build up. At heavy load cases, the pressure distribution along the LOA can be 

approximately estimated by the Hertzian theory. Those conclusions are in accordance 

with previous studies [130].  
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Fig. 7.18 Effect of load on pressure distribution within a meshing period 

 

Fig. 7.19 shows the dimensionless temperature distributions at the five characteristic 

mesh points under the working condition: 5 4 /sF e N m , 1 300 / minn r . 

Compared with the results shown in Fig. 7.12, It is seen that the temperature rise 

decreases as the pinion torque decreases. 

 

Fig. 7.19 Temperature field with 5 4 /sF e N m , 1 300 / minn r  
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7.3.4. Effect of Surface Roughness 

Figs. 7.20 to 7.24 show the effect of the RMS value of surface roughness on the 

pressure profile for the approach point, LPSTC, the pitch point, and HPSTC, the 

recess point, respectively, under the working condition 1 5 /sF e N m , 

1 3000 / minn r . It is seen that the selected surface roughnesses - 0.1qR , 0.2 , 

0.3  - do not cause big fluctuations at the approach point or at the recess point, while 

significant pressure fluctuations occur at the other three points. However, since the 

Ree-Eyring fluid is chosen, the maximum pressure within the nominal contact zone 

only slightly larger than the Hertzian maximum pressure.  

 

Fig. 7.20 Pressure profile at the approach point with different roughnesses 
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Fig. 7.21 Pressure profile at LPSTC with different roughnesses 

 

 

Fig. 7.22 Pressure profile at the pitch point with different roughnesses 

 

 

Fig. 7.23 Pressure profile at HPSTC with different roughnesses 
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Fig. 7.24 Pressure profile at the recess point with different roughnesses 

 

For comparison, dry contact solutions are provided here for the cases. Fig. 7.25 

shows the dimensionless pressure profile during the meshing period, while Fig. 7.26 

shows the pressure fluctuation at the approach, pitch and recess points, respectively. 

It is seen as the RMS value increases, for the dry contact, the pressure fluctuation 

becomes significant. The maximum pressure within the nominal contact zone may be 

as high as twenty times that of the Hertzian contact pressure. Compared with the 

Ree-Eyring fluid results, we clearly see that the lubricant between engaging tooth 

surfaces could alleviate the pressure fluctuation effectively.  
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Fig. 7.25 Pressure distribution for dry contacts with different RMS values 

 

 

Fig. 7.26 Pressure distribution at the approach point, pitch point and recess point 

(from left to right, subfigures represent the results for 0qR  0.1 , 0.2 , 0.3 , 

respectively) 

 

Figs. 7.27 to 7.31 show the effect of the RMS value of surface roughness on the film 

profile for the approach point, LPSTC, the pitch point, HPSTC, the recess point, 

respectively. Film profile fluctuations caused by roughness are shown from those 

film profile figures. With the surface roughnesses applied under the given working 

conditions, no asperity contact occurs at all those locations along the LOA.  
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Fig. 7.27 Film profile at the approach point with different roughnesses 

 

 

Fig. 7.28 Film profile at LPSTC with different roughnesses 

 

 

Fig. 7.29 Film profile at the pitch point with different roughnesses 
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Fig. 7.30 Film profile at HPSTC with different roughnesses 

 

 

Fig. 7.31 Film profile at the recess point with different roughnesses 

 

A more detailed study of surface roughness effect on gear lubrication performance 

can be found in Ref. [5], published by the author and coworkers. 

 

7.4. Chapter Summary 

A spur gear pair application is studied for its lubrication performance evaluation with 

quasi-steady loads. The quasi-steady load distribution along the LOA represents a 

sudden load change at the LPSTC and HPSTC owing to the sudden change of the 

number of simultaneously engaging gear pairs. For the given gear pair sample, the 
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effect of load and speed on minimum thickness, pressure distribution etc. are 

investigated. The following conclusions can be made: 

 The transient squeeze effect causes an opposite sudden fluctuation at the LPSTC 

and HPSTC points where a sudden load change occurs. 

 Along the LOA, the thinnest film thickness occurs at the approach point. The 

maximum temperature rise occurs at the approach point while the minimum 

temperature rise occurs at the pitch point owing to the zero slide to roll ratio. Along 

the LOA, not only the minimum film thickness but also the maximum temperature 

rise occurs at the approach point. This means special attention should be paid to this 

meshing position, under the operating conditions considered. 

 Lubricated with the Ree-Eyring fluid, the maximum pressure within the nominal 

contact zone is only slightly larger than the Hertzian maximum pressure. 

 For the surface roughness applied, no asperity contact occurs at all those 

locations along the LOA. 
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Chapter 8 Dynamic Load Effects on Spur Gear Pair Lubrication Performance 

As well as the lubrication and contact performance, the dynamic performance of a 

gear drive system is investigated extensively in academia and industry for the 

following reasons. One is that the vibration and the noise are directly determined by 

its dynamic behaviour. The second reason is the durability concern. The force and 

stress may be amplified significantly under dynamic conditions, which make it 

necessary to take dynamic effects into account in the design of gear drives [132]. In 

this chapter, the dynamic loads' effect on the lubricated contact performance of a 

spur gear pair is studied by using a classic lumped mass-spring gear model, which 

takes the mesh stiffness variation as the only excitation. The dynamic loads are 

calculated using a numerical time-step integration scheme and act as the input load 

data of lubrication models developed in previous chapters. In this way, the spur gear 

speed effect on lubrication performance can be studied in a more comprehensive way 

since the indirect effect on dynamic loads is also taken into account. The main work 

of this chapter has been published by the author and coworkers [7]. 

 

8.1. Gear Dynamic Load 

Currently there are two main ways to calculate gear dynamic loads: one is the finite 

element method, and one is the lumped mass-spring model. In this chapter the later 

approach is applied. More detailed information about this approach can be found in 

Ref. [132].  

 

8.1.1. The SDOF Dynamic Model 

A two-degree-of-freedom semi-definite model of the spur gear pair with rotary 

inertias 1I  and 2I  for the pinion and the wheel, respectively, is considered, as 

shown in Fig. 8.1. The shafts and bearings are assumed to be rigid. The gear backlash 
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and manufacturing error are neglected here. This makes the time-varying mesh 

stiffness the only excitation for the dynamic system. The time-varying mesh stiffness, 

caused by the alternating engagement of single and double pairs of teeth, is believed 

to be the most important factor determining the dynamic behaviour of the gear pair 

as a type of parametric vibration [133]. The equations of motion of the spur gear pair 

can be written as 

 

.. . .

1 1 21 1 2 1 1 1 2 2 1 1
.. . .

2 1 22 1 2 2 1 1 2 2 2 2

( ) ( ) ( )

( ) ( ) ( )

    

    

     

      

b b b b b b

b b b b b b

I C r r r k t f r r r T

I C r r r k t f r r r T
  (8.1) 

where 1  and 2  represent the rotation angle of the pinion and the wheel, 

respectively. 1T  and 2T  are the torque on the pinion and the wheel, respectively. 

1br  and 2br  are the base circle radius of the two gears. ( )k t  represents the 

time-varying mesh stiffness. The damping ratio c  is often determined empirically 

owing to the lack of measurement data and proper models. In this work the value 0.1 

is allocated to the damping ratio, as the same one used by Ozuguwen and Houser 

[134] and Atanasiu et al. [135]. 

 

Fig. 8.1 Spur gear pair dynamic model with mesh stiffness variation as the only 

excitation source 

 

Introducing the variable 1 1 2 2  b bx r r , the rigid body mode that would occur for 
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the semi-definite two-DOF model will be eliminated and a definite SDOF model is 

derived as 

 
1 1( ) ( ) ( ) /

 

   e f bm x c x k t f x T T r   (8.2) 

where em  is the equivalent mass and is expressed as 

 2 2
1 2 1 2 2 1/ ( ) e b bm I I I r I r   (8.3) 

where 1I  and 2I  are the rotation inertia of the pinion and the wheel, respectively. 

1br  and 2br  are the base radius of the pinion and the wheel, respectively.  

The variable x, representing the relative displacement along the direction of the 

LOA, is often referred to as the dynamic transmission error (DTE). It should be 

noted that in the proposed model the manufacturing error is not considered, which 

leads to a zero static unloaded transmission error. 

 

8.1.2. Mesh Stiffness 

In fact, the fluid may affect the contact mesh stiffness of engaging gear pairs, 

however, little work has been done in this field. In this work, the effect of the film on 

the mesh stiffness is not taken into account. The mesh stiffness is calculated with dry 

contact assumption. The mesh stiffness can be calculated with several approaches. 

Early work to model the meshing stiffness was based on a mechanics of materials 

approach. Later, the finite element approach is extensively used to get the mesh 

stiffness. In this work the mesh stiffness is calculated using the potential energy 

method, which was first proposed by Yang and Lin [136], and further modified by 

Tian [137]. Yang and Lin pointed out that the total potential energy stored in the 

meshing gear system included three parts: the Hertzian energy, the bending energy 

and the axial compressive energy, which can be used to get the Hertzian contact 

stiffness, the bending stiffness and the axial compressive stiffness, respectively. Tian 
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further considered the shear energy. In this work the effect of the Hertzian energy, 

bending energy, axial compressive energy, and shear energy are all taken into 

account. 

 

8.1.2.1. Hertzian Contact Stiffness 

According to the Hertzian law, the elastic compression of two isotropic elastic bodies 

can be approximated by two paraboloids in the vicinity of the contact. The Hertzian 

contact stiffness of a pair of meshing teeth made of the same material is a constant 

along the LOA which can be expressed as 

 24(1 )





h
EBk   (8.4) 

Where E  is the Young’s modulus of the gear material, B  is the width of a tooth. 

When the tooth width decreases, the Hertzian contact stiffness will decrease as well. 

 

8.1.2.2. Bending, Shear and Axial Compressive Contact Stiffness 

The contact force is exerted along the LOA direction for an involute gear pair which 

can be decomposed into two components: one is parallel to the 1 2O O  direction aF  

and bF , which is perpendicular to aF . The bending effect of aF  can be considered 

by calculating the torque 1M  caused by this force. 1M , together with bF , result in 

a bending deflection. aF  will also cause axial compressive strain. The detailed 

description of those mesh stiffnesses can be found in Ref. [137]. 

 
8.1.2.3. Total Mesh Stiffness 

The effective stiffness ek  for a pair of teeth can be obtained by  

 
1 2 1 2

1 1 1 1 1 1
    

e h b b a ak k k k k k   (8.5) 
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where 1bk , 2bk , 1ak , and 2ak  are the bending stiffness, shear and axial 

compressive stiffness of the pinion and the wheel, respectively.  

Fig. 8.2 shows the calculated mesh stiffness using the gear pair sample given in 

Chapter 7. Also shown in this figure is its frequency spectrum. The mesh stiffness 

excitation exhibits a mesh frequency component and its super-harmonic frequency 

components. The mean component of the gear mesh stiffness is 83.25 10 / k N m , 

which is used to calculate the natural frequency of the linear system once the 

equivalent mass and the damping ratio are known. Compared with the gear mesh 

stiffness, the lubricant stiffness is too large [92] and it is reasonable to ignore the 

effect of the lubricant stiffness in this work. The first two harmonic resonances of the 

excitation are significant, compared with the remaining ones. 

 

Fig. 8.2 Gear mesh stiffness time history and the frequency spectrum 

 

8.1.2.4. Effect on Dynamic Factor 

The mesh stiffness is believed to be a periodic function with the mesh frequency 

[134], hence sometimes it is convenient to rewrite the mesh stiffness function in its 

Fourier series form as 
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1

( ) ( cos( ) sin( )) 


  
n

m i m i m
i

k t k a i t b i t   (8.6) 

where k  is the average mesh stiffness in a mesh cycle and  m  represents the mesh 

angular frequency. In this work n  is chosen as 3, and the coefficients are given in 

table 8.1. 

 

Table 8.1 Fourier series coefficients 

 

i  ia  ib  

1 -4.215e7 6.921e7 

2 2.43e7 4.026e7 

3 1.541e7 -1.304e6 

 

Fig. 8.3 shows the mesh stiffness and its Fourier series and their dynamic factor 

results under the working condition 1 100T Nm , 1 4533 / minn r . It shows the 

Fourier series expansion can depict the original values very well and the effect on the 

dynamic response is not evident. Since the numerical time-step integration scheme 

can deal with numerical mesh stiffness, the direct numerical mesh stiffness is applied 

in the following calculations. 
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Fig. 8.3 Comparison of the numerical mesh stiffness and its Fourier series expansion 

(dashed lines represent the direct numerical mesh stiffness while solid lines represent 

the Fourier series expansion) 

 

8.1.3. Quasi-steady Load Distribution 

In this work, the quasi-static tooth force is obtained through a finite element contact 

analysis using Abaqus. The non-linear finite element method has been used in 

determining gear contact stress [138] and transmission error [139], by one of the 

authors. The finite element model is shown in Fig. 8.4. The mesh around the 

interacting tooth surface is refined owing to the small contact width which is in the 

order of sub-millimetres. In comparison with the deformable-body model used by 

Parker et al. [140] and Tamminana et al. [141], this mesh-refined model would give 

reasonable results of the individual tooth force without using an additional 

semi-analytical deformation model in the near field within the contact zone, which 

makes the calculation of the quasi-steady tooth force easier if a powerful workstation 

is available. The pinion is given a rotation speed while a torque is applied on the 

wheel, both in the centre shafts of the gears. By recording the contact force for a 

single gear pair, for instance the one noted with the bold black line in Fig. 8.4, the 
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quasi-steady tooth force in a mesh cycle would be available.  

 

Fig. 8.4 Finite element model for the quasi-steady tooth force calculation 

 

8.1.4. Dynamic Load and Dynamic Factor 

The dynamic factor, defined as the ratio of the dynamic mesh force to the static mesh 

force, is used to get the dynamic tooth load, if the quasi-steady tooth load distribution 

is known. This way of calculating dynamic single tooth load is also used by 

Tamminana et al. [141] and Li et al. [92]. 

 

8.2. Effects of Dynamic Loads 

The SDOF dynamic model could be solved numerically by the aid of the ODE 

toolbox provided in Matlab - for instance, the ode45 function, which applies a 

variable-step-size Runge-Kutta method. With the displacement response and the 

velocity response, the dynamic tooth force and the dynamic factor could be 

calculated. By multiplying the dynamic factor with the quasi-steady tooth load, the 

individual dynamic tooth force could be obtained, which will be used as the input 

load data for the lubrication model.  

Fig. 8.5 shows the RMS value of the DTE which reveals one primary resonance 

peak caused by the first harmonic of the mesh stiffness excitation as well as one 
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super-harmonic resonance caused by the second harmonic terms of the mesh stiffness 

excitation. This means that if the case with the resonance pinion 

speed 1 130 / / ( ) 9067 en k m z rpm  or the second super-harmonic resonance 

pinion speed 1 130 / / (2 ) 4533 en k m z rpm  is given, the dynamic response 

would vary significantly. From the view of noise and vibration performance, 

researchers have already shown that special attention should be paid to those 

resonance situations. This work will describe the effect of those critical situations 

from the view of lubrication and contact performance. 

 

Fig. 8.5 RMS value of DTE as a function of gear mesh frequency 

 

8.2.1. Effect on Minimum Film Thickness 

With the assumption of the steady load distribution, it has been found that the speed 

has a significant effect on the minimum film thickness, which could be seen from the 

Dowson-Higginson minimum film thickness formula [111]. This formula, developed 

almost half a century ago, is believed to have a very high accuracy. As a 

consequence, their film thickness prediction is still used by designers and engineers 

all over the world. Moreover, researchers all over the world use the same equation as 

a reference for their numerical EHL development [142]. Some other formulae [143] 
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may differ slightly in the coefficients, but they all indicate that the speed parameter 

U  affects more than the load parameter W  upon the minimum film thickness. 

However, the speed will affect the lubrication performance of the spur gear pair 

through another means (rotation speeds), especially those within the resonance 

regions. The speed will also have a significant influence on dynamic load owing to 

the internal and external excitations (thus the load parameter W  is a function of the 

speed parameter U ), which further affects the lubrication performance. In this work 

the speed effect on lubrication performance is investigated by considering those two 

paths. 

When the quasi-steady loads are assumed, the thermal effect and the Ree-Eyring 

fluid effect are investigated. Fig. 8.6 shows the minimum film thickness along LOA 

under the quasi-steady load assumption for two speed cases, i.e. 1 300 / minn r and 

1 4533 / minn r . It is seen that for the two speed cases, the thermal effect and the 

non-Newtonian effect on the minimum film thickness are not too obvious. This could 

be explained by the fact that non-Newtonian effects as well as thermal effects are 

limited to influence the conditions of the entraining region which dominates the film 

thickness [26]. In the following section, if not explicitly specified, the solutions of 

the Ree-Eyring thermal model are given. 
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Fig. 8.6 Minimum film thickness variation with quasi-steady load assumption 

 

A pinion rotation speed range between 1 (100 ~ 9067)n rpm , which covers the 

most common operating conditions occurred in practical engineering, is chosen to 

investigate the effect of rotation speed on lubrication performances of the gear pair. 

With the constant input torque 1 100T Nm , twelve speed cases are chosen: 

1 100n , 300 , 600 , 900 , 1133 , 1813 , 2267 , 3000 , 4533 , 6000 , 7500 , 

9067r/min . It should be repeated that 1 4533 / minn r  represents the second 

super-harmonic resonance while 1n =9067r/min  represents the main resonance 

frequency. Fig. 8.7 shows the dynamic factor response under those selected operating 

cases in four mesh cycles. Fig. 8.8 shows the dynamic tooth force in a mesh cycle. At 

high speeds, especially those with resonance frequencies, the dynamic load effect is 

significant. It is worth noting that owing to the large variation of DTE at cases of 

1 4533n , 7500 , and 1 9067 / minn r , the dynamic factor may drop nearly to zero 

(or even below zero). The approach treating the nearly-zero (or negative) tooth force 

is chosen to be as the same as that used by Li and Kahraman [92]. That is, whenever 

the tooth force reaches zero, a very small positive loading value of 10 N was applied 

artificially. 
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Fig. 8.7 Dynamic factors for selected speed cases  

 

 

Fig. 8.8 Dynamic tooth forces in a mesh cycle for selected speed cases 
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Fig. 8.9 shows the minimum film thickness variation along the LOA under 

quasi-steady cases. Comparing the transient solution to the values obtained using the 

Dowson-Higginson minimum film thickness formula, it is seen that the sudden load 

change which occurred at the LPSTC and HPSTC point will cause significant film 

thickness fluctuations. Specifically, the sudden load drop occurred at the LPSTC 

point causes a transient increase of the minimum film thickness, while the sudden 

load increase causes a transient drop of the minimum film thickness. As the speed 

goes up, the deviation between the Dowson-Higginson values and the transient 

numerical values are getting bigger which implies that attention should be paid when 

evaluating the minimum film thickness for a high-speed situation using a simple 

Dowson-Higginson empirical formula, because it may overestimate the minimum 

film thickness at high speeds.  

 

Fig. 8.9 Minimum film thickness with quasi-steady load (dashed lines represent 

empirical Dowson-Higginson solutions while solid lines represent the numerical 

solutions) 
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Fig. 8.10 shows the minimum film thickness results by taking the dynamic load into 

account. For cases where the dynamic factor does not deviate too much from unity, 

the minimum film thickness distribution would look like the quasi-steady solutions. 

However, special attention should be paid to cases where the dynamic factor varies 

significantly, such as 1 4533n , 7500 , and 1 9067 / minn r . According to the 

Dowson-Higginson formula, the minimum film thickness will increase when the 

dynamic factor (equivalently the dynamic force) drops. However, once the dynamic 

tooth force drops to nearly zero, the minimum film thickness will first drop 

significantly as well. In the cases 1 4533n , 7500 , and 1 9067 / minn r , the 

sudden drop of film thickness may lead to ultra-thin film situations during gear 

meshing. Combined with the surface roughness effect [5, 144] (which is not 

considered in this work), the lubrication condition would face a serious challenge at 

those high-speed cases which are close to resonance frequencies. It can be concluded 

that for gears, increasing the speed does not always increase the minimum film 

thickness since the vibration condition of the gear system might be harmful to the 

lubrication performance. 
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Fig. 8.10 Minimum film thickness with dynamic load (dashed lines represent 

empirical Dowson-Higginson solutions while solid lines represent the numerical 

solutions) 

 

8.2.2. Effect on Pressure Distribution 

The case of 1 4533 / minn r  is chosen here to study the effect of dynamic loads on 

pressure distribution. Fig. 8.11 shows comparison of the pressure distribution in a 

mesh cycle between quasi-steady load solutions and dynamic load solutions under a 

Ree-Eyring isothermal assumption. It is seen that the dynamic load causes significant 

fluctuation of pressure distribution in a mesh cycle. In areas where the dynamic load 

is small, the pressure is also very low, while at areas where the dynamic load is high, 

the pressure is high. The amplification factor of the maximum pressure is 

proportional to the amplification factor of the load. 
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Fig. 8.11 Dimensionless pressure distributions with quasi-steady loads and dynamic 

loads 

 

8.2.3. Effect on Temperature 

The effect of dynamic loads on the temperature distribution is studied for the case of 

1 4533 / minn r . Fig. 8.13 shows the temperature distribution at locations (a-f) 

shown in Fig. 8.12. For both the quasi-steady loads and the dynamic loads, the 

temperature rises inside the film are higher than the ones inside the solids. When 

dynamic loads are considered, the temperatures inside the film at points (b) and (c) 

are higher than the ones with quasi-steady loads assumptions, as also shown in Fig. 

8.14. However, as time goes on, the temperature field at point (d) with the dynamic 

loads assumption drops close to the one with the quasi-steady loads assumption. Fig. 

8.14 shows that for the quasi-steady load case, the variation of maximum 

temperature rise in a mesh cycle corresponds to the slide-to-roll ratio which drops 

nearly to zero at the pitch point and then goes up. Fig. 8.14 also shows that the 

dynamic loads do affect the temperature rise of the film.  
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Fig. 8.12 Dynamic tooth force with 1 4533 / minn r  

 

 

Fig. 8.13 Temperature distributions at the nearly-zero dynamic load area 
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Fig. 8.14 Maximum temperatures along LOA for the case of 1 4533 / minn r  

 

8.3. Chapter Summary 

A thermal elastohydrodynamic lubrication line contact model, which could handle 

ultra-thin film conditions, is developed to study the effects of speed on the 

lubrication performance of a spur gear pair, by taking into account the dynamic loads 

which are calculated using a classic mass-spring model. The speed effect on 

lubrication performance is studied comprehensively through its direct influence on 

lubrication and an indirect influence by affecting the dynamic loads of the gear pair. 

The following conclusions can be drawn: 

 Special attention should be paid to using empirical formulae such as the 

Dowson-Higginson formula to evaluate the film thickness of a gear pair under 

high-speeds, especially within the resonance regions. Increasing the speed could not 

always increase the minimum film thickness since the vibration condition of the gear 

system might be harmful to the lubrication performance. 

 The dynamic load might be intermittent in high-speed cases which are close to 

the resonance frequency or super-harmonic frequencies. At the transient intermittent 

phase of the dynamic load, a significant film thickness drop is observed.  
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 For the quasi-steady load case, the variation of maximum temperature rise in a 

mesh cycle corresponds to the slide-to-roll ratio which drops nearly to zero at the 

pitch point and then goes up. The dynamic loads affects the temperature rise of the 

film. The coupled effect of the dynamic loads, slide-to-roll ratio, fluid properties, etc. 

on temperature rise is yet to be studied. 

 The lubricated contact performance of a spur gear drive should be evaluated 

together with its dynamic performance since the dynamic behaviour has a significant 

impact on the lubricated contact performance through dynamic loads. However, in 

this work, the effect of lubricated contact behaviour on the dynamic performance is 

not considered (for example, the lubrication condition affects the contact stiffness 

and the damping which further affect the dynamic behaviour.). A coupled 

tribology-dynamic model is yet to be developed for a more complete working 

performance evaluation of gear drives. 

 In this work, the variation of meshing stiffness is taken as the exclusive 

excitation of the dynamic system. However, the gear clearance, the friction between 

engaging gear pairs and other factors such as the assembly error and the 

manufacturing error affect the dynamic load as well. A further study on the effects of 

friction excitation and gear backlash on spur gear lubrication performance can be 

found in Ref. [6], published by the author and coworkers. 
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Chapter 9 A Tribological Model for Normal Contact Stiffness Prediction 

A tribological model for the normal contact stiffness prediction of a spur gear pair is 

proposed. Pressure distribution and compliance within the nominal contact zone are 

calculated at each engaging point along the LOA using a deterministic dry contact 

model and an EHL model which is able to deal with ultra-thin conditions - caused by 

surface roughness - aided by the Reduced Reynolds technique. Three methods for 

normal contact stiffness calculation are proposed and the results are compared with 

two existing analytical methods. The effects of surface roughness, load and speed on 

normal contact stiffness are discussed under dry contacts and EHL contacts. 

9.1. Gear Contact Stiffness 

As an internal excitation, the varying mesh stiffness of gear pairs, particularly owing 

to the different number of tooth pairs in contact, causes noise and vibration of gear 

systems [145]. Generally speaking, the mesh stiffness of gear pairs consists of 

contact stiffness, stiffness as a result of bending and traction, and stiffness caused by 

the deformation of the tooth roots. As an essential part of mesh stiffness, the contact 

stiffness which represents the deformations of the engaging tooth plays an important 

role in the dynamic behaviour of gear systems. 

Researchers have conducted studies on the contact stiffness of interacting 

surfaces decades ago. Pharr et al. [146] studied the relationship between contact 

stiffness, contact area, and elastic modulus during indentation. Rabe et al. [147] 

presented a technique to measure the contact stiffness and the Young's modulus of 

sample surfaces quantitatively, with a resolution of approximately 20 nm, exploiting 

the contact resonance frequencies of standard cantilevers used in atomic force 

microscopy. Li and Bhushan [148] presented a review of nanoindentation continuous 

stiffness measurement technique and its applications. Królikowski and Szczepek 

[149] utilized the ultrasonic method for the prediction of contact parameters such as 
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the real contact area and the contact stiffness. Sherif [150] discussed the parameters 

affecting the contact stiffness of nominally flat surfaces. It is found that when 

considering the theory of Greenwood and Williamson [151] (GW model), the contact 

stiffness is dependent upon the standard deviation of height distribution of asperities, 

the effective radius of curvature of asperities and the density of asperities per unit 

area. When considering the theory of Onions and Archard [152] (OA model), the 

contact stiffness is dependent upon the correlation distance, the apparent area of 

contact, and the standard deviation of height distribution of asperities. It is also found 

that the standard deviation in both models strongly affects the value of the contact 

stiffness, and the GW model underestimates the contact stiffness when it is compared 

with the OA model. Recently, finite element methods have been extensively used for 

contact stiffness calculation [153-155] owing to the popularity of commercial finite 

element packages. 

The previous review implies that there are currently two ways commonly used 

for contact stiffness prediction: one is based on the GW model, which considers the 

surface roughness with limited statistical parameters, and the other one is based on 

the finite element method. Though the former one statistically represents rough 

surface effects, it cannot capture the local detailed information at asperity contacts 

level, which is believed to be essential for the understanding of surface contact 

fatigue mechanisms. The latter one mainly relies on commercial finite element 

packages which are not currently able to take surface roughness into account easily. 

Deterministic models in the finite difference frame are commonly used in rough 

surface contact and lubrication problems [2]. However, researchers mainly focus on 

pressure, compliance distribution, film thickness and traction, among other things. 

Less attention is paid to the contact stiffness calculation based on deterministic 

contact models. In this work, the deterministic method is used for the normal contact 
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stiffness studies of a spur gear pair. 

Based on Hertzian contact solution, some analytical formulae have been 

proposed for the contact stiffness calculation. However, this type only takes 

macro-parameters, such as the macro geometry of the surfaces and the elastic 

modulus of materials, for example, into account while micro-parameters such as 

roughness are neglected. Even though the Majumdar-Bhushan fractal model [156] 

can be used for micro-parameter analysis, the approach could not capture detailed 

information within the nominal contact zone.  

With the procedure of Lundberg [157], the local compliance owing to contact 

stresses is expressed as  

 0.9 0.8 0.1

1.275 c
cE B F   (9.1) 

where c  is the contact elastic deformation, E  is the elastic modulus of the gear 

material, B  is the tooth width and cF  is the total tooth force and for spur gear 

pairs it is calculated as 

 cF FB   (9.2) 

where F  is the tooth force for the line contacts with unit /N m .  

Then the normal contact stiffness is expressed as 

 / c c ck F   (9.3) 

From a result derived by Yang and Sun [158], the stiffness of the Hertzian contact of 

meshing teeth is a constant along the LOA independent both to the position of 

contact and the depth of interpenetration which is given by [159] 

 24(1 )





c
EBk   (9.4) 

where E , B ,   represent the Young's modulus, tooth width and Poisson's ratio, 

respectively. Those two contact stiffness formulae will be discussed and compared 
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with proposed numerical methods. 

The proposed lubrication model mentioned in previous chapters provides a way 

to calculate the normal contact stiffness using the detailed local information inside 

the nominal contact zone. This chapter tries to discuss the effect of lubrication, load, 

speed and surface roughness on normal contact stiffness for a spur gear pair. In this 

work isothermal conditions are assumed. 

 

9.2. Methods for Normal Contact Stiffness Prediction 

Three methods, named Methods A, B and C, are proposed to calculate the normal 

contact stiffness with the predicted pressure distribution and the elastic deformation. 

They are introduced below. 

Method A: since the discretized models require many nodes spaced within the 

nominal Hertzian contact zone, each node pair is considered as a small spring. The 

total normal contact stiffness is the sum of stiffnesses of those small springs.  

 
0

 
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i
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i i

Fk B
d

  (9.5) 

Where B  is the tooth width, dn  is the number of node pairs where the elastic 

deformation 0d . iF  is the local load applied on the node pair and is expressed as 
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id  and ip  are the elastic deformation and pressure at the node pair i . F  is the 

total tooth force at the specific engaging location.  

Method B: the normal contact stiffness with Method B is defined as the ratio of 

the total tooth force and the maximum elastic deformation within the nominal 

Hertzian contact zone. 
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max

c
Fk B

d   (9.7) 

Method C: this Method is similar to Method B with the difference that the mean 

elastic deformation within the nominal Hertzian contact zone is applied, instead of 

the maximum one. 

 c
m

Fk B
d   (9.8) 

The mean elastic deformation md  is defined as 
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  (9.9) 

It is noticed that these three methods capture the detailed local information inside the 

nominal Hertzian contact zone, which provide more physically-meaningful insights 

on the normal contact stiffness of rough surface contacts. 

 

9.3. Results and Discussions 

9.3.1. Methods Comparison 

First, the proposed three methods are compared with the Yang-Lin analytical solution 

[159] and the Lundberg solution [157]. If not explicitly specified, the working 

conditions are taken as 61 10 / F N m , 1 300 / minn r  and tooth surfaces are 

assumed smooth. Under dry and EHL contact, a comparison of normal contact 

stiffness along the LOA using those methods is shown in Fig. 9.1. It is seen that the 

Lundberg formula far overestimates the normal contact stiffness, while the Yang-Lin 

formula gives the result with the same order of magnitude of the three proposed 

methods. For the dry contacts, the normal contact stiffness keeps constant in a 

meshing period, while for the EHL contacts the normal contact stiffness varies 

slightly, especially at the HPSTC and the LPSTC point. For the given working 
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conditions, the normal contact stiffnesses under EHL contact only slightly differ 

from their dry-contact counterparts. It has been extensively known that with 

lubrication, the pressure distribution and the traction within the nominal Hertzian 

contact zone varies with their counterparts under dry contacts [69]. However, with 

reference to the elastic deformation, the EHL result remains almost the same with the 

dry contact result if the surfaces are smooth. When we recall the definition of the 

contact stiffness, the slightly differences of normal contact stiffness between the EHL 

result and the dry contact result for smooth surface cases are easily established. 

 

Fig. 9.1 Comparison of methods for normal contact stiffness calculation  

 

The effects of tooth surface roughness, applied load, and speed, on normal contact 

stiffness are studied under both the dry contacts and the Newtonian EHL contacts. 

 

9.3.2. Effect of Roughnesses 

Fig. 9.2 shows the contact stiffness along the LOA with different surface roughness , 

i.e. 0qR , 0.1 , 0.2  and 0.3 , under dry contacts using Method C. It is seen that 

if surfaces are smooth the contact stiffness in a meshing period does not vary. 
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However, if roughnesses are present, the contact stiffness in different meshing 

positions varies. It is clearer if a mean contact stiffness in a whole meshing period is 

defined to show the effects of roughness on contact stiffness. The mean contact 

stiffness in a whole meshing period can be defined as 

 
1

/

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Tn

m i T
i

k k n   (9.10) 

where ik  is the instantaneous normal contact stiffness at a specific moment during 

the meshing process.  

Fig. 9.3 shows the effect of roughness on the mean normal contact stiffness 

during a whole meshing period under dry contacts. The contact stiffness in a meshing 

period varies when the surface roughness exists. It is seen that under dry contacts, for 

Methods A and B, as the surfaces gets rougher, the mean normal contact stiffness 

decreases, while for Method C the mean normal contact stiffness increases.  

 

Fig. 9.2 Effect of surface roughness on contact stiffness under dry contacts 
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Fig. 9.3 Mean contact stiffness along LOA as surface roughness increases under dry 

contacts 

 

In the following, the effect of roughness on normal contact stiffness is discussed 

under EHL conditions. Fig. 9.4 shows the contact stiffness along the LOA with 

different surface roughness under Newtonian EHL contacts using Method C, while 

Fig. 9.5 shows the mean contact stiffness variation as roughness changes. It also 

shows that surface roughness causes variation of normal contact stiffness as the gear 

pair is in the meshing process. Under EHL contacts, for Methods A and B, as the 

surfaces get rougher, the mean normal contact stiffness decreases, while for Method 

C, the mean normal contact stiffness increases. This trend is similar to the dry contact 

results. 
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Fig. 9.4 Effect of surface roughness on contact stiffness under EHL contacts 

 

 

Fig. 9.5 Mean contact stiffness along the LOA as surface roughness increases under 

EHL contacts 

 

9.3.3. Effect of Load 

According to Kiekbusch et al. [155], the contact stiffness varies as the applied torque 

changes. The effect of load is studied under both dry contacts and EHL contacts. 

Several load cases, which covers three orders of magnitude, are chosen to study the 
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effect of load on normal contact stiffness.  

For the dry contacts, it is found that the load does not affect the normal contact 

stiffness if the same surface roughness is assumed. However, for the EHL contacts, 

the normal contact stiffness varies as the load changes, as is seen in Fig. 9.6. For 

Method C, as the load increases the variation of normal contact stiffness along the 

LOA is alleviated. 

 

Fig. 9.6 Effect of load on normal contact stiffness under EHL contacts 

 

Fig. 9.7 shows the variation of mean contact stiffness as the load changes under EHL 

contacts using the three Methods. It is seen that for the three Methods, when the load 

is relatively light, as the load increases the mean contact stiffness drops significantly. 

While the load is moderate, as the load increases, the mean contact stiffness drops 

much more slowly. For Method B, when the load is not light, the mean contact 

stiffness almost keeps constant as the load increases. 
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Fig. 9.7 Variation of mean contact stiffness along LOA as load increases under EHL 

contacts 

 

9.3.4. Effect of Speed 

The effect of speed on normal contact stiffness is also studied. For the dry contacts, 

speed also does not affect the normal contact stiffness at all. Meanwhile, for the EHL 

contacts, speed affects the normal contact stiffness as is seen in Fig. 9.8. As the speed 

increases for Method C the variation of normal contact stiffness along the LOA 

becomes evident. Fig. 9.9 shows the mean contact stiffness with the three methods. 

As the speed increases, for Methods A and B, the mean contact stiffness decreases, 

while for Method C, the mean contact stiffness increases.  
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Fig. 9.8 Effect of speed on normal contact stiffness under EHL contacts 

 

 

Fig. 9.9 Variation of mean contact stiffness along the LOA as speed increases under 

EHL contacts 

 

9.4. Chapter Summary 

The proposed model is used for a normal contact stiffness prediction of a spur gear 

pair. Three methods for normal stiffness calculation are proposed and compared with 

two existing analytical formulae. The following conclusions are drawn: 
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The Lundberg contact stiffness formula overestimates the normal contact stiffness, 

while the Yang-Lin formula gives the result with a reasonable order of magnitude. 

For the given gear pair sample, in most working condition cases the predicted value 

with Method A is between the value with Method C (higher) and the one with 

Method B (lower). 

If surfaces are smooth, the EHL-based normal contact stiffness only very 

slightly differs from the dry-contact-based one. 

Surface roughness causes fluctuation of contact stiffness in the meshing period. 

Both for dry contacts and EHL contacts, as the surfaces get rougher, for Methods A 

and B, the mean normal contact stiffness decreases, while for Method C, the mean 

normal contact stiffness increases. 

Under dry contacts, the normal contact stiffness keeps constant as the load or 

speed varies. Under EHL contacts, the normal contact stiffness varies as the load or 

speed changes. For the three proposed methods, when the load is relatively light, as 

the load increases, the mean contact stiffness drops significantly. While the load is 

moderate, as the load increases, the mean contact stiffness drops much more slowly. 

As the speed increases, for Methods A and B, the mean contact stiffness decreases 

while for Method C, the mean contact stiffness increases when EHL contacts are 

assumed. 

The study on normal contact stiffness has laid a foundation for a further 

advanced modelling of mesh stiffness of gear pairs and is able to throw some light on 

tangential contact stiffness studies. The proposed methodology provides a potential 

way for an advanced tribo-dynamic model of gear pairs, which is believed to provide 

a more comprehensive evaluation of total working performance of gear pairs, both 

tribologically and dynamically. 
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Chapter 10 Conclusions and Future Work 

In this work a comprehensive spur gear lubrication analysis is made by considering 

the thermal effect, non-Newtonian effects, rough surface effects, transient squeeze 

effects, and dynamic load effects. First, the modern elastohydrodynamic lubrication 

theory is studied and relevant numerical approaches are introduced. The 

non-Newtonian fluid effect is discussed with a Ree-Eyring fluid model and a 

power-law fluid model. The thermal effect is studied by solving energy equations of 

interacting solids and the film numerically with the sequential sweeping technique. 

The rough surface effect is studied by directly adding the surface topography term to 

the film thickness equation, which makes the approach a deterministic model. The 

reduced Reynolds equation technique is applied to deal with any potential "asperity 

contacts" or any ultra-thin film situations. Those situations can be caused because of 

the surface roughness or the dynamic load effect. This approach allows us to capture 

local information about pressure, traction, film thickness, etc., within the nominal 

contact zone. The influence of working conditions - including load, rolling speed and 

the slide/roll ratio - are discussed with those models (Newtonian or non-Newtonian 

fluids, isothermal or thermal conditions). Then, a spur gear pair lubrication analysis 

is conducted using the developed modern EHL model with the quasi-steady load 

assumption. Notices about its lubrication performance are given in an attempt to 

provide some guidance for engineering practice. Finally, the dynamic load effect is 

incorporated into the spur gear pair lubrication analysis, since the excitations owing 

to the varying mesh stiffness, for example, cause significant dynamic behaviour for 

the spur gear system, especially under some critical rotation speeds. The dynamic 

load is calculated using a two degree-of-freedom lumped parameter system dynamic 

model in which the varying mesh stiffness is considered as the excitation. The 

dynamic model is solved using the Runge-Kutta method with the aid of Matlab. The 
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consequences of dynamic load effects on pressure distribution and film thickness in 

the whole mesh period are discussed. In the last chapter, normal contact stiffness of 

the spur gear pair is predicted using the proposed deterministic dry contact and EHL 

models. Towards the three objectives presented in the Introduction Section, 

conclusions have been made as follows. 

In terms of the first objective - that is, a study of the effect of working 

conditions, thermal conditions, non-Newtonian behaviours and surface topography 

on pressure, film thickness and friction coefficient of a line contact problem, the 

following conclusions are established:  

i. The Newtonian fluid model and the power-law fluid model with a fixed 

power-law index are not suitable for friction prediction even though they can give 

reasonable film thickness results. Ree-Eyring fluid models give reasonable friction 

coefficient values whose range are in accordance with those existing experimental 

results. 

ii. For the Ree-Eyring fluid, when the load is light, the value of the friction 

coefficient increases significantly; when the load is high and as the load keeps 

increasing, at first, the value of the friction coefficient does not change too much. If 

it keeps increasing, the friction coefficient will drop gradually. For the Ree-Eyring 

fluid, when the rolling speed is not high, as the speed goes up, the value of the 

friction coefficient increases significantly, and if the speed increases more, the value 

of the friction coefficient increases much more slowly. The friction coefficient is 

almost linear with the logarithmic form of rolling speed. For the Ree-Eyring fluid, 

the value of the friction coefficient goes up when the slide/roll ratio increases. 

However, this trend becomes slower when the slide/roll ratio is high. 

iii. For the Ree-Eyring fluid, as the amplitude of waviness increases, the friction 

coefficient first decreases a little or remains constant, and when the amplitude is high 



 
 

206 

the friction coefficient increases gradually as the amplitude keeps increasing.  

iv. For the Ree-Eyring fluid, compared with the isothermal solutions, the friction 

coefficients are smaller for the thermal solutions if the working condition is the same. 

This is caused by the decrease in equivalent viscosity within the nominal contact 

zone. When the thermal effect is considered, for the Ree-Eyring fluid, when the load 

is heavy and if the load keeps going up, the friction coefficient drops slightly which 

means that thermal effect is more evident for heavier loads. The value of the friction 

coefficient for the Ree-Eyring TEHL model first increases and then decreases as the 

rolling speed increases. This means that the thermal effect in high rolling speed cases 

would be more significant owing to the high sliding speed. The value of the friction 

coefficient of the Ree-Eyring TEHL model first increases and then decreases as the 

slide/roll ratio increases. This could also be explained by the variable sliding speed, 

which is a critical factor for the thermal effect. 

In terms of the second objective - that is, the study of a comprehensive 

lubricated contact analysis of a spur gear pair - conclusions can be made as follows: 

i. For the spur gear lubrication, if a quasi-steady load distribution is assumed for a 

spur gear pair with the contact ratio above unity, a transient fluid squeeze effect 

causes an opposite sudden fluctuation at the LPSTC and HPSTC where sudden load 

change occurs. For the given spur gear pair sample, along the LOA, the thinnest film 

thickness occurs at the approach point. The maximum temperature rise occurs at the 

approach point while the minimum temperature rise occurs at the pitch point owing 

to the zero slide/roll ratio. Along the LOA, not only the minimum film thickness but 

also the maximum temperature rise occurs at the approach point. This means that 

special attention should be paid to this meshing position, under the operating 

conditions considered. 

In terms of the third objective - that is, the study of a coupled 
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tribological-dynamic model for a gear pair - we conclude: 

i. If the dynamic load effect is taken into account, then special attention should be 

paid using empirical formulae - such as the Dowson-Higginson formula - to evaluate 

the film thickness of a gear pair under high-speeds, especially within the resonance 

regions. Increasing the speed will not always increase the minimum film thickness 

since the vibration condition of the gear system might be harmful to the lubrication 

performance. 

ii. Three methods are proposed to predict the normal contact stiffness of the spur 

gear pair based on deterministic tribological models. If surfaces are smooth, the 

EHL-based normal contact stiffness only very slightly differs from the 

dry-contact-based one. Surface roughness causes fluctuation of contact stiffness in 

the meshing period. Under dry contacts, the normal contact stiffness remains 

constant as the load or speed varies. Under EHL contacts, the normal contact 

stiffness varies as the load or speed changes. 

In terms of those objectives, future work can be summarized as follows: 

i. For the first objective, more detailed work is required for a better understanding 

of those coupled effects among the transient squeeze action, the working conditions, 

the thermal conditions, the surface roughness, fluid rheology behaviours and the 

dynamic conditions.  

ii. For the second objective, the line contact is applied in this work to simulate the 

lubrication problem of spur gears. However, since there exist the assembly and the 

manufacture errors, the contact type will not exactly be the line contact problem. In 

addition, the surface topography should also be considered which requires a 

three-dimensional contact analysis instead of line contact analysis. 

iii. For the third objective, a more comprehensive and coupled dynamic lubrication 

model is yet to be developed for a gear drive. Not only does the dynamic behaviour 
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affects the lubrication performance of gears such as film thickness, traction, etc., but 

lubrication behaviours also affect the dynamic performance of gears such as mesh 

stiffness and mesh damping, etc. 

iv. Generally, the numerical results lack experimental verification. More relevant 

experiments should be conducted to verify those numerical conclusions such as the 

prediction of pressure, film thickness, temperature field, stress field, and others. 
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