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Abstract

In this dissertation we investigate two questions
arising from Carter and Hawkes's generalization of P.Hall's
theory of system normalizers to a theory of ~-normalizers
(i.e. normalizers of ~-systems) of a finite soluble group,
wher-e Jt is a saturated fornation defined locally by an
integrated set of formations {yep)}. lThe ~-normalizers of
a finite soluble group, J. Algebra 5 (1967), 175-202J. We
first show that if, in addition, each formation ~(p) is
subgroup-closed, then the whole of Carter's invariant theory
[Chapter 2 of Nilpotent self-normalizing subgroups and sys-
tem normalizers, Proc. London Math. Soc. (3) 12 (1962),
535-563.J can be extended to a theory of ~-invariants of a
finite soluble group the subgroup-closure of ~p) is
needed to enable us to define the concept of an 1-system
of the group reducing into a subgroup.

The remainder of the thesis is concerned with general-
izations of Carter and Hawkes's theory. We choose, instead
of the )\p)-residual, an arbitrary normal subgroup X(p) of
the finite soluble group G for each prime p dividing the
order of G, forming a normal system X = {X(p)} of G.
Then, from each Sylo't.,rsystem J> of G, we obtain an X-system
of G by intersecting X(p) Hith the Syloi.,rp-complement of G
appearing in ; -- the normalizers of the 3C-systems of G

.are called J(-normalizers o~ the group. We show that these
subgroups satisfy many of the properties satisfied by ~-



normalizers; however, they do not satisfy all'the properties
of :f-normalizers unless I is a so-called integrated normal
system of G. \'Ie use the fact that the !-normalizers cover
or avoid each chief factor of the group as a basis for sev-
eral characterizations of X-normalizers, both for non-
integrated and integrated normal systems ,t. We now assoc-
iate with each normal system Jt of G a further conjugacy
class of subgroups, the X-covering subgroups of the group,
which possess properties similar to those of J-covering
subgroups and are related to the Je-normalizers. However,
when the X(p) are chosen in such a way that the !-normal-
izers become }-normalizers, the Jt-covering subgroups need
not coincide with the J-covering subgroups. Nevertheless,
most of Carter and Hawkes's results are paralleled in the
present situation.

In our final chapter we apply our methods to B.Fischers
even more general situation. [Pronormal subgroups in finite
soluble groups, To appear. ] He considers sets 11t = {M(1t,,)
I ~ cA}, where the M(~~) are normal subgroups of the
finite soluble group G, one for each t. in the finite set A ~

and the 1t~ are sets of primes, rather than just single dis-
tinct primes as in a normal system JE. He then obtains an
~-system from each Sylow system ,g of G by intersecting
'M(~(\)vlith the Hall 'It,,,-complement of G appearing in ). He
develops several properties of the normalizers of ~t-systems
__ '11t-normalizers -- and defines 'h1. -covering subgroups as
limits of a certain type of sequence of subgroups. The ~-



covering subgroups, too, have properties similar to those of

f-covering subgroups and are related to the 11t-normalizers.

Furthermore, in the special case of 11\, a normal system :Y,
the 1vv -covering subgroups are the X -covering subgroups.

Using our 1:-theory methods in this situation, we obtain

further properties of11t -normalizers and give an al terna t-

ive approach to the ~1l-covering subgroups.
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INTRODUCTION

This dissertation arises primarily from the work of R.\f.
Carter and T.O.Hawkes on a generalization of P.Hall's theory
of system normalizers of a finite soluble group ([4J). In
this paper they defined the }-normal~zers of a finite sol-
uble group for any saturated formation} ( [7J,[8J), the

.'

only restriction imposed being that the system of formations
{:f«p)} defining} locally ([7J,[13J) should be integrated
i.e. each formation ~ (p) should be contained in j. This
type of local definition of jot enabled them to introduce the
concept of an j -central ( j -eccentric) chief factor of G,
a concept depending only on } and reducing to that of a
central (eccentric) chief factor when ') is the ,'lASt of nil-
potent groups. Suppose that G(p) is the j(p)-residualof
G i.e. the smallest normal subgroup of G with factor group
in the formation j(p), and ~ = {SP} is the Sylow system
of G defined by the complete set of p-complements sP of G.
The set {Sp~ G(p)} is called an j-system and its normal-
izer an )-normalizer of the group G --- ~hese subgroups

"1. d~$specialize to the system normalizers of G when S is the ~
of nilpotent groups.

Carter and Hawkes proved that the f-normalizers satis-
fied properties similar to those of system normalizers viz.
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they lie in ~, are conjugate, invariant under ho~omorphisms
of the group, cover the f -central chief factors and avoid
the )-eccentric chief factors of the group and can be ch~r-
acterized by means of the maximal chains of subgroups joining
them to the group. Furthermore, the intersection of a chief
series of G with an ) -normalizer is a chief series of the
!-normalizer. Carter and Hawkes then went on to show that
the relationship between the system normalizers and Carter
subgroups (i.e. nilpotent self-normalizing subgroups, [2J )
of the group is paralleled by a relation bet....,een the } -norm-
_alizers and W.Gaschutz's )-coverine subgroups ([7J) viz.
every j -normalizer of G is contained in an :}-covering sub-
group of the group, and vice versa. In fact, when G is an
extension of a nilpotent group by a group in the formation ~,
the '}-normalizers and } -covering subgroups of G coincide.

Two questions arise from this generalization. The first
concerns R.W.Carter's theory of invariants developed in [3].
Carter let X be any subgroup of a finite soluble group G and
considered four different types of factor occurring in an X-
composition series of G i.e. a series of subgroups of G in
which each member is normalized by X and no further terms can
be inserted. The product of the orders of ~e factors of the
same type in a given X-composition series was in each case
found to be independent of the series chosen, yielding four
invariants z(X), IN(X), z 0 (X) and ~/X) associated with X.
His interpretations of the last two of these invariants show
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that the Carter subgroups E of G may be characterized by the
equations u:r(E) = 1, z (E) = 1. They also involve a result

o

on the number of Sylow systems of G reducine into a maximal
chain from X to G this result is considerably simplified
when X is a system normalizer of G. We ask whether this
theory can be extended to a theory of i-invariants, where J-
is a saturated formation. Vie show that this is indeed poss-
ible provided that all the formations occurring in the integ-
rated system {)(p) } which defi'nes } locally are subgroup-
closed. .J

Vie now ask whether Carter and Hawkes's .}-normalizers
themselves can be generalized. We have seen that their def-
inition involves choosing a certain normal subgroup of the
group associated with each prime divisor of the order of the
group. Proceeding a stage further, suppose that we choose an
arbitrary normal subgroup X(p) of the finite soluble group G
for each prime p dividing the order of G, obtaining a so-
called normal system I = {X(p)} of G. We can then form an
l-system in the same way as Carter and Hawkes obtained an .~-
system, and we are interested in knowing whether the normal-
izers of the .x -systems the.I -normalizers of G
satisfy properties similar to those of :}-normalizers. vIe•
show that for any normal system 1. , the :r -normalizers do
indeed satisfy most of the properties of ) -normalizers. How-
ever, they do not satisfy all the properties of ]< -normalizers
'unless Jc is a so-called integrated normal system. An example
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of this type of normal system is the case when all X(p) are
the same normal suberoup the ±: -normalizers then become
P.Hall's relative system normalizers ([10]).

Having developed a satisfactory theory of £-normalizers,
it seemed reasonable to seek a further conjugacy class of
subgroups depending on the normal system X which would play
the role of 'the :1-covering subgroups in Carter and Hawkes's
theory. This search was successful --- we show that for any
normal system JC of a finite soluble group, one can define
and prove the existence of a new conjugacy class of subgroups,
the l-covering subgroups of the group. These subgroups
possess properties similar to those of the ~-covering sub-
groups and are related to the X -normalizers. Nevertheless,
these 1. -covering subgroups need not coincide with the }-
covering subgroups when we choose the normal system 1 in
such a way that the X-normalizers become f-normalizers for
a saturated formation Y.

B.Fischer, too, considered the possibility of generaliz-
ing Carter and Hawkes's 'theory. Working independently, he
'vent even further by investigating sets 1Y\. =' {M('1t.J I '). ei\}
in a finite soluble group, where the M(n~) are arbitrary
normal subgroups of the group, one for each "element }. of the
finite set 1\, and the '1t~ are sets of primes rather than
just single distinct primes as in a.nor~al, system ([5]). From
.each Sylow system ~ of the group he obtained an l~l-system



5

by intersecting M(TC,,)with the Hall TC},-complementappearing
in 1> for each ';\E. 1\. The normalizers of the in -systems

the 1I'l-normalizers of the group were then shown to
be conjugate and homomorphism-invariant, though not necessar-
ily covering or avoiding every chief factor of the group.

,Then, inspired by Carters method of obtaining the Carter sub-
groups of A-groups as limits of certain sequences of sub-
groups ( [3J, page 548), he developed a process yielding a
further conjugacy class of subgroups, the m -covering sub-
groups of the group. Surprisingly enough, these turned out
to be the :r -covering subgroups in the special case of 1l\.. a
normal system X of the group. This discovery led us to
apply our methods to Fischer's more general situation, with
great success. We prove further properties of ~\-normalizers

in particular that they are subabriormal subgroups -- and
give an alternative approach to his 1'vt -covering subgroups.

Chapter one contains a section on notation and terminol-
ogy followed by a summary of well-known results assumed in
the main body of the dissertation. In addition, using the
methods of Gaschutz ([6J), we extend a result of Carter and
Hawkes on p-Frattini theory ([4J, pages 179-180 ) to the case
of a set of primes a:1 rather than just a single prime p
this result is used in chapter aeven ,

In chapter two we develop our theory of }-invariants,
'where ) is.a saturated formation defined locally by an int-
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egrated system of subgroup-closed formations {)(p)}. We let
X be any subgroup of the finite soluble group G and divide
the X-composition factors of G into four types by defining )-,

central and Y-eccentric X-composition factors. Here, too,
the product of the orders of all the factors of the same type
in a given X-composition series of G is independent of the
series chosen, yielding four invariants zJ(X), w)(X), ;~(X),o

associated with X
} ~

z (X). I.O(X) = lxi,
which satisfy the relations

jr ~zo(X).Li:i,,(X)= IG : x] •
zJ.(X) is the ,.,'j.(-centralorder of X i.e. the product of the
orders of the ')-central chief factors in a given chief
series of X, and arjL(x) is the number- of distint }-systems
of X. The condition that all )(p) should be subgroup-closed
ensures that we can define the concept of an )-system of G

reducing into a subgroup of G. ivethen determine the number
of :f-systems of G reducing into a maximal chain fo joining
X to G this becomes simply the product of the indices of
the }-normal links (L 4 J, page 179) in fb in the special case
of X an
z~(X) is the largest value taken by the product of the ind-
o

ices of the J-normal links in .k as fo

:f-normalizer of G. It also enables us to show that

possible maximal chains .from X to G,
the total number of 'J -systems of G

runs through all
}and that wo(X) equals

divided by the number
reducing into X. The ~-covering subgroups E of G are seen
to be characterized by the equations ~~(E) = 1, z~(E) = 1.o

Chapter three introduces the basic concepts used in·the
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following three chapter~. Having defined a normal system r
of the finite soluble group G, we bring in the closely relat~
ed concepts of an l'-central (X -eccentric) chief factor and
an l-normal ( .x -abnormal) maximal subgroup of G. This en-
ables us to define a set X of sections of G (i.e. factor
groups of subgroups of G) which in a way takes the place of
the formation } in Carter and Ha.wkes's theory, and thus
plays an important part in the sequel. ) and X clearly
differ in that '} is an isomorphism class whereas the set ?C
is defined entirely \.,.ithin the given group G; in fact X is
not even closed under isomorphisms within G. However, we show
that X satisfies properties analogous to those of a satur-
ated forII:1ation.

The properties of the X -normalizers of a finite soluble
group G are investigated in chapter four. We show that these
subgroups are homomorphism-invariant, conjugate, cover ~he
l:-central and avoid the 1.-eccentric chief factors of G ;
furthermore, they lie in ~ and are minimal members of the
set of so-called ~-subabnormal subgroups of G. An arbitrary
maximal subgroup of G contains an X-normalizer of G if and
only if it is .:c -abnormal; in fact an X" M -normalizer of
an Js-abnormal maximal subgroup M of G alw~ys contains an
.x -normalizer of G (where ~ 1"\ M is the normal system of M
obtained by intersecting-each element of.1 with M), and
these two subgroups will be eq~al if M is a so-called )S-
critical maximal subgroup of G. However, in contrast to the
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theory of }-normalizers, it is possible to have G not in .t
and yet possessing no X-critical maximal subgroup. Thus we
cannot in general obtain every .r -normalizer as the terminal
member of an 1-critical maximal chain. There are two further
differences between 1- and Ja-normalizers viz. a chief
series of G need not intersect an 3S-normalizer D of G in a
chief series of D, nor need a 'lJf\D -normalizer of an ~-
normalizer D of G be a '11 -normalizer of G (where 'LJ- is an-
other normal system of G). However, all these differences
fall away if we assume that our normal systems are integrated

The·first part of chapter five is concerned with the
existence and main properties of the JE-covering subgroups of
the finite soluble group G. Following the definition of an
f-covering subgroup of G (see [4J, page 190), we define an
J(-covering subgroup of G to be a subgroup E satisfying the
conditions (i) E e i .

(ii) E covers every section FIFo of G such that
FIFo e:t. and F contains E.
Then, in spite of the fact that JE is not isomorphism-closed,
we are able to show that these subgroups, if they exist, are
abnormal·in G, homomorphism-invariant and conjugate. We prove
that the X -covering subgroups of G always exd.st by exhibit-
ing them as the terminal members of so-called J(-crucial max-
imal chains of G. In the remainder of the chapter, the rel~
ation between the !-covering subgroups and the :t-normaliz-
ers of G is discussed and further properties of the former
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are developed. We first prove that every :t-covering subgroup
of G contains an Je-normalizer lof G and vice versa. This
result enables us to characterize the X-covering subgroups
of G along the lines of Lemma5.1 of l4J ; to determine which
E-composition factors of G will be covered by the X-covering
subgroup E of G and whd.ch avoided (as in Lemma5. 2 of [4 J) ;
and to give a necessary and sufficient condition for an t-
normalizer t.o be an X-covering subgroup of G. In the special
case in which the factor group of G by its Fitting group is
in X , the 1: -covering subgroups and l-normalizers of G
coincide and the :t-normalizers are precisely those subgroups
of G which cover the X -central and avoid the ::£. -eccentric
chief factors; several other results of Carter and Hawkes on
~} -groups ([4J, chapter 5) also carryover into this sit-
uation with only slight modification. Our study of this
special case enables us to relate the X-covering subgroups
of G to those of certain subgroups of G as follows. Let '¥ =

{X(p)} and X be the intersection of all the X(p). Then, if
the subgroup L of G supplements the Fitting subgroup of X
in G, everyX/,\L -covering subgroup of L can be written as
the intersection of an :r -covering subgroup of G with L; a
special case of this situation arises when L is a ~-normal-
izer of G for an integrated normal system .~ = {yep)} of G
such that yep) is contained in X(p) for each prime p. The
following result provides a further parallel with Carter and
.Hawkes's theory. Suppose that X and '\t are any two integ-
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rated normal systems of G. Then, if the ?£ - and )-covering
subgroups of G cOincide, so do the 1- and 1J-normalizers of
G; furthermore, as in Carter and Hawkes's theory, the con-
verse is false. We also give examples showing that an JS-
covering subgroup of G need not be an ~-covering subgroup of
G for any saturated formation ~, and conversely, that an Y_
oovering subgroup of (} need not be an l-cove:ring subgroup of

G for any normal system ]( of G. We close the chapter with a
brief discussion of the special case in which all X(p) are
the same normal subgroup of G.

Chapter six is devoted to characterizations of the X-
normalizers of a finite soluble group G for both non-integ-
rated and integrated normal systems of G. We begin by proving
°that if, for any normal system .t of G, the to -normalizers
coincide with the ~-covering subgroups of G they can then
be characterized as those subgroups of G which cover the )S-

central and avoid the Js-eccentric chief factors of G. It is
this covering and avoidance property of l:-normalizers whach
forms the basis of all our characterizations. Taking the non-
integrated case first, we assume that a subgroup H of G
covers or avoids each chief factor of G in a certain way, and
seek an additional condition on H which wil~ ensure that it
is an X -normalizer of G (By Example1 of [11 J, page 344, the
covering and avoidance property alone will not in general be
sufficient to ensure that oH is an X-normalizer of G). One
of the two such conditions found involves the type of chain
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connecting H to the whole group ; the other demands that H
should commute with a Sylow p-complement of G for each prime
p dividing the order of G. The two characterizations of
"non-integrated l-normalizers" thus obtained are adapted to
characterizations of "integrated X-normalizers" by use of
the distinguishing fact that a chief series is preserved by
intersection with an l-normalizer defined by integrated nor-
mal system 1..'.

In the seventh and final chapter we discuss Fischer's
~~-normalizers and ~t-covering subgroups of a finite sol-
uble group G. We show that, besides forming a homomorphism-
invariant conjugacy class of subgroups of G, the 1~-normal-
izers are subabnormal in G and cover certain of the chief
factors of G (though they need not avoid the remaining chief
factors); furthermore, as in the special case of an X-
normalizer, each Sylow system of G reduces into the 11'l-norm-
alizer of G which it defines. We then describe in detail
Fischer's definition of an 1~-covering subgroup of G and
state some of the properties of these subgroups. One of these
properties shows that the 'h\_-coveringsubgroups satisfy
conditions similar to those used to define an X -covering
subgroup of G for a normal system :t of G. Taking this prop-

•
erty as our definition of an ~~-covering subgroup of G, we
are able to show that the ~t-covering subgroups exist as the
terminal members of 'so-called ~t-crucial maximal chains, and
'to develop their properties anew. In conclusion we prove
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that each ''rY\-coveringsubgroup of G contains an 11'l-normal-
izer of G (and vice versa )
Fischer's definition.

and does indeed satisfy
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Chapter One

PRELIrHUARIES

Notation and Terminology. Groups are denoted by capital
Roman letters and their elementR by small Roman letters
all 6roups considered are finite and soluble. We use braces
{} to denote sets, < g I ••• > to denote the group gener-
ated by the elements g to be specified, and IHI to denote the
order of H. If w is a set of primes, Wi is the complementary
set and H is an ~-group if all the prime divisors of IHI
lie in tJJ. A Hall UT-subgroup of a group is an ur-subgroup
whose order is prime to its index; and a Hall w-complement
is a Hall ",,'-subgroup. If us is the single prime p, we use
the terms Sylow p-subgroup and (Sylow) p-complement. A Sylow
system .J of G is a complete set of (Sylow) p-complements of
G together with all their intersections we write J =

{SP} , where sP is a p-complement of G. ~ is said to reduce
into a subgroup H of G if SPn H is a p-complement of H for
each prime p.

vie frequently refer to the following subgroups of the
finite soluble group G: 1(G) is the Frattini subgroup
i.e. the intersection of all the maximal subgroups of G ;
F(G) is the Fitting subgroup i.e. the largest nilpotent
normal subgroup of G rJt»(G) is the LJ-Frattini subgroup
i.e; the intersection of every maximal subgroup of G whose
index is a power of a prime in <is; o , (G)

Ci1"1il
is the largest
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normal subgroup of G poe sessLng a normal Hall t.O' -complement ;
1 is used to denote the identity subgroup as well as the num-
erR.l "one".

For suberoups II,K of G, NH(K), 0HCK) denote respectiv-
ely the normalizer of K in H and the centralizer of K in H ;
H x K ,denotes the direct product of E and K. \'/etake hk =
k-1hk, [h,k]'= h-1hk and define [H,K] = < lh,k] I h e H,
k e. K >. Further, K:5 H means that K is a subgroup of H -

the index of K in H is denoted by IH:KI. The relations
(a) K < H, ,(b) K <i H, (c) K <l Hand (d) K <l <l H
mean, in turn, that K is a (a) proper, (b) maximal, (c) normal
and (d) subnormal subgroup of H. An oblique line through.these symbols denotes negation. If K:5 H , the core of K in
H (written OoreHK) is the intersection of all the conjug-
ates of K in H i.e. the largest normal subgroup of H con-
tained in K. When M is a maximal subgroup of G we usually
write, simply, OoreM for CoreGM. If K <l II and K < H <l

G, we call H/K a factor of G; if H/K is a minimal normal
subgroup of G/K it is tpen said to be a chief factor of G.
If E/K is a chief factor,of G, AutG(H/K) denotes the set of
automorphisms induced on H/K by conjugation by elements of G.
Similarly, if H/K is an X-composition factor for some sub-
group X of G, we deno'teby AutX(H/K) the set of automor-
phisms induced on H/K by conjugation by elements of X. If
H <l G, we say that the subgroup X of G supplements H in G if
HX = G and complements H in G if, in addition, H ('\ X = 1 •

Let Gt, 13 be sets of groups. Then G e. d~ or G is an
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aB-group means that there exists N ~ G such that N e a
do:'io~and GIN € 13. Vie denote by n the..t of all nilpotent

groups, and write 112 for nlt. Finally, we remark that the
term "projector" is sometimes used instead of "covering sub-
group" we have chosen the latter as we feel it is more
suited to our method of approach.

Prereguisites. We make frequent, and often tacit, use of the
standard isomorphism theorems, the operator form of the
Jordan-Holder Theorem and the well-known Dedekind relation
viz. if A commutes as a subgroup with B and is contained in
e, then A(B (I e) = AB " C. The concepts of a subgroup cov-
ering and avoiding a factor also occur frequently see
Taunt [15J, page 25, for a detailed account of these concepts.
The,following simple lemma involving these concepts is easily
verified.

1EM}~ 1.1 Let H/K be a chief factor of G and L a subgroup
of G satisfying 1CG(H/K) = G • Then 1 covers or avoids H/K.

If HIK is covered by 1, then H ()11K ()1 is a chief factor of
1 operator-isomorphic to H/K, and cG(H/K) ~L = C1(Hn1/Kn1).

In addition, we assume the following well-lcnown results
from the theory of finite soluble groups. ~irstly, every fin-
i te soluble group G possesses a complete set .ofSylow p-comp-
lements and thus a Hall ur-subgroup for every set of primes
cs ; and any two Hall liS-subgroups of G are conju.gate in G.
Every chief factor H/K of G is elementary abelian and thus of
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prime power order (H/K is said to be a p-chief factor if
IH/KI a ) and every maximal subgroup M is of prime= p power
index ( M is said to be p-maximal if IG:MI = p~ ). }'urther-
more, if H/K is a p-chief factor of G, then AutG(H/K) ~
G/cG(H/K) has no normal p-subgroup.Let M be a maximal sub-
group of G and K = CoreIVI• Then G/K has a unique minimal
normal subgroup N/K ; N/K is self-centralizine and complemen-
ted by M/K in G/K, and all the complements of N/K in G/K are
conjugate to M/K. F(G) is the intersection of the centraliz-
ers of all the'chief factors of G, and 0p'p(G) is the inter-
section of the centralizers of all the p-chief factors of G
for each prime p dividing IGI. In addition,

o , (G/rl (G)) = 0 , (G)/rJ (G) (see L4], pages 179,180).p p p p p P
This result is easily extended to the case of a set of primes
~ contained in the set of prime divisors of IGI :

Since 1i (G) = n rj (G)
IiJ' PEI.J' P

and ~p(G) is p-nilpotent
(i.e. has a normal Sylow p-complement) for each prime p,
¢'",(G)has a normal Hall I..J-complement; .¢w(G) is also normal
in G since all the 1p(G) area Hence ~~(G) ~ O~,~(G) •

LEMMA 1 .2 If H is a subgroup of G such that H1w(G) = G and
IG:HIe. (JI, then H = G •
Proof. Suppose, if possible, that H < G a~d let M be a max-
imal eubgr-oup of G containing H. Then IG:I¥11e.t.J so .¢'(Aj(G)
< M. Hence M ~ H'IQ(G) = G -- a contradiction. Thus H =
G as required.

LEMMA 1 .3 If X,R are normal subgroups of G such that R S
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.¢"LJ(G)and X/R has a normal Hall tJ-complement, then X has a
normal Hall ~-complement.
Proof. (cf. Gaschutz, [6].) Let Q be a Hall w -complement of
X, and Y = NG(Q). Vie first ahow that Y¢'i.J(G)= G . Now QH/R

is a Hall I.J -complement of X/R and so QR <l G. Thus, for g
e G, Q,Qe are Hall UJ-complements of QR. Hence, by Hall,
there exists some r e R such that Qg = Qr. Thus gr-1 e

giving g e RY ~ Ww(G).Y , as required.
LV. Let ~ = {S P }

We now show
!G:YI e be a Sylow system of G such

Y = NG(Q) > n NG(SP) = z,
- p€c.J'

!G:Z!. Since Z is the inter-
that Q == X (l (\ sP • Thenp E LJ

and so !G:YI dividessay,
section of subgroups of coprime index, !G:zl = 11 IG:NG(SP) IPELJ
e ~ , and the result follows. Lemma1.2 now yields Y = G as
required.

LEr.1MA 1 .4 0 v,,' c..j( G/ItJ( G)) = 0 1.0' (..,( G) / .¢'tJ( G)

Proof. Set R = ¢/.J(G) and let O~lw(G/R) = X/R . Then, cert-
ainly, 0wt~(G)/R~ X/R, giving O~I~(G)5 X. Conversely,
by Lemma1 .3, X has a normal Hall !.V-complement and so X <

o t (G) and the result follows.(.JIAI

Finally, a subgroup H is abnormal in the finite soluble
group G if and only if every subgroup of G containing H is
self-normalizing in G

. .
this (unpublished) result is due

to D.R.Taunt. (In general, a subgroup H is said to be ab-
normal in a group G if g e < H , g-1Hg) for every element
'g e G. i.e. if and only, if every subgroup of G containing H
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is self-normalizing in G and H is not contained in two diff-
erent conjugate subgroups, of G ([2J, page 136) ; H is subab-
normal in G if there is a chain H = Ho < H1 < ••. < Hr = G
of subgroups from H to G such that Hi is abnormal in Hi+1
for each i. )

For completeness we now recall the definitions of the
various types of formations.

DEFINITION. A formation f is an isomorphism class of finite,
soluble groups.satisfying the two conditions

(1 ) G e )., N<lG ~ GIN e :f .,
( 2) G/N1, G/N2 e :it ~ G/N1"N2 e }.

If, in addition, ,) satisfies the condition
(3) G/,¢'(G)e '} ~ G ef ()is "Frattini-closed"),

it is said to be a saturated'formation ([7J,[8J). Suppose,
now, that a formation )(p) is associated with each prime p.
Then the class :} of finite soluble groups defined by

G ~ '} < ) G/Op'p(G) e }(p) for each prime p I IGI ,
is a formation we say that } is defined locally by the
set { )(p)}. For example, if we take .}(p) = {1} for each
prime p, then { ~(p)} defines 11 locally.

In 3.1 of [7J, Gaschutz shows that a local formation is
saturated ; and Gaschutz and Lubeseder have 'proved that con-
versely, every saturated formation may be defined locally
(see [13J). In chapter two, like Carter and Hawkes, we con-
sider a saturated formation ~ defined locally by an integ-
rated set of non-empty formations {J(p)} (i.e. {1} 5 ~p)
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< f for each prime p -- thus :}>n .). For definitions
of an :1--centralchief factor and an )-normal maximal sub-
group of a finite soluble group see [4J, page 179 ; and for
the definition and properties of f-normalizers see chapter 4
of [4 J.

We conclude with the concept of a group acting on a set,
used in Lemma2.1.

DEFINITION. Let G be a multiplicative group with identity 1
and A a set. Then, if there is a mapping cp: A X G ... A

such that (1) (a,1)cp= a
(2) ( (a,g1)cp , g2 )cp= (a,g1g2)CP

for all a E.A and giE.G , we say that G acts on A. The
stabilizer of an element a E.A (written St(a) ) is defined
by St(a) = { g. E.G (a,g)cp= a } , and is easily seen
to be a subgroup o£ G.

We now define an equivalence relation on A. For a,b E.
A we say that a Nb if there exists g E.G such that b =

(a,g)cp. The equivalence classes are called transitive com-
ponents or orbits orb(a) is the equivalence class cont-
aining a E.A Thus A is a disjoint union of transitive
components Ai satisfying.

IAil = I orb(ai) I = ~G : St(ai) I
For, if 61,g2 E.G
ai = (ai,g1g;1)cp

(ai,g1)cp= (ai,g2)cp if and only if
i.e. St(ai)g1 = St(ai)g2.
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ChRpter Two

THE INVARIANTS ~:r(X).
o

Throughout this chapter we assume that :1 is a saturated
formation defined locally by an integrated set of non-empty
formations {}(p)}, and that X is any subgroup of the finite
soluble group G.

We begin by recalling some concepts and results from R.W.
Carter's invariant theory ([3J, chapter 2).

DEFINITIONS. We say that a subgroup H of G is an X-subgroup
of G if [H,X] ~ H i.e. X normalizes H. An X-composition
series of G is a series

G = H > H >. •• ::> H.;+I > H. > ••• > H = 1r r-I ... J. 0

of X-subgroups of G such that Hi ~ Hi+I for each i, and no
further terms can be inserted. We say that the factor groups
H. IHi are X-composition factors of G. An X-composition~+I
factor Hi+I/Hi of G can clearly have no proper characteristic
subgroup and is thus elementary abelian; hence there exists no
X-subgroup of G between Hi and Hi+l• Therefore, since H. <

J. -

(Hi+~ X)Hi 5 Hi+l and (Hi+r X)Hi is normalized by X for any
X-composition factor Hi+I/Hi of G, X either covers or avoids
each X-composition factor of G.

We now divide the X-composition factors of G into two
classes in a different way.

DEFINITION. An X-composition factor Hi+I/Hi of G of order a
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power of prime p is said to be :f-central if AutX(IIi+,/Hi) E.

J(p) i.e. X!Cx(Hi+I!Hi) E. }(p) otherwise }-eccentric.
In the case X = G , this definition agrees with Carter

and Hawkes's definition of )-central and }-eccentric chief
factors of G, and if }-= nit reduces to Carter's definition
of central and eccentric X-composition factors. }urthermore,
as in Carter and Hawkes's theory, this definition is independ-
ent of the particular integrated system of formations chosen
to define j2 locally. For Carter and Hawkes show that if ~ is
defined locally by {~ (p)} and' by {!.1. (p)} with both the
forma tions ~ ('p), '!.1.(p) :s ) for each prime p, then

fJ ) (p) = P Jc (p) , where :P is the dtA'!.sof all p-groups.
I .1

This fact, together with the following lemma ( whose proof we
include for the sake of completeness ) gives the desired
result.

LEr~lA 2.1 Let H/K be an X-composition factor of G of order
pa, C = CX(H/X) and N/C a minimal normal subgroup of X/C.
Then IN/cl = q~ for some prime q ~ p.
Proof. Suppose, if possible, that IN/cl = p~. Now N acts on
H/K by the action (hK , n) ...hnR ( h € H , n € N ). Split
H/K into transitive components H,/K ,..., Hr/K. Then

(A) IH/KI = IH.lKI + IH.,./KI + ••• + ,IHr/KI •

Since IN/cl -p~ IHi/K I is a power of p for each i = 1,.,r.- ,
This follows from the fact that, for hiK € Hi/K,

IHi/RI = I orb(hiK) I = I N St(hiK) I , where
St(hiK) = { n € N I h~K = hiK } ~ C. Thus, assuming HI!K =
K, (A) yields
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possible unless ai = 0 for some i ~ 2. Hence there exists
hic H such that hi ¢ K and h~K = hiK for all n eN.
i.e. [hi,N] ~ K. We show that this is impossible by proving
that {h cHI [h,N] 5 K} = K . Let Y = {h e H I Lh,N] < K}.
Then, since K is an X-subgroup of G, H ~ Y ~ K. ~Urthermore,
Y is easily seen to be an X-subgroup of G, and is strictly
less than H since N > C = CX(H/K) • Thus Y = K since H/K
is an X-compo~ition factor of G. This contradiction shows
that IN/cl is not a power of p.

Now any two X-composition series of G have X-composition
factors operator-isomorphic in pairs, by the operator form of
the Jordan-Holder theorem. Suppose that H/K and J/L is one
such pair of X-isomorphic X-composition factors of G. Then
there is an isomorphism cp: H/K -+ J/L such that

for all h e H and x eX. It is
easily seen that this yields Cx(H/K) = CX(J/L) • Thus there
exists a (1-1) correspondence between the factors of any two
X-composition series of G, and in this correspondence an ~-
central factor of one corresponds to an ~-central factor of
the other. Therefore the product of the orders of the }-cen-
tral factors in an X-composition series of G is independent of
the particular series chosen -- we shall use this fact later •.

There are thus four different types of X-composition
factor: the ~-central factors covered by X, the }-eccen-
tric ·factors covered by X, the J-central factors avoided by
X, and the ~-eccentric factors avoided by X. We now show
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that the product of the orders of all the factors of the same
type in a given X-composition series of G is independent of
the particular series chosen. iVedo this by considering the
chai~
G = H X > H X > •• > H X = X = XnH :> XnH > •• > X/'IH=r - r-I - - 0 r - r-I- - 0

of subgroups of G passing through X and derived from an X-
composition series

of G •

Suppose first that X covers Hi+,/Hi• Then (see Carter,
H. "X/H.n X· is a chief factor of X isomorphic to H. /~+I J. J.+I

[3] )

Hi and it is easily verified that
= CX(H. "X/H. AX)J.+ I :t

Thus in this case, Hi+I/Hi is an 'jt-centralX-composition
factor of G if and only if H. f\X/H."X is an J.-central

:t+1 ~

chief factor of X.
Let z~(X) be the ~-central order of X i.e. the prod-

uct of the orders of the f-central chief factors in any chief
series of X, and w'ji(X) be the number of :J<--systemsof X .
Then ID~(X) equals the index in X of an :fa-normalizerof X
i.e. the product of the orders of the ~-eccentric chief
factors in any chief series of X and so z~(X) ~1X) = Ixi.

We have therefore shown that the product of the orders of
the ~-central factors covered by X in an X-composition series

)c-is equal to z (X) , while the product of the orders of the
J-eccentric factors covered by X in an X-composition series is
equal to ~~(X) • Thus both of these products depend only on
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} and the structure of X.

Now suppose that X avoids the X-composition factor
Hi+I/Hi of G. Then, as in [3J, HiX is maximal in Hi+IX, of
index IHi+,/Hil • He sh~w that in this case Hi+,/Hi is an
Jt-central X-composition factor if and only if HiX is j-

,normal in Hi+IX. Since Hi+,!Hi has no proper X-oubgroup
it is a chief factor of XHi+1 with centralizer CXH. (H1+,/H.)

l.+1 l.

= Hi+ICx(Hi+I/Hi) • Thus
XHi+,/CXH (H.+ IH.) ~ X!Cx(Hi+I/Hi) so that Hl..+,/H~i+1 l. I l. ...

is an ~-central X-composition factor if and only if Hi+I/Hi
is an ~-central chief factor of XHi+l, giving the required
result.

Denote by z~(X) the product of the orders of the ~-o

'*central factors avoided by X and by ~o(X) the product of
the orders of the f-eccentric factors avoided by X in the
given X-composition series of G. Then both these products are
independent of the particular series chosen. For we have seen
that the product of the orders of all the )-central factors
in a~ X-composition series of G is independent of the partic-
ular series, and we have proved that this is also the case for
the product of the orders of the ~-central factors covered by
X in an X-composition series. Thus z:(X) is independent of
the particular series chosen. Hence, since ~~(X)z~(X) =

"jtIG : xl , ~o (X) is also independent of the X-composition
series chosen.

We have shown in addition that
::¥z (X) = the product of the indices of the ~-normal links in a
o
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maximal chain of subgroups from X to G derived from an X-
composition series of G, and
~~X) = 'the product of the indices of the ~-abnormal links ino

a maximal chain of subgroups from X to G derived from an X-
composition series of G.

Thus we have associated with any subgroup X of G the four
invariants z).(X), ~jc.(X), z~(X), w:(X). These invariants
satisfy the relations

z:}(X) IlJ\X) = lxi, z)(X) wlx) = IG : x] •
o 0

zJt(X) is the ~-central order of X and (.i?L(X) is the number
of ~-systems of X, so these two invariants depend only on }

jt ~and the structure of X whereas zo(X) and ~o(~) also depend on
the way in which X is embedded in G.

UJ~(X) je-
We noVI seek interpretations of and z (X) along

0

the lines of those which Carter obtained for wo(X) and -. (X)

in [3J. Carter's interpretations involve the concept of a
Sylow system of G reducing into a subgroup of G, and so we
first develop a similar concept for an ~-system of G. For
this we require that the formations )(p) should in addition
be subgroup-closed; then ) too is subgroup-closed. Denote by
R(p) the }(p)-residual of the subgroup H of G, for each prime
pe Then, for any subgroup H of G, R(p) 5 G(p) for each prime
p. This fact justifies the following definition

DEFINITION. Let J = { TP = Sp~G(p) } be an :f-system of G
( defined by Sylow system t= { SP} of G ) and R any sub-
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group of G. We say that J reduces into ( an f--systernof ) H
if TPAH(p) is a p-complernent of R(p) for each prime p
dividing IGI •

Since R(p) 5 G(p) , every Y-system of the subgroup H

of G does arise from an f-system of G in this manner, as is
to be expected. For suppose that .i( is .an Jt.-systemof H def-
ined by Sylow system X of H. Extend X to a Sylow system ~
of G. Then the }-system of G defined by J reduces into .1<. •

However, this need not be the case if H(p) i G(p) hence
the restriction imposed on ~p). Furthermore, in the case of
~=rt t this definition specializes to the usual definition

of a Sylow system of G'reducing into a subgroup H of G.
We prove two results which we shall require later in the

chapter. The first concerns the number of )t-systems reducing
into a maximal subgroup of G.

LEMMA 2.2 Let r.1 be a p-maximal subgroup of G. If M is ~-
normal in G, every Je-system of G reduces into M. If M is 'J-
abnormal in G, Jt-system J = { Tq} of G reduces into M if
and only if T~ 5 1'1. Thus the number of }-systems of G
reducing into an ~-abnormal maximal subgroup M of G is equal
to ~~(G)/ IG:MI (where' iJ~(G) is the number of jt-systems
of G ).
Proof. Let J be defined by Sylow system J '= { sq} of G
then Tq = SqAG(q) for each prime q. It is easily seen
that for each prime q I: p, TqI\M(q) is a q-complement of
~(q). For in ~his case, SqM = G and so Sqn M is a q-
complement of M. M(q) is normal in M and contained in G(q),
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and thus Tq n M(q) = sq ('\M(q) is a q-complement of 11( q) .
Hence it only remains to consider TPn M(p) •

Firstly, suppose that M is f-normal in G. Then the
unique minimal normal subgroup N/CoreM of G/CoreM is Je-
central i.e. G/N e ~(p) and so G(p):S N • Now, by Carter
and Hawkes, we can assume without loss of generality that
~(p) =~~p) (where J) is the set of all p-groups ). Thus
we have G(p) 5 CoreM • Hence M(p) ~ G(p) and so TPnM(p)
is a p-complement of M(p), as required. Vie have thus proved
the first statement of the lemma.

We now assume that M is ~-abnormal in G, and write K =
CoreM. N/K is thus }-eccentric i.e. G/N ¢ ~(p) and so
G(p) ~ N • Hence G(p)K> N • We first show that (G(p)AM)K =

M(p)K. Since M(p)::: G(p)nM , we need only prove that
,

G(p) (\M :5 M(p)K • Now, by definition of M(p), M/r·1(p)Ke.
J(p) and so G/M(p)N ~ M/M(p)K e. :)(p) • Thus G(p):::M(p)N
giving G(p) n 11:::M(p)N ('\M= M(p)K, as required.

Suppose now that ::J does reduce into M i.e. TPn X1(p) is
a p-complement of M(p). Then TPK/K, (TPn M(p»K/K are p-
complements of G(p)K/K, M(p)K/K respectively. Further,
since (G(p) rv M)K = M(p)IC and G(p)K> N, IG(p)K: M(p)KI =

IG(p)K: (G(p)A M)KI = IG:MI , a power of p. Hence TPK/K,
(TPA M(p»K/K are both p-complements of G(~)K/K, and so
TPK = (TPA M(p»K • Thus TP:::M •

Conversely, let TP::: I>i • Then TP is a p-complement of
G(p)('\M and so TPn M(p) is a p-complement of the normal
subgroup M(p) of G(p)n M •

Thus, if M is an ~-abnormal maximal subgroup of G, the
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number of } -systems J = { TP} of G reducing into M is the
number of }-systems with TP:s N. Now TP, (TP)g < M for g

e G implies that NG(TP):s M since M is )-abnormal (as in
Lemma 3.2 of [4J), and also that TP, (TP)g are p-complements
of G(p) n M • Thus, by P.Hall, (TP)g = (TP)m for some m e
G(p) n M • Then gm-I e NG(TP) :::M , giving geM. Hence the
number of distinct p-complements TP of G(p) contained in M
equals
number of distinct q-complements Tq of G(q) equals
IG : NG (Tq) I for all q, the number of :f.-systems :1 of G red-
ucing into M equals

'*/IG : MI = 0 (G)/IG
qVlrnl G : NG (Tq) I / IG : M I = IG : NG (:j ) I

: M I where NG (J ) denotes the normal-
izer of the .J--system J of G --- an ~-normalizer of G.

LEMMA 2.3 Let :1 = { TP} be an }-system of G reducing into
X and G = Hr > .•. > Ho = be an X-composition series of
G. Then J reduces into XHi for i = 0, •• ,r.
Proof. We use induction on 1. The result is true for i = 0 ,
since XHo = X. Vie thus assume the result for i = k i.e.
J reduces into then XHk+1 =

XHk and the result is true for i = k+1 •
Thus we assume that Hk+,/Hk is avoided by X and so Zk

is maximal in Zk+1= XHk+1 and Hk+l" Zk = .HJc.\veshow that
this implies

(A) Hk+IZk+1
(q) = Hk+,Zk(q) for each prime q.

Since J(q) is suberoup-closed, Zk(q) ~ Zk+1 (q), so it
remains to prove that Zk+,(q) ~ Hk+IZk(q) • Now Zk(q) ~
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Zk and Hk+'~ Zk+I' so Hk+,Zk(q) ~ Hk+,Zk = Zk+l. Further-
more, since Hk+,Zk = Zk+, and Hk+,n Zk = Hk '

Zk+I/Hk+,Zk(q) N Zk/HkZk(q) c }(q)
as required.

We must prove that Tq (\Zk+ I(q) is a q-complement of
Zk+ I(q) i.e. IZk+ I(q) : Tq ()Zk+ I(q) I is a power of q for
each prime q. Let Q = (Tq(\Zk+l(q»)(I\:+Ir'lZk+,(q»· We show
that IZk+l (q) : QI and IQ: Tq" Zk+ I(q) I are powers of q.
By induction Tq{,\Zk(q) is a q-complement of Zk(q), and so
Hk+1 ('l'q"Zk(q) )/~+I is a q-complement of Hk+1 Zk(q)/Hk+1 =

Hk+IZk+1 (q)/Hk+I (using (A». Therefore, since Zk(q) <

Zk+1 (q), Hk+1 (Tqi\Zk+1 (q» is of index a power of q in
Hk+IZk+l(q)* Hence Q is of index a power of q in Zk+l(q)
Furthermore, since Hk+1 <l <l G, Tq II Hk+1 is a q-complement
of G(q)nHk+l• Thus, since Zk+,(q)"Hk+1 <l G(q)nHk+l,

Tq" Hk+1 " Zk+1 (q) is a q-complement of Hk+1 r.. Zk+1 (q) • It
follows immediately that Tq" Zk+1 (q) is of index a power of
q in Q, and we are done.

We now consider all possible maximal chains of subgroups
joining X to G. Denote such a maximal chain by ~ and the
product of the indices of the j-normal links in ~ by ~jt ( .k) .
We have seen that if the maximal chain fo is derived from an•
X-composition series of G in the way described earlier, then
:; 'j<
~ (k) = z~(X) , but this will in general not be true for
every maximal chain from X to G. We show that z!(X) is, in
fact, the greatest value taken by ~~(~) for all maximal
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chains ~ joining X to G.
As in L3], we begin by obtaining the connection between

f33'(~) and the number of '}-systems of G reducing into /r;
i.e. reducing into every subgroup in Rt, •

THEOREM 2.4 The number of f-systems of G reducing into the
maximal chain ~ from X to G is equal to U5f( G) f3}( ~ ) / IG:X I ,
where wj(G) is the number of f-systems of G.
Proof. By Lemma 2.2, the number of f-systems of G reducing
into ~ is UjJ'(G)/TI(indicesof the }-abnormal links in /0 ) =

c.df'(G) f3Y(fo )1 IG:xl •

This result is considerably simplified if X is an )~-
normalizer of G, for in this case ~~(G) = IG:xl. Thus the
number of 'f -systems reducing into a maximal chain fi joining
an f -normalizer of G to G is simply f31'(ft) , the product of
the indices of the f-normal links in ~ •

We are now in a position to give the required interpret-
ation of Z~(X) •

THEOREM 2.5 z~(X) is the greatest value taken by f3~(~)

for all maximal chains ,L joining X to G.
Proof. By Theorem 2.4,
f3:;("£') = (number of f-systems reducing into fo ) IG:xll (.iJJr(G)•

•
Thus the chains fo for which f33'( ~) is as large as possible
are those into which as many j£-systems as possible reduce.
Denote by ~~(X) the number of J-systems of G reducible into
X. Then certainly the number of ~-systems of G reducing into
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t is at most ujt(X).However, if k is of the type derived
from an X-composition series of G, every $-systero of G red-
ucing into X also reduces into j.; by Lemma 2.3. Hence, for
this type of chain, .~'j-(,k) attains its maximal value viz.
z~(X) •

where ~(G) is the number
of ~-systems of G, and v~(X) is the number of ~-systems of
G which reduce into X.
Proof. Let fo be,a maximal chain jOining X

~~( 10 )

fo

to G obtained from
= z~(X) and the
is v~(X), as we
~)(G)z~(X)/IG:XI=

o

Hence I$:(X) =

an X-composition series of G. Then
number of f-systems of G reducible into

;1have seen. Thus, by Theorem 2.4, ~ (X) =

~Jt.( G)1tS~X) since IG:X I = z~(X) k5:<X)•. 0

LJ1G)1 ,,'?f(X) , as required.

Thus, providing that all the formations ~(p) are sub-
group-closed, Carter's interpretations of z (X) ando

may be generalized to the present situation.

We close with a brief mention of the subgroups X for
which takes its extreme values. In [3J, Carter char-
acterizes the abnormal subgroups of G as those subgroups X of
G which satisfy zo(X) = 1 • In line with this, we say that a

•
subgroup X of G is }-abnormal in G if z~(X) = 1 this
means that every link in every maximal chain from X to G is
~-abnormal. By Lemma 5.1 of [4J, the }-covering subgroups E
of G are ~-abnormal in G, and may be characterized by the
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equations
that E € f.

~J«E) = 1 , Z}(E) = 1 ; for wJ«E) = 1
o

.On the other hand, z~(X) = IG:xl
o

means
if and

only if there is some maximal chain from X to G in which every
link is J-normal we say that X is j.<-subnormalin G in

z'~(X)~jX) = IG:X I , this implies that·this case. Since~'X)= 1 which means that every }-system of G reduces into
X. Therefore, X is :f-subnormal in G if and only if every ~-
system of G reduces into X.

,.I
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Chanter Three

NORMALSYSTJ~HSANDRELATEDCONCEPTS

DEFINITIONS. A normal system r = {X(p)} of a group G is a

set of normal subgroups X(p) of G, one for each prime p div-

iding IGI. Let G be a group with normal system X = {X(p)}.

We say that a p-chief factor H/K of G is .~-central if X(p).

S CG(H/K) , and X-eccentric otherwise. A p-maximal subgroup M

of G is said to be ~-normal if X(p)~ N , where N/Core!1 is

the unique minimal normal subgroup of G/CoreM otherwise

~-abnormal. Thus M is 1:-normal if and only if N/CoreI1 is

J: -central. Since any chief factor of G complemented by I1 is

operator-isomorphic to N/CoreM, I>1 is X-normal in G if and

only if it complements an ~ -central chief factor of G.

Let H be a subgroup of G. Wedenote by 'jS" H the normal

system of H obtained by intersecting with H those X(p) for

which p divides IHI. Wenow consider the set ~ consisting of

all sections H/K of G such that all chief factors of H above

K are ~ (\H -central. This important set to a large extent

takes the place of the formation ) in Carter and HawkesIS

theory, though differing from } in that it is not an isomor-

phism class and is defined entirely ~vithin the given group G.

In fact, i is not even closed under isomorphisms within G, as

is shown by the following example.

EXAMPLE3.1 Let G be the direct product of two copies of rl,
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the symmetric group on 3 elements say -
G = L.~X 2:3 •

Let S3' S3 be the Sylow 3-subgroup of 63,I~ respectively.
Take X(2) = G, and X(3) = S?I '2:3 • Then G/ ~~ rt i since
S:) ~3 / 2:3 is ~-eccentric. The diagonal subgroup L:* = {c-O' I
(J" e 2:3} of G belongs to i since X(3) (\"L.* is the Sylow 3-
subgroup of L. * ; but G/ ~ rt i .

20

However, in the situation Ko<lK < G, H<lH<G with
0 --H K = H and Hof'\K = Ko' H/Ho e.l: clearly implies K/Ka0

e ~ ; although the converse may not be true. We use this fact
frequently, especially in chapter five.

LErvTMA3.2 L has the following properties
(i) H/K e :£ , K<K<1H

- I
implies H/K1 e i .

H/K{\ K2,e X and thus H(ii) H/K, , H/Kl. e' J:. implies
possesses an ~-residual.
(iii) He.)s if and only if
(iv) He3: , H < H implies

1-

H/I(H) e ~ •

HI e ~ •
(v) X = { H/K I K<lH ::::G, K(X(p) f'\ H)/K is p-nilpotent for
each prime p }.
Proof. (i) is obvious.

(ii) Since H/KI eJS , each chief factor of H above KI

is ~ n H -central. Further, each chief factor of H between
KI~K~ and KI is operator-isomorphic to one between K4 and K~K2

and is thus ~"H -central, since H/K,_ e "£ • The r-eeu'Lt then
follows, since any chief factor of H above KI" K;tis operator-
~somorphic to one in a chief series of H through KI •

(iii) Certainly H e.~ implies that -
H/i(H) e ~ •
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-Conversely, suppose that H ¢ ::r • Then H has an ):,,,H-eccent-

ric p-chief factor for some prime p and thus one be tween ~p (H)

and 0p'p(H), since 0p'p(II) is in fact the intersection of
the centralizers of the chief factors of H between ip(H) and
° ,(H) (all of which are p-chief factors; see l4], page 180)p P
Hence HI§p(H) ¢ r and thus HI/(H) ¢ i ,since I(H) ~

'ip (H) •

(iv) -
H e 1: implies X(p)" H < 0plp(H) for each

X(p) ()HI < ° , (H)()H < ° (H)- p p I - pIp I '
prime p dividing IHI. Thus

-giving HI e ~ •
(v) is obvious, since K centralizes all the chief factors

of H above itself.
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Chapter }'our

x - NORMALIZERS

DEFINITION. Let X = {X(p)} be a normal system of G and J =
{ SP} a Sylow system of G. Set xP = sP ('\X(p), a p-cornple-
ment of X(p), for each prime p. Then {XP} is called an
~~-system of G. Since any two Sylow systems of G are conjugate,
( P.Hall 19] ), so are any two l'-systems of G. We call

D'l.(G)= P~IGING(XP) an ~-system normalizer of G, or,
simply, an X-normalizer of G. Since any two 'X-systems of G
are conjugate, ,so are any two X-normalizers of G.

LEMMA 4.1 H€J:: if and only if
Proof. First let H € ~ • Then, for each prime p dividing IHI,
X(p)n H is p-nilpotent and thus has a normal p-complement
(X(p)r.H)P. Then '(X(p)"H)P is a characteristic subgroup of
the normal subgroup X(p)r. H of H and so is normal in H. Thus

DlinH(H) = P~HI NH( (X(p) ("\H)P) = H
Conversely, D ~nH(H) = H implies that X(p)n H has

a normal p-complement for each prime p dividing IHI. Thus
X(p) nH is p-nilpotent and so centralizes all the p-chief
factors of H. Hence HeX.

The following ~heorem shows the relation between the ~-
normalizers of G and the chief factors of G.

THEOREM 4.2 Let D be an l-normalizer. of G. Then D covers
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each l:-central chief factor of G and avoids each X-:-eccentric
chief factor of G. The order of D is the product of the orders
of the X -central chief factors in a chief series of G.
Proof. By P.Hall ([10J), NGeXP) avoids each p-chief factor of
G which is eccentric for X(p) i.e. each X -eccentric p-chief
factor of G, and covers all the remaining chief factors of G.
Thus IG: NG(XP) I is the product of the orders of the r-
eccentric p-chief factors.in a chief series of G. Since D =

P 0tGI NG (XP) it avoids each p-chief fac.tor which NG (XP)
avoids and thus each ~-eccentric chief factor of G. Also,
since IG: NG(XP) I is a power of p, D is an intersection of
subgroups of coprime index. Hence
and so 1nl is the product of the orders of the ~-central
chief factors in a chief series of G. Thus, by considerations
of order, D must cover each X-central chief factor of G.

COROLLARY 1. Every X-normalizer of G lies in i .
Proof. Let D be the X-normalizer of G corresponding to Sylow
system .J of G. Then si reduces into D. For INGeXP): DI is
prime to p and ING(XP) : sPI is a pmver of p, so that SPD =
NG(XP) for each prime p. Thus xP ('I D = (Sp" D) f\ (X(p) 1\ D) is
a p-complement of X(p)f'\D and is normal in D. Hence X(p){\D
is p-nilpotent for each prime p, and the result follows.

COROLLARY 2. If D is an '£ -normalizer of G and N<lG, then ND
IN is an N2.€/N -normalizer of GIN (where N:t:/N = {Nx(p)/N

X(p) € 1:, p divides IG:NI }_). Thus the t-normalizers of
G are invariant under homomorphisms.
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Proof. Let xP be a p-compiement of X(p). Then NxP/N is a p-
complement of NX(p)/N and N NG(xP)/N < NG/N(NXP/N) •

Hence ND/N < pr;lG:NI NG/N(NXP IN) = n, an N:X: IN -normal-
izer of GIN.

Consider a chief series of G through N. Then by Theorem 4.2,
1nl = the product of the orders of the t-central chief

factors above N in this chief series.
Further, N nD covers the !'-central chief factors of G below
N and avoids the X-eccentric chief factors of G below N since
D does. Hence
IN ('\D I = the product of the orders of the x,-central chief

factors below N in this chief series.
Thus IDI = Inl.INnDI and so IND/N I = IDID" NI = ID I and
the result follows.

Remark. The intersection of an l-normalizer D of G with a
chief series of G need not be a chief series of D as is shown
by the following simple example :

Take G = L~ , the symmetric group on 4 elements. Set
X(2) = V, the normal subgroup of G of order 4, and X(3) = G.
~hen the r-normalizers of G are the Sylow 2-subgroups S2 of
G, and v/1 is not a chief factor of an S~.
We return to this question later when we consider integrated•
normal systems.

We now turn to the relation of the ~ -normalizers to the
maximal subgroups of G.
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THEORBr,14. "S A maximal subgroup N of G contains an :r -normaliz-

er of G if and only if M is X-abnormal. In this case, every

)S"M -normalizer of M contains an ~-normalizer of G.

Proof. Let N/CoreM be the unique minimal normal subgroup of

G/CoreM, and IG:MI be a power of p. M~ D~ implies that If
avoids N/Corer·1 which is thus ~-ecceritric by Theorem 4.2.

Hence M is X-abnormal.

NOI"let M be 'X-abnormal, sP be ap-complement of G con-

tained in M, and xP = Sp~ X(p) • Then, as in [4J, 3.2, with

C replaced by X(p), NG(XP) < M and so M contains an '!-p -
normalizer of G.

Finally, let M be JS-abnormal,. ~"M = {ye q)} and {yq =
Mqt')Y(q)} be any :i:A M -system of M. (Mq a q-complement of M).

If p l IMI, define MP = M • Then MP is a p-complement of G,

and setting xP = NPn X(p) , we have NG(XP) SM. For q .;:.p ,

Mq = SQt')M for some q-complement sq of G. Hence, for all q

dividing IHI, . yq = Xq(\ Y(q) (where Xq = sq(\ X(q) ) and

thus NM(xq) S NM(yq) • Thus

D'l: = q~IGI NG(Xq) = qrrlGI NM(X
q
) < qlj'lMIN},I(y

q
) = DX"M(M).

We show that certain X-abnormal maximal subgroups M'of G

will yield equality in the last statement of this theorem.

DEFINITION. We say that M is an 1':-cri tical maximal subgroup

of G if M is 1: -abnormal and M F(X) = G , where F(X) is the

Fi tting subgroup of X = 9 X(p) •

In the case X(p) = Cp(G) for each prime p ([4J,3),
this last condition reduces to M F(G) = G •
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LET>iMA 4.4 Let L be a subgroup of G satisfying L.F(X) = G . ,

Then L covers or avoids each chief factor of G. If H/K is a
chief factor of G covered by L, then
(i) H 11 L / K 11 L is a chief factor of L isomorphic to H/K and

with CG (H/K) (\ L = CL (H r. L / K (\ L) •

(ii) H n L / K I\L is ::£I\L-central in L if and only if H/K

is X-central in G.

Proof. By Lemma 1 .1, we need only prove (ii). Let H 11 L / K 1\ L
be xf"'L -central. Then X( p) (\ L :s CL (H 1\ L / K.n L) = CG(H/K)

r: L by (i), and hence X(p) = X(p) Cl L.F(X) = }'(X)(X(p)(\L) <

CG (H/K) a , e. H/K is X-central. The converse is clearly
true.

THEOREM 4.5 An Xli M -normalizer of the X-critical maximal
subgroup M of G is an X-normalizer of G.
Proof. By Theorem 4.3 we have only to show that In Xf\M(M) I <
In~(G) I. This follows immediately from Theorem 4.2 and Lemma 4

.4.

However, in general G need not possess an X-critical
maximal subgroup. For example', Taking G = 2:.4-' X(2) = V and
X(3) = G as before, the only ~ -abnormal maximal subgroups of
G are the Sylow 2-subgroups which do not supplement F(X) = V
in G •

.Remark. The proof of Theorem 4.5 would go through if instead
we defined X to be the intersection of those X(p) which do not
satisfy X(p) < 0 , (G) • However, as the above counterexample- p p -
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shows, an X -abnormal maximal subgroup M satisfying M.}~(X) = G
s.till need not exist.

We show later that 1"-critical maximal subgroups of G
exist if JC is an integrated normal system, and thus that in

~this case D can be connected to G by an x-critical maximal
chain i.e. a chain H = Ho < HI < •.•• < Hr = G of sub-
groups of G satisfying the condition that Hi is an ]CAHi+1 -

critical maximal subgroup of Hi+r for each i. However, a sim-
ilar embedding result does in fact hold for any normal system
X of G.

DEFINITIONS. (a) Let x = {X(p)} and ~ = {yep)}
X ~ '\t if

be two

all primes p. If there is a prime q such that
X(p) ~ yep) for

X(p) = yep)
normal systems of G. We say that

for all primes p ~ q, and X(q)/Y(q) is a chief factor of G,
we call X and 1J consecutive normal systems of G.

Clearly, if D~ and D"\I-are X- and IJ-normalizers of G
respectively, both corresponding to the same Sylow system of
G, then X:::: '\r implies D?£:5D"<t.

(b) We say that the chain H = H < H <.•< H = Go I r

of subgroups of G is X -abnormal maximal if Hi is an X" Hi+t-
abnormal maximal subgroup of Hi+1 for each i. H is then called
an ::£ -subabnormal subgroup of G.

LEf1MA 4.6 Let X= {X(p)} be a normal system of G and xP a
p-complement of X(p). Then NG(XP) is X-subabnormal in G.
Proof. We use induction on IG : NG(XP) I. There is nothing to
prove if X(p) is p-nilpotent. Thus assume X(p) ~ 0p'p(G) and
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G > H = N (XP) . Let M be a maximal subgroup of G con-
G

taining H. Then M is X-abnormal in G by Theorem 4.3, and the
result follows if H = M. If H < r1, InM is a normal system
of M containing X(p)~M. Now xP ~ X(p), M and thus xP is a
p-complement of X(p) ~M. Thus, by induction, H = NM(XP) is
::£ ("\M -subabnormal in M and thus X-subabnormal in G.

LEr1}'T.A4.7 .Let X = {X(p)} and 'lJ. = {yep) J be consecutive
normal systems of G such that X(q) = Y(q) for all primes q ~

~ ~of G and D < D • Then, if
X "'D~-normalizer of D"5. In

p, X(p)/Y(p) is a chief factor
D~ covers X(p)/Y(p), D~ is an
fact, DX is the normalizer in D~ of a p-complement of a normal
subgroup of D18and is thus X (\ D"'J-subabnormal in D). If DX

~ :'<Javoids X(p)/Y(p), D is not an ')s"D-normalizer of D~.
$Proof. Let I> = { sq} be the Sylo,,,system of G defining D

and D~ i.e. DX = q~IGING(Xq) , DIJ= q01G'NG(yq) wher-e
xq = X (q) (\Sq , yq = Y (q)(\Sq, and set Z(q) = X (q) {'\D~ and
zq = Z(q)A sq. Then } = {Z(q)} is a normal system of D~ and
zq is a q-complement of Z(q), since J reduces ·into D~ and

~ ~Z(q) ~ D. Since X(q) = Y(q) for all primes q ~ p, D and
D~ cover and avoid the same q-chief factors of G for q ~ p

~ ~ ~ pand thus ID D I is a power of p. In addition, D = ND~(X ).
Also, Z(q) is a q-nilpotent normal subgroup of D~ for q ~ p,

•
and thus ND":f(ZP) is an XI'\D~-normalizer of n"lt.

We show that if DX co~ers X(p}/Y(p), then xP = ZPyp and
thus ND~(ZP) = ND~(XP). Since n~> DX, D~ covers X(p)/
yep) i.e. X(p) = (D"*f"I X(p) )Y(p) = Z(p)Y(p) • Now ZPyP is a
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subgroup of xP since zP normalizes yP, and

Ix(p) : zPyPI = IZ(p)Y(p) ; ZpY(p) I. IZPy(p)

= Iz (p) : Z (p) n ZPy (p) I• Iy (p)

ZPyPI

y ( p) 1\ ZPy P I
which is a power of p. Hence xP = ZPyP and thus ND"<t(ZP) <

ND"8-(XP),since' D"d-normalizes yp. The converse inequalit~r:is
certainly true. Thus D'J::is an X,", D".t-normalizer of D'\tand is
:t ('\D"lt-subabnormal in D1fby Lemma 4.6.

Now let D'£ avoid X(p) /Y(p). Vie show that in this case
ND~(ZP) = D~ ~ D~. Let H/K be a p-chief factor of G covered by
'\.1 XD~ and avoided by D • Then yep) < X(p)nCG(H/K) < X(p) and

so yep) = X(p)nCG(H/K), since X(p)/Y(p) is a chief factor
of G. Hence X(p)/Y(p) must be a q-chief factor of G for q~p,
since G/CG(H/K) has no minimal normal subgroups of order a
power of p. Thus, since DX avoids X(p)/Y(p), so does D~.
Hence Z(p) = D1:ff'I X(p) = n"'i (\ yep) which is a p-nilpotent
normal subgroup of D~, so that Zp is characteristic in Zep)
and thus normal in D~.

LE~1}'IA4.8 Let X= {X(p)} be any normal system of G and D an
3C-normalizer of G. Then there exists a prime p and a chief
factor X(p)/Y(p) of G covered by D.
Proof. If X(p) = X for all primes p, then any chief factor
X/Y of G is centralized by X and thus covered by D. Thus

•
assume all X(p) are not equal, and let Z = TI X(q) • Thenq

there exist'primes p, q. ,•••, qr ( r:;:1) such that

Z = X(p).Z and -;- lTr X(qi)Z > Z = . 1 •~=

Since Z > Z , X(p) (\Z < X(p) and thus we can choose yep) <l
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G such that X(p)/Y(p) is a chief factor of G and yep) >

X(p)n Z . Then X(p)/Y(p) is operator-isomorphic to chief
factor Z/Y(p):Z whLch is centralized by Z and thus by all
X(q). Hence X(p)/Y(p) is centralized by X(q) for all primes
q and is thus covered by D.

THEOREM 4.9 D'Xis :::t-subabnormalin G.
xIG:D I. There is nothing to prove

,
Proof. \'le use induction on

X Xfor D = G. Thus assume D < G and let '\t= {yep)} be a
normal system minimal with respect to the conditions ~ < J€

D:f x:and = D • By Lemma 4.8 there exists a prime p and chief
factor Y(p)/Z(p) of G c~vered by D"a.Denote by :r the con-
secutive'normal system obtained by setting Z(q) = Y(q) for
all primes qrfp.Then, by the definition of 'l;}, Dt > D~. Hence
D~ is ~f'lD~-subabnormal in D'*by Lemma 4.7. D1 is } -subab-
normal in G by induction, and thus D"£= n1t is X -subabnormal
in G, since X 2: ~ > ~ •

This gives us a characterization of the X-normalizers of
G corresponding to L4], 4.8, for ~-normalizers.

THBOREM 4.10 Let IY\. be the set of all X -subabnormal sub-
groups of G. Then the Je-normalizers of G are the minimal mem-
bers of 11'\ •

Proof. By repeated application of Theorem 4.3, every JS-subab-
normal subgroup of G contains an Je-normalizer of G. ( In fact,
if H is JS-subabnormal in G, every 3Sf'lH-normalizer of H con-
tains an JC-normalizer of G.) The result follows by Theorem4.9.
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Before turning to inteerated normal systems, we give a
necessary and sufficient condition for the X- and ~-normal-
izers of G to coincide, for X,~ any two normal systems of G.

LE!·'IMA4.11 Let X= {X(p)}, ~= {yep)} be two normal sys-
tems of G. Then the X- and 'l8-normalizers of G coincide if
and only if X(p) and yep) centralize the same p-chief factors
of G for each prime p.
Proof. If the X- and '\t-normalizers coincide, the result fol-
lows by Theorem 4.2. Conversely, define Z(p) = X(p)Y(p) for
each prime p. Then Z(p) ~ X(p) and thus 1 'J:, ~n :s D , where D

Xand D correspond to the same Sylow system of G. But X(p) and
Z(p) centralize the s~e p-chief factors for each prime p, and
thus, by Theorem. 4.2, In"x I = IDXI. Hence D'.)-= D'l:and sim-
ilarly D"t = Dlt.

For the remainder of this chapter we confine ourselves to
the case of J( an integrated normal system.

DEFINITION. A normal system X = {xC p) } of G is said to be
integrated if X(p) centralizes all p-chief factors of G above
X(q) for all primes p,q.

e.g. (i) X(p) = X for all primes p.
(ii) X(p) = C (G)p for each prime p. (Notation of

, .
[4], chapter 3, where ~ is a saturated formation defined loc-
ally by an integrated set of formations {~( p) }.)

LEMMA 4.12 The following conditions on a normal system X =

{X(p)} of G'are equivalent.
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(i) 1: is integrated.
(ii) G/X E, $:.

(iii) );:D .X = G where X = ~ X(p) .
G/X(p) E, X for all
X (Lemma 3. 2(L) and

Proof. X is integrat"ed if and onlJrif
primes p, and thus if and only if G/X e
(ii)); and G/X E, x, if and only if DX covers G/X ')E.i.e. D .X
= G , by Theorem 4.2.

:x:We first consider the intersection of D for integrated
1: with a chief series of G.

THEOREM 4.13 If ~ = {X(p)} is an integrated normal system
of G, the intersection of any X -normalizer D of G with a
chief series of G is a chief series of D with corresponding
chief factors operator-isomorphic.
Proof. By Theorem 4.2, we need only consider the ~-central
chief factors of G. If H/K is an 3C-central p-chief factor of

and thus, by Lemma 4.12, D.CG(H/K) = G •
The result follows by Lemma 1.1•

We now turn to the existence of X -critical maximal sub-
groups of G.

THEORErvT4.14 If X = {X(p)} is an integrated normal system
of G and D'S,< G, then there exists an 1;-cri tical maximal

x.subgroup M of G containing D as an X"M -normalizer.
Proof. Since J( is integrated, l.

D X = G where X = n X(p).p
:EThus, if X € 1L, every maximal subgroup of G containing D

supplements F(X) and so is X -critical in G. Hence we can
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assume that X r;..n and so .¢"( G)("\X ~ :I!'( X) < X • \irite
G = G/~(G)nX, X = X/¢(G)"X ,etc. He now apply the res-

since X <J G, and .sJ ( G) = }6( G)

¢(X) = 1 . For ~(X) < W(G)
since Xn¢(G) ~ 1(G)

ults of Gaschutz (l6]). Firstly,

( [6J, Theorem 2.). Thus .¢(X) < X n¢(G) = 1 • Secondly,
F(X) = F(X) • For suppose F(X) = R/j(G)~X. Then clearly
F(X) < R , so it remains to prove that R ~ F(X) • Now R is a
characteristic subgroup of the normal subgroup X of G, and so
- -R <l G giving R <l G. Further, ~(G) r. X = .¢'( G) f\ R • Thus we
have R/.¢'(G)f\R e'Y\. with R <l G , and so R E. 'h by [6J,

Theorem 10, and we are done. and we can write
F(X) = A x1

where the Ai are minimal normal subgroups of X. - -Let H1, • • ,Hk

be minimal normal subgroups of G such that A. < H. ~ F(X)
1. - 1.

for each i. Since X r;..n , all Hi are not centralized by.X.
Thus there exists some X-eccentric minimal normal subgroup
H = H/.¢"(G)r. X of G which is contained in F(X). H ~ j(G), and
thus there exists a maximal subgroup M of G which complements
H/}i)(G)11 X. Since this is an X-eccentric chief factor of G,
and H:S F(X), M is X-critical. By Theorem 4.5 and the conj-
ugacy of X-normalizers, if D(M) is an Xf\M -normalizer of M,
n3S = D(M)g for some g E. G and is thus an Xf\Mg -normalizer
of the X-critical maximal subgroup # of G. ·

LE~IA 4.15 If X = {X(p)} is an inteerated normal system
and f-1 an X-abnormal maximal subgroup of G, then .)Sf"'IMis an
integrated normal system of M.
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Proof. Since M is X-abnormal it contains an X-normalizer of

G (Theorem 4~3). Thus, by Lemma4.12, MX= G where X =

r; X(p).

e. J: . Thus

G/X e. X since 'X is integrated, and hence M/Ivl ("\X

M/Mn X e. X~M and the result follows by Lemma

4.12.

Repeated application of Theorem 4.14 together with this

lemma gives

THEORE!l14.16 If X is an integrated normal system of G, any

X-normalizer DX of G can be connected to G by an X -cri tical

maximal chain.

Our final result in this chapter concerns the relation-

ship between the X- and '\r-normalizers of G for X, lJ. normal

systems of G with X >~. In Lemma4.7 we have seen that an

J(, ('\nlt-normalizer of n~ is not always an 1: -normalizer of G.

However, if we assume that ~ is integrated, we do get equal-

ity.

THEOREM4.1 7 Let X and lJ be two normal systems of G such

that X ~ 1& and 1J is integrated. Then every :f 1"\ n'it -normal-

izer of D~ is an X -normalizer of G.

Proof. Weuse induction on IG:D~I. There is nothing to prove

for G = n"'a', so assume n"i< G, and let M be ~ 1j -cri tical max-

imal subgroup of G containing n'J- as a "(j ("\ M-normalizer

(Theorem 4.14)• X f'\ M~ lJ f'\ M and 'l.J /'\ M is an integrated

normal system of Mby Lemma4.15. Thus, by induction, every

3£ f"\ Mf'\ n"'" -normalizer of n'lj- i. e. every )2 '" n"* -normalizer of
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D'Ij.is an :t{\r1 -normalizer of Mand thus an 'X' -normalizer of

G (Theorem 4.5) since M is X -critical.



50
Chapter l"ive

x - COVERING SUBGROUPS

Vieassume throughout this chapter that X={X(p)} isa
normal system of the finite soluble group·G.

DEl:'INITION. x ~ -coveringA subgroup E of G is called an sub-
( L)

'X 'XE e
(ii) ~

H/Ho e 'X
.~

E < H < G, implies HE = H.- - o

groun of G if

Our first concern is to show the existence, conjugacy and
homomorphism-invariance of these subgroups. On account of the
fact that i': is not isomorphism-closed, homomorphism-invar-
iance is not immediate, neither can Gaschutz's proof of the
existence of ~-covering subgroups ([7], Theorem 2.1) be
carried over to the present situation. We first prove some
simple results on X -covering subgroups.

LEMIVT..A5.1 Let E be an X -covering subgroup of G. Then
(a) If E < H < G , then E is an XI'IH -covering subgroup of
H.
(b) Eg is an X-covering subgroup of G for each g e G.
(c)

(d)

E is abnormal in G.
If NE/N e X •for normal subgroup N of G, then NE/N is

an NX/N -covering subgroup of G/N --- this is clearly true
if N::: E.

Proof. (a) E e r implies E e ~f'\ H since (X(p) f'. H) (\E =
X(p) ("\E. Further, let E < F < H,- - F<lFo and F/}'o e
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vIe must show that EFo = F. NO\v

Fo(X(p) {"\F)/Fo = :b'o(X(p)nHnF)/Fo :5 0p'p(:b'/Fo)

since F/Foc J€~H. Thus FIFe C ~ and the result follows
immediately.

potent. Hence Egc i .
«'and write F* = F ,

and F*/F* cl , since
0

that F; (:b'*r, X(p) )IF:
thus Eg-:. = F.ro .

(c) By Taunt,

-(b) Since E c X ,
Let

X(p) 1I Eg = (X(p) 1I E)g is p-nil-
Eg < Ii' < G- - , F <J }'o and
g-I

Ft = Fo • Then E < F* ::: G, :B'* <l F*c.

Fo(FlIX(p»/l!'o is p-nilpotent implies
is p-nilpotent. Hence E:b'* = F*o and

it is sufficient to show that every sub-
group of G containing E is self-normalizing. Let H > E and
Q = NG(H). Suppose, if possible, that Q > H. Choose a maximal
normal subgroup 11 of Q containing H. Then Q/M e X since it
is nilpotent. Hence, by the definition of E, Q = El1 = M ---

a contradiction. Thus Q = H •

(d) Since NE/N E. X, Nx(p)/N (\ NB/N = N(X(p) (\NE)/N
is p-nilpotent and so NE/N E. -g (where '\}= N;£ IN ). Let
NE/N :s FIN :5 GIN, FeiN <l FIN and FIN I Fo IN c 'LJ. Then

, -
E :s F :s G, Fo<l F and FIFo E. :£ , since

Fo(X(p) f"'I F)/Fo ~ }'e/N ( NX(p)/N n FIN) / FeiN.

Thus EF = F and the result then follows.o

LEMMA 5.2 If.M is a maximal subgroup of G satisfying ~1c )S

but G/CoreM ¢ X , then M is an X~covering subgroup of G.
Proof. 'vIe need only show that N supplements the i -residual of
G. If this were not the case, we would have

jG :5 Core!>! and
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hence G/Corer.1E, X by Lemma 3.2(i) --- a contradiction.

THEOREl\15.3 If E is an X -covering subgroup of G and N <l G,
then NE/H is an NX/N -covering subgroup of GIN.

Proof. \Yeprove that NE/N E. X and the result then follows
by Lemma 5.1(d). Suppose this is not the case, and let G be
a counterexample of minimal order. Then there exists a normal
system X= {X(p)}, an ~-covering subgroup E and a normal
subgroup N of G such that NE/N ~ X. Since E E. X , we must
have N > 1. Let No be a minimal normal subgroup of G contain-
ed in N. Then NoE = G. For E is an (XA NoE)-covering
subgroup of NoE and thus, by induction, NoE < G implies
NoE/NoE. Xn NoE • Thus HoE/NoE. XnNE and so is an
No ( 'X ("\NE) INc -covering subgroup of NE/No. Thus, by induction,

and so NE/N e 1:, t'\ NE con-
tradicting NE/N ¢ X . Hence NoE = G , and so E is a maximal
subgroup of G. G/No~ i since GIN = NE/N ¢ X . Thus there
exists an ~-eccentric p-chief factor H/K of G above No for
some prime p. Let C = CG(H/K) Then

( 1-) No ::: C

(2) X(p) f C

(3) X(p)fIE::: CE(HnE I I(i\E) ;: C('\E (since Eei).
(2) and (3) imply X(p) ~ E and thus X(p)E = G since E•
is maximal. We show that

(4) X(p) (\E = xC]!) r. No(X(p) r'I E) which is normal

in G.:
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and (X(p) f\No)E = G implies X(p) == (X(p) '" No)(X(p) 0. B) :::

0, by (1) and (3). This contradicts (2), so that (X(p)f"lNo)E

= E and the result follows.

By the definition of E, G/x(p) (\ E Ft ?£ since E < G.

We obtain a contradiction to this by showing that both G/x(p)

and G/No(X(p)(\E) lie in X, and then using (4) and Lemma

3.2(ii). By Lemma5.1 (d), E/x(p) {'\E is a 1j-covering sub-

group of G/x(p){'\E (wher-e '\1= (X(p)nE)'X/(X(p)nE) ).

Also x( p) (\ E > 1 • For X(p) r; E = 1. implies that xCp) is

a minimal normal subgroup of G, and so X(p) ~ F(G) < C, con-

tradicting (2). By induction we therefore have GINo(X(p) r. E)

= NoE/No (X(p) (\ E) E. 1:: and G/x(p) = X(p)E/X(p) E. 'X , as

re~uired. This proves the theorem.

THEOREM5.4 Any two X -covering subgroups of G are conjugate.

Proof. Vie use induction on IGI as in [7],2.1. The result is

trivial for G = 1 and for oeX. Thus assume G> 1 and G

Ft ~ , and consider separately the following two cases

Case (a). GIN Ft ~ for some minimal normal subgroup N of G.

In this case, if El , E,2.are tw'o 1: -covering subgroups of G,

then NEI IN, NE~IN are N.x /N -covering subgroups of GIN by

Theorem 5.3. Thus, by induction, NE, = NEf for some g e G.

El' EX are (X nNE,) -covering subgroups of NE, and NE,< G,

since G/N ¢X .The result thus follows by induction.

Case (b). GIN E. X for all minimal normal subgroups N of G.

Then the 'i -residual G of G is the unique minimal normal sub-

group of G, since G Ft ~ (Lemma3.2(ii)). G is complemented
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in G by Lemma3.2 (iii), and its complements are the X-cover-

ing subgroups of G. Since they are maxirna'l, in G with trivial

core, they are conjugate in G.

Weare even now not in a position to prove the existence

of ~ -covering subgroups along the lines of Theorem 5.4. For

in case (a) above, we can assume by induction that GIN has an

NX IN -covering subgroup EI IN < GIN. Again by induction we
,

can find an JS ('\ EI -covering subgroup E of E,. Then E E. X ,
but we are unable to show that it is in fact an l:-covering

subgroup of G. For suppose E < }' S G, }"'o <l F and FIFoE, i .
Then E:::: FnE, 5 E" FoAE, <l FAE, and F" E, I Fcf\E, ~

Fc(Ff\E,)/Fo E,.1: by Lemma3.2(iv). Hence EO:,-..E,) = FI\E,

by definition of E, and thus EFa = (F nE, ) Fo. To prove that

(F f"\ El) Fo = F as required, we need to utilize the fact that

E IIN is an NX IN -covering subgroup of GIN, and this is

where the proof breaks down. Application· of Theorem 5.3 to E

in EI yields Ei = NEI since Ei IN E. f. . Thus El S NF < G and

NFo<l NF, but NFINFo need not lie in X, since i: is not

isomorphism-closed.

Nowfor :J-. a saturated formation, the 2f'-covering sub-

groups are the terminal members of ~-crucial maximal chains

( [4] ,5.4). He approach the existence of r-covering subgroups

along these lines viz. by defining X -crucial maximal chains

in the natural way, showing that these always exist for any

normal system ~ of G and that their terminal members, which

lie in i , are in fact 1:-covering subgroups of G.



55
DEFINITION. A maximal subgroup M of G is said to be ~-crucial-if 1'-1 is X-abnormal and GIN e. X ,where N/CoreI1 is the
unique minimal normal subgroup of G/CoreM. We say that the
chain H = Ho < HI < •••• <H = G of subgroups of G isr
an 1:-crucial maximal chain if Hi is an ?(, r-; Hi+1 -crucial max-
imal subgroup of Hi+1 for each i.

LE~~ 5.5 The following conditions on a maximal subgroup M of
G are equivalent
(i) H is 1:-crucial.
(ii) GIN e. r, but G/CoreM ¢ 'Xv •
(iii) Gfc/ G:E () f.1 a chief factor of G, ::c is the 'X-is where G
residual of G.
Proo~. (i) and (ii) are trivially equivalent. We show that (i)
is equivalent to (iii). If M is 3S'-crucial, G'i< N
X j:G ""'H = G ()CoreM <l G. Also, by Theorems 4.2 and 4.3,

and thus
GiH = G

and the result follows, since H is maximal. Conversely, if
G'1:./ G'ifi M is a chief factor of G, it is complemented by H.

Since this is an X -eccentric chief factor, M is 1:-abnormal;
and GIN e. i since :tG .CoreM = N

LEf.'IMA5.6 If G ¢, ':t , it possesses an ~ -crucial maximal sub-
group. Thus, for G ¢ 3S , we can construct an X -crucial max-
imal chain of G whose terrrlinalmember lies in'X •

Proof. Since G ¢, )::, 1 < G, the i-residual of G. Let G/K be'
a chief factor of G. Then G/K ¢~ and so G/K is ~-eccent-
ric and complemented in G/K. For G/K ~ i(G/K) implies that
G/K / jCG/K) e. K~/K. Lemma 3.2(iii) then gives G/K e. K :t/K
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i.e. G/K c Y , a contradiction. Thus there exists a maximal
subgroup M of G comp'Lement Lng G/K. M is :t-crucial by Lemma5. 5.

The follo\ving lemma is the crux of the proof that an
)S (\ M -covering subgroup of an JS-crucial maximal subgroup M
of G is an J:-covering subgroup of G.

LEr1MA 5.7 Let E be an :'£'(\ 11-covering subgroup of the 't-cru-
cial maximal subgroup r1 of G. Then, if E < F < G and F 1: M,
F/F ()CoreM ¢ J:: •
Proof. Suppose this is not so, and let G be a counterexample
of minimal order. Thus we have E < F < G,
F/F ()CoreM c :£ for some subgroup F of G

F 1: M and
choose F to be

of maximal order subject to these conditions. Let N/CoreM be
the unique minimal normal subgroup of G/CoreM.

'L.
Now since M is '~-crucial, G/N c }:, and so

Further, MGi = G giving !>1/!-1Ii G'ie. i . Thus, by the def-
iand E (G r. M) = M

M/CoreM c

inition of E, ECoreM = M
~ M and FGi> M. Since

so that FCoreH

(1) --- FCoreM = G
F fM, we therefore have
and }"Gi = G .

r-:
We now show that F is a maximal subgroup of G. Let F<F

1\ ":5 G. We prove that F fl11 is then an l:I\F -crucial maximal
A 1\ /\ .1\

subgroup of F. By (1 ) , FCoreM = G. Thus F 1\ N / F 1"'\ CoreM
1\ 1\is a chief factor of F and is in fact complemented by FAM

,," 1\ ,...For (F (\1\1) CoreM = FCoreM (\M = M, giving (F 1\ M) (F f\ N) =
A/,I\" /\F 1"'\ (F 1\ M)N = F . Thus F rv H is maximal in F, and it is easily
verified that

(2) ---
/\ I-CoreF CB' (\ M) = ~'('\ CoreM •
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l\ 1\

Now, by the definition of }', FI:B' f\ CoreH ¢ X • On the other

hand, FIF (\ N E. X since FN = G and GIN E. ~ • The result

thus follows by Lemma 5.5(ii). F is now easily seen to be
.... A

maximal in G. For suppose, if possible, that F < G. In F we

have E an X" F '" M -covering subgroup of the x: C"\ F -crucial
~ A A

maximal subgroup P f\ M, E < F < F and }"'1: F f\ M. Thus, by

the definition of G, F / F (\ CoreFCF ("\M) ¢ i i.e •.

F/FflCoreM ¢X, using (2). This contradicts the definition of
.1\

F and so F = G and F is maximal in G.

Let IG:MI a for some prime p. Then= p

(3) X(p) 1: N since N/CoreM is t.-eccentric, and

(4) X(p){\F < CF(F" N / F ("\Corer'I) = Fr. N since

F/F r. CoreM e 1: and thus }"'(\ N / F fI CoreM is Xf\F -central.

(3) and (4) together imply that X(p) 1: F, and thus

(5) X(p)F = G since F is maximal in G.

We now show that F f'I CoreM = CoreM f'I X(p) (F (\ CoreM) and so

is normal in G by (5). As in 5.3, CoreM II X(p)(FnCoreM) =
(CoreMI\X(p))F f'I CoreM ,and (CoreMI"\X(p))F = G implies that

X(p) = (CoreMr\X(p))(FllX(p)) 5N by (4). This contradicts

(3), so (CoreM f\X(p))F = F and the result follows.

Write G* = G/F 1"\ CoreM, F* = FIF II CoreM etc. t and I(,} =
-

(F (\ CoreM) ?£/(F (\ CoreM). Then :B'*e 7J t F* is maximal in G*
-

and G*/CoreF* ¢ ~ . This last statement follows from the fact
-

that G*/CoreF* e ~
-

implies G/CoreF eX, since CoreF* =
(Core}"')*. This then g.ives

iG 5 CoreF, contradicting (1). Thus

F* is, in fact, a ~-covering subgroup of G* by Lemma 5.2.

Hence, by the homomorphism-invariance of ~ -covering, subgroups,
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•

G*/(CoreM)* = F*(CoreM)*/(CoreM)* e ~ i.e. G/CoreM e ~

contradicting the fact that M is ~-abnormal. This last con-

tradiction proves the lemma.

THEORET/[5.8 AnX n M -covering subgroup of an ~-crucial max-

imal subgroup M of G is an X-covering subgroup of G.

Proof. Let E be an Xf"\M -covering subgroup of M. Then Be?i:..
Let E < F < G and FIFo e, 32. Wemust show that EFo == F.

Certainly if F < M this is true, by the definition of E.

Also, if F = G ,it is again true, since EG
j = E(Gin M)G

i =
f.MG = G. Thus we need only consider the case E < F < G with

F i M. \ve show that F (F fI M) = F. As in 5. 7 ,
o

FCorer1 = G so

that FoCoreM <i G and thus FoM = F0CoreM.M is a subgr-oup of

G. If Fo~ M, we have FoCoreM < CoreM and thus ~ ~ F (\ CoreM

so that FIF {\CoreH e, 'X. • This contradicts Lemma 5.7, and so

F 0 i M and thus FoM = G. Hence F0 (F (\M) = F f'I 1!"'oM = F •

Thus FnM I FonM == FIFe e, 1: and so FnM I Fof'lH e, Xf"\M.

By the definition of E, E(1!~(\M) = F n M. Hence E1!'u= (F n M)Fo

= F.

By Lemma5.6 and repeated application of Theorem5.8, we

have

THEOREM5. 9 G possesses an X-covering subgr.oup for any nor-

mal system x..

Using the conjugacy of the 'X-covering subgroups, Theorem

5.8 also yields the following lemma
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LEMMA5. 10 If G ¢ X , every -:r -covering subgr-oup of G is an

):: f'\ M -coverinc; subgroup of some l-crucial maximal aubgz-oup M

of G.

This gives us a characterization of the 't-coverine sub-

groups similar to that of the '~-covering subgroups viz.

THEOREMS.11 The 1:-covering subgroups of G are the terminal

members of the l:-crucial 'maximal chains of G.

'i>leare now in a position to obtain the desired relation-

ship between the l-normalizers and 1:-covering subgroups.

THEOREM5.12 Every l:-covering subgroup of G contains an x.-
normalizer of G, and conversely.

Proof. By Theorem S.11, an 1- -covering subgroup of G is a mem-

ber of the set l1t of Theorem4.1 0 and thus contains an 2:; -norm-

alizer of G. The converse follows by the conjugacy of the ~-

covering subgroups and of the .t-normalizers of G.

COROLLARY1 The 1:.. -covering subgroups of G can be character-

ized by the conditions

(i) E € i:
(ii) If E <U ~ V <G, then U is :EAV -abnormal in V.
Proof. Firstly, let E be an 1: -covering subgrpup of G and E <

U <i V :5 G. Then E is an ?£{\ V -covering subgroup of V and so

contains an JS {\V -normalizer of V, by TheoremS. 12. U is then

::t (\ V -abnormal in V by Theorem4. 3. Conversely, let E satis-

f_y (i) and (ii), and E:5 V S G, Vo <J V with ViVo € X • We
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must show that V E = V.o
Suppose this is not the case, and

let U be a maximal subgroup of V containing VoE. Then Vo <

CoreVU and so V/CorevU e ~ by Lemma3.2(i). U is thus
X 0 V -normal in V, contradicting (ii). Hence Vo E = V.

COROLLARY 2 Let E be an x,-covering subgroup of G, KIL an E-
composition factor of G of order a power of prime p, and K 5
X(p). Then E covers K/L if X(p) r. E 5 CE(K/L)

if X ( p) Il E 'f cE (K/L ) •

Proof. This proof follows closely that of Leroma5.2 of [4J. As

and avoids KIL

we have seen in Chapter 2, E either covers or avoids K/L. If E
covers KIL, K (JElL nE is a p-chief factor of E with CB(K/L)

= C
E
(K f\ ElL f'I E). Since Ee J;: this gives X(p) r. E < CB (K/L) •

On the other hand, if E avoids KIL, LE is a maximal subgroup
of KE and so is XflKE -abnormal in KE, by Corollary 1. The
p-chief factor K/L of KE is complemented by LE and so is
)S"KE -eccentric i.e. X(p)f\ KE ~ CKE(K/L) = KCE(K/L)
Thus X(p) Jl E ~ C}_J(K/L).

COROLLARY 3 An Jc: -normalizer D of G is an '1:-covering subgroup
of G if and only if D <: IIS G implies that D is 1:(\ H -ab-
normal in H.
Proof. Assume first that D ~ H S G implies that D is XI""H-

abnormal in H. Then D is a maximal ~ -subgroup 0f G. }'or if
D < H with HE.i., and D ~ HIS H, we have HIE.X by Lemma
3.2(iv). D is then Jer.HI-normal in HI a contradiction.
Now D < E, an )(-covering subgroup of G, by Theore~5.12.
Since Be ~ we must have D = E. The converse follows
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immediately from Corollary 1.

In [12J T.O.Hawkes gives a similar condition for the ~-
normalizers and }-covering subgroups of a group to coincide,
and an example of abnormal supersoluble normalizers which are
not supersoluble covering subgroups. We describe his example
briefly as it shows that an abnormal t-normalizer need not be
an X-covering subgroup.

EXAlvIPLE5.13 Let W = C5'\.. Z4' the wreath product of a cyclic
group of order 5 with the symmetric group on 4 elements. W is

product of an elementary abelian group N =
< a1 ,•••, a4> of 'order 54 with 64• Let a be the automorphism

a. ~ a~ (i=1 ,••,4 ). Then a is of order 4 and
~ ~

the semidirect

of N mapping
commutes elementwise with L4. Let G* = L4 X < a > and G
be the splitting extension of N by G*. For each prime p let
~(p) be the formation of abelian groups of exponent dividing
p-1. Then, by Theorem6.1 of [4J, {~*(p)} is a set of integ-
rated formations defining locally the formation of supersol-
uble groups. Set X(p) equ~l to the ~(p)-residual of G for p=

wher-e

A4 is the alternating group on 4 elements. Then the supersol-
uble normalizer
subgroup of L4 leaving a4 invariant) is an '~-normalizer of
G. We show that the supersoluble covering subgroup

E = < a1a2a3 > < a4> H < ex> is also an ':f. -covering sub-
group of G. The chain E ~ NH<'a> ~ G is easily seen to be
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an 'L-crucial maximal chain, so E contains an £-covering sub-
group of G by Theorem5.11. The required equality then follows,
since EE.:t D is abnormal in G since the only proper sub-
groups of G containing it are E, NH< a > and < a1a2a3a4 >.
L4< a > , all of which are self-normalizing in G.

In the above example, the ~- and ~-covering subgroups
of G coincided when we took X(p) equal to G~(p) for each
prime p. We now show that this is not always the case, nor
even for suitable choice of X(p) between G~(p) and ° (G)

P
(Notation of [4J). The following, due to R.iv.Oarter, is an ex-
ample of an ~-covering subgroup which is not an l"-covering
subgroup for any normal system ):.

EXAMPLE 5.14 Let' G = 05 ~ Z4/Z where Z is the centre of the
wreath product 05 '\,L.4 of Example5. 13. I z 1 = 5 and thus
IG I = 24.53• Now take T = 07\.G, the wreath product of a
cyclic group of order 7 \.,rith G. Then T is the semidirect
product of an elementary abelian group N of order 71G1 with
the group G, and thus I r I = 24.53.71 G I. Let ~ = tYl.2

this saturated formation can be defined locally by taking
)(p) = 11 for each prime p. We first determine the n2-cov-
ering subgroups of T .

An 1~2-covering subgroup E of G is a direct product of a
symmetric group on 3 elements and a cyclic group of order 5,

-'1\and has thus order 2.3.5. E is cyclic of order 3. Let E be an
112-covering subgroup of T • Then, by the hOIDomorphism-invar-
iance, NE/N is an 112-covering subgroup of j /N and so 1TB/N
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= NE/N. Hence E < NE = K, say, and thus E is an n2-covering
subgroup of K. Also, since G complements :V"( \') = N, vie can

choose E such that E = GnE (Theorem5.1 2 of [4]). Thus E =

(N 0E)E and it only remains to determine NnE. By Maschke,

since 7 l lEI we can ~vrite N = N1x ... x Nk as the

direct product of subgroups Ni such that each Ni is normalized

by E and no proper subgroup of Ni is normalized by E. Then

each Ni is an E-composition factor of K. By Lemma5.2 of [4J, E

covers Ni if AutE(Ni) C 1'1 and avoids Ni if AutE(Ni) ¢ 11. •

Since N t"\ E centralizes each Ni and E = (N n E)E, AutE (Ni) :;;

AutE(Ni) for each i. Thus E covers Ni if Aut:§(Ni) C 11 i.e
-" -~E ~ CE(Ni) or Ni 5 CN(E ) , and E avoids Ni if AutE(Ni)
d ,\11 cl' (-11, -'I't
~ I l i •e • Nil::: CNE ) . Thus N() E = CN(E) and E =

ECN(EV\.)• We .now show that °7, 7(E) = El'I\ CN(E''\.), and so the

order of °7, 7(E) is not divisible by 5. }]1'lCN(E'lil) is cert-

ainly a 7-nilpotent normal subgroup of E, so E'l1CN(E''\) <

07'7(E). Suppose, if possible, that this inclusion is proper.
~ - ~

Then E < 07'7(E) nE =' P , say, and so CN(P) < 0N(E ) •

However, P is the 7-complement of 07'7(E) and is thus normal
_'1\ -1\ 'll

in E. Hence [ON(E),P ] < P A CN(E) = 1 giving CNU;;) ~

a contradiction~

To enable us to prove that E is not an J:-covering sub-

group of '[ for any normal system X of T' we' need more infor-

mation about the structure of T. Let

G = Go > G1 > G2 .> G3 > G4 = 1 be the unique
J. ~ 17.- 53

chief series of G. Since 7 l IG I, we can Ivri te (by Haschke)

N = A1 x •• • x AJ.., where the Aj are G-composition factors
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of I of ~I •i.e. minimal normal subgroups Since
64

N<C,,(A.)
- I J

-Denote by Ai+1 the direct product of ~hose Aj with central-
izer equal to NGi (i=o, .•,4). Then

- -A1 )i. ••• )I, Ai+1 = CN(Gi) and thus has order 7IG:Gil
(i=o, ••,4). Set - -f Ni = Ai+1 x... x A5

lN5 = 1 •
for i= 0, •• ,4

Then N = No> N > N > N > N > 1 N5 =
" 1 i 2 1~ 3 "118 4 l.ll!(s-.)

is a series of normal subgroups of f satisfying, for i=o,.,4,

(iii) the centralizer of every chief factor of T between

Ni+1 and N. is equal to NGi•J..

Ni+1Gi <lT (. i= 0, •• ,4 ) . For G.<lG and Ni+1<lr implies
J..

Ni+1Gi <l Ni+1G, and (i) implies that N normalizes Ni+1Gi•
.......The only central chief factors of I are those operator-isom-

~ ~ ~\orphic tol IN 1G and j ING 1 and thus I = N1G1. Thus no
~ ~~chief factor of I beLow N2 is centralized by I ,and so

2.T~\.= N G •
2 2

Now suppose, if possible, that E is an :t-covering sub-
group of l' for some normal system 1: = {X(p)} of r. Then

- 2 z
""'I :le = ~I 'Y\'. ......_ 1'1\'\.For I = E implies that by the
homomorphism-invariance of I-covering subgroups. Thus T'~ <
""-'1 1'1\1. .-:")1 "rt :5 T.y •and similarly We obtain a contradiction by
showing that this implies that and so
E ¢ jE •

X-central and every chief factor of T between N3G2 and
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maximal suberoup of G. Then

(i) M is X-crucial in G.

(ii) The intersection of a chief series of G with M is a

chief series of M, corresponding factors being operator-iso-

morphic.

(iii) If H/K is a chief factor of G covered by M, IIr. M/Kr,M

is )S(\M -central in !'-1if 'and only if ElK is X-central in G.

(iv) The X(\M -normalize'rs of !II are X-normalizers of G.

Proof. The hypotheses imply MF(G) = G and so M(\}"'(G) <l G

and (ii) holds, by Lemma1.1 •

and GX < F(G) since G e 11,'X.

since M is X-abnormal

giving
i ~

M(\ G = CoreM n G <J G.

:'i
Thus M(iG :; M('\J!~(G) :; CoreM

c/f. IGi{'\M is a chief factor

of G since M is maximal in G, and so, by Lemrna5.5, M is I-
crucial and (i) is proved.

Wenow prove (iii). Certainly H/K X-central icplies

H{'\M/KIiM is X(iM -central, so it remains to prove the con-

verse. Suppose, if possible, that this is not the case. Then,

for some J:-abnormal maximal subgroup Mof G, there exists an

X -eccentric p-chief factor H/K covered by M such that H("\MI

Kn M is XnM -central. Thus

( 1 ) xCp) 1: a
(2) X(p) Cl !>1 ,,~ ar.M where a = aG(H/K).

By (1 ) and (2) , X(p) f M and thus X(p)M ::G since M is

maximal in G. As in 5.3 we obtain

(3) M(\0 = (H ('\a)x(p) ('\ 0 which is normal in G.

Since a >F(G), we have G/a e X and aM = G so that

M/M ('\ 0 e i. Also, MIM f'\ a is ~ -abnormal in G/H (\ C Cwhere
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'\} = (N (\C)X/ (H ne» and so is a ~}-covering subgroup of

G/!JI(\ C by Lemma5.2. Hence, by Theorem5. 3, G/X(p) (M(\ C) e, 'lJ
i.e. G/X(p) (N (lC) e, 1:. Thus, by (3) and Lemrna3.2(ii), G/

Nr.C e, X., contradicting the fact that I'-1is 1'-abnormal.

To prove (Lv) we just have to show that
xID (G) I (Theorem4.3) this follow's immediately from (iii).

THEOREH5.16 If G E. YLi , the 1:-normalizers and X-covering

subgroups of G coincide.

Proof. The result is trivial if GE.f. Thus assume G ¢ ,,,£

and let l: H < H1 < •.... < H < H = GD = be an0 r-1 r
X-abnormal maximal chain connecting D~ to G (Theorem4.9). 'vie

show that in this case Hi is in fact )(('\Ri+1 -crucial in Ri+1
RiF(G)

r
G/for each i. = G for each i, since H.> D and~-

F(G) e,l: (Theorem4.2). Thus Hi/Rif\F( G) e,1: for each i.

Since FCR.) > H.('\F(G) , this implies that H.; E. n ( '.t ("\Ho;)~ - ~ ......
for each i. The result then follows by (i) of Lemma5.15.

COROLLARYIf G E. nnx (i.e. G/F(G) E. l'LX ) then each 1-
normalizer of G is contained in exactly one X-covering sub-

group of G.

Proof. We omit the proof since it follows word for word that

of Theorem5.9 of [4] (replacing:f by 'X or f as apl)ropriate).

THEOREM5.17 If G E.1'\.'£ and the subgroup H covers all )S-

central chief factors of G, then H contains an ~-normalizer

of G., In particular, if H also avoids the X-eccentric chief

factors of G it is an l-normalizer of G.
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Proof. Here, too, 'I-1efollow' closely along the lines of Theorem
l4J.

.
5.7 of If H = G the result is trivial. 'vie thus assume
that GrJ-f and H < G. Let M be a maximal subgroup of G
containing H. Then the hypothesis implies thnt M complements
an l::-eccentric chief factor and so is 1:-abnormal. By Lemma
5.15(ii) and (iii), H covers all the Xf"\JvI-centralchief fact-
ors of M and so contains an Xf'lI1-normalizer of M by induct-
ion. The result then follows by (iv) of Ler.una5.15. Finally,
if H also avoids the 1:-eccentric chief factors of G , it will
have the same order as the X-normalizers and will thus be one
of them.

Our next result corresponds to Theorem5.15 of [4J.

THEOREM 5.18 If GX is abelian it is complemented in G and any
two complements are conjugate. The complements are the X-
normalizers of G.
Proof. This proof follows word for word that of Theorem5.15 of
[4J (after replacing'} by :r or i: as appropriate) up to the
choice of B. Let B = AX(p). Then N 't-central implies B:S
CG (N). Since G/A el, E/A is p-nilpotent, so we can define
Q as in the above-mentioned proof. Then QA i CG(A/N). For
A/N 1-eccentric implies B i CG(A/N). Thus, if QA 5 CG(A/N),
we would have a non-trivial normal p-rsubgr-oup BCG(A/H)/CG(A/N)
of G/CG(A/N) which is impossible. SO QA i CG(A/N). The
remainder of Carter and Hawkes's ~roof then goes through un-

.
altered.
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In [4] Carter and Hawkes also show that if G e 'hOy

(where Y is a saturated formation) and L is a subgroup of G
satisfying Le} and LF(G) = G, then NGCL) is contained
in an f-covering subgroup of G. (Theorem5.8). However, this
result does not carryover into the present situation merely
by replacing J<. by 1 or :r as appropriate, as the following
example shows.

EXAl"IPLE5.19
6383/33 and

Take G = L:3x f3/S3 t X(2) = G, X(3) =
L = L*S3/S3 (see Example3.1). Then G e

Yl'~, L e 1:, LF(G) = G and G rt i. L is normal in G and
so NG(L) is not contained in an ''£-covering subgroup of G,

since G rt i .

However, if in addition we replace F(G) by F(X) (where
X =9 X(p) ), this theorem is then valid.

LE}1MA 5.20 Let L be a subgroup of G satisfying L E. ~ and
LF(X) = G. Then NL/N e i for all normal subgroups N of G.
Proof. Let H/K be a p-chief factor of NL above N. Then
H (I L/K ("\L is a p-chief factor of Labove L ",N, and thus

since L E. 1; . \1e

must show that this implies X(p) (\NL
show that L.F(X(p)nNL) = NL. Now
X ~ X(p), and so LF(X(p» = G Thus

< CNL(H/K). We first
F(X) ~ F(X(p» since

L (NL (\F (X ( p» = NL

and the result follows since F(X(p))("\NL :5 F(X( p)r, NL) •
Hence x (p) ("\NL = X(p) r. L.F(X(p) (\NL) = (X(p) ('\L)F(X(p) (\NL)
:5 CNL(H/K) , since F(X(p) f\NL) ::; F(NL) •
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The proof of Theorem5.8 of [4J, together with this lemma,

gives us the required theorem viz.

THEORE!>15.21 If G E. nx and L is a subgroup of G satisfying

and LF(X) = G, then NG(L) 5 E, an ;t-covering

subgroup of G.

This theorem enables us to relate the X-covering sub-

groups of G to the .r-covering subgroups of certain subgroups

of G.

THEOREM5.22 Let L be a subgroup of G satisfying L1<'(X)= G.

Then every :£I"IL-covering subgroup of L is of the form 1n E

for some ~ -covering subgroup E of G.

Proof. We consider separately the t,.,o cases G/F(X) E. rand

G/F(X) ¢ '1 .
(a) G/F(X) E. X . Then 1/1 n F(X) E. i since LF(X) = G.

= 1 Also EE.X
I

E(1 n 1<'(X»
I

G E. 11'i .
Thus an 1:.I"\L-covering subgroup l~, of L satisfies

and thus and

Therefore, by Theorem5.21, E < 1 r.E for a suitable X -cov-,-
ering subgroup E of G. We show that IL 1"\ E I 5 IE I I, giving

equality. Now L e 'Yl( X ,...,L) since 1 nF(X) 5 F(L). Thus

EI is an X fIL -normalizer of Land E is an X -normalizer of G

(Theorem5.1 6) • Also, by Lemma1.1, if H/K ,is an :£ -central

chief factor of G covered by 1, then H()1/K rv L is an ::En L -

central chief factor of L. Thus, using Theorem4.2,

IL nE I ::: the product of the orders of the X -central chief

factors covered by 1 in a given chief series of G
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:5 the product of the orders of the -~(',L -central chief

factors in a given chief series of L

= IE I .I j

Cb) G/F(X) ¢Y... Here, too, we follow closely the proof

of 5.12 in [4]. Since G/b'(X) ¢f, .G has an 'X-crucial max-

imal subgroup M containing F(X). Let K = CoreM and H/K be

the minimal normal subgroup of G/K. F(X) < K and so L covers

G/K. Thus, by Lernma1.1, H II L/K(lL is a chief factor of L,

easily seen to be 1:1iL -eccentric (as in Lemma5.20). Also

L/L 1\H E. 1: since G/H E. X. r1" L complements H (\ L/K" L in

L and so is an }:"L -crucial maximal subgroup of L. Now

(r.lnL)F(X) = M and F(X) < l~(M () X) :5 M. Thus (HilL) F(M"X)

= Iv!. Hence, applying induction to fv1, every 1:('\ H Ii L -covering

subgroup of r.l IIL is of the form M II L II E for some :tf'\M-

covering subgroup E of M i.e. every l;,,,L -covering subgroup

of L is of the form M (\ L Ii B = L Ii E for some ::.t -covering sub-

group E of G (Theorem5.8).

COROLLARYLet l:; and '\j be two normal systems of G such that

):.> 'lJ and ~ is integrated, and let D be a 'Y -normalizer of

G. Then every t ,,",D -covering subgroup of D is of the form

D () E for some :f -covering subgroup E of G.

Proof. Since "tt is integrated and ~:::-'~, D, can be connected

to G by an J:-critical maximal chain. The result then follows

by repeated application of Theorem5.22.

Remarks. 1. Example5.19 shows that the condition LP(X) = G

in Theorem5.22 cannot be relaxed to as in the
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corresponding Theorem5.12 of [4J. For in this example, L is
not contained in an J:.-coveringsubgr-oup of G.

2. Corollary 2 of Theorem5.12 and Theorem5.22 (like
the corresponding 5.2 and 5.12 of [4J) are useful in the deter-
mination of ~-covering subgroups of wreath products of the
form where C is a cyclic group of order p,p

and all X(q) contain the base group.

THEORErIJ5.23 Let 1- = {x(p)}

systems of G such that L 2: 'Y
and ~ = {yep)} be two normal

and 'lJ is integrated. Then,
if the 1:- and 1J-covering subgroups of G coincide, so do the
1:- and ~ -normalizers of G.
Proof. Since the l- and 1a -covering subgroups coincide, x:G =
G~ G, ~le induction on IGI. If G = 1 , then t

= say. use D =
n1t = G and the result is trivially true. Thus assume G> 1.

Then a chief factor G/L of G will be complemented by a maximal
subgroup M which is both 1- and ]-crucial in G. Thus the
'X t\ M - and tJr. M -covering subgroups of M coincide, and
hence, by induction, so do the 1:1'\ M - and 'Y" M -normalizers
of M. Thus, by Lemma4.11, X(p)flM and Y(p)flr1 centralize
the same p-chief factors of r·f for each prime p. Vieshow that
this implies that X(p) and yep) centralize the same p-chief
factors of G for each prime p. All the chief factors of G
above G are both 't - and ~ -central and GIL is both 1- and
~-eccentric, so it remains to consider the chief factors of G
below L. Let H/K be a la -central p-chief factor of G below L.
Then H/K is a p-chief factor of M. For suppose that K<J<

H for some normal subgroup J of M. Then [J,Y(p) ] <K
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since yep) centralizes H/K, and so J is normalized by yep).

But "ti is integrated and thus G:S yep) for each prime p,

yielding G = NY(p). Thus J <J G and so J = H. yep) n M5

and so X( p) " M :5 CM(H/K).

X(p) (\ HY(p) = yep) (X(p) c. M)

Thus, since

< C (H/K)- G Hence

every ~ -central chief factor of G is Js-central and the con-

verse is certainly true, since ~ < 3::. By Lemma4.11, the ~-

and 'tj -normalizers of G thus coincide.

It is easily seen that the same conclusion would hold if

1: and ~ were any two integrated normal systems of G. For in

this case He would have (notation as above) G < X(p) ('\ yep)

and so M(X(p) (i Y(p» = G. Then X(p) (\ M :s CM(H/K) would

imply X(p) = X(p) (i M(X(p) (\ Y(p» = (X(p) r. Y(p» (X(p) (\ r·1) <

as req_uired. However, it need not hold for all

normal systems X and 'lj of G, as the follo'tdng example shows.

Take G = L4, the symmetric group on 4 elements, X(2) =

X(3) = G and Y(2) = the normal subgroup of order 4 of G,
Y(3) = G. Then }: > lj but 'lJ is not integrated as the 3-

chief factor is ~ -eccentric. The 1- and lI-covering sub-

groups of G are the Sylow '2-subgroups of G, but the 1- and

li-normalizers of G are of order 2 and 8 respectively, and so

do not coincide.

The following example show's that, as in Carter and

Hawkes's theory, the converse of Theorem5.23 does not hold,

even with ~ ~~ and ~ an integrated normal system.
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EXA~~LE 5.24 Let G = C5\A4, the wreath product of a cyclic
group of order 5 with the alternating group on 4 elements (in
its natural presentation). Then G is the semidirect product
of an elementary abelian group N of order 54 i·1ith A4, and so
IGI = 22.3.54• Let Z be the centre of G and H/N the normal
subgroup of order 4 of GIN. Then Izi = 5 and G has a chief
series G >

~
Let X(p) = G for

H >'_N~:>
J. ~~

p=2,3,5

Z >
S"

yep) = G
Ivith cG(H/z) = N.

p=2,3 andfor
Y(5) = H. Then X2:1J and 1J is integrated, and the 1:- and
y-normalizers are the system normalizers of G. However, the
.1-covering subgroups do not coincide with the ~ -covering
subgroups. For let E be an 1:-covering subgroup of G. Then,
since Gin e 11J::, NE/N is an N :;tIN -normalizer of GIN

(Theorem5.1 6) • Thus we can vlrite NE = NT where T is a Syl-
ow 3-subgroup of A4• E is thus an :tilsr -covering subgroup
of NT. Now F(X Ii Nf) = N so r satisfies the conditions
of Theorem5.22 in NT. Hence we can assume that E >T and
thus E = (E "N)i. \'Ie show that

As in Example5.14, since 5 t If I we get, by Maschke,
N = N1 x ••• x Nk where the Ni are T -composition factors
and thus E-composi tion factors of N,. Since xC 5) {\ NI 2: N,
we can apply Corollary2 of Theorem5.12, to get E covers Ni if
x ( 5) f\ E < CE (N . )

- J.

Since X(5) r, E
and av;oidsNi if
(X(5) ("\!)(NnE)

•
X(5)nE fCE(Ni).

= E covers Ni if N. <a
and avoids Ni if Ni 1:: CN(X( 5) I" T) , and thus

as required.
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Hence E = f CN(X(5) (\T) = TON(T ), of order 3.52.

The same method also yields E":t = T CN(Y ( 5) ('\I') ;:;IN, of
4order 3.5 .

We conclude the present chapter w'ith two examples of );-

covering subgroups for special normal systems and necessary

and sufficient conditions for 1:- and ~1-cOvering subgroups to

coincide in one of these t1'lOspecial cases.

THEOREM 5.25 (i) If X(p) = X for all primes p,
3S

then E =

where C(X) is a Carter subgroup of X.

(ii) If X(p) = X and X(q) =

q~p, then E~ = DX = NG(XP).

for all primes

Proof. (i)

show that

G/X IS i and thus
l: 'X.XE = G. Let E = E () X. We

)S -
E IS X ,

:tNG(E) = E and E is a Oarter subgroup of X. Since
'X ):

E = E f\ X ::s F(E) and so is nilpotent. Suppose, if

possible, that E is not self-normalizing in X, and let H =
NX(E) > E. Now E <l E:t so NG(E) > E'¥... H = XnN'G(E) and

XHE = NG(E). Let H/K be a chief factor of NG(E) such that

K 2: E. Then NG(E)/K IS l' and thus NG(E) = KE~. This
)E

H = K(H nE) ::: K , a contradiction. Thus H = E andgives
~

E = giving the required result.

Let D = NG(XP)

G/X IS i. Let

be an l-normalizer of G. Then

DX == G, since D<:H<G- •and suppose, if

possible, that D is ~(\ H -normal in H. Then, if N/CoreHD

is the minimal normal subgroup of H/CoreHD, Xn H ::: N. Thus

and so is normal in H~ i. e • Xn D < Xr.H <
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\ (X Cl D). This contradicts the fact that X Cl D = NX(XP)
which is abnormal in X. Hence D ~ H < G implies that D is
X~H -abnormal in H. The result.follows by Corollary 3 of
Theorem5.12.

COROLLARY Let X= {X(p)} and 'lj= {yep)} be two normal
systems of G satisfying X(p) = X, yep) = Y for all primes p,
and X ~ Y. Then :r E':1 only if X/y nilpotentE = if and is
and C(Y) = Y (l C(X) •
Proof. Suppose y 'U

E = E u.
seThen YE = G and so -G/Y E. X by

the homomorphism-invariance of 1:-covering subgroups. Thus
X/y < F(G/Y) and so is nilpotent. Also, by Theorem5.25,
C(y) = y" E"*= Y t'\E¥ = Y (\C(X). Conversely, C(Y) = Y t'\ C(X)
implies E~ = NG(C(X») ~ NG(C(Y) = E~ , by Theorem5.25. Also,
since X/Y is nilpotent, G/Y E. ~ and so YE~ = G. Hence
YC(X) = Y(XnE~) = X and thus IG: E¥.l= IX c(X)1 =

Iy : C(Y) 1= IG : E~I and the result follows.
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Chapter Six

CHAc'tACTJmIZATIONS or X - NOIU1ALIZERS

The property of 1.'-normalizers basic to all our charact-
erizations is the covering and avoidance property of Theorem
4.2. _In general, this property does not characterize .r-norm-
alizers, for T.O.HmV'kes has shown (Examp'Let of [11J) that a
subgroup covering the central chief factors and avoiding the
eccentric chief factors of a group need not be a system norm-
alizer of the group. However , we have seen that in an 11.3:-

group, the X-normalizers are those subgroups which cover the
J(-central and avoid the :X-eccentric chief factors (Theorem
5.17). We can extend this result to the case of any group G
in which the X-normalizers and X-covering subgroups coincide.

THEOREM 6.1 Let G be a group with normal system X in whi.ch
the l'-covering subgroups and l'-normalizers coincide. Then
the ct7-normalizers of G are those subgroups which cover the
~-central and avoid the 3S-eccentric chief factors in a given
chief series of G.
Proof. We use induction on IGI. Suppose H is a subgroup of G
which covers the I'-central and avoids the r-eccentric chief

•factors in a given chief series of G. Let N be the minimal
normal subgroup of G appearing in this chief series of G. Then
NH/N covers all N r IN -central and avoids all N X IN -eccent-
ric chief factors in a chief series of GIN. Also, by the hon-
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omorphism-invariance of X'-normalizers and l:-covering sub-

groups, the NlS/N -covering subgroups and NX /N -normalizers

of G/N coincide. Hence, by induction, NH/N is an NX/N -

normalizer of G/N i.e. NE/N = ND:l"/N for some X-normalizer
x x xD of G. Thus NR= ND = HE for some ~'-covering aubgr-oup
~ XE of G. If N is 1:-central in G, this implies H = D. Thus

we may assume that N is ,t-eccentric and thus avoided by DX
J: -

and H. Now NR/N = ND IN E,1: and thus NR E,'Y1.( 'f f\ NH) •

By Theorem5.16, we then have D:'L,NH(Iffi) = EX"NH(NH). But

E~ < 1'H and so is an X(\ NR -covering subgroup of UE. Thus
"X l: 'X ~n ~D = E = D' rv I (NH) and so D covers the Xf"\ NH -centrEl,l

and avoids the X0Iffi -eccentric chief factors of l~ (Theorem
X4.2). Therefore, since D complements N in NH, the chief

factors of NH above N are 'X (\ NH -central while those below N

are XII NH -eccentric. H also complements N in NR and so

satisfies our hypotheses in NR. Hence, if NH < G H =

D~ ('\NH(l~) 'i:
= D as required. Thus ve can assume that NR =

G and so H is maximal in G (if H = G, G E,i and so

1:D =G=R). N G~= and so ~HG = G. Also HE,:£ since

G/N does. Thus H is an X-covering subgroup of G and so an

I -normalizer of G.

jS

Wenow return to the general case of an .l:-normalizer D'

defined by a non-integrated normal system ~= {X(p)}. For the

sake of brevity we make the following definition.

DEFINITION. Let H be a subgroup of G which covers or avoids
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each chief factor of G. \~esay that H satisfies the centraliz-
er condition if, for each prime p dividing IGI, the intersect-
ion of the centralizers of the p-chief factors of G covered by
H is not contained in the centralizer of any p-chief factor of
G avoided by H (",here the intersection is understood to be G
if H avoids all the p-chief factors of G ).

'YEvery X-normalizer D of G satisfies the centralizer
condition, for X(p) centralizes precisely those p-chief fact-
ors of G covered by nX (~heorem4.2). Hence this is a necess-
ary condition for a subgroup to be an 1:'-normalizer. VIe thus.
consider a subgroup H of G which covers or avoids each chief
factor of G and satisfies the centralizer condition. Then, if
~ = {X(p)} is the normal system of G obtained by setting

X(p) = the intersection of the centralizers of the p-

6.2
chief factors of G covered by H if there is at

least one p-chief factor of G covered by H.
= G if H avoLde all the p-chief factors of G.

X(p) centralizes precise~y those p-chief factors of G covered
by H, and so IH! = ID'l:I. However, by the above-mentioned ex-
ample of

'~T.O .Hawkes, H need not equal D • Ivetherefore seek a
further condition on IIwhich will force thes~ subgroups to
coincide in fact we find two possible conditions.

The first involves the way in whLch H is embedded in the
group G. We recall the proof of Theorem4.9 in which any non-
integrated X-normalizer D?£ (i.e. an 'X-normalizer defined b;:;r
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non-integrated normal system ~() of G is shown to be X -subab-
normal in G. We first choose a normal system :£0 of G minimal

D'''£o = D7£. IJ thle enwith respect to the conditions X <X- c-

select a chief factor Xo(~)/Yc(~) of G which is covered by
and

~DO ( at least one such chief factor exists ). Setting
for all primes q~~ , we obtain, with Y (p), a normalo 0

system 'a-o of G. Then DXo is of index a power of p in D~oo

(where D'l:.o and D\1c are defined by the same Sylow system of G).

\'le choose a minimal normal system ::£, such that l:.i ~ '1d~ and
D1J.::. = DJ!2, , and repeat the 'whole process, obtaining a chain

X 3:: 'L 'XD = D' 'c < D I • < •... < D r = G
)::,

of normalizers in whf.ch D')e~ is of index a prime power in D .+1

for each i. Thus each member of the above chain covers or av-
oids the chief factors of G and satisfies the centralizer con-
dition. Also, the prime p . dividing IDJ;,+, : Dx~I is that

~

appearing in the selected chief factor Xi(Pi)/Yi(Pi) covered
by l:.

D • ; and X. (Pi ), Y. (p.)~ _ J. ~ centralize precisely those Pi-
D1~ , DiE~+, respectively forchief factors of G covered by

each i.
,

We prove that if H is embedded in G in this manner,
it is an X -normalizer of G.

THEOREM 6.3 Let H be a subgroup of G satisfying the following
three conditions
(i) H covers or avoids each chief factor of G
(ii) the centralizer condition
(iii) there exists a prime power chain

H = Ho < H1 < .•• < Hr = G of subgroups of G such that
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Ca) each Hi satisfies (i) and. (ii)
(b) for each i there exists a chief factor X. (p) IY . (p)~ ~ of

G such that Xi(p), Yi(p) centralize precisely those p-chief
factors of G covered by Hi' Hi+1 respectively and Hi covers
Xi(p)/Yi(p)· (where p is the prime dividing IHi+1 . H·I ).. a,

Then H is an X-normalizer of G, where '£= {X(p) } and X(p)
centralizes precisely tllosep-chief factors of G covered by H
( e.g. X as defined in 6.2 ).

Proof. Let IH1 : Ho I be a power of prime p and define, for
all primes q~p, Xo(q) as the intersection of the centralizers
of the q-chief factors of 'G covered by Ho (or G if Ho avoids
all the q-chief factors of G). We thus obtain, ,\'1'ith Xo (p), a
normal system ~c- of G such that XoCq) centralizes precisely
those q-chief factors of G covered by H for each prime q. We
show that Ho is an '~o-normalizer of G.

Define Yo(q) = Xo(q) for all primes q~p, obtaining,
with Yo (p), a normal system ~o of G. Since IH1: Ho I is a

power of p, R1 and 110 cover the same q-chief factors of G for
all primes qrfp • Thus, by induction, H1 is a '\jc-normalizerof
G say where and
~ = { sq} is a Sylow system of G.
X (q)nSq for all primes q, we have

o·

If we now set

q NG(X;) := H1 t"\ HG(X~)
We show that Ho is a conjugate of
normalizer of G.

Since Ho covers precisely those p-chief factors of G
centralized by Xo(p), Xo(p)n Ho centralizes all the p-chief
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factors of Ho. Thus
has a normal p-complement Q. Q is then characteristic in the
normal subgroup Xc,(p)(\Hc of Ho and so Q <1Ho• Thus

(1) HoS HH
1
(Q).

Now ~ = { sq} reduces into H1, the ~c-normalizer of G def-
ined by it. Hence X~(')H1 is a p-complement of Xc(p)(\H1• But
IH1 : Ho I is a power of p, so Q is also a p-complement of
Xo(p)nH1• Hence, by Hall, Qg = X~ n H1 for some e E-

X 0 (p) n H1 • Thus
(2) N (XP) < N (Qg)

H1 0 - H1
On the other hand, Ho covers Xc (p)/y0 (p) and so

•

This implies that xP = QgyP , giving
o 0

NH (Qe) < NH (XP)
1 - 1 0

normalizes yp. (2) and (3) give N (XP) = N (Qe) =
c H1 0 H1

( NH1 (Q) )g , and so IHo I = Inxo I = INH1(X~) I = INH1(Q) I •
H = N (Q) = (N (XP) )g-I as required.
c H1 H1 o·

(3) ---
since H1

Thus, by (1),

OOROLLARY. Conditions (i),(ii),(iii) of Theoren6.3 character-
ize non-integrated 'X-normalizers.

T.0 .Hawkes I s example showe that (b) cannot be amitted
from (iii) in the above theorem

Take G as in Exa~ple of [11] (page 344).' Let H =

<8) X < zc
3
,> , the subgroup of G wha.chis shown to cover the

central and avoid the eccentric chief factors of G but is not
a system normalizer of G. Then H < <s,>.K < G is a
prime power chain connecting H to G, for I <s~K : HI = 5b



and IG: <s)K I = 3. H certainly satisfies (i) and (ii), and
so does <s>K as it is a~ X-nornalizer of G for the normal
system ±:= {X(p)} defined by X(2) = X(3) = G, X(5) = K.
Thus H satisfies (i),(ii) and (iii)(a) but is not a system
normalizer of G.

The second condition is much simpler. In the proof of
Corol1ary1 of Theorem4.2 we saw that if DX is an X-normaliz-
er of G defined by Sylow system J = { SP} of G, then nXsP

Xi.e. D commutes with a Sylow p-complement
of G for each prime P div.iding IGI. He show that if a subgroup
H which covers or avoids the chief factors of G and satisfies
the centralizer condition has this property, then it is an .~-
normalizer of G.

LElvIHA 6.4 Let H be a subgroup of G. Then H commutes i'litha
Sylow p-complement of G for each prime p dividing IGI if and
only if H is an intersection of subgroups of prime power index
in G.
Proof. Assume firstly that H commutes with the complete set
{ sP } of SylOl.fp-complements of G. Then HSP is a subgroup of
G for each prime p, and H :5 L = PrJllGI HSP. He show that
these two subgroups are in fact equal. Suppose, if possible,
that H < L , and let q be a prime dividing 1'1:HI· Then q
divides IHSq : HI = I sq : sq n H I which is clearly impossible.
Thus H =. L and the result folloivs since IG : HSt>I is a PO'{-

er of p for each prime p.
Conversely, let H = r) xPpc v:5

where IG:xPI is a power
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of p, and ('s<"H: , the set of prime divisors of IG I· Let sP be
a p-comple!!1entof xP and thus of G. Then xP = HSP since
IxP: sPI is a power of p and IxP: HI is prime to p. Hence H
commutes with a Sylmv p-complement of G for all p e. c..<J. Let
p e. 1t'-."". Then p l IG:H! and so HBP = G for any p-comple-
ment sP of G, and we are done.

LE!1I'IIA 6.5 Let H be a subgroup of prime power index in G sat-
isfying the two conditions

(i) H covers or avoids each chief factor of G
(ii) the centralizer condition.

Then H is an X -normalizer of G. More precisely, H is the
normalizer in G of a p-complement of the normal subgroup X(p)
defined in 6.2.
Proof. Let IG:HI be a power of prime p, say, and define X'_
{X(p)} as in 6.2. Then, as we have already seen, IHI = ID~I
Let sP be a p-complement of H and thus of G, and set xP =

sPn X(p). Then xP is in fact a p-complement of X(p)n H. Now
X(p)~H is p-nilpotent since X(p) centralizes precisely the
p-chief factors of G covered by H. Thus xP is a characteristic
subgroup of the normal subgroup X(p) (\H of H and so is nor-
mal in H. Hence H < NG(XP), an X-normalizer of G (since
X(q) = 0qlq(G) for all primes q,6p). Thus 11 = NG(XP).

Our second characterization of non-integrated X-normaliz-
ers follows easily from these two lemmas.

THEOREN 6.6 Non-integrated X-normalizers of G can be ohar-
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acterized as those subgroups H of G which satisfy the follow-
ing three conditions

(i) H covers or avoids each chief factor of G
(ii) the centralizer condition
(iii) H commut.e s with a Sylow p-complement of G for each

prime p dividing IGI.
Proof. Let H satisfy (i) and (ii) and cormnute with set {SP}
of p-complements of G, and let .~= {X(q)} be defined as in
6.2. Then, by Lemma6.4, H = DHSP. We show that HSP =

P
NG(SP n X(p)) for each prime p, so that H is an 'X-normalizer
of G. Since IHSP: HI is prime to p, HSP covers the p-
chief factors of G covered by H and avoids the remaining p-
chief factors. Also, HSP covers all q-chief factors of G for
q~p, since IG: HsPI is a power of p. Thus HSP covers or
avoids each chief factor of G and satisfies the centralizer
condition for prime p since H does and for all other primes q~
p trivially. Let ~ = {Y(q)} be the natural normal system of
G arising from ESP as in 6'.2. Then yep) = X(p). By Lernma6.5,

and the result follovls.
Since any X-normalizer of G satisfies (i), (ii) and (iii),

the theorem is proved.

Two characterizations of integrated X-normalizers (i.e.
3S-normalizers for integrated normal systems ':"£) are n01<7
easily obtained. If D'£ is an integrated .t-normalizer it has,
in addition, the following property:
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"The intersection of a chief series of G with nX is a chief

series of n'X with corresponding factors operator-isomorphic".
( Theorem4.13 )
We say that if a subgroup H of G has this property, it satis-
fies the chief series condition (in G). It is this additional
condition which gives us the required characterizations.

LEMMA 6.7 Let H be a subgroup of G satisfying the three con-
.(i) H covers or avoids each chief factor of G.

(ii) the centralizer condition.
(iii) the chief series condition.

and let the normal system ! = {X(p)} be defined as in 6.2.
Then X is integrated and HX(p) = G for each prime p.

ditions

Proof. Let K/L be a p-chief factor of G covered by H. Then
HIlCG(K/L) = CH(K0H/LnH) and H("\K/H('\L is a chief factor
of H operator-isomorphic to KIL (by (iii». Thus we have
G/CG(K/L) ~ HCG(K/L) / CG(K/L) with HCG(K/L) S G. Hence
G = HCG(K/L). Now (ii) shows that if KIL, KIL are operator-
isomorphic chief factors of G and H covers KIL, then H also
covers R/L. Thus every chief factor of G above X(p) is cover-
ed by H. For such a chief factor is operator-isomorphic to
one above CG(K/L)
and G = HCG(K/L).

for some p-chief factor K/L covered by H,
Hence HX(p) = G for each prime p, l' is

. .
integrated since any q-chief factor of G above X(p) is covered
by H and thus centralized by X(q) for all primes p and q.

This lemma, together with Lemma6.5, gives us a character-
ization of integrated X-normalizers similar to Theorem6.3.



87

THBORET·16.8 Integrated ':£ -normalizers of G can be character-
ized as those subgroups H of G which satisfy the follovling
four conditions

(i) H covers or avoids each chief factor of G
(ii) the centralizer condition
(iii) the chief series condition
(iv) there exists a prime power chain

.• < H = Gr
of subgroups of G such that each Hi satisfies

conditions (i),(ii) and (iii).
Proof. An integrated 1: -normalizer D'*- of G certainly satisfies
(i),(ii) and (iii), and is easily seen to satisfy (iv). ·}'or
we can modify very slightly the process used in Theorem4.9
(and described earlier in this chapter) to yield a chain

of normalizers in which every

normal system 1:. is, in fact, integrated Starting with the
a

normal system X we choose normal system 1:0 minimal 'Vlith,
respect to the 3 conditions D'X = D'Xo 1: ~ Xo and ~o is,
integrated. As before, we can now select a chief factor
Xo(~)/Yo(~) covered by DXo for some prime ~. Then the normal
system ~o obtained by taking Yo(q) = XoCq) for all primes q

~D C < D1Jo and~p , together with Y (R), is integrated. Thus
o 0 0

1ve can continue in this manner until the whole group is reach-
ed.

Thus we assume that the subgroup H of G satisfies (i), ••,
(iv). Let X= {X(q)}, 1)= {Y(q)} be the natural normal
systems of G arising from H,H1 respectively as in 6.2. Then ~
~ 1J and, by Lemma6. 7, ! and 1J are integrated. Let IH1: HI
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be a power of prime p. \veshow that H is an 1:: nH1 -normalizer
of H1 • Let K ("\H1IL (\ H1 be a chief factor of H1• Then KIt

is a chief factor of G covered by H1• If H avoids K/L it cert-
ainly avoids K ('\H1IL r-.Ht, and if H covers K/L we have

(KnH1nH)(Lf\H1) = (KnH)(LnH1) :::;(KnH)LnH1 = KflH1
1.e. H covers K ("\H1 IL r. H1 . Thus H covers or avoids each
chief factor in a chief series of H1 arising by intersection
with a given chief series of G.

Now define normal system ~:::; {Z(p) } of H1 as follows.
For q;;fp, let Z(q) = 0 , (H1) then Z(q) = H1 ("\Y(q)

q q

by definition of Y(q) and (i1i) for H1 • Since IH1 : HI is a

powe r of p, Y( q) = X(q) for all primes q~p. "Hence, for q~p,

Z(q) = H1~X(q). Let Zen) be the intersection of the central-
Lze r-s (in H1) of the p-chief factors K ('\H1 IL r. H1 of H1 cov-
ered by H in the above-mentioned chief series of H1 (or G if H
avoids all the p-chief factors of H1 in this chief series ).
Then Z(p) is the intersection of H1 with the intersection of
the centralizers (in G) of the p-chief factors K/L of G cov-
ered ~y H in the given chief series of G. Hence z (p) =
H1(\X(p) by the Jordan-Holder Theorem and (ii) for H. Thus

~ = rx (\ H1 •
\veshow that H satisfies the centralizer condition \vithin

•the chief series of H1 under consideration. This is trivially
true for all primes q~p. Suppose, if possible, that Z(p) <

CH (K (\H1/1 (\H1 ) for some p-chief factor
1

avoided by H. Then H1 r. X(p) :S H1 n CG(K/L)
K ("'1111/L (\ H1 of H1
where K/1 is a p-

chief factor of G covered by H1 but avoided by H thus
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Y(p) < CG(K/1) . By Ler.1P1a6.7,H1Y(P) = G. Hence

X ( p) = X ( p) (\ H1 Y ( p ) = Y (p) (H1 (\ X ( p») < Y ( p) (H1 (\ C;G(K/L» =
H1Y(P) f'I CG(K/L) = CG(IC/L) • This contradicts the fact that
H satisfies (ii), giving the re<luired r-esu'lt ,

Thus, in H1, H satisfies conditions (i) and (ii) of Lemma
6.5 within a given chief series of H1 and is of index a
prime power. The proof of Le~ma6.5 goes through in this sit-
uation, giving H a ~-normalizer of H1 i.e. an ~(\H1 -norm-
alizer of H1• By induction H1 is a ~-normalizer of G, and
thus H is an r -normalizer of G by Theorem4.1 7. The theorem is
thus proved.

Our second characterization of integrated X -normalizers
is an immediate consequence of Theorem6.6 and Lemma6.7.

THEOREM 6.9 Integrated X -normalizers of G can be character-
ized as those subgroups H of G satisfying the following four
conditions

(i) H covers'or avoids each chief factor of G
(ii) the centralizer qondition
(iii) the chief series, condition
(iv) H commutes with a Sylow p-complement of G for each

prime p dividing IGI.
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Chanter Seven

FISCH}<;R' SI1'\., -!WRlVIALIZERS AND In -COVERING SUBGROUPS

In this final chapter ve apply our methods of Chapters 3,

4 and 5 to the following even more general situation consider-
ed by B.Fischer ([5J). G is assumed to be a fixed finite sol-
uble group, l\ a non-empty finite set, and 'it~ a set of primes

set of prime divisors of IG I, for each :\•
1{; < 'it , the" -

Then normal sub-
for each 1\ C A --- l.,ithout loss of generality

groups M( 1\')..) of G are chosen, one for each '\.eA, forming a
set 1n. = { ~'l(1r')...) I '\ cA}. This set 1'\1\. takes the place of
the normal system t in our theory we denote by ~'\i\f"\ H

the set { M(7t) r\ H A eA} for H any subgroup of G, and

by Nr'V\./N the set { m·l( it'>.) IN I ~ cA} for N any normal

subgroup of G. We prove some additional properties of I'\iL-nor-
malizers and give an alternative approach to Fischer's In-cov-
ering subgroups.

We begin with Fischer's definition of an 1\l-normalizer
of G.

DEFINITION. Let ~ = { sp } be a Sylow system of G. Then
S'lt" = n SI' is a Hall ~~-comple~ent of G for eacb A e lv ,p € 'It).

11lrite H'it,.= s'lt;.. ("\ r1(It ) . for each ). e i; . Then M'Tt1. is a Hall~

'it"-complement of rvI( 'Tt,), since M(1t.J <l G. We call {Mit). I ')..cA}
the ,\Yl-systernof G defined by ~ and rf(G) = ).~ NG(M'it;..)

the 1h-system normalizer or, simply, the ')1\ -normalizer of G
defined by ;J .
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e.g. A = {)..}, 1t(-. = n >, {p} (for some prime pe1c), M(n'}.)= G.
Then D'\h (G) == NG(S )p wher-e Sp is a Sylm1 p-subgroup of G.

By P .Hall, all the '11t -systems and hence all the '1h-

normalizers of G are conjugate, and every 11l-normalizer
clearly contains a system normalizer of G. In addition, Fischer
shows that = for any normal sub-
group N of G i.e. the 11l-normalizers are homomorphism-invar-
iant. HOi-lever,unlike 1..-normalizers, h'l -normalizers need
not cover or avoid each chief factor of G, as the follo,ving
example shows.

EXAMPLE 7.1 Take G to be the primitive soluble group of order
168 mentioned on page525 of [10]. Let A = {).}, 1L-:- = {2, 7}

and M('Tt.J= G. Then M'Ttt..is a Sylmv 3-subgroup of G viith
normalizer of order 6. Thus 1l'\4 re

D = N (M 2- )G
does not cover or

avoid the minimal normal subgroup of G of order 23.

We show first of all that an ~-normalizer nevertheless
covers certain chief factors of G.

THEOREM 7.2 D~\ covers each p-chief factor of G which is cen-
I

tralized by all M(~~) with p e ~~.
Proof. Let N be a minimal normal suberoup of G of order a
power of prime p, and let for all ').such

that p e 1t,,' N splits into central p-chief factors in C and

thus is covered by n~(:f\. NC(M'it(\) , since this subgroup con-
~e fr» n ::I~ANG(Mre~ )tains a system normalizer of C. Hence >N .

pOt"
Also, for p f.- 'R'}. , N < S1I:7I< NG (MIc;.. ) • Thus
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~ll= D • The result then follows by the

homomorphism-invariance of 'I'}l. -normalizers.

A further contrast to the theory of X-normalizers

. t' f t th t h ING(XP) D~I' . tappears ~n ne ac a w ereas : ~s pr~me 0 p,

ING(M1\;>...) •• n'" I nn need not be prime to x~. ~his is due to the

fact that the same prime p may occur in several different It.).,

and is easily illustrated. Take G as in Example?1, and

G. Then NG(MIt,.....) is of order 21 and NG(M'lt,.) is of order 6.

Hence ID'lI\ I == 3 ,giving ING(M'R).): D'lh I == 2 e x)..

\ve now turn to the problem of showing that 1l'L -normaliz-

ers are subabnormal in G. ·Our approach is similar to that used

in Chapter4 to prove the X-normalizers are X-subabnormal ---
,;

in fact, all but one of the proofs are so similar to the corr-

esponding proofs in Chapter4 that they are only briefly

sketched. It is only in the proof that a Sylow system of G

reduces into the ~1'\.-normalizer of G which it defines that a

little ingenuity is needed. For our proof of the corresponding

result for ::lS-normalizers depended on the fact that INGeXP):

D):, ( )was prime to p Corollary1 of Theorem4.2 whereas we

have just seen that in the present situation ING 01'(" ) D1v\. I
need not be prime to ')C~.. Westart with this 'result.

THEOREM7.3 A SylmV'system of G reduces into the 'ht.. -normal-

izer of G which it defines.

Proof. Let f = { SP} be a Sylow system of G and



9)

o SF, r~1L':I = sit;.. II H(1t;:.. ) for each ). E. A. \'le m.ust show that
p,-,'K"
;l3 reduces into H = n f..~A HG(N1\:,,) .' Let HP be a p-cornplement

of H for each prime p dividing IG I. Now Z (p) = < M'Jt» I p € 1l:" >
is a subgroup of sP by the definition of Mit';:.., and so is a pl_

group. By the definition o'f H, HP normalizes each I11t;\ and thus

Z(p). Hence HPZ(p) is a p'-subgroup of G for each prime p

E. 'R let TP be a p-complement of G containing nPZ(p).

Then J = { TP} is a Sylow system of G reducing into H, and

there exists g e G such that J = j, g (by P .Hall ). \'le

show that g E H. For'}.. E. A, (MIt,,)g = M(x.J (\ (S'){,,)g =
N(1t ) II Cl (SP)g = M('lt~,) (\ P{)E'TT.... TP > Nit).. Thus (M11:t..)e

A pc '){:\ ,. "
:;;:M1t" for all ';\ e A and so g E. H. Hence SP:;;: (TP)h for

all pEn and some h E. H. Thus Sp(\ H = (TP)h(l H = (TPn H)h

= CHP)h, a p-complement of H, for each pe"R i.e. rt reduces

into H.

The following simple lemma takes the place of Lerr~a4.6.

LEIvll'<1A7. 4 NG(M1\:).) is abnormal in G for each ':\ eA.

and hence every subgroup of G containing

N (S1t;..)
G

is self-

argument shovs that every subgroup of G containing

normalizing, and the result follows immediately by Taunt.

He nov consider the variation of the 11'\ -normalizers with

'h\. Suppose, now, that J= { 1(n,). ) I t. eA } is'another set

of normal subgroups of G ,,,,ith 1(nJ :: M(n).) for each ~ e tv.

Then, if we write 1n':\ :;;: S1t:\ 1"'1 L(n).) , we have L1t~ = r.1n~f\1( 'Tt,,)
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D"\)t "'_-; Dt • As 'l'"_ before, we say thAt r~t

~ are consecutive if

for some jl-E. A ,and L(')t.:..) = M(1c~) for all "::..:j;r. In this

case, D'h.I. = D;i. () NG(M')~) = NDd.. (M''!:r) •

We use these ideas in the follovling lemma (which corresponds

to Lernma4.7).

Li<jI\'JIVIA 7.5 Suppose that .:i- < 'ht are consecutive as above, the

chief factor M( It,..) /Ir( '1t;V') is covered by D1Y\.. and D'l)\. < Dj. •

Then n'ril. is an 11t f\DJ.. -normalizer of DJ.. and is abnormal in

Dd. •

Proof. \'lri te K( ItJ = H(It ) (\ DJ.. and 1('t;. "It ;J..
for=IJI'"D

each i--e..A. • Since /J reduces into Di (Theorem7.3), K1i:\ is

then a Hall 1'1:" -complement of K( iC.J . As in 4.7, we obta.in

N
D
J.(K'7t,v.) = ND.;(.(M'(~) , using the fact that D'rn.. covers r1('~)/

L(7t~). This gives the desired result, by Leroma7.4.

LEMlV!A 7.6 If If'\\, = { r.'I( 11.'),) l' ~ e. A} is a set of norma.l s\Jb-

groups of G, one for each ~ E. A, there exists rE. A and Ft

normal subgroup L( 'tr) of G such that H(nl'J /L( It!'") is a chief

factor of G covered by D~.

Proof. The chief factor obtained aa in 4.8 with the X(p) re-

placed by the M(It';\) is centralized by all tno M('Jt~) and is

thus covered by ~~ using Theorem7.2.

These last two lemmas yield the required result.

THEORBM7.7 D'Vv\is subabnormal in G.

Proof. \ve assume that D'WI-< G and also, without loss of ccn-
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erali ty, that no conaecu+tve set ;1 contained in ')vL defines

D1~\.. • 1eI!"~"na?6then enables us to choose a consecutive set

:1 < 'f'Y\_ whach satisfies the conditions of 1er:\,rrla1.5. D'f>'l. is

thus abnormal in and the result follows, since D~ is sub-

abnormal in G by induction.

Weconclude this dis~ussion of the properties of ~t_

normalizers with a possible definition of an 1n-central chief.
factor and an ~~-normal maximal subgroup of G.

DEFINITION. A p-chief factor of G is said to be 1n-central

if it is centralized by all N(Itt. ) with pE:It).,and 11;1.-eccen-

tric otherwise. Viethen say that a maximal subgroup of G is

'11\1\.. -normal if it complements an 1tvt -central chief factor, and

'1'Vl-abnormalo+herwa.se. It is clear that when 1'V\. is actually

a normal system X, these definitions reduce to those of an

1t-central chief factor and an ~-normal ma~imal subgroup.

Theorem?•2 can now be restated to read II DI'rY\.covers all

the ~1'\.-central chief factors of G II (in line \vith 4.2). This

gives us the further result

" A maximal subgroup of G containing an '11'\ -normalizer of G

is lIh.-abnorrnal in G II

However, in contrast to the theory of 1:-normalizers, the con-

verse of this result is patently false. For, tin Example7.1,
the maximal subgroups of order 21 complementing the 11l--eccen-

tric chief factor of order 23 clearly do not contain an ~1\-

normalizer of G. There thus seems little point in pursuing

these concepts further.
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We now turn our attention to the othBr conjugacy claRs of

subgroups obtained by Fischer in the present situation viz.
the ~\-coverine subgroups of G. As we have already remarked,
these subgroups are defined as the limit of a certain sequence
of subgroups of G. Howeve r , before we can go into this defin-
ition in detail, we need the concept of an 1k-rcducer of a
subgroup of G.

DEFINITION. vie say that the Iht -system 15 = { M'lt" I '? eA}

of G reduces into a subgroup H of G if 'j~;)(")H is an 'hI, r. 11 -

system of H i.e. rvrlt"(1 H is a Hall itA-complement of
M(1t~J(\ H for each ~ e l\.. • This is merely an extension of
the usual definition of a SylO\'lsystem of G reducing into a
subgroup of G. Suppose, then, that the 1h.. -system +3 of G

reduces into H. Then the subgroup
11i.( I .4t:l gRG H) = < g e G l~ reduces into H >

is called the ~\-reducer of H in G this subgroup is
easily seen to be independent of the particular 1}1\ -system ~
used in the definition, since all ~~-systems of G are conjug-
ate. If, in particular, 1~ is a Sylow system ~ of G reduc-
ing into H, the subgroup

RG(H) = < g e G I )Sg reduces into H >

is simply called the reducer of H in G.

Clearly, if a Sylow system J, of G reduces into H, then.
so will the "Yl-t -system defined by !:> and thus

'Y\t
RG(H) ~ RG(H) > H for any 'ht .
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RG(H) is easily shown to be abnormal in G, and hence so is
''lYI,.RG(H). In addition, it is not difficult to see that any ~-
system /6 of G reducing into H also reduces into every sub-

'lItgroup V of G containing RG(H). We give a proof of this state-
ment as an example of the methods used.

Suppose that the 'Yv\,-system15 = { Mit;:.,}of G reduces
into H and is defined by Sylow system ~ = { SP} of G.
Choose El. p-complement HP of H containing SPn H for each
prime p. Then the Sylow system 'R = { HP} of H defines the
'11'l r-; R -system "6 n H of H. Extend ';j( through a SylOl-Tsystem
'V = { VP} of V to Sylow system J = { TP} of G. Then, by

P.Rall, J = ;_g for some g E. G.In fact, g E. R~(R), for
the 'Yh-system 6g of G is defined by 'j and so reduces into R
with J. Thus we can write .~= 'jv for some v E. V, and
therefore £nV = { (V1t"'f"'I}~(iL~))V} is an 11t"V -system
of V i.e. ~ reduces into V.

Fischer proves, in addition, that 1~-reducers are homo-
morphism-invariant

RNilt/N (NH/N) =
GIN

i.e. for any normal subgroup N of G,
'l)"N.R (H)/N •
G

New suppose that H is an 1'Y\..,-normalizerD of G. Let D
normalize the 'h\.-system B = {M1tt\.} of G we write
D = NG (10) to distinguish between the 1'K -normalizers of G in
this way. Then 15 redu.ces into D since I!1(1t~) (\ D : r17t

", n D I =
for every :\E. A. (In fact,

we have seen in Theorem7.3 that the Sylow system of G defining
~ reduces into D.) Therefore, as we have seen ab~ve, 1:> red-
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uce s into the 11'\, -reducer of D = NG (~) in G. It is this
fact which enablAs us to make the followine dAfinition of Rn
1,\1\, -covering subgroup.

DE2INITIOH. (Fischer) Let r2-> be any 11't-systemof G. '.tIe def-
ine the follo'ifingsequence of eubgr-oups inductively. Let

and Dc = NG(1~) • Then, assuming that Ri and Di
let
m A R~ ( )R D.
R· ~
"

and
are defined,

( 13 ('\ Ri+1 is an 1'V\.rdl.i+1-system of Ri+1' by repeated applic-
ation of the above remarks.) The Ri clearly form a descending
sequence of subgroups the last member of this series
( which certainly exists) is called an ~-covering subgroup
E"'- of G.

Several interesting facts about this definition are fair-
ly easily proved. Firstly, since the same 'h\.-system t) of G
is used throughout the definition, the Di form an ascending
sequence of subgroups the last member of this sequence

'\II\.is in fact equal to E This is a simple consequence of the
follo'Vlinglemma whose proof we sketch briefly.

LEMl-1A7.8 (Fischer) Let D == NG ( t3 ) for some 1'1t -system '5=

{r17!~}
'I"v\of G, and R == RG (D) • Then R = G if,and only if D =

G.
Proof. Certainly D == G i~plies R = G. Suppose that the
converse is false, if possible, and let G be a counterexample
of minimal order. Then D < G and R = G. By the homomor-
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phism-invariance of 1\\ -reducers and 'Y1t.-normalizers, and the

definition of G, ND= G for any minimal normal subgroup N of

G. Thus D is maximal in G let IG:DI = pa. Then, for p ¢

It'i\ ' MI'C7\<l G. On the other hand, if pE.'j{(., M'Ji"< D. For other-

wise we wou.l.dhave IMIC-).,.: HiL
", (\ DI divisj_ble by PE.lt;>,'contrad-

icting the definition of M~. Vie show that this implies R =

D, Giving the required oorrtr-adz.c tLon, Suppose tog reduces in-

to G for some g E.G

'Y\'\, r. D -system of D

Then 13g n D = 1~(\D , the unique

a , e. OJIn:.,)g ,"\D = M'Ji:,l.(\ D for each ? E1\..

Thus, for pE.lt;-._,(Mil,,)g ('\D = !1J
{'i\ , giving 01'Ji').)g = M11::.\. Since

this relation is trivially true for p ¢ It~, we have g E.

and the result follol'-Ts.

Suppose, then, that the sequence of Ri terminates at the
"fI.\

j-th place. i.e. Rj+1 = Rj = E • Application of this lewna

to R. then yields D. = R., and so both sequences converge to
J J J

11\. 'i"'-
the 'Yit-covering subgroup E . Thus E ,being equal to Dj'

is its own 1'\J\.IlE'\1I\. -normalizer.

Secondly, using induction on i, it is a simple matter to

verify that in fact

immediately that
,\",-

E = R.
J

is abnormal in G.

Two further properties to be expected of '11l -coverj.ng

subgroups viz. conjugacy and homomorphism-invariance folloyl

straight from the definition. For each '1V\_-system +~of G

gives rise to a single 1~-covering subgroup of G. All the ~~-

systems of G are conjugate, and it is easily verified that the

sequence obtained by using 10g in the above definition is sim-
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ply g G ItRc' R1,.... is therefore clear that all the 1'h.-cov-
ering subgroups of G are conjugate. The homomorphism-invar-
iance of both '1h -normalizers and !f1lL -reducers Aho'IVSthat 1'h-

covering subgroups are also invariant under homo:r:lorphisms.
Fischer now proves the deeper result that an ~~-covering

subgroup of G is an furl V -covering subgroup of any subgroup
V of G in wha ch it is contained. This result enables him to

1",-
.ahow that an 1'\\-coveringsubgroup E of G satisfies the fo11-
owing two conditions

(a )

(ii)

')~is its QI'm 1v\./\ E -normalizer
E1", < F < G, Fo <l F and F/b~ is its ownIf

For, in (ii), we can assume by induction that F = G. Then
G/F" = NG/F,,(Fot3/Fo) = r,NG(1'~) I }'o

of G. The result then follows since
for any Th -system 1~

E1", > NG( 1~) = Do'

It is this property of Th-covering subgroups whi.chforms
our starting point. Por in the special case of 'YJll a normal
system X of G, these two conditions are easily seen to be the
defining conditions of an 1:-covering subgroup of G. We t1l8re~

'\Iv\,
fore use 7.9 as our definition of an 1'11\.-covering subgroup E
of G. Our methods of Chapter5, applied to this more general
situation, then enable us to show that these subgroups do
indeed exist and are conjugate and invariant under homomorph-
isms. It is clear that once our 1~-covering subgroups are
proved conjugate, they coincide wi~h those of Fischer, giving
an alternative approach to the whole situation. However , ve
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give an additional proof of this f'ac t by ehov i.ng that our 11\.-

covering subgroups do indped satisfy Fischer's nefinition.

Our first step is to define a set ''1-v\. corresponding to

the set '£ defined in Chapter 3. Rather than brinG in the con-

cept of 'Vh.-central chief factors, VIe use the form of X given

in Lemma3.2(v).

DEFINITION. Let 'hI. be the set consistinc of sections H/K of

G in which K(Hr.M(i1:/>.) ) /K has a normal Hall Te(\ -compler:lent

for each ~ E.A .

Then 'l~, like i , is defined entirely Hithin G and

clearly has just the same disadvantage as ~ viz. it is not

closed under isomorphism 'idthin G (Example3.1). However, in

the following lemma we show that in spite of the added gener-

ality, I~ , like ~ , satisfies properties analogous to those

of a saturated formation. It is this fact which enables us to

adapt the proofs in Chapter 5 to the present situation.

LE~~~ 7.10 Let H be a subgroup of G. Then

(i) H/K e i1'v, K ~ K1 <J II implies H/K1E.1~ •

(ii) H/K" H/K2 e 1h. implies H/K,,,K2 e 'l'V\, and thus

H has an 1~-residual n'lY...
(iii) H E.1~ if and only if H/.¢ (H) E.1~ •

(iv) H e If\\. , K < H . implies K e 1~ .

(v) H/K E.1~ if and only if H/K is its own K('\\'\.I'\H)/K-

normalizer.

Proof. (i) Since H/K E.1h., K(M('1t:\)nH)/K has a normal Hall
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tt;>. -complement Q1t~/K for each ~ eA. Thus K1(H(1tf,) ('\H)IK1

has a normal Hall ')1;;.. =c omp'l.emerrt

and so H/K1 e 'I\:"\, •

(ii) We first prove the following general result for a

for each ~ er: ,

finite soluble group G :

t1 If G/N1 and G/N2 have normal Hall TI-complements for

some set of primes TI, then so does G/N1 ("\N2. I!

Let Q./N. be the normal Hall TI-Complemento. of GIN. (i=
~ ~ ~

1 ,2) • Then Q1N2/N1N2' Q2N1/N1N2 are normal Hall Tt-comple-

ments of G/N1N2 and so, by Hall, Q1N2 = Q2N1 . \le show

that Q1{'\Q2/N1nN2 is a Hall TI-complement of G/N{'N2 and

the result then follows.

and !Q1 r\ Q2 : N1r-. N21 = I,Q1 r: Q2

Since Q1N2 = Q2N1 ' N2(Q1n Q2) =

!Qf{\ Q2 : Q1(\.N21 = IQ2 : N21 E. 'it'.

= 1Q1(\ N1N2 : N11 e'lt'.

Q1 r-. N 21 • IQ1 ('\ U 2 : N 1 r. N21

N2Q1('\ Q2 = Q2 so that

Also, 1Q1"N2: N1"N21

The proof of (ii) now follows easily. }'or each ';\e Ii

have Ni (M(1t~) r'l H)INi with a normal Hall 1t?> -complement (i=1,

2). Thus M(11:;>-) nH I M(It?,)f"'IH"Ni
plement for each 2. e A i=1 ,2.

has a normal Hall 'it-;..-corn-

Hence

M('it;..)r-; H f"\ N1r-. N2 has a normal Hall 'it/-.-complement, and thus
•

so does (N1("\N2)(M(1t>..)~H)/(N1nN2) for each i\ ell. , as

was required.

(iii) Assume that HII(H) e ~~. Then HI!! CH) E. I~
TIi\

for all ). E. A • Thus, for each A eA,
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¢1t!H) (M( it:\) {\ H) /}9n~H)

( Lerr~a1.4). Hence

:5 O'iL:>.'1C.l\ (H/§n~H» =

N( '1Li\) r-. H :5 0n~ it" (H)

0le'lL (H) /.¢'T~(H)
" r. '"and so has a

normal Hall it~ -complement, for each ~ e t: .
The converse follows iTh~ediately from (i).

(i v ) Choose Hall it}.-complements Rn.;..., QIt-;l. of r1( n,,) (\ K,

}1(~,,) {\ H respectively such that Q"lt-;" n K = RJt~ for each A E.

A. Then H e 11\. implies Q1t
t. <l H(\M( 1tt) and so RI~? <l

Thus H E. '1~ •

for each t. E. A . Hence K E. ~~ •

is obvious, and the lemma is proved.

vie also note that although 'Y'vl need not be closed under
-

every isomorphism within the group, it is, like .y , closed un-

der a certain type of isomorphism within G viz. the isomor-

phism rp : H/K ~ E/K wher-e HK= H < G and H fI K = K. Fo r
-

in this situation, H/K E. ~v implies that

and hence K(H ('\M( Ti:-;..» /K has a normal Hall It? -complement for

each t- E. 1\. Since

yields fi/i{ E. 1~ .

K(H(\H(n".)/K ~ K(HnrJI(n'A»/K, this

This fact will be used frequently in the

sequel.

Lenma7.10(v) enables us to restate our definition of an

1-h -covering subgroup as follOlvs.

1....
DEFINITION. VIesay that E is an 1v-. -covering subgroup of G

if
'1.... -E E. 'I'll.

E'I'KP = F.
o

This definition of an 11'\.-covering subgroup yields immed-

ia tely the follovling properties of 1'V\,-covering subgroups
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we omit the proofs as they follow so closely along the lines
of the corresponding statements in Lemmas5.1 and 5.2.

LEtl]].';A7.11 Let E be an ')'}'\,-coveringsubgroup of G. Then
(i) E<H<G implies E is an ~1t.t"\H -covering subgroup of H
(ii) Eg is an ')h.-coveringsubgroup of G for all g e. G
(iii) E is abnormal in G
(iv) If NE/N e. 1~ for N <J G, then NE/N is an Nf'}'1t/N -

covering subgr-oup of G/N this is certainly the case if
N<E.

LEr:lII1A7.12 If}1 is a maximal subgroup of G satisfying 1·1E, M"-

and G/CorelJI¢ 1~ , then JvI is an ')'h.-coveringsubgroup of G.

Here, too, since 1~ is not isomorphism-closed, Le~lla7.11
(iv) does not at once yield the homomorphism-invariance of 1~
-covering subgroups. We also have to approach the existence of
these subgroups by the less straightforward means of so-called
1'h.-crucial maximal chains. As in Chapter 5, vte first prove
the homomorphism-invariance of 11l"..-coverinesubgroups, 0btain-
ing the conjugacy as an i~~ediate corollary.

THEOREM 7.13 If E is an "l-n-coveringsubgroup of G, then HE/N
is an Hl'ft/H -covering subgr-oup of G/N for any N <J G .
Proof. By Lemrna7.11(iv), ~t is sufficient to 'prove that NE/N
e. '\~ • Suppose this is not the case and let G be a counter-
example of minimal order. Then there exists 1h == {H(n.,J I ~ € A}

an 'h~-covering subgroup E and a normal subgroup N of G such
that NE/N rt 1'1\, Since E e. 1;_', N > 1 . Let No be a min-
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imal noroal subgroup of G contained in N. Then, as in Theorem

5.3, Hence E is maximal in G and GIN" rt·ii"'\.; • Thus

there exists 'i-. e A such that NeM( It,;>.) INo does not have a

normal Hall Tl}. -complement. NOIIl E e 1~ implies

has a normal Hall ~~-complement, and thus so does

No (M( TL~J (\ E) INa. Thus vre must have M( 11:~) i B and also

No 1:. lvI( 71:;..), since Ne:5 H( 7I:IJ would imply Ho O'l( TI~) " E) =

MCTI~)n NoE = M(7I:~). Therefore

(a) r1( 'J~~)E == G sinceE is maximal in G, and

Cb) I'.1(11:;'I.) {\ No == 1 since No> H(IC(J (\ No and

Hence

(c) M(-It",) II E == (M(TI~.) i\ E) (M(1{,,) {\ Ne,) == H(Il;;>_) {\ (M(1'<-x) (\ E)Ho

and so is normal in G. Since E < G, the definition of ~ gives

( d ) GI (!o1( 71:) i\ E) ¢ ~ •

As in Theorem5.3, we show that G/H(TI~) and G/(M(~~)nE)No
both lie in 1~ , giving a contradiction to (d) by (c) and

LeIl1T!1a7 • 10 ( ii) •

E/(rII(~c-)AE) 1s an (r>1(TI?-,)flE)1h./(M(TI,JAE) -covering sub-

group of G/(M('Jt(_)f\E), by Lemma'Zv l l (iv). In addition,

M(1t?»{\E > 1 • For r·t.CTI(_)nE = 1 implies that M(1l;~) is a

minimal normal subgroup of G. lVI('It't-) thus posses a normal Hall

TI~-complement and hence so does NcM(~~)/No --- a contradict-

ion. \ve can thus apply induction to

G/N(n(_) e 11;, and G/(I1(1'.~) r. E)No e rl'\'\.

final contradiction proves the theore~.

G/01(n",~) (\ E), obtainine

as required. This

THEORErlJ: 7.14 .Any two 'YtA.-covering subgroups of G are conjug-
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ate.
Proof. The proof uses the argument of Thcorem5.4 with X
replaced by'))'\.,.

viith these tl....0 properties of 11;\-coveringsubgroups
behind us, we go on to obtain the 1'h.-coveringsubgroups as
terminal members of 1~-crucial maximal chains.

DEl"'INITION. 'vesay that the maximal subgroup M of G is ~'\'\.-
crucial if GIN E, 1t:v

where N/CoreM is the unique minimal normal subgroup of
G/CoreM. This definition is clearly a simple extension of the
concept of an :£·-crucialmaximal subgroup (and an "lit-crucial
maximal subgroup will certainly be 1l\.-abnormal). The chain

of subgroups is called an
1'h. -crucial maximal chain if Hi is an ')'k,"\Hi+1 -crucial max-
imal subgroup of Hi+1 for each i.

We give several equivalent conditions for a maximal sub-
group to be 'Yh-crucial and then show"that 1'I'\.-crucialsub-
groups always exist whenever G ¢ ~ .
LET1MA 7.15 The following three statements are equivalent

(i) M is an 11~-crucial maximal subgroup of G
(ii) G~ I G-w.. () r·1 is a chief factor of G
(iii) ~1complements a chief factor H/K of G ''lith G/H e 1i:

and G/K ¢ 1l\.

Proof. 'Ne first prove that (i) and (ii) are equivalent. Let M
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be Ih-crucial. Then

,,;:;. .-fFurther, G t: CoreIv1

'Iv-
G < N and so '\~ ~

G 1\ r1 = G (\ Corer~<l G.

and hence
thus a chief factor since H is maximal in G. Conversely, if

'I'vI. -and N = G Corelv[. Thus GIN E. 1,\\,. Now

'\1~
G r. CoreM
Gii(l III ¢ 1\\.

G'l"''\, I G'\V- '"' 1I,~ .I,n is a chief factor of G, then

by the definition of 17\.G • This implies that
by Lemma7.10(ii), since

'1~ ,,;.
G (\ CoreM = G r. M

A similar proof shows that (iii) implies (i). Thus, since
(i) implies (iii) trivially, these two conditions are also
equivalent and the lemma is proved.

LE!'TI'>'IA 7.1 6 If G ¢ IV. it possesses an '1lt-crucialmaximal
subgroup. Thus G ¢ 1~ implies that G has an 1'n-crucial
maximal chain whose terminal member lies in 1~ •
Proof. As in Lemma5.6, this proof relies on the fact that ft~

~is Frattini-closed. G > 1 so I'Vecan choose a chief factor
G jv.. IK of G. Then G/K ¢ "\t.. and so, by Lemma7.10(iii), there
exists a maximal subgroup M of G complementing GrW\ IK.. !1 is
l~-crucial by Le~~a7.15.

We prove that the terminal member of an lh-crucial max-
imal chain is an 1'V1.-coveringsubGroup of G by showing that an
/'Vvl,f\M -covering eubgr-oup of an "I"\.'l-crucialmaximal subgr-oup M

of G is, in fact, an '1,'1'1. -covering subgroup of'G. The crux of
the proof lies in the follovling lemma which corresponds to
Lemma5.7.

LEr.1r1A7.17 Let E be an fl..\.r.fr -covering subgroup of the11A..-
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crucial maximal 8ub.:_;ro1.1]!r1 of G. Then, if E < F < G and

FIF ("\Core~ rt 'it\. •
Proof. We only eive Et brief sketch of thj_s proof, apar-t from

the section which deviates slightly from the proof of Lenmn5.7.

\1e assume the Lem...rna to be false, and let G be a courrtcr-examp'l e

of minimal order and F a suberoup of G maximal with respect

to the conditions E < F < G, F ~ M and

Then, as in 5.7,
(1) --- FCoreM = G and

'\!VI.
FG = G

some ~ E, A such that

Since G/CoreJvJ:Ft 1'\;\, , there exists

M( It't,) CoreIVl/CoreJwI does not have a

and F is maximal in G.

-ncr-ma'L Hall j~;>.. -complement. On the other hand, J:"'/}? II CoreH elK
implies that (:b"' IIM( It;..) (F f\ Corer-i) / (F () CoreM) and hence

(FnM(TC'>.))·CoreM /CoreM has a normal Hall 'R7>,';"complement. Thus

(2) M(TCi\)Corerlf1= (F(") !>1(1t'(,))CoreM

and so Therefore, since F is maximal in G,

(3) F}1 ( 1C.) = G

(2) also enables us to show that F( M(1t~) ("\ CoreM ) = F

For, suppose, if possible, that F is

maximal in G ). This wou.Ld imply that

and hence T1( lL~) CoreX1=

(r'1(1ti\)nF)CoreM, contradicting (2). Thus F'(H('R?)r\CoreI\T) =

F and so F (\ CoreM = (Ft'. CoreM)M(n,~) II CoreH wh i ch is nor-

mal in G by (3).

Nov', setting G* = G/Fn CoreH, F* = ]?/FII CoreH etc.

and J... = 0' (\Corer1) 1'lA./(F n CoreIvr) we obtain F* e.:L , F*

maximal in G* and G*/CoreF* ¢ ~ as in 5.7. Lemma7.12 then
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yields F* an .t -covering subgr-oup of G* and so G*/ (Core!"!)~'t E.
-;L by the homornorphisrn-irlvariance of f -covering subgroups.

i. e. G/CorerfJ:E. 1'1'\', the required contradiction.

The pr-oof of the f'o.L'l.owLng theorem nOHfollow's irnmediate-

ly along the lines of 5.8.

THEOREH7.18 An ~1\.()r'1 -covering subgroup of an I)H -crucial

maximal sube;roup Mof G is an t)l\-covering subgroup of G.

COROLLARY.1'\,\.-covering subgroups of G always exist.

The following characterization of 11\.-covering subgroups

is now easily proved using the conjugacy of 1h- -covering sub-

groups.

THEORE~17.19 The '11A -covering subgroups of G are the terminal

members of the '1'V\. -crucial maximal chains of G.

Our concluding results concern the relationships between

1h -covering subgroups and Ij/h.-normalizers and the 1h -reduc-

ers of both these subgroups. Suppose that !1 is a SylOiv sys-

tem of G reducing into the 1\.-\ -covering subgroup E of G and

defining the 1h-system 13 of G. We show that

It is then easily seen that E is indeed the limit of a

sequence of subgroups of the type described by Fischer. We

begin by proving the first of the above inequalities our

;nethod of proof was inspired by the corresponding theorem for

') -covering subgroups and ~-normalizers, due to A.Mann([14]) .
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TE30RJ~N7.20 Let the Sylow system J = {SF} of G reduce in-

to the 1H-coverins subgroup E of G and define the 11't -system
1~= { Mn~=1'1(n) (\ SI(':',} of G. Then NG(~) < E •

Proof. \'lri te D = NG(~) = f. k\ NGo.1n",). We use induction

on IGI. If E = G there is nothing to prove; so we can ass-

U..me that E < G and thus that G ¢ I)!(.'\.. Let N be a minimal

normal subgroup of G. Then 1TE/N is an N'I1t/N -covering sub-

group of GIN and Np IN is a Sylow system of GIN reducing

into NE/N. Hence, by induction,

n~~A NG/N( Ns11;'}'/N cl NH( It,;.,) IN) :::; NE/N •

Now NS1t~IN f\ NM(n.J IN = NM,)i:~/N, so

ND/N < n?-~l\.. N .NG(HJ(~) IN < (\~cA NG/N(NI11l:'>. IN) < NE/H

Renc e D < HE --- (1).

How E is an 'h\.r. NE -covering subgroup of HE and f 1\NB

a Sylo\'l system of NE (Corollary2. 8 of [1 J) reducing into E

Thus, if NE < G, He get by induction

n,,~L\.. NNE(M'K"'i\NB) < E, since {M'R"h(\I\TE} is the

"Vv\.r. NE -system defined by :t r. NE. Then, using (1),

D = n ~E1'\.. NNE (M'TCiI,) :::; n '?,EA NNE(H1t~r-; NE) < E

as req_uired.

We can thus assume that 1~ = G for all minimal normal

subgroups N of G. Then E is a maximal subgroup of G, and
t

CoreE = 1 • Let N be the uniq_ue minimal normal subgroup of G,

of order pO(.say. Then either I11( 'TC,:\)= 1 or !>'I( TI'?,) ~ N for

each !). e t: , Since IvI(-)'(~) = 1 implies Mi». <l G , we have

D = () },E ~ NG (MTI" )
Me1T),' ~ l-l

}urthermore, since GIN = NE/N c '1'\1\., r,1( it';\.) IN has a normal
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Hall- ILl. -complement for all t. E. A this is then a normal
Hall x'{-.-complement of M( TI(.) for all .:\with p F/ It;'\. ~hus,
in fact,

r-. rl-. (= A) Ii( 2) --- D = I \ 1~~;'(,.)"~N NG(M '}.) •
P" ").

Now since p reduces into E, we must have sP < E and thus
SX'l.< E for all ~ with P E. n.~. Hence, for
M(n.~)nE and so is a Hall n.~-complement of
M1t~<l E since E c Th and so NG (Mn~) = E

But G ¢ ~~, so we canno~ have NG(Mn.~)= G
pC'K?,.as this would imply D = G. Thus, for some 'A with p

P E. ")t~ , MIt')., <

M( -11:,~)r. E. Thus
or G for pC/t,:..•
for all '). with

C 'Kt.' NG (!-1'l'2» = E

theorem is proved.
and then D SE by (2), and the

LEr-1}'lA 7. 21 in the notation of Theorem7.20.
Proof. Since /J reduces into E and E a ~v 1(1-, ~nE is the
unique 11·\,(\ E -system of E. Suppose that f;)g reduces into E

for some g e G. Then 13g r. E = ~nE

the unique 1'Vt. ('\ D -system of D. i.e.
and so 'Bg r, D = 1;)f\D,

'IV!.g e RG(D) , giving the
required result.

LErvIHA 7.22 for any ~t-covering subgroup E of G.
Proof. 'vIe use induction on
E = G, since E 5 R~(E) •

IGI. There is nothing to prove if
'vie thus assume that E < G and

let N be a minimal normal subgroup of G. Then, by induction,
NE/N = R~;~N(NE/N) = N.R~(E)/N and so NE = N.Rl~(E).

If NE < G, we can again use induction to obtain
E = R:EIIN"E(E) = R~\E) as required (since R~\E) < nE ).
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We thus aSSUf.1e that NE = G and so E is maximal in G. There-
fore Suppose, if possible, that
Th b L 7 21 R1Gh(D)--Gen, y emma. , 4 where D is the 1~ -normalizer
of G defined by a Sylow system of G which reduces into E.
Therefore, by Lemma7.8, D = G, contradicting

%Thus RG(E) = B a!1dthe lemma is proved.
D<E<G.

}'inally,let ~ be the 11'1.-system of G defined by a Sylow'
system p of G which reduces into a given % -covering sub-
group E of G. Define, as before, Ro = G D, = N'G( ~) , and

"\'\'\. A~~

R . 1 = R ( D . ) D4+ 1 = N ( ,..~ (\ R. 1)~+ R~ ~ .J... iZi-!'1 1.+

It is now a simple matter to show that this seq-
recursively,
for i > c •

uence converges to E. For, by Theorem7.20 and Lemma7.21, Do <

E :s R1 • 1> reduces into Do (Theorem7.3) and so into R1 >

RG (Dc.), yielding a Sylo,vsystem ~ (\ R1 of R1 wh i.ch reduces
into the '\'\1\. 1\ R1 -covering subgroup E of R1 and defines the
1)'\1\, "-R1 -system ~"R1 of R1• Applying 7.20 and 7.21 to R1 we
then obtain D1 < E ~ R2, and we can continue this process,
obtaining in general D. < E < R. 1 (i=0,1 ,.• ). If D. =

l - - 1.+ l

E then R. 1 = E , by Lemma7.22 ; and ifl+ then
D. 1 = E ,since E c ~. This proves that E is the limit of~+
the sequence and hence is an ~-covering subgroup in Fischer's
sense.
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