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SUMMARY

An lnportant problem 1ir theoretical computer sclence

ls to develop nethod6 for estlmating the complexity of

flnltc functlons. For many famlllar functlons there remaln

lnportant 6aps between the best known lower and upper bounde'

we lnvestigate the lnherent complexlty of Boolean functlone

taklng clrcuits ae our model of concputation and depth (or

delay)tobethemeasureofcomplexity.Therelevanceof

clrcuits aa a nodel of computation for Boolean functlons

stens from the fact that Turlng machlne computations may be

efflclently slmulattd by circults'

ImportantrelationsanjongvarlousmeaEuresofclrcult

complexlty are obtained as well as bounds on the maxlnun

depthofanyfunctionandofanymonotonefutnction.V/e

then glve a detaj-Ied account of the complexity of NAND

clrcuits for several important functions and pursue an analysle

of the lnportant set of symrnetric functlons. A number of gap

theorems fo: symmetrlc function6 are exhlbi-ted and these are

contrasted wlth unlforrn hierarchles for several large sets of

func tlons.

Fl-nal}y,wedescrlbeseveralshortformulaefolthreshold

func tions.
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1. INTRODUCTION

Let Xo = (*o, *1, ... ' xn-L) o" an n-tuple of

fornalargumente. Apartlal function f z Dn + Dwlth

flnlte donaln Dn ls cal-led a finlte functlon of n argunents
/ r1

and nay.be wrltten as f (xo, XI, ..., xo-I)' If D = iorrl '

then the functlons t : Dn + D are known as Boolean functlone'

There are rnany dlfferent conputation procedures for any glven

flnlte functlon and each of these u6e6 a certaln amount of

reaources e.6. tlner 6pace. The tlrce complexlty of sone

flnlte functl0n f can thus be deflned as the ninlnal

aroount of ti-ne requlred by any computation of f' In a

slnllar way, conplexlty can be defined with reepect to

other measureE.

WeshallconslderconputationsofBooleanfunctlons

by acycllc elrcults Of binary gates where each gate corresponds

to sone blnary Boolean functlon. Two fundament'r'I complexlty

treasuresforaBooleanclrcultareslzeanddepth.Atrother

neasurecloselyrelatedtoclrcultdepthisfornaulasLze.

ourprinaryconcernherewillbewithclrcultdeptb.Sone

of the resurts to be pret ented have appeared ln a prelinlnary

report on the depth of Boolean functlons, 6ee McColl (1976)'

1.1 SOME I'IOTIVATIONAL REMARKS' The study of clrcult

complexltylslmportantforbothpracticalandtheoretlcal

rea6on6.Thepracticalmotlvatlonlsthatmanyofthetasks
forwhlchdlgltalbardwarerrustbedeslgnedcanbe
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represented as the cornputatlon of Boolean functlone. The

two fundamental measures of clrcult complexlty are closely

related to the cost and delay aesociated with such hardware'

This practlcal slgnlflcance provided the orlglnal stlmulus

for research 1n this area. However, unt1l qulte recently

few nathenatlclans outslde the soviet union recognlzed

clrcult complexlty as a legltlmate branch of rnathernatlce'

Blrkhoff Og?l) remarks that pure theorlsts worklng on

Boolean algebra have tended to overlook the natural but

extremely dlfflcult problen of estinatlng the complexlty

of Boolean functlons.

Recently there has been considerable interest 1n the

conputatlonal complexlty of algebraic and combinatorlal

problems.Itlsnowrecognlzedthatthedevelopnentof

nethode for estinati-ag the complexity of finlte functions

ls of v1ta1 lmportance lf n'e are to reach a cornplete

understandj.ngofnanyfarrl}larproblems.Thi-stheoretlcal

motlvatlon has provlded addltlonal stlmulus and the study

of Boolean functlon conplexlty is now one of the nost

actlve areaE ln tbeoretical conputer science' Desplte

conslderable research effort, only nooest progreBs has been

nade j-n thls area and for nany famlliar functlons tbe best

known lower bounds appear to be very weak' Much of tbe

theoretlcal lnterest ln clrcults as a model of conputatlon

for Boolean functions sterns from the fact that Turlng

nachlne cornputatlons nay be efficiently simulated by clrcults'
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In conplexlty studles, Turlng nachlnes are the cLasslcal

nodel of computation and 1t ls known that Turlng nachlne

conplexlty closely reflects the difficulty whlch ls

experlenced. ln cornputlng flnlte functions' Thereforet

results on clrcult complexlty are of relevance to practlcal

conputatlon6..

At the present tlne tbe cost of dlgltal hardware 18

dlnlnlshlngrapldly.Thereforefromthepolntofvlewof

hardware deslgn 1t seems more important to ninlnl.se the

depth of a clrcult than to rnlninlse clrcult slze, Another

notlvatlonforstudyln8clrcultdepthstemsfromthe

capabillty of paralIel processlng on modern computers'

Thls ralses the problem of desi-gnln8 efflclent algorithns

whlcb ninlnlee delay. In practice we nlght only be luterested

inthosealgorlthmswhichrequlreonlyafixednunberof
proce6s016.Howeverrsomeofthetechnlquesdevelopedtn

deslgnj.ng clrcults with smaIl deptb may be of use 1n designlng

suchalgorlthms,evenalthoughtheclrcults(whichuee

unbounded parallelisn) are not of practical value'

Wehaveglvensomepracticalreasonsforstudylngclrcult

depth. However, our rraln alno ls to reach a deeper r^rderstandlng

of the lnherent dlfflculty lnvolved ln computlng Booleau

functlone and of the reasona for thle difficulty'

I.2 DEFINIT

We note that

I0Nj. Let

l'"1 =

r:{o,tlo {o,t}J.

lr,| = rG.

B = [ t
NL

^nf and thu



4

To lntroduce our notatl0ns for these 15 baslc functlons we

llst then ln the followlng table wlth definltlons ln terna

of GF(Z) r the two-elenent fleld'

Synbol for f Name for t t(xorxr)

O constant O

]rrl
' ctlon *ollo ProJe

rr, " xr

= rr l*xollo

fi n I*xI

n conjunctlon *o'*1

NAND nand l+xo't

.V diojunctlon *o * *l * *o'*l

NOR nor (1+xo) ' (}+xt)

-+ lmP1lcatlon 1+xo+xo'xl

e_ 
rt l*xt**o'*I

= 
rr Xo. (I+xt)

ff xr.(l+xo)(--

O sum (mociulo 2) *o * 
"1

= 
equlvalence I+xo**I

The 16 functlone of B, wlth Gr(2) equivalents

table I



Functlons 1a Bn are to be conputed by clrcults over aome

basls J]- , where lL ? Bz. A clrcult 1s a connected

acycllc directed graph ln which nodes have elther in-degree

2 (gates) ln whlch case the palr of lnconlng arcs are

ordered, or else ln-degree O (lnput node,s) ln whlch case an

input fron 6orne eet 1s assoclated wlth the node. A fornula

ls a circuit 1n whlch all gates have out-degree at most one.

Each 6ate is labelled wlth a binary Boolean functlon fron

the baels -Q
Let rr. = ( xorx1, ... r*orFo,fl, " ', fo-1,0, r ) ue the

set of possible inputs in formulae and clrcuits, where {

d,enotes the conplenent of Boolean varlable xt'

Let xr, = ( *or*rr ...,Xn-l) b" the set of formal

argunentE.ABooleanfunctj.onf€Bnw1llbewrlttena8

f(xorx1,...,xrr-l or aa f(xn)'

In a circutt /3 , an lnput node associated with it , where

7. e I-, l-s sald to -crlpgle the functlon T" (X. ) = E
I u -- ----: i :l L

Proceediug lnductlvely, a Sate r/ 1abe1l.ed wlth a blnary

Booleanfunctlonhlssaldtocomputethefunctlon
tV (*o) = h( fvl(Xn), fr2ixn) )

where !l , lz and t, 
,_, 

t", are the nodes on the

flret and second arcs enterin8 t and the functions they

compute.ActrcuLt/3computesflftherelsauodeln

F which coroPutes f.

The slze C( f ) of a cLrcuit /j ie the total nunber



of 6ates. The denllr n(i. ) of a clr',:uLt 7?, is the rraximum

nuuber of gates r-n any path" Tire A-!L!,. F(ii ) of a fcrmula

/ is the t,ota1 nunber of input nocie : and this is one nore

thern the number of gates. Each of tl ese circuit paraneters

lndttces a corlespondlng cor,rplexlty rner r;ure over Br, 1n a

natura.l way.

For any f ln Bn,

crl (f) c'(p) Fle
whlch

fl_

D lL (f ) mln 
{

D(p ) a,t L,-

rjL(f) nrn I F(/3 ) --r L.

A basis *(^l covers f e Bn 1ff f can be

e, clrcult over -.:Cl with inputs from the set Xn.

not covered by J} , then CJZ(f), DJL(f) and

are defined to be + C,O . If each f in B,

ry Jf- , then fL is said to be cornclet-g. For
r-.)Bz, \ n, V, flo j are conplcte b.',r:ec.

,) .( r (:)ln

where LrJ ;rre n-tuples of Boolean varlables *i,yi, 0 ( 1 ( n.

WewrlteI<I ifforall i, x1

o< 1, L

Boolean functlons of n argunents. It ir: il'e11-knov;n tha.t

nln I a circult over

computes f I

a clrcult over

computes t )

P1s
which

f1s
which

1s

ed

a over
Ifl
l

conputerd

rf f
F_.L (f )

is cover

example,

a formul

c onputes



Mo ls preclsely the set

whlch are covered by the
(

Ma= ln,v,fio,1J
In all- subsequent co

basis M, we sha]L let Xo

lnputs..

nt Boolean functlons

sle

of clrcults over tho

be the set of posslble

of n argume

lncomplete ba
\

I, O t I t
nslderations

(and not Io)

L,t I'lACHIll-gS :) CtnCUttS. When conslderlng the complexlty

of Boolean functlons, two corarnonly used rnodels of computatlon

are Turlng machines and clrcults. Recently there has been

conslcierable interest in the relatione among complexlty

mea6ure6 for these two nodels, Several results have been

derlved rrhlch show that Turi-ng nachlne conputati-one nay be

efficlently sirnulated by clrcults

Let M be a Turlng machlne acceptlng or reJectlng an

lnput string w e I ort] o within tlne bound T(n). A result

of N. Fippenger and I'1. J. Flscher shows that the conputati-on

of M nay he sfunulated by a Boolean clrcult over the basle

Ba whlch computes 6one f € Bn and whlch has O(T(n)1og T(n))'
gates. Therefore lower bounds on the circult sj-ze of such a

functlon yield comeepondlng Lower bounds on the runnlng time

of the Turlng nachine. Pratt and Stockmeyer (1976),

r All th

(
,

{t

1o6ar1 m6 are taken to base

There are
| ,.1./
ls\ni | \s

2 unlees otherwise

posltlve constants Crn

C. f (n) for all \ 2z

stated.

o' Ioo)0(f(n)) e(n)
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Borodln (Ig?5) show that a nondetermlnlstlc L(n) tape bounded

Turlng nachlne can be slnulated on n blts of input by a

Boolean clrcult of depth ql(n)z) . We now conslder 6olne

consequenceE of these relatlons.

Machlne-based complexlty theory is concerned wlth

relat1on6 among conplexlty measures ln dlfferent models of

conputatlon" As Turlng nachlne complexity 1s closely

related to clrcult conplexlty we can po6e many of the open

probleros concerning nachines ln terms of the slze and depth

of clrcults, For exanple, a conJecture of Cook (1974)

concernlng the relatlve power of tlme and space could be

proved by demonstrating a function fe Bo, where

c- ( f) = o(nk) for some flxed k
D^'

e

and

DR (f) > (1og n)k fo. .nY fixed k'
"2

Llkewlse, the P - NP?* question could be resol';ed by

establlshlng a nonpolynonlal lower bound on CR (f) for sone
"2

f €Bn whose comespondlng language recognition problem ls

1n NP. For exanple, the functlon rvhich j-s true lff there 1s

a cllque of size l"t4-- ln a graph with n nod'e6'

r P(NP) ls the class of languageg recognizable by

(nond.eternlnlstic ) Turlng nachlnes lrithin tj.ne

the length of the 1nPut.
r-1** | 1 | denotee the least integer greater than or

I ; L i J will denote the greatest lnteger less

equal to 1 ,

deternlnlstlc

polynondal ln

equal to

than or
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The relatlonshlp between Turlng machine space and

clrcult depth ls based on a slmulatlon of Bpace bounded

machines. This slmulation rel-ies heavlry on the transltlve
cloeure problem for blnary reratlons on f1n1te sete. An

upper bound of O( (]oe n)k ) on the circult depth of
transitive elosure would lmroediately yleld an upper bound

t-of o(L(n)^) on the circult depth requlred to slnurate

a nondetermlnlstlc L(n) tape bounded Turlng nachlne. Tbls

ralses the followlng

OpeI probLem

D" ( Tc(n)) = o( (los n)2) 
* 

,

where Tc(;) ls the transitive crosure problern for sets of
sLze n. Any nontrivlal lower bound on the depth of
transltj-ve closure over the monotone basis M, would also

be of interest.

* f(n) = o(e(n)) denores the fact that f(n) grows

more slowly than S(n) ; 1.e. lim f(n) 
^n)oo S(n) v.
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2. RELATIONS AMONG I'AASURES

F,ortunatelythevariousneasuresofclrcuitcomplexlty

are not entirely lndependent. In thle chapter vre lnvestlgate

the relationshlps among these measures' We also note the

effect of different blnary bases on the conrplexlty of

Boolean functlone.

2.LGLOBALRELATIONSFoRBn.Inthlssectlonweconsider

clrcults over conplete bases and note a number of relatlonablpe

whLch hold for all Boolean functlons' Two of these are

lmnedlate.

Lenma 2"L

For all

Proo f

The first inequallty follows fron the fact that a fornula

is a resbricted. form of clrcuit. The second fo110ws fron the

observatlon that for any cj-rcult an equivalent forrnula wlth

thesaroedept!canbeconstructed'byrepllcati-ngnodesofthe

clrcultunti}theunltfan.outrestrlctlonissatlsfled.

Furthernore any binary tree wlth d'epth d }ras at r',,st 2d

externai nodee

tr
These lnequalltles are the best possi-ble of thelr tyPe'

Thlscanbeseenbyconsid'erlnganappropriatefunctionfor

the basis ln question. For exarnple, lf ..1|l is the fuII binary

basls B, then we need only consider tbe function f ln Bt

f ln Bo and

cJf)4ry.(rl

a}l complote blnarY bases -n- ,
DrL( f )

(2

whlch takes the value 1 lff al-I 1ts argunents are 1 , 1'e'
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n-L

\iW \ - Ar (xn / = 
'r=) 

*t

It 1s evlclent that for n=2P,
nr(f)

CTr(f) + 1 = Fo(f) - 2 I = n(z

Therefore the above lnequallties cannot be improved for the

baels Br. By chooslng approprlater functions we can show thl.s

to be ,lu" for all complete bases. As a consequence there ls
no nontriviaL lower bcund on deptiL i-n terrns of formula slze

or clrcuit si.ze rhi-ch holds for al.l Boolean functions.

For inequaLltles -i.n the rever'se directions we have no

r;uch r:rrinpl€tr: resultc 
"

t'lotatigtl

W.lrere no arnblgulty can arlse we shall henceforth

refer to the baeiu [**o1 s1mp1y as NAND.(,
Theoren 2.2

For alJ- f in Bn,

Drqaun(f )< k.1o6 rs^(f ) + 0(1)
(.

where k = 2 7oBd2=2.88

and 6 j-e the (unlque) real posltive root of

,2 = z + )- . # ia known as the golden g!!9.
llLet I F' I denote the size of formula F. Accordlng to a
ll

weLl known l-emn'ia by Brent et a1 . (1973, Lemma 2) for any

number 3 {n < It I a cubformula LOR of F can be found,

for e eTz, such ilrat lr,on l7', I n | < I tI ('. rhls

afforde a partltlon of F into three subformulae LrR and A,

where A 1s formula F wlth L OR replaced by a new indeternrlnate a.
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Let LrR and A compute r,(xn), p(xn) and A(Xo,a) respectlvely.
Then the formula

(t(xn) 0 R(xo))wanD A(xn,1).NAND. (L(xn) d n(xo))uapo A(xn,o)
conputes the 6ame functlon as F, Eveny blnary Boolean functl0n
has an associated NAND circuit of depth not more than 2 when
varlables are al'allable aa lnputs ln both complemented and
uncomplemented forn. Thercfore an arrrltrary Boolean formura
can be expre'sed rn the alternatlve form of ...trig.1 where each
gate computes the r,IAl'tD function and ertch Zr r 1_< 1 .< B, conputee
elther L(Xn), R(Xn) or one of thelr complemente.

a' o)

Fig.1 An alternatlve NAND fornula
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Nottco that the formula slze of both A(Xn,1), A(Xn,O) over the
ll

basle B, ie not more than I a l. Also note that the formula

slze 6g r-(Xrr) over this basls ls equal to the formula slze of .

1ts corapJ-enent and that thl-s ls 'ot more ti."n ll l. s1ml1ar1y

for R{xn).
6t)

L..t cl(fi) : rrraX {on,^n,,.(f ) lno (f)< CX I
\ ilJtlrv | "2 I

I,e44e- i,J
Let F,J * Fn * -!", T?. = 'j = 2, and

h+f

'k+4 - ^k+Z 'k

fur k ')r-r" Tlien ,iirir) { k'

(2.1)

Proo_{

.{s an ltiouct,lve hypothesi-s suppooe that

a(ro) ( 0n d(rr ) < 1, .6.. ' d(rx+J)( x+3

(By inspec.i,j-on, this ls true for k = o). lt/e shall show that

d(rx+r+) { ti+tx.

rl
Let F be any fornula over fhe basls B, where I f | = "k*4'

Using tlie lerona of Brent ef a1, f1nd. L and R (ioined by O)

wlth o = fn. Reslructure the fornula ;.ccordlng to the

expa::elon d.escribed a"bove. Since t = tk we have

::il,lRl<iti(r*.
By the inductivr hypotl:esis, the functj-on" 1,(Xo) r n(Xn) and

thelr complenents can be computed by NAND clrcuits w1th1n

dopth k. Arso, l16o i),tk anl so l^ l< "k*4 - rk = rk+''

Agaln, by the lnductlve hypothesis A(Xn,1), A(Xn'0) have

depth at most k+2 ol'er the basls NAND and the result followe
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by lnductlon on k
tr

We are now readY to glve

Proof of Theorer-n 2.2

From the linear recurrence relatlcn (2.1) we have for

all n )O,

-a'2n-'2n+1-*n+L

where ao le the ,rth ou*ber ln the Flbonaccl sequence

L r2 13,5,8,l.3,21 r34'55' . . . . .

glven by the buundar"y cond'ltiona aa = 1, 
^Z = 2 and tbe

recurrence rel-at:lon ** = an-l + an-2 (n7.3).

An ex]-rli,tlt" .+lerrmr.lla for ao aa a function of n ie now

given wl-thaiii P.l"i:<,rf ".n+1 n+}
a =.P "ys forn=J,,2r3r4r..,.

n
d -/3

where i ',, |(.t+ ./ il , f = L(f- J5 ) are roots of the equatlcn

ZZ * Z + 1,

Let k )rO be such thr-t rrn{ n.( *zk*z

Then nlzrro + 1) akot and uslug the explicit forroula given

above we obtaln

'k '' /a n for sone conetant cn \< u',^

g1vlng

k(loe6(C.n1.

Frorn Lemma 2"J,

d(n)(d(.er*a)(at+a

ao
a(n)(2losrn + 0(1)

and the result followe
u



t,

BeqetFs

Whe :r t}:e cc,ngt'::ttc'Ll-on descri'bed above ls used to restructure

forrnuiec., o\i€ir trre r:est'rl.cted basis NAND 1t appears to be

Lnef'lJ-cle:ri.i-ram&nywill/$.liowcvlr,de's;lteconslderablestudy

we have Irel; "yet fi'ut"l1ritje'i. ati itnproved strategy for thls speclal

ca!je .. Th'j-s rpie;e s L!lti ioi J r:wlng

0i,en FrDb.l " 
r.

Tinl.:..,Jv..r 
.i-1"r". :rqi'fi.r1enL iv2"88 rn thegJ-obal relatlon fOr

..a :

'i L t'j, 
"

-NAI;,i f ; \., "":ci :;.,AND(f ) + o(1)

It 6e{i:i!;:1.j1',?iY |,irlI t!t.:ic c,leffl'.:lent can be lnproved although

Tbesr":r, tr." l+ :.:1),rjii;. i. r',,:t:idl f ;rictioirs f ln B' for whlcb
r--ln 1\ . .i; :r.,.j .; ^^ ii) = 2 | 1og n I rn vlew of thle

rNAtVL.^'i r'. ;,AI:.;

resil.l t in'': c**f l"'Liit,n.L iilrtnot be red'uced to less than 2'

AIr{]f:68ntj.a]iycj-miiartechntquetothatofTheoren2.2

cau be useci "Lo sit'.,rr that, fol all- f 1n Bn,

DR (;f).-(k.3-cg rn^(f) + o(1)
u.. "2

ri.

whe.r* k = 7" l+65 
"

irg t! .i:i$, , ,)

Ij;: * ri, "- i ii ' : .1 Ls the set of mlxed-monotonc or unate

blna.r,y13oo-1.*anft:;t,:ti..rlns-Ttrirsunatebaslslsofconsiderable

interest $anc* j.1- -Le l'"-!'iowll that for all f ln Bor

-T-*r-
F,, (ri = i i (t"i

U^
I
r-T

where l-T(r) rtt ihe r'n'j'tl'1-u'iln number of contacts ln any

TT .. ci.rctilL ts*i:iei;*parallel contact circuit ) whlch reallses f .
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Preparata and Muller Q976) prove that for all Boolean

functlons f € Brrr

D,, (f ) < 1.81 log Fr,-(f ) + o(I)uz-vz
These reeulte ralse the problem o1' proving lower bounds

on the best possj-ble coefflclent. vie have already noted that

there ls a lower bouncl af 2 for the problem of restructurlng

arbitrary NAND formulae 60 as to rnlnlnize depth. For the

bases Brr u, no such result is known and we have only the

trivlal lower bound 9f 1. We have already noted that there

le no nontrivlal Lower bound on depth i-n terms of formula sLze

whi-ch holds for aL1 Soolean functions. Therefore 1n order to

get nontrlvial lovre.* boullds on coefficient size we should

tackle the following questlon about speciflc functloue:

Open problem

Establish a lOwer bound, on clepth ovef B2r Ua whlch le

not derlvable frorn a correspon,ling bot'uid On formula siZe.
n

we thus have sat-rsfactory, althourih not completer an6werS

to questlons about thi relations between clrcuit depth and

fOrnula slze over var:ous bases. l'iuch less is known abOut

the relationship betw,:en circuit size and depth' Indeedt

only recently has it been established that for all Boolean

fUnctlone, clrcult size 1s nonlinear irl depth. Paterson and

Valiant (19?6) prove that for all f ln Bn'

orr( t) = o,.r. t) f rcs cBz( r) )

Notlng that for al-I comp3-ete bi-nary bases fL'
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D,'(f) ), log r,'(f), we can obtaln frorn the above resu]-t

a relation between the clrcult size and fornula size of all

Boolean functlons"

Illnally, we conslder the oxpresslve power of dlfferent

baees wlth respect to solne comple;<1ty measure. TwO results

are presented whj.ch indicate the maximum dlsparity between

NAND, 82 *.r,.t. depth and uar Ba w.r.t. formula slze. In

6ubsequent sections of thls chapter we pur6ue further 60ll€

probleme concerned. with the relatlve power of bases.

l,p-gma-arh.

For al-l f 1n Bo r

DtorD(f ) ( 2.D82(f )

when io = ("o, ;r, . ". rxn-r,io, f'., t " ' r;o-1'0, r) rs

the set of Posslble lnPuts.

Proof

consj-der any clrcult of depth D which computes f

and which has gatee dnavm fron the basis Bt'

By aPPtYlng the ldentitles:

(*oAxr) 5(x*NAND xr. NAND. xo NAND xt)

(*o V x, ) = 
(xoNAND xo ' NAND. x, NAI'ln xt )

(*o @ x, ) E (xol{AND it. NAND. io naNo x, )

and complenentlng eubformul-ae aa necesEary we obtaln a NAND

clrcult of depth 2D whlch cornputes f.
tr

sone imnedlate conBequence6 of thls result now follow.
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Corollary 2.5

For all t ln Brrr

ou.(rl ( 2.D82(f)

DtrAl{o(f ) < a.nor(r)

Proof

NAND .UZ c BZ

tr
Subsequent results w1ll show that ln eacb case the coefflclent

of 2 1s best possible for any such relation which holds for

all Boolean functlone. When the set of possible lnputs ls

restrlcted to Xo each of these upper bounds neel be lncreased

by only 1. For example, we have

Dll.ulJf)<2.Dnr(r) + r

for all Boolean functlons f, when Xn ls the allowabLe set of

lnputs. To 6ee that thls upper bound ls best possible of

those which hold for all t7r2 we note that the binary functions

O, 0 both requlre depth 1 over B, and deptb J over NAND when

Xo le the set of lnputs.

Pratt (L975) considers the effect of basis on fornula

size and establishes that for all t 1n Bo,

F,, (f) =o((ro (f))k)
"2 "2

wbere k=1o8r10=2'095.

2.2 EqUIVALENT BASES.

Deflnltlon

Two blnary basen QI, lL Z are equlvalent wlth respect
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to delth iff they both covr-'r the 6arue tiubset; S of functiorls

1n Bn an<i for all f in F" Di(f) ' D,r(f) are separated
) --2

by at rnost an adoitive corrgtant. L:i-lteivi,se, tr','c bj-nary bases

-fI",, Jl-, are equlvaLer* j::I.!. g:r rjggL! s13c (forr',uIa $.8)
1.

lff tirey cover the sailrc r,et S of n-argumcttt Doolean futtctlone

andforeach f in S, C^(f), C^(f) (|^(f)'F',(f) )are' rLI '"2 '-] -"2

eeparated by at most a constant iactor. oLrtl vrj-Il denote

the gc,[plexlty, clase of 'l'lnary bases vr]rj.ch are equivalent to -Cl

w. r. t. depth. sfunilarly f or C [r{ , t [-] .

I-t is knovrn that al-1. 1;a1rs oi complete blna'ry bases

fl,, ..1(-L . are equivalent. i.'ith respect to circuit size since
r'4

each conplete basj-e ia cat, be rep.l-acei wifh another co:npleto

set of basic functione i , by bi.t'l-cl:i-t.:I each eler'ient, of Jl,

lrith riome fixed rrunber of eLencents fron flr.

set of

" i-o' L"2
n these

classes.

Determlnlng the conllexity classes of conplete binary

bases w.r.t. depth turns out to be considerably ncre dlf fic:-tlt'

In defini-ng functional cornpleteness we noted that 82r

ft is not difficulb

bases can be Pa::bltloned

next sectiotr we note *"he

complete blnary

l. rnthe
I

J

tvro conplexiiy

to see that the
r-1irito FIU^landt- ar

disparity bettr;ee

(' 
--)i /\ V fi^ | *re tvro exanplee of con:p1ete bases while

L ) - r Q)

Mz=l-n,t,ff',frr'0,1 1s

definltion of cornpleteness irnpl1-

c onstant f uac tions f (Xr, ) '. f ;1;1r;

an lnccnplete basls. Tbe

s tha'u, ln particular, the

f(xn) = 0 must be reallzabl e
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rrlth lnputs fron the set Xo. If thls requirenent ls renoved

and lt can be assuned that the constanLs O and 1 are available

as lnputs where necessaryr then the bacls 1s sald to be weak

complete. Note that a complete basls ie weak complete, but

a6 we shall see the converse ls not necessarily true.

An.example of a weak complete basj-s 1s provided by the

well-known complenent-free rlng 6uln expanslon due to

Zhesalk1n (L927)
/-h,t(xn) = tD "il *jtn*J2^. .....AX3k

where a, 1s O or l, O<1< 2o - 1, O(k.,( n, Jr (
the set of varlables (*ir, *Jz, ..., *;r.) denotes

of k varlabl-es from X' and@aenotes the extended

operatlon. Thls expanslon lmplies that {^ , O)
complete basls but not a complete basls slnce the

(2.2)

Ji*] *d
a subset

6un (nodulo 2)

1s a weak

constant

function f(Xn) = 1 cannot be realised using these operatlons.

Another binary basls which is weak conplete but not complete
r'\te{+ l.\.,

post (1941) has established necessary and sufficlent

cond,itlons for a basls to be complete and Glushkov (1955)

has used thls result to formulate a simllar criterlon for weak

completene6g. We now glve, wlthout proof, an abbrevlated

account of theee reeults. Some of the propertles of baslc

functlons whlch sha1l be used are:

Property 1 (Monotonlclty)

M, 1s preclselY the set of monotone functlons ln 82.
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Property 2 (Llnearlty)

A functlon f(XZ) 1n Ba 1s saj-d to be llnear lf lts

canonlcal expanslon 61ven by (2.2) has the form

f(XA)=&o@.lxo Oaaxl

where "1 
(1 = Or1 and 2) 1s O or 1.

Property f (selt-aualltY)

A functlon f(XZ) is said to be self-dual 1f complenentlng

1te argunents results 1n the conplenentary functlon 1.e.

f (xz) = ? tio, fr)

ProPerty ! (zero Preservation)

A function f(X-) ls said to be a function preservlng

zero lf
f(oro) = o

Property ! (One preservation)

A functlon f(x-) ls ';a1d to be a function FrestrIilE

999.lf
f (I,1) = I
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These propertles of functj,one 1n B, are summarlzed ln the

followlng table:

FUNCTION 1 2

Tr"

11,

NAND

NOR

<*

Classiflcatlon of functlons in Ba

T1"

-L

0

o

0

(-

0
-

I0o0

o

Table 2
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In thle table each functlon occupj-es a row and lf it hae

property 1, I ls entered in column i of the row a66oclated

wltb the functlon; otherwise the entry ls 0.

Theorem (Post (1941) )

A basls is complete if and only lf for all 1 (1( r.< 5;

lt contalns at least one function which does not have

property 1.

n
Theoren (Glushkov (1955 ) )

A baels 1s weak complete 1f and only lf 1t contains at

least one nonmonotone functiOn and at least one nOnllnear

func t1on.
n

These results establish computable crlterla for

determlnlng completeness and weak completenesE. An lmmedlate

conaequence of the former result 1o that the only blnary

functlons whlch form comllete bar;es on thelr own are

NAND , NOR. ThlS Can be checked by consulting Table 2.

Every nonmonotone functlon in Ba satlsfles at most one

of propertles J, 4 and 5'

Proof

Innediate from definitions of the propertles. Can be

verlfled by inspectlon of Table 2.

n



24

Deflnltlon

A (weak) conplete basis 1e mlnlmal lf no proper subset

of lt forms a (weak) complete basls.

The result of Glushkov (L966) lmplies that a nlnfunal

weak complete basis can have at nost two functlons. An

r . _)
example of such a basls j-s provided by tA, @)' By

comblning Postrs (1941) theorem and Leroma 2.6 we can shov

that a nlnlnal complete basis has at mor;t J functlons.

There are J2 mlnlna] cornplete basee which we novt tabulate.
f'l
t NAND l
'llNoR ,

I o ],{-
{r,} ,[=
{r'} , {n
{n),t^
{-i , {=
{-Jvt:>
{=}u{n

*)

.)

?
€

-)?J

ol<-
+l?
oj
@]

-r-)+l? I
-,-1-> l<- I

t^lr{[o.=] l{,,oJ

t" J " {{ o,=\ l{,,o }

where frl /-l-)
, rut-lF denotes t

{t,=},{r,<--J andsoon.
n1n1nal complete bases of slze 1,

and slx of sLze J.

{*,=-}}

lr,=])
be tvro basee

Thus, there

twenty-four of

are two

size 2
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Theoren 2.7

Every n-inlmal conplete basls is 1n at least one

following eight complexlty classes:

D I ormro]

D [[ -,oJ]
D t{ n ,fr.1]
D [ -- ,;I
D[-r,@]]
D f{n,o, t }]
o [tn,=, o ]1
D [n, o ,= ]l

To establlsh thls result, a nunber of simple facts w1ll

be needed. rrTrlvlalrr proofs are onitted and only the nece66ary

result ls glven.

De flnitlon

of the

The $el ?tXr) of sone function f (X2) in t, is deflned

uy ?(xr) = T(;o,ir) *ttere T 1s the comprement of f. The duar

of a proJectlon functlon (e.e. T o, q ) ts ltself.

rf JI, , -n.----1 ' --2
functlon ln fl,

rDIJA- L--l

For exanple,

and by replacement of each

obtaln nr, then

are conplete bases

*1th 1ts dual we can

I = o[n--l .
J L 1)

0a.)
[+,0] and {*-, -)-J are ln the 6ane
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complexity class $'. r. t.
of NOR and so NAND €. D

Fact 2.o

SimllarJ.y, NAI'ID is the clualdepth"

['ool

If replacement of some lmpllcati_on function 1n _fL, by

frr, thenthe

with

are

are

;]

t.
('

(
\

cornlrlenent of its dual yiej.de

pl*:') I = of--rrr]L--f J -L*.-z_

r.:tr
For exarople, t; ,oj anc

respect to depth. Likewise,

cqulvalent.

)
,0J

/t

equivalent
(' 

-.)and l<- ,-r!

fact 2.10

Replacement of one

(1.e. fio or ff a) by

w.r. t. depth.
fl

coruplemented projection function

another yields an equivalent basls

Facts 2.p, 2.10 apply to all binary bases vhereas

Fact 2.8 does not apply to some incomplete bases. I'or example,

A iu the dual or V uut { n} { ,liVllU J / - r._t J_

Proof of Theor:em 2.7

reuains to ehow that

ft is evldent that

n be simulated by a

. In viev of the

a .qlmllar translation

Notlng Fac ts 2. B, 2.9 anci 2. 10, it
l-r \l -r( r-?- ) ro[_l-+,oJj = olt -",i-i'"JJ

any clrcuit of depth Z over tu ,oj ca

clrcult of drpth Z +O(1) over [ -, , fi 
"lldentlty ll o(Xr) = --; (xo,O), iliere is

Note
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ln the opposlte dlrectLon.
il

Thls result establlshes an upper bound of 8 on the nunber

of conplexlty classes of nlnlrna1 complete bases w.r.t. depth.

In the next eectlon we prove a correspondlng lower bound of 4

and conelder the dlsparlty between non-equlvalent basee. We

have not consldered the problen of determinlng the number of

complexity classes of complete bases (mlnlna1 and non-nlnlnal)

s.r.t. depth. However, it is conceivable that this nunber w111

be substantlally larger than our upper bound of B for n1nlnal

bases,

We have alreadl mentioned two important non-ru1n1nal

basesr B, and Ur. Sone oimple propositions about
r_ --r f _ 1o Lt. J ' D LU'J are now siven.

De flnitlon

Every binary Boolean function whlch

arguments 1s one of the following three

depends on both

types:

A - type

V - tvpe

0 - tvpe

where a stamed argunent

1ts complenent.

T
x

o
n*i

*oV*r
t*o@ *1

represents ei-ther the argunent or

Proposltlon 2.11

Every complete blnary basls which contalns at leaet one
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functlon from each of the above three types, is equlvalent

to B, w.r.t. depth,

Proof

For such a basls J1-, any circuit over B, can be simulated

wlth a c-lrcult over fL Uy conplementing subforrnulae as necessary.

Thls sinulation need not lncrease the clrcuit depth by nore than

an additlve constant.

Any blnary basls 1s a subset of BZ and so sinulatlon Ln

the opposlte dlrection ls trlvial.
n

Propositlon 2.12

Every conplete blnary basls whj-ch contalns at least one

A -type and one V -typ" functlon, but no @ -type functlon,

ls equivalent to U, w,r.t. depth.

Proof

Ae 1n Prop.2.11, notlng the fact that any blnary basls

rlth no (B -type function ls a subset of Ut.

2.3 ORDERIIIGS 0N COMPLETE BASES. We bave already remarked

that all conplete bases are equivalent with respect to clrcult

slze and have noted that the set of complete bases can be

partitioned lnto r Iu" I and F [u"l . Pratt (W?5) hasl- 4J L- ZJ

establlshed that the naximum disparlty between these classes

n
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1s at moet 0(n
l-

F,,(f) = 0(n^).
"z

disparity is at

Kr'-) where k-Lo6,10, i.e. 1f

The follow1nr'."uurt showe

least order n2.

FR(f) = n then
"2

that thls maxlnun

Theorem 2.11 (Khrapchenko (1971))

n-l -t4 
,90"t) z "'

4\"'

The foIlow1ng theoren provldes a functlonal characterization

of shallow clrcults over the (non-nlnimal) complete basls
f1
INAND ra J . A corollary of thls result w111 be comblned

with Theorems 2,I3 and 4.4 in order to prove a lower bound

of 4 on the nunber of complexity classes of minimal conplete

bases w.F.t. depth.

Theorem 2.14

For all k>0, 1et an be the kth Fibonaccl nunber and

and f be 6one functlon with circult depth not more than k

over the basls {Nauur+} . Then f can be expressed as

V
j

where each ,! 1e sone input, and for all i,lails "U .

Furthermore, the conplernent of f can be expressed

thls forn, rvhere each conjunctlon of inputs is of length

more than 
"k*1.

Proof

in

not

By inductlon on k. As the basls of our inductlon, we



to

note that the theoren is true for k=1. For k>r, assume

it is true for k=n and consider those functlons f with
clrcult depth not ruore than n+r over the basls {unl.ror+}.
Any such f can be expressed elther aE Eth or a6 g-h,
where grh both have clrcuits of ciepth n over the basls
(t

tNANDT-) 

' 
. An appllcation of the lnductlve hypothesls

ehows that any such f can be expressed as

\tn
\/ ,/ \zcV leO. 4

J"J
wh€re each conjunctlon of lnputs has length at most
*-__(_ - .)
max tan'an+Ij = "n*I.

simllarIy, the complement of f may be expressed as

gAE or aa g^h. rn th16 ca6e the inductive hypothesls

1npl1es that T can be represented. in the above form, wlth
conJunctlons of inputs whose length is rrot ncore than

/'\nax 
{ an*an*1 r2trl = 4n+2.

Therefore, the theoren is true for k-n+r- and thus
for A1I k >O.

D
' Corollar.y Z.I5

n-I
Df*opn--tt( lx.; ) : k.log n - o(I)trrj|rru,---.zJ i=O f

where k = rolr2 = r.44 and n is the golden ratlo.
Proof

rnnedlate fron the expI1c1t fornula for "o glven
1n the proof of Theorem 2.2

n
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An imnediate consequence of this result is the followlng

lower bound for the mlnimal complete basls [-rOJ .

Corollary 2.15
a-I

D{-r,oJ, A*t ) ) rosr2.1og n - o(1)
n

It should be noted that the function cor'r.l 
(n) 

= X*.
1=O -

requlree only linear formula slze over the bael" {-+rO} .)

Therefore, Corollarles 2.11 and ?.16 provlde examples of

lower bounds on circuit depth which could not be deri-ved

from correspondlng bounds on formula size.

We now conblne a number of results 1n order to prove

Theorem 2.17

There 1s a lower bound of 4 on the number of dlstlnct

complexlty clasees of m1nlmal cornl-rlete bases w.r.t. depth.

Proof

Note flrstly that the lower bound of Corollary 2.15 1e

achlevable to withln an additive constant. Thls preclse

result on the depth of cONJ(n) is now cornblned wlth other

results for'thls funct:.on and for sut'i(u) = 6*' , and, these
1=O -

are sumnarlzed ln the following table :

Minimal Complete Basis cor,ir(o) suM(n )

{Naro } 21ogn 21ogn

{--+, o} 1.44 log n d)2 log n

{n , roi log n d)2 log n

/-l

t-+,+ J
1og n 21ogn

{- ,t} d<1.4/r log n log n

[n,o, t] 1o6 n 1og n

{,..r=-, o} log n 1og n

[^, n , =]
log n 1o6 n
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where each entry denotes the depth (d) of the functlon

over the comespondlng nlnlnal complete bas1s. preclse

results are stated where these are known, otherwise a lower

or upper bound ls glven. Addltlve constants are lgnored

throughout. some of these results are obtalned fron lower

bounds In Z.LJ, 2,I5 and 11.11.

Two base" nt, -n-2 are lnequlvalent lv.r.t. depth if
there is sone functlon f such that D_rr, (f) and D-o, (f)
dlffer by nore than an addltive constant. The above table

shows that both ufiranol ano o[- { -,oJl are rnequlvalentL J L[ I J
to all other complexl.ty classes and inequlvalent to each other.

This yleIds a lower bound of 3. Finally we note that over
( ;<-.'r (' -){n, fi" I ana l+ ,+ t, the depth or su}.{(n) lu at t"east

2 log n - O(1) while over any basls whlch contalns 0 or 3

the depth 1e at most log n + 0(I). Therefore, bothr -\in ,f,, l "lraf 
-+, =l are lnequivalent to any of the bases

{-,@\, [i,n,t1 , [n, =,oJ and[n,0 ,4(,r\l\-)
and we have a lower bound of 4.

r--lfl

We now conslder the disparlty among non-equivaknt

conplete bases and lnvestigate a natural ordering on the

conplexlty classes of comprete blnary bases r'1th reepect to

depth.
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Let D = tt Ln_J i where .-fL ran6e6 over a1I complete

blnary bases. We deflne a blnary relatlon

a6 fo]Iows.

For each par.r o[-rl , otrrr] ln D, tF.J< t[tJ
1f for all f ln Bn, 

%(f) < \,t) 
+ 0(1).

11rE.g. D Lu? J ( o LurJ. To Bee thls we rnerelv note that

UZ-BZ. Theorem Z.I3 sbows that DU^(SUtt(n))>r 1og n - O(1)
"z

and so the two cornplexlty classes are not equivalent. Another
r( -lr r -l

exanple le oLt-t , t /J <o LurJ . However in thls case the

two complexity claeses are identlcaL (see Propositlon z.LZ).

As a complexity class can be represented 1n a number of dlstlnct
yays, lt w111 be convenient to have the folIowlng

53

De flnltlon

Deflnltlon

De finltlon

A partlal order on a set z j-s a binary relatlon R such

that for each xry and z in Zt

The relatlon ( ot the set of conplete binar;' bases 1s

deflned as fo1Iows. If DfJ-. rl[ -J \ t- ') r

equlvalent to fL, w.r.t. deptb, then 0, ( 0,
E.g. NAIID( U, as NAND cUa and Theoren 11.11 shows that

/-\ f -l
Du.nuo(CONJt"') = 2lloe n l.
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l. x R x ls true (R ls reflexlve)

2. x R y and y R z 1mply x R z (n 1s transltlve) and

t. x R y and y R x lmp1y x = J (R is antisynmetrlc).

The rel-atlon ( on lntegers and the lnc1uslon relatlon
( g ) on sets are two examples of partlal orders. However,

the relatlon ( oo the set of lnte5ers 1s not a partlal order.

De flnl-tlon

Ron

xR

A llnear (or

Z such that

y or y R x.

total ) order on

for every pair of

a set Z Ls a partlal order

elernents xry 1n Z either

induce6 an order

j.nfornatrly view
-l 1 ^[- r''' 

_l

J \ "L--z)
of

1n

The relatlon ( o. the set D

conplexlty classes D. We can

the followlng way. If O[-n-r1

on the set

thls orderlng

then the

/'[-,1
there 1s some

ff expresslve powerft of tL, ls greater than or equal to that of

-(L., y. r. t . depth.I

Lenma 2.18

The relatlon ( on tho set D ls a partial order,

Proof

The reflexlve and trt,nsitlve propertles are easlly

ver1f1ed.
r-lrf oLarJ

re tray aaeurue that

D^ (f)'-l
for any fixed constant

D", (f) + c
2

C. Thls inplles that tbe relatlon

then without lose of 6enerallty
functlon f ln B' such that
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DrL-(f) + 0(r)

1s false and consequently Dl-Jtr l < olll.,l ls farse.r_ -.) \. L rJ
This establlshes that ( on the s.t D 1s an antisymmetrlc

relatltrn and proves the lcmr;ra.

Conl-ecture

The set D 1s not totally ordered by

The partlal oraer ( on the subset

rauges over all nlnlnal conplete base6,

deplcted by the followlng diagran:

the relatlon
n

( - -\{olfL I I where ILI r- ))
may be :onvenlently

A"[{n,t,=]l o[{*, r}][t- ' =]]
t)

,oJ]o[[-o[nuo]

//
tKA,fr.il

where two classee r [* I , o F t are Jolned by a
broken tlne lf D[- r]
fLt<n=. E.g. the diasran shows rhat {n,Ft}([A,Or=]
and t[t n, fr"]] < rli -, =l]. rhe risure ls not a
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be equlvalent,

and

alldity of the

given prevlously

nother.
r( .)-l

and D[{uuo,--ri1)

v
-t

rJ
v

ts

d

1j

v

1)

o

h

u

h

2

6l

=ll
T.

es'

s

11

reI

is
[-r
L-

2l

66i

,

t.

a6

D

.r-Itr'
L

Hasse dlagram slnce 6one palrs of cla

E.g. 1t ls not known whether o [{ nLL"
r( .--11

D I I -r' t i I are equlvarent or no
LT ) J

order deplcted 1s easlly verlfied fro

and fron trivial slmulatlons of one b

Extendlng thie flgure to lnclude

we obtaln:

may

'l
o )-
he

ult

']l

fron prevlous

relaiion ( oo

and so o.9..

)l

J,.]l

-/././

L[n,0, =)]

PD+tfn,o,

oll^,

and agaln the order deplcted ls easlly verifled

results and elnple slmulatlons. Note that the

the set of complete binary bases ls transitive

NAND < B^.
I

we now conslder tbe naxlnum dlsparity between 6one non-

equlvalent complexltY classes.

L{,t,

ftJ



Lenna 2.19

For each flt

where nt /
i ) For all

t7

( ( -l)in fxano,{ + ,n | }
n* we have

f 1n Bn,

{t-,=},'J

Dn (f)< Z,Dst_(f)+o(1)
2

sn4 _CL, ln

by Propositlon 2.I2,

, 2.I3 and 11.11.

and

ii) There 1s sone in B such thatn

(f ) - o(1)

{-r ,=}, o[u.l
from results 2./1, 2,5

Comment

Thls result establlshes preclse bounds on the naxlmun

dleparity between any pal-r of bases fron Brr U, and NAND.

It also raisos the questlon of how disparate are any two

conplexlty classes ot^ ,l , t [- r] when

", 
I-n I I ol--tf-^] . 'ta 1s not dlfflcult to see that'Ll-rJ \ L .)

this questlon 1s essentially concerned with the naxlnun

dlsparlty betweeo 82 and any mininal complete bas1s.

Taklng lnto account the partlal order on complexlty classes

deplcted above, the problem then reduces to a conslderatlon

Dnr(f) > ,.rn'.

Proof

Notlng that

the lemna follows
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a bases [n ,fi'.](-)
t ) t o I and NAND. rt .eerns ririery that this naxlmum

dlsparlty 1s greater than the naximurn disparity between

B, and NAND which wae deterrnlnc<i |reclcoly in l,emma 2.19.
However, at present thls le an open problem,

2.4 RxtATrONs FOR M0N0T0NE FttNCTrONs. Let X. be the set of
possi-ble inputs. The result of preparata and Muller (rg?G)

establlshes that for all monotone functions f 1n Mn,

DM-(f) < 1.81 log Fr^(f) + o(1)"2\"2
However, as 1n the case of arbltrary Boolean functlons, much

less ls known about the relatlonship between circuit slze and

depth. For rnonotone clrcults the technique of paterson and

Valiant (L976) can be used wlth only a minor modiflcation.
The technlque employs the ldentlty

to produce an alternatlve clrcult for sone f 1n Bn, whero

g ls an n-tupIe of Boolean varues and J^ r" a conjunction-9
of functions associated wlth the values of g. rn the ca6e

of nonotone clrcults we choose J^ to be a conjunctlon ofI
those functlons aesoclated wlth the value I in c. lJflth thls

\/
\ /af = \ / d. n f.

VN4

L
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nodlflcatlon the technlque y1eIde monotone clrcults with deptb

not greater than those obtalned by the Seneral method. Thus

we have the fo11owln6 relation for all naonotone functlons f

ln M'r

DM (f) = o( cM (f) / roe cr.(f) )
"2 "2 "2

A relatlon between the nonotone circui-t size and monotone

formula slze of all f j.n I'1r. can be obtained fron this result

by noting that DM (f) Trtog FM(f ) .'22

An i.nterestlng questlon is whether monotone functiona can

be reallzed more eco:.omlca11y 1f non-monotone basls functlons

are used. The present state of our knowledge about the effect

of not uslng negatlons can best be appreclated by conelderlng

the followlng

Open problen

Denonstrate some f 1n Mn such that,

(i ) cTr( f) = o (cr,( f) )"z '2
(11) Frr(f) = o(Fr,(f))

"2 ^'2

or

(rrr) (DN{(f) - Dil(r)) --+ oo as n 1e.
"2 "2

Several such results have been establlshed for far,rllles

of Boolean functions. For example, Paterson (1975 ) shows

that any conputatlon of the product of two n x n Boolean
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matrlces by a clrcult over the basi" { n , VJ requiree at

least nJ A -gates .nd n] - n2 V-gates. In contrast to

thle lower bound, J.t J-s known that

o(rrro8 7 (rog nrl + € ) for any €

is an upper bound on the clrcult sLze of n x n x n Boolean

matrlx product over any complete binary basls'
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,. BOUNDS FOR ''AI,MOST ALL'I FUNCTIONS

Conventlon

A Boolean functlon f 1s expllcltly deflned if and only

lf the truth-table of f can be generated by a multltape

Turlng machlne ln tlne polynornial in the length of the truth-

tabIe.

For example, the function a66oclated wlth the cllque

problem is expllcitly defined. And 1n fact, most famlllar

Boolean functlons have this property. However, desplte

conslderable effort no one hae yet establj.shed a strong

lower bound on the complexity of any particular functlon

whlch ls expllcitly defined. To date, only lower bounds

whlch are llnear ln n, wbere n is the slze of lnput, have

been proved for clrcuit g'Lze, Llkewise, oniy lower bounds

of the form C.1og n where C is some constant have been

established on the clrcult depth of expllcitly ,[eflned

func tlons.

These apparently poor Lower bounds raise the questlon

of whether there are Boolealr functlons whose complexlty la

hlgh. In thls cbapter w" consider the naxlmum complexlty

of any Boolean functlon and note that thls ls not nuch

hlgher than the lnherent coruplexlty of ralmost allr Boolean

functlons. Similar probleme for the subset of nonotone

functions are a].eo consldered.
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t.L SCI{E}ES. Several constructi-ons to be described ln thle

chapter have the property of be1n6 runlforrnrl The sarne dlrected

graph wlth the 6arne assignment of arguments to lnputs 1e used.

for aJ.I the functlon6 concerned, the nece66ary varlation belng

only in the aseignment of base functions to the gates. We

formalls.e thls notlon of unlformlty 1n our definitlon of
t circult schemel .

De flnlti.on

A circuit scherne (formula scheme) 1s a

in whlch the gates are left unspeclfi-ed 1.e.

basls functions assoclated with the gates.

posslble lnputs to schenes.

circuit ( fornula)

there are no

Xn ls the set of

Let CrrE Bn and b g BA.

over basls b 1f for each f

of functlons fron b to the

resultlng clrcult coroputes

scheme whlch cover6 B, over

*l *z

A circult schene f covers C'

1n C_, there is an asslgnmentn'
gates ot /3 such that the/

f. Figure 2 shows a formula

the basls Br.

utF1g. 2. A schene for
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Thls follows from the exPan

f(X]) = (xo A f, (x1'

where fo (xrrxr) = f(Orxtrx

fr(xr'xt) = f(1,xt'x,

verlfled that thls ls the u

obvlous symmetries) wlth fe

,3, Its depth of J is the

Our interest ln thls s

stems fron the fact that we

scheme conplexity using sim

We nust dlstlngulsh th

clrcults and for schenes.

for clrcults but no slngle

for 6chemes. Thle dlfficul

projectlon functlon 'e.g. {
schenes o

sl-on

xr)) 0 fo (x'xa)

2) and

) @ rto,x'xr). rt

nlque formul-a echene

wer than flve gates

refore optlmal,

peclalized model of

can obtain lower bo

ple counting argumen

e notlons of complet

For example, NAND 1s

element basls can be

ty can be resolved b

*-)ll o, NAIID J ls con

has been

( to withln

that covers

c onputatlon

unds on

tB.

r bases for

conplete

c onple te

y addlng a

plete for

t.2 IIAXIMAL BOUNDS FOR Bn. In thls eectlon we conBlder

the maximun complexlty of any Boolean functlon and note the

conplexlty of ralmost allt functlons.

If we write c/s) tor max { c-r.{r)

slmllarly for DJs) and L(s) then we

classical results for all conplete blnary

Theoren (Lupanov (1958), Lupanov (l-962))

cfBo) = oQn/n)

tL(Bn) = o(anTros n)
tl

IIt€
I

have

bases

s] and

the followlng

J'L,
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Note The constructlons which establlsh these upper bounde

are not unlform for all Boolean functions (i.e. they are not
schenes). rn fact, a s1mp1e countln8 argument ylelds a lower

bound of znQ on the number of gates i-n any circult echene

whlch covere B' over the basls Bz. we nrerely note that any

clrcult scheme with q 6ates can cover ar set of at nost

lu, In dlfferent functlons. As I t- | = z2or &try scherne of| 4t I nl
sLze q whlch covers B. nust satlsry 15q > zzn , e )7 zrt-z,

A counting argunent due to Shannon (1949) can be used to
ehow that the fraction of functions in B' vrith circult slze
not at least proportional to Zn/n, tends to O with

lncreaelng n. Llkewise, a counting argument of Riordan and

shannon (L942) can be used to show that ralnost a1lr BooLean

functlons requlre fornurae of slze at least proportional to
zn/rog n. Each of these }ower bounds holds over any conprete
blnary basis. An i-nnedlate con.equence of the lower bound

on formula slze is that Dg^(Bn) 7, n-Io,61og n _ O(1). Thls

lower bound also holds ror f"t*ost aIlr functiorrs 1n Brrr 1.€.
there 1s a constant C such that,

lr I r IItrer,, I oujf)<n-loslosn-ril = o(lnof )

Theorem z.l

Any clrcult schene whlch covers B' over any basls

5 ! 82 has depth at reast n-r. Furthernore 1f 
I o I < 4

or lof= 2 the depth is at least n or n + 1 respectively.

Froof

A scheme of depth D has at most eD_1 6ates, and so by
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varyj-n6 the assignnent to gates from b it can cover a eet
| ^D l- | -zlrof at most Io lt 

-t dlfferent functj-ons. Since Iun| = t

we have

1u1zD-r )t zzn

whlch ylelds the stated bounds

!
These lower bound results.ralse the problen of flndlnS

ail upper bound on the depth of all Boolean functlons.

preparata and l,lul1er (I9?I) glve the followlng upper bounds

on DR (8.) for sPeclfic values of n,
"2

nforn

n + 1 for n-(28+ B = 264

n+2 for n62264+264

etc.

whlle Spira (t97t) shows that over the basts U, anY functlon

ln Bo has a clrcult of depth n + log*n where

t. I
Iog-n = (fr n ( 1 then O elee log (1og n1 + f)

Thus we bave

n-loglog n - O(I) < De^(Br,) ( " 
+ log*n

-2

vJe now descrlbe a constructlon whlch i.nproves the upper

bound to n + I and gives an upper bound of n + 3 for the

restrlcted basle ur. FUrthermore, the construction ls a

schene. Tbeotem J.I shows that for thle specialized model

of computatlon rt achleves the optimal depth to wlthln an

addltlve constant.
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31rg-qr9,n2"a

For all" n)0, tirere is a fornula scheme rvith depth

n + I whlch covern B' over I)r,
l:l

[/e s]t411 glve here an infolrnal. a.r:count of t]ic constructJ.c'rr.

(A fu1l proof of the theorern i-r; i';iven in l.lcCcll_ ancl patr-.r..jon

(1975)), Our startin6 polnt is a pari-r of farr,lLia:: dual-

expansions for Boolean functions. Let y = (yor... r yf.._:.)
/\.and Z =/gor..., zn_t) be sets of binary varlables. Any

t (Yrl,) = V 6 rtz)

tJ'
n f (Y,c;

functlon f (yrZ) in BO*, may be expressed a.s a disJuncllye

expan6l-on

-

aboqL Z by

c€[0,

where 6rlz) = 1 1ff z = c.

The dual conJunctj-ve elpaneion abor.rt Z is
n

t(y,2,) = /\ d.tz)wr(y,c)
/\

c

where J" 1s the complement of 5..

Each J o" I term reguires a forrnula of depth onI,v
r.-r
I fog m I and in each case the total fl+:pth used exceeds the

naxlnun for d., j'. and t (y,c) by n + l. The outer

disJunctlons or conjunctions over 2e subformulae need

depth n and one extra 1eveI is used for the single conjunction

or dlsJuncti-on used to attach the dtu u" j-t". It ls the

accumulation of these extra si-rrgie levelc in a recursive
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expanslon about Eucce66lve subsets of argunents whlch acco[nte
tfor the 1og n tern in spirars bound. y/e plan to avold these

lncrements,

Consitier one term J.tZ) n f (yrc ) of the dlsjunctlve

expanslon. We &ay ensure that f (Yrc) 1s expressed a6 a

conjunctlon of nany snall terms by using the conJunctlve

expansion for the next subset of arguments. Uslng the

assoclativity of conJunctlon vre rnight attempt to reassoclate

d" into f (Yrc) but unfortunately the number of subterms of

f (Y,c) will be exactly a power of two. Our seemingly

reckloss solutlon 1s to discard one of these terms to roake

..croon I'or d", and to be content with an itapproximationtr to the

orlginal functlon. To acconplish this ruse for each expanslon

we alternate disjuncti-ve and conjunctlve expansions about

successlve subsets of varlables. The reeult of this flrst

construction w11] be a formula of depth only n, but lt wlII
represent nerely an approxinatlon to the requlred functlon.

Rather surprlsi-ngly we are able to show that the requlred

function can be derived as the sun (modulo 2) of thle
I'approxl.natlcnrr and a second function whi.ch we can generate

uslng the whole constructlon recurslvely ln depth n also.

The result ls therefore of depth n + 1

tiie shall descrlbe our constructlon in terns of fornulae

rather than nore abstractly as schemes. It will be clear

throughout however that the formulae are unlforn for all

Boolean functlons.
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Todeflnethesubsetsofargumentsfortheexpanslon,rl
Iet Ro, Rr, ..., Rn be a partltlon of xn wlth 

| 
*t 

| = 11 for

all 1. We shall use the slmple sequelr(re ("o' tn)

deflned bY

"o=2
11 = 1 + I for o(l(P 

n

rp=n-sn_rwheresr=|;"t

and where P is maxLnal- such that

P(P+1) + I (n.
2

For example, lf n - I? we have (2,213,4,5'1) '

The followin8 definltion allows us to descrlbe the klnd

of functi,on whlch will be used as an fapproxinatl0nr to the

requlred functlon.

De finition
Glven s = {*r, ..., to} where RJ g xn for alr l<J<k'

we deflne g(Xn) to be S-slmP1e if

g(Xo) = O whenever R, = Qfor 6ome Ri € S'

whereQ = (o,o, ...r o) '

Hav1n8 glven the ratlOnale for our constructlon, we shall rnerely

etate

Lemma 4.?

For n)4, every [*r, ...' tn-r] - simpre functlon

g(Xn) has a fornula of dePth n'

n
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For detalls of the proof , 6ee l"fccorr and paterson (rg?r).
sone attentlon must be paid to the sequence of cardinarltles
of the expanslon subsets, and the way ln whlch a tern ls
onltted fron the expanslons ls not quite straightforward.

Given Lemma J.J, 1t remai-ns to be shown how fornulae for
arbltrary functlona can be derived from the construction for
slnple functlone.

Lenma 4.4

Suppose Rl, . .,, RU are dlsjoint subsets of Xo. For al1

85 (xo) = f @ 'f' (^ 'l

'pr_tt 
rs [nt'"'' *nJ -einPle'

f (Xn), there exists fr(xrr-nr) r..., ft (Xo-Rk) such that

k_I
RJ =O+ 6r-r (r'r,) = r$ Qr, = o

1=1 -

Proof

Thls ls by inductlon on k, The lemma holds trivlarly for
k = 0. Let k >O, and suppose the resul_t 1s true for k - I.
Then, there exlsts ft (Xn-Rl), ..., ft_t (Xrr-nn_r) such that

forallJ,r(I(t,

We deflne ft (xrr-nn) = o fr J r, l<1< k, Rt = O
= Bk_I wlth argunent" Rk

set to O, otherwlse.

It ls evldent that gp has the requlred property.

n
The naln result has now been prepared for.
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Proof of Theorem 4.2

Schenes for B' Ba are obvious, wirile for Brr BU

expanslons can be nade about 1 and 2 arguments respectively

to yleld schemes of depth 5 and 11.

By the prevlous lemma and propertles of @, any functlon

f (Xn) nay be expre66ed as

p-1

s(xn) @ I 
tr(xn-Rl)

where g(Xo) is [*r, ...' Rp-tl -srmnru, and ure fnt
are deflned as above. 1.". ("o,"I, ..)= (rrrri14

For n )I1, Lemna J.J ytelds a formula of depth

g(Xn), to which we nust ftaddt' appropriate functlons

fl, ..., fn_1 where ft has Dj- = n - 1 - 1 arguments

n1( 4, a formula for f, is constructed directly, ot

the whole constructlon 1s used recurslvely to yield

ofdepthti*1=n-1

Thus f ls expreselble ae

p-1

s(xn ) @ .Q tr. (xn-Rl )
1=14s

orr after reassocl,atlon, as

I @ (fr @ (fa e .... o fp_I)) ....)

Slnce f, has depth n-l for 1=1r..., p-1, the latter represents

a fornula of depth n + 1. rt is evldent that the constructlon

1e uniforn for all Boolean functlons and thus yielde a scheme.

="1

...) .

for

. 'rYhenever

herwlse

a formula
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In the prevlous chaptcr \Tc cle f_i I ,i t hr-t:i) ty,irss of b:rnis

func tlons: A -tf'pe , V - t yj,o rnrl ii) -t;,1:c . I).poviclerl tire;

baerla b pertnlt.n a sclrt i,rc Lo t',,,,t,r. jr., ,.r lrrr i.\)r)t;, i.nr; at lccrst

one futrctiotr from eaclr ol Iltt'r;c i, lrr'.rc l,.y1rr',.;, tlrc r:otu:l.r.rtct1otr

Catr be fOllorved mo:.e oL -Lcl;s l.rs he:lorer, Cr_-rrir1.rf slrrenti-ng

subfor:nulae as neces.sary to achlcve a.n upper bound of r.r +

(Cepth of a scheilo to cove:. Br).

For the unate basls U, u'e t.r:r;' replace @) by

*o S Xl = (xoA xrl V(ioA >:r)

rn order to fit in the correcti.ng functions efficientl.y we

choose a new 6eouence

("o'"1 '"2
so that each fi contalns 2 fev;er. argurnents tlian the previous

one. The result is a scherr,e of depth n + j vrhich covers 8,"

over Ur.

Remark

In outlining the constructlon we used a eequence
./\(2,e,3,4,5,....

could be used instead. The effect of the choice of sequence

on fornula slze has not been considerecl. However, as it 1e

a schene the posslble slze is lvlthln 2n-2 and ,n+1. The

consti.uction of Lupanov (1962) yields formulae of slze

QQL/toe n) for all Boolean functions, though not of course

uslng schemes. This ralsee the following questlon.



Open problem

DD (B-) )n - o(1) ?
"z rr

lower bound of n-o(l) hold for formulae as well

r lnterestlng question is whether an upper bound

oldsforallcoropletebaees.Ithasbeenshown

bound hoLds for everv basis j'n D [tJU D [uJ 'L.) L4)

r schenes over the basls {t,orto, fi'.} we have, at
\

hlevecl no better than n + O(1o8* n). We now

e construction which yields this upper bound'

we shall descrlbe lt ln terms of formulae although

evldent that the formulae are unlform for all t

1.e. does a

as schenes?

Anothe

of n+O(I) h

that such a

However, fo

present, ac

describe th

As beforet

1t w111 be

ln Bo.

Lenma 1.5

Drqano(Bn+ar) < 2k + z + r,r* { o,,^.o(Bn ),2.88

Proof

Any f (Xo+ei.) € %+ak nay be expressed as

(*oA(xrVrlo)) NAND tirvrlr) .NAND. (io,1(xtvro0), NAND {frvtor)

where fP{ = f (prgrx2rx3, ..., xn+Ak-I)

Ios ( 2k ).0(1))

Applylng thls identlty recursively to every

ldentlty whlch shows that any f (Xn+Ak) can

NAND fornula of depth 2k where each lnput ls

computes some functlon 8t.

fpq

be

a

, we get an

conputed by a

formula whlch
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=c

t Ai replaced by the constant c, we have

.NAND. f. NAND g*.
1=1 

r rlor=O

recurrence
(

z+max { o* 
n *., (Ai ), Dnalto (A-1 ),

I L I.iJrII!,

D,ro*n(8. , ),Dt,atto(r, l^ -^, )irnrtu *lEr=t ^\Jr'rrv 'flr=o

By defln1.ng g1

lot
the subformula fo

the ldentlty

Bl = A1 NAND utlo
I

which ylelds the

Dl.tgo(Bn+et) ( at+

Each such 81 nay be expressed. a6 a tornula /3, over the basls

B, ln whlch xor xL, ..., *l*_2 ,,,,d *21._a appcar at most once

and which contalne exactly one occurrence of a subformula

for sone functlon A, (r21., x'k+l , ,.., xn+2k_r) € nrr.

to be the functlon conputed bV f, with

Theoren 1.5

For all n )1, DN.A,ND(Bn)< n + O(1og' n)

Proof

Let 2k = | cn-n I f" the recurrence of the prevlous lenma.
L)

Then, we havo

The result then follows by noting Theorem 2.2

tr



c, !,

DNAlot,(tsc,r) (c11-n+'2+ro* 
{Dr','rr(8,, 

) r 2.38 n 1cg c +0(1)

I f vrc choosc tJrc constant C suclr t,)urt- 2.8E .t o6 C ( J-,

Dnnivu(trr) - cn< 2 * DN.r,Nn(F,,) - n

Let cl(n) = Di{.r"t,tD(tsn) - n, then

,l(cr')(2 + c1(n)

(2r + k for sorile consta.nt k.

t
(

t lrc rr

If n

/ J\,(,,, 
.l ,

=ccc l"

and BA be the

I u.] and B

(-1
rea6 l- r -rl

/n
whe

bases I t] where B C

n's'{*',? ro,t, ql

for some C,'11 thor r = O(1og n)

n

Con j_ecture

DNauo(no)( n + o(1)

Deflnltion

of btnary

complete.

Let A= ue -{n ,V, NAND, ror,J

A,B
e Ba

set

'i5

ls not.
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Theorem J.7

For all complete blnary bases excludlng those 1n BA ,

there 1s an upper bound of n + O(Iog'n) on the depth of
all- Boolean functlone.

Proof

The baslc technique for derlving efflclent upper bounds

on the depth of alr Boolean functlons is expansion about a
subset of the varlables, together with recursive use of the
nethod for the renalnlng varlables.

Dlsjunctlve expanslon

Each blnary functlon ln B, can be computed over any

complete basls wlthin constant deptb. Thus, by chooslng the

subset to have about n - 1og n varlabres, one lilmedlately
gets an upper bound of n + O(1og* n) as a coroll-ary of Splrafs
(1971) result, for all cornplete basesJLwhere

n-I
n

Drr-(/ \ *i) = 1og n + o(1), slnce the recurslon goes tod ts tl=ot r

depth log' n.

Rlng-sum expanslon

Let Y = (xo, ..., yr._r) and z = (zo , zm_t) be

sete of blnary varlabres. Any functlon f(yrz) 1n Bn*, maJ

be expre66ed as a rlng-sum expansion about Z by
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t (v,D =O Jrtz)Ar(Y,c)

c e {o':'1'

where 6, Cz) = ,\zl
Ct=1

Uslng thls expanslon recursively and chooslng the subset

to have about n-}og n varlables we can achleve an upper bound

of n + O(1og* n) for any compJ-ete basi-s JL, where

n-I
D-n_( so *t) = los n + O(1) and

n-1
n

D-rz( /\ "i) = C.log n for sone constant C' Note that
1=O

thls upper bound holds for bases such as {--, @} . The

analysls of the recurrence 1n thls case ia similar to that

ln the proof of Theorea J,6.

The theoren then follows by notlng the result of Theoren

J.6 which establlshes an upper bound of n + o(1og* n) for the

basls NAND and by considering the complexity classes of

nlninral cOnplete bases whlch were derlved in Theorem 2.7.
n

In sectlon 2.J we derlved preclse bounds on the deptb

n-I
Aof / \ *r over aII bases ln BA . These can be used to shou

'1=o'

that there is an upper bound of 1.44 n + o(n) on the depth
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of all Boolean functions, elther by uslng a simllar recurslve

constructlon or by simulating disjunctlve normal forn. The

1ow order term will be O(1og* n) and O(Iog n) respectively.

Thls glves an upper bound on thc maxlrnal- depth of any Boorean

functlon over any complete basls.

We have seen that for each of the three lmportant

conplexlty meaeures there are surprlsj-n61y preclse restrlts on

the complexity of ttalnrost allft Boolean functions.

The origj-nal motivation for studies of circuit complexity
was to obtain a satisfactory solntion to the so-caIled

minimlzatlon problem , 1.e. given a Boolean function, flnd
a ninirnal clrcult which represents it. For this problen we

have the trivlal solution ln whlch we order clrcuits accordlng

to conplexlty, and then search arr circuits up to complexlty c
untll we flnd one which represents the functlon concerned.

rn this way we can always find a rninlrnal clrcu1t, but slnce

^nthere are 24 functions ln B' thls approach is not feaslbre

a6 an lmpossibly large nuruber of clrcults mlght have to be

c onpared.

rn fact, there ls reason to berieve that no feaslbre

solutlon (i.e. one whlch takes at nost polynomlal tirne)

exlsts for the ninimlzatlon problen. Cook (]r9?I) has glven

strong evldence whlch suggests that a slmpler problem requlres
nonpolynonial tlne. The problen 1s that of recognlzing whether

a certain dlsjunctive normal forn (for a Boolean function)
repreaents the constant 1. Note that a fast al6orlthm for



the mlnlnlzat1on problem would 61ve us also a fast constant

recognizer. Thus lt 6eems I1ke1y that any exact procedure

for the minimlzation problem will- be contparable (ln terms

of computational complexlty) to an exhaustlve 6earch arnong

clrcuits.

AB no satlsfactory solution to the mj-nj-mlzatlon problem

6ee!06 1lkely, preBent research is directed towards establlshlng

bounde on the complexlty of Boolean functlons. In suboequent

chaptere we purEue thls l1ne of investigation and prove a

number of small lower bounds on the depth Of expllcitly

deflned functions. The fact that we have, at present, only

small lower bounds for explicltly clefined functlons ralsee

the questlon of whether there are functions of internediate

complexlty, €.g. is there a functj.on f in Bn for whlch

2
Co (f) = k.nc for sone constant k? In chapter 5 we note
"2

that several large sets of Boolean functions forn reasonably

uniforro hierarchies with respect to the three lnportant

mea6ure6 of clrcult conPlexltY.

But flrst we show that slmilar results to those obtalned

for rralrnost al1rr functlons in Bn can be obtained for the

lmportant subset of monotone functlons.

3.3 TIALMOST ALLII MONOTONE FUNCTIONS. IN thl6 SCCt1ON WE

focus our attention on the maxtmun clrcuit depth of any

nonotone functlon and on the depth of ttaluost alltt functlons

ln Mn. FOr an excellent account of the correspondlng fornula
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5).
cn

d clrcui-t slze problems ' 6ee Plppenger (l-97

lbert Q954) established a lower bound of 2

of monotone increasing Boolean functj-ons of

ts, where

ln\ a" l^n\
/ l= k._ +o! I 

\1,.,1 .tr \t;/\V'tzl1
is some constant.

slze an

Gi

number

argumen

and

Lenroa a . B

on the

= "(l'"

C such that,

n-*1o6n-loslosn- t)

s a constant

\ I Dn.(r)g

np 'l

t€

he

lr

our,f )( n tr - e lJ

Proof

1(
l{r e ti-
lL r^

l""l
r_ ,rn(l- e ) _I 2n(1- € )
lBz l- n- 'n(1- 

e )
(15.n)-

15. lq I
t"l

lt suffices to show thatThere fore

,n(1-€) toe (t5.n)
to*l"nl*4

+ O aan+oQ
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Gllbert I s lovrer bcund shorvr; that thcrr' 1s a constant C such

that the fractiori of monotone funcbj-ons f in Mr, , for

which

Dn (f) ( o (r- e1
"2

tends to 0 with increasing n, whenever

€.n)*fogn+1og1ogn+C
il

In Lemroa 3.8 we proved a Lo',ver bound on the depth of

falmost allf monotone function6 by a simple countlng ar6ument.

The slze of lower bound obtained by such a countl-ng ar6ument

depends solely on the size of the subset of functj-ons

consldered.

Kleltnan (1969) has shown that Gilbertts lower bound

cannot be substantlally lmprovod, thcrefore ws must u6e a

different approach 1n order to lmprove the l-ower bound of

Lenma 3.8.

Lemma 3.9

Any clrcult scheroe which cover6 l'l over the basis B,

has depth at least n - * 1og n - 0(1).

Proof

As 1n Theorem J.1, notlng the lower bound on the number

of nonotone functlons.

n
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we now descrlbe a scheme of depth n whlch covers Mo

over tire basis l4A.

Theorem J.10

For all n ) 0, there ls a circult schene of depth n

whlch covers Mo over the basiu M2.

The constructlon shall be d.escribed ln terns of formulae

rather than as a scheue. However, 1t will be evldent that
the forurulae are uni-form for all rnonotone functi_ons. slnce

we sha1l consider fornulae rather than schemes, 1t vr1I1 be

convenient to prove the reeult as the followlng

Theore,n J,11

For al"l n )0, every f(Xn) € Mn can be expressed aa a

dlsjunction of n - I monotone subforinulae of depth

L12r31..,1tr-1, Alternatlvely, f roay be expre66ed as a
conJunction of n - 1 such subformulae.

Proof

We p:roceed by lnductlon on rr. For any f (Xn), 1et

f*1= cd"note 
f(xorx, , ..., xi-r, crxr+l, ..., "o_l),

where c e. IO,t]
Thls deflnltion lmplles that if f(Xn) € Mrr, then

x.r= O x*= I
f* , ft €Mo_'.
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Any f(xn) € Hn can be expanded about an argument xj. uslng

elther of the ldentitles f (xn) = (xr rt r*r= 
1) 

v f*1= 
o 

(J.r)

f (xrr) = (*iv r*t= 
o) 

,a ,*, = t 
O.a)

For n(J the theorern is obvious, while for n = J, 1t followe
fron (3.I) , (3.2) .

For n = k, k>3, assume it 1s true for n = k _ 1.

Then by 3.r)r &nI f(xk)€ \ can be expre66ed ae

, xi= I xt= 0(xrAft )vf^ . By thelnductionhypothesle,

Xr= 1 Xr= 0
t ' (f ^ ) can be expressed as a conjunctlon (disJunction)
of k - 2 subformulae. Therefore, the x, nay be reassoclated,

using the associatlvi.ty of conjunction, to yierd a formur.a

for f(Xo) which is a dlsJunctlon of k - 1 subformulae of

depth Lr7rj,..., k-1. 
,

Alternatlvely, uslng (j,a) and chooslng the sane expresslons
xr= I x.r= Ofor f* , ft ,afterreassociatlngthex'thlstime

uslng the aseoclatlvlty of dlsJunctlon, we get a conJunctlve
formuLa for f(XU)

il
We have proved that

n-! Ios n-losIos n-o(}, ( o".(tL) ( Dr,r.(lro) 5 n and have

natched the upper bound wlth a lo'er bound of n-] log n-o(l)
under the restrlction of uniformlty.



Reznlk (7962) gi-ves a constructlon (though not a schene)

whlch provea

r {tr )= O(Zn(logn),/;/r,t l'I^t '''tt '

rn fact, any echeme wlth q gates which covers M' over sone

baeis n g-Ba nust saf isfy r6Q 2r zk.zn/ J n , g)zk.en-z/ 6
where k ls Eome ccrnstant.

These results ralse a rayriad of open questlons about the

depth of rta]-most allrt monotone functlons. Two problems of
partlcular relevance are:

(1) D, (It*) ), n-! 1o6 n - 0(1) ? i.e. does a lowerlJ^ n
/"

bound of n-J log n - O(1) hold for formulae as rvel1 as schenes?

(1i) DR (Mn)< Dn, (Mn) when Xn is the Euz * ,,2 ren Xn is the ""t o' lnPuts?
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4. TIIE BASIS NAND

Studies of clrcult cornplexity dravr 6orre practlcal

motivatlon from the fact that milny of the tasks for whlch

dlgltal harriware mtist be desi-gned can be represented as the

computartlon of Boolean functlons. The actual- and potentlal

efficiency (Aelay) of such hardlare can be usefully

lnvestlgated in termn of clrcuit depth. Llkewise, hardware

costs are cJ-ooeJ y rel-ated t-o clrcult size.

In view of this practical justiflcation, lt 1e

appropriate to consi,ier some of the problems which face the

log1c designer. One of these is choice of basis. Wlth

current technologies, the cholce of basis 1s of crucial

lmportance ln determlning the overall cost and performance

of a loglc circult. Sone factors to be welghed when evaluatlng

the utillty of some basis are:

(1) Feasibility and economy of producing tho

n€cessary gates wlth physical componente.

(2) Useful algebraic properties of the baslc

ftrnctlons such aa commutatlvity and

assoclatlvltY,

3) Functlonal completeness i. e. the abillty

of the baels to lnplement arbitrary Boolean

func tlone.
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(4) Slze of basis. Bases wlth a mlnimal

nunber of functlons have the advantagee

of standardlzatlon of bullding blockst

ea6e of replacement of parts etc. Thls

unlformity may be crucial ln determl.nlng

nanufacture and maintenance cost6.

The basls consistlng of binary n , V and unary negatlon

ls the classical- set of primltlves. However, this basls 1e

rather poor with respect to our first crlterion (1). Thls

stens frorn the fact that A-gates and V-gates are rather

expenslve to prod.uce. A1so, frorn the hardware polnt of vlew

thelr performance 1s poor because they fail to malntain the

slgnal value wlthout loes of anplitude. consequently,

n rV -ctrcults so!0et1me6 reqlire amplltude restoratlon

after the slgnal has fravelled through a few levels of 6ates.

In vlew of these drawbacks to the classlcal baslsr the

possiblllty of constructing loglc circuj.ts from 3ates for

the functions lir 4 , @ t 7 t NOR' NAND ls of practlcal

interest. The four fuoplicatlon functions (1n loglc deslgn

ternlnology, the functlons 4r? are computed by INHIBIT

6ates) are non-conmutatlvt' and thus lrlpractlcal for uee as

standard ]oglc gates. The two non-unate blnary functlons

@ , a have nany excellent characterlstlcs as candldates

for standard 1o51c gates but are expenelve to construct wlth

physical components. They are normally available as standard

loglc gates ln lntegrated clrcutt packages but are usually



65

con6tructed lnternally wlth other stan lard gates. For

example, wlth NAI'ID gates

*o@*1

tr'ig. 3. A NAND circuj.t for xo @ xt

Only a linlted number of Boolean functions can be

lrnpremented ustng only @, = 
gates. This rack of functlonal

completeness 1s another reagon for not uslng e and 
= 

aa

standard loglc gatee.

The functlons NAND and NOR are extenslvely used as

standard logic gates 1n deslgning dlgital hardlare. rn fact,
Ioglc clrcults are more frequentry constructed from NAND or

NOR gates than fron A -gatee, V -g"tes and inverters. Fron

the hardware polnt of vlew the blg advantage 1e that tbey

euppry outpute whlch malntaln the slgnal value wlthout rose

of amplltude. Thls ls due to the presence of translstors ln
circults for NANDTNOR. Because of this, there ls a galn

assoclated wlth these gates whlch regenerates the slgnar upon

deterloration. Diode { -gates and V -gates do not have thls
property. Theee problens of signar deterioration nust be

faced when an actual dlgltal systen ls deslgned. To the ro6lc
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deslgner, they are usually refi ectecl in ilre need to observe

loading restrictions. For exarnDle, tlic number of output

tormlna ls on a Srrte ( the fan-out ) may lravc to bo 11rnlted.

There nd-ght al.so have bc irc a rt:strlction on the rrer.mlsslblc

number of 1eve16 appear.ln6 in the syste'm.

NAND anci NOR gates can be easi.ly and cheapry constructerr

wlth transistor circults. Their associ;rtc,ci functions satisi.y

the commutatlvity property and coth form a functi-onally

complete basis on their own. Tlierefore, they sa.tisfy all
of our criteria with the exceptlon of the associatir.J-ty

prope:'ty. For these reasons, tirey serve as the major cotnponents

presently used in logic deslgn.

fn thls chapter we consider the realizati on of some

expllcitly deflned Boolean functlons by circuits over the

baels NAND. By duallty, e.ach oi the results can be transLated

lnto a correspondlng re.sul,t abcut i{OR circuits. lt/e gi.;e

results which show that for niany fanil.lar functJ-ons, an

lnslstence on uelng lIAl,lD gates only for purposes of uniforrnity,

cheapness etc., must be paid for by a substanti;iI lncrease in
clrcult depth.

4. I Ftn{cTIoNAL I,noPERTIES

Lenna 4;l
for all D> 0,

OF SI;AILCIY CIRCUlT-q

{'l V,, la; I (
eone j.nput

t
I_\l

l- |

2.D-1 I S: rf)l
I
I
I

\

'VA,L
'lrhere

- icoi. "

^D-1t ancl -r.r)h.q,lrp(f)-<
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Proof

The lemma 1s true for D = 1. To prove inductlvely that

1t is true for all D>O, we a66ume it 1s true for D = rI atrd

conslder those functlons f where DtAnO(f)(2n + 1.

By the lnductlon hypothesls, any such f may be expressed as

f} NAND fZ .NAND. fJ NAND t4

(or equlvalently as f.n f2 .V. tSAtl where eacb fp, f <k (4r

can be expressed ln the forn

*,r,""" 
I Q3

Thus

\/4"v l€Q.
J.,

2n-1 and each

such f nay be

\/A'v l€Qi
J"

An-I * 2o-I.

f-'k-

<(

any

z* La sone 1nPut.

expressed ae

So the lemma 1s true forwhere aj

D=n+l and for all D ) o

D

Lemma 4.2

For all D)0,

{t l 
o*o*D(r)<a.D)

\/
f =vtl

1€Q
where le | <
each t, 1s a

of lnputs

azD- L .". 
]

con junc rt"")



Proof

As ln Lenna 11.1, by lrrducfion on D. Ti:,o resu-l-t holds

fclr D = 1. Assune it i,s t::ue for D = n oAC consider any

functlon f where Dnn,,rr(f)(2 (n+J.). Ily the induction

hypotiresis, f nay be expt'es$ed as

ft NAilD f 2 "NAi'lD. fJ NAND t4

where each fir 1( i( lr, can be expressed as a dlsjunctiott of

zzn- r terros.

Therefore, f nay be expressed as a dlejunction of

z,q22n- ')' = arn*t-t terms and so the r-emma is true

Uslng rate-of-growth argurnents vre have derlved two

properties of the set of Boolean functions computable

by NAND clrcults of limited depth.

De finitions

t()Let Bo = Br, - t0,1 J be the set of nonconstant Boolean

functlone of D arguments. For all f 1n Bl, Ill(f) will

denote the sot of nonconstant in:plicatits of f (Xr,), i. e.

excludlng O. A functlon t(Xn) is an implicant of f(Xn) iff

t)f and t nay be expre-ssed as a conjunction of varlabl"es

in Xr, or thelr complements.

for D = D+l

f,



L(t) w111 denote the length of nonconDtant inplicant t,1.e.

the (unique) number of distjnct variabies which appear when t,

ie expressed as a conjunctj.on,

Fol exanple, let t = xofrx,

1mpllcanl; of some f (X- ) 1n Il--.- n' lr

a.re all 1n IM(f ) but L(t) = J

*f.*z*3t xoxl*a*1 be an

tr*oit*Zi, and *oil*e*J

:,(roiaxrI., ) = L(xofrxnxr)=

=X o

L'helr

l';h ereas l1

We have 6iven two furrctional prol)erties of linlted

depth IIAND circults 1n terrrs of the naxlnium length of

implicants and the necessai:y nui,rber of i-lnplicants. These tvio

results glve general- criteria which imply lovrer bounda on the

depth of NAi'lD ci-rcults for certain Bool-ean functlons. We now

cl.erlve a speclal property for the in:portant subset

synrrletrlc func t1ons.

De f ini- ti ot:

A Boolean function f(X* ) in B- ls said to be symmetrig'n' n

when the value of f ls unchanged by any permutation of its

argument" Xr,, or equivalently, f ls symmetrlc 1ff tbere is

a function g such that

n-1
f (xo) = e( I xr)

i-=O

There are lrrecisely 2n+1 symnetrlc functlons in B' since

n-1r-
) *t can take n+l dlfferent varues. lve denote the set of
1=O

symnetrlc functj-ons ln Bo bX Sn. Any fuuction f 1n So nay
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be defined by an n+l-tuple of Boolean values whlch denote the

value of f when the arlthrnetlc sum of its arguments ls
Or112 13r..., n-I and n. Thls I'definlng vectortr wll1 be

denoted by

(ro, f1, . . ., f.,) nto,rln*t

n-1
where ( t Xi = k) +(r(xn) = ft)

1=0

For exarnple, (0r0,1,1,1r... ,l) denotes the function
Ithreshold 2t, (1rOrO,1,OrOr1,O,

to O(mod J) t.

De f1nl tlons
l/1Let Sr, = So - t OrlJ be the set of nonconetant eymnetrlc

functlons of n arguments.

For O < k( o*1, let
(n) ( r' ItT-t\ rP,- = {reso I Vr, o(t(n-k+I,{ /\rr/ = olK ( ul 

\ri=t\ / ,

' be the set of synmetrlc functions f for whlch (forfrr...rfn)

has a 0 value ln each consecutlve block of length k.

For example, tl.o) contalns only the constant functlon O,

/- \whlle P;;i conslsts of every symmetrlc functlon except the

constant functlon 1.
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Theorem 4.3

-
For all f ln

Proof

,(n )

b.
I n s; , DN^ND ( r) ), z.o

I - 20-l

=YA:

Conslder

By Lemna

any f 1n S' such that DrOnO(f)12A,

4.1, f nay be expressed as

where Ir, I( 2o-r

sorre 1mp1lcant ln

1np11cant nay be

ln at least ,t-to-t dlfferent ways.

n=5' D=3r *oft*a;5 can be extended to

xo*l*axJ*4*,

*ort*aifx45

*oit*zi3i4*5

xo*lxax3*4*5

Thus ln the definlng vector of any such f

and each z, j-s

IM(f) of length

sone input. Let t

k, t( aD-I. such an

be

extended to glve lmplj-cants of length n,

For example, wlth

there lsa
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consecutive bloch

l val-ues,

So for all f

of length n+t - 2D-1 which contaj-ns only

I
1n S'r

wa

tr

(Dn,roro(r) <z.D) ? (t en("] 
^D-I)n+L-c

and the result foIlo

Thls property of the syttttr,ct'ric functions computable

by limlted depth NAND circuitE v:i]I pr'ove useful irr dorivi-n6

a nur,rber of lovrer bounds for specific fitttctlono.

4.2 DBCODERS AND ENCODLR-S. Discrete elements of informatj-on

are noruially represertecl in ctigital systems by binary cqdes.

For example, the integer 45 might be represented by the B-Uit

blnary code 00101101. Two useful tasks for which digital

hardware mlght be der;i8ned are decodinS and encoding. A

decoder takes an n-b1.t binary acl.dress code aud on the basis

of this, sets preclsely one of 2n outputs to I and all others

to o. Decodlng clrcults find applications 1n computer

nremories for the selection of a partlcular iten of data

addressed by a blnary code. An encoder can be thought of

a6 a posltlonal to bi-nary tratrsforner. It takes a blnary

string of length n, exactly one elernent of which ls 1, and

l- * nl -blt blnarY code for theproduces a corresPonoang | ,ot 
I

positi-on of thls eletnent.

The operatlon of such hardlare can be repreaented ae



74

the computatlon of Boolean functlons. Let D(n) = {orl I-<1-t anl

and E(n) = {", I 1< I ( [t"* Jl J be the outputs of a decoder

and encoder respectlvely. Then each di(Xn) can be expressed

n-I
a6 Nt where 3i, denotes the variable x, or 1ts conplement., 

=O.

Slmllar1y, each er(xo) can be expreseed "u !*, where
jezt

zr c xrrr 
l " 

f

If varlables and thelr complennents are avallable ae

lnputs and decoders are constructed using A-gates, then the
r-l

delay ln decod.lng need only be I log n | . As each output

dl(Xn) dependB on all 1ts arguments, thls delay 1s best

poss1b1e. Encoder6 can sinilarly be constructed with delay

I ,o* L"n)1
We will now show that lf decoders or encoders are constructed

wlth NAND gates (or dually with NQR Sates) then these delays

nust be doubled. Thue the advantages of uslng NAND gates for

the constructlon of such circults nust be paid for by a

substantlal loes 1n efflclencY.

De flnltlon

Let E. = {r,1" I 
o*k<"J where ufn) (xn) 1s the

synmetrlc Boolean function whlch takes the value I 1ff
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-1--^ (n) .th
f *, = k. E;--' ls the k-" elementary symmetrlc functlon..rlL

1=0

Theorera 4.4

For all f 1n E'r
r-l

Duallp( t) ), 2 | los n 
I

Proof
(n \

tr'ron the deflnitlon of Ei-', it follows that

,r 9 tj"' n tl. The result is then immedlate fron Theoren

{.J since for all n)1,

Lemna l+.5

n+l - , l-rog o-l -r ), 2

n-l
The definitlon or ejn) = At sugeests a NAND

'1=0

clrcult of depth a l-fos ,,1 . The prevlous result shows that

thls depth bound 1s optlmal for the basls NAND.

p-1,
o*o*o(["i) 2 a l-roe "l -r

Proof

By complenentlng the output and variable lnputs of a
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and the result followe fron Theorem \.11

u

ro-1
NAND clrcult whlch coroputes V *t , w€ obtaln a clrcult for

i=O

E;"'. rnputs may be conplenented wlthout lncreasing depth

and any output can be conplemented by a slngre NAND gate

yleldlng

DNAND(f) +L)7 Dumo(T)

for all f ln Bn. Thus

n-I
Dnl*u,Y"t) + I ) oro*o(r,1")l

These lower bounds hold even when argunents can appear

as lnputs ln elther conplemented or uncomplenented forn.
The rower bound for the functlon njn) r" tlght as lt has

a NAND circuit of depth a l-foe nl with lnputs fron the set
n-l

Xn. However, although V*, can be computed in depth
i=O

r-l2 f rog n | -l when rr, =(*or*I ,...rxn_Irior*-rr...r;11_Irorl>

ls the set or lnputs, the best known upper bound when

conplenented argurnenta are forbldden is a l-rog ol . l,Ve now

show that thls upper bound ls beot possible in this case.

Theoren 4.6

Dtt

n-I

AND(y 
*i 7z e f-ros .,1

when (*or*, ,.,. txn-lrort) ts the set of posslble tnputs,
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The following propcrty of IIAND fo.ri:rul ae will be used in
the proof of Theorem I1.[. It io given here wlthout ploof.

Fact 4.7

Let /3 be any NAIiD I'or:nul.a t,nd, /3t be the formula

wlth all inputs on path...; of leni;th AD+l, for oome lnteger
D)zA, replaced by the input O. ,tf cornputes f and 73'

tl
computes f, then f+f

Ploof of Theorern 4r.li
n-1

Let h = V*t . Frorn this <iefinition it forlows that
1=0

(t)rl
{rl(hfr)^(h+r)l =.i rf (4.r)tl ){.J

Assume Dt{aNO(h) = 2D + 1 for some integer D>O and conslder

an optimal depth toruula/3 which computes h.

In forrrvJ.ar6 , replace a1l inputs from the subset
./\(*o,x1,...rxn_l) whlch are on paths of length 2.D+1 by the

lnput O and remove redundant gates. In vlew of Fact 4.?, we

obtain a formu- ^r h 2D whinh n^n" Ita /J of depth 2D whlch computes h', where
Ihth .

By deflnitlon of the replacements, lf h(Xn)rht(Xn) are

not equal then there ls sorne x, in x' which takes the value l.

But for all *i € xn, hlX+=r = ht1*- =r as ht € [ u,tJ
f ] li.

whlcir ln turn follows fr-orrr (11.1) ancl ilrc fact that h+lrr.

r)
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Thls contradlctlon proves that hrh are equlvalent and

we have obtained a ci-rcuib of reduced depth which stlll
conputes h. Thls contradicte the assumption of optlnal

depth and so we rnust have D*ntuit(h) - 2D for e;ome lnteger D

The result now follows from the fact that DrOND(h)>ZfJoe

when I' is the set of lnpu tg.
n

The proof of Theoren 4.5 ls particularly interesting as

lt gives the flrst applicatj-on of the Itspeciflc refinementrt

technlque to non-monotone clrcuits, aIbe1t only to clrculte

over a very restri.cted complete basis. Thls technique has

already been applled to nonotone circults by Paterson (1975).

Soprunenko (1965) has considered the clrcult size of

Boolean functions over the basls NAND and has establlshed

that

c^rR'iD(rrl")) >r 2.n - o(t)

n-1
c*aruo( V*r) )z 3.n - o(1)

1=O

Therefore, the clrcult eize and depth

)- o.

1nl-1

lncreaeed by a factor of two in golng frorn

the basls NAND, wh1le the slze and depth of

/- \of 8"" are both
n

the baels U^ to
-1[-I

V*t are increased
1=O

by factors of Jr2 respectlvely.
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A reou-Lt of r;r:ctl,rlrr ,l .-)..rhowr; Lhllt decoclers alld encocler.s

require depth 1.44 1og n (to wiilrin aii adctitj.ve constant)
ovcl' I ho cornpJ.otc bac j.r; {tt, , t l . 'l luu; rrrNIir,'1i'r, gat(f r; lrc
noi'e ef flc-i-ent w.r. t, de'}th than NATID 6ates and .less e1'ficlclt

Athan A-gates a'cl !-gates for bhe pu-r.'pose of building
decoderc and encoders.

4.3 cOuNTrNG (ttoirur,o x). IVe have considered tvro useful.

tasks for whlch digital haldv;are night be designed, d,ecodirr63

and cncoding, and have investlgated the inherent clelay

associated with these problens. !,nother important task io
that of countlnE. Binary counters of one forn or another are

basic subsystems in a modern coraputer. rf we are interested
ln cornblnatlonar (ratlier than sequential) circuits, then the

operatlon of a standard bj-nar.y counter can be thought of as

unary-to-binary conversion. pippenger (I9?e descrlbes a
constructlon which, taken in conjunction with rheorem 2.2,
shows that a standard blnary counter with delay of about

r0'2.1o9 n can be constructed fr.on NAND gates. Thls upper

bound ls very rough and can prob,ably be substantlally lnproved
by conslderlng the details of the actual constructlon. we

shalI not pursue thls further heie. rnstead, another type

of counter is considered.

often a circult is :.equi-red which will count with respect
to eor,ae speclfied modulu.s, 1.e. when two nuribers which dlffer
by a mu1t1pIe of eone nurnber are to be consldered equivalent.
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In the ca6e where thls number 1s 2, two such numbers are sald

to have the same pg!!g. cJrcrrltc for parlty checklng flnd

lmportant appllcatlons ln the transntlsslon of j-nformatlon

where they are used to check for any lnaccuracy in the

reproductlon. In thls soctlon we establlsh a number of bounds

On the delay required by nodulo k counters, when constructed

fron NAND gates.

De finltion
t/n )

T ^+ r., \...,!t l, tk, f

ls I lff n_I

Lenna 4.8

Proof

For a1I lntegers k and r, I<k(2D, O(r(k-I,

D*nro, r[:: ) ) >, r.,

(2D )
By deflnltlon, each such C Ur" ls 1n PZ fl trp, thus

the result follows fron Theorero 4.J since for aLI DTtLt

2D+ t-zD-L2z

(eD) :

(Xrr) be the symmetrlc Boolean functlon whlch

f ", = 
r (nod k).

1=0

Thls lower bound nay be compared wlth two known results
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vrhlch apply to a smallel class of functlons, but which hold

over more expressive blr.r;cr:. Fisclrcr', lleye} lrtrd Paterson (:..975)

lt- \have shown that for all fixed ir, k) 2, Dr, (C;^'j) is not lecs
"2 t1'rl

thanlogn+1og1og

has cstablished that

n - o(1og1og ri), rvhile l(hrapchenko (I9?Za)

for al-l fixe_$_5, EZf ,

21o6n-0(1).

(f976) has established

?urt'[i]r >'

Recent1y,

loi'rer bound on

The tnaln result

Stockmeyer

the cltg]!l-!:

allows one

a general

func tl ons..qlae_ of rtcongruencerr

to lnfer that

cB^(cln3)
-2

for a.11 integers k

>2"-k/z-4
and n witb J (k(n. It ls also shown that

for all n and so the loryer bound is

optimal to wlthLn an additj-ve constant ln thls case. Lower

bounds of the form tn - c, where c ls a constant independent

of n, are the best presently known on the circult slze of

any explicltly defined furiction over the bas1" 82.

We now derlve certain upper bounds on

cBz(cln3)

z^Dr
Dunnp(tll"') for k = 2,3 and 4.

<3"

The result for k = 2

eetablishes that the grorvth ra.tcs ln Lerri:nas 4.1, 4.2 are

achlevable. We also show that the lovier bound of Lenna 4.8

ls r,g! achj-evable for k = J.
* P,:-'fcrson (prlvate col,:intrriicat.j.cn) h;Ls lmirroved this lower

bc,und to 1og n + f6'gfo0 n - C,(1).
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Lemna 4.9

For alr D ).o, DNAND(cj2:) ) = orn*o(rjil,, = z.D

(et*l )trro (xan+l) naY be exPressed as

Proof

The lower bounds are derlved ln Lemma 4.6 and the upper

bounds are now proved by lnduction on D.

For D=Or

"(1)u 2,o (x1) = ro

^(1)c),i (xI) = xo

and so the lemma ls true 1n thls ca6e. To prove inductlvely

that lt 1s true for all D)tO, we assune lt 1s true for D = s.

Let xI = 1x-- zD \--orxrr''' r*ro-r) and xzo = (*rrrr*2r*rr... rxrn*r-r) 
.

,[1"o] tx], ) NAND ,t::' ,*i, ) .N^*ND. ,t::' .*1. ) NAND ,t::){xan )

(et*I)
vhlLe trr;- (Xan+l) nay be expressed as

,t::rt*]") nauo t:::t uzr^).NAND. t:::Lr*]") o,onro ,t::r{xzn)

and so the lemna ls true for D = n+l and thus for all g)ro
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The followlng two facts

are glven wlthout proof.

Fact 4.1O

Fact 4.I1

z.Dr
about c:-2:), for al-l 1<k(zD,Krf

For all lnpllcants t ln ru(c[z:)), L(t) ^D

n
Thls 1npIles that lf tl::) i" 

"*nressed 
as a dlsjunctlon of

lmpllcants, then each lmpllcant ln IM(c,!z:)) nust appear at- Krf

leaet once. Notlng chis fact vre can also obtaln the followlng

expllclt fornul,a for the nunber of lmpllcants ln IM(rltl)1.- Krf

l'-t'l:l" l= ()

Corollary 4.12

| 
,"r,j'f )r 

I

Proof

Imnedlate

rM(cjzl) )

J

n
^2"- L

+ r,;.t., .(,.:

D

_)

fron 4.1I
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Conbln:Lng Lemna 4.9 ana Corollary 4.12, we have the

followlng

Proposltlon 4.I3

The upper bound on growth rate in Lernna 4.2 ls

achievab

Wh1le conbj-nlng Lemna 4.9 and Fact 4.]q,glvee
. ' r .: 'r I

Proposltion 4.14':
The upper bound on growth rate 1n Lemraa 4.1 le

achlevable.
. t-]| -l '' : \' I .',.: , '.;

F\rrthernore, both these upper bounds are slmultaneously

n
achleved by an optlural depth clrcuit for ,\'u^). .i "''':: '

In thls c.hapter w€ have derived var.iou6 lower boundg str'
..' ., i ,, , ' I ':

the depth of Boolean functlons over th,., basis NAND. These

have been obtaj-ned fron rate-of-growth arguments whlch

characterized the functions conputable by limited depth NAND

clrcults. llle have also shown that the growth rates whlch were

used to obtain our lower bounds can be slmuLtaneously achleved.

Therefore, ln order to prove lower bounds larger than 2D for

any f ln B ,.,, we nust consi-der properties otber than Just2u'

the nlnlnun length of lnpllcants or the necesEary number of

1npI1cante.

le.
n
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In order to prove that the lower bound of Lemna 4.8 ls

not achievable for k = J we requlre the followin6 result

whlch 1s easily obtained from Fact {.11.

Fact 4.lq
For all

L#l

D )zO,

['*r'j.f 
)r 

I

and whether lt equals the upper bound or the lower bound

depends on r.

t-l
Theorern 4.15

For r = OrI and 2,

Proof

DrRHo ,rj:: ), >r2.D + I

rf Duawo ,tj::') ( a.D then there are functlons

flrf.rfrand fU such that ,';j] = f, z\ f, ,V. f jA fU and

DHl.Hp(fl)< 2.D - 2 for all 1( i( 4.

Notlng Lennas I1.1, 4.2, each fi (I< 1-< 4) can be

3

where .rJ = Aot e%l

6one input.

represented as
\l
\/trlV
J e ut

and each ZO 1s
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Also,

for all lrJ,

for all i, ^D-1 -
( t' -r' (4.f).

f, will be denoted by the set of

%i

Nt

Thls rel)resentatlon of

terne
)tltinil where tr1 = | 

*t 
l

ff) (1.e. t1J I O).

be distinct, i.e,

an be represented by the set

M(

o

1k

c

(
F1 = tttt' 

tLT t13t'

and for all i,J, trJ ls 1n I

Also, each tern is assuned t
j/t<+rtJl r

In vlew of Fact 4.10, flA fa

(
F12 =lttrAtzro

I :"::'J " ,,r,j'f){, o)).I t.n.tz )

Each tern 1n Fra ls nonconstant and we asaune that each

tern 1s dlstln"a. tr4 can be sim:ilar1y deflned.
Taken together, tr'acts 4.lO and 11.15 show that at least

one of Frerlj4 contalne not ress thanb'|/1/2 irnpricants.
wlthout ross of seneralitv, we a66urne that l"r.f >b4d.
l{lth thls assurnption, we now estabr.lsh the theorem by a

rather dellcate analysle of comblned growth rates. The

followlng property of lnpllcants is essentlal to the proof.
rf tae F1, tbrt.€ F, and tJtu,t.^t.. Frz, then

co*espondlng to t, there le a unlque resldue r.r O5r"<J,



rnen Ln vl.ew of (4.t),

I I ^D-r
J 

Extra ftrr) 
| 
( z. /a _ M

1 lrzo-r ' l\[: 
"J.If re now let

(t\
'F - )+r11 = ttu I tttn teJ, t,, ntrJ. rrrlr

then from the upper bound of M on Fanout (t) for any tern t,
we have

B7

and a dornaln 0". *ro, 
louf = eo-r such that

tb,t"erli,.j:l.t){xro-'")) (4.4)

where ra+rb = r (moa 3;. The ve.]ldlty of thls observatlon
can be checked by notlng (4.2) anrr Fact 4.10. By synrnetry, the
property holds when t". F2 and tOrt.€Fr.
We now deflne

l( r )l



\ ltr.l - lr*t".(t11) I Z " - o(1).
/ M l-

(4.4) shows that lf tt:-rttj are both ln Tr' then they
rrD-I r _ 

rr rrJ rr' 
I Iln rM( t;:"-- i {otr)) and so the maximurn size of ltr.t Irr_rL | __ l

on.

n
The proof of Theoren 4,15 ccmbines results on the

naxtnun nunber of lmpllcants and on maximun impllcant slze

l.n order to prove a lower bound on D",^^,^{cj2")r. The
NANU - ) rt

di.fference between thi.s lower bound and the result of

Lemna 4.8 ls only I for all- values of D. However, the

j-mproved result is worthy of consideration as it provides

the largest lower bound on circui{,,,depth which has yet been

proved ror anv exrucf,f tl 
"-:;,11"1e 

tln'i11i;f ', 
-ot'l?r'. 

t--1L 
l'"9j1"'f '"''Jli:,:l-. li-''.ri' --' --ir.*l \.:l (,

conpJ,ex proof of thls result lndicatesl'liini-tatlons ln our

8B

Ttt

Property

are both

is not nore than

rruccjzD-I1, 
f 
'. (aaD-r-r - lr,.rl ). Extra (t11) 

|

^D ^D-1 ^D-1( zc * (2t ),(zz
\g6G ) + oczD)

whlch ls less than V,,A and we have a contradlctl

. j*';,.
rate-of-gfl,]9y,,rqh approacs{ .F}"1. A[hiqf :lori i16*bS.t \qlnas larger
than 2D.

. irr:.iJnll:t'.'r; ji ;.;i.ii-.. Lii ','.i"i'bt'i":l "r;i'i' .{( 1.lr:'rrr';i ":i -"' t-1"'1 
'l'','; 3':i:!tr"l

:it i ir \:.Liiiiigll\".1 ,1.i.1' 
",'i i, ,' .i 

';'4";l 
;:ii i' i 1'' *;i1 1;i-l'-li;; '1;i 'i.'';-''.': -.': ' '; r''"

1"
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The problen of whether the lower bound of Lenrna 4.8 le

achlevable for sone flxed k>t remalns unresolved. The

followlng bounds on the number of dlstlnct lmpllcants of

C, -- are easlly obtalned from Fact Ii.11'
4rr

ForallD)1'

22D- 2
ri.r ( c[2:) )

and the Preclse value dePends on r'

Ilowever, the proof technique of Theorem 4'15 seens to

,^Dr
apply only U c)lr', and the best lower bound we have on

,^D.
Dlt.o,Nu(c;cr'), for k I J, ls Lemna 4.8.

we conclude thls 6ectlon by establlshlng upper bounds

on the depth "t t;1or' for k = J24'

Theorem 4.L7

For r = OlI and 2,

r^Dr
Ds.(c)i"r) 5 a.o

Proof

Tbe tbeoren ls true for D = 0. To show lnductively

that lt ls true for all D)rO, we aEsume tt ls true for D = n.



90

Let *lr = (*o,x1r... r*rr-r.) "rra 
x!r, = ( *ror.'. rxan*r_, )

, -n+1 ,,

'):, 
/ (xrn+r) nav be expressed ae

"t:"), (nod r)(xIn) = rt::r, (nod r) (xan)

, n. ,!l)),., (noa 3 r 
(*1" ) = 

,t::',., (ruod r ) (xan )

and so the theorem 1s true for D = n+l and thus for all D >o

n
Corollary 4.18

For r = 0r1 and 2,

D*R^rp ,tt::r) ( +.o

Proof

We now ehow that the upper bound of 4,18 can be lnproved.

Theoren 4.1o

For aLl D)O and for r = Orl and 2,

Duauo,rj::)) g 6.0

a4d

By Lenna 2.4

n

D^*^ro,uj::,)( 6.o
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Proof

As ln Theoren 4.I2, tbe proof ls by lnductlon on D.

However, the lnductlve step 1s srlghtly more compllcated.
For aimpllclty, wo requlre tlrc [o.l].r_rwlrrr{ :

Notatlon

(C, n, I) w111 denote the functlon

( El)c3,R (nod l)(I)

and (e, R, I) w11I denote its complenent.

EJ. QSrr(xrY) can be expressed as

(rrvrr) rawo (flvf4).NAND. f5 NAND f6

where ff = (Cr2rrX)

f, = (c,2r+I,y)
f, = (CrZt+ZrX)

rU = (cre",I)
t, = (crZr+I,X)
t, = (crar+2,y)

E-3. d5r*(I,I) can be expreased as

(T, u^o,ro TT.NAND. ?, Nalro T4)z1t?rv?rl
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EJ, d3r"{Irt) can be expressed as

(srve, )NAND(E' v E, ). NAND. (s, v s4)NAND(EI t E *)

whc're gI =(Crer,4)
Bz = (crerrY)

83 = (c,er+f ,4 )
84 = (c,ertz,I )

g--&. tf ,"(IrI) can be exlressed ae

(E. xano [u .NAND.st NAND s) A (E, uauo EU .NAND. sj NAND s4)

Inductlve step

Let xlo, *lrr, *io, *lo be a partltlon or x,*D*I.

We glve the lnductive step as an algorithn for constructlng

NAND ctrcults for Crrr(XOo*l) and its cornplement.

%
I) Express C3r, uslng E 1.

2) Express the resultlng tr{xl ,xZ), tr(x1rx4),

rr{xl,x2) ana fu(x3 rx4) ustns E 4.

t) Rxpress rr{xlrxa) and tr{x3 rx4) uslng E 1.
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7-4.r

1) Express C,r, uslng E J.

2) Bxprese the resultlng sr(xI ,x2), sr$3rX4),

srixlrxa) *d e4(*5,x4) using E 4.

, Express EL, Ez, E3 ana EU u"tng E 2,

In each ca6e ye then transforn subcircults accordlng to

the ldentlty

(xo llAI'lD x, .NAND. xa NAN, *3): (xonx, .V, xrA xt)

and slmulate any remainlng V -6ates uslng

(xo NRND xo .NAND. x, NAND *I) E (xo w xt)

This completes the proof of the inductlve step and the

result follows by uoting that the theorem is true for D=O.

n

Corollary 4.2O

,^Dr
2D + 1( Dr,rar,ro(rli"') 4 lo * o(r)

Proof

By Theorens {.15, 4.19 ^u F/d ) 2D

n

Vllfan (L9?2) descrlbes a short formula t"" t[:3 whlcb

was suggested by A. Meyer. We show how thls can be used to
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obtaln an upper bound oo Dlr.tNDrcftlt which is wlthln o(1og n)

of the lower bound ln Lemma I1.8.

For n = 2k,

,\

';:6 
(xn) =

where IIk(Xn) ana tk(Xn) are the functj-ons which conpute

the h1gh and low order diglts of the blnary representatlon of

n-I
L*, (mod 4)
1=O

Thus, Ho(xo) 
= 

O, Lo(xo): xo

By blnary addltion (nod 4),
n-l

Lr.(Xr,) = @*r'^ 1=O

and Hn( Xo ) =Hk-t f xlr.-r ) @ tin-, f xjr.-r ) @ ( r,u-, f xlr.-r ) zr r,o-, (xzk-r ) )

where *ln-, = (*orx1r "'rxrk-l-r)

aud' *in-t =(*.n-r'tzk-t*1''' ., *rn-r)

By recurslvely applylng thls identlty we obtaln a fornula

for Ho(xo) whlch, after reassoclatlonr &&y be expressed, ae

frk (xn) A fk (xn)



95

k

ett
1=1

Dar(tio{xr,)) ( Ios n . [t"u nl

where F, ls a fornula of size n which contalne every x, € Xr,.

Hence, ora(Lli(xn)) = log n

and thus oBa(t[:])( ros n + loslos n + o(])

If n 1s not a power of two, we can obtaln a fornula for

t[13 rrom one t"r t[T], where n< n(2.n and n ls a power

of two. Therefore, the above upper bound holds for all \)rL.

Conbinlng this constructlon vrith the result of Lenma 2.4r

yleIds

D*anp,t,::]) (z tos n + o (roe n)

Forrnutae tor c,(n?. c!"1 ana cln] can all be obtalned4rr' 4r1 4t)

fron f ornularr ror c,!n+3 ) and so the6e upper bounds on depth
4ru

over Ba and NAND hold for all r.



5. SYI'{MIITRIC flt.NCTl.Ot'ls

Sytnnefrl"c fttnctlonr; a1':i.r,;c i-n rii,.)r.)' fanr.i-l:Lar ccrmputatlclna-'t.

problelns such as e ortlng lrid trountJ-rr1;. Thercfor.c, thc

inherent conplexity of syrnr,retr'i.c fiurcLj-ons is closely reLated

to the potentiai efficlency of aigc.rr.iilrins for nany practical
problens. The propertles of eymne+-r1c functlons nake then

lnterestin6 fron a theoretj.cal- polnt of vi-ell anrl lt is pe::haps

thls, more than any practlcal signif:Lcance, which has

stimurated much of the research into thej-r cornputatlonal

c onplexi ty.

There is a long hlstory of lmproveiiients to the best lurol'rn

upper bound on the formura size of all, oymmetrlc Boolean

functtons. Korobkov (Lg56) seems to irave been flrst to

lnvestlgate thle probrern. The first polynoniar upper bound

yas dertved by Khrapchenko (]_?ZZb) vrho showed that

"or(trr) 
..< n4.9f

sone recent advances have been nad.e for the full basls Br.

The best upper bound published to date is due to Fc-ppenger

(1974).

rn (s^) = g1n3'551
-2"

A useful theoren for deriving 1ower bounds on the

fornula slze of Boolean functi.ons over the basls B, 1s due

to Neclporuk (1956). For any f(Xn) €Rrr, suppose the
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to O or I 1n sone way, the result ls a restrlctlon of

functlon f'(Rl). Let m, bo the number of dlfferent such

restrictions f\ for all possible flxatlons of the other

varlables. Then we have the followlng

Ttrepren (Neclporuk ( 1955 ) )

There exists a ) O such that for all t,

argumentu X' are partitloned j.nto blocks RIr... rRp.

6one 1 the argurnents 1n all the blocks R, r J I L, are

p

FR (f) ) a. I rog t",
"z t=I r

where the nrr6 are as deflned above

tl
Uslng thls theorem, Neclporuk (1965) has derlved lower

bounds of n2/Iog n for some rather artlflclal functlons, each

of whlch lnvolve 6one notion of t'lndlrect addreeeingrr. Earper

and Savage (L972) have also applied thls theorem to a practlcal

combinatorial problen and obtained. a lower bound of a. o3/Z .

For synrnetrlc functions, the naxlrr.lo Dllober of dlstlnct

restrlctlons of a block of slze r Ls llmlted to :nln {4"*tro-t*r)
and thus only llnear lower bounds can be obtalned by thle

technlque. The best lower bound whlch has been proved for

any such functlon over the bas1" Ba is due to

Elscher, Meyer and Paterson (I97r) who have shown that nany

ff for

flxed

t, a
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symmetrlc functlons reclulre formulae of size at lea"st

n 1og n,/ 1o61o9 n. ( l4.S.Paterson ha.s irnprorrecl this loryer

bound to n log n. )

,.I A COI?OLLARY 0!' A TIIEORIII1 01,- S}'llcllllR. In thle section

rve conslder the complexlty of symnetrlc func Llons over the

full basis B^.
E

For clrcuit slze, the results of Schnom (1974), Q975)

inply that for each n) 2 all but eight of the ,n+1 functione

1n Sn have circuit slze which ie at 1c'a6t 2n - 3. The eJ-ght

exceptlons consist of two constant function.s and six vlth
clrcuit sj-ze n-1. Stockmeyer (tgZ1) shorvs that at least one

half of the functions in S' have circult si.ze whlch is at
tr

Leaat (//Z)n - ,, Ee also states that

aur(rn) ( 6.n

For formuLa size we have the important reeult of Hodes

and Specker (1968) whlch gives non-lj-near lower bounds for a

number of lnteresting Boolean functlon-q. Pateroon (1976)

potnts out that when the theoren of Specker 1s restricted to

eynmetrlc functlons lt can be restated as

Theorem 5.1 (Hoaes and Specher (1958))

For all f ln Sr, -Arr, where A' t" ciefineri overleaf ,

rR(f))n.t(n)
"2

for sone (slowly growlng) functlon t(n) vrith t -+ oo

aB n )oo, where t(n)(1og* n

il
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Deflnltlons
n-2

Let EQ(xn) = A f *r= *r*r] .

Usi-ng our notatlon for the "definlng vectorrt of a

synrnetrlc functi-on, we deflne

Ar, = {t tto 
I tt, rl,r3,r5,...,fn-r) AEQ( rz,r4,16,...,tr,-r)}

for n even, and
.rl

Ao = {r es,, I t*, rt,r3,r5,"',fn-z)nrq1 rz,r4,r6,-..,tr,-r)J

for n odd.

Note

There are precisely 15 functions in An and the deflnln6

vector of each such function has one of the forns:

(rroror.......... ror?)
(trtrlr... ..11r?)
(rror1rorlr.. .. ... . , ?)

(trt,orlror.. .... .., ?)

Corollary q,2

For alL f ln Srr, erther
f-l

DB-(f) < fros nl * .
"2

or

DB_(f ) ), tog, u + 1og t(n) - O(1)
"z

for sorne t(n) wlth t+co as n+oo
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Proof

i, Lower bound ls lnmedlate fron Theoren 5.1 while the

upper bound can be verlfied by conslderln6 forrnulae for
functlons ln Ao

tl
rt seems'likely that the lower bound ln corolLary J.2

can be lnproved to 1og u + log106 n - O(I). However, at
preeent thls 1s an open problen.

5.2 lOltIER BOuNDs ovER IINATE BAsBs. we now prove slmilar
ttgapt' theorems for the depth of symmetrlc functlon6 over

varlous unate bases and for the depth of monotone synmetrlc

(threshold) functlons over the basls Mr.

some slmple facts about the defi-ning vector of synnetrlc

functlons are glven wlthout proof.

Fact 5.1

f , the cornplenent of sone f ln Srr, ls deflned by

/r-\

\ fotf1rfAr...rfn)

Fact 5.4

Let ? uu the function conputed by a circult for sone f
in so slth all nonconetant lnputs conplenented. Then f 1e

deflned uy (fn, fn_I ,.. O rfzrf., fo)

tl
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Deflnltlons
(l')

K,. = tr € sn I tq (tfnzul, t;-,,/u1 * r' . - ., rp"t 
4) )

Qo = {r.r,, l tt(r'r2,...,r"-r)}

Kr, ls the subset of n argument synmetric functlons

whose deflnlng vector is elther

('" 
*1"'?'o'r'?' I "?)

or f,l y",r)

(r,......| ,?,r,r",1-.....,?)

whlle the definlng vector of any functlon frr{n has one of

the forns:

(rroror. ... .. ,0, ?>

(rrr111......r1r?>

Thue, there are preclsely elght functlon" fn ![o.

Exanples. suM(t) lu 1r, Kr..

EI"), the rth "lurentary synimetrlc functlon len

io i[n.
Theorem E.q

elther

oe"l +1

For all f €Snr

Du (r) ( [r-2
or

Dn_ (f)) roe-2 n+lo6logn-o(1)
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hoof

A result
the assertion

n 1f 'l
-ll \ 4 /-2

The upper

func tions

following

For all f

ou,

Proof

In the deflnlng vector of each fu

there ls a consecutlve block of length

whlch has one of the followlng foras:

0r1r0r01.....1o

l11roror.....1o

oror...1o1or1r0

oror...l01orlrI

of Khrapchenko (I97Za) can be perraphrased as

that for all f in K'r

)rz.togn-o(1)

bound can be verlfied by considerlng fornulae for
f fnE-. Thus, the result fol-Lows fron then

mma

tl
1e

lnsn-[*""I"],
(t)> los n + 1os1o6 n - o(1)

ncti-on f(xn) in S,r-[*r"C"J

n, L"/rJ + 2(p(n+1,

1r0r1r1r.....11

0ror1r1r.. ...,I

1r1r...1111ror1

rrlr... r1rrroro

By settlng argu&ents to constants and simpllfylng a clrcult
whlch computes f, we can obtaln a clrcult whlch le not deeper

and wblch conputes 6ome fr 1o sp_1, where fr ls deflned by a

vector 1n one of the above forms.

Lemna
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Over the basl" U2, the output and variable lnputs of a

clrcuit nay be complenented without increasi-ng depth. In

vlew of thls and Factl 5.3' 5.4r we need only coneider those

functlons whlch are deflned by the vectorg

(o,orlrlr......11)

and (trorlrl, .,1) .

Krichevskll (1954) has shown that on p-l argunents, each

of these symnetrlc functj-ons requlres formula size of order

at least p log P over the bas1" U2.

ror f/ej * t(n(r, * I and any such fr 1o Sp-I, thls y1eLds

DUa(f') )tog, n + 1og1og n - o(1)

Lemma 5,7

For ^nf"/'-J <n(n+1,

Proof

' Imnedlate from the definition ot r[n)
D

Theorem q.8

For all f 1n sl,

n[n) , {t l' . nlo'} t ,"

Dru,Ho (il )t e [-roe "l - t
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hoof

I
S,, ls the set of nonconstant functlons ln Sn.

Let f be some functlon rn sj. ,rhen from Theorom r1.j,

we have

(r e PSn/a-l* r fl to) +(Dnano(r) >/.[io, nl - el

The result then follows froro Lenma 5.2 if we note that
for all f ln Bor

Duaro(r)+r)oro*o(?)

ustng identlcal proof techniques to those used, for
Theoren 5.8 we can prove that for all f j t

-n Sor

Dlivarlo,+l(f) > rosr1.log n - o(r)

where d ie tbe golden rati-o, by uslng Theoren 2.I4.

we have establlshed that over various unate bases there
ls an lnportant gap ln the depths of symmetric frrnctlons.
rt is lnterestlng to note that for eacir of the basee

rlr')rL = NAND' I NAND ') ] and t- ro J there 1s no functlon t
Iln So such that

DJL(f)=logn+o(IoSn)
although there are functj-ons 1n sl which have rinear fornula
etze over -fL.
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Final1y, we 61ve an ea6y corollary of Theorem 5.5 whlch

establlshes a slgnlflcant gap 1n the depths of threshold

functlons over the rnonotone basls Ma.

Deflnitlon

/- \Let Tl",,(Xn) be the symnetric Boolean functlon whlcb

n-1
-1s 1lff L*t)to.
i=O

rn - f.n(ol t 'l (,, ,. ^ 'lI'n = Itr;-'f o<n(o/ = t\t',t,r/ 1s the eet of threshotd

functlons o

Notlng the fact that }4ACVZ, we have the followlng

Corollary q.9

For all f ln Trr, elther

Dur(t) < [t"* "l
or

DM (f))tog, n + loglos n - o(1)'2
n
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6. HIERARCHIES

In a prevlous chapter wo noted tlr,rt talrnost alll
BooLean functlons requlre 1ar6e arnountr; of depth. Ilowever,

at present we have only sma11 l-ower bounds on the depth of

expllcl.tly defined functlons and 1t would appear to be a

dlfflcult problen to substantially lmprove upon theee lower

bounds.

Given thl-s sltuatlon, it is natural to ask whether

there exlst functions f ln B. of depthr say, 1og2n o" n*.

In the absence of closely natching bounds for speclflc

functions, we can answer such questions by demonetratlng

that the depths of Boolean functlons form a reasonably

uniform hlerarchy. Hlerarchies often yleld varuabre lnslght
when exact bounds for speclflc functlons are dlfflcult to

derlve.

In thls chapter we exhlblt varioue hierarchJ.es for sets

of Boolean functlons. These are obtained fron bounds for.
farnost arlr function6 by defining a 6equence of functions

Ln terms of subclrcults for sone function of nearly maxlnal

complexlty and 1n sone cassa by employing a npaddlngrr technlque.

De flnltlons

Depthrr(s,z; = [t.ulo-r-(r) < z)
c.slze-r-(s,z) = {f €slcJz(f) < ,}
F.slze-r-(s,z) = [r.sf r-.,-Crl ( "]
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Lernna 6.1

For all conrplete binar:y barcs JLand all oufficiently
largr-, p,

Depth Jt (Bn,i ) t De1,tl 
-n_( 

B, , i_+.1. )

I'rhencver O$ 1( n - 1o61o, n - (l )

Proo l-

In Chapter ] we noted that for all such fL anri for all
n7rO, there is some f ln B' such that

D ..., (f) ='Z)tn - 1o5;1oe n - O(1)JL

Let /3 be a circult of depth Z over the basis fL in vrhich/
there 1s a gate ! which computeo f.

If f, ,f. are the functions computed by the palr ofNt' az

arc6 entering V, then vre have either

Drt(L ) = z-I
'1

orr(lra) - z-t

Wlthout loss of generallty, a66ume

Dr,_(ftrt) = Z-I

Then by applyln6 thls argument inductj-vely to f^, and so on,t1

we can derive a sequence of Bool.ean function" {tr} for o(i(Z,

where DJL(fi) = i. As each of these functions f, depends on

n or fewer arguments, we can define f{ to be 6ome functlon

1nB

t]

or
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9orol]all*6 .2

DepLh,n^ ( t't, i ) f' oepilr,,,^ ( t'n, i+1)"2 "2

whenever O(:i(n - * log n - 1o1;Io6 n - O(I)

Proo f

Identical to Lemna 5.I, using Lemr:ra J.B

rl

De flnl t1 on

Let B- be the set of n argument Boo_]-ean functions whichn

depend on all n arguments and lr,t l,ll be the corregponciing setn

of monotone functlons.

Lemma 5. q

For all complete blnary bases -fland all sufficiently
lar6e n,

Depth ,^L(B; ,L) f Depthf ni,r+a)

whenever fros n1 ( 1(n - )ogIoe, n - O(t)

Proof

Uej-ng the nethod of Lerorna 5.1 we can derlve a sequence

of Boolean functj-on" fl ,f Zrf jr,.... s!, tvhere

D_,r-(fr) = i
Zbo-loslosn-0(1)

and each fi. depends on o(1 argurnents, i- ( x, < n for all 1.

For all complete blnary bases fL,
lt

_n..n 82 / fr



109

Lot o be soriie functicrr i-' rr-n n-1. .9ince o ray not l.,e

assoclatlve, we i'ductivc.,y del-irie 6., to bc- ,t6-1' ) "( 
nd 

"., 
)

for all n)2, a:ic note ti,:,t 
r$x., 

,."trl ,;. 
i;o * 

'{/e] '
i=0 -

| ^' 
lL-'l

Lct r'-itxr,) - frt.\o,, ) o,i)',,. ivho).r: f; = T:. 1f o e fi,lliltn,;lon,-r,*--i- 1 J,'.{, e

e.no tlrr(Tr. ) = 1-1 , ij =fj ,ii'l,utu,iu".
ttlTheir fl(Xn), fA (Xn), . . . . , rr(xo) havc the foflovring proSrerties

The lower bound followe from

-l1(Dr-.,-(fr)(i+r

the fol1owin6 tvro facts :

to airprop'r'iate c onstants r ln a

I
fr(Xn)rvre can obtaln a cJ.rcuit

(or Ti tf o e{:;rul,l'ioR,--+,F

a)

b)

The upper bound follows fron the

n-1
D-* (.9 

", , ( ft", Jl .
J=\''

Drz(ri)("* {F".'l ,- L'
The hlera.rchy then follouil from t

f r)
eequcnce [t, ]

fact that

Thus,

,.).
)

hese

I

properties of the

i) W, r(i(2, r]en" and thusVr, t.(i(2, n-rr(rli>[t"* rl
j.1) W, [t"* Jl

By settlng *o. ,.. . rxn_l
L

clrcult whj-ch cornputes

whi-ch computes ft(Xoi )

and. D',.(?l) Z r .)

Drr-(fr) = 1.



Coro]lary 5.4

Derthr, (r'rj,rI $ o"ntht"{rf r:]j,:.*zI

whcnevcr fi"r Jl ( 1(n - { tor,; n - loi;ros n - o(t)
n

Simi-Iar hi-crarchies can be obtalned for formula size

and circult slze.

Lenma 6,2

For all complete binary bases -fL and all eufficiently 1arge n,

F.Slzerr-(8,,,i.) 7 F. Slze-rr.(Bn,Z.1 )

whelrever 1.<i( en-1,zIog o

110

Proof

The counting argunent of Riordan and Shannon (1942)

shows that for all ouch Jlanci for all n)rOt there is some

f ln Bo such that FJz(f ) = F )c,Zn/i-o6 tt for sone constant c.

Let/j be a formula of size F over the basisfLln which

there ls a gate 0 whlch computes f.
If f ,f .^ are tbe functlons conrputed by the palr ofut' lz

arc6 entering 1, then we have either
t--r
lE/zl|( err(1, ) (r

'1
or
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Wlthor,rt loss of genei'aIity, ascurue that

1,,4
By appl.ylng thls ar8umcnt inductlvsl.y to tr, ,nO 60 on,

we can d.erive a sequence of Boolean functions ttr)
for 1.(1(pr where

i) froc rl gp(r-1
11) FJa( fl ) = 2, f'r.'( rn ) = F

ij-1) vt, 1(1(p, Fjr(fi) (Fn(fi*r)<2.rra(fi)

As each of these functlons f, depends on not nore than

n arguments, we can deflne fi to be 6orne function in Bn.

Ilavlng deflned the sequence of functions 1n thls way,

Lenma 6.6

For all conplete binary basee J1sn6 all sufficiently large n,

C.Sizer-(Bn, 1 ) ? c. sizerl(Bn,21 )

whenever 1<t(at-lln.

Proof

Simllar to Lenna 5.J, uslng the fact that for all such -fl-
and for all n).O, there is sone f l-n Bn such that C- (f)7c.zn/n

for some constant c.
n

the lemna follows funnedlately

n
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7. CONCLUSION

We have presented a nurnber of results on the clrcult

cornplexlty of Boolean functlons. For nrany of the problems

consldered there remaln important gaps between the best knowir

lower and upper bounds. The unlform hierarchies whj-ch we

exhlbited in the last chapter are particularly lnterestlng

ln Juxtaposltlon wlth the gap theorerns for syrametrlc functlone

ln Chapter 5. Taken together, these results show a number of

cases where there ls a Boolean function of a certain conplexity

but no synmetrlc functlon of that complexity. For example,

conslder Theoren 5.5 and Lemma 6.J. An exanple tn the caee

of roonotone complexlty 1s provided by Corollaries 5.9 and 5.4.

Every aonconstant syrnmetrlc function depends on all 1te

argunento. ft seens that thls property and others of the

functions ln S' preclude the possiblllty of unlform conplexity

hlerarchles for So. Our results give sone forrc;l Justification
for thls lntultlon. Although, from the two exanples expllcltly

nentloned above, we 6ee that dependence on all arguments does

not alone explain the eharp distinction between the com^o1exJ.ty

hierarchlee for synrnetrts functions and those for sets such ae

EIM
"nt 'rn'

It has often been renarked that good theories rarely

develop outslde the context of a bacl<ground of well understood

real problens and speclal cases. Therefore, 1n order to bu1ld

a reallstlc theory of cor:cputational conplexlty we ought to
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concerltratc on acquirln6 a (iecper unclerstancli.n;; of particulat:
probleno and hope that l'rorrr tlrlri we rvill bc,rrl.,1e to guess ancl

prove rrtore gener.'al- prirrc.L pl.cc, I'or. this rear,cn r the naln aim

of the rescarch reported here was to acquirc ir. rleeper

understanding of some particular problerns concerning the

circuit depth of Boolea.l f'uncti_ons.

This conservative attitude to the development of a theory

of conrplexlty ls supported by the fact that there are already

several instances where stud.ies of a particurar problem in
computational complexlty have shown intuition to be vrrong r

e.B. 1n the problems of lnteger nultiplication, natrix
nultipllcation and findlng the mccilan. clas-ej.ca1ly these

problerns take tlne n2, nJ anC n 1og n regpectlvely and

lntultlon mlght suggest that these upper bounds are optlnal.
However, we nov/ have procedures for these probrems which only

requlre tlme n log n log1og n, n2'B1 and Jn respectiveJ.y.

Thls shows that nany of our beliefs which seen to be con&on

Ben6e nay turn out to be false.

rf re focus our attention on the conple:<ity of finlte
functions, then there are several open questions of recognlzed

lnportance. These lnclude the problens of verifylng cookrs

conjecture on tlne versua space uslng results on circuit
conplexlty, and of verlfylnt, that p I Np by ;, clrcuit theoretlc
approach. Besldes these najor open problens there are a :nyrlad

of questlons which renaln unresolved. l"lany of these have been

suggested in the precedlng chapters. .
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l4iany problems of practicar and thcoretical interest can

be convoniently formulated ln tcrno of ttre clrcult cornplexity

of IJoolean frrtrctlonc. liur:lr r';rrllr har; rt,c:errtly been dorre ln
thlA af ea &6 CAn bc fi()cn floin l,lrc e-xtcrrulvc 11st oI' rc J'oretrccu.

Ijowever, the lar6e nuuber of olren prob)-ens, conjectures etc. r

lndlcate the ernbaruas;ingi.;' Iar.le galr;; i,.irich rerna.i-n in our

knowledge. This 1s p:.imari.ly due to our j.nability to prove

large lower bounds on the complexity of nany familj-ar expIlcitl;r
deflned f urrc tlons.

Although much has already been attainecl, even more remalns

to be done before we can achieve our ultirnate goal, a reallstic
theory of computational cornplexity.
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Appendlx. SHORT FORMULAE FOR THRESHOLD FUNCTIONS.

Many sorting algorlthms can be rnodelled by networks of
conparator gates. A comparator network ls a (non feedbach)

switchlng network, composed of 2-lnput 2-output gates, whose

lnputs are drawn from aone totally ordered set (e.g. the

non-negatlve lntegers). one output of each gate corresponds

to the naxinun of the two lnputs and the other comesponds

to tbe nlnj-mun. Such a network can only represent a subset

of the sorting algorlthns which could be carried out by a

general purpose conputer. It cannot, for example, model

algorlthne where the conparlson tree ls altered and pruned

a6 uore lnformatlon becomes available about the orderlng of
the lnputs.

We nay use the Boolean notatj-on aVb and aAb for the

naxlmun and nlnlnum, respectlvely, of two nunbers a and b.

The interpretation of theee expressions, howevel., depends

upon the domaln of the variables. This notatlon is conventent

for the analysle of sortlng netvrorks slnce it pernits the

outpute of such a network to be descrlbed by monotone

Eoo1ean fornulae.

It ls welL known that a network of comparator gates

n numbers lf and only lf, when lnterpreted as a network

and V gates, 1t reallzes the set of threshold functlons

sorts

ofA

*(n )-k, for I -(k(n. Thls can be easily 6een by conslderlng a

lnputs fron {o,t}o.network which sorts
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Therefore, the lnherent monotone complexity of threshold

functions ls closely related to the potential efflciency of

sortlng networks. In partlcular, the delay required by a

network of conparator gates whlch sorts n numbers need be no

nore than DM(Tn).

In prevloua 6ectlons we have established a number ot

bounds on tbe depth of threshold functj-ons over nonassociatlve

bases such as NAND, {naNO,+}. E.g. vre have shov/n that over

the basls NAND there ls a 1ower bound of Zft"t .l - J on the

(n )
depth of T; / fot a1I O(k(n. We now consider the deptb

and fornula slze or t[n), for l (k(n, over bases such as

BZrVZandMZ.IllrstwenotetwosJ-mplere]ationsbetween

threshold functlons and elementary s;rmnnetric functlons.

(:.) For all o\< k <n, t,!n)= t,l")^ flii .

(11) For alr s 1 ir r(nr ,,!")= 
*1"' .

These ldentltles show that over complete bases such as BarU2r

there is a close correlation betleen the conplexities of

functions in these two 6ets.
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Hodes and Speckor (1968) shorv that for, ;rtl 1(k (n,

l. r.n(n)rl'82 (Tk-' ' ) ), nt(n) wher'o t (n ) + oo as rr -) oo, whlle

l{. s. Paterson has derived a }ower bourrl of order
n 1og n on the fornrula size of Tg )

t"iZl over this
baels. (a weaker verslon of the result which prove. thls
lower bound appears in Fischer., l"leyer ancl paterson (].925)),

The result of KrLchevekll (I96D can be used to show

that for all 1( k (n, Frr^(T[n)) ). c,n 1o6 n for sorre constant Cu2,'

wh1le Khrapchenko (Ig?aa) has proved that

F rm(n ) ,, .. (n+l- )2'U2'* f"/e1 +L) y' -T--

As MrcArcB2r these lower bound-s also hold for the

monotone basls Mr.

u|e have already noted that 0(r.t',r1) ls an upper bound
on the fornula slze of arr synnctrlc functions over the
basls B, and thus on the fornula size of T!" )

fiizl' slnilarlY'
Khrapchenko (t9?za) descrlbes a construction whlch shows that

F rm(n) r) = g1n4.52,'ua'^ 
fn/z-l

rf we consider the basi" %, r','e find that the best known
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upper bound on the raonotone depth of tll)rf ls- ln/at
)

*(fog n)' + O(1og n). This upper bound follows from a

probablllstlc argument derived lndependently by l(hasin (1970)

and Pippenger (f975). Pi,l.rpcnger refors to resul-ls obtalned

1n thls way a6 Itexlstentlal- proposltionsrr. In both ca6ea a

sinllar argument ls used to show that 1og n + 1og1oE n + 0(1 )

1s an upper bound on the nonotone depth of all threshold

1* \
functions T.t"/ wlth fixed. threshold k.

K

ErdUs and Spencer (1974) have denonstrated the povrer of

the probabllistlc, or nonconstructive, method of proving

theorensr l.e. proving that 6ome member of a class has a

certaln property wlthout actually constructing that nenber.

0nce a result has been establlehed by nonconstructlve nethods,

lt often bocomee lnterestlng to obtaln a proof by constructlon,

1.e. to replace existential proposi-tions by algorithns whlch

construct nathenatlcal objects.

Following this approach, we now describe several short

fornulae for t[n) whe.e k is sone flxed number lndependent

of n. Expllcit constructlone are given for all formulae,

6ome of which are non-monotone. However, only for k = 2 bave

we obtained an explicit formula of depth 1og n + 1og1og n + O(1)

or of length O(n 1og n) although these bounds should be posslble

for all flxed k.
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1. THRESIIoLD K, K< 7

Threshold 2

For n = zk, t:")("o) may be expressed as

r r(n/ 
z) {xr nr r) v r!"/ e) {*lr; u. ,(n/ 2' ,*I, ,) nr(*/ z' Git r)

where *It, = (*o'xr,' " ,xn/z-r) and *?rt, = (*nrr,*o/z+r, . . . ,*r,-r)

By recurslvely applying this identity we obtain a nonotone

/- \
formula for T)"'(Xn) which, after reassociation, nay be

expressed as r,
\ k/
\/nvr
1=1

wherg,,F, ls a monotone formula of size n which contalns

every *i€ Xo

Eence, we have glven an expliclt constructlon which sbows

that

o"a

If a 1s not a power of two, we can obtain a nonotone formula
(n) lrn)forT)..,frononeforT)..,,wheren<n(2nandnisapower

of two. Therefore, we have an upper bound of 1og n + 1o61oe n+ 0(t)
for all n)tL.

ft

trj"))( ros n + loslos n for n - zk



I21

We ehall informally describe our short formulae for
k> 2, uslng 6one unusual notatj-on.

De f1n1tlon

I
We shall a66une a parti-tion of X. into nz blocks :

XlrX2 ,x3 ,.. . ,*o*
each of slze n*.

Notation

tn(tn) vrlIl denote

rto*) ,1' 
tn*) (x1) ,, {oJ ) (xz ) ,. . . , rlnn) (,,o*) )

Threshold a

r(n) h^r,rt-' may be expressed us1n6 the ldentlty

*(n) _ "-3 ^1(T' ) vr3(T1) v (11(r2) n rr(T1))

Fron this ldentlty we obtain the follolving recurrence

rel-ation for the formula size or r!").t

r".crj")) <rr,* rn, {rj"?)) * an* rl,iz(rjn*))
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we have already noted that rM^(Tjn)) = O(n 1og n)
'zu

r.. rr!n) ) 3 r,.* F, (rln+) ) + o (n loe n)' ' 'M2"3 \' rZ )

Now lf we let F-" (TIn)) = n.f(rog n), we have,r2 )

n.f (ros n) < en*n* rt* log n) + o(n 1og n)

.'. f(log n)(af(* 1og n) + 0(1og n)

f(Ioe n) - o(}oe n loglog n)

and thus

r* (Tjn)) = o(n 1og n loglog n))il

Open problen

Give an expl1-clt nonotone forrnula of slze

o(n 1os n) ro" rjn).

lhreshold 4

,(n) _ rn-4 -r(r4) v ru(rr)
v(rl(r1) ^11(r2))
v(12(11) A rl (rl ) )

+n-
v(ra(rr) nl[trrrt ) +rzrxil] I

and thls identlty ylelds the recurrence
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Therefore, from such a constructlon we obtaln

F,, (TI")) = o(n 1og n(locIog n)2)
'2+U

!'* (TIo)) (an* F,, rtjt+l) + o(n log n 1oglog n)UZ-+ -\- uZ r+

Threshold q

r(n) - 'F (tj^5 -1.^5) v rt(tt)
v(r2(rr) nrl(r4))
v(rf (rt) ^rt(rf ))
v(r4(r1) n rr(r2))

n*

" 
( [ [O 12(x1,]=o] n (rr(rJ).v.rf(11)nrr(ra) ) )

i=I
1

n'
v(rr(11) 

^ /\t rr(xl ) + rztxll] )
/-il

and thls ylelds the recurrence

1

FE ctlnl;( en* ro (T(tt))* o(n 1os n(toelos n)2)
"Z)-u2"/

frour whlch we obtaln

/- \
FD (T:,"'; = o(n 1og a(logIog n"z/

tr'or k = ) and 5, our f ormulae f or ffn ) u"" rrpsddinSfl

n-1
to cover cases where L"r>n dut, to the nol-monotonlclty

i=0
of the constructlon.

llr
n
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Threshold 5

r["]= rr(15)vrr(rr)
v(r5(11)^r1(r2))

v( 14 (r1 )^r1( r] ) )

v03(r1)^ rr(rU))

v(ra(r, ht, (r5 ) )

.*

"( [ tg, rr{xl,] =r] a (rr(ru)v(ru(11)^r1(ra) )

v(r3(11)^rr(rl))))

-*

"([[g, trcxlt] =o]  rr(rl))
1

n2- r,,Afrr{x1 )+rz(*t)]   r.'(rr))

(n)
u{T4(T1) /\ r4,3 (xn) )

In section 4.J we noted that

rurrc,lll )= o(n roe n)

Therefore, the above ldenrlty yields the recumence

rr.rrft)I5,o* rr.tr(;+)I + o(n tos n (loslos n)3)

fron which we obtaln

FD trjnl ) = o(n loe n (losros n)4)ozo
il
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Open problem

Glve an explicit formule, of size less than order

n Logz n rcr 't!n ) ."7

2. AN UPPI]R BOUND FOR Ai,L FIXED K.

Korobkov (1956) used the :-dentit.v

k , ,^\\^'/ (n/2)
Tk(xn) =V ri--' -'(*o,*1,.. .,*n/z_t) A ,L:f' ,*nrr,*n/z+1,.. .,xn_i)

and the nethod of dichotonry, or binary splitting, 1n orcier to

obtaln the bound

r'.. (rio)l = o(n (loe nrir-J-;-M^.'k t -
c

We nov; descrlbe a conrtruction l'rhich imnroves ur,on thls

upper bound.

Threshold 2P. p flxed

De fi-nltion
n 

(n ) 1" \ ..,,i .r .l .annc ssnl tle ith oigit j.s the
"i .^n, r/14r ^ ".';_j

binary representation oi I.' .
i=0 -

Let the ar6unent set l(Zn be partitloned into two
t/blocks X* and X- each of si.ze l. ?he blnar; di5its

t/l-\
Drt-^" (X^,_) can r.'o arznro.-.qr 4 .ecurcivei;- by constr.uctin,;-1 "'21'
the digits for XI ,X2 a.ncr. pc::for:..ing a binary alriticn

on the results.
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This bina;y addltlon can be perforrned using at set oj'

rrfull adderst' vlhich conpute each nerv dlgit rl and eacir

new camy c fron the digits dtrdtt of ilre sun:nancls and

the previous carry c 
t 
. By employing the forrrnrlae

d = dt e dtte at

c = cre ((ct e At)A (ct e al'))

l.n theee ful1 adders, we obtain the f orlorving results :

Forall 120,

,..,(Zn)..r, r'n\ r (n) 2.uL \^zrr) - Di '(x*) t or:", (x'-) o.ct

where 0i has a Boolean forrnula consi-sting o f 3i occlir,rences
/- \ 'lor nr(l j_, fxl l and 3i occurre.ces ot rl:l_ {xz) ,

for 0<j<1.

t/- \rr(ul"i {rn)) = 0(n(1og n)a) for att flxc,d i.ttz-J

Now coneiCer the func tlon t (f, ) ,rt u." p is fi:red.('
We may express tl:) using tht ide,ntity :

l'

tl:')(*r.) = r(l)rrt) v r(l)r*tl
Zv c-tL 2p Zp

v (cp_I e t rt 
(f 

], rxl l o cp_r )

A(c,,_r e r(:).,(,t) ) ) ).lr-r Zp-t

Thls ldentity, together *ith ti:e upper bound on Fnjnr) given
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above, yields tl:c recurr'cr..c(i

tu(tji")) {z.inr,{r(f,)) , e.rogrjil, I + 0(n(1os n)p-z).

\tle can prove by inductiorr o:r p sta:..l,ing from p=Z that

FB(T(l) I = o(n(1or, ,)!-1. (rocioe n)2)-2 2E

:.i "l

For e:carnple wlth p=J

"ujr6t")) < a.rB(rln)) + a.rB(rln)) + o(n loe n)

and uslrrg our upper bounci on tf", rve obtaln

tujt[" ) ) = o (n(ros n )2 (roeloe ,, )2 )

T/hen k 1s not a por';er of A, we can obtal-n a. fornula
/n'lfor Ti-' frorn one for

, , (;+er-t)

r^ -'lwhere zt''t < lc (.2r, by setting argLlnc:rts to the value l.

Ilence, lre have shorzn that for any fj.xed k,

1n\ fi- ;-l
rR(T;n)) = 0(u(1o6 n) llog kl -1. (1og1og n)2)

L
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0n tlie cotnbj Jtirtir)Iti-rl- i.r )irllrl.cxit)' of rrcrtain r;ymnetriC
Bool can f unc t.i ons.

l}li llcii'argl:',1:::rlg'i". iil .:i]i:
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Vl]fan, iJ. i1)'72)
The. corri,lexitj' o1' fj r,i i e I'ui:ctions.
Ph.L. thesis, 1,1.i.T.
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