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THE AIRY TAPE
AN EARLY CHAPTER IN THE HISTORY
OF DEBUGGING

Martin Campbell-Kelly
(RR153)

This paper describes a recently-found paper tape of an undebugged program written for the EDSAC computer
in 1949. It is believed that this program is the first real, 'non-trivial' application ever written for a stored-
program computer. An examination of the program sheds new light on the extent to which the debugging
problem was unanticipated by early computer programmers, and the motivation for the development of
systematic programming practices and debugging aids. The impact of these early developments on
programming elsewhere is discussed.
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INTRODUCTION

The modern 'stored-program' digital computer was invented by a group that included
John von Neumann, J. Presper Eckert and John W. Mauchly at the Moore School of
Electrical Engineering, University of Pennsylvania, during 1944-45; and it was first
described by von Neumann in his classic First Draft of a Report on the EDVAC dated
June 1945.1 Up to this point, little serious study had been made of programming; and
all that had been done was for theoretical rather than real machines. For example, in
1945 von Neumann had sketched out at least one program for the EDVAC, but this was
written mainly to help him check out the suitability of the instruction set. Naturally the
program contained errors, and as Knuth has noted 'If von Neumann had had an
EDVAC on which to run this program, he would have discovered debugging!'2

The stored-program computer was a major innovation, whose importance and
centrality to computer science have been increasingly appreciated during the last forty
years. However, the importance of the stored-program concept was also immediately
recognised by those who developed it at the Moore School. In order to disseminate the
idea as rapidly as possible, the University of Pennsylvania organised a summer school
entitled 'Theory and Techniques for Design of Electronic Digital Computers' which
took place during July and August 1946.3 Even though the stored-program computer
was no more than a paper design at this stage, some thirty delegates attended the
course; these people included representatives from almost all the academic and
industrial computing laboratories then in existence. From Britain, Maurice Wilkes was
fortunate enough to attend the latter part of the course on behalf of the Cambridge
University Mathematical Laboratory. Wilkes was sufficiently inspired by the course
that, when it was over, he began to turn over in his mind the design of the computer
that was to become the EDSAC (Electronic Delay Storage Automatic Calculator).

A number of computer programs were given by the lecturers on the course for
expository purposes; but the fact that they contained some obvious errors caused no
special comment since, like typographical errors in a mathematical proof, they did not
affect the general principles involved. In fact, no evidence has yet emerged that anyone
had conceived of the debugging problem until programs were tried on real computers.
For example, during 1947-48, von Neumann and Goldstine published their seminal
reports Planning and Coding of Problems for an Electronic Computing Instrument,
nowhere in the entire 150 pages of these reports is the possibility that a program might
not work the first time it was presented to a computer ever so much as hinted at.4

Consequently, there was a surprise in store for the first group that completed a
digital computer and attempted to run a non-trivial program on it. This turned out to be
the EDSAC computer group, in the summer of 1949.

THE EDSAC

The Cambridge University Mathematical Laboratory (now Computer Laboratory) was
established in October 1937 to develop all aspects of computing within the University.
The laboratory had a part-time director, with M.V. Wilkes (1913-) the single full-time
member of staff. Although Wilkes managed to acquire a few desk calculators and some
analogue computing machinery, war supervened before the laboratory could begin
serious work. During the war, Wilkes left Cambridge to work on radar and operational
research - activities that were to prove an ideal background for developing computers in
the post-war years. He returned from war service to resume charge of the Mathematical
Laboratory in September 1945.

Attending the Moore School lectures in the summer of 1946 was a turning point for
Wilkes: the experience made him realise that the stored-program computer was to be the
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mainstream of computer development for the foreseeable future. Construction of the
EDSAC began in early 1947 and it performed its first fully automatic calculation on 6
May 1949. The EDSAC was the first computer of the new type to go into practical
operation, and it was a full year ahead of any comparable development in the United
States.

The early completion of the EDSAC was in large part due to Wilkes' conservative
approach to design. For example, he opted for a pulse rate of 0.5 MHz when 'any
electronic engineer worth his salt' would have accepted the challenge of working at 1
MHz.5 The reason for this attitude was that Wilkes was motivated not only by the
engineering challenge but also by 'the desire to get a machine on which we could try
out programmes, instead of just dreaming them up for an imaginary machine'. 6 Wilkes
was convinced that time would of its own accord provide faster and better technology;
meanwhile he wanted to get down to the business of programming.

Technology and architecture

Before we discuss programming for the EDSAC, however, we need to know
something of its technology and architecture. Figure 1a shows a photograph of the
EDSAC taken shortly after its completion in May 1949. Such has been the rate of
progress in computing in the last decade, that it is now possible to simulate the EDSAC
in any modest 16-bit personal computer. Figure 1b shows an EDSAC 'workstation' for
the Macintosh computer. The functional description of the EDSAC given here applies
equally to the original machine or to the simulator.*

Like all first generation machines, the EDSAC processor was constructed using
vacuum tubes, or thermionic valves as they were known in Britain. Altogether the
machine contained some 3000 vacuum tubes, and consumed about 12 kW of power.
Pulse electronics had matured remarkably during the war years, so that the processor
itself was an engineering challenge mainly on account of its scale. A much more
difficult engineering problem, was the development of a suitable memory system. At
the time that Wilkes began building the EDSAC, there was no proven storage
technology, although during the war a number of centres, including the Moore School
and some of the British radar research laboratories, had experimented with mercury
delay lines or cathode ray tubes for radar echo cancellation; these both showed some
promise as possible storage devices. There were also some special purpose storage
tubes under development, such as the RCA Selectron; but these were a long way from
being practical propositions. :

However, by serendipity, in early 1946 Wilkes had made the acquaintance of a
research student in the Cavendish Laboratory at Cambridge, who had worked with
mercury delay lines during his war service with the Admiralty Signals Establishment.
As soon as Wilkes' plans for the EDSAC hardened, he took the advice of this colleague
who was able to sketch out the design of a delay line which that he thought would fit
the bill. In line with his general policy of minimising the engineering effort, Wilkes
made use of this design for the EDSAC, essentially without modification.

Each of the mercury delay lines used in the main memory was about five foot in
length, and could store 576 ultrasonic binary pulses (the equivalent of 32 18-bit

* In order to provide an authentic evocation of the EDSAC environment, the simulator has been
designed with exactly the same functionality and controls as the original machine; its only advantage is
its greater speed and convenience, and the fact that the hardware reliability is many orders of magnitude
greater. This paper is in large part based on the insight of the EDSAC gained using the simulator. A
description of the simulator will be published elscwhere readers wishing to obtain a copy of the
system should apply to the author.
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(@ A photograph of the EDSAC taken shortly after its completion in May 1949. The left two-
thirds of the picture shows the main racks of the arithmetic unit, control and memory. The
input/output equipment (a paper-tape reader and teleprinter) can be seen on the table towards
the right. Three of the monitor tubes can be seen to the rear and right of the picture.

& File Edit Edsac

Output from: Riry

.35502 .36796 .38084 .39364 40628
.41872 .43090 .44275 .45422 .46523
.47572 .48562 .49484 .50333 .51100
R ol s .51777 .52357 .52832 .53195 .53439

.53556 .53538 .53381 .53076 .52619
.52004 .51227 .50283 .49170 .47884
.46425 .44792 .42986 .41008 .38860
.36548 .34076 .31450 .28680 .25773
.22740 .19594 16348 .13016 .09614
.06159 .02670 .=9166 .=5666 .=2193

(Clear ) (Reset)
(Start ) | Stopﬂ

Exxan Sequence Control Register
o Order Tank
rrETTTrTrTTrTTTTrTTTTTTRRR Multiplier

.~-...-...-.~.O-..Q-.. L HCC

(b) An EDSAC simulator developed for the Macintosh computer. The circular screen (top left)
shows the main memory monitor tube. The register panel (bottom left) displays the
accumulator and other registers. The clock (bottom right) shows the elapsed EDSAC time.
The output panel (top right) shows the teleprinter print-out. The central panel shows the five
user-accessible controls: Clear, Start, Reset, Stop and Single E.P. The remaining panel (right,
centre) is used to control the EDSAC display.

Figure 1. The EDSAC, then and now
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words). The contents of a delay line were constantly recirculated with a cycle time of
approximately 1 ms; this determined the basic speed of the machine - which averaged
about 600 operations per second. There were 16 delay lines or 'tanks’ giving a total of
512 words of main memory - the equivalent of a little over 1 kB. :

A useful feature of the delay-line technology was that it was possible to display the
contents of a storage tube on a CRT monitor. The EDSAC monitors can be seen
towards the rear and right of the photograph of Figure 1a. One of the monitors allowed
the contents of any one of the 16 main-memory delay lines to be observed. In Figure
1b, the large circular screen in the upper left, shows the main-memory monitor tube, in
a style which is a fairly close emulation of the original. Delay lines were also used for
the central registers and accumulator; but since these were each only one or two word-
lengths, much shorter delay lines of only a few inches were used. These were known
as 'short tanks' to distinguish them from the 'long tanks' used in the main memory. In
Figure 1b, the short tank displays are shown, in a slightly stylised form, at the bottom
left.

Input to the EDSAC was by means of paper tape, and output was by means of a
modified Creed teleprinter of the kind used by the British Post Office. This equipment
can be seen on the table at the right of Figure 1a; the upper right window of Figure 1b
shows the printout generated by the simulator.

Finally, the EDSAC was controlled by five press buttons: Start, Stop, Clear, Reset
and Single E.P., whose purpose is self-evident except for the last. The Single E.P.
button caused a single instruction to be obeyed, which enabled a program to be
executed one instruction at a time.

The EDSAC used a single-address instruction format, shown in Figure 2. Although
the EDSAC was based on an 18-bit word, only 17 bits were used, the leading bit being
unusable for reasons connected with circuit set-up time. The opcode (or 'function’ )
was specified in 5 bits and the address in 10 bits. A further bit specified the operand
length: most instructions could operate on either a 17-bit short word, or a 35-bit
double-length word; the length indicator specified which.

Table 1 shows the EDSAC instruction set as it existed in 1949. Operations were
represented by letters of the alphabet, some of which suggested the function they
denoted (eg. A for Add, S for Subtract, etc). Average instruction times were 1.5 ms,
although multiplication was longer and took 6 ms; input/output times were determined
by the basic speed of the peripheral equipment (the teleprinter, for example, printed at

62/3 characters per second).

The repertoire of instructions was of course exceedingly sparse by later standards,
and even by the standards of the time; but this was entirely in line with the EDSAC
design philosophy of simplifying engineering, even if this meant lengthening
programming.

5 1 10 1

Opcode  spare Address Length

Figure 2. Format of an EDSAC instruction
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Table 1 The EDSAC instruction set (1949)

A n  Add the number in storage location n into the accumulator

S n Subtract the number in storage location n from the accumulator

H n  Copy the number in storage location n into the multiplier register

V n  Multiply the number in storage location n by the number in the multiplier
register and add the product into the accumulator

N n Multiply the number in storage location n by the number in the multiplier
register and subtract the product from the accumulator

T n  Transfer the contents of the accumulator to storage location n and clear the
accumulator

U n Transfer the contents of the accumulator to storage location n and do not clear
the accumulator

C n  Collate [logical and] the number in storage location n with the number in the
multiplier register and add the result into the accumulator

R 202 Shift the number in the accumulator n places to the right

L 202 Shift the number in the accumulator n places to the left

E n  If the sign of the accumulator is positive, jump to location n; otherwise
proceed serially

G n  If the sign of the accumulator is negative, jump to location n; otherwise
proceed serially

I n  Read the next character from paper tape, and store it as the least significant 5
bits of location n

O n  Print the character represented by the most significant 5 bits of storage
location n

F n  Read the last character output for verification

X No operation

Y Round the number in the accumulator to 34 bits

Z Stop the machine and ring the warning bell

Note.

The EDSAC order code was modified from time to time. For example the X-order was
originally used to round-off short numbers, but was changed to a no-operation
instruction when it was found to serve no useful purpose. Similarly the F-check
instruction was eventually removed in favour of a conventional parity checking scheme.
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Programming

Programming was an issue that was very much taken for granted by the majority of the
-early computer projects. For them, all the emphasis was on the hardware, so that it was
only when a machine sprang into life that the business of programming was seriously
considered at all; consequently users of many early machines were obliged to program
in pure hexadecimal or some variant. (It is interesting that this mistake was repeated in
some micro-processor development systems in the 1970s.) Some groups, such as that
of von Neumann and Goldstine at the IAS, Princeton, certainly came up with good
programming notations; but they always assumed that a human coder would somehow
transform the symbolic notation into the binary machine code of the computer.

At Cambridge, however, the emphasis was entirely the other way. From the
beginning, Wilkes decided that programs would be written in a human-oriented
notation, and moreover that the conversion from the external symbolic form to the
internal binary form would be done by the machine itself. There were thus two aspects
to the programming problem: first the form of symbolic instructions; and second the
mechanism by which programs would be loaded into the memory.

Figure 3 shows the form of a program fragment for the EDSAC. The code replaces
the long number in location 8 (written 8L) by its absolute value; instructions are
assumed to occupy location 100 onwards. This notation looks strikingly like an
assembly language for a much later period, and compared with the programming
notations used on some other contemporary machines it was remarkably advanced. It
should be understood, however, that the comments were gratuitous, and only the
symbols between the vertical rules would have been actually punched. Thus the
fragment of program in Figure 3 would have been punched: TLASLE105S
S8LSS8LTSL. This arrangement meant that program tapes were physically very short.

The second problem was the translation of the program into binary, and loading it
into the machine. This was one of the first tasks entrusted by Wilkes to a research
student, David Wheeler (1927- ), who joined the laboratory in October 1948. Wheeler
devised a simple loading routine known as the 'initial orders' that worked as follows.
When the Start button of the EDSAC was pressed, the initial orders were automatically
placed in the first memory tank (words 0-31); the input routine then took control of the
machine and proceeded to load the symbolic program punched on paper tape into words
32 onwards - this involved a simple binary-to-decimal conversion of the address, and
some other small transformations. When the entire program had been loaded, it was
entered at word 32.

Location Order = Notes

100 T L Clear accumulator using location OL as a ‘rubbish bin’
101 A 8 L Add contents of location 8L into accumulator

102 E 105 s Jump to location 105 if accumulator positive

103 S 8 L Subtract location 8L from accumulator

104 S 8 L Subtract location 8L from accumuliator

105 T 8 L Store accumulator in 8L leaving accumulator clear

Figure 3. Example of EDSAC code



The initial orders were used from the earliest days of the machine, including during
its commissioning. On 6 May 1949, a short test program, which printed a table of
squares, was run on the machine; it worked and the EDSAC logbook was duly
inaugurated. The printout from this historic program is now preserved in the Science
Museum, Kensington. During the next two or three days, two more simple
demonstration programs were successfully run. The first, due to Wheeler, printed
prime numbers, and the second, written by Wilkes, printed a table of squares and their
differences. Both of these programs were straightforward, and having been honed to
perfection during the weeks prior to the completion of EDSAC they were entirely error
free; the only difficulty encountered in making them run was due to reluctant hardware.
These early successes could have done nothing to prepare them for the difficulties of
debugging that lay ahead.

THE AIRY PROGRAM

Shortly after the EDSAC began operating, Wilkes organised a conference on 'High
Speed Automatic Calculating Machines', which took place 22-25 June 1949.7 This was
the first meeting of its kind to be held in Europe, and delegates from several countries
attended. At the conference, visitors were given a tour of the EDSAC, and the
demonstration programs for primes and squares were run. After the excitement of the
June conference had subsided, Wilkes began to work seriously on the first real
application program for the EDSAC.

" This program was designed to calculate Airy's integral, which is the solution to the
second-order differential equation

y' = xy.

There were a number of reasons for choosing this particular problem. Foremost, it was
done as an exercise in using a computer to solve a differential equation, which was
expected to be one of the main applications of the EDSAC. Naturally, Wilkes started
with a simple example, and Airy's equation represented the next step in complexity
from the equation for simple harmonic motion; moreover, he was very familiar with the
Airy equation, which he had met while still a student in connection with the propagation
of radio waves in the ionosphere.

Although published tables of the Airy Integral had existed since the time of Airy and
Stokes in the 1850s, no completely satisfactory set of tables was available until J.C.P.
Miller's The Airy Integral was published under the auspices of the British Association

Mathematical Tables Committee in 1946.8 These tables were - and remain - effectively
the last word on the subject. Wilkes realised that the existence of Miller's table would
provide a very useful check on the validity of his program.

Hence, the Airy program was not intended to result in a useful product as such, but
was really a test program to explore both the capabilities of the EDSAC, and the
business of writing a real program. This would be a program that not only explored the
problems of program logic and branching, but also the arithmetic processes intrinsic to
numerical computation. The Airy program is almost certainly the first real application
program ever written for a stored-program computer, and it may fairly be said to have
ushered in the then-undreamt-of field of programming and programming systems.

The original program manuscript has long-since disappeared because Wilkes, for
one, attached no special significance to it. In fact, only a handful of programs have
survived from the very early days of digital computers (say 1949-51); and those that
have survived tend to be ones that were polished with publication, not to say posterity,
in mind.



In the summer of 1979, shortly before his retirement from the Computer
Laboratory, Wilkes was clearing out his drawers and cupboards, and discovered in an
obscure corner a paper tape in a rather fragile condition with the single word 'Airy"'
written on it in pencil. Although undated, Wilkes was able to date the tape with some
accuracy because on 27 July 1949 he had begun to keep a 'Record of Program Tapes'.
Since the tape bore no serial number, it evidently belonged to shortly before that period.
Wilkes sent me a copy of the tape to see what I could make of it. Figure 4 shows a
fragment of the paper tape as I received it. I sensed that I was being set a challenge -
one that has taken me some years to resolve to my satisfaction.

A reconstructed and partially corrected transcription of the Airy program is given in
the Appendix to this paper. Reconstituting the raw code from the paper tape was
essentially a clerical task, albeit a tedious one. This enabled the sequence of symbolic
instructions shown between the vertical rules to be drawn up. The comments to the left
and the right of the rules were not of course present on the tape. What had been
achieved at this stage was analogous to reconstituting code from a memory dump: not
difficult to do, but the result is essentially meaningless without a specification of the
original program.

However, by a stroke of good fortune, Wilkes had published a description of the
Airy program in Nature in October 1949, together with a specimen of the output
produced by the program (Figure 5). Wilkes chose to publish in Nature because it was
- and to some extent remains - the international journal for the rapid dissemination of
new scientific results; the Nature article is almost certainly the first ever published
account of a real numerical computation on a stored-program computer.

The method that Wilkes chose to evaluate the Airy Integral was one that had been
made popular for use on desk machines by Douglas Hartree, then Plummer Professor
of Physics at Cambridge. Hartree was at that time the eminence grise of numerical
analysts in Britain, and he had proved a constant source of encouragement to Wilkes.

Hartree's method for integration of Airy's equation

yll o xy

was based on the well-known central difference formula
82y = (Bx)2 (y" + 532y")

where 3x is the interval of the argument. Given three adjacent values of y, namely yy,
y; and y,, and eliminating y", we get

1
Y2 =2y1 - Yo - 15 ®%)? (Xqyo + 10x1y; + Xpy,)

If yo and y; are known, y, can be evaluated iteratively. This highly reliable and popular
process was later called the 'Royal Road' procedure by the astronomer Zdenek Kopal.
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2:00

4-00

(word 64)

(word 65)

(word 66>

(word 67>

(word 68>

(word 69>

Cword 70>

(word 71>

-.11233
-.26849

-.37881
-.41901
-.37553
-.25151

-.07027
+.12778
+.29215
+.37593

+.44793
+.34076

+.19593
+.02671
-.14588
=.29510

-.39310
-.41718
-.35674
-.21886

-.03045
+.16500
+.31562
+,38004
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A S8 S

|
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F
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1 @ 20-°0 000060 ©O0QQ!
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Q

A section of the Airy tape,
corresponding to instructions 64-71
of the program in Figure 5. The
binary form can be seen as the
bottom four rows of the main
memory monitor tube in Figure 1b.
The complete tape is a little over 4
feet long.

Figure 4. A fragment of the Airy tape

Ai=x)

+.38085
+.44276
+.49485

+.52833

+.53381
+.50283
+.42986
+.31451

+.15348
-.00834
-.17850
-.31964

-.40438
-.41191
“-33678
-.18402

+.00968
+.29044
+.33750
+.37959

+.39364
+.45423
+.50333
+.53196

+.53077
+.49170
+.41008
+.28680

+.13016
=.04333
=-.20997
=.3419

-.41254
-.40319
-.30981
-.14742

+.04970
+.23370
+.35449
+,37454

Figure 5. The Airy table

+.40628
+.,46524
+.51100
+.53439

+.52619
+.47885
+,38861
+.25773

+.09615
-.07807
-.24004
-.36169

-.41744
=.39105
-.28201
-.10938

+.08921
+.,26440
+.36737
+.36490
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of the Airy program, as reproduced
in facsimile in Nature, 1 October
1949. The numerical values were
printed directly by the EDSAC
teleprinter, but Wilkes wrote the
headings in by hand to avoid
complicating the program.



Wilkes' algorithm, given in the Nature article, is worth quoting in full, because,
apart from the examples in the von Neumann and Goldstine reports, it is probably the
first published example of a numerical procedure that corresponds closely to the
modern notion of a computational algorithm.

In order to set out in further detail the operations to be performed by the machine, it
will be assumed that the quantities yg and y; are held in the store of the machine in
'storage locations' numbered 100 and 101 respectively, and that storage location

102 contains a number 1. 1 will change as the calculation proceeds, and will
finally become equal to y,; initially 1 = y;. The various stages of the calculation are
then as follows:

(1) Evaluaten' =2y - Yo - 33 (3%)2 (Xoyo + 10x1y1 + Xay5).

(2) Examine the sign of In' - nl - €, where € is a small quantity specified in
advance. If the sign is positive, replace 1 in storage location 102 by 1’ and
repeat (1). If the sign is negative, proceed to (3).

(3) Print y,.

(4) Replace ygin storage location 100 by y; from storage location 101, and y; in
storage location 101 by y, from storage location 102 (1 remains in storage
location 102). Repeat (1).9

The locations of 100, 101, 102 were of course chosen arbitrarily for the purposes of
exposition. It is interesting to contrast this algorithm with an extract from the Royal
Road procedure given by Hartree:

The procedure is then as follows. Estimate 32y" and obtain an approximation to
82y, from (7.3). Add this to 8y, to give an approximation to 8y, ,, and add this
to yg to give an approximation to y;. From this calculate y"; and hence 82y", =
y"1 - 2y"p + y".1. Let € be the difference between this value of 32y" and that
estimated. A change of the estimate of 82y"( by € makes a change % (6x)2e in y;. If

this is less than % in the last figure retained in y, the estimate is adequate; if not, the
estimate is revised and the calculation of the interval repeated; but the interval length
(8x) should be taken so that this is seldom necessary.10

This was then followed by a worked example.

Ignoring the notational differences, the important difference between these two
descriptions is that Wilkes' was designed for an electronic digital computer, whereas
Hartree's was aimed at a human computer who could be assumed to have a very high
level of reasoning power. These two descriptions encapsulate-the transition from
Hartree's pre-war world of the 'science and art of numerical calculation' to the post-war
world of computational algorithms.

The Airy paper tape proved to conform very closely to the algorithm given by
Wilkes, and this enabled the purpose of each instruction and constant in the program to
be understood. The results are indicated by the comments to the Airy program in the
Appendix.

One detail that Wilkes did not include in his account needs to be explained before
the Airy program can be fully understood. This is the problem of scaling. Like other
machines its era, the EDSAC did not have hardware floating-point, and it could only
handle fractions in the range -1 < x <1. Consequently numbers larger than unity (or
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very small numbers) had to be multiplied by a scale factor. In this particular problem,
the Airy Integral values are fortuitously close to, but less than, unity in absolute value,
and need no scale factor at all. The x-values, however, were multiplied by 2-11.10
(which was a convenient scale factor in a binary machine). Elsewhere in the program, a
complementary scale factor of 211.10-1 is introduced so that the results are printed
correctly. Scaling was one of the major headaches in preparing programs on early
computers; but by the late 1950s innovations such as hardware floating-point and
interpretive systems meant that most users no longer had to be concerned with it.

THE DISCOVERY OF DEBUGGING

The most striking feature of the Airy program is the large number of errors it contains.
These errors are listed in Table 2, and corrections have been hand written in the
program. (Where additional words have been inserted, instructions would need to be
- renumbered and the address fields of some instructions changed; this is essentially a
clerical task which has not been done in in the interests of clarity.) Altogether there
were approximately twenty errors in the 126 lines of the program. By any standard this
is a large number of errors in a relatively short program. However, Wilkes is one of the
giants of computing, so we can assume that there was more to this than meets the eye.

Some of the errors are obvious by inspection, while others are more subtle; and one
error, discussed shortly, is very subtle indeed. The most glaring of the obvious errors
occurs in lines 62, 64, 68 and 70, where, to obtain a right-shift of 9 places the order
R 9 S is used. In fact, to simplify the hardware implementation of the shift order, to
get an n-place shift, the nth bit of the instruction word had to be set to a 1, and the rest
of the bits to 0. Hence the instruction should have been R 128 S. People often made
this mistake when first coding for the EDSAC, but it seems unlikely that the designer of
the machine could have fallen into the same trap. A more likely explanation is that
Wilkes used R 9 S as a convenient but temporary notation while writing the program,
and forgot to change it before giving the manuscript to his secretary to key punch.The
result was to make the results of the program meaningless, and this suggests that this
version of the Airy program is quite possibly a first draft - and maybe that was why
Wilkes, with a subconscious sense of history, put it to one side all those years ago.

Table 2 Errors in the Airy program

Location Error
62, 64, 68,70 Incorrect left-shift order
72, 82 Incorrectly specified operand length

45, 50L, 53, 57 Incorrect constants

73, 144 Redundant instructions or constants
102, 143-4, 148-9 Missing orders

130, 141 Incorrect address in instruction

135, 149, 152 Incorrect or mis-punched opcode

= 13 =



There are also a number of errors that appear to be plain punching mistakes. For
example, in order 135 a U-order is mispunched as a V-order, probably due to
misreading the manuscript. Since it was possible to list program tapes only with some
difficulty and inconvenience, this error would have been difficult to detect, but its
existence renders the results of the program nonsense.

Elsewhere, there are several instructions missing altogether: for example between
orders 102 and 103, an order (T 35 S) is needed to store the result of a computation;
and between orders 143-4 and 148-9 extra instructions are needed to count the correct
number of times round a loop. In other places, long and short operands are confused.
Any one of these errors would have invalidated the results of the whole computation.

From the foregoing, it seems likely that the program was not desk-checked before it
was punched and was not verified after it was punched. This might seem surprising,
given that Wilkes was himself an experienced computer with a desk machine, where
procedures tended to be very well organised and systematic. However, in a manual
computation the aim was to minimise the possibility of computational errors; but a
reliable digital computer would be free from computational errors of the kind that a
careless desk machine operator might introduce. On the other hand, the logic of a
manual computation never had to be spelt out in detail because it could be assumed that
a human being would do the sensible thing; it is only obvious in hindsight that the same
is not true for a computer program.

Wilkes recalls his discovery of the debugging problem in his Memoirs:

By June 1949 people had begun to realise that it was not so easy to get a program
right as had at one time appeared. I well remember when this realization first came
on me with full force. The EDSAC was on the top floor of the building and the
tape-punching and editing equipment one floor below on a gallery that ran round the
room in which the differential analyser was installed. I was trying to get working
my first non-trivial program, which was one for the numerical integration of Airy's
differential equation. It was on one of my journeys between the EDSAC room and
the punching equipment that 'hesitating at the angles of stairs' the realization came
over me with full force that a good part of the remainder of my life was going to be
spent in finding errors in my own programs.!1

How then was the program actually debugged? There were of course no software
debugging aids whatever on the EDSAC at this time, so that the program had to be
debugged on a naked machine, by 'single-stepping' through the program and observing
the contents of the memory and registers on the monitor tubes. This process was
known by the rather charming name of 'peeping'. On some machines, it was possible
to correct errors in the program using hand-switches, although this was not possible on
the EDSAC; hence every debugging run would have necessitated a trip from the
punching room to the EDSAC and back again to correct the program tape. Wilkes must
have trod the staircase between the punching room and the EDSAC many times to get
the Airy program working.

Using the EDSAC simulator, it has proved possible to produce some results from
the partially corrected version of the Airy program. The output is shown in the upper
right-hand panel of Figure 1b (p. 5). The print-out shows some slight departures from
the results printed in Nature. Most obviously, the program fails to cope with the
printing of negative numbers, so that from mid-way in the tenth line the print-out
becomes incoherent. It would take just half a dozen instructions to put this right. Quite
possibly this was a detail that Wilkes chose to omit until the program was more or less
running; similarly extra instructions are needed to round off the results to the fifth
decimal place.
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Before we leave the Airy program, the very subtle error alluded to earlier needs to
be explained. When Wilkes first sent me the tape in 1979 it did not take very long to
coax some numbers from the program, but although the results were correct to four
decimal places, there was an error of as much as four units in the fifth place. This
initially made me suspect that the algorithm might be at fault, or that the step length was
too great. So, in an exercise that I felt was really rather contrary to the spirit in which I
wanted to debug the program, I transliterated the program into Fortran; but the results it
produced were in accordance both with the table in Nature and with Miller's The Airy
Integral. Since everything else in the program looked perfect, and having spent more
time trying to debug the program than I really care to admit, I was forced to concede
defeat and put it to one side. During the intervening years between then and now I
looked at the program again two or three times but the bug remained obstinately hidden.
Finally, one morning in early 1990, the penny finally dropped: the error was caused by
the fact that the constant (9x)%/12 in location 45 was stored only to single precision
instead of double precision. With this correction made, the program is capable of
producing results correct to the eight figures given in Miller's table. Of course, it has to
be noted that Wilkes himself spotted the error somewhat more quickly in 1949; but
although he would have been helped both by being closer to the problem and by being
an experienced numerical analyst, I do not think it would have been in the least an easy
error for him to detect. It was often noted in the 1950s that numerical errors were more
stubborn and harder to correct than errors of program logic; the Airy program rather
confirms that observation.

GETTING PROGRAMS RIGHT

The early experience of correcting the Airy program, and many subsequent programs,
shaped the Cambridge philosophy towards debugging. First and foremost, the use of
peeping in debugging programs was found to be very extravagant of machine time and
Wilkes, with the strong support of Wheeler, outlawed the practice as soon as it was
possible to do so. Instead various software aids for error detection were provided. The
first of these aids were 'post-mortem' dump routines that printed out the contents of the
memory when a program had terminated abnormally or had been aborted. The post-
mortem program was loaded by the initial orders in the usual way, and placed in the
high end of memory where it was least likely to overwrite the user program. It would
then print out the contents of a selected region of memory in a selected format. Routines
were provided to print out words in the form of single-length or double-length
fractions, or integers, or as instructions, whichever the programmer found most useful.
The post-mortem printout could then be studied at leisure away from the machine. The
post-mortem technique was so successful, that by about mid-1950 it proved possible to
run the EDSAC as a closed-shop during the daytime with a professional operator; users
would specify the post-mortem procedure to be adopted by the operator should the
program terminate abnormally, print spurious results, or go into an infinite loop.

The real breakthrough in debugging techniques, however, was made in early 1950
by Stanley Gill (1926-75), then a research student who joined the laboratory in October
1949. Gill invented the concept of the interpretive trace routine.!2 In Gill's scheme,
instead of the user's program being obeyed directly by the control circuits of the
computer, it was interpreted instruction-by-instruction by the interpreting routine; as
each instruction was obeyed, diagnostic information could be printed. One trace
routine, for example, printed the order code letter of each instruction as it was obeyed.
(If this routine could have been applied to the Airy program it would have produced the
output: EARARATARARATTHVH etc.) This helped enormously in the detection of
stubborn logic errors. Another trace routine printed the value of the accumulator
whenever its contents was transferred to memory; this was particularly useful in
detecting stubborn numerical errors.
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The Airy program also hints at another important aspect of reducing the incidence of
program errors, by the use of subroutines. It was understood by all the early groups
that subroutines would be an important aspect of programming. The term subroutine
was, in fact, introduced in the Goldstine and von Neumann Planning and Coding
reports, where the authors stated 'we envisage that a properly organized automatic,
high speed establishment will include an extensive collection of such subroutines, of
lengths ranging from about 15-20 words upwards. That is, a 'library’ of records in the
form of the external memory medium, presumably magnetic wire or tape.'l3 The
advantage of the subroutine library, of course, was that common functions such as
square root, input-output, etc. could be written once and for all, and used by
everybody.

Cambridge, however, discovered two further advantages conferred by the use of
subroutines: first, the effect on program structure, and second the effect on program
bugs.

The effect on program structure is shown rather clearly in Wilkes' algorithm for the
Airy program (page:. 12), which is notable for the absence of a flowchart of the kind
being advocated by Goldstine and von Neumann. Possibly Cambridge was the only
computer group that did not go through a phase of using flowcharts ( and consequently
did not have to unlearn them when the vogue for structured programming came in). The
use of subroutines in structuring programs helped programmers to think more clearly,
and hence make less errors in program logic. In Wilkes' algorithm the coding step

(3) Print y.

is nothing less than a subroutine call, and the code itself appears in the lines 112-157.
As a subroutine, however, it clearly has some major shortcomings. The first is that
there is no proper linkage between it and the main program. And second, the subroutine
cannot be relocated - that is, it operates correctly in 112-157, but would not work
anywhere else.

These issues were shortly to be resolved in a classic piece of work by David
Wheeler, in which he devised both a proper technique for subroutine linkage and a new
set of initial orders which could be used to relocate library subroutines so that they
would work anywhere in the memory.l4 The new initial orders were incorporated in the
EDSAC-in September 1949, and the whole subject of programming-systems
development then moved into high gear.

The second unanticipated benefit of using subroutines was that it was possible to
copy library tapes mechanically into a user's program; by reducing the number of
instructions that the user wrote or punched directly this vastly reduced the incidence of
program errors. In a typical application program, two-thirds or more of the total
number of instructions in a program would come from the library and only one third
would be written by the programmer. As Wilkes noted 'this in itself would be a
sufficient reason for having a library, quite apart from any other considerations'.15

SPREADING THE WORD
By the summer of 1950 the EDSAC programming system had reached a high state of
refinement, and the subroutine library contained some 70 subroutines. The coding style
was so user-friendly, as we would now call it, that several users from outside the

computer laboratory had begun to write their own programs.

In September 1950 all the programming techniques were written up and compiled
into a spirit-duplicated report entitled 'Report on the Preparation of Programs for the

- 16 -



EDSAC, and the Use of the Library of Subroutines'. Wilkes sent copies of this report
to people all over the world he thought would be interested. It must be recalled that, at
this date, the EDSAC was still the only fully operational stored-program computer in
the world, so that the report aroused a great deal of interest, especially in the United
States, and it may be fairly said to have laid the foundations of the whole subject of
programming systems. In 1951 the EDSAC Report was published as a textbook by
Addison-Wesley in Cambridge, Ma., as The Preparation of Programs for an Electronic
Digital Computer under the joint authorship of Wilkes, Wheeler and Gill.16 This was
the first classic textbook on programming; it was usually known to the first generation
of programmers as ‘Wilkes, Wheeler and Gill' (often abbreviated to WWG).

Thus the Cambridge programming methodology had a heavy influence on the
programming systems of many of the first-generation computers that came into being
during the early 1950s. For example, at MIT the programming system developed by
Charles Adams for the Whirlwind computer whole-heartedly embraced the Cambridge
model. The programming system for the ILLIAC at the University of Ilinois was
developed by Wheeler during his period there as an Assistant Professor in 1951-53. In
its turn, ILLIAC influenced several other computers in the United States, and in more
distant countries such as Israel (the WEIZAC), Australia (the SILLIAC), and Japan (the
Musasino-1). Programmers in IBM were also receptive to some of the ideas, which in
due course found there way into the programming methods for the model 701.17 And at
Univac, Grace Hopper acknowledged 'from Dr. Wilkes, the greatest help of all, a book
on the subject.18

A key chapter both of the original EDSAC Report and of Wilkes, Wheeler and Gill
was one devoted to the subject of getting programs right. The chapter was entitled
'Pitfalls' - the term debugging not coming into general use in this context until the late
1950s. In this chapter, which was written by Wilkes, readers were warned that
programmers would sometimes make mistakes:

Experience has shown that such mistakes are much more difficult to avoid than
might be expected. It is, in fact, rare for a program to work correctly the first time it
is tried, and often several attempts must be made before all errors are eliminated.
Since much machine time can be lost in this way a major preoccupation of the
EDSAC group at the present time is the development of techniques for avoiding
errors, detecting them before the tape is put on the machine, and locating any which
remain undetected with a minimum expenditure of machine time.1?

Wilkes took particular pains to disabuse new computer users that program
debugging using the console and CRT monitors was anything other than 'a very slow
and inefficient process, especially as the numbers are usually displayed in binary'. The
chapter then went on to describe the dump and trace procedures employed on the
EDSAC. These ideas soon permeated the whole culture of early programming,
although many people who devised such procedures for the computers that were then
coming into service probably did not know from where the ideas had originally sprung.

But the EDSAC programming methodology was as strong on prevention as it was
on cure. Thus programmers were urged to desk-check the program before submitting it
to the computer, to code in a logical manner, and 'not hesitate to copy it out in a more
logical layout whenever necessary'. And a comprehensive list was given of ' pomts to
be checked' before submitting a program to the computer.

It would be nice to think that early programmers heeded this advice; but it seems
unlikely - like Wilkes, no doubt most of them learned the hard way.
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APPENDIX

A partially-corrected version of the Airy program

Airy: Main Program

31 T 158 S required by initial orders
enter — 32 E 61 S jump over constants
33 P 8 S | X
34 P S Xo all scaled by 2-1110
35 P 16 S | %2
36 P S |
Yo
37 P S | 4
38 P S |
Y4
39 P S | -
40 P S | 7
Yz or n
41 P S | 4
42 P S | 7
43 P S "
44 P 80 S | 10 Constamk nieeds %
"X / be G\Ou)oko.-\ew_g}c“) :
X 435 P 1398 S (6x>2/12; scaled by 211.10-1 e,
46 B & = S tagyg s
working storage P 13933
47 P S |
48 P S | 7
working storage
49 P S | 4
- 50 P S | Z ‘IA'\'-Q,?'Q\'\&MjQ, moat—sigm{%‘ur&
e, error bound LY o
51 P 1s|d and \Qask-msm-ﬁmudc ha.\f-wonis
52 P 8 S §x; scaled by 2-11.10
X 53 P S | column count
54 P S S 5; initializer for column count
SS P 174 S | T
S6 P 30 S Ai(0> = 0.35502805
L
X 57 P11633 8 |
S8 P 228 S | 7
59 P 185 S Ai¢-0.5> = 0.36796149
60 P12057 S | J
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Airy: Main Program (Continued)

X 82
83
84

n' = 2y; - Yo — (6x2/12)-(xXoYo * 10x1Ys + XzUz)
85

32 = 61 A 55 S T
¥
X 62 | R s
63 A S6 S
g Yo = AiCO)
X 64 | R a7
65 A S7 S
66 T 36 L | A
67 A S8 S T
23
X 68 | R '_&'S
69 A 59 S
28 yy = Ri¢-0.5)
X 70 R S
71 A 60 S
x 7
72 T 38 _ ,
5 Ma\UV\A&U\t Tns truckieny
: 3 T S clear ace. &
96, 111>74 H 35 S | 7 W
X2 Yz
75 V) 40 L | 4
76 H 44 S T
10')(1 Uy
77 v 38 L | 4 46L = xoYo + 10x3yqy + Xayz
78 H 34 S | 7
Xo Yo
79 U 36 L |
80 T 46 L _
81 H 45 S | T
L ace = =(8x2/12)-(xeYp + 10X1U; + XpUsz)
N
A
S
A
U

86

-22.



Airy: Main Program (Continued)

88 —>

152 =
157 =

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

103
104
105
106
107
108
109
110

40
91
48
48
50

112

42

40
74

119
33

s
E

T

s

s

G

T

A

T

E

T

A

T

A 35
U

A

.-

A

T

A

T

H

v

L

T 44
E

74

L
S
L
L
L
S
S
L
L
S
S
S
S
S
S
S
S
L
L
L
L
)
S
S
S
S

acc

print

e

Xo =

Xy =

X =

Uo =

448

repeat

=|ln-n'| -e

Yo if ace < O

iteration

X4

X2

X, +8x

U4

Y2

= 10')(1

main cycle
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Airy: Print Routi

92 —>

113 =
145 —>

112

113

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

E |

(]

- r u D 0w o kFO r ¥ € < T 4 © W v ©V v VvV UV < C X O P>

127

w O v u u unu n u u u »nu u u u uvuwjun u

ro o v o u u u u o

] jump over c

fig. shift &

space

line feed
carriage retu
decimal point
10/, ¢

-1/1¢

working sto

digit count
8, initialize
print decimal

binary to d
121S = yeo-

print ms. d

remove ms.
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onstants

not usesl

character constants

rn

rage

r for digit count

point

ecimal conversion:
10/4¢

igit of 121S

digit from 121S
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Airy: Print Routine (Continued>

149 —>

142
143

144
145
146
147
148

149
150
151
152
153
154
155
156
157

A
A
U
S
G
T
A
A
w
S
0
0

0

0
S
T
E

125
4

S
S

255

126
128

53
4

S
S
S
S
S

s3 s
s4 S

E 153

115
115

116
117
54
53
98

S

Ea 97

S
S
S
S
S
S
S
S

-

increment digit count and test

increment column count and test

print two spaces

return

} print new |ine

} reset column count

return
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