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SUMMARY

An important problem in theoretical computer science
is to develop methods for estimating the complexity of
finite functions. For many famillar functions there remain
important gaps between the best known lower and upper bounds.
We investigate the inherent complexity of Boolean functions
taking circuits as our model of computation and depth (or
delay) to be the measure of complexity. The relevance of
circuits as a model of computation for Boolean functions
stems from the fact that Turing machine computations may be
efficiently simulated by circuits.

Important relations among various measures of circuit
complexity are obtained as well as bounds on the maximum
depth of any function and of any monotone function. We
then give a detailed account of the complexity of NAND
circuits for several important functions and pursue an analysis
of the important set of symmetric functions. A number of gap
theorems for symmetric functions are exhibited and these are
contrasted with uniform hierarchies for several large sets of
functions.

Finally, we describe several short formulae for threshold

functions.



1. INTRODUCTION

Let X = <:xo, Xyy vees xn-1j> be an n-tuple of
formal arguments. A partial function f : p* -> D with

finite domain D® is called a finite function of n arguments

and may be written as f (xo, Xy sees xn_l). If D = {O,l} ,

then the functions f : Dn—? D are known as Boolean functions.

There are many different computation procedures for any given
finite function and each of these uses a certain amount of

resources e.g. time, space. The time complexity of some

finite function f can thus be defined as the minimal
amount of time required by any computation of f. In a
similar way, complexity can be defined with respect to
other measures.

We shall consider computations of Boolean functions
by acyclic circuits of binary gates where each gate corresponds
to some binary Boolean function. Two fundamentoal complexity
measures for a Boolean circult are size and depth. Another
measure closely related to circuit depth is formula size;
Our primary concern here will be with circuit depth. Some
of the results to be pretented have appeared 1n a preliminary
report on the depth of Boolean functions, see McColl (1976).
1.1 SOME MOTIVATIONAL REMARKS., The study of circuit
complexity is important for both practical and theoretical
reasons. The practical motivation is that many of the tasks

for which digital hardware must be designed can be



represented as the computation of Boolean functions. The
two fundamental measures of circuit complexity are closely
related to the cost and delay associated with such hardware.
This practical significance provided the original stimulus
for research in this area. However, until quite recently
few mathematicians outside the Soviet Union recognized
circuit complexity as a legitimate branch of mathematics.
Birkhoff (1971) remarks that pure theorists working on
Boolean algebra have tended to overlook the natural but
extremely difficult problem of estimating the complexity
of Boolean functions.

Recently there has been considerable interest in the
computational complexity of algebraic and combinatorial
problems. It is now recognized that the development of
methods for estimating the complexity of finite functions
is of vital importance 1if we are to reach a complete
understanding of many familiar problems. This theoretical
motivation has provided additional stimulus and the study
of Boolean function complexity is now one of the most
active areas in theoretical computer science. Despite
considerable research effort, only modest progress has been
made in this area and for many familiar functions the best
known lower bounds appear to be very weak. Much of the
theoretical interest in circuits as a model of computation
for Boolean functions stems from the fact that Turing

machine computations may be efficiently simulated by circuits.



In complexity studies, Turing machines are the classical
model of computation and it is known that Turing machine
complexity closely reflects the difficulty which is
experienced in computing finite functions. Therefore,
results on circuit complexity are of relevance to practical
computations.

At the present time the cost of digital hardware is
diminishing rapidly. Therefore from the point of view of
hardware design it seems more important to minimise the
depth of a circuit than to minimise circuit size. Another
motivation for studying circuit depth stems from the
capability of parallel processing on modern computers.

This raises the problem of designing efficient algorithms
which minimise delay. In practice we might only be interested
in those algorithms which require only a fixed number of
processors. However, some of the techniques developed in
designing circuits with small depth may be of use in designing
such algorithms, even although the circuits (which use
unbounded parallelism) are not of practical value.

We have given some practical reasons for studying circuit
depth. However, our main aim is to reach a deeper urderstanding
of the inherent difficulty involved in computing Boolean

functions and of the reasons for this difficulty.

1.2 DEFINITIONS. Let B, = { f | f:{o,fgn - {0,1}} .

n
We note that an l = 22 and thus IBZI = 16.



To introduce our notations for these 16 basic functions we

1ist them in the following table with definitions in terms

of GF(2), the two-element field.

Symbol for f

o ot o

=

o { ] RS QP

>

NAND

<

NOR

m e T LT |

Name for f

constant

projection

conjunction
nand
disjunction

nor

implication

"
"
sum (modulo 2)

equivalence

f(xo,xl)

1+ x1
xo.xl
1l + xo.xI

X +

+ X
[a) X xo 1l

(1+x). (1+x,)
1 + xo + Xo.xl
1 + Xl + xo.xl
Xoa (1+x1)
xl.(1+xo)
X + xl

1 + xo + xl

The 16 functions of B, with GF(2) equivalents

Table 1



Functions in Bn are to be computed by circuits over some

basis () , where L < B A circuit is a connected

2.
acyclic directed graph in which nodes have either in-degree
2 (gates) in which case the pair of incoming arcs are

ordered, or else in-degree O (input nodes) in which case an

input from some set is associated with the node. A formula
is a circuit in which all gates have out-degree at most one.
Each gate is labelled with a binary Boolean function from
the basis (2 .

Let In = < X 9%qs coesXp X 1Kys eees xn_ro, 1:> be the
set of possible inputs in formulae and circuits, where ;i
denotes the complement of Boolean variable X, .

Let X = <:xo,xl, ...0X,_ » be the set of formal

arguments. A Boolean function féZBn will be written as

f(xo,xl,...,xn_f or as f(X ).
In a circuit/B , an input node associated with'&i , Where
X, € I, is sald to compute the function Ui (Xn) =X .

Proceeding inductively, a gate v labelled with a binary
Boolean function h 1is said to compute the function

fv(Xn) = h(

£ (X)), £.,X ) )
Vl n’? 4@ n

where V, , ‘\)2 - and f/\) 1’ :c“,\)2 are the nodes on the
first and second arcs entering ) and the functions they
compute. A circuit 0B computes f 1f there is a node in
/3 which computes f.

The size C(/G ) of a circuit /3 is the total number



of gates.  The depth D(/) of a circuit /5 dis the maximum
nunber of gates in any path, The size F(/5 ) of a forinula
/8 is the total number of input node: and this is one more
than the number of gates. Each of tie¢se circuit parameters
induces a corresponding complexity me. sure over Bn in a
natural way.

For any £ in B

C(/S) | /3 ie a circuit over (L

which computes f%

Do (f) = min { D(/3) I /3 is a circult over i)
which computes f}

F:KL(f) = min { F(/G) , //3 is a formula over L.

which computes f}

A basis () covers f € B, iff f can be computed by
a circuit over () with inputs from the set Xn‘ If f is
not covered by (3 , then C(f), D (f) and F_ (f)
are defined to be + OO , If each f in B2 is covered

by {1 , then () is said to be comrlete. For example,

BB’ {/\ AV N -ﬁo } are complete basecs.
N
Let 1 o= {r€n [xC(X >1@<r W]

(
where X,Y are n-tuples of EBoolean variables X 4¥; 0 O <1i < n,

We write X { Y 4if for all i, x; K y; » where O \< o,

0 £ 1, 1 $ 1. Mh is the set of monotone increasing

Boolean functions of n argunents, It 15 well-known that



Mn is precisely the set of n argument Boolean functions

which are covered by the incomplete basis

m= (AT, T, 1) .
In all subsequent considerations of circuits over the
basis M2 we shall let Xn (and not In) be the set of possible

inputs..

1.3 MACHINES —> CIRCUITS. When considering the complexity
of Boolean functions, two commonly used models of computation
are Turing machines and circuits. Recently there has been
considerable interest in the relations among complexity
measures for these two models., Several results have been
derived which show that Turing machine computations may be
efficiently simulated by circuits.

Let M be a Turing machine accepting or rejecting an
input string W < { O,l} % within time bound T(n). A result
of N, Pippenger and M. J. Fischer shows that the computation
of M may te simulated by a Boolean circuit over the basis

B, which computes some f € B and which has 0(T(n)log T(n))'

gates. Therefore lower bounds on the circuit size of such a
function yield ccrresponding lower bounds on the running time

of the Turing machine. Pratt and Stockmeyer (1976),

* A1l logarithms are taken to base 2 unless otherwise stated.

There are positive constants C,no,

o(f(n)) = {'g(n)

,g(n)l { C.f(n) forall n > nj



Borodin (1975) show that a nondeterministic L(n) tape bounded
Turing machine can be simulated on n bits of input by a
Boolean circuit of depth O(L(n)Z) . We now consider some
consequences of these relations.

Machine-based complexity theory is concerned with
relations among complexity measures in different models of
computation. As Turing machine complexity is closely
related to circuit complexity we can pose many of the open
problems concerning machines in terms of the size and depth
of circuits. For example, a conjecture of Cook (1974)
concerning the relative power of time and space could be
proved by demonstrating a function fe'Bn, where

Cy (£) = 0(n®) for some fixed k
2

and

Dy (£) > (log n)k for any fixed k.
2

Likewise, the P = NP?* question could be resolved by

establishing a nonpolynomial lower bound on CB(f) for some
2

f‘GBn whose corresponding language recognition problem is

in NP. For example, the function which 1s true iff there 1is

* %
a clique of size rh/éq in a graph with n nodes.

» P(NP) is the class of languages recognizable by deterministic
(nondeterministic) Turing machines within time polynomial in
the length of the input.

% ri_] denotes the least integer greater than or equal to

i L_i_J will denote the greatest integer less than or

equal to 1.



The relationship between Turing machine space and
circuit depth 1s based on a simulation of space bounded
machines. This simulation relies heavily on the transitive
closure problem for binary relations on finite sets. An
upper bound of O((log n)k ) on the circuit depth of
transitive closure would immediately yield an upper bound
of O(L(n)k) on the circuit depth required to simulate
a nondeterministic L(n) tape bounded Turing machine. This
raises the following

Open problem

»*

Dy (TC(n)) = o((log n)z) ?
2

where TC(n) is the transitive closure problem for sets of
size n. Any nontrivial lower bound on the depth of

transitive closure over the monotone basis M2 would also

be of interest,

* f(n) = o(g(n)) denotes the fact that f(n) grows

more slowly than g(n) ; i.e. lim f(n = 0
n->o0 g(n% - *



10

2. RELATIONS AMONG MEASURES

Fortunately the various measures of circuit complexity
are not entirely independent. 1In this chapter we investigate
the relationships among these measures. We also note the
effect of different binary bases on the complexity of

Boolean functions.

2.1 GLOBAL RELATIONS FOR Bn‘ In this section we consider
circuits over complete bases and note a number of relationships
which hold for all Boolean functions. Two of these are
immediate.

Lemma 2.1

For all f in Bn and all complete binary bases L,

DL(f)
Ca(f) Falf) g2

Proof

The first inequality follows from the fact that a formula
is a restricted form of circuit. The second follows from the
observation that for any circuit an equivalent formula with

the same depth can be constructed by replicating nodes of the

circuit unt.il the unit fan-out restriction is satisfied.
Furthermore any binary tree with depth d has at most 2d

external nodes

d
These inequalities are the best possible of their type.

This can be seen by considering an appropriate function for
the basis in question. For example, if () is the full binary

basis B2 then we need only consider the function f in Bn

which takes the value 1 1iff all its arguments are 1, 1i.e.
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n-1

£(X ) = //\\ X

n 1=0 i
It is evident that for n=2P,
DB(f)
y 2
Cg(f} + 1 = FB(f) = pd = n

2 2

Therefore the ahove inequalities cannot be improved for the
basis Bé. By choosing appropriate functions we can show thils
to be true for all complete bases, As a consequence there is
no nontriviali lower bound on depth in terms of formula size
or circult size wshich holds for all Boolean functions.

For inequalities in the reverse directions we have no
such complete resultas,

Where no ambiguity can arise we shall henceforth

refer to the basis {NAND} simply as NAND.

-~

Theorem 2.2

For all f in Bn’

4
DNANDxf)g k.log FBa(f) + 0(1)

where k = 2 10325 2=2.88
and g 1is the (unique) real positive root of

2° = 7 + 1. 4 is known as the golden ratio.

Let IF! denote the size of formula F. According to a
well known lemma by Brent et al. (1973, Lemma 2) for any
number 1<m ¢ IFI a subformula LOR of F can be found,

for & e B,, such that IL<9R l) m, t R l,é IL' { m. This

2
affords a partition of F into three subformulae L,R and A,

where A is formula F with LOR replaced by a new indeterminate a.
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Let L,R and A compute L(Xn), R(Xn) and A(Xn,a) respectively,
Then the formula

(L(X;) & R(X_))NAND A(X_,1).NAND. (L(X,) & R(X_))NAND A(X_,0)

computes the same function as F. Every binary Boolean function
has an associated NAND c¢ircuit of depth not more than 2 when
variables are available as inputs in voth complemented and
uncomplemented form, Thercfore an arbitrary Boolean formula
can be expressed in the alternative form of Fig.l where each
gate computes the NAND function and each Zi’ 1<1<8, computes

either L(Xn), R(Xn) or one of their complements,

Fig.l An alternative NAND formula
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Notice that the formula size of both A(Xn,l), A(Xn,O) over the

basis B. is not more than l A l. Also note that the formula

2

size of L(Xn) over this basis is equal to the formula size of

its complement and that this is not more than IL . Similarly
for kan).

Let d(X) = max {DN\ND(f) ‘FB (0K c<}
g 2

Lemma 2.5
Let Ly = Ty = 1, r, = r3 = 2, and
Trey = Tke2 T Tk (2.1)

Procf

As an inductive hypothesis suppose that
dﬁb)ga,duw}ﬁl,,“.,duke)gkq
(By inspectiion, this is true for k = 0). We shall show that

d(rK_'_L}) 4$ k+i:,
Let F be any formula over the basis B2 where' F ‘: rk+4.

Using the lemma of Brent et al, find L and R (joined by 8)

with m = r Restructure the formula ~ccording to the

k.

expansion described above, Since m = r, we have

EERgE:

1

By the inductive hypothesis, the functions L(Xn), R(Xn) and

e
1\‘4 rlkv

their complements can be computed by NAND circuits within

i
depth k. Also, II,GI2! > r) and sol Al £ Tyaly ~ Ty = Tpoo-

Again, by the inductive hypothesis A(Xn,l), A(Xn,O) have

depth at most k+2 over the basls NAND and the result follows



1y

by induction on k
O

We are now ready to give

Proof of Theorem 2.2

From the linear recurrence relation (2.1) we have for

all n>0,

= a
n+l

Ton = Ton+l
where & is the nth number in the Fibonacci sequence

1,2,3%,5,8,13,21,34,55, ...
given by the boundary conditions a; = 1, a, = 2 and the

recurrence relation a = a ta, o (n23).

An explicit formula for a,6 as a function of n 1is now

given withcui proof,

n+l n+l
a = g - /3 for n = 1,2,3,h,.00.
g -/
where £ = %(l+./5),/8 = +(1- /S5) are roots of the equaticn
Z2 = Z + 1.

Let k0 be such thet r; < nd T ¢

Then n2>r +1>a and using the explicit formula given

2k k+1

above we obtain

éké c.n for some constant C

giving
k€ 1log py (C.n).
From Lemma 2.3,

d(n) <d(r ) £ 2k+2

2k+2

80
d(n)< 2 logﬁn + 0(1)

and the result follows

U
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When the construction described above is used to restructure
formulae over the restricted basis NAND it appears to be
inefficient in many ways. lowever, despite considerable study
we bhave nnot yet cbizined aun improved strategy for this specilal

case. This reises the followlng

ine anefficient k =2.88 in the global relation for

2.l ¢ dn B,
dd
™ Fey O g (
Snpnpt TR o208 FanptE) * 0(1)

1t secoms likely that this coefficient can be improved although
Theoater b.h ‘omonslratzs functions f in Bn for which

feN o oLimd oand Do =
NAND'WLY; oy A arnd /’v[‘;AI““'\f) 2 I-—log n‘l . In View Of this

Y

result the coefficient ~annot be reduced to less than 2.

sn esgentialiy similar technique to that of Theorem 2.2

can be used to show that for all f in Bn’

N s )
DBJ;(f,:{:k‘},cg ngaf) + 0(1)

o,

where k = 2.4L55,

De flfxé.ii@ﬁ

! b
U, = H, = M Tt is the set of mixed-monotone or unate
2 3 b =S unate

binary Boolean functione. This unate basis 1s of considerable

interest since ii 1s known thalt for all f 4in Bn’

where FT(f) 15 the minimum number of contacts in any

TW-m circuit (series-parallel contact circuit) which realises f.
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Preparata and Muller (1976) prove that for all Boolean

functions fe Bn’

Dy (£)<£1.81 log Fy (f) + 0(1)
2 2

These results raise the problem of proving lower bounds
on the best possible coefficient. We have already noted that
there is a lower bound of 2 for the problem of restructuring
arbitrary NAND formulae so as to mlnimize depth, For the
no such result is known and we have only the

bases B U

2 "2
trivial lower bound of 1. We have already noted that there

i6 no nontrivial lower bound on depth in terms of formula size
which holds for all Boolean functions. Therefore in order to
get nontrivial lower bhounds on coefficient size we should

tackle the following question about specific functions:

Open problem

Establish a lower bound on depth over BZ’ U2 which is
not derivable from a corresponding bound on formula Si%§°

We thus have satisfactory, althouzh not complete, answers
to questions about thc relations between circuit depth and
formula size over various bases, Much less is known about
the relationship betw:en circuit size and depth. Indeed,
only recently has it been established that for all Boolean
functions, circuit size is nonlinear ia depth. Paterson aﬁd

Valiant (1976) prove that for all f 1in B,

D, (£) = 0(Cy (£)/1log C, (£))
B, B, / B,

Noting that for all complete binary bases £
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DJnff)'z log FJl(f), we can obtain from the above result
a relation between the circuit size and formula size of all
Boolean functions.

Finally, we consider the expressive power of different
bases with respect to some complexity measure. Two results
are presented which indicate the maximum disparity between
NAND, B2 w.r.t. depth and Ua, B2 w.r.t. formula size. 1In
subsequent sections of this chapter we pursue further some
problems concerned with the relative power of bases.

Lemma 2.4
For all { in Bn’

o -
DyaplE) € a.DBZ(f)

When In :~<x0’ Xl, nn-,xn_l’xo, Xl’ .on,xn_l’o, l>iB

the set of pessible inputs.

Proof

Consider any circuit of depth D which computes f
and which has gates drawn from the basis B2.

By applying the identities:

(Xo/\xl)::(XONAND xl. NAND. xo NAND Xl)
(xo\/xl)EE(onAND X NAND. Xy NAND Xl)
(Xo@xl = (XONAND Xl' NAND. XO NAND Xl)

and complementing subformulae as necessary we obtain a NAND

circuit of depth 2D which computes f,
(]

Some immediate consequences of this result now follow.
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Corollary 2.5

For all f in Bn’

Dua(f) R 2.DBz(f)

DNAND(f)gz.DUZ(N

Proof
NAND C U2 c B2
O
Subsequent results will show that in each case the coefficient
of 2 is best possible for any such relation which holds for
all Boolean functions. When the set of possible inputs i1s
restricted to Xn each of these upper bounds neel be increased

by only 1. For example, we have

Dyang £) € 2.DB2(f) + 1

for all Boolean functions f, when Xn is the allowable set of
inputs. To see that this upper bound is best possible of
those which hold for all n}»2 we note that the binary functions
0, @ both require depth 1 over B2 and depth 3 over NAND when
Xn is the set of inputs.

Pratt (1975) considers the effect of basis on formula

size and establishes that for all f in Bn>

F, (£) =0((F, (£))%)
U, B,

where k = log510 = 2095,

2.2 EQUIVALENT BASES.

Definition

Two binary basecs 511, j}_z are equivalent with respect




— oot

to denth iff they btoth cover the same subset S of functions
in Bn and for all f din &, DJ7§f) ’ Diléf) are separateﬁ

by at most an adaitive constant.'-Likewise; twe binary bases

Jll,-fla are equivalent w,r.t. circuit size (formula size)

iff they cover the same vet S of n-argumcnt Boolean functions

and for each f in S, le&f) , ¢ .éf) ( Eiléf)’ F}Lgf) ) are

separated by at most a constant factor. D[;(LJ will denote

the complexity class of linary boses which are equivalent to JCL

w.r.t. depth. Similarly for ¢ [.n], Flo2 |

It is known that all jpairs of complete binary bases
’(Ll’ n o are equivalent with respect to circuit size since
each conmplete basis,{Ll canr be rcplaced with another complete

set of basic functions (., by bu'lding each elerent of 111

with some fixed number of elements fron ij.

Tt is not difficult to see that the set of complete blnary
bases can be partitioned into F [UZ] and F [32] . In the
next section we note the disparity between these two complexity
classes,

Determining the comulexity classes of complete binary
bases w.r.t. depth turns out to be considerably more difficult,

In defining functional completencss we noted that BZ’

{./\ ,\V/,TTb} are two examplec of complete bases while
¢ o

M, :i/\ , V, TTb, TTI’ 0, 1 is an incomplete basis. The

definition of cowpleteness impli-s that, in particular, the

constant functions f(Xn) = 1 and f(Xn) = 0 must be realizatle
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with inputs from the set Xn’ If this requirement is removed
and it can be assumed that the constants 0 and 1 are available
as inputs where necessary, then the basis 1s said to be weak
complete., Note that a complete basis is weak complete, but
as we shall see the converse is not necessarily true.

An example of a weak complete basis 1is provided by the
well-known complement-free ring sum expansion due to
Zhegalkin (1927)

f(Xn) =@aiijlejzA"”"ijk (2.2)

n

where a; 1s 0 or 1, ogig 2 -1, o0og&kyn, Ji and

<din
the set of variables <le, Xyps +eor Xjk> denotes a subset
of k variables from Xn and(E)denotes the extended sum (modulo 2)
operation. This expansion implies that {/\ ,QB} is a weak
complete basis but not a complete basls since the constant
function f(Xn) = 1 cannot be realised using these operations.
Another binary basis which is weak complete but not complete
is {—9.}.

Post (1941) has established necessary and sufficient:
conditions for a basis to be complete and Glushkov (1966)
has used this result to formulate a similar criterion for weak
completeness., We now give, without proof, an abbreviated
account of these results. Some of the properties of basic
functions which shall be used are:
Property 1 (Monotonicity)

M

5 is precisely the set of monotone functions in BZ‘
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Property 2 (Linearity)

A function f(xz) in B2 is said to be linear if its

canonical expansion given by (2.2) has the form

f(Xa)

a, @ a1 (s3] a,Xq

where ay (L1 = 0,1 and 2) is O or 1.

I}

Property 3 (Self-duality)

A function f(XZ) is said to be self-dual if complementing
its arguments results in the complementary function i.e.

£(X,) = T (Eo, El)

Property 4 (Zero preservation)

A function f(XZ) is said to be a function preserving

zero if

£(0,0) = 0

Property 5 (One preservation)
A function f(XZ) is said to be a function preserving
one if

£(1,1) =1
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These properties of functions in B2 are summarized in the

following table:

FUNCTION 1 2 3 L 5

0 1 1 o 1 o0
1 1 1 o o0 1
TT, 1 1 1 1 1
T, 1 1 1 1 1
., o 1 1 o0 0
T, o 1 1 0 ©
A 1 0 0 1 1
NAND o o o0 o o0
VvV 1 o o0 1 1
NOR o o o o o0
— o o ©o0 0 1
V. o o o o0 1
—> o o o 1 0
— o o o 1 0
3] o 1 o 1 0

Classification of functions in B2

Table 2
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In this table each function occupies a row and if it has
property i, 1 is entered in column i of the row associated

with the function; otherwise the entry is O.

Theorem (Post (1941))
A basis is complete if and only if for all 1 (1<1ig 5)
it contéins at least one function which does not have

property 1.

O
Theorem (Glushkov (1966))
A basis is weak complete if and only if it contains at

least one nonmonotope function and at least one nonlinear

function.

O

These results establish computable criteria for
determining completeness and weak completenéss. An immediate
consequence of the former result is that the only binary
functions which form complete bases on their own are

NAND , NOR. This can be checked by consulting Table 2.

Lemma 2.6

Every nonmonotone function in B2 satisfies at most one

of properties 3, 4 and 5.

Proof
Immediate from definitions of the properties. Can be

verified by inspection of Table 2.

t
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A (weak) complete basis is minimal if no proper subset

of it form
The r

weak compl

s a (weak) complete basis.
esult of Glushkov (1966) implies that a minimal

ete basis can have at most two functions, An

example of such a basis is provided by {/\, EB}. By

combining

Post's (1941) theorem and Leuma 2.6 we can show

that a minimal complete basis has at most 3 functionms.,

There are

where

(1.5},

22 minimal complete bases which we now tabulate.

{nanp}
{nor }

=

}
—>kr S|e)

W\I

~ |«
|
|
|
|
|
|

AN

JoU o >> Ul

—~~—
QO

>

=}1{1,e] {0, =}
z}{1e}l{e.2}}

W {3'(:} denotes the two bases

CC C ccC Cccc

'—"\f—"-\ﬁh\’-ﬂ—\mmmmm

F e e e e e R e e S
—N

o

~

>y

N S S S N \

{l, é::} and so on ., Thus, there are two

minimal complete bases of size 1, twenty-four of size 2

and six of size 3.
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Theorem 2.7

Every minimal complete basis is in at least one of the

following eight complexity classes:

p [ nanp] )
p[{—,0}]
p [{ A, I—OI
D :{—e,_——>£
p[{—, @]
 [fnro s ]
p (A=, 0 7]
D :{/\,(B,E}]

To establish this result, a number of simple facts will
be needed. "Trivial" proofs are omitted and only the necessary

result is given,

Definition

The dual ?(XZ) of some function f(XZ) in N is defined
by ?(Xa) = ?(zo’;l) where T is the complement of f. The dual

of a projection function (e.g. 71 Tﬁ ) is itself.

O,

Fact 2.8

Ifjll, 112 are complete bases and by replacement of each

function in 111 w#ith its dual we can obtain.fla, then
p[n,] - D[ﬂaj.

For example, {—) , GB} and {(Z , :—E} are in the same
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complexity class w.r.t. depth, Similarly, NAND is the dual

of NOR and co NAND & p[{NoR}] .

Fact 2.9

If replacement of some implication function in Jll by

the complement of its dual yields Jla, then
: = )
NS R
O

For example, {-:; ,O} and {éi.,o} are equivalent
with respect to depth. Likewise, {——9, 35} and {6» , :3}

are cquivalent.

Fact 2,10

Replacement of one complemented projection function
(i.e. 'f%o or f? l) by another yields an equivalent basis
w.r.t, depth,

O

Note

Facts 2.9, 2.10 apply to all binary bases whereas

Fact 2.8 does not apply to some incomplete bases. For exanmple,

/\ is the dual of V but {/\ } §/ l)[{\/}] .

Proof of Theorem 2,7

Noting Facts 2.8, 2.9 and 2.10, it rewains to show that

D[{-—} , O ” = D[{»e,”s‘\’o }] . It is evident that

any circuit of depth % over {—%>,O} can be simulated by a

circuit of dopth 2Z+0(1l) over {—ﬁ ,T?’OQ . In view of the
}

identity \fo(Xa) = —-9(x0,o), there is a similar translation
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in the opposite direction.

O

This result establishes an upper bound of 8 on the number
of complexity classes of minimal complete bases w.r.t. depth,
In the next section we prove a corresponding lower bound of 4
and consider the disparity between non-equivalent bases. We
have not consldered the problem of determining the number of
complexity classes of complete bases (minimal and non-minimal)
w.r.t, depth. However, it is conceivable that this number will
be substantially larger than our upper bound of 8 for minimal
bases.

We have already mentioned two important non-minimal

bases, B2 and UZ‘ Some simple propositions about

D [B2] ’ D[02] are now given,

Definition
Every binary Boolean function which depends on both

arguments 1s one of the following three types:

»

»*
A - type xo/\ Xy

*

\/ - type X;Vxl

*
@ - type x @ x;
where a starred argument represents either the argument or

its complement,

Proposition 2.11

Every complete binary basis which contains at least one
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function from each of the above three types, is equivalent

to B, w.r.t, depth,

2

Proof

For such a basis (L, any circuit over BZ can be simulated
with a circuit over {L by complementing subformulae as necessary.
This siﬁulation need not iﬁcrease the circuit depth by more than
an additive constant.

Any binary basis is a subset of B2 and so simulation in
the opposite direction is trivial.

O

Proposition 2.12

Every complete binary basis which contains at least one
/\ -type and one \/ -type function, but no & -type function,

is equivalent to U2 w,r.t. depth.

Proof
As in Prop. 2.1l1, noting the fact that any binary basis

with no @ -type function is a subset of U,.
O

2.3 ORDERINGS ON COMPLETE BASES. We have already remarked
that all complete bases are equivalent with respect to circuit
size and have noted that the set of complete bases can be
partitioned into F[U, ] and FB,]. Pratt (1975) has

established that the maximum disparity between these classes
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is at most O(nk) where k=10g310, i.e. if FB(f) = n then
2
FU(f) = O(nk). The following result shows that this maximum-
2

disparity is at least order n2.

Theorem 2,13 (Khrapchenko (1971))

n-1 2

( Pxy)2n
i=0

O

The following theorem provides a functional characterization
of shallow circuits over the (non-minimal) complete basis
{NAND,—%} . A corollary of this result will be combined
with Theorems 2.13 and 4.4 in order to prove a lower bound
of 4 on the number of complexity classes of minimal complete

bases w.r.t. depth,

Theorem 2,14

For all k>0, let a, be the kth Fibonacci number and

and f Dbe some function with circuit depth not more than k

over the basis {NAND;—?} . Then f can be expressed as

\\V/ 1eQJ

where each z; is some input, and for all j,‘jSs a .
Furthermore, the complement of f can be expressed in
this form, where each conjunction of inputs is of length not

more than ak+l°

Proof

By induction on k. As the basis of our induction, we
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note that the theorem is true for k=1. For k >1, assume
it is true for k=n and consider those functions f with
circuit depth not more than n+l over the basis {NAND,—-)}.
Any such f can be expressed either as E~Jh or as E~Jﬂ,
where g,h both have circuits of depth n over the basis
{NAND,——)} . An application of the inductive hypothesis

shows that any such f can be expressed as
/\ 2
\V/ ier 1
J
where each conjunction of inputs has length at most
max {an’an+1} = a .y
Similarly, the complement of f may be expressed as

EAh or as gAh. In this case the inductive hypothesis

implies that T can be represented in the above form, with

conjunctions of inputs whose length is not more than

max {a_+a 2a = a .
{ n n+l’ n} n+2

Therefore, the theorem is true for k=n+l1 and thus

for all k>0,
O

_.Coroliarxfz.lﬁ

n-1
D{NAND,—ﬁ}( {Nbxi ) > k.log n - 0(1)

where Kk = logﬂa ~1l.44 and g 1is the golden ratio.
Proof

Immediate from the explicit formula for a given

in the proof of Theorem 2,2
O
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An immediate consequence of this result is the following

lower bound for the minimal complete basis {—9,0} .

Corollary 2.16

n-1
D(—%,O}( {Zéxi ) 2 logy2.108 n - 0(1)

O
(n) n-1
It should be noted that the function CONJ = /\xi
1=0

requires only linear formula size over the basis {—9,0} .
Therefore, Corollaries 2,15 and 2.16 provide examples of
lower bounds on circuit depth which could not be derived
from corresponding bounds on formula size,

We now combine a number of results in order to prove

Theorem 2,17

There is a lower bound of 4 on the number of distinct

complexity classes of minimal complete bases w.r.t. depth.

Proof

Note firstly that the lower bound of Corollary 2.16 is

achievable to within an additive constant, This precise

(n)

result on the depth of CONJ is now combined with other

n-1
results for this funct:.on and for SUM(n) = Ef)xi , and these
i=0

are summarized in the following table :

Minimal Complete Basis cong () sum‘n)
{NAND} 2 log n 2 log n
{—9 R O} l.44 logn | d22 log n
(AL Ty log n | d>2 log n
{_9’:; } log n 2 log n
L—” 9} d<l.44 log n log n
{/\,G, l} log n log n
A= O} log n log n
{/\, ®, = } log n log n
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where each entry denotes the depth (d) of the function
over the corresponding minimal complete basis., Precise
results are stated where these are known, otherwise a lower
or upper bound is given. Additive constants are ignored
throughout, Some of these results are obtained from lower
bounds in 2,13, 2.16 and 4.4.

Two bases 111, _CLE are inequivalent w.r.t. depth if
there is some function f such that Dy (f) and Da, (f)
differ by more than an additive constant. The above table
shows that both D[ﬁANﬁ] and D{:{-—>,O}-] are inequivalent
to all other complexity classes and inequivalent to each other.
This ylelds a lower bound of 3, Finally we note that over

(A

2 log n - 0(1) while over any basis which contains @ or =

—

ij;‘} and {—?,::;TE , the depth of SUM(n) is at least

the depth is at most log n + 0(1). Therefore, both

—

{/\ ,ﬁo} and {-—? ’ ;} are inequivalent to any of the bases
{"),@}, {/\,@,l ’ {/\,E,O} and{/\,@,g}

and we have a lower bound of 4.

L[]

We now consider the disparity among non-equivalent
complete bases and investigate a natural ordering on the
complexity classes of complete binary bases with respect to

depth.
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Definition
Let D = {D{illi]} where () ranges over all complete
binary bases. We define a binary relation é; on the set D

as follows.

For each pair D[’Q}J , D[ﬂZ] in D, D [_}2. [ﬂ]

if for all f in B, Dy, (f) £ in(f) + 0(1).

8. D[U RS D[ Z-J To see this we merely note that

UZCZBZ. Theorem 2.13 shows that D (SUM(n)) 72 log n - 0(1)
2

and so the two complexity classes are not equivalent, Another
example is DE{-——) , ;}]$D[U2] . However in this case the
two complexity classes are identical (éee Proposition 2.12).

As a complexity class can be represented in a number of distinct

ways, it will be convenient to have the following

Definition

The relation«< on the set of complete binar; bases is

defined as follows. If DEQ 1] { ? [IIZ] and (1, is not

equivalent to {1, w.r.t. depth, then,£11_<.f12

E.&. NAND(iU as NAND €U, and Theorem 4.4 shows that

NAND(CONJ(n)) 2 (105 r_‘.

Definition

A partial order on a set Z is a binary relation R such

that for each x,y and z in 2:
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1. x R x is true (R is reflexive)

2. X Ryand y Rz imply x R z (R is transitive) and

3, X Ryand y Rx imply x = y (R is antisymmetric).

The relation g on integers and the inclusion relation
(€) on sets are two examples of partial orders. However,
the relation'< on the set Qf integers 1s not a partial order.

Definition

A linear (or total) order on a set Z is a partial order
R on Z such that for every pair of elements x,y in Z either
X Ry oryRzx.

The relation.é on the set D induces an order on the set
of complexity classes D, We can informally view this ordering
in the following way. If D[-__()_ 1] < D[_n_aj then the

"expressive power" of (), is greater than or equal to that of
2

,(Ll w.r.t., depth.
Lemma 2,18

The relation & on the set D is a partial order,

Proof

The reflexive and trensitive properties are easily

verified.
If D[_(?_ l] # D[ﬂ 2] then without loss of generality

we may assume that there is some function f in Bn such that

D, (f£) > Dn_(f) + C

1 2 :
for any fixed constant C., This implies that the relation
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D (£) < 1, (£f) + 0(1)

™ :

is false and consequently D; _(2.2] é D[(Z l—J is false,
This establishes that £ on the sct D is an antisymmetric

relation and proves the lemna.

0

Conjecture

The set D is not totally ordered by the relation é .
a

The partial order Q on the subset {D[ﬂ]} where ()L

ranges over all minimal complete bases, may be :onveniently

depicted by the following diagram:

U=l pl{sae)]

/ \ /
AN ()
Clinod] ¥ o
/

% © p[Nanp] D[{—> , O}]
4
o[ {AT}]

where two classes D‘;jl.l] y D [?1'21 are joined by a
broken line if D[_ﬂ_ 1] £ D [ﬂa:] and by a full line if
,ﬂ_l <‘O‘2 E.g. the diagram shows that {/\, Ho}({/\,@,f}
and D[{ A TTO }] { D{{—), ;}] The figure is not a
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Hasse diagram since some pairs of classes may be equivalent.

E.g. it is not known whether I)[

(A>T} ane

D[:{__, , :;f}] are equivalent or not. The validity of the

order depicted is easily verified from results given previously

and from trivial simulations of one basis by another.

Extending this figure to include D [sz] and Dl:{_NAND,-%>}i]

we obtain:

/,
/
/

o))

/ N\ /
/ N\ ) /
Qo] o]

/
°Tn, o))

/}1@2]
N
AN

/«B D[{-},;\H o DU\—?, eaﬂ

<>{K\IAND , a}]

AN
AN

o) \b
D[NanD ] D[{-,0}]

and again the order depicted is easily verified from previous

results and simple simulations.
the set of complete binary bases

NAND <B2'

We now consider the maximum

equivalent complexity classes.

Note that the relaiion < on

is transitive and s0 e.g..

disparity between some non-
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Lemma 2,19

For each I?.l in {NAND,{-% , ;}} and _ﬂ_a in {{-—);:9}, Ba}

where 4 £ _FL2, we have

i) For all f 1in Bn’

p, (£f) & 2.p, (f) +0(Q1)
. 1l 2

and '
ii) There is some f in Bn such that

D (f)> 2.0 (f) - 0(1)
7 o

Proof
Noting that {——> , = } € D[UZ] by Proposition 2.12,

the lemma follows from results 2.4, 2.5, 2.13 and 4.4.

O

Comment

This result establishes precise bounds on the maximum
disparity between any pair of bases from BZ’ U2 and NAND,
It also raises the question of how disparate are any two
complexity classes D[}r: i] , I)[Ji.é] when
D Eﬂ_lj < D[_ﬂ_Z] . It is not difficult to see that
this question is essentially concerned with the maximum
disparity between BZ and any minimal complete basis.
Taking into account the partial order on complexity classes

depicted above, the problem then reduces to a consideration
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of the maximum disparity between B2 and the bases {/\,:ﬁ;},
{ - , 0 and NAND. It seems likely that this maximum
disparity is greater than the maximum disparity between

B2 and NAND which was determincd precisely in Lemma 2.19,

However, at present this is an open problem,

2.4 RELATIONS FOR MONOTONE FUNCTIONS. Let Xn be the set of
possible inputs. The result of Preparata and Muller (1976)

establishes that for all monotone functions f in Mn,

DMa(f) g 1.81 log FMz(f) + 0(1)

However, as in the case of arbitrary Boolean functions, much
less is known about the relationship between circuit size and
depth. For monotone circuits the technique of Paterson and
Valiant (1976) can be used with only a minor modification.

The technique employs the identity

f=\/<Sc AN
‘E, .

to produce an alternative circuit for some f in Bn’ where

£ is an m-tuple of Boolean values and Jc is a conjunction

—~

of functions associated with the values of c¢. In the case

of monotone circuits we choose Jc to be a conjunction of

~

those functions associated with the value 1 in c. With this
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modification the technique yields monotone circuits with depth
not greater than those obtained by the general method. Thus
we have the following relation for all monotone functions f

in Mn,

D. (£) = 0(C ¢, (£f) / log C (f))
M, M, M5

A relation between the monotone circuit size and monotone
formula size of all f in Mn can be obtained from this result

by noting that DMé(f) Z log Fyu(f) .
2

An interesting question is whether monotone functions can
be realized more economically if non-monotone basis functions
are used. The present state of our knowledge about the effect
of not using negations can best be appreciated by considering

the following

Open problem

Demonstrate some f in Mn such that,

(L) CU;_“ = 0(Cy(f))
(i1) F. (f) = o(F, ,(£f))

U M3
or

(1i4) (DM(f) - DU(f)) —~> 00 as n —» o0 ,
2 2

Several such results have been established for families
of Boolean functions. For example, Paterson (1975) shows

that any computation of the product of two mn x n Boolean
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matrices by a circuit over the basis {)\ ,\/} requires at
least n3 N\ -gates and n3 - n2 \/-gates. In contrast to

this lower bound, it is known that

O(nlog 7 (log n)1+€ ) for any € 7 O
is an upper bound on the circuit size of n x n x n Boolean

matrix product over any complete binary basis.
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3. BOUNDS FOR "ALMOST ALL" FUNCTIONS

Convention

A Boolean function f is explicitly defined if and only

if the truth-table of f can be generated by a multitape
Turing machine in time polynomial in the length of the truth-
table.

For example, the function associated with the clique
problem is explicitly defined. And in fact, most familiar
Boolean functions have this property. However, despite
considerable effort no one has yet established a strong
lower bound on the complexity of any particular function
which is explicitly defined. To date, only lower bounds
which are linear in n, where n 1is the size of input, have
been proved for circuit size. Likewise, only lower bounds
of the form C.log n where C 1is some constant have been
established on the circuit depth of explicitly 'lefined
functions.

These apparently poor lower bounds raise the question
of whether there are Boolean functions whose complexity is
high. In this chapter w« consider the maximum complexity
of any Boolean function and note that this is not much
higher than the inherent complexity of 'almost all' Boolean
functions. Similar problems for the subset of monotone

functions are also considered.
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3.1 SCHEMES. Several constructions to be described in this
chapter have the property of being 'uniform'; The same directed
graph with the same assignment of arguments to inputs is used.
for all the functions concerned, the necessary variation being
only in the assignment of base functions to the gates, We
formalise this notion of uniformity in our definition of

'‘circult scheme',

Definition

A circuit scheme (formula scheme) is a circuit (formula)

in which the gates are left unspecified i.e. there are no
basis functions associated with the gates. Xn is the set of
possible inputs to schemes.

c c 3
Let Cn"Bn and b € B A circuit scheme/é covers Cn

20

over basis b if for each f in Cn’ there is an assignment

of functions from b to the gates of/ﬁ such that the

resulting circuit computes f. Figure 2 shows a formula

scheme which covers B, over the basis B2.

3

Fig. 2. A scheme for B3



43

This follows from the expansion
1(X35) = (X, A £ (x1,%5)) & £ 0pux;)
where f (xl,xa) = f(O,xl,xa) and

fl(xl,xz) = f(l,xl,xz)lB £00,%;,%,). It has been

verified that this 1s the unique formula scheme (to within
obvious ‘symmetries) with fewer than five gates that covers

B Its depth of 3 is therefore optimal.

3.

Our interest in this specialized model of computation
stems from the fact that we can obtain lower bounds on
scheme complexity using simple counting arguments.

We must distinguish the notions of complet: bases for
circuits and for schemes. For example, NAND is complete
for circuits but no single element basis can be complete
for schemes. This difficulty can be resolved by adding a

projection function,e.g. { TT NAND} is complete for

o)

schemes,

3.2 MAXIMAL BOUNDS FOR Bn’ In this saction we consider
the maximum complexity of any Boolean function and note the
complexity of 'almost all' functions.

If we write C,(S) for max { Calf) l f € S} and
similarly for D,(S) and F,(S) then we have the following
classical results for all complete binary bases fL,

Theorem (Lupanov (1958), Lupanov (1962))
0(2"/n)

qﬂan)

F,(B,)

0(2"/10g n)
a
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Note The constructions which establish these upper bounds
are not uniform for all Boolean functions (i.e. they are not
schemes). 1In fact, a simple counting argument ylelds a lower
bound of ZIH2 on the number of gates in any circuit scheme
which covers Bn over the basis BZ' We merely note that any
circuit scheme with q gates can cover a set of at most

on
= 27 , any scheme of

2I’l

B

’Balq different functions. As n

n=2

slze q which covers Bn'must satisfy 16% 722 ,q22 .

A counting argument due to Shannon (1949) can be used to
show that the fraction of functions in Bn with circuit size
not at least proportional to Zn/n, tends to O with
increasing n. Likewise, a counting argument of Riordan and
Shannon (1942) can be used to show that 'almost all! Boolean
functions require formulae of size at least proportional to
Zn/log n, Each of these lower bounds holds over any complete
binary basis. An immediate consequence of the lower bound
on formula size is that DBZ(Bn)'2 n-loglog n - 0(1)., This
lower bound also holds for 'almost all' functious in Bn’ i.e.

there is a constant C such that,
I{ fe Bn l DBéf) <€ n - loglogn - C}, = o(anl)

Theorem 3.1

Any circuit scheme which covers Bn over any basis
bC B, has depth at least n-l. Furthermore if |b| < 4

or ’b l: 2 the depth is at least n orn + 1 respectively.

Proof

A scheme of depth D has at most 2D-l gates, and so by
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varying the assignment to gates from b it can cover a set
n

2Py 2
of at most Ib ' different functions. Since ‘Bn‘ =2

we have
D n

|b12 -1 > 22

which yields the stated bounds

O

Thése lower bound results.raise the problem of finding
an upper bound on the depth of all Boolean functions.
Preparata and Muller (1971) give the following upper bounds
on DBa(Bn) for specific values of n,

n for n £ 8
n+1l for ng28+8=264

26k 264

n+2 for n{2
etc,
while Spira (1971) shows that over the basis U2 any function

in Bn has a circuit of depth n + log*n where

.
log'n = (1f n {1 then O else 1log (log n) + 1)
Thus we have

»*
n-loglog n - 0(1) DBE(Bn) g n + log n

We now describe a construction which improves the upper
bound to n + 1 and gives an upper bound of n + 3 for the
restricted basis Ua. Furthermore, the construction is a
schenme. Theorem 3.1 shows that for this specialized model
of computation it achiéves the optimal depth to within an

additive constant.
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Theorem 3,2

For all n>» 0, thnere is a formula scheme with depth

n + 1 which covers Bn over BP‘

I3

We shall give here an informal account of the construction.
(A full proof of the theorem is given in McColl and Paterson
(1975)). Our starting point is a pair of familiar dual
expansions for Boolean functions. Let Y = (y o yb€1>
and Z =<?O,..., zm-lj’ be sets of binary variables. Any

function f(Y,Z) in Bk may be expressed as a disjunctive

]

expansion about Z by

£ (Y,2) = \\// ) L2 At (Y,e)

ce€ <) 1}

where §.(z2) =1 iff 2 = c.

The dual conjunctive expaneion about 7 is

£ (Y,2) = /\ $.(2) vt (2,0)
C

where Ec is the complement of JC.

Each 5 or I term requires a formula of depth only
f&og ﬁW and in each case the total depth used exceeds the
maximum for § o g; and f (Y,c) by m + 1. The outer
disjunctions or conjunctions over 2" subformulae need
depth m and one extra level is used for the single conjunction
or disjunction used to attach the J's or §'s. It is the

accumulation of these extra singie levels in a recursive
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expansion about successive subsets of arguments which accounts
for the 10311 term in Spira's bound. We plan to avoid these
increments.

Consider one term (Sc(z) A f (Y,c) of the disjunctive
expansion. We may ensure that f (Y,c) is expressed as a
conjunction Qf many small terms by using the conjunctive
expansion for the next subset of arguments. Using the
assoclativity of conjunction we might attempt to reassociate
50 into £ (Y,c) but unfortunately the number of subterms of
f (Y,c) will be exactly a power of two. Our seemingly
reckless solution ic to discard one of these terms to make
room for 60, and to be content with an "approximation! to the
original function., To accomplish this ruse for each expansion
we alternate disjunctive and conjunctive expansions about
successive subsets of variables., The result of this first
construction will be a formula of depth only n, but it will
represent merely an approximation to the required function.

Rather surprisingly we are able to show that the required
function can be derived as the sum (modulo 2) of'this
"approximatinn" and a second function which we can generate
using the whole construction recursively in depth n also.
The result is therefore of depth n + 1.

We shall describe our construction in terms of formulae
rather than more abstractly as schemes, It will be clear
- throughout however that the formulae are uniform for all

Boolean functions.
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To define the subsets of arguments for the expansion,

let Ro’ Rl’ ooy Rp be a partition of Xn with

all 1. We shall use the simple sequence <ro, ceuy rpj>

Ril = ri for

defined by
I‘o=2
r, = i +1 for o<i<p
r:xi-s where S =ir
P p-1 mn i:oi

and where p is maximal such that

(p+l
2

+ 1{n.
For example, if n = 17 we have <2,2,3,4,5,f> .

The following definition allows us to describeithe kind
of function which will be used as an 'approximation' to the
required function.

Definition

Given S = {Rl, ceey Rk} where RJ c X, for all 1<J<k,

we define g(Xn) to be S-simple if

g(Xn) = O whenever R, = (J for some Rj € S,

J
where C) <:o,o, ceey o:> .

Having given the rationale for our construction, we shall merely

]

state
Lemma 3,
For n )L, every {Rl’ oo Rp-l} - simple function

g(Xn) has a formula of depth n.

[
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For details of the proof, see McColl and Paterson (1975).
Some attention must be paid to the sequence of cardinalities
of the expansion subsets, and the way in which a term is
omitted from the expansions is not quite straightforward.

Given Lemma 3,3, it remains to be shown how formulae for
arbitrary functions can be derived from the construction for

simple functions.

Lemma 3%,

Suppose Rl’ ceny Rk are disjoint subsets of Xn. For all

f (Xn), there exists fl(Xn—Rl),..., fk(Xn-Rk) such that
8) (Xn) =f @ @ £, s {Rl,..., Rk} ~-simple.

Proof

This is by induction on k, The lemma holds trivially for
k = 0., Let k>0, and suppose the result is true for k - 1.
Then, there exists £, (Xn—Rl), vees B g (Xn-Rk_l) such that

for all j, 1 £ j < k,

k-1
Ry =Q 7 8y ) =17 iegfi =°

0 if 914, 1<i<k, Ry =O

gk-l with arguments Rk

We define fk (Xn-Rk)

set to C), otherwise.

It is evident that &) has the required property.

O

The main result has now been prepared for.
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Proof of Theorem 3.2

Schemes for Bl’ B2 are obvious, while for B3, B4
expansions can be made about 1 and 2 arguments respectively
to yield schemes of depth 3 and 4.

By the previous lemma and properties of @, any function

f (Xn) may be expressed as

p-1
gx) ® D 1l Ry)
i=1
where g(Xn) is {Rl, ceuy Rp-l} -simple, and the Ri‘ = ry

are defined as above. i.e.(r_,ry, >= <2,2,3,1+,...> .
For n >4, Lemma 3.3 yields a formula of depth n for
g(Xn),‘to which we must "add" appropriate functions

£ fp-l where fi has n, = n -1 - 1 arguments., \thenever

1’ 00y i

nig.q, a formula for fi is constructed directly, otherwise
the whole construction is used recursively to yield a formula
of depth ny + 1l = n-i.
Thus f 1is expressible as
p-1
gx ) @ Dr, (x -r)
n i n "4
i=1
or, after reassociation, as

EO(1 ®(H @ ... @£ 1)) ...0)

Since fi has depth n-i for i=1,..., p-l, the latter represents
a formula of depth n + 1. It is evident that the construction

is uniform for all Boolean functions and thus yields a scheme.

]



In the previous chapter we defis ¢ throo types of bascis
functions: A -type, V -type and &) ~tyie. Provided tiwe

basis b permits a schcuwe to c¢over B, ond contoinn ot least
onc function from each of these three types, the constiuction
can be followed more or lous as before, conplementing
subformulae as necessary to achicve an upper bound of n +
(depth of a scheme to cover B,).

For the unate basis U2 we nny replace @ by
X, B xy = (xo/\ %) V(Xo/\ Xq)
In order to fit in the correcting functions efficiently we

choose a new sequence

<ro,r1,r2, >

50 that each f; contains 2 fewer arguments than the previous

n

{2,2,4,6,8,10, >

one. The result is a scheme of depth n + 3 which covers Bn

over UZ'

Remark

In outlining the construction we used a sequence
<f2,2,3,4,5, ceee > s but a sequence which grows much faster
could be used instead. The effect of the choice of sequence
on formula size has not been considered. However, as it is
a scheme the possible size is within 272 and 2°*l. The
construction of Lupanov (1962) yields formulae of size

O(2n/log n) for all Boolean functions, though not of course

using schemes, This raisec the following question.
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Open problem

DBZ(Bn) >n - 0(1) 2

i.e. does a lower bound of n-0(1) hold for formulae as well
as schemes?

Another interesting question is whether an upper bound
of n+0(1) holds for all complete bases. It has been shown
that such a bound holds for every basis in D [Bé]\/D‘:Ué] .
However, for schemes over the basis {FAND,T@} we have, at
present, achleved no better than n + O(log* n). We now
describe the construction which yields this upper bound,

As before, we shall cescribe it in terms of formulae although
it will be evident that the formulae are uniform for all f

in B_.
n

Lemma 3.5

(B

Dy anpBarak) < KAND

2k + 2 + max { D (Bn),2.88 1og(2k)+0(1)}
Proof

Any f(xn+2k) € B 5, DAY be expressed as

1 -~ 1 - 0 - 0
(x, Alxp Vi Oyy NAND (xl\/fl ) LNAND. (X A(x;V £ Oy, NanD (X, V£ 1,

where P4 - (P:Q9X2’x3’ v xn+2k—l)

Applying this identity recursively to every qu, we get an
identity which shows that any f (Xn+2k) can be computed by a
NAND formula of depth 2k where each input is a formula which

computes some function By
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Each such g; may be expressed as a formula /61 over the basis

and x. appecar at most once

B, in which x, X;, ...y X\ 5 2k-1

2
and which contains exactly one occurrence of a subformula
for some function Ay (xak, X514 "o xn+2k-1) € Bn'

By defining 84 to be the function computed by /3i with
IA.=C
i
the subformula for Ai replaced by the constant <c¢, we have
the identity

gy = Ai NAND 84 .NAND, Ai NAND 84

’Ai=l |A1=0

which yields the recurrence

Dy anp CBpa2x) € ak“a*mix {DNAND(Ai) »Dyanp (84

Dyanp (84 )sDyanp 84 )
'A =1 ,A =0
1= i<

The result then follows by noting Theorem 2.2

[

Theorem 3.6

For all n>1, D (B ) n + 0(1og* n)

NAND

Proof

Let 2k = LCn-nJ in the recurrence of the previous lemma.

Then, we have



\\n

-

N
(B n)g;cn~n+2+max (Bn), 2.88 n leg C +O(1))

c \DNAND

DNAN D
If we choose the constant C such that 2,885 log €1, then

Dyanp(B ) - C & 2+

c (Bn) -n

Dy anp

Let d(n) = DNAND(Bn) - n, then

a(c™) g2 + a(n)

d c* r/{2r + k for some constant k.

Ifns=2¢ for some C>1, then r = O(log* n)

L]

Conjecture

DNAND(Bn) < n+ 0Q1)

Definition

. 3 A
Let A= U, -{f/\ ,\V, NAND, HOR] and B be the set
of binary bases {B} where B CA ’ Bny [ Uaj and B is

complete, E.g.{->,¢—,0,l, Tl'o} € B2 whereas {-—'; , :5} is not.
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Theorem 3,7

For all complete binary bases excluding those in BA )
there is an upper bound of n + O(log' n) on the depth of

all Boolean functions.

Proof
The basié technique for deriving efficient upper bounds

on the depth of all Boolean functions is expansion about a

subset of the variables, together with recursive use of the

method for the remaining variables.

Disjunctive expansion

Each binary function in B2 can be computed over any
complete basis within constant depth. Thus, by choosing the
subset to have about n - log n variables, one immediately
gets an upper bound of n + O(log* n) as a corollary of Spira's

(1971) result, for all complete bases {L where
n-1

Dn( //\\ xi) = log n + 0(1), since the recursion goes to
i=0
. *
depth log n.

Ring-sum expansion

Let Y =<yo, ceey yk—1> and Z =<zo, ceny Zm-l> be

sets of binary variables. Any function f(Y,Z) in B may

k+m

be expressed as a ring-sum expansion about 2 by
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£ (Y,2) =€B §o(2) A £(X,0)

CE._{O»l}m
where éc(z) =/\z_,L
Cc.=1
1

Using this expansion recursively and choosing the subset
to have about n-log n variables we can achieve an upper bound

of n + O(log* n) for any complete basis {1, where

n-1

D x.
D f( L xl) log n + 0(1) and

1]

n-1
DA ( X:)
LAY

this upper bound holds for bases such as {——>, @} . The

C.log n for some constant C. Note that

analysis of the recurrence in this case is similar to that
in the proof of Theorem 3.6.

The theorem then follows by noting the result of Theorem
3.6 which establishes an upper bound of n + O(log’ n) for the
basis NAND and by considering the complexity classes of

minimal complete bases which were derived in Theorem 2.7.-

O

In section 2.3 we derived precise bounds on the depth

n-1
A
of //\\ Xy over all bases in B° . These can be used to show
i=0

that there is an upper bound of l.44 n + o(n) on the depth
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of all Boolean functions, either by using a similar recursive
construction or by simulating disjunctive normal form. The
low order term will be O(log* n) and 0(log n) respectively.
This gives an upper bound on the maximal depth of any Boolean
function over any complete basis.

We have seen that for each of the three important
complexity meésures there are surprisingly precise results on
the complexity of "almost all" Boolean functions.

The original motivation for studies of circuit complexity

was to obtain a satisfactory solution to the so-called

minimization problem , i.e. given a Boolean function, find

a minimal circuit which represents it. For this problen we
have the trivial solution in which we order circuits according
to complexity, and then search all circuits up to complexity ¢
until we find one which represents the function concerned,

In this way we can always find a minimal circuit, but since

n
there are 22 functions in Bn this approach is not feasible

as an impossibly large number of circuits might have to be
compared,

In fact, there is reason to believe that no feasible
solution (i.e. one which takes at most polynomial time)
exists for the minimization problem, Cook (1971) has giveﬁ
strong evidence which suggests that a simpler problem requires
nonpolynomial time. The problem is that of recognizing whether
‘a certain disjunctive normal form (for a Boolean function)

represents the constant 1. Note that a fast algorithm for
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the minimization problem would give us also a fast constant
recognizer. Thus it seems likely that any exact procedure
for the minimization problem will be comparable (in terms
of computational complexity) to an exhaustive search among
clrcuits.

As no satisfactory solution to the minimization problem
seems likely,'present research is directed towards establishing
bounds on the complexity of Boolean functions. 1In subsequent
chapters we pursue this line of investigation and prove a
number of small lower bounds on the depth of explicitly
defined functions. The fact that we have, at present, only
small lower bounds for explicitly defined functions raises
the question of whether there are functions of intermediate
complexity, e.g. 1is there a function f in Bn for which

Cs (f) = k.n2 for some constant k ? In chapter 6 we note
2

that several large sets of Boolean functions form reasonably
uniform hierarchies with respect to the three important
measures of circuit complexity.

But first we show that similar results to those obtained
for "almost all" functions in Bn can be obtained for the

important subset of monotone functions.

3,3 "ALMOST ALL" MONOTONE FUNCTIONS. In this section we
focus our attention on the maximum circuit depth of any
monotone function and on the depth of "almost all" functions

in Mn’ For an excellent account of the corresponding formula
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size and circult size problems, see Pippenger (1976).
C

Gilbert (1954) established a lower bound of 2 ° on the

number of monotone increasing Boolean functions of n

arguments, where

n n
2
kO + o 2

\p/aj ) JE_ qu

and k is some constant.

Lemma 3.8

There is a constant C such that,

{f € Mn | DBa(f)<11-%~1og n - loglog n - C} = o(

Proof

l{f e, | g (DEn (1 - e)}l

| Ma
< lBa|2n(l_e) 2 ) a6
= ,Mnl 16. |1, |

Therefore, it suffices to show that

22(1-€) 15; (16.n) — 0 asn —> o9
Log [ #, [+ 4
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Gilbert's lower bound shows that thero is a constant C such
that the fraction of monotone functions f in Mn , for

which

DBa(f) £ n (1-¢€)

tends to O with increasing n, whenever

€.n > % log n + loglogn + C
A

In Lemma 3.8 we proved a lower bound on the depth of
‘almost all' monotone functions by a simple counting argument,
The size of lower bound obtained by such a counting argument
depends solely on the size of the subset of functions
considered,

Kleitman (1969) has shown that Gilbert's lower bound
cannot be substantially improved, therefore we must use a
different approach in order to improve the lower bound of

Lemma 3.8.

Lemma 3.9

Any circuit scheme which covers Mn over the basis B2

has depth at least n - % log n - 0(1).

Proof

As in Theorem 3.1, noting the lower bound on the number

of monotone functions.

U
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We now describe a scheme of depth n which covers Mn ,

over the basis M2'

Theorem %,10

For all n > 0, there is a circuit scheme of depth n

which covers Mn over the basis M.

The construction shall be described in terms of formulae
rather than as a scheme., However, it will be evident that
the formulae are uniform for all monotone functions. Since
we shall consider formulae rather than schemes, it will be

convenient to prove the result as the following

Theorem %,11

For all n >0, every f(Xn) EN%'can be expressed as a

disjunction of n ~ 1 monotone subformulae of depth
1,2,3,...,n-1, Alternatively, f may be expressed as a

conjunction of n - 1 such subformulae,

Proof

We proceed by induction on n. For any f(Xn), let

X.= C
i
f denote f(xo,xl, cees X5 19 CrXyiqs eeey xn-l)’

where (¢ € {0,1} .
This definition implies that if f(Xn)éiMn, then

Xi= 0] Xi= 1

£ , f EM ..
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Any f(Xn)eEMn can be expanded about an argument Xy using

yYv f

i

either of the identities f(Xn) (xi/\f (3.1)

£ )= (vt ) AfDE (3.2)

For n{ 3 the theorem is obvious, while for n = 3, it follows
from (3.1), (3.2).
For n = k, k>3, assume it is true for n = k-1,

Then by (3.1), any f(Xk)eSMk can be expressed as

X.= 1 xi= 4]

(xi/\f - )V f » By the induction hypothesis,

) can be expressed as a conjunction (disjunction)

of k - 2 subformulae, Therefore, the X, may be reassociated,

using the associativity of conjunction, to yield a formula

for f(Xk) which is a disjunction of k - 1 subformulae of

depth 1,2’3,-.', k-l.

Alternatively, using (3.2) and chcosing the same expressions

Xi: 1 Xi= 0
for ¢ , f » after reassociating the X5 this time

using the associativity of disjunction, we get a conjunctive

formula for f(Xk)

O

We have proved that

n-} log n-loglog n-0(1) < DBZ(L%) g-DMZ(b%)’s n  and have

matched the upper bound with a lower bound of n-% log n-0(1)

under the restriction of uniformity,
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Reznik (1962) gives a construction (though not a scheme )

which proves

c. (M) = 0(2%(Llog n)2/m>’2)

In fact, any scheme with g gates which covers Mn over some

n
basis bCB, must satisfy 169 k-2 /VE qzk. 2%/ /w
where k 1is some constant,

These results raise a myriad of open questions about the

depth of "almost all" monotone functions. Two problems of

particular relevance are:

(1) DB (Mn),) n-3 log n - 0(1) ? i.e. does a lower
2

bound of n~} log n - 0(1) hold for formulae as well as schemes?

(ii) DBZ(Mn)<* DME(Mn) when X ~is the set of inputs?
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L. THE BASIS NAND

Studies of circuit complexity draw some practical
motivation from the fact that many of the tasks for which
digital hardware must be designed can be represented as the
computation of Boolean funetions. The actual and potential
efficiency (delay) of such hardware can be usefully
investigated in terms of circuit depth. Likewise, hardware
costs are closely related to circult size.

In view of this practical justification, it is
appropriate to consider some of the problems which face the
logic designer. Ore of these is choice of basis. With
current technologies, the cholce of basis is of crucial
importance in determining the overall cost and performance
of a logic circuit. Some factors to be weighed when evaluating
the utility of some basis are:

(1) Feasibility and economy of producing the

necessary gates with physical components.

(2) Useful algebraic properties of the basic
functions such as commutativity and
assoclativity.

(3) Functional completeness i.e. the ability
of the basis to implement arbitrary Boolean

functions.
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(4) Size of basis. Bases with a minimal
number of functions have the advantages
of standardization of building blocks,
ease of replacement of parts etc. This
uniformity may be crucial in determining

manufacture and maintenance costs.

The basis consisting of binary ﬁ\,\/ and unary negation
is the classical set of primitives. However, this basis 1s
rather poor with respect to our first criterion (1). This
stems from the fact that /\—gates and \/-gates are rather
expensive to produce. Also, from the hardware point of view
their performance is poor because they fail to maintain the
signal value without loss of amplitude. Consequently,

/\,V -circuits sometimes require amplitude restoration
after the signal has travelled through a few levels of gates.

In view of these drawbacks to the classical basis, the
possibility of constructing logic circuits from zates for
the functions =, >, & , =, NOR, NAND is of practical
interest. The four implication functions (in logic design
terminology, the functions = ,& are computed by INHIBIT
gates) are non-commutative and thus impractical for use as
standard logic gates. The two non-unate binary functions

@, = have many excellent characteristics as candidates
for standard logic gates but are expensive to construct with
physical components. They are normally available as standard

logic gates in integrated circuit packages but are usually
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constructed internally with other stanlard gates. For

example, with NAND gates

x| 4 )
} —‘Dﬁ X, ®%y

g D

Fig. 3. A NAND circuit for xo(B Xy

U

Only a limited number of Boolean functions can be
implemented using only &, = gates. This lack of functional
completeness i1s another reason for not using @ and = as
standard logic gates,

The functions NAND and NOR are extensively used as
standard logic gates in designing digital hardware. In fact,
logic circuits are more frequently constructed from NAND or
NOR gates than from A -gates, V -gates and inverters. From
the hardware point of view the big advantage is that they
supply outputs which maintain the signal value without loss
of amplitude. This is due to the presence of transistors in
circuits for NAND,NOR. Because of this, there is a gain
assoclated with these gates which regenerates the signal upon
deterioration., Diode /\ ~gates and V’—gates do not have this

- property. These problems of signal deterioration must be

faced when an actual digital system is designed. To the logic
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designer, they are usually refiected in the need to observe
loading restrictions. For example, the number of output
terminals on a gate (the fan-out) may have to be limited.
There might also have to be a restriction on the permissiblc
number of levels appearing in the systea,

NAND and NOR gates can be easily and cheaply constructed
with transistor circuits. Their associated functions satisfy
the commutativity property and both form a functionally
complete basis on their own. Therefore, they satisfy all
of our criteria with the exception of the associativity
property. For these reasons, they serve as the major components
prescently used in logic design.

In this chapter we consider the realization of some
explicitly defined Boolean functions by circuits o§er the
basls NAND., By duality, each of the results can be translated
into a corresponding result about NOR circuits., We give
results which show that for many familiar functions, an
insistence on using NAND gates only for purposes of uniformity,
cheapness etc., must be paid for by a substantial increase in

circuit depth.

L.l FUNCTIONAL PROPERTIES CF SEALLOW CIRCUITS

f= //\ Z;

- Y Tieq.
f‘ (£)£ 2.D-1} C e J )
{ Dy anp where V J, le , £ 2P1 and eacn

z 4 is some input.

Lemma 4.1

For all D> O,
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Proof

The lemma is true for D = 1. To prove inductively that
it is true for all D> 0O, we assume it is true for D = n and

consider tho;e functions f where DNAND(f)g§2n + 1.

By the induction hypothesis, any such f may be expressed as

fl NAND f2 .NAND. f3 NAND f4

(or equivalently as fl/\ £, V. fBAflq-) where each f, 1{kgs,

can be expressed in the form

e VAN

where [le é: Zn-l and each Zy is some input.

Thus any such f may be expressed as
\//\Zi
ieQ
j J
n-1

where | Q ’ L 2777+ 281 5o the lemma is true for

D = n+l and for all D> O

U

Lemma 4.2
For all D> O, . =\/ti 3
ieQ D
{f ’ DNAND(f)gz'D} C {f where ‘QI 2 -1 na

each ti is a conjunction

~

of inputs
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Proof
As in Lemma 4.1, by induction on D. The result holds
for D = 1. Assume it is true for D = n and consider any

function f where DNAND(f)gEE(n+1). By the induction

hypothesis, f may be expressed as

NAND., f, NAND f

N
fl NAND f 3 4

2

where each fi’ 1<i& 4, can be expressed as a disjunction of

22 -1 ternms.

Therefore, f may be expressed as a disjunction of

n
2t 1.2 n+l_
2.(2 ) = 2% 1 terms and so the lemma is true

for D = n+l

O

Using rate-of-growth arguments vie have derived two

properties of the set of Boolean functions computable

by NAND circuits of limited depth.

Definitions

!
Let Bn = Bn - {O,l} be the set of nonconstant Boolean
]
functions of n arguments. For all f in B, IM(L) will

denote the set of nonconstant implicants of £(X_ ), i.e.

excluding 0. A function t(Xn) is an implicant of f(Xn) iff

t>f and t may be expressed as a conjunction of variables

in Xn or their complements,
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L(t) will denote the length of nonconstant implicant t, i.e.
the (unigue ) number of distinct variables which appear when t
15 expressed as a conjunction.,

- example, let t = X X.%x. = X ¥ X% XX b
Foux ple, oX 1% 0¥ 1% 3vxoxl 2x3 € an

implicant of some f(Xn) in B Then ﬁ,xozlx2§3 and xO;1x2x5

are all in IM(f) but L(t) = 3 whereas L(XO;1X2§3) = L(xo§1x2x3)= L.
We have given two functional properties of linmited

depth NAND circuits in terms of the maximum length of

implicants and the nhecessary number of implicants. These two

results give general criteria which imply lower bounds on the

depth of NAND circuits for certzin Boolean functions. We now

derive a special property for the impvortant subset

symmetric functions,

Definition

A Boolean function f(Xn) in Bn is said to be symmetric

when the value of f is unchanged by any permutation of its
arguments Xn, or equivalently, f 1s symmetric iff there is

a function g such that

n-l
£(X,) = g(i§=:0 %4 )

. n+l X : :
There are precisely 2 synretric functions in Bn since

n-1
E Xi can take n+l different values. We denote the set of
i=0

symmetric functions 1n Bn by Sn. Any function f in Sn may
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be defined by an n+l-tuple of Boolean values which denote the
value of f when the arithmetic sum of its arguments is
0,1,2,3,..., n-1 and n. This "defining vector" will be

denoted by
‘ n+l
<fo,fl,...,fn> e{o,l}
n-1
where (Z x; = k) P (£(X_) = £,)
i n k
i=0
For example,<(0,0,l,l,l,...,f> denotes the function
'threshold 2°', <l,0,0,l,0,0,l,O,...:> denotes 'congruent

to O(mod 3)°'.

Definitions

L}
Let Sn = Sn - {0,1} be the set of nonconstant symmetric

functions of n arguments.

For 0<kgn+l, let

(n) . t+k-1
P = {fésn Vt, 0<t{n=-k+l, /\fi = O}
i=t

be the set of symmetric functions f for which <f0,f1,...,fn:>

has a O value in each consecutive block of length k.

For example, Pin) contains only the constant function O,

while Pﬁf{ consists of every symmetric function except the

constant function 1.
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Theorem 4.3

For all f in p{®) NS

n® Pnanp (£)22
oo - 4]

Proof

!
Consider any f in S, such that D (£)< 2p.

NAND

By Lemma 4.1, f may be expressed as

-V

D=1

where and each zy is some input. Let t be

o [<2
D-1

some implicant in IM(f) of length k, kg2 ~~. Such an
implicant may be extended to give implicants of length n,

n-ZD-l

in at least 2 different ways. For example, with

n=6, D=3, Xoxlxa 3 can be extended to

xoxlx2x3xt+x5

XXX

*o l 273 4 5

*o l 2 3 4*5

X %1%, *3X4 %5

Thus in the defining vector of any such f there is a



consecutive block of length n+l - oPb-1

which contains only
1 values,

So for all f in 8,
(f)<2,D)->(f¢P(“) )

1

(D
NAND -
n+l - ZD

and the result follows

L

Thig property of the symmetric functions computable
by limited depth NAND circuite will prove useful in deriving

a number of lower bounds for specific functions.

4.2 DECODERS AND ENCODLRS. Discrete elements of information

are normally represented in digital systems by binary codes.
For example, the integer 45 might be represented by the 8-bit
binary code 00101101, Two useful tasks for which digital
hardware might be designed are decoding and encoding. A
decoder takes an n-bit binary address code and on the basis
of this, sets precisely one of 2t outputs to 1 and all others
to 0. Decoding circuits find applications in computer
memories for the selection of a particular item of data
addressed by a binary code. An encoder can be thought of

as a positional to binary transformer. It takes a binary
string of length n, exactly one element of which is 1, and
produces a corresponding'ﬁiog n—] -bit binary code for the
position of this element,

The operation of such hardware can be represented as
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the computation of Boolean functions. Let D(n) = {di[lgis Zn}
and E(n) = {eil 1<1ig rlog n_]} be the outputs of a decoder

and encoder respectively. Then each di(xn) can be expressed

n-1 .
as /A\fi where‘§1 denotes the variable x4 or its complement.
i=0

Similarly, each ei(Xn) can be expressed as \/xj where
Jezi

Zicxn’lzi, S l_n/a,l .

If variables and their complements are available as
inputs and decoders are constructed using /\-gates, then the
delay in decoding need only be rlog ﬂw . As each output

di(xn) depends on all its arguments, this delay 1s best

possible., Encoders can similarly be constructed with delay

rlog I_n/2_l—] é Llog nJ using \/—gates.

We will now show that if decoders or encoders are constructed
with NAND gates (or dually with NOR gates) then these delays
must be doubled. Thus the advantages of using NAND gates for
the construction of such circuits must be paid for by a

substantial loss in efficiency.
Definition

Let E, = {Ef{n) 0< kg n} where ES®) (x ) 1s the

symmetric Boolean function which takes the value 1 4iff



n-1 (n) th
= Ek is the k elementary symmetric function,

Theorem 4,4

For all f in En,

DNAND(f) 2 2 l—log n—‘

Proof
From the definition of Ein), it follows that
n‘— (n)rﬁ S n® The result is then immediate from Theorem

E

4.3 since for all n>1,

n+l - 2

rlog n1 -1 2 >
[

n-1
s (n) X
The definition of En = i1 suggests a NAND
i_

circuit of depth 2 rlog n1 . The previous result shows that

this depth bound is optimal for the basis NAND.

Lemma 4.5
n-1
NAND \y/ 1) rlog n7 -1
Proof

By complementing the output and variable inputs of a
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n-1

NAND circuit which computes \\//xi , We obtain a circuit for
i=0

(n)
En

. Inputs may be complemented without increasing depth
and any output can be complemented by a single NAND gate

yielding
for all f in Bn' Thus

n=-1
X (n)
NAND(\/ 1) + 1) Dyap By )

and the result follows from Theorem L.y

]

These lower bounds hold even when arguments can appear
as inputs in either complemented or uncomplemented form.

The lower bound for the function Egn) is tight as it has

a NAND circuit of depth 2 rlog n-l with inputs from the set
n-1

Xn. However, although \V/ki can be computed in depth
i=0

2 l—log n_] -1 when I =<x°,xl,...,xn_l,xo,xl,...,xn_l,0,1>

is the set o inputs, the best known upper bound when
complemented arguments are forbidden is 2 rlog n1 . We now

show that this upper bound is best possible in this case.

Theorem 4.6

n-1l
VP

when'<xo,x see Xy 150, 1> is the set of possible inputs.
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The following property of NAND formulae will be used in

the proof of Theorem 4.6, It is given here without proof.

Fact 4.7
1]
Let/G be any NAND formula ond /6 "be the formula/ﬁ
with all inputs on paths of length 2D+1, for some integer
1\
D> 0, replaced by the input O. If/§ computes f and /3

] !
computes f , then f = f

L]

Proof of Theorem 4,6

n-1

Let h = \/xi . From this definition it follows that
i=0

{f ’(h,éfw\(h—m} = {1} (4.1)
Assunme DNAND(h) = 2D + 1 for some integer D3 0 and consider

an optimal depth formula/G which computes h,
In formulg/ﬁ y replace all inputs from the subset

<xo,xl,...,xn_l> which are on paths of length 2.D+1 by the

input O and remove redundant gates. In view of Fact 4.7, we

obtain a formula/AZ' of depth 2D which computes h', where
1
h->h .
!
By definition of the replacements, if h(Xn),h (Xn) are

not equal then there is sone Xs in Xn which takes the value 1.

_ ! '
But for all X; € X h,xi:l = h xj=1 as h € { h,l}

| ]
which in turn follows from (4.1) and the fact that h->h ,
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'
This contradiction proves that h,h are equivalent and
we have obtained a circuit of reduced depth which still
computes h. This contradicts the assumption of optimal

depth and so we must have (h) = 2D for some integer D> 0.

DNAND

The result now follows from the fact that DNAND(h)2>2 rlog nw =1

when In is the set of inputs,

]

The proof of Theorem 4.6 is particularly interesting as
it gives the first application of the "specific refinement”
technique to non-monotone circuits, albeit only to circuits
over a very restricted complete basis, This technique has
already been applied to monotone circuits by Paterson (1975).

Soprunenko (1965) has considered the circuit size of
Boolean functions over the basis NAND and has established

that

CNAND(Eén)) > 2.0 - 0(1)

n-1
CNAND(\/xi) > 3.n - 0(1)
i=0

Therefore, the circuit size and depth of Egn) are both

increased by a factor of two in going from the basis U2 to
n-1

the basis NAND, while the size and depth of \v/xi are increased
i=0

by factors of 3,2 respectively.
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A resultl of section /2.3 shows Lhat decoders and encoders
require depth 1.44 log n (to within an additive constant)
over the complete basis {:3 ,1} o Thus "INNIBIT" gates arec
nore etficient w.r.t. depth than NAND gates and less efficient
than f\-gates and \/~gates for the purpose of building

decoders and encoders.

L.3 COUNTING (MODULO K). We have considered two useful
tasks for which digital hardware might be designed, decoding
and cncoding, and have investigated the inherent delay
associated with these problems. Another important task is
that of counting. Binary counters of one form or another are
basic subsystems in a modern computer. If we are interested
in combinational (rather than sequential) circuits, then the
operation of a standard binary counter can be thought of as
unary-to~binary conversion., Pippenger (1974) describes a
construction which, taken in conjunction with Theorem 2.2,
shows that a standard binary counter with delay of about
10+2.10g n can be constructed from NAND gates, This upper
bound is very rough and can probably be substantially improved
by considering the details of the actual constructioﬁ. We
shall not pursue this further here. Instead, another type
of counter is considered.

| Often a circuit is required which will count with respect
to some specified modulus, i.e. when two numbers which differ

by a multiple of some number are to be considered equivalent,
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In the case where this number is 2, two such numbers are sald
to have the same parity. Circuits for parity checking find
important applications in the transmission of information
where they are used to check for any inaccuracy in the
reproduction. In this section we establish a number of bounds
on the delay required by modulo k counters, when constructed

from NAND gates.

Definition

Let Céni (Xn) be the symmetric Boolean function which

’

is 1 4iff |
in = r (mod k).
i=0

Lemma 4,8

For all integers k and r, 1<kg2°, ogrgk-l,

D
DNAND(Céfr)) 2 2.D

Proof

2°) Py .
By definition, each suchCk r is in Pa Nns D’ thus
! 2

the result follows from Theorem 4.3 since for all D71,

2La+1-21y0

This lower bound may be compared with two known results
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which apply to a smaller class of functions, but which hold

over more expressive basce, Fischer, Meyer :nd Paterson (1975)

have shown that for all fixed k, k>2, Dy, (Céng) is not 1less
2 ’

than log n + loglog n - o(loglog n), while Khrapchenko (1972a)

has e¢stablished that for all fixed k, k> 1,

pUZ(cfj"f,) > 2 log n - 0(1).

Recently, Stockmeyer (1976) has established a general

lower bound on the circuit size of "congruence" functions.

The main result allows one to infer that

(n))>, n - %/2 - 4
a

for all integers k and n with 3 { k<{n. It is also shown that

Cp (C(n)) <‘ for all n and so the lower bound is

optimal to within an additive constant in this case. Lower

bounds of the form gn - ¢, where ¢ is a constant independent

of n, are the best presently known on the circult size of
any cxplicitly defined function over the basis B2.

We now derive certain upper bounds on

NAND(C(Z )) for k = 2,5 and 4. The result for k = 2

establishes that the growth rates in Leumas 4.1, 4.2 are

achievable, We also show that the lower bound of Lemma 4.8

is not achievable for k = 3,

* Psaterson (private communication) has improved this lower
bound to log n + loglopg n -~ 0(1).
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Lemma &.2
For all DO (c(2 )y D (c(ZD)) = 2.D
4 Dyanp'°2,0 NAND 2,1 = e

Proof

The lower bounds are derived in Lemma 4.8 and the upper
bounds are now proved by induction on D.

For D =0,

c(1) =
2’0 ( l) =x0

oL (x,) =

and so the lemma is true in this case. To prove inductively

that it is true for all D) O, we assume it is true for D = n,

1 2 .
Let X = X X .-.,X and X = X ,X ,ooo,x
n < 0?1’ 2n_l> o < PLPY ) 2n+1_1> .

n

(2n+1

X
2’0. ( 2n+1)

c may be expressed as

(2 ) ") 2™) ™)
2 0 (x2 ) NAND Ca 0 (x2 ) .NAND, 02 1 (x2 ) NAND c2 1 (Xa“)

(2n+l)

while ¢, , & ) may be expressed as
’

2n+l

(2 ) ") 2
(x2 ) NAND c2 1 (x2 ) .NAND, cé 1)(x2 ) NAND cézo)(x2 )

and so the lemma is true for D = n+l and thus for all D),O

]
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2%)
k,r

D

The following two facts about C , for all 1<kg2",

are given without proof.

Fact 4.10

(2%) D
For all implicants t in IM(Ck r ), L(t) =2
. 3

]

O .
r 18 expressed as a disjunction of

This implies that if Ck
’

D
implicants, then each implicant in IM(Céar)) must appear at
’

least once. Noting chis fact we can also obtain the following
(P)
explicit formula for the number of implicants in IM(Ck r ).
’

Fact 4.11
D D D

2D 2 2 2
IM(C = + + + + e reven
k,r r r+k r+2k r+3k

n

Corollary 4.12

20) %, | . ,2P-1
IM(Ca,o ) , = IM(CZ’l ) ! = 2
Proof

Immediate from 4,11

[J



84

Combining Lemma 4.9 anc Cornllary 4.12, we have the

following

Proposition 4.13

The upper bound on growth rate in Lemma 4.2 is

achievable.

O

While combining Lemma 4.9 and Fact 4.10 gives

- [

Propositlon L, 14

The upper bound on growth rate in Lemma 4.1 is
achievable. |

Furthermore, both these upper bounds are simultaneously

D
achieved by an optimal depth circuit for Céao).
. »,’

In this chapter we: have derlved varlous lower‘bounds on-
the depth of Boolean functions over the basis NAND. These
have been obtained from rate-of-growth arguments which
characterized the functions computable by limited depth NAND
circuits. We have also shown that the growth rates which were
used to obtain our lower bounds can be simultaneously achieved.
Therefore, in order to prove lower bounds larger than 2D for

any f in B p* Ve must consider properties other than just
2 .

the minimum length of implicants or the necessary number of

implicants.,
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In order to prove that the lower bound of Lemma 4.8 is
not achievable for k = 3 we require the following result

which is easily obtained from Fact 4.11.

Fact 4.1

For all D30,

D
IM(C(z ))l gi;,
3

and whether it equals the upper bound or the lower bound

D
2
3

depends on r,

Theorem 4.16

For r = 0,1 and 2,

(2 )
Dyanp €C ) 2 2.D+1

Proof

It (c(2 )) { 2.D then there are functions

NAND

@2
fl,fa,fBand fL.. such that C 3, = foNT, V. f3/\fl+ and

NAND(fi)S 2.D - 2 for all 1{ig4.

Noting Lemmas 4.1, 4.2, each f (1£41i£4) can be

represented as ¢

4\/1:13 where t, =/\zk

JEN, K €Qy

and each Zk is some input.
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Alsq,
D-1

for all i,j, IQ:LJ.’ £ 2 (4.2)
D-1

for all i, ‘Ni l_g 22 -1 (4.3).

This representation of fi will be denoted by the set of

terms

F1 = {til’ tia’ tiB,..., tini} where n, = ’Ni,

and for all i,j, tij is in IM(fi) (i.e. tiJ £ 0).

Also, each term is assumed to be distinct, i.e.
j;fk—)tij;é by e

In view of Fact 4.10, fl/\f2 can be represented by the set

t..€F
415 F) D
b Yok N IM(c(fr)(x

tox€F,

12 .p)) .

2

Each term in F12 is nonconstant and we assume that each

term is distinct.
3,

Taken together, Facts 4,10 and 4.15 show that at least

can be similarly defined.

~ one of Fia,$34 contains not less thanlgagéj/a implicants.
Without loss of generality, we assume that ‘FIZ‘Z Lgaggj.
With this assumption, we now establish the theorem by a
rather delicate analysié of combined growth rates., The
following property of implicants is essential to the proof,

If t,€F, t,t €F, and tat t At € F,, then

1 2 a b’
corresponding to ta there is a unique residue L Ogra<3,



+4ael in view of (4.3),

2
Extra (t $ & /, =M

11)

If we now let
Ty = {tli I BNty tgAt, € Flz}
then from the upper bound of M on Fanout (t) for any term t,

we have

87
D-1
and a domain D_c X _, ,D =2 such that
a 2D a
ot e e D oy (hoty)
b? "¢ 3,r D "a *
b 2
where r*ry =r (mod 3). The validity of this observation

can be checked by noting (4.2) and Fact 4.10. By symmetry, the
bproperty holds when tae F2 and tb,tceEFl.

We now define‘

e Y
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. Tlll > I_Ei—?é_l_ - lExtra(tll) > M -0(1).

Property (4.4) shows that if tl tlj are both in Tll’

)(D )) and so the maximum size of 'Flz

then they
are both in IM( C

3 2Ty
is not more than
2 D-1
:tM(c(2 )) + (22 1. ITHI ). ' Extra (t;;) l
D D-1 D-1
< 2@ E ), 0P
N 9 6 6

D
which is less than lg? AJ and we have a contradiction.

O

The proof of Theorem 4,16 ccmbines results on the

maximum number of implicants and on maximum implicant size

in order to prove a lower bound on D (C(Z )) The

NAND
difference between this lower bound and the result of

Lemma 4,8 is only 1 for all values of D. However, the
improved result is worthy of considerafion as it provides
the largest lower bound on circuigndepth which has yet been

proved for any explicitly deflned(function. Also, the rather

gt d fdaus i ] Sl

complex proof of this result indlcatesillbltaiions in our
i .!L

rate-of—g@pﬂyh approac&{yhep aimlnggforﬂioweg;QQUnds larger

than 2D, o Cae ot ST (F Bond ot om e g o

gotdnviecdo wind o ¢ FILDIISY 801 L0 b B

st ,yrdommyn E LOL. dus

S
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The problem of whether the lower bound of Lemma 4.8 is
achievable for some fixed k >3 remains unresolved, The
following bounds on the number of distinct implicants of
Cu,r are easily obtained from Fact 4.11.
For all D > 1, |

D
D © _D-1 2")
2’- 2 2V -1 é bor

> _ > I (C

)

and the precise value depends on r.

However, the proof technique of Theorem 4.16 seems to

D
apply only to Céar), and the best lower bound we have on
’

")
DNAND(Ck,r ), for k # 3, is Lemma 4.8.

We conclude this section by establishing upper bounds

(2

D) .
K,T for k = 3,4.

on the depth of C

Theorem 4.17

For r = 0,1 and 2,

D
(2”)
by (C3,") € 2:D

Proof

The theorem is true for D = 0. To show inductively

that it is true for all D)O, we assume it is true for D = n.
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1 2
Let Xn=<xo,xl’.oo,xn > andxn=<xn’.oo,x n+l

2 2 =1 2 2 2 -1
(2"*1)
C},r (X2n+l) may be expressed as
") 1, = 2%
C}, 2r (mod 3)(X2n) "C3 2r (mod 3)(X )

(2) ")
A €3 5041 (mod 3)(X ) C3 2r+2 (mod 3)(X )

and so the theorem is true for D = n+l and thus for all D20

O

Corollary 4,18

For r = 0,1 and 2,

(2 )
NAND(C3 r )S

Proof

By Lemma 2.4

We now show that the upper bound of 4,18 can be improved.

Theorem 4.19

For all D30 and for r = 0,1 and 2,

(4 )
Dyanp (C3,r") £ 6.D
D
=(
Pyanp (Csl:r)) $ 6.0
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Proof

As in Theorem 4.17, the proof is by induction on D,
However, the inductive step is slightly more complicated,

For simplicity, we require the following

Notation

<C, R, §> will denote the function

(1x])
C3 R (moa 3)&)

and <—5, R, 2(_> will denote its complement.

E1l. C (X,Y) can be expressed as
S,r==
(flVfa) NAND (f3Vf4).NAND. f5 NAND f6

where f; = {C,2r,X)

£, = {C,2r+1,1 )
fy = {c,ar+2,x>
f, = (c,2r,x)
fg = {C,2r+1,x>
fg = {C,2r+2,¥>

E 2. Es.r(z,x) can be expressed as
]

(fl NAND f,.NAND. f3 NAND fq)/\(f5v 6)
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E 3. 53 r(g,l) can be expressed as
4

(8,8, )NAND(El V 8,).NAND. (g5 V gq)NAND(EB V. 75'4)

where g, = {c,2r,x>
g, = <¢,2r,1)
g5 = {c,2r+1,X )
g, = {c,2r+2,1 >

EL. Cy r(g,g) can be expressed as
’

(g, NAND g, .NAND.g; NAND g5) N (g3 NAND 8, .NAND. 83 NAND gu)

Inductive step

1 2 3 L .
Let X D? X D? X D? X be a partition of X D+1°

yO7 P DT P 4

We give the inductive step as an algorithm for constructing

NAND circuits for C (x ) and its complement.

3,r 4D+1
3,z
1) Express C using E 1.

3,r
2) Express the resulting fl(Xl,XZ), fa(X3,X4),

f3(X1,X2) and rbf(x3,x“) using E 4.

3) Express f5(Xl,X2) and f6(X3,X4) using E 1.



3,r
1) Express E},r using E 3.

2) Express the resulting gl(Xl,Xz), ga(X3,X“),

83(X1;X2) and 84()(3 x*) using E 4.

3) Express El’ EZ’ E3 and E4 using E 2.

In each case we then transform subcircults according to

the identity

(x_ NAND Xy JNAND. x., NAND x.) = (xO/\x M X N X))

2 1 2 3

3

and simulate any remaining \V/ -gates using

(x_. NAND x_ .NAND. x, NAND x

o ) 1 = (xov Xy )

1
This completes the proof of the inductive step and the

result follows by noting that the theorem is true for D=0.

O

Corollary 4.20

2D + 1 < NAND(C(Z ) ) { 3D + 0(1)

Proof

By Theorems 4.16, 4.19 as Jb/ﬂ

D

Vilfan (1972) describes a short formula for C(n) which

was suggested by A. Meyer. We show how this can be used to



P

(n) . . .
obtain an upper bound on DNAND(CQ,O) which is within o(log n)

of the lower bound in Lemma 4.8.

For n = Zk,

() ;v \ _ = =
Cq,o (Xn) = Hk (Xn) A Lk (Xn)

where Hk(xn) and Lk(Xn) are the functions which compute

the high and low order digits of the binary representation of
n-1
2::xi (mod 4)
i=0

Thus, Ho(xo) =0, Lo(xo)E X,

By binary addition (mod 4),
-1
L(x)=P*
k''n 1=0

1

) .
)AL (X ))
Sk-1 k=177 k-1

1 2
and Hk(xn)=Hk-l(x2k-l) er_l(xak_l) &L, ;X

1
where X S (X 9XyseoesX |
2k-1 < 0’71 2k l-—l>

and X2

: e, D

={ X X
k-1 < Sk-1 1 oKy

2

By recursively applying this identity we obtain a formula

for Hk(Xn) which, after reassociation, may be expressed as
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k
D
i=1

where Fi is a formula of size n which contains every xiGEXn.

1]

Hence, DBZ(Lk(Xn)) log n

DBZ(Hk(Xn)) g log n + rlog k]

(n) .
and thus DBZ(CA,O)g'log n + loglog n + 0(1)

If n is not a power of two, we can obtain a formula for
C(n) from one for C(m), where n{m<2.,n and m is a power
4,0 4,0

of two. Therefore, the above upper bound holds for all n21,

Combining this construction with the result of Lemma 2.4,

yields

(C(n)) g 2 log n + o (log n)

Dyanp'Cy,0

(n) (n) n

(n)
1lb t
Formulae for 04’1, 04,2 and Cq,} can al e obtained

from formulas for CinSB) and so these upper bounds on depth
H

over B2 and NAND hoid for all r.



5. SYMMETRIC FUNCTIONS

Symmetric functions oarise in mony familiar computational
problems such as sorting and countin;. Thercfore, the
inherent complexity of symmetric functions is closely relzted
to the potential efficiency or algorithms for many practical
probiems. The properties of symmetric functions make them
interesting from a theoretical point of view and it is rerhaps
this, more than any practical significance, which has
stimulated much of the research into their computational
complexity.

There is a long history of improvements to the best known
upper bound on the formula size of all symmetric Boolean
functions. Korobkov (1956) seems to have been first to
investigate this problem. The first polynomial upper bound

was derived by Khrapchenko (1972b) who showed that
4.93
FUE(Sn) <n

Some recent advances have been made for the full basis B2.

The best upper bound published to date is due to Fippenger

(1974).
_ 3.55
FBa(sn) = 0(n )

A useful theorem for deriving lower bounds on the

formula size of Boolean functions over the basis Ba is due

to Neciporuk (1966). For any f(Xn)tan, suppose the
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arguments Xn are partitioned into blocks Rl,...,Rp. If for
some i1 the arguments in all the blocks Rj’ J £ 1i, are fixed

to O or 1 in some way, the result is a restriction of £, a

function f‘(Ri). Let m, be the number of different such

restrictions f' for all possible fixations of the other

variables, Then we have the following

Theorem (Neciporuk (1966))

There exists a) 0 such that for all f,

p

F, (£) ) a. E:: log m
B, 7 -1 1

where the mi's are as defined above

O

Using this theorem, Neciporuk (1966) has derived lower

bounds of n2/log n for some rather artificial functions, each
of which iﬁvolve some notion of "indirect addressing'". Harper
and Savage (1972) have also applied this theorem to a practical
combinatorial problem and obtained a lower bound of a.n3/2.
For symmetric functions, the maxinum number of distinct
restrictions of a block of size r is limited to min.{2r+l,n-r+l}
. and thus only linear lower bounds can be obtained by this

technique. The best lower bound which has been proved for

any such function over the basis Ba is due to

Fischer, Meyer and Paterson (1975) who have shown that many

]
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symmetric functions require formulae of size at least
n log n / loglog n. ( M,S.Paterson has improved this lower

bound to n log n. )

5.1 A COROLLARY OF A THEOREM Ol" SPECLER, In this section
ve consider the complexity of symmetric funciions over the

full basis BZ'

For circuit size, the results of Schnorr (1974), (1976)

imply that for each n>2 all but eight of the 2™*1 functions

in Sn have circuit size which is at least 2n - 3, The eight

exceptions consist of two constant functions and six with
circuit size n-l. Stockmeyer (1976) chows that at lcast one

half of the functions in Sn have circuit size which is at
least (S/Z)n ~ 5. He also states that

cBa(sn) £6é.n

For formula size we ha#e the important result of Hodes
and Specker (1968) which gives non-linear lower bounds for a
number of interesting Boolean functions. Paterson (1976)
points out that when the theorem of Specker is restricted to

symmetric functions it can be restated as

Theorem 5.1 (Hodes and Specker (1968))
| For all £ in Sn -an, where [ﬁn is defined overleaf,
FBz(f) > n.t(n)

for some (slowly growing) function t(mn) with t — ©©

as n-00, where t(n)<{log" n

U
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Definitions
n-=2
Let EQ(X ) = {_} [xi‘—_‘ xi”_] .

Using our notation for the '"defining vector" of a

symmetric funétion, we define

A, = {f €s, , TENE S S Y /\EQ(fz,fh,f6,...,fn_2)}
for n even, and
A, = {f €s, [ EQ(fl,fj,f5,...,fn_z)/\EQ(fz,fL*,f6,...,fn_l)}

for n odd.

Note

There are precisely 16 functions in [Sn and the defining
vector of each such function has one of the forms:

{2,0,0,.000urns,0,2)
(231,10 eiininnnn,1,2)
<2,0,1,0,1,....000.,2)

<2,1,0,1,0,.00uuuns,2)

Corollary 5.2

For all f in Sn’ either
DBZ(f) £ riog ﬂ] +2
or

Dp (£) > log n + log t(n) - 0(1)
2

for some t(n) with t>co as n-> o0
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Proof
(. Lower bound is immediate from Theorem 5.1 while the
upper bound can be verified by considering formulae for

functions in A n

O

It seems likely that the lower Bound in Corollary 5.2
can be improved to log n + loglog n - 0(1). However, at

present this is an open problem.

5.2 LOWER BOUNDS OVER UNATE BASES. We now prove similar
"gap" theorems for the depth of symmetric functions over
various unate bases and for the depth of monotone symmetric

(threshold) functions over the basis MZ'

Some simple facts about the defining vector of symmetric

functions are given without proof.

Fact 202

T, the complement of some f in S,» is defined by

S S PRI A
O
Fact 5.4

Let ? be the function computed by a circuit for some £

in Sn with all nonconstant inputs complemented. Then ? is
defined by <fn’fn-l""’f2’fl’fo>

tl



101

Definitions

K

n {fesn m(frn/ﬂ,- frn/ﬂ" 19 e fl}n/lt‘)}

i

$, - {tes, EQ(fl,fa,...,fn_l)}

Kn 1s the subset of n argument symmetric functions

whose defining vector is either

<

or [E/;J [fn/ﬁj
<?,.....J.....,?,l,0,?, ey ?)

while the defining vector of any function in §n has one of

3 230,1,2, 0 fe i ia,2)

the forms:

{2,0,0,.0000.,0,2)
<?,1,1,,. .o..,l,?

Thus, there are precisely eight functions in én‘
Examples., SUM(n) is in Kn.

E;n), the nth elementary symmetric function is

in§n.

_ Theorem 5.5

For all ¢ esn, either

DUZ(f) g,[-log n~] + 1

or
DU2 (£)) 1log n + loglog n - 0(1)
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Proof

A result of Khrapchenko (1972a) can be paraphrased as

the assertion that for all f in Kn’

Dua(f)‘z,a.log n - 0(1)

The upper bound can be verified by considering formulae for

functions f din §n' Thus, the result follows from the

following lemma

]

Lemma 5.6
For all f 4in sn - {Knu§n},

Dy (f) 2 log n + loglog n - 0O(1)
2 .

Proof
In the defining vector of each function f(Xn) in sn-{KnU§n}

there is a consecutive block of length p, Ln/EJ + 2\<p<n+l,

which has one of the following forms:

0,1,0,0,.....,0 1,0,1,1,.....,1
1,1,0,0,.....,0 0,0,1,1,.....,1
0,0,...,0,0,1,0 1,1,...,1,1,0,1
0,0,...,0,0,1,1 1,1,...,1,1,0,0

By setting arguments to constants and simrlifying a circuit
which computes f, we can obtain a circuit which is not deeper

and which computes some f' in Sp_l, where f' is defined by a

vector in one of the above forms.
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Over the basis UZ’ the output and variable inputs of a
circuit may be complemented without increasing depth. 1In
view of this and Facts 5.3, 5.4, we need only consider those

functions which are defined by the vectors

{0,0,1,1,.00000s1)
and <1,0,1,1,......,1).

Krichevskii (1964) has shown that on p-1 arguments, each
of these symmetric functions requires formula size of order

at least p log p over the basis UZ'

For n/ZJ + 2¢pg§n + 1 and any such f' in Sp—l’ this ylelds

Dy (£') > log n + loglog n - 0(1)

2
O

Lemma 5.7
" For all ]’“/2_[0:4 n+ 1,

k n

(n) -
P U{f

fep(n)}?_ S

- Proof
(n)
Py

.

Immediate from the definition of

Theorem 5.8

J
For all f in Sn’

Dyanp(f) ) 2 l—1°5 n-’ -3
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Proof

S; is the set of nonconstant functions in Sn.
]
Let f be some function in Sn' Then from Theorem 4.3,

we have

(fe prh/é]+ 1 N s;) = Oy anp(t) ¥ Z{iog nl-2)

The result then follows from Lemma 5.7 if we note that

for all f in Bn’

Dyanp{) * 1 ) Dyypp ()

O

Using identical proof techniques to those used for

Theorem 5.8 we can prove that for all f ip s;,

D{NAND,"‘")}(f) 2 logﬁa.log n - O(l)

where g is the golden ratio, by using Theorem 2.14,

We have established that over various unate bases there
is an important gap in the depths of symmetric functions.
It is interesting to note that for each of the bases
£L = NAND, {NAND,—)} and {—),O} there is no function ¢

in s; such that

Dn(f) = log n + o(log n)
1
although there arc functions in Sn which have linear formula

size over ().
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Finally, we give an easy corollary of Theorem 5.5 which
establishes a significant gap in the depths of threshold

functions over the monotone basis MZ‘

Definition

Let Tﬁn)(xn) be the symmetric Boolean function which

n-1
is 1 iff - in > k.
i=0

_Ipn) -
Tn = {Tk nggn = Mn(\sn is the set of threshold

functions,

Noting the fact that Mzc:Ua, we have the following

Corollary 5.9

For all f in Tn’ either

D};Iz(f) < flog n7

or
DMZ(f))log n + loglog n - 0(1)

]
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6. HIERARCHIES

In a previous chapter we noted that 'almost all!
Boolean functions require large amounts of depth. However,
at present we have only small lower bounds on the depth of
explicitly defined functions and it would appear to be a
difficult problem to substantially improve upon these lower
bounds.

Given this situation, it is natural to ask whether

¥

there exist functions f in Bn of depth, say, logan or n°<,

In the absence of closely matching bounds for specific
functions, we can answer such questions by demonstrating
that the depths of Boolean functions form a reasonably
uniform hierarchy. Hierarchies often yield valuable insight
when exact bounds for specific functions are difficult to
derive.

In this chapter we exhibit various hierarchies for sets
of Boolean functions. These are obtained from bounds for .
'almost all' functions by defining a sequence of functions
in terms of subcircuits for some function of nearly maximal

complexity and in some casss by employing a "padding" technique.

Definitions

Depth  (S,z) = {fes DA(f)L 2
<

C.5ize o (S,2) = {fes[c o (£)

F.5ize o (5,2) = {tes|F - () z
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Lernma 6.1

For all complete binary bascs {Land all sufficiently -
large b,

Depth (B_,i) S Deptt (R ,i+1)
L n ¥ o

whencever 0£1&n - loglo, n - (1)

Proof
In Chapter 3 we noted that for all such fL and for all

n20, there is some f in B such that
D—Q_(f) = Zyn - loglog n - O(1)

Let/3 be a circuit of depth Z over the basis () in which
there is a gate v which computes f.

If £ ,f are the fuunctions computed by the pair of
Y1 V2

arcs entering 4/, then we have either

DIL(gvl) = 2-1
or
Dxl(gva) = 2-1

Without loss of generality, assume

DIL(gvl) = 2-1

Then by applying this argument inductively to ﬂv and so on,
1

we can derive a sequence of Boolean functions {fi} for 0¢i¢z,
where DJL(fi) = 1. As each of these functions fi depends on

n or fewer arguments, we can define fi to be some function

in B
n

U



Corollary 6,2

DepthH? (11,1) g DepthM?(}'n ,i+1)

whenever 04{i¢{n - % log n - loglog n - O(1)

Proof

Identical to Lemma 6.1, using Lemma 3.8

O

Definition
"
Let Bn be the set of n argument Boolean functions which

"
depend on all n arguments and lct Mn be the corresponding set

of monotone functions.

Lemma 6.3

For all complete binary bases fland all sufficiently
large n,
n c th (B" i+2)
Depth_[L(Bn,i) F Depth (B ,

whenever riog ﬁw < i{n = loglog n - 0(1)

Proof
Using the method of lLemma 6.1 we can derive a sequence

of Boolean functions fl’fa’fz"""’fz where

Dalfy)=1
Z»n - loglog n - 0(1)

~

and each Ty depends ono<i arguments, 1 g<xi < n for all i.

For all complete binary bases {1,
11
LN B, £ P
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- » . n .
Let © be some function in QL NPB,, Since © may not bLe
<.

n-1 fn/2-1

n-1

associlative, we inductively define };)xi to be ( 'C)V ) o( CD 7 )
nel 120 | i=0 l"ﬁ)/ ]
for all np2, and note that Ox; is in B .

i=0
; ~ n=1 q, _
Let fi(Xn) = fi(Xmi) 0] (D Ij where £, = fi if o€ {NAND,WOR - <“}
T

and Ikﬁ?}) = i-1 , f}:fj ocherwise,

1 ', v
Then fl(Xn),faan),....,fz(xn) have the following proverties

. . t 12} . !

i) \7/1, 14ig 2z, f, €B and thus\/i, 112, D__Q(fi);\'log n—l
. . '

i1) Vi,rlog n—’ < i€z, . 1D a () gidl

The lower bound follows from the following twe facts

a) By setting > PRI

to appropriate constants,in a
i .

n-1
'
circuit which computes fi(Xn),we can obtain a circuit
which computes fi(Xa.) (or ?i if o e{NAND,NOR,—a,Z:}
i

and Da(fy) > 1 .)

b) Dqo(fy) =1.

The upper bound follows from the fact that

n-1

D_O_(Qx ) “loC ‘, Thus,
Dﬂ(fi)gmax {I'log n" , i} + 1

The hierarchy then follcowz from these properties of the

sequence {f;}

O
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Corcllary 6.4

. " C 1" .
DepuhMﬂ(Mn,i) 7 DepthMR(Ln,1+2)

whenever llog ﬂ].g 1g11-3-105 n - loglog n - 0O(1)
Similar hierarchies can be obitained for formula size

and circuit size.

Lemma 6.5

For all complete binary bases Al and all sufficiently large n,

F.Size (B ,i) < F.size (B ,2.1)

Zn-l/log n

whenever 1gig
Proof
The counting argument of Riordan and Shannon (1542)
shows that for all such fland for all n3} 0, there is some
f in Bn such that Fil(f) = F‘)c.an/log n for some constant c.
Let/ﬁ be a formula of size F over the basis QL in which

there is a gate v which computes f.

If£ £ ,f are the functions computed by the pair of
V1 V2

arcs entering 4), then we have ecither

[#/2] € Fals, )CF

or

[¥/2] ¢ Falty )CF
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Without loss of generality, assume that
F/2"| F ~(f )<F
( é S A) 1 N

By applying this argument inductively to f«) and s0 on,
1

we can derive a sequence of Boolean functions {fi}

for 1 {1¢ p, where
1) [rog F| ¢ pgF-1
ii) F_n_(fl) = 2, F.n_(fp) = F
iii) \V/i, 1<i<p, Fﬂ—(fi)<Fﬂ-<fi+1)~<~2°Fﬂ-(fi)
As each of these functions fi depends on not more than

n arguments, we can define £y to be some function in Bn'

Having defined the sequence of functions in this way,

the lemma follows immediately

O

Lenma 6.6

For all complete binary bases {L and all sufficiently large n,
C.Size_n_(Bn,i) % C.Sizeﬂ(Bn,Zi)

whenever 1¢1ig Zn-l/n.

Proof

Similar to Lemma 6.5, using the fact that for all such {L

and for all n2>» 0, there is some f in Bn such that le(f)zc.an/n

for some constant c.

O



N2
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7. CONCLUSION

We have presented a number of results on the circuit
complexity of Boolean functions. For many of the problems
considered tﬁere remain important gaps between the best known
lower and upper bounds. The uniform hierarchies which we
exhibited in the last chapter are particularly interesting
in juxtaposition with the gap theorems for symmetric functions
in Chapter 5. Taken together, these results show a number of
cases where there is a Boolean function of a certain complexity
but no symmetric function of that complexity. For example,
consider Theorem 5.5 and Lemma 6.3, An example in the case
of monotone complexity is provided by Corollaries 5.9 and 6.4.

Every nonconstant symmetric function depends on all its
arguments. It seems that this property and others of the
functions in Sn preclude the possibility of uniform complexity
hierarchies for Sn. Our results give some formcl justification
for this intuition. Although, from the two examples explicitly
mentioned above, we see that dependence on all arguments does
not alone explain the sharp distinction between the complexity
hierarchies for symmetric functions and those for sets such as

B, M.

n’ n

It has often been remarked that good theories rarely
develop outside the context of a background of well understood
real problems and special cases. Therefore, in order to build

a realistic theory of computational complexity we ought to



concentrate on acquiring a deeper understanding of particular
problems and hope that from this we will be able to guess and
prove more general principles. For this reacon, the main aim
of the rescarch reported here was to acquire a deéper
understdnding of some particular problems concerning the
circuit depth of Boolean functions.

This conservative attitude to the development of a theory
of complexity 1s supported by the fact that there are already
several instances where studies of a particular problem in
computational complexity have shown intuition to be wrong.
€.g. 1n the problems of integer multiplication, matrix
multiplication and finding the median. Classically these
problems take time n2, n3 and n log n respectively and
intuition might suggest that these upper bounds are optimal.
However, we now have procedures for these problems which only
require time n log n loglog n, n‘2°81 and 3n respectively.

This shows that many of our beliefs which scem to be common
sense may turn out to be false.

If we focus our attention on the complexity of finite
functions, then there are several open questions of recognized
importance. These include the problems of verifying Cook's
conjecture on time versus space using results on circuit
complexity, and of verifyin, that P £ NP by & circuit theoretic
approach. Besides these major open problems there are a myriad

of questions which remain unresolved. Many of these have been

suggested in the preceding chapters.
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Many problems of practical and thcoretical interest can
be conveniently formulated in terms of the circuit complexity
of Boolean functions, Much work has recently been done in
this area as can be scen from the extensive 1list of references.
However, the large number of open problems, conjectures etc.,
indicate the embarrassingly large gaps vhich remain in our
knowledge. This is primarily due to our inability to prove
large lower bounds on the complexity of many familiar explicitly
defined fuunctions.

Although much has already been attained, even more remains
to be done before we can achieve our ultimate goal, a realistic

theory of computational complexity.
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Appendix, SHORT FORMULAE FOR THRESHOLD FUNCTIONS.

Many sorting algorithms can be modelled by networks of
comparator gates, A comparator network is a (non feedback)
switching network, composed of 2-input 2-output gates, whose
inputs are drawn from some totally ordered set (e.g. the
non-negative integers). One output of each gate corresponds
to the maximum of the two inputs and the other corresponds
to the minimum. Such a network can only represent a subset
of the sorting algorithms which could be carried out by a
general purpose computer, It cannot, for example, model
algorithms where the comparison tree is altered and pruned
as more information becomes available about the ordering of
the inputs.

We may use the Boolean notation aVb and aAb for the
maximum and minimum, respectively, of two numbers a and b.
The interpretation of these expressions, howeve., depends
upon the domain of the variables. This notation is convenient
for the analysis of sorting networks since it permits the
outputs of such a network to be described by monotone
Boolean formulae,

It 1s well known that a network of comparator gates
sorts n numbers 1f and only if, when interpreted as a network

of A and V gates, it realizes the set of threshold functions
Tﬁn),for 1 {k<n., This can be easily seen by considering a

¢ network which sorts inputs from {O,l}n.
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Therefore, the inherent monotone complexity of threshold
functions 1is closely related to the potential efficiency of
sorting networks. In particular, the delay required by a

network of comparator gates which sorts n numbers need be no

more than DMéTn)‘

In previous sections we have established a number of
bounds on the depth of threshold functions over nonassociative
bases such as NAND , {NAND,—§}. E.g. we have shown that over

the basis NAND there is a lower bound of Zfiog ﬂ] - 3 on the

depth of Tﬁn) for all 0<k n. We now consider the depth

in) for 1 <¢k<n, over bases such as

and formula size of T ,

B..U. and M.. First we note two simple relations between

2?72
threshold functions and elementary symmetric functions.

. . (n)_ (@), =(n)
(1) For all (g k<n, Ek = Tk /\Tk+1'

) Elo(n)
(1) For all O<kgn, T 7= {-\OEj‘ .

These identities show that over complete bases such as Ba’Ua’
there is a close correlation between the complexities of

functions in these two scts,
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Hodes and Specker (1968) show that for all 1<k<n,

FB (Tin)); nt(n) where t(n)->00 as u-» 00, while
2 .

M. S, Paterson has derived a lower bound of order

(n)

n logn on the formula size of Tr-/27 over this

basis. (A weaker version of the result which proves this
lower bound appears in Fischer, Meyer and Paterson (1975)).

The result of Krichevekii (1964) can be used to show
that for all 1¢ k<{n, Fy (Tén)) > C.n log n for some constant C
2

while Khrapchenko (1972a) has proved that

(n) (n+1)°
U (72 +1)>.JL___

/2]

As M CZUZC:BZ, these lower bounds also hold for the

monotone basis Ma.

We have already noted that O(no 2°) is an upper bound
on the formula size of all symmetric functions over the

basis 52 and thus on the formula size of WEF}EW Similarly,

Khrapchenko (1972b) describes a construction which shows that

T(n) _

{'/2] =

If we consider the basis h .y We find that the best known

O(n4.62)
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upper bound on the monotone depth of T%ﬁ}é] is

+(log n)2 + 0(log n). This upper bound follows from a
probabilistic argument derived independently by Khasin (1970)
and Pippenger (1975). Fippenger refers to results obtained
in this way as "existential propositions". 1In both cases g

similar argument is used to show that log n + loglog n + 0(1)
i1s an upper bound on the monotone depth of all threshold

functions Tin) with fixed threshold k.

Erdds and Spencer (1974) have demonstrated the power of
the probabilistic, or nonconstructive, method of proving
theorems, i.e, proving that some member of a class has a
certain property without actually constructing that member.
Once a result has been established by nonconstructive methods,
it often becomes interestiing to obtain a proof by construction,
i.e. to replace existential propositions by algorithms which
construct mathematical objects,

Following this approach, we now describe several short
formulae for Tén) where k is some fixed number independent
of n., Explicit constructions are given for all formulae,
some of which are non-monotone. However, only for k = 2 have
we obtained an explicit formula of depth log n + loglog n ; 0(1)
or of length O(n log n) although these bounds should be possible

for all fixed k.
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1. THRESHOLD K, K<7

Threshold 2

For n = ék, Tén)(xn) may be expressed as

fra(n/a)(xl )v Tg_n/“ 2,y v oin/2) (xi

(n/2) ,,2
n/2 1 2)’\Tl (Xn

n/2 / /2)

1 2 ‘
where Xn/2 = <xo,xl,... ,xn/2 _1> and Xn/2 = <xn/2,xn/2 $10°0 "Xn-l>
By recursively applying this identity we obtain a monotone

(n)

formula for T2

(Xn) which, after reassociatior, may be

expressed as Tk
\/z,
i=1
where F; is a monotone formula of size n which contains

every xig:x.n .

Hence, we have given an explicit construction which shows

that

k
DM (Tén))glog n + loglogn forn =2

2

If n is not a power of two, we can obtain a monotone formula

for T") trom one for T

(m)
2 2

y Where n{m<{2n and m is a power

of two. Therefore, we have an upper bound of log n + loglog n+ 0(1l)

for all n)

/l'

O
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We shall informally describe our short formulae for

k) 2, using some unusual notation.

Definition

We shall assume a partition of X, into n% blocks :

3
x1,x%,%3,. .. ,x"

each of size n%.

Notation

Tp(Tq) will denote

+ % 3 % 3
(n€),,(n°),,1 (n<),,2 (n€),,n
Tp (Tq (X ),Tq (X ),...,Tq (x™))

Threshold 3

p(n)

3 may be expressed using the identity

(n) _
T3 = Tl(TB) VT3(T1) \% (Tl(TZ)/\TZ(Tl))

From this identity we obtain the following recurrence

relation for the formula size of Tén).

(n) 3 (n?) 3 z
F
MZ(T5 ){2n Fr, (737 7) + an FMZ(Tén ))
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We have already noted that Fy (Tén)) = 0(n log n)
2

3
(n))‘(Zn% F (T(n )) + O0(n log n)

Mz M

Now if we let Fy (T(n)) = n.f(log n), we have

n.f(log h)g?_n"}n% f(# log n) + 0(n log n)

.*. f(log n){2f(3 log n) + 0(log n)

f(log n) = 0(log n loglog n)

and thus

(T(n)) = O0(n log n loglog n)

O

Open problem

Give an explicit monotone fornula of size

0(n log n) for T(n)

Threshold 4

(n)
4 (T )VT (T )
V(TB(TI)/\Tl(Tz))

V(T,(T)) AT (T5))

3
V(Ta(Tl)A{:\l[Tl(Xi)—)TZ(Xi)] )

and this identity yields the recurrence
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1 s
F‘]Z(Tl(+rl))g2n7‘r F‘UZ(TLEn )) + 0(n log n loglog n)

Therefore, from such a construction we obtain

FU (Tin)) = 0(n log n(loglog n)2)
¢ 0

Threshold 5

(n) _

Tg @ = Tl(T5)VT5(Tl)
V(Tz(Tl)ATl(Tq))

V(T4 (1) AT (T5))

v(Tl*(Tl)/\Tl(TZ))

3
n
V[ [@ 1,0M]=0] A (ny (1) Vg (7AT (T,)))
i=1
n®
V(T3(T1)A/\[Tl(xi) - Ta(xi)] )
i=1

and this yields the recurrence

ta
FBZ(T;H))g 2n? FBa(T(? "%+ 0(n 1og n(loglog n)?)

from which we obtain

FB (T(n)) = O(n log n(loglog n)3)

2 ? O

(n)

For k = 5 and 6, our formulae for Tk use '"padding"
n-1

to cover cases where E ¥ >k due to the non-monotonicity
i=0

of the construction.
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Threshold 6

Tén)= T (T VT (T;)
V(TS(TI)ATI(TZ))
V(Tq(Tl)ATl(TB))

V(T3 (1) AT (T,))

VT, (T )AT, (T5))

n
V(L@ moh]e0] A xympven, (2, (1))

V(TB(Tl)ATl(TB))))

3
n
i
- )
V([[i@l T, 0] = 0] ATy(Ty)
n% .
VN [rahs1,h] A 1501y

(n)
v('rq('rl)AcLh3 (Xn))

In section 4.3 we noted that

FBZ(C£?%)= O(n log n)

Therefore, the above ideniity yields the recurrence
¥
Fo (8 ¢an? o (72 4+ 0(n 1og n (Loglog 1))
32 6 N B‘2 6
from which we obtain

FB (Tén)) = 0(n log n (loglog n)q)

° 0
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Open problem

Gilve an explicit formula of size less than order

n log2 n for T(n)

2, AN UPPER BOUND FOR ALL FIXED K.

Korobkov (1956) used the identity

-1

VAN (n/2)

Tk(Xn) -——i O rli (XO,Xl,...,X / 1,/\T (Xn/Z,Xn/ +l,...,X 1)
= 2

and the method of dichotomy, or binary splitting, in order to

obtain the bound

k=1

FMﬂ(Tl({n)) - 0(n (Log n) 1)

We now describe a construction which improves upon this

upper bound.

Threshold Zp, p fixed

Definition

(n)(x ) will represent the 1th digit in the
n-1
binary representation of E K.
1=0
Let the argument set K°n be partitioned into two

blocks Xl and X2 each of size n., The binary digits

n),, .-
Dia )(qu) can be sxpressed recursively by constructing
4
the digits for X+,X° and perforring a binary addition

on the results,
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This binary addition can be perforrmed using « set of
"full adders" which compute each new digit d and each
1 1"
new carry ¢ from the digits d ,d of the summands and

]
the previous carry c¢ . By employing the formulae

! n 1
a d &4 ®c

c=c @ ((c' ® d'),A (c' ® dv))

]

in these full adders, we obtain the following results

For all i > 0,

(2n) _o(n) 1 (n),,2
Dy (X5,) = D (XT) o D (X%) e ¢y
where Ci has a Poolean fornula consisting of 33 occurrences
(n) 1 3 (n) 2
of Di—j-l(x ) and 3 occurrences of Di-j-l(X ),

for 0< j <1,

FP(Dfn)(xn)) = 0(n(log n)*) for all fixcd 1i.
J2-

)

Now conszider the function T(g wvhere p is fived,
z

We may exXpress T(;) using the identity :

2
(2n),, _ min), 1 (n) 2
Tap (Kan) = TZP X7) v Tap (xX%)
/4 m(n) ~l &
v(cp__l e \(Lap_l(x ) & Com1)
A(C e (%) 2y ) ).

-1 p-1

2

This identity, together with tlre unper bound on FB(DJ) given
2 *



above, yields the recurrcnce

(2n) ~ p(m) n (n) p=2
F éTap ) £ 2. STZP ) QQFBéTEP_l) + 0(n(leg n)= 7).

We can prove by induction on p starting fronm p=2 that

Fy (T(n)) 0(n(lo;, n)P~t .(loglog n)%)
B ol

For exsmple with p=3

(2n) o m (m{0) (n)
FBéTS ) S:L.FB§T8 )+ 2°FBéT4 ) + 0(n log n)

T(n)

and using our upper bound on i wve c¢btain

FB(Tén)) = 0(n(log n)z(loglog n)2)
2

When k 1s not a power of 2, we can obtain a formula
for Tén) from one for

n+2f-k)

- T(
- T,r

2

where 2771 < kx < 2%, by setting arguments to the value 1.

Hence, we have shown that for any fixed k,

FB(TéP)) 0(n(log ny [tog Kl -2 . (loglog n)°)




128



129

REFERENCES

Birkhoff, G. (1971)
The role of modern algebra in computing.,
SIAM -AMS Proc. Vol.4, 1-47?

Borodin, A. (1975)
Some remarks on Time-Space and Size-Depth,

Unpublished manuscript.

Brent, R.,D.Kuck and K.Maruyama (1973)
The parallel evaluation of arithmetic expressions
without division.
IFEE Trans. Computers Vol.C-22, 532-534

Cook, S.A., (1971)
The complexity of theorem-proving procedures,
Proc, 3rd Annual ACM Symposium on Theory of Computing,

151-158

Cook, S.A. (1974)
An observation on Time-Storage trade-~off,

JCSS 9, 308-316

Erdos, P and J. Spencer (1974)
Probabilistic methods in combinatorics.

Academic Press

Fischer, M.J., A.R. Meyer and M.S, Paterson (1975)
Lower bounds on the size of Boolean formulas :
preliminary report.

Proc. 7th Annual ACM Symposium on Theory of Computing,
37—l




130

Gilbert, E.N, (1954)
Lattice theoretic properties of frontal switching

functions.

J. Math. and Phys. 55,No.1, 57-97

Glushkov, V.M, (1966)
Introduction to cybernetics.

Academic Press

Harper, L.H. and J.E. Savage (1972)
On the complexity of the marriage problemn,
Advances in Mathematics 9, 299-312

Hodes, L. and E. Specker (1968)
Lengths of formulas and elimination of quantifiers I,
in Contributions to Mathematical Logic (K. Schutte ed,),
175-188. North Holland.

Khasin, L.S. (1970)
Complexity bounds for the realization of monotonic
symmetrical functions by means of formulas in the
basis V, & ,,
Sov, Phys. Dokl, 14, 1149-1151 ; orig. in Doklady
Akademii Nauk SSSR 189(4) (1969), 752-755

Khrapchenko, V.M, (1971)
Complexity of the realization of a linear function
in the cliass of TT -circuits.
Math. Notes of the Academy of Sciences of the USSR 9,
21-23 ; orig. in Matematicheskie Zametki 9,1, (1971),

35-40




131

Khrapchenko, V.M. (1972a)
Method of determining lower bounds for the complexity
of P-schemes. _
Math, Notes of the Academy of Sciences of the USSR 10,
4L74-479 ; orig. in Matematicheskie Zametki 10,1, (1971), .
83-92

Khrapchenko V.M, (1972b)
The complexity of the realization of symmetrical functions
by formulae,
Math., Notes of the Academy of Sciences of the USSR 11,
70-76 ; orig. in Matewaticheskie Zametki 11,1, (1972),
109-120

Kleitman, D. (1969)
On Dedekind's problem : The number of monotone Boolean
functions, '
Proc. AMS 21, 677-682

Korobkov, V.K. (1956)
Realization of symmctric functions in the class of
Tl -circuits. (Russian)
Dokl. Akad. Nauk SS3SR 109, 260-263

Krichevskii, R.E. (1964)
Complexity of contact circuits realizing a function
of logical algebra.
Sov, Phys, Dokl, 8, ?770-772 ; orig. in Doklady
Akademii Nauk SSSR 151(4), (1963), 803-806

Lupanov, 0.B. (1958)
Ob odnom metode sinteza skhem,
Izv., V.U.Z. (Radiofizika) No.,l, 120-140




Lupanov, 0.B. (1962)

Complexity of formula rcalization of functions of
logical algebra,

Problerns of Cybernetics

3, 732-811 ; orig. in
Sborn. Problemi Kibernetili  (1960), 61-30

The depth of Boolean functions,

Proc. 5rd Int. Colloquium on Automata, Ianpguages and
Programming, 307-321,

Edinbusrgh Univers

rsity Press

McColl, W.F, and M.S. Paterson {1975)

The depth of all Boolean functions.

To appear in SIAM J. on Cowmting, 6,2 (1277)

Neciporuk, =.I, (1966)

A Boolean function.

Sov, Math., Doki, 7, 999-1C00 ; orig. in Doklady
Akademii Nauk SSSR 169(4),(1266), 765-766

Paterson, M.S. (1975)

Complexity of monotone networks for Poolean matrix
product,

Theoretical Computer Sciern.o 1, 13-20

Paterson, M.S. (1976)

An introduction to Roolean

plexity,
Stanford Computer Sciern-ce

Cc-76-557, 19pp.
also in

Ast€risque (joun

“rench Mathematical
Society) 33~-39, 183-201

Circuit size is nonlinear i.

Theorctical Computer Scier




133

Pippenger, N. (1974)
Short formulae for s> m-etric functions.
IBM Research Report ! T 5143

Yorktown Heilghts.,

AN
St

Pippenger, N. {197
Shert mconotone formu o for threshcld functions.
18M search Feport 7 5405

Yorkinwa Helgshta,

—

Pippenger. . (1976
The reslirzaticn of w w tone Boolear functions.

~ mposium on Theory of Computing,

Proornest o University Fress

Pratt, V.#. (1275)

The effect of basis n size of Boolean expressions,

rroc, | b yizosium on roundations of

L2l

Comr

Pratt, V.k, and L.J., Stoc » yer (1976)
A chars. teriastics ¢ 'he power of vector machines.
JCs3 12, 158-021

Preparata, F.F. and D.o. acler (1971)
On the delay reguire Lo realise Bcolean functions.

IFEE "rans. Ccomputer s "01,0-20, 459-461




1z

Preparata, F.P. and D.E. Muller (1976)
Efficient parallel evaluation of Boolecan cxpressions,

IEEE Trans. Computers Vol, >~25, S48-549

Reznik, V.I. (1962}
The reaiization of monctontc functions by means of
networks consicting of fun:tional elements,

6, 556-561 ; orig. in Doklady
(33,(1961), 566-569

Akademii Jauk SSOR 139(5

Riordan, J. and ¢.&. Shanvon (1342)

The number of two-terminal ceries-parallel networks,

J. Math, and rhyo. 21, 33-3%

oo

Schnorr, C.P. (1474}
ZTwei linesvs uaters Sobravl o fir die Komplexitat

Boolesciany Fiiia ol
v wochneny) 13, 155-171

Computiz
PSRN RNV

Schnorr, C.P., (1€
The comiina ronal complexit: of equivilcace,

Theoretical Computer Sciers 1,4, 289-2U5

Shannon, C.E. {19493
The synthesis of ‘wo-term switchi .o ~"rcuits.,.

(@

B211 (sste Toolotool Jouw oo 28, 59-

Soprunenko, E,F. (I

On the minimal 1 2lizatio: " sertair { ~:tions b
schemes of Turnctisncl ele: > .o. (Rusc . a )

Probl. Kib. i, 117-134

Spira, P.M. (1973i)
On the time noszosary to <o pute swit nong functinns,

IEEE Trans. Compubers Vol ¢ 20, 104-i05




Stockmeycer, L.J. (1976)
On the combinational conmplexity of certain syumetric
Boolecan functions,

IPM Rescarch Revasi 20 =809

PR [ B "y

Yorictown Heighto.,

Vilfan, B. {1972)
The complexity of finile functions,
Ph.b, thesis, M.I1.7.

al

Project IAC Tech. 1
M.T.T,

aC-TR-Q7

Zhegalkin, I.I. {(1927)
The techpigque of caluiation of stoatenents in symbolic
SN

log

]

Matem, Sbornik 74, 9-25




	p.pdf
	University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

	WRAP_McColl_cs-rr-018 (1).pdf

