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ABSTRACT

We study infinite-dimensional Lie algebras, with
particular regard to their subideal structure.

Chapter 1 sets up notation.

Chapter 2 gives an algebraic treatment of Mal'cev's
correspondence between complete locally nilpotent
torsion-free groups and locally nilpotent Lie algebras
over the rational field. This enables us to translate
certain of our later results into theorems about groups.
As an application we prove a theorem about bracket
varieties.

Chapter 3 considers Lie algebras in which every
subalgebra 1is an.n-step subideal and shows that such
algebras are nilpotent of class bounded in terms of n.
This is the Lie-theoretic analogue of a theorem of
Je.E.Roseblade about groups.

Chapter 4 considers Lie algebras satisfying
certain minimal conditions on subideals. We show that
the minimal condition for 2-step subideals implies
Min-si, the minimal condition for all subideals, and
that any Lie algebra satisfying Min-si is an extension
of a ﬁ] ~algebra by a finite-dimensional algebra (a

SI-algebra is one in which every subideal is an ideal.)



We show that algebras satisfying Min-si have an
ascending series of ideals with factors simple or
finite-dimensional abelian, and that the type of such a
series may be made any given ordinal number by suitable
choice of Lie algebra. We show that the Lie algebra of
all endomorphisms of a vector space satisfies Min-si.
As a by-product we show that every Lie algebra can be
embedded in a simple Lie algebra. Not every Lie algebra
can be embedded as a subideal of a perfect Lie algebra.

Chapter 5 considers chain conditions in more
specialised classes of Lie algebras. The results are
applied to groups.

Chapter 6 develops the theory of éj-algebras,
and in particular classifies such algebras under
conditions of solubility (over any fleld) or finite-
dimensionality (characteristic zero). We also classify
locally finite Lie algebras, every subalgebra of which
lies in 9] s, over algebraically closed fields of
characteristic zero. :

Chapter 7 concerns various radicals in Lie algebras.
We show that not every Baer algebra is Fitting answering
a question of B.Hartley. As a consequence we can exhibit
a torsion-free Baer group which is not a Fitting group

(previous etamples have all been periodic). We show that



under certain circumstances Baer implies Fitting (for

groups or Lie algebras). The last section considers

Gruenberg algebras.

Chapter 8 is an investigation parallelling those

of Hall and Kulatilaka for groups. We ask: when does

an infinite-dimensional Lieialgébra have an infinite-

dimensional abelian subalgebra? The answer is: not

always. Under certain conditions of generalised

solubility the answer is 'yes' and we can make the

abelian subalgebra in question have additional properties

(e.g. be a subideal). The answer is also shown to be

'ves' if the algebra is locally finite (over a field of

characteristic zero). This enables us to prove a

theoren concerning the minimal condition for subalgebras.
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Chapter One

Notation and Terminology

Throughout this thesis we shall be dealing mainly
with infinite~dimensional Lie algebras. Notation and
terminology in this area 1s non-standard; the basic
concepts we shall need are dealt with in this preliminary
chapter. In any particular situation all Lie algebras
will be over the same fixed (but arbitrary) field k;

though on occasion we may impose further conditions on k.

1.1 Subideals

Let L be a Lie algebra (of finite or infinite
dimension) over an arbitrary field k. If X,y € L we
use square brackets [x,y] to denote the Lie product of
x and y. If H is a (Lie) subalgebra of L we write
H <L, and if H is an ideal of L we write H < L. The
symbol € will denote set-theoretic inclusion.

A subalgebra H < L is an gscendant subalgebra if

there exists an ordinal number o and a collection

(Hy: 0 < L2 o} of subalgebras of L such that H = H,

Hy =L, H 9H , for all 0 < L < 0, andHh.-.o(L()hHo(
for 1imit ordinals A < o. If this is the case we write



H <° L. H asc L will denote that H <° L for some o.
If H <" L for a finite ordinal n we say H is a

subideal of L and write H si L. If we wish to empha-
gsize the role of the integer n we shall refer to H as

an n-step subideal of L.

If A,B<L, X&L, and a,b € L we define <X> to
be the subalgebra of L generated by X; [A,B] to be the
subalgebra generated by all products [a,b] (a€A, DEB);
[a, B] = [[A,,_4B],B] and [A,B] = &; [a, p] =
[[a,n_lb],b] and [a,ob = a. We let <X*> denote the

ideal closure of X under A, i.e. the smallest subalgebra

of I, which contains X and is invariant under Lie multi-

plication by elements of A.

1.2 Derivations

A mgp d: L -+ L is a derivation of L if it is

linear and, for all x,y€ L,

[x,y]d = [xd,y] + [x,yd].
The set of all derivations of L forms a Lie algebra
under the usual vector space operations, with Lie product
Edl,dz] = d,d, - d,4;. We denote this algebra by der(L)
and refer to it as the derivation algebra of L. If X€L

the map ad(x): L - L defined by

v.ad(x) = [v,x]  (veL)



is a derivation of L. Such derivations are called

inner derivations. The map x -+ ad(x) is a Lie homo-

morphism L - der(L).

A derivation d of L is a nil derivation if for any

x€ L there exists an integer n > O such that xa™ = O.
anlke R has characliicle O
If d is nil/then

@
exp(d) = 3 ih-dp

n=0 B*
is a well-defined linear transformation of L, and is in

fact an automorphism of L (see Hartley [14] p.262). If
Xyse+e,X,€L are such that ad(xi) is nil (i = 1,...,r)
then the map

exp(ad(xl))...exp(ad(xr))
is an inner automorphism of L.

1.3 Central and Derived Series

1™ will denote the n-th term of the lower central
series of L, 80 that L' = L, 10+ = [t*,1]. (0 (for
ordinals «£) will denote the «-th tefm of the (transfinite)
derived series of L, so that L(O) = 1, n{<*1) -
vELcﬁ),L(4)], and L(h) = f\IL(£) for limit ordinals A\.
SI(L) will denote the ;féﬁ term of the (transfinite)

upper central series of L, so that Egl(L) is the centre

of L, ¥ ,@/S 1) = 5w, ¥a@ = }(JAXOJL)
for limit ordinals A.
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?, L(i), and S;(L) are all characteristic ideals
of L in the sense that they.are invariant under deri-
vations of L. We write I ch L to mean that I is a
characteristic ideal of L. The_important property of
characteristic ideals is that T ch K 9@ L implies I 94 L
(see Hartley [14] p.257).

L is nilpotent (of class < n) if Il = 0, and is

gsoluble (of derived length < n) if L(®) _ o,

1.4 Classes of Lie Algebras

We borrow from group theory the very useful
'Calculus of Classes and Closure Operations' of P.Hall [10].

By a class of Lie algebras we shall understand a

class .33 in the usual sense, whose elements are Lie
algebras, with the further properties

c1) {o} € X ,

2) L€ X andK=ZL implies K€ .
Familiar classes of Lie algebras are:

Cy = the class of all Lie algebras
= abellan Lle algebras
= nilpotent Lie algebras
= nilpotent Lie algebras of class < ¢
finite-dimensional Lie algebras
= Lie algebras of dimension < m

= finitely generated Lie algebras

O MW= =G



g;b = Lie algebras generated by < r elements.
We shall introduce other classes later on, and will
maintain a fixed symbolism for the more important classes.
The symbols 36 ,ry}’ will be reserved for arbitrary
classes of Lie aigebras. Algebras belonging to the
class EE, will often be called Qé-algebras.

A (non-commutative non-associative) binary operation
on classes of Lie algebras is defined as follows: 1if
;{, and qé/ are any two classes let :EQé'be the class
of all ILie élgebras L having an ideal I such that I €& :Qg
and L/I € qé/. Algebras in this class will sometimes

be called 3€-by—l(2a1gebras. We extend this definition
to products of n classes by definiﬁg
Xy X o= (K. FE DED).
We may put all EEi = EE and denote the result by SEIR
Thus in particular C}Ln is the class of soluble Lie
algebras of derived length < n.
(0) will denote the class of O-dimensional Lie

algebras.

1.5 Closure Operations

A closure operation A assigns to each class E¥5

another class Auié (the A-closure of 36) in such a way
that for all classes 3&, qf}’ the following axioms are
satisfied:



01) A(0) = (0)

02) X < A X

03) A(AX) = AX

o) X <Y implies AX <aY.
(< will denote ordinary inclusion for classes of Lie
algebras). £ is said to be A-closed if K = A ¥.
It is often easier to define a closure operation A by
specifying which classes are A-closed. Suppose ,6 is
a collection of classes such that (0) € 2? and !g is
closed under arbitrary intersections. Then we can
define, for each class .% , the class

a¥ = MYed: X1y

(where the empty intersection is the universal class
(7 ). 1t is easily seen that A is a closure operation,
and that % is A-closed if and only if %é— g. Conversely
if A is a closure operation the set Sg of all A-closed
classes contains (0), is closed under arbitrary inter-
sections, and determines A.

Standard examples of closure operations are
s, I, @, &L, No, L defined as follows: I is S~closed
(I-closed, Q-closed) according as every subalgebra
(1deal, quotient algebra) of an ¥ -algebra is always an
% -algebra. EE is E-closed if every extension of an
,%—algebra by an %-algebra is an %—algebra,



equivalently if 5€ = %2. % is No-closed irf

I, 3L, I, Je X implies I+J€ X . Finally
LEL % if and only 1f every finite subset of L is
contained in an %-subalgebra of L. Lz is the

class of locally %-algebras.

Clearly sX consists of all subalgebras of
%-algebras, I % consists of all subideals of
%-—algebras, and Q % consists of all epimorphic images
of z—algebras; while T X = a}.n and consists of
all Lie algebras having a fini?.:lseries of subalgebras
0=1L, <L
(0 <1 <n-1) and Li+1/Li e X

Leee L =1L
with Li q Li+1
(0 <1 <n-1).
Thus FOL is the class of soluble Lie algebras,
L 7(1 the class of locally nilpotent Lie algebras, and
L(3' the class of locally finite (-dimensional) Lie
algebras.
Suppose A and B are two closure operations. Then
the product AB defined by AB I = A(B%) need not be a
closure operation ~ 03 may fail to hold. We can define
fA,B! to be the closure operation whose closed classes
are those classes % which are both A-closed and

B-closed. If we partially order operations on classes

by writing A < B if and only if A% < B-z for any
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class 3E , then {A,B}] is the smallest closure operation
greater than both A and B. It is easy to see (as in
Robinson [30] p.4) that AB = |A,B} (and is consequently
a closure operation) if and only if BA < AB. From this
it is easy to deduce that ES, EI, QS, QI, LS, LI, EQ, 1@

are closure operations.

1.6 Ascending Series

Let o0 be any ordinal number. An ascending series

of type o of a Lie algebra L is a set (L& f

) 4<o ©

o = L, Lc( <4 Lc£+1

(0 <L <0), L, = UTL, for 1imit ordinals A < 6. The
h A o(()\o( -

Lie algebras L£+1/L& are the factors of the series; if

subalgebras of L such that Lo =0, L

every factor lies in the class J€ then the series (Lé)

is an ;E~series for L. If further L& 4 I, for each

£ < o then (L ) will be called an ascending series of

ideals of L.

(Eggg: we could define more general types of
series, as in Robinson [30] p.5ff. - but we restrain
ourselves from doing so.)

We may now define another closure operation ﬁ ;
ﬁ ;E consists of all Lie algebras having an ascending

%-—series.



Chapter Two

A Correspondence between
Complete Tocally Nilpotent Torsion-free Groups and
Tocally Nilvotent Tie Algebras

In [26] A.I.Mal'cev proves the existence of a
connection between locally nilpotent torsion~free groups
and locally nilpotent Lie algebras over the rational
field, which relates the normality structure of the
group to the ideal structure of the Lie algebra. This
connection is essentially the standard Lie group -~ Lie
algebra correspondence in an infinite-dimensional
situation. 1lal'cev's treatment is of a topological
nature, involving properties of nilmanifolds; but since
the results can be stated in purely algebraic terms, it
is of interest to find algebraic proofs. In [24,25]
M.Tazard outlines an algebraic treatment of Mal'cev's
results, using 'typical sequences' (suites typigues) in
a free group. Here we present a third approach, via

matrices.
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2.1 The Campbell-Hausdorff Formula

Let G be a finitely generated nilpotent torsion-
free group. It is well-known (Hall I:ll] p.56 lemma 7.5,
Swan [Ltl]) that G can be embedded in a group of (upper)
unitriangular n x n matrices over the integers Z for
some integer n > O. This in turn embeds in the obvious
manner in the group T of unitriangular n x n matrices
over the rational field @. « ILet U denote the set of
n x n zero-triangular matrices over @ . With the
usual operations U forms an associative @. ~algebra,
and this is nilpotent; indeed U™ = O.

For any te€T we may use the logarithmic series to
define

log(t)

]

log(1+(t-1)) ”
= (t-1) - &L, “31)3- (1)

for if t€ T then t-1eU so (t-1)® = 0, and the series (1)
has only finitely many non-zero terms. If t€&€T then
log(t) € U.

Conversely if u€U we may use the exponential
series to define

exp(u)=1+u+-2—.-+-3-1-+... (2)

and exp(u) €ET if ueU.

Standard computations reveal that the maps

log: T =» U and exp: U - T are mutual inverses; in



11

particular they are bijective.
U can be made into a Lie algebra over @ by
defining a Lie product

[w,v] = uv-vu (u,veEvU). (3)
As usual we define [ul,...,um] (uie U, 1 =1,e0.,m)
inductively to be [[ul,...,u _1],um] (m > 2).

Lemma 2.1.1 (Campbell-Hausdorff Formula)

If x,y€U then
log(exp(x).exp(y)) = x + v + 5[x,¥] + -llg[x,y,y] + e
where each term is a rational multiple of a Lie product
[zl,...,zm] of length m such that each z; is equal
either to x or to y, and such that only finitely many
products of any given length occur.

The proof is well-known, and can be found in
Jacobson [_17] p.173.
Corollary

1) 1If a,b€U and ab = ba then log(exp(a)exp(b))
= a + b.

2) If t€T, n€ & then log(t™) = n.log(t).

These may also be proved directly.

A group H is said to be complete (in the sense of
Kuro¥ [23] p.233) if for every n eZ , DE€H there exlsts
g€H with g® = h.
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H is an R-group (Kuros [23] p.242) if g,h¢H and
ne Z , together with g® = b®, imply g = h.

If H is a complete R-group, hé H, and q & (3, then
it is easy to see that we may define h% as follows: if
q = m/n, m,n GZ, then h? is the unique g€ H for which
g’ = h™. FPFurther, if hE€H, q,re@, we can show that
(h?)T = n%, n¥T = (Y @ET).

Lemma 2.1.2

T is a complete R-group.
Proof:

1) T is complete: let t€T, n€Z. Define
s = exp(%log(t)) and use corollary to lemma 2.1.1 to
show that s" = t.

2) T is an R-group: suppose s8,t&T, n€ Z , and

s™ = t®. Then n.log(s) = n.log(t) so s = t.

This gives us easy proofs of two known results:

Proposition 2.1.3

Let H be a finitely generated nilpotent torsion-
free group. Then H 1s an R-group, and can be embedded
in a complete R-group (which may be taken to be a group
of unitriangular matrices over d:l ).

Proof:
It suffices to note that a subgroup of an R-group

is itself an R-group.
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2.2 The Matrix Version

Suppose T is as above, and let G be a complete
subgroup of T. Let U be equipped with the Lie algebra
structure defined by (3). Define two maps b ’ ¥ as

follows:

‘7: G -U ’ gb = log(g) (géG). (u-)

Let L = Gb =‘{gl7 : 8€G}:

BiLoo , ¢¥-exp@) (leu). (5)

The aim of this section is to prove

Theorem 2.2.1

With the above notation,
1) The maps b , ﬁ: are mutual inverses.
2) If H is avcomplete subgroup of G then H!7 is a
Lie subalgebra of L. In particular L is a Lie algebra.
3) If M is a subalgebra of L then M*t is a complete
subgroup of G.
L) If H is a complete normal subgroup of a complete

subgroup K of G, then Hb is an ideal of K b .

5) If M is an ideal of a subalgebra N of L, then M# is

a complete normal subgroup of Nﬁi

The proof requires several remarks:
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Remark 2.2.2

L is contained in a nilpotent Lie algebra, since U
is nilpotent as an associative algebra and hence as a Lie
algebra.

Remark 2.2.3

A as suggested
A)b _ Agb .

Let g€G, Ac (X , and define g
immediately before lemma 2.1.2. Then (g
For let A = m/n, m,ng Z. By definition (g}‘)n = g".
Taking logs and using part 2 of the corollary to lemma

2.1.1 we find n.log(gh) = m.log(g). Thus we have

(1)Y= 108(g") = Liog(s) = re? .

Remark 2.2.4

Denoting group commutators by round brackets (to

avold confusion with Lie products) thus:
(x,5) = x" 1y txy
and inductively (xl,...,xm) = ((xl,...,xm_l),xm) then
the Campbell-Hausdorff Formula implies that for
gl,...,gme'G,
(gl,...,gm)b = [gf ,...,gg ] + i P,

where each Py 1s a rational linear combination of
products [gf ,...,gf ] with w > m and ihe.il,...,m} for
1 <AL W, stch thatweach of 1,...,m occurs at least

once among the i, (1 <A < w). The exact form of the

Pw is determined by the Campbell-Hausdorff Formula.
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The proof 1is by induction on m and can be found in
Jennings [19] 6.1.6.
Remark 2.2.5

We now describe a special method of manipulating

b

expressions with terms of the form h , Wwhere h lies

in some subset H of G, which will be needed in the sequel.

Suppose we have an expression

b 4 3 A Cy (xjé@) (6)

is a Lie product of length > r of elements

h

where each C
b J
of H « We can write this as
b

h? + zpuD, + 3YE (/uj,-z)ie@)
where the Dj are of length r, the E; of length 2> r+l.
Take one of the terms Dj’ say

b b
D=D1= [hl ,too,hr]o
By remark 2.2.4 we may replace D by the expression
b

(hyyeeesh,) + 3 L Fy (ocke@)

where each F

k
ofHb « Let (hl""’hr) = g € G. By the Campbell-

is a product of length > r+l of elements

Hausdorff Formula and remark 2.2.3
mY = e 4 zge (e @)

where the Ge are products of length > 2 of elements

b or to gb . But gb =D -3 Jka,

b

each term of which is a product of > r elements of H"” .

equal either to h

Thus we may remove the terms Dj one by one to
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obtain a new expression for (6), of the form
A A
1l s\b ;
(hg1 ceeBg )+ 3 vyHy (Aj,yie@)
where the gJ are group commutators of length r in
elements of H, and the Hi are products of length > r+l

in elements of Hb .

We are now ready for the

Proof of theoren 2.2.1

1) Follows from the definitions of b, # .

2) Any element of the Lie algebra generated by Hb is

of the form (6) with r = 1, h = 0. Using remark 2.2.5

over and over again, we can express this element as
m)¥ v 30,9, (5,e@Q)

where, since H is a subgroup of G and is complete,

h' € H; and the Ji are products of length > c, the class

of nilpotency of U. But then Ji = 0, and the element

under consideration has been expressed as an element of

Iib . ThusI{b is a Lie algebra. In particular so is

L = Gt7 .

3) Let mne u, r¢Q. Ve must show that (uf)* and
w*n¥ are elements of M#t . Now (m#)K = (Amfﬁge M*t .
Further, the Campbell-Hausdorff Formula implies that
(m#n#)b =m+n + %[m,n] + «eo & M. By part (1) of
this theorem m#n#"L € M# .
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4) ILet h€H, kéeK. We must show that [h",k"]enl’.

We prove, using descending inductibn on r, that any
product of the form [a; ,...,a;] with aJeK for all jJ
and at least one a4€ H is a member of Hb . This is
trivially true for r > ¢, the class of nilpotency of U.
The transition from r+l to r follows from remark 2.2.4,
noting that if a group commutator (kl,...,km) with all
kje K has some element kie H, then ‘the whole commutator
lies in H (since H is a normal subgroup of K). The
case r = 2 gives the result required.

5) Let m&M, neN. Then (m#,n#)b = [m,n] + products
of length > 3 of elements of M and N, each term
containing at least one element of M (Remark 2.2.4).
Since M is an ideal of N each such term lies in M, so
that (m#,n#)be M. By part (1) (m#,n#) € M# , Wwhence

# #

M is normal in N .

2.3 Inversion of the Campbell-Hausdorff Formula

A given finitely generated nilpotent torsion-free
group can in general be embedded in a unitriangular
matrix group in many ways. In order to extend our
results to locally nilpotent groups and Lie algebras we
need a more 'natural' correspondence. This comes from a
closer examination of the matrix situation; the method

used is to effect what Lazard [25] refers to as
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'inversion of the Campbell-Hausdorff formula'. To
express the result concisely we must briefly discuss
infinite products in locally nilpotent groups. The
set-up is analogous to that in ILie algebras with regard
to infinite sums (such as the right-hand side of the
Campbell-Hausdorff formula) which make sense provided
the algebra is locally nilpotent; for then only finitely
many terms of the series are non-2zero.

Suppose we have a finite set of variables ixl,...,xf}.

A formal infinite product

® My
w(xl,...,xf) =:ID(') Ky

is said to be an extended word in these variables if

El) A€ @ for al1 i,
E2) Each K; is a commutator word Ki(xl”"’xf) =

(le,...,xj ) (r depending on i) in the variables
r

XyseeerXps
E3) Only finitely many terns K, have any given
length r.
Suppose G is a complete locally nilpotent
torsion-free group, and ByseeesBp € G. G is a complete
R-group (Proposition 2.1.3) so that

Ki Ki
(Ki(gl"'°’gf)) = (gjl’.'.’gjr)

is defined in G. The group H generated by gl,...,gf is
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nilpotent of class c¢ (say) so if K; has length > ¢
Ki(gl,...,gf) = 1. Thus only finitely many values of
(Ki(gl,...,gf))K:l # 1 and we may define w(gy,+e+,8)
to be the product (in order) of the non~1l terms. Thus
if w (xl,...,xf) is an extended word, and G 1s any
_complete locally nilpotent torsion-free group, then we
may consider & to be a function « :Gf - G,

Similarly we may define an extended Lie word to be

a formal sum
% )= 3
W es e = 2
1reeeoVe) = 20 ATy
where
D1) M€ Q zor all jJ, ,
D2) Each Jj is a Lie product Jj(wl""’we) =
[wil,...,wi ] (s depending on J) in the variables
s
wl,..o,we’

D3) Only finitely many terms J, have any given

J
length s.

Then if L is any locally nilpotent Lie algebra
over @ , W& may consider K to be a function

y: Le”LQ

Let us now return to the matrix group / matrix
algebra correspondence of section 2.2. Suppose we

'1ift' the Lie operations from L to G by defining
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rg = (rg?)*
g+h = (gb+hb)#
[e,n] [gb,hb]#
(g,h€a, Aé(). Then G with these operations forms

]

a Lie algebra which we shall denote by ot (¢G). Similarly
we may 'drop' the group operations from G to L by
defining

On = @*ahP

N (gh)b
(,meL, AEQR). L with these operations forms a
complete group 9 (L). I, (G) is isomorphic to L and
%(L) is isomorphic to G.

The crucial observation we require is that these

operations can be expressed as extended words (resp.
extended Lie words). This 1s Lazard's 'inversion'.

TLemma 2.3.1

b

Let G be a complete subgroup of T, and let L = G
as described in section 2.2. Then there exist extended
words Ek(x) (AQ), olx,y), m(x,y) such that for g,h€G,

re @,

Ag

]

£, (g)
o(g,h)
[gthJ = w(g,h)

(where the operations on thé left are those defined above).

g+h

1l
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Further there exist extended Lie words o, (x) (A€®),
M(x,¥), v(x,¥) such that
e = a (L)
In ,M.(Q,m)
(¢,m) = v(é,n)
(Q,m €L, AC @) (operations on left as above).

1!

i

These words can be taken to be independent of the

particular G, I chosen.

Proof:
1) Eh:
(hgb)# = exp(A.log(g)) = g

the required properties.

A A

, 8O Sh(x) = x" has
2) o:

Here we must do more work. We show that there
exist words ci(x,y) satisfying

01+1(x,y) = oi(x’y)Yi+1(x’y)

OO(XQY) =1

where Yi+1 is a word of the form

A A

1 u ,

Ky “eeeKy (r4€ Q2 <3 <)
with each K'_J a commutator word (z:j pesesZy ) of length
1 i+l

i+1 with 2z, = x or y (1 < k < i+1); such that if G is

i

a complete subgroup of the group of ¢ x ¢ unitriangular

matrices over @. (¢ > 1) then
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g+h = o (g,h) (g,h €G).
The existence of these words is a consequence of

the manipulation process described in remark 2.2.5.

This enables us to take an expression of the form

n? 43 Oy (e ®) (7

where h lies in some subset H of G, and the Cj are

Lie products of length > r in elements of Hb, and
replace it by an expression

(hgy “e..8) + 3 v,Hy (/Aj, 14€ Q)

where the gJ are commutator words in elements of H of
length r, and the Hi are Lie products of elements of Hb
of length > r+l.

We obtain the oi by systematically applying this
procedure to the expression gb + hb « We choose a total
ordering <« of the left-normed Lie products in x,y in
such a way that the length is compatible with the
ordering. ©Next we apply the process of section 2.2.5

b b

to the expression g” + h (with g playing the role of

h in (7), Kl =1, C, = hb ) and at each stage in the

1
process

1) Express all Lie products in gb ,hb as sums of
left-normed commutators (using anticommutativity and the
Jacobi identity),

2) Collect together all multiples of the same
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left-normed product,

3) Operate on the term D (in the notation of
Remark 2.2.5) which is smallest in the ordering <«.

At the i-th stage we will have expressed g +h in
the forn

(o) (g,1))° + 2 0,1, (0,6 &)

where ci is a word in g, h and the terms Ik are Lie
products in gb,hb of length > i. At the (i+l)-th

stage this will have been modified to
A

A b
1 m
(03 (:h)egy Teevgy ™) + 243 (He B
where the g4 are group commutators in g,h of length
i+1, the hi.G QQ', and the Jp are Lie products in
gb ’ hb of length > i+l.

We put

A A
1 m
Yi+1(g)h) = gl 0"gm ’

o, ,1(8n) = o,(g,h)yvy,4(g,h)
co(g,h) = 1.

It is clear from the way that the process 2.2.4
operates that the form of the words Oy Yy depends only
on the ordering <« (and the Campbell-Hausdorff formula)
so that we can define the required words oi(x,y) and
Yi(x,y) independently of G. '

Now 1f G consists of ¢ x ¢ matrices, then at the

c-th stage we have



‘ gb +nY = (oc(g,h))b + 3 ¢pr (¢p€ Q)

where the terms Kp are of length > ¢ so are O. Thus
g+n = (¢PnP ) = o_(g,n)
as claimed.

We now define
@

o(x,y) = TT oi(XQY)'

If G is a complete group of unitriangular c x c
matrices over d;L sy then G is nilpotent of class < ¢,
so for all §j > O oc+j(g,h) = 1, so o(g,h) = oc(g,h).
Hence for any such G we have g+h = o(g,h) as required.
3) mw:

Similar proof. Work on the expression

lb + [gb,hb]
(which equals [gb,hbJ) with 1 playing the role of h
in (7), Ao =1, C = [gb,hb].

L) 8, ¢

2 = (@M - tog(en@) = 2L (de1) 80
bk(x) = Ax will do.
5) m:

Put M(x,y) =x +y + %[x,y] + ..o as in the
Campbell-Hausdorff formula.
6) v:

Follows at once from the existence of 6, and /4 .

The lemma is proved.
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To illustrate the method, we calculate the function
g up to terms.of length 3; To this length the Campbell-
Hausdorff formula becomes
(gn) = g” + nb + L(g%n] + S([eb,nb,n] « [v0,8b,eb])
and thus
(7P = [x,5'] + %([xb,yb.xb] + [, vb,ybD).
We choose left-normed commutators as folléws:
o’ « v « [aP,0b) « [a¥,0%,aF] « [ab,bb '],
Now (a+b)b = ab+bb by definition
= (ab)b - %[ab,bb] -fﬁ([ﬁb,bb,bb] - [éb,bb,ab])
= (ab)b - :-zl-f(a,b)b - %( [ab,bb,ab] + [ab,bb,bb],)}
+ &5([a¥,0?,8b] - [a0,00,00])
(ab(a,0) 2P - L([(a0) , (a,2)72/2 7))
+ %([ab,bb,ab] + [éb,bb,bb])
+ f?([ab,bb,ab] - [ab,bb,bb])
= (ab(a,b)_l/z)b - %?([gb+bb, —%[ab,bbﬂ)
+ %([éb,bb,ab] + [ab,bb,bb])
+ %E([ab,bv,ab] - {ab,bb,bb])
= (ab(a,b)-l/z)b+ fﬁ[ab,bb,a?] - %ﬁ[gb,bb,bb]
(ab(a,0)"2(a,b,8) /22 (a,b,0)"2/12) b |

]

il

Thus up to terms of length 3

o(a,b) = ab(a,b)-l/z(a’b’a)l/lz(a,b,b)-1/12.
Similarly we find

7(a,b) = (a,b)(a,b,a)"Y/2(a,b,b) /2,
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2.4 The General Version

As remarked in section 2.3, if L)(xl,...,xf) is
an extended word and G any complete locally nilpotent
torsion-free group, then & can be considered as a
function Gf -+ G. Similarly for extended Lie words and
locally nilpotent Lie algebras over d:L. On this basis
we can establish a general version of Mal'cev's

correspondence as follows:

Theorem 2.4.1

J.et G be a complete locally nilpotent torsion-free
group. Define operations on G as follows:

1r A6 @, g,h € G set

rg = &, (g)
g+h = o(g,h)
[g,hj = 7(g,h).

With these operations G becomes a Lie algebra
over @, , which we denote by Z (a). I,(G) is a
locally nilpotent Lie algebra.

Conversely, let L be a locally nilpotent Lie
algebra over @ . Define, for A¢ @, Z,m €L,

operations:

¢ =5, ()
ém =/u(é,m).

With these operations I, becomes a complete locally



27

nilpotent torsion-free group, which we denote by E;(L).
Proof:

The axioms for a Lie algebra can be expressed as
certain relations between the functions gh, G, o
involving at most 3 variables. Thus 1f these relations
can be shown to hold in any 3-generator subgroup of G,
they.hold throughout G. But, as remarked earlier, any
finitely generated nilpotent torsion-free group can be
embedded in a group of unitriangular ¢ x ¢ matrices over
(Q for some integer ¢ > O (Hall [11], swan [ul]). But
the required relations certainly hold in this situation,
since by the construction of 5%! 0, m they express the
fact that the logarithms of these matrices form a Lie
algebra under the usual operations - a fact which is
manifest.

Any finitely generated subalgebra of 2:(G) is
the image under Z of the completion H of some finitely
generated subgroup H of G. H is nilpotent, so by Kurog
[?5] p.258, H is also nilpotent. The form of the words
EA’ o, 7 now ensures that the original finitely generated
subalgebra of 02: (¢) is nilpotent. Hence I(G) is locally
nilpotent.-

In a similar way the axioms for a complete group

hold in L if they hold in any finitely generated subalgebra.
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Now a finitely generated nilpotent Lie algebra is
finite-dimensional (Hartley [14] p.261) and any finite-
dimensional nilpotent Lie algebra over dl can be embedded
in a Lie algebra of zero-triangular matrices over Q;l
(Birkhoff [3]). We may therefore proceed analogously

to complete the proof.

We next consider the relation between the structure
of G and that of <L (@); also L and % ().
Theorem 2.4.2

Let G, H be complete locally nilpotent torsion-free
groups; let L be a locally nilpotent Lie algebra over ¢Q .
Then

1 §(L@e) =a L(G@) =L

2) H is a subgroup of G if and only if

L ¢ L.
3) H is a normal subgroup of G if and only if
I@m <« L.

4) #:6 - H is a group homomorphism if and only
i #: J(G) »JL(#) is a Lie homomorphism. The kernel of
g is the same in both cases.

5) If H is a normal subgroup of G, then

L (o/m) = Liey/ L.
(Note: using part (1) we can easily recast parts

(2), (3), (), (5) in a '5;' form instead of an ')ﬁ' form. )
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Proof:
1) Let g,h € G. We must show that for A € (D)
g" = &, (g)
gh = u(g,h)
where 5h,/k are defined in terms of the Lie operations

of ﬁ:(G). Now bk(g) = \E = Sh(g) = gk. To show that
gh = /~(g,h) we may confine our attention to the comple-
tion of the group generated by g and h. Thus without
loss of generality G is a group of unitriangular matrices
over (L .
Now by definition
Mm(g,h) =g +h+ %[g,h] + eee
and +, [ ’ ] are defined in EL(G) by
gh = (ghenb)¥
] = (e *T"
80
/L(E,h)b = gb + hb + %[gb,hk] + e
= (gh)b by Campbell-Hausdorff
so m(g,h) = gh as required.
The converse is similar and will be omitted.
2) and 3) are clear from the form of the functions
EAR Ty O, Gh,/b, Yo
L) Follows from the observation that group homomorphisms

(resp. Lie homomorphismS) preserve extended words (resp.
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extended Lie words). The kernels are the same since
the identity element of G is the zero element of JC(G).
5) We first show that H-cosets in G are the same as
L (H)-cosets in l:(G).

Let x€G, z€&€Hx. Then 2z = hx for some h&€H, and
hx = h + x + %—[h,x] + cee € ot(H) + x since he:C(H)
which is an ideal of L (G). Thus Hx & oL(H) + X.

Now let ye L(H) + x. Then y = h+x for some h & H,
and h + X = h.x.(h,x)'l/z... € Hx since H is a normal
subgroup of G. Therefore I(H) + x £ Hx.

Hence HX = 3:(H) + X . The operations on the
cosets are defined by the same extended words, and the

result follows.

Remark

In categorical guise, let g% denote the category
of complete locally nilpotent torsion-free groups and
group homomorphisms, @L the category of locally
nilpotent Lle algebras over @ and Lie homomorphisms.
Then

.66,

are covariant functors, defining an isomorphism between

the two categories.

Observe, however, that our definition of oz: and %
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is stronger than a purely category-theortetic one - as
far as the underlylng sets are concerned they are both

identity maps.

We shall now develop a few more properties of the
correspondence, which we need later. But first let us

recall the definition of a centraliser in a Lie algebra:

suppose H& X =« L , H <L, and H @ X. Then

Cp(X/H) = fc€L: [c,x] < Hj.
There is a similar definition for groups.
Lemma 2.4.3

Let G, H be complete locally nilpotent torsion-

free groups, with H < G, H 9 X € G. Then
Z (Ca(x/8)) = C gg)(L(x)/L(x))

(where the notation ‘J:(X) indicates the set X considered
as a subset of li(H)).
Proof:

Let c € C = CG(X/H). Then for any x€X,
[c,x] = (c,x)(c,x,c)-l/z... € H (from the definition of
C and since H < X). Consequently ¢ € CJK(G)(Sf(X)/Jz(H)).
The converse inclusion 1s similar.
Corollary 1
1) L (cy(x))
2) L (vy(n))

il
(o]
S’

C () (LX) (put H
Iy (o) (L0 (put X

H).
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(Here Ny denotes the normaliser in G, and IJS(G) the
idealiser in JC(G) (also called the normaliser in
Jacobson [17] p.57, but we prefer the alternative
terminology)).

Corollary 2

Letting XJ(G) denote the «L-th term of the upper
central series of G, then
L (3,00) =X ,(L(e)).
Proof':
Use transfinite induction on «£ and lemma 2.4.3.

Corollary 3

The upper central series of G and J;(G) become
stationary at the same ordinal L. In particular if
elther G or :E(G) is nilpotent then so is the other and
their classes of nilpotency are equél.

Proof:

Immediate from Corollary 2.

Suppose G is a complete locally nilpotent torsion-

free group, and H is any sﬁbgroup. Then the completion

H of H in G is the smallest complete subgroup of G which
contains H. The next lemma collects some known facts
about completions.

Lemma 2.4.4

Suppose G 1s a complete locally nilpotent torsion-
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free group, and H < K £ G.

1) If H 9 K then H < K.

2) K is equal to the isolator of XK in G, which is the
set of all g€ G such that g' €KX for some ne Z .
Proof:

1) see KuroS [23] p.254.

2) see Kurof E23] pp. 249, 255.

TLemma 2.4.5

Let G be a complete locally nilpotent torsion-free
group, I a complete subgroup of G. Then H oL G if and
only ir L) < L(a).

Proof:
There is a normal series

H=HOQH d .o HQH 9 .. H=G

1 B B+1 L
from H to G, such that Hh = U HB at 1limit ordinals \.
- B<A
Let LB = J:(HB) (bars denoting completions in G). Then
Zz(H) = Lg» i:(G) = L, By lemma 2.4.4.1 and theoren

2.4.,2.3 we have LB q LB+1

easily shows that at 1init ordinals A L, = U 1.
g<n P

for all B < L. Lemma 2.4.4.2

The result follows.

In particular H is subnormal in G if and only if
.r(H) is a subideal of i:(G); and H is ascendant in G
if and only if < (H) is an ascendant subalgebra of L(G).
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As an application of these results we will give a
generalisation of a result of Yu.G.Fedorov (see Kuros
[23] p.257) which states that a nilpotent torsion-free
group and its completion have the same class of
nilpotency. Our generalisation (proved in the next
section) does not seem to have appeared in the litera-
ture.

Other applications of the Mal'cev correspondence
will be given in later chapters. It seems possible to
enumerate properties of the correspondence ad nauseam -
but we shall avoid this. Any further attributes of the
correspondence will be developed as and when they are

required.

2.5 Bracket Varieties
Let & = ¢(xl,...,xn) and § = ¢(yl,...,ym) be two

group words. Following P.Hall we define the

outer commutator word (¢,¢)o to be the word
(ﬁ’w)o(xl"' . 9xn+m) =
- -1
(B(xysenesX ) TRy q0e e X))
(p’(xlr' oo )xn)) (w(xni-l"' . sxn+m))°
We define bracket words inductively: the ldentity

word t(xl) = X; 1s a bracket word of height h(¢) = 1.
If 4, § are bracket words then (4,§)  1s a bracket word
of height h(#)+h(¥}).
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Thus for example (x,y), ((x,¥),2) and ((x,y),(2z,t))
are bracket words.

Analogous definitions can be made for Lie algebras.
In this case we denote the outer commutator by EZ,¢]O,
and the height again by h. To each group bracket word
# there corresponds in a natural way a Lie bracket word
g* defined inductively by

(* =
(%1% = #1441, -

Clearly h(g) = h(g*), and g* is obtained from £ by
changing all round brackets to square ones.

If G is a group and g a group bracket word, the

verbal subgroup corresponding to £ is

#(6) = <B(gy,e008,) ¢ 8;€G 1 <1 <n>
and the variety ‘ET¢ determined by 4 is the class of
all groups G for which #(G) = 1; equivalently those G
for which the relation ﬁ(gl,...,gn) = 1 holds identically
in G.
Similarly we define the verbal subalgebra g¥*(L)

of a Lie algebra L determined by a Lie bracket word g*,
and the variety \J, .

If G is a group and g a group bracket word, then
a g-value in G is an element expressible as ﬁ(gl,...,gn)
(gi €G 1<1i<n), Similarly for Lie algebras.
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Lemma 2.5.1

Let 4, § be Lie bracket words, L any Lie algebra
(over an arbitrary field). Then
1) #(1) is the vector subspace of I. spanned by the
g-values in L.

2) #(L) < L.
3 [#,1],(0) = [B@), §(w)].
Proof:

We prove (1) and (2) simultaneously by induction
on the height of g.

If h(f) =1 then § = L and (1) and (2) are
trivial. If h(g) > 1 then there are bracket words §, X
such that £ = [¢,x]o and h(}), h(X) < h(g). Inductively
we may.suppose that (1) end (2) hold for ¥ and X . Let
x be a g-value in L. Then thefe exist y = (yl,...,yn)
and z = (zl,...,zm) (yl,...,yn,zl,...,zm € L) such
that x = 4(y,2) = [¢(x),7((g)]. If t € L then [x,t:_l =
[ .X2]1,t] = [[H,t],X2)] + [Hw,xz2),t]]
by Jacobi. By part (2) inductively [§(y),t] lies in
$(L); by part (1) it is a linear combination of J-values.
Similarly for [X(z),t]. Thus [x,t] is a linear combination
of [W;X]o -values. Hence the subspace spanned by the
g-values is an ideal of L, and so is equal to g(L). This

proves parts (1) and (2).
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Part (3) now follows at once from part (1).

Results analogous to parts (2) and (3) are well
known for groups.
Let G be a locally nilpotent torsion-free group.

Then it is known that G has a unique completion G,

that is a complete locally nilpotent torsion-free group
containing G and such that the completion of G in G is

the whole of G. Note that we cannot use Mal'cev's work

on completions to establish the existence of G since we
are trying to produce algebraic proofs of our theorems.
The whole of Mal'cev's theory of completions has been
developed in a purely algebraic setting by Kargapolov
[20,21]; and a method is outlined in HallEll] p.LUb,
Under the Mal'cev correspondence G can also be
considered to be a Lie algebra over Q;L . Denote
completions (in G) of subgroups of G by overbars.
Temporarily denote by i<X> the ideal of G generated by
X (considering G as a Lie algebra) and let n<X> denote
the normal subgroup of G generated by X, for any subset
X of G.
Lemma 2.5.2

Let G be a locally nilpotent torsion-free group,
A, B 4 G.



Then -(K:B_) = -(-X:EY = [K,E]
(where in the third expression A and B are considered
as subalgebras of G).
Proof':
Throughout let a run through A, b through B, and
L, through QQ. o Then
(&,B) = n<(a,b)>
= 1i<[a,b]> since from the form of the
words 7, y of lemma 2.3.1 it is clear that (a,b) € 1<[a,b]>
and [a,b] 0<(a,b)>
= 1<[4a,Bb]>
= 1<[af,pP]> (*)

[£,B] wusing lemma 2.4.4.2

It}

But also

(*) = n<(at,bP)> (as above)

(A,B) wusing lemma 2.4.4.2.

The promised generalisation of Fedorov's result:

Theorem 2.5.3

Let G be any locally nilpotent torsion-free group,
G its completion (viewed also as a Lie algebra over Q )e
Let ¢ be any group bracket word. Then
1) 4(6) = 4@ = #*(@
2) (}617;‘ & 6517?{ & Ee'lj;* .
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1) Use induction on h(g) = h(g*). If h(g) = 1 the
result is clear. If not, | then 4 = (¢,%)o and 8o

g* = [QI*,X,*]O where all of h(¥), h(X), h(d*), h(X*)
are less than h(g). Thus

T, @

(¥(a),x(a)) (lemma 2.5.1.3 for groups)
(G(a),x(6)) (lemma 2.5.2)

(m,ﬁ) (induction hypothesis) (*)
(P(G),x(3)) (lemma 2.5.2)

T, X),(8)

ge) =

-—
-

—
-

i1

n

Also,
(*)

]

]

i

—
b=

which proves part (1).

#(G).

[ﬁTET;QIES] (lemma 2.5.2)
[IV*(@'), X*((_}')] (induction hypothesis)
%, X*],(8) (lemma 2.5.1.3)

g*(a)

2) Gev‘ﬁ =

=
&

=
&

g(e) =1
#(G) =1
3@7 =1 (%)
(@) =1

G’eU;.
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Also
(**) & #4%(@) = o
— Ge e
Corollary

Let.ag be a union of bracket varieties of groups,

EE* the union of the corresponding Lie bracket varieties.
Then

ceX © FTecX & ge X+

In particular we may take for _}E the classes
(using P.Hall's notation [io]):

N N » A% =L, AN

(The case 5%; = zﬂb is Fedorov's theorem.)
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Chapter Three

Lie algebras, all of whose
subalgebras are n-step subideals

A theorem of J.E.Roseblade [33] states that if G is
a group such that every subgroup K of G is subnormal in
at most n steps, i.e. there exists a series of subgroups

K=K04K qoc.QKn=G’,

1
then G is nilpotent of class < f(n) for some function

f: ZZ-+»ZL .

This chapter 1s devoted to a proof of the analogous
result for Lie algebras over fields of arbitrary

characteristic.

3,1 Subnormality and completions

It might be thought that we could prove the
theorem for ILie algebras over @ by a combination of
Roseblade's result and the Mal'cev correspondence, as
follows:

Suppose L is a Lie algebra over (;l , such that
every subalgebra K < L satisfies K 9" L. By a theorem

of Hartley [1)4] p.259 (cor. to theorem 3) L £ L.
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We may therefore form the .corresponding group C;(L).
Clearly every complete subgroup H of G satisfies H <" G.
If we could show that every subgroup of G is boundedly
subnormal in its completion, we could use Roseblade's

" theorem to deduce the nilpotence (of bounded class)

of G, hence of L.

This approach fails, however -~ we shall show that
a locally nilpotent torsion-free group need not be
subnormal in its completion, let alone boundedly so.

Let Tn(ﬁl) denote the group of (n+l) x (n+l)
anitriangular matrices over (3 , Un(dz) the Lie
algebra of all (n+l) x (n+l) zero-triangular matrices
over (. . Similarly define Tn(Z), Un(Z). :

If H is a subnormal subgroup of G let 4(H,G) be
the least integer 4 for which (in an obvious notation)

H < 6. 4 is the defect of H in G.
Lemma 3.1.1
a(r,(Z), 7,(Q))

Proof:

]

.

Let T = T (R), s = 7 (Z), a = a(s,T). Then

d < n since T 1s nilpotent of class n. We show that

1l n-1

s "1 T is false. Suppose, if possible, that S < T.

Then for all s €S, t € T we would have
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(t s) € S

’n-1
(where (a,mb) denotes (ee.(2,b),b)yees,b) .)
m

Taking logarithms,

log(t,n_ls) & log(s). |
By the Campbell-Hausdorff formula, remembering that T
is nilpotent of class n, this means that

[1og(t),,_jlo8(s)] € 1log(s).

We choose s€ S in such a way as to prevent this happening.

Consider the matrix X = [0 x O ... O]
\\\::::::?

O 3

Then exp(X) = 1 x x2/2! x3/3£ eee  x/n! ]

So if we put 8 =

then s&S.
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Let .t = exp |O A O ... O

O

where for the moment A is an arbitrary element of {Q, .

An easy induction shows that

— -

Elog(t),n_llog(s)] = 0 e O L

where £ = A.(n!)n_l.

Now exp(A) = |1 0 ... 0 «

1
and we can choose A€ (3 so that < £ Z . Thus
exp(A) € S, s0 A & 1log(S), a contradiction. This
shows d > n, 80 that d = n as claimed.
Corollary 1

There is no bound to the defect of a nilpotent

torsion-free group in its completion.
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Proof:
T ((}) is easily seen to be the completion of
T (Z).

Corollary 2

A locally nilpotent torsion-free group need not

be subnormal in its completion.

Proof:
@
Let v= br T(Z).
n=1
- (€]
Then V= or T (Q).

—
=

n
If V were subnormal in V then V <™ ¥ for some m eéZ',

m
so that Tm+1(22) Q Tm+1(QQ) contrary to lemma 3.l.1.

3.2 Analogue of a theorem of P,Hall

We prove the theorem we want directly for Lie
algebras, using methods based on those of Roseblade.
Throughout the chapter all Lie algebras will be over a
fixed but arbitrary field k (of arbitrary characteristic).
We introduce 3 new classes of Lle algebras:

Le & & (H<L = Hsil)

re J, €& (H<L = § &L

Lc—;,‘} &S (H<L = I, (H) > H).
(The last condition is known as the idealiser condition).

Throughout this chapter /ui(m,n,...) will denote
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a positive-integer valued function depending only on
those arguments explicitly shown.

our first aim is to show that if H < I, He 11,
and L/H1g;31d, then L & U&MI(C,G) for some function A,.
For the purposes of this chapter it is immaterial what
the exact form of My is; but it is of independent
interest to obtain a good bound. The group-theoretic
version, with /Ll(c,d) = (cgl)d - (g), is due to
P.Hall [12]; the result for Lie algebras with this bound
is proved by Chong-Yun Chao [5] (stated only for finite-
dimensional algebras). In [yo] A.G.R.Stewart improves
Hall's bound in the group-theoretic case to cd+(c-1)(d-1)
and shows this is best possible. We add a fourth voice
to the canon by showing that similar results hold for
Lie algebras (using essentially the same arguments). A
few preliminary lemmas are needed to set up the machinery.

Lemma 3.2.1

If L is a Lie algebra and A, B, C < L then

[[a.B],c] < [[B,c|,a] + [[c,a],B].
Proof:

From the Jacobl identity.

Lemnma 3.2.2

If L 1s a Lie algebra and A, B, C < L then

()] € 3 [[as,0). s 1.

i+j=n
i, j>0
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Proof:

Use induction onn. If n =1 lemna 3.2.1 glves

the result. Suppose the lemma holds for n. Then
[EA!B]’n+1CJ = [[[A:B]’nC],C]
< [L(2,4¢], [B, €]]+C] by hypothests
1+;j=n[[A’ 1+1C]’ [B,jC]] + [[A,iC], [B’j+1C]]
by lemma 3.2.1

= 3 [[ac],[B jc]]

i+j=n+l1

3
i1+j=n
2

IA

and the induction step goes through.
Theorem 3.2.3

Let L be a Lie algebra, H 4 L, such that HE 'h'tc
and L/H2 Q_CXId. Then I, & ?@u (c,a) where
l

/kl(c,d) = cd + (c-1)(d-1).
Further, this bound 1s best possible.

Proof:

Induction on c. If ¢ = 1 the result is obvious.
If ¢ > 1, then for any r with 1 < r < ¢ we have
r+l - r+l 2
M, = /H oNr_L/H . M€ °Z[Lr andNr/Mremd
g0 inductively we may assume

L2rd—r—d+2 < g+l 1<r < c-l.

2rd-c-d+2

2
Now L < [.-H ’ 20d—2d—c+lLJ

=32 [0 4215 (s pog-namcs1-1%1]



L8

summed over the interval O < i < 2cd-2d~c+l  (by

lemma 3.2.2). Each such i belongs to an interval
2(3-1)a-a-(J-1)+1 < 1 < 23d-a-J+1 (1 <3<e)

Consider an arbitrary j. By induction if j # 1, and

since H 9 L if jJ = 1, we have

[0t 51]s [y 50 g-0a-ce1-171]
< [id, 12a(emd)-a-(e=3)+242a5-a-3-1 , g

(also using the fact that [H,.I] < L)

< Eﬁj, L2d(c-j)-d-(c-j)+2 n Hj since 2dj-d-j > 1
< [#, 1°9*aH] by induction if c-j £ 0, and

obviously if ¢~ = O
c+l

In

H
= 0.

Thus L20d—c-d+2

= O and the induction hypothesis
carries over. The result follows.

Next we show.that this value of M1 is best possible,
in the sense that for all c¢,d > O there exist Lie algebras
L, H satisfying the hypotheses of the theorem, such that
L is nilpotent of class precisely cd + (c-1)(d-1).

Now in [FO] A.G.R.Stewart constructs a nilpotent

torsion-free group G having a normal subgroup N with N

nilpotent of class ¢, G/N' nilpotent of class 4, and G
nilpotent of class precisely cd + (c-1)(d-1). Let G be
the completion of G, N the completion of N. Put L = &5(6),
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H = Jf(ﬁ) Using the results of chapter 2 it is easily

seen that these have the required properties.

3.3 The class %n

write Le X & <™ < H for all H £ L.

Lemma %.3%.1

EEn = QSEEn'
Proof: _
Trivial.

Lemma 3. 3.2
t@n " OL2 L In'

Proof:

Let H < Le«@nn Ol2 | o that z.(2) = 0. we
show by induction on m that

als® < HP 4 .og NEE PN

i=1
m=1:
al = H + 3 [H L] obviousl (*)
= +i=1[’i obviously.
m=2:
b2 o [Hes [#,,1], 5+2[H, L]]  from (¥)
< [0 ¢ 3 ([0
since L2 .
m>2s <pl>D < [Hm-l+2[[H,iL],m_2H_]» H+2 [H’jL]]

< H' 43 [[H,iL],m_]_H]
since L2 éa.
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Now if 1,g'gan it is clear that EL,nH] < H, and
consequently <ul,n = nN*+H = H , which shows that L Eisén
as claimed.

Lemma %.3%.3

If X is a minimal ideal of L &€ Lm then
K <5 (1),
Proof:
See Hartley [1u] lemma 10 p.269.
Lemma 3.3.4 |
IFK9L € LY. andake C:'}h, then X < ffh(L).

Proof:

Induction on he If h

0 the result is clear.

1 € ees < K& = K be a serles of ideals

Ky 9L (L = Oyese,L) such that the series cannot be

LetO=K°<K

refined (this exists since K is finite-dimensional).

Then K /K1 is a minimal ideal of L/Ki. By our

i+l
induction hypothesis X _, 5-*§h~1(L)’ and
K&ty%_l(L)/fh_l(L) is a2 minimal ideal of L/fh_l(L), 80
by lemma 3.3.3 it is contained in rl(L/gh-l(L)) which
implies K < gh(L). The result follows.

Lemma 3.3.5

i 6
It H<LSLE mrn %’s then H & C‘g/%z(r,s) where

/Az(r,s) =8 + 8% + +ues + 8%,
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Proof':

It 1s sufficient to show L € ?ﬂ Now L is

Q(T:S).
spanned (qua vector space) by commutators of the form
[gl,...,gi] (1 < r) where the g4 are chosen from the

given set of s generators. This gives the result.

Next we need an unpublished theorem of B.Hartley:
Theorem 3.3.6 (Hartley)

9 < N .

Proof:

Let L eﬂ , and let M be‘maximal with respect to
M<L, M & L(a(b (such an M exists by a Zorn's lemnma
argument). Let u & I = IL(M). Then X = M + <u> < L.
e soke § , from which 1t is easy to deduce that
K has an ascending series (U

with Ul = <u>, Then

ac)c(gc
U, = (MnUo() + (<u>nUo()

= (MnUoc) + <u>,

80

Uy = (MalU_ 5) + U, . (*)
We show by transfinite induction on L that Uc( & Lm .

C
U1 = <u> & 0(5_ I.mz . MnUo("‘l 4 Uo(+1 (since M 4« K)
and MnUgC+1 € Lm s also Uo( < UoC+1 and UOCE Lm .

By Hartley [1u] lemma 7 p.265 and (*) U, €LY . At

limit ordinals the induction step is clear. Hence
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Uo =K & LCXL « By maximality of M we have K = M,
80 IT=HM. ButLE 9 so M = L. Therefore L € LU
which finishes the proof.

Lemma 3.3.7

D, <A < 1.

Proof:

Clearly o@n < @ < j . Now use theorem 3.3.6.
Lemma 3.3.8

If x€L € %n, then <xt> € '?Qn.

Proof:
<xU>B < <x> since L € Eén. If <x>" = 0 we are

home. If not, then <x> = <xL>n ch <xL> <4 L, 80 <x> 9 L.
Thus x € CL(x) a4 L, so <xP> < CL(x) and <xU>P* < 0 as
claimed.
Lemma 3.3.9

OC n 2Dy < m/ﬂ}(n)'
Proof':

Let L& CUl? n O(t)n. n? = <[xl,...,xn]L: X, € L>.
Let X = <x1,...,xn>. By lemma 3,3,2 L €.SEh, so if
xelL, then <xL> € ()ﬂ.n by lemma 3,3.8. Let T = <XL> =
<x1L> + eoe + <an>, a sum of n ¢Kln—ideals of L. By
Hartley [14] lemma 1 (iii) p.261 Te‘mnz. Thus
X € 31n2 n é;n , 80 by lemma 3.3.5 every subalgebra of

X has dimension < r = /u.2(n2,n). L € Bén 80 ™ < X.
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Y = <[Xl""’xh]L> < ™ < X so dim(Y) < r. By lemma
3.367 JD n 2 Li{L , and Y 4 L; consequently lemma
3.3.4 applies and Y < S _(L). Ths I” < ¥ (L), and
re N, .-

We may therefore take }43(n) =n +/¢2(n2,n)-
Lemma 3.3.10

4a
< .
0[‘ n $n - m/%u(nyd)

Proof:

Induction on d. If 4@ = 1 we may take /iu(n,l) = 1.
If 4 = 2, then by lemma 3.3.9 we may take f&u(n,2) =/M3(n).
1ra>2 let ¥ = L2, menue O12n e@n < chﬂB(n)
by lemma 3.3.9, and TM?¢ OU41 A o@n < ‘le(n,d_l) by
induction. By theorem 3.2.3
Le M), (n,d)
where
/4u(n,d) = ab + (a-1)(b-1),
a =/u.3(n), b =/Au(n,d-1).
Lemma 3.3.11 '
If0#£A9L€E Bl thenaan S,(1) #o0.
Proof:

See Schenkman [35] lemma 8.

ixelL <xL>GOl}
{xeL : <xUs ¢ O‘(n?'n}.

Define «(L)

L, (L)

]

L ]

It
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Temma 3.3.12

IfT L = <o(n(L)> then L € ‘XLn.
Proof:

L is generated by abelian ideals, so by lemma 1
(111) of Hartley [14] p.261 L € LY . Let the abelian
ideals which generate L and are of dimension < n be
fAk: AEA}. By lemma 3.3.4 A < Xn(L) so I, =fn(L)
as required.

Lemma 3.3.13
If H = <((H)> and He X then ne (X

(o).

Proof:

It is easily seen that "

[t}

<[x1,. .o ,xn]H P Xy € L(H)>.

H H

LetX-—<x1,...,Xn>. <X>-—-T—-<x 2 4 oo +<xn>

1

e“XLn by Hartley [14] lemma 1 (111) p.261. Since H € X
n > H

T <Xe n U _. Therefore if Y = <[xl,...,xn] >

< X 50 by lemma 3.3.5 YG’C}/A
H .
Y < <x> elsoye Oln /‘2(11,11)'

< qu(n,n)(Hb = D, say, and D = <°(M2(n,n)(D)>°

,(n,n)*

Therefore Hn

Thus H/D € OTn‘l, and by lemma 3.3.12 D emﬂz(n,n)

oM, (n,n) M (1)
< OZ 2 e« Therefore H EOZ. 5 where

/45(n) =n-14+ /Az(n,n).
Lemma 3.3.14

%n SO’L/AG(n).
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Proof:

Let H < L€ ;\én' Then H > D a1, <HP>/<at>P
€ ¥ __,, so by Hartley [14] lemma 1 (i1) p.261
H/<HST L s /ans>?, so B <1 <P> 9 1. Thus
H <" Land Le c@n. Hence %n < ocbn < Lm by
lemma 3¢3.7.

By lemma 3.3.8 xé&L ‘-% <xL> e?ﬂn. So if we

define
Ly = 2 }A: A9 L, AeOl;
then L, > O (since e.g. 0 # S (<x™) < L,). Similarly
let
Li+1/Li =3 jA: A 4 L/Li, AE OZ}.
Then

0 <Ly L, < «se .

Let y € L. Then Y = <y¥> < I, and Y€ chn. An easy

induction shows ri(Y) £ Ly soyeL,. Therefore
L, = L. By lemma 3.3.1 L, /L, € 3 , and clearly
we have Li+1/Li = <oc(Li+1/Li)>, so by lenma 3.3.13

M
Ly,/1 € a S(H)'

€ leu6(n) where /46(n) = n/A5(n).

Thus L

We have now set up most of the machinery needed to
prove the main result by induction; this is done in the

next section.
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3.4 The Induction Step

Lernma 3.4.1

D -asd.
Proof:

Trivial.
Lemma 3.4.2

D, =N, =OL.
Proof:

Let x,y€ L 6081. Then <x>, <y> 4 L. If x and
¥y are linearly independent then [x,y]62<x>r\<y> = 0.

If x and y are linearly dependent then [x,y] = O anyway.

Thus Lel= ?ﬂ,l.

We now define the ideal closure series of a

subalgebra of a Lie algebra. Let L be a Lie algebra,

K
K < L. Define K, =L, K = <K 1>. The series

Ko 2%y 2 - "n =
is the ideal closure series of K in L.

Lemma 3.4.3

1) IfK=L, 9L, 4 9.0 9L =1L then L, > K, for
i:—‘o,ooo,no

2) K 4" L if and only if K, = K.

Proof:

1) By induction. For 1 = O we have equality. Now
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K1+1 = <K "> < <K "> < L1+1 50 the induction step goes

through.
2) Clearly Kijq © Ks, 80 that if K = K then
K-——'KncKn-lQo-. QKO::L.
On the other hand, if K <" L then
K= Ly 9 Ln--l
and by part (1) K <K, <L, =K.

-

q... QLO L,

Lemma 3.4.4

Let H <L € ogn, H; the i-th term of the ideal

closure series of H in L. Then Hi/Hi+1 & @ nei®

Proof:

H=Hn<H qooqu

n-1 <4 H d .ae QHO'-_—LO

i+l i

Suppose Hi+1 <K <L Hi' If J £ 1 then KJ < Hj by lemma
3.4.3.1, 80 Ky < Hyo But H < Hi,q £ X 80 an easy
I.e'éan.so K < L, and K has 1deal closure series

induction on j shows that H, <K Thus H

K=KDQKn—1q... indoco QKO::L.
Therefore
n-1i
K-— Kn cKn‘l .Q L) QKi '-'-‘-Hi, andK q Hio

Thus K/H, . <1 H,/H, , and the lemma is proved.

i+1

It is this result that provides the basis for an
induction proof of our main result in this chapter,

which follows:

57
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Theoren 3.4.5
[
gbn < Y a(n)”
Proof:

As promised, by induction on n.

If n = 1 then by lemma 3.4.2 we may take m (1) = 1.
Ifn>11letL e<93n, H < L. By lemma 3.4.4, if 1 > 1
Hi/Hi+1 € :@n-i < ®n—l < mﬂ(n_l) by inductive
hypothesis. Let m = M (n-1). Then certainly
Hy/Hy 1 € O™, ana so Hl(m(n‘l)) < H for all H < L.
Let @ = Hl/Hl(m(n-l)) = °®n N Olm(n-l). By lemma
3.3.10 Qq Gcﬁlc, where ¢ = /AM(n,m(n-l)). Thus Q°+1 =0
80 H1°+1 < Hl(m(n‘l)) < H, so that 1.6_3Ec+1. By lemma
3.3.14 L€ Ol where a =/u6(c+1). Finally therefore

Le(Old n cﬁn < ‘u(n)

M) = My (0, mg(l +pmy (n, (n-1).u(n-1)))).

The theorem is proved.

by lemma 3.3.10, where

Remark |

The value of M(n) so obtained becomes astronomical
even for small n, and is by no means best possible.
However, without modifying the argument it is hard to

improve it significantly.

Using the Mal'cev correspondence we can prove
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Theorem 3.4.6

Let G be a complete torsion-free R-group (in the
sense of lemma 2.1.2) such that if H is a complete
subgroup of G then H 4 G. Then G is nilpotent of
class < /A(n).

Proof:

Let X€G, X = {xh: ?\G@}. Since G 1s a complete
R-group X = (El (under addition) so X is abelian and
complete. Therefore <x> < X q? G, s0 <x> is subnormal
in G and G is a Baer group (see chapter 7 - Baer calls
them nilgroups) so is locally nilpotent (Baer [1] 83
Zusatz 2). G is also complete and torsion-free so we
may form the Lie algebra J:(G) over Q:l If K < ;f(G)
then gl(K) is a complete subgroup of G (theorem 2.4.2)

{}(K) < 6. By lemma 2.4.5 K <" cZ(G) By
theorem 3.4.5 ;C (g)¢ éDn < Qn}d(n)‘ By theoren
2.5.4 G is nilpotent of class < M (n).

We may also recover Roseblade's original result
for the case of torsion-free groups. Suppose G is a
torsion-free group, every subgroup of which is subnormal
of defect < n. Then G is a Baer group so is locally
nilpotent. Let @ be the completion of G (Note: we must

again avoid Mal'cev and appeal either to Kargapolov or
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Hall in order to maintain algebraie purity). Then
every complete subgroup of §vis the completion of its
intersection with G (Kurod [23] p.257) which is < G.
By lemma 2.4.4 we deduce that every complete subgroup
of G is 94° G. G is a complete R-group, so theorenm

3.4.6 applies.

We have not been able to decide whether or not
@ = % . The corresponding result for groups is now
known to be false (Heineken and Mohamed [}5]) but their
counterexample is a p-group; so we cannot use the
Mal'cev correspondence to produce a counterexample for

the Lie algebra case.



61

Chapter Four

The Minimal Condition for Subldeals

"From Nature's chain whatever link you strike,
Tenth or ten thousandth, breaks the chain alike."

Alexander Pope

In [31] D.J.S.Robinson proves a theorem implying
that any group G satisfying the minimal condition for
subnormal subgroups of defect < 2 must also satisfy the
minimal condition for all subnormal subgroups; further
any such group is a finite extension of ahi]-group
(i.e. a group in which all subnormal subgroups are
normal).

In this chapter we prove two Lie-theoretic
analogues of these results. We construct non-trivial
examples of Lie algebras satisfying the minimal condition
for subideals. 1In particular we show that the Lie algebra
of all endomorphisms of a vector space is such an algebra.
As a by-product we show that any Lie algebra can be
embedded in a simple Lie algebra. However, in contrast
to the situation for groups, NOt every Lie algebra can

be embedded as a subldeal of & DPerfect ILie algebra.



62

4,1 The Minimal Condition for 2-step Subideals

A Lie algebra I satisfies the minimal condition

for subideals if every non-empty collection of subideals

of L has a least element under inclusion; equivalently
if L has no infinite properly descending chain
H

>H2>H 2 eee

1 3

of subideals.
We denote by Nin-si both this condition and the
class of Lie algebras which satisfy it. The minimal

condition for n-step subideals is defined in a similar

manner; both this condition and the class of Lie algebras
satisfying it will be denoted by Min-<". (We write
Min-< for Min-<l).

Note first that Min-<4 does not imply Min-si. 1In
[14] p.269 87 B.Hartley constructs a Lie algebra I, with
the following properties:

L is a split extension (Jacobson [17] p.18)
P o Q where P is infinite-dimensional abelian, Q is
3-dimensional nilpotent, and P is a minimal ideal of
L. It follows that any ideal of L is either of
dimension < 3 or of codimension < 3. Thus L € Min-q,
But P, being infinite-dimensional abelian, has an
infinite properly descending chain of ideals, and these
are 2-step subideals of L. So L ¥ Min-si.



63

Lemma 4,1.1

1) Min-si is {Q,E,I}-clesed.
2) Min-<" is [Q,E}-closed.
3) IFK < L € Min-<" and m < n then X & Min-<" T,
Proof': |
1) {Q,I}-closure is clear. Suppose now that X 4 L,
such that XK, I/K £€ Min-si. Let
I) 21,2152 ...
be a descending chain of subideals of L. Then

IanZIZr\K?_I nK > ...

3
is a descending chain of subideals of K € Min-si, so
for some integer N (I, nK) = (IynK) for all n > N.
(Il+K)/K > (12+_K)/K > (13+K)/K 2 eee

is a descending chain of subideals of L/K & Min-si, so
for. some integer M (Im+K)/K = (IM+K)/K for all m > M.
If r > R = max(M,N) we have I.nK=1Iynk, I +K = Ip+K,
I, < I. Thus (using the modular law) I, = Irn(K+IR)

= (IrnK)+IR = Io, so the chain breaks off and Le€Min-si.
2) Q-closure is clear, E-closure follows as for Min-si.

3) If H <™ K then H <" L. Result follows.

A result we shall make extensive use of, which 1s
peculiar to the Lie-theoretic case, is proved in
Schenkman [35,36]; 1t is also given as an exercise in

Jacobson [17] P.29 ex.9:
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Lemma L4.1.2

If I is a Lie algebra and A si I, then
\ @
AY =N At
i=1
is an ideal of L.

The other basic result we need is due to Hartley
([14] cor. to theorem 3 p.259):
Ternma 4.1l.3

Let L be a Lie algebra over a field of character-
istic zero. Then L possesses a unique maximal locally
nilpotent ideal f>(L); the join B(L) of all nilpotent
subideals of I, is an ideal of L, contained in f>(L).

P (L) is the Hirsch-Plotkin radical of L, (L)

the Baer radical.

Let %; denote the class of Lie algebras L such
that L = f;(L) for some ordinal L. (Thése are the
Lie-theoretic analogues of the ZA-groups of Kuros [23]
p.218). It is easy to see that g; is S-closed.

Lemma 4.1.4

ILet L € %? . Then L(&) = 0 for some ordinal L.

First we require a variant of Grin's lemma (see

Kuro$ [23] p.227). Let K be any Lie algebra such that
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¥ ,(K) > %,(K). We show that k(1) < x. For let
acg \fz(K)\ \Sl(K), and consider the map g: K -ofl(K)
defined by x4 = [x,2] (x€K). £ turns out to be a
homomorphism, and since a eé‘fl(K) xg £ 0 for some
xE K. Hence K has a non-zero abelian homomorphic
image and K(l) < K.

Now let L & %; , and put P = f~\ L(ﬁ). Then
' >0

P = L(i) for some ordinal «. Since P < L it follows
that P € % . Thus either P = 0, P = 5, (P), or

T, () > $,(P). The second and third cases imply that
P(l) < P (directly for the second, and by the variant
of Grliin's lemma for the third) whence L(€+1) ¢ (L)
contradicting the definition of P. Thus P = O as
claimed.

Lemma 4.1.5

LN A uin-< < (.

Proof:

Let T € LI~ Min-q, U= U YB(L). Then
U = E&(L) for some ordinal . Supggge if possible that
U #L. Then IL/U £ 0, end L/U ¢ LIl A Min-< (by lemna
L,1.1.2). Let M/U be a minimal ideal of L/U. By lemma
3.3.3 M/U < IIKI/U). But this means that f4+1(L) >
'foc(L) contrary to the definition of U. Thus U = L so

LE & .
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By lemma L4.1l.4 L(i) = O for some ordinal «£. Now
each ternm L(B) of the deri#ed series of L is an ideal
of T, anda TB*L) < (B, 1 ¢ min-4 so L(P*1) - 1(B)
for some finite . Then L(B) = (&) 20 s0 1 € ECL.

Temma U.1l.6

If L € Min-<° then p (L) € %r\?\.
Proof:

R=p(L)e L?ﬂ;, and satisfies Min-4 by lemma
4.1.1.3. By lemma 4.1.5 R€ 80l . R(™ chr <1 so
(™) ¢ 1. By lemma 4.1.1.3 r(®)¢ Min-9, so that
R(n)/R(n+l) € Min-<¢ n U[ Now an ideal of an abelian
Lie algebra 1is precisely a vector subspace, so
R(n)/R(n+l) & 13'. Thus R € Et} = C} . Since
we know R € LYl  this implies R € L.

Ve now have the machinery to prove the main theorenm
of this section:

Theoren L4.1l.7

If I, is a Lie algebra over a field of characteristic

zero, satisfying Min—qz, then I, satisfies Min-si.

Proof:

Assume the contrary. Then there exists M minimal
with respect to M <9 I and M £ Min-si. Let N be any
proper ideal of M. For any integer i > O we have

i 2 2

N ch ¥ 91 9L so N1 «® L. Since L € Min-9° it
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follows that N“’ = f% Ni = Nc for some integer ¢ > O.

By lemma 4.1.2 N olﬁ Now N/N® si 1/8°, and N/X¢ e JL,
so by lemma 4.1.3 N/N® < B(L/1%) ¢ p(L/N%). By

lemma 4.1.6 R (/n%)eF, so n/mC e C}. But N° < M,
N° 4 L, 80 by minimality of M N® & Min-si. Thus

N &€ (Min-si)‘g' < (Min-s:i.)2 = Min-si by lemma 4.1l.1.1.

Thus any proper ideal of N satisfies Min-si.

If I1 ><I2 > oo 1s a properly descending chain of
subideals of M, then I, < I <9 M for some I # M. Thus
by the above I &€ Min-si. But 12 > I3 > ¢ee 1s an
infinite properly descending chain of subideals of I,
which is a contradiction.

Thus L & Min-si and the theorem is proved.

For the case where the field has characteristic
p # 0, B(L) is not well-behaved (see Hartley [14] §7.2
or Jacobson [17] p.75) and the best we have been able
to prove 1is

Proposition 4.,1.8

If L is a Lie algebra over a field of arbitrary
characteristic, satisfying Min—43, then L satisfies
Min-si.

Proof':

Imitate theorem 4.l.7, except that we now show
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directly that N/N®e “Fas follows:
N ch ¥ oM ¢ 1 so vt «® 1. By lemma L.1.1.3

N € Min-<9. Thus ¥/t e Min-«n Ol < F , so

e ¥ = F.

L.2 The Minimal Condition for Subideals

We now investigate in more detail the structure of
ILie algebras (over fields of characteristic zero) which
satisfy Min-si (equivalently, by theorem 4.1.7, Min—-<12).
First an elementary property of centralisers:
Suppose L is a ILiec algebra (any field) and I < L.
It is easy to see that CL(I) 94 L. For any x€&L the
map ﬁx: I » I defined by
1.4 = [1,%] (L€ 1)
is a derivation of I. (Note: g = ad(x)lI). The map
g: L -» der(I)
sending xc L to ﬁx is a Lie homomorphism, with kernel

e

CL(I). Hence L/CL(I) D < der(I). In particular
TLemma 4.2.1

If I 9L and I ec} then L/CL(I) € 3’

Proof:

der(1) € F .

Let éj denote the class of Lie algebras in which
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the relation of being an ideal is transitive; i.e.
Le ) ifandonly if Hsi L = H 9 L. (We study
such algebras further in chapter 6).

Suppose L .6 ¥Min-<9. Then the S’-residual of L

is defined to be the unique subalgebra F of L minimal
with respect to F < L, L/FEiﬁg'(uniqueness and existence
are clear). We denote it by &6(L).
Warning

In group theory it is well-known that every
subgroup of finite index contains a normal subgroup of
finite index. It is not true in general that for Lie
algebras every subalgebra of finite codimension
contains an‘ideal of finite codimension - to see this
let L be the Lie algebra P & Q described Just before
lemma 4.1l.1. P Q(:Wso P contains a proper subalgebra
S of finite codimension in P, 80 S is of finite
codimension in L. But P is a minimal ideal of L, so
S contains no ideal of finite codimension.

This means that 6(L) may itself have proper ideals
of finite codimension. However,

Temna L.2,2

If L & Min-si then 8(6(L)) = 86(1) so 6(L) has no

proper ideals of finite codimension.
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Proof:

c+l for

Let F = 8(L), I = 6(F). By Min-si 1% =1
some ¢ > 0, soO 1°<1 by lemma 4.1.2. By Min-si each
factor 13/13* ¢ F 50 /1% S . Thus 1/1%¢ 3,

end I° < 6(L) = F > I > 1°. Thus I = F.

We may now prove an analogue of lemma 3.2 of
Robinson [31] p.36:
Theorem 4.2.3

Let I. be a Lie algebra over a field of character-
istic zero, satisfying Min-si. Then 6(L) eci} , B8O
that I, is an extension of a ql-algebra by a finite-
dimensional algebra.
Proof:

Let F = 6(L). We ShOW’F‘G=;3. Assume the contrary.
Then there exists K minimal with respect to K si F but

K $ F. If K = K° then by lemma L.1.2 K < L, which 1s

impossible. So K° < K. But K> <K si F so by mininality
of K, K2 <a F. K/K2 si F‘/K2 and K/K2 € OZ , B8O K/K2 <
B/K2 = B(F/Kz). By lemma 4.1.3 B/K2 4 F/K2 and by
lemma 4.1.6 BA2E F. 1 /K% = CF/K2(B/K2) then

F/C € ;E} by lemma 4.2.1. By lemma 4.2.2 F = C.
Therefore B/K> < Kl(F/Kz), so K/K> < §1(F/K2), 50
K/K%2 < /K2, end K 4 F. This is a contradiction.
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Hence F € j . Since L/F € j" (by definition of F) the
theorem follows.

Theorem L.2.4

Let L be a Lie algebra over a field of character-
istic zero, satisfying Min-si. Then L has an ascending
series of ideals whose factors are either simple or
finite-dimensional abelian; and &(L) has an ascending
series of 1ideals whose factors are either infinite-
dimensional simple or l-dimensional and central.
Proof:

First let K be any ILie algebra over a field of
characteristic zero, satisfying Min-si. We show that
every ninimal ideal of K is either simple or lies in
CﬂJ\S}. For suppose M is a minimal ideal of K. If M
is not simple then there exists I 9 M, 0 # I # M. By

win-si I1° = 1°*1

for some ¢ > O, and by lemma 4.1.2
1® 9 K. By minimality of ¥ I° =0so I€ §l. Isik
8o by lemma 4.1.3 R = p(K) # 0. Minimality of M
implies ¥ < R. RE& XL by lemma 4.1.6, so by lemma
2.3.11 M ‘fl(R) # O. MNinimality again implies M 5§1(R)
< aﬁ\} 80 MGO[(\?&S clainmed.

We now return to the Lie algebra I, and define idesals
M, of L inductively as follows:

L

M, = 0. M&+1/M4 is some minimal ideal of L/M°<
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provided M, # L, and M, = U M, for 1imit ordinals A.
L Ao &

Clearly the sequence {M£} ascends until some M = L.

Then (M&)lﬁp

Each factor M

is an ascending series of ideals of L.
4+1/M£’ being a minimal ideal of K = L/Mi

€ Min-si, is either simple or CjZnﬁi', by the observation
above,

Now P = 8(L) € Min-si so F has a series (Gx)&<c

with factors either simple or(jﬂni} « We show how to
deal with finite-dimensional factors. Suppose that
q£+l/G‘_G €3'. Let C/G& = CF/G&(G‘+1/G£). By lemnma
L.2.1 F/C E(E}. By lemma 4.2.2 C = F so that

~
Go(+l/Gc( 5§1(F/G°()E OT'\?. Thus we may interpolate
new terms in the series:

Gi/G& = HO/Gi < Hl/G£ < eee < Hn/Gé = G£+1/G£
in such a way that dim(Hi+1/Hi) = 1. Since G&+1/G£ is
central, H, 9 L and Hi+1/Hi is central.

This completes the proof.

In the next section we shall construct, for any
ordinal o, Lie algebras & Min-si having such a series
of type . To do this we require a partial converse
of theorem 4.2.4. First:

Lemma 4.2.5

Let L be a Lie algebra (any field) having two
subideals H, K such that K 18 simple and not abelian.



73

Suppose that KnH = 0. Then (X,H] = O.
Proof:

Lemnma 4;1.2 immediately shows that X ¢ L. Let
H < I and use induction onn. If n =1 then H < L
and EK,H] £ XaH = 0., If not, then for some J we have
HeJ ™1 L 1IfKnJ =0 then [K,H] < [k,3] = 0 by
induction. Otherwise, since KnJ si K and K is simple,
we must have KnJd = K, so K < J. Thus K,H 4 J so that
[X,H] < KnH = O.

(This 1is a Lie-theoretic analogue of a theorem of
Wielandt [42].

Now the partial converse to theorem 4.2.4:

Lemma L.2.6

Suppose a Lie algebra L has an ascending series

of ideals (Go() such that for all £ < ©

L L0
1) G4+1/G4 Is non-abelian and simple,
2) Cr/a .,c(G"(*l/ G =0./C.
Then the only subideals of L are the G e Consequently
L & Min-si n J .
Proof:
Let M be a proper subideal of L and let £ be the
least ordinal such that G, ¥ M. It is easy to see that

£ is not a limit ordinal, so L = B+1 for some B, and

(M+GB)/GB is a subideal of L/GB which does not contain
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GB+1/GB° As the latter is a simple non-abelian ideal of
L/GB we have

H+G G,.n G G, = G,/G

(i14G5) /G 0 g,y /Gy = G5/Gy
so by lemma L.2.5 M centralises GB+1/GB' By part (2)

of the hypotheses, M < G Thus M = G,.

B* B
This shows that every subideal is GB for suitable

B; this is an ideal s0o L € J . L € Min-si since the

ordinals are well-ordered.

L.3 An example of a Tiec algebra satisfying Min-si

Theorenm 4.2.4 shows that a Lie algebra over a
field of characteristic zero, satisfying Min-si, has an
ascending series of 1deals with factors either simple or
CW(\i&. In this section we show that for any ordinal o
there exists a Lie algebra satisfying Min-si possessing

such a series of type o.

Let k¥ be any field, V a vector space of infinite
dimension over k. Let S be the set of all linear
transformations of V, regarded as a Lie algebra under
the usual Lie multiplication [s,t] = st-ts (s,t€8).

An element a €S is said to be of trace zero if

1) Its image Va is of finite dimension,
2) a restricted to Va has trace zero in the usual

sense of linear algebra.
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Let A be the set of elements of trace zero in S.

Lemma 4.3.1

A is an infinite-dimensional simple ideal of S.
CS(A) = k, where k is as usual identified with the
scalar multiplications of V.

Proof:

Note first that if a & S and U is a finite-
dimensional subspace of V containing Va, then Ua < U
and the traces of the restrictions of a to U and to Va
are equal. Now let 8y, 8, € A end let U = Va1+Va2. Then
if 7\1,7\2 € k the image of Kla1+)\.2a2 is contained in U.
Since each of a, and a, has trace zero on U it follows
that K1a1+?\2a2 € A.

Now let s€S, a€A, and let x = [s,a] = sa-as.
Clearly Vx < Va + (Va)s = W, say, a finite-dimensional

subspace of V. Choose a basis (v of V such that

)\.)ACA

(vk)/\e A, is a basis of W. Let (OI\/L , (ochlu) be the

matrices of s and a respectively with respect to this

basis. Then for A€ A we have

vh(sa-as) = /ui". (c)\/vL v = I\IMG/U)) Vy »
The trace of x on W is thus )2 c?\/u?(}«k ‘7\;«0/47\ where,

since terms corresponding to A §é Ao are zero, we nay
suppose that A and M each range over the whole of A.

Hence x has trace zero on W and A < §.
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If e)\/‘l is the linear transformation which sends
vA to 3“ and every other basis vector vy to zero,

then an elementary calculation shows that the only
elements of S which centralise e}\/Ll (A # M) are the
elements of k. Hence CS(A) = K.

Now suppose 8yee-,8, are finitely many elements

n
of A. The kernel Ki of ay has finite codimension in
n
V and hence K = t”\Ki also has finite codimension in V.
i=1

Let U be a finite-dimensional subspace of V containing

2 Va, and such that K+U = V. If K, is a complement
%2% UnK in K then V = X, o U. Let B be the set of all
linear transformations a of V such that Koa = 0, Ua £ U,
and a has trace zero on U. Then aj&B for 1 =1,...,n
and B is a Lie subalgebra of A. B is clearly isomorphic
to the Lie algebra of all linear transformations of trace
zero of U. It is well-known and easy to prove that this
is simplé unless k has prime characteristic p which
divides dim(U) (see Jacobson [?7] p.136 for the case
char(k) = 0; Seligman [38] p.66 for char(k) = p # 2,3.
The result can be established in all cases by elementary
calculations). We may thus choose U so that B is simple.
It follows that every finlte set of elements of A lies
in a sinple subalgebra of A, and hence that A is simple.

Clearly A has infinite dimension.
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Theorem 4.3.2

Let 6 be any ordinal number, k any field. Then
there exists a Lie algebra L over k such that

l) . € Min-si A CU ’

2) L has an ascending series of ideals of type 6,
each factor of which is isomorphic to a certain

infinite-dimensional simple Lie algebra over k.

We carry out the proof in stages, using a construct-
jon similar to oné employed in the group-theoretic
situation (see Robinson [31]).

We may clearly assume & > O, Choose an ordinal ¥y
such that for each £ < §

L+ ¥ =%
Then 6 < y and y is infinite. (As in [31] we could take
Y to be the first prime component > 6. See Sierpinski
[39] theorem 1 p.282 and cor. to theorem 10 p.308).
Let X be the set of all sequences of type Y with
co-ordinates in ZZ ; that is, functions from vy to ZZ .
If x€EX and L < 6, we denote by *x,6 the sequence of

L

type L formed from the co-ordinates x, of x with g < «,

B

and by xi* the sequence formed by the co-ordinates xB

with B > L. We write

and notice that, since L + ¥ = ¥, xl* may be viewed as
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an element of X.
Let V be a vector space over k with basis v (xeX).
If L < 6 and x€X, then we have an epimorphism jo( and a

nonomorphism ix of V defined by
s

L
v, =V * (l)
1" L Yy (yeX) ,
Vy Xy v(*xoc,y)' ( )
Evidently
fe Ay =1 (3)
Lot = g, AT FE =Mt ()

In particular, (4) holds for all t such that v, lies in

ViX,o('

As before, let S denote the set of all linear
transformations of V. If s€S and L < 6 we define
s°(€ S by
v.s* = v J,si . (5)

L

Clearly s - 8 1s a linear transformation of S. If

L .
s,t €S then vx(st) = v . sti
o(to( L

Xyl vxjoCSix,o(jo(tix,oC

since v_8™ is a linear combination of elements

= VXS x

v.Y for which ;23'9( = *xo(. Thus s - g% is an associative
algebra endomorphism of S and therefore also a Lie
endomorphism'of S. It follows from the fact that ix,oc
is a monomorphism and jJ g en epimorphism, together with
(5), that sX = 0 if and only if s = O, Thus 8 - s% is

a monendomorphism of S.
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Lemma L.3.3

Let s€S. Then s € SX = {s¥: s €5} if and only if
ker(s) > ker(jo() and v.s € im(ix,o() for all x€X.
Proof:

The necessity of the conditions is obvious.

To see that they are sufficient, let s€$S and
suppose that ker(s) > ker(j&) and v.s &€ im(i_ ,) for all

- X x,&

x€X. Choose an arbitrary sequence z&€X and consider
Now it follows from (3) that for any ueX (i

u,& 1z, 4034

= 0, so since ker(s) > ker(j‘) we have (1 i g = O.

u,L z,g)
Hence (6) is independent of the particular sequnce z

chosen. Thus for any x€X

L
vxt - vxj&ix,&sjéix,&
= vijxix,&
= V_S
X
since J&ix,& clearly acts as the identity on im(ix’i)
and this contains VyBe Thus s = t‘ € soc as claimed.

Corollary
sP < st ir B 2 L
k i
For clearly GP(JB) > ker(jé) and im( X,&) > im(ix’ﬁ)
whenever 3 2 L.

Now let A be the subalgebra of S consisting of all

elements of trace zeéro in the sense previously defined,
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and for £ < & let AL = {af: agA}, L, = 3 A*, L= 1.
: 8L
By the above corollary we find that for o > £ [Ac, °<'] <

[S‘,A%] < ['_S,A.]OC < A° by lemma L.3.1. Consequently

L‘ Q9L for all L < 6., Clearly if T is a 1limit ordinal
<othenl, = 34P=U 1. mlsor, , =1, +45 The
p<t  p<t P & <

next result shows that L&+1/L& ~ A for £ < 6. Hence L
satisfies condition (2) of theorem 4.3.2.

Lemma L4.3.4

L _
Lih.A = O.

Proof:
As A% is isomorphic to A so is simple, and

L, 9L, 1t 1s enough to show that At & L. Now if

t e LZ then t € 3 A° for some B < L« Suppose
o<B

n
t= 2

i=1

where a; € A and O <05 < eee <0, £ B Each ay has

g

i
84

finite-dimensional image, and (5) shows that

o
i
(ay 7)J
i oi
has finite-dimensional image. Hence
n o)
tj. = 3 1

8, e
B i=1 i JOiJB—Oi
has finite-dimensional image. However, choose x # x'

in X and let ex x! be the transformation which sends
9

Vy to Vets and sends every other basis vector to zecro.
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Then for any sequence *yi‘of type £, and any B8 < J«,

we have
V* GCL |j=v |jo
(*y,x)"x,x'98 = T(*y ,x')°B
Now by allowing the B-component of *y& to range over

all integer values we see that infinitely many basis
L

vectors v, belong to the image of e x'jﬁ’ This image
H

is thus of infinite dimension for any g < «£. Hence

L L L

%, x' & L, But ex,x'eA so X, x' & A™. This proves

the lemna.

Lemma L.3.5

CL/L&(L&+1/L&) = Li/L& for all £ < 6.
Proof:
Let C&/Li denote the centraliser in question. If

C,>L, then C&r\( 3 AB) # 0 and so by lemma 4.3.3

£ O824 £ &
corollary, C&r\S # 0. Let O # s€ c&rns . Then using
lenma 4.3.3 we have [A"(,s"(] LN [A,sj"c < Loan"c = O.

Thus by lemma 4.3.1 s is a scalar multiplication. The
definition shows that t = s¥ is also a scalar multipli-

cation. Choose o < 6 such that t & LO+ N\ Lo' Then

1
t+Lo is a non~trivial central element of the infinite-
dimensional simple algebra Lo+1/Lo’ a contradiction.

This establishes the lemna.

We have thus demonstrated that L, with its ascen-

ding series (LB)B<5’ satisfies the hypotheses of lemma
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4.2.,6. Therefore L € Min-si N 9] , which proves

theorem 4. 3.2.

.4 The full Endomorphism Algebra of a Vector Space

Another interesting class of Lie algebras satisfying
Min-si emerges from a study of the Lie algebra of all
linear transformations of an infinite-dimensional
vector space (for finite-dimensional spaces our main
result is trivially true). A special case gives us

some information on the status of theorenm L.2.4.

If ¢ is a cardinal number, we shall denote the
successor cardinal by ct.
Let k be any field (of arbitrary characteristic),

c and 4 any infinite cardinals with 4 < ct

, and V a
vector space of dimension c¢ over k. Let E(c,d) denote
the set of all linear transformations (: V - V such
that dimk(im(&)) < d. Note that the set of all linear
transformations of V is E(c,c’).

Since 4 is infinite, E(c,d) is an assoéiative
k-algebra. Under the usual Lie multiplication
EI,B] = B-BL E(c,d) becomes a Lie algebra over k,
which we shall distinguish by the symbol L(c,d).

We shall show among other things that L(c,d)

satisfies Min-si. We attack the problem indirectly via
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the associative ideal structure of E(e¢,d) (which is
easily determined), and then use the following theorem
of Herstein [16] (see also Baxter [2]):

Lemma 4.4.1 (Herstein)

If A 1s an associative simple ring, and U is a
Lie ideal of A, then with one exception either
U < z(A) or [A,A] < U.

In the exceptional case A is 4~dimensional over
Z(A) = WM

(A Lie ideal of an associative ring A is a subring
I of A such that if i€ I, a€ A then ia-ail € I; equiva-
lently it is a Lie ideal of the Lie ring obtained from
A in the usual manner. Z(A) is the centre of A. [A,AJ
is the set of all finite sums of elements of the form
ab-ba (a,bE£A). Note that Z(A) and [A,A] are always
Lie ideals of A (though not necessarily associative
ideals)).

Our first step is to put this into an 'algebra'

form rather than a 'ring' forn:

Lemma Y.l}e2

If A is a simple associative k-algebra and EA,A] = A
then any proper Lie algebra ideal of the Lie algebra
associated with A is contained in Z(A), with the same

single exception.
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Proof:

By Jacobson [;8] P.108 B85 A is simple as an
assoclative algebra if and only if it is a simple ring.
Algebra ideals are certainly ring ideals, so the lemma
follows from lemma L.4.1.

In what follows we shall apply lemma L.4.2 only in

ovtr kg Conbre
the case where A is infinite—dimensiona%ﬁ so the excep-
tional situation will never arisec.

The associative ideal structure of E(c,d) is

fairly transparent:

Theorem 4. 4.3

Let ¢, d be infinite cardinals with 4 < ct. Then
any non-zero associative ideal of E(c,d) is of the form
E(c,e) with ¥ _<e <a.

Proof:

We show that if I is an associative ideal of E(c,qd)

and some £ &I has dim(im(«L)) = £, then E(c,fY) < I.

This clearly implies the result.

Let J = im(«L), so dim(J) = f. lLet (v-)‘))\€A be a
0
basis of J extending to a basis (VA)AEA of V. For each
ME A, there exists w, €V such that
LN (1)

since J = im(«L). Define a linear transformation g of V:
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B =w (rea))
0 (xeA\Ao) .

(2)

]

Let Y€ E(c,£¥). Then dim(im(y)) < £ so we can find a
subset M, of A  and a basis (x"")/“eMo for im(y) which
extends to a basis (fu) for V. Define 6:V - V and

M € A
£ : V-oVhby

ol
O
]

<

pO = T (ped)
=0 : (,U\E. A \Mo)
%5 = X (,ueMo)
=0  (MEANM). (4)
If A is any element of A it follows from (1), (2),(3),(u)

(3)

that
v)\.yéﬁo(g, = VoY

so that vy = YO« € I (since LEI and I is an assoc-
iative ideal) which is what we wanted to prove.

(A weaker version of this lemma is proved by
Jacobson in [18] using similar methods.)
Corollary

If c > 4 are infinite cardinals, then

E(c,a%)/E(c,d)

is a simple non-commutative assoclative algebra.

To facilitate calculations we shall represent
linear transformations in some 'matrix-l1ike' fashion.

We will index bases of vector spaces by ordinals, so
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that a vector space of dimension ¢ will have a basis

of the form (vi) where o is an ordinal of cardinality

L<0
c. (For even greater convenience we take o to be the

least ordinal with cardinality ¢, so when ¢ is infinite
o is a linit ordinal.)

Let e be the linear transformation defined by

LB

V“(-PV‘3

VY->O (L £y < o)

when «,8 < 0. Suppose we have a linear transformation
a: V-YV. Then

vxa = 3 atiB

where all but a finite number of the a

«B are zero. Thus

we may write a as the formal sun

a=23 ac(Beo(B

where for a given value of L only finitely many B are

8«
non-zero. It is easily checked that such fromal sums
can be manipulated in a way formally identical with the
usual operations on finite sums. From now on any sum

A a&Beéﬁ will be understood to be of this special type.
Lenma 4.4.4

Suppose k is any field; ¢, 4 are cardinals such
that 3*0 <4< ct ; and E = E(c,d) (over k).

Then [E,E] = E.
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Proof:

Let acE, I = im(a). daim(I) < & so we can choose
a basis (V,),  for I with 4 of cardinality < d,
extending to a basis (Vh)h<f> of V (p of cardinality c).

With respect to this basis
a= 3 2 %20 (L, < P).

Since I = im(a) 8.5 = 0 if B > o, so we have

g
a= 3 2 %48 (£<p, B<o).
We will express a in the form [b,t] where b,t €E.

+
Let t = ,,(Eo © L, L+1 € E. For any b € E(c,c’) a simple
calculation shows that

[b,t] = [= b 3Csa? Y).‘. eY,Y+1]

<g
= 2D e,~- 2D e *
p<p AVl W p<g M¥LsY MY (*)
V<o v<p
where the apparently meaningless symbol b/.( -1 will be
4

given the conventional meaning O if 7 1is a 1limit
ordinal.
We can make (*) equal to a if we can solve the
infinite system of equations
Pup-1 " Pusl,w = Buy (MY <0)
- I}-HI,U = Buv (M<o,V2 o) (%)
Pup-1 = BV 2o,V 0)
(note that in the second equation a/m = 0 since V > o).

We solve (**) by defining:
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-4

0 . (M>v 2 0)
0 (m< 0,V 2 0)
(pm2 0,U< 0)

,M‘U

-
1

, a,u,-u +1
and, if both M,V < o, set

b/wd = 0 if M is a 1limit ordinal
if 7} is a 1limit ordinal,

- -aﬂ"'lﬂ)
and use the first equation of (**) to determine
inductively the values of bM+1sU ’ b/«+2,11+1 s ose o

b,q+n+1,1)+n s eee « It is clear that the values so

determined are well-defined since a given b/«'l) can be
reached in precisely one way (the induction sf.ep nioves
'down diagonals'). It is also clear that for a given

value of /A y 18 non-zero for only a finite number

P | |
of values of ¥ . So b is a well-defined linear
transformation. Since d > Ro beE, (If 4 = Ho b may
have infinite~dimensional image and so lie outside
E(c,d).)

Thus a = [b,t] € [E,E]. Since a was an arbitrary
element of E, E = [E,E].

(Note that the case 4 = Ro represents a genuine
exception, for in this case [E,E] is the ideal of all

linear transformations of trace zero (in the sense of

section 4.3) which is not the whole of E.)
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Tenma Q4.5

If ¢ > 4 are infinite cardinals, then
z(E(c,d%)/E(c,a))
is trivial unless ¢ = d, when it is l-dimensional and
consists of scalar maps (modulo E(c,d)).
Proof:
By lemma 4.4.7 which we have found it more

convenient to state and prove later on.

Theorem L.4.6

If ¢ and 4 are infinite cardinals with ¢ > 4, and

k is any field, then the Lie algebra
L(c,da")/L(c,d)

is simple except when ¢ = 4. In this case its only
ideal other than O or the whole algebra is 1its centre,
which is 1-dimensional and consists of scalar maps
(modulo L(c,d)).
Proof':

L(c,d%)/L(c,d) is the Lie algebra corresponding to
the associative algebra E(c,d%)/E(c,d). Lemmas L.4.2,
Lohoh, 445 complete the proof.

We have now found inside L(c,d) a system of ideals,
many of the factors of which are simple, This in itself
is not sufficient to ensure that L(c,d) satisfies Min-si.
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Eventually this will follow using lemma 4.2.6. The
presence of trace zero maps and scalar maps introduces
an additional complication, so instead of looking at
L(c,d) we study a suitable quotient.

Let S = the set of scalar maps, F = L(c,k#o),
T = the set of trace zero maps, L = L(c,d), I = F+S.
Then L* = I/I has an ascending series of ideals

— % % % —
O=DL* SIg* L eee SL, * < eus L% = Lt

£
where 6 is a suitable ordinal, and the I * are the ideals

L
(L(c,e)+S)/1 arranged in ascending order as e varies.
I has a series
0<T<F<I
of ideals. T is simple (lemma 4.3.1) and F/T and I/F
are 1-dimensional. Thus I € (Min-s1)(F) () < Min-si.
To prove L € Min-si it is sufficient to show L* € Min-si
since Min-si is E-closed (lemma 4.1.1.1). This will
follow by lemma 4.2.6 provided we can show that
Crasm o (™) = L/ L >
Equivalently we must prove

Lemma L.4.7

If ¢ > d are infinite cardinals, and z€L(c,c”)
satisfies
[;, L(c,d+)] < L(c,d) + S
then z &€ L(c,d) + S.
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The proof, which is more intricate than one might
hope, will be made in several steps. To simplify the
notation, let L = L(c,c¢¥), E = L(c,d), G = L(c,da").
Suppose z € L and [2,G] < E+S. We must show z € E+S.

Lemma 4.4.8

Let V be a vector space with basis (vh)heA

A 1s infinlte. Tet a be a linear transformation of V

where

such that dim(im(a)) = e is infinite. If we let
B = {B: 80 # O for some LEA}
and denote cardinalities by vertical bars thus: |B|,
then |B] =
Proof:
Let W= 3 kv,. By definition dim(W) = |B|, ana

AeB M
clearly im(a) < W, so e < |B].

Now let (i ;AeM a basis for im(a). Then
|M] = e. For each meM we have
: “(é‘) kv
" J=1 J hjsM

where kj ek (J= 1,...,n9u)) and AJ”M.G A.
By definition if A € B then A = hj for some
4
th t B = < = M =
I, m s0 a | ' th,ﬁ.}l - ‘ZXI‘“ Ho' '
since e is infinite.

This completes the proof.
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Let (vk be a basis for the vector space V

)hGA
under consideration, so that A has cardinality c.

Lemma L4.4.9

Let z be as above. Then there exists z' such that

z'ou = 0 (LEA), [z',G] < E+8, and z-z' € E+S.

Proof:
Let M be the set of all pairs (M,<) where M is
a subset of A and < is a well-ordering on M, such that

if LEM then 2z 1 (where «£+1 denotes the

Ll * Pgal, L
successor to £ in the ordering <). Order M by <«,

where (Ml,<1) « (M2,<2) if and only if M. C M, and

1=72
<2'M = <l. Then it is easy to see that r‘/% is not
empty, and that (M, <) satisfies the hypotheses of
Zorn's lemma. Let (M,<) be a maximal element of M
Suppose if possible that |M| > d. Take an initial
segment I of M with |I| = 4, and look at

t= [z, =

LET
By hypothesis t € E+S. But

ex,4+1]'

t = z

2 25%1%s,8+1 " % Zp%4-1,4548

=2 (2,00 = 2441,

The coefficient of €, 41 is 2 2041, L4 # 0 for 4
values of L. By lemma 4.8.8 t & E+S which is a
contradiction.

Thus after choosing fewer than 4 values of «£ all
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the remaining z,, are equal. Thus 3 2z, e, € E+S. Put

LL

'—" -
z' = 2z Zzouecu.

Now we work on z'.

Lemma L4.4.10

Suppose z' & E+S. Then there exist subsets A,A'
of A such that
1) AnA' = g,

2) There is a bijection g:A - A' (write ;d(o()\ = L"),
3) z'ou. # 0 if L € A,

L) |a] = |a'] = 4.

Proof:

Let 257 be the collection of all triples (A,A',4)
satisfying (1), (2), and (3). Partially order 2? by <«
where (A,A',4) « (B,B',§) if and only if A¢B, A' & B',
and I]!lA = g. It is easily checked that Q‘Y , ordered
in this way, satisfies the hypotheses of Zorn's lemna.
Let (A,A',4) be a maximal element of qu , and write
B(L) = L' (LEA).

We claim that IAI > d.

Suppose not. Then |A| = ' < d. TLet

D= {6 :'Z'Yé #0, YEAUA'].
Since 4 is infinite it is clear that |D| < d. By lemna
L.4o8 there must exist v' & (AvA'ovD) with 2!yt #0
for some v £ v' (since z' € E+S). Then v & (AvA') (or
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else vy'€ D). Therefore y £ty v & (AuA'), v* & {(AvA').
Define ‘

B = Avir}
B' = A'v {v'}
¥(B) = B' (BeaA)
=x' (B =71).

Then (B,B',{)e g and is greater than (A,A',4) under
the ordering <«. This contradicts the choice of
(A,A',4). Therefore |A| > d as claimed.

If S 1s a subset of A with |S| = 4 then the triple
(s, #(8), ;zfls) satisfies the conclusions of the lemma.

We may now derive the final contradiction required
to prove lemma L.4.7.

Suppose if possible that z' € E+S. Then there
exists (A,A',d) as in lemma 4.4.10. Define #: V = V

by
vc(ﬂ= vc(| (ieA)
V&'ﬂ':vc(' (i'eA')
Vg = 0] (Beax(AauA')).

By definition 7#€G. So by hypothesis u = [z',7] € E+S.
But for LE A we have

z2'r - ' = ' - '
v .(z'w - 72') Zzo(evﬂw 22 g

Vg
The coefficient of Vo is
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z! + z' - z!

LL LL!
(vearing in mind that z!'

&'t(' = z'clpc' #0
pp = 0 and LEA). Thus u ., #0
if L&A. But |A| = d and L # «' so u & E+S.

This contradiction shows that z'€ E+S, so 2z €EE+S,

whence lemma L.4.7 is proved.

Application of lemma 4.2.6 now proves
Theorem 4.4.11

If ¢ and d are infinite cardinals with @ < c¥,

then L(c,d) € Min-si.

(we can also easily show L(c,d)é,ﬁj using theorem
4.2.3. Suppose L = L(c,d) has a proper ideal I with
L/IE‘?;. L has an ascending series, the finite-
dimensional factors of which are abelian, the rest
simple, so I/I must be soluble. Then [@,ﬁ] < L contrary
to lemma 4.4.4. Thus L = 6(L) €g'\J . The special case
of L(c, &?o) can be handled easily by other methods.)
Remarks 4.4.12
1) Let L = L(}§O,§§O+). L has a series of ideals

OKTC<KPFKK<S+F <1
(s,T,F as before). L/F is an extension of the
l1-dimensional algebra S+F/F by the infinite~dimensional
simple algebra L/S+F. We claim this is not a split

extension.
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Let ¥ = L/F, J = S+F/F, and suppose there were a
subalgebra K with J+K = M, JnK = 0. Let C = CM(J).
C 4 M and M/C has dimension < 1 (by the remarks preceding
lemma 4.2.1). ¥ = EM,M] by L.b4.4 so C = M. Thus M is
the direct sum J e K, and [M,M] < X < M, a contradiction.
Thus M does not split over its radical (either the
soluble radical or the nil radical or any sensible
generalisation thereof), in contrast to the Levi splitting
theoren for finite-dimensional Lie algebras (see Jacobson
[17] ».91).
2) M€ Min-si nj , and any ascending series of ideals
with simple factors contains a l-dimensional factor which
cannot be moved to the top. Thus the l-dimensional
central factors mentioned in the second part of theorem
L.2.4 cannot in general be dispensed with.
3) sSimilar remarks apply to L(c,d) in general. It
has a series with two l-dimensional factors, which may

occur in various places, but not at the top.

Q.E An Embedding Theorem
A result of an entirely different kind which falls

out of the previous analysis with very little prodding

makes up
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Theoren L.5.1

Let k be any field; K any Lie algebra over k. Then
K can be embedded in a simple Lie algebra over k.
Proof':

By Jacobson [;7] P.162 cor. 4 K has a faithful
representation by linear transformations (of a vector
space V of dimension c¢ (say) over k). By enlarging V
if necessary we may take ¢ to be infinite; further

+

enlargement enables us to assume K < L(c™,c Since

+ +

¢ is infinite c.c = c+, so if T 1s a set with |P| = C

and A is a set with |A| = c we can find two bases

-+

of V. Let £L&€L(ct,c*). Then

(mﬁyer’ “%der,éeA
VY& = 2 aYY.v#,
and dim(im(L)) < c. Define L*: V - V by

* -
WYéo( = 3 aYquYyéo

(Roughly speaking we split V into ¢ subspaces of
dimension ¢t and copy the action of « on each. )

Clearly the map *: L - «* 1is a monomorphism of
L(c+,c+) - L(c*,c*). But im(«*) has dimension >c
unless £ = O, SO in(*) n L(c*,e) = O. Consequently im(*)
is mapped isomorphically by the natural quotient map
L{ct, ) - L(ct,ct)/L(c*,c). The composite embedding

K » L(c*,c") » n(ct,c*)/n(ct,¢)

embeds K in a simple algebra (by theorem L.U4.6).
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Using the corollary to theorem L.4.3 we could
perform a similar trick with associative algebras. The
theorem also holds for groups, proved by essentially

the same trick in Scott [37] p.316 11.5.4.

Not all known embedding theorems for groups carry
over to the Lie case. For example, Dark [8] has
proved that every group can be embedded as a subnormal
subgroup of a perfect group. Strangely, the analogue
of this result fails for Lie algebras -~ does this
indicate the absence of a wreath product for Lie algebras?
(L is perfect if L = L2.) More specifically:
Theorem 4.H5.2

Let X be a Lie algebra with the following properties:
DY = A & £o,

i=1
2) k¥ ¢ 3 (x),
3) der(x”) ¢ (L.

Then K cannot be embedded as a subideal of a
perfect Lie algcbra.

(Note: Condition (3) is most easily satisfied if
dim(Ku) = 1. A concrete example of K satisfying these
hypotheses is the 2-dimensional soluble algebra

K = <a,b : [a,b] = a>

for which KCJ = <a> has dimension 1 and is not central.)
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Proof:

Suppose there exists L = L2 with K si L. Then by
lemma 4.1.2 K% 4 L. Then C = Cy(K ) o L. By the
remarks before lemma 4.2.1 L/C ¥ D < der(x™) € EO[ .
If C# L then L # 1%, s0 C = L. Then [K",L] = 0 so
EK“ZK] = 0 contrary to (2). This contradiction
establishes the non-embeddability of K in a perfect
Lie algebra.

(Note: It is not hard to state a rather more

general non-embedding theorem based on the same proof.)
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Chapter Five

Chain Conditions _in

— —

gpecial classes of Lie algebras

We now investigate the effect of imposing chain
conditions (both maximal and minimal) on more specialised
Classes of Lie algebras, with particular regard to
locally nilpotent Lie algebras. Application of the
Mal'cev correspondence then produces some information on
chain conditions for complete subgroups of complete

locally nilpotent torsion-free groups.

2:1 Minimal Conditions

Lemna 4.1.6 immediately implies
Broposition 5.1.1

If we relax the condition to Min-< lemma 4.1.5
shows that L?n.n Min-4 < EC)lr\E;. But in contrast to
Proposition 5.1.1 we have
EEQDOsition 5.1.2

AL Min-< NoF.
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Proof:

Let k be any field. Lot A . be.en abelian Lie
algebra of countable dimension ovep k, with basis
(xn)O <neZ+ There is a derivation o of A defined
by

%30 = X4
c = 0.

(1 >1)
x'l

Let L be the split extension (Jacobson [17] p.18)
A ® <0>. Clearly L &€ AN (ﬂu?‘). Let A; = <Xpye0,%;
We show that the only ideals of L are O, Ai(i>0), A, or L.
For let I 4 L, and suppose I ji_ A. Then there exists
A#Z 0, A€k, and X€A, such that Ao+x€ I. Then
x; = [Nlx 1, Mo+x] € I 50 A < I. Thus x€I, s0 GEI,
and I = L. .

Otherwise suppose O £ I < A. For some n & Z we
have |

X = hnxn + hn—lxn-l + eee + )"lxl eI

where 0 #£ Ape My €k (i=1,...,n). Then [h;llx,n_lo]
= xle I. Suppose inductively that Ay £ I for some
m < n. Then [k;lx, n-n-1°] € I, and this equals X 417
for some y€A . Thus X €1 and Ay £ I. From this
we deduce that either I = Ay for some n or I = A.

Thus the set of ideals of L is well-ordered by

inclusion, so L € Min-4.
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For Lie algebras satisfying Min-ol We may define

a soluble radical (which has slightly stronger properties

when the underlying field has characteristic zero).
Theorem He¢le3

Let L be a Lie algebra over a field of character-
istic zero, satisfying Min-si. Then L has a unique
maximal soluble ideal o(L). c(L)éiS} and contains every
soluble subideal of L.

Proof':

Let F = 6(L) be the ?3'—residual of L, (L) the
Baer radical. Let dim(1/F) = f, dim(B(F)) = b. Both
£ and b are finite. Define By = B(L), By ,/B;= B(L/Bi).
By lemma 4.1.3 and 4.1.6 B,¢ECLa¥. B,nF < F and
by lemma h.2.2 F has no proper ideals of finite codim-

enslon, so by the usual centraliser argument B,n F is

i
central in F, s0 Byn P < B(F). dim(Bi) = dim(BinF) +

j41 = Bi for some 1.

Let o(L) = By. Then o(L) <L, o(L)€ EMnF. 1L/o(n)

dim(Bi+F/F) < b+f. Consequently B

contains no abelian subideals, and hence no soluble
gubideals, other than O. Thus o(1L) contains every

soluble subideal of I, as claimed.

For the characteristic p # O case we prove rather

less:
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Theorem 5.1.4

Let L be a Lie algebra over a field of character-
istic > 0, and suppose L € Min-si, Then L has a unique
maximal soluble ideal o(L), and o(L) &€ F.

Proof':

Let F = 6(L). Suppose S 9L, S € E(Jl . Then
s € 0l n ¥in-s1 < ? » S0 FnS 663'. The usual
argument shows Fn S SSI(F) G%AUZ. Let dim(g’l(F)) = Z,
dim(L/F) = f. Then dim(S) = dim(FnS) + dim(S+F/F)
£ z+f. Clearly fhe sum of two soluble ideals of I is
a soluble ideal; the above shows that the sum of gll the
soluble ideals of L is in fact the sum of a finite
nunber of them, so satisfies the required conclusions

for O(L) .

Suppose now that 117/ denotes the class of ILie
algebras L such that every non-trivial homomorphic
image of L has a non-trivial abelian subldeal; and let
‘t}’ denote the class of all Lie algebras L such that
every non-trivial homomorphic image of L has a non-
trivial abelian ideal. Then immediatel& we have

Theoren 5.1.5

1) For fields of characteristic zero

]A??\Min-si = ECN-G?}Z
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2) For arbitrary fields

.Urn Min~si Ecjltlég’

Proof:
If L satisfies the hypotheses then we must have
L = o(L) & ol ns} as required. The converse is

clear.

Digression

It is not hard to find alternative characterisa-
tions of the classes YJr ,119-. 17~ is clearly the class
of all Lie algebras possessing an ascending C:Y-series
of ideals. These are the Lie analogues of the SI¥*-groups
of Kuros [23] p.183, 1})’ is the Lie analogue of Baer's
subsoluble groups (see [17]), which Phillips and
Combrink [28] show to be the same as SJ*-groups (same
reference for notation). A simple adaptation of their
argunent shows that 1Lr'consists precisely of all Lie
algebras possessing an ascending (3{ -series of subideals.

We omit the details.

A useful corollary of theorem 5.1.5 follows from
Temma 5.1.6

A minimal ideal of a locally soluble Lie slgebra
is abelian.



105

Proof:
Let N be a minimal ideal of L € LEOZ and suppose
N & (L. Then there exist a,beN such that [a,b] = ¢ # O.

L

By minimality N = <c¢™> so there exist xl,...,an.L such

that a,b & <c,x1,...,xn> = H, say. L& LEOZ SO
#e BOl. NowC = <cf> o H, and a,bec, so c = [a,b]
602 ch C 9 H, so c602 94 H, and C = c2. ButhHéEOZ,

a contradiction. Thus NEO-L.

Corollary

ELE OI A Min-si = E OCnC}.
Proof: A

It is sufficient to show LEQOL n Min-si < EOlaF .
By lemma 5.1.6 LEOZnMin—si < U’ (since LEOZis
Q—cloéed). " Theorem 5.1.5 finishes the job.

5.2 Maximal Conditions

Exactly as in section L.l we may define maximal
conditions for subideals, namely Max-si, Max-<", and
Max-d. We do not expect any results like theoren 4.1.7,
and confine our attention mainly to Max-d.

Lemma H.2.1

EOI N Max-9 < 9/ .

Proof:

We show by induction on 4 that Oldn Max-< < C} .
If d =1 then L eOln Max-<4 < %’ < gz . Suppose
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L ¢ QA% q Max-9, end 1et 4 = L&V, 14 e OU%?
and L/A € Max-4, s0 L/A € %/ by induetion. AGOZ
There exists H E% such that L = A+H (Let H be generated
by coset representatives of A in L corresponding to
generators of L/A.) By Max-d9 there exist 81reeera € A

L> + ese + <anL>. But if a€ A, h€H,

1
then [ai,a+h] = [ai,h] so A+H = <a1H> + oeee + <anH>

- <a1,...,an,H> e %o

Remark

It is not true that B nMax-4 < X. The

such that A = <a

example discussed immeditately before lemma L.1.1

shows this - indeed it shows that even Eoanax-c N Nin-<
is not contained in ‘3" . This contrasts with a well-
known theorem of P.Hall which states that a soluble

group satisfying maximal and minimal conditions for
normal subgroups 1s necessarily finite.

It is easy to show that EO‘( N Max-<12 = EOZ n C3’.

ILemna H.2.2

et HaL € tECL N Max-<. Then H = 0 or
H® < H.
Proof': )

tet = (Vu(), ThenP ch i ¢ L soP < L.

Suppose if possible P # O. Then there exists X maximal
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with respect to X 4 I, K < P. P/K is a minimal ideal

of /x € IECL , so by lemma 5.1.6 /K € (J[, so

that P2 < P contradicting the definition of P. Thus

2

P =0 (so H < H) or H = 0.

Lemma 5.2.3

IfH LKL € %1 and L = H + L2, then H = L.

Proof:
We show by induction on n that H + ® = 1. 1If
n = 2 this is our hypothesis. Now H + L' = H + (H+L%)"

=H+HE + 1™ om0 =w + 1P

as required.
For large enough n 1" = 0so L =H.

Temma 5.2.4

Let L be any Lie algebra with P <« L, H < L, such
that L = H + P>. Then L = H + P for any integer n.
Proof:

We show P = (HnP) + P®. Now P = (HaP) + P2.
Modulo P we are in the situation of lemma 5.2.3, 80

p = (H-P) (mod P®), which provides the result.

Let lﬁ/ be any class of Lie algebras, L any Lie

algebra. Defihe

ML, Y) = iy : N <1, L/N&’Ey;.

Lemma 5.2.5

If L € LEU{./\ Max-~-<4 and I‘k = )\(L,(}\k), then

L € 0l .
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Proof: )

Induction on k. If k = O ﬁhe result is trivial.
If k >0 assume,L/Lk ¢ e0Jl.. Then L/I.k2 e O nyax-<
< % (vy lemma 5.2.1). Thus there exists H < L, HG%,
such that L = H + Lk2 (coset representatives again).
since L€ 1800 He Cﬂg for some d. Let Q 94 L with
1/q € UYLE*L, Then there exists P 9 L with @ < P,
p/a€ U, v/pe WF. By definition L, <P so L, ® <P
and L = H + P2. By lemma 5.2.4 L = H + P for any n,
soL=1+q (p/aeWl). La¥u/(Ha)e AL 1, 1s
the intersection of all such Q, so by standard methods

2

L/Lk+1 is isomorphic to a subalgebra of the direct sum
of all the possible I/q, all of which 1ie in OU°.
Therefore L/Lk+1 € O-Ld as claimed.
Lemna 5.2.6

1rL € L(NF) n Max-9 , then L/Lkemk.
Thus L, is the unique minimal ideal I of L with L/I€ Ak,

Proof:
By lemma 5.2.5 (since ‘Zﬂ,k < EO{) L/Lk € EUZ.
But L/L, € Max-4 80 by lemma 5.2.1 L/L, € % . The
usual argument shows that there exists X < 1, Xég ’
L = Lo+X. Then I/I 2 X/(L.nX). x¢& 0¥ since L€ L(IK)

so L/I, € N ¥,
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Theorem 5.2.,7
L(‘ﬂ_k) A Max-4 < % n PE.

Proof:

Clearly all we need show is that if L E L(m.k) n Max-<4
then L € % . Define L. as above. Suppose if possible
that L_# O. Then L_ < L, so by lemma 5.2.2 Lkz < L.

By definition and lemma 5.2.6, Loy Lkz, go that

Ly <Ly ButL/L 4 € E({ntax-9 (lemma 5.2.5)

< % (lemma 5.2.1). The usual argument now shows
L/Lk+1€ (Xl k, so that L, < L, ., a contradiction. Thus
L =0, and L. & I/L_e B nkax-9 (lemma 5.2.5)

< g/(lemma 5.2.1).

Corollary

L‘n nMax-49 = g‘ n‘?ﬂ.

Proof:

C
Put k = 1 and note that gnYl = %n(?ﬂ
Compare this with Proposition 5.1.2.

5.3 lal'cev Revisited

In order to 'apply the results of chapter 2 to
obtain corresponding theorems for locally nilpotent
torsion-free groups, we must find what property of the
complete locally nilpotent torsion-free group G corresponds

to the condition ;C (@) € Q.}".
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Lemma H.3,1

Let G be a complete locally nilpotent torsion-free
group. Then ;t (G)G;?} if and only if G is nilpotent
and of finite rank (in the sense of the Mal'cev special
rank, see Kuros [23] p.158).

Proof:
Ir ct(G) d c3’1:hen af(G) egnm 80 has a series
0=L, 9L 9... 9L = L (G)
such that dim(Li+1/Li) =1 (1=0,..0,n-1 ). Thus
G has a series

. 1l = GO 9 G1 d .00 9 Gn = G
with 6, = G(1,). By lemma 2.4.2.5 Gy /0, 2 %(Li+1/Li)
= (:Z (additive group). (;. is known to be of rank 1,
and it is also well-known that extensions of groups of
finite rank by groups of finite rank are themselves of
finite rank. Thus G 1s of finite rank. @G is nilpotent
since ;C () is.

Conversely suppose G is nilpotent of finite rank.

Let

be the upper central serles of G. From lemma 2.4.3
corollary 2 each term Zi is complete, so 1s isolated in
G. Therefore Zi+l/zi is complete, torsion-free, abelian,
and of finite rank (since G is of finite rank). BY
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standard abelilan group theory, Zi+l/zi is isomorphic to
a finite direct sun of coples-of d;l . Hence
I (Zi+1/zi) &€ %‘, S0 l‘((}) 6(} as required.
This proves the lemma.
Remark

Let rr(G) denote the rational rank of G as defined

in the Plotkin survey [29] p.69. Then under the above

circumstances we easily see that dim(:t(G)) = rr(G).

According to [29] p.72 Glufkov [9] has proved that

for locally nilpotent torsion-free groups G the rank

of ¢ = rr(G). Consequently dim(;t(G)) = rank(G), a

stronger result than lemma 5.3.1 (which, however, is

sufficient for our purposes and easier to prove).
Applying the correspondence of chapter 2 and using

the results of the present chapter, we clearly have

Theorem 5.3.2

Let G be a complete locally nilpotent torsion-free
group. Then the following conditions are equivalent:
1) G is nilpotent of finite rank.

2) G satisfies the minimal condition for complete
subnormal subgroups.

3) G satisfies the minimal condition for complete
subnormal subgroups of defect < 2.

3) G satisfies the maximal condition for complete

normal subgroups.
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On the other hand G may satisfy the ‘minimal
condition for complete normal. subgroups without being
either nilpotent or of finite rank.

(Some of these results have been obtained by

GluSkov in [9 ] ).
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Chapter Six
Lie algebras in which

every subideal is an 1deal

Recall from section 4.2 that L & j if and only
if H si L implies H 9 L. Thus L €& <j if and only if
H 4K 94 L implies H 9 L. Further define the class Lj
to consist of all Lie algebras L such that H < L implies
He <3 . ThusLecﬁj if and only if H 9 J 9K <L
implies H 9 K. ,

In this chapter we obtain the complete classifi-
cation of: ]

1) Soluble i] -algebras (over any field)

2) Finite-dimensional c] -algebras (over any
field of characteristic %E?o)

3) Locally finite <J -algebras (over any
algebraically closed field of characteristic zero).

It will appear from case (1) that EOan = Eaznj .

The corresponding problems for groups (which are
considerably harder) have been partially solved by
D.J.S.Robinson [32]. We will occasionally indicate how

the Lie-theoretic and group-theoretic results compare.
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6.1 Soluble LU-alge‘bras

For any Lie algebra L let < (L) denote the
Fitting radical of L, that is, the sum of all the

nilpotent ideals of L (see chapter 7 for more information).
Lemma 6.1.1

1) Let O AH QL € E({. Then H contains a
non-zero abelian ideal of L.

2) Let L € EC] , N= V(). Then O (N) <.
Proof':

1) Let n be the largest integer for which Hr\L(n) # 0.
Then 1t A = Hn L™ we nave [4,4] < #a L) < 0 s0
A is an abelian ideal of I, contained in H, and A #£ O.

2) Let C = C;(N) and suppose C § N. Then 0 #
C+N/N < L/N so by part (1) there exists A 9 L such that
N<A<CN and ANECD . Nowa=Aan(CeN) = A, +X
where A, = AnC. A = [a%,a] < [W,c] = 0 so A € V.
Thus A = AO+N = N, a contradiction.
Lemma 6.1.2 |

NaAJ=0l.

Proof:

Let L Gtzlnﬁ]. Then H < L implies H si L since
Le‘b/l , soHoLsinceLé(’j e« Thus L € $1=OZ
by lemma 3.4.2. Clearly Cﬂ. < 'Ulr1é3 .
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Now suppose I, € EOL a CJ « Suppose L-& O-( ’
and let N = 7V (L). Every nilpotent ideal of L lies
in &J , 80 by lemma 6.1.2 we must have N € OZ .

Let U be a vector spacé complement for N in L.

IfT neN, ugU _then <n> 4 N<dLso <n> <L so
[n,u] = A(n,u)n
where A(n,u) is in the underlying field k. If m,n are
linearly independent elements of N, then
[m+n,u]
[m,u] + [n,u]

A(m,u)m + A(n,u)n

A(m+n,u) (m+n)

so that A{m,u) = A(m+n,u) = h(n,u).. Thus for any
m we have A(m,u) = m(u) (say), independent of m.
Thus
[n,u] = /u(u)n

where M:U -+ k is linear.

Now ker()u) = CU(N) < NnU (by lemma 6.1.1.2) = O,
and in(M) = k is 1-dimensional (im(f) = O implies L € (I )
so U is 1l-dimensional. Consequently L is of the form

L NedlU

i

where N < L, Né'm sy U= <u> 1is l-dimensional, and u
can be chosen so that [a,u] = a for all agN. This

determines L as a split extension, and gives part of
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Theorem 6.1.3

L € EUUATJ if and only if one of the following
hold:

1) .eOl.

2) L =N e U, where N oL, Ne(JU, U =<u, N#DO,
[a,u] = a for all a EN.

A precise classification of these algebras up to
isomorphism is given by the ordered pair (dim(L),dim(Lz)).
Proof:

L & EOZI\ CJ implies (1) or (2) by the above
analysis.

(1) implies L € EOL A3 trivially. Suppose
L has the structure (2). We show L € 3 (r € ([ is
clear).

Let I 4 L, and suppose I § N. Then there exists
1€ I, 1 = a+dbu for some a€A, O ¥ 6 € k. For any b £ N,

[6™1b,1] = vETI.
Thus N < I, so u€lI, so I = L.

Now let J s1 L. I = <J"> 9L, 50 either I = L
so J=Land J 9L, or I < N. Therefore J < N. If
j€ 7 then [J,u] = J€J s0 J 9 L.

Clearly (dim(L),dim(L%)) is an isomorphism invariant.
If L, ¥ are 1n E0T n 3 and din(L) = dim(),
dim(Lz) = dim(Mz), then eitﬁer L and M are abelian so
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isomorphic, or L= N @ U, M = N' © U', and N = L2,

N' = M2 so dim(N) = dim(N'). The structure indicated
by (2) then shows L & M.
Remarks 6.1.4

1) I}Olnﬂ < OI 2 (this can also be proved directly

as for groups, see Robinson [32] Pe23).
2) . € EOLnBINOl implies dim(1/12) = 1. (This
remark is of much use later on).

3) g0l < LQE‘ (proof immediate).

6.2 PFinite-dimensional (\J-algebras

Throughout this section the characteristic of the
field k will be assumed to be zero.

First we remark that the classical structure
theory of finite~-dimensional Lie algebras shows that
any semisimple Lie algebra lies in t] (Jacobson
[17] p.73). Let Q_’? denote the class of semisimple
Lie algebras.

Suppose I ngcj . By Levi's theorem (Jacobson
[17] p.91) L is a split extension

L=ReePF
where R 9L, RnF =0, REEC] , amare & . wNow
rRe el 0(7 so is of the form stated in theorem 6.1.3.
Iet A= V(R) ch R (in this case VYV (R) reduces to the

¥
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classical nil radical and Jacobson [17] p.51 shows this
is a characteristic ideal. The result is true in
general, cf. chapter 7.) Therefore A 9 L so [A,F] < A.
As in the proof of theorem 6.1.3 F acts diagonally on
A. [:A,FJ # O would imply that F has a non-trivial
representation by diagonal matrices, so that 72 # F.
But F &€ fg so this is a contradiction (Jacobson [17]
p.72). Thus [A,F] = Q.

If A =R then [R,F] = O. Otherwise A # R so0 by
theoren 6.1.3 R = A @ U where U = <u> and [a,u] = a
for all a€A. A is the nil radical of L so [R,F] < A
(Jacobson El?] p.51). Thus if fé'-F [_u,f] € A. Let
e,f€ F. By Jacobi

[Cwe],e] + [fe.£] o] + [[£,u].e]

so that O + [l_-e,f:],u] + 0 = 0. Thus Cp(u) >

1l

\V4
H OO
I
)

since F € J .

Thus again [R,F] = 0 and I, is the algebra direct.
sun . = R & F.

This proves the first part of
Theoren 6.2.1 |

Over fields of characteristic zero, L & ? n? if
and only if L is a direct sum R e F where R € E(I r\‘jr\ 9
(classified in theorem 6.1.3) and F € 92? .
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Proof:

L € S}rf] implies L = R @ F by the above analysis.

Suppose I 9 R ¢ F, S = INR. Then S is the soluble
radicel of I and by Levi's theorem I is a split exten-
sion S @ G where G € Q? . By the theorem of Mal'cev -
Harish-Chandra (Jacobson [17] p.92) G é F* for some
inner automorphism £ of L (see section 1.2). But
P 9L so FX=F. Thus G < F.

[F,G) < PnI. Let s+g& FnI, s€S, g€G. Then
s€ FAS < PFAnR =080 FNI = G. Thus G 94 F, and
[¢,s] = o.

Thus I 4 L if and only if I is the direct sum
S e® G, where S 4R and G 9 F., If J <« I then by the
same reasoning J = T e H, where T ¢ 3§, H 94 G. Then
T 9S a9R so T 9R (since RE CJ ) and similarly H 9 F.

Consequently J 9 L as required.

——

6.3 CJ -algebras

Theoren 6.3.1 .
EOY’\CB =E0103 .

Proof:

> 1s clear., We use the classification theorem

6.1.3 to show <.

——

et 1€ EOLATT. . €Ol implies L € 3 s0 we
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may assume L = N @ U etc. as usual. Let K < L.

K/(XaN) has dimension O or 1. If O then K < N so

ke Ol so K€ 3 . 1If not then there exists t €L such
that K = (KaN) + <t>, t &N so t = a+ébu, ag€N,

0£6&€k. Then if v = 61

t we have [b,vj = b for all
b€ KnN. Thus K is a split extension (KNN) e <>
with v acting as the identity on (KnN), so by theorem
6.1.3K€ 3.

Consequently L € ?I.

—

The same result holds for groups. Robinson [30]
has shown that every finite 3 -group is soluble. This
is false for Iie algebras, but only'just:

Theorem 6. 3.2

Over algebraically closed fields of characteristic
zero, L€ (3'03 if and only if one of the following
hold:

1) L € e0la3 ",

2) L % A, the 3-dimensional split simple algebra

defined by _

A = <e,f,h: [e,h] = 2e, [£,h] = -2f, [e,f] = ho.
Proof': _

First let F € QS’,EI Let H be a Cartan subalgebra

of F. Then the subalgebra
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B=H+ 3 F

£>0 L
of F is soluble. Here the FOC are root-spaces

corresponding to roots L (See Jacobson [17] or

Carter [u] for terminology and details). By the
classical theory [H,H] = O and [H,B] < 2 F, so that
din(B/B%) > din(H). B & (] since by sopinition H is
self-idealising. F € §§ 80 B € ?3 50 by remark 6.1.4.2
dim(B/Bz) = 1. Thus dim(H) = 1. The only semisimple

T.ie algebra with a Cartan subalgebra of dimension 1 is
the simple algebra A1 (from the classification theoren
for senisimple Lie alEfbras) so F g'Al'

Now let L € S;nfj. By theorem 6.2.1 L =R o F
(airect) withRe 2Ol , re & . 2, P € J so by
the above F = O or F & Ag. If F = O we are home.
Otherwise F ¥ A, vwhich contains a soluble subalgebra
Q=<eh> € JU . IfR#Otheﬁ]S:ReQ,is in
(Em ncj )\OZ but has dim(D/Dz) > 2 contrary to
remark 6.1.4.2. Thus R = O %E? L=F7= A

Oon the other hand, A:LC '3 since A€ ? , and any
proper subalgebra of Al has dimension < 2. Such algebras
are classified in Jacobson [17] p.11l and are easily seen
to be Qj -algebras, and lie in E oL

Corollary
Over algebraically closed fields of characteristic
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zero, L € L€3’n tg if-and only if one ef the following

holds:
1) LerOla"J. -
2) I.l = .A.lo
Proof:

Either L €'IEEC)( or I contains a subalgebra
K= Al’ by theorem 6.3.2. In the first case by remark
6.1.4.1 L € L012 = 012 so L€ £ OT . 1In the second
case suppose K # L. Then there exists x€L \ K. Then
<x,K> € "JaF, is not saluble since K £ EO( , and is
not isomorphic to A1 since its dimension is too big.
This contradicts theorem 6.3.2 and shows L = K ¥ A

The converse is clear using remark 6.1.4.3.

This completes the proof.
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Chapter Seven

Baer, Fitting, and Gruenberg
' algebras

7.1 Sunmary of Group-theoretical Results

Let G be any group. The Fitting radical = (G) is

the join of the nilpotent normal subgroups of G. The

Baer radical B(G) is the join of all nilpotent subnormal

subgroups of G. The Gruenberg radical y(G) is the Jjoin

of all nilpotent ascendant subéroups of G. Clearly
J(6) < 8(G) < v(@), and it is well-known that each
of the three is a locally nilpotent characteristic
subgroup of G, so they all lie inside the Hirsch-Plotkin
radical P (G).

We will call G a Fitting group if G = 1)(G), a

Baer group if G = B(G), and a Gruenberg group if G = y(G).

It is easlily seen that a Gruenberg group need not be a
Baer group. The following problems are harder to
dispose of:

Gl) 1Is every Baer group a Fitting group?

G2) Is every locally nilpotent group a Gruenberg

group?



12,

In both cases the answer is in the negative. (Gl)
is answered in Robinson [30] p.107, and Dark [7] has
shown that there exists a Baer group G # 1 with V(G) = 1.
(G2) has been answered by Kovacs and Neumann (unpublished,
but see Robinson [Bd] p.110 for a proof). All of the
groups so far constructed to answer these questions are
p-groups for various primes p. The wealth of evidence

(e.g. Kuro$ [23]) that locally nilpotent torsion-free

groups are on .the whole better behaved than their periodic
counterparts leads us to pose the following problems:

Tl) 1Is every torsion-free Baer group a Fitting group?

T2) 1Is every locally nilpotent torsion-free group a
Gruenberg group?

We shall show in a moment that these problems are
equivalent to analogous questions about Lie algebras
over d;l , and we will answer (T1l) in the negative by
constructing a suitable Lie algebra. This example has
a number of other interesting properties: it slso
answers in the negative a question raised by B.Hartley
in [14] p.260, and it provides alternative examples to
one in [14] of Lie algebras in which the join of two

subideals is not a subideal.
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7.2 The three radicals in a Lie algebra

In what follows we restrict our attention to the
case of Lie algebras over fields of characteristic
Zero.

Let L be such a Lie algebra. Following Hartley
[;u] we define

B(L)

v(L) = <N: N asc I, e N 8

<M: N si L, Ne b,

whence it is natural to define
V(L) = <N: N 9L, N & “ﬂ >
These will be referred to respectively as the Baer,

Pitting, and Gruenberg radicals of L. . Clearly for any

L we have V(L) < B(L) < y(7.). We define the classes
I (curly Ft), éB N q%¢' (curly Gr) of Fitting,
Baer, and Gruenberg algebras by

L € Y% if and only if (1) = 1,

1L € j? if and only if B(L) = L,

L& (v if and only ir y(L) = I.
As regards the status of these radicals we have:

Temma 7.2.1

Let L be a Lie algebrz c¢var a field of character-
istic zero. Then

1) 2(L) eh L, and V(L) € L?ﬂ, .

2)  8(L) och L, and ‘g1 E LB .
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3) «(7.) need not even be an ideal of L, but
v(1) e 1% . on the other hand, if further L & i
then v(L) <9 L.
Proof':
All the statcments follow from Hartley [14]:
1) Follows from theorem 1% p.267 and from lemma 1 (ii)
D.261.,
2) Is corollary to theorem 3, p.259.
3) For the first parts see corollary 1 to theofem L,

p«259; also p.270. For the last part use lemma 3 p.262.

We now ask the companion questions to (Gl) and (G2).
L1) 1Is every Baer algebra a Fitting algebra?
L2) 1Is every locally nilpotent ILie algebra a Gruenberg
algebra?

The connection between questions (Ti) and (ILi)
follows from

Theorem 7.2.2

Let G be a locally nilpotent torsion-free group,

with completion @, and let I, be the Tie algebra JZ(G).

Then
1) v{@e) = 2(G) = )
2) pl@) = (@ = (1)
3) ¥(G) = v(@ = r(L).
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Thus if any one of G, G, L is Fitting (Baer, Gruenberg)
so are the other two.
Proof:
Let x € D(G). By lemma 2.4.4 there exists n € Z
such that x"¢ 7(@). Thus x'€ N <« G for some N 6‘31 R
Therefore x € N . N « & by lemma 2.4.4, and ﬁ«sckl
by theorem 2.5.3. Thus x € V(G) and (@) < U(@G@).
Now let y€ V(G). Then y € ¥ < G, where Mée JL .
By theorem 2.5.3 ﬁ'€CXL, and i 4 @ by lemma 2.4.4.
By Kuros [23] p.257 I = 7nG . So for some m € Z
Ve NG But TnG < G, and lies in YL . Thus
e VY(@), soye V@ . Thus V(F) < PG .
Combining the two inequalities (&) = 72X(G).
Now V(G) =<i: M<9G , Me N>
=<f: MNoG ,ueN>
since lemma 2.4..4 and theorem 2.5.3 apply as above.
By theorems 2.4.2 and 2.5.4 this equals
<H: W96 , HE ?Q.>
= (L)«
Parts (2) and (3) are proved similarly, with 'si' or
'asc' replacing '4', and using lemma 2.4,.5.

Remark 7.2.3

As a consequence of theorem 7.2.2, we sece that for

i = 1, 2 the answer to question (Ti) is the same as that
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to question (I.i) for Lie algebras over the field {;L .
And with thic cbzcervation in mind, let's go

hunting for Baer...

[.3 A Baer algebra which is not Fitting

Let k be any field, not necessarily of character-
istic zero - the Lie algebra we shall construct has
some interesting properties even for characteristic
p > O.

Theorem 7.3.1

There exists a Lie algebra I over k such that
1) L is a split extonsion Ve J, V<L, Vad = O.
2y v e OL.
3) J = <H,K> where I,K <L, H,XKe Ol , K is
l-dimensional, and I 1s infinite-dimensional.

L) H <L, K < L.

5) § = I,(J) =0 J di L.

6)J€(2ﬂu.
7) x> Q(b/\-,soL EC’B’E.
Proof':
We proceed by snziogy with a group-theoretic

construction of Rozeblade and Stonehewer [}u] 81. 3.

Let A be an infinite-dimensional vector space

over k and let R be the exterior algebra generated PY A
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over k. (First form the tensor algebra

T=k @ A © AeA & AGAGA © ...
and factor out by the ideal I gcnerated by all elements
aea (a€A). Put R = T/I.)

R is well-known to have the following properties
(sce Chevalley [6]):

R is an associative k-algebra, containing
isomorphic copies of k and A. Making the obvious
identifications kn A = 0. R has a natural structure as
a graded k-algebra in which the homogeneous elements
of degree i are products of i elements of A (or elements
of X when i = 0). Further
El) ak = Aa (ag A, AEX)

E2) 5® O (a€A)
E3) If xeR then XA = O if and only if x = O.
(Note: (E3) fails when A is finite-dimensional).

(E2) implies that for all a,b€ A (a+b)Z = O so

that ab = -ba. Hence for any a,b,c,d € A we have

abc = cab , abcd = cdab. (1)

First we construct J as a Iie algebra of 2 x 2
matrices over A (but considered as a Lie algebra OvVer k)
under the usual Lie multiplication [E,N] = MN-NM.

Let K be the set of all matrices of the form
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00

) (rex)
and let H be the set of all matrices of the form

0 a
Clearly H and K are abelian Lie algebras. X is
i--iimensional with basis f(g 8); and H = A (under
e lition) so is infinite-dimensional. Put J = <H,K>
and part (3) of the theorem holds.

Lemma 7.3.2

<HY9> and <KY> both lie in Y TN

Proof':
Let 2 be the subalgebra of J generated by all
matrices of the form
ab+c 0
( a ab—c) (a,b,c,d € A). (2)
Direct calculation shows

[(abgc abgc),(pq;r qur)J = (‘é 3) (p,q,r,8 €EA)
where

L = (ab+c) (pa+r)=(pa+r) (ab+c)

B = d(pg+r)+(ab-c)s-s(ab+c)-(pg-r)d

y = (ab-c)(pg-r)-(pg-r)(ab-c).
Using (1) this reduces to

ey -0
( 0 2cr) (3)

which is of the form (2) with a = 2¢, b = r, c=d=0.

Thus Z is spanned by all matrices of the form (2).

Hence [2Z,H] is spanned by all products
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[(*°2° 2.0, (S &) (a,b,c,d,e € A)

which equals

(—ed (ab+c)e—e(ab-c))
0 de

and using (1) this becomes
RN ¢ (1)
which lies in Z. Thus [%Z,H] < 2.
[Z,K] is spanned by all products
ab+c

[( d ab— ) ( ):[ (a,b,c,dEA, 7\.61{)
and this is

( 0 )

A(ab-c)-(ab+c)L O
which, using (El1), is

0 0 .
§ 2 oy (5)
which is in Z. Thus [Z,X] < 2.
[H,K] is gecnerated by all products
0 a Q0
B nir ke o (a€a, LEK)
which equals
Aa 0
(g anal B

Conscquently Z+H and Z+K are idealised by both H and X,

7. mus <a¥> < 24, <KY> < z4K.

so are idealised bty
(It is not hard to show that we may replace these

inequalities by equalities, but we don't need to do so),.
To prove the lemma it is sufficient to show that each of

Z+H, Z+K €<X12.
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Now [Z+H,2+H] < [Z,Z] + [2,H] (since H e ).
Matrices in [?,Z] are sums of matrices of the form

(3% Lo (p,q )

by (3). Matrices in [z,H] are also of this form by (4).

Further,
[C8° sme )18 pad] = (3 £}
by (3), and
[t5. Bl % o] = 4 2 by (4).

Thus
[2+H,2+H,2+H] = 0 and 2+ e;c?ﬂ,?
similarly [Z+K,z+k] < [2,2] + [2,K]. By (5) [2,K]
is spanned by matrices of the form
(2. (x€4).
Let Y denote the subalgebra of J generated by all
natrices of the form

Gt (0, v,w € A)

then [2+K,Z+K] < Y.
But by (3) [¥,2] = 0 and by (5) [Y,k] = 0. Hence
[2+K,2+K,2+K] = 0 acd Z#K € (Yﬂ-z.

This establishes the lemma.

J acts in a natural fashion as linear transforii-
ations of the k-vector space R X R = V (say), so J can be
considered as a Lie algebra of derivations of the abelian

Lie algebra V. Let L be the split extension
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L=Ved, V 4 L, Vnd = 0.
Then parts (1) and (2) of the theorem hold.
If (x,y) &V then
0 0
[(x,3), (5 )]
0
(%), 3]

by the definition of split extension.

1l

(Ay,0) (6)
(nya) (7)

I

Let V, = {(x,0): xeR}, v, = §(0,y): YER}. From
(6) Cy(K) = V,, and from (7) and (E3) Cy(H) = V;. Now
[v,u] <V, so [V,H,H] = 0. Since V 4 L and v, 1 € Jlwe
see that V+H & cﬂ2. Thus, since any subalgebra of a
Lie algebra in c?ﬂc is a c-step subideal (Hartley [lL.L] p.261)
we have

H <% V4H < Ve<tt?> @ 1,

50 H < I. Similarly K < L and part (4) of the theorem
holds.

On the other hand, suppose i & IL(J). Then
i=v+) (veV, j€J) so [v,dJ] <J. But V 9L so0
[v,d] < V. Hence [v,J] £JnV =0 so veC,(J) =
CV(H) ch(K) =V,nV, =0, Thus i = j€J, and IL(J) = J.
Thus J cannot be a subideal of L (nor even an ascendant

subalgebra of I). This proves part (5) of the theoren.

J is the sum of <HJ> and <KJ>, which are nilpotent

ideals of class 2. By [1u] lemma 1 (iii) p.261 Jemu

proving part (6).
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Note that L is the join of K and V+H, both of
which are nilpotent subideals, yet L is not nilpotent
(since J is self-idealising). However L € EC[
indeed L € C"i?ﬂu.

To show I, is not a Fitting algebra it suffices to
show <KL> & N . For if L were Fitting, the generator
(2 8) of X would be contained in the sum of a finite
number of nilpotent ideals of L, which would also be a
nilpotent ideal of L. Thus the ideal closure of K would
be nilpotent.

<KL> contains <KJ>, which contains the matrices

[0S Bhds ] s kv o leg)
and it also contains <KV>, which contains all vectors
of the form (Ay,0) (A€k, yeA) by (6), so contains

(a,0) for any ag€ A. fdence <KL>n+l contains any element

c c
[(2,0), (5" g )seeeslo” 2o )]
which is easily secn to equal (aclcz...cn, 0). From
(E3) we know that if O # x€R then xA # O, so that
AA...A (n+1  terms) # 0. Thus we may choose a, CyseeesC
from A 10 make acqessCp # 0. Thus D s # 0 for any
n so that <kl & 1. Thus the last part of the theorem

(part (7)) is proved.
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Corollary 1

For any field k of characteristic zero there exists
a Baer algebra over k which is not a Fitting algebra.
Proof:

L = <H,K,V> and each of H,K,V 1is an abelian subideal
of L. ThusLEg « But L Qfe}‘:.

Thus question (ILl) has the answer 'no'. By
remark 7.2.3 (T1l) has the same answer, i.e:

Corollary 2

There exists a torsion-free Baer group which is
not a Fitting group.
(See also B87.4.)

Corollary 3

For any field k there exists a Lie algebra over k
having two abelian subideals H, K with dim(X) = 1 such
that J = <H,K> is not a subideal, and indeed J can be
made self-idealising.

By Mal'cev (with the usual trappings) we deduce

Corollary 4

There exists a torsion-free complete group G
having two abelian subnormal subgroups H,K with K
isomorphic to QQ,, but such that the join of H and X

is not subnormal in G.
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Corollary 5

In a Lie algebra the join of two nilpotent subideals
need not be nilpotent (open question: need it be soluble?
it is here.)

For what it's worth:

Corollary 6

There exists a torsion-free non-nilpotent group
generated by two nilpotent subnormal subgroups (the
analogous query regarding solubility is dealt with by

recent unpublished work of S.T.Stonehewer.)

The only other example in the literature where the
join of subideals of a Lie algebra is not a subideal
can be found in Hartley [14] p.271. In his example
both subideals are infinite-dimensional.

In the same paper the following question is raised
(p.260):

If B is a finite-dimensional subideal of a Lie
algebra L, does there always exist J 4 L with i XBzggJ
for some integer n > 07

The answer is no.

For let I, be as above, and put B = K. Then if such
J existed, we would have J? « L, I < K. Therefore

either I° = 0.or I in & minisal 14ssl OF L @ BiOG
By lemma 3.3.3 - i 5,§1(L) so J**1 - 0. Rither way K is
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contained in a nilpotent ideal of I, contradicting
theorem 7.3.1l.7.

7.4 A torsion-free Baer group which is not Fitting

Corollary 2 to theorem 7.3.1 is perhaps a little
unsatisfactory, since the group is not exhibited in
any tangible form. In fact our whole procedure is a
trifle curious. Starting with the Roseblade-Stonehewer
group ([3&]) we have constructed an analogous Lie
algebra and then appealed to Mal'cev. Now the
Roseblade-Stonehewer group is Baer but not Fitting
(this is not stated explicitly by them, but follows as
for the Lie algebra). In view of this it is natural to
ask whether this group might, under suitable circum-
stances, be torsion-free. If so we might bypass the
TLie algebra approach, as far as question (T1l) is
concerned.

Now it turns out that if k is a field of character-
istic zero, then the Roseblade-Stonehewer group over k
is indeed torsion-free. However, the easiest way to
prove this is to resurrect the Lie algebra (though it
ought to be possible to provide a direct proof, say by

calculating the factors in a central series) as follows:

If k¥ is a field, A an infinite-dimensional vector
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space over k, then the Roseblade-Stonehewer group
RS(k,A) is defined as a split extension of a vector
space V (2-dimensional over the exterior algebra R
generated by A over k) by a group J of 2 X 2 matrices
over R, generated by

() (rex) ana (32 (aea).
If char(k) = O V is torsion~-free, so all we need to
show is that J is torsion-free.

Use the same notation for the Lie algebra as above.
Local nilpotence of L immediately implies that for any
finite subset ivl,...,vsi of V and any finite subset
{jl,...,jt} of J there is a finite-dimensional subspace
U of V such that v; € U (i = 1,...,8) and U is
jp-invariant (r = l,...,t). Purther {jrlu I8 SRR

generates a nilpotent associative algebra, since its

action on U is given by commutation in L.
Thus for any j € J we may define exp(j) = j* to be

the map from V to V given by
Lo
A

-
"

vi* = v(1 + § +

o

b owed (vev).
The remark about invariant subepa-es implies that J* is
a linear transformation of V. It has an inverse, namely
(-3)*, so j* € Aut(V). We show that J* = {j*: jE€JI} is
a subgroup of Aut(V).

Let 31,30 € 3. (37)*7F = (-3;)% € J*.
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Let J = m(dyadp) = 3y + 3p + 2[31,35] + .-+ (as in
lemma 2.3.1), which is defined since <jl,jz> is a
nilpotent Lie algebra. Then for any v &€V there exists
a finite-dimensional subspace U of V with veU, such
that U is <j1,32>—invariant. <j1,32> acts as a
nilpotent associative algebra on U so the Campbell-
hausdorff formula applies:

v(31¥3,%) = v(u(31,3p))%.
As v was arbitrary jl*jz* = J¥ € J* so J¥ is a subgroup
of Aut(V).

J* is torsion-free, for if (j*)® = 1 then nj = 0
so J =0 so j¥ = 1. On the other hand, for any v€V
direct calculation shows that

VG o)
V(5 )*

so the generators of the group J lie inside J¥, Hence

(s 5 (A € k)
w8 (2 ¢ A)

1l

RS(k,A) = J is torsion-free, and we have proved

Theoren 7.4.l

If ¥ is a field of characteristic zero, and A is
ap infinite-dimensional vector space over k, then the
Rogc.1ade-Stonehewer group RS(k,A) is a torsion-free

Baer yon-Fitting group).
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[«5 Conditions under which Baer implies Fitting

Theoren 7.3.1 shows that an abelian-by-nilpotent
Baer algebra need not be Fitting. In contrast to this
we will show that any nilpotent-by-abelian Baer algebra
is Fitting. We work under rather more general hypotheses.
We consider a class &? of Lie algebras satisfying
a type of Engel condition:

L & f if and only if for all x,y& L there

I
&

exists n = n(x) independent of y for which Ey,nx] =
é? enters the reckoning because of
Lemna 7.5.1

B <& .

Proof:

Let X,y € L € §? . Then <x> <" I, for some m = m(X).
Thus [y,mx] € <x> so that [y, ..x] = o.
Lemma 7.5.2
~
On & < .
Proof':

et x€L cOl2a . Then A = L€ (K. Wo munt

show <xL>€iﬁl. Now EL,ng] = O for some integer n since
Le éf . By bilinearity if X = <X> then [L,nxj = 10,
Now clearly

@
L
o S PR
B 1=o[’i]
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8o

<P < 2 [[X"ill’]’ [X’izL]’ MR [X’ 1mL]]

sunmed over all {i;,...,1_} with 120 (J = 1,000,m).
Ir ij > 0 for 2 distinect values of J, then since L2 9 L
and L2€ Ol the corresponding term is 0. If i:j = 0 for
n consecutive values of j then again the corresponding
ternm is 0, since [L,nX = Os But if m > (n-1)+1+(n-1)

= 2n-1 one or other of these situations must occur.

Thus <xI‘>2I1 = 0 and <xP> ecﬂzn_l.

(Wote: a refinement of this argument will prove
that 1A A E < 3»(; . Because of the way we intend to
prove a corresponding theorem for groups, we proceed
in a different manner.)

Lemma 7.5.3
- ‘
Let £ , % be classes of Lie algebras (over

any field k) such that
1) Y=aly,
2) O rﬂ{} < It .
Then ' .
(?ﬂ%n\yg(}t .
Proof:

Let L e’.?ﬂ%ny} By definition there exists N < I

<
such that N &€ 7ﬂ and L/N € X. Let D = N°, Then L/D

<€ lefﬂé hY ’C;& . Thus L/D = <NA/D: AE A> where
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N,/D € N ana N,/D < L/D. Thus N, 9L . Since N

and N.A/N2 lie in n , theorem 3.2.3 tells us that
>

MY . Thus L= <> € 9t as required.

Theoren 7.5.4

NOL A E < 3{: . In particular IC nsﬁ < t}{: .

L -

Proof:
A\
set ¥ = (7( , 1?’ = C (which is clearly Q-closed)

in lemna 7.5.3, and use lemna 7.5.2.

An appeal to Comrade Mal'cev easily implies that
any nilpotent-by-abelian torsion-free Baer group is |
Fitting. 1In fact we may drop the condition that the
group be torsion-free. Again we consider the metabelian
case first.

T.emma 7.5.5

A metabelian Baer group is a Fitting group.
Proof:

Let G be any metabelian Baer group. Denote the
commutator (G,H) by yGH, and write YnAl"‘An+1 for
Y(Yn"lAl...Ah)An+l. We prove by induction on n that
for H < G

YA LegOsB o P IgR, oD, (%)

<HG> = H.YGH as required.
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s}
il
N

(<u%>, <u%) = (H.yCH, H.yGH).
Consider (B y¥q,hyY,), where hy,hy € H , vq,Yy & YOI
< G' which is abelian. '
11

(lelythz) = (hl’h2Y2) (Y19h2Y2)

Y Y2Y 72
(7o) T(hy,hy) 2 Lyy,rp) (vy5hy)
= (hl’Y2)(hl’h2)'1° (Yl’hZ)

since G' is abelian, Y;€ @', and any commutator (x,y) €G'.

H]

Since all commutators (x,y) commute in G, this is a
merber of H'.YZGH2 as required.
n > 2:
Let A = Y GH .
By induction we know that
Yn—1<HG>n - Yn-lﬂnAn,

and we must prove (*) with n replaced by n+l. We have
n_..G . n+l n-l.n

YO<HT>TTT = (v THOALH.YHG) by definition
and induction. ©Now let BE Yn-lHn’ aCA , h€H, yeyCH.
Then

(pa,hy) = (8,hr)%(a,hy)

]

(3,Y)a(3311)Ya(a;Y) (a,h)Y
1.(8,h).1.(a,h)

€ Yan+1.Yn+1GHn+1 as required. Thus (*)
is established.

We may now complete the proof of the lemma. Let
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X € G, a metabelian Baer group. Put H = <x>. Then

H <% g for some n. Then

n+1<XG>n+2 n+l

Y = l.YG<X> =1

80 <XG> is nilpotent and G is a Fitting group.

A group-theoretic version of lemma 7.5.3 now yields
the more general

Theorem 7.5.6

A nilpotent-by-abelian Baer group is a Fitting

group.

Z;é A property of Grucnberg algebras

In this section we establish a property of Gruenberg
algebras which will be of use in the next chapter, and
which is probably a necessary preliminary to any attack
on problem (L2) of section 7.2.

Lemma 7.6.1

(&
For I.a\, Lie algebras L over fields of charac-

teristic zero, the following are equivalent:

1) L has an ascending (| -series (L € ﬁOZ).
2) Every non-trivial homomorphic image of L has
wRan-trivial Gruenberg radical.

In particular for characteristic zero é}r g_ﬁ;

Proorf:

We may suppose L # 0. y(L) # 0 so there exists
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Hasc Lwith O #H € le .

First we show how to construct an ascending
(jl-—series from H to <HL>th H asc\L so there 1s a
series

H=HOQH d...QH qocoH'o'——-Lo

1 L

H .
Let H* = <H'>, H* = <0 ©> (0 < L < 0). Now

* *
H < H& q H£+1 80 H4+l < H&' By definition H& Q H&

% %
s0 H& d H4+1 « It is easy to see that for limit

ordinals A H,* = \,) H *. Therefore we have an
A L\ L
ascending series

= = %* *
0 = Ho* 9 H =H,*% 4 H2* d4d .00 9 H Q.o Ho = H¥.

1 L
We show by induction on B that therc exists an ascending

Cn -series fron HB* to HB+1

B > O and suppose the assertion is true for all ordinals

*, Now Hl* =H € le so let

H
< B. Now clearly (HB*) B+l _ HB+1* 80

* * = * *

Hgya /H‘3 =3 (HB + [H‘3 ,xl,...,xn] )/HB*
sumned over all possible sequences xl""’xneH(Hl‘
Now LG?LCYXf and the characteristic is zero, so as
in section 1.2 we may define e(x) = exp(ad(x)) for any

x€L. By Hartley [14] lemma 3 p.262 we find that
H, -*%/H.* = 3 (H,* + H *e(xl)°'.e(xn))/ﬂ *
B+l /Mg T B B g °
Hence there is an ascending series of ideals between
* of which a typical factor is

(HB"‘e + M) /M

HB* and HB+1
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where e = e(xl)...e(xn) is an sutomorphism of L,

X4 € HB+1 all i, and M < HB+1*.

Let N a H By 1n_duot:lon there is an ascending

Be1e
UZ ~series from O to HB*' Consider the series obtained
from this by adding N to each term. A typical factor is
of the form (Y+N)/(X+N) where X < Y < HB* and Y/X e .
Therefore (Y+N)/(X+N) € 01_ , and there is an ascending

-1
m -series from N to HB*+N. Let N = ¥°  and transform

by e to get an ascending O—L -geries from M to HB*e+M.

This establishes the assertion about H(3+l*/HB*° Fitting

all these 'subseries' together gives us an ascending
Ol -geries from O to <HL> 4 L. Either the quotient
L/<HL> = O or it has nontrivial Gruenberg radical and
we can continue the process. Eventually we obtain an
ascending O-l-series for L.

Thus (2) implies (1). That (1) implies (2) is
manifest.

Since (gfv is Q-closed and contained in Lm the

particular case follows.
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Chapter Eight

The existence or otherwise
of infinite-dimensional abelian subalgebras

An o0ld problem in group theory is:

Does every infinite group possess an infinite
abelian subgroup?

Novikov and Adyan, in their recent work on the
Burnside problem, have shown that the answer is 1n the
negative ([27] P.1190 theorem 3); but Hall and Kulatilaka
Elj] have produced an affirmative answer for locally
finite groups. Kulatilaka [22] has also obtained
results when certain restrictions are placed on the
nature of the required abelian subgroup (e.g that it be
subnornal).

In this chapter we consider the analogous problem
for Lie algebras:

Does every infinite-dimensional lLie algebra have
an infinite-dimensional abelian subalgebra?

First we show that the answer is in general 'no'.
Next we obtain analogues of Kulatlilaka's results for

certain 'generalised soluble' classes of Lie algebras.
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Finally we prove the analogue of the Hall-Kulatilaka
theoren for L(Z} Lie algebras, and deduce a few

corollaries.

8.1 A negative result

It 18 convenient to turn the problem upside-down.
Suppose A is'any of the relations <, 9, o< , 81 , asc.
‘We will say L satisfies Fin-A(J] 'if and only if A A L
end A€ O( implies A€ F . (Instead of Fin-<(OL we
write Fin- C)L )« We use the same notation for the
class of Lie algebras satisfying the condition.

Clearly 1if 3*; is a class of Lie algebras then
the following assertions are equivalent:

1) Every infinite-dimensional ,% -algebra I has
an infinite dimensional abelian subalgebra A A L.

2) X nrin-a(Ql < & .

It is in the second form that we shall state our
results.

Theoren 8.1.1

rin-0( ¢ %— .

Proof:

Let L be a free Lie algebra on more than 1 generator.
By Witt [ﬁ}ﬂ any subalgebra of L is free., But the only
abelian free Lie algebras are of dimension £ 1. Thus

L € Fin-COl. Clearly 1 & °F .
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8.2 Generalised Soluble Classes .
Let A be any of the relations above. We define
the class ﬁ(A)(}l to consist of all Lie algebras L

having an ascending le'-series (L&)4<o such that

L°< A L for all £ £ O.
| (Thus E(<) Ol = E(ase) Ol = s ; E,(<)O(, and
ﬁksi)(}[ are respectively the classes 7)* ’ 119’ of
chapter 5.
Lemma 8.2.1

Let 0 AN 4L C % . Thenuni‘l(L);éo.

Proof':

Let L be the first ordinal such that N n S (L) £ O.
Then Nn ¥ (L) < W A \Sl(L).
Lemma 8.2.2

If A is a maximal abelian idezal of I, € E;Ehen
A = Cr(4).
Proof:

Suppose A < C = C;(A). L/AC€Z and 0 #C/A 4 L/A
g0 by lemma 8.2.1 there exists x & A, x+A € C/A n fl(L/A).
Then A + <x> € OZ sy A + <x> 9L, contrary to the maxi-
mality of A.
Theorem 8.2.3

;n Fin-e Ol < F .
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Proof:

Let L & % N Fin-< U(. . Take a maximal abelian
ideal A of L. (exists by Zorn). Then A€ -':}, and by
lemma 8.2.2 A = CL(A). By lemma 4.2.1 L/A € C;" . Thus
L & ?’ as required.

Theorem 8.2.4
(<) Ol n Fin-<2 O < o gl

Proof:

”~
Let . € E(d)a 0 Fin—dzoz and suppose if
possible that I £ ?’ . L has an ascending Ol -series

(Lo()ﬂ( < g With L 9L (L% a)s

Suppose first that for some finite n L EC} but

L /1 € T, w2 . L _, and [i,L_.] = 0 so HECX\Q o B
HaL éFin—dam so [ € Fin-"o_z . By theorem 8.2.3
Hec}. Thus L € c3 , a contradiction.

Consequently we may assume that Lnefg} for all
n<w , L, € F. Suwpose i€ NoF, n_ < b
H <L Then C = ch(Hm) <L, and c & F .

Therefore there exists a first n = n(m) such that

o * d C %
C,*=IL,nC f£H. C* dLandC, & 3L That

= 2
H =H + Cm*. Then Cm"‘ £ Ln_lﬂ Cm L Hm 80 Cm"‘ & mZ‘

m+1l mn

Thus Hy g ¢N~D, ana H_ < H_,3- Let H, = L, and set
s B]_Hm 9L. H £ C} o B <HTIH~1’Cm+l’."cm+2m’"'>



151

%%
and C centralises Hm+

2

, for all k > 1, so

2
. Since C *C < H_ and [H,C *] =0

n+k

EE{m’Hm+1] SHpn

2

we have Hm+1 < Hm' Thus [ﬁ,H SH, and H has an

m+1
ascending central series. Thus H € % . Hale Fin—dzgl

so c Fin-< Ol . Thus 1 € 3, a contradiction.

Corollary

%n Fin—<2207, < ?’ .
Proof:

Ir Le(:}(: then there exists W 9 L, N & m + Then
x)l(N) 9 L and lies in O-L . The quotient by this
also lies in 3’{: so we may repeat the argument to get
C\}é < E,(Q)Oz . KNow use theorem 8.2.4.

We shall extend our definition of the class ;? to
fields of characteristic £ 0 as follows: I € ;g if and
only if L € Lm and x € L implies <x> si L. This
clearly does not conflict with earlier usage.

Theoren 3.2.5

3n Fin—sim < CSL .

Proof:

)
Let I, € ‘éanin—si 07. . Suppose O # x € L.

Le g s0 <x> si L. Let
— q =
<x> = L, Ll d .0 9 Ln L
be the ideal closure series of <x> in L. We show by

induction on i that Ly = km(i)(Li) émnﬁ’ (0 <1 < n-1).
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<x> 1s a mininal ideal of Lle-ﬁ < L% 80 by lemma
3.3.3 <x> < El(Ll) ch L, < L,. By the definition of
ideal closure series L, = :Sl(Ll). L, is an abelian
subideal of L so Llé.fg‘. Now suppose the assertion

true for i-1. Thus Ly , = Em(i-—l)(l‘i-l) eNnG .
Ly 95y € LU, 0 by lemma 3.3.4 Iy, 3 & S0y (Ty)
ch Li 4 Li+l' By the definition of ideal closure series
L = Xm(i)(Li). Ly 81 L so Lie‘B’Ln pin-si O < F
by theorem 8.2.3. Thus the induction step goes through,
and <x™ =1, €U . Thus L € Ftarin-si 0L < F
by the corollary to theorem 8.2.l.

Theoren 8.2.6

#(s1)Cl n Fin-s1 O < LE— for fields of

characteristic zero.

Proof:
o,
Let L € £(s1) U n pin-si O , having en
ascending C?l -series (p&)i <o with L,siL (L < 0)e

Let B = B(L) £ 0. B 9L (lemma 7.2.1) so B & Fin-si UL .
BE 58 by definition, so by theorem 8.2.5 B €& E} .
Thus B & YL , so that z = fl(B) aLeanao £ze Ol .
L/z2 € ﬁ(si) C7Z . Suppose A/Z si L/Z, A/Z € CJZ.
Then A si L and A € lez N Fin-si CTZ < ?}' by theorem
8.2.4. Thus L/Z € Fin—si(}z . We may therefore
repeat the argument, until either we show L € ?3' or we
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s
f£ind an infinito-dimensional E(«)G’l -subalgedbra
”
W 9L Then W € E(1)Ol A Fin-si Ol so by theoren
8.2.5 WE c} contradiction. Hence I, € (3' .

The obvious theorem to complete the hierarchy:

Theoren 8.2.7

Over fields of characteristic zero,

L:OZ n Fin-asc OZ, < QB' .
Proof:

Let L € EOZ N Fin—ascO?, . Let (Lo()oC<o be an
ascending (1 -series of L. If L, & 3 for gome n<w
then Ln€ Eol N Fin-asc Ol < ?— by theoren 8.2.l4,

a contradiction. Thus we may assume Lnea‘ ifn<w ,
and L = L, &€ g‘ .

Let F = 7)(Ln) c 3. F, asc L so F € Fin-asc J(

so by corollary to theorem 8,2..4 FnEC:‘.Ir . Therefore

B e.nn‘\} F_ ch by lemma 7.2.1 and I, 9 L 80
n- " * *n L, by & lece n n+

1

®
F,=LNF 4, 9F - LetF = rLf—)an 9 L (since each

element of L idealises F for all k > 0.)

n+k
Suppose if possible F € 3’ .« Then C = CL(F) Z CS'
since L. & Cj’ , S0 for some n Cp (F) = CnL, 4 F.
n
LnEﬁIBCDZ and CLn

6.1.1.2.
Hence F & c}. Clearly F € Lm , 80 without

(Fn) L3 F,, which contradicts lemma

loss of generality L € Lm . rr(I‘n) = L, for some
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i‘ = r(n). Let Z = CEr(Ln) = 1,2,000> Z L Z

r — “r+l
and L = U Z,. Let x(—:f(L ),yG\S (L_) where
nat] rtn r m2
m < n. Then [x,y] lies in S (L)) so Z,° < 2, ;.
Thus (Zr) forms an ascending Ol -series for L. Z, asc L
and zle le s0 zle‘i}. Consequently Zl < Lk for some k
so that rl(Ln) < Ll&for all n. Thus O # rl(Lk) _>_l‘1(1.k+1)

> vv. 50 that Y = ﬂ§' (Lkﬂ,) # 0. Clearly Y = §,(L).

Let H = Ulf (L) € g_ From theorem 8.2.3 H € 3 ’
so H € m Suppose A/H asc I/H, A/H EOZ Then A & ‘b’l
and satisfies Fin-asch 80 by theorem 8.2.3 Aé‘(:jr.
Thus L/H € Fin-asc OZ . By the above reasoning, IL/H
has non-trivial centre, contrary to the definition of
H. This contradiction establishes the theorem.

Corollary

For fields of characteristic zero,

gzv n Fin-asc O-( < t:_}

Proof:

Use lemma 7.6.1.

8.3 Locally finite algebras

In this section we prove the Lie-theoretic version
of the theorem of Hall and Kulatilaka:

Theorem 8. 3.1

Over filelds of characteristic zero

Lgn Fin—GL < (}'
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The proof begins by following 4all and Kulatilaka,
but parts company as soon as things start to get
interesting.

Let Q., denote the class of all Lie algebras L
such that either L € C3_ or L has an infinite-dimensional
abellan subalgebra. lLet @3 denote the class of Lie
algebras L such that I € g’ or there exists x € L with
CL(x) & “F and x £ 0.

Lemma 8.3.2 |

Suppose 9( = QS % is a class of Lie algebras.
Then Séf_gv if and only if X f_@: .
Proof:
g» < @9 80 one implication is clear. Suppose
now that L € X < &R sy L & \—3‘ . Consider the set
@ of all finite-dimensional abelian subalgebras A of
L for which CL(A) Q‘,% . g Z @ since O e,g .
Suppose A € g « Then A 9C = CL(A) and C/A & 9— .
c/a € asX = X <& , so there exists x € C\ A
such that D/A = CC/A(A+X) & C} . TFor all d€&D
[¢,x] = 0 (mod A) so [D,x] < A. Let Ay = A+<x> € A nF
since A€ (1 » A9C. Ay >A G = CL(Al) = CD(x).
ILet V = [D,x] qua vector space, and consider the
linear map A:D - V defined by dr = [d,x] (4€D).

ker(A) = C;, im(A) = V < A € +. Thus dim(D/Cl) < @

1
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so Cy & “F . Thus Alé-‘g .

We have shown that «g , ordered by inclusion,
has no maximal element. Take a properly ascending
chain Al < A2 < «ss Of elements of g « The union is
infinite-dimensional and abelian. Thus L € Q, as
required.

Lemma 8.3.3

Suppose L € (ch‘ n el )\ R . Then there
exists H ng, H G=?} , such that CL(HZ) = O.

Proof:

We show that if FGC} , F <L, then there exists
F* <L, F* ec}, such that CL(F*Q) < CL(FZ).

Suppose 12¢F. since L ¢ w0l 12¢ EO—L so
L€ ECl . By theorem 8.2.4 L€ Q . EOZ is
QS-closed s0 by lemma 8.3.2 L € OQ) y a contradiction.
Consequently L° is infinite-dimensional.

Let ¢ € CL(FZ) € (g’ since L & G . Then
CL(c) € C} 50 there exlsts x € L2\ CL(c). For
some X;,y; € L x = l:xl,yl] F oeee + [xm,ym]. Let

P = <F,x1,...,xm,y1,...,ym>
which is in C:} by local finiteness of 1. Now
CL(F) n Cr([xy,57] + +on + [xpy,])
CL(FZ) N <e>

in

CL(F*Z)

in

< CL(FZ)
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as claimed. The conclusion of the-lemma follows.
Corollary 1

L(NCL) < O . moparticwtar 19 < Q .

Proof:

Iet L € L(ma), If L ¢ LL}‘ then there exists
an infinite-dimensional | U{ -subalgebra of L.
7ﬂ,CX,§ E(:K, so by theorem 8.2.4 I has an infinite-
dimensional abelian subalgebra. Now suppose L € Lc.;‘ \Q .
By lemma 8.3.2 L ﬁs(gb . By lemna 8.3.3 There
exists H < L, HC o , with CL(H2) = 0. HeNso
2¢ Yl . 52 £ 0 (or else ¢ (5%) = L) so fl(Hz) £0
and CL(H2) # O contradiction.

Corollary 2

Over fields of characteristic zero, 13:(71 hY Q:L .
Proof:
If L &€ LEOZ is not in LC\Js‘ proceed as above.

IfLech' then I € L(c:}nEOU gL(Q’KR) by

Jacobson |:i7] p.51.

‘We note that the Mal'cev corrcspondence now enables
us to assert

Theorem 8.3.4

Let G be a complete locally nilpotent torsion-free
group of infinite rank. Then
1) G has an abelian subgroup of infinite rank.
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2) If G is a Gruenberg group it has an infinitc-rank
abelian ascendant subgroup.

3) If G is a Baer group it has an abelian subnormal
subgroup of infinite rank,

L) If G is a Fitting group it has an abelian subnormal
subgroup of defect < 2 of infinite rank.

5) If G is a ZA-group it has an abelian normal subgroup
of infinite rank.

To prove theorem 8.3.1 we need a lemma about Cartan
subalgebras, which is given as an exercise in Jacobson
[;7] p.-149 ex.3. The lemma (for which we have provided
a proof) is as.follows:

Lemma 8. 3.5

Let L, L* be semisimple Lie algebras over a field
of characteristic zero, and suppose L < L*. Let H be
a Cartan subalgebra of L. Then there exists a Cartan
subalgebra H¥ of L* with H < H*,

Proof:

(For unexplained terminology see Jacobson [17] or
Carter [4]).

L* is an L-module in the natural fashion. L is
semisimple, and the theorem of complete reducibility
(Jacobson [17] p.79 theorem 8) implies that L* is a
direct sum of irreducible IL-modules. Each of these is
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also an H-module. By Carter [LL] P.70 theorem 244 every
irreducible I-~module is a direct sum of l-dimensional
H-submodules. Thus

L*:VIQ... Qvt

where each Vi is a l-dimensional H-module. Thus 1f
ve€Vy, h€H, we must have [v,h] = hi(h)v where ?\i(h)

lies in the field k. We collect together those Vi for

which hi = a given A, and let their sum dbe Wh. Thus
L* = WO @D Wkl

Clearly W}\ is the weight-space for H with welght A. It

® eae W .
)\I'

is shown in Jacobson [17] p.64 that
BV)\’V"/&] < WA+,¢ if 7\+/.4, is a weight,
=0 otherwise.

Thus W, is a subalgebra of L*. H is abelian ([17] p.110)
and H < WO. If heH, w g Wo then by definition of WO
[w,h] = 0.w = 0. Thus H ¢ X,(V,). Let H*/H be a
Cartan subalgebra for WO/H. We claim that H* is a
Cartan subalgebra for L¥*,

H* is nilpotent: H*/H é'm by definition, and H
is central in H*, so H* ¢ (m, .

H* is self-idealising: suppose x€& IL*(H*)- Then

X=X
O + xhboo"' X.

; \ where x.hé Wk‘ Let h € H. Then

r
[xh] € B* < W,. But [x,h] = )‘l(h)xi\l"' cee + )\r(h)x)\r

h = = =
which lies in W0 if and only irf x)‘l = eee = x)‘r 0
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since the deomposition into weight spaces Wk is a direct
sum. Thus X € Wy, Now [x,H*] < H* so the coset x+H
idealises H*/H, which is a Cartan subalgebra of WO/H.
Thus x € H*. Consequently H* is self-idealising.

Thus H* is a Cartan subalgebra of L* as required.

We may now prove theorem 8.3.1 in the forn
L S} < EQ_ . The proof utilises most of the major
results of the classical theory of finite-dimensional

Lie algebras!

Let L &€ L<?7

(over a field k of characteristic

zero). Without loss of generality L = \J L; where
n=1

be the soluble

Li €. for all i. Ist R

i
eL,. R= 3R, ¢ ([

i i 3 i

If R & CE' then R (and so L) has an infinite-

radical of L Then R

dimensional abelian subalgebra by lemma 8.,3.3 corollary
2. Thus we may assume R € Q} , SO dim(Ri) is bounded.
By Jacobson [17] P.91 and p.93 cor 1 there exist
semisinple Levl factors S1 such that

17 8; =0,

1) L, =R, ® S5, R

i
2) 53 £ 8441-
Since dim(Ri) is bounded but I & C}.
dim(8,) is unbounded. (*)

a
Thus without loss of generality I = }Jl 8,
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Let C; be a Cartan subalgebra of 8 Using lemma

i.

< C Cor all i.

e 1=t
c, € Ol ([17] p.110) so that ¢ = U ¢, eCl. 1f
i=1

c & ?E'then the theorem follows. Thus we may assume

8.2.5 we may arrange natters so that C

(for a contradiction) that
dim(Ci) <c for all 1.

Suppcse now that S is a semisimple Lie algebra
over a field k of characteristic zero, H a Cartan
subalgebra of S. Let dim(S) = s, sim(H) = h. Let k*
be the algebraic closure of k, and denote the algebras
over k* corresponding to H, S8 by E*, S* (formed by taking
tensor products with Z*)., S* is semisimple ([17] P.70)
and H* is a Cartan subalgebra of S* ([17] p.61).
Clearly dimk*(s*) = s and dimk*(H*) = h.

By [17] p.71

S* = Jl ® ce0 @ Jm
where each Ji is a classical simple Lie algebra. If
Hi is a Cartan subalgebra of Ji then clearly

Hy, ® ... @ H 1s a Cartan subalgcbra of S*. All Cartan

1
subalgebras of S¥ are conjugate via an sutomorphism of

s* ([17] p.273) so they have the same dimension, and

h = h1 + cee + hm

where h, = dim(Hi) > O.

Therefore m < h.



Now the clessical simple algebras comprise the

following Iis*:

Ay of dimension (7 +2) ([ > 1)
By of dimension /(2€+1) (Z > 2)
Gy of dimension 7 (20+1) (¢ > 3)
Dy of dimension V(27-1) (¢ > 4)
Gy of dimension 14
FLL of dimension 52
E6 of dimensicn 78
E7 nf dimension 133
Eg of dimension 248

where the subscript denotes the dimension of any Cartan

subalgehra.

Thus, if dim(Ji) = J;, by inspection of this list
we see that Jy £ uhi2 < uh2. Therefore s < uh3.

In the original situation, therefore, we deduce

that s < Le- and dim(Si) is bounded, contrary to (*).

This completes the proof of theorem 8.3.1.

We may summarise our results about Cl by stating

Theorem 8.3.6
/.
gl. is {IL,E}-closed, for fields of characteristic

Zero.
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Proof:

Let L € LQ, . Either L has an infinite-dimensional
gl -subalgebra or L & L% . Either way L € Q.. .

Now let L & IEQ . L has an ascending Q. -geries

(Loc)ocgc' Without loss of generality L, < L for all

n+1

finite n and L = L,, & <’3' . If L +1/Ln€ C} for all

n
n then L, € LC} < Q— . Otherwise for some first
integer n Ln +1/Ln contains an infinite-~dimensional
abelian subalgebra A/Ln ,then AE 901 which is easlily
seen to lie inside L Q:_:S“ « Thus A has an infinite-
dimensional abelian subalgebra and again L € Q .
Corollary

{L,E?} l} < Q . (characteristic zero).
Proof:

(:—S- < Q_ by definition.
Remarks

This is genuinely stronger than theorem 8.3.1
since, unlike group theory, for Lie algebras L(} is
not even E-closed, let alone E?—closed. To see this
consider the Lie algebra L = P e Q described just
before lemma 4.1.1, peOZ < Lc} , and Q € C} < L?.
ButLE(}\Q}‘ so L € L .

since O < ] C} this result also implies
{L,I;}Gl < Q. superseding lemma 8.3.3 corollary 2.
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Finally, two deductions from theorem 8,3.1 which

are of a rather different ﬁature.

Theoren 8.3.7

Let A be a locally finite associative algebra
of infinite dimension over a field k of characteristic
zero. Then A has an infinite-dimensional commutative
subalgebra. (A is said to.be locally finite if every
finite subset of A is contained in a finite-dimensional
associative subalgebra.)

Proof:

Let L be the associated Lie algebra. Then L & La"
and is infinite-dimensional so by theorem 8.3.1 L has
an infinite-dimensional abelian subalgebra B. If
b,c& B then be-cb = 0 so bc = cb. Thus B generates a
commutative subalgebra of A, which contains B so is of
infinite dimension.

(This theorem applies in particular to the group
algebra kG of a locally finite group G).

Theorem 8.3.8
A locally finite Lie algebra over a field of

characteristic zero satisfies the minimal condition for

gsubalgebras if and only if it is finite-dimensional.
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Proof:

The implication is easy in one direction. If
Le L% N3 then I has an infinite-dimensional
abelian subalgebra by theorem 8.3.1, and clearly this

does not satisfy the minimal condition for subalgebras.

This contradiction completes the proof.

Ian Stewart

University of Warwick
1969
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