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ABSTRACT 

We study infinite-dimensional Lie algebras, with 

particular regard to their subideal structure. 

Chapter I sets up notation. 

Chapter 2 gives an algebraic treatment of Mal'cev's 

correspondence between complete locally nilpotent 

torsion-free groups and locally nilpotent Lie algebras 

over the rational field. This enables us to translate 

certain of our later results into theorems about groups. 

As an application we prove a theorem about bracket 

varieties. 

Chapter 3 considers Lie algebras in which every 

subalgebra is an n-step sub ideal and shows that such 

algebras are nilpotent of class bounded in terms of n. 

This is the Lie-theoretic analogue of a theorem of 

J.E.Roseblade about groups. 

Chapter 4 considers Lie algebras satisfying 

certain minimal conditions on subideals. We show that 

the minimal condition for 2-step subideals implies 

Min-si, the minimal condition for all subideals, and 

that any Lie algebra satisfying Min-si is an extension 

of a ~ -algebra by a finite-dimensional algebra (a 

J-algebra is one in which every subideal is an ideal.) 



We show that algebras satisfy1ng~in-si' have an 

ascending series o~ ideals with factors simple or 

finite-dimensional abelian, and t~at the type of such a 

series may be made any given ordinal number by suitable 

choice of Lie algebra. We show that the Lie algebra of 

all endomorphisms of a vector space satisfies Min-si. 

As a by-product we show that every Lie algebra can be 

embedded in a simple Lie algebra. Not every Lie algebra 

can be embedded as a subideal of a perfect Lie algebra. 

Chapter 5 considers chain conditions in more 

specialised classes of Lie algebras. The results are 

applied to groups. 

Chapter 6 develops the theory of ~-algebraS, 
and in particular classifies such algebras under 

conditions of solubility (over any fteld) or finite

dimensionality (characteristic zero). We also classify 

locally finite Lie algebras, every subalgebra of which 

lies in ~ ,over algebraically closed fields of 

characteristic zero. 

Chapter 7 concerns various radicals in Lie algebras. 

We show that not every Baer algebra is Fitting answering 

a question of B.Hartley. As a consequence we can exhibit 

a torsion-free Baer group which is not a Fitting group 

(previous~amples have all been periodic). We show that 



under certain circumstances Baer implies Fitting (for 

groups or Lie algebras). The last section considers 

Gruenberg algebras. 

Chapter 8 is an investigation parallelling those 

of Hall and Kulatilaka for groups. We ask: when does 

an infinite-dimensional Lie algebra have an infinite

dimensional abelian subalgebra? The answer is: not 

always. Under certain conditions of generalised 

solubility the answer is 'yes' and we can make the 

abelian subalgebra in question have additional properties 

(e.g. be a subideal). The answer is also shown to be 

'yes' if the algebra is locally finite (over a field of 

characteristic zero). This enables us to prove a 

theorem concerning the minimal condition for subalgebras. 
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Chapter One 

Notation and Terminology 

Throughout this thesis we shall be dealing mainly 

with infinite-dimensional Lie algebras. Notation and 

terminology in this area is non-standard; the basic 

concepts we shall need are dealt with in this preliminary 

chapter. In any particular situation all Lie algebras 

will be over the same fixed (but arbitrary) field k; 

though on occasion we may impose further conditions on k. 

L.1. Subideals 

Let L be a Lie algebra (of finite or infinite 

dimension) over an arbitrary field k. If x,y€ L we 

use square brackets [x,yJ to denote the Lie product of 

x and y. If H is a (Lie) subalgebra of L we write 

H ~ L, and if H is an ideal of L we write H ~ L. The 

symbol C will denote set-theoretic inclusion. 

A subalgebra H < L is an ascendant subalgebra if 

there exists an ordinal number a and a collection 

{H~: 0 ~ ~ ~ oJ of sub algebras of L such that Ho = H, 

Ho = L, H~ <I H~+l for all 0 ~ ~ < 0, and HA, =U H~ 
.1.<).. 

for limit ordinals A. ~ o. If this is the case we write 



H <;0 L. H asc L will denote that H 4° L for some o. 

If H qn L for a finite ordinal n we say H is a 

subideal of L and write H si L. If we wish to empha-

size the role of the integer n we shall refer to H as 

an n-step subideal of L. 

If A,B ~ L, X ~ L, and a,b € L we define <X> to 
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be the subalgebra of L generated by X; [A,B] to be the 

sub algebra generated by all products [a,bJ (aGA, bE B); 

[A'nB] = [[A'n_1B},B] and [A'OB] = A; [a'nbJ = 
[[a'n_Ib] ,b] and [a'ob] = a. We let <x.A> denote the 

ideal closure of X under A, i.e. the smallest sub algebra 

of L which contains X and is invariant under Lie multi-

plication by ele~ents of A. 

1.2 Derivations 

A map d: L ~ L is a derivation of L if it is 

linear and, for all x, y ~ L, 

[x,Y]d = [xd,y] + [x,Yd]. 

The set of all derivations of L forms a Lie algebra 

under the usual vector space operations, with Lie product 

[dl ,d2J = d1d2 - d2d1 • We denote this algebra by der(L) 

and refer to 1 t as the deri va tion algebra of L. If' x E L 

the map ad(x): L ~ L defined by 

y.ad(x) = [y,xJ 



is a derivation of L. S~h derivations are called 

inner derivations. The map x ~ ad(x) is a Lie homo

morphism L ~ der(L). 
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A derivation d of L is a nil derivation if for any 

xE L there exists an integer n > 0 such that xdn = o. 
~k~~~O 

If d is nil/then 
CD 
~ .}=y. dn 

n=O n. 
exp(d) = 

is a well-defined linear transformation of L, and is in 

fact an automorphism of L (see Hartley [14) p.262). If 

xl' ••• ,xr GLare such that ad(xi ) is nil (i = 1, ••• ,r) 

then the map 

exp(ad(xl»···exp(ad(xr » 

is an inner automorphism of L. 

~ Central and Derived Series 

Ln will denote the n-th term of the lower central 

series of L, so that Ll = L, Ln+l = [Ln,L]. L(~) (for 

ordinals ~) will denote the ~-th term of the (transfinite) 

derived series of L, so that L(O) = L, L(~+l) = 

[L(~),L(cl)J, andL(~) = (\L(c!) for limit ordinals 'A.. 
c1.<A 

~~(L) will denote the cl-th term of the (transfinite) 

upper central series of L, so that 'sl (L) is the centre 

of L, ~ .,c+l (L)/!.,c(L) = ~l (L/r.,c(L», ~A (L) = U :r~(L) 
cf..<A. 

for limit ordinals ~. 



Ln, L(~), and ~~(L) are all characteristic ideals 

of L in the sense that they are invariant under deri-

vations of L. We write I ch L to mean that I is a 

characteristic ideal or L. The important property of 

characteristic ideals is that I ch K ~ L implies I ~ L 

(see Hartley [14J p.257). 

L is nilpotent (of class < n) if Ln+l = 0, and is 

soluble (of derived length ~ n) if L(n) = o. 

1.4 Classes of Lie Algebras 

We borrow from group theory the very userul 
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'Calculus of Classes and Closure Operations' of P.Hall [10]. 

By a class of Lie algebras we shall understand a 

class JC, in the usual sense, whose elements are Lie 

algebras, with the further properties 

Cl) lOJ G JE , 
C2) L G X and K ~ L implies K E. *. 

Familiar classes of Lie algebras are: 

Cf = the class of all IJie algebras 

~ = abelian Lie algebras 

~ = nilpotent Lie algebras 

at = nilpotent Lie algebras of class < c c 

~ = finite-dimensional Lie algebras 

~m = Lie algebras of dimension ~ m 

~ = finitely generated Lie algebras 
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S(r = Lie algebras generated by ~ r elements. 

We shall introduce other classes later on, and will 

maintain a fixed symbolism for the more important classes. 

The symbols X, 1;} will be reserved for arbitrary 

classes of Lie algebras. Algebras belonging to the 

class ~ will often be called JE-algebras. 

A (non-commutative non-associative) binary operation 

on classes of Lie algebras is defined as follows: if 

:t and ~ are any two classes let ~l.,J be the class 

of all I.ie algebras L having an ideal I such that I E ~ 
and L/I E~. Algebras in this class will sometimes 

be called -*-by-lt'-algebras. We extend this definition 

to products of n classes by defining 

~l ... ~n = «Xl··· X n- l ) ~n)· 
We may put all ~i = ~ and denote the result by ~ n. 

Thus in particular (itn is the class of soluble Lie 

algebras of derived length < n. 

(0) will denote the class of O-dimensional Lie 

algebras. 

~ Closure Operations 

A closure operation A assigns to each class ~ 
another class A3f (the A-closure Of;() in such a way 

that for all classes X, ~ the following axioms are 

satisfied: 



01) A(O) == (0) 

02) 

03) 

04) 

x ~ A~ 

A(A*-) = A".);, 

X ~ \} implies 

(~ will denote ordinary inclusion for class.es of Lie 

algebras) • JE. is said to be A-closed if' .;t::: A,;t. 

It is often easier to define a closure operation A by 

specifying which classes are A-closed. Suppose 

a collection of' classes such that (0) €. .t:9 and 

rJ is 

if is 

closed under arbitrary intersections. Then we can 

define, for each class ;f , the class 

AX == n tLfE ef: *~ It'} 
(where the empty intersection is the universal class 
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C1 ). It is easily seen that A is a closure operation, 

and that ;t is A-closed if and only if l'E,g. Conversely 

if A is a closure operation the set ~ of all A-closed 

classes contains (0), is closed under arbitrary inter-

sections, and determines A. 

standard examples of closure operations are 

S, I, Q, E, No, L defined as follows: ± is S-closed 

(I-closed, Q-closed) according as every subalgebra 

(ideal, quotient algebra) of an ~ -algebra is always an 

J£-algebra. J[ is E-closed if every extension of an 

~ -algebra by an .:;t -algebra is an ~-algebra, 



equivalently if ;(, == ;(2. ~ is N -closed if' 
. . 0 

I, J q L, I, J e .:;( implies I+J G ~. Finally 

L E L ~. if' and only if' every fin1 te subset of' L is 

contained in an ~ -subalgebra of' J.I. L ~ 1s the 

class of' locally ;G-algebras. 

Clearly S~ consists of' all subalgebras of' 

;(-algebras, I ~ consists of' all subideals of' 
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;t.-algebras, and Q * 
of' ~ -algebras; while 

consists of' all epimorphic images 
-:::r: CD n 

E A = U.x and consists of' 
n==l 

all Lie algebras having a f'inite series of' subalgebras 

o = L < Ll < ••• < L = L a - - - n 
with Li <J Li+l (0 ~ i ~ n-l) and Li+l/L1 E .:;t 
(0 ~ i ~ n-l). 

Thus E at is the class of' soluble Lie algebras, 

L 01 the class of locally nilpotent Lie algebras, and 

L '} the class of' locally f'ini te (-dimensional) Lie 

algebras. 

Suppose A and B are two closure operations. Then 

the product AB defined by AB J: = A(B 1.) need not be a 

closure operation - 03 may f'ail to hold. We can def'1ne 

{A,B} to be the closure operation whose closed classes 

are those classes ~~ which are both A-closed and 

B-closed. If' we partially order operations on classes 

by wri ting A ~ B if' and only if' A *- ~ B ~ f'or any 
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class jt , then !A,B} is the smallest closure operation 

greater than both A and B. It is easy to see (as in 

Robinson [30] p.4) that AB = tA,B} (and is consequently 

a closure operation) ir and only ir BA ~ AB. From this 

it is easy to deduce that ES, EI, QS, QI, LS, LI, EQ, LQ 

are closure operations. 

1.6 Ascending Series 

Let a be any ordinal number. An ascending series 

or tyPe a or a Lie algebra L is a set (L~)~~a or 

subalgebras or L such that L = 0 
0, L a = L, ~ 4~~ 

(0 ~ ~ < a), ~ = LJ L~ ror limit ordinals ~ < a. The 
~<A 

Lie algebras L~+l/L~ are the ractors or the series; ir 

every ractor lies in the class 3C then the series (L~) 

is an ;t-series ror L. rr rurther L~ ~ L ror each 

~ ~ a then (L~) will be called an ascending series or 

ideals of L. 

(~: we could define more general types of 

series, as in Robinson [30] p.5ff. - but we restrain 

ourselves from doing so.) 
, 

We may now derine another closure operation E ; 

E ~ consists or all Lie algebras having an ascending 

;t-series. 



Chapter Two 

A Correspondence between 
Complete Locally Nilpotent Torsion-free Groups and 

Locally Nilpotent Lie Algebras 
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In [26] A.I.Mal'cev proves the existence of a 

connection between locally nilpotent torsion-free groups 

and locally nilpotent Lie algebras over the rational 

field, which relates the normality structure of the 

group to the ideal structure of the Lie algebra. This 

connection is essentially the standard Lie group - Lie 

algebra correspondence in an infinite-dimensional 

8i tuation. llla1' cev' s treatment is of a topological 

nature, involving properties of nilmanifolds; but since 

the results can be stated in purely algebraic terms, it 

is of interest to find algebraic proofs. In [24,25] 

M.I,azard outlines an algebraic treatment of Mal' cev' s 

results, using 'typical sequences' (suites typiques) in 

a free group. Here we present a third approach, via 

matrices. 
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2.1 The Campbell-Hausdorff Formula 

Let G be a finitely generated nilpotent torsion

free group. It is well-known (Hall [11] p.56 lemma 7.5, 

Swan (41J) that G can be embedded in a group of (upper) 

unitriangular n x n matrices over the integers ~ for 

some integer n > o. This in turn embeds in the obvious 

manner in the group T of unitriangular n x n matrices 

over the rational field (i. Let U denote the set of 

n x n zero-triangular matrices over ~. With the 

usual operations U forms an associative ~ -algebra, 

and this is nilpotent; indeed Un = O. 

For any t €. T we may use the logarithmic series to 

define 

log(t) = log(l+(t-l») 

= (t-l) - (t21)2+ it31)3_ ••• (1) 

for if t€ T then t-l f. U so (t_l)n = 0, and the series (1) 

has only finitely many non-zero terms. If t € T then 

loge t) E U. 

Conversely if u <:: U we may use the exponential 

series to define 

exp(u) = u 2 u3 
1 + u + 2T + 3T + ••• 

and exp(u) E T if u EU. 

Standard computations reveal that the maps 

log: T ~ U and exp: U ~ T are mutual inverses; in 

(2) 



particular they are bijective. 

U can be made into a Lie algebra over Q. by 

defining a Lie product 

[u,v] = uv-vu (u,v€U). 

As usual we define [ul, ••• ,um] (UiE U, i = l, ••• ,m) 

inducti vely to be [[ ul ' ••• , Um- l ] , um] (m ~ 2). 

Lemma 2.1.1 (Campbell-Hausdorff Formula) 

If x,yE: U then 
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log(exp(x).exp(y» = x + y + ~[x,YJ + i2[x,y,y] + ••• 

where each term is a rational multiple of a Lie product 

[Zl' ••• 'Zm] of length m such that each zi is equal 

either to x or to y, and such that only finitely many 

products of any given length occur. 

The proof is well-known, and can be found in 

Jacobson [17J p.173. 

Corollary 

1) If a,bEU and ab = ba then log(exp(a)exp(b» 

= a + b. 

2) If t€ T, n € Z. then log(tn ) = n.log(t). 

These may also be proved directly. 

A group H is said to be complete (in the sense of 

Kuro~ [23] p.233) if for every nell, h € H there exists 

g 6 H wi th gn = h. 



H is an R-group (Kuros [23J p.242) it' g,h GH and 

n € Z f together with gn = hn, imply g = h. 
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It' H is a complete R-group, h" H, and q 6 Q, then 

it is easy to see that we may define hq as follows: if 

q = min, m,n €;E, then hq is the unique g~ H for which 

n m E If""'I g = h. Further, if h H, q,r6~, we can show that 

(hq)r = hqr , hq+r = (hq)(hr ). 

Lemma 2.1.2 

T is a complete R-group. 

Proof: 

1) T is complete: let t € T, nE Z. Define 

s = exp(~lOg(t» and use corollary to lemma 2.1.1 to 

show that sn = t. 

2) T is an R-group: suppose s, t f; T, n e l:, and 

en = tn. Then n.log(e) = n.log(t) so s = t. 

This gives us easy proofs of two known results: 

Proposition 2.1.~ 

Let H be a finitely generated nilpotent torsion-

free group. Then H is an R-group, and can be embedded 

in a complete R-group (which may be taken to be a group 

of unitriangular matrices over ~ ). 

Proof: 

It suffices to note that a subgroup of an R-group 

is itself an R-group. 
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2.2 The Matrix Version 

Suppose T is as above, and let G be a complete 

subgroup of T. Let U be equipped with the Lie algebra 

structure defined by (3). Define two maps ~, #' as 

follows: 

17: G -+ U gb = log(g) 

Let L = GP = {gP: g~Gl: 
#: L -+ G , i. t = exp (e) 

The aim of this section is to prove 

Theorem 2.2.1 

With the above notation, 

(g € G). 

1) The maps b , ~ are mutual inverses. 

2) If H is a complete subgroup of G then Hb is a 

Lie sub algebra of L. In particular L is a Lie algebra. 

3) If M is a subalgebra of L then M~ is a complete 

subgroup of G. 

4) If H is a complete normal subgroup of a complete 

subgroup K of GJ then H" is an ideal of K " • 

(4) 

(5) 

5) If M is an ideal of a subalgebra N of L, then M:J is 
. ~ 

a complete normal subgroup of N • 

The proof requires several remarks: 
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Remark 2.2.2 

L is contained in a nilpotent Lie algebra, since U 

is nilpotent as an associative algebra and hence as a Lie 

algebra. 

Remark·2.2.3 

Let g ~ G, ~£ <R , and define g~ as suggested 

immediately before lemma 2.1.2. Then (gA)b = Ag~ • 

For let A. = min, m,ne 7l. By definition (g~)n = gm. 

Taking logs and using part 2 of the corollary to lemma 

2.1.1 we find n.log(gA) = m.1og(g). Thus we have 

(gA)" = log(gA-) = mlog(g) = ~gb • n 
Remark 2.2.4 

Denoting group commutators by round brackets (to 

avoid confusion with Lie products) thus: 

(x,y) = x-ly-IXY 

and inductively (x1 , ••• ,xm) = «xl , ••• ,xm_1 ),xm) then 

the Campbell-Hausdorff Formula implies that for 

= (g; , ... , g~ ] + Z P w 

where each Pw is a rational 
w 

linear combination of 

products [gf , ••• ,g:] with w > m and ii\,E. {l, ••• ,m} for 
1 w 

1 ~ A- ~ w, such that each of l, ••• ,m occurs at least 

once among the iA- (1 ~ A ~ w). The exact form of the 

P is determined by the Campbell-Hausdorff Formula. w 



The proof is by induction on m and can be found in 

Jennings [19] 6.1.6. 

Remark 2.2.5 

We now describe a special method of manipulating 

expressions with terms of the form h f;, , where h lies 
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in some subset H of G, which will be needed in the sequel. 

Suppose we have an expression 

h
b + Z AjC j 

(6) 

where each Cj is a Lie product of length ~ r of elements 

of HP • We can write this as 

hl7 + Z }1.jD j + Z'1\E i ()A-j' -i>i € (Q) 

where the Dj are of length r, the Ei of length ~ r+l. 

Take one of the terms Dj' say 

D = DI = (h~ , ••• , h: ] • 

By remark 2.2.4 we may replace D by the expression 

(hI' • • • , hr)P + 1! coCkF k (coCk €. <R ) 
where each Fk is a product of length > r+l of elements 

of Ii 17 • Let (~, ••• ,hr) = g E G. By the Campbell-

Hausdorff Formula and remark 2.2.3 

(hgA.)P = h" + Ag 17 + Z 13tGt (A,l3t G Q) 

where the Ge are products of length > 2 of elements 

equal either to h~ or to gP • But g~ = D - Z coCkFk , 

each term of which is a product of > r elements of H b • 
Thus we may remove the terms D

j 
one by one to 



obtain a new expression for (6), of the form 

where the gj are group commutators of length r in 

elements of H, and the Hi are products of length ~ r+l 
i7 in elements of H • 

We are now ready for the 

Proof or theorem 2.2.1 

1) Follows rrom the defini tions of b, :If • 
2) Any element of the Lie algebra generated by Hb is 

of the form (6) with r = 1, h = O. Using remark 2.2.5 

over and over again, we can express this element as 

(h')~ + Z 6 i J i (6i€~) 
where, since II is a subgroup of G and is complete, 
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h' € H; and the J i are products of length> c, the class 

of nilpotency of U. But then J i = 0, and the element 

under consideration has been expressed as an element of 

H b. Thus H b is a Lie algebra. In particular so is 

L = G
b • 

3) Let m,n c. M, A.GQ. Vie must show that (m1t)A. and 

m*n* are elements of 11*. Now (m:#)A. = (Am)it G M#- • 

Further, the Campbell-Hausdorff Formula implies that 

(m#n#)b = m + n + ~[m,nJ + ••• €.: M. By part (1) of 

this theorem mit: n# € M' . 



17 

4) Le t h € H, k <= K. We mue t show tha t [h", k b] € H ~ • 
We prove, using descending induction on r, that any 

product of the form [at , ••• ,a; ] with ajGK for all j 

and at least one ai € H is a member of HP • This is 

trivially true for r > c, the class of nilpotency of U. 

The transition from r+l to r follows from remark 2.2.4, 

noting that if a group commutator (kl, ••• ,km) with all 

k j E K has some element ki E H, then the whole commutator 

lies in H (since H is a normal subgroup of K). The 

case r = 2 gives the result required. 

5) Let m 6 lvi, n€ N. Then (m#,n#)~ = [m,nJ + products 

of length ~ 3 of elements of M and N, each term 

containing at least one element of M (Remark 2.2.4). 

Since M is an ideal of N each such term lies in M, so 

that (m#,n#)b e M. By part (1) (m-#,n#) G 11* ,. whence 

lvi.# is normal in N# • 

~ Inversion of the Campbell-Hausdorff Formula 

A given finitely generated nilpotent torsion-free 

group can in general be embedded in a unitriangular 

matrix group in many ways. In order to extend our 

results to locally nilpotent groups and Lie algebras we 

need a more 'natural' correspondence. This comes from a 

closer examination of the matrix situation; the method 

used is to effect what Lazard [25J refers to as 
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'inversion of the Campbell-Hausdorff formula'. To 

express the result concisely we must briefly discuss 

infinite products in locally nilpotent groups. The 

set-up is analogous to that in Lie algebras with regard 

to infinite sums (such as the right-hand side of the 

Campbell-Hausdorff formula) which make sense provided 

the algebra is locally nilpotent; for then only finitely 

many terms of the series are non-zero. 

Suppose we have a finite set of variables {xl, ••• ,xfl. 

A formal infinite product 

CD ~i 
W (Xl'·.· ,Xf ) = }]~ Ki 

is said to be an extended word in these variables if 

El) ~i E Q for all i, 

E2) Each Ki is a commutator word Ki(xl, ••• ,xf ) = 

(Xjl' ••• 'X
jr

) (r depending on i) in the variables 

xl,···,xf , 

E3) Only finitely many terms Ki have any given 

length r. 

Suppose G is a complete locally nilpotent 

torsion-free group, and gl, ••• ,gf £ G. G is a complete 

R-group (proposition 2.1.3) so that 

~i ~i 
(Ki(gl,···,gf» = (gj , ••• ,gj ) 

1 r 

is defined in G. The group H generated by gl, ••• ,gf is 
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nilpotent of class c (say) so if Ki has length> c 

Ki(gl, ••• ,gf) = 1. Thus only finitely many values of 

(Ki(gl, ••• ,gf»~i I 1 and we may define UJ(gl, ••• ,gf) 

to be the product (in order) of the non-l terms. Thus 

if CAl (xl' ••• , Xf ) is an extended word, and G is any 

complete locally nilpotent torsion-free group, then we 

may consider c...J to be a fUnction ~ :Gf 
-+ G. 

Similarly we may define an extended Lie word to be 

a formal sum 

where 

Dl) f" j 6 Q for all j, 

D2) Each J j is a Lie product Jj(wl, ••• ,we ) = 
[Wi , ••• ,wi J (s depending on j) in the variables 

I s 
wl,···,we ' 

D3) Only finitely many terms J
j 

have any given 

length s. 

Then if L is any locally nilpotent Lie algebra 

over eLl , we may consider ! to be a function 

'r: L e 
-+ L. 

Let us now return to the matrix group / matrix 

algebra correspondence of section 2.2. Suppose we 

'lift' the Lie operations from L to G by defining 



A.g = (A.g b ) ** 
g+h = (gP +hb f'* 

[g,h] = [gO ,hb]# 

(g,h€G, A.bQ.). Then G with these operations forms 
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a Lie algebra which we shall denote by X (G). Similarly 

we may 'drop' the group operations from G to L by 

defining 

am = (Q:# m#-)~ 
t;r .. = (a~x)b 

(l,m€L, 'h.E(Q). L with these operations forms a 

complete group ct (L). r (G) is isomorphic to Land 

~(L) is isomorphic to G. 

The crucial observation we require is that these 

operations can be expressed as extended words (resp. 

extended Lie words). This is Lazard's 'inversion'. 

Lemma 2.3.1 

Let G be a complete subgroup of T, and let L = Gb 

as described in section 2.2. Then there exist extended 

words £ X (x) (XG~), a(x,y), 1T(X,y) such that for g,h E G, 

XE, <Q. , 
Xg = ('X(g) 

g+h = a(g,h) 

[g,h] = 7T(g,h) 

(where the operations on the left are those defined above). 
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Further there exist extended Lie words 6A. (x) (A. €' Q), 

~(x,y), y(x,y) such that 

p'A. = ~ (~) 

~m =p.(e,m) 

(Q,m) = y(e,m) 

(~,m EL, A.E. dl) (operations on left as above). 

These words can be taken to be independent of the 

particular G, L chosen. 

Proof: 

1) EA.: 

(A.g~)~ = exp(A..10g(g» = gA., so &A.(x) = xA. has 

the required properties. 

2) 0: 

Here we must do more work. We show that there 

exist words 0i(x,y) satisfying 

0i+l(x,y) = °i(x,y)Yi+1(x,y) 

0o(x,y) = 1 

where Yi+l is a word of the form 

with each Kj 

i+1 with Zj 
k 

A. A. 
K1 1 ••• Ku u (Ajf ~ 1 ~ j ~ u) 

a commutator word (Zj , ••• ,Zj ) of length 
1 i+1 

= x or y (1 ~ k ~ i+1); such that if G is 

a complete subgroup of the group of"c x c unitriangular 

matrices over a;t (c ~ 1) then 



(g,h eG). 

The existence or these words is a consequence or 

the manipulation process described in remark 2.2.5. 

This enables us to take an expression or the rorm 
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hl7 + Z A.jO j (A. j € G.) (7) 

where h lies in some subset H or G, and the OJ are 

Lie products or length ~ r in elements or H~, and 

replace it by an expression 
ftl fA-m 

(hgl ···gm ) + Z YiHi 

where the gj are commutator words in elements or H or 

length r, and the Hi are Lie products of elements or H~ 
or length ~ r+l. 

We obtain the 0i by systematically applying this 

procedure to the expression gb + h~. We choose a total 

ordering « or the lert-normed Lie products in x,y in 

such a way that the length is compatible with the 

ordering. Next we apply the process or section 2.2.5 

to the expression gb + h b (with g playing the role or 

h in (7), Al = 1, 0
1 

= h~ ) and at each stage in the 

process 

1) Express all Lie products in g b ,hP as sums of 

lert-normed commutators (using anticommutat1v1ty and the 

Jacobi identity), 

2) Collect together all multiples or the same 



left-normed product, 

3) Operate on the term D (in the notation of 

Remark 2.2.5) which is smallest in the ordering «~a 

At the i-th stage we will have expressed g +h in 

the form 

where 0i is a word in g, h and the terms Ik are Lie 
tl l:, products in g ,h of length> i. At the (i+l)-th 

stage this will have been modified to 
Al Am 17 

(o1(g,h)·gl ···gm ) + ~ ~eJe 

where the g1 are group commutators in g,h of length 

1+1, the Ai E Q, and the Je are Lie products in 

g b , hl7 of length > i+l. 

We put 

Yi+l(g,h) 
Al Am 

= gl •• ·gm , 

°1+l(g,h) = °i(g,h)yi+l(g,h) 

°o(g,h) = 1. 

It is clear from the way that the process 2.2.4 

operates that the form of the words 0i' Yi depends only 

on the ordering « (and the Campbell-Hausdorff formula) 

so that we can define the required words 0i(X'y) and 

Yi(x,y) independently of G. 

Now if G consists of c x c matrices, then at the 

c-th stage we have 
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gf, + hI? = (OC(g,h»~ + Z lpKp ($p€ G) 
where the terms Kp are of length > c so are O. Thus 

g+h = (gP+hP)# = ° (g,h) c 
as claimed. 

We now define 
(J) 

o(x,y) = TT 0i(x,y). 
i=O 

If G is a complete group of un1triangular c x c 

matrices over ~ , then G is nilpotent of class ~ c, 

so for all j > 0 0C+j(g,h) = 1, so o(g,h) = 0c(g,h). 

Hence for any such G we have g+h = o(g,h) as required. 

3) 17: 

Similar proof. Work on the expression 

1 b + [g~ ,h~] 

(which equals [g~,hbJ) with I playing the role of h 

in (7), 1>..1 = 1, Cl = (g~ ,h~]. 

4) 0'A.: 

l'A. = (e#'A.)17 = loge expel) 'A.) = h. R, (eE L) so 

0'A.(x) = h.X will do. 

5)}A-: 

Pu t ft (x, y) = x + y + ~ [x, Y] + ••• 

Campbell-Hausdorff formula. 

6) y: 

as in the 
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Follows at once from the existence of 0'A. and ~ • 

The lemma is proved. 
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To illustrate the method, we calculate the function 

a up to terms of length 3. To this length the Campbell-

Hausdorff formula becomes 

(gh)P = gil + h b + ~[gl1 ,hb] + {2( [g~ ,hb ,h"] + [hV ,gl7,g~]) 
and thus 

(x,y)" = [x17,y~] + !([xb,yb,xb] + [xV,yb,yb]). 

We choose left-normed commutators as follows: 

a~« b~ « [al;l,b~J « [a~,b",a~J « [a",b~ ,bPJ. 

Now (a+b)17 = ab +b" by defini tion 

= (ab)17 - ~[aj"b17J -112([aV,bV,b~] - [ab,bb,a~]) 
= (ab)17 - !{(a,b)17 - ~([ab,bb,abJ + [ab,bb,b~l)} 

+ b( raj, ,b~,a~] - rab ,bb ,bl1]) 

= (ab(a,b)-1/2)b _ ~([(ab)V ,(a,b)-1/217]) 

+ k( [a b , bl? , alJ] + [a V , b b, bb] ) 
+ 1\ ( [a b , b V , a)] - [a~, b V, b b J ) 

= (ab(a,b)-1/2)~ - ~ ([aP+b~, _~[a~,bb]) 
+ k([ab,b~,ab] + [aV,b17 ,bb]) 

+ f2([a~,bV ,a~] - [a~ ,bb,bbJ) 

= (ab(a,b)-1/2)b+ b[a~,b17,a~] - b[aD,b",b~] 
= (ab(a,b)-1/2(a,b,a)1/12(a,b,b)-1/l2)~ • 

Thus up to terms of length 3 

() ( )-1/2( )1/12 )-1/12 a a,b = ab a,b a,b,a (a,b,b • 

Similarly we find 

~(a,b) = (a,b)(a,b,a)-1/2(a,b,b)-1/2. 
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~ The General Version 

As remarked in sec tion 2.3, if f.) (xl' ••• ,xf ) is 

an extended word and G any complete locally nilpotent 

torsion-free group, then ~ can be considered as a 

function Gf ~ G. Similarly for extended Lie words and 

locally nilpotent Lie algebras over Q. On this basis 

we can establish a general version of Mal'cev's 

correspondence as follows: 

Theorem 2.4.1 

Let G be a complete locally nilpotent torsion-free 

group. Define operations on G as follows: 

If 11. E G, g,h € G set 

"Ag = t."A (g) 

g+h = a(g,h) 

[g,h] = 7T(g,h). 

With these operations G becomes a Lie algebra 

over Q. , which we denote by t (G). x'(G) is a 

locally nilpotent Lie algebra. 

Conversely, let L be a locally nilpotent Lie 

algebra over Q.. Define, for "A6 Q, e,m G L, 

operations: 

e"A = 0,,- (2) 

am =r-(e,m). 
With these operations L becomes a complete locally 
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nilpotent torsion-free group, whi~h we denote by ~(L). 

Proor: 

The axioms for a Lie algebra can be expressed as 

certain relations between the f"unctions EA, 0, rr 

involving at most 3 variables. Thus if these relations 

can be shown to hold in any 3-generator subgroup of G, 

they hold throughout G. But, as remarked earlier, any 

finitely generated nilpotent torsion-free group can be 

embedded in a group of unitriangular c x c matrices over 

Q for some integer c > 0 (Hall [11], Swan 0+1]). But 

the required relations certainly hold in this situation, 

since by the construction of ~A' a, rr they express the 

fact that the logarithms of these matrices form a Lie 

algebra under the usual operations - a fact which is 

manifest. 

Any finitely generated subalgebra or ~(G) is 

the image under ~ of the completion H of some finitely 
v 

generated subgroup II of G. H is nilpotent, so by Kuros 

[23J p.258, H is also nilpotent. The form of the words 

EA, 0, w now ensures that the original finitely generated 

subalgebra of X (G) is nilpotent. Hence .'C(G) is locally 

nilpotent •. 

In a similar way the axioms for a complete group 

hold in L if they hold in any finitely generated subalgebra. 
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Now a finitely generated nilpotent Lie algebra is 

finite-dimensional (Hartley [14] p.26l) and any finite

dimensional nilpotent Lie algebra over (Q. can be embedded 

in a Lie algebra of zero-triangular matrices over ~ 

(Birkhoff [3]). We may therefore proceed analogously 

to complete the proof. 

We next consider the relation between the structure 

of G and that of .l (G); also L and ~ (L). 

Theorem 2.4.2 

Let G, H be complete locally nilpotent torsion-free 

groups; let L be a locally nilpotent Lie algebra over ~ • 

Then 

1) 1 (x'(G» = G, ~(~ (L» = L. 

2) H is a subgroup of G if and only if 

,.«H) ~ X(G)-

3) H is a normal subgroup of G if and only if 

t (H) ~ .L(G). 

4) ~:G ~ H is a group homomorphism if and only 

if ~:J(G) ~J:(H) is a Lie homomorphism. The kernel of 

~ is the same in both cases. 

5) If H is a normal subgroup of G, then 

X (G/H) = l(G)/i(H). 

(Note: using part (1) we can easily recast parts 

(2), (3), (4), (5) in a '~' form instead of an ,~, form.) 



Proof: 

1) Let g,h € G. We must show that for ~ E ~ 

g~ = 6~(g) 

gh = jt(g,h) 

where 6~,~ are defined in terms of the Lie operations 
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of :/..; (G). Now 6~(g) = ~g = £~(g) = g~. To show that 

gh = ~(g,h) we may confine our attention to the comple

tion of the group ,generated by g and h. Thus without 

loss of generality G is a group of unitriangular matrices 

over Q . 
Now by definition 

}-l(g,h) = g + h + ~[g,h] + 

and +, [, ] are defined in ~(G) by 

g+h = (g~ +hb)# 

[g,h] = [gb ,h~J* 
so 

• • • 

17 V b 1 [b b) jJv (g,h) = g + h + 2 g ,h + ••• 

= (gh)" by Campbell-Hausdorff 

so )-t(g,h) = gh as required. 

The converse is similar and will be omitted. 

2) and 3) are clear from the form of the functions 

E. ~, 1T, a, 6~, f-, y • 

4) Follows from the observation that group homomorphisms 

(resp. Lie homomorphisms) preserve extended words (resp. 
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extended Lie words). The kernels are the same since 

the identity element of G is the zero element or ~(G). 

5) We first show that H-cosets in G are the same as 

J:(H)-cosets in l:(G). 

Let x f G, z &.Hx. Then z = hx for 

hx = h + x + ~[h,X] + ••• €. cL(H) + x 

which is an ideal of 1: (G) • Thus Hx .s: 

some hE:. H, and 

since h" J:(H) 

x'(H) + x. 

Now let y€ J:(H) + x. Then y = 

( ) -1/2 and h + x = h.x. h,x ••• E Hx 

subgroup of G. Therefore i:(H) + x 

h+x for some h 6 H, 

since H is a normal 

= Hx. 

Hence Hx = J:(H) + x • The operations on the 

cosets are defined by the same extended words, and the 

result follows. 

Remark 

In categorical guise, let t?~ denote the category 

of complete locally nilpotent torsion-free groups and 

group homomorphisms, CS~ the category of locally 

nilpotent Lie algebras over dGl and Lie homomorphisms. 

Then 

are covariant functors, defining an isomorphism between 

the two categories. 

Observe, however, that our definition of ~ and ~ 
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is stronger than a purely category-theortetic one - as 

far as the underlying sets are concerned they are both 

identi ty maps. 

We shall now develop a few more properties of the 

correspondence, which we need later. But first let us 

recall the definition of a centraliser in a Lie algebra: 

suppose H ~ X ~ L , H ~ L, and H 4 X. Then 

CL ( X/H) = ~ c E L: [ c , X] S. H 1 • 
There is a similar definition for groups. 

Lemma 2.4.3 

Let G, H be complete locally nilpotent torsion

free groups, with H ~ G, H ~ X = G. Then 

Z(CG(X/H» = C.t(G)(t,(X)/X(H» 

(where the notation ~(x) indicates the set X considered 

as a subset of .L (H». 

Proof: 

Let c € C = CG(X/H). Then for any xEX, 

[c,x] = (c,x)(c,x,c)-1/2 ••• € H (from the definition of 

C and since H ~ x). Consequently c ~ Cci(G)(t'(X)/X(H». 

The converse inclusion is similar. 

Corollary 1 

1) X(CG(X» = c.t(G)(i(x» 

2) X,(NG(H» = Ic(G)(i.(H» 

(put H = 0) 

(put X = H). 



(Here NG denotes the norma1iser in G, and I~(G) the 

idea1iser in JG(G) (also called the normaliser in 

Jacobson [17] p.57, but we pre~er the alternative 

terminology». 

Corollary 2 

Letting J~(G) denote the ~-th term o~ the upper 

central series o~ G, then 

l (!~(G» = !~(.L(G». 
Proo~: 

Use trans~inite induction on ~ and lemma 2.4.3. 

Corollary 3 
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The upper central series o~ G and ~(G) become 

stationary at the same ordina1~. In particular i~ 

either G or Jl(G) is nilpotent then so is the other and 

their classes o~ ni1potency are equal. 

Froo:f: 

Immediate :from Corollary 2. 

Suppose G is a complete locally nilpotent torsion

~ree group, and H is any subgroup. Then the completion 

IT o~ H in G is the smallest complete subgroup o~ G which 

contains H. The next lemma COllects some known ~acts 

about completions. 

Lemma 2.L~.4 

Suppose G is a complete locally nilpotent torsion-



free group, and H ~ K ~ G. 

1) If H ~ K then H ~ K. 
2) K is equal to the isolator of K in G, which is the 

set of all g E G such that gnE K f'or some n': Z. 

Proof': 

1) see Kuros [23] p.254. 

2) 
., 

[23} pp. 249, 255. see Kuros 

Lemma 2.4.2 
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Let G be a complete locally nilpotent torsion-f'ree 

group, H a complete subgroup of G. Then H ~ G if' and 

only if Z (H) ~ .l (G). 

Proof: 

There is a normal series 

H = Ho ~ HI ~ ••• Ha 4 Ha+l 4 ••• H~ = G 

from H to G, such that H~ = LJ Ha at limit ordinals ~. 
y ~<~ 

Let La = ~(Ha) (bars denoting completions in G). Then 

JC (H) = Lo ' ~(G) = L~. By lemma 2.4.4.1 and theorem 

2.4.2.3 we have La ~ L~+l for all a <~. Lemma 2.4.4.2 

easily shows that at limit ordinals ~ ~ = LJ La. 
a<~ 

The result f'ollows. 

In particular H is subnormal in G if and only if 

~(H) is a subideal of ~(G); and H is ascendant in G 

if and only if X (H) is an ascendant sub algebra of L (G). 



As an application of these results we will give a 

generalisation of a result of Yu.G.Fedorov (see Kuros 

[23J p.257) which states that a nilpotent torsion-free 

group and its completion have the same class of 

nilpotency. Our generalisation (proved in the next 

section) does not seem to have appeared in the litera

ture. 

Other applications of the Mal'cev correspondence 

will be given in later chapters. It seems possible to 

enumerate properties of the correspondence ~ nauseam -

but we shall avoid this. Any further attributes of the 

correspondence will be developed as and when they are 

required. 

~ Bracket Varieties 

Let P = p(XI, ••• ,xn) and ~ = ~(Yl, ••• ,ym> be two 

group words. Following P.Rall we define the 

outer commutator word (p'*>o to be the word 

(p'*)o(xl,···,Xn+m) = 

(P(XI'···'Xn»-I(q(Xn+I'···'Xn+m»-l 

(P(xl,···,xn»(W(Xn+l,···,xn+m»· 

We define bracket words inductively: the identity 

word l(Xl ) = Xl is a bracket word of height h(t) = 1. 

If p, * are bracket words then (p'~)o is a bracket word 

of height h(p)+h(l). 
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Thus for example (x,y), «x,y),z) and «x,y),(z,t» 

are bracket words. 

Analogous definitions can be made for Lie algebras. 

In this case we denote the outer commutator by U6"J o ' 

and the height again by h. To each group bracket word 

~ there corresponds in a natural way a Lie bracket word 

~. defined inductively by 

l* =, 
C~,*)~ = (p5*,l*]o • 

Clearly h(p) = h(p*), and p* is obtained from ~ by 

changing all round brackets to square ones. 

If G is a group and ~ a group bracket word, the 

verbal subgroup c~rresponding to p is 

p(G) = <P(gl, ••• ,gn) : giE G I ~ i ~ n > 

and the variety lOrp determined by p is the class of 

all groups G for which peG) = 1; equivalently those G 

for which the relation ~(gl, ••• ,gn) = 1 holds identically 

in G. 

Similarly we define the verbal sub algebra p*(L) 

of a Lie algebra L determined by a Lie bracket word p*, 

and the variety lLr~* . 
If G is a group and ~ a group bracket word, then 

a i-value in G is an element expressible as ~(gl, ••• ,gn) 

1 < i < n). - - Similarly for Lie algebras. 



Lemma 2.5.1 

Let p, * be Lie bracket words, L any Lie algebra 

(over an arbitrary field). Then 

1) ~(L) is the vector subspace of L spanned by the 

~-values in L. 

2) ¢(L) <3 L. 

3) [P,WJo(L) = [0(L), W(L)]. 
Proof: 

We prove (1) and (2) simultaneously by induction 

on the height of ~. 
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If h(p) = 1 then !D =" and (1) and (2) are 

trivial. If h(~) > 1 then there are bracket words " )C 

such t~at ¢ = [$,X]o and h($), h(~) < h(~). Inductively 

we may suppose that (1) and (2) hold for, and)C. Let 

x be a ~-value in L. Then there exist l = (Yl'.'.'Yn) 

and ~ = (ZI' ••• 'Zm) (Yl ' ••• 'Yn 'Zl, ••• ,zm € L) such 

that x = ~(~,~) = [,(~) ,:t(~)]. If tEL then [x, tl = ... 
[[$(~),~C~.>],t] = r[W(:iJ,tJ,X(~)] + [W(Z), [X(~.>,tJ] 
by Jacobi. By part (2) inductively [$(~),tJ lies in 

,(L); by part (1) it is a linear combination of '-values. 

Similarly for [X(~), t]. Thus [x, t] is a linear combination 

of [, ;x] 0 -values. Hence the subspace spanned by the 

~-values is an ideal of L, and so is equal to ~(L). This 

proves parts (1) and (2). 



Part (3) now follows at once from part (1). 

Results analogous to parts (2) and (3) are well 

known for groups. 

Let G be a locally nilpotent torsion-free group. 

Then it is known that G has a unique completion IT, 
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that is a complete locally nilpotent torsion-free group 

containing G and such that the completion of G in G is 

the whole of G. Note that we cannot use Mal'cev's work 

on completions to establish the existence of G since we 

are trying to produce algebraic proofs of our theorems. 

The whole of Mal'cev's theory of completions has been 

developed in a purely algebraic setting by Kargapolov 

[20,21]; and a method is outlined in Hall[ll] p.46. 

Under the Mal'cev correspondence IT can also be 

considered to be a Lie algebra over Q;L. Denote 

completions (in G) of subgroups of G by overbars. 

Temporarily denote by i<X> the ideal of G generated by 

X (considering G as a Lie algebra) and let n<X> denote 

the normal subgroup of G generated by X, for any subset 

X of G. 

Lemma 2.5.2 

Let G be a locally nilpotent torsion-free group, 

A, B ~ G. 



Then (A,B) = (A,E) = [X,BJ 
. 

(where in the third expression A and B are considered 

as sub algebras of 0). 

Proof: 

Throughout let a run through A, b through B, and 

~,(3 through Q . Then 

(A,B) = n«a,b» 

= i<[a,b]> since from the form of the 

words 'IT, Y of lemma 2.3.1 it is clear that (a, b) €. i< [a, b J> 

and [a,bJ n«a,b» 

= i < [~a, (3bJ > 

= i < [ac:£:, b(3] > (*) 

= [i,B] using lemma 2.4.4.2 

But also 

(as above) 

= (A,B) using lemma 2.4.4.2. 

The promised generalisation of Fedorov's result: 

Theorem 2.5.3 

Let G be any locally nilpotent torsion-free group, 

a its completion (viewed also as a Lie algebra over ~ ). 

Let p be any group bracket word. Then 

1) peG) = ¢'(G) = ¢,*(G) 

2) G.a l/¢' # at:: ~ ~> G~"V;* . 



Proof: 

1) Use induction on h(p) = h(p*). If h(p) ~ 1 the 

result is clear. If not, then p = (W,X)o and 80 

¢* = [,*, x, *J 0 where all of h('), heX) J h(~*), h()C*) 

are less than h(~). Thus 

~ ::: (* ,X) 0 (G) 

= (¢(G) ,~(G» (lemma 2.5.1.3 for groups) 

::: (if(Gf ,xC G) ) (lemma 2.5.2) 

= (~(G) ,X(G» (induction hypothesis) (*) 

::: (*(G) ,X(G» (lemma 2.5.2) 

::: (f, X) o(G) 
-

::: ~(G) • 

Also, 

(*) ::: [tIr(G} ,,,"(0:)] (lemma 2.5.2) 

::: [,*(G), X*(G)] (induction hypothesis) 

::: [qr*, X *] o(G) (lemma 2.5.1.3) 

::: ~*(G) 

which proves part (1). 

2) G € lJ'p ~ ~(G) = 1 

~ ~(G) = 1 
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~ peG) = 1 (**) 

4=;> peG) = 1 

~ af: V;S · 
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Also 

(**) ~ .0* (a) = 0 

~ G ~ lJ;s •. 
Corollary 

Let X be a union of bracket varieties of groups, 

)£* the union of the corresponding Lie bracket varieties. 

Then 

In particular we may take for ~ the classes 

(using P.Hall' s notation [10]): 

Olc' n ' ad, EOl, Oln.. 
(The case ~ = Ole is Fedorov's theorem.) 



Chapter Three 

Lie algebras. all of whose 
8ubalgebras are n-step subideals 

41 

A theorem of J.E.Roseblade [33J states that if G is 

a group such that every subgroup K of G is subnormal in 

at most n steps, i.e. there exists a series of subgroups 

K = Ko 4 KI 4 ••• ~ Kn = G, 

then G is nilpotent of class < fen) for some fUnction 

f: 7l -+ 7L • 

This chapter is devoted to a proof of the analogous 

result for Lie algebras over fields of arbitrary 

characteristic. 

~ Subnormality and completions 

It might be thought that we could prove the 

theorem for Lie algebras over Q by a combination of 

Roseblade's result and the Mal'cev correspondence, as 

follows: 

Suppose L is a Lie algebra over Q , such that 

every subalgebra K < L satisfies K 4n L. By a theorem 

of Hartley [14] p.259 (cor. to theorem 3) L £E, L 11. • 
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We may therefore form .the .oorresponding group (t(L). 

Clearly every complete subgroup H or G satisries H 4
n G. 

Ir we could show that every subgroup or G is boundedly 

subnormal in its completion, we could use Roseblade's 

theorem to deduce the nilpotence (or bounded class) 

of G, hence of L. 

This approach rails, however - we shall show that 

a locally nilpotent torsion-free group need not be 

subnormal in its completion, let alone boundedly so. 

Let Tn(~) denote the group or (n+l) x (n+l) 

unitriangular matrices over ~ , Un(~) the Lie 

algebra of all (n+l) x (n+l) zero-triangular matrices 

over Q . Similarly define Tn (11. ), Un ( 7L. ) • 

If H is a subnormal subgroup of G let d(H,G) be· 

the least integer d for which (in an obvious notation) 

H 4d G. d is the defect of H in G. 

Lemma 3.1.1 

d(Tn ( l), TnCQ» = n. 

Proof: 

Let T = T (~), S = T (~), d = d(S,T). Then n n 

d ~ n since T is nilpotent of class n. We show that 

S ~n-l T is false. Suppose, if possible, that S 4
n- l T. 

Then for all s E. S, t E. T we would have 



( t, n-l s) E. S 

(where (a'mb) denotes ( ••• (a,~),b), ••• ~b) .) 
m 

Taking logarithms, 

log(t'n_ls) ~ logeS). 

By the Campbell-Hausdorff formula, remembering that T 

is nilpotent of class n, this means that 

[log( t) 'n_llog(s) ] E 10g(S). 
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We choose s € S in such a way as to prevent this happening. 

Consider the matrix x = o x 0 • • • 

Then exp (X) = 

o 
So if we put s::: exp 

then sE,S. 
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Let t = exp o A 0 ••• o 

o 
where f'or the moment A is an arbitrary element of Q . 
An easy induction shows that 

= o • • • o cf.. 

o 
= A (say), 

( 
t )n-l where ~ = ~. n. • -

Now exp(A) = 1 0 • • • o ~ 

o 
o 1 

and we can choose A E Q so that ~ ~ iZ • Thus 

exp(A) ~ S, so A ~ logeS), a contradiction. This 

shows d ~ n, so that d = n as claimed. 

Corollary 1 

There is no bound to the def'ect of' a nilpotent 

torsion-f'ree group in its completion. 
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Proof': 

Tn(~) is easily seen to be the completion of' 

Tn(~) • 
Corollary 2 

A locally nilpotent torsion-f'ree group need not 

be subnormal in its completion. 

Proof': 
CD 

V = Dr Tn ( z: ) . 
n=l 

Let 

CD 
Then V = Dr Tn(al). 

n= 1 
If' V were subnormal in V then V ~m V f'or some m f lZ. , 
so that Tm+l(~) ~m Tm+l(~) contrary to lemma 3.1.1. 

~ Analogue of' a theorem of' P.Hall 

We prove the theorem we want directly f'or Lie 

algebras, using methods based on those of' Roseblade. 

Throughout the chapter all Lie algebras will be over a 

f'ixed but arbitrary f'ield k (of' arbitrary characteristic). 

We introduce 3 new classes of' Lie algebras: 

L € (V # (H ~L ~ H si L) 

L£ :lJn # (H ~L ~ H <f1 L) 

LtS r1 ~ (H < L ~ IL(H) > H). 

(The last condition is known as the idealiser condition). 

Throughout this chapter JUi(m,n, ••• ) will denote 



a positive-integer valued function .depending only on 

those arguments explicitly shown. 

Our firs t aim is to show that if H <l L, H t nc ' 
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and L/H~ c: "Old' then L E n~l(C,d) f'or some function #1. 
For the purposes of' this chapter it is immaterial what 

the exact form of fll is; but it is of independent 

interest to obtain a good bound. The group-theoretic 

version, with ft1(c,d) = (C~l)d - (~), is due to 

P.Rall [12]; the result for Lie algebras with this bound 

is proved by Chong-Yun Chao [5] (stated only f'or finite

dimensional algebras). In [40] A.G.R.stewart improves 

Hall's bound in the group-theoretic Case to cd+(c-l)(d-l) 

and shows this is best possible. We add a f'ourth voice 

to the canon by showing that similar results hold for 

Lie algebras (using essentially the Same arguments). A 

f'ew preliminary lemmas are needed to set up the machinery. 

Lemma 3.2.1 

If' L is a Lie algebra and A, B, C ~ L then 

[[A,B],C] ~ [[B,cl,A] + [[C,A],B]. 

Proof: 

From the Jacobi identity. 

Lemma 3.2.2 

If' L is a Lie algebra and A, B, C ~ L then 

Z [[A'ic),[B'jC]]. 
i+j=n 
i,j>O 



Proo£': 

Use induction on n. If n = 1 lemma 3.2.1 gives 

the result. Suppose the lemma holds for n. Then 

[[A,B] 'n+1C] = [[[A,B] 'nC] ,C] 

~ Z [[[A'iC]' [B, jCJ] ,C] by hypothesis 
i+j=n 

~ Z [[A'i+1c],[B'jCJJ + [[A'iC],[B'j+1C]] 
i+j=n 

by lemma 3.2.1 

= Z [[A, i CJ , [B, jCJ] 
i+j=n+1 

and the induction step goes through. 

Theorem 3.2.3 

Let L be a Lie algebra, H <J L, such that HG 

and L/H
2 ~ end· Then L ~ ~1 (c,d) where 

ft1 (c,d) = cd + (c-1)(d-1). 

Further, this bound is best possible. 

Proof: 

01 c 

Induction on c. If c = 1 the result is obvious. 

If c > 1, then for any r with 1 ~ r ~ c we have 

/Hr+1 L/ r+l c:v, 1M 2 ')'l Mr = H <J Nr = H • Mr E. GL.r and Nr' .. i r " DLd 

so inductively we may assume 

L2rd-r-d+2 ~ Hr+l 1 ~ r ~ c-1. 

Now L 2rd-c-d+2 < rH2 LJ 
- LJ 

, 2cd-2d-c+1 

~ f [[H, i L] , [H, 2cd-2d-c+1-i LJ] 
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summed over the interval 0 ~ 1 ~ 2cd-2d-c+l (by 

lemma 3.2.2). Each such i belongs to an interval 

2(j-l)d-d-(j-l)+1 ~ i < 2jd-d-j+l (1 ~ j ~ c). 

Consider an arbitrary j. By induction if j ~ 1, and 

since H q L if j c 1, we have 

[[H'iL], [H'2Cd-2d-C+l-iLJJ 
~ [H j , L2d(c-j)-d-(C-j)+2+2dj-d-j-i n H] 

(also using the fact that Qff'tLJ ~ Lt+l) 

< [Hj, L2d(c-j)-d-(c-j)+2 n H] since 2dj-d-j ~ i 

~ [H j , Lc-j+ln H] by induction if c-j ~ 0, and 

obviously if c-j = 0 

< Hc+l 

= o. 
Thus L2cd-c-d+2 = 0 and the induction hypothesis 

carries over. The result follows. 
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Next we show that this value of f\l is best possible, 

in the sense that for all c,d > 0 there exist Lie algebras 

L, H satisfying the hypotheses of the theorem, such that 

L is nilpotent of class precisely cd + (c-l)(d-l). 

Now in [40J A.G.R.Stewart constructs a nilpotent 

torsion-free group G having a normal subgroup N with N 

nilpotent of class c, GIN' nilpotent of class d, and G 

nilpotent of class precisely cd + (c-l)(d-l). Let G be 

the completion of G, N the completion of N. Put L = ~(G), 
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H=Lon. Using the results of chapter 2 it is easily 

seen that these have the required properties. 

3.3 The class ,;tn 

Wri te L €;tn ~ <HL>n ~ H i'or all H ~ L. 

Lemma 3.3.1 

±n = QS~. 
Proof: 

Trivial. 

Lemma 3.3.2 

;On fi 01.2 ~ ~n· 
Proof: 

Let H ~ L E. tJnA m 2 , so that L(2) = o. We 

show by induction on m that 

m=l: 

m=2: 

CD 

<HL>m < Hm + ~ [[H, iLl 'm-iH]. 
1=1 

<HL> 
CD 

[H'iLJ = H + ~ obviously. 
i=l 

(*) 

<HL>2 = [H+Z [H, iLJ, H+Z [H, jL] ] from (*) 

< [H,H] + ~ [[H, iLJ ,H] 

since L2 • 

m>2: <HL>m < [H
m

- l +~ [[H, i L] 'm_2H], H+Z [H, jL]] 

< H
m 

+ ~ [[H, iLJ 'm-1H] 

since L2,Q. 
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Now tf L ~ ~n it is clear that [L'nH] ~ H, and 

consequently <HL>n ~ nn+H _ H , which shows that L 6 3Cn 
as claimed. 

Lemma 3.3.3 

If' K is a minimal ideal of L ~ L COl then 

K ~~l(L). 
Proof: 

See Hartley [14J lemma 10 p.269. 

IJemma 3.3.4 

If K <3 L ~ L en and K € C) h' then K ~ ! h (L) • 

Proof: 

Induction on h. If h = 0 the result is clear. 

Let 0 = Ko < Kl < ••• < K~ = K be a series of ideals 

Ki <3 L (i = O, ••• ,~) such that the series cannot be 

refined (this exists since K is f'inite-dimensional). 

Then Ki+l/Ki is a minimal ideal of L/Kie By our 

induction hypothesis K~_l ~ ~h_l(L), and 

K~+fh_l(L)~h_l(L) is a minimal ideal of L/th_l(L), so 

by lemma 3.3.3 it is contained in ~l(L/~h_l(L) which 

implies K ~ ~h(L). The result follows. 

Lemma 3.3.5 

If H < L £. COl n - r then H E ~~2(r,s) where 

= s + s2 + ••• + sr. 



Proof: 

It is sufficient to show L E ~~2(r,s). Now L is 

spanned (qua vector space) by commutators of the form 

[gl, ••• ,g1] (i ~ r) where the gj are chosen from the 

given set of s generators. This gives the result. 

Next we need an unpublished theorem of B.Hartley: 

Theorem 3.3.6 (Hartley) 

~ < L(n . 
Proof: 

Let L E: ~, and let M be maximal with respect to 

M ~ L, M G L ~ (such an M exis ts by a Zorn's lemma 

argument). Let u E I = IL(M). Then K = M + <u> ~ L. 
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L € 3 so K € j , from which it is easy to deduce that 

K has an ascending series (U~)~~a with Ul = <u>. Then 

so 

U ~ = (M f\ U ct.) + «u> (\ U .() 

= (M n U ~) + <u>, 

U~+l = (MnUct.+l) + Uct. • (*) 

We show by transfinite induction on ct. that Uct. (; L'in, • 

Ul = <u> 6 Ol ~ L (In,.. M n U .{+l ~ U ct.+l (since M <I K) 

and Mf)U~+l E L'Ol ; also U~ ~ U~+l and Uct. E LCOL • 

By Hartley [14J lemma 7 p.26S and (*) Uc!+l E L'rL • At 

limit ordinals the induction step is clear. Hence 



Uo = K e L~ • By maximality or M we have K = M, 

so I = 11. Bu t L € ~ so M = L. Thererore L 6 L cat 
which rinishes the proor. 

Lemma 3.3.7 

ff)n < JJ < L'31. 
Proor: 
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Clearly lJ n ~ .1) ~ J 
Lemma 3.3.8 

• Now use theorem 3.3.6 • 

Ir x EL b ;t-n' then <xL> 6 'nn. 

Proor: 

<xL>n < <x> since L € 3b. Ir <xL>n = 0 we are 
- n 

home. Ir not, then <x> = <xL>n ch <xL> ~ L, so <x> ~ L. 

Thus x E CL(x) ~ L, so <xL> ~ CL(x) and <xL>n+l = 0 as 

claimed. 

Lemma 3.3.9 

012 () £)n < 

Proor: 

Let L r ,'}72 ,... !iJ
n

• 
\;. v/.., 'I Ln = < [xl' ••• ,xn]I,: Xi E L>. 

Let X = <Xl' ••• ,Xn>. By lemma 3.3.2 L ~ ~n' so ir 

x E. L, then <xL> € crtn by lemma 3.3.8. Let T = <XL> = 

<xII .. > + ••• + <x L>, a sum of n cOl -ideals or L. By 
n n 

Hartley [14] lemma 1 (iii) p.26l T e: 'Oln2 • Thus 

XE 01 2 n (: ,so by lemma 3.3.5 every subalgebra or 
n en 

X has dimension ~ r = JA-2(n2,n). L E. 3En so Tn ~ X. 



y = < [xl' ••• ,Xn]L> ~ Tn ~ X so dim(Y) ~ r. By lemma 

3.3. 7 JJ n ~ L '1l ,and Y <l L; consequently lemma 

3.3.4 applies and Y ~ ~ r (L). Thus Ln ~ ~r (L), and 

L E Oln+r. 

We may there~ore take ft3(n) :: n +~2(n2,n). 
Lemma 3.3.10 

OLd () 5J n ~ COt
ft4

(n,d). 

Proo~: 
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Induction on d. I~ d :: 1 we may take fL4(n,1) :: 1. 

I~ d :: 2, then by lemma 3.3.9 we may take ~4(n,2) =~3(n). 

I~ d > 2, l-et M = L (d-2) • Then M € 07.. 2
" iJ n ~ 'n~ (n) 

2 07.d-l G) ~ 3 
by lemma 3.3.9, and LIM E:: ("\ 0() n ~ lJ ~4 en, d-l) by 

induction. By theorem 3.2.3 

where 

Lemma 3.3.11 

L £ nf{4(n,d) 

f\ 4 (n, d) = ab + (a-l) (b-l), 

a =}A3(n), b =f4(n,d-l). 

If 0 ~ A <J L € ~ then A t'\ ~ 1 (L) I o. 

Proof: 

See Schenkman [35] lemma 8. 

De~ine cl(L) = 1 x€. L : <xL> fat J 

~ (L) :: l x E L : <xL> E: all) ~n} • 



Lemma 3.3.12 

If' L = <~(L» then L € COLn • 

Proof': 

L is generated by abelian ideals, so by lemma 1 

(iii) of' Hartley [14J p.26l L E L~ • Let the abelian 

ideals which generate L and are of' dimension ~ n be 

{~: AEA}. By lemma 3.3.4 ~ ~ ! neLl so L = ~n(L) 
as required. 

Lemma 3.3.13 
r'r1 /-l; (n ) 

If' H = <oC(H» and H € Xn then H~Vl. 5 • 

Proof': 
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It is easily seen that Hn = <[xl, ••• ,xn]H : xiE:oC(H». 
II H H Let X = <XI' ••• ,Xn>. <X > = T = <Xl> + ••• + <xn > 

E: <rl n by Hartley [14] lemma 1 (iii) p.261. Since H c.;en 

Tn ~ X E C}n n <at n. Theref'ore if' Y = < [xl' ••• ,xn] H> 

then Y ~ Tn ~ X so by lemma 3.3.5 Y G ,Sf\2(n,n). 

y ~ <Xl H> e or so Y € 01(\+2 (n,n) • Theref'ore H
n 

~ <oCfA2 (n,n) (H» = D, say, and D = <oC ft2 (n,n)(D». 

Thus H/D €. Ol n-l, and by lemma 3.3.12 D € ~#2 (n,n) 

rn}A (n, n) OZIJ. (n) 
~ Ul. 2 • Theref'ore HE. 5 where 

ft 5 (n) = n - 1 + fA2(n,n). 



Proof: 

Let H ~ L € *h. Then H .? <HL>n ~ L. <HL>/<HL>n 

e ~n-l' so by Hartley [14] lemma 1 (ii) p.261 

H/<HL>n ~n-l <HL>/<HL>n, so H ~n-l <HL> 4 L. Thus 

H <In Land L E: S n. Hence :;tn < :f) n ~ L'-Ol by 

lemma 3.3.7. 

By lemma 3.3.8 x6L So if we 

define 

Ll = ~ lA: A <3 L, A E OL } 
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then Ll > 0 (since e.g. 0 ~ ~l«xL» ~ Ll ). Similarly 

let 

Then 

o < Ll ~ L2 ~ 

Let y E L. Then Y = <yL> 

induction shows ~ i (Y) < 

• • • • 

~ Land Y ~ '}1 . 
n 

Li so yE Ln. 

L = L. n By lemma 3.3.1 Li+l/Li € .;e n' 

0 1P6(n) 
Thus L ~ t. 

An easy 

Therefore 

and clearly 

We have now set up most of the machinery needed to 

prove the main result by induction; this is done in the 

next section. 



~ The Induction Step 

Lemma 3.4.1 

/l)n = QS £) n· 

Froof': 

Trivial. 

Lemma 3.4.2 

J)l = ml = Ol · 
Proof': 

Let x,y E L E J)l. Then <x>, <y> 43 L. If' x and 

yare linearly independent then [x,y]€<x>n<y> = O. 

If' x and yare linearly dependent then [x,y] = 0 anyway. 

Thus LEal= 11, 1. 

We now def'ine the ideal closure series of' a 

subalgebra of' a Lie algebra. Let L be a Lie algebra, 
K 

K ~ L. Def'ine Ko = L, Ki+l = <K I>. The series 

K > Kl > ••• > K > ••• 
0- - - n-

is the ideal closure series of' K in L. 

Lemma 3.4.3 

1) If' K = Ln ~ Ln- l 4 ••• 4 Lo = L then Li ~ Ki f'or 

i = O, ••• ,n. 

2) K ~n L if' and only if' Kn = K. 

Proof': 

1) By induction. For i = ° we have equality. Now 



K L 
Ki+l = <K i> < <K i> ~ Li+l sa the induction step goes 

through. 

2) Clearly Ki+l ~ Ki , so that if Kn = K then 

K = K <I K 1 <I ••• <J K = L. n n- 0 

On the other hand, if K <In L then 

K = L <I L 1 <I ••• <I Lo = L, n n-
and by part (1) K < K < L = K. 

- n - n 

Lemma 3.4.4 

Let H ~ L E cfJ n' Hi the i-th term of the ideal 

closure series of H in L. Then Hi/Hi+l f; J) n-i. 

Proof: 

H = H n <I Hn- l <I ••• <I Hi+l ~ Hi <I ••• <I Ho = L. 

Suppose Hi+l ~ K ~ Hi. If j ~ i then Kj ~ Hj by lemma 

3.4.3.1, so Ki ~ Hi· But H ~ Hi+l ~ K so an easy 

induction on j shows that Hj ~ Kj
• Thus Hi = Ki • But 

L€~n so K ~n L, and K has ideal closure series 

K = Kn q Kn- l q ••• ~ Ki <I ••• ~ Ko = L. 

Therefore 
n-i K = Kn ~ Kn_l ~ ••• ~ Ki = Hi' and K <I Hi· 

Thus K/Hi+l ~-i Hi/Hi +l and the lemma is proved. 

It is this result that provides the basis for an 

induction proof of our main result in this chapter, 

which follows: 
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Theorem 3.4.5 

J)n < cO\. )-l(n). 

Proof: 

As promised, by induction on n. 

If n = 1 then by lemma 3.4.2 we may take fA(l) = 1. 

If n > 1 let LEg) , II < L. By lemma 3.4.4, if i _> 1 n -

Hi/Hi+l e J) n-i ~ JJ n-l ~ 01. f't(n-l) by inductive 

hypothesis. Let m = fL(n-l). Then certainly 

/ 
rn m (m(n-l» Hi Hi+l E \.../l , and so HI ~ H for all II ~ L. 

Let Q = HI/HI (m(n-l» G j)n n en m(n-l). By lemma 

3.3.10 Q E ~c' where c = ~4(n,m(n-l». Thus QC+l = 0 

so H c+l < H (m(n-l» < H so that L € -*' . By lemma 1 - 1 - , c+l 
3.3.14 L E CJL d where d =f6 (c+l). Finally therefore 

L ~ Old () JJ n ~ 1L,.«(n) by lemma 3.3.10, where 

}4(n) = ~4(n'~6(1 +fA4(n, (n-l).;t(n-l»». 

The theorem is proved. 

Remark 

The value of ~(n) so obtained becomes astronomical 

even for small n, and is by no means best possible. 

However, without modifying the argument it is hard to 

improve it significantly. 

Using the Mal'cev correspondence we can prove 



Theorem 3.4.6 

Let G be a complete torsion-free R-group (in the 

sense of lemma 2.1.2) such that if H is a complete 

subgroup o~ G then H ~ G. Then G is nilpotent of 

class < ,M(n). 

Proof: 
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Let x E G, X = {xl\.: A. E cQ. J • Since G is a complete 

R-group X ~ Q (under addition) so X is abelian and 

complete. Therefore <x> ~ X ~ G, so <x> is subnormal 

in G and G is a Baer group (see chapter 7 - Baer calls 

them nilgroups) so is locally nilpotent (Baer [1] §3 

Zusatz 2). G is also complete and torsion-~roe so we 

may form the Lie algebra dreG) over ~ • I~ K ~ ;L(G) 

then g (K) is a complete subgroup o~ G (theorem 2.4.2) 

so ~ (K) -on G. By lemma 2.4.5 K <In X (G). By 

theorem 3.4.5 ':1.. (G)€ iJn ~ COl}'l(n). By theorem 

2.5.4 G is nilpotent of class ~ ft(n). 

We may also recover Roseblade's original result 

~or the case of torsion-free groups. Suppose G is a 

torsion-free group, every subgroup of which is subnormal 

o~ defect ~ n. Then G is a Baer group so is locally 

nilpotent. Let G be the completion of G (Note: we must 

again avoid Mal'cev and appeal either to Kargapolov or 
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Hall in order to maintain algebrai~ purity). Then 

every complete subgroup of G is the completion of its 

intersection with G (Kuros [23J p.257) which is qn G. 

By lemma 2.4.4 we deduce that every complete subgroup 

of G is ~n G. IT is a complete R-group, so theorem 

3.4.6 applies. 

We have not been able to decide whether or not 

5J = en . The corresponding result for groups is now 

known to be false (Heineken and Mohamed [15J) but their 

counterexample is a p-group; so we cannot use the 

Mal'cev correspondence to produce a counterexample for 

the Lie algebra case. 
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Chapter Four 

The Minimal Condition for Subideals 

"From Nature's chain whatever link you strike, 
Tenth or ten thousandth, breaks the chain alike." 

Alexander Pope 

In [3lJ D.J.S.Robinson proves a theorem implying 

that any group G satisfying the minimal condition for 

subnormal subgroups of defect ~ 2 must also satisfy the 

minimal condition for all subnormal subgroups; further 

any such group is a finite extension of a ~ -group 

(i.e. a group in which all subnormal subgroups are 

normal). 

In this chapter we prove two Lie-theoretic 

analogues of these results. We construct non-trivial 

examples of Lie algebras satisfying the minimal condition 

for subideals. In particular we show that the Lie algebra 

of all endomorphisms of a vector space 1s such an algebra. 

As a by-product we show that any Lie algebra can be 

embedded in a simple Lie algebra. However, in contrast 

to the situation for groups, not every Lie algebra can 

be embedded as a sub ideal of a Perfect Lie algebra. 
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4.1 The Minimal Condition for 2-step Subideals 

A Lie algebra L satisfies the minimal condition 

for subideals if every non-empty collection of subideals 

of L has a least element under inclusion; equivalently 

if L has no infinite properly descending chain 

HI > H2 > H3 > ••• 

of subideals. 

We denote by lvI1n-si both this condition and the 

class of Lie algebras which satisfy it. The minimal 

condition for n-step subideals is defined in a similar 

manner; both this condition and the class of Lie algebras 

satisfying it will be denoted by Min-qn. (We write 

Min-~ for Min-~l). 

Note first that Min-~ does !lQ.1 imply Min-at. In 

[14J p.269 §7 B.Hartley constructs a Lie algebra L with 

the following properties: 

L is a split extension (Jacobson [17J p.18) 

P & Q where P is infinite-dimensional abelian, Q is 

3-dimensional nilpotent, and P is a minimal ideal of 

L. It follows that any ideal of L is either of 

dimension < 3 or of codimension < 3. Thus L E Min-4. - -
But P, being infinite-dimensional abelian, has an 

infinite properly descending chain of ideals, and these 

are 2-step subideals of L. So L ¢ Min-si. 



Lemma 4.1.1 

1) Min-si is {Q,E,I}-closed. 

2) Min-~n is fQ,EI-closed. 

3) If' K ~m L € Min-~n and m < n then K E Min_~n-m. 

Froof': 

1) {Q,I}-closure is clear. Suppose now that K ~ L, 

such that K, L/K (; Min-si. Let 

II ~ 12 ~ 13 ~ ••• 

be a descending chain of' sub ideals of' L. Then 

lIn K ~ 12nK ~ 13f'1K ~ ••• 

is a descending chain of' subideals of' K E Min-si, so 

f'or some integer N (Inn K) = (IN n K) f'or all n ~ N. 

(Il+K)!K ~ (I2+K)!K ~ (I3+K)!K ~ ••• 

is a descending chain of' sub ideals of' L/K ~ Min-si, so 

f'or. some integer M 

If' r ~ R = max(r.1,N) we have Irt'\ K = IR n K, Ir+K:; IR+K, 

Ir ~ IR• Thus (using the modular law) Ir = Ir,,(K+IR) 

= (Ir"K)+IR = IR, so the chain breaks of'f' and LE..Min-si. 

2) Q-closure is clear, E-closure follows as f'or Min-si. 

3) If' If <;n-m K then H <P L. Result f'ollows. 

A result we shall make extensive Use of', which is 

peculiar to the Lie-theoretic case, is proved in 

Schenkman [35,36]; it is also given as an exercise in 

Jacobson [17J p.29 ex.9: 



64 

Lemma 4.1.2 

If L is a Lie algebra and A s1 L then 
CD 

AW = n Ai 
1=1 

is an ideal of L. 

The other basic result we need is due to Hartley 

([14J cor. to theorem 3 p.259): 

Lemma 4.1.3 

Let L be a Lie algebra over a field of character

istic zero. Then L possesses a unique maximal locally 

nilpotent ideal P (L); the join (3(L) of all nilpotent 

6ubideals of L i6 an ideal of L, contained in P (L). 

peL) is the Hirsch-Plotkin radical of L, (3(L) 

the Baer radical. 

Let =s: denote the class of Lie algebras L such 

that L = ~~(L) for some ordinal~. (These are the 

Lie-theoretic analogues of the ZA-groups of Kuros [23J 

p. 218) • It is easy to see tha t ~ is S-closed. 

Lemma 4.1.4 

Let L ~ ~. Then L(~) = 0 for some ordinal ~. 

Proof: 

First we require a variant of GrUn's leruna (see 

Kuros [23] p.227). Let K be any Lie algebra such that 



~2(K) > !l(K). We show that K(l) < K. For let 

af: ~2(K),'s1(K), and consider the map J6: K -+)l(K) 

def'ined by x~ = [x,aJ (x€K). ~ turns out to be a 

homomorphism, and since a e. ~ 1 (K) x~ -I 0 for some 

xG, K. Hence K has a non-zero abelian homomorphic 

image and K(l) < K. 

Now let L E: -;z. , and put P :; n L(j3). Then 
?J '13>0 

p = L(~) f'or some ordinal~. S~nce p ~ L it f'ollows 

that PG 8. Thus either P = 0, P :; ~l(P), or 

r2 (p) > ~l(P). The second and third cases imply that 

pel) < p (directly f'or the second, and by the variant 

of' GrUn's lemma f'or the third) whence L(~+l) < L(~) 

contradicting the def'inition of' P. Thus P :; 0 as 

claimed. 

Lemma 4.1.5 

L '01 () Min-<I ~ Ea. 
Proof': 

Let L f: L <n. () Min-<l, U = LJ 'fj3 (L) • Then 
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13>0 
U = ~~(L) for some ordinal~. Suppose if possible that 

U -I L. Then L/U -I 0, and L/U ~ L'Yl f) Min-<I (by lemma 

4.1.1.2). Let M/U be a minimal ideal of L/U. By lemma 

3.3.3 M/U ~ ~l(L/U). But this means that ~~+l(L) > 

~~(L) contrary to the def'1nit10n of U. Thus U :; L so 

L ~ '8 · 



By lemma 4.1.4 L(~) = 0 for some ordinal ~. Now 

each term L(~) of the derived series of L is an ideal 

of L, and L(~+l) ::. L(~). L G Min-~ so L(~+l) = L(~) 

66 

for some finite (3. Then L(~) = L(~) = 0 so L €. EO( • 

Lemma 4.1.6 

If L €: Min-<12 then f (L) E C:}" ~. 
Proof: 

R = f (L) ~ L <01, and satisfies Min-<.I by lemma 

4.1.1.3. By lemma 4.1.5 R G EO[. R(n) ch R <.I L so 

R(n) ~ L. By lemma 4.1.1.3 R(n)f Min-<:7, so that 

R (n) /R (n+1)~. Uin-<J f'\ Ol. Now an ideal of' an abelian 

Lie algebra is precisely a vector subspace, so 

R (n) /R (n+l) E: cg.. Thus R E E ~ = ~. Since 

we know R €. L ~ this implies R € Ol . 

We now have the machinery to prove the main theorem 

of this section: 

Theorem 4.1.7 

If L is a Lie algebra over a field of characteristic 

zero, satisfying Min-~2, then L satisfies Min-s!. 

Proof: 

Assume the contrary. Then there exists M minimal 

wi th respect to M <J Land M ~ Min-si. Let If be any 

proper ideal of M. For any integer i > 0 we have 

Ni ch N <J U ~ L so Ni <12 L. Since L e Min-<l2 it 
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c,.J 00 i 
f'ollows that N = () N = NO for Borne integer c > o. 

1=1 . c c C c."Yl 
By lemma 4.1.2 NC ~ L. Now N/N si L/N , and N/N E o~ , 

so by lemma 4.1.3 NIN
c ~ I3(L/Uc ) ~ p(L/Nc ). By 

lemma 4.1.6 P (L/Nc ) € 3- , so NIN
c f. g.. But NC < M, 

NC ~ L, so by minimali ty of' M NC t: Min-si. Thus 

N E (Min-si)~ ~ (Min-si)2 = Min-si by lemma 4.1.1.1. 

Thus any proper ideal of' M satisf'ies Min-si. 

If II > 12 > ••• is a properly descending chain of 

8ubideals of M, then 12 ~ I <3 M for some I ~ M. Thus 

by the above I f: Min-si. But 12 > 13 > ••• is an 

infinite properly descending chain of subideals of I, 

which is a contradiction. 

Thus L E Min-si and the theorem is proved. 

For the case where the field has characteristic 

p ~ 0, I3(L) is not well-behaved (see Hartley [14J §7.2 

or Jacobson [17] p.75) and the best we have been able 

to prove is 

Proposition 4.1.8 

If L is a Lie algebra over a field of arbitrary 

characteristic, satisfying Min-43 , then L satisfies 

Min-si. 

Proof: 

Imitate theorem 4.1.7, except that we now show 



directly that N/Nc G S as follows: 

Ni ch N ~ M 4 L so Ni 42 L. By lemma 4.1.1.3 

Ni E Min-<J. Thus Ni /N i +1 E Min-<J t"'I 0[ ~ ]- , so 

N/Nc E. E S- = g. 

4.2 The Minimal Condition for Subideals 
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We now investigate in more detail the structure of 

Lie algebras (over fields of characteristic zero) which 

satisfy Min-si (equivalently, by theorem 4.1.7, Min-<t2 ). 

First an elementary property of centra1isers: 

Suppose L is a Lie algebra (any field) and I <J L. 

It is easy to see that CL(I) <J L. For any x GL the 

map ~x: I ~ I defined by 

(i € I) 

is a derivation of I. (Note: ~x = ad(x)II). The map 

~: L ~ der(I) 

sending x ~ L to ~x is a Lie homomorphism, with kernel 

CL(I). Hence L/CL(I) ~ D ~ der(I). In particular 

Lemma 4.2.1 

If I <J L and I € ~ then L/CL(I) €. 3-. 
Proof: 

der( I) E. S- . 
C'-l 

Let J denote the class of Lie algebras in which 



the relation o~ being an ideal is transitive; i.e. 

L E ~ i~ and only if H si L ~ H <3 L. (We study 

such algebras ~ther in chapter 6). 

Suppose L G r.11n-<3. Then the 3--residual of L 

is defined to be the unique suba1gebra F of L minimal 

with respect to F <3 L, LIFE S (uniqueness and existence 

are clear). We denote it by eeL). 
Warning 

In group theory it is well-known that every 

subgroup of finite index contains a normal subgroup of 

finite index. It is not true in general that for Lie 

algebras every subalgebra of finite codimension 

contains an ideal of finite codimension - to see this 

let L be the Lie algebra P ~ Q described just before 

lemma 4.1.1. P ~~so P contains a proper suba1gebra 

S of finite codimension in P, so S is of finite 

codimension in L. But P is a minimal ideal o~ L, so 

S contains no ideal of finite codimension. 

This means that o(L) may itself have proper ideals 

of finite codimension. However, 

I,emma 4.2.2 

If L G. Min-si then 0 (0 (I,» = 0 (rJ) so 0 (L) has no 

proper ideals of finite codimension. 



Proof': 

Let F = 6(L), I = 6(F). By Min-si I C = I c+1 f'or 

some c > 0, so I C ~ L by lemma 4.1.2. By Min-ai each 

f'actor Ii /Ii+1 € S- so Fllc e '}-. Thus Lllc € '} , 

and I C ~ 6(L) = F ~ I ~ I C
• Thus I = F. 

We may now prove an analogue of' lemma 3.2 of' 

Robinson [31J p.36: 

Theorem 4.2.3 

Let L be a Lie algebra over a f'ield of' character

istic zero, satisf'ying Min-si. Then 6(L) € ~ , so 

that r~ is an extension of' a CJ -algebra by a fini te

dimensional algebra. 

Proof': 
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Let F = 6 (L). We show F ~ S. Assume the contrary. 

Then there exists K minimal with respect to K si F but 

K t F. If' K = K2 then by lemma 4.1.2 K 4 L, which is 

1mpossible. So K2 < K. But K2 4 K 51 F so by minimality 

of' K, K2 <J F. K/K2 si F/K2 and K/K2 E or, so K/K2 ~ 

B/K2 = ~(F/K2). By lemma 4.1.3 B/K2 ~ F/K2 and by 
2 St- 2 2 lemma 4.1.6 B/K € :.... If' c/K = CF/K2(B/K ) then 

F/c E ~ by lemma 4.2.1. By lemma 4.2.2 F = C. 

Therefore B/K2 ~. 's' 1 (F/K2), so K/K2 ~ S'l (F/K2), so 

K/K2 
<J F/K2, and K ~ F. This is a contradiction. 
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Hence F E: J. Since L/F € CJ (by definition of F) the 

theorem follows. 

Theorem 4.2.4 

Let L be a Lie algebra over a field of character

istic zero, satisfying Min-si. Then L has an ascending 

series of ideals whose factors are either simple or 

finite-dimensional abelian; and O(L) has an ascending 

series of ideals whose factors are either infinite-

dimensional simple or I-dimensional and central. 

Proof: 

First let K be any Lie algebra over a field of 

characteristic zero, satisfying Min-si. We show that 

every minimal ideal of K is either simple or lies in 

Ol." 3-. For suppose M is a minimal ideal of K. If M 

is not simple then there exists I <I M, 0 -I I -I M. By 

Min-si I C = r c+l for some c > 0, and by lemma 4.1.2 

I C q K. By minimali ty of M I C = 0 so I € 01. I si K 

so by lemma 4.1.3 R = P (K) -I o. Minimali ty of M 

implies M ~ R. R E en, by lemma 4.1.6, so by lemma 

3.3.11 M!'\ ~ 1 (R) -I o. Minimali ty again implies M ~ ~l (R) 

E ex" ')- so M € anCj-ss claimed. 

We now return to the Lie algebra L and define ideals 

M~ of L inductively as follows: 

Mo = 0. M.l+l/M.l is some minimal ideal of.' L/M.l 
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provided ~{e;( -I- L, and M)" ::= U Me;( for limit ordinals A. 
cl.<'A 

Clearly the sequence {Me;(l ascends until some Ma = L. 

Then (Me;()e;(~a is an ascending series of ideals of L. 

Each factor Me;(+I/MoC , being a minimal ideal of K = LIMe;( 

E Min-si, is either simple or Ol (\ ~, by the observation 

above. 

Now F = 6(L) £ Min-si so F has a series (Ge;()e;(~a 

with factors either simple or ~~~. We show how to 

deal with finite-dimensional factors. Suppose that 

Ge;(+l/GoC E: CJ-. Let C/Ge;( = CF/G (GoC+l/Ge;(). By lemma 

4.2.1 F/c E:t. By lemma 4.2.~ C = F so that 

Ge;(+l/G oC ~ ~ 1 (F/Ge;() E 07.,... ~ • Thus we may interpolate 

new terms in the series: 

Gcf./G,1. = Ho/GoC < HI/Gcf. < ••• < Hn/Gcf. = Ge;(+I/G.,( 

in such a way that dim(Hi+l/Hi ) = 1. Since G.,(+I/Ge;( is 

central, Hi ~ Land Hi+l/Hi is central. 

This completes the proof. 

In the next section we shall construct, for any 

ordinal a, Lie algebras ~ Min-si having such a series 

of type a. To do this we require a partial converse 

of theorem 4.2.4. First: 

Lemma 4.2.5 

Let L be a Lie algebra (any field) having two 

subideals H, K such that K is simple and not abelian. 



Suppose that Kr'lH = o. Then [K,H] = o. 

Proof: 

Lemma 4.1.2 immediately shows that K ~ L. Let 
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H ~n L and use induction on n. If n = 1 then H ~ L 

and [K,H] ~ K,... II = o. If not, then for some J we have 

H ~ J ~n-l L. If KnJ = 0 then [K,H] ~ [K,J] = 0 by 

induction. Otherwise, since K ('\ J si K and K is simple, 

we must have K n J = K, so K ~ J. Thus K,H 4 J so that 

[K,U] ~ K n U = o. 

(This is a Lie-theoretic analogue of a theorem of 

Wieland t [42]. 

Now the partial converse to theorem 4.2.4: 

Lemma 4.2.6 

Suppose a Lie algebra L has an ascending series 

of ideals (G~)~ < a such that for all ~ < 0 

1) G~+l/G~ is non-abelian and simple, 

2) CL/ G (G~+l/G~) = G~G~. 
~ 

Then the only subideals of L are the G~. Consequently 

L E Min-si n ~ • 

Proof: 

Let M be a proper 6ubideal of L and let ~ be the 

least ordinal such that G~ i M. It is easy to see that 

~ is not a limit ordinal, 60 ~ = ~+l for some ~, and 

(M+G~)/G~ i6 a subideal of L/G13 which does not contain 



74 

G~+l/G~. As the latter is a simple non-abelian ideal of 

L/G~ we have 

(M+G~)/G~ n GI3+1/G~ = G~/G~ 

so by lemma 4.2.5 M centralises G~+l/GI3. By part (2) 

of the hypotheses, M ~ G~. Thus 1:1 = G~. 
This shows that every subideal is G~ for suitable 

~; this is an ideal so L E. ~. L <;: Min-si since the 

ordinals are well-ordered. 

~ An example of a Lie algebra satisfying Min-si 

Theorem 4.2.4 shows that a Lie algebra over a 

f'ield of characteristic zero, satisfying Min-si, has an 

ascending series of ideals with f'actors either simple. or 

0[ " ~. In this section we show that for any ordinal 0 

there exists a Lie algebra satisfying Min-si possessing 

such a series of type 0. 

Let k be any field, V a vector space of infinite 

dimension over k. Let S be the set of all linear 

transformations of V, regarded as a Lie algebra under 

the usual Lie multiplication [s,t] = st-ts (s,tE.S). 

An element a € S is said to be of trace zero if 

I) Its image Va is of finite dimension, 

2) a restricted to Va has trace zero in the usual 

sense of linear algebra. 
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Let A be the set o~ elements of trace zero in S. 

Lemma 4.3.1 

A i6 an inf'inite-dimensional simple ideal of'S. 

GS(A) = k, where k is as usual identified with the 

scalar multiplications of V. 

Proof: 

Note first that if' ae S and U is a finite-

dimensional subspace of' V containing Va, then Ua ~ U 

and the traces of the restrictions of' a to U and to Va 

are equal. Now let aI' a 2 ~ A and let U = Val +Va2• Then 

if' Al ,A2 ~ k the image of A1al +A2a2 is contained in U. 

Since each of a l and a2 has trace zero on U it follows 

tha t Al a1 +A2a 2 t= A. 

Now let 6 E: S, a € A, and let x = [6, a] :: sa-as. 

Clearly Vx ~ Va + (Va)s :: W, say, a finite-dimensional 

subspace of V. Choose a basis (vl)~ ~ A of' V such that 

(VA)A€A
o 

is a basis of W. Let (OA~)' (~A~) be the 

matrices of s and a respectively with respect to this 

basis. Then for A E A we have 

vA (sa-as) = ;U~" (aAf-~1J - cl..Af-°f--V) v-z). 

The trace of x on W is thus Z a~ cI..~A - cl..A~a A where, 
").,t-A P. r , r 

since terms corresponding to A ~A are zero, we may a 
suppose that A and }~ each range over the whole of A. 

Hence x has trace zero on Wand A ~ s. 



rr eA~ is the linear transformation which sends 

vA to vf4. and every 0 ther bas i s vec tor v v to zero, 

then an elementary calculation shows that the only 

elements or S which centralise eA.r (A. -I fl) are the 

elements or k. Hence CS(A) = k. 

Now suppose al, ••• ,an are rinitely many elements 

of A. The kernel Ki of a i has rinite codimension in 
n 
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V and hence K = n Ki also has finite codimension in V. 
i=l 

Let U be a finite-dimensional subspace of V containing 
n 
Z Vai and such that K+U = V. If Ko is a complement 

i=l 
ror Un K in K then V = Ko 6 U. Let B be the set or all 

linear transformations a or V such that Koa = 0, Ua ~ U, 

and a has trace zero on U. Then ai~B for i = l, ••• ,n 

and B is a Lie 6ubalgebra of A. B is clearly isomorphic 

to the Lie algebra of all linear transformations of trace 

zero of U. It is well-known and easy to prove that this 

is simple unless k has prime characteristic p which 

divides dim(U) (see Jacobson [17J p.136 ror the case 

char(k) = 0; Seligman [38J p.66 for char(k) = p I 2,3. 

The result can be established in all cases by elementary 

calculations). We may thus chOose U so that B is simple. 

It follows that every finite set of elements of A lies 

in a simple subalgebra of A, and hence that A is simple. 

Clearly A has infinite dimension. 



Theorem 4.3.2 

Let 0 be any ordinal number, k any field. Then 

there exists a Lie algebra Lover k such that 

1) L € Min-si '"' c::J , 
2) L has an ascending series of ideals of type 0, 

each factor of which is isomorphic to a certain 

infinite-dimensional simple Lie algebra over k. 

77 

We carry out the proof in stages, using a construct

ion similar to one employed in the group-theoretic 

si tuation (see Robinson [31J). 

We may clearly assume 0 > O. Choose an ordinal y 

such that for each ~ < 0 

rI.. + Y = y. 

Then 0 ~ y and y is infinite. (AS in [31] we could take 

y to be the first prime cocponent > o. See Sierpinski 

[39] theorem 1 p.282 and cor. to theorem 10 p.308). 

Let X be the set of all sequences of type y with 

co-ordinates in .l ; that is, functions from y to 7l. • 
If x€X and rI.. < 0, we denote by *xcl.. the sequence of 

type cI.. formed from the co-ordinates x~ of x with ~ < cI.., 

and by xcl..* the sequence formed by the co-ordinates x~ 

with ~ ~ cI... We write 

x = (*xcl..,xcl..*) 

and notice that, since cI.. + Y = y, xrl..* may be viewed as 
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an element of X. 

Let V be a vector space over k with basis Vx (x€x). 

If cl.. < 0 and xEX, then we have an epimorphism jel and a 

monomorphism ix,oC of V defined by 

vyjel = Vy * (1) 
d.. (y£X) 

v i = v (2) 
y x,d.. (*xd..'Y)-

Evidently 

(3) 

iX,d.. = it,d.. if *xcl.. = *toC - (4) 

In particular, (4) holds for all t such that vt lies in 

Vix,oC· 

As before, let S denote the set of all linear 

transforma tions of V_If s E Sand d.. < 0 we define 

sd..€. S by 

Clearly s ~ sel is a linear transformation of S. If 

s,t£S then vx(st)cl = Vxjcl..stix,cl = Vxjd..SiX,d..jd..tix,el 

(5) 

= v sd..td.. since v sd.. is a linear combination of elements x x 

Vy for which ;~Yd.. = *xd... Thus s ~ sd.. is an associative 

algebra endomorphism of S and therefore also a Lie 

endomorphism of S. It follows from the fact that iX,d.. 

is a monomorphism and jd.. an epimorphism, together with 

(5), that sel = 0 if and only if s = O. Thus s ~ sd.. is 

a monendomorphism of S. 



79 

Lemma 4.3.3 

Let s € S. Then sESe! :: {se!: s ,E S} if and only if 

keres) ~ ker(je!) and vxS e im(ix,e!) for all xEX. 

Proof: 

The necessity of the conditions is obvious. 

To see that they are sufficient, let s €:. Sand 

suppose that keres) ~ ker(je!) and vxs E im(ix,e!) for all 

x E'~ X. Choose an arbitrary sequence z €oX and consider 

(6) 

Now it follows from (3) that for any u f: X (iu,e!-iz,e!) je! 

= 0, so since keres) ~ ker(je!) we have (iu,e!-iz,~)s = o. 
Hence (6) is independent of the particular sequnce z 

chosen. Thus for any x ~X 

v t~ = j i j i x Vx ct.. x,e!s e! x,e! 

= VxSje!ix,e! 

= v s x 

since j~ix,e! clearly acts as the identity on im(ix,ct..) 

and this contains vxs. Thus s = te! € Se! as claimed. 

Corollary 

S~ < Se! if ~ > e!. - -
For clearly ker(j~) ~ ker(je!) and im(ix,e!) > 

whenever 13 ~ e!. 

im(i (.I) x, ..... 

Now let A be the subalgebra of S consisting of all 

elements of trace zero in the sense previously defined, 
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and f'or r:1.. < 0 let Ar:1.. :;:: {e..,(: a€Al, Lc! = Z AI3 , L = LO. 
13<r:1.. 

By the above corollary we f'ind that for 0 ~ r:1.. [AO ,A.,(] < 

[sr:1.. ,AJJ ::. [S,A]r:1.. ~ Ar:1.. by lemma 4.3.1. Consequently 

L.,( ~ L for all r:1.. < O. Clearly if' , is a limit ordinal 

::. 0 then L[' = Z A!3 = U L(.l. Also Lr:1.. 1 = L.,( + Ar:1... The 
l3<r 13<~ p + 

next result shows that Lr:1..+l/Lr:1.. ~ A f'or r:1.. < O. Hence L 

satisfies condition (2) of' theorem 4.3.2. 

Lemma 4.3.4 

LclnAr:1.. = o. 

Proof': 

As Ar:1.. is isomorphic to A so is Simple, and 

L.,( ~ L, it is enough to show that Ar:1.. 1 Lr:1... Now if' 

t € Lr:1.. then t E Z AO for some 13 < r:1... 
o~ 

where ai £. A and 0 1 
< O2 < ••• < 0 < 13. n-

f'inite-dimensional image, and (5) shows 

°i (ai )jo 
i 

has f'inite-di~ensional image. Hence 
n 0 1 t j

13 
= 4 ai ·jo jl3 0 

i=l i - i 

has f'inite-dimensional image. However, 

Suppose 

Each a i has 

that 

choose x ;i x' 

in X and let e ,be the transf'ormation which sends x,x 
Vx to vx " and sends every other basis vector to zero. 



Then for any sequence *y~ of type ~, and any ~ < ~, 

we have 
cf.. 

V(*Ycf..,x)ex,x,j~ = v(*y~,x,)j~· 
Now by allowing the ~-component of *y~ to range over 

all integer values we see that infinitely ~any basis 

cf.. vectors Vz belong to the image of ex,x,j~. This image 

is thus of infinite dimension for any ~ < cf... Hence 
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cf.. 
ex,x' ~ L~. 

cf.. ..( 
But ex x' E:.A so e ,E. ~ • , x,x This proves 

the lemma. 

Lemma 4.3.5 

CL/ L (Lcf..+l/L~) = L~/L~ for all ~ < o. 
cf.. 

Proof: 

Let C~L~ denote the centraliser in question. If 

Cel. > Lcf.. then C~I) ( Z A~) ~ 0 and so by lemma 4.3.3 
cf.. O>(3~cf.. ~ cf.. 

corollary, Ccf..t"I S ~ o. Let 0 f. s ~ C...c" S. Then using 

lemma 4.3.3 we have [A~, scf..] ~ L cf.." [A, sJ cf.. ~ L cf.. (l A...c = o. 
Thus by lemma 4.3.1 s is a scalar multiplication. The 

definition shows that t = scf.. is also a scalar multipli

cation. Choose a < 0 such that t E La+l 'La. Then 

t+La is a non-trivial central element of the 1nfinite

dimensional simple algebra Lo+l/La , a contradiction. 

This establishes the lemna. 

We have thus demonstrated that L, with its ascen

ding series (L~)~~O' satisfies the hypotheses of lemma 



4.2.6. Therefore L E Min-.si () CJ , which proves 

theorem 4.3.2. 

~ The full Endomorphism Algebra of' a Vector Space 

82 

Another interesting class of Lie algebras satisfying 

Min-si emerges from a study of' the Lie algebra of all 

linear transformations of an infinite-dimensional 

vector space (for finite-dimensional spaces our main 

result is trivially true). A special case gives us 

some information on the status of theorem 4.2.4. 

If c is a cardinal nmnber, we shall denote the 

successor cardinal by c+. 

Let k be any field (of' arbitrary characteristic), 

c and d any infinite cardinals with d < c+ and V a - , 
vector space of' dimension cover k. Let E(c,d) denote 

the set of all linear transformations ~: V ~ V such 

that dimk(im(~» < d. Note that the set of all linear 

transformations of V is E(C,c+). 

Since d is infinite, E(c,d) is an associative 

k-algebra. Under the usual Lie multiplication 

[~,~J = ~~-~~ E(c,d) becomes a Lie algebra over k, 

which we shall distinguish by the symbol L(c,d). 

We shall show among other things that L(c,d) 

satisfies Min-si. We attack the problem indirectly via 



the associative ideal structure of E(c,d) (which is 

easily determined), and then use the following theorem 

of Herstein [16] (see also Baxter [2]): 

Lemma 4.4.1 (Herstein) 

If A is an associative simple ring, and U is a 

Lie ideal of A, then with one exception either 

U < Z(A) or [A,A] ~ U. 

In the exceptional case A is 4-dimensiona1 over 
a.. f.UJ.<J.- ~ ~ 2. 

Z(A) :! Qp( 2?, oe A ie finite (h'i"tih 16 eiemeftte). 
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(A Lie ideal of an associative ring A is a subring 

I of A such that if i'- I, a€ A then ia-ai € I; equiva

lently it is a Lie ideal of the Lie ring obtained from 

A in the usual manner. Z(A) is the centre of A. [A, A] 

is the set of all finite sums of elements of the form 

ab-ba (a,bEA). Note that Z(A) and [A,A] are always 

Lie ideals of A (though not" necessarily associative 

ideals». 

Our first step is to put this into an 'algebra' 

form rather than a 'ring' form: 

Lemma 4.4.2 

If A is a simple associative k-algebra and [A,A] = A 

then any proper Lie algebra ideal of the Lie algebra 

associated with A is contained in Z(A), with the same 

single exception. 
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Proof': 

By Jacobson [18] p.108 §5 A is simple as an 

associative algebra if' and only if' it is a simple ring. 

Algebra ideals are certainly ring ideals, so the lemma 

follows f'rom lemma 4.4.1. 

In what follows we shall apply lemma 4.4.2 only in 
~i.J:-1~ 

the case where A is infinite-dimensiona?" so the excep-

tional situation will never arise. 

The associative ideal structure of E(c,d) is 

f'airly transparent: 

Theorem 4.4.3 

Let c, d be infinite cardinals with d ~ c+. Then 

any non-zero associative ideal of E(c,d) is of the form 

E(c,e) with Y\ < e < d. o -
Proof': 

We show that if I is an associative ideal of E(c,d) 

and some rt. E; I has dime im(rt.» = f, then E( C, f+) < I. 

This clearly implies the result. 

Let J = im(ri.), so dim(J) = f. Let (v~)~€A be a 
o 

basis of' J extending to a basis.(v~)~EA of V. For each 

~ E Ao there exis ts w~ e V such that 

w~ri. = v~ (1) 

since J = im(rt.). Define a linear transformation ~ of V: 
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vA.{3 ::: wA. ('A.€Ao) 
(2) 

= 0 (A.b A 'Ao) • 

Let yE. E(c,f+). Then dim(im(y» ~ f so we can find a 

subset Mo of' Ao and a basis (x~)fAE: M f'or im(y) which 
0 

extends to a basis (xr)f\ ~ A for V. Define O:V ~ V and 

£ : V ~ V by 

x}l<O ::: 
~ (f-€ Mo> 

(3) 
= 0 ·~€.A'Mo> 

~( = xr- (,UEMo ) 

::: 0 y-tE A 'Mo). (4) 

If' A. is any element of' A it f'ollows f'rom (1),(2),(3),(4) 

that 

VA. • y6{3J:C£ = vA. • Y 

so that y = yO{3J:t ~ I (since J: e. I and I is an assoc-

iative ideal) which is what we wanted to prove. 

(A weaker version of' this lemma is proved by 

Jacobson in [18J using similar methods.) 

Corollary 

If' c ~ dare inf'inite cardinals, then 

E(c,d+)/E(c,d) 

is a simple non-commutative associative algebra. 

To f'acilitate calculations we shall represent 

linear transf'ormations in some 'matrix-like' f'ashion. 

We will index bases of' vector spaces by ordinals, so 
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that a vector space of dimension c will have a basis 

of the form (v~)~<o where 0 is an ordinal of cardinality 

c. (For even greater convenience we take 0 to be the 

least ordinal with cardinality c, so when c is infinite 

o is a limit ordinal.) 

Let e~~ be the linear transformation defined by 

v~ .... v(3 

v .... 0 (~I y < 0) y 

when ~,~ < o. Suppose we have a linear transformation 

a: V .... v. Then 

vr/..a = Z arl..~v~ 

where all but a finite number of the a~~ are zero. Thus 

we may write a as the formal sum 

a = Z arl..~e~~ 

where for a given value of ~ only finitely many a~~ are 

non-zero. It is easily checked that such fromal sums 

can be manipulated in a way formally identical with the 

usual operations on finite sums. From now on any sum 

Z a~~erl..~ will be understood to be of this special type. 

Lemma 4.4.4 

that 

Suppose k is any field; c, d are cardinals such 

~ < d < c + • and E = E ( c , d) 0-' 
Then [E,E] = E. 

(over k). 
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Proof: 

Let a <; E, I :::: tIn(a). dim(I} < d so we can choose 

a basis (v~)A<O for I with n or cardinality < d, 

extending to a basis (v~)~<f of V (P of cardinality c). 

With respect to this basis 

a = ~ a el~ e el~ (cl, jj < P)· 
Since I = im(a) ael~ = 0 if ~ ~ 0, so we have 

a = ~ a el~ e el~ (cl < f, ~ <0 ) • 

We will express a in the form [b, tJ where b, tEE. 

Let t = ~ eel el+l E. E. For any b €. E(C,c+) a simple 
el<O ' 

calculation shows that 

[b , t] = [~ b el~ e el~ , 

= ~ b 
}A<p P.,';-l 
11<0 

Y~O ey,Y+1J 

~,,- fA..~obf.+l,"V er-v 
,}<f 

where the apparently meaningless symbol bf,~-l will be 

given the conventional meaning 0 if V is a limit 

ordinal. 

We can make (*) equal to a if we can solve the 

infinite system of equations 

bp,V_l - b#+l,11 = aft 1,) (tt,V< 0) 

- br+l,V = a?-71 V«o,Vz., 0) 

br,tl-l = a}AV (JA?" 0 ,.,1< 0) 

( .. ) 
(note that in the second equation af-V = 0 since lJ > 0). 

We solve ( •• ) by defining: 
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bftV = 0 (f',-V Z. 0) 
t 

= 0 . (}A< 0,11 z. 0) 

= aP.,v+l (f~ 0, v< 0) 

and, if' both f-;V < 0, set 

b;U1J = 0 if' r- is a limit ordinal 

= -o.J't-l,v if' -z} is a limit ordinal, 

and use the f'irst equation of' (**) to determine 

inductively the values of' b,M+l,1J ' br +2,"'+1 ' ••• , 

b _\, •••• It is clear that the values so ;t+n+l,v+n 
determined are well-def'ined since a given brv can be 

reached in precisely one way (the induction step moves 

'down diagonals'). It is also clear that for a given 

value of' tt br'lJ is non-zero f'or only a f'ini te number 

of' values of' ;) • So b is a well-def'ined linear 

transf'orma tiona Since d > 1i" 0 b €. E, (If' d = J{ b may o 
have infinite-dimensional image and so lie outside 

E(c,d).) 

Thus a = [b, t] E [E,E]. Since a was an arbitrary 

element of' E, E = [E,E]. 

(Note that the case d = ~o represents a genuine 

exception, f'or in this case [E,E] is the ideal of' all 

linear transformations of' trace zero (in the sense of' 

section 4.3) which is not the whole of E.) 



Lemma 4.4.5 

If c > d are infinite cardinals, then 

Z(E(c,d+)!E(c,d» 

is trivial unless c = d, when it is I-dimensional and 

consists of scalar maps (modulo E(c,d». 

Proof: 

By lemma 4.4.7 which we have found it more 

convenient to state and prove later on. 

Theorem 4.4.6 
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If c and d are infinite cardinals with c ~ d, and 

k is any field, then the Lie algebra 

L(c,d+)!L(c,d) 

is simple except when c = d. In this case its only 

ideal other than 0 or the whole algebra is its centre, 

which is I-dimensional and consists of scalar maps 

(modulo L(c,d». 

Proof: 

L(c,d+)!L(C,d) is the Lie algebra corresponding to 

the associative algebra E(c,d+)/E(C,d). Lemmas 4.4.2, 

4.4.4, 4.4.5 complete the proof. 

We have now found inside L(c,d) a system Of ideals, 

many of the factors of which are simple. This in itself 

is not sufficient to ensure that L(c,d) satisfies Min-ai. 



Eventually this will follow using lemma 4.2.6. The 

presence of trace zero maps and sca~ar maps introduces 

an additional complication, so instead of looking at 

L(c,d) we study a suitable quotient. 

Let S = the set of scalar maps, F = L(C,~o)' 
T ; the set of trace zero maps, L ; L(c,d), I = F+S. 

Then L* = L/I has an ascending series of ideals 

0 = L * ~ Ll* ~ ••• ~ Lc! * < • • • ~ Lo* = L* 0 
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where 0 is a suitable ordinal, and the Lc!* are the ideals 

(L(o,e)+S)/I arranged in ascending order as e varies. 

I has a series 

O<T~F~I 

of ideals. T is simple (lemma 4.3.1) and F/T and I/F 

are I-dimensional. Thus I ~ (Min-si) (g) (j.) ~ Min-si. 

To prove L E. Min-si 1 t 1s suf'fioient to show L* € Min-si 

since Min-si is E-closed (lemma 4.1.1.1). This will 

follow by lemma 4.2.6 provided we can show that 

CL*/L * (Lc!+l*/Lc!*) = Lc!*/Lc!*. 
rf.. 

Equivalently we must prove 

Lemma 4.4.1 

If c ~ dare infinite cardinals, and z E. L( c, 0 +) 

satisfies 

~, L(c,d+)] ~ L(e,d) + S 

then zf. L(o,d) + S. 



The proor, which is more intricate than one might 

hope, will be made in several steps. To simplify the 

notation, let L = L(C,C+), E = L(c,d), G = L(c,d+). 

Suppose z E: Land [z, GJ ~ E+S. We must show z € E+S. 

Lemma 4.4.8 

Let V be a vector space with basis (v~)~~A where 

A is infinite. Let a be a linear transformation of V 

such that dim(im(a» = e is infinite. Ir we let 

B = l {3: a J:{3 f 0 ror some .,( EAJ 

and denote cardinalities by vertical bars thus: IBI, 

then IBI = e. 

Froor: 
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Let W = ~ kV~. By derinition dim(W) = IBI, and 
~,"B 

clearly im(a) ~ W, so e ~ IBI. 

Now let (i~~6M be a basis ror im(a). Then 

I M I = e. For each jJt.f:. M we have 
n(;..c.) 

i = ~ kjV~ 
~ j=l j,~ 

where k j E k (j = 1, ••• ,n~» and Aj € A. 
'IA' 

By definition if ~ E B then ~ = ~j ror some ,f-
j , fA so tha t I B I = I p .. j 'f) I ~ I 7L x M I = ~ 0 I M I = e 

since e is infinite. 

This completes the proof. 



Let (vA \. E A be a basis for the vector space V 

under consideration, so that ~ has cardinality c. 

Lemma 4.4.9 
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Let z be as above. Then there exists z, such that 

z'cU. = 0 (aC~.1\.), [z' ,G] ~ E+S, and z-z' € E+S. 

Proof: 

Let ~ be the set of all pairs (M, <) where M is 

a subset of A and < is a well-ordering on M, such that 

if aCG. M then ZcU. I zcl+l,cl+l (where cl+l denotes the 

successor to aC in the ordering <). Order c.At by «, 

where (Ml'<l) «(M2'<2) if' and only if M1 c;M2 and 

<21M = <1· Then it is easy to see that ~~ is not 
1 

empty, and that (dt, «) satisf'ies the hypotheses of' 

Zorn's lemma. Let (M,~) be a maximal element of c4 . 
Suppose if possible that IMI ~ d. Take an initial 

segment I of' 11 with III = d, and look at 

t = [z, ~ ecl,cl+l]. 
aC61 

By hypothesis t 6 E+S. But 

t = ~ zcl~ecl~e~,~+l - Z zcl~ecl_l,cleaC~ 

= ~ (zaC,~_l - zcl+l,~)eaC~· 
The coeff'icient of' ecl,cl+l is z~-zaC+l,aC+l I 0 f'or d 

values of aC. By lemma 4.8.8 t t E+S which is a 

contradiction. 

Thus after choosing f'ewer than d values of cl all 
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the remaining z~ are equal. Thus Z z~e~ E E+S. Put 

z' = z - Z z~e~. 

Now we work on z'. 

Lemma 4.4.10 

Suppose z' ~E+S. Then there exist subsets A,A' 

of' A such that 

1) Ail A' = 95, 

2) There is a bijection p:A ~ A' (write p(~) = ~'), 
3) z'~, ~ 0 if' ~ € A, 

4) IAI = IA'I = d. 

Proof': 

Let ~ be the collection of' all triples (A,A',¢) 

satisf'ying (1), (2), and (3). Partially order >t by « 

where (A,A' ,¢) « (B,B' ,~) if' and only if A~B, A' ~ B', 
and wl A = ¢. It is easily checked that ~ ,ordered 

in this way, satisfies the hypotheses of' Zorn's lemma. 

Let (A,A' ,¢) be a maximal element of' Kf , and write 

p(~) = ct.' (~f: A). 

We claim that IAI ~ d. 

Suppose not. Then IAI = d' < d. Let 

n = 1 {) : z 'yo ~ 0, y € A u A' J • 

Since d is infinite it is clear that Inl < d. By lemma 

4.4.8 there must exist y' (: (AvA' v n) with Z'yy' I 0 

f'or some y ! y' (since z, ~ E+S). Then y t (AuA') (or 



else y'E-D). Therefore y,i y', y ~ (AloiA'), y. d {AtJA'). 

Def'ine 

B = AU{y} 

B' = A'u {Y'I 

~ ( f3 ) = f3' ( f3 € A) 

=y' (f3=y). 

Then (B,B', *) € g and is greater than (A,A' ,~) under 

the ordering «. This contradicts the choice of' 

(A,A',~). Theref'ore IAI ~ d as claimed. 

If' S is a subset of A with lsi = d then the triple 

(S, ~(S), ~Is) satisf'ies the conclusions of' the lemma. 

We may now derive the final contradiction required 

to prove lemma 4.4.7. 

Suppose if' possible that z' ~ E+S. Then there 

exists (A,A',~) as in lemma 4.4.10. Def'ine rr: V ~ V 

by 

Vel.1T = vel.' 

vel. ,11' = V ci.. ' 

V 1T - 0 f3 -

(eI. E..A) 

(eI.'&A') 

( f3 E, A , (A u A' » . 
By defini tion 1T € G. So by hypothesis u = ~',17] E. E+S. 

But for el.E A we have 

v ci.. ( z '1T - 1TZ') = 

The coefficient of' v~, is 
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Z ' , Z' -' J 0 ~ + z ~,- ~'~' - z ~' r 

(bearing in mind that z, ~~ :: 0 and ~E.A). Thus ucU' /; 0 

it' ~e.A. But IAI = d and cI.. I- cI..' so u rt. E+S. 

This contradiction shows that z'E E+S, so z EE+S, 

whence lemma 4.4.7 is proved. 

Application of lemma 4.2.6 now proves 

Theorem 4.4.11 

If c and d are infinite cardinals with d < c+ , 
then L{c,d) € Min-si. 

(we can also easily show L(c,d)6 ~ using theorem 

4.2.3. Suppose L = L(c,d) has a proper ideal I with 

L/I€ ~. L has an ascending series, the fini te

dimensional factors of which are abelian, the rest 

simple, so L/I must be soluble. Then [L,L] < L contrary 

to lemma 4.4.4. Thus L = o(L) € J. The special case 

of L(c, ~o) can be handled easily by other methods.) 

Remarks 4.4.12 

1) Let L = L(~o' ~o+). L has a series of ideals 

o < T < F < S+F < L 

(S,T,F as before)~ L/F is an extension of the 

I-dimensional algebra S+F/F by the infinite-dimensional 

simple algebra L/S+F. We claim this is not a split 

extension. 



Let M ::: L/F, J = S+F/F, and suppose there were a 

subalgebra K with J+K ::: M, J" K T o. Let C = CM(J). 
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a 4 M and Mia has dimension < I (by the remarks preceding 

lemma 4.2.1). M = [M,M] by 4.4.4 so a = M. Thus M is 

the direct sum J e K, and D~I,MJ ~ K < M, a contradiction. 

Thus M does not split over its radical (either the 

soluble radical or the nil radical or any sensible 

generalisation thereof), in contrast to the Levi splitting 

theorem for finite-dimensional Lie algebras (see Jacobson 

[17] p.91). 

2) 1.1 E Min-si I) J , and any ascending series of ideals 

with simple factors contains a I-dimensional factor which 

cannot be moved to the top. Thus the I-dimensional 

central factors mentioned in the second part of theorem 

4.2.4 cannot in general be dispensed with. 

3) Similar remarks apply to L(c,d) in general. It 

has a series with ~ I-dimensional factors, which may 

occur in various places, but not at the top. 

~ An Embedding Theorem 

A result of an entirely different kind which falls 

out of the previous analysis with very little prodding 

makes up 
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Theorem 4.5.1 

Let k be any rield, K any Lie algebra over k. Then 

K can be embedded in a simple Lie algebra over k. 

Proof: 

By Jacobson [17J p.162 cor. 4 K has a faithful 

representation by linear transformations (of a vector 

space V of dimension c (say) over k). By enlarging V 

if necessary we may take c to be infinite; further 

enlargement enables us to assume K ~ L(e+,e+). Since 

c is infinite c.c+ = c+, so if r is a set with Irl + = c 

and A is a set with IAI = c we can find two bases 

(vY)YE; r ' (wYO)YE r, ot=.A of V. Let cl€L(c+,e+). Then 

vycl = :z ayy'vy , 

and dim(im(cl» ~ c. Define cl*~ V ~ V by 

Wyocl* = :z ayy'wy,o. 

(Roughly speaking we split V into c subspaces of 

dimension e+ and copy the action or cl on each.) 

Clearly the map *: cl ~ cl* is a monomorphism of 

+ +) (+ +) L(c,e ~ L c,e • But im(cl*) has dimension > c 

unless cl = 0, so im(*)nL(c+,c) = 0. Consequently im(*) 

is mapped isomorphically by the natural quotient map 

L(c+,c+) ~ L(c+,c+)/L(C+,c). The composite embedding 

K ~ L(C+,c+) ~ L(c+,c+)/L(c+,c) 

embeds K in a simple algebra (by theorem 4.4.6). 
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Using the corollary to theorem 4.4.3 we could 

perform a similar trick with associative algebras. The 

theorem also holds for groups, proved by essentially 

the same tr~ck in Scott [37] p.3l6 11.5.4. 

Not all known embedding theorems for groups carry 

over to the Lie case. For example, Dark [8] has 

proved that every group can be embedded as a subnormal 

subgroup of a perfect group. Strangely, the analogue 

of this result fails for Lie algebras - does this 

indicate the absence of a wreath product for Lie algebras? 

(L is perfect if L = L2.) More specifically: 

Theorem 4.5.2 

Let K be a Lie algebra with the following properties: 
CD 

1) KG.) = n K1 -I 0, 
i=l 

2) K
W i ~l(K), 

3) der(K(,J) Eo EO. 
Then K cannot be embedded as a sub ideal of a 

perfect Lie algebra. 

(Note: Condition (3) is most easily satisfied if 
tJ 

dim(K ) = 1. A concrete example of K satisfying these 

hypotheses is the 2-dimensional soluble algebra 

K ~ <a,b : [a,b] = a> 

for which K~ = <a> has dimension 1 and is not central.) 
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Proof: 

Suppose there exists L = L2 with K 8i L. Then by 
w 

lemma 4.1.2 K ~ L. Then e = eL(K ) ~ L. By the 

remarks before lemma 4.2.1 Lie ~ D ~ der(K
w

) E E or . 
If elL then L I L2, so e = L. Then [K~,LJ = 0 so 

[KW,K] ~ 0 contrary to (2). This contradiction 

establishes the non-embeddability of K in a perfect 

Lie algebra. 

(Note: It is not hard to state a rather more 

general non-embedding theorem based on the same proof.) 
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Chapter Fiv~ 

Chain Conditions in 
-'-'~-'--- -- ~ -.. -

special classes of Lie algebras 

We now investigate the effect of imposing chain 

Conditions (both maximal and minimal) on more specialised 

classes of Lie algebras, with particular regard to 

locally nilpotent Lie algebras. Application of the 

Mal'cev correspondence then produces some information on 

chain conditions for complete subgroups of complete 

locally nilpotent torsion-free groups. 

~ Minimal Conditions 

Lerona 4.1.6 immediately implies 

~OPosition 5.1.1 

L'01 n Min-42 = 01,,~. 

If we relax the condition to Min-4 lemma 4.1.5 

Shows that LGOlI\ Min-~ ~ EOL f\ ~. But in contrast to 

proposition 5.1.1 we have 

R-roposition 5.1.2 

L1l n Min-~ 1 'h. tJ ~. 



Proof': 

Let k be any field. Lot. A .. be. an abelian Lie 

algebra of' countable dimension OVer kl ~1th basis 

(Xn)o < n~~. There is a derivation a of' A def'ined 

by 

xia = Xi _l 
xla = O. 

(i > 1) 

Let L be the split extension (Jacobson [17J p.18) 
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A @ <a>. Clearly L E Len \ (Dlv<j.). Let Ai = <xl' •• ,xi >. 

We show that the only ideals of' L are 0, Ai(i>O), A, or L. 

For let I ~ L, and suppose I i A. Then there exists 

x -I 0, XE.k, and xEA, such that Xa+xEI. Then 
. r- -1 ] xi = LX Xi +l ' AO+X € I so A ~1. Thus x €.I, so a e I, 

and I = L. 

Otherwise suppose 0 ~ I ~ A. For some n G 7l we 

have 

x = Xnxn + Xn_lxn_l + ••• + Xlxl ~ I 

where 0 ~ Xn , Xi E k (i = 1, ••• ,n). Then [x~lx'n_l aJ 

= xl E. I. Suppose inductively that ~ ~ I f'or some 

m < n. Then [x~IX'n_m_la] € I, and this equals xm+l+Y 

f'or some y € ~. Thus xm+l € I and ~+l ~ I. From this 

we deduce that either I = ~ for some n or I = A. 

Thus the set of' ideals of' L is well-ordered by 

inclusion, so L € Min-<J. 



For Lie algebras satisfYing Mjn-ol we may define 

a soluble radical (whieh has slightly stronger properties 

when the underlying field has characteristic zero). 

Theorem 5.1.3 

Let L be a Lie algebra over a field of character-

istic zero, satisfying Min-si. Then L has a unique 

maximal soluble ideal a(L). a(L) E ~ and contains every 

soluble sub ideal of L. 

Proof: 

Let F = 6(L) be the ~-residual of L, ~(L) the 

Baer radical. Let dim(L/F) = f, dim(~(F» = b. Both 

f and b are finite. Define Bl = ~(L), Bi+1/Bi= ~(LjBi). 

By lemma 4.1.3 and 4.1.6 1\ <; E Ol n ~ • Bi I') F <1 F and 

by lemma 4.2.2 F has no proper ideals of finite codim-

ension, so by the usual centraliser argument Bin F is 

central in F, so Bin F ~ ~(F). dim(Bi ) = dim(BinF) + 

dim (Bi+F/F) ~ b+f. Consequently Bi+1 = Bi for some i. 

Let a(J.J) = Bi • Then a(L) <3 L, a(L) f E Ol fl '3-. L/a(L) 

contains no abelian subideals, and hence no soluble 

subideals, other than O. Thus a(L) contains every 

soluble sub ideal of L as claimed. 

For the characteristic p I 0 case we prove rather 

less: 
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Theorem 5.1.4 

Let L be a Lie algebra over a field or character

istic > 0, and suppose L E Min-si. Then L has a unique 

maximal soluble ideal o(L), and o{L) E 8-. 
Proof: 

Let F = O(L). Suppose S ~ L, S € ELJl. Then 

S € Eot f) Min-si < ~ ,so F I') S € '}. The usual 

argument shows F (\ S ~ ~l (F) €~"Ol. Let dim(S'1 (F» = z, 

dim (L/F) = f. Then dimeS) = dim(F" s) + dim(S+F/F) 

~ z+f. Clearly the sum of two soluble ideals of L is 

a soluble ideal; the above shows that the sum of all the 

soluble ideals of L is in fact the sum of a finite 

number of them, so satisfies the required conclusions 

for 0(1,). 

Suppose now that ~ denotes the class of Lie 

algebras L such that every non-trivial homomorphic 

image of L has a non-trivial abelian subideal; and let 

~ denote the class of all Lie algebras L such that 

every non-trivial homomorphic image of L has a non-

trivial abelian ideal. Then immediately we have 

Theorem 5.1.5 

1) For fields of characteristic zero 

"'UJ 1'\ Min-si = Eat f) 3--. 



2) For arbitrary rields 

1J' l'\ _ Min-s i = E or. I). '3-. . 
Proof: 

rr L satisries the hypotheses then we must have 

L = o(L) E EOl" 3- as required. The converse is 

clear. 

Digression 
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rt is not hard to rind alternative characterisa

tions or the classes 1) ,vJ . 1.J' is clearly the class 

or all Lie algebras possessing an ascending ~-series 
or ideals. These are the Lie analogues or the Sr*-groups 

or Kuro~ [23J p.183. 1J} is the Lie analogue of Baer' s 

subsoluble groups (see [1]), which Phillips and 

Combrinlc [28J show to be the same as SJ*-groups (same 

rererence ror notation). A simple adaptation or their 

argument shows that ~ consists precisely or all Lie 

algebras possessing an ascending Ol -series or subideals. 

We omit the details. 

A useful corollary or theorem 5.1.5 rollows from 

I,emma 5.1.6 

A minimal ideal or a locally soluble I.ie algebra 

is abelian. 
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Proof': 

Let N be a minimal ideal of' L E LEDl and suppose 

N ~ Ol. Then there exist a~b€..N such that [a,b] = c -I o. 

By minimali ty N = <cL> so there exist xl' ••• ,xn E. L such 

that a, b &. <c,xl , ••• ,xn> = H, say. L ~ LEOl so 

H E EOl. Now C = <cH> <l H, and a, b (C, so c = [a, b] 

E C2 ch C cO H, so c E C2 
<l H, and C = c2 • But C ~ HE EO[ , 

a contradiction. Thus N 6.0l. 
Corollary 

EJJE 01 " Min-si = E a I) c.3- • 
Proof': 

It is suf'f'icient to show LE OL t1 Min-si ~ E Ol (\ cg. • 
By lemma 5.1.6 LE Ol" Min-si ~ 17 (since LE OIis 

Q-closed). Theorem 5.1.5 finishes the job. 

~ Maximal Conditions 

Exactly as in section 4.1 we may define maximal 

conditions for subideals, namely Max-si, Max-<Tl, and 

Max-<l. We do not expect any results like theorem 4.1.7, 

and confine our attention mainly to Max-4. 

Lemma 5.2.1 

E or ('\ Max-<J ~ ct · 
Proof': 

We show by induction on d that Ol. d ("j 

If d = 1 then Lea n Max- <l ~ ~ ~ C} . 
Max-<) ~ q. . 

Su];)pose 
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L E Old () Max-<J , and ~et A = L(d~l). L/A €.m d-l 

and L/A 6 Max-<J, so L/A e. ~ by induction. A E Ol . 
There exists H € ~ such that L :::0 A+H (Let H be generated 

by coset representatives of A in L corresponding to 

generators of L/A.) By Max-4 there exist al , ••• ,an €. A 

such that A = <a L> 
1 + ••• + <a L>. n But if aEA, h€H, 

then [ai,a+h] [ai,h] 
H <a H> = so A+H = <al > + ••• + n 

= <al,···,an,H> € ct· 
Remark 

It is not true that EO{ f') Max-4 ~ CJ. . The 

example discussed immeditately before lemma 4.1.1 

shows this - indeed it shows that even EO{ n Max-<I () Min-4 

is not contained in '1- . This contrasts with a well-

known theorem of P.Hall which states that a soluble 

group satisfying maximal and minimal conditions for 

normal subgroups is necessarily finite. 

It is easy to show that EOt I) Max- q 2 = EOl. " ~. 

Lemma 5.2.2 

IJet H <1 L € LE CYl () Max-4. Then H = 0 or 

H2 < H. 

Proof: 

Let P = (l H(~). Then P ch H <I L so P <1 L. 

Suppose if possible P I o. Then there exists K maximal 
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with respect to K ~ L, K < P. p/K is a minimal ideal 

or L/K E LE or ,so by. lemma 5.1.6 P/K E Ol, so 

that p2 < P contradicting the derinition or P. Thus 

P = 0 (so H2 < il) or H = o. 
Lemma 5.2.3 

Ir· H < L E crt and L = H + L2, then H = L. 

Proor: 

We show by induction on n that H + Ln = L. Ir 

n = 2 this is our hypothesis. Now H + Ln = H + (H+L2)n 

= H + Hn + Ln+l = H + Ln+1 , so L = H + Ln+l as required. 

For large enough n Ln = 0 so L = H. 

Lemma 5.2.4 

Let L be any Lie algebra with P 4 L, H ~ L, such 

that L = H + p2. Then L = H + pn ror any integer n. 

Proor: 

We show P = (HoP) + pn. Now P = (HnP) + p2. 

Modulo pn we are in the situation or lemma 5.2.3, so 

P =.: (HnP) (mOd pn), which provides the result. 

Let ~ be any class or Lie algebras, L any Lie 

algebra. Derine 

A(L,lt) = n {N N 4 L, L/N € 1J' }. 
Lemma 5.2.5. 

Ir L E LE OL I'd.iax-.q and ~ = ~(L,CJ\. k), then 

L/~ € EOL. 
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Proof': 

Induction on k. If' k = 0 the result is trivial. 

If' k Z. 0 assume. L/~ € EOI-. Then L/~ 2 t EOc I) Max-4 

~ ~ (by lemma 5.2.1). Thus there exists H ~ L, HE~, 
such that L = H + ~2 (coset representatives again). 

Since L f. LEat H E Old f'or some d. Let Q <3 L with 

L/Q ~ ~ k+l. Then there exists P <I L with Q ~ P, 

p/Q ( en, L/P fOLk. By def'ini tion ~{ ~ P so ~2 ~ p2 

and L = H + p2. By lemma 5.2.4 L = H + pn f'or any n, 

60 L = H + Q (p/Q €~ ). L/Q::! H/(H",Q) E ct d. ~+l is 

the intersection of' all such Q, so by standard methods 

L/~+l is isomorphic to a sub algebra of' the direct sum 

of' all the possible L/Q, all of' which lie in Old . 
Theref'ore L/~+l € 07, d as claimed. 

Lemma 5.2.6 
k . ~k 

If' L €. L(O\.;) "Max-oQ , then L/~ E: Ul,. • 

Thus ~ is the unique minimal ideal I of' L with L/r E 11k. 

Proof': 

By lemma 5.2.5 (since 'at k ~ Eat) L/~ E EOl. 
But L/~ E Max-<I so by lemma 5. 2.1 L/~ € g.. The 

usual argument shows that there exists X ~ L, X Eq , 
L = Lk+X. Then L/~c ~ X(~I'\X~. Xf')1k since L~ L(otk ) 

so L/l1c E. 11. k. 
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Theorem 5.2.1 

L(<.n k} t"\ Max-<J ~ g. n Dl k. 

Proof': 

Clearly all we need show is that if' L E L(dl k) I) Max-<J 

then L € ~. Define ~ as above. Suppose if' possible 

that ~ I 0. Then ~ <J L, so by lemma 5.2.2 ~2 < ~. 
By def'inition and lemma 5.2.6, ~+l ~ Lk2, so that 

~+l <~. But L/~+l € EO(" Max-<l (lemma 5.2.5) 

~ ~ (lemma 5.2.1). The usual argument now shows 
(YI k 

L/~+l E. Ol , so that ~ ~ ~c+l' a contradiction. Thus 

~ = 0, and L· ~ L/~E: EOL.,MaX-<J (lemma 5.2.5) 

~ ~(lemma 5.2.1) •. 

Corollary 

L 01 () Max-<J = ~ () 01. 
Proof': 

Put k = 1 and note that q, fl ')1 = ~ (\ 01. 

Compare this with proposition 5.1.2. 

!2.!2 Ma1'cev Revisited 

In order to 'apply the results of' chapter 2 to 

obtain corresponding theorems for locally nilpotent 

torsion-f'ree groups, we must f'ind what property of' the 

complete locally nilpotent torsion-f'ree group G corresponds 

to the condition l (G) E ~. 
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Lemma 5.3.1 

Let G be a complete locally nilpotent torsion-free 

group. Then l (G) E ~ if' and only if G is nilpotent 

and of finite rank (in the sense of the Mal'cev special 

rank, see Kuros [23] p.158). 

Proof: 

I:f £. (G) E ':3- then ~ (G) E: ~1'\01 so has a series 

o = Lo <J Ll <l ••• <l Ln = X (G) 

such that dim(Li+l/Li ) = 1 (i = O, ••• ,n-l). Thus 

G has a series 

1 = Go <J Gl <J ••• 4 Gn = G 

with Gi = 9r(Li ). By lemma 2.4.2.5 Gi+l/Gi ~ ~(Li+l/Li) 
= Q (addi ti ve group). <0.. is YJlown to be of rank 1, 

and it is also well-known that extensions of groups of 

:finite rank by groups of :finite rank are themselves of 

finite rank. Thus G is of finite rank. G is nilpotent 

since ~ (G) is. 

Conversely suppose G is nilpotent o:f :finite rank. 

Let 

1 = Zo ~ Zl ~ ••• ~ Zs = G 

be the upper central series of G. From lemma 2.4.3 

corollary 2 each term Zi is complete, so is isolated in 

G. There:fore Zi+l/Zi is complete, torsion-free, abelian, 

and o:f finite rank (since G is o:f finite rank). By 
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standard abelian group theory, Zi+l/Zi is isomorphic to 

a finite direct SUll of copies-of {;l. Hence 

J:. (Zi+l/Zi) E "}., so ;t( G) € CJ. as required. 

This proves the lemma. 

Remark 

Let rr(G) denote the rational rank of G as defined 

in the Plotkin survey [29] p.69. Then under the above 

circumstances we easily see that dim(~(G)) = rr(G). 

According to [29] p.72 Gluskov [9] has proved that 

for locally nilpotent torsion-free groups G the rank 

of G = rr(G). Consequently dim(Jc(G)) = rank(G), a 

stronger result than lemma 5.3.1 (which, however, is 

sufficient for our purposes and easier to p~ove). 

Applying the correspondence of chapter 2 and using 

the results of the present chapter, we clearly have 

Theorem 5.3.2 

Let G be a complete locally nilpotent torsion-free 

group. Then the following conditions are equivalent: 

1) G is nilpotent of finite rank. 

2) G satisfies the minimal condition for complete 

subnormal subgroups. 

3) G satisfies the minimal condition for complete 

subnormal subgroups of defect ~ 2. 

3) G satisfies the maximal condition for complete 

normal subgroups. 



On the other hand G may satisfy the minimal 

condition ~or complete normaL subgroups without being 

either nilpotent or of finite rank. 

(Some of these results have been obtained by 

Gluskov in [9]). 
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Chapter Six 

Lie algebras in which 
every sub ideal is an ideal 
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Recall f'rom section 4.2 that L ~ ~ if' and only 

if' H si L implies H <) L. Thus L G <J if' and only if' 

H <l K .:3 L implies H q L. Further def'ine the class CJ 
to consist of' all Lie algebras L such that H ~ L implies 

H E. c:J. Thus L ~ CJ' if' and only if' H <) J .:3 K ~ L 

implies H cO K. 

In this chapter we obtain the complete classif'i

cation of': 
C'l 1) Soluble ~ -algebras (over any f'ield) 

2) Finite-dimensional CJ -algebras (over any 

f'ield of' characteristic zero) 

3) Locally f'inite ~ -algebras (over any 

algebraically closed f'ield of' characteristic zero). 

It will appear f'rom case (1) that E Ol " J = EO!,., j". 

The corresponding problems f'or groups (which are 

considerably harder) have been partially solved by 

D.J.S.Robinson [32J. We will occasionally indicate how 

the Lie-theoretic and group-theoretic results compare. 
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6.1 Soluble 'J -algebras 

For any Lie algebra L let "(L) denote the 

Fitting radical or L, that is, the sum or all the 

nilpotent ideals or L (see chapter 7 ror more information). 

Lemma 6.1.1 

1) Let 0 ;i H <J LEE Ol. Then H contains a 

non-zero abelian ideal or L. 

2) Let L € E Ol ,N = -V(L). Then CL(N) < N. 

Proor: 

1) Let n be the largest integer ror which H n L(n) ;i O. 

Then ir A = H fl L(n) we ~ave [A,A] ~ H fl L(n+l) = 0 so 

A is an abelian ideal of L, contained in H, and A ~ O. 

2) Let C = CL(N) and suppose C 1 N. Then 0 ;i 

C+N/N <J LIN so by part (1) there exists A ~ L such that 

N ~ A ~ C+N and A/N 6 Ol. Now A = An (C+N) = Ao + N 

where Ao = AnC. A03 = [Ao 2 ,AJ ~ [N,C] = 0 so Ao € en. 
Thus A = Ao+N = N, a contradiction. 

Lemma 6.1.2 

Proor: 

Let L (; d1 1\1. Then H ~ L implies H si L since 

L € ~01 , so H q L since L E. C] . Thus L € 9J 1 = or 
by lemma 3.4.2. Clearly at ~ rot f') ~ • 



Now suppose LEE Ol " <J • Suppose L, ¢: CJ( , 
and let N == V (L). Every nilpotent ideal of' L lies 

in ~ , so by lemma 6.1.2 we must have N € ~ • 

Let U be a vector space complement for N in L. 

If n€'N, uf: U then <n> <1 N <1 L so <n> <J L so 

[n,uJ == A(n,u)n 
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where A(n,u) ~s in the underlying f'ield k. If m,n are 

linearly independent elements of N, then 

A(m+n,u)(m+n) = [m+n,uJ 

= [m,u] + [n,uJ 

= A(m,u)m + A(n,u)n 

so that A(m,u) = A(m+n,u) = A(n,u). Thus for any 

m we have A(m,u) = jA(u) (say), independent' of' m. 

Thus 

[n,uJ = "u(u)n 

where Jk:U ~ k is linear. 

Now kerf.jA) = CU(N) ~ N I) U (by lemma 6.1.1.2) = 0, 

and im~) = k is I-dimensional (im~) = 0 implies L E CJZ ) 
so U is I-dimensional. Consequently L is of the f'orm 

L == N e U 

where N <3 L, N £ 07. , U = <u> is I-dimensional, and u 

can be chosen so that [a, uJ = a for all a eN. This 

determines L as a split extension, and gives part of' 
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Theorem 6.1.3 

L € E Ol "J if' and only if' one of' the following 

hold: 

1) L ( 07. • 
2) L = N EP U, where N <3 L, N E or , u = <u>, N -I 0, 

[a,u] = a f'or all a€.N. 

A precise classif'ication of' these algebras up to 

isomorphism is given by the ordered pair (dim{L),dim{L2». 
Proof': 

L € E 01" 'J implies (1) or (2) by the above 

analysis. 

(1) implies LEE Ol f'I c:3 trivially. Suppose 

L has the structure (2). We show L € ~ (L € E or is 

clear) • 

Let I ~ L, and suppose I 1 N. Then there exists 

i E I, i = a+ou f'or some a € A, 0 -I 0 € k. For any b G N, .. 

[o-lb, iJ = b € I. 

Thus N ~ I, so u€ I, so I = L. 

Now let J si L. I = <J
L> ~ L, so either I = L 

so J = Land J 4 L, or I ~ N. Theref'ore J ~ N. If' 

j ~ J then [j, u] = j € J so J 4 L. 

Clearly (dim(L),dim(L2» is an isomorphism invariant. 

If' L, M are in E CJl n 'J and dim(L) = dim(M), 

dim(L2) = dim(M2), then either Land M are abelian SO 
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isomorphic, or L:... N fD U, M = N' ED U', and N = L , 

N' = M2 so dim(N) = dim(N'). The structure indicated 

by (2) then shows L ~ M. 

Remarks 6.1.4 

1) E Ot. "J ~ at 2 (this can .also be proved directly 

as f:or groups, see Robinson [32J p. 23). 
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2) L G (E07. f'I '3 ) \ or. implies dim(L/L2) = 1. (This 

remark is of: much use later on). 

3) E 01 f\:J ~ L ~ (proof: immediate). 

6.2 Finite-dimensional CJ -algebras 

Throughout this section the characteristic of the 

field k will be assumed to be zero. 

First we remark that the classical structure 

theory of finite-dimensional Lie algebras shows that 

any semisimple Lie algebra lies in ~ (Jacobson 

[17J p.73). Let ~ denote the class of semisimple 

Lie algebras. 

Suppose L € ~ 1'\ <=J. By Levi's theorem (Jacobson 

1}7J p.9l) L is a split extension 

L = R $ F 

where R <) L, R n F = 0, R e E CJl , and F ~ g. Now 

R 6. Eot "C; so is of: the form stated in theorem 6.1.3. 

Let A = V (R) ch R (in this case V (R) reduces to the 
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classical nil radical and Jacobson [17J p.Sl shows this 

is a characteristic ideal. The result is true in 

general, cf. chapter 7.) Therefore A ~ L so [A,F] ~ A. 

As in the proof' of theorem 6.1.3 F acts diagonally on 

A. [A,F] I- 0 would imply that F has a non-trivial 
2 representation by diagonal matrices, so that F I F. 

But F € rJ so this is a contradiction (Jacobson [17J 

p.72). Thus [A,F] = o. 

If A = R then [R,F] = O. Otherwise A -I R so by 

theorem 6.1.3 R = A $ U where U = <u> and [a,uJ = a 

for all aE A. A is the nil radical of L so [R,F] ~ A 

(Jacobson [17J p. 51). Thus if fE F [u, fJ e A. Let 

e,f€. F. By Jacobi 

[[u,e] ,fJ"+ [[e,f] uJ + [[f,u] ,e] = 0 
" 2 

so that 0 + [[e,f],u] + 0 = O. Thus CF(u) > F "= F 

since F E ~ • 
Thus again [R,F] = 0 and L is the algebra direct. 

SlE!. JJ = R $ F. 

This proves the first part of 

Theorem 6.2.1 

Over fields of characteristic zero, L E CJ I):r if 

and only if L is a direct sum R Et F where R E E 01 " ~ " ~ 
(classified in theorem 6.1.3) and F E: rJ . 
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Proof': 

L € 3- f\ 1 implies L :: R $ F by the above analysis. 

Suppose I <l R Et F, S :: I I) R. Then S is the soluble 

radical of' I and by Levi's theorem I is a split exten

sion S $ G where G £. r£. By the theorem of' l-Ial' cev -

Harish-Chandra (Jacobson [17J p.92) G ~ ~ f'or some 

inner automorphism ~ of' L (see section 1.2). But 

F <J L so ~ = F. Thus G ~ F. 

[p,G] ~ Fn r. Let s+g € F nI, s E S, gEG. Then 

s ~ F" S ~ F I) R = 0 so F n I = G. Thus G <J F, and 

[G, SJ = o. 
Thus I 4 L if and only if' I is the direct sum 

S $ G, where S <l R and G ~ F. If' J 4 I then by the 

same reasoning J = T Et H, where T <J S, H q G. Then 

T <J S <J R s,o T <1 R (since Rt: 'J ) and similarly H <J F. 

Consequently J <l L as required. 

-
2.:2 <J -algebras 

Theorem 6.3.1 

EO[ "C:J = EOl n 5 • 

Proof': 

> is clear. We use the classif'ication theorem 

6.1.3 to show ~. 

Let L €. EOl "cr. L cOL implies L E CJ sO we 
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may assume .L = N $ U etc. as usual. Let K ~ L. 

K/(~N) has dimension 0 or 1. If 0 then K ~ N so 

K€ Ol so K f" CJ. If not then there exists t € L such 

that K:::: (KilN) + <t>. t £N so t:::: a+Ou, a€N, 

o -# f) € k. Then if v :::: f)-It we have [b,v] :::: b for all 

b E K n N. Thus K is a split extension (K n N) $ <v~ 

wi th v acting as the identity on (K n N), so by theorem 

6.1.3 Ke.'=J. 

Consequently L ~ ~ • 

The same r esul t holds for groups. Robinson [30J 

has shown that every finite .~ -group is soluble. This 

is false for I~ie algebras, but only just: 

Theorem 6.3.2 

Over algebraically closed fields of characteristic 

zero, L E 9-" cj' if and only if one of the following 

hold: 

1) L €, ECJlf\'3,,~ , 
2) L ~~, the 3-dimensional split simple algebra 

defined by 

Al :::: <e,f,h: [e,h] = 2e, [f,h] :::: -2f, [e,f] = h>. 

Proof: 

First let F E ~n~. Let H be a Cartsn subalgebra 

of F. Then the subalgebra 
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B = H + Z F 
r:I.>O r:I. 

of F is soluble. Here the Fr:I. are root-spaces 

corresponding to roots r:I. (See Jacobson [17J or 

Carter [4] for terminology and details). By the 

classical theory U-r,H] = 0 and l}I,BJ ~ Z F r:I. so that 
2 r:I.>O 

dim(B/B ) ~ dim(H). B ¢ Of since by definition H is 
-

self-idea1ising. F € ~ so B € ~ so by remark 6.1.4.2 

dim(B/B2) = 1. Thus dim(H) = 1. The only semisimple 

Lie algebra with a Cartan subalgebra of dimension 1 is 

the simple algebra Al (from the classification theorem 

for senisimple Lie algebras) so F ~ ~. 

Now let L € gn5". By theorem 6.2.1 L = RED F 

(direct) with R E E Ol , FE g . R, F 6 C] so by 

the above F = 0 or F Q! AI •.. If F = 0 we are home. 
N Otherwise F = AI' which contains a soluble subalgebra 

Q = <e,h> ~ Ol . If R -I 0 then D = R ED Q is in 

(EOl () ~ ) \ Ol but has dim(D/D2) > 2 contrary to 

remark 6.1.4.2. Thus R = 0 and L = F ~ AI. 

On the other hand, ~ E: CJ since ~ E· c:::r , and any 

proper sub algebra of ~ has dimension ~ 2. Such algebras 

are classified in Jacobson [17J p.ll and are easily seen 

to be :r -algebras, and lie in Em". 
Corollary 

Over algebr~ically closed fields of characteristic 
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zero, L € L S- f) J if',· and. only 11' one ~r the f'ollowing 

holds: 

1) L ~ E Ol f) <] . 
2) L 

Proof: 

Ei ther L € LE OL or L contains a subalgebra 

K ~ ~, by theorem 6.3.2. In the first case by remark 

6.1.4.1 L € L012 = 01 2 so L€ n:OL In the second 

case suppose K -I L. Then there exists x € L 'K. Then -
<x,K> £ CJ I\<g., is not soluble since K ¢ E CJl. , and is 

not isomorphic to Al since its dimension is too big. 

This contradicts theorem 6.3.2 and shows L = K ~ ~. 

The converse is clear using remark 6.1.4.3. 

This completes the proof. 



Chapter Seven 

Baer, Fitting, and Gruenberg 
algebras 

hl Summary of' Group-theoretical Hesults 

123 

Let G be any group. The li'i tting radical -V (G) is 

the join of the nilpotent normal subgroups of G. The 

Baer radical ~(G) is the join of all nilpotent subnormal 

subgroups of G. The Gruenberg radical y(G) is the join 

of' all nilpotent ascendant subgroups of G. Clearly 

~(G) ~ ~(G) ~ y(G), and it is well-known that each 

of' the three is a locally nilpotent characteristic 

subgroup of' G, so they all lie inside the Hirsch-Plotkin 

radical P (G). 

We will call G a Fitting group if G ::: V (G), a 

Baer group if G ::: ~(G), and a Gruenberg group if' G ~ reG). 

It is easily seen that a Gruenberg group need not be a 

Baer group. The following problems are harder to 

dispose of: 

Gl) Is every Baer group a Fitting group? 

G2) Is every locally nilpotent group a Gruenberg 

group? 
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In both cases the answer is in the negative. (Gl) 

is answered in Robinson [30J p.l07, and Dark [7] has 

shown that there exists a Baer group G ~ 1 with V(G) = 1. 

(G2) has been answered by Kov;cs and Neumann (unpublished, 

but see Robinson 1)0J p.110 for a proof). All of the 

groups so far constructed to answer these questions are 

p-groups for various primes p. The wealth of evidence 

(e.g. Kuros [23J) that locally nilpotent torsion-free 

groups are on .the whole better behaved than their periodic 

counterparts leads us to pose the following problems: 

Tl) Is every torsion-free Baer group a Fitting group? 

T2) Is every locally nilpotent torsion-free group a 

Gruenberg group? 

We shall show in a moment that these problems are 

equivalent to analogous questions about Lie algebras 

over Q , and we will answer (Tl) in the negative by 

constructing a suitable Lie algebra. This example has 

a number of other interesting properties: it also 

answers in the negative a question raised by B.Hartley . 

in [14J p.260, and it provides alternative examples to 

one in [14J of Lie algebras in which the join of two 

sub ideals is not a sub ideal. 
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7.2 The three radicals in a Lie algebra 

In what follows we r8strict our attention to the 

case of Lie algebras over fjelds of cha~acteri6tic 

zero. 

Let L be such a I,ie algebra. Following Har tley 

[14] we define 

(3(1,) = <N: N 8i JJ , N E. CQt, >, 

y(1) = <N : N asc I" N ~ ('!It >, 

whence it is natural to define 

.,) ( L ) = <N : N <l L, N G. ol. > • 

These will be referred to respectively as the Baer, 

Pi tting, and Gruenberg radicals of L. " Clearly for any 

L we have VeL) ~ (3(L) ~ y( T.. ). We define the classes 

'}t (curly Ft), 33 ,c;rv (curly Gr) of Fitting, 

~, and ~ruenberg algebras by 

L ~ft E. - -' if and only if V(L) == L, 

L E 2 if' and only if (3 (L) == L, 

L .~ rr- if and only if y(L) == L. ~ 

As regards the. status of these radicals we have: 

Let L be a Lie algeb :r ·e.. C:-.,j 31' a field of character-

istic zero. Then 

1) -VeL) ch 1, and lJ (.T,) E 1 c~ • 

2) (3 ( L) ch L, and (3 ( 1) €. L COL • 



3) y(J,) need not even be an ideal of L, but 

y( L) ~ LC"'6'L. On the other hand, if further L £. LCl 

then y(L) ~ L. 

Proof: 

All the statements follow from Hartley [14J: 

1) Follows from theorefl 1* p.267 and from lemma I (ii) 

p .261-

2) Is corollary to theorem 3, p .259. 
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3) For the first parts see corollary 1 to theorem 4, 

p.259; also p .270. For the last part use lemma 3 p.262. 

We now ask the companion questions to (Gl) and (G2). 

Ll) Is every Baer algebra a Fitting algebra? 

L2) Is every locally nilpotent Lie algebra a Gruenberg 

algebra? 

The connection between questions (Ti) and (Li) 

follows from 

Theorem 7.2.2 

Let G be a locally nilpotent torsion-free group, 

wi th completion G, and let J. be th(.> J.·ie algebra ~(G). 

Then 

1) 

2) 

3) = 

7J(G) 

~(G) 

y(G) 

= -VC T .. ) 

= (3 (J .. ) 

= y(L). 
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Thus if anyone of G, G, L is Fitting (Baer, Gruenberg) 

so are the other two. 

Proof: 

Let x E iY('G). By lemma 2.4.4 there exists n € 1l 
such that xn ~ ,.,} ( G) • n 

G for N E (01. Thus x E N <s some . 
Therefore x€N. if <l G by lemma 2.4.L~, and N 1S'tL 
by theorem 2.5.3. Thus x E V(G) and VTGT < v(G) • -
Now let y € -V CG). Then y E r.1 <1 G, where ME: cOl • 
By theorem 2.5.3 if E''¥t, and M <I G by lemma 2.4.4. 

By Kuros [23J p.257 IT = j'l; (\ G. So for some m e 7L 
ymE. M () G. But IT () G <l G, and lies in 11. Thus 

ym E -J (G), so Y €; iJfGT. Thus -V CG) ~ 17'[G). 

Combining the two inequalities ~ = V(G). 
Now V (G) = <M: M <J G ,M E J1. > 

M E<)1 > 

since lemma 2.4.4 and theorem 2.5.3 apply as above. 

By theorems 2.4.2 and 2.5.4 this equals 

<II: H <J L , Ii E en> 
= ~(L) • 

Parts (2) and (3) are proved si milarly, with lsi' or 

'asc ' replacing '<1', and' uEHl1g lemma 2.4.5. 

Remark 7.2.3 

As a consequence of theorem 7.2.2, we see that ror 

i = 1, 2 the answer to question~i) is the same as that 
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to question (Li) for Lie algebras over the field ~ • 
And with t h iG sOGcrva tion in mind, let's go 

hunting for Baer .•• 

hl A Baer al$:te~ r:'?~~~J ch is not Fitting 

Let k be any f l eld , not necessarily of character-

istic zero - the Lie a l gebra we shall construct has 

some interesting pro~erties even for characteristic 

p > o. 

Theorem 7.3.1 

There exists a Li e algebra Lover k such that 

1) L is a spli t ex(,,~)'!.s . i. on V e J, V <3 L, V n J = o. 

2) V E, OL. 
3) J = <H,K> where II , 1\. .'5. L, H,K E Ol , K is 

I-dimensional, and IT is infinite-dimensional. 

4) H d5L, K <? L. 

5) J = I1,(J) so J ~i L. 

6) J f <tL
4

. 

7) < CL> g '01 , so L ~c:st . 
Proof: 

We proceed l)y U.:T:U ogy w:;.t h a group-theoretic 

construction of Rosoolede and Stonehewer I)4J §1.3· 

Let A be an i nf j.-r.i tG- d j w:;;nsional vector space 

over k and let R be the exter ior algebra generated by A 



over k. (First ~orm the t ensor algebra 

T ~ k ~ A ~ A®A ~ A0A®A @ ••• 
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and factor out by the ideal I genera t ed by all elements 

a®a (aE-A). Put R ~ Til.) 

R is well-known to have the ~ollowing properties 

( see Chevalley [6 ] ) : 

R is an associative k-algebra, containing 

isomorphic copies o~ k and A. Haking the obvious 

identi~ications knA ~ O. Ii. has a natural structure as 

a graded k-algebra in which the homogeneous elements 

o~ degree i are products of i elements o~ A (or elements 

o~ k when i = 0) . Further 

El) ar... = r...a (a E: A, r...E k) 

E2) 2 0 (a£A) a = 

E3) If' x E:. R then xA= 0 i~ and only if' x = O. 

(Note: (E3) fails when A is finite-dimensional) . 

(E2) implies that for all a ,bE. A (a+b)2 = 0 so 

that ab = -ba. Hence for any a,b,c,d t A we have 

abc: cab , abcd: cdab. (1) 

First we construct J as a Lie algebra o~ 2 x 2 

matrices over A (but considered as a Lie algebra OVer k) 

under the usual Li e multiplication [M, N] = MN-NlVI . 

Let K be the set of all matrices of the form 



(r..Ek) 

and let H be the set of a11 matrices of the form 

(a fA). 

C: early Hand K are abelian Lie algebras. K is 

~I.'-:)_lmensional with basis ~ (~ g) 1 and H ~ A (under 

6 ~~ iti on) so is infinite-dimens ional. Put J = <H,K> 

and part (3) of the theorem holds. 

Lemma 7.3.2 

<nJ> and <KJ > both lie in en 2. 

Proof: 

Let Z be the subalgebra of J generated by all 

matrices of the form 

(ab+dc 0) 
ab-c (a,b,c,d E A). 

Direct calculation shows 

where 

[(ab~C ab~c)' (pq;r pq~r)J = (~ ~) 

cI. = (ab+c) (pq+r)-(pq+r) (ab+c) 

~ = d(pq+r)+(ab-c)s-s(ab+c)-(pq-r)d 

y = (ab-c) (pq-r)-(pq-r) (ab-c). 

Using (1) this reduces to 

(1', q, r, sEA) 
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(2) 

(2~r 2~r) (3) 

which is of the form (2) with a = 2c, b = r, c=d=O. 

Thus Z is spanned by all matrices of the form (2). 

Hence [Z,H] is spanned by all products 



[ (ab+c 0) (0 e)] 
d ab-c 9 0 0 (a,b,c,d,e € A) 

which equals 

(- ed (ab+c) e-e (ab-c») 
o de 

and using (1) this becomes 

( de 0) ° de 
which lies in Z. Thus [Z, H] < Z. 

[ Lo ,IC] is spanned by all products 

[C ab+c 0) (0 oO)J C ) d ab-c ' A. a,b,c,dEA, AE.l{ 

and this is 

( 0 00) 
A(ab-c)-( ab+c)A 

which, using (El) , is 

which is in Z. Thus 

o 
(-2AC 

[Z, K] 

[H,K] is generated by all products 

which equals 

(Aa 0) E z. o -Aa 

(aE-A, AEk) 
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(4) 

(5) 

Consequontly Z+H and Z+K are idealised by both Hand K, 

so arc idealised 1;.y :- . '2:'h-'.l8 <aJ > ~ Z+H, <1<:3 > ~ Z+K. 

(It is not hard to show th3 t vie may r eplace these 

ine qualities by equalities, but we don't need to do so). 

To prove the le~~a it is sufficient to show that each of 

Z+H, Z+K ~ COL2• 
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Now [Z+H,Z-IH] ~ [Z~ZJ + [Z,H] (since HEOl.). 

Matrices in [Z, Z] are SUTilS of' jl 'atr ices of' the form 

(PC! 0) 
o PC! (p,C!E.A) 

by (3). Matr ices in [Z~ HJ are also of' this form by (4) • 

Further, 

[C ab~c ab~c)' (~C! p~)] = (g g) 
by (3), and 

by (4). 

Thus 

[Z+H, Z+H, Z+H] = 0 and Z+11 G 'n
2

" 

Similarly [Z+K,Z+K] ~ [Z,Z] + [Z,K]. By (5) [Z,K] 

is spanned by oatr ices of the form 

(x € A). 

Let Y denote t he subalgebra of J generated by all 

matrices of the form 

then [Z+K, Z+K] ~ Y. 

(UV 0) 
w uv (u.,v,w E A) 

But by (3) [y, z] = 0 and by (5) [Y,re] = O. Hence 

[Z+K,Z+K,Z+K] = 0 t;1.l~ ,t ZI-:: C CC;1·2o 

This es tablishes the lemma . 

J acts in a natural fashion as linear transforln-

ations of the k-vector space R x R = V (say), so J can be 

considere d as a Li e algebra of derivations of the abelian 

Lie algebra V. Let L b e the split extension 
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L = V e J, V <1 L, Vf\J::::O. 

Then parts (1) and (2) of the theorem hold. 

If (x,y) E V then 

[(x,y), (~ g)] :::: (AY,O) 

[(x, y) ,cg ~)] :::: (0, xa) 

by the definition of split extension. 

IJe t V2 ::: i(x,o): XERl, Vl :::: f(o,y): YE. R}. From 

(6) Cv(K) :::: V2 ' and from (7) 

[V,H] ~ Vl so [V,H, H] ::: 0. 

and (E3) CV(R) ::: VI. Now 

Since V <1 Land V,H Eat. we 
(VI 

see that V+H G- 0 L
2

• Thus, since any subalgebra of a 

(6 ) 

(7) 

Lie algebra in cOlc is a c-step subideal (Hartley [14] p.26l) 

we have 

H <12 V+R ~2 V+<HJ > <1 L 

so H <15 L. Similarly K <15 L and part (4) of the theorem 

holds. 

On the other hand, suppose i E IL(J). Then 

i :::: v+j (v~ V, j EJ) so [v,J] ~ J. But V <3 L so 

[v, J ] ~ V. H enc e [v, J 1 ~ J f"\ V :::: ° so v E. Cv ( J) ::: 

cv0I) () CV(K) :::: Vl '" V2 ::: 0. Thus i :::: j EJ, and IL(J) ::: J. 

Thus J cannot be a sub ideal of L (nor even an ascendant 

subalgebra of L). 'rhis proves p art (5) of the theorem. 

J J J is the sum of <R > and <K >, which are nilpotent 

ideals of class 2. By [14] lemna 1 (iii) p.261 Jf.. C.h
4 

proving part (6). 



Note tha t L is the join of K and V+H, both of 

which are nilpotent sub ideals , yet L is not nilpotent 

(since J is self-idealising). However L f. E OL 
indeed LE ()L014 . 

To show L i s not a Fitting algebra it suffices to 
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For if L were Fitting, the generator 

(~ g) of K would be conta ined in the sum of a finite 

numb er of nilpotent ideals of L, which would also be a 

nilpotent ideal of L. Thus the i deal closure of K would 

be nilpotent. 

<KL> con tains <KJ > , which contains the matrices 

(c EA) 

and it also con t a ins <KV> , which conta ins all vectors 

of the form ('h.y,O) (AE.k, yeA) by (6), so contains 

(a,O) for any aEAo ijence <KL)n+1 contains any element 

[( cl ° cn ° ] a ,O),(o -c )""'(0 -c) 
I n 

which is easily seen to equal (acl c 2 ••• cn , 0). From 

(E3) we know that if 0 I xEH then xA I 0, so that 

AA ••• A (n+l terms) I O. Thus we may choose a, cl, ••• ,cn 
f rom A to nake acl ••• cn I 0. Thus <KL>n+l I ° for any 

n so that <I":.L> ~ 'rt. Thus t h.e last part of the theorem 

(part (7) is proved. 
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Corollary 1 

For any field k of characteristic zero there exists 

a Baer algebra over .k which is not a Fitting algebra. 

Proof: 

L = <H,K,V> and each of H,K,V is an abelian subideal 

of L. • But L 

Thus question (Ll) has the answer 'no'. By 

remark 7.2.3 (Tl) has the same answer, i.e: 

Corollary 2 

There exists a torsion-free Baer group which is 

not a Fitting group. 

(See also §7.4.) 

Corollary 3 

For any fi eld k there exists a Lie algebra over k 

having two abelian subideals H, K with dim(K) = 1 such 

that J = <H,K> is not a subideal, and indeed J can be 

made self-idealising. 

By Mal'cev (with the usual trappings) we deduce 

Corollary 4 

There exists a torsion-free complete group G 

having two abelian subnormal subgroups H,K with K 

isomorphic to ~, but such that the jOin of Hand K 

is not subnormal in G. 
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Corollary 5 

In a Lie algebra the join of two nilpotent subideals 

need not be nilpotent (open quest ion: n0ed it be soluble? 

it is here.) 

For what it's worth: 

Corollary 6 

There exists a torsion-free non-nilpotent group 

generated by two nilpotent subnormal subgroups (the 

analogous query regarding solubility is "dealt with by 

recent unpublished work of S. B.Stonehewer.) 

The only other example in the literature where the 

join of sub ideals of a Lie algebra is not a subideal 

can be found in Hartley [14J p.271. In his example 

both subideals are infinite-dimens ional. 

In the same paper the following question is raised 

(p.260): 

If B is a finite-dimensional subideal of a Lie 

algebra L, does there always e~iRt J <l L with r ~ B < J 

for some integer n > 0] 

The answer is no. 

For let L be as above, and put B ~ K. Then if such 

J existed, we would have In 4 L, In < K. Therefore 

ei ther In = 0 or In is a minimal ideal of L G L 'Ol . 
By lemma 3.3.3 In ~ ~l(L) so I n+l = O. Either way K is 



contained in a nilpotent ideal of L, contradicting 

theorem 7.3.1.7. 

7.4 A torsion-free Baer group which is not Fitting 

Corollary 2 to theorem 7.3.1 is perhaps a little 

unsatisfactory, since the group is not exhibited in 
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any tangible form. In fact our whole procedure is a 

trifle curious. Starting with the Roseblade-Stonehewer 

group ([34J) we have constructed an analogous Lie 

algebra and then appealed to Mal 'cev. Now the 

Roseblade-Stonehewer group is Baer but not Fitting 

(this is not stated explicitly by them, but follows as 

for the Lie algebra). In view of this it is natural to 

ask whether this group might, under suitable circum

stances, be torsion-free. If so we might bypass the 

Lie algebra approach, as far as question (Tl) is 

concerned. 

Now it turns out that if k is a field of character

istic zero, then the Roseblade-Stonehewer group over k 

is indeed torsion-free. However, the easiest way to 

prove this is to resurrect the Lie algebra (though it 

ought to be possible to provide a direct proof, say by 

calculating the factors in a central series) as follows: 

If k is a field, A an infinite-dimensional vector 



space over k, then the Roseblade-Stonehewer group 

RS(k,A) is defined as a split extension of a vector 

space V (2-dimensional over the exterior algebra R 

generated by A over k) by a group J of 2 x 2 matrices 

over R, generated by 

(1 0) 
A. 1 (A.€k) and (~ ~) (a E:.A) • 

If char(k) = o V is torsion-free, so all we need to 

show is that J is torsion-free. 
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Use the same notation for the Lie algebra as above . 

Local nilpotence of L immediately implies that for any 

finite subset fvl, • •• ,vsJ of V and any finite subset 

fjl, • •• ,jt~ of J there is a finite-dimensional subspace 

U of V such that vi E U (i = 1, ••• ,s) and U is 

jr-invariant (r = l, • •• ,t). Further !jrlu : r = l, •• • ,tl 

generates a nilpotent associative algebra, since its 

action on U is given by commutation in L. 

~hus for any j € J we may define exp(j) = j* to be 

the map from V to V given by 
1'2 '; 3 

V ;:l; = V ( 1 I J' + ~ + .s.I_.. I ) 
u 2~' 3,;·" •• (v €.V). 

The remarlc about invariant su'oe-ci.:t:.. e ::: implies that j* is 

a linear transformation of V. It has an inverse, namely 

(-j)*, so j* €;. Aut(V). We show that J* = fj*: j€J} is 

a subgroup of Aut(V). 

(- j ) * E J* . 1 



Let j = }J..(jl' j2) :: jl + j2 + ~[jl' j 2J + ••• (as in 

lemma 2.3.1), which is defined since <jl,j2> is a 

nilpotent Lie algebra. Then for any v E V there exists 

a finite-dimensional subspace U of V wi th v E U, such 

that U is <jl,j2>-invariant. <jl,j2> acts as a 

nilpotent associative algebra on U so the Campbell-

hausdorff formula applies: 

v(jl*j2*) :: v~(jl,j2»*· 
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As v was arbitrary jl*j2* :: j* E J* so J* is a subgroup 

of Aut(V). 

J>!< is torsion-free, for if (j*) n == 1 then nj = ° 
so j == ° so j';' = 1. On the other hand, for any v € V 

direct calculation shows that 

v(O 0)* 
A ° :: 1 0) v(.,... 1 (A E k) 

v(O a)* 

° ° 
:: v(l a) o 1 (a E. A) 

so the generators of the group J lie inside J*. 

RS(k,A) == J is torsion-free, and we have proved 

TheoreLl 7.4 .1 

Hence 

If Ie is a fi eld of characteristic zero, and A is 

~ infinite-dimensional vector space over k, then the 

RO~.ll qde-Stonehewer group RS(k,A) is a torsion-free 

Baer ~vn-Fitting group). 



~ Conditions under which Baer implies Fitting 

Theore:n 7.3.1 shows that an abelian-by-nilpotent 
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Baer algebra need not be Fitting. In contrast to this 

we will show that any nilpotent-by-abelian Baer algebra 

is Fitting. We work under rather more general hypotheses. 

We consider a class c: of Lie algebras satisfying 

a type of Engel condition: 

L E. e if and only if for all x, y tS L there 

exists n == n(x) independent of y for which [Y'nX] == O. 

c: enters the reckoning because of 

Lemma 7.5.1 

~ < b . 
Proof: 

Let x,y € L € J8. Then <x> ~m L for some m == m(x). 

Thus [Y'mX] f: <x> so that [Y'm+lx] == o. 

Lemma 7 .5.2 

a 2 
() C < ~ • 

Proof: 

Le t x ELf: 01 2 () C. Then A == L 2 ~ (J[. We IDue t 

show <xL> € "at. Now [L'nX] == 0 for some integer n since 

LEt. By bilineari ty if X = <x> then [IJ'nX] = O. 

Now clearly 
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so 

<xL>m ~ ~ r[ , [1 r'J ~ X'i Lj , X'i Lj , ••• , LX'i LJ ,12 m 
summed over all !il, ••• ,im} with i j ~ 0 (j :: l, ••• ,m). 

If i j > 0 for 2 distinct values of J, then since L2 ~ L 

and L2E ~ the corresponding term is O. If i
j 

:: 0 for 

n consecutive values of j then again the corresponding 

term is 0, since [L'nX] = O. But if m > (n-l)+l+(n-l) 

:: 2n-1 one or other of these situations must occur. 

Thus <xL> 2n :: 0 and <xL> G 'rl 2n- 1 • 

(Note: a refinement of this argument will prove 

that 'nOt f\ t: ~ ~. Because of the way we intend to 

prove a corresponding theorem for groups, we proceed 

in a different manner.) 

Lemma 7.5.3 

Let ~, , It be classes of' Lie algebras (over 

any field k) such that 

1) ~ = Q "Lt ' 
2) CJl3f I) '1 < '1{ · 

Then 

Proof': 

Let L E. 'J1.){" 1j. By definition there exists N <3 L 

such that N C COl and L/N EX. Let D :: N2 • Then L/D 
~ 

E Ol)( "l.J ~ "* · Thus L/D :: <NA,/D: A, e A> where 



N ~./D ~ 'Ol and N~/D <3 L/D. Thus N)... <3 L • Since N 

and Ni\./N2 lie in '1'\ 
N)... f" G1 . 

, theorem 3.2.3 tells us that 
-.:n 

Thus L = <N1\,> E: ;Jt- as required. 

Theorea 7.5. Lt 

11 CT[ 11 C ~ dt · In particular 

Proof: 

lLJ·2 

Set :£. = or , 1t = e (which is clearly Q-closed) 

in lemma 7.5.3, and use lemna 7.5.2. 

An appeal to Comrade Mal'cev easily implies that 

any nilpotent-by-abelian torsion-free Baer group is 

Fitting. In fact we may drop the condition that the 

group be torsion-free. Again we consider the metabelian 

case f'irst. 

Lemma 7.5 • .2 

A metabelian Baer group is a Fitting group. 

Proof: 

Let G be any metabelian Baer group. Denote the 

com;"'lutator (G,H) by yGH, and write ynAl ••• ~+l f'or 

( n-l ) th Y Y Al··.An ~+l. We prove by induction on n at 

for H < G 

n = 1: 

as required. 
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n :: 2: 

«UO>,<HO» :: (H.yOH, H.yGH). 

Consider (h1Y1,h2Y2)' where hl,h2f H , Yl'Y2 €: yOH 

< 0' which is abelian. 
Y1 

= (hl ,h2Y2) (Yl,h2Y2) 

Yl Y2Y1 Y2 = (hl 'Y2) (hl ,h2) (Yl'Y2) (Yl,h2) 

= (hl'Y2)(h1,h2)·1.(Yl,h2) 

since 0' is abelian, Y i E 0', and any conmutator (x,y) € G'. 

Since all comr:lUtators (x, y) commute in 0, this is a 
2 2 member of II'. Y OH as required. 

n > 2: 
n n Let ~ = y OR • 

By induction we know that 

yn-l<HG>n = yn-lHn~, 

and we must prove (*) with n replaced by n+l. We have 

n G n + 1 (n-l n . ) y <H > = y H ~,H.YhO by definition 

and induction. Now let SEyn-lHn, aE.~, hER, YEyGR. 

Then 

(Sa,hy) = (S,hy)a(a,hy) 

= (S,y)a(S,h)ya(a,y)(a,h)Y 

= l.(~,h).l.(a,h) 
~~n+l n+lGHn+l i d E: y 11.y as requ re . 

is established. 

Thus (*) 

We may now complete the proof of the lemma. Let 
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x E G, a metabelian Baer group. Put H = <x>. Then 

H qn G for some n. Then 

yn+l<xG>n+2 = 1.YG<x>n+l = 1 

so <xG> is nilpotent and G is a Fitting group. 

A group-theoretic version of lemma 7.5.3 now yields 

the more general 

Theorem 7.5.6 

A nilpotent-by-abelian Baer group is a Fitting 

group. 

~ A property of Gruenberg algebras 

In this section we establish a property of Gruenberg 

algebras which will be of use in the next chapter, and 

Which is probably a necessary preliminary to any attack 

on problem (L2) of section 7.2. 

Lemma 7.6.1 

L
c)(') 

For Uv Lie algebras L over fields of charac-

teristic zero, the following are equivalent: 

1) L has an ascending 01 -series 

2) Every non-trivial homomorphic image of L has 

~ivial Gruenberg radical. 

In particular for characteristic zero ~ ~ £lJl 
PrOof: 

We may suppose L I o. Y(L) f 0 so there exists 

• 



H asc L wi th 0 f. H E CJL • 
First we show how to construct an ascending , 

OL -series from H to <HL>___ H asc 'L so there is a 

series 

H = H ~ HI 4 ••• ~ H, 4 ••• H = L. 
a H ~ 0 

Le t H* = <HL> , H cI.. * = <H J..> (0 < cI.. ~ 0). Now 

H ~ HJ.. ~ HcI..+l so HcI..+l* ~ HcI... By definition HcI..* ~ HcI.. 

so HcI..* 4 HcI..+l*. It is easy to see that for limit 

ordinals A. H'\ * = U H *. Therefore we have an 
II. cl<A. cI.. 

ascending series 
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o = Ho* 4 H = HI* 4 H2* ~ ••• ~ Hcl* ~ ••• Ho· = H*. 

We show by induction on ~ that there exists an ascending 

Ol -series from HI3* to H~+l *. Now HI * = II e Ol so let 

~ > 0 and suppose the assertion is true for all ordinals 

<~. Now clearly (H~*)H~+1 = HI3+l* so 

H~+l*/H~* = z. (HI3* + (}i13*'xI ,··· ,Xn] )/HI3* 

summed over all possible sequences xl' ••• ' xn € III3+I. 

Now L f Leyland the characteristic is zero, so as 

in section 1.2 we may define e(x) = exp(ad(x» for any 

x€ L. By Hartley [14J lemma 3 p.262 we find that 

H~+I*/H~* = Z (HI3* + H
13
*e(xl ) ••• e(Xn»/H

13
*. 

Hence there is an ascending series of ideals between 

HI3* and HI3+l* of which a typical factor is 

(H~.e + M)/M 
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where e = e(~) ••• e(xn) is an automorphism of L, 

,Xi E Ha+l all i, and M <l H{3+1 *. 
Let N <I H iii. By indootion there is an ascending 

a+~-· -
CJl -se~ies from 0 to H{3*. Consider the series obtained 

from this by adding N to each term. A typical factor is 

of the form (Y+N)/(X+N) where X < Y ~ H{3* and Y/X E()l. 
Therefore (Y+N)/(X+N)€ (}l , and there is an ascending 

-1 
Ql-series from N to H{3*+N. Let N = Me and transform 

by e to get an ascending (JL -series from M to H{3 *e +M. 

This establishes the assertion about H{3+l*/H{3*. Fitting 

all these 'subseries' together gives us an ascending 

en -series from a to <HL> ~ L. Either the quotient 

L/<HL> = 0 or it has nontrivial Gruenberg radical and 

we can continue the process. Eventually we obtain an 

ascending Ol-series for L. 

Thus (2) implies (1). That (1) implies (2) is 

manifest. 

Since C}v is Q-closed and contained in Len. the 

particular case rollows. 
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Chapter Eight 

The existence or otherwise 
of infinite-dimensional abelian subalgebras 

An old problem in group theory is: 

Does every infinite group possess an infinite 

abelian subgroup? 

Novikov and Adyan, in their recent work on the 

Burnside problem, have shown that the answer is in the 

negative ([27] p.1190 theorem 3); but Hall and Kulatilaka 

[13J have produced an affirmative answer for locally 

finite groups. Kulatilaka [22J has also obtained 

results when certain restrictions are placed on the 

nature of the required abelian subgroup (e.g that it be 

subnoroal). 

In this chapter we consider the analogous problem 

for Lie algebras: 

Does every infinite-dimensional Lie algebra have 

an infinite-dimensional abelian Subalgebra? 

First we show that the answer is in general 'no'. 

Next we obtain analogues of Kulat1laka's results for 

certain 'generalised soluble' classes of Lie algebras. 



Finally we prove the analogue Qf the Hall-Kulatilaka 

theorem for L ~ Lie a1gebras, and deduce a few 

corollaries. 

8.1 A negative result 

148 

It is convenient to turn the problem upside-down. 
cf.. Suppose 6 is any of the relations ~ , 4 t 4 ,si, asc. 

, We will say L satisfies Fin-6 Ol 'if and only if A 6 L 

and A E CJ( implies A E ~ • (Instead of Fin-~a we 

write Fin- C7L ). We use the same notation for the 

class of Lie algebras satisfying the condition. 

Clearly if ~ is a class of Lie algebras then 

the following assertions are equivalent: 

1) Every infinite-dimensional 3E-algebra L has 

an infinite dimensional abelian sub algebra A 6 L. 

2) ~ n Fin-60l ~ Cj- . 
It is in the second form that we shall state our 

results. 

Theorem 8.1.1 

Fin-O( 

Proof: 

1~. 

Let L be a free Lie algebra on more than 1 generator. 

By Witt [43] any subalgebra of L is free. But the only 

abelian free Lie algebras are of dimension ~ 1. Thus 

L e Fin- ex. Clearly L ~ q. . 



8.2 Generalised Soluble Classes 

Let ~ be any of the relations above. We define 

the class E(~)crt to consist of all Lie algebras L 

having an ascending CJl -series (L~)~~o such that 

L~ ~ L for all ~ ~ o. 

(Thus E(~) Ol = E(asc) OL = i 07. ; E( (3) a and 

f(si) OL are respectively the classes "1/ , W of 

chapter 5. 

Lemma 8.2.1 

Le t 0 -I N ., L C ~ • Then N (\ 'r 1 (L) -I o. 

Proof: 
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Let ~ be the first ordinal such that N " '!.l(L) -I O. 

Then N l'\ 'f ~ (L) ~ N " ~ 1 (L) • 

Lemma 8.2.2 

If A is a maximal abelian ideal of L €:- a:-then 

A = CL(A). 

Proof: 

Suppose A < C = CL(A). L/A € ~ and 0 -I CiA <I L/A 

so by lemma 8.2.1 there exists x ~ A, x+A = CiA () ~l(L/A). 

Then A + <x> ~ Ol , A + <x> <J L, contrary to the max1-

mality of A. 

Theorem 8.2.3 

~ n Fin-<J Ol. ~ 3- . 



proof: 

Let L E- t () Fin-<1 Ol . rrake a maximal abelian 

ideal A of L (exists by Zorn). Then A E ~, and by 

lemma 8.2.2 A = CL(A). By lemma 4.2.1 L/A ~ ~. Thus 

L ~ 'J as required. 

Theorem 8.2.4 

E( <1) Ol n Fin-<12 c'fl.. < ~ • 

Proof: 

Let J.J ~ E( <1) OL () li'in-<12 (JL and suppose if 
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possible that 1 ~ '} • L has an ascending DL -series 

(L~)~ ~ a with L~ 4 L (~~ a). 

Suppose first that for some finite n L ~~ 
n 

but 

L 1 n- E ~. Let H = CL (Ln- I ). By lemma 4.2.1 
n 

Ln/H E q.. H2 ~ Ln- l and [}I,Ln_IJ = 
H <l L 6 Fin-42 07. so H € Fin-<l az 
H E q . Thus Ln E ~" a con tradic tion. 

o so HE('o1 2 .:s. "t . 
By theorem 8.2.3 

Consequ ently we may aSSUlIle that LEg for all 
n 

n < W , L,. ~ ~ 0 Suppose Hm € 01. () y., H < L , 
vv m - W 

H <i L. Then C = CL (H ) <J L, and C ~ ~ 0 

m m w m m 

Therefore there exists a first n = n(m) such that 

H 1 = H + C >/C. 
r.J.+ m m 

Thus H ~.¥t" ~ 
m+l ' 

00 
H = U H <l L. H 

ill=l m 

Let HI = 11 and set 
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and Cm+k* centralises Hm+l for all k ~ 1, so 

[Hm,Hm+lJ ~ Hm+1
2

• Since Cm*2 ~ Hm and [H,Cm*] = 0 

we have Hm+12 ~ Hm. Thus [H,Hm+lJ ~ Hm ' and H has an 

ascending central series. Thus H e ~ . H 4 L £ Fin-42()l 

so II ~ Fin-ca at. Thus H E: ~, a contradiction. 

Corollary 

CSJ..t n Fin-~2 Ol,. < 3- • 

Proof: 
C:1.., cy} 

If L E. ~l::" then there exists N <I L, N G Q L • Then 

~ 1 (N) cO L and lies in 01 . The quotient by this 

also lies in~. so we may repeat the argument to get 

'3i ~ E( (3) Ol. NoVl use theorem 8.2.4. 

to We shall extend our definition of the class 

fields of characteristic I 0 as follows: L £ ~ if and 

only if L E. L)l and x E L implies <x> s1 L. Th1s 

clearly does not conflict with earlier usage. 

Theorem 8.2.5 

:B n Fin-si Ol < 3- . 
Proof: 

Let L E: S (\ Fin-si 0'1 . Suppose 0 I. x € L. 

LE so <x> si L. Let 

<x> = Lo q Ll ~ ••• ~ Ln = L 

be the ideal closure series of <x> in L. We show by 

induction on i that Li = ~ m(i) (L i ) £11 f\ ~ (0 ~ i ~ n-l). 



<x> is a minimal ideal of Ll E- $ ~ L n so by lemma 

3.3.3 <x> ~ ~l(Ll) ch Ll 4 L2 • By the definition of 

ideal closure series Ll ::: :s 1 (Ll ). Ll is an abelian 

subideal of L so Ll E. ']-. Now suppose the assertion 

true for i-I. Thus Li - l ::: .!m( i-l} (Li - l ) G 1L (') S- · 
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T.Ji_l <J Li f. L'lr'\.; , so by lemna 3.3.4 Li _l ~ ~ m( i) (Li ) 

ch Li ~ Li+l. By the definition of ideal closure series 

Li ::: ~ m( i) (Li )· Li si L so Li E: c;n,. ("\ Fin-si 01 < ')

by theorem 8.2.3. Thus the induction step goes through, 

and <xL> ::: Ln- l G 'Ol Thus L E..3t"Fin-si OL. ~ S-
by the corollary to theorem 8.2.4. 

Theorem 8.2.6 

E( si)O[ f') Fin-si 0[ for fields of 

characteristic zero. 

Proof: 

Let L E. ·f(si) Ol 1'1 Fin-si Ol , having an 

ascending ()1 -series (L~)~ < 0 with L~ si L (~ ~ a). 

Let B ::: I3(L) f O. B <J L (le~a 7.2.1) so B G Fin-si OL • 
B E. /J3 by definition, so by theorem 8.2.5 B E cg. • 
Thus B €:. 'jl , so that Z::: ~ 1 (B) <J Land 0 -I z E: or.. . 

LiZ E E(si) or . Suppose A/z si LiZ, A/z c. OZ. 
Then A si L and A E 01.. 2 () Fin-si or ~ ~ by theorem 

8.2.4. Thus LiZ G Fin-si Ol . We may therefore 

repeat the argument, until either we show L E ~ or we 



find an infini to-dimensional {(~) Ol -subalgebra 

W <J L. Then Vi G E( <1) en 1"\ Fin-si Ol so by theorem 

8.2.5 Vi E. :J- contradiction. Hence L € c:t . 

The obvious theorem to complete the hierarchy: 

Theorem 8.2.7 

Over fields of characteristic zero, 

E OL" Fin-asc OL < ~ • 

Proof: 
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Let L E iOL f) Fin-asc 07.. . Let (L oC) J..<a be an 

ascending (}7, -series of L. If Ln ~ ~ for ;ome n < c..v 

then L ~ E or " Fin-asc or < :J by theorem 8.2.4, n -
a contradiction. Thus we may assume Lnt CJ if n < W , 

and L = L tV r;.. 3- . 
Let Fn = V (Ln) € ~. Fn asc L so Fn E Fin-asc 0[ 

so by corollary to theorem 8.2.4 F E CJ.. Therefore n 
F e"en Il 'J. . n Fn ch ~ by lemma 7.2.1 and L ~ Ln+l so 

Q) n 
Fn = Lnn Fn+l 4 F 1. Let F :; LJ F ~ L (since each 

n+ n=l n 
element of Ln idealises Fn +1t for all k ~ 0.) 

Suppose if possible F E: CJ . Then C :; CL(F) ~ 3-
since L ~ 'J- ., so for some n C

L 
(F) = C t) L .t Fn • 

n n 
Ln E E ()l and C~ (Fn) .t Fn which contradicts lemma 

6.1.1.2. 

Hence F 9! <=J-. Clearly F E L ~ , so without 

loss of generality L € L 01.. r (L ) :; L for some r n n 
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r ~ r(n). Let Z ~ < ~r(Ln) : n ~ ~.2 •••• >. 
CD 

and L = U Zr. Le t x ~ 'f (L ), y E. 's (L ) 
r=l r n r m

2 m < n. Then~, yJ lies in ~ r-l (Ln) so Zr < Z 1. - r-

Thus (Zr) forms an ascending at -series for L. Zl asc L 

and Zl € a so Zl E. ~. Consequently Zl ~ ~ for some k 

so that t 1 (Ln) ~ \0 for all n. Thus 0 -I f 1 (~) .?:. ~ 1 (~+l) 
.?:. ••• so that y = ~rl(~+r) -I o. Clearly Y = tl(L). 

Let H = U !ce(L) G ~ .' From theorem 8.2.3 H E ~ , 
so H € 01. ~uppose AIR asc L/H, AlH E Ol. Then A <2 01 
and satisfies Fin-asc or so by theorem 8.2.3 A € ~. 

Thus L/H E Fin-asc OI . By the above reasoning, L/H 

has non-trivial centre, contrary to the definition of' 

H. This contradiction establishes the theorem. 

Corollary 

For fields of characteristic zero, 

ctv f) Fin-asc 01. < 'J · 
Proof': 

Use lemma 7.6.1. 

~ Locally finite algebras 

In this section we prove the Lie-theoretic Version 

of the theorem of Hall and Kulatilaka: 

Theorem 8.3.1 

Over fields of characteristic zero 

L 3 l'l Fin- OL ~ c:r . 
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The proof begins by following £all and Kulatilaka, 

but parts company as soon as things start to get 

interesting. 

Let hL denote the class of all Lie algebras L 

such that either L E S- or L has an infinite-dimensional 

abelian subalgebra. Let denote the class of Lie 

algebras L such that L E Sf or there exists x E L with 

CL(x) ~CJ and x I o. 
Lemma 8.~.2 

Suppose "* = QS X is a class of Lie algebras. 

Then 3(~Q if and only if 1: ~<t • 

Proof: 

now 

Q~~ so one implication is clear. Suppose 

tha t L €. 3( .::. ~ , L fit ']-. Consider the set 

~ of all finite-dimensional abelian subalgebras A of 

L for which CL(A) £. '3- . g I ¢ since 0 € g . 
Suppose A € g. Then A .0 C = CL(A) and CiA ~ CJ- • 

C/A ~ Qs:;t = X .::. cKJ ,so there exists x E C \ A 

such that D/A = CC/A(A+X) t q. For all dED 

[d,x] s 0 (mOd A) so [n,x] .::. A. Let Al = A+<x> E 01 () '].. 
since A~ C1 , A ~ C. Al > A. Cl = CL(Al) = CD(X). 

Let V = [n,x] qua vector space, and consider the 

linear oap )":D -+ V defined by d)" = Cd, x] (d ED). 

ker()..) = Cl ' im()..) = V .::. A E :3-. Thus dim(D/Cl ) < CD 



so Cl ~ '::3-. Thus Al E fi . 
We have shown that it , ordered by inclusion, 

has no maximal element. Take a properly ascending 

chain Al < A2 < ••• of elements of 

infinite-dimensional and abelian. 

required. 

J.Jemma 8. 3. 3 . 

g. The union is 

Thus L €. Q as 

Suppose L E (L~ n LE Ol ) , (R, • Then there 

exists H ~ L, H E <"-), such that CL(H2 ) = o. 

Proof: 

Vie show that if F <:: ~ , F ~ L, then there exists 

F * ~ L, F* f= C}, such that C
L

(F*2) < CL(F2). 

Suppose L2 f g. Since L ~ LEaL L2 f E 01 so 

L€ E01. By theorem 8.2.4 L(; Q. EO( is 

QS-closed so by lemma 8.3.2 L e G0 , a contradiction. 

Consequently L2 is infinite-dimensional. 

Let c 6 CL(F2 ) € q since L ¢ 'fR., • Then 

CL(c) E c:3- so there exists x c L2 \ CL(c). For 

some xi'Yi € L x = [xl,ylJ + ••• + [Xm,ym]. Let 

F* = <F,x1, ••• ,xm,y1, ••• ,ym> 

which is in ~ by local finiteness of L. Now 

CL(F*2) ~ CL(F2) ('\ CL( [XI'Yl] + ••• + [xm,ym1) 
~ C

L 
(F2) , <c> 

< C
L

(F2 ) 



as claimed. The conclusion of the lemma follows. 

Corollary 1 

Proof: 

L
CY\ 

In particular 0 ~ 
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Let L E. L('Dl OJ. If L ~ L 'J- then there exists 

an infinite-dimensional 01. Ol-subalgebra of L. 

Ole{ ~ EDL so by theorem 8.2.4 L has an infinite

dimensional abelian subalgebra. Now suppose L € L ~ \ Q . 
By lemma 8.3.2 L ¢: 60 . By lemoa 8.3.3 There 

exists H ~ L, H <;;. 'J, with CL(H2 ) = o. H €..1l.0l so 

H2E <Dl • H2 -I 0 (or else C
L

(H2 ) = L) so !l (H2) -I 0 

2 and CL(H ) ~ 0 contradiction. 

Corollary 2 

Over fields of characteristic zero, LE 01 ~ Q. . 
Proof: 

If L € LE D? is not in L ~ proceed as above. 

If L €: L cg then L E L( <J n E 01) ~ L( 11 en) by 

Jacobson 1].7] p.51. 

We note that the Mal'cev correspondence now enables 

us to assert 

Theorem 8.3.4 

Let G be a complete locally nilpotent torsion-free 

group of infinite rank. Then 

1) G has an abelian subgroup of infinite rank. 



2) If G is a Grup.nberg group it has an infinite-rank 

abelian ascendant subgroup_ 

3) If G is a Baer group it has an abelian subnormal 

subgroup of infinite rank. 

4) If G is a Fitting group it has an abelian subnormal 

subgroup of defect ~ 2 of infinite rank. 
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5) If G is a ZA-group it has an abelian normal subgroup 

of infinite rank. 

To prove theorem 8.3.1 we need a lemma about Cartan 

subalgebras, which is given as an exercise in Jacobson 

[17] p.149 ex.3. The lemma (for which we have provided 

a proof) is as follows: 

Lemma 8.3.5 

Let L, L* be semisimple Lie algebras over a field 

of characteristic zero, and suppose L ~ L*. Let H be 

a Cartan subalgebra of L. Then there exists a Cartan 

subalgebra H* of L* with H ~ H*. 

Proof: 

(For unexplained terminology see Jacobson [17J or 

Carter [4]). 

L* is an L-module in the natural fashion. L is 

semisimple, and the theorem of complete reducibility 

(Jacobson [17J p.79 theorem 8) implies that L* is a 

direct sum of irreducible L-modules. Each of these is 
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also an H-module. By Carter [4J p.70 theorem 24 every 

irreducible L-module is a direct sum or I-dimensional 

H-submodules. Thus 

L* = VI e ••• e Vt 
where each Vi is a I-dimensional H-module. Thus if 

vE:Vi' hEH, we must have [v,h] = Ai(h)V where Ai(h) 

lies in the field k. We collect together those Vi for 

which Ai = a given A, and let their sum be WA• Thus 

L* = Wo e WA e ••• e WA • 
1 r 

Clearly WA is the weight-space for H with weight A. It 

is sho\vn in Jacobson [17] p.64 that 

l"'"w VI·1 < W if A+M. is a weight, 
A' f- - A+f'l I' 

= 0 otherwise. 

Thus Wo is a subalgebra of L*. H is abelian ([17] p.llO) 

and H ~ Woe If h € H, w f Wa then by defini tion of Wo 

[w,hJ = O. w = O. Thus H ~ ~l (VIO). Let H*/H be a 

Cartan subalgebra for Wa!H. We claim that n* is a 

Cartan sub algebra for L*. 

R* is nilpotent: R*/H t; "Jt by definition, and R 

is central in R*, so R* E 0\ . 
R* is self-1dealis1ng: suppose xE IL*(H*). Then 

x = Xo + xA •.• + XA. where ~ ~ VIA. Let h E.. H. Then 
1 r 

[x,h] €. H* ~ Woe But [X,h] = Al (h)~ + ••• + Ar(h)~ 
1 r 

which l1es 1n Wo if and only if ~ = ••• = ~ = 0 
1 r 
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since the deotlposi tion into weight spaces 'Wf... is a direct 

S1:I!l. ThuG x E. VlO• Now [x,H*] ~ H* so the CO.3Gt x+H 

idealises H*/H, which is a Cartan sub algebra of WeIH. 

Thus x ~ H*. Consequently H* is self-ldealising. 

Thus H* is a Cartan sub algebra of L* as required. 

We may now prove theorem 8.3.1 in the form 

L ~ ~ ~ • The proof utilises most of the major 

results of the classical theory of finite-dimensional 

Lie algebras! 

Let 1.J f. L ~- (over a field k of characteristic 
<D 

zero) • Wi thout loss of generality L = U Li where 
c-r n=l 

Li < Ll+l € ~ for all 1. Let Ri be the soluble 

radical of L i • Then Ri 4 L i • R = ~ Ri E LEOL . 
If R ~ S then R (and so L) has ian infini te

dimensional abelian subalgebra by lemma 8.3.3 corollary 

2. Thus we may assume R t ~ , so dim(Ri ) 1s bounded. 

By Jacobson [17J p.9l and p.93 cor 1 there exist 

semisimple Levi factors 8 i such that 

1) Li = Hi $ 81' Ri n 8 i = 0, 

2) 8 i ~ 8 i +l " 

Since diO(Ri ) is bounded but L e~, 
dim(8 i ) 1s unbounded. 

00 

Thus without loss of generality L = U 8 
i=l i· 
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Let Ci be a Cartan subalgebra of Si. Using lemma 

8.3 .. 5 we may arrs.:nge ~atters so that Ci ~ Ci +l i'or all i. 
00 

Ci G 01. ([1.7] p.llO) so that C = 
C ¢ ~ then the theorem follows. 

(for a contradiction) that 

dim(Ci ) ~ c 

U Ci (OL. If 
i=l 
Thus we may assume 

for all i. 

Suppcsa now that S is a semisimple Lie algebra 

over a field k of characteristic zero, H a Cartan 

sub algebra of S. Let dimes) = s, sim(H) = h. Let k* 

be the ulgeDraic closu~e of k, and denote the algebras 

over k* corresponcUng to H, S by E*, S* (formed by taking 

tensor products with k*). S* is semisimp1e ([17J p.70) 

and H* is a Cartan subalgebra of S* ([17J p.61). 

Clearly di~*(S*) = s and di~*(H*) = h. 

By [17J p.71 

S* = J l $ ••• $ J m 
where each J i is a classical simple Lie algebra. If 

Hi is a Cartan sub algebra of J i then clearly 

HI $ ••• $ Hm is a Cartan subalgcbra of S*. All Cartan 

8uba1gebras of S* are conjugate via an automorphism of 

S* ([17J p.273) 80 they have the same dimension, and 

h = hI + ••• + hm 
where hi = dim(Hi ) > O. 

Therefore m ~ h. 
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At? of dimonsion ~ (e +2) (I ~ 1) 

Be of 0,imen8ion !! (2{+1) (f > 2) 

Ct of dimension e (2l+1) (I > 3) -
Do? of dimenf3.Lon e(2(-1) (I > 4) 

v 

G2 of dimension 14 

F4 of dimenslon 52 

E6 of dimension 78 

E7 tJf (l 'i. rll ~~ :'J . :=;:: . on 133 

ES of dirrl8:0..s ion 248 

where the sub~cript denotes the dimension of any Cartan 

T:-L1.n, i.f dim(J. ) =:: ji' l 
by inspection of' this list 

see t~la t jl < 4h. 2 < 4h2• Therefore < 4h3 • we s 
- l - -

In the or} gj,nal situation, theref'ore, we deduce 

that s :s. 4c3 8.nd dim(si) is bounded, contrary to (*). 

This co~ple tes the proof' of theorem 8.3.1. 

We may summarise our results about Q by stating 

Theorem 8~ 

Q /' 
is fL,Ej-closed, for fields of' characteristic 

zero. 



Proof: 

Let L E L Q. Either L has an infinite-dimensional 

Q -subalgebra or L € L c:3-. Either way L <; Q . 
Now let LEE Q. L has an ascending Q -series 

(L~)~~o. Without loss of generality Ln < Ln+l for all 

fini te nand L = L w 't= CJ.. If Ln+l/Ln € q. for all 

n then L w 6 L S. < Q . Otherwise for some first 

integer n Ln+l/Ln contains an infinite-dimensional 

abelian subalgebra .A/Ln ,then A E: S.0l which is easily 

seen to lie inside L ~ • Thus A has an infinite-

dimensional abelian subalgebra and again L E bl . 
Corollary 

• (characteristic zero) • 

Proof: 

Cj. < Q. by defini tion. 

Remarks 

This is genuinely stronger than theorem 8.3.1 

since, unlike group theory, for Lie algebras L ~ is 
, 

not even E-closed, let alone E-closed. To see this 

consider the Lie algebra L = P $ Q described just 

before lemma 4.1.1. P €. (J(. ~ L S , and Q E: 'J ~ L <J . 
But LEg \ c:f. so L ~ L:3-

Since 01. ~ E c:J this result also implies 

{L, E'J OL ~ Q superseding lemma 8.3.3 corollary 2. 



Finally, two deductions from theorem 8.3.1 which 

are of a rather different nature. 

Theorem 8.3.7 

Let A be a locally finite associative algebra 

of infinite dimension over a field k of characteristic 
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zero. Then A has an infinite-dimensional commutative 

subalgebra. (A is said to be locally finite if every 

finite subset of A is contained in a finite-dimensional 

associative subalgebra.) 

Proof: 

Let L be the associated Lie algebra. Then L E L ~ 
and is infinite-dimensional so by theorem 8.3.1 L has 

an infinite-dimensional abelian 6ubalgebra B. If 

b, c ~ B then bc-cb :: 0 so be :: cb. Thus B genera tee a 

commutative subalgebra of A, which contains B so is of 

infinite dimension. 

(This theorem applies in particular to the group 

algebra kG of a locally finite group G). 

Theorem 8.3.8 

A locally finite Lie algebra over a field of 

characteristic zero satisfies the minimal condition for 

subalgebras if and only if it is finite-dicenaional. 



Proof: 

The implication is easy in one direction. If 

L E. L CJ. " 3- then L has an infinite-dimensional 

abelian subalgebra by theorem 8.3.1, and clearly this 

does not satisfy the minimal condition for subalgebras. 

This contradiction completes the proof. 

Ian Stewart 
University of Warwick 
1969 
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