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Abstract

In this dissertation we investigate two questions
arising from Carter and Hawkes's generalization of P.Hall's
theory of system normalizers to a theory of ¥-normalizers
(i.e. normalizers of *-systems) of a finite soluble group,
where & is a saturated formation defined locally by an
integrated set of formations {#p)}. [The ¥-normalizers of
a finite soluble group, J. Algebra 5 (1967), 175-202]. We
first show that if, in addition, each formation J(p) is
subgroup-closed, then the whole of Carter's invariant theory
[Chapter 2 of Nilpotent self-normalizing subgroups and sys-
tem normalizers, Proc. London Math. Soc. (3) 12 (1962),
535=-563.] can be extended to a theory of P-invariants of a
finite soluble group =-- the subgroup-closure of K p) is
needed to enable us to define the concept of an '?-system
of the group reducing into a subgroup.

: The remainder of the thesis is concerned with general-
izations of Carter and Hawkes's theory. We choose, instead
of the X(p)-residual, an arbitrary normal subgroup X(p) of
the finite soluble group G for each prime p dividing the
order of G, forming a normal system X = {X(p)} of G.
Theﬁ, from each Sylow systen )S of G, we obfain an ff-system
of G by intersecting X(p) with the Sylow p-complement of G
appearing in ‘é -~ the normalizers of the fxlsystems of G
.are called ¥-normalizers of the group. We show that these
subgroups satisfy many of the properties satisfied by e



normalizers; however, they do not satisfy all the properties
of ?Lnormalizers unless £ is a so-called integrated normal
system of G. We use the fact that the %—normalizers cover
or avoid each chief factoér of the group as a basis for sev-
eral characterizations of 3€-normalizers, both for non-
integrated and integrated normal systems X. Ve now assoc-
iate with each normal system ¥ of G a further conjugacy
class of subgroups, the :£-covering subgroups of the group,
which possess properties similar to those of :}-covering
subgroups and are related to the :f-normalizers. However,
when the X(p) are chosen in such a way that the %€ -normal-
izers become :}—normalizers, the :I;covering subgroups need
not coincide with the gicovering subgroups. Nevertheless,
most of Carter and Hawkés's results are paralleled in the
present situation.

In our final chapter we apply our methods to B.Fischer's
even more general situation. [Pronormal subgroups in finite
soluble groups, To appear.] He considers sets M = {M(ﬁ%)
| e A}, where the M(n%) are normal subgroups of the
finite soluble group G, one for each A in the finite set A,
and the wn, are sets of primes, rather than just single dis-
tinct primes as in a normal system ¥. He then obtains an
qWL-system from each Sylow system ;X of G Uy intersecting
’M(xa) with the Hall %,-complement of G appearing in./g. He
develops several properties of the normalizers of M—-systens
== ‘M-normalizers -- and defines M -covering subgroups as

limits of a certain type of sequence of subgroups. The o



covering subgroups, too, have properties similar to those of
S(‘-covering subgroups and are related to the M -normalizers.
Furthermore, in the special case of v a normal system 'f,
the /hm—covering subgroups are the ’;)f-covering subgroups.
Using our ¥ -theory methods in this situation, we obtain
further properties of M —normalizers and give an alternat-

ive approach to the WM -covering subgroups.
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INTRODUCTION

This dissertation arises primarily from the work of R.W.
Carter and T.0.Hawkes on a generalization of P.,Hall's theory
of system normalizers of a finite soluble group ([4]). In
this paper they defined the ¥ -normalizers of a finite sol-
uble group for any saturated formation ¥ ( [7],[8] ), the
only restriction imposed being that the system of formations
{$(p)} defining JF locally ([7],[13]) should be integrated
i.e. each formation ¥(p) should be contained in ¥. This
type of local definition of F enabled them to introduce the
concept of an F_central ( #-eccentric) chief factor of G,
a concept depending only on ;’ and reducing to that of a
central (eccentric) chief factor when ¥ is thngﬁi of nil-
potent groups. Suppose that G(p) is the 3 (p)-residual of
G i.e. the smallest normal subgroup of G with factor group
in the formation H(p), and o = {SP} is the Sylow system
of G defined by the complete set of p-complements sP of @.
The set {SPn G(p)} is called an F ~system and its normal-
izer an ¥ -normalizer of the group G =--- &hese subgroups
specialize to the system normalizers of G when :} is theC::;
of nilpotent groups.

Carter and Hawkes proved that the }-normalizers satis-

fied properties similar to those of system normalizers viz.
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they lie in 3‘, are conjugate, invariant under homomorphisms
of the group, cover the F —central chief factors and avoid
the JF-eccentric chief factors of the group and can be char-
acterized by means of the maximal chains of subgroups joining
them to the group. Furthermore, the intersection of a chief
series of G with an ¥ -normalizer is a chief series of the
F-normalizer. Carter and Hawkes then went on to show that
the relationship between the system normalizers and Carter
subgroups (i.e. nilpotent self-normalizing subgroups, [2] )
of the group is paralleled by a relation between the ¥ —norn-
alizers and W.Gaschiitz's f-covering subgroups CLZ1) vk,
every :}-normalizer of G is contained in an :¥-covering sub-
group of the group, and vice versa. In fact, when G is an
extension of a nilpotent group by a group in the formation Jﬂ

the :}-normalizers and :?—covering subgroups of G coincide.

- Two questions arise from this generalization. The first
concerns R.W.Carter's theory of invariants developed in [3].
Carter let X be any subgroup of a finite soluble group G and
considered four different types of factor occurring in an X-
composition series of G i.e. a series of subgroups of G in
which each member is normalized by X and no further terms can
be inserted. The product of the orders of the factors of the
‘same type in a given X-composition series was in each case
found to be independent of the series chosen, yielding four
invariants z(X), w(X), z (X) and w,(X) associated with X.

WHis interpretations of the last two of these invariants show
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that the Carter subgroups E of G may be characterized by the
equations w(E) =1, zo(E) = 1. They also involve a result
on the number of Sylow systems of G reducing into a maximal
chain from X to G --- this result is considerably simplified
when X is a system normalizer of G. We ask whether this
theory can be extended to a theory of T?—invariants, where
is a saturated formation. We show that this is indeed poss=-
ible provided that all the formations occurring in the integ-
rated system { J(p)} which defines ¥ locally are subgroup-

closed.

We now ask whether Carter and Hawkes's 3‘-normalizers
themselves can be generalized. We have seen that their def-
inition involves choosing a certain normal subgroup of the
group associated with each prime divisor of the order of the
group. Proceeding a stage further, suppose that we choose an
arbitrary normal subgroup X(p) of the finite soluble group G
for each prime p dividing the order of G, obtaining a so-
called normal system X = {X(p)} of G. We can then form an
}f-system in the same way as Carter and Hawkes obtained an Fe-
system, and we are interested in knowing whether the normal-
izers of the X:-systems -—- the ji-normalizers of G ===
satisfy properties similar to those of :#—nprmalizers. Ve
show that for any normal system :k , the X -normalizers do
indeed satisfy most of the properties of’:;-normalizers. How=
ever, they do not satisfy all the properties of 3‘—normalizers

unless X is a so-called integrated normal system. An example



of this type of normal system is the case when all X(p) are
the same normal subgroup --- the ¥ —normalizers then become

P.Hall's relative system normalizers ([10]).

Having developed a satisfactory theory of X:—normalizers,
it seemed reasonable to seek a further conjugacy class of
subgroups depending on the normal system ¥  which would play
the role of the 3‘-covering subgroups in Carter and Hawkes's
theory. This search was successful --- we show that for any
normal system A of a fipite soluble group, one can define
and prove the existence qf a new conjugacy class of subgroups,
the 35-covering subgroups of the group. These subgroups
possess properties similar to those of the 3‘-covering sub-
groups and are related to the ll-normalizers. Nevertheless,
these xn-covering subgroups need not coincide with the 5
covering subgroups when we choose the normal system ¥ 4w
such a way that the )E-normalizers become F-normalizers for

a saturated formation t?.

B.Fischer, too, considered the possibility of generaliz-
ing Carter and Hawkes's theory. Working independently, he
went even further by investigating sets m ="{M(x,) | XA EA}
in a finite soluble group, where the M(w,) are arbitrary
normal subgroups of the group, one for each element N of the
finite set A, and the %, are sets of primes rather than
just single distinct primes as in a normal system ([5]). Prom

-each Sylow system }X of the group he obtained an M ~system
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by iﬁtersecting M(nk) with the Hall n)—complement appearing
in.‘g for each ™ € /\. The normalizers of the 1\ -systems
—— the M -normalizers of the group -- were then shown to
be conjugate and homomorphism-invariant, though not necessar-
ily covering or avoiding every chief factor of the group.
Then, inspired by Carters method of obtaining the Carter sub-
groups of A-groups as limits of certain sequences of sub-
groups ( [3], page 548 ), he developed a process yielding a
further conjugacy class of subgroups, the M ~covering sub-
groups of the group. Surprisingly enough, these turned out
to be the }:—covering subgroups in the special case of M a
normal system X of the group. This discovery led us to
apply our methods to Fischer's more general situation, with
great success. We prove further properties of M-normalizers
—- in particular that they are subabnormal subgroups -- and

give an alternative approach to his 'W\-covering subgroups.

Chapter one contains a section on notation and terminol-
ogy followed by a summary of well-known results assumed in
the main body of the dissertation. In addition, using the
methods of Gaschutz ([6]), we extend a result of Carter and
Hawkes on p-Frattini theory ([4], pages 179-180 ) to the case
of a set of primes @ rather than just a single prime p =---

this result is used in chapter seven.

In chapter two we develop our theory of 3‘~invariants,

‘where ¥ is .a saturated formation defined locally by an int-
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egrated system of subgroup-closed formations { Hp)}. We let
X be any subgroup of the finite soluble group G and divide
the X-composition factors of G into fouxf types by defining 3
central and J-eccentric X-composition factors. Here, too,
the product of the orders of all the factors of the same type
in a given X-composition series of G is independent of the
series chosen, yielding four invariants z}(X) : u':}(X) : z'i‘(X),
wi‘(X) associated with X which satisfy the relations
z}(X).w?(X) = |X| , zf(x).wf(x) = |G : X| .
z}(X) is the - F-central order of X i.e. the product of the
orders of the F —central chief factors in a given chief
series of X, and tz?(X) is the number of distint :}-systems
of X. The condition that all }(p) should be subgroup-closed
ensures that we can define the concept of an }-system of G
reducing into a subgroup of G. We then determine the number
of :}bsystems of G reducing into a maximal chain ‘ﬁ joining
X to G —--- this becomes simply the product of the indices of
the F-normal links (|l4], page 179) in { in the special case
of X an ¥ onormalizer of G. It also enables us to show that
z‘zl(x) is the largest value taken by the product of the ind-
ices of the F-normal links in }Zo as b runs through all
possible maximal chains .from X to G, and that w‘Z’(x) equals
the total number of JF-systems of G divided by the number
reducing into' X 'The }-covering subgroups E of G are seen

¥ ¥
to be characterized by the equations & (E) =1, za(E) =1.

Chapter three introduces the basic concepts used in- the



7

following three chapters. Having defined a normal system ¥
of the finite soluble group G, we bring in the closely relat—
ed concepts of an X —central (X -eccentric) chief factor and
an ¥ -normal ( X -abnormal) maximal subgroup of G. This en-
ables us to define a set :_f- of sections of G (i.e. factor

groups of subgroups of G) which in a way takes the place of
the formation F in Carter and Hawkes's theory, and thus

plays an important part in the sequel. % and fg clearly

differ in that ¥ is an isomorphism class whereas the set 3—6
is defined entirely within the given group G; in fact 3: is
not even closed under isomorphisms within G. However, we show

that X satisfies properties analogous to those of a satur-

ated formation.

The properties of the X -normalizers of a finite soluble
group G are investigated in chapter four. We show that these
subgroups are homomorphism-invariant, conjugate, cover the
¥ -central and avoid the X -eccentric chief factors of G ;
furthermore, they lie in f}é and are minimal members of the
set of so-called ¥ —subabnormal subgroups of G. An arbitrary
maximal subgroup of G contains an ¥ -normalizer of G if and
only if it is X -abnormal; in fact an Xa M -normalizer of
an £ -abnormal maximal subgroup M of G always contains an
X -normalizer of G (where ¥X~M is the normal system of M
obtained by intersecting each element of X with M) y - 8nd
these two subgroups will be equal if M is a so-called £-

.critical maximal subgroup of G. However, in contrast to the
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theory of }-normalizers, it is possible to have G not in X
and yet possessing no X -critical maximal subgroup. Thus we
cannot in general obtain every X —normalizer as the terminal
member of an X-critical maximal chain. There are two further
differences between Y- and F-normalizers viz. a chief
series of G need not intersect an X -normalizer D of G in a
chief series of D, nor need a 'gn D -normalizer of an 2
normalizer D of G be a 1(} -normalizer of G (where 15— is an-
other normal system of G). However, all these differences

fall away if we assume that our normal systems are integrated

The first part of chapter five is concerned with the
existence and main properties of the x—covering subgroups of
the finite soluble group G. Following the definition of an
¥ -covering subgroup of G (see [4], page 190), we define an
x-covering subgroup of G to be a subgroup E satisfying the
conditions (i) E € X .

(ii) E covers every section F/F, of @ such that

F/F € 56 and F contains E. _

Then, in spite of the fact that 5(—': is not isomorphism-closed,
we are able to show that these subgroups, if they exist, are
abnormal in G, homomorphism-invariant and conjugate. We prove
that the x-covering subgroups of G always exist by exhibit-
ing them as the terminal members of so-called X -crucial max-
imal chains of G. In the remainder of the chapter, the rel-
ation between the x-covering subgroups and the ¥ -normaliz-

ers of G is discussed and further properties of the former
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are developed. We first prove that every }i-covering subgroup
of G contains an X -normalizer of G and vice versa. This
result enables us to characterize the 35—covering subgroups
of G along the lines of Lemma5.1 of [4] ; to determine which
E-composition factors of G will be covered by the :£—covering
subgroup E of G and which avoided (as in Lemma5.2 of [4]);
and to give a necessary and sufficient condition for an ;
normalizer td be an 3C-covering subgroup of G. In the special
case in which the factor group of G by its Fitting group is
in i , the ¥ —covering subgroups and ¥ —normalizers of G
coincide and the ¥ -normalizers are precisely those subgroups
of G which cover the X-central and avoid the ¥ -eccentric
chief factors; several other results of Carter and Hawkes on
N¥ —groups ([4], chapter 5) also carry over into this sit-
uation with only slight modification. Our study of this
special case enables us to relate the }:-covering subgroups
of G to those of certain subgroups of G as follows. Let X =
{X(p)} and X be the intersection of all the X(p). Then, if
the subgroup I of G supplements the Fitting subgroup of X
in G, every XnlL -covering subgroup of L can be written as
the intersection of an gf-covering subgroup of G with L ; a
special case of this situation arises when L is a 4j-normal-
izer of G for an integrated normal system .13 = {Y(p)] of @
such that Y(p) is contained in X(p) for each prime p. The
following result provides a further parallel with Carter and
-Hawkes's theory. Suppose that X and Wﬁ are any two integ-
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rated normal systems of G. Then, if the ¥ - and qar—covering
subgroups of G coincide, so do the Y- and ’H-normalizers of
G ; furthermore, as in Carter and Hawkes's theory, the con-
verse is false. We also give examples showing that an ¥ -
covering subgroup of G need not be an y‘-covering subgroup of
G for any saturated formation 3‘, and conversely, that an J
covering subgroup of G need not be an %-covering subgroup of
G for any normal system X of G. Ve close the chapter with a
brief discussion of the special case in which all X(p) are

the same normal subgroup of G.

Chapter six is devoted to characterizations of the £ -
normaliéers of a finite soluble group G for both non-integ-
rated and integrated normal systems of G. We begin by proving
that if, for any normal system X of G, the xz—normalizers
coincide with the 35—covering subgroups of G they can then
be characterized as those subgroups of G which cover the X-
central and avoid the X-eccentric chief factors ef 'G. It is
this covering and avoidance property of :)E-normalizers which
forms the basis of all our characterizations. Taking the non-
integrated case first, we assume that a subgroup H of G
covers or avoids each chief factor of G in a certain way, and
seek an additional condition on H which will, ensure that it
is an X-normalizer of G (By Examplel of [11], page 344, the
covering and avoidance property alone will not in general be
sufficient to ensure that'H is an f—normalizer of G). One

‘of the two such conditions found involves the typve of chain
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connecting H to the whole group ; the other demands that H
should commute with a Sylow p-complement of G for each prime
p dividing the order of G. The two characterizations of
"non-integrated X-normalizers" thus obtained are adapted to
characterizations of "integrated X —normalizers" by use of
the distinguishing fact that a chief series is preserved by
intersection with an ¥-normalizer defined by integrated nor=-

mal system :ff.

In the seventh and final chapter we discuss Fischer's
WM —normalizers and 'hl-covering subgroups of a finite sol-
uble group G. We show that, besides forming a homomorphism—
invariant conjugacy class of subgroups of G, the ™M =normal-
izers are subabnormal in G and cover ce?tain of the chief
factors of G (though they need not avoid the remaining chief
factors) ; furthermore, as in the special case of an -
normalizer, each Sylow system of G reduces into the W =norm-
alizer of G which it defines. We then describe in detail
Fischer's definition of an M ~covering subgroup of G and
state some of the properties of these subgroups. One of these
properties shows that the WM —covering subgroups satisfy
conditions similar to those used to define an 35—covering
subgroup of G for a normal systenlff of G. ?aking this prop-
erty as our definition of an M —covering subgroup of G, we
are able to show that the qWL-covering subgroups exist as the
terminal members of so-called Ma=crucial maximal chains, and

‘to develop their properties anew. In conclusion we prove
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that each M-covering subgroup of G contains an ™M =normal-
izer of G ( and vice versa ) and does indeed satisfy

Fischer's definition.



13

Chapter One

PRELIMINARIES

Notation and Terminology. Groups are denoted by capital

Roman letters and their elements by small Roman letters -——-
all groups considered are finite and soluble. We use braces
{ ] to denote sets, <g | ... > to denote the group gener-
ated by the elements g to be specified, and |H| to denote the
order of H. If w is a set of primes, w' is the complementary
set ; and H is an w-group if all the prime divisors of |H|
lie in @ . A Hall w-subgroup of a group is an w-subgroup
whose order is prime to its index ; and a Hall w-complement
is a Hall «'-subgroup. If & is the single prime p, we use
the terms Sylow p-subgroup and (Sylow) p-complement. A Sylow
system # of G is a complete set of (Sylow) p-complements of
G together with all their intersections -- we write ‘J =
{Sp} , where SP is a p-complement of G. ﬂ is said to reduce
into a subgroup H of G if SPn H is a p-complement of H for
each prime p.

We frequently refer to the following subgroups of the
finite soluble group G : #(G) is the Frattini subgroup
i.e. the intersection of all the maximal subgroups of G ;
F(G) is the Fitting subgroup i.e. the largest nilpotent
normal subgroup of G ; <¢w(G) is the w-Frattini subgroup
i.e: the intersection of every maximal subgroup of G whose

~ index is a power of a prime in «; Ow_,w((}) is the largest
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normal subgroup of G possessing a normal Hall w-complement ;
1 is used to denote the identity subgroup as well as the num-
eral "one".

For subgroups H,K of G, NH(K), CH(K) denote respectiv-
ely the normalizer of K in H and the centralizer of K in H ;

Hx K denotes the direct product of H and XK. We take hk =

K 'nk , [h,k]'=n"'n* and define [H,K] =< [n,k] | h € H,
k € K> . Further, K<H means that K is a subgroup of H -
—- the index of K in H is denoted by |H:K|. The relations
(a) KE<H, {b) KaB, (o) K9l and (d) X<949E
mean, in turn, that X is a (a) proper, (b) maximal, (c) normal
and (d) subnormal subgroup of H. An oblique line through
these symbolé denotes negation. If K < H , the core of X in
H (written CoregK ) is the intersection of all the conjug-
ates of K in H i.e. the largest normal subgroup of H con-
tained in K. When M is a maximal subgroup of G we usually
write, simply, CoreM for Corej;M . If X<H and K< HAC
G, we call H/K a factor of G ; if H/K is a minimal normal
subgroup of G/K it is then said to be a chief factor of G.
If H/K is a chief factor of G, AutG(H/K) denotes the set of
automorphisms induced on H/K by conjugation by elements of G.
Similarly, if H/K is an X-composition factor for some sub-
group X of G, we denote by Autx(H/K) the det of automor-
phisms induced on H/K by conjugation by elements of X. If

H < G, we say that the subgroup X of G supplements Hin O3t
"HX = G and complements H in G if, in addition, HnX = 1 .
Let (L, be sets of groups. Then G € A or G is an
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(1B-group means that there exists N < G such that N e A
and G/N € B . We denote by T\ the “swk of all nilpotent
groups, and write ?12 for NN, Finally, we remark that the
term "projector" is sometimes used instead of '"covering sub-

group" =-- we have chosen the latter as we feel it is more

suited to our method of approach.

Prerequisites. We make frequent, and often tacit, use of the

standard isomorphism theorems, the operator form of the
Jordan-Holder Theorem and the well-known Dedekind relation
yige AT A comﬁutes as a subgroup with B and is contained in
C, then A(BnC) = ABNn C . The concepts of a subgroup-cov—
ering and avoiding a factor also occur frequently --- see
Taunt [15], page 25, for a detailed account of these concepts.
The following simple lemma involving these concepts is easily

verified.

IEMMA 1.1 Let H/K be a chief factor of G and L a subgroup

of G satisfying LCG(H/K) = G . Then L covers or avoids H/K.
If H/K is covered by L, then HnL/KnL is a chief factor of
L operator-isomorphic to H/K, and CG(H/K)I\L = CL(HnL/KnL).

In addition, we assume the following well-Imown results
from the theory of finite soluble groups. Pirstly, every fin-
ite soluble group G possesses a complete set of Sylow p-comp-
lements and thus a Hall @-subgroup for every set of primes
« ; and any two Hall w-subgroups of G are conjugate in G.

'Every chief factor H/K of G is elementary abelian and thus of
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prime power order ( H/K is said to be a p-chief factor if
|H/K| = p® ) and every maximal subgroup M is of prime power
index ( M is said to be p-maximal if |G:M| = pB ). Further-
more, if H/K is a p-chief factor of G, then AutG(H/K) =
G/CG(H/K) has no normal p-subgroup. Let M be a maximal sub-
group of G and K = CoreM . Then G/K has a unique minimal
normal subgroup N/K ; N/K is self-centralizing and complemen-
ted by M/K in G/K, and all the complements of N/K in G/K are
conjugate to M/K. F(G) is the intersection of the centraliz-

ers of all the chief factors of G, and O p(C-) is the inter-

pl
section of the centralizers of all the p-chief factors of G

for each prime p dividing |G|. In addition,

0,1 (6/F,(@) = 0,,,(6)/F(0)  (see [4], pages 179,180).
This result is easily extended to the case of a set of primes
@ contained in the set of prime divisors of |G| :

i - ) -
Since Q&#G} B ¢é(G) and ﬁé(G) is p-nilpotent
(i.e. has a normal Sylow p-complement) for each prime p,
Q;(G) has a normal Hall w-complement ; @ (G) is also normal

in G since all the ﬁé(G) are. Hence @ (@) < 0, (G) .

LEMMA 1.2 If H is a subgroup of G such that HF_(G) = G and
|G:H]| € w, then H=206.

Proof. Suppdse, if possible, that H< G and let M be a max-
imal subgroup of G containing H. Then |[G:M| € w so §_(G)

<M. Hence M>Hf, (G) =G -- a contradiction. Thus H =

G as required.

LEMMA 1,3 If X,R are normal subgroups of G such that R <
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ﬁ&(G) and X/R has a normal Hall w-complement, then X has a
normal Hall w-complement.

Proof. (cf. Gaschutz, [6].) Let Q be a Hall w-complement of
X, and Y = N5(Q). We first show that Y@(G) = G . Now QR/R
is a Hall w-complement of X/R and so QR < G. Thus, for g
€ G, Q,Qg are Hall w-complements of QR. Hence, by Hall,
there exists some r € R such that Qf = QF. Thus gr'1 €
Ng(Q) giving g € RY < g,(G).Y , as required. We now show
that |G:Y| € w. ILet ¢ = {SP} be a Sylow system of G such
that Q=X n pQw SP . Then ¥ =TWg(Q) = O Ny(s®) =z,

e Since Z is the inter-

say, and so |G:Y| divides |G:2
section of subgroups of coprime index, |G:Z| = p'ELJIG:NG(SP)I
€ W , and the result follows. Lemmal.,2 now yields Y = G as

required.

LEMMA 1.4 O, ( G/F () ) = 0, (¢) /g, (a) .

Proof. Set R = g, (G) and let Ow“J(G/R) = X/R . Then, cert-
ainly, Ow,w(G)/R < X/R , giving ow'u(G) < X . Conversely,
by Lemmal.3, X has a normal Hall w-complement and so X <

Ow”J(G) and the result follows.

Finally, a subgroup H is abnormal in the finite soluble
group G if and only if every subgroup of G containing H is
self-normalizing in G -~ this (unpublished) result is due
to D.R.Taunt. ( In general, a subgroup H is said to be ab-
normal in a group G if g € { H , ¢ He ) for every element
Y dK-euc i.e. if and only if every subgroup of G containing H
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is self-normalizing in G and H is not contained in two diff-
erent conjugate subgroups of G ([2], page 136) ; H is subab-
normal in G if there is a chain H = H, < H1 A N Hr = O

of subgroups from H to G such that H, is abnormal in Hi

3 +1

for each i. )

For completeness we now recall the definitions of the

various types of formations.

DEFINITION. A formation F is an isomorphism class of finite

soluble groups satisfying the two conditions

(1) Ge*, NG == G/NE F.

(2) @/N,, G/N, € 3 = G/NaN, € F.
If, in addition, 3 satisfies the condition

(3) a/g(¢) e+ => ced (3 is "Frattini-closed"),
it is said to be a saturated formation ([7],[8]). Suppose,
now, that a formation JKp) is associated with each prime p.
Then the class JF of finite soluble groups defined by

GEF & G/Op.p(G) € J(p) for each prime p | |G| ,
is a formation =-- we say that F is defined locally by the
set { J(p)}. For example, if we take Jp) = {1} for each
prime p, then { J(p)} defines T\ locally.

In 3.1 of [7}, Gascbﬁtz shows that a local formation is

saturated ; and Gaschiitz and Lubeseder have ‘proved that con-

versely, every saturated formation may be defined locally
(see [13]). In chapter two, like Carter and Hawkes, we con-
sider a saturated formation JF defined locally by an integ-

rated set of non-empty formations { F(p)} ( i.e. {1} £ Kbp)
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< J for each prime p -- thus ¥>MN .). For definitions
of an J-central chief factor and an F-normal maximal sﬁb—
group of a finite soluble group see [4], page 179 ; and for
the definition and properties of F-normalizers sée chapter 4

of [4].

We conclude with the concept of a group acting on a set,

used in Lemma?z.1.

DEFINITION, Let G be a multiplicative group with identity 1

and A a set. Then, if there is a mapping ¢ : AXG =+ A
such that (1) (a,1)p = a
(2) ( (2,809 , 8, )9 = (2,8,8,)0

for all a € A and gie G we say that G acts on A. The
stabilizer of an element a € A (written St(a) ) is defined
by St(a) = {g€@& | (a,g)p=a} , and is easily seen
to be a subgroup of G.

We now define an equivalence relation on A. For a,b €
A we say that a~b if there exists g € G such that b =
(a,g)p . The equivalence classes are called transitive com-
ponents or orbits =-- orb(a) is the equivalence class cont-
aining a € A . Thus A is a disjoint union of transitive
components Ay satisfying

A = | orbag) | = {6 & St(a;) | ( ag€ Ap).

For, if g,,8, € G , (a;,8,)0 = (a;,8,)0 if and only if
a; = (ai,g1gg1)¢ i.e. St(a;)g, = Stlay)s,.
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Chapter Two

THE INVARIANTS z3(X), @ (X), Z'T(x), (%),

Throughout this chapter we assume that ¥ is a saturated
formation defined locally by an integrated set of non-empty
formations {3(p)}, and that X is any subgroup of the finite
soluble group G.

We begin by recalling some concepts and results from R.W.

Carter's invariant theory ([3], chapter 2).

DEFINITIONS. We say that a subgroup H of G is an X-subgroup

of G if [H,X] <H 4i.e. X normalizes H. An X-composition

series of G is a series

G=HI'>HI‘—I> ee e >Hi+‘>Hi> eo e >HO=1

of X-subgroups of G such that Hi'ﬂ Hi+ for each i, and no

|
further terms can be inserted. We say that the factor groups

Hi+l/Hi are X-composition factors of G. An X-composition

factor H /Hi of G can clearly have no proper characteristic

i+t
subgroup and is thus elementary abelian; hence there exists no

X-subgroup of G between Hi and Hi+'. Therefore, since Hi <

(H A X)Hi <H and (Hi+('~X)Hi is normalized by X for any

i i+

X-composition factor H /Hi of G, X either covers or avoids

i+l
each X-composition factor of G.

We now divide the X-composition factors of G into two

classes in a different way.

DEFINITION. An X-composition factor Hi+|/Hi of G of order a
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power of prime p is said to be _¥-central if AutX(Hi+l/Hi) e

]{p) 1.0, X/CX(H1+I/Hi) € 3(p) —— otherwise J-eccentric.

In the case X = G , this definition agrees with Carter
and Hawkes's definition of F-central and F-eccentric chief
factors of G, and if J‘=71 it reduces to Carter's definition
of central and eccentric X-composition factors. Furthermore,
as in Carter and Hawkes's theory, this definition is independ-
ent of the particular integrated system of formations chosen
to define ¥ locally. For Carter and Hawkes show that if ¥ is
defined locally by {3¥(p)} and by {F(p)} with both the
formations 3‘. (p), '}L(p) < } for each prime p, then

P }.(p) - .(P'}z(p) , Wwhere P is the % of all p-groups.
This fact, together with the following lemma ( whose proof we
include for the sake of completeness ) gives the desired .

result.

LEMMA 2,1 Let H/K be an X-composition factor of G of order
g - g CX(H/K) and N/C a minimal normal subgroup of X/C.
Then |[N/C| = qB for some prime q # p.
Proof. Suppose, if poseible, that |[N/C| = pﬁ. Now N acts on
H/K by the action (hK , n) 2 h" (h€H, n€N ). Split
H/K into transitive components H,/K ,..., Hr/K' Then

(A) ~==  |H/K]l = |H, /K| + |HJE] + o0 + JHr/Kl :
Since |N/C| = of, |H;/K| is a power of p for each i =1,.,r.
This follows from the fact that, for h,K € Hi/K,

|5, /K| = | orb(h,K) | ¥ : St(n;K) | , where
St(hyK) = { n E N | hiK

K, (A) yields p% =1

h,K } 2C . Thus, assuming H /K =

+ p°ﬁ+ ees + pa'. This is clearly im-
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possible unless a; = O for some i > 2. Hence there exists
h€ H such that hy £ K and hiK=hXK forall n€N .
i.e. [hi,N] < K . We show that this is impossible by proving
that (h€H | [h,N] <K} =K .Let Y= {h€H| [nN]<K}.
Then, since K is an X-subgroup of G, H > Y > K. Furthermore,
Y is easily seen to be an X-subgroup of G, and is strictly
less than H since N > (C = CX(H/K) v Thus Y = K since H/K
is an X-composition factor of G. This contradiction shows

that |N/C| 4is not a power of p.

Now any two X-composition series of G have X-composition
factors operator-isomorphic in pairs, by the operator form of
the Jordan-Holder theorem. Suppose that H/K and J/L is one
such pair of X-isomorphic X-composition factors of G. Then
there is an isomorphism ¢ : H/K = J/L such that

[(hK)*]Jp = [(hK)p]* for all h€H and x €X . It is
easily seen that this yields CX(H/K) = Cy(J/L) . Thus there
exists a (1-1) correspondence between the factors of any two
X-composition series of G, and in this correspondence an <}-
central factor of one corresponds to an F-central factor of
the other. Therefore the product of the orders of the 3icen-
tral factors in an X-composition series of G is independent of
the particular series chosen -- we shall use this fact later.

There are thus four different types of i—composition
factor : the J‘-central factors covered by X, the F¥-eccen-
tric factors covered by X, +the F-central factors avoided by

X, and the F-eccentric factors avoided by X. We now show
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that the product of the orders of all the factors of the same
type in a given X-composition series of G is independent of
the particular series chosen. We do this by considering the
chain
G = HrXEHr_,XZ o 2 HX=X= XnHr:_:XnHr_‘z eo 2 XnH =1
of subgroups of G passing through X and derived from an X-
composition series

Sim .l > B San. e - of G .

Suppose first that X covers Hi+|/Hi' Then (see Carter,

(3]) Hi+(\X/HipX is a chief factor of X isomorphic to H.,K /

i+
H and it is easily verified that
Cy( 1+|/H §. X(H1+N\X/Hinx) '

Thus in this case, /H is an F-central X-composition

i

i
factor of G if and only if H, 4\X/H nX 1is an J¥-central

chief factor of X.

Let zykx) be the JF-central order of X i.e. the prod-
uct of the orders of the JF-central chief factors in any chief
series of X, and aﬁ?x) be the number of :*-systems of X .
Then wy'(X) equals the index in X of an Fenormalizer of X

i.e. the product of the orders of the ¥-eccentric chief

factors in any chief series of X and so z*(x)(fﬁx) =
We have therefore shown that the product of the orders of
the J*-central factors covered by X in an X-éomposition series
is equal to z}(X) , while the product of the orders of the
J-eccentric factors covered by X in an X-composition series is

equal to w*(x) « Thus both of these products depend only on
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jland the structure of X.

Now suppose that X avoids the X-composition factor

Hi+l/Hi of G. Then, as in [3], H;X 1is maximal in H; X, of
index |H; ,/H;| . We show that in this case H; /H; is an
F_central X-composition factor if and only if Hix 10 J

normal in H, X . Since Hi+l/Hi has no proper X-subgroup

it is a chief factor of XH with centralizer Cy (Hi+|/Hi)

i+ .
i+
= Hi+|CX(Hi+|/Hi) . Thus
Xy, SOy (g, /Hy) % X/Ox(Hy /H)  so that Hy /R
is an J~central X-composition factor if and only if Hi+|/Hi

is an '?Lcentral chief factor of XH1+|, giving the required
result.

Denote by z?(x) the product of the orders of the 0
central factors avoided by X and by w??x) the product of
the orders of the F_eccentric factors avoided by X in the
given X-composition series of G. Then both these products are
independent of the particular series chosen. For we have seen
that the product of the orders of all the F_central factors
in an X-composition series of G is independent of the partic-
ular series, and we have proved that this is also the case for
the product of the orders of the F-central factors covered by
X in an X-composition series. Thus z?(X) is independent of
the particular series chosen. Hence, since a%?x)zf(x) =
i g - o ¢a?(X) is also independent of the X-composition
series chosen.

We have shown in addition that
szx) = the product of the indices of the *-normal links in a
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maximal chain of subgroups from X to G derived from an X-

composition series of G, and
cf(x) = the product of the indices of the :y;abnormal links in
a maximal chain of subgroups from X to G derived from an X-

composition series of G.

Thus we have associated with any subgroup X of G the four
invariants z}(X), dP?X), zEkX), GEXX). These invariants
satisfy the relations

ijx)t§?X) = |X]| , z?(X)cé?X) = |G : X| .
Q}(X) is the J-central order of X and aF?X) is the number
of :*-systems of X, so these two invariants depend only on 5

%
and the structure of X whereas ZT(X) and @, (X) also depend on

the way in which X is embedded in G.

We now seek interpretations of wz(x) and zf?x) along
the lines of those which Carter obtained for ,(X) and zo(X)
in [3]. Carter's interpretations involve the concept of a
Sylow system of G reducing into a subgroup of G, and so we
first develop a similar concept for an }-system of G. For
this we require that the formations X(p) should in addition
be subgroup-closed; then ¥ too is subgroup-closed. Denote by
H(p) the J{p)-residual of the subgroup H of G, for each prime
p. Then, for any subgroup H of G, H(p) < G(p) for each prime
p. This fact justifies the following definition

DEFINITION. Let J = { TP = SPaG(p) } be an J-system of G

( defined by Sylow system = { SP } of G ) and H any sub-
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group of G. We say that J reduces into ( an }-system of 3 H
if TPAH(p) is a p-complement of H(p) for each prime p
dividing |G| .

Since H(p) < G(p) , every }-system of the subgroup H
of G does arise from an }—system of G in this manner, as is
to be expected. For suppose that K is an }-system of H def-
ined by Sylow system # of H. Extend £ to a Sylow system 4
of G. Then the F-system of G defined by @ reduces into K. .
However, this need not be the case if H(p) £ G(p) ; hence
the restriction imposed on 3"(p). Furthermore, in the case of
F=N , this definition specializes to the usual definition
of a Sylow system of G reducing into a subgroup H of G.

We prove two results which we shall require later in the
chapter. The first concerns the number of }-systems reducing

into a maximal subgroup of G.

LEMMA 2.2 Let M be a p-maximal subgroup of G. If M is g S
normal in G, every j'-system of G reduces into M. If M is *-
abnormal in G, JF-system J = { % } of G reduces into M if

and only if Th <M . Thus the number of }-systems of G
reducing into an J-abnormal maximal subgroup M of G is equal

to w*(G)/]G:MI ( where a'Jye(G) is the number of y-syétems
ot O ).

Proof. Let J be defined by Sylow system g w{gl} of Beu
then T = 8%nG(q) for each prime q. It is easily seen
that for each prime gq # p , 79AM(q) is a g-complement of
M(q). For in this case, S%M =G and so 8% M is a q-
complement of M. M(q) is normal in M and contained in G(q),
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and thus T9aM(q) = S%nM(q) is a g-complement of M(q).
Hence it only remains to consider TPn M(p) .

Firstly, suppose that M is J-normal in G. Then the
unique minimel normal subgroup N/CoreM of G/CoreM is -
central i.e. G/N € ¥p) and so G(p) <N . Now, by Carter
and Hawkes, we can assume without loss of generality that
J(p) =@~J‘(p) ( where P is the set of all p-groups ). Thus
we have G(p) < CoreM . Hence M(p) < G(p) and so TPaM(p)
is a p-complement of M(p), as required. We have thus proved
the first statement of the lemma.

We now assume that M is F-abnormal in G, and write K =
CoreM. N/K is thus J-eccentric i.e. G/N £ ¥(p) and so
G(p) £ N . Hence G(p)K >.N . We first show that (G(p)nM)X =
M(p)X . Since M(p) < G(p)‘nM , we need only prove that
G(p)n M < M(p)K . Now, by definition of M(p), M/M(p)K €
JF(p) and so G/M(p)N T M/M(p)K € Kp) . Thus G(p)< M(p)N
giving G(p)AnM < M(p)NaM = M(p)K , as required.

Suppose now that J does reduce into M i.e. TPn M(p) is
a p-complement of M(p). Then ™Pk/X, (TPn M(p))X/K are p-
complements of G(p)K/K , M(p)K/K respectively. Further,
since (G(p)nAM)K = M(p)K and G(p)K>N , |[G(p)K : M(p)K| =
|6(p)K : (G(p)n M)K| = |6:M| , & power of p. Hence TPK/X ,
(TP~ M(p))K/K are both p-complements of G(p)X/K , and so
PPk = (7PA M(p))X . Thus TP< M .

Conversely, let TP < M . Then ™ is a p-complement of
G(p)n M and so TPnM(p) is a p-complement of the normal
éubgroup M(p) of G(p)n M .

Thus, if M is an ¥-abnormal maximal subgroup of G, the
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number of :}-systems J = {2} of G reducing into M is the
number of JF-systems with TP <M . Now TP, (?®)6 <M for g
€ G implies that NG(Tp) <M since M is F-abnormal (as in
Lemma 3.2 of [4]), and also that TP, (T7P)® are p-complements
of G(p)nM . Thus, by P.Hall, (T?)8 = (PP)™ for some m €
G(p)nM . Then gm '€ NG(Tp) <M, giving g € M . Hence the
number of distinct p-complements TP of G(p) contained in M
equals |M : NG(TP)| = |G ; NG(TP)|/|G : M| . Since the
number of distinct g-complements T% of G(q) equals
|G : NG(Tq)| for all q, the number of ¥-systems J of G red-
ucing into M equals qﬁﬂ@lG : NG(Tq)| /16 : M| = |G : NG(J )|
/16 ¢ M| = d?zG)/[G : M| where NG(J ) denotes the normal-
izer of the F-system J of G —-- an J-normalizer of G.

LEMMA 2.3 Let J = { 7P } be an :?-system of G reducing into
X and @=H >...>H, =1 be an X-composition series of
G. Then J reduces into XHi $0¥ & w O syt

Proof. We use induction on i. The result is true for i =0 ,
since XH, = X . We thus assume the result for i =k i.e.

J reduces into Z,= XHy. If X covers Hk+|/Hk , then XHk+| =

XHk and the result is true for i = k+1 .

Thus we assume that Hk+l/Hk is avoided by X and so Zy
is maximal in Zk+|= XHk+l and Hk+ﬁ‘zk =.gk. We show that
this implies

(A) ==- Hk+|zk+u(Q) = Hk+‘Zk(q) for each prime q.
Since J(q) is subgroup-closed, Zk(q) < Zk+|(q) ;o ge 4%
remains to prove that Zk+|(q)'5 Hk+lzk(q) . Now Zk(q) <
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I
[N

it * Farther-

more, since Hk+|zk=zk+l and Hk_Hn zk=Hk’
Zyeo /B 2 (@) = 2, /HZ,(q) € Fq)

giving 2, (@) < HkHZk(q) as required.

4, and H <2, ,80 H,2(q) <K, 2 =

We must prove that 9 o Zk+|(q> is a gq-complement of

Zk+|(q) i.e. leH(q) : ™Mn Zk+l(q)] is a power of q for
Gk q

each prime q. Let Q = (T nZkH(q))(HanZkH(q)). We show
that |2, ,(q) : Q| and |Q: ‘I‘ankH(q)I are powers of q.
By induction T9n Zk(q) is a gq-complement of Zk(q), and so
Hk+l(Tq“Zk(q))/Hk+| is a q-complement of K __, Zk(Q)/Hk-H
He, %, (Q)/E (using (A) ). Therefore, since 4(q) <
o (@) »  H (1%n2, (qd)) is of index a power of g in
Hkﬂzkﬂ(q). Hence Q is of index a power of q in Zkﬂ(q) :
Furthermore, since Hk+|<1<l - %n Hk+| is a gq-complement
of G(q)nHkH. Thus, since Zk+|(Q)“Hk+; < G(q)nHkH,
A R e e (q) 4is a gq-complement of B N2 {a) . It
follows immediately that T%nZ, . (q) is of index a power of

q in Q, and we are done.

We now consider all possible maximal chains of subgroups
: joining X to G. Denote such a maximal chain by ﬂa and the
product of the indices of the JF-normal links in b by Bj‘( b).
We have seen that if the maximal chain ﬁ is derived from an
X-composition series of G in the way described earlier, then
B}(ﬂ,) = z:r(X) , but this will in general not be true for
every maximal chain from X to G. We show that zz‘(x) is, in
fact, the greatest value taken by Bye( L) for all maximal
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chains fp joining X to G.
As in (3], we begin by obtaining the connection between
B?(ﬂ) ) and the number of J-systems of G reducing into A

i.e. reducing into every subgroup in ﬁ, .

THEOREM 2.4 The number of }'-systems of G reducing into the
maximal chain % from X to G is equal to w}((‘r)ﬁy(ﬂ, JlasX) o,

where w“‘#(G) is the number of J-systems of G.
Proof. By Lemma 2.2, the number of j‘-systems of G reducing
into f, is & (G)/T(indices of the Y-abnormal links in £ ) =

(@) B (b )/]6:X] .

This result is considerably simplified if X is an 3‘—
normalizer of G, for in this case wy‘((}) = |G:X|. Thus the
number of }-systems reducing into a maximal chain ﬂa joining
an J-normalizer of G to G is simply By(ﬂ) , the product of
the indices of the J-normal links in b .

We are now in a position to give the required interpret-

ation of z?:(X) .

THEOREM 2.5 zz(x) is the greatest value taken by B?(ﬂp)
for all maximal chains / joining X to G.
Proof. By Theorem 2.4,

B}(ﬂ,) = (number of j'-systems reducing intcz L) IG:XI/w}(G) :
Thus the chains /o for which B}( [,) is as large as possible
are those into which as many }-systems as possible reduce.
Denote by c'}(X) the number of }-systems of G reducible into
X. Then certainly the number of }-systems of G reducing into
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A is at most G‘:#(X). However, if A is of the type derived
from an X-composition series of G, every }—system of G red-
ucing into X also reduces into ,@ by Lemma 2.3. Hence, for

this type of chain, B}(,&) attains its maximal value viz.

z:f(X) .

COROLLARY w:zk(X) = wy‘((})/ﬁ(x) , Where w’}(G) is the number
of ¥-systems of G, and o“*(X) is the number of ¥-systems of
G which reduce into X.

Proof. Let f be a maximal chain joining X to G obtained from
an X-composition series of G. Then B}(Ip) = zf(x) and the

number of JF-systems of G reducible into £ is a'y‘(x), as we

have seen. Thus, by Theorem 2.4, o) - DB?G)ZEYX)/|G:X
ey /o ' ¥x) o ¥

5(X) , since |G:X| = 2z (X) 5(X) . Hence w;(X) =
wng')/ ~(X) , as required.

Thus, providing that all the formations 3‘(p) are sub-
group-closed, Carter's interpretations of zo(X) and &, (X)

may be generalized to the present situation.

We close with a brief mention of the subgroups X for
which ZT(X) takes its éxtreme values. In [3], Carter char-
acterizes the abnormal subgroups of G as those subgroups X of
G which satisfy 2z,(X) =1 . In line with this, we say that a
subgroup X of G is J-abnormal in G if zf(x) = 1 === this
means that every link in every maximal chain from X to G is
¥ -abnormal. By Lemma 5.1 of [4], the ¥-covering subgroups E

of G are ¥-abnormal in G, and may be characterized by the
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equations EQ?E) o1 z%(E) =1 ;3 for uﬁYE) = 1 means
that E € 3. On the other hand, 2z (X) = |6:X| if and
only if there is some maximal chain from X to G in which every
link is J-normal -—-- we say that X is ¥_subnormal in G in
this case. Since 2z (X) &(X) = |6:X| , this implies that
R§ZX) = 1 which means that every J-system of G reduces into
X, Therefore, X is ELsubnormal in G if and only if every *-

system of G reduces into X.
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Chanter Three

NORMAL SYSTEMS AND RELATED CONCEPTS

DEFINITIONS. A normal system & = {X(p)} of a group G is a

set of normal subgroups X(p) of G, one for each prime p div-
iding |G|. Let G be a group with normal system X = {X(p)}.

We say that a p-chief factor H/K of G is ¥—central if X(p).

§>CG(H/K) , and :E-eccent;;g otherwise. A p-maximal subgroup M
of G is said to be X-normal if X(p)S N , where N/CoreM is
the unique minimal normal subgroup of G/CoreM --- otherwise

¥ -sbnormal. Thus M is X¥-normal if and only if N/CoreM is

£ -central. Since any chief factor of G complemented by M is
operator-isomorphic to N/CoreM, M is ¥-normal in G if and
only if it complements an ¥-central chief factor of G.

Let H be a subgroup of G. We denote by ¥aAH the normal
system of H obtained by intersecting with H those X(p) for

which p divides |H|. We now consider the set X consisting of

all sections H/X of G such that all chief factors of H above
K are ¥~ H -central. This important set to a large extent
takes the place of the formation ¥ in Carter and Hawkes's
theory, though differing from ¥ in that it is not an isomor-
.phism class and is defined entirely within the given group G.

In fact, ¥ is not even closed under isomorphisms within G, as

is shown by the following example.

EXAMPLE 3.1 Let G be the direct product of two copies of % g
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the symmetric group on 3 elements --- say G = st Za i

Let 8 §3 be the Sylow 3-subgroup of 23, 7_:5 respectively.

3 ’
Take X(2) =G, and X(3) = 5325 . Then G/ib ¢ ¥ since
8333/.2_‘.3 is ¥-eccentric. The diagonal subgroup X* = { 5 |

¢ € %,} of G belongs to X since X(3) n Z¥* is the Sylow 3-
subgroup of L *; but 3_;,32‘,*/ is = G/i3 £ X.

However, in the situation X <K<G, H<H<SG with

HK=H and H K=K H/H, € X clearly implies X/K,

o’

€ ¥ ; although the converse may not be true. We use this fact

frequently, especially in chapter five.

LEMMA 3.2 X has the following properties

(1) HEKeX, X<K<aH implies H/K €¥.

(11) H/K,, H/K, € ¥ implies H/K~K, € ¥ and thus K
possesses an i-residual.

(141) HE€ ¥  if and only if H/F(H) € ¥.

(iv) HeE , H,<H implies H, €X. .

(v) ¥ ={H/K| KQHE<G, K(X(p)nH)/K is p-nilpotent for
each prime p }.

Proof. (i) is obvious.

(ii) Since H/K, € X , each chief factor of H above K,
is XanH -central.Further, each chief factor of H between
Kn~K, and X, is operator-isomorphic to one between K, and X K,
and is thus ¥aH -central, since H/K, € % . The result then
follows, since any chief factor of H above Kn~X, is operator-
isomorphic to one in a chief series of H through K, .

(1ii) Certainly H € X  implies that H/F(H) € %.
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Conversely, suppose that H £ X . Then H has an ¥n~H —eccent-
ric p-chief factor for some prime p and thus one between ﬁP(H)

and O (H), since Op.p(H) is in fact the intersection of

p'p
the centralizers of the chief factors of H between _ﬁb(H) and

Op,p(H) (2ll of which are p-chief factors; see |4], page 180)

Hence  H/F (H) £ ¥ and thus H/FE) £ E , since g(H) <
H).

g,

(iv) He ¥  implies X(p)nH< Op.D(H) for each

prime p dividing |H

giving H € ¥,

. Thus X(p)n K, SOp.p(H)nH' SOp.p(H'),

(v) is obvious, since K centralizes all the chief factors

of H above itself.
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Chapter Four

¥ - NORMALIZERS

DEFINITION. Let ¥ = {X(p)} be a normal system of G and 95 =

{ SP } a Sylow system of G. Set XP = s®nX(p), a p-comple-
ment of X(p), for each prime p. Then { XP } 1is called an

X -system of G. Since any two Sylow systems of G are conjugate.
( P.Hall [9] ), so are any two X-systems of G. We call

X
D (G) = pG\GING(Xp) an ¥-system normalizer of G, or,

simply, an _¥X-normalizer of G. Since any two fr-systems of G

are conjugate, so are any two ¥-normalizers of G.

LEMMA 4.1 HEE ifendomlydf DU -H .,

Proof. First let H € ¥ . Then, for each prime p dividing [H|,
X(p)n H is p-nilpotent and thus has a normal p-complement
(x(p)n H)?. Then (X(p)o H)P? is a characteristic subgroup of

the normal subgroup X(p)n H of H and so is normal in H. Thus

p¥°Hm) = Ml m( x(p)am?) = H.
Conversely, D 'an(H) = H implies that X(p)n H has

« Thus

a normal p-complement for each prime p dividing |H
X(p)nH is p-nilpotent and so centralizes all the p-chief
factors of H., Hence H € X .

The following theorem shows the relation between the ¥-

normalizers of G and the chief factors of G.

THEOREM 4.2 Let D be an ¥-normalizer of G. Then D covers
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each ¥ -central chief factor of G and avoids each X-eccentric
chief factor of G. The order of D is the product of the orders
of the X-central chief factors in a chief series of G.

Proof. By P.Hall ([10]), NG(XP) avoids each p-chief factor of
G which is eccentric for X(p) i.e. each ¥-eccentric p-chief
factor of G, and covers all the remaining chief factors of G.
Thus |G : NG(XP)I is the product of the orders of the L
eccentric p-chief factors .in a chief series of G. Since D =
PGWGING(XP) it avoids each p-chief factor which NG(XP)
avoids and thus each Y-eccentric chief factor of G. Also,
since |G : NG(XP)I is a power of p, D is an intersection of
subgroups of coprime index. Hence |G:D| = pﬁRGllG : NG(XP)|
and so |D| is the product of the orders of the ¥X-central
chief factors in a chief series of G. Thus, by considerations

of order, D must cover each X-central chief factor of G.

COROLLARY 1. Every X-normalizer of G lies in X ,

Proof. Let D be the ¥-normalizer of G corresponding to Sylow
system 4 of G. Then # reduces into D. For ING(XP) t D} 4o
prime to p and ING(XP) : S?| 4is a power of p, so that sPp =
NG(XP) for each prime p. Thus X’nD = (SPA D) A (X(p) A D) is
a p-complement of X(p)n D and is normal in D. Hence X(p)aD

is p-nilpotent for each prime p, and the result follows.

COROLLARY 2. If D is an ¥ -normalizer of G and NG, then ND
/N is an N¥/N -normalizer of G/N (where N¥/N = {NX(p)/N
| X(p) € ¥, p divides |G:N| } ). Thus the ¥-normalizers of

G are invariant under homomorphisms.
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Proof. Let XP be a p-complement of X(p). Then NXP/N is a p-
complement of NX(p)/N and N N(XPJ/N < NG/N(NXP/N) :
Hence ND/N < pQG:N; N /y(N®/N) = D, an N¥/N -normal-
izer of G/N.

Consider a chief series of G through N. Then by Theorem 4.2,
D] = the product of the orders of the ¥-central chief

factors above N in this chief series.
Further, NaD covers the X-central chief factors of G below
N and avoids the X-eccentric chief factors of G below N since
D does. Hence
INaD| = the product of the orders of the ¥ -central chief
factors below N in this chief series.

TPhus |D| = |D|.|NaD| and so |ND/N| = |D/DaN| = |D| and

the result follows.

Remark. The intersection of an ¥ -normalizer D of G with a
chief series of G need not be a chief series of D as is shown
by the following simple example :

Teke G = Z, , the symmetric group on 4 elements. Set
X(2) = V, the normal subgroup of G of order 4, and X(3) = G.
Then the X-normalizers of G are the Sylow 2-subgroups S, of
G, and V/1 is not a chief factor of an §,.

We return to this question later when we congider integrated

normal systems.

We now turn to the xjelation of the ¥ -normalizers to the

maximal subgroups of G.
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THEOREM 4.% A maximal subgroup M of G contains an ¥ -normaliz-

er of G if and only if M is ¥-abnormal. In this case, every
XnM -normalizer of M contains an X-normalizer of G.

Proof. Let N/CoreM be the unique minimal normal subgroup of
G/CoreM, and |[G:M| be a power of p. M > D* implies that D
avoids N/CoreM which is thus £ -eccentric by Theorem 4.2.
Hence M is X-abnormal.

Now let M be ¥X-abnormal, s®? be a p-complement of G con-
tained in M, and X® = SPn X(p) . Then, as in [4], 3.2, with
C_ replaced by X(p), NG(XP) <M and so M contains an ¥-
n;rmalizer of G,

Finally, let M be X-abnormal, XaM = {Y(q)} and {¥% =
Mia Y(q)} be any ¥XaM -system of M. (M? a g-complement of M).
If p [ |M|, define MP =M . Then M® is a p-complement of G,
and setting X® = MPn X(p) , we have NG(XP) <M, Forgqsp
MY = s%A M for some q-complement s of G. Hence, for all q
dividing |M|,. Y2 = x%n¥(q) ( where X% = 8%nX(q) ) and
thus N (X1) < N (Y®) . Thus

> Ng(xh) = P M S Py My(¥H = p *"Ma).

B
D q | 1G4 all

We show that certain X-abnormal maximal subgroups M- of G

will yield equality in the last statement of this theorem.

DEFINITION., We say that M is an X -critical maximal subgroup

of G if M is X -abnormal and M F(X) = G , where F(X) is the
Fitting subgroup of X = @ X(p)
In the case X(p) = Cp(G) for each prime p ([4],3),

this last condition reduces to M F(G) = G .
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LEMMA 4.4 Let L be a subgroup of G satisfying L.F(X) =G . ,
Then L covers or avoids each chief factor of G. If H/K is a
chief factor of G covered by L, then
(3) BaL / KEnlL 18 a cl?ief factor of L isomorphic to H/XK and

with Cu(H/K)alL = C(HnL / KnL) .
(ii) HNL / KnL is XAL -central in L if and only if H/K
is X-central in G.
Proof. By Lemma 1.1, we need only prove (ii). Let Hal / KnlL
bve XANL -central. Then X(p)nL < CL(H alL / Xnl) = CG(H/K)
AL by (i), and hence X(p) = X(p)n L.F(X) = F(X)(X(p)n L) £
CG(H/K) i.e. H/K is X-central. The converse is clearly

true.

THEOREM 4.5 An XnM -normalizer of the X-critical maximal
subgroup M of G is an X-normalizer of G.
Proof. By Theorem 4.3 we have only to show that IDng(M)I <

le(G) |. This follows immediately from Theorem 4.2 and Lemma 4

4.

However, in general G need not possess an X-critical
maximal subgroup. For example, Taking G =2, , X(2) =V and
X(3) = G as before, the only X-abnormal maximal subgroups of

G are the Sylow 2-subgroups which do not supplement MX) =V

in O,

.Remark. The proof of Theorem 4.5 would go through if instead
we defined X to be the intersection of those X(p) which do not

satisfy X(p) <0 5 p(G) . However, as the above counterexample
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shows, an X-abnormal maximal subgroup M satisfying M.F(X) = G
still need not exist.

We show later that X-critical maximal subgroups of G
exist if X is an integrated normal system, and thus that in
this case Dx can be connected to G by an X-critical maximal
chain 1i.e. a chain Hs= Ho S HO K s % Hr = G of sub-
groups of G satisfying the condition that Hi is an .}InHi_H e
critical maximal subgroup of Hi +1 for each i. However, a sim-

ilar embedding result does in fact hold for any normal system

X of G.

DEFINITIONS. (a) Let X = {X(p)} and Y = {Y(p)} be two
normal systems of G. We say that X >"Y if X(p) = ¥(p) for
all primes p. If there is a prime q such that X(p) = Y(p)
for all primes p # q, and X(q)/Y(q) is a chief factor of G,

we call X and u consecutive normal systems of G.

Clearly, if DI' and D¢ are X¥- and '\z}—normalizers of G

respectively, both corresponding to the same Sylow system of

%
G, then ¥ > implies D 519‘".

(b) We say that the chain H = H <H <..< Hr = G
of subgroups of G is X -abnormal maximal if H; is an Ea Hy =
abnormal maximal subgroup of Hi A for each i, H is then called
an X -subabnormal subgroup of G.

LEMMA 4.6 Let X = {X(p)} be a normal system of G and X a
p-complement of X(p). Then NG(XP) is X-subabnormal in G.

Proof. We use induction on |G : NG(XP) . There is nothing to

prove if X(p) is p-nilpotent. Thus assume X(p) £ Op.p((}) and
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hence G >H = NG(Xp) . Let M be a maximal subgroup of G con-
taining H. Then M is X-abnormal in G by Theorem 4.3, and the
result follows if H =M. If H<M, XAM is a normal system
of M containing X(p)AaM. Now XP < X(p), M and thus XP is a
p-complement of X(p)a M. Thus, by induction, H = NM(XP) is

XM —subabnormal in M and thus X-subabnormal in G.

LEMMA 4.7 Let X= {X(p)} and Y = {Y(p)} bve consecutive
normal systems of G such that X(q) = Y(q) for all primes q #

' x
p, X(p)/Y(p) dis a chief factor of G and D < D%. Then, if

%
Dz' covers X(p)/Y(p), D is an an\é-normalizer of Dy. In

fact, Dx is the normalizer in D“é

Y
subgroup of D““j and is thus 3€nD°‘

of a p-complement of a normal
_subabnormal in D%, If D
avoids X(p)/Y(p), D& is not an xr\D'>j -normalizer of D’.
£
Proof, Let ,g = { s¢ } be the Sylow system of G defining D
q o
o No(X*) , D" = q(l\lGl

Y(q)n 8%, and set 2(q) = X(q)nD‘\é and

and D\é i.e. Dx= Q

aq
q NG(Y ) where

x% = X(q)nsq, Y¢
2% = 2(q)n S%. Then % = {4(q)} is a normal system of p? and
2% is a g-complement of Z(q), since ;8 reduces 'into D\‘* and
Z(q) < D%. Since X(q) = Y(q) for all primes q # p, D and
D% cover and avoid the same q-chief factors of G for q # p
and thus |Dy : Dxl is a power of p. In addition, T ND«,(XP).
Also, 2(q) is a q-nilpotent normal subgroup o'f D\# for q # p,
and thus ND«J(ZP) is an ¥aDf-normalizer of D°.

We show that if D- covers X(p)/Y(p), then XP = zPYP ana
thus ND*(ZP) = ND%(XP). Since DI > Dx, p? covers X(p)/

Y(p) i.e. X(p) = (D'n X(p))T(p) = 2(p)¥(p) . Now ZPYP is a
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subgroup of X? since Z® normalizes Yp, and
|2(p)Y(p) : 2P¥(p)|.|2P¥(p) : 2PYP]
|2(p) : Z(p) A 2P¥(p)|.|¥(p) : Y(p)n ZPYP|

which is a power of p. Hence XP = zPYP’ and thus Nyy(2P) <

|X(p) : zPYP|

NDy(Xp), since DY normalizes YP. The converse inequality:is
certainly true. Thus ﬁx is an ixnl%-normalizer of ﬁ% and is
XA ¥ —subabnormel in DY by Lemma 4.6. .

Now let D* avoid X(p)/Y(p). Ve show that in this case
NDV(ZP) = Dt # I, Let H/K be a p-chief factor of G covered by
DY and avoided by D'. Then ¥(p) < X(p)a C(H/K) < X(p) end
so  Y(p) = X(p) n Cy(H/K), since X(p)/Y¥(p) is a chief factor
of G. Hence X(p)/Y(p) must be a g-chief factor of G for q#p,
since G/CG(H/K) has no minimal normal subgroups of order a
power of p. Thus, since D' avoids X(p)/Y(p), so does ?,
Hence Z(p) = D’ n X(p) = ﬁ#r\Y(p) which is a p-nilpotent
normal subgroup of ﬁ%, so that 2P is characteristic in Z(p)

and thus normal in ﬁ%.

LEMMA 4.8 Let X¥= {X(p)} Dbe any normal system of G and D an

¥ -normalizer of G. Then there exists a prime p and a chief

factor X(p)/Y(p) of G covered by D.

Proof. If X(p) = X for all primes p, then any chief factor

X/Y of G is centralized by X and thus covered by D. Thus

assume all X(p) are not equal, and let 2 =.2-X(q) . Then

there exist primes p, q ,e.., Q, ( > ) such that
z=2x(p).2 and 2>7Z=TJT x(q) .

Since 2>% , X(p)r\z < X(p) and thus we can choose Y(p) <
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G such that X(p)/¥(p) 4is a chief factor of G and Y(p) >

X(p)nZ . Then X(p)/¥(p) is operator-isomorphic to chief
factor 2/Y(p)Z which is centralized by Z and thus by all
X(q). Hence X(p)/Y(p) is centralized by X(q) for all primes

q and is thus covered by D.

THEOREM 4,9 D" is X-subabnormal in G.

f_I:Q_O_f;'. We use induction on I(‘z:DQE + There is nothing to prove
for Dx = G. Thus assume ﬁx < G and let Wé: {Y(p)} ve a
normal system minimal with respect to the conditions Y < X
and D.% = Dx. By Lemma 4.8 there exists a prime p and chief
factor Y(p)/Z(p) of G covered by DY, Denote by % the con-
secutive normal system obtained by setting Z(q) = Y(q) for
all primes g#p. Then, by the definition of Y, DY > D%. Hence
D¢ is '%AD%-subabnormal in DY by Lemma 4.7. D? is %-subab-

¥
normal in G by induction, and thus D = D% is ¥ -subabnormal

in G, since $2'1é>%.

This gives us a characterization of the X-normalizers of

G corresponding to 4], 4.8, for }—normalizers.

THEOREM 4.10 ILet M be ‘éhe set of all x-subabnormal sub=-

groups of G. Then the X-normalizers of G are the minimal mem-
bers of M .

Proof. By repeated application of Theorem 4.3., every & -subab-
normal subgroup of G contains an X -normalizer of G. ( In fact,
if H is X-subabnormal in G, every XnH -normalizer of H con-

tains an X-normalizer of G.) The result follows by Theoremé4.S.
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Before turning to integrated normal systems, we give a
necessary and sufficient condition for the X- and 'g—normal-

izers of G to coincide, for E;\é any two normal systems of G.

LEMMA 4.11 Let X= {X(p)}, Y= {¥(p)} be two normal sys-
tems of G. Then the X~ and '%-normalizers of G coincide if
and only if X(p) and Y(p) centralize the same p-chief factors
of G for each prime p.

Proof. If the ¥X- and 1g}-normalizers coincide, the result fol-
lows by Theorem 4.2. Conversely, define Z(p) = X(p)Y¥(p) for
each prime p. Then Z(p) > X(p) and thus p¥ < ﬁx, where D7
and ﬁx correspond to the same Sylow system of G. But X(p) and
Z(p) centralize the same p-chief factors for each prime p, and
thus, by Theorem 4.2, |D%| = |D¥|. Hence D* = ¥ and sinm-

ilarly D’ = DY,

For the remainder of this chapter we confine ourselves to

the case of X an integrated normal system.

DEFINITION. A normel system X = {X(p)} of G is said to be

integrated if X(p) centralizes all p-chief factors of G above

X(q) for all primes p,q.
e.g. (1) X(p) = X for all primes p.
(1i1) X(p) = Cp(G) for each prime P, ( Notation of
[4], chapter 3, where ¥ is a saturated formation defined loc-

ally by an integrated set of formations { J(p)}.)

ILEMMA 4.12 The following conditions on a normal system X =

{X(p)} of G'are equivalent.
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(1) X is integrated.
(11) o/x e X,
{si4) p°.x <0 where X = ﬂp X(p) .
Proof. X is integrated if and only if G/X(p) € X for all
primes p, and thus if and only if G/X e X (Lemma 3,2(i) and
(ii)); and G/X € X 4if and only if D* covers GIX &0, 4 ¢

= G , by Theorem 4.2.

¥
We first consider the intersection of D for integrated

X with a chief series of G.

THEOREM 4,13 If X = {X(p)} is an integrated normal system

of G, the intersection of any X-normalizer D of G with a
chief series of G is a chief series of D with corresponding
chief factors operator-isomorphic.

Proof. By Theorem 4.2, we need only consider the X -central
chief factors of G, If H/K is an X-central p-chief factor of
g, X(p) < CG(H/K) and thus, by Lemma 4.12, D.CG(H/K) =G .
The result follows by Lemma 1.1.

We now turn to the existence of ¥ —critical maximal sub-

groups of G.

THEOREM 4.14 If X = {X(p)} is an integrated normal system

of G and Dx < G, then there exists an ¥ ecritical maximal
e X
subgroup M of G containing D as an XnM -normalizer.
3
Proof. Since X is integrated, D X =G where X = ﬂp X(p)s
£
Thus, 1T X € T\, every maximal subgroup of G containing D

supplements F(X) and so is X -critical in G. Hence we can
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assume that X £ Ml and so @(E)AX< F(X) < X . Write

¢ =6/8(6)aX, X =3X/8(6)AX , ete. We now apply the res-

ults of Gaschitz ([6]). PFirstly, @(X) =1 . For g(X) < g(G)
since X <G, and F(&) = g(G) since Xng(e) < #(&)
( [6], Theorem 2.). Thus @(X) < Xa@(G) =7 . Secondly,

F(X) = F(X) . Por suppose F(X) = R/F(G)AX. Then clearly

F(X) <R, so it remains to prove that R < F(X) . Now R is a

characteristic subgroup of the normal subgroup X of G, and so

R<G giving R < G. Further, @(G)nX = #(G)AR . Thus we

have R/F(G)AREM with R<G, and so REN by [6],

Theorem 10, and we are done. Thus X £ Yl and we can write
L R e

d=

where the .Z.i are minimal normal subgroups of X, let I--I1 ,..,Hk
be minimal normal subgroups of G such that ‘Ki < ﬁi £ PX)
for each i. Since X €N , all ﬁi are not centralized by X.
Thus there exists some X-eccentric minimal normal subgroup

E = H/#(G)AX of G which is contained in F(X). H £ 4(G), and
thus there exists a maximal subgroup M of G which complements
H/@(G) n X. Since this is an X-eccentric chief factor of G,
and H < F(X), M is X-critical. By Theorem 4.5 and the conj-
ugacy of X-normalizers, if D(M) is an XaM -normalizer of M,
bx = D(M)® for some g € G and is thus an £nME -normalizer

of the X-critical maximal subgroup ME of G.

LEMMA 4.15 If ¥ = {X(p)} is an integrated normal system

and M an X-abnormal maximal subgroup of G, then XAM is an

integrated normel system of M.
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Proof. Since M is X-abnormal it contains an X-normalizer of
¢ (Theorem 4.3). Thus, by Lemma 4.12, MX = G where X =
QD X(p). G/X €X since X is integrated, and hence MN/MnX
€ i « Thus M/MNX € XAM and the result follows by Lemma
4,12,

Repeated application of Theorem 4.14 together with this

lemma gives

THEOREM 4,16 If X is an integrated normal system of G, any

X -normalizer D}: of G can be connected to G by an X-critical

maximal chain.

Our final result in this chapter concerns the relation-
ship between the X~ and Y-normalizers of G for X, normal
systems of G with X 215— e In Lemma 4.7 we have seen that an
xXa D%-normalizer of D\'}" is not always an ¥ —normalizer of G.
However, if we assume that \é is integrated, we do get equal-

ity.

THEOREM 4.17 Let ¥ and Y be two normal systems of G such

that X > Y and Y is integrated. Then every % ~ D -normal-
izer of D! is an ¥-normalizer of G.

Proof. We use induction on IG:DHI. There is nothing to prove
for G = DY, so assume D’< G, and let M be & Y -critical max-
imal subgroup of G containing D% as a \dn M -normalizer
(Theorem 4.14). XnaM> \(Jjn M and YnM is an integrated
normal system of M by Lemma, 4,15. Thus, by induction, every

X A Mr\D"é -normalizer of 1')\3 i.e. every XAD%-normalizer of
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¥

¢ (Theorem 4.5) since M is X-critical.

is an XaM -normalizer of M and thus an ¥-normalizer of
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Chapter Five

¥ - COVERING SUBGROUPS

We assume throughout this chapter that £= {X(p)} is a

normal system of the finite soluble group G.

X
DEFINITION., A subgroup E of G is called an X —covering sub-

i

group of G if (1) B €%
x o 3

(11) E<BR <0, H/HEEX  implies HE = H,

Our first concern is to show the existence, conjugacy and
homomorphism-invariance of these subgroups. On account of the
fact that f% is not isomorphism-closed, homomorphism-invar-
iance is not immediate, neither can Gaschutz's proof of the
existence of F-covering subgroups ([7], Theorem 2.1) be

carried over to the present situation. We first prove some

simple results on ¥-covering subgroups.

LEMMA 5.1 Let E be an X -covering subgroup of G. Then

(a) If E<H<G, thenE is an XnH -covering subgroup of

H.

(b) E€ is an X-covering subgroup of G for each g € G.

(¢) E is abnormal in G.

() If NE/N € £ for normal subgroup N of G, then NE/N is
an N X/N -covering subgroup of G¢/N --- this is clearly true

if N <BE.

Proof. (a) E €X implies E€ XaH since (X(p)nH)NE =
X(p) nE. Further, let ESF<H, F<F and F/F, € EnH .



We must show that EF, = F . DNow

F (X(p)nF)/F, = F,(X(p)aEnF)/F, < Op,p(b‘/Fo)
since F/F. € ¥X~H. Thus F/F E ¥ and the result follows
immediately.

(b) Since E € £? , X(p)aEf = (X(p)nE)® is p-nil-
potent. Hence B¢ X . Let ES <F<G, E<F and F/Fcei;
and write P* =P8 , F* =F6 , Then E<P* <G, I* <+
and F*/E* e¥ , since F_(FnX(p))/F, is p-nilpotent implies
that F¥(F*nX(p))/E* is p-nilpotent. Hence EE* = F* and
thus E€F, = F .

(e) By Taunt, it is sufficient to show that every sub-
group of G containing E is self-normalizing. Let H > E and
Q = NG(H). Suppose, if possible, that Q > H. Choose a maximal
normal subgroup M of Q containing H. Then Q/M € X since it
is nilpotent. Hence, by the definition of E, Q=EM =M ---
a contradiction. Thus Q =H .

(d) Since NE/N € ¥, NX(p)/N a NE/N = N(X(p) A NE)/N
is p-nilpotent and so NE/N € Y ( where Y =NE/N). Let
NE/N < F/N < G/N, F,/N<F/N and F/N/F/NEY, Then
E<F<G, FE<F and F/E€ X, since

P(X(p) nB)/E, ¥ B, /N ( NX(D)/N A /N ) / RN .
Thus EF,= F and the result then follows.

LEMMA 5.2 If M is a maximal subgroup of G satisfying M € X
but G/CoreM £ X , then M is an X-covering subgroup of G.

Proof. We need only show that M supplements the ¥ -residual of

%
G. If this were not the case, we would have G < CoreM and
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hence G/CoreM € ¥ Dby Lemma 3.2(i) =--- a contradiction.

THEOREM 5.3 If E is an X-covering subgroup of G and N <G,

then NE/N is an NX/N -covering subgroup of G/N.

Proof. We prove that NE/N € ¥  and the result then follows
by Lemma 5.1(d). Suppose this is not the case, and let G be
a counterexample of minimal order. Then there exists a normal
system ¥ = {X(p)}, an X-covering subgroup E and a normal
subgroup N of G such that NE/N g ¥ . Since E € X , we must
have N > 1. Let N, be a minimal normal subgroup of G contain-

ed in N, Then NE =G . For E is an (X~ N E)-covering

subgroup of N E and thus, by induction, NE<G implies

N_E/N,€E XA N,E . Thus N,E/N,E ¥XANE and so is an

N,( %A NE)/N, -covering subgroup of NE/N,. Thus, by induction,

NE/N, / N/N, € N,(X~ NE)/N, and so NE/N € XaNE , con-
tradicting NE/N ¢ i . Hence N,E =G , and so E is a maximal
subgroup of G. G/No¢ X since G/N = NE/N g X . Thus there
exists an X -eccentric p-chief factor H/K of G above N, for
some prime p. Let C = CG(H/K) . Then

(1) === N, SC

(3} = Ep) g O

(3) === X(p)nE < Cg(HaE / KaE) = CAB (since EE X).
(2) and (3) imply X(p) € E and thus X(p‘)E =G since B
is maximal. We show that

(4) === X(p)nE = X(p) n N (X(p)nE) which is normal
in G.:¢

X(p)n N (X(p)nE) = (X(p)nN_)(X(p)nE) = (X(p)nN,)EnX(p)
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and (X(p) nN,)E = G implies X(p) = (X(p) s W) (X(P) N E) <
¢, by (1) and (3). This contradicts (2), so that (X(p) A N_)E
= E and the result follows.

By the definition of E, G/X(p)nE ¢ ¥ since E <G.
We obtain a contradiction to this by showing that both G/X(p)
and G/N,(X(p) nE) 1lie in X, and then using (4) and Lemma
3,2(ii). By Lemma 5.1(d), E/X(p)nE 1is a 'y—coverin.g sub=-
group of G/X(p)nE (where Y = (X(P)NE)XE/(X(p)nE) ).
AMlso X(p)nE>1 . For X(p)nE =1 implies that X(p) is
a minimal normal subgroup of G, and so X(p) < F(G) <C, con-
tradicting (2). By induction we therefore have G/NO(X(p)nE)
- N,E/N (X(p)nE) € ¥ and G/X(p) = X(p)E/X(p) € X , as

required. This proves the theorem.

THEOREM 5.4 Any two I-covering subgroups of G are conjugate.

Proof. We use induction on |G| as in [7],2.1. The result is
trivial for G =1 and for GEi. Thus assume G >1 and G
A i , and consider separately the following two cases :

Case (a). G/N g X for some minimal normal subgroup N of G.
In this case, if E , E, are two ¥ —covering subgroups of G,
then NE,/N, NE,/N are NX/N -covering subgroups of G/N by
Theorem 5.3. Thus, by induction, NE, = NEf for some g € G.
B,, Ef are (%X~ NE,) -covering subgroups of‘ NE, and NE <G,
since G/N £ X . The result thus follows by induction.

Case (b). G/N € ¥ for all minimal normal subgroups N of G.
Then the ¥ —residual G of G is the unique minimal normal sub-

group of G, since G § ¥ (Lemma 3.2(ii)). G is complemented
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in G by Lemma 3.2(iii), and its complements are the fx—cover—
ing subgroups of G. Since they are maximal in G with trivial

core, they are conjugate in G.

We are even now not in a position to prove the existence
of :E—covering subgroups along the lines of Theorem 5.4. For
in case (a) above, we can assume by induction that G/N has an
NX/N -covering subgroup 'E,/N~< G/N. Again by induction we
can find an XnE, -covefing subgroup E of E,. Then E € ¥ 4
but we are unable to show that it is in fact an X -covering
subgroup of G. For suppose E<F <G, F<LF and F/F°€'.¥.' 3
Then E < FnE, <E,, PFonE <FnE and FaE/ FEnE =
F.(FAE )/F, € X by Lemma 3.2(iv). Hence E(E~E,) = FnE,
by definition of E, and thus EF, = (Fr\E‘)E;. To prove that
(Fr\E.)F; = F as required, we need to utilize the fact that
E,/N is an NX/N -covering subgroup of G/N, and this is
where the proof breaks down. Application of Theorem 5.3 to E
in B yields E = KE, since E /N €¥ . Thus B<NF <G and
NF < NF, but NE/NE, need not lie in X, since & is not

isomorphism-closed.

Now for F* a saturated formation, the F-covering sub-
groups are the terminal members of F-crucial maximal chains
([4],5.4). We approach the existence of X -covering subgroups
along these lines viz. by defining ¥ —crucial maximal chains
in the natural way, showing that these always exist for any
normal system ¥ of G and that their terminal members, which

lie in ¥ , are in fact x-covering subgroups of G.



55

DEFINITION. A maximal subgroup M of G is said to be ‘X-crucial

if M is X-abnormal and G/N € 3 , where N/CoreM is the
unique minimal normal subgroup of G/CoreM. We say that the
chain He HoS HOS o6es <Hr = G of subgroups of G 1is

an X -crucial maximal chain if Hi is an SElr-\Hi_H -crucial max-

imal subgroup of Hi_+_‘ for each 1.

LEMMA 5.5 The following conditions o:; a maximal subgroup M of
G are equivalent

(1) M is X -crucial.

(11) @/N e ¥ but G/CoreM g X .

{14%) G}—E/ Gﬁn M is a chief factor of G, where G-35 is the X
residual of G.

Proof. (i) and (ii) are trivially equivalent. We show that (i)
is equivalent to (iii). If M is ¥-crucial, Gjes N and thus
GinM = Gin CoreM < G. Also, by Theorems 4.2 and 4.3, GxM =.G
and the result follows, since M is maximal. Conversely, it
Gi/ G?En M is a chief factor of G, it is complemented by M.

Since this is an ¥ -eccentric chief factor, M is ¥ -abnormal;

and G/N € ¥ since G".CoreM = N .

LEMMA 5.6 If G ¢ ¥ , it possesses an ¥ -crucial maximal sub-

group. Thus, for G £ €3 , we can construct an ¥-crucial max-
imal chein of G whose terminal member lies inX¥ .

Proof. Since G £ ¥, 1<8, the ¥-residual of G. Let G/K be
L oLdaf Pactor of 0. Men O/X €T and 8o /K 1s T-eccents
ric and complemented in G/K. For G/K < #(G/K) implies that

¢/K / $(G/K) € KE/K. Lemma 3.2(iii) then gives G/K € KX/K
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1.80. G/k € X , a contradiction. Thus there exists a maximal

subgroup M of G complementing G/K. M is ¥-crucial by Lemma5.5.

The following lemma is the crux of the proof that an
X A M -covering subgroup of an ¥X-crucial maximal subgroup M

of G is an x-covering subgroup of G.

LEMMA 5.7 Let E be an ¥aM -covering subgroup of the E-cru-
cial maximal subgroup M of G. Then, if E<PF<G and FZ£UN,
F/FaCored £ X .

Proof. Suppose this is not so, and let G be a counterexample
of minimal order. Thus we have E<F <G, FZLM and

F/F aCoreM € z for some subgroup F of G --- choose F to be
of maximal order subject to these conditions. Let N/CoreM be
the unique minimal normal subgroup of G/CoreM.

Now since M is ¥-crucial, G/N € X and so M/CoreM €

— -

% Purther, M® = 0 giving MMAGTE X Tima, by the dete
inition of E, ECoreM = M and E(Gir\ M) =M so that FCoreM
> M and FGiz M. Since F # M , we therefore have

(1) === FCoreM =G and F& =G ,

We now show that F is a maximal subgroup of G. Let F < ﬁ
< G. We prove that BAM is then an XAF -crucial maximal
subgroup of F. By (1), FooreM = G. Thus Fal / # ~ Corel
is a chief factor of P and is in fact complemented by P
For (PAM)CoreM = FCoreMa M= M , giving (FaM)(FaN) =
f‘n(ﬁnM)N = f‘ . Thus %‘nM is maximal in ﬁ, and it is easily

verified that
A A
(2) === Corej(FnM) = F n CoreM .
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Now, by the definition of F, f/ﬁnCoreM 2 X . On the other
nand, B/FaN €% since BN =0 and G/N €¥ . The result
thus follows by Lemma 5.5(ii). F is now easily seen to be
maximal in G. For suppose, if possible, that 1}‘ <G An 1'3 we
have E an &Imﬁr\M ~covering subgroup of the 'Ilnﬁ -crucial
maximal subgroup }/.‘\‘K\M, E<?® <§ and F £ f‘n M. Thus, by
the definition of G, F / Fr\CoreF*(ﬁ AM) ¢ ¥ .0,
F/F nCoreM £ X , using (2). This contradicts the definition of
F and so =0 and F is maximal in G.
Let |G:M| = p* for some prime p. Then

(3) === X(p) £ ¥ since N/CoreM is ¥-eccentric, and

(4) === X(p)nP < CF(FnN / PnCoreM) = FaN since
F/Fn CoreM € ¥ and thus FaN / FaCoreM is ¥aF -central.
(3) and (4) together imply that X(p) £ F, and thus

(5) === X(p)F = G since F is maximal in G.
We now show that ©FnCoreM = CoreM a X(p)(Fn CorelM) and so
is normal in G by (5). As in 5.3, CoreM n X(p)(FnCoreM) =
(CoreM A X(p))F n CoreM , and (CoreMaX(p))F = G implies that
X(p) = (CoreMnX(p))(FnX(p)) SN Dby (4). This contradicts
(3), so ' (CoreM anX(p))F = F and the result follows.

Write G* = G/Fn CoreM, F* = F/FnCoreM etc., and Q«J,:

(F o CoreM) ¥/(Fn CoreM). Then F* € 1'31 , F* is maximal in G*
and G*/CoreF* £ ’g . This last statement follows from the fact
that G*/CoreF* € '\‘;} implies G/CoreF € % , since CoreF* =
(CoreF)*. This then gives Gi: < CoreF, contradicting (1). Thus
F* is, in fact, a 1)}-covering subgroup of G* by Lemma 5.2.

Hence, by the homomorphism-invariance of ”%-covering subgroups,
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G*/(CoreM)* = F*(CoreM)*/(CoreM)* € %x i.,e. G/CoreM € ¥ ,
contradicting the fact that M is ¥X-abnormal. This last con-

tradiction proves the lemma.

THEOREM 5.8 An ¥nM -covering subgroup of an £ -crucial max-
imal subgroup M of G is an X-covering subgroup of G.

Proof. Let E be an XnM -covering subgroup of M. Then ne €.
let ESP<G and F/FE 3-5. We must show that EF, = F.
Certainly if F <M this is true, by the definition of E.

¥ x
Also, if F =G .it is again true, since EG36 = B(G AaMG =

MGI '= G¢. Thus we need only consider the case E <F <G with
F & M. We show that F (FaM) = F. As in 5.7, FCorell = G so0
that F,CoreM <G and thus F,M = F ,CoreM.M is a subgroup of
G. If F <M, we have F, CoreM < CoreM and thus E < FnCorell
so that F/FnCoreM € % . This contradicts Lemma 5.7, and so
F,£M and thus EM = G, Hence F, (FAM) = FAEM=TF .
Thue FaM/FaAMEF/E €X andso FaM/EnME ¥al.
By the definition of E, E(F~M) = FnlM. Hence EF, = (FaAM)EF,

=Fo

By Lemma5.6 and repeated application of Theorem5.8, we

have

THEOREM 5.9 G possesses an X-covering subgroup for any nor-

mal system ¥.

Using the conjugacy of the 'x-covering subgroups, Theorenm

5.8 also yields the following lemma
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LEMMA 5.10 If G € ¥ , every X-covering subgroup of G is an

¥ AM -covering subgroup of some ¥ -crucial maximal subgroup M

of G,

This gives us a characterization of the X -covering sub-

groups similar to that of the }—covering subgroups viz.

THEOREM 5,11 The ¥X-covering subgroups of G are the terminal

members of the X-crucial maximal chains of G.

We are now in a position to obtain the desired relation-

ship between the ¥ —normalizers and :)f:-covering subgroups.

THEOREM 5.12 Every x—covering subgroup of G contains an L

normalizer of G, and conversely.

Proof. By Theorem 5.11, an ¥ -covering subgroup of G is a mem-
ver of the set ML of Theorem4,10 and thus contains an & —norm-
alizer of G. The converse follows by the conjugacy of the X-

covering subgroups and of the £ -normelizers of G.

GOROLLARY 1 The ¥ -covering subgroups of G can be character-

ized by the conditions

(1) Be %

(ii) If E<U<V <G, then U is XaV -abnormal in V.
Proof. Firstly, let E be an ¥ -covering subgroup of G and B <
U<V <G. Then E is an ¥nV =~covering subgroup of V and so
contains an ¥AV -normalizer of V, by Theorem5.12, U is then
% AV -abnormal in V by Theorem4,3. Conversely, let E satis-
£y (1) and (ii), and ESV <@, V, 9V with V/V.E X . Ve
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must show that V,E = V. Suppose this is not the case, and
let U be a maximal subgroup of V containing V,E. Then V, £

CoreyU and so V/CoreVU € ¥ by Lemma3.2(i). U is thus

XAV —normal in V, contradieting (ii). Hence V,E = V.

COROLLARY 2 Let B be an X=-covering subgroup of G, K/L an E-

composition factor of G of order a power of prime p, and K <
X(p). Then E covers K/L if X(p)nE < CE(K/L) and avoids K/L
i X(p)oB £ CE(K/L) .

Proof. This proof follows closely that of Lemma5.2 of [4]. As
we have seen in Chapter 2, E either covers or avoids X/L. I£-E
covers K/L, KnE/LnE is a p-chief factor of E with CE(K/L)
= Cy(KnE/LnE). Since g€ ¥ this gives X(p)nE < Cy(K/L).
On the other hand, if E avoids K/L, ILE is a maximal subgroup
of KE and so is ¥aKE -abnormal in KB, by Corollary 1. The
p-chief factor K/L of KE is complemented by LE and so is

¥ AKE -eccentric i.e. X(p)nKE % CKE(K/L) B KCE(K/L) .
Thus X(p)nE £ CE(K/L).

COROLLARY 3 An % —normalizer D of G is an ¥ —covering subgroup
of G if and only if D <H < G implies that D is £nH -ab-
normal in H.

Proof. Assume first that D <H < G implies that D is X~H =
abnormal in H. Then D is a maximal '3_6-subgrou'p of 0. "‘Boxr aif
D<H with HeE, and D <H, <H, we have HE€X by Lemma
3,2(iv). D is then ¥ H -normal in H, ---a contradiction.

Now D<E, an ¥ -covering subgroup of G, by Theorem5.12.

Since LE ¥ we must have D = E. The converse follows
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immediately from Corollary 1.

In [12] T.0.Hawkes gives a similar condition for the e
normalizers and '}—covering subgroups of a group to coincide,
and an example of abnormal supersoluble normalizers which are
not supersoluble covering subgroups. We describe his example
briefly as it shows that an abnormal ¥-normalizer need not be

an X-c overing subgroup.

EXAMPLE 5,13 Let W = 05\24, the wreath product of a cyclic

group of order 5 with the symmetric group on 4 elements., W is
the semidirect product of an elementary abellan group N =

S 8yyeeey 8> of ‘order 54 with 24. Let « be the automorphism
of N mapping a; = ai ( i=1,..,4 ). Then « is of order 4 and
commutes elementwise with 24. Let G* = 24 X<ag> and G
be the splitting extension of N by G*. For each prime p let
¥%(p) Dbe the formation of abelian groups of exponent dividing
p-1. Then, by Theorem6.1 of [4], { F(p)} is a set of integ-
rated formations defining locally the formation of supersol-
uble groups. Set X(p) equal to the H(p)-residual of & for p=
2,3,5 i.e. X(2) =G, X(3) = NA<a®>, X(5) =DNA, where

4

A, is the alternating group on 4 elements. Then the supersol-

4
uble normalizer D =< 82588 >H< @ > (where H is the
subgroup of 24 leaving ay invariant) is an ‘K-normalizer of
G. We show that the supersoluble covering subgroup

E= < a, a2a3 > = a4> H<a> is also an X-covering sub-

group of G. The chain E < NEK o> < G 1is easily seen to be
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an ¥-crucial maximal chain, so E contains an }Z-covering sub-
group‘of G by Theorem5.11. The required equality then follows,
since Eeif . D is abnormal in G since the only proper sub-
groups of G containing it are E, NERK a > and < aq85858, >,

zn<1a > , all of which are self-normalizing in G.

In the above example, the ¥~ and :f—covering subgroups
of G coincided when we took X(p) equal to G}(p) for each
prime p. We now show that this is not always the case, nor
even for suitable choice of X(p) between Gy(p) and CP(G)
(Notation of [4]). The following, due to R.W.Carter, is an ex-
ample of an F¥-covering subgroup which is not an al-covering

subgroup for any normal system X.

EXAMPLE 5,14 TLet & = Cg 24/2 where Z is the centre of the
wreath produet CgY\ Z, of Example5.13. |Z| = 5 and thus
|G| = 24.5°. Now take T = Co\v G, the wreath product of a
eyeclic group of order 7 with G. Then T is the semidirect
product of an elementary abelian group N of order 7IG| with
the group G, and thus |T | = 24.53.7|GI. Let F= e
this saturated formation can be defined locally by taking
F(p) =N for each prime p. We first determine the N2=cov-
ering subgroups of et

An 712-covering subgroup E of G is a direct product of a
symmetric group on 3 elements and a cyclic group of order 5,
and has thus order 2.3.5. B is cyelic of order 3. Let E be an
1ﬂ2—covering subgroup s e Then, by the homomorphism-invar-

iance, NE/N is an 112-covering subgroup of J /N and so NB/N
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= NE/N. Hence E < NE = K, say, and thus E is an ﬂ?—covering
subgroup of K. Also, since G complements F(V ) = N, we can
choose E such that E = GaE (Theorem5.12 of [4]). Thus E =
(Nr\E)E and it only remains to determine N nE, By Maschke,
since 7 [ |E| , we can write N=DNx ... xN_ as the
direct product of subgroups Ni such that each Ni is normalized
by E and no proper subgroup of Ni is normalized by E. Then

each N; is an E-composition factor of K. By Lemma5.2 of [4], E

covers N; if Aut,(N,) € N and avoids N, if Autg(N;) £ .

Since NAE centralizes each N, and E = (NAR)E, AutE(Ni) =
fﬁtE(Ni) for each i. Thus‘i covers N, if AutE(Ni) EN 1
E < Cg(N;) or N, £ Cy(E") , and E avoids N, if AutE(Ni)
N di.e. N, £Cy(E") . Thus NnE = Cy(E") end E=:
ECN(E“). We now show that 07,7(E) = E“CN(E“), and so the
order of 07,7(E) is not divisible by 5. ﬁnCN(Eu) is cert-
ainly a 7-nilpotent normal subgroup of E, so ﬁnCN(E“) «
07,7(E). Suppose, if possible, that this inclusion is proper.
Then "< 07,7(E)4\E =P , say, and so CN(P) < CN(ﬁﬂ) s
However, P is the 7-complement of 07,7(E) and is thus normal
in E. Hence [ CN(Eﬂ),P e P,\CN(EM) =1 giving CN(E“) <
QN(P) --- a contradiction.

To enable ﬁs to prove that E is not an ¥-covering sub-
group of T for any normel system X of T we' need more infor-
mation about the structure of T . ILet

G = Go i G-1 ? (}2 T" C‘r3 >53 G4 = 1 be the unique
chief series of G. Since 7 [ |G|, we can write (by Maschke)

N = A,1 U R Al where the Aj are G-composition factors
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-y - E
of 1 i.e. minimal normal subgroups of | . Since N < Cr(Aj)
T  for each j, CT(AJ) is either N, N@, NG,, NG, or { b
Denote by Ki+1 the direct product of those Aj with central-
izer equal to NG, L dab A ). Then

Ay % ees X A, = CylGy) and thus has order "IlG:Gi|

i+1 i

{d=0,...8:). % (Mg = Ag g% oeo sz for i=0,..,4
IN5=1.

Then N m W ? N, : N, i N3 ?'8 Ny 1‘1@_01\15 = 1

is a series of normal subgroups of % satisfying, for i=o,.,4,
(1) X0, T=N, .,

(11) |N : XN 71G:Gy |

Tet]
(iii) the centralizer of every chief factor of T between

N and Ni is equal to NG

i+1 - B
T : r Rt !
N, 4G < | (i=0,..,4 ). For ;96 and N, ,< I implies

N; 4G 9N, .G, and (i) implies that N normalizes N. .G

iv17d i+174i°

The only central chief factors of T are those operator-isom-
- /\1

orphic to T/N,¢ and T/N¢, eand thus T = N,G,. Thus no

chief factor of T below N'2 is centralized by Tm, and soO

=Nt
2 2

Now suppose, if possible, that E is an :{—covering sub-

P

group of T for some normel system ¥ = {X(p)} of T . Then

-~

= i s 2 AR -
[ * =T ., Por T =T"E implies that. T/1T e X by the

homomorphism-invariance of X-covering subgroups. Thus 7 <

2 2 =5
T"  and similarly T < T¥. We obtain a contradiction by

showing that this implies that X(7)nE £ 07,7(3) and so
b rﬂ‘t
Be X Since " = N,G,, the 7-chief factor N,G,/N,G, is

T

f—cen‘tral and every chief factor of between N3G2 and
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!202 is X-eocentric i.e. by (114),

(iv) X(7) £ C.(N,/N,) = KNG,

(v) X(7) £ Of,(any chief fuotor of T between N3 and 312) = NG,
Now X(7) = (X(7)AN)(X(7)AG) since these two subgroups
are of coprime index in X(7). Thus (iv) and (v) imply
X7Nne € G, and X(7)nG ¢ G,. Hence X(7)nG = G,
eince G has a unique chief series, and s0o X(T)AE > XAl
= GAE . |0,AE| 18 divioidble by 5 and hence mo is |X(7)AB|,
Thus X(7)nE £ 07.7(3) , and we are done.

We have thus seen that an F-covering subgroup need not
be an ff-oover:l.ng subgroup. The oconverse is also true =-- the
following simple example shows that an X -covering subgroup
need not be an JF-covering subgroup for any saturated fornate
ton k., Take G = 2‘.3;2; , X(2) =0 and  X(3) = I8,
as in Example3.1. Then the X-normalizers of G are of the
form - 02u23 where C, is a oyclic group of order 2. Since
these are maximal in G and O £ ¥ , they are the X-covering
subgroups E of ¢ (Theorem5.12). Let 3* be the smalleat mat-
urated formation containing C,x 23. Then 3* ocontains 23
and thus O, Hence E is not an 3¥%*=covering subgroup of G and
is thus not an Y=ocovering subgroup of G for any saturated
formation ¥,

We now turn our attention to MNI-groups i.e. groups O
in which O/P(0) € X,

139 5,45 Lot 0 e NE, 0 ¢ X and Nve an X-adnormal
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maximal subgroup of G.. Then

(1) M is X-crucial in G.

(ii) The intersection of a chief series of G with M is a
chief series of M, corresponding factors being operator-iso-
morphic.

(iii) If H/K is a chief factor of G covered by M, HAM/KnM
is XAM —central in M if ‘and only if H/X is ¥_-central in G.
(iv) The XAM -normalizers of M are X-normalizers of G.
Proof. The hypotheses imply MF(G) = G and so MAF(G) <G
and (ii) holds, by Lemmal.l. M¢® = G since M is ¥-abnormal
and G’ES F(G) since G € N¥. Thus MnGis MaFP(G) < CoreM
giving M(\Gi = CoreM n Ga-€ < G. G%/ngM is a chief factor
of G since M is maximal in G, and so, by Lemma5.5, M is X-
erucial and (i) is proved.

We now prove (iii). Certainly H/K ¥-central implies
EAaM/KaM is ¥AM -central, so it remains to prove the con-
verse. Suppose, if possible, that this is not the case. Then,
for some X-abnormal maximal subgroup M of G, there exists an
¥ —eccentric p-chief factor H/K covered by M such that HnM/
KnM is XnM -central. Thus

(1) -—— X(p) £ C

(8w X(p)nM < OnN where C = Cy(H/K).
By (1) and (2), X(p) £M and thus X(p)M = G since M is
maximal in G. As in 5.3 we obtain

(3) === MAC = (MaC)X(p) nC which is normal in G.
Since C>P(G), we have G/C €X and CM =G so that
M/MnC Ex - Also, M/MnC is ‘%-abnormal in G/MaC (where
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1{} = (MAC)X/(MnC) ) and so is a Tj,—covering subgroup of
G/MaC by Lemma5.2. Hence, by Theorem5.3, G/X(p)(MncC) €Y
i.6e. G/X(p)(MnC) € X, Thus, by (3) and Lemma3.2(ii), G/
MaC € £y , contradicting the fact that M is % —abnormal.
To prove (iv) we just have to show that |Dx"M(M)| <
le(G)[ (Theorem4.3) --- this follows immediately from (iii),

THEOREM 5.16 If G € NX , the X-normalizers and x—covering

subgroups of G coincide.
Proof. The result is trivial if GEX. Thus assume G £ 3

x
and let D= Ho < H1 o g GRS Hr-1 < }% = G be an
¥ —abnormal maximal chain connecting ID"L to ¢ (Theorem4.9). Ve
show that in this case H; is in fact f)ér\Hi.*_1 -cru:ial in H, .
for each i. HiF(G) = G for each i, since H,>D and G/
F(6) € £ (Theorem4.2). Thus H,/H;AF(G) € ¥ for each i.
Since F(H;) > H,nF(G) , this implies that H, € N(¥nH,)
for each i. The result then follows by (i) of Lemma5.15.

COROLLARY If G € WX (i.e. G/F(G) € N¥ ) then each ¥-
normalizer of G is contained in exactly one 'f-covering sub-

group of G.

Proof. We omit the proof since it follows word for word that

of Theorem5.9 of [4] (replacing ¥ vy ¥ or ¥ as appropriate).

THEOREM 5.17 If G € N¥ and the subgroup H covers all ¥X-

central chief factors of G, then H contains an ¥-normalizer
of G.. In particular, if H also avoids the ¥ —eccentric chief

factors of G it is an X-normalizer of G.
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Proof. Here, too, we folldw closely along the lines of Theorem
5.7 of (4]. If H =G the result is trivial. We thus assume
that G ¢ ¥ and H<G. Let M be a maximal subgroup of G
containing H. Then the hypothesis implies that M complements
an X-eccentric chief factor and so is X-abnormal. By Lemma
5.15(ii) and (iii), H covers all the XnM-central chief fact-
ors of M and so contains an %¥aM -normalizer of M by induct-
ion. The result then follows by (iv) of Lemma5.15. Finally,
if H also avoids the <X-eccentric chief factors of G, it will
have the same order as the X-normalizers and will thus be one

of themn.
Our next result corresponds to Theorem5.15 of [4].

X
THEOREM 5.18 If G is abelian it is complemented in G and any

two complements are conjugate. The complements are the )
normalizers of G.

Proof. This proof follows word for word that of Theorem5.15 of
(4] (after replacing * by ¥ or % as appropriate) up to the
choice of B. Let B = AX(p). Then N X-central implies B <
CG(N). Since G/A 3 , B/A is p-nilpotent, so we can define
Q as in the above-mentioned proof. Then QA ﬁ‘CG(A/N). For
A/N ¥-eccentric implies B £ CG(A/N). Thus, if QA < C,(A/N),
we would have a non-trivial normal p-subgroup BCG(A/N)/CG(A/N)
of G/CG(A/N) which is impossible. So QA £ CG(A/N). The
remainder of Carter and Hawkes's proof then goes through un-

altefed.
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In (4] Carter and Hawkes also show that if G € N¥
(where +* is a saturated formation) 'and L is a subgroup of G
satisfying L € ¥* and IF(G) = G, then Ng(L) is contained
in an J-covering subgrouﬁ of G. (Theorem5,8). However, this
result does not carry ovez: into the present situation merely
by replacing ¥ by X or X as appropriate, as the following

example shows.

EXAMPLE 5.19 Take 6= ZI,X 52"3/§3 SXER) e O XN .
Z3§3/§3 ind L= 2*53/§3 (seebExample3.1 ). Then G €
nNg, LeEX, LF(G) =G and G ¢€X . L is normel in G and

80 NG(L) is not contained in an X-covering subgroup of G,

since G g X.

However, if in addition we replace F(G) by F(X) (where

X = @ X(p) ), this theorem is then valid.

LEMMA 5.20 Let L be a subgroup of G satisfying L € £ and

LF(X) = G. Then NL/N € £ for all normal subgroups N of G.
Proof. Let H/K be a p-chief factor of NL above N. Then
HAL/KalL is a p-chief factor of L above LAN, and thus
X(»)nL S C(HAL/KAL) = LAC(H/K) , since L €X. Ve
must show that this implies X(p)nNL < CNL(H/K). We first
show that L.F(X(p)ANL) = NL . Now F(X) €< F(X(p)) since
X <X(p), and so LF(X(p)) =G . Thus L(NLAPF(X(p)) = NL
and the result follows since F(X(p))nNL < F(X(p)nNL) .
Hence X(p)nNL = X(p)n L.F(X(p)aNL) = (X(p)nL)F(X(p) nNL)
< Oy (H/K) , since F(X(p)nNL) < F(NL) .
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The proof of Theorem5.8 of (4], together with this lemma,

gives us the required theorem vVviz.

THEOREM 5.21 If GENY and L is a subgroup of G satisfying

L E X and -IP(X) =G, then NG(L) < B, an X-covering

subgroup of G.

This theorem enables us to relate the x-covering sub-
groups of G to the x-covering subgroups of certain subgroups

of G.

THEOREM 5.22 Let L be a subgroup of G satisfying ILF(X) = G.

Then every X£al -covering subgroup of L is of the form LAE
for some X-covering subgroup E of G.

Proof. We consider separately the two cases G/F(X) € ¥ and
6/F(X) £ .

(a) G/F(X) €¥X. Then IL/LaF(X) €¥ since LF(X) = G.
Thus an XnL -covering subgroup E, of L satisfies E‘(Ln}:‘(X))
=1 and thus EF(X) =C. Also BeX and ¢€ MY,
Therefore, by Theorem5.21, El < LnE lfor a suitable X-cov-
ering subgroup E of G. We show that |LaB| < |E |, giving
equality. DNow L EVWXEAL) since LAF(X) < F(L). Thus
E, is an ¥AL -normalizer of L and E is an ¥ -normalizer of G
(Theorem5.16). Also, by Lemmal, , if H/K is an X-central
chief factor of G covered by L, then HAL/KAL is an ¥AL -
central chief factor of L. Thus, using Theorem4.2,

|LAE| < the product of the orders of the X -central chief

factors covered by L in a given chief series of G
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< the product of the orders of the XaL -central chief
factors in a given chief series of L
= |5, |
(b) G/F(X) ¢ X Here, too, we follow closely the proof
of 5.12 in [4]. Since G/F(X) ¢ X , G has an X-crucial max-
imal subgroup M containing F(X). Let X = CoreM and H/K be
the minimal normal subgroup of G/K. F(X) <K and so L covers
@/K. Thus, by Lemmal.,1, HAL/KAL is a chief factor of I,
easily seen to be XAL -eccentric (as in Lemma5.20). Also
L/LAK € X since G/H eX . mnl complements HAL/KAL in
L and so is an XaL -crucial maximal subgroup of L. Now
(MAL)F(X) =M and FX) <P(MAX) <M. Thus (MaL)F(MaX)
= M. Hence, applying induction to M, every XaMnL -covering
subgroup of Manl is of the form MaALAnE for some XaAM -
covering subgroup E of M i.e. every XaLl =covering subgroup

of L is of the form MaALAE = LAE for some X-covering sub-

group E of G (Theorem5.8).

COROLLARY Iet ¥ and \3 be two normel systems of G such that
¥ =Y and 77} is integrated, and let D be a y‘-normalizer of
G. Then every %nD -covering subgroup of D is of the form
DAE for some ¥ —covering subgroup E of G.

Proof. Since Yy is integrated and ¥ 2 Y , D can be connected
to G by an ¥X-critical maximal chain. The result then follows

by repeated application of Theoremb5.22.

Remarks. 1. Example5.19 shows that the condition IF(X) =G
in Theorem5.22 cannot be relaxed to ILF(G) =G as in the
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corresponding Theorem5.12 of [4]. For in this example, L is
not contained in an X-covering subgroup of G.

2. Corollary 2 of Theorem5.12 and Theorem5.22 (like
the corresponding 5.2 and 5.12 of [4]) are useful in the deter-
mination of X-covering subgroups of wreath products of the
form Cé\G where Cp is a cyclic group of order p, v [ |G|

and all X(q) contain the base group.

THEOREM 5.23 ILet X = {X(p)} and Qé: {Y(p)} Dbe two normal

systems of G such that X > '\j and '\é is integrated. Then,

if the ¥- and ’g-covering subgroups of G coincide, so do the

- and Y-normelizers of G.

Proof. Since the ¥~ and qé-covering subgroups coincide, Gi =
x

G IP Bt then D =

64 = G, say. We use induction on |G
D! = ¢ and the result is trivially true. Thus assume G > 1.
Then a chief factor G/L of G will be complemented by a maximal
subgroup M which is both ¥- and Y-crucial in G. Thus the
EAM - and lkwM -covering subgroups of M coincide, and
hence, by induction, so do the XaM - and YnM -normalizers
of M. Thus, by Lemma4.11, X(p)nM and Y(p)nM centralize
the same p-chief factors of M for each prime p. We show that
this implies that X(p) and Y(p) centralize the same p-chief
factors of G for each prime p. All the chief factors of G
ebove G are both ¥- and 1?j--c:en‘i:ra.l and G/L is both ¥- and
]&-eccentric, so it remains to consider the chief factors of G
below L. Let H/K be a Wé-central p-chief factor of G below L.
Then H/K is a p-chief factor of M. For suppose that K<Jg <

H for some normal subgroup J of M. Then [ . 5p) < K



73
since Y(p) centralizes H/K, and so J is normalized by Y(p).
But Y is integrated and thus G < Y(p) for each prime p,
yielding G = MY(p). Thus J <G and so J =H. ¥Y(p)aM<
CM(H/K) and so X(p)oaM < CM(H/K) . Thus, since < Xy
X(p) = X(p) o M¥(p) = Y(P)(X(p)aM) < CG(H/K) . Hence
every 15—c:en‘trall. chief factor of G is X-central and the con-
verse is certainly true, since '\3 < ¥ . By Lemma4.11, the x-

and 'Ié—normalizers of G thus coincide.

It is easily seen that the same conclusion would hold if
X and 'Ld were any two integrated normal systems of G. For in
this case we would have (notation as above) G < X(p) n Y(p)
and so M(X(p)nY¥(p)) =G. Then X(p)nM < CM(H/K) would
imply  X(p) = X(p) o M(X(p)n ¥(p)) = (X(p) n¥(p))(X(p)a M) <
CG(H/K) as recuired. However, it need not hold for all
normal systems ¥ and H of G, as the following example shows.
Take G = 24, the symmetric group on 4 elements, X(2) =
X(3) =G and Y(2) = the normal subgroup of order 4 of G,
Y(3) = G. Then ¥ >Y but Y is not integrated as the 3-
chief factor is 'lj-eccentfic. The ¥- and ‘-covering sub-
groups of G are the Sylow é-subgroups of G, but the ¥- and
’\é-normalizers of G are of order 2 and 8 respectively, and so

do not coincide.

<

The following example shows that, as in Carter and
Hawkes's theory, the converse of Theorem5.23 does not hold,

even with X 2'19 and 'lé an integrated normal system.
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EXAMPLE 5.24 lLet G = Cs\A4, the wreath product of a cyclic

group of order 5 with the alternating group on 4 elements (in
its natural presentation). Then G is the semidirect product
of an elementary abelian group N of order 54 with A4, and so
|G| = 22,3,5%, Let Z be the centre of G and H/N the normal
subgroup of order 4 of G/N. Then' |Z2] =5 and G has a chief

series i ¢ ? H 3; N :5 2z >; 1 with CG(N/Z) = N.
et X(p) =G for p=2.%5.85 :  Y(p)=0G for p=2,5 "and

Y(5) = H. Then ¥>VY and Y is integrated, and the ¥~ and
l%-normalizers are the system normalizers of G. However, the
1l—covering subgroups do not coincide with the ﬁﬂ—covering
subgroups. For let E be an X -covering subgroup of G. Then,
since G/N € N¥, NE/N is an NX/N -normalizer of G/N
(Theorem5.16). Thus we can write NE = NT where T is a Syl-
ow 3-subgroup of A,. E is thus an XA NI —covering subgroup
of NT . Now F(XaNT) =N so T satisfies the conditions
of Theorem5.22 in NT . Hence we can assume that E>T and
thus E = (EAN)T . We show that EnN = cN(x(s) AT )i

As in Example5.14, since 5 / |T | we get, by Maschke,
N=DN X e00 X Ny where the Ni are T‘-composition factors
and thus E-composition factors of NT . Since X(5)n NT 2= N,
we can apply Corollary2 of Theorem5.12, to get E covers Ni i & o
X(5)nE < Cg(N,) and avoids N, if X(5)nE £ Cg(N,).
Since X(5)nE = (X(5)AT)(NAE) , E covers N, if N, <
Ci(X(5)nT) and avoids N; if N, £ Cy(X(5) AT) , and thus

NAnE = CN(X(S)ATW as required.



Hence E = T Cy(X(5)aT) = TCy(T), of order 3.52.
The same method also yields EY = T Cu(¥(5)aT) = TN, of

order 3.54.

We conclude the present chapter with two examples of X-
covering subgroups for special normal systems and necessary
~ and sufficient conditions for X~ and Eﬁ-covering subgroups to

coincide in one of these two special cases.

¥
THEOREM 5.25 (i) If X(p) = X for all primes p, then E =

NG(C(X)) where C(X) is a Carter subgroup of X.
(ii) If X(p) = X and X(q) =1 for all primes

a#p, then E = D¥ = N (xP).
Proof. (1) G/X €T and thus XE- = 6. Iet E = EnX. We
show that NG(E) = E° and E is a Carter subgroup of X. Since
ge¥ . . E'n X < F(Ex) and so is nilpotent. Suppose, if
possible, that E is not self-normalizing in X, and let B
Ne(E) >E. Now E<E" so Ny(E)2E. H=XaNy(E) end
BE = No(B). Let H/K be a chief factor of NG(E) such that
K>E. Then Ny(B)/K€ ¥ and thus N,(E) = KEX. This
gives H= K(HnE") = K , a contradiction, Thus H = E and
Ex'= NG(E), giving the required result.

(ii) Let D = NG(XP) be an X-normalizer of G. Then
DX = G, since G/X €% . Let D<HS<G and suppose, if
possible, that D is ¥nH —normal in H. Then, if N/CoreyD
is the minimal normal subgroup of H/CoreHD, XnH < N, Thus

XnD < CoreyD and so is normel in H, i.e. XnD < XnH <
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N (XaD). This contradicts the fact that XaD = Wy (XP)
which is abnormal in X. Hence D < H< G implies that D is
XAH -abnormal in H. The result follows by Corollary 3 of

Theoremb5.12.

COROLLARY Let X = {X(p)} and '\j= {Y(p)} Dbve two normal
systems of G satisfying X(p) = X, Y(p) =Y for all primes p,
and X>Y, Then E- =B if and only if X/Y is nilpotent
aod . O YY) w YacolX) .

Proof. Suppose E°- =E¥, Then YE" =G and so G/Y eX by
the homomorphism-invariance of ¥-covering subgroups. Thus
X/Y < F(G/Y) and so is nilpotent. Also, by Theorem5.25,
C(Y) = YaE? = YAE" =YaC(X). Conversely, C(Y) = YnC(X)
E‘&

x
implies E = NG(C(X)) < NG(C(Y)) = , by Theorem5.25. Also,

since X/Y is nilpotent, G/Y € ¥ and so YEI = G, Hence
X %
YC(X) = ¥Y(XnE ) =X and thus |6 : E | = |X: C(X)] =

Y ¢ ClY) | = 103 EHI and the result follows.
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Chapter Six

CHARACTERIZATIONS OF X - NORMALIZERS

The property of X -normalizers basic to all our charact-
erizations is the covering and avoidance property of Theorem
4.2._In general, fhis property does not characterize X -norm-
‘alizers, for T.0.Hawkes has shown (Examplel of [11]) that a
subgroup covering the central chief factors and avoiding the
eccentric chief factors of a group need not be a system norm-
alizer of the group. However, we have seen that in an NE-
group, the X-normalizers are those subgroups which cover the
X —central and avoid the X-eccentric chief factors ( Theorem
5.17 ). We cen extend this result to the case of any group G

in which the X-normalizers and X-covering subgroups coincide.

THEOREM 6.1 Let G be a group with normal systen X in which

the :E—covering subgroups and :r-normalizers coincide. Then
the X-normalizers of G are those subgroups which cover the

¥ -central and avoid the ¥X-eccentric chief factors in a given
chief series of G.

Proof. We use induction on |G|. Suppose H is a subgroup of G
which covers the X-central and avoids the ¥-eccentric chief
. factors in a given chief series of G. Let N be the minimal
normal subgroup of G appearing in this chief series of G. Then
NH/N covers all NX/N -central and avoids all NX /N —eccent-

ric chief factors in a chief series of G/N. Also, by the hom-



78

omorphism-invariance of ¥ -normalizers and X-covering sub-
groups, the NX/N -covering subgroups and N X /N -normalizers
of G/N coincide. Hence, by induction, NH/N is an NO3/N -
normalizer of G/N i.e. NH/N = ND}:/I\T for some X-normalizer
Dx of G. Thus NH = NDaﬁ = NEx for some X-covering subgroup
§E L 6. IO N Aa ¥ ocentra) 1n G, bHie tupites H = DL Thuh
we may assume that N is Y -eccentric and thus avoided by Dm
and H. Now NH/N = ND./N € X and thus NH € NW(¥E ~ NH).
By Theorem5.16, we then have DanH(NH) = Ex“NH(NH). But
E36 < NH and so is an XA NH -covering subgroup of NH. Thus
g DanH(NH) and so D° covers the XnNH -central
and avoids the XaNH -eccentric chief factors of NH (Theorem
4,2). Therefore, since b~ complements N in NH, the chief
factors of NH above N are XA NH -central while those below N
are ¥nNH -eccentric. H also complements N in NH and so
satisfies our hypotheses in NH. Hence, if NH<G , H=
_D%ANH(NH) = DEE as required. Thus we can assume that NH =
G eand so H is maximal in G ( if H=G, G €% and so
D£=G=H). N=G§ and so HG§E=G. Also HEE since

G/N does. Thus H is an X-covering subgroup of G and so an

¥ =normalizer of G.

X

We now return to the general case of an £ -normalizer D

defined by a non-integrated normal system ¥= {X(p)}. For the
sake of brevity we make the following definition.

DEFINITION. Let H be a subgroup of G which covers or avoids
Dir it Vn
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each chief factor of G. We say that H satisfies the centraliz-

er condition if, for each prime p dividing IG], the intersect-

ion of the centralizers of the p-chief factors of G covered by
H is not contained in the centralizer of any p-chief factor of
G avoided by H ( where the intersection is understood to be G

if H avoids all the p-chief factors of G ).

BEvery X-normalizer 55 of G satisfies the centralizer
condition, for X(p) centralizes precisely those p-chief fact-
ors of G covered by DI (Theorem4.2). Hence this is a necess-
ary condition for a subgroup to be an ¥-normalizer. We thus
consider a subgroup H of G which covers or avoids each chief
factor of G and satisfies the centralizer condition. Then, if

% = {X(p)} is the normal system of G obtained by setting

~ X(p) = the intersection of the centralizers of the p-

chief factors of G covered by H if there is at

6.2 «
least one p-chief factor of G covered by H.
\ = G if H avoids all the p-chief factors of G.

X(p) centralizes precisely those p-chief factors of G covered

by H, and so |H| = Iﬁr . However, by the above-mentioned ex-
ample of T.0.Hawkes, H need not equal Di. We therefore seek a
further condition on H which will force these subgroups 1o
coincide =--- in fact we find two possible conditions.

The first involves the way in which H is embedded in the

group G. We recall the proof of Theorem4.9 in which any non-

integrated ¥ -normalizer D3€ (i.e. an ¥ -normalizer defined h»v
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non-integrated normal systenm £) of G is shown to be X —subab-

normal in G. We first choose a normal system X, of G minimal

~ x, E
with respect to the conditions £ <X and D®=D'. We then

select a chief factor X (p)/Y,(p) of G which is covered by
x
D° ( at least one such chief factor exists ). Setting Y, (q)

= X_(q) for all primes g#p , we obtain, with Y, (p), a normal
Y

systen Eﬂ of G, Then DI° is of index a power of_% in. D7

(where D™ and D* are defined by the same Sylow system of G).
We choose a minimal normal system ¥, such that 1£i§‘95 and
Y.

D= ﬁx', and repeat the whole process, obtaining a chain
Ple e aiel e g o

of normalizers in which Dx‘ is of index a prime power in Dx“‘
for each i. Thus each member of the above chain covers or av-
oids the chief factors of G and satisfies the centralizer con-
dition. Also, the prime p, dividing [D™* : D¥'| is that
appearing in the selected chief factor Xi(pi)/Yi(Pi) covered
by Dx‘; and Xi(pi), Yi(pi) centralize precisely those p;-

chief factors of G covered by Dz‘, DEin

respectively for
each 1i. We prove that if H is embedded\in G in this manner,

it is an X-normalizer of G.

THEOREM 6.3 Let H be a subgroup of G satisfying the following
three conditions .

(1) H covers or avoids each chief factor of G

(ii) the centralizer condition

(iii) there exists a prime power chain

| 5 aon & Hr = G of subgroups of G such that

H= H < H1
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(2) each H; satisfies (1) and. (ii)
(b) for each i there exists a chief factor Xi(p)/Yi(p) of
G such that Xi(p)’ Yi(p) centralize precisely those p-chief

factors of G covered by Hi’ H respectively and Hi covers

)0
Then H is an ¥-normalizer of G, where X= {X(p)} and ZX(p)

i+1

I s H,

l I

Xi(p)/Yi(p). (where p is the prime dividing |[H, ,
centralizes precisely those p-chief factors of G covered by H
£ 8.8, £ as defined in 6.2).

Proof. Let [H, : H | Dbe a power of prime p and define, for
all primes q#p, X_(q) as the intersection of the centralizers
of the g-chief factors of G covered by H, (or G if H, avoids
all the g-chief factors of G). We thus obtain, with X_(p), a
normal system X, of G such that X_(q) centralizes precisely
those gq-chief factors of G covered by H for each prime q. We
show that H, is an X -normalizer of G.

Define Y _(q) = X, (q) for all primes a#p, obtaining,
with Y,(p), a normal system Y of G. Since |H1: Holo 18 &
power of p, H1 and H, cover the same g-chief factors of G for
all primes q#p . Thus, by induction, H1 is a Y -normalizer of
G —=- say H, =(a NGCX?) , where YI= Y (d)n s and
g = { S?} is a Sylow system of G. If we now set Xg =
Xo(q)r\Sq for all primes q, we have

Q V(XD = Halg(xy) = N, (X3)
We show that H, is a conjugate of NH1(XE) and is thus an X.-
normalizer of G.

Since H, covers precisely those p-chief factors of G

centralized by X.(p), X (p)n E, centralizes all the p-chief
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factors of H,. Thus X _(p)aH <O

&% p'p(Ho) and so X (p)n H,

has a normal p-complement Q. Q is then characteristic in the
normal subgroup X (p)nH, of H, and so Q< H_,. Thus

Now ;X = { 8% } reduces into H,, the Ho—normalizer of G def-
ined by it. Hence anH1 is a p-complement of Xo(p)r\H1. But

|H1: Hol is a power of p, so Q is also a p-complement of

X (p)n H,. Hence, by Hall, Q8 = Xfr\H1 for some g €
Xo(p) nH, . Thus
T o) T g
On the other hand, H_ covers X _(p)/Y,(p) and so
RD) = (HaX (3))Y.(p) =i (HaX (p))5.T (v) .
This implies that Xf s QgXP y &lving
S 34 D
(3) NH1(Q )L NH1(X°)
since H, normalizes {?. (2) and (3) give NH1(X?) - NH1(Qg) -
( NH1(Q) )8 , and so IHO! s lD}ol e lNH,‘(Xf)l - !NI{1(Q)I .

Teus, by (1), H = NH1(Q) = ( NH1(§?) e as required.

COROLLARY. Conditions (i),(ii),(iii) of Theoremé6.3 character-

ize non-integrated ¥-normalizers.

T.0.Hawkes's example shows that (b) cannot be omitted
from (iii) in the above theorem : |
Take G as in Example 1 of [11] (page 344).' Let H =
<SYX<2Cy , the subgroup of G which is shown to cover the
central and avoid the eccentric chief factors of G but is not
a2 system norma;izer 6f 6. ‘Then ' H < <cs»X S 8. 1§

: . . 6
prime power chain connecting E to G, for | <s>X: H| =5
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B G : <s>K | =3. H certainly satisfies (i) and (ii), and
go does <s>»X as it is an X-normalizer of G for the normal
system Y= {X(p)} defined by X(2) = X(3) =G, X(5) =K.
Thus H satisfies (i),(ii) and (iii)(a) but is not a systenm

normalizer of G.

The second condition is much simpler. In the proof of
Corollaryl of Theorem4.2 we saw that if ﬁr is an ¥-normaliz-
er of G defined by Sylow system A = { S® } of @, then prsP

"\

= NG(Spr\X(p)) . i.e. D commutes with a Sylow p-complement

of G for each prime p dividing |G|. We show that if a subgroup
H which covers or avoids the chief factors of G and satisfies
the centralizer condition has this property, then it is an X~

normalizer of G.

LEMMA 6.4 Let H be a subgroup of G. Then H commutes with a
Sylow p-complement of G for each prime p dividing |G| if and
only if H is an intersection of subgroups of prime power index
san O,

Proof. Assume firstly that H commutes with the complete se?t

{ sP } of Sylow p-complements of G. Then HSP is a subgroup of
G for each prime p, and H<L = pq\GtHSp . We show that
these two subgroups are in fact equal. Suppose, if possible,
that H <1 , and let q be a prime dividing |L:H|. Then q
divides |HS? : H| = |8% : 5%nH| which is clearly impossible.
fhus H =1 and the result follows since |G : HSP?| is a pow-

er of p for each prime p.

Conversely, let H = gghsxP where |G:XP| is a power
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of p, and « < % , the set of prime divisors of [G|. Let s? ve
a p-complerment of X® and thus of G. Then x? = ngs? since
|XP: SP| is a power of p and |XP: H| is prime to p. Hence H
commutes with a Sylow p-cdmplement of G for all p €w , Let
p € nnw. Then p [ |G:H]| and so HSP = ¢ for any p-comple-

ment S¥ of G, and we are done.

LEMMA 6.5 Let H be a subgroup of prime power index in G sat-
isfying the two conditions

(i) H covers or avoids each chief factor of G

(ii) the centralizer condition.
Then H is an ¥-normalizer of G. More precisely, H is the
normalizer in G of a p-complement of the normal subgroup X(p)

defined in 6.2.

Proof. Let |G:H| be a power of prime p, say, and define X =

{X(p)} as in 6.2. Then, as we have already seen, |B| = [Dxl
Let SP be a p-complement of H and thus of G, and set XP =
SPAX(p). Then X® is in fact a p-complement of X(p)~H. Now
X(p)nH is p-nilpotent since X(p) centralizes precisely the
p-chief factors of G covered by H. Thus X® is a characteristic
subgroup of the normal subgroup X(p)nH of H and so is nor-
mal in H. Hence H < NG(XP), an ¥X-normalizer of G ( since

X(q) = Oq,q(G) for all primes g#p ). Thus H = NG(XP)-

Our second characterization of non-integrated X -normaliz-

ers follows easily from these two lemmas.

PTHECREM 6.6 Non—integrated.:E-normalizers of G can be char-
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acterized as those subgroups H of G which satisfy the follow-
ing three conditions

(1) H covers or avoids each chief factor of G

(ii) the centralizer condition

(iii) H commutes wifh a Sylow p-complement of G for each
prime p dividing |G].
Proof. Let H satisfy (i) and (ii) and commute with set I 8% }
of p-complements of G, and let X = {X(q)} be defined as in
6.,2. Then, by Lemmab.4, H = Q\HSP. We show that HS® =

N.(SPnX(p)) for each prime p, so that H is an X -normalizer

G(

of G. Since |HSP: H| 4is prime to p, HSP covers the p-

chief factors of G covered by H and avoids the remaining p-
chief factors. Also, HSP covers all g=-chief factors of G for
a#p, since |G : HSP| is a power of p. Thus HS? covers or
avoids each chief factor of G and satisfies the centralizer
condition for prime p since H does and for all other primes q#
p trivially. Let %S: {Y(q)} bve the natural normal system of
G arising from HS® as in 6.2. Then Y¥(p) = X(p). By Lemmab.5,
HSP = NG(Y(p)n sP)  and the result follows.

Since any ¥ -normalizer of G satisfies (i), (ii) and {341

the theorem is proved.

fwo characterizations of integrated X-normalizers (i.e.
¥ —normalizers for integrated normal systems ¥ ) are now
easily obtained. If ﬁx is an integrated X -normalizer it has,

in-addition, the following property :
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"The intersection of a chief series of G with D:£ is a chief

series of ﬁx with corresponding factors operator-isomorphic”.
( Theorem4.13 )

We say that if a subgroup H of G has this property, it satis-

fies the chief series condition (in G). It is this additional

condition which gives us the required characterizations.

LEMMA 6.7 Let H be a subéroup of G satisfying the three con-
ditions (i) H covers or avoids each chief factor of G.

(ii) the centralizer condition.

(iii) the chief series condition.
and let the normal system X = {X(p)} be defined as in 6.2.
Then X is integrated and HX(p) = G for each prime p.
Proof. Let K/L be a p-chief factor of G covered by H. Then
Ht\CG(K/L) = CH(K(\H/Ler) and HAK/HAL is a chief factor
of H operator-isomorphic to K/IL (by (iii) ). Thus we have
G/Cq(X/L) = HC4(K/L) / C.(K/L) with HC,(K/L) < G. Hence
G = HCG(K/L). Now (ii) shows that if K/L, /L are operator-
isomorphic chief factors of G and H covers X/L, then H also
covers K/L. Thus every chief factor of G above X(p) is cover-
ed by H. For such a chief factor is operator-isomorphic to
one above CG(K/L) for some p-chief factor K/L covered by H,
and G = HCG(K/L). Hence HX(p) = G for each prime p. X is
integrated since any g-chief factor of G éboée X(p) is covered

by H and thus centralized by X(q) for all primes p and q.

This lemma, together with Lemmaé.5, gives us a character-

ization of integrated ¥ -normalizers similar to Theoremé6.3.
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PHEOREM 6.8 Integrated X -normalizers of G can be character-

ized as those subgroups H of G which satisfy the following
four conditions

(1) H covers or avoids each chief factor of G

(ii) the centralizer condition

(iii) the chief series condition

(iv) there exists a prime power chain H=H < H <...
i < Hr = G ‘of subgroups of G such that each Hi satisfies
conditions (i),(ii) and (iii).
Proof. An integrated ¥ -normalizer ﬁk of G certainly satisfies
(1),(ii) and (iii), and is easily seen to satisfy (iv). ‘For
we can modify very slightly the process used in Theorem4 .S
(and described earlier in this chapter) to yield a chain
B " <...< e of normalizers in which every
normal system fxi is, in fact, integrated : Starting with the
normal system X , we choose normal system £, minimal with
respect to the 3 conditions 5 wip Rt T T R R T
integrated. As before, we can now select a chief factor
Xo(g)/Yo(g) covered by Dx° for some prime p. Then the normal
system Y, obtained by taking Y.(q) = X (q) Zfor all primes g
#3), together with YO(%), is integrated. Thus ﬁ%'< pd  and

we can continue in this manner until the whole group is reach-

.

ed.

Thus we assume that the subgroup H of G satisfies (i),..,
(iv). et %= {X(a)}, Y= {¥(q)} be the natural normal
systems of G arising from H,H respectively as in 6.2. Then X

>Y and, by Lemna6.7, ¥ and Y are integrated. Let [H,: H|
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be a nower of prime p. We show that H is an % nH, =-normalizer
F > i . 1

: be a chief factor of H,. Then K/L

is a chief factor of G covered by H1 . If H avoids X/L it cert-

of H1. Let K"\H1/Lr\H

ainly avoids XnH, /L nH,, and if H covers K/L we have

(Kanf\H)(L nH.l) = (KmH)(LnH1) = (KnH)L nH, = KnH,
i.e. H covers KnH1 /IJr\ILl 5 Thus H covers or avoids each
chief factor in a chief series of H1 arising by intersection
with a2 given chief series of G.

Now define normal system %= {Z2(p)} of H, as follows.
For aq#p , let Z(q) = Oq'q(H1) —ew then - 8lg) = H, NYia)
by definition of ¥(q) and (iii) for H,. Since |[H,: H| is a
power of p, Y(q) = X(q¢) for all primes q#p..Hence, for a#D,
Z(q) = H1nX(q). Let Z(p) be the intersection of the central-
izers (in H1) of the p-chief factors KnH, /LA H1 of H, cov-
ered by H in the above-mentioned chief series of H1 (or G if H
avoids all the p-chief factors of H, in this chief series ).
Then Z(p) is the intersection of H1 with the intersection of
the centralizers (in G) of the p-chief factors X/L of G cov=
ered by H in the given chief series of G. Hence z(p) =
H, 0 X(p) by the Jordan-Hélder Theorem and (ii) for H. Thus
% = TE(\H1.

We show that H satisfies the centralizer condition within
the chief series of H‘l under consideration. This is trivially
true for 211 primes q#p. Suppose, if possible, that Z(p) <
C!H1(Kr\H1 /LnH1) for some p-chief factor KnkH, /LnH1 of H,
avoided by H. Then H, nX(p) <Hn CG(K/L) where K/L is a p-
chief factor of G covered by H, but avoided by H === thus
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Y(p) < CG(K/L) . By Lermab.7, H1Y(p) = G. Hence

X(p) = X(p)f\H1Y(D) = Y(P)(H1F\X(D)) & Y(p)(H1f\CG(K/L)) =
H1Y(p) A CG(K/L) = "G(K/L) . This contradicts the fact that
E satisfies (ii), giving the required result.

Thus, in H,, H satisfies conditions (i) and (ii) of Lemma

6.5 within a given chief series of H1 and is of index a
prime power. The proof of Lemmab6.5 goes through in this sit-
uation, giving H a 5%-normalizer of H, 1i.e. an ¥XaH, -norm-
alizer of H1. By induction H1 is a %i;normalizer of G, and

thus H is an ¥ -normalizer of G by Theorem4.17. The theorem 1is

thus proved.

Our second characterization of integrated X-normalizers

is an immediate consequence of Theorem6.6 and Lemmab.7.

THEOREM 6.9 Integrated X —normalizers of G can be character-

ized as those subgroups H of G satisfying the following four
conditions

(i) H covers or avoids each chief factor of G

(ii) the centralizer condition

(iii) +the chief series condition

(iv) H commutes with a Sylow p-complement of G for each

prime p dividing |G|.
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Chanter Seven

FISCHER'S TW-NORMALIZERS AND T ~COVERING SUBGROUPS

e e e

In this final chapter we apply our methods of Chapters 3,
4 and 5 to the following even more general situation consider-
ed by B.Fischer ([5]). G is assumed to be a fixed finite sol-
uble group, /\ a non-empty finite set, and w, a set of primes
for each A€/ --- without loss of generality =%, <= , the
set of prime divisors of |G|, for each A . Then normal sub-
groups M(%,) of G are chosen, one for each NEA , forming a
set W ={ M(x,) | \€ A}. This set M takes the place of
the normal system o,\C in our theory --- we denote by WM AH
the set { M('ﬁ?‘)r\H | N €A} for H any subgroup of G, and
by NM/N the set { NM(%,)/N | A€EA } for N any normal
subgroup of G. We prove some additional properties of W =nor-
malizers and give an alternative approach to Fischer's WMe=cov-
ering subgroups.

We begin with Fischer's definition of an IW-normalizer

of G.

DEFINITION, Let s = { SP} be a Sylow system of G. Then

s™ = pO‘K sP is a Hall wk—complement of G for each AEA ,
k L

Write M™ = S™AM(x,) . for each YE€A . Then M is a Hall

%, —complement of M(=,), since M(=m,) < G. Ve call {7 | 2AEA}

the W —system of G defined by ,«1( and D%(G) = }QA NG(M‘R?‘)

the WM -system normalizer or, simply, the M —normalizer of G

defined by & .
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e.g. A={2}, =, ==nN{p} (for some prime pen), M(m,) = G.

-~

Then DM‘(G) = NG(Sp) where SD is a Sylow p-subgroup of G.

-

By P.Hall, all the 1l -systems and hence all the M-
normalizers of G are conjugate, and every 1 -normalizer
clearly contains a system normalizer of G. In addition, Fischer
shows that  ND™M@)/N = D"WN(g/w)  for any normel sub-
group N of G i.e. the "M-normalizers are homomorphism-invar-
iant. However, unlike % —normalizers, ™M -normalizers need
not cover or avoid each chief factor of G, as the following

example shows.

EXANPLE 7.1 Take G to be the primitive soluble group of order

168 mentioned on page525 of [10]. Let A= {2}, =, = {2,7}

and  M(w.) = G. Then M*» is a Sylow 3-subgroup of G with
N

normalizer of order 6. Thus P NG(an) does not cover or

avoid the minimal normal subgroup of G of order 23.

We show first of all that an W-normalizer nevertheless

covers certain chief factors of G.

THEOREM 7.2 Emt covers each p-chief factor of G which is cen-

tralized by all M(x,) with p € =,.
Proof. Let N be a minimal normal subgroup of G of order a
power of prime p, and let M(m,) € C = Ca(N) for all A such

that p € =%,. N splits into central p-chief factors in C and

thus is covered by [\aeAlﬂﬁNﬁa , since this subgroup con-
pPem
tains a system normalizer of C. Hence maeANG(M"A) >N .

*(um
19
Also, for p £ %, NS §™ < N(M™). Thus
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N < r\au\NG(mﬂ“) = D" . The result then follows by the

homomorphism—-invariance of M -normalizers.

A further contrast to the theory of ¥-normalizers
X
appears in the fact that whereas ]NG(XP) : D | is prime to p,

Mg () 2 D |

need not be prime to %, . This is due to the
fact that the same prime p may occur in several different =,,
and is easily illustrated. Take G as in Example7.1, and
let A= {3, p}, =% = 12,71 % » {2} and M(xm,) = M(xm.) =
G. Then NG(Mﬂ“) is of order 21 and NG(M“‘) is of order 6.

Hence lDM\l =3 , giving ING(MK*) : DM‘l P

We now turn to the problem of showing that W -normaliz-
ers are subabnormal in G. .Our approach is similar to that used
in Chapter4 to prove the f£7normalizers are ¥-subabnormal —--
in fact, all but one of the proofs are so similar to the corr-
esponding proofs in Chapter4 that they are only briefly
sketched. It is only in the proof that a Sylow system of G
reduces into the M-normalizer of G which it defines that a
little ingenuity is needed. For our proof of the corresponding
result for ¥ -normalizers depended on the fact that [NG(XP) :
Dx| was prime to p ( Corollary! of Theorem4,2 ) whereas we
have just seen that in the present situation [NG(Mn*) : Ifnl

need not be prime to x, .. We start with this result. i

}'

THEOREM 7.3 A Sylow system of G reduces into the M -normal-
izer of G which it defines.

Proof. Let ﬂ = { s® } be a Sylow system of G and gk =
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ggl Sp, M = S““r\M(R\) for each » €EA. We must show that
& a 3

¢ reduces into H = (\keA_NG(MR“) . Let HP? ve a p-complement

of H for each prime p dividing |G|. Now 4(p) =< M““I pew, >

is a subgroup of s® by the definition of M

, and so is a p'=-
group. By the definition of . P normalizes each M@ and thus
Z(p). Hence H®Z(p) is a p'-subgroup of G for each prime p
€ % == let T2 be a p-complement of G containing HPz(p).
Then J = { ™ } 4is a Sylow system of G reducing into H, and
there exists g € G such that J = 4% ( by P.Hall ). We
show that g € H. For 2 € A, (M) € = M(K})f\(suk)g

Mx,) n o) (SP)E = M(xy)n poh P > ', Thus (M8
=M™ for 211 2€A and so g € H. Hence SP = (PPyB for
211 pex and some h € H. Thus SPnH = (T°)PaH = (1Pam)”
= (8°)B, a p-complement of H, for each p€x i.e. A reduces

into H.

The following simple lemma takes the place of Lemma4.6.

LEMMA 7.4 NG(Mn>) is abnormal in G for each N €A ,
Proof. By definition of N™», Ny(M") = Ny(s™). A Frattini
argument shows that every subgroup of G containing NG(SKA)
and hence every subgroup of G containing NG(Mn?) is self-

normalizing, and the result follows immediately by Taunt.

1

We now consider the variation of the M -normalizers with
. Suppose, now, that &= { L(n,) | 2 EA } is another set

of normal subgroups of G with L(n,) < M(my) for each el

Then, if we write 1™ = 8™ L(m,) , we have L™= M™aL(x,)
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\ .
for all AEA and so D“S Di . As before, we say that MM,

4. are consecutive if M(nr)/L(%“) is a chief factor of G

for some mENA , and  L(my) = M(%a) Zfor all ¥3#pm . In this
W 4

case, D* = D" N (M%) = Npa (%) .

We use these ideas in the following lemma (which corresponds

to Lemma4.7).

LEMMA 7.5 Suppose that L <M are consecutive as above, the
1
chief factor M(@F)/L{EN) is covered by B avd . D% Di s

; -
Then ﬁm is an %mnDA -normalizer of D and is abnormal in

pE

Proof. Write X(=,) = M(x,) o 1 and o X = WA TE . eon
each NEMA . Since B reduces into g (Theorem7.3), K'* is
then a Hall =,-complement of K(®y). 4s in 4.7, we obtain
NDg(Kﬁ“) i NDi(M““) , using the fact that D™ covers M)/

L(%.). This gives the desired result, by LemmaT7.4.

LEMMA 7.6 If M = { M(my) | Q €A } is a set of normal sub-
gfoups of G, one for each M€ A , there exists MrENA and a
normal subgroup L(ﬁ&) of G such that M(@”)/L(qﬁ) is a chief
factor of G covered by ﬁm .

Proof. The chief factor obtained aa in 4.8 with the X(p) re-
placed by the M(w,) is centralized by all the M(m,) and is

thus covered by D using TheoremT7.2.
These last two lemmas yield the required result.

PHROREM 7.7 D is subabnormal in G.

Proof. We assume that D* < G and also, without loss of gen-
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erality, that no consecutive set d contained in WM defines
™
D . Lemma7.6 then enables us to choose a consecutive set
1<M e by Sy m
which satisfies the conditions of Lemma7.5. D is

thus abnormal in Di and the result follows, since DL is sub-

abnormal in G by induction.

We conclude this discussion of the properties of m.
normalizers with a possible definition of an M-central chief

factor and an Me-normal maximal subgroup of G.

DEFINITION. A p-chief factor of G is sald %o be M —central

if it is centralized by all M(=m,) with p€n,, and I -eccen-
tric otherwise. We then say that a maximal subgroup of G is

WM —normal if it complements an W ~central chief factor, and

A —abnormal otherwise. It is clear that when M is actually

o normal system X, these definitions reduce to those of an
% —central chief factor and an ¥-normal maximal subgroup.
Theorem7.2 can now be restated to read " fr\ covers all

the M —central chief factors of G " (in line with 4.2). This
gives us the further result

" A maximal subgroup of G containing an M —normalizer of G
is “M-abnormel in G "
However, in contrast to the theory of £ —-normalizers, the con-
verse of this result is patently false. For, ‘in Example7.1,
the maximal subgroups of order 21 complementing the WM —eccen-
tric chief factor of order 23 clearly do not contain an M-
normalizer of G. There thus seems little point in pursuing

these concepts further.
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We now turn our attention to the other conjugacy class of
subgroups obtained by Fischer in the present situation viz.
the ﬂl-covering subgroups of G. As we have already remarked,
these subgroups are defined as the limit of a certain sequence
of subgroups of G. However, before we can go into this defin-
ition in detail, we need the concept of an W-reducer of a

subgroup of G.

DEFINITION., We say that the M-system #={ M2 | 2 €A}

of G reduces into a subgroup H of G if PaH is an MaH -
system of H i.e. M*n H is a Hall w,-complement of
M(ny)n H for each AEN . This is merely an extension of
the usual definition of a Sylow system of G reducing into a
subgroup of G. Suppose, then, that the M -system ¥ of ¢
reduces into H. Then the subgroup

R?(H) =<g€G | BE reduces into H >
is called the M -reducer of H in G --- this subgroup is

easily seen to be independent of the particular ‘N -systen 1
used in the definition, since all M -systems of G are conjug-
ate. If, in particular, & is a Sylow system ;5 of G reduc-
ing into H, the subgroup .

Ry(H) =<g €@ | 3€ reduces into H >

is simply called the reducer of H in G. ;

Clearly, if a Sylow system £ of G reduces into H, then
so will the M -system defined by A and thus

™M

Re(H) 2 Ry(H) = H for any M .



RG(H) is easily shown to be abnermal in G, and hence so is
R"é‘(H). In addition, it is not difficult to see that any M -
system B of G reducing into H also reduces into every sub-
group V of G containing ﬁg(H). We give a proof of this state-
ment as an example of the methods used.

Suppose that the M -system B = { M } of G reduces
into H and is defined by Sylow system ,zg ={8?} ofa.
Choose a p-complement HP of H containing SPAnH for each
prime p. Then the Sylow system K= { HP } of H defines the
M AH -system  BaH of H. Extend X through a Sylow systen
V= { VvV’ } of V to Sylow system Y={ 2} of G. Then, by
P.Hall, J= ggg for some g € G. In fact, g € R%;(H), for
the Mosystem #° of G is defined by J and so reduces into H
with J. Thus we can write 9g w J¥ for some v €V, snd
therefore BaV = { (VV*aM(%,))7 } is an MaV -systen

of V i.e. A reduces into V.

Fischer proves, in addition, that T -reducers are homo-

morphism-invariant i.e. for any normal subgroup N of G,

RN /) = NLRM(H)/N .

G/N G

Now suppose that H is an M-normelizer D of G. Let D
normalize the Me-system R = (M} of ¢ --—— we write
D = NG(‘IS) to distinguish between the M —notrmalizers of G in
this way. Then B reduces into D since [M(m,)n D : M™nD| =
| M™ (M(%x,) A D) : M_“" | € x, for every A€A . ( In fact,
we have seen in Theorem7.3 that the Sylow system of G defining

A reduces into D.) Therefore, as we have seen above, A red-
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uces into the M-reducer of D = N(,(ﬁ) in 04+t ia this
-
fact which enables us to make the following definition of an

M -covering subgroup.

DEFINITION. (Fischer) Iet B be any M-gystem of G. We def-

ine the following sequence of subgroups inductively. Let

R=8 o D = NG(73) . Then, assuming that R, and D,

are defined, let

m n~ R;
Ri+1 - RR; (Di) and Di+1 o

N (,%ARi_H

: 21

( BARy,q is an MaR4q-system of Ry, 4, by repeated applic-
ation of the above remarks.) The Ri clearly form a descending
sequence of subgroups --- the last member of this series

( which certainly exists ) is called an ‘M -covering subgroup

Em of G.

Several interesting facts about this definition are fair-
ly easily proved. Firstly, since the same M -system B of G
is used throughout the definition, the Di form an ascending
sequence of subgroups --- the last member of this sequence
is in fact equal to Eww. This is a simple consequence of the

following lemma whose proof we sketch briefly.

LEMMA 7.8 (Fischer) ILet D = NG(15) for some MW-system B =
(4"} of @, and R = RZ‘(D). Then R =G if,and only if D =
i F

Proof. Certainly D = G implies R = G. Suppose that the
converse is false, if possible, and let G be a counterexample

of minimal order. Then D<G eand R =G . By the homomor-
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phism-invariance of MW -reducers and M-normalizers, and the
definition of G, ND = G for any minimal normal subgroup N of
G. Thus D is maximal in G --—- let [G:D| = p%. Then, for p £

% M™< G ., On the other hand, if p€x, , M‘R"f D. For other-

% ¢
wise we would have [M™ : 1" D| divisible by p€x,, contrad-
icting the definition of M'™. We show that this implies R =

D, giving the required contradiction. Suppose B8 reduces in-
%0 G for some g € G . Then fA®nD = f3aD , the unique

M AD -system of D 1i.e. (M2 )8 A D = N"*A D for each 2cd,

a

Thus, for pEx,, (M™)8AD = M giving (M™)€ = M Since

this relation is trivially true for p £ %, we have g €

NG(ﬁS) =D and the result follows.

Suppose, then, that the sequence of Ri terminates at the
j-th place. i.e. Ry =Ry = E" . Application of this lemma
to Rj then yields Dj = Rj’
the W-covering subgroup E’m . TOUS E% , being equal to Dj’

and so both sequences converge 1o

is its own MAE" —normalizer.

Secondly, using induction on i, it is a gsimple matter to
verify that in fact R, 4 = RTE(D]._) for each i. This shows
immediately that E%= Rj is abnormal in G.

Two further properties to be expected of W —covering
subgroups viz. conjugacy and homomorphism-invariance follow
straight fi'om the definition. For each M-system B of G
gives rise to a single MM -covering subgroup of G. All the -

systems of G are conjugate, and it is easily verified that the

sequence obtained by using R in the above definition is sinm-



100
ply RS, Rf,... . It is therefore clear that all the W-cov-
ering subgroups of G are conjugate. The homomorphism-invar-
jance of both M-normalizers and M-reducers shows that -
covering subgroups are also invariant under homomorphisms.

Fischer now proves the deeper result that.an M—covering
subgroup of G is an MWMnV —covering subgroup of any subgroup
V of G in which it is contained. This result enables him to
'show that an Mh-covering subgroup E" of G satisfies the foll-

owing two conditions

('S

)
7.9 { (i) EM is its own ‘hh«Ek -normalizer
(11) If E <F<G, FEJF and F/F is ite own

F, (" a F) /F, -normalizer, then émF; =P,

For, in (ii), we can assume by induction that F = G. Then
G/F, = NG/FG(F°B/F°) = FONG(%) IR for any M -system 13
of G. The result then follows since B No(#B) = D,.

It is this property of M —covering subgroups which forms
our starting point. For in the special case of M a normal
system % of G, these two conditions are easily seen to be the
defining conditions of an ¥ -covering subgroup of G. We there-
fore use 7.9 as our definition of an M =covering subgroup E‘M
of G. Our methods of Chapter5, applied to this more general
situation, then enable us to show that these subgroups do
indeed exist and are conjugate and invariant under homomorph-
isms. It is clear that once our ‘h-covering subgroups are
proved conjugate, they coincide with those of Fischer, giving

an alternative approach to the whole situation. However, we
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cive an additional proof of this fact by showing that our M-
covering subgroups do indeed satisfy Fischer's definition.

Our Tirst step is to define a set " corresponding to

iy

the set ¥ defined in Chapter 3. Rather than bring in the con-

cept of M —central chief factors, we use the form of X given

in Lemma3.2(v).

DEFINITION., ILet ™M be the set consisting of sections H/K of

G in which K(HnaM(w,))/K has a normal Hall w,-complement

for each NEN .

Then MM, like ¥ , is defined entirely within G and
clearly has just the same disadvantage as X viz., it is not
olosed under isomorphism within G (Example3.1). However, in
the following lemma we show that in spite of the added gener-
ality, ™m , like ¥ , satisfies properties analogous to those
of a saturated formation. It is this fact which enables us to

adapt the proofs in Chapter 5 to the present situation.

LEMMA 7.10 Let H be a subgroup of G. Then

(1) B/EEM, X< K, <H implies H/K,€ W

(1i) H/K,, H/K, € "o implies H/KnK, € M, and thus
H has an M -residual H'h-" g

(ii1) H €M if and only if H/$(H) € flR ;

(iv) HEM™M, K<H . implies K €T ,

(v) E/K € ™ if end only if H/K is its own K(Wm~H)/K -
normalizer.

Proof. (i) Since H/K € M, K(M(n,)n H)/K has a normal Hall
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%, —complement Q"*/K for each dEA . Thus KNM(?LQ(\H)/K1

A
has a normal Hall x,-complement K1Q“’\/K1 for each “EN |
and so H/K, A U

(ii) We first prove the following general result for a
finite soluble group G :

B G/N1 and G/N2 have normal Hall n-complements for
some set of primes m, then so does G/N1r\N2. "

Let Qi/Ni be the normal Hall m-complement- of G/Ni (1=
1,2). Then Q1N2/N1N2, Q2N1/N1N2 are normal Hall n-comple-
ments of G/N1N2 and so, by Hall, Q,N, = Q,N, . We show
that Qf\Q2/N1nN2 is a Hall n-complement of G/N1«'\N2 and

the result then follows.

|6 2 QnQyl = |62 Q.19 Q] = |6 ¢ Q].1QQy: Q] € n
and [QNQ, : NynN,| = QN Qy ¢ QoaNy| |QnN, : NAN,| .
Since Q,N, = Q.N,, N2(Q1K\Q2) = N,QnQ, =Q, so that
QA Qy : QA N,| = [Qy : Fy| € ®'. Also, QA Ny ¢ NoAN,|
= |Qn NN, : N, | € =",

The proof of (ii) now follows easily. For each AN we
have Ni(M(na)r\H)/Ni with a normal Hall m,-complement (i=1,
2). Thus M(w,)nH / M(n,) ~EnN; has a normal Hall =,-com-
plement for each A €A , i=1,2. Hence M(n)nH/
M(ny)An HaN, AN, has a normal Hall n,~complement, and thus
so does (N1r\NZ)(M(nX)}\H)/(N1r\N2) for e;ch AEN , a8
was required.

(iii) Assume that H/F(H) € WM. Then ‘ H/‘dﬁa(H) € M
for a1l A €A . Thus, for each AEN , '
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gﬁa(H)(I.‘I('JLA)(\H)/,@YRS}D < O?L\.““(H/ﬁﬂk(li)) = O"C;“a(H)/ﬁuiH)

( Lemmal.4 ). Hence M(%})r\H =0 (H) and so has a

2 i
normal Hall nk—complement, for each '52 ;.. Thus H € MW .
The converse follows immediately from (i).

(iv) Choose Hall %, —complements R™ Q™ of M(m,) n K,
M(ﬁa)n H respectively such that QA K = R™ for each A€
A. Then HEM implies Q™ < HaM(%,) and so R™ <
KnaM(w,) for each A€/N., Hence KEMm,

(v) is obvious, and the lemma is proved.

We also note that although YW need not be closed under
every isomorphism within the group, it is, like'i , closed un-
der a certain type of isomorphism within G  viz. the isomor-
phism ¢ : H/K = f/k where HK =H<G and HnK =K. For
in this situation, H/E € ™™  inmplies that K(HnM(m,))/K
and hence K(ﬁr\M(x%))/K has & normal Hall m,-complement for
cach A€A . Since K(HnN(mny))/K = X(EnM(z,))/K , this
yields ﬁ/K € " . This fact will be used frequently in the
sequel.

Lemma7.10(v) enables us to restate our definition of an

M =covering subgroup as follows.

m :
DEFINITION, We say that E is an ‘W —covering subgroup of G

I‘ —
i (1) BreMm :

Rl 7y
(1) E*<P<G, F<F and F/EEM = E'E =P

This definition of an IM-covering subgroup yields immed-

iately the following properties of Mm-covering subgroups -—-=



104

we omit the nroofs as they follow so closely along the lines

of the corresponding statements in Lemmas5.1 and 5.2.

LEMMA 7.11 Let E be an Me—covering subgroup of G. Then

(i) E<H<G implies E is an ‘WMnH -covering subgroup of H
(1i) B® is an M-covering subgroup of G for all g € G
(1iii) E is abnormal in G

(iv) If NB/NE WM for N<G, then NE/N is an NWM/N -
covering subgroup of G/N -—- +this is certainly the case if

N<E.

IEMMA 7.12 If M is a maximal subgroup of G satisfying M €M

and G/CoreM g M , then M is an T-covering subgroup of G.

Here, too, since WM is not isomorphism-closed, Lemma7.11
(iv) does not at once yield the homomorphism-invariance of M
-covering subgroups. We also have to apprcach the existence of
these subgroups by the less straightforward means of so-called
M —crucial maximal chains. As in Chapter 5, we first prove
t+he homomorphism-invariance of M~covering subgroups, obtain-

ing the conjugacy as an immediate corollary.

THROREM 7.13 If E is an M-covering subgroup of G, then NE/N

is an NWM/N -covering subgroup of G/N for any NG,

Proof. By Lemma7.11(iv), it is sufficient %o prove that NIZ/N
e'ﬁl - Suppose this is not the case and let G be a counter-
example of minimal order. Then there exists M= {M(%,) [2eA}

an M-covering subgroup E and a normal subgroup N of G such

that NE/N £ ™ . Since EE€M, N>1 . Let N, be a min-
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imal normal subgroup of G contained in N. Then, as in Theorem
5.3, N,E=G . Hence E is maximal in G and G/N, ¢ Tw. Thus
there exists Y €A  such that N,M(wn,)/N, does not have a
normal Hall =, ~complement. Now E €M implies M(7,)n B
has a normal Hall ﬂk—complemen't, and thus so does
N, (M(n,)n E)/N, . Thus we must have M(n,) £ B and also
N, £ M(%,), since N < M(m,) would imply N, (M(m, ) B) =
M(%,) n N E = M(x,) . Therefore

(a) == M(u,)E =G . since B is meximal in G, and

EB) et M('xr,‘ JaN, =1 since N > M(x,)n N, eand
M(%,)AaN <G . Hence
(¢) == M(m)nE = (M(my) A B) (M(%,) 0 Ny) = M(x,) o (M(m, ) a E)XN,
and so is normal in G. Since E < G, the definition of E gives

(8) == G/(M(na)n B) £ M,

As in Theorem5.3, we show that G/M(=%,) and G/ (M(n,) n B)N,
both lie in ™ , giving a contradiction to (d) by (c) and
Lemma7.10(ii).

E/(M(m,)nE) is an (M(n,) A E)M/(M(n,) n E) —covering sub-
group of G/(M(n,)AE), by Lemma7.1! (iv). . In addition,
M(x,)aE >1 ., For M(m)nE =1 dimplies that M(x,) is a
minimal normal subgroup of G. M(=m,) thus posses a normal Hall
m, —complement and hence so does N, M(%,) /N, --- a contradict-
ion. We can thus apply induction to G/(M(wy)n E), obtaining
6/M(n,) € ™ and G/(M(x,) nE)N, € ™M as required. This

final contradiction proves the theoren.

THEOREM 7.14 Any two M —covering subgroups of G are conjug-
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ate.
Proof. The proof uses the argument of Theorem5.4 with X

replaced by M.

With these two properties of MWM—covering subgroups
behind us, we go on to obtain the q%—covering subgroups as

terminal members of M=-crucial maximal chains.

DEFINITION, We say that the maximal subgroup M of G is m

crucisl if (i) G/N € T

(ii) G/CoreM £ M
——— where N/CoreM is the unique minimal normal subgroup of
G/CoreM. This definition is clearly a simple extension of the
concept of an ¥-crucial maximal subgroup (and an M-crucial
maximal subgroup will certainly be M-abnormal). The chain
Hom 8. < H1 o L e Hr = G of subgroups is called an

M —crucial maximal chain if Hi is an W%J\Hi+1 -crucial max-—

imal subgroup of Hi+1 for each i.
We give several equivalent conditions for a maximal sub-
group to be MMa-crucial and then show that M-crucial sub-

groups always exist whenever G i T .

LEMMA 7.15 The following three statements are equivalent

(i) M is an T -crucial maximal subgroup qf G

(ii) dﬁ'/ G™aM is a chief factor of G

(1i1) M complements a chief factor H/K of G with G/H € Th
and G/K € M

Proof. We first prove that (i) and (ii) are equivalent. Let M
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; ™ W Y
be M-crucial. Then G <N and so G AM=G nCoreM JG.

g T g 3 Vv W, A -
Purther, G & CoreM and hence MG =G . G /G nM is
thus a chief factor since M is maximal in G. Conversely, if

G&;/ @™ aM is a chief factor of G, then dmn M= dﬂ?\CoreM
and N = G’Wt CoreM . Thus G/N € M , Now GG ¥ G ™M ¢ M
by the definition of Gﬁ;. This implies that  G/CoreM £ T
by Lemma7.10(ii), since éﬁr\CoreM = dmer A

A similar proof shows that (iii) implies (i). Thus, since
(1) implies (iii) trivially, these two conditions are also

equivalent and the lemma 1s proved.

IEMMA 7.16 If G £ M it possesses an “MM-crucial maximal

subgroup. Thus G £ Tw implies that G has an M=crucial
maximal chain whose terminal member lies in ™,

Proof. As in Lemma5.6, this proof relies on the fact that T
is Frattini-closed. Gﬁ'>-1 so we can choose a chief factor
g™ /K of G, Then G/X £ W and so, by Lemma7.10(iii), there
exists a maximal subgroup M of G complementing G&;/K ., M is

M -crucial by LemmaT.15.

We prove that the terminal member of an M =crucial max-
imal chain is an “M-covering subgroup of G by showing that an
YW AM —covering subgroup of an M-crucial maximel subgroup M
of G is, in fact, an Y-covering subgroup of* G. The crux of
the proof lies in the following lemma which corresponds to

Lemmab5.7.

TEMMA 7.17 Let E be an MaM -covering subgroup of the T -
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erucial maximal subgroup M of G. Then, if E<PLG and
F£M, F/FaCoreM £ M .

Proof. We only give a brief sketch of this proof, apart from
the section which deviates slightly from the proof of Lemmab5.7.
We assume the lemma to be false, and let G be a counterexample
of minimal order and P a subgroup of G maximal with respect
%o the conditions E<F<G, F£ZM and P/FnCoreM € W ,
Then, as in 5.7,

(1) === FCoreM = G and F¢ =6
and F is maximal in G. Since G/Corel £ ™ , there exists
some A €A such that M(m,)CoreM /CoreM does not have a
normal Hall na-complement. On the other hand, F/Fn CorelM € Tn
implies that (¥ M(x,))(F nCorelM)/(Fn CoreM) and hence
(F a M(3,) )CoreM /CoreM has a normal Hall w,-complement. Thus

(2) =—- M(x,)CoreM # (FaMN(x,))CoreM
and so M(x,) £ F . Therefore, since F is maximal in G,

(3) ——- FM(x,) =G .
(2) also enables us to show that F( M(%,) o Corel ) =F .
For, suppose, if possible, that F(M(=m,)a CoreM) = G ( F is

maximal in G ). This would imply that

il

M(na) = (M(Ra)(\F)(M(ﬁk)n CoreM) and hence  M(m,)CoreM
(M(x,) o F)CoreM , contradicting (2). Thus F(M(m,) A Corel) =
F and so  FaCorel = (Fn CoreM)M(m,) A CoreM which is nor-
mal in G by (3).

Now, setting G* = G/Fn CoreM , F* = F/Fo Corell ete.
and & = (PaCoreM)n/(F nCoreM) , we obtain F* €d , F#

maximal in G* and G*/CoreF* ¢ 4 as in 5.7. Lemma7.12 then
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vields F* an 4 -covering subgroup of G* and so G*/(Corel)* €

i by the homomorphism-invariance of L -covering subgroups.

i.e. G/Corel € M , the required contradiction.

The proof of the following theorem now follows immediate-

ly along the lines of 5.8.

THEOREM 7.18 An MaM -covering subgroup of an M -crucial

maximal subgroup M of G is an ‘M ~covering subgroup of G.
COROLLARY. MW —covering subgroups of G always exist.

The following characterization of M-covering subgroups

is now easily proved using the conjugacy of Iwh=-covering sub-

groups.

THEOREM 7.19 The M —covering subgroups of G are the terminal

members of the M ~crucial maximal chains of G.

Our concluding results concern the relationships between
MW -covering subgroups and M —normalizers and the Ih-reduc-
ers of both these subgroups. Suppose that £ is a Sylow sys-
tem of G reducing into the M —covering subgroup E of G and
defining the M-system 1 of G. We show that

™ M
Bie B BB < RD), where D= N.(B) .

- G il G
It is then easily seen that E 1is indeed the Ximit of a
sequence of subgroups of the type described by Fischer. Ve
begin by proving the first of the above inequalities --- oOUr
methéd of proof was inspired by the corresponding theorem for

¥ —covering subgroups and ¥ _normalizers, due to AMann([14]).
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THEOREM 7.20 Let the Sylow system ;g = {Sp} of G reduce in-

to the qh—covering subgroup E of G and define the M -systen
B = { M= M(x,)n S"} of G. Then N.(#) <E .

Proof. Write D = NG(¢5) = AQE\ NG(Mﬂ“) s We use induction

on |G]. If E =G there is nothing to prove; so we can ass-
ume that E <G and thus that G £ A% Tet N be a mininmsl
normal subgroup of G. Then NE/N is an NW/N -covering sub-
group of G/N and NJ&/N is a Sylow system of G/N reducing
into NE/N . Hence, by induction,

(e NG/N( NS™*/W a NM(%)/N ) < NB/N .
Now NS™/N A NM(m,)/N = NMA/N, so

Wy s O R G OTA S AN 1 /T /N) < WE/N

Hence D<INE —— (1).

Now E is an "WMnNE —covering subgroup of NE and %r\NE
2 Sylow system of NE ( Corollary2.8 of [1] ) reducing into E

Thus, if NE <G , we get by induction

5 : R ;
2 Np(M**n ¥B) < E, since {M"*n NE} is the
M NE -system defined by £ NE. Then, using (1),
= T Toa Ta \ 3
D o= D, o (0% < () ) NpWha ¥8) =< &,

as required.

We can thus assume that NE = G for all minimal normal
subgroups N of G, Then E is a maximal subgroup of G , and
CoreE =1 . Let N be the unique minimal norﬁél subgroup of G,
of order p- say. Then either M(m,) =1 or M(n,) 2 N for
each Y €A , Since M(w,) =1 implies M™< G , we have

D = nke/& Ng(m") .

MCTA % N

Furthermore, since G/N = NE/N € fﬁ., M(%,)/N has a normal
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Hall-n,-complement for all ® € /A -~ +this is then a normal
Hall xﬁ-complemen‘t of M(n?‘) for all A with p ¢ Ky Thus,
in fact,

ach
(2) === D = m{wmzn NG(MM‘) "
PE ™
Now since ;_y) reduces into E, we must have 8P < I and thus

S™<E for all ) with p € %x,. Hence, for p € %,, M™ <

= a2
M(%,)nE and so is a Hall 7%, -complement of M(w,)n E. Thus
N*<E since EE€TW  and so N (M™) =E or G for péx,.
But G ¢ M , so we cannot have Ny(M™) =G for all A with
p€x, as this would imply D =G . Thus, for some A with »p
£ =, NG(M“?\) =5 and then D<ZE by (2), and the

theorem is proved.

LEMMA 7.21 RZ_‘(E) < RE(D) in the notation of Theorem?7.20.

Proof. Since 4 reduces into E and E € M, BAE is the

unique MAnE -system of E. Suppose that D€ reduces into E
for some g € G. Then MRENE = BAE and so BEAD = BAD,
the unique M AD -system of D. i.e. g € Igg(D) , &iving the

required result.

n
LEMMA 7.22 RGL(E) = E for any M -covering subgroup E of G.

Proof. We use induction on |G|. There is nothing to prove if
E=G, since E < I%(E) . We thus assume that E <G and

let N be a minimal normal subgroup of G. Theén, by induction,

NN M n
-y e N o A B = : ”) .
NE/N = RG/N (NE/N) = N.RG(.&)/N and so NE = N RG(I:.)
If NE<G, we can again use induction to obtain

MmaANE T m |
E= Ry (B) = RG\(E) as required (since RG\(E) < NE ).



112
We thus assume that NE = G and so E is maximal in G. There-
fore ﬁE(E) =G or E . Suppose, if possible, that ﬁg(E) = G
Then, by Lemma7.21, ﬁE(D) = G where D is the M —normalizer
of G defined by a Sylow system of G which reduces into E.

Therefore, by Lemma7.8, D = G, contradicting D<E<G.

M
Thus RG(E) = E and the lemma is proved.

Finally, let ® be the M-system of G defined by a Sylow
system ;K of G which reduces into a given WM -covering sub-
group E of G. Define, as before, R, =G, D, = N.(®) , and

M ARy

recursively, R, , = RR; (Di) y - Belyim NR;H (B A Ri+1)

a0y ) o, It is now a simple matter to show that this seq-
uence converges to E. For, by Theorem7.20 and Lemma7.21, D, <
E<R,. J reduces into D, (Theorem7.3) and so into R, 2
RG(DO), yielding a Sylow system ,Ar\R1 of R, which reduces
into the WWr\R1 -covering subgroup E of R1 and defines the
TwrvR1 -system 1%nR1 of R1. Applying 7.20 and 7.21 to R1 we
then obtain D1 < B < R2, and we can continue this process,
obtaining in gemeral D, <ESR, ., (i=o1,.. ). If D =
E then Ri+1 = E , by Lenma7.22 ; and if Ri+1 = E then

D,

i+1
the sequence and hence is an ‘M-covering subgroup in Fischer's

=E , since E € W ., This proves that E is the limit of

sense,
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