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Abstract  

Multi-modal images are commonly used in the field of medicine for anomaly 

detection, for example CT/MRI images for tumour detection. Recently, thermal 

imaging has demonstrated its potential for detection of anomalies (e.g., water stress, 

disease) in plants. In biology, multi-channel imaging systems are now becoming 

available which combine information about the level of expression of various 

molecules of interest (e.g., proteins) which can be employed to investigate 

molecular signatures of diseases such as cancer or their subtypes. Before combining 

information from multiple modalities/channels, however, we need to align (register) 

the images together in a way that the same point in the multiple images obtained 

from different sources/channels corresponds to the same point on the object (e.g., a 

particular point on a leaf in a plant or a particular cell in a tissue) under observation. 

In this thesis, we propose registration methods to align multi-modal/channel images 

of plants and human tissues. For registration of thermal and visible light images of 

plants we propose a registration method using silhouette extraction. For silhouette 

extraction, we propose a novel multi-scale method which can be used to extract 

highly accurate silhouettes of diseased plants in thermal and visible light images. 

The extracted silhouettes can be used to register plant regions in thermal and visible 

light images. After alignment of multi-modal images, we combine thermal and 

visible light information for classification of water deficient regions of spinach 

canopies. We add depth information as another dimension to our set of features for 

detection of diseased plants. For depth estimation, we use disparity between stereo 

image pair. We then compare different disparity estimation algorithms and propose 



 

xviii 

 

a method which can be used to obtain not only accurate and smooth disparity maps 

but also less sensitive to the acquisition noise. Our results show that by combining 

information from multiple modalities, classification accuracy of different classifiers 

can be increased. 

In the second part of this thesis, we propose a block-based registration method using 

mutual information as a similarity measure for registration of multi-channel 

fluorescence microscopy images. The proposed block-based approach is fast, 

accurate and robust to local variations in the images. In addition, we propose a 

method for selection of a reference image with maximal overlap i.e., a method to 

choose a reference image, from a stack of dozens of multi-channel images, which 

when used as reference image causes minimum amount of information loss during 

the registration process. Images registered using this method have been used in 

other studies to investigate techniques for mining molecular patterns of cancer.  

Both the registration algorithms proposed in this thesis produce highly accurate 

results where the block-based registration algorithm is shown to be capable of 

registering the images up to sub-pixel accuracy. The disparity estimation algorithm 

produces smooth and accurate disparity maps in the presence of noise where 

commonly used disparity estimation algorithms fail to perform. Our results show 

that by combining multi-modal image data, one can easily increase the accuracy of 

classifiers to detect anomalies in plants, which helps to avoid huge losses due to 

disease or lack of water at commercial level. 
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Chapter 1                                    
Introduction 

An image contains information about a particular physical characteristic of an 

object(s) being imaged, depending on the type of camera being used to capture the 

image. For example, a visible light imaging camera captures electromagnetic waves 

reflected by an object in the visible light spectrum, or we can say that one of the 

physical characteristics of the object to reflect particular wavelengths in the 

electromagnetic spectrum has been captured in the form of an image. There are 

many other imaging modalities which capture different information in the form of 

an image. Thermal imaging cameras capture heat signatures of an object using 

electromagnetic waves in the infrared region of the spectrum. Ultrasound and Sonar 

images contain information about the amount of sound waves reflected by the object 

of interest. Computed Tomography (CT) imaging is widely used in the field of 

medicine, CT images contain information about the amount of X-rays reflected and 

absorbed by a particular organ or part of body. Similarly, Magnetic Resonance 

Imaging (MRI) uses strong electromagnetic fields to visualize internal organs of a 

body. Fluorescence Microscopy uses fluorescent dyes to get information about 

protein structures present in a tissue under the microscope. There are many other 

imaging techniques which can be used to get information about an object in the 

form of images.  

The sensors associated with almost all of the imaging modalities can individually 

capture only limited amount of information about certain physical characteristics. 

In some cases, it is useful and sometimes necessary to integrate this information, 
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captured using multiple modalities and at multiple angles, for in-depth analysis of 

an object under observation to overcome the limitations. For example it is often 

desired to combine information from CT and MRI for more accurate tumour 

definition [1–3]. With the development of new techniques such as fluorescence 

microscopy, the multi-channel image analysis can also be used for accurate tumour 

definition and understanding at the microscopic level. Similarly, multi-modal image 

analysis can be extended to other fields in biology for example, thermal imaging 

can be combined with visible light imagery for anomaly detection in plants.  

The first step to combine information from multiple modalities is usually the spatial 

alignment of data from different modalities, commonly known as registration. 

However, automatic registration of multi-modal images is a challenging task 

compared to uni-modal registration. The main hurdle in the registration process is 

that the images are captured from different viewpoints and contain different lens 

distortions. This introduces complex transformations required to perform 

registration of multi-modal images. Another big challenge is that the images 

captured using multiple modalities contain different information. Sometimes 

information contained in the image captured by one modality is missing in the 

image captured by the other modality. Therefore, it becomes difficult to capture 

stable features which can be used as a cue for registration. Because of the 

difficulties involved in multi-modal image registration, many important biological 

questions remain unanswered as the amount of information captured by a single 

modality is usually limited. 

In this thesis, we apply the idea of using multi-modal images for analysis to two 

different projects to accurately detect anomalies in plants and human tissues. We 



 

Chapter 1. Introduction                                                                                                                      3 

 

 

 

present registration algorithms to align 1) multi-modal images of plants captured 

using conventional thermal and visible light cameras and 2) multi-channel images 

of tissues captured using an emerging new technology based on fluorescence 

microscopy known as Toponome Imaging System (TIS). After alignment of multi-

modal data we add depth information to the plant images and propose method(s) to 

detect water stress and disease detection in plants using colour, thermal and depth 

information. 

1.1. Thermal Imaging 

Infrared radiation was first discovered by an astronomer, Sir William Herschel, in 

1800, while he was trying to determine the colour among different sunlight colours 

which was responsible for heating [4]. Thermal imaging converts the thermal 

infrared radiation pattern of an object mainly in the electromagnetic spectrum (3-

14 µm) to visible images. Thermal imaging techniques were mainly developed for 

military purposes but now have been used for a wide range of applications in 

agriculture, industry, civil engineering, aerospace, medicine and veterinary. 

Similar to visible light imaging cameras, a thermal imaging camera comprises of a 

detector, signal processing unit and an image acquisition system. There are two 

types of detectors used in thermal imaging cameras to detect IR radiation, thermal 

and photon detectors [5]. In thermal detectors, the infrared radiation heats the 

detector element which is taken as a measure of radiation falling on the detector. In 

photon detectors, the radiation interacts at atomic or molecular level with the 

detector material, this interaction may involve a photon and an electron, resulting 

in the electron moving through quantum energy levels and producing charge 
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carriers that generate voltage across the detector. The photon detectors are more 

sensitive than the thermal detectors, but they need to be cooled down for the 

electrons to come back to the desired energy levels for interaction. Thermal 

detectors normally do not require cooling, but they are less sensitive and provide 

lower resolution. The signal processing unit and image acquisition system in 

thermal imagers are similar to a visible light imaging camera. 

1.1.1. Thermal Imaging in the Horticulture Industry 

Under water stress (deficit) conditions, plants generally tend to close their stomata, 

and the rate of transpiration is reduced. An important consequence of stomatal 

closure is that energy dissipation is decreased and hence the leaf temperature tends 

to rise. It also widens the range of temperature variation within the canopy which 

can be detected using infrared thermometry or by the use of thermal imagers [4,6,7]. 

The non-contact and non-destructive nature and repeatability of measurements 

makes thermal imaging quite useful in the agriculture and food industry [8]. 

However, there are some complications associated with the image data captured 

using thermal imagers. Various researchers have investigated and reported in their 

results that sunlight, shade, distance of plant regions from thermal imagers and leaf 

angles can affect the temperature information captured by the thermal imagers 

[9,10]. There has been a lot of research focus on stress analysis and disease 

detection of plants using thermal imaging; however, few researchers have exploited 

the information from the visible light images for analysis. 
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Figure 1-1: (a) Cedip Titanium SC7000 (Image credit:  SC7000 manual), (b) TH9100 WRI (Image 

credit: TH9100 Manual). 

In the horticulture industry, thermal imaging has been used in predicting crop water 

stress, early disease detection in plants, determining genotype and phenotype, 

predicting fruit yield, bruise detection and detection of foreign bodies in food 

material. Thermal Cameras used by various researchers in the past include FLIR 

systems Thermovision 900LW, Thermacam P25, Thermacam PM250, Thermacam 

SC2000, Varioscan 3201 ST, Infrared solutions Snapshot 225, IR Snapshot 525. 

Thermal images used in this thesis were taken by Cedip Titanium SC7000 from the 

EPSRC instrument pool and a TH9100WR thermal camera, as shown in Figure 1-1. 

1.1.2. Current Multi-modal Imaging Methods in the Horticulture 

Industry 

Horticulture industry is adapting multi-modal imaging for fast and reliable 

(a) (b) 
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assessment of their crop. LemnaTec1 are using infrared imaging combined with 

visible and fluorescence imaging for the purposes of plant phenotyping [11]. They 

have developed a hardware based system called Scanalyzer 3D which can take 3D 

visible images of the plants. It can scan the plants using different wavelengths which 

include infrared, visible and fluorescent light. Infrared light helps to quantify 

temperature differences within leaves and plants. Plant health, nutrients, senescence 

and phenotype can be studied using visible light images. Near infrared images are 

used to determine the water content of the soil. There are other systems such as 

Scanalyzer ESC and Scanalyzer HTS which have been developed to study 

phenotyping in environmental simulation chambers by taking images of the plants 

using a moving camera or a conveyer.  

Phenovation2 in Netherlands have developed systems based on multi-spectral and 

multi-fluorescence imaging to study the performance of photosynthesis in plants. 

The CropReporter system developed by Phenovation uses high power LED 

illumination as excitation source and high performance computers to process the 

images at several frames per second (800 frames/measurement in less than 3 

seconds). These systems have limited use and can be used in a specific environment 

and not in greenhouse or open fields. Green Vision Systems3 in Netherlands are 

using Near Infrared Spectroscopy to control the product quality and production 

process in the agro and food industry. Although different systems have been 

                                                 

1 http://www.lemnatec.com/  

2 http://www.phenovation.com/  

3 http://www.greenvs.com/  

http://www.lemnatec.com/
http://www.phenovation.com/
http://www.greenvs.com/


 

Chapter 1. Introduction                                                                                                                      7 

 

 

 

developed in the horticulture industry which use multi-spectral and infrared 

imaging to assess the quality of product, there is still a lot of potential in joint multi-

modal analysis of plants [12–14]. 

The National Plant Phenomics Centre (NPPC)4 at Aberystwyth University features 

a state of the art greenhouse which can be used to study individual plants on a series 

of moving conveyer belts. The greenhouse contains computer controlled cameras 

which can provide 3D images of individual plants using multiple modalities 

including fluorescence, infra-red and near infra-red, laser and root imaging 

technology to monitor their growth.  

In this thesis, we propose registration methods to align images of plants from 

multiple modalities and aim to investigate the potential of combined thermal, colour 

and depth information in order to detect anomalous conditions such as water stress 

or disease onset in plants. Our proposed registration algorithm produces highly 

accurate registration results (Chapter 3). After combining thermal and visible light 

information from normal and diseased/stressed plants we propose methods for 

anomaly detection in Chapter 5. 

                                                 

4 http://www.plant-phenomics.ac.uk/en/  

http://www.plant-phenomics.ac.uk/en/
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Figure 1-2: Scanalyzer HTS developed by LemnaTec to study plant phenotyping in simulated 

environments. Image Credit: [11]. 

 

Figure 1-3: CropReporter High Resolution at Phenovations to study efficiency of photosynthesis in 

different light conditions. Image Credit: http://www.phenovation.com 

http://www.phenovation.com/
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1.2. Multi-Channel Fluorescence Microscopy Imaging 

A cell in a human tissue can be defined as an assembly of hundreds of proteins 

which interact together to define cell functions [15,16]. These protein compositions 

can be decoded by using modern fluorescence imaging techniques. Most 

fluorescence microscopy techniques are limited to up to ten fluorescent tags which 

can point to simultaneous localisation of the corresponding biomolecules and 

protein structures inside the cells of a tissue specimen [17]. Toponome Imaging 

System is an automated robotic microscopy system based on fluorescence 

microscopy to locate dozens of different proteins or other biomolecules (in a cell or 

a tissue) by using fluorescently labelled antibodies, lectins or other specific ligands 

[18,19].  

The TIS system provides us with a platform to decode and locate a large number 

(of the order of several thousands) of possible protein combinations at a given point 

in a cell.  It uses a library of fluorescent tags to obtain phase-fluorescence pair 

images corresponding to each tag. One data set, a stack of grey value images, is 

recorded by performing N sequential cycles of fluorescent tagging, labelling and 

bleaching in situ. In each iterative step j, a fluorescence or tag image 𝐹𝑗 and a 

corresponding phase contrast image 𝐼𝑗 is recorded before and after incubation with 

a particular tag. So for each tag, e.g., an antibody against a specific protein or a dye 

such as DAPI that stains nuclei, we obtain fluorescence and phase contrast images. 

There are other new technologies such as Matrix-Assisted Laser 

Desorption/Ionization (MALDI) imaging [20] or Raman microscopy [21] which 

record high dimensional images, organised as stacks of grey value images, encoding 
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the co-location or interaction of a large number of molecules. Another group of new 

bioimaging approaches achieve this by using different fluorophores, multispectral 

analysis, or bleaching with only one fluorophore [18,19,22–24]. The resultant 

image data consist of a stack of N grey value images 𝐼𝑗  (j=1, …,N) where each image 

shows the spatial distribution of one molecule. Due to these techniques becoming 

ubiquitous, new computational approaches are needed to process and visualise 

multi-variate bio-images [25,26].  

 

Figure 1-4 The Toponome Imaging System (TIS) installed at Warwick. The numbers marked in 

the figure represent (1) safety door sensor, (2) thermostat tag cooling, (3) heat exchanger and 

cooling fan, (4,5,6) holder(s) for deep well plates, (7) holder for beaker, (8) CCD camera, (9) 

pipette, (10) rotational axis, (11) SCARA robot (12) warning lamp, (13) temperature sensor, (14) 

touch screen control for microscope, (15) stage control. 
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Figure 1-5: Toponome Imaging System data acquisition cycle. 

Growth in molecular dimension is often accompanied with a growth in runtime of 

the imaging experiment. As a consequence, serious shifts can be observed between 

pairs of images in one stack, recorded for one field of view, making a direct analysis 

of the co-location signals meaningless. In experiments lasting for several hours, 

shifts can be caused by various external influences (mechanical perturbations, 

temperature changes, shift movements by the specimen due to repeated washes etc). 

Since most analytical approaches are based on processing N grey values 

𝐼1, … , 𝐼𝑁(𝑥, 𝑦) associated to a pixel (𝑥, 𝑦) and searching the images for interesting 

patterns of co-location, for instance using clustering and dimension reduction [27], 

it is vital that all N images in a stack are accurately aligned.  Unless this can be 

achieved, many important biological questions, such as cell classification and 
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discovery of functional protein networks within a cell at different points in time, 

cannot be addressed.  

In this project, we address the problem of misalignment among different anti-body 

tags and present an approach to select a reference image with maximal overlap to 

minimise information loss during registration process. After registration, we discuss 

preliminary analysis performed in our lab using multi-channel fluorescence images 

of colon cancer tissue. 

1.3. Aims of the Thesis 

Many image analysis techniques have limited use because of limitation of the 

imaging modality being used to image the object under observation.  The capacity 

of these analysis techniques can be greatly improved by using images from multiple 

modalities. In this thesis, we aim to improve the capability of image analysis 

techniques using multi-modal images both at the macro scale (using thermal and 

visible images of whole plant) and at the micro scale (analysis of human tissue using 

fluorescence microscopy 63× resolution) to analyse abnormal regions. 

1.3.1. Thermal and Visible Light Imagery for Stress and Disease 

Detection in Plants 

Thermal imaging has been used in the past for stress and disease detection in plants. 

One of the major problems associated with thermal imaging in plants is temperature 

variation due to canopy architecture, leaf angles, sunlit and shaded regions, 

environmental conditions and the depth (distance) of plant regions from the camera. 

We aim to combine information of stereo visible light images with thermal images 
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to overcome these problems and allow a precise 3-dimensional thermal profile of a 

crop to be quantified.  

A moving stereo visible and thermal imaging setup (Figure 1-6) can then be 

installed on a rig over the crop (Figure 1-7) which can scan whole crops and 

automatically identify regions of crop under water stress or regions where a disease 

starts to develop. This can replace manual scanning which requires a lot of manual 

labour and usually involves scanning randomly selected small patches instead of 

whole crop scanning. The camera system can also be developed to scan individual 

plants on a moving conveyer belt.  

Our aim is to investigate in a laboratory setting if combination of stereo visible and 

thermal can be used to enhance the capabilities of thermal images to identify water 

stressed or diseased regions in plants and canopies. 

 

Figure 1-6: A thermal camera with stereo visible imaging setup can be installed above the crop for 

detecting anomalous regions. 

Left Camera 

Right Camera 

Thermal Imaging 

Camera 
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Figure 1-7: Photo taken at DoubleH nurseries. The rigs above the crop provide a suitable place to 

mount camera setups for automatic detection of anomalous regions. 

1.3.2. Alignment of Multi-Channel Fluorescence Microscopy Images 

As outlined above in Section 1.2, the TIS image acquisition cycle produces images 

as a pair of fluorescence and phase contrast images for each anti-body tag. The 

fluorescence images provide information about the relative expression level of 

respective tags in sub-cellular compartments and the phase contrast images contain 

information about the structure of the tissue specimen. No significant misalignment 

is observed between fluorescence and the corresponding phase contrast pair as both 

images are taken within a short time interval of about 2-4 seconds.  However, 

misalignment is observed between phase contrast images (and fluorescence images) 

for different anti-body tags. To analyse multiple molecular components in 

biological samples, fluorescence images from multiple tags must be aligned in a 

way that the same pixel location corresponds to the same physical location in the 

tissue being imaged.  
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The overall aim is to determine the transformations (in terms of translational shifts) 

necessary to align phase contrast images and then apply these transformations to 

register fluorescence images, such that a) the images are well aligned and b) the 

total number of non-overlapping pixels is minimised. 

1.4. Main Contributions 

The main contributions of this thesis are as listed below: 

 We present a novel silhouette extraction method for extracting the object 

silhouette in highly noisy thermal and visible light image data. We have also 

presented a registration algorithm based on the silhouette extraction method 

to align objects in multi-modal image data (Chapter 3). This registration 

algorithm can be further extended to multiple object multi-modal image 

registration as far as the object boundary is distinguishable [28].  

 We present a method to estimate smooth disparity maps compared to state 

of the art methods in noisy images of diseased plants (Chapter 4). 

 In Chapter 5, we have introduced a novel set of features, by combining 

thermal, depth and visible light image data, which can be used to classify 

images of plants infected with disease or under various water stress 

conditions [29]. 

 We propose a block-based registration algorithm in Chapter 6 which can be 

used to align multi-channel fluorescence microscopy images up to sub-pixel 

accuracy. In addition, we have mathematically derived an objective function 

which can accurately and efficiently select a reference image in a stack of 
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hundreds of multi-channel images to minimise information loss during 

registration process [16]. 

1.5. Thesis Organisation 

Chapter 2 contains a brief review of current literature on registration, multi-modal 

image registration, registration of multi-tag fluorescence microscopy images, and 

existing methods on thermal/visible image registration. It also reviews existing 

literature on identification of stressed/diseased plants using thermal images. 

In Chapter 3, we propose a multi-scale method to extract silhouettes of diseased 

plants in thermal and visible light images. The extracted silhouettes in turn can be 

used to register images from different modalities.  

Chapter 4 proposes a method of rectification using extrinsic marker points in a 

stereo image pair. Different disparity estimation algorithms are then compared and 

tested in this chapter on stereo images of plants with a noisy background. A novel 

method is also proposed to estimate smooth disparity maps in the presence of noise. 

Automatic detection of water stressed plants using thermal and visible light images 

is proposed in Chapter 5. The selection of features is an important step and a set of 

good features are proposed in this chapter for more accurate classification of 

spinach canopies. The chapter then introduces a new dimension to the work by 

adding depth information for classification of diseased tomato plants using stereo 

visible and thermal images. 

An algorithm for registration of multi-tag bio-images using mutual information as 

a similarity measure is proposed in Chapter 6. It includes a method for identification 
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of the best reference image plane which can be used to reduce the amount of 

information loss during the registration process.  

Chapter 7 concludes the thesis, discusses limitations of the work, possible 

application at both experimental and industrial scale and future directions. 

 



18 

 

Chapter 2                                   
Literature Review 

In this chapter, we review image registration techniques and focus on multi-channel 

fluorescence and thermal/visible image registration methods. We cover commonly 

used disparity estimation techniques to include depth information to our analysis 

for disease detection in plants. This chapter also reviews previous work on water 

stress and disease detection in plants using thermal imaging. 

2.1. Registration 

Image registration is the process of spatially aligning two images of a scene so that 

corresponding points assume the same coordinates [30]. For image registration, 

one image is referred to as a reference image (𝐼𝑟) and a second image is referred to 

as floating (target or sensed) image (𝐼𝑗). Image registration is a process of finding 

the transformation 𝜏𝑟𝑗(. ) such that each pixel location on (𝐼𝑟) and 𝜏𝑟𝑗(𝐼𝑗)  

correspond to same physical point in the scene being imaged.  

2.1.1. Classification of Image Registration Methods 

Registration methods can be divided into many different groups in many different 

ways. Maintz and Viergever [2] have quite comprehensively classified image 

registration methods on the basis of nine different criteria each of which is then 

subdivided into sub-groups.  The nine different criteria are dimensionality, nature 

of registration basis, user interaction, modalities involved, subject, object, nature of 
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transformation, domain of transformation, and optimisation method. 

On the basis of dimensionality, there are two major groups, spatial dimensions only 

and time series with spatial dimensions. Time series often involve e.g., monitoring 

of tumour growth, post-operative healing and evaluation of drug effects [31]. Each 

of the two groups is divided into 2D-2D, 2D-3D and 3D-3D registration depending 

on the number of spatial dimensions involved. On the basis of nature of registration, 

there are three major groups: extrinsic, intrinsic and non-image based. Extrinsic 

registration methods introduce foreign bodies introduced into the image space for 

registration; these foreign bodies are usually visible and accurately detectable in all 

the relevant modalities [32]. Intrinsic registration methods use features or 

landmarks from the image of the subject or the scene and do not include any foreign 

body. Non-image registration methods usually rely on camera calibration 

procedures [33]. The registration methods are divided into three groups on the basis 

of user interaction as interactive, semi-automatic and automatic. Automatic 

registration methods are usually desired; however semi-automated methods are also 

used to speed-up the process and to increase accuracy. Moreover the registration 

methods can be divided into uni-modal and multi-modal methods depending on the 

number of modalities involved and into inter- and intra-subject registration on the 

basis of same or different subjects involved in the registration process. 

Maintz and Viergever [2] have divided registration methods into four groups based 

on the nature and domain of transformation i.e., Rigid, Affine, Projective and 

Curved. Rigid registration allows rotation and translations only, whereas affine 

transformation has a constraint that it maps parallel lines onto parallel lines and 

projective transformation has a constraint that it maps lines onto lines. All of these 
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transformation types mentioned above can be represented in terms of a constant 

matrix. Curved transformations are generally polynomial transformations and 

cannot be represented using a constant matrix as they generally map lines onto 

polynomial curves. Some researchers treat subsets of affine and projective 

transformations i.e., scaling and perspective transformation separate from affine 

and projective transformations [34]. Based on the domain of transformation the 

transformation functions are divided into two groups. If the transformation applies 

to the entire image the transformation is termed as global transformation whereas 

local transformations are composite of at least two transformations determined on 

sub-images (see Figure 2-1). The drawback of local transformation is that it can 

introduce discontinuities and is therefore seldom used. Finally registration methods 

can be divided on the basis of optimisation function used to minimise the cost 

function [35,36]. Optimisation functions are not necessary and only some 

registration methods use optimisation functions for registration. 

2.1.2. Registration Methodology 

At a higher level than the classification of registration methods in [2], there are two 

main approaches to solve the registration problem: area based and feature based. 

The feature based methods first extract salient features from the images before 

establishing correspondence between the images, whereas the area based methods 

skip the feature extraction step. In both kinds of approaches, the following major 

steps are performed while performing registration: matching, mapping function 

estimation and transformation.  
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Figure 2-1: Examples of 2-D transformations. Global transformations apply to whole image 

whereas local are composite of at least two transformations on whole image. Image Credit: [2]  

To establish correspondence between the images, the basic idea behind area based 

methods is to define a rectangular window in the reference image and search for the 

corresponding region in the floating image. The size of the rectangular window can 

be adjusted depending on speed and accuracy constraints, in some cases the size of 

the rectangular window can be of the size of the whole image. The next step is to 

choose a transformation function based on the complexity of the problem. The 

rectangular window in the floating image is transformed using a set of parameters 

in the transformation function and compared with a rectangular region in the 

reference image using a similarity or dissimilarity measure. The similarity measure 

acts as a cost function and the algorithm uses optimisation functions to search for 
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optimal transformation parameters. The simplest of similarity measures are l1-norm 

and l2-norm but normalized cross correlation, mutual information and phase 

correlation in the Fourier domain are regularly used for area based registration 

methods [16,37–40]. For a detailed list of similarity measures, we refer the reader 

to [30].  

Feature based methods rely on the extraction of features before matching regions. 

These features can be extracted in the form of an edge using first order Prewitt, 

Sobel, Canny edge detectors, second order Laplacian, Marr-Hildreth operator, 

Laplacian of Gaussian, difference of Gaussian operators or phase congruency in the 

Fourier domain [41,42]. Another form of feature extraction method involves 

detection of lines, circles and shapes e.g., using the Hough transform [43] (see 

Chapter 4). However, the most common method for feature extraction is to extract 

localised features as it allows establishing point to point correspondences between 

images. Some of these popular methods to extract localised features are Harris 

corner detector, scale invariant feature transform and speeded up robust features 

[44–46].   

Feature matching in feature based approaches is also different from area based 

methods. The feature based methods assume two sets of features in reference and 

floating image and find correspondence between them using spatial relations or 

feature descriptor values. Matching based on spatial relations uses geometric 

constraints to find correct correspondences. Spatial relations are more useful in 

extrinsic registration methods as foreign bodies are fixed in a certain pattern and 

their location can be accurately determined. But matching based on spatial relations 

can also be used in other registration techniques if the features can be accurately 
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determined and repeatedly detected in both reference and floating image. Chamfer 

matching and Iterative Closest Point Algorithm (ICP) are well known methods for 

feature matching using spatial relations [47–49]. It is not always easy to find a set 

of features in both the reference and the floating image in a certain pattern especially 

if the images have strong lens distortion. In this case, registration algorithms use 

features whose descriptors are invariant, unique, stable and independent [50].  

Matching methods such as random sample and consensus (RANSAC) and Graph-

based matching can be used for feature matching based on both spatial relations and 

invariant descriptors [30]. After feature matching, correspondences between the 

points in the reference and the floating image can easily be established. Based on 

these correspondences, mapping function can be estimated depending on the 

transformation applicable to the current problem. The last step of registration is the 

same in both area and feature based registration methods. After estimation of 

transformation parameters, the floating image is transformed according to the 

mapping function and matched with the reference image or ground truth to estimate 

accuracy and errors.  

2.1.3. Multi-modal Image Registration 

A major advantage of using multi-modal images for analysis of a subject is that 

they carry different types of information. However, this advantage also poses a 

major challenge when multi-modal image registration is performed. Multi-modal 

image registration is required when all the available imaging modalities are 

restricted to gather only limited information and there is a need for more 

information about the scene. The problem of multi-modal image registration has 
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also been associated in the literature with the inter-subject registration; see for 

example [51–53].  

For multi-modal image registration, an algorithm which is invariant to radiometric 

changes, scale, occlusions and viewpoint is required for registration. In this type of 

registration, the similarity measure is of considerable importance. Skerl et al., [54] 

have proposed an evaluation protocol for a thorough, optimisation independent and 

systematic evaluation of similarity measures in multi-modal registration. Their 

results showed that the performance of similarity measure varies depending on the 

type of the multi-modal image pair used for registration. Area based mutual 

information is widely used and has become a standard measure of similarity 

between corresponding regions in multi-modal medical imaging applications. 

However, mutual information has its limitations and is often combined with feature 

based methods to increase accuracy [30,35,36,50,55]. Multi-modal image 

registration is a vast topic of study which can be applied to various fields. However, 

as our goal is to analyse thermal/visible images of abnormal plants and multi-

channel fluorescence microscopy images of tissues, in this chapter we review in 

detail the approaches used for thermal/visible (section 2.1.3.1) and multi-channel 

fluorescence (section 2.1.3.2) image registration. 

2.1.3.1. Thermal/Visible Image Registration  

A major focus in this thesis is on joint analysis of thermal and visible images of 

water stressed, diseased, and normal plants. As a pre-processing step before joint 

analysis, thermal and visible light images of plants must be aligned so that the same 

pixel locations in both images corresponds to the same physical locations in the 
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plant. Thermal and visible light images are usually captured using different type of 

sensors from different viewpoints and with different resolutions. Capturing 

information from different viewpoints may introduce misalignments in pixel 

locations of the same physical point of an object in images from different 

modalities.  

To the best of our knowledge, there is no existing literature on automatic 

registration of thermal and visible light images of diseased plants. However, 

registration of infrared thermal and visible light images has been previously 

employed in video surveillance e.g., traffic, airport security, detection of concealed 

weapons, smoke detection and patient monitoring [10,56–58]. Registration of 

thermal and visible images of diseased plants is a challenging problem due to the 

fact that texture and edge information is often missing in the corresponding 

visible/thermal images. One approach for registration is to calibrate the stereo 

visual + thermal imaging camera setup and use transformations to align the 

resulting images [59–61].  A disadvantage of this approach is that the calibration 

parameters of the cameras may not be readily available. In such cases, a possible 

solution is to align the thermal and visible light images using exclusively image 

based information. Han et al., [62,63] proposed a method to register thermal/visible 

images of man-made environments by extracting geometrical structures using line 

extraction and aligning features extracted from these geometrical structures. Kim et 

al., [64] and Lee et al., [65] proposed registration methods that match magnitude 

and orientation of edge and gradient information between thermal and visible 

images of scenes with strong edge and gradient information. Jarc et al., [66] 

proposed a registration method based on texture features. However, the method is 
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not automatic and requires manual selection of features. A method based on dual-

tree complex wavelet transform for registration of satellite images of thermal and 

visible images was proposed in [67]. The method uses a pyramidal, coarse to fine 

resolution, approach for registration and use dual-tree complex wavelet transform 

to extract line, edge information. The edge information is then used at each level to 

register images using mutual information as the similarity measure.  De Vylder et 

al., [68] have used the method proposed in [67] for registration of multispectral 

images of plants. In general, line, edge and corner based methods are reliable for 

images of man-made environments. However, they perform poorly on images of 

natural objects. Other methods based on mutual information and cross correlation 

of image patches rely on texture similarities between the two kinds of images 

[61,65,69]. Since there is a high probability that texture information may be missing 

in the corresponding visible/thermal image(s) of diseased plants, methods based on 

mutual information and cross-correlation may not be a good choice for registration. 

Region-based methods, such as those based on silhouette extraction, usually 

provide more reliable correspondence between visible and thermal images than 

feature based methods [57,69,70]. Bilodeau et al., [69] proposed registering thermal 

and visible images of people by extracting features from human silhouettes; 

however, the authors propose no specific method for silhouette extraction. Torabi 

et al., [71] suggested a RANSAC trajectory-to-trajectory matching based 

registration method which maximises human silhouette overlap in video sequences. 

Han and Bhanu [58] proposed a hierarchical genetic algorithm (HGA) for silhouette 

extraction using an automatic registration method for human movement detection. 

The algorithm first extracts a preliminary human silhouette to match regions in 
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thermal and visible images. It then uses the HGA to register thermal and visible 

images. The authors improve the accuracy of the extracted human silhouette by 

combining silhouette and thermal/colour information from coarsely registered 

thermal and visible images. Human body temperature is generally higher than that 

of the background region and this characteristic has been used in [57,58,70] to 

extract human silhouettes. However, in the case of thermal images of diseased 

plants, the temperature profile does not exhibit this characteristic. It is possible that 

within the same plant, the temperature of different regions is higher or lower than 

that of the background. Another common method for silhouette extraction in video 

sequences is background subtraction. This method usually provides very good 

results because of the high frame rate of the sequences and due to the fact that the 

background between two consecutive frames is usually very similar. For the case 

of images of diseased plants, background subtraction is not a suitable strategy due 

to the limited number of consecutive still images and the fact that there may be a 

large interval between two consecutive still images. In Chapter 3 of this thesis, we 

propose an algorithm which features a novel multi-scale method for silhouette 

extraction of plants in thermal and visible light images, and uses the extracted 

silhouettes to register thermal and visible light image pairs of plants.  

2.1.3.2. Multi-Tag Fluorescence Image Registration 

Bioimage informatics is a recently established branch of bioinformatics research 

that has emerged in response to two major demands: increasing deployment of 

powerful new technologies for measuring molecular components (including 

genomics, transcriptomics, proteomics, metabolomics) and new biological 

knowledge (from the human genome project amongst others). Bioimage 
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informatics is concerned with the processing, analysis, and management of images 

recorded for biological specimens mostly using microscopy techniques [72–74]. 

The ultimate objective is to localise molecular components in biological samples 

(ranging from cell cultures to tissue sections) in order to overcome one of the most 

important limitations of most traditional destructive ‘omics’ technologies, in which 

molecular phenotype is acquired at the expense of anatomical and cellular spatial 

information [75–77]. A comprehensive molecular profiling of cellular and sub-

cellular regions in a tissue is necessary to better understand a disease which is 

directly affected by the protein profile of a cell such as cancer. Analysis of protein 

co-localisation becomes viable because molecules can interact to perform certain 

functions only when they are located close to each other [24]. By using multiple 

optical filters and fluorescent dyes, fluorescence microscopy enables multiplexed 

quantitative analysis in cell and tissue specimen. However, its use is limited to a 

maximum of ten fluorescent dyes because of the limitations of the technology being 

used to capture the images [17]. Among other limitations, auto-fluorescence is a 

major problem in detection of molecules in tissues. There are emerging new 

technologies which can help to overcome these limitations and image several 

protein structures at subcellular level using multiple fluorescent dyes. One such 

high-tech microscope, known as Toponome Imaging System (TIS) [18,29], is 

installed at the University of Warwick. 

As discussed above in Chapter 1, TIS uses N sequential cycles of fluorescent 

tagging and bleaching to produce a data set consisting of 2N pairs of fluorescent 

and phase contrast image pairs (Figure 1-5). There is a dearth of literature on 

registration algorithms for such image data, primarily because imaging systems for 
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such type of data have emerged only recently, although several researchers have 

proposed techniques for solving the somewhat related problem of automatic 

tracking of live cells by registering time consecutive frames (see for instance [78–

80]). Wang [81] proposed the Multiplex fluorescence in situ hybridization (M-

FISH) algorithm for registration of multi-channel images in the context of cancer 

diagnosis and research on genetic disorders. The algorithm searches for a 

transformation using mutual information to register the misaligned multi-channel 

FISH images. For a multi-channel image data, the selection of a suitable reference 

image (plane) is very important. An inappropriate selection of a reference image 

among the set of images may result in large transformations for the rest of images 

in the data set, resulting in large amount of information loss. The authors [81] 

selected DAPI as a reference image and did not address the problem of choosing 

the reference image to minimise information loss. In Chapter 3, we present a 

method to select a reference image to minimise this information loss.  Kim et al., 

[82] have proposed registering multi-modal images using a three-step procedure: 1) 

Gaussian filtering, 2) rigid registration and 3) non-rigid registration. For rigid 

registration, the authors minimised the mean-squared intensity error and for non-

rigid registration, a variant of the Demons’ algorithm was used [83]. They also 

presented two approaches for selecting the reference image. The first approach uses 

the first image in time as the reference image and all the images are registered to 

this reference frame. The second approach uses information from previous time 

steps in an incremental scheme. Can et al., [22] have used a mutual information 

based measure to register images from different histological imaging modalities. 

They mapped the multi-modal fluorescent images of the same tissue stained with 
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molecular biomarkers to the co-ordinate system of Hematoxylin-Eosin (H&E).  

A new high-tech method has recently been developed by General Electric (GE) 

Global Research, known as the multiplexed fluorescence microscopy method 

(MxIF) that enables high-level multiplexing of protein and nucleic acid detection 

in a Formalin-fixed paraffin-embedded (FFPE) tissue similar to the TIS system 

[24]. MxIF data acquisition cycle stains the slide using fluorescent dyes. After 

staining the slide, the microscope uses highly efficient fluorochrome specific filter 

sets to capture multiplexed images of the tissue. The tissue sample is excited using 

fluorescent light and after a fixed exposure time the images are captured. The 

process continues in a cyclic fashion for a batch of fluorescent dyes. Among the 

images of different fluorescent dyes, the DAPI stain is used to capture the position 

of the nuclei in each cycle. The position of the nuclei in each image is then used to 

align fluorescence images from multiple cycles of the data acquisition run. Their 

alignment method consists of two steps: the first step performs a global translation 

estimation using normalised correlation in Fourier domain and the second step 

involves rotation using normalised mutual information as metric. To the best of our 

knowledge, the GE setup does not address the need for estimation of a reference 

image with maximal overlap to minimise information loss and use the first image 

in the imaging cycle as the reference image. 

In this thesis, we specifically address the problem of multi-tag fluorescent 

microscopy image registration where multiple phase-and-fluorescence images of 

the same sample stained by different biological tags are obtained and registered. 

We also address the problem of defining a reference image with maximal overlap 

in multi-tag images.  
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2.2. Stress and Disease Detection in Plants using Thermal 

Imaging 

Infrared thermometers have been used since the early 80’s to determine the 

temperature differences in plants and different parts of the canopy by researchers 

for irrigation scheduling purposes. However, the development of thermal imaging 

cameras has extended the opportunities for more detailed and sensitive analysis of 

the thermal properties of plants and canopies. This has led to the development of 

different applications including early detection of water stress, plant disease and 

plant phenotyping. A recent review on advances in sensing plant diseases for crop 

protection suggests that “A multi-disciplinary approach is essential to tap the full 

potential of these highly sophisticated, innovative technologies and high 

dimensional, complex data for precision crop protection. Using the expertise from 

phytopathology, geography, computer science and data mining, a new 

understanding of crop protection will be formed” [14]. We aim to use our expertise 

in computer science for crop protection from disease and unwanted stress. Mahlein 

et al. [14] have reviewed the use of thermography, chlorophyll fluorescence, and 

hyperspectral sensors for disease detection in plants. For a more detailed review on 

the use of thermography for water stress, disease detection, genotyping and 

phenotyping, we refer the reader to [84]. This thesis focuses on the use of 

thermography techniques in the thermal infrared region for detection of stress and 

disease in plants.   

2.2.1. Water Stress Detection in Plants 

There has been a lot of work focused on water stress analysis of plants using thermal 
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imaging. However, few researchers have exploited information from the visible 

light and infrared thermal images simultaneously for analysis. Most of the work 

conducted uses stress indices formulated by Idso and Jackson [85,86] and 

researchers have conducted various experiments to investigate the relationship 

between different stress indices and temperature values determined by thermal 

imaging [87–89]. The use of thermal imaging as an indicator of plant stress has also 

been tested in a number of environmental conditions and the conditions best suited 

to its successful application have been explored. Jones [90] formulated a leaf energy 

balance equation to estimate stomatal conductance, which was dependent on a 

range of environmental factors and plant variables such as emissivity of the leaf 

surface, air density, and specific heat capacity. The complexity and associated 

difficulty in the process of accurately measuring these variables, made it difficult 

to obtain accurate estimates of stomatal conductance from leaf temperature. 

Consequently, Jones [7,91] used the ‘Crop Water Stress Index’ (CWSI) by Idso and 

Jackson and rearranged the leaf energy balance equation to derive thermal indices 

based on ‘wet’ and ‘dry’ reference surfaces, thus making stomatal conductance 

more straightforward to calculate from leaf temperatures. There is debate within the 

scientific community as to the ideal choice of reference surface and much work has 

been undertaken to find the best choice for reference surfaces and in what 

conditions they must be used [92]. Another such index “Water Deficit Index” 

(WDI) was introduced in [93] but it was found to be very close to CWSI [84,89]. 

The effect of sunlight and shade on thermal imagery has also been investigated and 

various options have been suggested to minimise the effect of these conditions. 

Grant et al., [94] have analysed the robustness, sensitivity and limitations of thermal 
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imaging for detecting changes in stomatal conductance and leaf water status in 

plants. In a later study, Grant et al.,  [95] suggested that the average temperature of 

the canopy was more useful to reduce the effect of leaf angles and other 

environmental factors when compared to individual leaf temperatures. Jones [96] 

compared techniques for image acquisition and performed experiments to 

investigate the potential of infrared thermography for irrigation scheduling and to 

evaluate the consistency and repeatability of measurements under a range of 

environmental conditions. They suggested excluding pixels which are outside the 

wet-dry threshold range to allow for semi-automated analysis of a large area of 

canopy. The authors suggested using thermal data from shaded leaves for improved 

data consistency, since there is less variability in temperature within an image 

(Figure 2-2), and smaller errors resulting from differences in radiation absorbed by 

reference and transpiring shaded leaves. Coefficient of variation of stress indices 

was found to be significant and discriminatory powers of the techniques for 

estimates of stomatal conductance were found to be limited. Stoll and Jones [9] 

found that sunlit leaves showed a wider range of temperatures, the authors believed 

that this is due to the fact that natural leaf orientation has little effect on the energy 

balance of shaded leaves compared to exposed leaves. Based on these observations, 

the information from temperature distribution can be combined with the leaf 

orientation for thermal analysis in high resolution images. 
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Figure 2-2: Corresponding visible light and thermal images (a) and (b) showing the shaded and 

sunlit sides, (c) temperature distributions for areas of the canopy outlined in yellow. Shaded region 

shows less variability (σ = 0.93°C) compared to sunlit region (σ = 1.81°C) as can be observed 

from the histogram. Image Credit: Jones et al. [96].  

Combining information from thermal and visible light images has the potential for 

providing a better estimate of the stress indices and to identify stress regions in the 

canopy. Möller et al., [97] studied the use of thermal and visible imaging to 

maintain mild to moderate water stress levels in grapevine. To estimate the canopy 

temperature, different sections of the canopy were used in this study, including: the 

whole canopy, the regions of canopy under the sunlight, the centre of the canopy 

and leaves from the centre of the canopy under the sunlight. The best correlation 

between CWSI and stomatal conductance was calculated from the centre of the 

canopy measurements (or its sunlit fraction). The authors observed that CWSI 

computed with wet and dry reference was the most robust index and suggested that 

the fusion of thermal and visible imaging can not only improve the accuracy of 

remote CWSI determination but also provide precise data on water status and 

stomatal conductance of grapevine. 

Leinonen and Jones [98] introduced a partly automated method to study plant stress 

indices. They exploited colour information from visible light images to identify leaf 

area, as well as sunlit and shaded parts of the canopy. As an initial pre-processing 

step, images of constant temperature background were subtracted from the actual 
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image to correct for relative errors in calibration of the camera caused by internal 

warming of the camera. Ground Control Points (GCPs) were manually selected to 

overlay the thermal image on the visible light image. Different regions in the visible 

light images were classified using a supervised classification method into pixels 

which represent plant leaves, other parts of the plant and background. Statistical 

parameters and stress indices were calculated based on temperature values from the 

corresponding classified regions of the plant. The results showed that temperature 

distribution can be used as an indicator of stomatal conductance and plant stress. 

More recently, Cohen et al., [99] have used automated methods to estimate water 

status using aerial thermal images of palm tree canopies. The authors used 

watershed segmentation of thermal images to detect the palm trees, and found the 

detected temperature to be a good indicator of the tree’s water stress. 

In this thesis, we aim to use combined information from thermal and visible light 

images of a spinach canopy to efficiently discriminate between plants undergoing 

water stress (deficiency) and well-watered plants. We present a new technique to 

enhance the ‘discriminatory power’ of thermal imaging to identify parts of the 

canopy which have lowered leaf water potential (i.e., they are under water stress). 

Instead of using stress indices to identify stress regions, we combine information 

from visible light and thermal images and use machine learning techniques to 

classify between water stressed and well-watered canopies. Furthermore, we have 

acquired information about the light intensity and green-ness of the plant, using 

pixel values in the RGB and Lab colour space from the visible light images. These 

data are subsequently used, along with statistical information from thermal images, 

to classify between stress and well-watered plants using Support Vector Machines 
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(SVM), Gaussian Processes Classifier (GPC) and a combination of both the 

classifiers. 

2.2.2. Disease Detection in Plants 

Thermal imaging has potential for early detection of disease, especially when the 

disease directly affects transpiration rate in plants. Early detection of disease is very 

important to control the spread of disease since late detection may result in reducing 

the quantity and quality of the crop yield [100].   

Chaerle et al., [101] studied the resistant tobacco plant infected with tobacco mosaic 

virus (TMV) and detected that the infected sites were 0.3-0.4°C warmer than the 

surrounding tissue hours before the initial appearance of the necrotic lesions. They 

used a localised-infection method and a high-resolution infrared camera to detect 

temperature increase at the site of inoculation. They observed a correlation between 

leaf temperature and transpiration by thermography and steady-state porometry.  In 

a later study, Chaerle et al., [102] studied the propagating cell death in bacterio-

opsin transgenic tobacco plants. They found that the cell death was trailed by a 

coherent front of higher temperature. Lower temperature was observed at regions 

with visible cell death because of water evaporation from the damaged cells. It was 

observed that the stomatal closure preceded the tissue collapse. They obtained high 

resolution thermographic images by capturing several slightly overlapping images 

and then joining them. The sub-images were visualised within a temperature 

window of 1 °C, to maximise the temperature contrast. Chaerle et al., [103] have 

studied the use of thermal and chlorophyll fluorescence imaging in pre-

symptomatic responses for diagnosis of different diseases and to predict plant 
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growth. Both of these imaging techniques can be applied for detecting and 

diagnosing plant stresses. The authors concluded that conventional methods are 

time consuming and suitable for small number of plants, whereas imaging 

techniques can be used to screen large number of plants for biotic and abiotic stress 

and to predict the crop growth. 

Oerke et al., [104] studied the changes in metabolic processes and transpiration rate 

within cucumber leaves caused by pathogenesis of Pseudoperonospora cubensis. 

Under controlled conditions, a linear relation was found between transpiration rate 

and leaf temperature. They showed that healthy and infected leaves can be 

discriminated even before the visible symptoms of the downy mildew (caused by 

Pseudoperonospora cubensis) appear. The maximum temperature difference 

(MTD) was found to be related to the severity of infection and could be used for 

the discrimination of healthy leaves or canopies and those with downy mildew 

[105]. Conditions enhancing transpiration rate improved the detection of these 

changes at an early stage of infection. In another work, Oerke et al., [106] studied 

the effect of Venturia inaequalis fungus on apple leaves and they found MTD to be 

strongly correlated to the size of infection sites. 

Stoll et al., [107] have investigated the use of infrared thermography to study the 

attack of Plasmopara viticola in grape vine leaves under varying water status 

conditions. They applied and studied different irrigation treatments for both 

inoculated and non-inoculated vines. A study on wheat canopies for detection of 

fungal diseases revealed that higher temperature was observed for ears (the part of 

wheat containing the fruit) infected with Fusarium (Figure 2-3) [108,109].  
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Figure 2-3: Detection of Fusarium Head Blight (FHB) infected ears in wheat. (a) Colour image 

with an ear infected with FHB in pink shade; (b) effect of infection on absolute temperatures of 

ears. Image Credit: Oerke et al. [108]. 

In this thesis, we study the effect of a fungus Oidium neolycopersici, which causes 

powdery mildew, in tomato plants using thermal imaging and we investigate if 

combining stereo visible imaging with thermal imaging increases our ability to 

detect the disease before appearance of visible symptoms.  

2.3. Stereo Vision for Depth Estimation 

To add depth information for analysis of diseased plants, we use disparity 

estimation using stereo pair of images. In the literature, stereo vision is a vast 

subject and comprises of broad topics such as epipolar geometry, camera 

calibration, image rectification, disparity estimation, 3D reconstruction and 

occlusion detection [110]. A model of basic stereo vision setup consists usually of 

two identical cameras with overlapping field of view and parallel optical and 

vertical axis (Figure 2-4). 

Let 𝑂𝑙 and 𝑂𝑟 be the centres of camera lens for the left and right cameras, 

respectively. The left and right camera project a point P to pixel location (𝑢𝑙 , 𝑣𝑙) 

(a) (b) 
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and (𝑢𝑟 , 𝑣𝑟)  respectively. Since the cameras are identical and optical and vertical 

axes are parallel, the only difference between the location of projection of point P 

in the left and right images is along the horizontal axis. This difference in location 

of an object in left and right image plane is called disparity. If the stereo setup has 

vertical disparity among the image pair then image rectification is performed. One 

method to perform image rectification is by calibrating the stereo setup and then 

applying transformations to the image pair. In the absence of calibration parameters, 

rectification can be performed by using feature matching and estimating the 

fundamental matrix, which relates the point in a 3D-space to the point(s) in images 

captured from different angles. However, if the two cameras can be approximated 

by affine transformation, then the image pair can be rectified by affine 

transformation [110].  

Let us assume that the point P is located at location (𝑋, 𝑌, 𝑍) with 𝑂𝑙 as origin of a 

Cartesian co-ordinate system, then the same point will be located at (𝑋 − 𝐵, 𝑌, 𝑍) 

with 𝑂𝑟 as origin in the camera co-ordinates. The pixel location (𝑢𝑙, 𝑣𝑙) and (𝑢𝑟 , 𝑣𝑟)  

of point P can be estimated by using the pinhole camera model [111]. 

 ( , ) , , ( , ) ,l l r r

X Y X B Y
u v f f u v f f

Z Z Z Z

   
    
   

  

where f is the focal length of camera(s) and Z is the distance(depth) of the point 

from the camera, disparity (d) can then be estimated as:  

 
l r

fB
d u u

Z

fB
Z

d

  



  (2.1) 



 

Chapter 2. Literature Review                                                                                                            40 

 

 

 

Figure 2-4 Model of a basic stereo vision setup. 

Since focal length and baseline are constant for a stereo setup with known values 

of disparity, the depth of a point can be estimated using equation (2.1). 

2.3.1. Disparity Estimation 

The  work done by Scharstein and Szeliski [112] is considered to be a landmark in 

the field of disparity estimation algorithms. Although their work is now more than 

10 years old, the benchmarks presented by Scharstein and Szeliski have helped to 

improve the quality and quantity of work done on disparity estimation. They 

reviewed and compared most of the stereo correspondence algorithms at the time 

of publication. In addition, they produced multi-frame stereo data sets and made 

them publicly available along with the ground truth5. The authors presented a test 

                                                 

5 http://vision.middlebury.edu/stereo/data/ 

http://vision.middlebury.edu/stereo/data/
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bed to evaluate the performance of disparity estimation algorithms and the 

evaluation mechanism is still being used by researchers to evaluate the performance 

of their algorithms6. According to the authors, in general stereo algorithms perform 

four steps to estimate disparity i.e., matching cost computation, cost aggregation, 

disparity computation and disparity refinement. The sequence of these steps 

depends on disparity estimation algorithms which can be broadly divided into two 

types of methods:  local and global. Local methods define a finite window at each 

point in the image and disparity is estimated depending on intensity values within 

this finite window.  Matching cost is computed within the window and cost is 

usually aggregated over the whole window. Global methods, on the other hand, 

define a global energy function and minimise the energy function using 

optimisation algorithms. There is another class of algorithms which do not define a 

global function and use image pyramid in a hierarchical, coarse to fine, approach. 

The pyramid approach estimates a coarse resolution disparity image at the top of 

pyramid and then refines the disparity to original resolution at the pyramid base. 

Some authors have also introduced a feature based approach but feature based 

methods produce sparse disparity results if corresponding features are not reliably 

found in the image pair [113,114]. The amount of literature on disparity estimation 

algorithms is quite large and we will cover only commonly used disparity 

estimation schemes in this thesis.     

A window based approach presented by Konolige [115] uses Laplacian of Gaussian 

(LOG) to enhance the images for correlation and then uses l1-norm or sum of 

                                                 

6 http://vision.middlebury.edu/stereo/eval/ 

http://vision.middlebury.edu/stereo/eval/
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absolute differences (SAD) as the cost function to search for correspondence along 

epipolar lines. As the disparity refinement step, the algorithm uses left/right check 

and confidence measure. The left/right check checks if disparity estimate is the 

same when the right image is fixed compared to when the left image is fixed. The 

confidence measure gives higher confidence to textured regions than to low 

textured regions. The window based algorithms suffer especially in the occluded 

regions, as it is not easy to find the matching patch in the corresponding image. The 

choice of window size and similarity measure also affects the result of window 

based algorithms.  

Birchfield and Tomasi (BT) [116] presented a pixel dissimilarity measure  using 

linearly interpolated intensity functions. The BT measure is easier to implement, is 

widely used in disparity estimation algorithms for cost computation, and has been 

shown to produce good results [112]. Birchfield and Tomasi [117] subsequently 

presented a pixel-to-pixel (p2p) approach based on the BT dissimilarity measure 

which can be used for disparity estimation and depth discontinuities. To formulate 

the cost function, the p2p approach adds a penalty for occlusion and a reward term 

for a match in addition to the dissimilarity measure. The algorithm adds hard 

constraints based on un-textured and occluded regions to facilitate possible matches 

and disallow certain unlikely mismatches. The algorithm uses a dynamic 

programming approach for cost function optimisation.  

Kolmogorov et al. [118–120] presented an approach for energy minimisation via 

graph cuts. The authors defined a global energy function based on matching cost, 

smoothness and visibility and then reformulated the energy function to construct 

the graph and solve it using α-expansion. The α-expansion method assumes an 
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initial disparity α and then refines the disparity iteratively by searching for α which 

minimises the objective function.  Later, the authors presented max-flow/min-cut 

algorithms as efficient global optimisation solutions. An iterative message passing 

approach commonly known as belief propagation approach was presented in [121–

123]. This approach models the problem of stereo matching as a combination of 

three Markov random fields and proposes to find the optimal solution by using 

Bayesian belief propagation.  

To overcome the limitation of window-based and global approaches, Hirschmüller 

[124,125] presented a semi-global approach for disparity estimation. The author 

approximated 2D energy function by solving 1D paths along eight/sixteen 

directions in the neighbourhood of each pixel. The method performed as well as 

global methods but the time complexity was reduced which was now linear to the 

number of pixels and disparities. They used a pixel-wise matching cost based on 

mutual information and proposed hierarchical calculation using image pyramid as 

hierarchical mutual information (HMI) [126]. In a subsequent study, Hirschmüller 

and Scharstein [127,128] compared cost functions with HMI in the presence of 

radiometric differences and found that HMI performed best for images with global 

radiometric differences but the results were not good for local radiometric 

differences. As a disparity refinement step, Hirschmüller [125] proposed “peaks 

removal” and “intensity consistent disparity checks”. Peak removal removes small 

patches of disparity which appear very different from their surrounding disparities. 

The next step of the algorithm in [125] then checks the consistency between 

intensity and disparity values, the underlying assumption being that discontinuity 

in disparity occurs when there is a change in intensity.  
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In recent years, many algorithms have been presented which use a combination of 

local and global approaches. We refer the reader to the Middlebury evaluation for 

a more detailed analysis of various different disparity estimation algorithms7 [129–

133].  

Application of stereo vision in horticulture is not new and it has been used for plant 

quality assessment and phenotyping before.  Ivanov et al., [134] presented a feature 

based matching approach for disparity estimation in stereo images of plants but it 

was not fully automatic. Andersen et al., [135] and Biskup et al., [136] used area 

correlation combined with simulated annealing to estimate depth. Song et al., [137] 

presented a multi-resolution pyramid which uses Kalman filtering to update 

disparity results from one level to the next level. To increase the accuracy of 3D 

depth estimation, stereo vision has been combined by various researchers with 

Light Detection and Ranging (LIDAR) technology. Commonly used LIDAR 

technologies include time-of-flight and phase-shift LIDAR. For a detailed 

discussion on the use of stereo images with LIDAR technology, we refer the reader 

to [138–142].  

Chapter Summary 

In this chapter, we summarised existing techniques on registration of multi-modal 

images, in particular registration of multi-fluorescence and thermal/visible images. 

We also summarised existing literature on disease and stress detection in plants 

using thermal and visible images and depth estimation using disparity estimation 

                                                 

7 http://vision.middlebury.edu/stereo/eval/ 

http://vision.middlebury.edu/stereo/eval/
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algorithms. The choice of registration method depends on the type of images and 

their application. Multi-fluorescence imaging technologies are relatively new and 

various techniques are being used for registration of multi-fluorescence images. 

However, in the limited multi-modal image registration literature, very few 

researchers have addressed the problem of selection of a suitable registration plane 

with maximal overlap in order to minimise information loss.  

For stress and disease detection in plants, various researchers have used thermal 

imagery but few have simultaneously exploited information from visible images. 

An automatic method for disease and stress detection using combined 

visible/thermal imaging is non-existent to the best of our knowledge. Depth 

information has been used in the past for plant quality estimation and phenotyping. 

Some researchers have stated the effect of depth and leaf angles on thermal images 

of plants but the depth information has not been exploited for plant stress and 

disease detection. In Chapter 5, we will combine depth information with colour 

(visible light spectrum) and thermal images to analyse plant images undergoing 

stress and disease. In Chapter 6, we will focus on fast and accurate registration of 

multi-tag fluorescence images and address the problem of finding the reference 

plane with maximal overlap. 
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Chapter 3                                   
Registration of Thermal and 
Visible Light Images 

We propose here an algorithm for registration of thermal and visible light images 

of diseased plants. Let us consider the two main classes of registration algorithms 

discussed in Chapter 2 i.e., feature based methods and area based methods. Feature 

based registration methods require stable feature sets which can be used to match 

corresponding points in the reference and the floating image. However, in the case 

of thermal and visible light images of diseased plants it is difficult to find features 

which can be reliably detected in images from both the modalities. The major reason 

behind this problem is that the underlying temperature profile of a diseased leaf 

might be different from the visible light image. This can introduce unexpected 

features in one of the images that are missing in the other image. Therefore, we 

focus to area based registration methods in this Chapter. 

Area based registration methods suffer from the same problem as the feature based 

methods if we directly use intensity values for registration, i.e., the intensity profile 

of the leaf in thermal and visible light image may be different. Therefore, it is 

difficult to find a cost function based on intensity values which can be minimised 

using optimisation methods for perfect registration. In section 3.4 we show that a 

cost function which directly uses intensity values perform poorly on these kind of 

images. An alternative method to overcome this problem is to use silhouettes of the 

objects of interest in thermal and visible light images for registration [57,70,143]. 

Various researchers have proposed silhouette based registration of thermal and 
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visible light in video sequences [58]. There are others who make use of the 

difference in temperature from the background for silhouette extraction [57,70].  In 

the case of diseased plants, the temperature profile might be very similar to the 

background in various portions of the plant and therefore silhouette extraction using 

background subtraction may not be a suitable choice.  

The algorithm proposed in this chapter features a novel multi-scale method for 

silhouette extraction of diseased plants in thermal images. An overview of the 

proposed registration algorithm is shown in Figure 3-1. For the visible light image, 

the algorithm uses the strength of edges/gradient to detect and extract the silhouette 

whereas for the thermal image it uses a method based on the stationary wavelet 

transform (SWT). The latter follows a multi-scale approach that first estimates the 

silhouette at coarse scales by using the curvature strength as computed from the 

Hessian matrix of coefficients at each pixel location. It then uses these estimates to 

refine the silhouette at finer scales. After silhouette extraction, the algorithm 

employs a global + local registration method to register the thermal and visible light 

images.  

 

Figure 3-1: Overview of the proposed algorithm. 
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3.1. Image Acquisition  

An experimental setup was designed and developed at the Department of Computer 

Science, University of Warwick, UK, to simultaneously acquire visual and thermal 

images of diseased/normal plants. The front view of the imaging setup is shown in 

Figure 1-6. The imaging setup consisted of two visible light imaging cameras 

Canon Powershot S100, and a thermal imaging camera Cedip Titanium. The 

setup was used to image tomato plants infected with the fungus Oidium 

neolycopersici, which causes powdery mildew disease. 106 conidia/ml and various 

control treatments were applied which resulted in different amounts of disease 

developments available for imaging. The disease symptoms consist of white 

powdery spots (first appearing after approx. 7 days) that expand over time and 

eventually cause chlorosis and leaf die-back. Thermal and visible light images of 

71 plants under 10 different treatments were captured for 14 days (04 Oct 2012 to 

17 Oct 2012) in a controlled environment at 20˚C.  

3.2. Silhouette Extraction 

3.2.1. Thermal Image 

Extraction of plant silhouettes from thermal images obtained in our experiments is 

a difficult step because of high noise content. Since thermal images were obtained 

from diseased plants inoculated with powdery mildew, the intensity of the thermal 

profile changes within leaves. Figure 3-2 (c) shows a thermal image of a diseased 

plant enhanced by truncating the lower and upper 1% of pixel values and by contrast 

stretching where the thermal profile (i.e., intensity) of the background is very close 

to that of the leaves. Furthermore, the thermal profile of some of the leaves is 
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higher/lower than that of the background. Because of the presence of weak edges 

in the thermal image of the diseased plant, edge detection methods such as gradient, 

Canny edge detector, difference of Gaussian, Laplacian perform poorly on thermal 

images. Based on this observation, we propose an approach that is minimally 

affected by intensity changes within leaf.  

It has been shown that the joint statistics of coefficients obtained after wavelet 

transformation (WT) show strong correlation among object boundaries in thermal 

and visible light images [144]. Thermal images, therefore, capture most of the 

object boundaries and thus WT can be used to extract silhouettes. Additionally, WT 

has shown to be very efficient in reducing noise, improving mutli-scale analysis 

and detecting edge direction information [145–147]. Multi-scale wavelet-based 

methods have also shown to be efficient in fusing thermal and visible light images 

[148,149]. In this work, we present a multi-scale wavelet-based method to extract 

plant silhouettes in thermal images. We use the stationary wavelet transform 

(SWT), which is similar to the discrete wavelet transform (DWT) except that it does 

not use down sampling. As a result, the resulting frequency sub-bands generated 

have the same size as the input image and contain coefficients that are redundant 

and correlated across different scales [150]. Our multi-scale SWT-based method 

uses the Haar filter to first decompose the thermal image into a number of sub-

bands. 

For an image of m×n pixels, it computes a matrix 𝐇𝑖,𝑗,𝑠 equivalent to the matrix of 

second derivatives (Hessian) at each pixel location [145,151]:  
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Figure 3-2: (a) Example visible light image; (b) silhouette extracted from visible light image (Vg) 

using the gradient-based method; (c) corresponding thermal image (enhanced by truncating the 

upper and lower 1% pixel values and by contrast stretching); and (d) silhouette extracted from 

thermal image (Tw) using the SWT-based method. 

where 𝐻𝑖𝑗𝑠, 𝑉𝑖𝑗𝑠, 𝐷𝑖𝑗𝑠 are the horizontal, vertical and diagonal coefficients, 

respectively, at scale s and pixel location (𝑖, 𝑗); scale 𝑠 = 1 corresponds to the first 

level of decomposition. Matrix 𝐇𝑖,𝑗,𝑠 is then decomposed using Singular Value 

Decomposition (SVD). The largest singular value provides information about the 

direction of the highest curvature at pixel (𝑖, 𝑗), also known as the curvature strength 

at pixel (𝑖, 𝑗) [151]. We use the singular values of each Hessian matrix 𝐇𝑖,𝑗,𝑠 to 

compute the m×n edge map, 𝐸𝑠, of the image at scale s as follows:  

 ( , ) max( (1), (2))s ijs ijsE i j    (3.2) 

where 𝜆𝑖𝑗𝑠(1) and 𝜆𝑖𝑗𝑠(2) are the two singular values of 𝐇𝑖,𝑗,𝑠 at pixel location (𝑖, 𝑗) 

and scale 𝑠. 

Due to the redundant properties of the SWT and the size of the wavelet filter used, 

edge information in 𝐸𝑠 usually appears blurred. Furthermore, the position of edges 

tend to shift to the left and top from their actual position in the original image. This 

shift occurs within range Λ𝑠, as given by equation (3.3) and (3.4) [152,153]:  

 1:
1

s

s 


    (3.3) 

(a) (b) (c) (d) 
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      (3.4) 

where 𝑑0
𝐻  and  𝑑0

𝐿 is the size of the high pass and low pass filters, respectively. For 

the Haar filter, 𝑑0
𝐻 = 𝑑0

𝐿 = 2. Figure 3-3 illustrates this shifting effect, where it can 

be observed that the round markers appear to have moved towards the left and top 

edge of the image as the scale increases. It is also important to note in Figure 3-3 

that for low 𝑠 values the boundary is thin but the noise content is too high. As 𝑠 

increases, weak edges become more prominent and the noise content decreases. 

Based on these observations, our method follows a multi-scale approach that first 

computes a binary image, 𝐁𝑠, at scale 𝑠 using thresholding and then refines it at the 

next lower scale 𝑠 − 1. Specifically, at scale 𝑠 − 1, 𝐁𝑠 is multiplied point-wise with 

log(𝐸𝑠−1) , i.e., 𝐁𝑠 log(𝐸𝑠−1), is then thresholded to obtain  𝐁𝑠−1, i.e., the binary 

image at scale 𝑠 − 1. This is done to discard any regions that may fall outside 𝐁𝑠 

before computing the binary image at scale 𝑠 − 1. Equation (3.4) establishes the 

correspondence between edges in two adjacent scales; namely, edges at scales s are 

Δ𝑠−1:𝑠 pixels thicker and appear shifted to the left and top by Δ𝑠−1:𝑠/2  pixels from 

the corresponding edge at scale 𝑠 − 1. Therefore, 𝐁𝑠 is shifted by Δ𝑠−1:𝑠/2  pixels 

towards the right and bottom before computing 𝐁𝑠−1 at scale 𝑠 − 1. Because a shift 

occurs at every scale, silhouette regions located at the top or left boundary of the 

image may be truncated. To avoid this, the method pads r rows and c columns to 

the top and left of the image using symmetric reflection of the first r rows and c 

columns of the original image before computing the wavelet coefficients, so that 

𝑟, 𝑐 > Δ𝑠/2. Symmetric reflection also helps to avoid creating any extra edges at 

the boundary of the image.  
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Figure 3-3: (a) Original thermal image, and (b)-(f) edge maps E1-E5. All images are enhanced by 

computing logarithm of the intensities. Artifacts due to symmetric reflection can be seen but do 

not affect the silhouette. 

The flow chart of the SWT-based method for plant silhouette extraction in thermal 

images is shown in Figure 3-4. In this work, the method begins at scale 𝑠 = 5, since 

it was found empirically that this scale provides the best trade-off between accuracy 

and computational complexity. Similarly, the method stops at scale 𝑠 = 3 as this 

scale was empirically found to be a good trade-off between the amount of weak and 

blurred edges, which may affect the accuracy of the extracted silhouette (see Figure 

3-3). We apply morphological operations on the binary image 𝐁3 to remove small 

objects. The last step is to discard the extra r rows from the top and the c columns 

from the left of the resulting binary image to obtain an m×n binary silhouette of the 

plant, denoted by 𝑇𝑤. Figure 3-2 (d) shows a sample binary image depicting the 

plant silhouette in the thermal image in Figure 3-2 (c) using the proposed SWT-

based method. 

(b) (c) 

(d) (e) (f) 

(a) 
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Figure 3-4: Flow chart of the SWT-based method for silhouette extraction in thermal images. 

3.2.2. Visible Light Image 

During the progress of the powdery mildew disease, some parts of the leaves change 

colour from green to yellow and then to white. It is therefore necessary to design a 

method that is robust to colour changes in leaves and that is capable of extracting 

plant silhouettes accurately from visible light images. To this end, we propose a 

gradient based-method that first converts the image from the RGB colour space to 

the Lab colour space in order to enhance the plant region by subtracting the ‘a’ from 

the ‘b’ channel. After colour space conversion, the method removes non-uniform 

illumination artifacts by subtracting the local mean [154]. It then removes noise by 

using anisotropic diffusion filtering, which helps to smooth the background noise 

while keeping the edges/boundary of the plant region sharp [155]. The method then 

detects edges by computing the gradient of the image using the Sobel operator. In 

order to enhance regions around high gradient values (plant boundary) and suppress 

low gradient values, the method performs a grayscale closing operation on the 

detected edges. The resulting image is thresholded to obtain a binary image 
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containing the silhouette. Morphological operations are then performed on the 

binary image to obtain the final plant silhouette denoted by 𝑉𝑔. Figure 3-2 (a) shows 

a sample visible light image of a diseased plant and Figure 3-2 (b) shows the 

corresponding plant silhouette as computed using our proposed gradient-based 

method. Note that the main motivation to use this method in visible light images, 

as opposed to the SWT-based method, is the low computationally complexity and 

good results. We further discuss this in Section 3.4. 

3.3. Registration 

The goal of registration is to align the thermal and visible light images in such a 

way that the same pixel locations in both the images correspond to the same 

physical location in the plant. Our particular registration method is a two-step 

process: global and local registration. For global transformation, a similarity 

transformation is parameterised by four degrees of freedom. A general similarity 

transformation matrix for a 2D image can be written as: 

 2 1

2 1

cos sin
.

sin cos

x

y

tx x
S

ty y

 

 

     
       

      

  (3.5) 

where S is the scale factor, α is the angle of rotation along the z-axis, and 𝑡𝑥 and 𝑡𝑦  

are the shifts in the x and y directions, respectively. The transformation in equation 

(3.5) maps a point (𝑥1, 𝑦1) in a floating image to a corresponding point (𝑥2, 𝑦2) in 

a static image. In our case, the binary image depicting the plant silhouette from the 

visible light image is the floating image and the binary image depicting the plant 

silhouette from the thermal image is the static image. The global registration step 

first finds the centroid of the plant silhouette in both the thermal and visible images. 
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It then calculates the difference between centroid locations and shifts the floating 

image by a number of pixels equal to this difference. It uses the sum of absolute 

differences as a cost function and an optimised pattern search algorithm [156] to 

search for the best approximation of similarity transformation between the two plant 

silhouettes. The search space range is chosen to be [0.9, 1.1] for scale factor S, 

[−0.1˚, 0.1˚] for angle α, and [−100, 100] pixels for translations (𝑡𝑥, 𝑡𝑦). The 

resulting registered visible image silhouette obtained after applying similarity 

transformation is denoted by 𝑉𝑔
′. 

After global registration, the second step performs local registration using a free-

form deformation (FFD) model based on multilevel cubic B-Spline approximation 

proposed by Rueckert et al. [35,36,157]. FFD models deform an object by 

manipulating an underlying mesh of control points Φ. For an image of m×n pixels, 

let Ω = {(𝑥, 𝑦)|0 ≤ 𝑥 < 𝑚, 0 ≤ 𝑦 < 𝑛} be the image domain on the xy-plane, and 𝜙𝑖𝑗 

be the value of the ij-th control point on lattice Φ represented by a 𝑛𝑥 × 𝑛𝑦 mesh 

with uniform spacing 𝛿.  The FFD approximation function can then be written as 

 
3 3

,
0 0

( , ) ( ) ( )k l i k j l
k l

x y B t B u   
 

 T  (3.6) 

where 𝑖 = ⌊𝑥/𝑛𝑥⌋ − 1, 𝑗 = ⌊𝑦/𝑛𝑦⌋ − 1, 𝑡 = 𝑥/𝑛𝑥 − ⌊𝑥/𝑛𝑥⌋, 𝑢 = 𝑦/𝑛𝑦 − ⌊𝑦/𝑛𝑦⌋ 

and 𝐵𝑘 and 𝐵𝑙 represent cubic B-spline basis functions. This second step uses the 

hierarchical multi-level B-spline approximation proposed in [157] and an 

implementation of the limited memory Broyden–Fletcher–Goldfarb–Shanno 

algorithm (L-BFGS) by Dirk-Jan Kroon as the optimisation function [36]. The 

similarity measure used here is the Sum of Squared Differences (SSD): 
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where 𝜏(𝑉𝑔) is the combined similarity transformation (equation (3.5)) plus local 

transformation 𝐓(𝑥, 𝑦) (equation (3.6)) applied to 𝑉𝑔 (the visible image silhouette) 

and 𝑇𝑤 is the silhouette of the thermal image. 

3.4. Results and Discussions 

In this section, we first show that registration of thermal and visible images of 

diseased plants using silhouette extraction performs better than registration using 

exclusively intensity values (see Figure 3-5). To this end, we computed the mutual 

information of a pair of registered thermal and visible light images. Mutual 

information is a similarity metric commonly used for registration of multi-modal 

images [38].  We first converted the visible light image to grayscale image and then 

computed the mutual information of this grayscale image and the thermal image for 

various translation values in the x and y directions, as shown in Figure 3-5 (a). 

Ideally, local minima for the cost function (negative of mutual information) occur 

at a zero shift in both the x and y directions (since the images are already registered). 

However, it can be observed in the plot that minima do not occur at (0,0) but at 

(−8,−2). Mutual information is maximum when the joint entropy of both images 

is minimum, however this might not be the case in thermal and visible images of 

diseased plants as the intensity information from these images may have no direct 

correlation. We then performed the same experiment by using the plant silhouettes 

from the visible and thermal images, as extracted using our method.  Figure 3-5 (b) 

shows the plot of mutual information using these plant silhouettes. It is obvious 
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from the plot that the global minima (negative of mutual information) occur at a 

zero shift in both the x and y directions.  

To compare the accuracy of our algorithm, we obtained ground truth silhouettes, 

denoted by 𝑇𝐺𝑇, by manually marking the plant region in 30 randomly picked 

thermal images from our dataset consisting of 984 pairs of images. For comparison 

purposes, plant silhouettes from the thermal images were also obtained by using the 

same (gradient-based) method as the one used for visible light images after log 

transformation. Since thermal images are grayscale, we skipped the first two steps, 

i.e., conversion to the Lab colour space and subtraction of the ‘a’ and ‘b’ channels. 

In this case, the thermal images were first enhanced by using log transformation 

followed by de-noising using anisotropic diffusion filtering. Table 3-1 details a list 

of notations used to denote plant silhouettes extracted and registered using different 

methods. 𝑉𝑤
𝑔

 in Table 3-1 is not discussed as we will show later that silhouettes 

extracted by the gradient-based method (i.e., 𝑇𝑔) in thermal images are not a good 

approximation of plant silhouettes and therefore the registration of 𝑉𝑤 with 𝑇𝑔 is not 

relevant. 

 

Figure 3-5: (a) (Negative of) the mutual information using intensity values of images vs. shifts in 

the x and y directions. (b) (Negative of) mutual information using silhouettes of images vs. shifts 

in the x and y directions. 

(a) (b) 
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Table 3-1: Notations used to denote silhouettes extracted using different methods. 

𝑇𝐺𝑇 Ground truth plant silhouette from thermal image by manual marking. 

𝑉𝐺𝑇 Ground truth plant silhouette from visible light image by manual marking. 

𝑇𝑤 Plant silhouette from thermal image using the SWT-based method. 

𝑇𝑔 Plant silhouette from thermal image using the gradient-based method. 

𝑉𝑤 Plant silhouette from visible light image using the SWT-based method. 

𝑉𝑔 Plant silhouette from visible light image using the gradient-based method. 

𝑉𝑤
𝑤 𝑉𝑤 after registration with 𝑇𝑤  using the registration method. 

𝑉𝑤
𝑔

 𝑉𝑤 after registration with 𝑇𝑔 using the registration method. 

𝑉𝑔
𝑤 𝑉𝑔 after registration with 𝑇𝑤  using the registration method. 

𝑉𝑔
𝑔

 𝑉𝑔 after registration with 𝑇𝑔 using the registration method. 

Figure 3-6 shows four pairs of thermal and visible images of plants at different stage 

of powdery mildew disease. The boundary of 𝑉𝐺𝑇 and 𝑇𝐺𝑇 obtained by manually 

marking four pair of images is shown in pink. Figure 3-7 shows the overlap between 

the ground truth 𝑇𝐺𝑇 and [𝑇𝑔,𝑇𝑤] for the four pairs of images in Figure 3-6. The 

amount of overlap is represented in yellow, 𝑇𝐺𝑇 is represented in green and [𝑇𝑔,𝑇𝑤] 

are represented in red. The results show that the percentage of overlap (yellow) is 

higher in the pair (𝑇𝐺𝑇, 𝑇𝑤) than it is in the pair (𝑇𝐺𝑇, 𝑇𝑔) (Table 3-2 ). It is important 

to note that although 𝑇𝑤 is very similar to 𝑇𝐺𝑇, there are still some non-overlapping 

regions (red) in (𝑇𝐺𝑇, 𝑇𝑤) (marked by ‘η’ in Figure 3-7). These non-overlapping 

regions occur when the leaf surfaces are clumped together and thus, the fine details 

are not captured by our SWT-based method. Let us recall that in our method there 

is a trade-off between the accuracy of the binary image and the amount of noise at 

scale 𝑠 − 1, compared to scale 𝑠.  At high scales, binary images with more blurred 

boundaries (i.e, 𝐵𝑠) are usually generated whereas at lower scales, binary images 
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with less blurred boundaries are usually generated at the expense of high noise 

content.  

Some of the leaves in thermal Image P1 in Figure 3-6 show both higher and lower 

temperatures than that of the background. In this case, the gradient-based method 

failed to extract the plant silhouette from P1 as it missed most of the leaves. Our 

SWT-based method was unable to extract fine stem details near the plant boundary 

in P1 where the leaf temperature is very close to that of the background; however 

the overall result (overlap) of our method was better than that achieved by the 

gradient-based method. 

 

Figure 3-6: Top row: sample visible light images; bottom row: corresponding thermal images. 

Pink colour in top row represents hand-marked ground truth silhouettes. 

P2 P3 P1 P4 
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Figure 3-7 Amount of silhouette overlap for the four pairs of sample images in Figure 3-6. First 

row: overlap (yellow) between the manually extracted ground truth plant silhouette 𝑇𝐺𝑇  from 

thermal image (in green) and  𝑇𝑔 (in red). Second row: overlap (yellow) between  𝑇𝐺𝑇  (in green) 

and  𝑇𝑤 (in red). Region marked as ‘η’ shows non-overlapping pixels where the SWT- based 

method was unable to capture fine details due to clumped leaves at the plant boundary. 

We quantified  the accuracy of our silhouette extraction method by using the 

coverage metric Γ [57]: 

 1 2
1 2

1 2
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
 (3.8) 

where 𝐼1 and 𝐼2 are any two binary images depicting silhouettes. In addition, we 

also computed the Sørensen–Dice index (Ψ) as another metric to quantify the 

results: 
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Table 3-2 reports the values of Γ and Ψ for the four pairs of images shown in Figure 

3-6. These results show a higher percentage of overlap between the ground truth 

silhouette (𝑇𝐺𝑇) and the silhouette extracted by the SWT-based based method (𝑇𝑤), 

than that between 𝑇𝐺𝑇 and the silhouette extracted by the gradient-based method 

(𝑇𝑔).  
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Table 3-2: Values for the coverage metric Γ and the Dice index Ψ for four sample pairs of images 

in Figure 3-6. 

 
Silhouette 

Pairs 
P1 P2 P3 P4 

Γ 

(𝑇𝐺𝑇 , 𝑇𝑔) 0.7221 0.5328 0.6840 0.8302 

(𝑇𝐺𝑇 , 𝑇𝑤) 0.7884 0.8048 0.8141 0.8718 

(𝑇𝐺𝑇 , 𝑉𝑔
𝑤) 0.7733 0.7535 0.7867 0.8162 

(𝑇𝐺𝑇 , 𝑉𝑤
𝑤) 0.8176 0.8054 0.8067 0.8632 

(𝑇𝑤, 𝑉𝑔
𝑤) 0.8459 0.89 0.8911 0.8372 

Ψ 

(𝑇𝐺𝑇 , 𝑇𝑔) 0.8386 0.6952 0.8123 0.9072 

(𝑇𝐺𝑇 , 𝑇𝑤) 0.8817 0.8919 0.8975 0.9315 

(𝑇𝐺𝑇 , 𝑉𝑔
𝑤) 0.8722 0.8594 0.8806 0.8988 

(𝑇𝐺𝑇 , 𝑉𝑤
𝑤) 0.8997 0.8922 0.8930 0.9266 

(𝑇𝑤, 𝑉𝑔
𝑤) 0.9165 0.9418 0.9424 0.9114 

Figure 3-8 shows registration results obtained after registration. The top row shows 

the amount of overlap between the silhouettes 𝑇𝑤 and 𝑉𝑔
𝑤 while the bottom row 

shows the thermal image overlaid on top of the registered visible light image. For 

the case of P1 and P4, the stem of the plant features a higher temperature than that 

of the background and as a consequence, the stem appears red in colour in the 

thermal image, which exactly coincides with the stem region in the visible light 

image. Leaves that are located far from the centre of the plant in P1 also feature a 

higher temperature than that of the background and appear in yellow colour. These 

leaves, when overlaid, also coincide with the leaves in the visible light image. Blue-
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purple regions in P2, P3 and P4 show leaf regions in thermal images that coincide 

with the corresponding leaf regions in the visible light images when overlaid.  

Figure 3-9 shows a cropped and enhanced section of P3 delimited by a white box 

in the silhouette overlap and by a black box in the thermal/visible overlay in Figure 

3-8. The visible light image and the corresponding thermal image are shown in 

Figure 3-9 (a) & (b) respectively. The visible light image shows the leaf in red with 

a shade of pink. Because of this peculiar colour of the leaf, the extracted silhouette 

from the visible light image is not accurate and results in a disconnected region 

depicted in Figure 3-9 (c) in yellow and green colour. This inaccuracy causes a local 

mis-registration of the leaf region as depicted in Figure 3-9 (d), where the purple 

shade represents the leaf region and the yellow shade represents the non-leaf region 

in the thermal image. Note that the leaf region in the thermal image does not overlap 

the leaf region in the visible light image accurately. These local mis-registrations 

can occur if there are prominent inaccuracies in the extracted silhouettes.  

 

Figure 3-8: Registration results based on silhouettes. Top row: overlap (yellow) between the 

silhouettes of thermal (red) and registered visible (green) light images. Bottom row: thermal 

images overlaid on top of registered visible light images. Stem and leaf regions in thermal image 

coincide with stem and leaf regions in the visible light image. The ‘mis-registration’ represented 

by the white box in the P3 silhouette overlap and by the black box in the thermal/visible image 

overlap is explained in Figure 3-9. 

P2 P3 P1 P4 
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Figure 3-9: Unregistered part of P3 marked with a box in Figure 3-8. Visible light image (a) with 

corresponding thermal image and (b) with a leaf in red-pink colour; (c) Local mis-registration of 

silhouettes shown in green and red colour; (d) Local mis-registration of visible and thermal images 

where purple shade represents the leaf region and yellow colour represents the non-leaf region in 

the thermal image. 

The mean values of Γ(𝑇𝑤, 𝑉𝑔
𝑤)

 
and Ψ(𝑇𝑤, 𝑉𝑔

𝑤) were calculated to be 0.8815 and 

0.9364 with standard deviation of 0.0446 and 0.0260, respectively. Table 3-3 

tabulates Γ and Ψ values for 30 pairs of images randomly picked to mark the ground 

truth. The tabulated Γ and Ψ values are higher for the pair (𝑇𝐺𝑇,𝑇𝑤) than those for 

the pair (𝑇𝐺𝑇, 𝑇𝑔). Similarly, Γ and Ψ values are higher for the pair (𝑇𝐺𝑇, 𝑉𝑔
𝑤) than 

those for the pair (𝑇𝐺𝑇, 𝑉𝑔
𝑔

), which shows that when the visible image silhouettes 

are registered with 𝑇𝑤, the overlap region is larger than that obtained when 

registered with 𝑇𝑔,. Figure 3-10 shows the histogram of Γ(𝑇𝑤, 𝑉𝑔
𝑤)

 
and Ψ(𝑇𝑤, 𝑉𝑔

𝑤)
 
  

for all pairs of images. 

All results were obtained using MATLAB 2012a on an Intel 3.20GHz core-i5 PC 

with 16 GB of RAM running a Linux system. The proposed algorithm takes 

approximately 12.77 sec on average to register a pair of thermal and visible images. 

We also tested our SWT-based method to extract silhouette from visible light 

images. For this case, the subtraction of the ‘a’ channel from the ‘b’ channel was 

performed after converting the visible light image into the Lab colour space. We 

also used a multi-scale approach by first finding a coarse boundary at scale s=3 and 

then refining it at scale s=2. The resulted silhouette 𝑉𝑤 was then registered with 𝑇𝑤 

(b) (c) (a) (d) 
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to obtain 𝑉𝑤
𝑤. Note that in this case, the SWT-based method is generally 

computationally expensive as it takes over 15 sec, on average, to register a single 

pair of images. 

Table 3-3 tabulates Γ(𝑇𝑤, 𝑉𝑤
𝑤)

 
and Ψ(𝑇𝑤, 𝑉𝑤

𝑤) values for 30 pairs of images for 

which the ground truth was obtained. Table 3-4 tabulates p-values using the 

Wilcoxon signed-rank test for the null hypothesis H0, median(D1-D2)=0, and the 

alternate hypothesis H1, median(D1-D2)>0. D1 and D2 represent the coverage 

metric and Sørensen–Dice index, respectively, for the ground truth silhouette 𝑇𝐺𝑇 

with silhouettes 𝑇𝑔, 𝑇𝑤, 𝑉𝑔
𝑔

,𝑉𝑔
𝑤and  𝑉𝑤

𝑤. The significance level of the test is 0.01; 

p-values less than 0.01 indicate that the SWT-based method performs significantly 

better than the gradient-based method to extract a silhouette.  

Figure 3-11 shows the overlap between the ground truth silhouette manually 

extracted from the visible light image 𝑉𝐺𝑇 and 𝑉𝑔,  𝑉𝑤. Note that the silhouette 

extracted using the SWT-based method shows the fine details of the boundary, 

which are relatively more visible in the P2 overlap. However, no major 

improvements in the registration results were achieved by extracting the silhouette 

using the SWT-based method. Given the additional computational cost of the SWT-

based method, the gradient-based method is recommended to extract silhouette 

from visible light images for registration purpose. 
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Figure 3-10: Histograms of  Γ(𝑇𝑤, 𝑉𝑔
𝑤)

 
 (left) and Ψ(𝑇𝑤 , 𝑉𝑔

𝑤)  (right) for all 984 pairs of images.  

Table 3-3: Mean and standard deviation of Γ(𝑇𝑤 , 𝑉𝑤
𝑤)

 
and Ψ(𝑇𝑤 , 𝑉𝑤

𝑤) for 30 randomly picked pairs 

of images and mean and standard deviation of Γ(𝑇𝑤 , 𝑉𝑤
𝑤)

 
and Ψ(𝑇𝑤 , 𝑉𝑤

𝑤)  for all 984 pairs of 

images in our dataset are shown in bold. 

Image 

Pair 

No. of 

Sample Pairs 

Γ Ψ 

µ σ µ σ 

(𝑇𝐺𝑇 , 𝑇𝑔) 30 0.7273 0.0943 0.8385 0.0684 

(𝑇𝐺𝑇 , 𝑇𝑤) 30 0.8531 0.0385 0.9203 0.0226 

(𝑇𝐺𝑇 , 𝑉𝑔
𝑔
) 30 0.7464 0.0823 0.8522 0.0569 

(𝑇𝐺𝑇 , 𝑉𝑔
𝑤) 30 0.8101 0.0460 0.8944 0.0285 

(𝑇𝐺𝑇 , 𝑉𝑤
𝑤) 30 0.8468 0.0420 0.9165 0.0250 

(𝑇𝑤 , 𝑉𝑔
𝑤) 30 0.8754 0.0362 0.9332 0.0209 

(𝑇𝑤 , 𝑉𝑔
𝑤) 984 0.8815 0.0446 0.9364 0.0260 

(𝑇𝑤 , 𝑉𝑤
𝑤) 30 0.8952 0.0456 0.9441 0.0259 

(𝑇𝑤 , 𝑉𝑤
𝑤) 984 0.9089 0.0539 0.9514 0.0312 
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Figure 3-11: Top row: overlap (yellow) between the ground truth silhouette extracted from visible 

light image VGT (green) and the silhouette extracted from visible light image using the gradient-

based method Vg (red). Bottom row: overlap (yellow) between VGT (green) and the silhouette 

extracted from the visible light image using the SWT-based method Vw (red). 

Table 3-4: p-values using Wilcoxon signed-rank test to test the null hypothesis H0:median(D1-

D2)=0, and the alternate hypothesis is H1:median(D1-D2)>0. The significance level of the test is 

0.01. 

D1 D2 p-value 

Γ(𝑇𝐺𝑇 , 𝑇𝑤)  Γ(𝑇𝐺𝑇 , 𝑇𝑔) 1.0063×10-6 

Ψ(𝑇𝐺𝑇 , 𝑇𝑤)   Ψ(𝑇𝐺𝑇 , 𝑇𝑔)   1.0063×10-6 

Γ(𝑇𝐺𝑇 , 𝑉𝑔
𝑤)  Γ(𝑇𝐺𝑇 , 𝑉𝑔

𝑔
) 9.4802×10-4 

Ψ(𝑇𝐺𝑇 , 𝑉𝑔
𝑤)  Ψ(𝑇𝐺𝑇 , 𝑉𝑔

𝑔
) 9.4802×10-4 

Γ(𝑇𝐺𝑇 , 𝑉𝑤
𝑤)  Γ(𝑇𝐺𝑇 , 𝑉𝑔

𝑤) 6.1686×10-7 

Ψ(𝑇𝐺𝑇 , 𝑉𝑤
𝑤)  Ψ(𝑇𝐺𝑇 , 𝑉𝑔

𝑤) 6.1686×10-7 

Γ(𝑇𝐺𝑇 , 𝑉𝑤
𝑤)  Γ(𝑇𝐺𝑇 , 𝑉𝑔

𝑔
) 6.1686×10-7 

Ψ(𝑇𝐺𝑇 , 𝑉𝑤
𝑤)  Ψ(𝑇𝐺𝑇 , 𝑉𝑔

𝑔
) 6.1686×10-7 
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Chapter Summary 

In this chapter we proposed an algorithm for registration of thermal and visible light 

images of diseased plants using silhouette extraction. The main novelty of the 

algorithm is a multi-scale method based on the stationary wavelet transform (SWT) 

capable of extracting the silhouettes of diseased plants with high accuracy. Our 

proposed algorithm employs a gradient-based method to extract the plant silhouette 

in visible light images and the multi-scale SWT-based method to extract the plant 

silhouette in thermal images by iteratively refining a boundary across a number of 

scales. Using the extracted silhouettes, the algorithm then applies a global plus local 

registration approach to register salient features in pairs of thermal and visible light 

images.  

Our test data set consisted of 984 pairs of images of 71 plants undergoing 10 

different types of treatments acquired for 14 consecutive days. We first showed that 

silhouette based techniques give better results for registration of thermal/visible 

images than the methods that rely directly on pixel values such as mutual 

information. We then demonstrated the overall accuracy of our algorithms (average 

DICE coefficient value of 0.9514 and average coverage metric value of 0.9089) to 

register the images in our dataset. We also evaluated the accuracy of our SWT-

based method to extract silhouettes. To this end, we quantified the amount of 

overlap between extracted silhouettes and hand-marked ground truth silhouettes 

and showed that our method is capable of detecting plant silhouettes with high 

accuracy. Our SWT-based method can be extended to single/multiple object 

silhouette extraction and be used for registration of any kind of images provided 

that the objects of interest do not occlude each other. 
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Chapter 4                                               
Depth Estimation using Stereo 
Images 

To add depth information to the set of features which can be collected from 

registered thermal and visible light images we use disparity between the stereo 

image pair. For disparity estimation the images must be rectified and the disparity 

between the image pair must be only along the horizontal scan lines. If there is a 

vertical disparity we need to perform image rectification. In this Chapter, we first 

propose a marker based image rectification and then a multi-resolution disparity 

estimation method. We compare different disparity estimation algorithms on test 

data sets and noisy stereo images of diseased plants. The proposed method is fast, 

produces accurate and smooth disparity maps, and is less sensitive to background 

noise. 

4.1. Image Rectification 

Image rectification is a transformation process which maps a given stereo pair of 

images to a common image plane in a way that the disparity between the image pair 

is only in the horizontal direction. This simplifies the disparity estimation problem 

to one-dimensional scanning along the horizontal line parallel to the baseline. One 

method to perform rectification is to calibrate the stereo setup. However, if the 

calibration parameters are not available, then rectification can be performed by 

feature matching followed by estimation of the fundamental matrix. If the two 

cameras can be approximated by affine transformation, then rectification can be 
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performed by using just affine transformation [110,158]. In this chapter, we use 

extrinsic markers to match points in a stereo pair of images and then use affine 

transformation to perform rectification. 

A sample pair of stereo images is shown in Figure 4-1. The colour images from left 

and right cameras are shown in Figure 4-1 (a) & (b) respectively. The colour images 

in (a) & (b) were converted to grayscale and then a RGB composite image was 

formed using grayscale left (a) image as red channel and grayscale right (b) image 

as green and blue channels. The composite image is shown in Figure 4-1 (c). The 

composite image shows that the same features of the plant in the left and the right 

image do not lie on the same horizontal line parallel to the baseline. For disparity 

estimation, we rectify the image pair so that the disparity between the left and the 

right image is only along the horizontal axis. The correspondence between extrinsic 

marker points placed on the ground is shown by arrows in Figure 4-1  (c) which 

indicates that the transformation function required for rectification is essentially a 

translation. However, to make our method more robust to minor affine 

transformations (if present), we align these markers using affine transformation. 

The goal is to align the points on the ground level, resulting in zero disparity at 

ground level and objects above the ground and closer to cameras showing positive 

disparity. The image rectification method proposed here consists of three steps: 

1. Extraction of extrinsic markers 

2. Establishing correspondence between marker points 

3. Estimate and apply the transformation required for rectification to the right 

image. 
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Figure 4-1: (a) & (b) show image from left and right camera; (c) RGB composite image formed by 

converting visible light images in (a) & (b) to grayscale and using grayscale image from left 

camera as red channel and grayscale image from right camera as green and blue channel. The 

yellow line shows that the same features of the plant do not lie on the same horizontal line and 

hence the stereo image pair requires rectification. 

Figure 4-2 (a) & (b) show ‘a’ and ‘b’ channels of the Lab colour space for the image 

in Figure 4-2 (a). The marker points cannot be visually identified in the ‘a’ channel 

whereas they can be easily identified in the ‘b’ channel. Therefore, we perform PCA 

on the ‘a’ and ‘b’ channel, the projection of data on the 1st principal component 

contains mostly the plant region whereas marker points become more prominent in 

the projection of data on the 2nd principal component. The projection of data on the 

2nd principal component was then smoothed with Gaussian filter and the size of the 

filter was chosen to enhance the regions belonging to the marker points (Figure 4-2 

(c)). Figure 4-2 (d) shows the image after thresholding the image in Figure 4-2 (c) 

using the 1st percentile value. The 1st percentile value was chosen because the 

marker points show very low values as can be observed in Figure 4-2 (c).  

After the binary image has been obtained the Hough transform was used to extract 

the location of the marker points. The Hough transform initially extracts all the 

edges in the image and then using the equation of a circle (𝑥 − 𝑐1)
2 + (𝑦 − 𝑐2)

2 =

 𝑟2, maps all the points on the edges to parameter space consisting of 𝑐1, 𝑐2 & 𝑟. If 

𝒙 and 𝒚 denote the set of points on a circle then all the points in the set 𝒙 and 𝒚 
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belong to the same point in 3-D parameter space. The high pixel concentration in 

the parameter space points to the presence of a circle corresponding to those 

particular parameters. The steps performed to extract the location of extrinsic 

marker points can be listed as below: 

1. Convert RGB image to Lab colour space. 

2. Perform PCA on ‘a’ and ‘b’ channels. 

3. Smooth the projection on the 2nd principal component with a Gaussian filter.  

4. Threshold the resulted image from step 3 to extract potential marker points.  

5. Estimate the position of marker points using the Hough transform [43,159]. 

 

Figure 4-2: (a) & (b) show ‘a’ and ‘b’ channels of ‘Lab’ colour space for plant in Figure 4-1; (c) 

shows the result of projection on 2nd principal component after performing PCA on ‘a’ and ‘b’ 

channels and smoothing with Gaussian; (d) shows the result of threshold and the candidate marker 

points. 

(a) (b) 

(c) (d) 
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After the location of marker points has been identified, the correspondence between 

the points was established using the following steps: 

1. A matrix of pairwise distances between location of marker points in the left 

and right images was computed.  

2. The potential corresponding marker points were identified using the 

minimum distance along each row/column of the matrix.  

3. As a verification step, all the lines joining the corresponding points in the 

left and right images form (almost) the same angle. The angle of the lines 

with the x-axis was used to verify the match in Figure 4-1 (c). 

After the correspondence between the marker points was established, affine 

transformation parameters were estimated using inverse transformation and the 

right image was transformed using the estimated affine transformation. The 

composite image after rectification is shown in Figure 4-3, where red channel in the 

RGB composite image corresponds to left image and blue and green channels 

correspond to rectified right image. After performing rectification, features of the 

plant in both the left and the right image lie on the same horizontal row as indicated 

by the yellow line in the zoomed version of the composite image. 
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Figure 4-3: RGB composite image formed by converting images from the left and the right camera 

to grayscale and then using the grayscale left image as red channel and rectified grayscale right 

image as blue and green channels. The yellow line on the right shows that plant features in zoomed 

in parts lie on the same horizontal line. 

4.2. Disparity Estimation 

After the images have been rectified disparity estimation is simplified to one 

dimensional horizontal scanning. In this section, we compare results of six different 

disparity estimation algorithms on some of the images from the Middlebury Stereo 

data set8  and then we test these algorithms on rectified stereo images of diseased 

plants (Figure 4-3). We selected these six particular algorithms for our study based 

on three criteria 1) they represent major disparity estimation schemes, 2) these 

methods have been used in the past for comparison purposes [112,128,137], and 3) 

they produce acceptable results on the plant images. The goal is to find an algorithm 

which produces an accurate and smooth disparity map, and is less sensitive to the 

                                                 

8 http://vision.middlebury.edu/stereo/data/ 

http://vision.middlebury.edu/stereo/data/
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background noise and colour variation in diseased plants. 

4.2.1. Block-based Stereo Matching (KO’98) [114] 

A basic block-based stereo matching algorithm was presented in [115]. The 

algorithm takes LoG (Laplacian of Gaussian) transform of the stereo images where 

standard deviation of Gaussian was chosen to be 1-2 pixels. It was shown in a later 

study that using the LoG transform instead of directly using intensity values reduces 

the disparity estimation error especially in block based methods [128]. The 

algorithm uses absolute differences (the so-called l1-norm) to find the matching 

blocks and finally filters the disparity image to obtain dense stereo results. The post 

filtering gives high confidence to textured areas and low confidence to flat areas 

and then performs left/right consistency check. The left/right consistency check 

looks for consistency in matching from a fixed left image region to a set of right 

image regions and matched right region to a set of left image regions. 

4.2.2. Multi-Resolution Stereo Matching (SO’07) [136] 

A multi-resolution stereo matching algorithm was proposed for surface modelling 

of plants in [137,160]. The algorithm first divides the image into overlapping blocks 

at each level of the multi-resolution pyramid and then uses a variation of the 

Birchfield and Tomasi (BT) cost function (difference of linearly interpolated 

intensity functions)  to match the corresponding blocks [116]. These matches are 

first computed at the highest level of the pyramid and propagated to the next (lower) 

level using bilinear interpolation to avoid the search window to be trapped in local 

minima. To avoid the propagation of poor results from the parent, the algorithm 

weighs the information at each point from direct parent based on the disparity 
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information and error propagated from neighbouring parents and the direct parent. 

Finally, the disparities at each level are refined using the Kalman filter [161] based 

on the disparities and errors associated with the coarser resolution.  

4.2.3. Graph-cut based Stereo Matching (GC’01) [119] 

This algorithm defines a global energy function and minimises the energy function 

using graph cuts [118–120,162]. For a pair of stereo images, the goal of this 

algorithm was to find a label fp which denotes disparity value for each pixel p in the 

left (reference) image such that the following energy function for a label f can be 

minimised, 

 ( ) ( ) ( ) ( )data smooth visibilityE f E f E f E f    (4.1) 

where 𝐸𝑑𝑎𝑡𝑎(. ) is the data term and was chosen to be squared differences between 

the matching pixels, 𝐸𝑠𝑚𝑜𝑜𝑡ℎ(. ) is a constraint which helps to create a smooth 

disparity map, the smoothness term involves the notion of the neighbourhood and 

adds a penalty if the neighbourhood has different disparity, and finally 𝐸𝑣𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦(. ) 

is a penalty term for occluded pixels. The algorithm constructs a graph with the help 

of the above energy function defined above and then minimises the energy function. 

The algorithm initially defines a unique disparity α and then iteratively searches for 

an α which minimises the energy function. If the energy is minimised, it selects the 

new α; otherwise, it selects the current α as the disparity. 

4.2.4. Non-local Cost Aggregation Method (YA’12) [129] 

Cost aggregation methods usually perform summing/averaging matching cost over 

windows and, therefore, provide locally optimal solutions and are vulnerable to 



 

Chapter 4. Depth Estimation using Stereo Images                                                                           76 

 

 

local nature of the scene, for example the lack of texture. The method proposed in 

[130] uses the concept of bilateral filter by weighting the pixel intensity differences 

with intensity edges and provides a non-local solution by aggregating the cost on a 

tree structure derived from the stereo image pair. This method constructs a graph 

𝐺 = (𝑉, 𝐸), with weight function w using the guidance image (reference image for 

disparity) I. The vertices (nodes) of this graph are all the image pixels in the 

guidance image and the edges are established using weights between the nearest 

neighbouring pixels. All the edges carry weights defined by a weighing function w 

which is image gradient in this case. Edges with large weights (intensity edges) are 

removed as unwanted edges and a minimum spanning tree (MST) is constructed. If 

𝐷(𝑝, 𝑞) denotes the shortest distance (sum of weights) between two nodes in MST, 

then the aggregated cost 𝐶𝑑
𝐴(𝑝) at pixel p and disparity level d can be defined as 

 
D( , )

( ) exp ( )A
d d

q N

p q
C p C q




 
  

 
   (4.2) 

where 𝐶𝑑(𝑞) is the matching cost at pixel q at disparity level d, N is the user-

specified support region and σ can be used as a scaling factor to adjust the cost 

function for spatial similarity. An initial cost volume is computed based on the 

initial disparity estimates. For disparity refinement, left/right consistency check is 

used to divide the disparity estimates into stable and unstable disparities. The non-

local cost aggregation is then applied followed by winner-take-all operation to 

propagate disparity from stable pixels to unstable pixels. 

4.2.5. Semi-Global Matching (SGM’08) [124] 

A semi-global matching method was presented in [124,125] to overcome the 
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limitation of local and global methods e.g., computational cost. This method defines 

a global energy function as 

1 p q 2 p q( ) ( , ) [| | 1] [| | 1]p

p q N q N

E D C p D PT D D P T D D

 

 
       
 
 

    (4.3) 

The first term in the energy function on the right hand side in the above equation is 

the pixel-wise matching cost, which was chosen to be BT in this case, for disparity 

Dp at pixel p. The second and the third terms add smoothness constraint to the 

function. The second term adds a small penalty for all pixels q in the neighbourhood 

N of pixel p for which disparity changes are small. The third term adds large penalty 

for large changes in disparity in the neighbourhood of pixel p. The energy 

minimisation problem was simplified by aggregating 1D minimum costs from all 

directions. The cost 𝐿𝑟(𝑝, 𝑑) of pixel p at disparity d along the direction r can be 

defined as 

 
1

1 2

( , ) C( , ) min( ( , ), ( , 1) P ,

( , 1) P ,min ( , ) P )

min ( , )

r r r

r r
i

r
k

L p d p d L p r d L p r d

L p r d L p r i

L p r k

     

    

 

  (4.4) 

The disparity d at pixel p can then be determined by minimising the cost S(p,d) 

 ( , ) ( , )r
r

S p d L p d   (4.5) 

Similar to the previous method, disparity estimation is followed by disparity 

refinement steps. The first step removes peaks which appear as small patches that 

are very different to surrounding disparities.  For further refinement of disparity, 

disparity in valid regions was extrapolated to occluded regions determined by 

left/right consistency check.  
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4.2.6. Multi-Resolution Semi-Global Matching (MRSGM’13) 

We propose a multi-resolution approach followed by a post processing step to create 

a smooth and accurate disparity map which is robust to the background noise and 

variation in our data set. An overview of the proposed approach is shown in Figure 

4-4. We first calculate the disparity at three different resolutions and then take the 

median of the disparity estimated at these three resolutions. For disparity 

estimation, we use the semi-global matching method as described in the previous 

section. However, we use block based BT as the matching cost instead of pixel-

wise matching. After disparity estimation, we post-process the result using the 

colour information as proposed in [129].  

The post processing method uses the concept of bilateral filtering to improve the 

disparity map, the underlying assumption is that colour discontinuity is a strong 

indicator of depth discontinuity. If D denotes the disparity map and I denotes the 

reference image, then for a pixel 𝑝 = {𝑥, 𝑦}, let us assume 𝑑𝑝
⃗⃗ ⃗⃗ = {𝐷(𝑥 −

1, 𝑦), 𝐷(𝑥, 𝑦 − 1), 𝐷(𝑥 + 1, 𝑦), 𝐷(𝑥, 𝑦 + 1)}, 𝑢𝑝⃗⃗ ⃗⃗ = {𝑥 − 𝑟, … , 𝑥 + 𝑟},   𝑣𝑝⃗⃗⃗⃗ = {𝑦 −

𝑟,… , 𝑦 + 𝑟}, where 𝑟 is the radius of the bilateral filter, we can update the disparity 

map D using the following equation  

 
u u v vp p

u up

W(u, v)C(u, v, )

( , ) arg min
W(u, v)d d p

d

D x y
 

 


 


  (4.6) 

where 

2 2
2

2 2

|| ( , ), (u, v) || ( -u) ( -v)
W(u, v) exp .exp

2 2R

I x y I x y

r

   
     

  
  

  (4.7) 

and C(u,v, ) min( ,| (u,v) |)d D d    (4.8) 
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υ is a constant and was chosen to be 0.2 [129], ℒ is the total number of disparities. 

The remaining parameters 𝜎𝑟 and r can be used to control the smoothness of the 

updated disparity map.  

In addition to the disparity estimation algorithms described above, we also tested 

some other algorithms for disparity estimation, such as those presented in 

[117,118,122,129,131,162–164] but we found from our experiments that these 

algorithms did not produce a good disparity map on our data set and some of these 

algorithms were found to be very sensitive especially to the background noise. 

Therefore, we do not include these algorithms in our analysis. 

 

Figure 4-4: Overview of the proposed multi-resolution semi-global matching approach. 

4.3. Experimental Results and Discussion 

We first compare the results of the algorithms presented in the previous section on 
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Middlebury data set and then we will compare the results on stereo images of 

diseased plants. All the algorithms and results presented in this section were 

generated using a machine running Windows 7 on an Intel Core i3-2120 (3.3 GHz) 

CPU with 3GB RAM (665 MHz). The code for SO’07 (provided by the author) was 

implemented in MATLAB 2013a, whereas the C/C++ implementation of GC’01 

and YA’12 were downloaded from the author’s websites9,10. We used OpenCV11 

library to implement SGM’08 in C++ for our experiments. The KO’9812 and 

MRSGM’13 were partially implemented in C++ and partially in MATLAB 2013a, 

where the post processing algorithm in MRSGM’13 uses C++ implementation by 

[129]13.  

For KO’98, we chose 11×11 block size and for SO’07, we used 16×16 with 2 

pyramid levels for our experiments. For GC’01, YA’12 and SGM’08, we chose 

default parameters provided by the authors. Finally, we chose 5×5 block-based BT 

as cost function and r=3, 𝜎𝑟 = 15 for MRSGM’13. All the parameters specified 

above other than the default parameters were chosen on the basis of their good 

results on stereo images of diseased plants.  

Figure 4-5 shows the six images used to compare all the disparity estimation 

algorithms used in our experiments. Images labelled ‘Aloe’, ‘Baby 1’, ‘Bull’, 

                                                 

9 http://www.cs.cornell.edu/People/vnk/recon.html 

10 http://www.cs.cityu.edu.hk/~qiyang/publications/cvpr-12/code/index.htm 

11 http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html  

12 http://www.mathworks.co.uk/help/vision/ref/disparity.html 

13 http://www.cs.cityu.edu.hk/~qiyang/publications/code/cvpr-10-csbp/csbp.htm 

http://www.cs.cornell.edu/People/vnk/recon.html
http://www.cs.cityu.edu.hk/~qiyang/publications/cvpr-12/code/index.htm
http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
http://www.mathworks.co.uk/help/vision/ref/disparity.html
http://www.cs.cityu.edu.hk/~qiyang/publications/code/cvpr-10-csbp/csbp.htm
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‘Flower Pots’, ‘Rocks 1’ were taken from the Middlebury data set whereas the 

‘Plant’ image shows a sample plant image from our data set. The ground truth 

disparity map for the first five images was also provided with the Middlebury data 

set. To measure the quality of our results, we compute two quality measures as 

suggested by [112]. If 𝐷𝑐 represents the disparity map estimated by the algorithm 

being tested and 𝐷𝐺𝑇 represents the ground truth disparity then we define RMS and 

B (percentage of bad matching pixels) as follows, 

 

1
2

2

( , )

1
( , )

d x y

RMS x y
N

 
  
 
 

   (4.9) 

 

( , )

1
T( ( , ), )d

d x y

B x y
N


 
  
 
 

   (4.10) 

where Υ(𝑥, 𝑦) = |𝐷𝑐(𝑥, 𝑦) − 𝐷𝐺𝑇(𝑥, 𝑦)|, 𝑁𝑑 is the total number of pixels and 𝛿𝑑 is 

the disparity error tolerance. T(Υ, 𝛿𝑑) = 1 if Υ > 𝛿𝑑 else T(Υ, 𝛿𝑑) = 0. We chose 

the tolerance value 𝛿𝑑 to be 1 pixel for the results presented here. We calculated 

RMS and B values for the whole image region and non-occluded region to test the 

algorithms.  

Let us consider the plots shown in Figure 4-6 to Figure 4-10. Let us first consider 

SO’07 algorithm [137], which aims to produce smooth disparity maps but 

inadvertently increases the error in an attempt to produce smooth disparity maps, 

resulting in large errors in RMS and B plots as compared to all the other algorithms.  

In Figure 4-10 we do not include SO’07 as it was implemented in MATLAB and is 

expected to be slow compared to the algorithms implemented in C/C++. However, 

efficiency of the algorithm in terms of time is irrelevant if the RMS error and B are 
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very high. All the other algorithms produce comparable results, with GC’01 and 

YA’12 producing almost negligible RMS error whereas RMS error is less than 1% 

for MRSGM’13, SGM’08 and KO’98. Similarly, B is negligible in the non-occluded 

regions for GC’01 and YA’12, whereas it remains less than 4.2%, 3.3% and 2.9% 

for MRSGM’13, SGM’08 and KO’98 respectively.  

Figure 4-10 compares computational efficiency of the algorithms. GC’01 was found 

to be roughly more than 100 times slower than MRSGM’13, and YA’12 was 

calculated to be at least 3.5 times slower than MRSGM’13 on the plant images. 

SGM’08 and KO’98 performed faster computation compared to MRSGM’13. We 

reiterate that GC’01 and YA’12 were implemented in C/C++ whereas MRSGM’13, 

SGM’08 and KO’98 were partially implemented in MATLAB and partially in 

C/C++. These results lead to the conclusion that although GC’01 and YA’12 

produce more accurate results, they are slow compared to MRSGM’13, SGM’08 

and KO’98. 

Let us consider the performance of all the six algorithms on the plant images. Figure 

4-11 shows that SO’07 performed poorly on the plant images and was found to be 

very sensitive to the background noisy pattern in the image. From the results on test 

images from Middlebury data set, we know that GC’01 and YA’12 produce accurate 

disparity maps but in the case of plant images these two algorithms were found to 

be highly sensitive to the noise content in the image. GC’01 is slow and produces 

artifacts along the scan lines on the plant images. YA’12 produces false disparity 

maps in the region which belong to the background. We know from the rectification 

step (section 4.1) that disparity is zero on the pixels which belong to the ground but 
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YA’12 produced disparity higher than zero. This is because the YA’12 algorithm 

divides the image into regions and assumes a constant disparity throughout this 

region. This introduces artifacts which can be observed in YA’12 result. KO’98 and 

SGM’08 results were found to be less sensitive to background noise but the disparity 

map produced by the algorithms were not smooth and showed small peaks/patches 

around some pixels which were inconsistent with the neighbouring disparity. When 

compared to all the other algorithms, MRSGM’13 not only produced smooth 

disparity maps but was also found to be less sensitive to the noise content.  
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Figure 4-5: ‘Aloe’, ‘Baby 1’, ‘Bull’, ‘Flower Pots’, ‘Rocks 1’ were taken from Middleburry 

dataset whereas ‘Plant’ image shows a sample plant image from our data set. 

Aloe Baby1 

Bull Flower Pots 

Rocks 1 Plant 
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Figure 4-6: RMS plots for five different images from Middlebury dataset shown in Figure 4-5 using 

disparity estimation algorithms in section 4.2. 

 

Figure 4-7: RMS plots of non-occluded regions for five different images from Middlebury dataset 

shown in Figure 4-5 using disparity estimation algorithms in section 4.2. 
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Figure 4-8: B value plots for five different images from Middlebury dataset shown in Figure 4-5 

using disparity estimation algorithms in section 4.2. 

 

Figure 4-9: B value plots of non-occluded regions for five different images from Middlebury 

dataset shown in Figure 4-5 using disparity estimation algorithms in section 4.2. 
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Figure 4-10: Time taken for disparity estimation of images in Figure 4-5 using disparity estimation 

algorithms in section 4.2. 
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Figure 4-11: Disparity estimation results of algorithms in section 4.2 on the stereo plant image. 

 

SO’07 KO’98 

GC’01 YA’12 

SGM’08 MRSGM’13 
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Figure 4-12 shows model of plant image after depth estimation, please follow the 

attached link14 for full view of this plant model. To verify the depth estimated using 

MRSGM’13 we calculated the distance of an object as shown in Figure 4-13 using 

equation (2.1). The difference between the actual distance calculated manually and 

estimated distance was calculated to be no more than 2 cm in Figure 4-13. However, 

as disparity is directly related to depth, in our experiments we directly used disparity 

information instead of calculating the distance of each plant from the camera.  

Chapter Summary 

In this chapter, we proposed a method for estimation of depth in images of plants 

with high background noise. As a first step, we performed image rectification and 

then we proposed a disparity estimation algorithm. We compared six different 

algorithms for disparity estimation and showed that the proposed MRSGM’13 

algorithm can be used to produce smooth and accurate disparity maps not only on 

the test data set but also on the diseased plant images. Although GC’01 and YA’12 

performed best on the test data sets, our plant images with relatively more 

background noise than the Middlebury images proved to be quite challenging for 

these algorithms. In addition, GC’01 and YA’12 were calculated to be very slow 

compared to the proposed MRSGM’13 which was found to be not only less 

sensitive to the noisy pattern but also produced smooth and accurate disparity maps. 

                                                 

14 http://www.youtube.com/watch?v=l3wqd0IdHl0&hd=1  

http://www.youtube.com/watch?v=l3wqd0IdHl0&hd=1
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Figure 4-12: A 3D model of plant after depth estimation. 

 

Figure 4-13: Estimated distance of an object using the proposed algorithm compared to actual 

distance.  

 

Actual Distance = 126.0 cm 

Estimated Distance = 127.2 cm 

Actual Distance = 150.5 cm 

Estimated Distance = 151.2 cm 
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Chapter 5                                  
Combining Multi-Modal Image 
Data for Anomaly Detection in 
Plants 

In this chapter, we show that by combining thermal information with the colour and 

depth information we can increase the accuracy of classification algorithms to 

detect anomalous plant regions compared to directly using thermal or colour 

information. This increase in accuracy of classification can be translated to huge 

savings in commercial crops. In section 6.1, we present a classification algorithm 

and results for detection of water deficient regions in spinach canopies and in 

section 6.2, we present classification algorithm and results for detection of diseased 

tomato plants infected with powdery mildew. 

5.1. Detection of Water Deficient Regions 

Thermal imaging has been used in the past for remote detection of water deficient 

regions of plant canopies. In this chapter, we present a new technique to enhance 

the ‘discriminatory power’ of thermal imaging to identify parts of the canopy which 

have reduced water availability (under water stress). For our experiments, thermal 

and visible light images of a spinach canopy with different levels of soil moisture 

were captured. We then combine information from thermal and visible light 

imagery along with machine learning techniques to identify water deficient regions 

of spinach canopy. Our approach is to extract information about the light intensity 

and green-ness of the plant from the visible light images and use this information 
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along with statistical measurements from thermal images to differentiate between 

water deficient and well-watered plants using Support Vector Machines (SVM), 

Gaussian Processes Classifier (GPC) and a combination of both. All three 

classifiers show promising results with the set of features extracted using combined 

information from thermal and visible light images. 

5.1.1. Image Acquisition 

The images used in this section were captured by our collaborators Miss Hazel 

Smith and Prof Gail Taylor at the University of Southampton in collaboration with 

Dr Graham Clarkson of the Vitacress Limited. Spinach (cv. Racoon) was drilled on 

11 March 2010 at Mullens Farm, Wiltshire and was maintained with commercial 

practice. Measurements were taken on 27 April 2010 of two kinds of treatment areas 

in bright and clear conditions: well-watered and water-deficient. The former 

treatment had been irrigated during the preceding week while the latter had not, and 

were both harvested the following week for market. Both treatment areas were 

crops of spinach of the same age and variety and both had reached full canopy 

cover. Sampling consisted of taking a single image and soil moisture measurement 

at 20m intervals for the length of each row. Three rows were sampled per treatment, 

with five rows separating the sampled rows (Figure 5-1). Soil moisture 

measurements were made using a Delta-T ML2x Thetaprobe connected to a HH2 

moisture meter (Delta-T Devices, Cambridge, UK), with the probe position being 

in the centre of the bed at a depth of approximately 7cm. Infrared thermal images 

were taken using a TH9100WR thermal camera (Figure 1-1 (b)) from a fixed 

distance of approximately 1m above the crop. All measurements were taken 

between 1100 hrs and 1300 hrs on a single day. 
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Figure 5-1: Sampling layout for the collection of thermal images and soil moisture measurements, 

2010. The rows represent beds of Spinach (cv. Racoon), with those marked in green showing 

irrigated sample rows and the red indicating non-irrigated sample rows, the rows separating the 

sample rows are shown in black. Point measurements were made every 20m for the full length of 

each bed (n=54 for each treatment). Figure Credit: Hazel Smith, University of Southampton. 

5.1.2. Pre-processing and Feature Computation 

Information from both thermal and visible light images (Figure 5-2) was used for 

classification purposes. Thermal images were obtained as images with pixel 

intensity values ranging from 0 to 255. Initially, the image values were transformed 

to temperature values. A character recognition algorithm based on cross correlation 

was used, which automatically recognised the characters in the temperature bar 

(Figure 5-2 (c)) and identified the temperature range for the thermal image [165]. 

This made it possible to replace the image values, which ranged from 0 to 255, with 

temperature values. In order to extract useful information from thermal and visible 

light images, both must be aligned so that the pixel location in both images 

corresponds to the same physical location with respect to the plant. Since both 

thermal and visible light images are acquired using a single device, there is a fixed 

transformation between thermal and visible light images. In order to compute this 

transformation, the transformation between a single pair of thermal and visible light 

images was calculated by manually selecting control points. To reduce the amount 

of noise present in the visible light image, anisotropic diffusion filtering was applied 

>5 

rows 

>5 

rows 
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[155]. These pre-processing steps resulted in the images shown in Figure 5-3 and 

further calculations were conducted on these images. 

In order to get good classification results, we extracted information from the data 

in the form of features which carry discriminating information from different 

treatments and similar information from the same treatment type. Features were 

selected on the basis of observations made by various researchers [9,94–98]. 

Average values and variation in the thermal profile of the canopy were selected and 

combined with information from the visible light image. As a first step, the colour 

space of the visible light image was transformed from RGB to Lab colour space 

(Figure 5-4). In Lab colour space, instead of Red, Green and Blue channels, an L-

channel exists for luminance, as well as ‘a’ and ‘b’ channels for the colour 

components. Features selected for experiments along with their description and 

justification are given in Table 5-1. 

 

Figure 5-2: Image(s) obtained using a thermal imaging camera (NEC Thermo TracerTH9100 Pro). 

(a) thermal image with pixel values ranging from 0-255; (b) Visible light image of the scene, with 

yellow rectangle showing the region corresponding to the thermal image in (a); (c) corresponding 

temperature range for the thermal image in (a). 

(a) (b) (c) 
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Figure 5-3: Visible light thermal images of Figure 5-2 obtained after pre-processing: (a) the 

thermal image in Figure 5-2 (a) has been replaced by temperature values; (b) visible light image in 

Figure 5-2 (b) has been registered to match thermal image in a way that same pixel locations 

correspond to same point located on the plant. 

 

Table 5-1: Features selected for our experiments. Feature type shows that the corresponding 

feature contains information about colour (C) or thermal (T) data or both (C/T). The rightmost 

column shows p-values of the features calculated using analysis of variance (ANOVA). 

 Symbol Description Type p-value 

1. 𝜇𝐿𝑇 Luminance has been found to be a major 

factor which affects the thermal profile 

of an image [9]. We linearly scaled the 

temperature values with the 

corresponding L-channel of the colour 

image so that the effect of light intensity 

was incorporated into the model. After 

scaling temperature data with the L-

channel, mean scaled temperature value 

of an image was used as a feature. 

C/T 0.154 

(a) (b) 
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2. 𝜇𝑎 The colour information indicates the 

amount of area covered by the plants or 

by other types of region. It can be seen in 

Figure 5-4 (b) that lower intensities 

correspond to green parts of the plant 

whereas the background shows a higher 

intensity value. For this reason, the mean 

of the a-channel in our set of features was 

used. 

C 1.92 × 10−07 

3. 𝜇𝑏 Similar to Feature 2, it can be seen in 

Figure 5-4 (c) that darker regions 

correspond to background and hence the 

mean of b-channel was included in the 

set of features. 

C 1.67 × 10−04 

4. 𝜎𝑛𝑇 The amount of variation present in an 

image is also important [96]. Each row of 

the temperature data was, therefore, 

normalised by its median and then the 

standard deviation of the temperature 

values employed as a feature, to 

determine the amount of variation in the 

canopy region covered by the image. 

T 2.89 × 10−19 
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5. 𝜇𝑎𝑇 In Lab colour space, lower values in a-

channel correspond to green regions. The 

a-channel was thresholded using Otsu’s 

method [42]  to find the background 

regions as represented by white pixels in 

Figure 5-4 (d). Temperature values 

corresponding to the background were 

discarded and the mean of the 

temperature values corresponding to the 

rest of pixels calculated as a measure of 

the mean temperature of green parts of 

the plant. 

C/T 1.88 × 10−21  

6. 𝜎𝑎𝑇 Similar to Feature 5, the temperature values 

corresponding to background were discarded 

and the standard deviation of temperature 

values corresponding to the rest of the pixels 

calculated as a measure of variation in 

thermal intensities of green parts of the plant. 

C/T 1.024 × 10−4  

7. 𝜇𝑇 Mean of temperature values T 1.46 × 10−21 

8. 𝜎𝑇 Standard deviation of temperature values T 1.12 × 10−04 
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Figure 5-4: (a), (b) and (c) L, a and b channels of the visible light image, respectively; (d) 

thresholded a-channel. 

5.1.3. Classification 

5.1.3.1. Support Vector Machines (SVM) 

SVM is a supervised learning method used for classification and regression analysis 

[166]. SVM constructs a hyperplane in high dimensional space and tries to find the 

hyperplane which maximises the separation between two classes of training data 

points. In this section, we used linear SVM which uses the model, 

 
Ty b w x   (5.1) 

where 𝐱 = [𝜇𝐿𝑇 , 𝜇𝑎, 𝜇𝑏 , 𝜎𝑛𝑇 , 𝜇𝑎𝑇 , 𝜎𝑎𝑇 , 𝜇𝑇 , 𝜎𝑇] denotes the input feature vector and y 

denotes the classification output (+1 for plants undergoing water stress, and -1 for 

(a) (b) 

(c) (d) 
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well-watered plants). SVM models the parameters b and w to find the maximum 

margin hyperplane between data points from two classes. 

5.1.3.2. Gaussian Processes for Classification 

Gaussian Processes (GP) can be defined as a class of probabilistic models 

comprised of distributions over functions instead of vectors [167–169]. A Gaussian 

distribution can be expressed by a mean vector and a covariance matrix [170]. A 

GP is fully characterised by its mean and covariance functions. In machine learning, 

GPs have been used for regression analysis and classification. Similar to SVM, 

GPC also belongs to the class of supervised classification methods. However, 

instead of giving discriminant function values, it produces output with probabilistic 

interpretation, i.e., a prediction for 𝑝(𝑦 = +1|𝐱) which denotes the probability of 

assigning a label (y) value +1 to the input feature vector 𝐱 [171]. GPC does not 

calculate this probability directly on the input variables and assumes that the 

probability of belonging to a class is linked to an underlying of a latent function. 

Given a training set 𝐷 = {(𝑥𝑖, 𝑦𝑖)|𝑖 = 1,2, … , 𝑛} consisting of training images of 

both classes (water deficit and well-watered), with manually assigned labels 𝑦𝑖 to 

the corresponding feature vectors 𝐱𝑖 extracted from those images, GPC makes 

prediction about the label of the feature vector computed from an unseen image 𝐱∗, 

using posterior probability, 

 * * * * * * *( 1| , ) ( 1| ) ( | , )p y D p y f p f D df    x x   (5.2) 

The probability of belonging to a class 𝑦𝑖 = +1 for an input 𝐱𝑖 (known data point) 

is related to the value 𝑓𝑖  of a latent function f [172].  This relationship is defined 

with the help of a squashing function. In this case, a Gaussian cumulative 
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distribution function was used as the squashing function. 
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where 𝑒𝑟𝑓 (𝑧) is the error function defined as 𝑒𝑟𝑓(𝑧) = 2/√𝜋 ∫ 𝑒−𝑡2
𝑑𝑡

𝑧

0
. The 

second term in the integral in equation (5.2) is given by, 

 * * * *( | , ) ( | , , ) ( | )p f D p f p D d x X x f f f   (5.4) 

where 𝐗 = [𝐱1, 𝐱2, … , 𝐱n] and 𝒇 = [𝑓1, 𝑓2, … , 𝑓𝑛], n is the number of samples. 

𝑝(𝒇|𝐷) can be formulated by the Bayes’ rule as follows, 
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and 𝑝(𝑦𝑖|𝑓𝑖) can be calculated by equation (5.3) and 𝑝(𝒇|X) is the GP prior. Since 

a GP is characterised by a mean function and a covariance function, a zero mean 

was used for symmetry reasons, and a linear covariance function selected which has 

been found to be effective in classification problems [168]. The normalisation term 

in the denominator is the marginal likelihood given by, 

 

1

( | ) ( | ) ( | )
n

i i

i

p p p y f



 y X Xf  (5.6) 

where 𝒚 = [𝑦1, 𝑦2, … , 𝑦𝑛]. The second term in the above equation is not Gaussian 

and this makes the posterior in equation (5.5) analytically intractable. However, 

analytical approximations or Monte Carlo methods can be used. Two commonly 

used approximation methods are Laplace approximation and Expectation 

Propagation (EP). EP minimises the local Kullback-Leibler (KL) divergence 
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between the posterior and its approximation and has been found to be more accurate 

in predicting than Laplace approximation and hence EP was used for approximation 

in these experiments [167,168]. 

5.1.4. Results and Discussion 

A total of 108 images of spinach canopies and corresponding soil moisture point 

measurements were acquired, with 54 images of well-watered beds designated as 

treatment A, while the remaining 54 images of the droughted canopy were 

designated as treatment B. The identity of the two treatments was not known during 

the development of image analysis. After pre-processing, six different features (1-

6, Table 5-1) were obtained from each image. SVM and GPCs were used to classify 

the test images into one of the two classes: drought and well-watered. For the SVM, 

linear kernel was used and for the GPC, a zero mean and a linear covariance 

function were chosen. As discussed before, SVM gives discrete classification 

results and classifies each image as treatment A or treatment B, whereas GPC gives 

the probability (likelihood) of each image belonging to a particular treatment.  

Figure 5-5 shows the probability of an image belonging to treatment B (Ps) versus 

the values of soil moisture for one set of training and testing data. It was clear that 

classification results obtained by our classifier were roughly proportional to the 

manually calculated soil moisture values. Based on the probabilities given by GPC, 

each image was classified as an image from either treatment A or treatment B. 
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Figure 5-5: Probability of belonging to treatment B (Ps) versus Soil moisture values (correlation 

value = - 0.89, High moisture means less probability of stress). Classification accuracy for this 

particular set of training and testing data was 98.62% as given by GPC. 

Since two different types of classifiers were used, disagreement between the results 

of both the different classifiers could be assessed, which occurred in some cases. 

This disparity was utilised to further refine the classification results, and, although 

this refinement is not very significant, it produces better results. Information from 

both classification methods was combined to reduce the error from classification. 

If an image was classified by SVM as treatment A and its probability of belonging 

to treatment B according to GPC was higher than 80%, then that image was labelled 

as treatment B. On the other hand, if an image was classified as treatment B and its 

probability according to GPC was less than 20%, the image was labelled as 

treatment A. Note that it was found experimentally that the 80-20% threshold gave 

the best classification results. 

We conducted a total of 200 cross-validation trials to test the accuracy of the 

classifiers for different pairs of training and testing sets. In each trial, 36 images 

were chosen at random (18 from each treatment) for training purposes and the 
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proposed algorithm was tested on the other 72 images. Results showed that GPC 

demonstrated a higher level of accuracy than the SVM classifier (Table 5-2). 

However, if information from the results of both the classifiers was combined, 

results were improved in terms of sensitivity, specificity, positive predictive value 

(PPV), and accuracy. An average accuracy of 96.27% was obtained for SVM, 

96.68% by using GPC and a slightly higher 97.12% when information from both 

classifiers was combined. When the results of colour-only and temperature-only 

features were compared, it was found that combining information from both 

temperature and colour data increased the accuracy of classification. Furthermore, 

including mean and standard deviation of temperature values without combining 

them with colour information diminished the accuracy of results; thus the mean 

(𝜇𝑇) and standard deviation (𝜎𝑇) were removed from the set of features. In these 

experiments, it was found that scaling with luminance intensity (𝜇𝐿𝑇) plays an 

important role in classification. When the luminance intensity scaling feature was 

removed from our set of features, we found that the accuracy of the classifiers 

decreased (Table 5-3). In the case of GPC classification, accuracy fell by up to 7%. 
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Table 5-2: Comparison of average classification results of different classifiers using our algorithm. 

Feature(s) 

selected 

Classifier 

Sensitivity 

(%) 

Specificity 

(%) 

PPV 

(%) 

Accuracy 

(%) 
accuracy  

Colour 

only  

( a , b ) 

SVM 67.28 70.29 70.98 67.74 3.36 

GPC 80.68 52.96 21.68 56.87 3.55 

Both 

Classifiers 

67.32 70.42 71.11 67.80 3.40 

Thermal 

only  

( T , T ) 

SVM 93.35 91.28 90.89 92.14 1.92 

GPC 93.06 80.30 76.67 85.42 2.29 

Both 

Classifiers 

93.35 91.28 90.88 92.14 1.92 

Features  

(1-8) 

 Table 1. 

SVM 95.52 96.39 96.30 95.85 1.97 

GPC 96.38 97.39 97.30 96.79 1.56 

Both 

Classifiers 

96.62 96.93 96.84 96.70 1.60 

Features  

(1-6) 

 Table 1. 

SVM 95.86 96.86 96.80 96.27 1.58 

GPC 96.53 96.99 96.90 96.68 2.00 

Both 

Classifiers 
96.97 97.38 97.31 97.12 1.52 
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Table 5-3: Comparison of average classification results of different classifiers without using light 

intensity scaling feature (𝜇
𝐿𝑇

). 

 
Sensitivity 

(%) 

Specificity 

(%) 
PPV (%) 

Accuracy 

(%) 
𝜎𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 

SVM 94.98 95.01 94.83 94.84 2.01 

GPC 88.21 91.84 92.05 89.70 2.61 

Both 

Classifiers 
95.28 95.27 95.08 95.12 1.89 

To further investigate the strength of the classifier with the proposed set of features, 

we created an artificial image with mixed conditions by combining randomly 

picked thermal and visible light images from Treatment A and Treatment B to form 

a mosaic. The ground truth pattern for the mosaicked image is shown in Figure 5-6 

(a). Black colour represents image region corresponding to treatment A and white 

colour represents the image region which corresponds to treatment B.  A 50×50 

block was defined at each pixel location in the mosaicked image and the classifier 

was tested using the features extracted from each of these small blocks (307,200 

blocks in total). The classifier for this experiment was trained in a similar way as 

for the real data (i.e., on 36 randomly selected images). It is important to mention 

here that by using 50×50 blocks to simulate mixed conditions, we reduced the 

amount of information, so the accuracy of classification is expected to deteriorate. 

However, the results show robustness of our proposed feature set when compared 

to thermal only features. The classification results using the combined classifier 

with thermal only and the proposed feature set are shown in Figure 5-6 (b) & (c) 

respectively. The classification accuracy using SVM, GPC and the combined 

classifier was calculated to be 89.10%, 94.07% and 92.46% using the proposed 
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feature set compared to 78.32%, 54.10% and 76.25% when using thermal only 

features. The classification accuracy for the combined classifier is less than GPC in 

the proposed feature set and less than SVM in the thermal only feature set in mixed 

conditions. However, we still consider this classifier to be important as it gives the 

best results on real data. Figure 5-7 shows GPC classification results using the 

proposed set of features in terms of the confidence score (Cs). For treatment A, Cs 

= 1 – Ps and for treatment B, Cs = Ps, where Ps is the probability of belonging to 

treatment B as given by the GPC.  The bright shade represents high confidence in 

classification results and dark shade represents low confidence in the classification. 

It can be observed that the classifier has higher confidence in the region where the 

image is from treatment A or treatment B. However, the confidence value is low, 

as depicted by low grey values around the boundary of two merging images from 

different treatments. The mean and standard deviation of Cs was calculated to be 

90.48% and 17.79% using the proposed feature set and 51.12% and 32.33% using 

thermal only features respectively. 

 

Figure 5-6: (a) The ground truth pattern for mixed condition mosaicked image. Black colour 

represents image region corresponding to treatment A and white colour represents the image 

region which corresponds to treatment B; (b) & (c) show classification results obtained using 

combined classifier with thermal only and the proposed feature set respectively. 

(a) (b) (c) 



 

Chapter 5. Combining Multi-Modal Image Data for Anomaly Detection in Plants                                 107 

 

 

 

Figure 5-7: GPC classification result in terms of confidence score (Cs). Bright shade represents 

high confidence in classification results and dark shade represents low confidence in the 

classification. The classifier has higher confidence in the region with image from treatment A or 

treatment B, however the confidence value is low, as depicted by darker shade, around the 

boundary of two merging images from different treatments. 

5.2. Disease Detection in Plants  

In the previous section we combined the information from thermal and visible light 

images for stress detection in a commercial spinach canopy. In this section, we add 

depth information to temperature and colour information and present results of our 

study on thermal and stereo visible light images of tomato plants infected with 

powdery mildew. The images for this experiment were collected as described in 

section 3.1. The experiment was performed on 71 plants and the images were 

collected for 14 consecutive days (day 0 to day13). Out of these 71 plants, 17 plants 

were normal and were not inoculated with the disease whereas the remaining 54 

plants were inoculated with Oidium neolycopersici, which causes the powdery mildew 
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disease in tomato plants. In this thesis, we present two different approaches for 

classification of diseased plants after adding depth information in the form of disparity 

from Chapter 4.  

5.2.1. Pre-Processing 

For our experiments, we first register colour (visible light) images with the 

corresponding thermal images as described in Chapter 3, we apply the same 

transformation to the disparity image, consequently the same pixel location in all the 

three images (thermal, colour and disparity) approximately correspond to the same 

physical point in the plant. As a first pre-processing step, we remove the background 

to obtain an image which contains only plant regions. This step was not required in 

case of water stress experiments, where the image consisted of mostly the canopy and 

very little of the background. To remove the background, we train an SVM classifier 

with a linear kernel using the RGB pixel values and classify each pixel into 

background/plant pixel. The result of extracting the plant region using our method on 

an image is shown in Figure 5-8 (b).  

 

Figure 5-8: (a) Colour image registered with thermal image; (b) Colour image obtained after 

background removal. 

(a) (b) 
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5.2.2. The Classification Approaches 

We present two different approaches to detect diseased plants: 

1. Pixel level classification approach 

2. Region based classification approach 

5.2.2.1. Pixel Level Classification Approach 

This is a two-step classification approach in which we directly use pixel values to 

first roughly classify the plant regions into normal and diseased regions and then 

we classify whole plant into normal and diseased plant using the information 

extracted from the potential diseased regions. For the first step, we first convert the 

colour space of the image in Figure 5-8 (b) to Lab and directly use the pixel values 

corresponding to ‘a’ and ‘b’ channels. Similarly, we change the RGB colour space 

of the colour image to CMYK and use pixel values corresponding to ‘C’ & ‘Y’ 

channels. For depth and temperature (T) information, we directly use pixel values 

in disparity (D) and thermal images, respectively. Therefore, our classification 

algorithm uses a six dimensional feature vector V consisting of a, b, C, Y, D & T 

values at each pixel location to classify a pixel into normal or diseased pixel. For 

this purpose, we train the SVM classifier with radial basis function (RBF) kernel 

with σ = 1 to classify plant regions in an image into normal and diseased regions. 

The result of classifying plant regions into normal and diseased for the image in 

Figure 5-8 (b) is shown in Figure 5-9 (a) and Figure 5-9 (b) respectively. 

For classification of a plant into normal or diseased plant, we assume that the 

normal plants carry less variation in the aforementioned feature measurements 

whereas the diseased plants carry large variation in the same measurements. Based 
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on this assumption, we can classify a plant into normal or diseased plant. It is 

possible that some regions in normal plants can be erroneously classified as 

diseased regions in the first step of our classification approach. According to our 

assumption, if a region in a normal plant is incorrectly classified as diseased, it will 

have less variation whereas a correctly classified diseased region will have high 

variation. Let us place all the feature vectors corresponding to the diseased regions 

in Figure 5-9 (b) in a matrix V and perform the principal component analysis (PCA) 

on V to test our hypothesis. We can compute the standard deviation of projection of 

features vectors along the first and second principal components as σp1 & σp2 

respectively. The smaller values of σp1 & σp2 in Figure 5-10 for normal plants validates 

our assumption that there is low variation in data for normal plants compared to 

diseased plants, therefore we can classify the images on the basis of this information. 

 

Figure 5-9: The result of classifying plant in Figure 5-8 (b) into (a) normal and (b) diseased 

regions.  

(a) (b) 
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Figure 5-10: A scatterplot of the standard deviation (σp1 & σp2) of projection of feature vectors, 

corresponding to diseased regions for normal and diseased plants (Day 13), plotted along first and 

second principal components respectively. 

5.2.2.2. Results and Discussion 

From the total of 71 plants, 54 plants were diseased and 17 plants were normal (not 

inoculated with the fungus). To test the strength of our features, we used SVM classifier 

with RBF kernel where σ =3. We ran 200 cross-validation trials and tested the classifier 

using random pairs of training and testing data. In each trial, we randomly picked 17 

out of 54 diseased plants for classification purpose. Once the number of diseased and 

normal plants was equal, we randomly picked 7 out of 17 normal and diseased plants 

each for training purpose and the remaining 10 for testing the classifier. The disease 

starts to appear 7 days after inoculation and, therefore, we concentrate on classification 

results for day 5 to day 13 after inoculation in this thesis (see for example, Figure 5-11). 

The classification results of the proposed classifier for 200 trials in terms of average 
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accuracy, sensitivity, specificity and positive predictive value (PPV) are shown in 

Figure 5-12.  Figure 5-12 indicates that we can achieve an average accuracy of more 

than 75%, 9 days after inoculation. The highest average accuracy achieved in this case 

is on day 13 i.e., 89.93%, which is very significant. However, as the disease starts to 

appear 7 days after inoculation detecting the disease after day 9 is not very beneficial 

at the commercial level as it might spread across the crop, therefore we propose another 

approach for classification of diseased plants in the next section.  

 

Figure 5-11: The appearance of disease symptoms with time on leaves of a diseased plant. 

Day 5 Day 6 Day 7 

Day 8 Day 9 Day 10 

Day 11 Day 12 Day 13 
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Figure 5-12: Average Accuracy, Sensitivity, Specificity and positive predictive value (PPV) results using the two-step pixel level classification approach. 
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5.2.2.3. Region based Classification Approach 

This classification approach is similar to the approach in section 5.1 in that we 

directly compute features from the plant regions (Figure 5-8 (b)). The following six 

features were selected on the basis of p-values computed using analysis of variance 

(ANOVA) for different days after inoculation as shown in Table 5-4. 

𝜇𝐶 Convert RGB image to CMYK and compute mean of ‘C’ channel. 

𝜇𝑌 Convert RGB image to CMYK and compute mean of ‘Y’ channel. 

𝜎𝑠𝑐𝑎 Convert RGB image to Lab and compute standard deviation of the 

corresponding thermal image after scaling with ‘a’ channel. 

𝜎𝑠𝑐𝐿 Convert RGB image to Lab and compute standard deviation of the 

corresponding thermal image after scaling with ‘L’ channel. 

𝜎𝐷 Compute standard deviation of disparity corresponding to plant region. 

𝜇𝐷 Compute mean of disparity corresponding to plant region. 

The Cyan and Yellow in CMYK carry the green colour, yellow is very important 

because the leaf infected with powdery mildew turns yellow after showing white 

spots. Therefore, the presence of yellow colour can be directly translated to disease. 

The next two features carry temperature information where temperature 

information is scaled by Luminance and ‘a’ channel. As we have discussed already 

in Section 5.1, luminance is important and lower values of ‘a’ carry information 

about the green-ness of the pixel. The last two features carry depth information (in 

terms of disparity), the standard deviation of disparity must be higher in the diseased 

plants because of irregular leaves. 
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Table 5-4: p-values of the selected feature set for day 5 to day 13 after inoculation computed using 

ANOVA. 

 𝜇𝐶  𝜇𝑌 𝜎𝑠𝑐𝑎 𝜎𝑠𝑐𝐿 𝜎𝐷 𝜇𝐷 

Day 5 7.59×10-01 6.73×10-01 4.17×10-06 5.98×10-01 2.06×10-02 1.58×10-07 

Day 6 3.02×10-01 4.61×10-01 1.41×10-06 8.15×10-01 5.33×10-03 8.71×10-08 

Day 7 1.14×10-01 1.86×10-01 9.07×10-06 3.36×10-01 6.85×10-04 2.32×10-07 

Day 8 1.89×10-02 8.53×10-02 2.18×10-05 1.08×10-01 1.30×10-04 5.36×10-06 

Day 9 4.39×10-04 9.40×10-03 3.78×10-05 4.54×10-04 1.14×10-07 5.52×10-05 

Day 10 3.66×10-05 8.54×10-05 1.37×10-05 4.07×10-05 9.71×10-09 4.51×10-03 

Day 11 3.77×10-05 2.66×10-06 1.94×10-07 8.37×10-07 7.49×10-11 6.16×10-03 

Day 12 5.27×10-06 4.09×10-09 3.46×10-06 3.12×10-10 6.52×10-13 1.98×10-01 

Day 13 1.35×10-06 1.23×10-10 5.47×10-05 5.80×10-11 1.48×10-12 2.84×10-01 

5.2.2.4. Results and Discussion 

We use the same classifier and the evaluation procedure as in section 5.2.2.2, i.e., 

we use SVM with RBF kernel (σ =3) and we use 7 images from each group for training 

and 10 images for testing for 200 cross-validation trials. Let us divide our analysis to 

colour only (𝜇𝐶, 𝜇𝑌), colour + thermal (𝜇𝐶, 𝜇𝑌, 𝜎𝑠𝑐𝑎, 𝜎𝑠𝑐𝐿), colour + depth 

(𝜇𝐶, 𝜇𝑌, 𝜎𝐷, 𝜇𝐷), and colour + thermal + depth (𝜇𝐶, 𝜇𝑌, 𝜎𝑠𝑐𝑎, 𝜎𝑠𝑐𝐿, 𝜎𝐷, 𝜇𝐷) to test how 

combining these different sets of features helps us to improve classification results. 

From Figure 5-13, we can see that if we use only colour information we achieve 

accuracy of over 70% only after day 10 of inoculation. We can increase this accuracy 

by combining colour information with thermal or depth, over 70% accuracy after day 

9, which is an improvement but again is not very beneficial to use at commercial scale. 

Combining the features from colour, thermal and disparity images increase the 

accuracy of our classifier to more than 70% on day 5. Let us compare average accuracy 
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of colour + thermal + depth feature set in Figure 5-13 with average accuracy results in 

Figure 5-12. Average accuracy results in Figure 5-13 clearly outperform results in 

Figure 5-12. However, we can combine the features in this section with σp1 & σp2 to 

make a more robust classifier. The average accuracy results using the combined feature 

set are shown in Figure 5-14. Although average accuracy results of classifier are 

slightly less on day5, day6, day8 and day13, the combined feature set produces more 

stable results as shown in Table 5-5. The standard deviation of classifier accuracy using 

combined feature set is lower than the other two approaches. Figure 5-15 shows the 

results of average accuracy, sensitivity, specificity and PPV for 200 iterations using the 

combined feature set. 

Table 5-5: Standard deviation of accuracy results for 200 cross-validation trials for feature sets in 

Figure 5-14. Low standard deviation for combined feature set shows more stable performance. 

 Combined feature set Region based Classification Pixel Level Classification 

Day 5 8.54 9.27 9.31 

Day 6 8.78 9.12 10.22 

Day 7 7.79 8.14 8.94 

Day 8 8.82 8.86 10.43 

Day 9 7.61 8.30 7.58 

Day 10 6.77 7.70 7.80 

Day 11 5.68 6.36 7.00 

Day 12 5.53 6.22 7.43 

Day 13 5.22 5.82 5.41 
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Figure 5-13: Accuracy of classifier using different set of features. Combining colour information with thermal or depth slightly increases the accuracy of the classifier, 

however combining colour information with thermal and depth improves the accuracy to more than 70% on day 5. 
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Figure 5-14: Average accuracy results using the combined feature set compared to average accuracy results of both the previous approaches.
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Figure 5-15: Average Accuracy, Sensitivity, Specificity and positive predictive value (PPV) results using the combined feature set. 
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Let us consider projection of combined feature sets using PCA on 1st and 3rd principal 

component, as shown in Figure 5-16. The projection shows feature values 

corresponding to a couple of normal plants in diseased regions. One such plant is 

marked as p47 and is shown in Figure 5-17. This plant was initially not inoculated with 

disease but showed symptoms of disease later during the experiment. If we mark this 

plant as diseased and then run the proposed classifier for 200 random cross-validation 

trials, we can achieve an average accuracy of more than 95% on day 13 as shown in 

Figure 5-14. The identification of a diseased plant among the non-inoculated plants 

shows the quality of our features set and reliability of the proposed classification 

method.  

 

Figure 5-16: Projection of combined feature set on 1st and 3rd principal component after 

performing PCA. The projection shows feature values corresponding to some of the plants which 

were not inoculated with any disease, occur in disease regions. One of these plants is marked as 

p47 and is shown in Figure 5-17. 
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Figure 5-17: p47 shown for illustrative purpose the plant was not inoculated with any disease but 

later showed symptoms of the disease. These plants were successfully captured by our feature set. 

Chapter Summary 

Our results show that by combining information from thermal and stereo visible 

light images and using machine learning techniques, canopies which are 

experiencing water deficits or under threat of a disease can be identified with high 

accuracy – more than 95%. Thus we have considerably improved the use of remote 

images in the detection on canopy stress and disease onset using this combined 

approach. This improvement can be translated to huge savings and fewer losses in 

a commercial setting. Our approach consisted of three steps: removal of background 

regions, extraction of feature sets from plant regions, and classification using the 

extracted feature set. We showed that extraction of a good set of features can be 

useful for classification of water deficient and diseased plants. We can conclude 

from our results that based on information from stereo visible light and thermal 

images, a worthy set of features can be extracted which can be used at commercial 

scale for detecting anomalous regions in crops. 
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Chapter 6                                   
Registration and Preliminary 
Analysis of Multi-tag Bio-images  

We have shown in previous chapters that by combining multi-modal images we can 

increase the accuracy of classifiers for anomaly detection in plants. In this chapter, 

we perform multi-channel image analysis at microscopic level for detection of 

cancer cells in human tissue. The techniques discussed in this chapter not only allow 

us to differentiate between cancer and normal cells but can also be used for better 

understanding of cancer. Similar to the pre-processing steps required to analyse 

multi-modal images of plants, the multi-channel microscopic image data requires 

alignment of images prior to analysis. We present a novel framework, Robust 

Alignment of Multi-tag Bio-images (RAMTaB), to align images in a multi-tag 

fluorescence microscopy image stack. The proposed framework is applicable to 

multi-tag bio-imaging systems which (a) acquire fluorescence images by sequential 

staining and (b) simultaneously capture a phase contrast image corresponding to 

each of the fluorescence images. In addition, we derive a shift metric in order to 

select the Reference Image with Maximal Overlap (RIMO) in a stack of hundreds 

of images, in turn minimising the total amount of non-overlapping signals for a 

given number of tags.  

The data used for study in this chapter was acquired using a multi-tag fluorescence 

imaging microscope known as Toponome Imaging System (TIS). TIS uses N cycles 

of fluorescent tagging and bleaching to produce 2N pairs of fluorescent and phase 

contrast images. As illustrated in Figure 1-5, N pair of images are captured before, 
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and the remaining N pair of images are captured, after tagging the tissue with the 

fluorescent tag. The latter N pairs contain the actual protein signal and the former 

contain the auto-fluorescent signal. For simplicity we use the notation N for number 

of pair of images in this text.  

As discussed in Chapter 1 and Chapter 2, misalignment can be observed between 

images of even a single visual field. For direct analysis of co-located signals, 

alignment of images from different tags is necessary.  We did not observe any 

significant misalignment between fluorescence and corresponding phase contrast 

images. However, we observed misalignment between phase contrast images for 

different antibody tags. The misalignment is manifested in terms of translational 

shifts. Other forms of misalignment, such as rotation, do not appear in our context, 

and we assume that all alignment transformations are translations. Figure 6-1(a) & 

(b) show misaligned composite RGB colour images made up of CD57, CD166 and 

DAPI (DAPI binds to nuclei, while CD57 and CD166 are protein markers) tags 

displayed in red, green, and blue channels respectively.  
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Figure 6-1: The RGB composite image before and after registration: R,G and B channels belong to 

CD57, CD166 and DAPI tags respectively. (a) and (b) respectively show composite image formed 

by using phase images Ij and fluorescence images Fj, before alignment, (c) and (d) show the RGB 

composite images after the images were aligned using the proposed framework. The red colour 

fringes in (a) show the degree of misalignment among the three tags. These colour fringes have 

been replaced by white and grey regions in (c) after alignment. 

6.1. Image Acquisition 

The human tissue was collected from operative samples at the George Eliot 

Hospital, Nuneaton, UK. For TIS imaging, tissues were incubated in sterile 

Phosphate Buffered Saline (PBS), in PBS containing normal goat serum, and then 

washed in PBS. See [15,173] for more details. The images were acquired by Sylvie 

Abouna under supervision of Dr Michael Khan using the TIS machine installed at 

(b) (a) 

(c) (d) 
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the University of Warwick. A library of 26 tags [174] consisting of a variety of cell 

specific markers, control tags, nuclei marker and tumour and stem cell markers was 

employed for imaging. Tags were applied sequentially to the tissue section. In TIS 

cycle, an image is acquired before and then again after incubation with each 

fluorophore-conjugated antibody or other fluorescent dye, and washed to remove 

unbound tags. Each image is captured at 63× and has a spatial resolution of 

1056×1027 pixels, where each pixel has a resolution of approximately 200nm. Non-

destructive photo bleaching clears the fluorescence after each tag incubation once 

the image has been acquired. The cycle of incubation, wash, image acquisition and 

photo bleach is repeated then for another tag (see Figure 1-5). 

6.2. The Proposed Registration Framework (RAMTaB) 

The proposed framework for multi-tag fluorescence image registration has three 

sequentially connected components in the following order: registration of all tag 

images in the stack to a tag image with the best focus [175] as a reference image, 

selection of RIMO, and re-alignment of all images in the stack to RIMO. Below we 

describe the core registration algorithm based on mutual information used by the 

first and the third components. A side benefit of RAMTaB is that even if the 

arbitrarily chosen reference image is different from the RIMO, the core registration 

algorithm does not have to be executed again. 

6.2.1. Aim(s) 

The overall aim of this work is to compute transformation (in terms of translational 

shift) parameters for each tag image in a stack, such that a) the images are well 

aligned and b) the total number of non-overlapping pixels 𝜑 is minimised. The total 
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number of non-overlapping pixels which can also be termed as loss of information 

𝜑 may vary from one reference image to another. Suppose we have a stack of N 

images 𝐼1, … , 𝐼𝑁, all of the same scene, though possibly not perfectly aligned with 

each other. We choose a reference image 𝐼𝑟, and then for each floating image 𝐼𝑗 we 

find transformation 𝜏𝑟𝑗 so that each point on 𝑇𝑟𝑗 = 𝜏𝑟𝑗(𝐼𝑗) for all j=1,2,…N 

corresponds to one and the same point in the tissue specimen being imaged. We 

will assume that the alignment transformations 𝜏𝑟𝑗 are always translations, which 

is a reasonable assumption in the situation to which we will apply our theory. The 

aligned images can be mosaicked and arranged in a larger frame of reference as 

shown by the green dashed line in Figure 6-2. 

There may be several ways in which the registration results can be used for a follow-

up analysis. Here we consider four possible options. A first option is that we select 

only those co-ordinates where all the signals overlap as shown by 𝐶∩  in Figure 6-2. 

Note that we use the word coordinates instead of pixels because we wish to allow 

alignment transformations 𝜏𝑟𝑗  with sub-pixel accuracy. We consider all the aligned 

images in a universal co-ordinate system and let 𝐶𝑗 denote the set of co-ordinates of 

𝑇𝑟𝑗. We define the set 𝐶∩, shown as the yellow shaded area in Figure 6-2, as the set 

of co-ordinates of the overlapping region as follows, 

 

1

N

j

j

C C



  (6.1) 

A major limitation of using 𝐶∩ is that this set may be very small if we have a few 

images that are far from the centre. We risk losing a large amount of signal in the 

non-overlapping region, when we can benefit from this signal at the cost of 
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eliminating from consideration only a few of our images. 

A second option is that we select signals from all the aligned images and form a 

larger mosaicked image as shown by the green dashed line in Figure 6-2. Let 𝐶0 be 

the set of co-ordinates of empty spaces in the larger mosaicked image, and let 𝐶U 

be the set of co-ordinates of all the aligned images in the dataset as shown by shaded 

region with different colours in Figure 6-2. Let C be the set of co-ordinates of this 

larger rectangular image with green dashed boundary. Then  

 0 UC C C  (6.2) 

where 

 U

1

N

j

j

C C



  (6.3) 

In this case, there may be a substantial region covered by only a few images, or 

even by no image at all, as in 𝐶0  rendering the post processing of those elements 

potentially meaningless. 
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Figure 6-2: An illustration of mosaicked image containing co-ordinates of all the aligned images. 

Let us consider another scenario and fix r with 1 ≤ r ≤ N, and let us restrict our 

analysis to the region 𝐶𝑟. The signal from the ith image comes only from the region 

𝐶𝑟 ∩ 𝐶𝑖. Then 

 ( )r r i
i

Area C C   (6.4) 

represents the sum of the areas overlapped by 𝐶𝑟 that provide meaningful signal. 

Then to find RIMO, we find 𝐶𝑟 corresponding to 𝐼𝑟 with 1 ≤ r ≤ N such that 
r  is 

maximal. Selection of RIMO has been further discussed in section 6.2.3. 

6.2.2. The Core Registration Algorithm 

Let us first consider different approaches used for registration of images for our 

data. As the fluorescent channels contain information captured by a particular tag, 

the information varies in fluorescent images across different tags, which translates 

to unstable features and therefore fluorescent images as floating or reference images 
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may not be a good choice for registration. We use instead phase contrast images 

corresponding to different tags for registration as they contain information about 

the structure of the tissue and provide more stable features across different tags. 

The intensity of phase contrast also varies across different tags and sometimes there 

are some image which are blur and may have local wear and tear. Feature based 

methods which rely on corner or edge detection fail to provide stable features in the 

presence of blur across different tags. Therefore, area based methods provide a more 

suitable choice for registration.  

The choice of similarity measure is an important factor in the accuracy of 

registration results produced by area based methods. Various similarity measures 

such as l1-norm and cross correlation require intensities to be perfectly matched 

however this might not be the case with the phase contrast images as the intensity 

varies across different tags. We employ a mutual information-based framework [38] 

for registering one phase contrast image with another. Mutual information is based 

on the principle that for a registered pair of images, we have less uncertainty about 

the information contained in the reference image when we have information about 

the floating image and vice-versa. Several other researchers have shown mutual 

information to be a good similarity measure for microscopic images [81,176,177].  

Mutual information based on Hartley’s entropy measure is defined as follows. Let  

𝐻(𝐼𝐴) and 𝐻(𝐼𝐵) denote the entropies of 𝐼𝐴 and 𝐼𝐵, respectively, and let 𝐻(𝐼𝐴, 𝐼𝐵) 

be the joint entropy of 𝐼𝐴 and 𝐼𝐵. Then 𝑀(𝐼𝐴, 𝐼𝐵) the mutual information between 

the two images 𝐼𝐴  and 𝐼𝐵 is defined by the formula 

 ( , ) ( ) ( ) ( , )A B A B A BM I I H I H I H I I    (6.5) 
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One approach to registering the two images is to maximise 𝑀(𝐼𝐴, 𝜏𝐴𝐵(𝐼𝐵)), by 

varying 𝜏𝐴𝐵 over some set of transformations. Maximising mutual information 

implies minimising the joint entropy. Marginal and joint entropy can be calculated 

from the joint histogram, which is formed using the intensity values of the two 

images. When mutual information is high, the joint histogram is sharp and closely 

resembles a diagonal matrix. In a mutual information based registration framework, 

we transform the floating image 𝐼𝐵 to match the reference image 𝐼𝐴 by searching 

for a transformation which maximises the mutual information between the 

reference image and the transformed floating image. Mathematically, this can be 

written as, 

 AB  arg max


( , ( ))A BM I I  (6.6) 

where τ denotes the transformation between reference and floating images required 

to align them. The optimisation is done using the pattern search method [156,178]. 

At each step, the search algorithm creates a set of points called a mesh around the 

optimal point of the previous step. The pattern search finds a point that improves 

the objective function. If the algorithm fails to find such a point, it decreases the 

size of the mesh, otherwise it chooses the new point which has improved the 

objective function as the new optimal point and increases the size of the mesh in 

the next step. This search continues until |Δ𝜏| is less than a specified threshold 𝜃∆𝜏 

or the number of iterations reaches the maximum allowed number of iterations. In 

general, the transformation 𝜏 could consist of affine and perspective 

transformations. In our case, however, rotations and non-rigid transformations are 

not required, and therefore we are only concerned with horizontal and vertical 
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movements between the target and reference images. Sub-pixel accuracy is 

achieved using bicubic interpolation [179] for sub-pixel shifts. 

6.2.2.1. Measure of Confidence in the Registration Results 

The method of registration described above is prone to get stuck in local maxima 

while optimising for mutual information. There are several other problems. In the 

formula for mutual information, we need to get round the problem of the changing 

size of the intersection as τ changes. It is also possible that no meaningful 

registration is possible. This would be the case if, for example, repeated washes 

during a TIS run were to tear the specimen, or if new extraneous material were to 

float into the visual field. 

To obtain more reliable registration results capable of detecting such failures, we 

select K disjoint square sub-images from the reference, and K somewhat larger 

disjoint square sub-images from the floating image, as in Figure 6-3. The size of 

the floating sub-image is determined by the size of reference sub-image and the 

estimated search range required to register the two images. Each such square in the 

floating image corresponds to exactly one square in the reference image, and the 

corresponding squares have centres at the same positions in floating and reference 

images. 

We register each of these square sub-images of the reference image within the 

corresponding larger square in the floating image. More precisely, we find K 

transformations 𝜏𝑟𝑗
1 , 𝜏𝑟𝑗

2 , … , 𝜏𝑟𝑗
𝐾 , where 𝜏𝑟𝑗

𝑘  is the optimal translation registering the 

k-th smaller square in the reference image within the k-th larger square in the 

floating image. Now 𝜏𝑟𝑗
𝑘  can be represented in the form of translation ∆𝑟𝑗

𝑘  by a 
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certain 2-dimensional vector, which we denote by 

 ( , )k k k
rj rj rjx y     (6.7) 

where ∆𝑥𝑟𝑗
𝑘 , ∆𝑦𝑟𝑗

𝑘  are shifts in x and y direction respectively for transformation 𝜏𝑟𝑗
𝑘 . 

We then calculate the pairwise Euclidean distances dkl between ∆𝑟𝑗
𝑘  and ∆𝑟𝑗

𝑙 , for k, 

l = 1,2,…,K.  If, for fixed k and for all l, the value of dkl is greater than ω pixels (we 

chose ω =1 for sub-pixel accuracy), we mark k as an outlier and the user can be 

warned that this has occurred, making visual inspection possible.  If for fixed r and 

j, fewer than k/2 translations ∆𝑟𝑗
𝑘  are marked as outliers, their k indices are added to 

the outlier set η, to be excluded from any further calculation. This ensures that if a 

small number of registrations (fewer than k/2) disagree with the majority, they are 

safely removed from the computation. 

 

Figure 6-3: A total of K sub-images are extracted from different locations in the reference image Ir 

(left) and optimal transformations 𝜏𝑟𝑗
𝑘  for k ∈ {1,2, …,K} are calculated between the k-th sub-

image in Ir and its corresponding sub image in the floating image Ij (right) using a search 

neighbourhood. Based on these individual transformations, the overall rigid transformation 𝜏𝑟𝑗 

required to register the images is calculated. 
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A major benefit of registering with sub-images is that one can easily compute a 

measure of confidence in the registration results in terms of the standard deviation 

of the shifts 

 

1

1
( )( )

K
k k T

rj rj rj rj rj
k
k

K







      (6.8) 

where 

 

1

1
( , )

K
k k

rj rj rj
k
k

x y
K





     (6.9) 

The standard deviation 𝜎𝑟𝑗 can be used as a measure of confidence in the 

registration results. If this value is larger than a specified threshold, then the 

registration process is performed again using a slightly different set of square sub-

images. If the confidence value is again larger than the specified threshold, we flag 

the floating image as a potentially bad quality image or an image that cannot be 

registered well. If the standard deviation is below the specified threshold for 

satisfactory registration, the transformation 𝜏𝑟𝑗 is computed from the average of all 

non-outlier local translations ∆𝑟𝑗 between sub-images as given in equation (6.9). 

6.2.3. Selection of Reference Image with Maximal Overlap (RIMO) 

In this section, we utilize the above calculated transformations between all images 

𝐼𝑗, for j=1,2,…,N, and 𝐼𝑟 in order to select the RIMO maximising the total overlap 

between the aligned images as shown in Figure 6-2. 
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6.2.3.1. Registration Graphs 

First, we choose any arbitrary image 𝐼𝑟 having good enough quality as a reference 

image and calculate the transformations 𝜏𝑟𝑗, which in this case are represented by 

translations ∆𝑟𝑗= (∆𝑥𝑟𝑗, ∆𝑦𝑟𝑗) required to align all the images 𝐼𝑗, for j=1,2,…,N 

with 𝐼𝑟. Once these shifts have been calculated, we can compute the pairwise 

transformations ∆𝑖𝑗= (∆𝑥𝑖𝑗, ∆𝑦𝑖𝑗) between any two images 𝐼𝑖 and 𝐼𝑗 in the dataset 

I, as shown in Figure 6-4. The pairwise transformations can then be arranged in the 

form of two inter-tag shift matrices as given below. 

 

11 12 1

21 22 2

1 2

N

N

N N NN

x x x

x x x
X

x x x

   
 
  
  
 
 
   

 (6.10) 

 

11 12 1

21 22 2

1 2

N

N

N N NN

y y y

y y y
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y y y

   
 
  
  
 
 
   

 (6.11) 

∆𝑥𝑖𝑗 and ∆𝑦𝑖𝑗 represent shifts along x-direction and y-direction of image 𝐼𝑗 with 𝐼𝑖 

as the reference image. The above matrices can also be represented in the form of a 

registration graph, as shown in Figure 6-5. The registration graph can then be used 

to find shifts between any pair of images in the set I, as shown in Figure 6-4. We 

can now complete the matrices ∆𝑋 and ∆𝑌 with the help of the equations obtained 

from the registration graph, 

 ij ri rjx x x     (6.12) 

 ij ri rjy y y      (6.13) 
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Figure 6-4: Finding the shift Δij between the images Ii and Ij, using the previously calculated shifts 

Δri and Δrj with image Ir. This is similar to vector diagrams where Δij is the resultant vector. 

 

Figure 6-5: Registration graph showing shifts calculated between Ir and all the other tag images in 

the dataset I = {Ij}, j = 1,2,…,N. Nodes in the graph represent multi-tag images in an image stack 

I, solid edges represent transformations with respect to Ir, and dashed edges represent 

transformations that can be determined using this graph as shown and described in Figure 6-4. 

The above equations give shifts required by any image 𝐼𝑗 considering 𝐼𝑖 as the 

reference image. Since the resultant matrix is skew-symmetric, we can first 
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compute the upper diagonal matrix and then compute the lower diagonal by just 

flipping the matrix about the diagonal with a negative sign, to reduce the amount of 

computation. The total number of registrations performed for N tag images is N-1, 

producing (
𝑁
2
) shift values using equations (6.12) and (6.13). 

6.2.3.2. The Objective Function 

We wish to compute the value of r that maximises 𝜓𝑟 defined in equation (6.4). 

This could be done by direct computation. However, we will show that this 

expression is also given in terms of a certain metric that we will define. The metric 

will be a special case of a very general metric coming from a measure in the sense 

of mathematical Measure Theory. 

6.2.3.3. The Shift Metric 

We now discuss the metric associated with our objective function. For this 

discussion, we need a collection S of subsets of a fixed set X and a function 𝜇: 𝑆 →

[0,∞) satisfying the conditions for S to be a semiring, and for µ to be a measure. 

The only examples that we will use in this section are: 

1. S is the set of all finite subsets of the plane, and µ(S) is equal to the number 

of elements in S (counting measure). In fact, we will restrict our attention to 

the situation where the plane is divided into a fixed set of pixels, and each 

point of S is at the centre of some pixel. Then µ(S) is just a count of pixels. 

2. S is the set of all rectangles in the plane, not necessarily with vertices at 

integer points, and µ(S) is the usual area of the rectangle. We will assume 
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that the plane is divided into square pixels of height and width one, so that 

𝜇(𝑝) = 1 for any pixel p. 

The symmetric difference of two subsets ,A B X  is defined as, 

 ( ) \ ( ) ( \ ) ( \ )A B A B A B A B B A       (6.14) 

Lemma 1: For any , ,A B C X , 

( ) ( )A C A B B C     . 

Proof: 

Suppose \x A C . Then x A  and x C . If  x B , then \x B C B C   . If ,x B  

then \x A B A B   . This shows that \ ( ) ( )A C A B B C    . Now suppose 

\x C A . Then x C  and x A . If x B , then \x B A A B   . If x B , then 

\x C B B C   . This shows that \ ( ) ( )C A A B B C    . 

Thus  ( \ ) ( \ ) ( ) ( )A C A C C A A B B C       . 

Recall that a pseudometric d satisfies the same axioms as a metric, except that 

d(x,y)=0 does not necessarily imply x = y. 

Theorem 1. Let µ be a measure on X, and let F be the set of subsets of finite 

measure. Then we obtain a pseudometric 𝑑 on 𝐹 by defining 𝑑(𝐴, 𝐵) = 𝜇(𝐴∆𝐵). 

This is a metric if 𝜇 has the property that 𝜇(𝐴) = 0 implies 𝐴 = ∅, the empty set. 

Proof: 

For all 𝐴, 𝐵 ∈ 𝐹, we have 𝑑(𝐴, 𝐵) = 𝜇(𝐴∆𝐵) ≥ 0. Since 𝐴∆𝐵 = 𝐵∆𝐴, we see that 

𝑑(𝐴, 𝐵) = 𝑑(𝐵, 𝐴). For any 𝑋1, 𝑋2 ∈ 𝐹, we know that 𝜇(𝑋1 ∪ 𝑋2) ≤ 𝜇(𝑋1) +

𝜇(𝑋2), with equality when 𝑋1 and 𝑋2 are disjoint. (This is true for any measure, and 
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can be directly checked for our two examples of counting measure and area.) It 

follows from Lemma 1 and this inequality that 

 

( , ) ( )

(( ) ( ))

( ) ( )

( , ) ( , )

d A C A C

A B B C

A B B C

d A B d B C





 

 

   

   

 

  (6.15) 

This shows that d is a pseudometric. If, in addition, 𝜇(𝐹) = 0 ⟹ 𝐹 = ∅, then 

 ( , ) 0d A B A B A B      (6.16) 

which is the final axiom needed in order to show that d is a metric. 

Let us apply this result to the example of Figure 6-6. We fix a reference image 𝐼𝑟, 

and floating image 𝐼𝑗. Let ∆𝑟𝑗= +(∆𝑥𝑟𝑗, ∆𝑦𝑟𝑗), for  1 ≤ j ≤ N. Then ∆𝑖𝑗=

+(∆𝑥𝑖𝑗, ∆𝑦𝑖𝑗) = (−∆𝑥𝑟𝑖 + ∆𝑥𝑟𝑗, −∆𝑦𝑟𝑖 + ∆𝑦𝑟𝑗) as shown by the registration 

graphs in Figure 6-4 and Figure 6-5. Using the above metric d on subsets of the 

plane, we define ||∆𝑖𝑗||𝑑 = 𝑑(𝐶𝑖, 𝐶𝑗), where 𝐶𝑖, 𝐶𝑗 are the set of co-ordinates for 𝐼𝑖 

and 𝐼𝑗, though we caution that it is not a norm on the set of translations. 

Lemma 2. Let d be the metric that arises from Theorem 1, applied to one of our 

two examples. Recall that each 𝐼𝑗 has height h and width w for all 𝑗 = 1,2, … ,𝑁. 

Then, for 1 ≤ i, j ≤ N, we have 

 || || 2(| | . | | . | || |)ij d ij ij ij ijx h y w x y         (6.17) 

Provided that |∆𝑥𝑖𝑗| ≤ 𝑤 and |∆𝑦𝑖𝑗| ≤ ℎ. If |∆𝑥𝑖𝑗| ≥ 𝑤 or |∆𝑦𝑖𝑗| ≥ ℎ then 

||∆𝑖𝑗||𝑑 = 2ℎ𝑤. This is the area lost by 𝐼𝑗 with 𝐼𝑖. 
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Figure 6-6: Calculating the area occupied by the non-overlapping region. 

Proof: 

If  |∆𝑥𝑖𝑗| ≥ 𝑤 or |∆𝑦𝑖𝑗| ≥ ℎ then 𝐶𝑖 and 𝐶𝑗 do not intersect, and so 𝐶𝑖∆𝐶𝑗 is the 

disjoint union of 𝐶𝑖 and 𝐶𝑗, and this has area 2hw. Otherwise, the situation will be 

similar to that shown in Figure 6-6. From this figure, we see that the area of 𝐶𝑖∆𝐶𝑗, 

which is the area lost, is given by 

 || || ( , ) ( )ij d i j i jd C C C C     (6.18) 

The region 𝐶𝑖∆𝐶𝑗 consists of two congruent components, each comprising three 

sub-rectangles S1, S2 and S3, meeting only along their edges, with S3 occupying the 

corner position. We calculate 𝜇(𝐶𝑖∆𝐶𝑗) as follows: 

 1 2 3 1 2 3( ) 2( ( )) 2( ( ) ( ) ( ))i jC C S S S S S S            (6.19) 

From Figure 6-6, 
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It follows that 

 ( ) 2(| | . | | . | || |)i j ij ij ij ijC C x h y w x y          (6.21) 

In practice though, |∆𝑥𝑖𝑗| is typically much smaller than w and |∆𝑦𝑖𝑗|  is much 

smaller than h. Moreover, the value at which the objective function is optimised is 

unchanged if the objective function is multiplied by a constant. As a result, the third 

term in the sum can be ignored, and a good approximation to the exact answer is a 

scaled version of the l1-metric, given by 

 ( , ) | | . | | .i j ij ijd C C x h y w     (6.22) 

and this value can be used to specify the objective function. We can now revisit the 

objective function 

 ( ) ( )r r i r i
i i

Area C C C C     (6.23) 

Note that 𝜇(𝐶𝑖) + 𝜇(𝐶𝑗) = 2𝜇(𝐶𝑖 ∩ 𝐶𝑗) + 𝜇(𝐶𝑖∆𝐶𝑗). If 𝐶𝑖 and 𝐶𝑗 move, while 

keeping each of 𝜇(𝐶𝑖) and 𝜇(𝐶𝑗) constant, then 𝜇(𝐶𝑖 ∩ 𝐶𝑗) increases as 𝜇(𝐶𝑖∆𝐶𝑗) =

𝑑(𝐶𝑖, 𝐶𝑗) decreases. That is, the larger the area in common between two images, the 

smaller will be the distance between them. It follows that maximising 
r  is 

equivalent to minimising, 

 ( ) ( , )r r i r j
i i

C C d C C       (6.24) 

as r varies. Minimising the above objective function gives r* the index of the RIMO 
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image. 

6.2.3.4. Using the RIMO 

The objective function can easily be calculated and minimised by using the matrices 

obtained by the help of registration graphs in equation (6.10) and (6.11). Once we 

have computed all the shifts and found the RIMO and its distance to each of the 

after tag images, we realign all the tag images with reference to the RIMO. 

Furthermore, we can also identify which of the fluorescence protein images it might 

be best to ignore, if for some reason it is advisable to ignore one or more images. 

Of course, one will often want to ignore fluorescence images of poor quality. But it 

may also be advisable to eliminate, at least temporarily, images that are distant from 

the RIMO (using the distance function defined above). 

6.3. Results on Registration 

6.3.1. Experiments on Synthetic Data 

Synthetic data was generated by selecting a phase contrast image Isel from one of 

the TIS image stacks. Two random vectors 𝑥′ and 𝑦′ of length 500 were drawn from 

a uniform distribution of real-valued numbers in the range [−𝑥𝑚𝑖𝑛, +𝑥𝑚𝑎𝑥] and 

[−𝑦𝑚𝑖𝑛, +𝑦𝑚𝑎𝑥] with 𝑥𝑚𝑖𝑛 = 𝑥𝑚𝑎𝑥 = 𝑦𝑚𝑖𝑛 = 𝑦𝑚𝑎𝑥 = 10. Let (𝑥𝑐𝑒𝑛𝑡𝑟𝑒, 𝑦𝑐𝑒𝑛𝑡𝑟𝑒) 

denote coordinates of the centre of the selected image 𝐼𝑠𝑒𝑙 and let 𝐼𝑠𝑦𝑛
0  denote a 

cropped section of 𝐼𝑠𝑒𝑙 with (𝑥𝑐𝑒𝑛𝑡𝑟𝑒, 𝑦𝑐𝑒𝑛𝑡𝑟𝑒) as its centre. A new set of centre 

coordinates for the synthetic tag images is then calculated by adding 𝑥′ and 𝑦′  to 

(𝑥𝑐𝑒𝑛𝑡𝑟𝑒, 𝑦𝑐𝑒𝑛𝑡𝑟𝑒)  as follows, 

 ' centerx x x   (6.25) 
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 ' centery y y   (6.26) 

A synthetic stack of TIS images 𝐈𝑠𝑦𝑛 = {𝐼𝑠𝑦𝑛
𝑗

}, where 𝑗 = 1,2, … . ,500, was 

generated by taking cropped sections of 𝐼𝑠𝑒𝑙 with (𝑥𝑗 , 𝑦𝑗) as their centres and having 

the same pixel resolution as. The amount of actual shift for the synthetic tag image 

𝐼𝑠𝑦𝑛
𝑗

, for all j from the original reference image 𝐼𝑠𝑦𝑛
0  is given by the corresponding 

values (i.e., the j-th elements) in x and y. Nearly a quarter of the synthetic tag images 

were randomly picked and a contrast change using gamma correction [42] with γ in 

the range 0.5 to 2 was applied to them. Another quarter of the synthetic images were 

randomly picked and Gaussian blurring with kernel bandwidth σ = 1 and a filter 

size of 6×6 pixels was applied to them. The remaining 50% of the images did not 

go through any intensity transformation, and were only translated by random shifts. 

The parameters for blur and translations were chosen based on observations from 

the real dataset. So a dataset consisting of randomly shifted images was generated, 

with contrast and smoothing artifacts added to half of them randomly. Figure 6-7 

shows an illustration of how the synthetic data set is generated using a single phase 

contrast image from a TIS image stack as 𝐼𝑠𝑒𝑙. 

An image was randomly selected from our artificial data set and 𝒙𝑐𝑎𝑙 and 𝒚𝑐𝑎𝑙 shifts 

were calculated using our registration algorithm. The mean difference between the 

actual and estimated shifts was calculated to be (0.1128, 0.1165) in the x and y-

directions respectively. We can achieve more accurate results by using different 

values of K, S and 𝜃∆𝜏 as shown in Table 6-1, but there is always a trade-off between 

time and accuracy. Using 𝒙𝑐𝑎𝑙 and 𝒚𝑐𝑎𝑙 the RIMO was calculated by using our 

algorithm. The RAMTaB successfully found the image which had minimum shift 
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with respect to all of the other images of the stack, therefore providing experimental 

verification that the algorithm is capable of finding RIMO. 

Table 6-1 shows time consumed using a different number K of the sub-images and 

for different threshold specified for 𝜃∆𝜏 for a stack of 26 images with two visual 

fields on a 2.66 GHz Quad Core CPU. It was found empirically that  K = 9, S = 200, 

and 𝜃∆𝜏 = 0.01 gave us a good compromise between the algorithm’s runtime and 

the accuracy of registration. Using these parameters, our approach takes about 22 

minutes and 15 seconds to register a stack of 26 tag images with two visual fields 

on a 2.66 GHz Quad-core CPU using non-optimised MATLAB® code running on 

a Linux platform. The MATLAB source code, 32-bit Windows executable, and a 

sample TIS stack can be downloaded from the project website15. 

                                                 

15 http://www2.warwick.ac.uk/fac/sci/dcs/research/combi/projects/bic/ramtab/ 

http://www2.warwick.ac.uk/fac/sci/dcs/research/combi/projects/bic/ramtab/
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Figure 6-7: Construction of a synthetic data set 𝐈𝑠𝑦𝑛 using a single tag image 𝐼𝑠𝑒𝑙 with center 

coordinates (𝑥𝑐𝑒𝑛𝑡𝑟𝑒 , 𝑦𝑐𝑒𝑛𝑡𝑟𝑒) and uniformly distributed random shifts 𝑥𝑛 ∈ [−𝑥𝑚𝑖𝑛 , +𝑥𝑚𝑎𝑥] and 

𝑦𝑛 ∈ [−𝑦𝑚𝑖𝑛 , +𝑦𝑚𝑎𝑥] in both directions. Intensity variations such as contrast stretching and 

Gaussian blurring are also introduced randomly in 50% of the images to mimic the random 

perturbations in pixel intensities during the image acquisition process (The image here has been 

inverted for visibility purpose). 
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Table 6-1: Time required to register a stack of 26 images with two visual fields for different values 

of K, S, and θΔτ where K is the number of sub-images used while calculating the translations, S is 

size of the sub-images, and θΔτ is the threshold for |Δτ| between two consecutive iterations of the 

pattern search algorithm. 

6.3.2. Experimental Results on Real Data 

We ran the proposed registration framework and the algorithm for selection of 

RIMO on a large number of TIS stacks. Here we report results of a TIS run on a 

cancerous colon tissue captured by the biologists S. Abouna and M. Khan in 

October 2010. The antibody tag library for the experiment consisted of tumour 

K S 𝜃∆𝜏  

Time taken 

to register 

real data 

containing 

26 tag 

images with 

two visual 

fields 

Approximate error to register 500 images of synthetic 

data 

Normal Corrupted  Mean 
Standard 

Deviation 

9 100x100 

0.01 9 min 48 sec 
0.4229, 

0.3230 

0.4228, 

0.3556 

0.4229, 

0.3393 

1.7801, 

1.3568 

0.001 
20 min 55 

sec 

0.3101, 

0.2225 

0.3294, 

0.2638 

0.3198, 

0.2432 

1.7731, 

1.3647 

0.0001 
30 min 25 

sec 

0.3010, 

0.2133 

0.3233, 

0.2585 

0.3122, 

0.2359 

1.7744, 

1.3667 

9 200x200 

0.01 
22 min 15 

sec 

0.1107, 

0.1161 

0.1149, 

0.1169 
0.1128, 

0.1165 

0.0662, 

0.0652 

0.001 
51 min 38 

sec 

0.0135, 

0.0142 

0.0166, 

0.0153 

0.0151, 

0.0148 

0.0121, 

0.0120 

0.0001 
81 min 27 

sec 

0.0020, 

0.0023 

0.0072, 

0.0067 

0.0046, 

0.0045 

0.0095, 

0.0099 

6 300x300 

0.01 
42 min 54 

sec 

0.0779, 

0.0789 

0.0760, 

0.0698 

0.0770, 

0.0744 

0.0580, 

0.0560 

0.001 
81 min 41 

sec 

0.0088, 

0.0095 

0.0127, 

0.0113 

0.0107, 

0.0104 

0.0118, 

0.0115 

0.0001 
113 min 41 

sec 

0.0021, 

0.0025 

0.0078, 

0.0070 

0.0050, 

0.0047 

0.0105, 

0.0097 
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markers, stem cell markers, and proliferation markers. First, we choose any 

arbitrary tag image (e.g., DAPI) as a reference image 𝐼𝑟 and calculate the 

transformations 𝜏𝑟𝑗 required to align all the images 𝐼𝑗, for j=1,2,..., N with 𝐼𝑟. Using 

the results of registration, the RAMTaB gave Ki67 tag image as the RIMO. 

Registration results were also generated by arbitrarily choosing the Bax tag as 

reference.  

The results of registration using 3 reference images (DAPI and Bax selected 

arbitrarily, and Ki67 as RIMO) are shown in Figure 6-8 in the form of a plot of 

magnitude of shift required to register a tag image to the corresponding reference 

image. The plots clearly show that by using Ki67 as reference tag, the total amount 

of shift required to register the images is much smaller than by using the other two 

reference images. When Ki67 was used as reference image, there was only one tag 

for which magnitude of shift was found to be greater than 10, whereas, when DAPI1 

or Bax were used as reference images, there were more than 8 images for which the 

magnitude of shift calculated was greater than 10. Since our goal is to minimise 𝜑𝑟 

it is clear from Figure 6-8 that the RAMTaB framework has been successful in 

minimising the magnitude of shifts. The amount of pixels lost when using Ki67, 

DAPI and Bax as 𝐼𝑟 was calculated to be 129.10, 208.42 and 168.89 respectively. 
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Figure 6-8: Magnitude of shift required to register different tag images to the corresponding 

reference image (tags along x-axis are arranged in a way that the first image is the RIMO, second 

image is the second in line as RIMO and the same trend continues towards right). 

Figure 6-9 shows the upper-left part of the phase contrast image for CK20 tag from 

the same image stack, after it has been aligned to the phase contrast images 

corresponding to DAPI1, Bax, and Ki67. The blank rows and columns (having zero 

intensity values) near the top-left corner of the image are due to the amount of shift 

which was required to align the image to the respective reference image. The 

number of blank pixels near the top left corner in this image is equal to the number 

of pixels lost at the bottom left corner of the image. It can be observed from this 

figure that when the Ki67 image is used as a reference, 𝜑𝑟 is minimised, once again 

showing in empirical terms that the proposed RAMTaB  framework selects RIMO 

as reference for registration. Figure 6-10 shows the amount of translational shift 

calculated using the proposed RAMTaB framework for images acquired during a 

single TIS run plotted against time. In this particular instance, the amount of shift 

decreased as the TIS run progressed but in other cases, the trend may be different. 

This indicates that the TIS machine settles down to a stable state as the run 

continues. 
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Figure 6-9: Phase contrast image for the CK20 tag registered to (a) DAPI1, (b) Bax and (c) Ki67 

tag image; the black region on the top and the left of the image shows the amount of shift required 

to register the image to respective reference. 

 

Figure 6-10: Shift, as estimated by RAMTaB, in both x and y-directions during one TIS run versus 

time. This indicates the TIS machine “settling down” to an equilibrium state as time passes, 

probably due to the temperature reaching a stable value. 

Figure 6-1 shows composite RGB images obtained by using three different phase 

contrast and fluorescence images for CD57, CD166 and DAPI as red, green and 

blue channels, respectively. In Figure 6-1(a) & (b), phase contrast and fluorescence 

images from the original data set obtained after a TIS run are used as red, green and 

blue channels. The colour fringes in Figure 6-1(a) show the degree of misalignment 

present between these three phase contrast images which should ideally be aligned 

to each other. We have aligned the images using the proposed algorithm and formed 

    (a)      (b)           (c) 
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the composite as shown in Figure 6-1(c) & (d). If pixel intensities from all three 

phase contrast images are in agreement with each other, we should only see shades 

of grey in the composite RGB image. It can be seen in the alignment results of both 

the algorithms that the colour fringes have been removed in Figure 6-1(c). We have 

calculated the root mean squared (RMS) difference between the red, green and blue 

channels, for the phase contrast images shown in Figure 6-1 to numerically illustrate 

the misalignment, using the equation below, 

 2 2 2(( ) ( ) ( ) ) / 3R G R B G BRMS I I I I I I B       (6.27) 

where 𝐼𝑅, 𝐼𝐺 , and 𝐼𝐵 denote the red, green, and blue channel phase contrast images, 

respectively, and B denotes the number of pixels in each of the channel images. For 

the images shown in Figure 6-1(a) & (c), the RMS difference was found to be 7.14 

for the misaligned images (Figure 6-1(a)) and 2.98 for the registered images (Figure 

6-1(c)). 

6.4. Preliminary Analysis  

Preliminary analysis of the data was performed after registration in later studies in 

collaboration with other members of our group at the Bioimage Analysis Lab and 

with our collaborators at the Bielefeld University Germany [180–185]. We 

proposed a molecular co-expression analysis framework for analysis on a whole 

range of protein expression levels in close vicinity of cells, instead of previously 

used binarisation techniques [15,18,182]. The framework consists of three major 

components: 1) Registration using the proposed RAMTaB method (Section 6.2), 2) 

Segmentation of Nuclei and its neighbourhood region and 3) Analysis and 

visualization of molecular patterns using the clustering method. We first performed 
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segmentation of the nuclei to filter out noise from non-cellular pixel locations such 

as lumen and stroma. For this purpose, were first normalise intensity values of the 

aligned DAPI channel to the range [0,1] and then segmentation is performed using 

Gaussian Mixture Modelling (GMM) over the normalised intensity values. For data 

analysis we used the bottom-up hierarchical clustering method [186]. For n number 

of pixels, hierarchical clustering starts with n clusters and iteratively merges these 

clusters based on a specified criteria, the criteria chosen in this case was within class 

variance and the minimum number of clusters was chosen to be 20. We have shown 

that there is a clear difference in tissue morphology and molecular expression at 

sub-cellular level in normal and cancer specimens [182]. 

In a later study, instead of pixel level analysis, we performed cell level analysis 

[180]. We proposed a refined cell segmentation method and showed that nonlinear 

embedding of high dimensional protein co-expression vector performs better than 

linear dimensionality reduction methods. For cell segmentation we used the DAPI 

channel [187], the image was first binarised using the graph-cut based method to 

extract the foreground, the binarisation was followed by multi-scale Laplacian of 

Gaussian (LoG) filter for initial segmentation. The initial segmentation was further 

refined using a graph-cut based algorithm and followed by post-processing to 

secure very small nuclei. For each cell, an N-dimensional raw expression vector 

(REV) was formulated across N antibody tags using mean of intensity values under 

each cell. Non-linear t-Distributed Stochastic Neighbour Embedding (t-SNE) was 

compared with linear Principal Component Analysis (PCA) to embed N-

dimensional data to lower dimensions and it was shown t-SNE preserved the 

pairwise relationships between REVs whereas PCA failed to preserve the 
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relationship which was present in high dimensional space. Affinity Propagation 

Clustering (APC) and Agglomerative Hierarchical Clustering (AHC) were 

performed and it was shown that nonlinear t-SNE embedding outperforms original 

high-dimensional REVs in their ability to discriminate between cancer and normal 

tissues on the basis of phenotypic distributions. This work was further extended in 

a later study and clustering was performed using Self Organizing Maps (SOM) in 

addition to AHC and APC, it was shown that the results were consistent and t-SNE 

embedding performed best and showed higher inter-class variability [181]. 

Chapter Summary 

The TIS method uses a library of fluorescent tags to obtain phase-fluorescence pair 

images corresponding to each tag. Accurate alignment of tag images in a multi-tag 

fluorescence microscopy image stack is an essential pre-processing step prior to 

any analysis of protein co-expression. The proposed framework determines sub-

pixel shifts between phase contrast images in a multi-tag fluorescence image stack. 

Subsequently, these shifts can be used to register the fluorescence images to co-

localise signals from different protein molecules or find molecular co-expression 

patterns for different biomolecules. Importantly, our system is highly effective on 

real as well as on synthetic data. It has been shown to be robust to luminance and 

contrast variations, yields a confidence value in the quality of alignment results, and 

removes the need for a biologist to eyeball all phase contrast images in the stacks 

to select an appropriate reference image. Our block-based registration algorithm 

ensures that the alignment is robust to any damage caused during sequential 

bleaching or washing to a small part of the tissue. On the synthetic data, the 

proposed framework gives almost perfect alignment, up to two decimal places sub-
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pixel accuracy for a selected set of parameters (see Table 6-1). 

After registration, selection of the RIMO image is the next step. We have shown 

that we can collect maximum amount of data from the image stack after registration 

using the RIMO image. All the images were registered to this reference image using 

a novel shift metric. The RAMTaB framework was successfully used to register 

several stacks and has been shown to be robust to brightness and contrast variations. 

We have shown in later studies that normal and cancer tissues can be discriminated 

on the basis of high dimensional protein co-expressions from different anti-body 

tags. 



153 

 

Chapter 7                                  
Conclusions and Future 
Directions 

This thesis proposed approaches for registration, disparity estimation and 

classification for the purposes of anomaly detection from multi-variate bioimage 

data. This chapter summarises and concludes the work presented in this thesis and 

discusses some future directions.  

In Chapter 1, we introduced the reader to the existing multi-modal techniques being 

used for analysing the quality of plants at research and commercial level. Most of 

the existing techniques at the research level do not use the full potential of multi-

modal images as their analysis is limited to one modality at a time. The techniques 

being used at the commercial scale use multi-spectral images of plants but these 

techniques are again not using the full potential of an important part of the 

electromagnetic spectrum i.e., thermal imaging for plant quality assessment. This 

is partly because of the difficulties involved in aligning images from thermal 

cameras to other modalities. The motivation behind our work was to explore the 

opportunities offered by combining thermal and visible light images for anomaly 

detection in plants. We also presented an introduction to the existing multi-channel 

fluorescence microscopy techniques and discussed their potential for better 

understanding of diseases which are developed at sub-cellular level. 

In Chapter 2, we reviewed the existing literature on registration, multi-modal 

registration, disparity estimation, and the use of multi-modal images for water stress 
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and disease detection. The review covered general approaches for registration of 

images and then we focussed our discussion on registration of multi-modal images, 

especially thermal and visible light images of diseased plants. We discussed 

limitations of existing approaches for registration of thermal and visible light 

images of diseased plants and emphasised the need for a new robust approach for 

registration of these kind of multi-modal images. In the same chapter, we also 

discussed the need for a robust registration method for registration of multi-channel 

fluorescence microscopy images. We reviewed some of the existing approaches for 

disparity estimation and discussed how disparity among the stereo image pair can 

be used for depth estimation. Finally, we reviewed the existing literature on water 

stress and disease detection in plants using thermal images. It was recognised that 

most of the literature on crop water stress was based on crop water stress indices, 

which are dependent on environmental conditions, which led us to a departure from 

these techniques and establish techniques which are less dependent on 

environmental conditions and can potentially be applied at commercial scale. 

Registration of multi-modal (thermal & visible light) images of diseased plants is a 

challenging task due to the fact that different parts of a diseased plant may express 

different temperature or colour in thermal and visible light images.  For example, 

there might be local variations within thermal image of a diseased plant which 

might not reflect in the corresponding visible light images if the disease symptoms 

have not yet become visible. In such cases, standard feature extraction methods are 

not able to produce stable features which can be used for registration purposes. 

Similarly, many robust similarity measures such as mutual information perform 

poorly because of these kinds of variations. Therefore, we proposed an alternative 
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approach employing silhouettes as global appearance instead of directly using 

intensity values for measuring similarity between two plant regions and using it for 

registration of plant regions in multi-modal images.  

A novel multi-scale method for silhouette extraction of diseased plants in thermal 

and visible light images was proposed in Chapter 3. The method demonstrated high 

registration accuracy in terms of coverage metric and DICE coefficient of the 

extracted silhouettes when compared with the ground truth. We showed that the 

proposed multi-scale method is highly accurate as compared to gradient based 

methods especially on thermal images. The silhouettes extracted using the proposed 

method were used for registration of multi-modal images of diseased plants and we 

found the registration results to be very promising. The proposed silhouette 

extraction method is not limited to plants and can be extended to silhouette 

extraction of single/multiple objects in images provided that the objects of interest 

do not overlap. 

In Chapter 4, we captured stereo images and calculated the disparity maps from 

stereo pairs of images for depth estimation purposes. We performed image 

rectification of the stereo images by identifying extrinsic marker points placed on 

the ground level. After image rectification, we compared six different algorithms 

for disparity estimation. In addition to the disparity estimation algorithms 

mentioned in Chapter 4, we also tested some other algorithms including 

[117,122,129] but these algorithms were found to be highly sensitive to the noise 

content in the diseased plants and,  therefore, we did not include their results in our 

analysis. Our goal was to estimate smooth and accurate disparity maps which were 

insensitive to background noise and noisy patterns in diseased images. The 
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proposed multi-resolution method (section 4.2.6) was computationally fast and less 

sensitive to the noise content while simultaneously producing smooth disparity 

maps at the expense of slightly higher RMS and B (bad matching pixels) compared 

to Graph-cut based [120] and non-local cost aggregation method [130]. When 

compared to the algorithm [137], proposed in a previous HDC project (CP37), the 

proposed method performed best in all aspects, i.e., RMS error, B and 

computational efficiency. 

Chapter 5 combines multi-modal features including depth for anomaly detection 

and consists of two parts: the first part proposed a classification approach to detect 

water deficient regions in canopies and the second part proposed classification 

approaches to detect diseased plants. For water deficiency detection, we were able 

to detect regions of the canopy, which were experiencing soil moisture deficit, by 

using a machine learning approach instead of stress indices, thus enabling us to 

identify water deficient regions without relying on environmental factors. Initially, 

the effect of reflected light and background information was reduced in order to 

extract features. In the second step, these features were classified using SVM, GPC 

and a combination of both classifiers. The colour information in visible light images 

provides information about the amount of reflected light intensity from the plant. 

Using this information, temperature values were scaled on the basis of reflected 

light. Plant regions can also be identified in the registered thermal image using 

colour information. This helped to discard temperature values belonging to the 

background and extract useful information from plant regions as identified in [96]. 

We also tested the proposed classifier on an artificially generated, mixed condition 

image. The classification results in this image showed a significant improvement 
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using the proposed feature set when compared to the thermal only feature set. We 

found the proposed set of features robust to the amount of input information and to 

mixed-condition images. In future, this work can be extended to identify canopies 

under multiple levels of stress. 

For the disease detection part, we proposed two different approaches: a two-step 

pixel-level classification approach and a region-based classification. Before 

application of these two approaches, we extracted plant regions from the 

background region. In the first classification approach, we combined information 

to first detect potential disease regions in a plant and then we classified the plant 

into diseased or normal plant based on the information collected from the potential 

disease regions. The second approach is very similar to the water deficient region 

detection, whereby we directly collect information from plant regions. The results 

showed that by combining colour information with thermal and depth information, 

we can increase the accuracy of disease detection. As a refinement step, we 

combined feature sets from the two approaches and showed that the new feature set 

produced more stable results.  

We also showed that our feature set was able to identify plants which were not 

inoculated with any disease but later captured the disease probably due to being in 

close proximity of other inoculated plants. Although we were able to detect diseased 

plants with an accuracy of about 95%, there is still need for improvement before 

this technique can be used at commercial scale. Although we can use the same 

technique across different crops for water deficiency detection purposes, our 

technique will need further development for disease detection on different plants 

and different diseases since different plants may respond differently in terms of 
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thermal signature to the same disease and therefore further testing is necessary 

before application. For our experiments, we collected the imaging data on a day-to-

day basis. There may be some diseases which show symptoms of disease just hours 

before it visibly appears, and so the time interval between consecutive images may 

need to be reduced. 

Chapter 6 proposed an approach for registration of multi-channel fluorescence 

microscopy images using the corresponding phase contrast images. The presented 

approach used mutual information as a similarity measure and proposed a block 

based method for fast registration with sub-pixel accuracy. In addition, we proposed 

a method for selection of reference image with maximal overlap (RIMO) amongst 

dozens of images in a stack which when used as a reference image causes minimum 

amount of information loss during registration process. Our results showed that the 

amount of information loss was minimal when we chose RIMO to register a multi-

channel stack of images. The current method to find RIMO is limited to situations 

where only translations define the image transformation.  

The images registered using the proposed method were used in later studies [180–

182,184,185] which demonstrated the heterogeneity of cancer cells and showed 

different molecular co-expression patterns and cell phenotypes. Similar studies on 

a large data set will help us to better understand cell phenotypes which are involved 

in the development and progression of cancer. In future, we can introduce more 

complex transformations to the method to select RIMO. In addition, we can 

investigate different data normalisation techniques to study how intensity in 

fluorescent images from different channels relates to the actual signal, resulting in 

not only helping us to better understand protein-protein interactions but also 
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removal of artifacts such as auto-fluorescence. Another interesting aspect can be 

the study of behaviour of different cell segmentation methods on fluorescence 

images and the temporal analysis of the data from TIS machine.  

Concluding Remarks 

We have shown in this thesis that combining information from multiple modalities 

increases the accuracy of classification algorithms for biomedical anomaly 

detection. We presented algorithms which can be used to classify individual plants 

and canopy regions with anomalies at plant and canopy level instead of following 

the classical approach of studying disease development in individual leaves. There 

is a lot of further work to be done for validation and scaling-up before such 

detection systems can be installed in a commercial setting, for instance on rigs 

above the crop for anomaly detection. The approaches developed in this thesis can 

be rigorously tested on multiple types of disease with multiple control treatments. 

However, as the imaging technology advances and becomes available at cheaper 

price, we can expect to see these kinds of systems being installed in glass houses 

and commercial crops very soon. 

The TIS machine uses multi-channel fluorescence microscopy technique to identify 

protein complexes in tissues at subcellular level and hence can be used to study cell 

behaviour. This can help us better understand and subtype certain diseases which 

are caused by malfunctioning of the cell, for example cancer. Similarly, temporal 

analysis of tissues can help us to identify origin of certain types of cells e.g., beta 

cells during pregnancy. The heterogeneous nature of certain cancer types e.g., 

breast cancer makes it difficult to decide a particular therapy to treat the disease. 

Large scale TIS studies may reveal certain biomarkers common to specific cancer 
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types, thus making the treatment decision process targeted to those biomarkers. 

The techniques developed in this thesis can be applied to multi-modal image 

analysis problems in several other fields. The silhouette extraction method 

developed for estimating the silhouette of plants can be extended to segmentation 

of objects in noisy images where it is very difficult to segment the object of interest 

because of blurred boundaries for example segmentation of nuclei in microscopic 

images. Similarly, the multi-modal registration algorithm can be extended to 

registration of any kind of multi-modal image registration problem where the 

objects of interest do not occlude each other. The multi-channel image registration 

algorithm RAMTaB can not only be used to align images from several different 

channels/modalities, but also can be used to find the best reference image (RIMO) 

and to automatically test the quality of registration. We have found that many 

existing disparity estimation algorithms which produce excellent results on test data 

set fail to produce good quality results on real data in the presence of noise. The 

disparity estimation algorithm proposed in this thesis can be applied to estimate 

depth information in the presence of noise, especially to the cases with salt and 

pepper noise. Finally, we have shown that by combining multi-modal/channel 

image data the accuracy of detection of anomalies increases, therefore this idea can 

be extended to automatically scan whole plant canopies. 
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