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Consistency of natural relations on setsHirotaka KOIZUMIy, Akira MARUOKAyy and Mike PATERSONyyyy 2nd Development Dept. 1st Basic Software Development Division,NEC Corporation4-14-22, Shibaura, Minato-ku, Tokyo 108, Japanyy Faculty of Engineering, Tohoku University,Sendai 980, Japanyyy Department of Computer Science, University of Warwick,Coventry CV4 7AL, UK AbstractFive natural relations for sets, such as inclusion, disjointness, intersec-tion, etc., are introduced in terms of the emptiness of the subsets de�ned byBoolean combinations of the sets. Let N denote f1; 2; : : : ; ng and �N2 � denotef(i; j) j i; j 2 N and i < jg. A function � on �N2 � speci�es one of these re-lations for each pair of indices. Then � is said to be consistent on M � Nif and only if there exists a collection of sets corresponding to indices in Msuch that the relations speci�ed by � hold between each associated pair ofthe sets. In this paper it is proved that if � is consistent on all subsets of Nof size three then � is consistent on N . Furthermore, conditions that make �consistent on a subset of size three are given explicitly.Key words. inclusion and exclusion relations,subsets, consistency, locally computableAMS(MOS) subject classi�cation. 04A20, 05A05, 06A07, 68R051 IntroductionLet n be a natural number and N denote the set f1; : : : ; ng. Suppose that we aregiven some combinatorial object � de�ned on N and that for any subsetM of N , theobject, denoted by �M , is obtained by restricting � to the subset M . Let P denotesome predicate de�ned on all of the objects �M , where M is a subset of N . WeA part of the work was done while the second author was visiting at Brown University.The third author gratefully acknowledges support from the British Council while visiting TohokuUniversity. 1



consider predicates P that are inheritable, in the sense that if P holds on �M thenP holds on �M 0 for any M 0 �M . Such a predicate P often turns out to be \locallycomputable", i.e., if P holds on all objects �M with M satisfying some conditionsthen P holds on the whole object �N . One typical example of such a predicateis given by Helly's Theorem [H]. For example, in two dimensions, this states thata family of compact convex planar sets has a nonempty intersection if and only ifevery triple of the sets has a nonempty intersection.In this paper we give another locally computable predicate for which we are onlyrequired to check the predicate on all objects �M for \small" M . First we describe�ve natural relations between sets, denoted by �, �, k, ?, ./, representing strictinclusion in each direction, disjointness, covering the universe, and the general case,respectively, Each can be de�ned in terms of the emptiness or otherwise of Booleancombinations of the sets, and the set of these �ve relations is denoted by R. Let�N2� denote f(i; j) 2 N2 j i < jg. Each object � we deal with is an assignment of anatural relation to each pair (i; j) in �N2�, i.e., a function from �N2� to R.A collection of sets S1; : : : ; Sn is compatible with � if the relation �(i; j) holdsbetween Si and Sj for all (i; j) in �N2�. If � is compatible with some such collectionthen � is said to be consistent. For any subset M � N , the object �M is simply therestriction of � to �M2 �. If �M is consistent then � is said to be consistent on M .Our main result is that if � is consistent on every subset of N of size three, then �is consistent. Conditions that make � consistent are given explicitly in terms of thenatural relations that may hold for any three subsets.The problem of characterizing a predicate on graphs, or equivalently a family ofgraphs satisfying the predicate, is also discussed in [FL] in a di�erent context. And itis pointed out that to �nd a �nite number of combinatorial structures to characterizea family is crucial. Some combinatorial aspects of inclusion and exclusion and theirrelation to Boolean complexity are also discussed in [LN].In Section 2, after natural relations on sets have been introduced, some con-straints on natural relations of � are given which guarantee that � is consistent. Inorder to prove the statement, a set of vectors is used as a model for �. It is alsoshown that there exists a feasible algorithm which, given a partial function � from�N2� to R, decides whether or not � can be extended to obtain a consistent totalfunction. In Section 3, a graph based on the inclusion relations of � is introduced asanother intuitive model for �, and the same result as in Section 2 is veri�ed usingthe model. In Section 4, some open problems are presented.2



2 Consistency conditions for natural relationsLet the universe U be nonempty. A natural relation for any set or sets is onethat is de�ned in terms of the emptiness or otherwise of the subsets de�ned byBoolean combinations of the sets. For one set, there are four cases, depending onthe emptiness of the set and its complement. If both are empty then S = �, a casewe have excluded. The remaining three cases correspond to the set being empty,equal to the universe and proper, respectively. A subset S of U is called proper ifneither S = � nor S = U . We will allow only the proper subsets of U .For two sets A and B, there are formally 16 possible relations. Under ourassumptions that the universe is nonempty and both sets are proper, there remainjust seven cases. One is A = B, another is A = B = U:B. Both of these cases arespecial in that if they hold then one of the sets can be eliminated by substitution fromthe remaining relations. The remaining �ve natural relations constitute R. Table 1de�nes these �ve relations in terms of the emptiness, denoted by 0, or nonemptiness,denoted by 1, of four subsets. In the Table, (a; b) indicates the subset Aa\Bb, wherea and b are in f0; 1g, S1 = S and S0 = S. relationssubsets � � k ? ./(1,1) 1 1 0 1 1(1,0) 0 1 1 1 1(0,1) 1 0 1 1 1(0,0) 1 1 1 0 1Table 1: Five natural relationsLet � denote f0; 1g. For v in �n, let v(i) denote the ith component of v. Givenn subsets S1; : : : ; Sn of U , we can determine whether each subset of the formSv(1)1 \ Sv(2)2 � � � \ Sv(n)nis empty or not, where v = (v(1); : : : ; v(n)) is in �n. Let VS denote the set of vectorsv in �n such that Sv(1)1 \ � � � \ Sv(n)n is nonempty. Furthermore let Ti for 1 � i � ndenote the set of vectors v in VS such that v(i) = 1. Then it is easy to see thatconsistency of S1; : : : ; Sn for R is the same as that of T1; : : : ; Tn. In other words, forany natural relation �, Si�Sj holds if and only if Ti�Tj holds. So, without loss ofgenerality, we can consider a set of vectors V rather than a collection of subsets asfar as the consistency problem is concerned.3



Relation � in Table 1 is considered to be a function from �2 to � in the obviousway: for (a; b) in �2, �(a; b) = 1 ifAa\Bb is nonempty in the relation, and �(a; b) = 0otherwise. Relation � can also be considered to be the set of vectors in �2 for whichthe function takes value 1, e.g.,� = f(1; 1); (0; 1); (0; 0)g. Let v(i;j) denote (v(i); v(j)),and V (i;j) denote fv(i;j) j v 2 V g. This notation can be generalized in an obviousway to the case of more indices. Let � be a function from �N2� to R, and letM � N .We say that � is compatible with V on M if and only if V (i;j) = �(i; j) for all (i; j)in �M2 �, and that � is consistent on M if and only if there exists a subset V of �nthat is compatible with � on M . In particular, when M = N , the phrase \on M"in the de�nition may be dropped.Proposition 1. Let � be consistent. Let V 0 denote the set fv 2 �n j 9 (i; j) 2�N2�; �(i; j)(v(i); v(j)) = 0g. Then � is compatible with �n:V 0.The proof is immediate from the de�nitions of consistency and compatibility.Note that, with � and V 0 as in Proposition 1, �n:V 0 is the largest set of vectorsthat is compatible with � in the sense that if � is compatible with V , then we haveV � �n:V 0.For u in �n and A � �n, let u � A = fu � v j v 2 Ag, where u � v denotesthe vector obtained by taking the bit-wise \exclusive or" of u and v. For u in�n, the transformation 'u on the set of functions from �N2� to R is de�ned as'u(�)(i; j) = u(i;j) � �(i; j). Note that, in the de�nition, �(i; j) is thought of as asubset of �2.Clearly we have the next proposition.Proposition 2. Let u be in �n and V � �n. Then � is compatible with V ifand only if 'u(�) is compatible with u� V .In view of Proposition 2, we have the next proposition which says that thetransformation 'u preserves the consistency of � for any u in �n.Proposition 3. Let u be in �n. Then � is consistent if and only if 'u(�) isconsistent.Before proceeding to the main theorem, we show in Figure 1 how the �ve naturalrelations are transformed by 'u for u = (1; 0) and (0; 1).It is convenient to extend the de�nition of any object � to f(j; i) j i < jg in theobvious way, so that �(i; j) = � if and only if �(j; i) = �, and �(i; j) = �(j; i) if�(i; j) 2 fk;?; ./g.If � is consistent then the transitivity of inclusion implies that the followingconstraint holds for any distinct indices i; j and k.(�) if �(i; j) = � and �(j; k) = � then �(i; k) = �.By applying Proposition 3 for various choices of u, we can transform the constraint4



(1; 0) (0; 1)(0; 1) (1; 0) (0; 1)(1; 0)� �k? ./Figure 1: Transformations on natural relations(�) in various ways. For example, let u(i;j;k) = (1; 0; 1) and �0 = �u(�). Now, if�(i; j) = ? and �(j; k) = k then �0(i; j) = � and �0(j; k) = �, and so �0(i; k) = �,which implies that �(i; k) = �. In Table 2 we show the eight transitivity constraintswhich are obtained. If � satis�es these eight constraints it is said to be transitive.u(i;j;k) �(i; j) �(j; k) �(i; k)(0,0,0) � � �(0,0,1) � k k(0,1,0) k ? �(0,1,1) k � k(1,0,0) ? � ?(1,0,1) ? k �(1,1,0) � ? ?(1,1,1) � � �Table 2: The eight transitivity constraintsThe next theorem says that these conditions that are necessary to make � con-sistent on any set of three indices turn out to be su�cient conditions to make �consistent on the set of all indices.Theorem 4. If � is transitive then � is consistent.Proof. We shall prove the statement of the theorem by induction on n. Thestatement holds trivially when n = 2. Assume that the statement holds for n � 1,where n � 3.Let N 0 = f1; 2; : : : ; n� 1g. In view of Figure 1, it is easy to see that there existssome u in �n such that 'u(�)(i; n) 2 f�;�; ./g for all i in N 0. By Proposition 35



it su�ces to show that 'u(�) is consistent. Furthermore, it is easy to see that if� satis�es the conditions of the theorem then 'u(�) also satis�es the conditions.So, denoting 'u(�) again by �, we may assume that � satis�es the conditions ofthe theorem and that �(i; n) 2 f�;�; ./g for all i in N 0. We will show that � isconsistent.Let V1 = fv 2 �n j 9 (i; j) 2 �N 02 �; �(i; j)(v(i;j)) = 0g;V2 = fv 2 �n j 9 i 2 N 0; �(i; n)(v(i;n)) = 0g;V 0 = �n:V1;V = �n:V1:V2:Let �0 be the function obtained by restricting � to �N 02 �. Then by the inductionhypothesis and Proposition 1, �0 is compatible with V 0.Fact 1. For any v in V 0 at least one of (v(1); : : : ; v(n�1); 0) and (v(1); : : : ; v(n�1); 1)is in V .Proof. Assume to the contrary that there exists v in V 0 such that both of(v(1); : : : ; v(n�1); 0) and (v(1); : : : ; v(n�1); 1) belong to V2. Then, since �(k; n) 2f�; �; ./g for any k in N 0, there exist i and j in N 0 such that�(i; n) = �;�(j; n) = �;v(i) = 1;v(j) = 0:Hence by transitivity we have �(i; j) = �, which, together with v(i) = 1 and v(j) = 0,implies that v belongs to V1, contradicting the assumption. 2By Fact 1 we have V (i;j) = V 0(i;j)for any (i; j) in �N 02 �. On the other hand, by the induction hypothesis and Propo-sition 1 we have V 0(i;j) = �0(i; j) = �(i; j) for any (i; j) in �N 02 �. Hence we haveV (i;j) = �(i; j) for any (i; j) in �N 02 �.So it remains to show that V (i;n) = �(i; n)holds for any i in N 0. For v in �n and relation �, letA�(v) = fi 2 N 0 j v(i) = 1; �(i; n) = �g;B�(v) = fi 2 N 0 j v(i) = 0; �(i; n) = �g:6



Note that from the assumption we only have to consider the case where � belongsto f�;�; ./g.Fact 2. Let v be in V 0. Let �0(v) and �1(v) be vectors in �n such that�0(v)(j) = ( 0 if j 2 A�(v) or j = n;v(j) otherwise;�1(v)(j) = ( 1 if j 2 B�(v) or j = n;v(j) otherwise:Then �0(v) and �1(v) are in V .Proof. Let �0(v) and �1(v) be denoted by v0 and v1, respectively. It is easy tosee that �(i; n)(v(i;n)b ) = 1 for any b in � and any i in N 0, and hence vb 62 V2 for anyb in �. So it su�ces to show vb 62 V1 for any b in �. To do so, we assume to thecontrary that there exist b in � and (i; j) in �N 02 � such that �(i; j)(v(i;j)b ) = 0. Since�(i; j)(v(i;j)) = 1 for all (i; j) in �N 02 �, at least one of v(i)b 6= v(i) and v(j)b 6= v(j) holds.Without loss of generality, we may assume that b = 0 and v(i)0 6= v(i). So we onlyneed to consider the following cases.Case 1. i 2 A�(v); v(j)0 = 0 and �(i; j) = ?.Since �(j; i) = ? and �(i; n) = �, by transitivity (see Table 2) we have �(j; n) = ?,which contradicts the assumption that �(k; n) 2 f�;�; ./g for any k in N 0.Case 2. i 2 A�(v); v(j)0 = 1 and �(i; j) = �.Since �(j; i) = � and �(i; n) = �, by transitivity we have �(j; n) = �, whichcontradicts v(j)0 = 1. 2Fact 3. Let �(i; n)(v(i;n)) = 0 for some i 2 N 0 and v 2 V 0. Then for any(a; b) 2 �2 other than v(i;n), there exists v0 2 V such that v0(i;n) = (a; b).Proof. Let i and v be as in the hypothesis. Without loss of generality we mayassume that �(i; n) = �, and v(i;n) = (1; 0) for some i 2 N 0 and v 2 V 0.Since v =2 V , Fact 1 implies that w = v � (0; : : : ; 0; 1) 2 V , and w(i;n) = (1; 1).Since �0(v) 2 V and i 2 A�(v), we have �0(v)(i;n) = (0; 0). Finally, since �0(v) 2V � V 0, we have �1(�0(v)) 2 V , and �1(�0(v))(i;n) = (0; 1). 2By the induction hypothesis we have that V 0(i;n) = f(0; 0); (0; 1); (1; 0); (1; 1)g forany i in N 0. Thus, by Fact 3, V (i;n) = �(i; n) holds for any i in N 0, completing theproof of the theorem. 2Before closing the section, we note that using Theorem 4 we can construct afeasible algorithm which, given a partial function � from �N2� to R decides whetheror not � can be extended to obtain a consistent total function. The algorithmworks as follows. Given a partial function �, check if it satis�es the transitivityconstraints. If not, give the answer that � is not consistent. Otherwise, extend �7



using the transitivity constraints repeatedly until none of these constraints can beapplied. In doing this, if there exists a pair to which di�erent relations are assignedthen give the answer that � is not extensible consistently. Otherwise, concludethat � is extensible consistently. In fact, if we assign ./, to any pairs that remainunspeci�ed at the end of the algorithm, we obtain a total function. Clearly thetotal function obtained in this way is an extension of � and is consistent in view ofTheorem 4.3 An intuitive model for �In this section we shall introduce another, intuitive, model for � based directly onthe natural relations, so that we can give another proof of Theorem 4.Proposition 5. If � is transitive then there exists u in �n such that 'u(�)(i; j) 2R0 = f�;�; k; ./g holds for any (i; j) in �N2�.Proof. Let � be transitive. Then it is easy to see that 'u(�) is also transitivefor any u in �n. We shall prove the conclusion of the proposition by induction onn. When n = 2, Figure 1 shows the result at once. Let N 0 = f1; 2; : : : ; n � 1g andassume as the inductive hypothesis that the result holds for N 0. Then there existsu0 in �n such that 'u0(�)(i; j) 2 R0 holds for any (i; j) in �N 02 �. Now at most oneof � and ? appears in 'u0(�)(1; n), 'u0(2; n); : : : ; 'u0(n � 1; n). This is because,if there exist i; j in N 0 such that 'u0(�)(i; n) = ? and 'u0(�)(j; n) = �, then bytransitivity we have 'u0(i; j) = ?, contradicting the assumption. Thus by takingu = u0 � (0; : : : ; 0; 1) if there exists i in N 0 such that 'u0(�)(i; n) = ?, and takingu = u0 otherwise, we see from Figure 1 that 'u(�)(i; j) 2 R0 holds for any (i; j) in�N2�, completing the induction step. 2Let 'u(�) be as in Proposition 5. We note that in order to obtain a model for �it is su�cient by Proposition 2 to obtain a model for 'u(�). We denote again 'u(�)by � so that �(i; j) 2 R0 for any (i; j) in �N2�. We shall de�ne a collection of subsetsthat is compatible with �. To do this, consider the directed graph G0 with vertex setV 0 = fx1; : : : ; xng and edge set E 0 = f(xi; xj) j �(i; j) = �g. Since � is transitive,G0 is an acyclic graph, and we de�ne S0i to be the set of xi and its descendants. Itis easy to see that S0i � S0j if and only if (xi; xj) 2 E 0, and if and only if �(i; j) = �,so that G0 already gives a model for the set containment relations of �.For a complete model for � we need to extend G0 with extra vertices. De�neG00 = (V 00; E00), where V 00 = V 0 [ fxi;j j �(i; j) = ./ and i < jg and E00 =E 0 [ f(xi; xi;j); (xj; xi;j) j xi;j 2 V 00g. As in the case of graph G0, let S00i be the setof xi and its descendants in the graph G00. If there exist i and j in N such thatS00i [ S00j = V 00 holds, then let V = V 00 [ fx1g and E = E00. Otherwise, let V = V 008



and E = E00. The �nal graph G is de�ned to be (V;E). Now we de�ne Si to be theset consisting of xi and its descendants in the graph G. The containment relationon the new sets is the same as in the graph G0 and agrees with ��1(�). Therefore, if�(i; j) = ./ then neither containment can hold between Si and Sj but xi;j 2 Si \Sj .Hence, since Si [ Sj cannot be the whole set V , we have Si ./ Sj. For the proofof the converse, suppose that Si ./ Sj and so �(i; j) 2 fk; ./g. If there is some xkin Si \ Sj then k 6= i; j, so Sk � Si and Sk � Sj. Hence �(k; i) = �(k; j) andthe transitivity constraints imply that �(i; j) 6= k. Otherwise there is some xk;l inSi \ Sj where Sk � Si and Sl � Sj, and so (I) k = i or �(k; i) = �, and (II) l = jor �(l; j) = �. If �(i; j) = k then the constraints with (I) and (II) yield �(k; l) = k.This result is contradicted by the existence of xk;l and this completes the proof thatthe graph G is a model for �.4 Concluding remarksWe investigated the problem of deciding whether or not a function � that speci�esthe type of the natural relation for each pair of sets is consistent, and proved thatif � is consistent on any three sets then � is consistent on the whole collection ofsets. So the problem of deciding the consistency of � for n sets can be computedin time O(n3). Furthermore, it can be seen [J] that the problem can be solved intime O(n2:37). To show this fact, let M� be the matrix whose (i; j) componentis 1 if �(i; j) = �, and 0 otherwise. Then the constraint (�) in Section 2 can bewritten as M�M� �M�, where the matrix product is done using Boolean sum andproduct, and \� " holds between matrices if and only if \� " holds between all thecorresponding components in the matrices. Likewise, we can rewrite the remainingtransitivity constraints in Table 2 in matrix terms. Since the product of two n� nmatrices can be computed in time O(n2:37) [CW], the consistency problem for n setscan be computed in time O(n2:37).Finally we leave the following as an open question. Can the result in the presentpaper be generalized to \natural relations" with r arguments where r > 2? Morespeci�cally, can we prove or disprove that if � is consistent on any subset of size lessthan or equal to 2r � 1 of N then � is consistent on N? A reasonable restrictionof natural relations might be to those relations � on r sets in which for every iin f1; : : : ; rg there exists b in � such that v(i) = b implies �(v) = 1. Does thisrestriction make it easier to resolve the question?9
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