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Abstract

Weighted voting games are mathematical models, used to analyse
situations where voters with variable voting weight vote in favour of
or against a decision. They have been applied in various political
and economic organizations. Similar combinatorial models are also
encountered in neuro-science and distributed systems.

The calculation of voting powers of players in a weighted voting
game has been extensively researched in the last few years. However,
the inverse problem of designing a weighted voting game with a desir-
able distribution of power has received less attention. We present an
elegant algorithm which uses generating functions and interpolation
to compute an integer weight vector for target Banzhaf power indices.
This algorithm has better performance than any other known to us. It
can also be used to design egalitarian two-tier weighted voting games
and the representative weighted voting game for a multiple weighted
voting game.
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1 Introduction

1.1 Motivation

Weighted voting games are mathematical models which are used to analyze
voting bodies in which the voters have different number of votes. In weighted
voting games, each voter is assigned a non-negative weight and makes a vote
in favour of or against a bill. The bill is passed if and only if the total weight
of those voting in favour of the bill is equal to or greater than the quota.
Weighted voting games have been applied in various political and economic
organizations for structural or constitutional purposes. Prominent appli-
cations include the United Nations Security Council, the Electoral College
of the United States and the International Monetary Fund ([18], [3]). The
distribution of voting power in the European Union Council of Ministers
has received special attention in [1], [5], [17], [15] and [10]. Voting power
is also used in joint stock companies where each shareholder gets votes in
proportion to the ownership of a stock ([4], [11]). Weighted voting games
are also encountered in reliability theory, neuroscience and logical comput-
ing devices [27]. A power index attempts to measures the ability of a player
to determine the outcome of the vote.

The calculation of voting powers of the voters which is NP hard in all
well known cases [23], has been extensively researched in the last few years
and has interested computer scientists [14]. However, the inverse problem
of designing a weighted voting system with a desirable distribution of power
has received less attention. In this paper, we present an efficient algorithm
to compute a corresponding integer vector for a given vector of Banzhaf
Indices. This is a natural extension of the work on the method of generating
functions to compute voting power indices. The algorithm is designed as a
ready-made tool to be used by economists and political scientists in their
analysis of weighted voting games. The tool is planned to be accessible
from [21]. This algorithm has better performance than any other known
to us. We have looked at designing multiple weighted voting games and
also proposed further directions for research. Experiments with variations
of the algorithm also promise to give better insight into the nature of the
relationship between voting weights and corresponding voting powers.
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1.2 Outline

Section 2 gives the definitions and notations of key terms and concepts cover-
ing voting power and weighted voting games. It also outlines how generating
functions can be used to compute Banzhaf indices of players in a weighted
voting game. Section 3 provides a survey of approaches to designing voting
games and weighted voting games in particular. It also includes our main
algorithm to design weighted voting games and its analysis. Section 4 high-
lights an application of our algorithm which is to use the Penrose Law to
design ‘egalitarian’ weighted voting games. Similarly, Section 5 shows how
our algorithm can be used to find the ‘representative’ single weighted vot-
ing game for a multiple weighted voting game. The final section presents
conclusions.

2 Preliminaries

2.1 Voting Games

In this section we give definitions and notations of key terms. The set of
voters is N = {1, ..., n}.

Definition 2.1. A simple voting game is a pair (N, v) where v : 2N → {0, 1}
where v(∅) = 0, v(N) = 1 and v(S) ≤ v(T ) whenever S ⊆ T . A coalition
S ⊆ N is winning if v(S) = 1 and losing if v(S) = 0. A simple voting
game can alternatively be defined as (N,W ) where W is the set of winning
coalitions.

Definition 2.2. The simple voting game (N, v) where
W = {X ⊆ N,

∑
x∈X wx ≥ q} is called a weighted voting game. A weighted

voting game is denoted by [q;w1, w2, ..., wn] where wi is the voting weight of
player i. Generally wi ≥ wj if i < j.

2.2 Voting Power Indices

Definition 2.3. A player i is critical in a coalition S when S ∈ W and
S \ i /∈ W . For each i ∈ N , we denote the number of coalitions in which i is
critical in game v by ηi(v). The Banzhaf Index of player i in weighted voting
game v is βi = ηi(v)∑

i∈Nηi(v) . The Probabilistic Banzhaf Index, β
′
i of player i in

game v is equal to ηi(v)/2n−1.

The worst case running time of a naive algorithm for computing the
Banzhaf indices is in O(n2n).
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2.3 Generating functions to compute Banzhaf Power

Algaba et al. [1] point out that Brams and Affuso [7] obtained generating
functions for computing Banzhaf indices. Algaba et al. observed that for a
weighted voting game v = [q;w1, ..., wn], the number of coalitions in which a
player is critical is bi = |{S ⊂ N : v(S) = 0, v(S ∪ {i}) = 1}| =

∑q−1
k=q−wi

bi
k

where bi
k is the number of coalitions which do not include i and with total

weight k.

Proposition 2.4. (Brams-Affuso). Let v = [q;w1, ..., wn] be a weighted vot-
ing game where W =

∑
1≤i≤n wi. Then the generating functions of numbers

{bi
k} are given by Bi(x) =

∏n
j=1,j 6=i(1+xwj ) = 1+ bi

1x+ bi
2x

2 + ...+ bi
W−wi

x.

Example 2.5. Let v = [6; 5, 4, 1] be a weighted voting game.

• B1(x) = (1 + x4)(1 + x1) = 1 + x + x4 + x5

The coalitions in which player, 1 is critical are {1, 2}, {1, 3}, {1, 2, 3}.
Therefore η1 = 3

• B2(x) = (1 + x5)(1 + x1) = 1 + x + x5 + x6 The coalition in which
player, 2 is critical is {1, 2}. Therefore η2 = 1

• B3(x) = (1 + x5)(1 + x4) = 1 + x4 + x5 + x9

The coalition in which player, 3 is critical is {1, 3}. Therefore η3 = 1

Consequently β1 = 3/5, β2 = 1/5 and β3 = 1/5

The generating function method provides an efficient way of computing
Banzhaf indices if the voting weights are integers [22].

3 Designing Weighted Voting Games

3.1 Outline and Survey

The problem of designing weighted voting games can be defined formally as
follows:

Definition 3.1. ComputeRealWeightsforGivenPowers: Given a real num-
ber vector of Banzhaf Indices, P = (p1, ..., pn) for the n players, some ap-
propriate Error function and ε, compute the corresponding real approximate
weights w = (w1, ...wn) such that Error(P, P (w)) < ε.
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The problem of designing weighted voting games was first discussed in [?]
and [20]. Holler et all. [20] proposed an iterative procedure with a stopping
criterion to approximate to a game which has a voting power vector almost
equal to the target. The method was to choose an initial weight vector
w0 and use successive iterations to get a better approximation: wr+1 =
wr + λ(d−P (wr)) where λ is a scalar and P (wr) is the power vector of wr.
The approach has been used to analyse the Council of European Union and
the International Monetary Fund Board of Governors.

Not every power distribution is feasible and might not have correspond-
ing weights for it. There are some unexplored questions concerning the con-
vergence of the vector, such as whether the iteration always converges to the
right region. It is also critical to design systems with desirable properties.

Carreras [8] points out factors considered in designing simple games. The
focus is different from the computation of powers and weights. By focusing
on the protectionist tendency found in the design of voting games, the role
of blocking coalitions is analysed in a simple game. Similarly, complexity
results in designing simple games are provided in [26]. They show that it is
NP-Complete to verify the ‘stability’ of a simple game.

3.2 Algorithm to design weighted voting games

We provide a more effective hill climbing approach than the previous pro-
posed algorithms. Our algorithm tackled a variation of the problem Comput-
eRealWeightsforGivenPowers. The reason we are computing integer voting
weights is that we want to utilize the generating function method in each
iteration. The constraint of having integer weights is a reasonable assump-
tion. Firstly many weighted voting games naturally have integer weights.
Secondly some policy makers feel more comfortable dealing with integers.
Thirdly our algorithm is giving results to high degree of accuracy even with-
out using real or rational weights.

Definition 3.2. ComputeIntegerWeightsforGivenPowers: Given a real num-
ber vector of Banzhaf Indices, P = (p1, ..., pn) for the n players, some appro-
priate Error function and ε, compute the corresponding integer approximate
weights w = (w1, ...wn) such that Error(P, P (w)) < ε.

Proposition 3.3. The power indices of players in weighted voting game
v = [q;w1, ..., wn] are the same as the power indices in the weighted voting
game λv = [λq;λw1, ..., λwn]

Proof. The proof is trivial. We notice that the set of coalitions for which
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player i is critical is the same for both games v and λv. This means that
the Banzhaf indices of players in both games are the same.

Algorithm 1 ComputeIntegerWeightsforGivenPowers
Input: Target Vector of Powers, T
Output: Corresponding vector of voting weights
1: Use Normal Distribution Approximation to get an initial estimate of the

weights
2: Multiply the real voting weights by a suitable real number λ which

minimises the error while rounding to get new integer voting weights.
3: Use the Generating Function Method to compute new vector of voting

powers
4: Interpolate by using a best fit quadratic curve to get the new real voting

weights
5: Repeat Step 2 until the sum of squares of differences between the powers

and the target powers is less that the maximum error.
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3.3 Algorithmic and Technical Issues

The main aim of the algorithm is to use the generating function method
to compute voting powers of estimated voting weights in a limited number
of iterations. The generating function method is an elegant and efficient
combinatorial method to compute Banzhaf indices of players with integer
votes. Bilbao et al. [6] prove that the computational complexity of com-
puting Banzhaf indices by generating functions is O(n2C) where C is the
number of nonzero coefficients in

∏
1≤i≤n(1 + xwj ). Therefore in order to

limit the computational complexity, we have tried to find moderate voting
weights with values under 1000 in each iteration.

Since the generating function method can only be applied on integer
votes, Algorithm 1 rounds off interpolated values to integer values. This
rounding off can lead to varying errors if different potential multiples of the
same real voting weight vector are used. After every interpolation step, we
find a real λ which is multiplied with the voting weight vector and minimizes
the total error on rounding. While finding the appropriate λ to multiply with
the voting weights vector we minimize the sum of squares of the difference
between new real voting weights and the rounded new voting weights. So
for example if w1, w2..., wn are reals and mi =Round(λwi)∀i ∈ N , we want
to minimize

∑
i∈N (mi

M − wi
W )2 where M =

∑
i∈N mi and W =

∑
i∈N wi. All

multiples of the same voting weight vector are equivalent (Proposition 3.3).
It also appears reasonable to minimize the sum of the differences between
the normalized voting weights and their corresponding rounded normalized
voting weights. During interpolation, there is also the technical issue of
having two possible voting weights with the same voting power. To avoid
any errors in Mathematica, the Union function is used to delete pairs where
the voting power is repeated.

The normal distribution approximation has been used to get an initial
estimate of the voting weights. Leech [19] also uses the multi-linear extension
approach in approximation of voting powers.

One extra degree of freedom which we have ignored is the variation in the
quota. The same voting weights profile results in different Banzhaf indices
according to the quota. The exact effects on the Banzhaf indices of changing
the quota has various open problems.

One concern is the extra error induced when the interpolated weights
are rounded off. From a relative movement point of view, it will be a bigger
problem if most of the weights are rounded down and only a few weights
are rounded up. Ideally, we will want the positive and negative differences
in rounding to be balanced. The likelihood of this balance increases as we
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use more players. However if the above mentioned problem arises, we would
rather have those few weights which have been rounded up to also be rounded
down. Some insight from the apportionment literature promises to shed
light on how to deal with this technical issue. We are also looking for fresh
computational approaches to apportionment. An overview of apportionment
is available at [13] and [12].

3.4 Performance and Computational Complexity

As mentioned previously, the computational complexity of computing Banzhaf
indices by generating functions is O(n2C) where C is the number of nonzero
coefficients in

∏
1≤i≤n(1 + xwj ). We can approximate the number of iter-

ations required based on the number of significant figures required in our
final solution. However for practical purposes, our algorithm is giving an
error of less than 10−8 for 30 players after only 3 iterations.

4 Designing Egalitarian Voting Games

We have the data of the latest EU Council members and we are running
some experiments which use our algorithm to design integer votes for EU
members if new countries are given membership. Felsenthal and Machover
[9] have obtained the following result for a two-tier voting system based on
Penrose’ seminal paper [24].

Theorem 4.1. (Felsenthal and Machover) Let v be a 2-tier voting system in
which m delegates of m different states with populations {n1, ..., nm} vote in
a weighted voting game as the representative of their states. The probabilistic
Banzhaf indices β

′
i are equal for all the population voters if and only if

the probabilistic Banzhaf indices β
′
i of the delegates are proportional to the

respective
√

ni

This is an approximation as ni tends to infinity. The assumption of the
Penrose square root law is that ‘yes’ and ‘no’ are equiprobable and the voters
are totally independent. Based on this result, we can devise an algorithm to
compute voting weights of countries so that every member of any country
has approximately equal voting power.
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Algorithm 2 ComputeFairIntegerWeightsforGivenPopulations
Input: Vector of State Populations, p = {n1, ..., nm}

Output: Corresponding vector of voting weights w = {w1, ..., wn}

1: Let β′ = {√n1, ...,
√

nm} and B =
∑

1≤i≤m

√
ni

2: Target powers, T = {√n1/B, ...,
√

nm/B}
3: Run Algorithm 1 with input T and return the output

W Slomczynski and K. Zyczkowski [25] have proposed that giving each
nation a vote proportional to the square root of its population and establish-
ing a quota rule equal to around 62% of the population makes the voting rule
almost egalitarian. Although this voting method appears to be elegant and
transparent, Algorithm 2 provides an alternative in which we can change
the quota to accomodate various levels of efficiency to make a decision. We
used Algorithm 2 with simple majority quota to compute a sample vector
of egalitarian voting weights for the EU countries. The populations data is
available from [16]. We use our algorithm to compute ‘egalitarian’ weights
in case Turkey joins EU:
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State Population
√

(population) Target Banzhaf Indices Voting Weights
Belgium 10570500 3251.230536 0.030050536 30
Bulgaria 7666500 2768.844524 0.02559193 26

Czech Republic 10288900 3207.631525 0.029647559 30
Denmark 5445700 2333.602365 0.021569065 22
Germany 82311700 9072.579567 0.083856213 81

Estonia 1339900 1157.540496 0.010698938 11
Ireland 4326700 2080.072114 0.019225731 20
Greece 11169100 3342.020347 0.03088969 31
Spain 44484300 6669.655163 0.061646417 61

France 63336300 7958.410645 0.073558151 72
Italy 58933800 7676.835285 0.070955601 70

Cyprus 776000 880.9086218 0.008142079 8
Latvia 2280500 1510.132445 0.013957881 14

Lithuania 3385700 1840.027174 0.017007039 17
Luxembourg 464400 681.4690015 0.006298695 6

Hungary 10057900 3171.419241 0.029312855 30
Malta 407700 638.5138996 0.005901669 6

Netherlands 16346200 4043.043408 0.03736912 38
Austria 8295900 2880.260405 0.026621726 27
Poland 38101800 6172.665551 0.057052832 57

Portugal 10609000 3257.14599 0.030105212 30
Romania 21570600 4644.416002 0.042927498 43
Slovenia 2010300 1417.850486 0.013104936 13
Slovakia 5391600 2321.981912 0.021461659 22
Finland 5277100 2297.19394 0.021232548 22
Sweden 9119800 3019.900661 0.027912396 28

United Kingdom 60707100 7791.476112 0.072015206 71
Croatia 4439.8 2107.083292 0.01947539 20

R Macedonia 2042200 1429.055632 0.013208503 13
Turkey 73430000 8569.130644 0.079202926 77

TOTAL 574587000 108192.097 1 996
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5 Multiple weighted voting games

A weighted m-majority game is the simple game (N, v1∧ ...∧ vm) where the
games (N, vt) are the weighted majority games [qt;wt

1, ...w
t
n] for 1 ≤ t ≤ m.

Then v = v1 ∧ ... ∧ vm is defined as:

(v1 ∧ ... ∧ vm)(S) =
{

1, if
∑

i∈Swt
i ≥ qt, for all t, 1 ≤ t ≤ m

0, otherwise

The treaty of Nice makes the overall voting games of the EU countries
a triple majority weighed voting game with certain additional constraints.
Algaba et al. [2] outline a generating function method to find the Banzhaf
indices of players in a multiple weighted majority game. Their algorithm m-
banzhafPower computes the Banzhaf index of the players in O(max(m, n2c))

time where c is the number of terms of B(x1, ..., xm) =
∏n

j=1(1 + x
w1

j

1 ...x
wm

j
m )

Our Algorithm 1 can be used to produce an approximate single majority
weighted game as a representative for a double majority weighted voting
game.

SingleWeightedVotingGameForMultipleGames:

Algorithm 3 SingleWeightedVotingGameForMultipleGames
Input: Multiple weighted voting game (N, v1 ∧ ... ∧ vm)
Ouput: Corresponding weighted voting game
1: Use Algorithm m-banzhafPower to compute vector of Banzhaf indices,
{β1, ..., βn}

2: Run Algorithm 1 to compute the corresponding weighted voting game
v

3: Return v

The questions we are interested in exploring are: Is there a way of di-
rectly transforming a multiple majority weighted game into a weighted vot-
ing game with the same voting powers. Is there any loss of information in the
transformation? Is it possible to identify and remove redundant weighted
games from the multiple majority weighted voting game?

6 Conclusion

This paper provides an algorithm which will be useful for practitioners in
the voting power field. Moreover we analyse computational considerations
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which will be of interest to computer scientists. We notice that our algorithm
can be used to design egalitarian two-tier weighted voting games and also
find the ‘representative weighted voting game’ for multiple weighted voting
games.

The computational complexity of Algorithm 1 remains an open problem.
Moreover the voting rules in the EU Council comprise of multiple weighted
voting games. It is an interesting problem to analyse multiple voting games
as a function of its constituent single weighted voting games.
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H∗:Mathematica Version:5.2∗L

H∗:Package Version:1.10∗L

H∗:Name:Compute_Banzhaf _Indices _of _MWVG ∗L

H∗:Title: Compute Integer Weights for given Powers∗L

H∗:Authors:

Mike Paterson Hmsp@dcs.warwick.ac.ukL and Haris Aziz Hharis.aziz@warwick.ac.ukL ∗L

H∗:Copyright:∗L

H∗ The first part should be familiar. The rest has some experiments and

graphs and then shows how to semiautomate the finding of good "lambdas". ∗L

Off@InterpolatingFunction::"dmval", General::"spell1", NumberForm::"sigz"D;

Clear@P, RW, VD;

g@v_D := Apply@Times, Map@H1 + x^#L &, vDD;

s@r_D := Normal@Series@1ê H1 − xL, 8x, 0, r − 1<DD;

h@r_, v_D := Expand@g@vDê H1 + x^rLD;

p@r_, v_D := Coefficient@s@rD h@r, vD, x^Round@Total@vDê2 − 1DD;

H∗ strict majority rule ∗L

Ind@v_D := Map@p@#, vD &, vD; H∗ raw index ∗L

NBI@v_D := Htemp = Ind@vD; tempêN@Total@tempDDL; H∗ normalized index ∗L

FirstEqual@u_, v_D := u@@1DD � v@@1DD;

F@r_, RW_D := Total@HFractionalPart@RW r + 1ê2D − 1ê2L^2D;

T = 80.0954, 0.0810, 0.0809, 0.0799, 0.0661, 0.0655, 0.0499, 0.0418, 0.0342,

0.0338, 0.0337, 0.0335, 0.0333, 0.0313, 0.0302, 0.0299, 0.0245, 0.0243,

0.0239, 0.0204, 0.0203, 0.0164, 0.0148, 0.0127, 0.0091, 0.0069, 0.0065<;

P@n_D := P@nD = NBI@V@nDD 1.0002; H∗ correcting for target excess ∗L

DT@n_D := P@nD − T;

Err@n_D := Total@DT@nD^2D;

RW@n_D :=

RW@nD = Map@Interpolation@Union@Transpose@8P@n − 1D, V@n − 1D<D, SameTest → FirstEqualD,

InterpolationOrder → 2D, TD;

Go@n_D := Print@"Error = ", NumberForm@Err@nD, 4D, ";

Diff = ", NumberForm@DT@nD, 3D, "; Next raw weights = ", RW@n + 1DD;

V@0D = 8914, 790, 789, 780, 654, 648, 499, 420, 345, 341, 340, 338,

336, 316, 305, 302, 248, 246, 242, 207, 206, 166, 150, 129, 92, 70, 66<

8914, 790, 789, 780, 654, 648, 499, 420, 345, 341, 340, 338,

336, 316, 305, 302, 248, 246, 242, 207, 206, 166, 150, 129, 92, 70, 66<

Go@0D

Error = 1.232×10−8; Diff =

80.0000215, 0.0000443, 0.0000328, 0.0000266, 0.000038, −4.82×10−7, −0.000016, −0.0000269,

−1.56×10−6, −3.73×10−6, −3.24×10−6, −2.74×10−6, −2.32×10−6, −0.0000197, −0.0000122,

−9.89×10−6, −7.67×10−6, −4.69×10−6, 2.55×10−7, 0.0000242, 0.0000251, −0.0000358,

−0.0000332, 0.0000124, −0.0000324, −0.0000107, −2.04×10−6<; Next raw weights =

8913.821, 789.603, 788.706, 779.763, 653.643, 648.005, 499.155, 420.265, 345.015,

341.037, 340.032, 338.027, 336.023, 316.194, 305.123, 302.1, 248.078, 246.048,

241.997, 206.755, 205.747, 166.362, 150.336, 128.874, 92.327, 70.109, 66.0209<
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Inter@n_D := ListPlot@Transpose@8V@nD, P@nD<DD;

Inter@0D

200 400 600 800

0.02

0.04

0.06

0.08

� Graphics �

F0 = Interpolation@

Union@Transpose@8P@0D, V@0D<D, SameTest → FirstEqualD, InterpolationOrder → 2D

InterpolatingFunction@880.00649796, 0.0954215<<, <>D

Total@V@0DD

9939
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Plot@Erf@xD, 8x, 0, 0.1<D;

0.02 0.04 0.06 0.08 0.1

0.02

0.04

0.06

0.08

0.1

H∗ We look at how well the Erf

approximation does compared with quite a good solution ∗L

Plot@F0@xD − 8500 Erf@xD + 8500 Hx − 0.05L^2, 8x, 0, 0.1<, PlotRange → AllD;

0.02 0.04 0.06 0.08 0.1

18

19

20

21

22

23

V@1D = Round@RW@1D 1.01556D

8928, 802, 801, 792, 664, 658, 507, 427, 350, 346, 345, 343,

341, 321, 310, 307, 252, 250, 246, 210, 209, 169, 153, 131, 94, 71, 67<

Go@1D

Error = 8.091×10−8; Diff =

80.000166, 0.0000803, −0.0000355, 0.0000913, 8.27×10−6, −0.0000123, 0.0000443, −0.0000714,

0.0000391, 0.0000457, −0.000047, −0.0000426, −0.0000359, −7.36×10−6, −0.0000693,

0.0000383, −0.0000241, −0.0000172, −2.43×10−6, 0.0000106, −0.000082, −0.0000471,

−0.0000128, −5.85×10−6, −0.0000578, 0.0000142, 0.0000328<; Next raw weights =

8468.301, 404.627, 404.164, 399.586, 334.96, 332.06, 255.781, 215.36, 176.804,

174.762, 174.243, 173.217, 172.187, 162.037, 156.36, 154.801, 127.122, 126.089,

124.013, 105.945, 105.426, 85.2431, 77.066, 66.0313, 47.2986, 35.9257, 33.8277<

V@2D = Round@RW@2D 1.9818D

8928, 802, 801, 792, 664, 658, 507, 427, 350, 346, 345, 343,

341, 321, 310, 307, 252, 250, 246, 210, 209, 169, 153, 131, 94, 71, 67<

interpolation12-commented.nb 3



Go@2D

Error = 9.605×10−9; Diff = 8−5.29×10−6, 0.000012, 1.81×10−6, 0.0000107, 0.0000191,

−0.0000103, 4.55×10−6, 0.0000191, −0.0000386, −0.000034, −0.0000325, −0.000029,

−0.0000261, −0.0000117, 0.0000125, 0.0000183, 6.31×10−6, 0.0000118, 0.0000227, 2.35×10−6,

4.87×10−6, 4.05×10−6, 0.0000299, 0.0000108, 0.0000211, −0.0000193, −5.21×10−6<

; Next raw weights = 8928.045, 801.891, 800.984, 791.903, 663.818, 658.099, 506.955,

426.809, 350.39, 346.345, 345.33, 343.296, 341.265, 321.117, 309.872, 306.816, 251.935,

249.879, 245.768, 209.976, 208.95, 168.959, 152.693, 130.888, 93.7852, 71.2, 67.054<

Plot@F@r, RW@1DD, 8r, 0.99, 1.01<, PlotPoints → 500, PlotRange → 80.8, 1.2<D;

0.99 0.995 1.005 1.01

0.8

0.85

0.9

0.95

1.05

1.1

1.15

Plot@F@r, RW@1DD, 8r, 5, 5.2<, PlotPoints → 500D;

5.05 5.1 5.15 5.2

1.5

2.5

3

Plot@F@r, RW@1DD, 8r, 5.095, 5.098<, PlotPoints → 50D;

5.09555.0965.09655.0975.09755.098

1.16

1.18

1.22

1.24
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Plot@F@r, RW@2DD, 8r, 0.5, 2<, PlotPoints → 500, PlotRange → 81, 1.3<D;

0.6 0.8 1.2 1.4 1.6 1.8 2

1.05

1.1

1.15

1.2

1.25

1.3

Plot@F@r, RW@2DD, 8r, 1.95, 2<D;

1.95 1.96 1.97 1.98 1.99

1.5

2

2.5

3

3.5

Plot@F@r, RW@2DD, 8r, 1.981, 1.982<D;

1.98121.98141.98161.9818 1.982

1.2

1.4

1.6

1.8

H∗ Ordering@X,1D gives the position of the minimum element in list X ∗L

Ordering@Table@F@rê1000, RW@1DD, 8r, 501, 6000<D, 1D + 500

85096<

H∗ We add 500 because we are starting the list at 501 ∗L

Ordering@Table@F@rê1000, RW@2DD, 8r, 501, 3000<D, 1D + 500

81982<

H∗ Below we are focussing on a small interval around the

minimum and looking for the minimum of the smooth function there ∗L

Hm = HOrdering@Table@F@rê1000, RW@2DD, 8r, 501, 3000<D, 1D + 500L@@1DDê 1000;

Minimize@8F@r, RW@2DD, r < m + 0.001, r > m − 0.001<, rDL

80.980609, 8r → 1.98182<<
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Hm = HOrdering@Table@F@rê1000, RW@1DD, 8r, 1001, 6000<D, 1D + 1000L@@1DDê1000;

Minimize@8F@r, RW@1DD, r < m + 0.001, r > m − 0.001<, rDL

81.15091, 8r → 5.0964<<

RW = 8928.0446756879035`, 801.890975741139`, 800.9835681353658`,

791.9032510340901`, 663.8181327829079`, 658.0987278456653`, 506.955311026178`,

426.80883803717495`, 350.38999175795306`, 346.34502009479246`, 345.3303576423212`,

343.29569580991506`, 341.26489700865017`, 321.1169046165965`, 309.87198782161033`,

306.8160124180501`, 251.93514864574425`, 249.87850342581248`, 245.76838926170723`,

209.97587499725208`, 208.95006944496586`, 168.9592161438174`, 152.69292442323265`,

130.88808284765457`, 93.7851998285877`, 71.20003053704546`, 67.05404214163751`<

8928.045, 801.891, 800.984, 791.903, 663.818, 658.099, 506.955, 426.809, 350.39,

346.345, 345.33, 343.296, 341.265, 321.117, 309.872, 306.816, 251.935, 249.879,

245.768, 209.976, 208.95, 168.959, 152.693, 130.888, 93.7852, 71.2, 67.054<

Ordering@Table@F@rê1000, RWD, 8r, 501, 2000<D, 1D + 500

81000<

Plot@F@r, RWD, 8r, 0.9999, 1.0001<, PlotPoints → 500, PlotRange → 80.9, 1.3<D;

0.9999 0.99995 1.00005 1.0001

0.9

0.95

1.05

1.1

1.15

1.2

1.25

1.3

Sums@8<D = 80<;

Sums@v_D := Sums@vD = Union@Sums@Drop@v, 1DD, v@@1DD + Sums@Drop@v, 1DDD;

A20 = Sums@8928.0446756879035`, 801.890975741139`, 800.9835681353658`,

791.9032510340901`, 663.8181327829079`, 658.0987278456653`, 506.955311026178`,

426.80883803717495`, 350.38999175795306`, 346.34502009479246`,

345.3303576423212`, 343.29569580991506`, 341.26489700865017`, 321.1169046165965`,

309.87198782161033`, 306.8160124180501`, 251.93514864574425`,

249.87850342581248`, 245.76838926170723`, 209.97587499725208`<D;
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RW

8928.045, 801.891, 800.984, 791.903, 663.818, 658.099, 506.955, 426.809, 350.39,

346.345, 345.33, 343.296, 341.265, 321.117, 309.872, 306.816, 251.935, 249.879,

245.768, 209.976, 208.95, 168.959, 152.693, 130.888, 93.7852, 71.2, 67.054<

8928.0446756879035`, 801.890975741139`, 800.9835681353658`, 791.9032510340901`,

663.8181327829079`, 658.0987278456653`, 506.955311026178`, 426.80883803717495`,

350.38999175795306`, 346.34502009479246`, 345.3303576423212`, 343.29569580991506`<

Length@A20D − 2^20

0

A20@@1DD

0

A20@@3DD

245.768

D1 = Drop@A20, 1D − Drop@A20, −1D;

Min@D1D

2.0912×10
−6

P@2D
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