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Let n be a natural number and N denote the set {1,...,n}. Suppose that we are
given some combinatorial object ¢ defined on NV and that for any subset M of N, the
object, denoted by pyas, is obtained by restricting p to the subset M. Let P denote
some predicate defined on all of the objects pps, where M is a subset of N. We
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Abstract

Five natural relations for sets, such as inclusion, disjointness, intersec-
tion, etc., are introduced in terms of the emptiness of the subsets defined by
Boolean combinations of the sets. Let N denote {1,2,...,n} and (];7) denote
{(i,7) | t,j € N and 7 < j}. A function p on (];7) specifies one of these re-
lations for each pair of indices. Then p is said to be consistent on M C N
if and only if there exists a collection of sets corresponding to indices in M
such that the relations specified by p hold between each associated pair of
the sets. In this paper it is proved that if u is consistent on all subsets of N
of size three then p is consistent on N. Furthermore, conditions that make p
consistent on a subset of size three are given explicitly.
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consider predicates P that are inheritable, in the sense that if P holds on uy; then
P holds on ppy for any M’ C M. Such a predicate P often turns out to be “locally
computable”, i.e., if P holds on all objects py; with M satisfying some conditions
then P holds on the whole object uyx. One typical example of such a predicate
is given by Helly’s Theorem [H]. For example, in two dimensions, this states that
a family of compact convex planar sets has a nonempty intersection if and only if
every triple of the sets has a nonempty intersection.

In this paper we give another locally computable predicate for which we are only
required to check the predicate on all objects ups for “small” M. First we describe
five natural relations between sets, denoted by C, D, ||, L, <, representing strict
inclusion in each direction, disjointness, covering the universe, and the general case,
respectively, Each can be defined in terms of the emptiness or otherwise of Boolean
combinations of the sets, and the set of these five relations is denoted by R. Let
(];7) denote {(i,j) € N? | i < j}. Each object u we deal with is an assignment of a

natural relation to each pair (¢,7) in (JZV), i.e., a function from (];7) to R.

A collection of sets Sy,...,S, is compatible with u if the relation u(z,7) holds
between S; and S; for all (7,7) in (];7) It ;1 is compatible with some such collection
then p is said to be consistent. For any subset M C N, the object pas 1s simply the
M). It pps is consistent then p is said to be consistent on M.

2
Our main result is that if 4 is consistent on every subset of N of size three, then u

restriction of u to (

1s consistent. Conditions that make u consistent are given explicitly in terms of the
natural relations that may hold for any three subsets.

The problem of characterizing a predicate on graphs, or equivalently a family of
graphs satisfying the predicate, is also discussed in [FL] in a different context. And it
is pointed out that to find a finite number of combinatorial structures to characterize
a family is crucial. Some combinatorial aspects of inclusion and exclusion and their
relation to Boolean complexity are also discussed in [LN].

In Section 2, after natural relations on sets have been introduced, some con-
straints on natural relations of y are given which guarantee that p is consistent. In
order to prove the statement, a set of vectors is used as a model for p. It is also
shown that there exists a feasible algorithm which, given a partial function p from
(];7) to R, decides whether or not u can be extended to obtain a consistent total
function. In Section 3, a graph based on the inclusion relations of p is introduced as
another intuitive model for g, and the same result as in Section 2 is verified using
the model. In Section 4, some open problems are presented.



2 Consistency conditions for natural relations

Let the universe U be nonempty. A natural relation for any set or sets is one
that is defined in terms of the emptiness or otherwise of the subsets defined by
Boolean combinations of the sets. For one set, there are four cases, depending on
the emptiness of the set and its complement. If both are empty then S = ¢, a case
we have excluded. The remaining three cases correspond to the set being empty,
equal to the universe and proper, respectively. A subset S of U is called proper if
neither S = ¢ nor S = U. We will allow only the proper subsets of U.

For two sets A and B, there are formally 16 possible relations. Under our
assumptions that the universe is nonempty and both sets are proper, there remain
just seven cases. One is A = B, another is A = B = U—B. Both of these cases are
special in that if they hold then one of the sets can be eliminated by substitution from
the remaining relations. The remaining five natural relations constitute R. Table 1
defines these five relations in terms of the emptiness, denoted by 0, or nonemptiness,
denoted by 1, of four subsets. In the Table, (a, b) indicates the subset A*N B®, where
a and b are in {0,1}, S' = S and S° = S.

relations
subsets C D || L
(1,1) 1 1 0 1 1
(1,0) 0 1 1 1 1
(0,1) 1 0 1 1 1
(0,0) 1 1 1 0 1
Table 1:  Five natural relations

Let ¥ denote {0,1}. For v in ", let v() denote the i*" component of v. Given
n subsets Sy,...,95, of U, we can determine whether each subset of the form

v(l) v(2) U(")
A AR o Bl

i1s empty or not, where v = (v(l), cees v(”)) i1s in X". Let Vs denote the set of vectors
v in 2" such that Sf(l) N---N Sﬁ(n) is nonempty. Furthermore let T; for 1 <: < n
denote the set of vectors v in Vg such that ») = 1. Then it is easy to see that
consistency of Si,...,S5, for R is the same as that of T, ..., T,. In other words, for
any natural relation «, S;aS; holds if and only it T;aT; holds. So, without loss of
generality, we can consider a set of vectors V rather than a collection of subsets as
far as the consistency problem is concerned.



Relation « in Table 1 is considered to be a function from 3? to ¥ in the obvious
way: for (a,b)in %2, a(a,b) = 1if A*NB®is nonempty in the relation, and a(a, b) = 0
otherwise. Relation « can also be considered to be the set of vectors in ¥? for which
the function takes value 1, e.g., C = {(1,1),(0,1),(0,0)}. Let v denote (v, v(1)),
and V) denote {v(™) | v € V}. This notation can be generalized in an obvious
way to the case of more indices. Let y be a function from (];7) to R, and let M C N.
We say that u is compatible with V on M if and only if V) = y(s, §) for all (7, 7)
in (]\24), and that p is consistent on M if and only if there exists a subset V of X"
that is compatible with g on M. In particular, when M = N, the phrase “on M”
in the definition may be dropped.

Proposition 1.  Let p be consistent. Let V' denote the set {v € " | 3 (1,5) €
(g),ﬂ(i,j)(v(i),v(j)) = 0}. Then p is compatible with ¥"=V".

The proof is immediate from the definitions of consistency and compatibility.
Note that, with g and V' as in Proposition 1, ¥"=V" is the largest set of vectors
that is compatible with g in the sense that if p is compatible with V', then we have
V Cyrav.

For v in ¥" and A C ¥" let u® A = {ud v | v € A}, where u @ v denotes
the vector obtained by taking the bit-wise “exclusive or” of u and v. For w in

¥, the transformation ¢, on the set of functions from (];7) to R is defined as

ou(p)(i,7) = ul™) @ u(i, 7). Note that, in the definition, u(7,5) is thought of as a
subset of 32,

Clearly we have the next proposition.

Proposition 2.  Let v be in X" and V C ¥". Then g is compatible with V if
and only if ¢, (¢) is compatible with v & V.

In view of Proposition 2, we have the next proposition which says that the
transformation ¢, preserves the consistency of p for any uw in X".

Proposition 3.  Let u be in ¥". Then g is consistent if and only if ¢, (p) is
consistent.

Before proceeding to the main theorem, we show in Figure 1 how the five natural
relations are transformed by ¢, for v = (1,0) and (0,1).

It is convenient to extend the definition of any object p to {(j,2) | ¢ < j} in the
obvious way, so that u(¢,j) = C if and only if u(j,¢) = D, and u(e,j5) = pu(y,¢) if
u(i.7) € 4l L},

It p is consistent then the transitivity of inclusion implies that the following
constraint holds for any distinct indices ¢, 7 and k.

(%) if p(i,j) = C and p(j, k) = C then p(i, k) = C.

By applying Proposition 3 for various choices of u, we can transform the constraint
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Figure 1: Transformations on natural relations

(¥) in various ways. For example, let u("/%) = (1,0,1) and i/ = é,(¢). Now, if
w(t,7) = L and p(y, k) = || then p'(¢,5) = C and p'(j, k) = C, and so p'(i, k) = C,
which implies that (7, k) = D. In Table 2 we show the eight transitivity constraints
which are obtained. If u satisfies these eight constraints it is said to be transitive.

Wt i ) n(Gs k) | i k)
(0,0,0) C C C
(0,0,1) | C I I
(0,1,0) I 1 C
(010 | | > ||
(1,0,0) 1 C 1
(1,0,1) 1 I D
(1,1,0) D 1 1
(1,1,1) D D D

Table 2:  The eight transitivity constraints

The next theorem says that these conditions that are necessary to make p con-
sistent on any set of three indices turn out to be sufficient conditions to make p
consistent on the set of all indices.

Theorem 4. If p is transitive then p is consistent.

Proof. We shall prove the statement of the theorem by induction on n. The
statement holds trivially when n = 2. Assume that the statement holds for n — 1,
where n > 3.

Let N'"={1,2,...,n—1}. In view of Figure 1, it is easy to see that there exists
some u in X" such that ¢, (p)(i,n) € {C,D,»<} for all ¢ in N’. By Proposition 3
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it suffices to show that o, (p) is consistent. Furthermore, it is easy to see that if
(1 satisfies the conditions of the theorem then ¢, (i) also satisfies the conditions.
So, denoting ¢,(¢) again by p, we may assume that p satisfies the conditions of
the theorem and that p(é,n) € {D,C,>} for all ¢ in N'. We will show that u is
consistent.

Let

Vi = {vex |36, e () ni.i)0i) =0},

Vo = {veI"[3ie N, ulin)(vt) =0},

Vo= SV,

Vo= S"-ViV.
Let p' be the function obtained by restricting p to (]gl) Then by the induction
hypothesis and Proposition 1, x' is compatible with V.
Fact 1. For any v in V' at least one of (v, ... 01 0) and (0™, ... 0= 1)
1sin V.
Proof. Assume to the contrary that there exists v in V' such that both of

(vM, .. oD 0) and (oM. .., 0D 1) belong to V. Then, since u(k,n) €
{D, C, <} for any k in N, there exist 7 and j in N’ such that
pli,n) = C,
p(gn) = D,
@ = 1,
1) N——

Hence by transitivity we have u(i, j) = C, which, together with v = 1 and v\ = 0,
implies that v belongs to V7, contradicting the assumption. a
By Fact 1 we have
V() — 1/769)
for any (¢,7) in (]gl) On the other hand, by the induction hypothesis and Propo-

N/

M ) Hence we have

sition 1 we have V') = 4/(i,5) = u(i, ;) for any (i,5) in (
V03 = p(i,5) for any (4,4) in (]gl)

So it remains to show that
VO = p(i,n)
holds for any 7 in N'. For v in X" and relation «, let

Au(v) = {ie N[ o) =1, pu(i.n) = a}.
Bu(v) = {i€N'[v®=0,u(i,n) = a}.
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Note that from the assumption we only have to consider the case where « belongs
to {C, D, >}
Fact 2. Let v bein V'. Let 79(v) and 71(v) be vectors in X" such that

To(v)(j) _ { 0 4 it j € Ac(v) or j =n,

vU)  otherwise,

: 1 if y € B5(v) or j = n,
Tl(v)(]) :{ vl) otherwise(. )
Then 79(v) and 71(v) are in V.
Proof.  Let 79(v) and 74(v) be denoted by vy and vy, respectively. It is easy to
see that u(z, n)(véi’n)) = 1 for any b in ¥ and any ¢ in N’, and hence v, € V; for any
bin ¥. So it suffices to show vy, ¢ V; for any b in ¥. To do so, we assume to the
contrary that there exist bin ¥ and (¢,7) in (]g/) such that ,u(i,j)(vlgl’])) = 0. Since

(7, 7)(0) = 1 for all (4,4) in (]gl), at least one of v,ﬂ” #£ v and v,ﬁj) #£ v holds.
Without loss of generality, we may assume that b = 0 and v(()i) #£ v, So we only
need to consider the following cases.

Case 1. 1€ Ac(v),v(()j) =0 and u(z,5) = L.
Since pu(j,¢) = L and u(e,n) = C, by transitivity (see Table 2) we have u(j,n) = L
which contradicts the assumption that u(k,n) € {C, D, >} for any k in N'.

Case 2. 1€ Ac(v),v(()j) =1 and u(z,5) = D.
Since u(j,¢) = C and u(e,n) = C, by transitivity we have u(j,n) = C, which

Y

contradicts v(()]) =1. O
Fact 3. Let u(i,n)(v@™) = 0 for some ¢ € N’ and v € V'. Then for any
(a,b) € ©? other than v(#™), there exists v’ € V such that v'0"") = (a, b).
Proof. Let ¢ and v be as in the hypothesis. Without loss of generality we may
assume that p(i,n) = C, and v = (1, O) for some 7 € N and v € V.

Since v ¢ V., Fact 1 implies that w = v & (O ...,O 1) € V, and v = (1,1).
Since To(v) € V and i € Ac(v), we have 7o(v)™ = (0,0). Finally, since mo(v) €
V C V', we have 7y (1o(v)) € V, and 71 (70(v))™) = (0, 1). O

By the induction hypothesis we have that V'™ = {(0,0),(0,1),(1,0), (1,1)} for
any i in N'. Thus, by Fact 3, V(™ = y(4,n) holds for any 7 in N’, completing the
proof of the theorem. a

Before closing the section, we note that using Theorem 4 we can construct a
feasible algorithm which, given a partial function p from (]zv) to R decides whether
or not p can be extended to obtain a consistent total function. The algorithm
works as follows. Given a partial function p, check if it satisfies the transitivity
constraints. If not, give the answer that u is not consistent. Otherwise, extend p
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using the transitivity constraints repeatedly until none of these constraints can be
applied. In doing this, if there exists a pair to which different relations are assigned
then give the answer that p is not extensible consistently. Otherwise, conclude
that p is extensible consistently. In fact, if we assign <, to any pairs that remain
unspecified at the end of the algorithm, we obtain a total function. Clearly the
total function obtained in this way is an extension of p and is consistent in view of
Theorem 4.

3 An intuitive model for p

In this section we shall introduce another, intuitive, model for u based directly on
the natural relations, so that we can give another proof of Theorem 4.
Proposition 5. If p is transitive then there exists v in X" such that o, (¢)(7, ) €
Ro ={C,D,||,><} holds for any (¢,7) in (];7)
Proof.  Let p be transitive. Then it is easy to see that ¢,(x) is also transitive
for any u in X". We shall prove the conclusion of the proposition by induction on
n. When n = 2, Figure 1 shows the result at once. Let N' = {1,2,...,n — 1} and
assume as the inductive hypothesis that the result holds for N’'. Then there exists
v’ in X" such that ¢ (p)(7,5) € Ro holds for any (7,7) in (]g/) Now at most one
of D and L appears in @ (p)(1,n), uw(2,n),...,0w(n — 1,n). This is because,
if there exist ¢,5 in N’ such that ., (¢)(é,n) = L and @ (p)(j,n) = D, then by
transitivity we have ¢ (2,7) = L, contradicting the assumption. Thus by taking
u=u"&(0,...,0,1) if there exists ¢ in N’ such that ¢ (p)(i,n) = L, and taking
u = u' otherwise, we see from Figure 1 that ¢,(x)(¢,7) € Ro holds for any (7, ) in
(]zv), completing the induction step. a

Let ¢, (p) be as in Proposition 5. We note that in order to obtain a model for u
it is sufficient by Proposition 2 to obtain a model for ¢, (x). We denote again ¢, (x)
by 4 so that u(7,j) € Ro for any (¢,7) in (]zv) We shall define a collection of subsets
that is compatible with g. To do this, consider the directed graph G’ with vertex set
V' ={x1,...,2,} and edge set E' = {(a;,2;) | p(é,j) = D}. Since p is transitive,
G’ is an acyclic graph, and we define S} to be the set of x; and its descendants. It
is easy to see that S; D S} if and only if (2, 2;) € E', and if and only if (i, ) = D,
so that G’ already gives a model for the set containment relations of p.

For a complete model for p we need to extend G’ with extra vertices. Define
G = (V" E"), where V" = V' U {x,; | u(t,j) = and ¢ < j} and E” =
E'U{(x;, 2, ), (xj,2:;) | ;; € V"}. As in the case of graph G', let S” be the set
of x; and its descendants in the graph G”. If there exist ¢ and j in N such that
S7’U ST = V" holds, then let V = V" U {z,} and E = E”. Otherwise, let V = V"



and E = E”. The final graph G is defined to be (V, E). Now we define S; to be the
set consisting of x; and its descendants in the graph G. The containment relation
on the new sets is the same as in the graph G’ and agrees with y~ (D). Therefore, if
(2, 7) = < then neither containment can hold between S; and S; but 2, ; € 5;NS;.
Hence, since S; U S cannot be the whole set V., we have S; b S;. For the proof
of the converse, suppose that S; > S; and so u(e,7) € {|[,><}. If there is some
in S;NS; then k& # 1,7, so S C S; and Sx C S;. Hence p(k,i) = p(k,j) and
the transitivity constraints imply that pu(7,5) # ||. Otherwise there is some w4, in
SN S; where S, € S; and S; C Sj, and so (I) k =7 or p(k,2) = C,and (II) I =y
or u(l,j) = C. If u(7,5) = || then the constraints with (I) and (II) yield u(k, 1) = ||.
This result is contradicted by the existence of z4; and this completes the proof that
the graph G is a model for p.

4 Concluding remarks

We investigated the problem of deciding whether or not a function p that specifies
the type of the natural relation for each pair of sets is consistent, and proved that
if p 1s consistent on any three sets then p is consistent on the whole collection of
sets. So the problem of deciding the consistency of p for n sets can be computed
in time O(n?). Furthermore, it can be seen [J] that the problem can be solved in
time O(n*37). To show this fact, let M be the matrix whose (i,j) component
is 1if p(e,7) = C, and 0 otherwise. Then the constraint (*) in Section 2 can be
written as M- M- < M, where the matrix product is done using Boolean sum and
product, and “< ” holds between matrices if and only if “< ” holds between all the
corresponding components in the matrices. Likewise, we can rewrite the remaining
transitivity constraints in Table 2 in matrix terms. Since the product of two n x n
matrices can be computed in time O(n?37) [CW], the consistency problem for n sets
can be computed in time O(n?>7).

Finally we leave the following as an open question. Can the result in the present
paper be generalized to “natural relations” with r arguments where r > 27 More
specifically, can we prove or disprove that if p is consistent on any subset of size less
than or equal to 2r — 1 of N then p is consistent on N7 A reasonable restriction
of natural relations might be to those relations « on r sets in which for every
in {1,...,7} there exists b in ¥ such that v{) = b implies a(v) = 1. Does this
restriction make it easier to resolve the question?
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