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Abstract

The study of speech sounds has established itself as a distinct area of research,

namely Phonetics. This is because speech production is a complex phenomenon me-

diated by the interaction of multiple components of a linguistic and non-linguistic

nature. To investigate such phenomena, this thesis employs a Functional Data

Analysis framework where speech segments are viewed as functions. FDA treats

functions as its fundamental unit of analysis; the thesis takes advantage of this,

both in conceptual as well as practical terms, achieving theoretical coherence as

well as statistical robustness in its insights. The main techniques employed in this

work are: Functional principal components analysis, Functional mixed-effects re-

gression models and phylogenetic Gaussian process regression for functional data.

As it will be shown, these techniques allow for complementary analyses of linguistic

data. The thesis presents a series of novel applications of functional data analy-

sis in Phonetics. Firstly, it investigates the influence linguistic information carries

on the speech intonation patterns. It provides these insights through an analysis

combining FPCA with a series of mixed effect models, through which meaningful

categorical prototypes are built. Secondly, the interplay of phase and amplitude

variation in functional phonetic data is investigated. A multivariate mixed effects

framework is developed for jointly analysing phase and amplitude information con-

tained in phonetic data. Lastly, the phylogenetic associations between languages

within a multi-language phonetic corpus are analysed. Utilizing a small subset of

related Romance languages, a phylogenetic investigation of the words’ spectrograms

(functional objects defined over two continua simultaneously) is conducted to show-

case a proof-of-concept experiment allowing the interconnection between FDA and

Evolutionary Linguistics.
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Chapter 1

Introduction

In a way the current work tries to challenge one of the most famous aphorisms in

Natural Language Processing; Fred Jelinek’s phrase: “Anytime a linguist leaves the

group the recognition rate goes up”[159] 1. While this phrase was famously associ-

ated with Speech Recognition (SR) and Text-to-Speech (TTS) research, it does echo

the general feeling that theoretical and applied work are often incompatible. This is

where the current work tries to make a contribution; it aims to offer a framework for

phonetic analysis that is both linguistically and experimentally coherent based on

the general paradigms presented in Quantitative Linguistics for example by Baayen

[16] and Johnson [155]. It attempts to present a way to bridge the analysis of low-

level phonetic information (eg. speaker phonemes 2) with higher level linguistic

information (eg. vowel types and positioning within a sentence). To achieve this

we use techniques that can be broadly classified as being part of Functional Data

Analysis (FDA) methods [254]. FDA methods will be examined in detail in the next

chapters; for now it is safe to consider these methods as direct generalizations of

usual multivariate techniques in the case where the fundamental unit of analysis is

a function rather than an arbitrary collection of scalar points collected as a vector.

As will be shown, the advantages of employing these techniques are two-fold: they

are not only robust and statistically sound but also theoretically coherent in a con-

ceptual manner allowing an “expert-knowledge-first” approach to our problems. We

show that FDA techniques are directly applicable in a number of situations. Appli-

cations of this generalized FDA phonetic analysis framework are further shown to

apply in EEG signal analysis [118] and biological phylogenetic inference [119].

Generally speaking, linguistics research can be broadly described as follow-

1The current work treats Computational Linguistics and Natural Language Processing as inter-
changeable terms; fine differences can be pointed out but they are not applicable in the context of
this project.

2The smallest physical unit of a speech sound used in Phonetics is called a phone; a single phone
or a sequence of phones that carry specific semantic context are called phonemes and serve as the
simplest abstract class used in phonological analysis [159].
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ing two quite distinct branches. On the one side one finds “pure” linguists and on

the other “applied” linguists. Pure linguists are scientists that ask predominantly

theoretical questions about how a language came to be. (eg. within the subfields

of Language Development studies and Historical linguistics.) What changes it and

drives a language’s evolution? (eg. studies of Evolutionary linguistics and Soci-

olinguistics.) How we perceive it and how different languages perceive each other?

(Questions of Semantics and Pragmatics.) Why are two languages related or unre-

lated? (eg. Comparative and Contact linguistics.) In a way pure linguists ask the

same questions a theoretical biologist would ask regarding a physical organism. On

the other side one finds scientists that strive to reproduce and understand speech in

its conjuncture; in its phenotype. In this field the basic questions stem from Speech

Synthesis and Automatic Speech Recognition (ASR), ie. how can one associate a

sound with a textual entry and vice versa. How can one reproduce a sound and how

can we interpret it? This field of Natural Language Processing has seen almost seis-

mic developments in the last decades. In a way it has changed the way we do science

to an almost philosophical level. Just a century ago academic research was almost

convinced by the idea of universal rules about everything. Research in general took

an almost Kantian approach to Science where universal principles should always

hold true; the work in Linguistic theory of Saussure and later of Chomsky echoing

exactly that with the idea of “Universal Grammars” [58]; the wish for an Unreason-

able Effectiveness of Mathematics not only in Physical sciences (as had Wigner’s

eponymous article declared [327]) but also in Linguistics had emerged. And then

appeared Jeremy Bentham. Exactly like Benthan’s utilitarian approach to Ethics

and Politics [316] that contrasted that of Kant, computational linguists in their

task to recognize speech realized that ultimately they wanted “the greatest good

for the greater number”: identify the most pieces of speech in the easiest/simplest

possible way. Data-driven approaches, originally presented as Corpus and Quanti-

tative Linguistics gained such a significant hold that lead to their own dogma of the

Unreasonable Effectiveness of Data [120] with certain Speech related research areas

like ASR (Automatic Speech Recognition) being almost exclusively dominated by

such vocabulary-based approach for classification and recognition tasks [277; 282].

Undoubtedly as time passes the distinctions get increasingly slimmer in most sub-

fields as practitioners from both ends of the spectrum realize the advantages that

hybrid approaches offer. The current work is building on the success of this latter

data-driven approach to offer insights that would serve theoretical needs. It tries

to exploit large amounts of data, not only to predict features without caring about

the physical interpretation of the statistical methods, the extensive use (and suc-

cess) of Gaussian Mixture Models (GMMs) and Hidden Markov Models (HMMs)

being a prime example of this [249; 265], but by using the findings of FDA in a

2



theory-constructive way. It attempts to present a linguistic reasoning behind this

statistical work.

Firstly in chapter 2 we present the theoretical outline of the linguistic, and

in particular phonetic, findings that are most relevant to this work. We first in-

troduce the basic aspects of the phonetic phenomena and investigate both their

physiological as well as their computational characteristics. In particular we outline

the basic notions behind neck physiology based models [178] and what connotations

these carry to our subsequent view of the problem. Additionally we introduce the

Fast Fourier transformation and how this transformation can be utilized to extract

readings for the natural phenomena we aim to model [251]. We then continue into

contextualizing these in terms of linguistic relevance and how they relate with the

properties of known language types. We present briefly the current state-of-the-

art models in terms of intonation analysis, making a critical assessment of their

strengths, shortcomings and, most importantly, the modelling insights each of them

offers [158; 305; 90] and we wish to carry forward in our analytic approach. While no

single framework is “perfect”, all of them are constructed by experts who through

their understanding and research show what any candidate phonetic analysis frame-

work should account for. We need to note here that the current project does not

aim to present a novel intonation framework; it rather shows a series of statistical

techniques that could lead to one. Finally we introduce the concept of linguistic

phylogenies [13]; how we have progressed in classifying the relations between differ-

ent languages and what were the necessary assumptions we had to make in order to

achieve this classification. For that matter we also first touch on the questions sur-

rounding the actual computational construction of language phylogenies. We close

this chapter by introducing the two main datasets used to showcase the methods

proposed: The Mandarin Chinese Continuous Speech Prosody Corpora (COSPRO)

and the Oxford Romance Language Dataset. The datasets were made available to

the author by Dr. Jonathan P. Evans and Prof. John Coleman respectively. Their

help in this work proved invaluable, as without their generosity to share their data,

the current work would simply have not been possible. COSPRO is a Mandarin

Chinese family of Phonetic Corpora; we focus on a particular member of that fam-

ily, COSPRO-1, as it encapsulates the prosodic 3 phenomena we want to investigate.

Complementary to that, the Romance Language Dataset is a multi-language corpus

of Romance language; Romance (or Latin) Languages form one of the major lin-

guistic families in the European territory and, given the currently available in-depth

knowledge of their association, present a good test-bed for our novel phylogenetic

inference approach with an FDA framework.

3Prosody and its significance in our modelling question will be presented in detail earlier in
chapter 2.
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Chapter 3 presents the theoretical backbone of the statistical techniques uti-

lized throughout this thesis. Using the structure of the eponymous Functional Data

Analysis book from Ramsay & Silver [254] as the road-map outlining the course of

an FDA application framework, we begin with issues related to the Smoothing & In-

terpolation (Sect. 3.1) of our sample and then assess potential Registration caveats

(Sect. 3.2). We then progress to aspects of Dimension Reduction (Sect. 3.3) and

how this assists the practitioner’s inferential tasks. We close by introducing the

necessary background behind the Phylogenetics (Sect. 3.5) applications that will

be presented finally in chapter 6. In particular after introducing the basic aspects

behind kernel smoothing, the primary smoothing technique employed in this work,

we address the problem of Registration, ie. phase variations. Here, after standard

definitions and examples, we offer a critical review of synchronization frameworks

used to regulate the issue of phase variations. While there is a relative plethora

of candidate frameworks and we do not attempt to make an exhaustive listing, we

present four well-documented frameworks [304; 340; 98; 176] that emerge as the

obvious candidates for our problems’ setting. We showcase basic differences on a

real biological dataset kindly provided by Dr. P.A. Carter of Washington State

University. As after each registration procedure we effectively generate a second

set of functional data, whose members have a one-to-one correspondence with the

data of the original dataset and their time-registered instances 4; we stress the sig-

nificance of the differences between the final solutions obtained. The differences

observed being the byproducts of the different theoretical assumptions employed by

each framework. Continuing we focus on the implications that one working with a

high dimensional dataset faces. We address these issues by presenting the “work-

horse” behind most dimension-reduction approaches, Principal Component Analysis

[156], under a Functional Data Analysis setting [121]. Notably, as we will comment

in chapter 7, other dimension reduction techniques such as Independent Component

Analysis (ICA) [145] can also be utilized. Inside this reduced dimension field of

applications we then showcase the use of mixed effects models. Mixed effects models

(and in particular Linear mixed effects (LME) models) are the major inferential ve-

hicle utilized in this project. They allow us to account for well-documented patterns

of variations in our data by extending the assumptions behind the error structure

employed by the standard linear model [300]. We utilize LME models because in con-

trast with other modelling approaches (eg. GMMs) they remain (usually) directly

interpretable and allow the linguistic interpretation of their estimated parameters.

For that reason we follow this section with sections on Model Estimation and Model

Selection (Sect. 3.4.2 & 3.4.3 respectively), exploring both computational as well as

4Through this work the terms time-registration and time-warping will be used almost inter-
changeably; if any distinctions are drawn they will be outlined in the immediate text.
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conceptual aspects of these procedures. This chapter closes with a brief exposition

of Phylogenetics. We introduce Phylogenetics within a Gaussian Process framework

for functional data [291]. We offer an interpretation of these statistical procedures

phylogenetically and linguistically and join these concepts with the ones introduced

in the previous chapter in regards with Linguistics Phylogenetics. Concerning the

purely phylogenetic aspects of our work, we finish by outlining the basic concepts

behind the estimation of a phylogeny which we will base our work on, in chapter 6.

The first chapter presenting the research work behind this PhD is found in

chapter 4. Given a comprehensive phonetic speech corpus like COSPRO-1 we em-

ploy functional principal component mixed effects regression to built a model for

the fundamental frequency (F0) dynamics in it. COSPRO-1 is utilized for this task

as Mandarin Chinese is a language rich in pitch-related phenomena that carry lex-

ical meaning, ie. different intonation patterns relate to different words. From a

mathematical stand-point we model the F0 curve samples as a set of realizations

of a stochastic Gaussian process. The original five speaker corpus is preprocessed

using a locally weighted least squares smoother to produce F0 curves; the smooth-

ing kernel’s bandwidth was chosen by using leave-one-out cross-validation. During

this step the F0 curves analysed are also interpolated on a common time-grid that

was considered to represent “rhyme time”, the rhymes in this work being specially

annotated instances of the original Mandarin vowels. Contrary to most approaches

found in literature, we do not formulate an explicit model on the shape of tonal

components. Nevertheless we are successful in recovering functional principal com-

ponents that appear to have strong similarities with those well-documented tonal

shapes in Mandarin phonetics, thus lending linguistic coherence to our dimension

reduction approach. Interestingly, aside from the first three FPC’s that have an

almost direct analogy with the tonal shapes presented by Yuen Ren Chao, we are

in position to recognize the importance of a fourth sinusoid tonal FPC that does

not appear to correspond to a known tone shape; based on our findings though we

are able to theorize about its use as a transitional effect between adjacent tones.

To analyse our sample we utilize the data projected in the lower dimensional space

where the FPC’s serve as the axis system. We then proceed to define a series of pe-

nalized linear mixed effect models, through which meaningful categorical prototypes

are built. The reason for using LME models is not ad-hoc or simply for statistical

convenience. It is widely accepted that speaker and semantic content effects impose

significant influence in the realization of a recorded utterance. Therefore grouping

our data according to this information is not only beneficial but also reasonable

if one wishes to draw conclusions for the out-of-sample patterns for F0 variations.

This work serves as a first stepping stone in the field of Phonetics research within

an FDA framework. Strictly speaking it does not “break new ground” in terms
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of statistical methodology but rather establishes the validity of an FDA modelling

framework for phonetic data. It does this though extremely successfully allowing

deep insights regarding the F0 dynamics to emerge while coming from an almost to-

tally phonetic-agnostic set of tools. The overall coherence of this phonetic approach

has lead to a journal publication [117].

Augmenting the inferential procedure of the previous chapter, Chapter 5 em-

ploys not only amplitude, but also phase information during the inference. Once

again we work on the COSPRO-1 phonetic dataset. In this project though we are

not only interested in how amplitude changes affect each other but also how phase

variational patterns affect each other and how these variations propagate in changes

over the amplitudinal patterns. In contrast with the previous chapter’s work, this

time we employ a multivariate linear mixed effects model (instead of a series of

univariate ones) to gain insights on the dynamics of F0. As previously, a kernel

smoother is used to preprocess the sample, the kernel bandwidth being determined

by leave-one-out cross-validation. Following that we use the pairwise warping frame-

work presented by Yao & Müller to time-register our data on a common normalized

“syllable time”; we view this warped curve dataset as our amplitude variation func-

tions. Through this time- registration step though we are also presented with a

second set of functional data, the warping functions associated with each original

F0 instance; these are assumed to be our phase variation functions. We additionally

showcase that these phase-variation functions can be seen as instances of compo-

sitional data; we explore what connotations those might have in our analysis and

we propose certain relevant transformations. Having two functional datasets that

need to be concurrently analysed is the reason why we use a multivariate linear

mixed model. Therefore, after doing FPCA in each set of functional data sepa-

rately, while the projection within a set can be assumed orthogonal to each other

and allow the employment of univariate models (as in chapter 4), the FPC scores of

the amplitude variation are not guaranteed to be orthogonal with that phase varia-

tion. Thus given our two domains of variation, amplitude and frequency, we define

a multivariate model that incorporates a complex pattern of partial dependencies;

the FPC scores being orthogonal with other variables in the same variation domain

but being non-orthogonal with scores from the other variation domain. As seen

in section 5.3.8 the computational considerations are not trivial. Our final results

allow us to investigate the correlations between the two different areas of variation

as well as make reasonable estimates about the underlying F0 curves. As a whole

this work aims to present a first attempt to unify the amplitude and phase analysis

of a phonetic dataset within a FDA framework. This joint model is easily gener-

alized to higher dimension functional data. Also, despite us relying on pairwise

time-synchronization, our approach can be directly applicable to any other choice
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of warping framework. At the time of writing this thesis, the work presented here

regarding the phonetic analysis of COSPRO-1 has been submitted for publication.

An EEG analysis application paper using the same approach for a unified amplitude

and phase model utilizing LME models has already been accepted for publication

[118].

Chapter 6 provides a first and rather ambitious application of the phyloge-

netic analysis of a linguistic dataset within a Functional Data Analysis framework.

In contrast with the previous work where our data were assumed to lay on a single

continuum (time), here we work with two-dimensional instances of functional data:

spectrograms. Thus we assume that our data lay on a two-dimensional continuum

indexed by time and frequency. The ultimate goal of this project is to show how one

would construct a protolanguage (the language found at the root of a linguistic phy-

logeny) and to offer insights on the underlying phylogenetic relations between the

languages of a given phylogeny. In a very self-contained project we start with just

voice recordings. We then build from the ground up the whole inferential framework

for the phylogenetic associations between the languages of our sample. After the pre-

processing of our data, following the methodology presented previously (smoothing

& interpolation followed by registration), we theorize on the underlying evolutionary

dynamics and draw analogies with current biologically related concepts. Then we

reduce the dimensions of our dataset, reformulate the problem of linguistics Phylo-

genetics in that confined space and proceed in making model estimation. Based on

that optimal model we then offer estimates about a Latin protolanguage we aimed

to reconstruct, as well as theorize on the linguistic associations that emerged by this

project. In particular, because we recognize the large absolute size in computational

terms of our unit of analysis (a spectrogram), we do not employ a non-parametric

smoothing technique as previously. We use a two-dimensional smoothing frame-

work based on the two-dimensional Discrete Cosine Transform. Following that we

reformulate the pairwise warping framework outlined in section 3.3 in the case of

spectrograms instead of simple voice signals. Interestingly, exactly because we can

take advantage of our knowledge on spectrograms, we warp across a single dimension

instead of two; this insight greatly simplifying our computational load. Following

that, we utilize dimension reduction across a two-dimensional object to produce

a lower dimensional representation of our dataset. We then turn to the first is-

sue underpinning any phylogenetic study: tree estimation. For that we employ an

Ornstein-Uhlenbeck (O-U) process-based approach to interpret the evolutionary dy-

namics of our sample. This Gauss-Markov process allows us to conceptually account

for all major evolutionary factors known and thus consolidate the logical connection

between our work and evolutionary insights. Using O-U we find our “most proba-

ble” tree given our data as well as the most likely protolanguage estimate. Overall,
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it is important to note that this work showcases the ability of FDA to provide robust

tools to answer questions that just a few decades ago, the questions themselves were

not formulated in their respective field. While this work is still not finalized, its

overall coherence has allowed a first simulation study to be published [119].

Bringing the findings of this PhD thesis to a close, the final chapter (chapter

7), offers of short summary of the work and the major conclusions drawn by it.

It then outlines the issues that presented the obvious limitations surrounding this

work. It closes by offering a brief outline of future research directions that could

follow from the current work.

In conclusion, the work in this thesis on Functional Data Analysis tries to

outline a framework that presents not only a convenient way to model syllables, sub-

words or words (or any other phonetic modelling unit one chooses to work with), but

also a theoretically meaningful representation of those measurements. As mentioned

earlier, the current work does not aim to present itself as a study of Acoustical Pho-

netics but rather as one of Applied Statistics. With this in mind, a short summary

of Acoustics literature is offered in the following section to familiarize the reader

with basic concepts and results that will contextualize the material to follow.
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Chapter 2

Linguistics, Acoustics &

Phonetics

Linguistics is formally defined as the study of human language; the ultimate question

it tries to tackle though is how communication takes place among humans [205].

Indisputably, one of the first forms of communication between humans had to be

audible sounds (or growls depending on one’s perspective). As a natural consequence

the studies of sounds (Acoustics), and of voices in particular (Phonetics), have

established themselves as major parts of linguistic studies.

The earliest speech “studies” have been documented at approximately 500

BC and regarded Sanskrit grammar phenomena. Evidently though what we broadly

describe as Linguistics is more contemporary. Picking a single point in history where

a certain “methodological cut” in a scientific field was made is often subjective and

hard to declare; nevertheless the author believes that this happened with the 1916

posthumous publication of Ferdinand Saussure’s Course in general linguistics [63]

where the distinction between studying particular parts of speech and a language

spoken by the members of a society was formalized [205]. There, among other

concepts, Saussure established the treatment of language as a system, or a structure
1 that has to be interpreted as part of interacting components. This theoretical

stance has served as the basis for many theoretical and practical breakthroughs in

Computational Linguistics [130] despite finding itself nowadays getting increasingly

superseded by recent advancements both in inter- (eg. Demolinguistics) as well as

intra-population linguistic studies (eg. Neurolinguistics).

Within Linguistics the current thesis focuses on how statistical analysis can

offer new insights into Acoustical Phonetics. On their part Phonetics focus on the

production (articulatory), transfer (acoustic) and perceptual (auditive) aspects of

phonation processes (speech) [178]. More specifically though, Acoustical Phonetics

1Saussure’s general approach to Linguistics gave raise to the Structural Linguistics paradigm.
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are concerned with the physical properties of speech sounds, as well as the linguis-

tically relevant acoustic properties of such sounds [270]. In the study of Acoustical

Phonetics one does not try to formulate more abstract models based on syntac-

tic, morphological or grammatical issues of speech as this falls under the field of

Phonology. Specifically, for phonetic analysis, a number of sound properties are of

phonetic interest, namely: pulse, intensity, pitch, spectrum or duration of the exam-

ined speech sound segment; a speech sound segment which itself can be a consonant,

vowel or even the successive voiceless gap between words.

Arguably the human speech production mechanism (or more precisely the

human vocal apparatus) is a system of multiple independent components; it involves

complex motor tasks by the speaker’s vocal organs to form articulatory motions un-

der the synchronous emission of air from the lungs [139]. The final product, speech

sounds are periodic complex waves characterized by their frequency and amplitude

[155]. Broadly speaking, frequency relates to how fast the sound wave propagated

oscillates, the amplitude quantifying the intensity of that oscillation. What we

perceive though as sound is not usually a single frequency but a mixture of com-

ponents called harmonics or formants 2. The zeroth harmonic; the fundamental

frequency (F0) is of major interest. The fundamental frequency is commonly un-

derstood (somewhat inaccurately) as pitch; it is of interest physiologically because

it relates very closely to the actual frequency under which a person’s vocal folds

vibrate when speaking. It dictates a number of secondary speech attributes; thus

understanding the mechanics of F0 empowers many aspects of speech-related anal-

ysis [69]. Interestingly not a single ubiquitous definition of F0 exists. Assuming T0

to be the elapsed time between two successive laryngeal pulses where measurement

starts at a well-specified point within the glottal cycle, preferably at the instant of

glottal closure [24], F0 is simply F0 = T−1
0 . Alternative speech production based

definitions place the measurements start at other points of the excitation cycle; if an

incremental definition is used then the length of the excitation cycle itself is assumed

to be T0 [132]. More mathematical definitions define F0 directly as the fundamen-

tal frequency of an (approximately) harmonic pattern in the (short term) spectral

representation of the signal [33]. Finally purely perceptual definitions where F0 is

the frequency of the sinusoid that evokes the same perceived pitch as the complex

sound that represents the input speech signal are also applicable in a general acoustic

sense [306]. All definitions are used in the literature, almost interchangeably and

sometimes without being formally stated by the authors using them. The current

work ultimately relies on F0’s view as the lead harmonic measured in certain (nat-

ural) units (usually Hz or Mel) and being closely related with pitch. Pitch on the

other hand is assumed to be a perceptual rather than a physical phenomenon and

2Babies actually produce pure periodic signals for a short period in their lives [155].
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it has to do with acoustics as much as audition. A somewhat unintuitive termi-

nology caveat relating to the phonation process is the distinction between voiced

and voiceless sounds. In respect with the neck physiology of the speaker, when a

sound is produced while their vocal folds vibrate, that sound is considered voiced;

if a sound is produced with the vocal folds being open, it is considered voiceless

[178]. An easy way for an English speaker to listen/feel this distinction is compar-

ing “v” and “f”; a voiced and a voiceless consonant respectively. First pronouncing

a long constant “v”; [vvvvvvvvvvv] and then comparing this with a long constant

“f”; [fffffffffff] (a voiceless consonant) one can immediately feel the difference

between the two; putting your fingers on your larynx as you alternate between the

two consonant sounds makes the physiological difference even more obvious.

Evidently F0 is not easy to directly measure. Such measurements have been

taken, but they are usually intrusive, complicated and rather expensive [178]. On

the contrary there are multiple ways of extracting F0 from a given acoustic record-

ing. The main two methodologies are based on autocorrelation [248] and cepstrum

analysis [33].

2.1 Basic Computational Aspects of F0 determination

Human speech F0 can range from approximately 50 Hz (a very low-pitched male)

to almost 800 Hz (a very high-pitch woman or a small child). This means that

based on the context of Nyquist frequency [199], the highest frequency compo-

nent detectable can be at most half of the sampling frequency used; sub-Nyquist

sampling methodologies have been presented in the past years [187] but we will

not examine them. As a logical consequence to ensure a fundamental frequency

of 400 Hz is detectable, at least an 800 Hz sampling rate must be used. This is

not usually an issue as even low-quality speech recordings are done at a minimum

8 KHz rate, but questions do arise on how large a pitch track sample should be

in order to evaluate a lower frequency reading; for example the minimum time

required for a 50 Hz wave to have a full oscillation is ( (50Hz)−1 = 0.02s )

20ms 3. This brings us to how autocorrelation pitch tracking methodology works:

Given a small time-frame (typically 10ms or 20ms long) of pitch track sample

and then displacing it slowly over the rest of the speech tract readings, using a

sliding window approach, we record the correlation produced for each successive

displacement. The inverse of the displacement (or lag) that produces the largest

correlation is then reported as fundamental frequency of that pitch segment [32].

3The phenomenon of using an inadequately low sampling frequency for a given signal can lead to
aliasing ; higher sampling rates and/or low-pass filtering prior to sampling can be used as remedies.
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Figure 2.1: The normalized amplitude sig-
nal (upper panel) and the related spec-
trogram (lower panel) of a male French
speaker saying the word “un” (œ). The
superimposed F0 never goes above 110Hz
(upper panel, red curve) while after the
initial excitation (0.075-0.150s) the power
density quickly diminishes (lower panel).

The short-term autocorrelation

function αf for a given signal x(t) for

a lag d is formally given as [285]:

αf (d) =

∫ ∞
−∞

x(t)x(t+ d)dt (2.1)

or discretely in the case of a short-term

signal as :

αf (d, q) =

K−d+q∑
t=q

x(t)x(t+ d) (2.2)

where K is the size of the time-window

examined and q the starting point. This

is though also the problem with auto-

correlation pitch tracking methodology:

unsuitable window size can lead to

severely miscalculated pitch estimates.

The first problem is pitch-doubling ; dur-

ing pitch-doubling the shortest time dis-

placement in the sliding window is as

short as the half of the F0 period. The

autocorrelation method will then most

probably find that the two halves are

separate oscillations, consecutively find-

ing that the signal period is half of

what it really is and finally report an F0

that is twice its real value. The second

problem is pitch-halving ; during pitch-

halving we use too large of a window and in that case two or more periods can be

fitted within the same time-frame. Then the expected period of pitch is assumed

to be longer than what it actually is and therefore the algorithm underestimates

the reported F0. Interestingly pitch-halving can occur even if one chooses the F0

window length correctly; if two displaced pitch periods are more similar than two

adjacent ones, an autocorrelation algorithm can still find a larger period exactly

because the correlation between the two windows will be stronger in that case [155].

It is worth noting that while auto-correlation methods are the norm [248], cross-

correlation methods and average magnitude difference function [24] 4 have also been

4 AMDF (d, q) = 1
K

∑K+q
t=q |s(t)− s(t+ d)|
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Figure 2.2: Illustration of Cepstral F0 determination. A male French speaker saying
the word “un” (œ)(upper left, black line, left axis) and the corresponding F0 curve
(upper left, red line, right axis, determined using ACF). To estimate the F0 at
as single point (red circle) we use the segment of speech around the estimation
point (upper right), we then compute its Power |dft(y)| (lower left) and then the
corresponding Cepstrum idft(loge(|dft(y)|)) (lower right). The peak amplitude of
the Cepstrum occurs at time F−1

0 = 0.0092 s ≈ F0 = 108.7Hz. A rectangular
window was used.

developed but work again in a time-step principal. No established methodology for

choosing the window-length exists. Most popular implementations (eg. Praat [32]

and Wavesurfer [295]) aside from using standard predetermined window sizes, are

based on “how low” F0 is expected to be; effectively estimating a maximin window

length of a frame.

Complementary to autocorrelation based methods are the double-transform

or cepstrum based methods; their back-bone is the Discrete Fourier Transform

(DFT). Cepstrum (a word-play of the word spectrum itself) is the inverse Fourier
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transform of the natural logarithm of the spectrum. Because it is the inverse trans-

form of a function of frequency, the cepstrum is a function of a time-like variable

[285].

Taking a step back and assuming a time-domain index t, t ∈ [0, T ], T being

the total duration of a time sample x(t), the complex spectrum frequency X(f) for

any frequency f is the forward Fourier transformation of x(t) [251]:

X(ω) =

∫ T

0
x(t)e−ωitdt, ω = 2πf (2.3)

where it can be immediately seen that the Fourier transformation is a continuous

function of frequency f , the inverse of it expressing the signal as a function of time

as:

x(t) =
1

2π

∫
X(ω)eωitdω. (2.4)

Continuing, the instantaneous power P (t) and energy E of a signal x(t) are respec-

tively defined as:

P (t) = x2(t) and (2.5)

E =

∫
P (t)dt = x2(t)dt where by using Eq. 2.4 (2.6)

E =
1

2π

∫
X(ω)X(−ω)dω =

1

2π

∫
|X(ω)|2dω =

∫
E(ω)dω (2.7)

representing that qualitative signal energy is the accumulation of energy spectral

density E(ω). Moving to a discrete signal x[n] now, the discrete-time Fourier trans-

formation of it is defined as:

X(eiω) =

∞∑
t=−∞

x[t]e−iωtdt, (2.8)

the inverse of it being defined in respect to its complex logarithm as [24]:

x̂[t] =
1

2π

∫ π

−π
X̂(eiω)eiωtdt (2.9)
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where the complex logarithm X̂ is:

X̂(eiω) = log[X(eiω)]. (2.10)

Based on this, one is able to then define the cepstrum of a discrete signal x[n] as:

c[n] =
1

2π

∫ π

−π
log(|X(eiω)|)eiωndω, (2.11)

or in a purely discretised form as: =

N−1∑
n=0

log(|
N−1∑
n=0

x[n]e−i
2π
N
kn|)ei

2π
N
kn, (2.12)

and recognize that during cepstral analysis the power spectrum of the original signal

is treated as a signal itself. As a result instances of periodicity in that signal will be

highlighted in the original signal’s cepstrum. Essentially the cepstrum’s peaks will

coincide with the spacing between the signal’s harmonics (Fig. 2.2). As expected

the cepstrum is a function of time or quefrency, where the quefrency approximates

the period of the signal examined (ie. larger quefrencies relate to slower varying

components).

One might question the complacency of the two F0 tracking techniques; the

answer though is rather straight-forward and is known as the Wiener-Khinchin the-

orem [54]. Taking Eq. 2.1 and substituting x(t) using the inverse Fourier transfor-

mation, Eq. 2.1 becomes:

αf (d) =

∫ ∞
−∞

x(t)x(t+ d)dt =
1

2π

∫ ∞
−∞

eωit|X(ω)|2dω =

∫ ∞
−∞

eωitE(ω)dω

(2.13)

and it therefore becomes obvious that the Fourier transformation of the energy

spectral density E(ω) (Eq. 2.7) is the autocorrelation function associated with the

signal x(t). Other methods for pitch determination based on Linear Prediction

[250; 289], Least Squares Estimation [87; 217] and direct Harmonic Analysis [1; 220]

have also offered certain practical advantages on application-specific projects but

they have failed to established themselves as generic frameworks in comparison with

the two methods previously described.

A final point concerning pitch detection, or any general statistical analysis,

is that it is based on the assumption of (at least weak) stationarity of the dataset

examined. In that sense the first and second moments of the sample assumed to

be the speech segment examined are ”stable” across time. Nevertheless, a speech

signal is definitely non-stationary along a speaker’s utterance. Even in the short-

time analysis framework (10− 100ms) one might encounter pauses, co-articulation,

non-random noise or quantization effects; phenomena that would clearly violate
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usual stationary assumptions. Excluding more specialized techniques such as non-

linear filtering [319], the usual counteraction is to use windowing (or lifting [33]); an

important preliminary step where we frame a segment y(t) of our signal x(t) and

assume y(t) to be locally stationary. They are many different window types; three

of the most common windows of size L are :

• the rectangular (w(n) = 1),

• the Hamming (w(n) = .54− .46cos(2π n
N ), L = N + 1),

• the Gaussian window (w(n) = exp(−1
2(nσ )2)),

the latter one being an infinite-duration window. While somewhat trivialized in

the context of signal analysis windowing properties such as frame size, type and

shift can have very profound effects in the performance of a pitch determination

algorithm (Fig. 2.3) and subsequent feature extraction. The relation of windowing

and kernel smoothing (Sect. 3.1), as it will be shown later, is all but coincidental

and windowing in the sense presented above is a simple reformulation a general

”weighting” scheme in mainstream Statistics.

Complementary to this F0 estimation via the DFT is the task of spectro-

gram estimation. Without going to unnecessary details, a spectrogram is simply

the concatenation of successive Fourier transformations along their frequencies. As

in the case of F0, windowing in terms of segment length and window type signif-

icantly affects the resulting two-dimensional function, one of the axes being time

(t) and the other frequency (f) (eg. Fig. 2.1 lower panel). We draw attention to

a very interesting property of spectrograms: while spectrograms are subject to the

same time distortion (See section 3.2) as every other phonetic unit of analysis, time

distortion is only meaningful across their time-axis. While smearing (or leakage)

can occur between successive frequency bands [24], this is not time-dependent and is

usually associated with recording conditions (eg. room reverberation) and/or win-

dowing. In practice, given we employ conservative choices of windowing, we assume

that leakage is minimal. Therefore the frequency axis f is assumed to evolve in

“equi-spaced” order with no systematic distortions present; we will reiterate these

insights in section 6.2.1.

2.2 Tonal Languages

While pitch in the majority of Indo-European languages is mostly used to convey

non-linguistic information such as the emotional state of the speaker, there are many

world languages, especially in south-east Asia and sub-Saharan Africa that are tonal

[200]. By tonal we mean that the pitch pattern of a pronounced vowel or syllable

16



0.115 0.12 0.125 0.13 0.135
−1

−0.5

0

0.5

1

Rectangular Speech Segment y(t)

Time (s)

A
m

p
lit

u
d
e

0.115 0.12 0.125 0.13 0.135
−1

−0.5

0

0.5

1

Gaussian Speech Segment y(t)

Time (s)

A
m

p
lit

u
d
e

0.115 0.12 0.125 0.13 0.135
−1

−0.5

0

0.5

1

Hamming Speech Segment y(t)

Time (s)

A
m

p
lit

u
d
e

0.005 0.01 0.015 0.02

0

0.05

0.1

0.15

Cepstrum of y(t)

A
m

p
lit

u
d
e

Quefrency (∼ s)
0.005 0.01 0.015 0.02

0

0.05

0.1

0.15

Cepstrum of y(t)

A
m

p
lit

u
d
e

Quefrency (∼ s)
0.005 0.01 0.015 0.02

0

0.05

0.1

0.15

Cepstrum of y(t)

A
m

p
lit

u
d
e

Quefrency (∼ s)

Figure 2.3: Illustration of Cepstral F0 determination employing different windows.
The peak amplitude of the Cepstrum occurs at time F−1

0 = 0.0092 s ≈ F0 = 108.7Hz
in the case of a rectangular window (Left hand-side plots). The peak amplitude of
the Cepstrum occurs at time F−1

0 = 0.0024 s ≈ F0 = 416.7Hz both in the case of a
Gaussian and of a Hamming window (Center and Right hand-side plots).

changes the lexical meaning of a word in a predetermined way [301]. Among tonal

languages Mandarin Chinese is by far the most widely-spoken; it is spoken as a first

language by approximately 900 million people [53], with considerably more being

able to understand it as a second language. It is therefore of interest to try and pro-

vide a pitch typology of Mandarin Chinese in a rigorous statistical way incorporating

the dynamic nature of the pitch contours into that typology [111; 245]. This interest

is not only philological for Indo-European languages’ speakers. Discounting the ob-

vious advantage that an accurate typology will offer in automatic speech recognition

and speech/prosody production algorithms [69], with the increasing interest in tonal

Asian languages as second languages, potential learners could greatly benefit from

an empirically derived intonation framework; second language acquisition being an

increasingly active research field [140]. Phenomena such as synchronic or diachronic

tonal stability, while prominent in tonal languages, are quite difficult to encapsulate

in strict formal rules [100] and they are known to manifest in significant learning

difficulties.

In particular in Mandarin Chinese there are five tones with five distinct

shapes and pragmatic meaning (Fig. 2.4). For example, using the “ma” phoneme
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with different tones implies:

• Tone1 (mā 媽 “mother”) a steady high-level sound,

• Tone2 (má 麻 “hemp”) a mid-level ascending sound,

• Tone3 (mǎ 馬 “horse”) a low-level descending and then ascending sound,

• Tone4 (mà 罵 “scold”) a high-level descending sound and

• Tone5 (mȧ 嗎 question particle) an unstressed sound.

This means that the rather artificial statement媽媽罵麻馬嗎 / “Does mother scold

the numb horse??” is actually transliterated in Pinyin 5 as: “māmȧ mà má mǎ mȧ?”

where without the pitch patterns shown in the diacritic markings it would be totally

incomprehensible [330].

As Fujisaki recognizes though, while in tonal languages (eg. Mandarin) pitch

is modulated by lexical information, para- and non-linguistic effects have significant

impact to the speaker utterances [90]. In other words, to assume that the differ-

ences observed in intonation pattern is only due to the words’ lexical meaning is

an oversimplification. Non-lexical effects come into play. In particular by para-

linguistic effects we mean contextual and semantic information that affects a user’s

utterance. For example the same speaker might employ different intonation pat-

terns for a formal announcement to that of a private conversation with a friend.

Moreover non-linguistic effects related directly to the speaker’s physiological char-

acteristics also have prominent influence in the final syllable modulation [333; 117].

As F0 is associated with the function of the vocal cords, and like most physiological

properties of an organism this functionality is influenced by the age, health and

general physical characteristics of a speaker, speaker related variation should not be

neglected.

2.3 Pitch & Prosody Models

The rhythmic and intonational patterns of a language [159] are known as prosody.

Prosody and F0 modelling are intertwined as F0 is a key component of prosody 6and

this connection is even stronger in tonal languages like Mandarin Chinese. Accurate

modelling of the voicing structures enables the accurate modelling of voiced speech

segments thus assisting all aspects of speech related studies: synthesis, recognition,

and coding [69].

5Pinyin is the official form of the Latin alphabet transliteration of Mandarin Chinese used by
the People’s Republic of China [328].

6Other components being for example timing and loudness.
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Figure 2.4: Reference tone shapes for Tones 1-
4 as presented in the work of Yuen Ren Chao;
Tone 5 is not represented as it lacks a general
estimate, always being significantly affected by
non-standardized down-drift effects. Vertical
axis represents impressionistic pitch height.

Somewhat generally, the “ref-

erence framework” for the analysis

and synthesis of intonation patterns

is ToBi [158]. As defined by its

creators:“ToBi is a framework for

developing community-wide conven-

tions for transcribing the intona-

tion and prosodic structure of spo-

ken utterances in a language vari-

ety”. ToBi defines five pitch accents

and four boundary tones based on

which it categorizes each respec-

tive utterance. ToBi is effectively

a complete prosodic system; it has

two important caveats. First ToBi

is not a universal system. There

are language-specific ToBi systems

that are non-communicative to one

another; this is a major shortcom-

ing in its generality. In that sense

its rigidity has rendered it too re-

strictive to model even English va-

rieties (ToBi was specifically devel-

oped for the English language orig-

inally) leading to the development

of IVie [103]. Secondly though it also defines a series of different break types, acting

as phrasing boundaries. Break counts are very significant as physiologically a break

has a resetting effect on the vocal folds’ vibrations; a qualitative description of break

counts is provided in Table 2.1. This recognition of the importance of breaks high-

lights an important physiological characteristic of F0; while a continuous trajectory

is meaningful for temporal modelling, an F0 trajectory is not a continuously varying

parameter along an utterance but rather a series of correlated discrete events that

are realized as continuous curves.

Complementary to ToBi is the work of Taylor with the TILT model [305].

“TILT is a phonetic model of intonation that represents intonation as a sequence

of continuously parametrized events.” The interesting thing about TILT is that it

effectively places the intonational event not only as its modelling target, but also as

its fundamental unit. As such it does not use predetermined labels as ToBi. Instead,

each event is characterized by its amplitude, duration and tilt. Tilt (not TILT) is
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Break Type Meaning

Break 1 Normal syllable boundary. In languages like written Chinese
where there is “no alphabet” but the written system corresponds
directly to morphemes, this corresponds to a single character. (As
syllable segments will often act as our experimental data units,
B1 is equivalent to the mean value of the statistical estimates and
thus not examined separately as a “dependent variable”).

Break 2 Prosodic word boundary. Syllables group together into a word,
which may or may not correspond to a lexical word.

Break 3 Prosodic phrase boundary. This break is marked by an audible
pause.

Break 4 Breath group boundary. The speaker inhales.
Break 5 Prosodic group boundary. A complete speech paragraph.

Table 2.1: ToBi Break Annotation

effectively a continuous description of the F0 curve that is a function of the duration

D and the amplitude A of the intonation pattern examined. In particular:

Tilt =
|Arise| − |Afall|

2(|Arise|+ |Afall|)
+

Drise −Dfall

2(Drise +Dfall)
. (2.14)

The TILT model was in a way influential because it really provided an empirical

and continuous representation of F0. Nevertheless in the end TILT uses three,

undoubtedly important numbers to characterize a single curve. This is not “wrong”

(the popularity of TILT hinting that these three numbers are highly effective), but

ultimately fails to provide a framework that can be directly expanded to account of

increasing sample complexity. Additionally it does not account for speaker related

information affecting an utterance nor for explicit interaction between successive F0

curves.

This is one of the main intuitions behind the third and final “reference model”

for intonation patterns: the Fujisaki model [90]. The Fujisaki model was introduced

by Fujisaki and Ohno in 1997 and was extended mostly by the cooperation of Fujisaki

with Mixdorff 7. Similarly to the TILT model, the Fujisaki model is a quantitative

model that does not use explicit labels. The basic modelling assumption behind

the Fujisaki model is that the F0 contour along a sentence is the superposition of

both a slowly- and a rapidly-varying component [90]. The slowly-varying component

commands the overall curvature of the F0 contour along the duration of the sentence,

the rapidly-varying relates to the lexical tone. This major idea came from the way

the F0 production mechanism is treated: the laryngeal structure being approximated

7The author feels that given the amount of work that Hansjörg Mixdorff has published in relation
to the Fujisaki model, the Fujisaki-Mixdorff naming scheme would probably be more accurate; eg.
see [210; 211; 215; 212; 216; 213; 214] among others.
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by Fujisaki’s earlier work as effectively the step response function of a second-order

linear system [133]. Another important theoretical break-through of the Fujisaki

model was that it explicitly incorporated speaker related information or better yet

uncertainty; for example it assumes that the lower F0 attainable is a speaker related

rather than universal characteristic and that it should be treated as an unobserved

random variable. The major shortcoming of the Fujisaki model actually comes from

within its design: the idea of a slow-varying down-drift deterministic component is

rather restrictive, despite being a reasonable norm. Especially in its original format

this assumption fails to account for intonation patterns in Western languages [305].

Also in its original form the Fujisaki model advocated the use of a rigid gradient

for each of the rapidly-varying components; a position where the TITL model was

definitely more flexible.

A number of other prosodic frameworks have been based on these three basic

ones (eg. MOMEL [135], INTSINT [196], qTA [244], etc.) but few have presented

a prosodic framework that offers a universal “language-agnostic” approach. The

presented work in later chapters of this thesis strives to deliver exactly that.

2.4 Linguistic Phylogenies

Following once again the view of a language as a system that interacts with its

environment, the concept of linguistic Phylogenetics is not ungrounded within the

general phylogenetic framework 8. Indeed in the last 15 years there has been a

steady increase of papers where language development and biological speciation

have been treated as quite similar [320]. Pagel in his eponymous review paper

“Human language as a culturally transmitted replicator” [230] not only argues on

the similarity of genes’ and languages’ evolutionary behaviour but offers an extensive

catalog of analogies between biological and linguistic evolution as well.

Interestingly one might even argue that linguistic phylogenetic studies pre-

ceded biological ones at least in the Western world. While Aristotle (382-322 BC)

was probably one of the first to cluster different animal species in terms of com-

parative methods [10], Socrates (469-399 BC), among other philosophers, actually

realized that language “changed” (or at least “decayed”) as time passed [49]. The

reason for this observation was relatively simple: Homer’s (∼8th century BC) writ-

ings while revered as accounts of heroic tradition, they were already at least 350

years old at the time of Socrates. People simply realized that Achilles did not speak

like them. One of the first to formulate an actual “connection” though between

Linguistics and Biology was Gottfried W. Leibniz (1646-1716)9. Leibniz advocated

8See section 3.5 for a short introduction in Phylogenetics.
9The reader will note a significant chronological gap. Aside the obvious need for significant

biological and linguistic intellectual capital to be amassed, the Old Testament presented an issue;
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the idea of Natura non facit saltus (“nature does not make jumps”), gradual change.

In addition to that he also advocated the ideas of Monadology: fundamental imma-

terial units that are eternal were “the grounds of all corporeal phenomena” [195].

Those ideas proved fundamental both in Biology and Linguistics. Therefore it is

not surprising that the father of modern Biology, Charles R. Darwin (1809-1882)

also made similar assertions regarding language in his landmark work The Origins

of Species. Leaving historical remarks aside, the seminal paper of Cavalli-Sforza et

al. [52] changed the way linguistic and genetic information are combined within

a single analysis framework in modern times. There the authors focused on the

reconstruction of a human phylogeny based on maximum parsimony 10 principles

but importantly, after pooling genetic data geographically in order to account for

heterogeneity, if heterogeneity persisted, they added an “ethnolinguistic criterion of

classification”. That allowed the synchronous derivation of a genetic and a linguistic

phylogeny that displayed significant overlap and emphasized that the two fields not

only could share methods but also results.

Up until relatively recently maximum parsimony trees [321; 107] and com-

parative methods [320] stood as the state-of-the-art in Linguistic Phylogenetics. And

while comparative methods were already employed rather broadly within the con-

text of glottochronology [105] the question of computational reconstruction of pro-

tolanguages started to emerge [227; 268]. Importantly people began to incorporate

the phonetic principals in their tree reconstructions. Research came to the realiza-

tion that exactly because language was just a human-bounded characteristic, direct

analogies with generic Phylogenetics were not only possible, but actually strength-

ening the theoretical framework used. Language acquisition being associated with

children (founder effects), parallel development of characteristics being not as un-

common as originally thought (convergent evolution), insertion-deletion-reversals

being usual “units of changes” (the same operations being used in the changes

of genetic code) showed that even qualitative linguistic phenomena could be en-

capsulated within a phylogenetic framework. Evidently the inherent problems of

Phylogenetics such as having (2N − 3)!!11 rooted-trees for N leaves and being pre-

sented with a relatively small amount of data compared to the number of candidate

trees [138] did remain, but linguists were nevertheless able to validate a very cru-

cial insight from sociolinguistics: “while most linguistic structures can be borrowed

between closely related dialects, natively acquired sound systems and inflections are

resistant to change later in life” [268]. That meant that essentially a sound system

was resistant to change and therefore presented a “good” character for phylogenetic

the Biblical story of the Tower of Babel made the question of linguistic phylogenies somewhat
heretic.

10See Sect. 3.5.2 for an overview of tree reconstruction methodologies.
11The double or odd factorial where (2k−1)!! = (2k)!

2kk!
or more generally: (2k−1)!! = Πk

i=1(2i−1)
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studies. Insights like the positive correlation between rates of change and speaker

population size [12] and the coherence of rule-based changes [221; 39] were estab-

lished. Importantly almost all these techniques rely on binary features [73] or at a

best case scenario multi-state ones [231; 106]. While computational linguists rec-

ognized the importance of phoneme sequences [39; 38] they do not act on premises

of continuous data. As it will be shown in following chapters, the current work is

not qualitatively comparable with state-of-the-art multi-state implementations [38]

where the number of available training data is significantly larger. In addition, even

excluding training sample size issues, the current methodology also acts almost ag-

nostically in relation with semantic information by only using phonetic information.

Undoubtedly the choice of discarding semantic information is a strong (yet not un-

common [105; 231]) assumption from a linguistic point of view but it presents itself

as a definite progress in the phonetic literature because up until now comparative

methods focused on scalar characteristics only.

As a final note we draw attention to the notion of the molecular clock of a

biological phylogeny [165] and its significance in a linguistic phylogeny. As Gray et

al. note, absolute dates in Linguistics are notoriously hard to get [106]. Disregarding

the issues that relate to tree uncertainty and lack of concrete evidence, this difficulty

is rooted with the quite restrictive assumption of (in this case) lexical clock (or a

glottoclock). Exactly because one asserts that changes “occur in a more-or-less

clocklike fashion, so that divergence between sequences should be proportional to

the evolutionary time between the two sequences” [165], this assumption is hard

to evaluate experimentally [105; 76]. Nevertheless we need this assumption for

standard Maximum Likelihood methodology to be applicable. It would be therefore

interesting to explore a possible application of methodologies that act under the

assumption of a non-universal time- continuum. The current work does explore this

in terms of the observational time on the phylogeny’s leaves but leaves the question

of actual phylogenetic time (and its potential time-distortion) for future work.

2.5 Datasets

The current work employs two functional datasets. Both of them were made avail-

able to the author by his respective collaborators.

2.5.1 Sinica Mandarin Chinese Continuous Speech Prosody Cor-

pora (COSPRO)

The Sinica Continuous Speech Prosody Corpora (COSPRO) [311] was collected at

the Phonetics Lab of the Institute of Linguistics in Academia Sinica and consists

of 9 sets of speech corpora. We focus our attention on the COSPRO-1 corpus;
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Figure 2.5: Tone realization in 5 speakers from the COSPRO-1 dataset.

the phonetically balanced speech database consists of recordings of Taiwanese Man-

darin read speech. The COSPRO-1 recordings themselves were collected in 1994.

COSPRO-1 was designed to specifically include all possible syllable combinations in

Mandarin based on the most frequently used 2- to 4-syllable lexical words. Addi-

tionally it incorporates all the possible tonal combinations and concatenations. It

therefore offers a high quality speech corpus that, in theory at least, encapsulates

all the prosodic effects that might be of acoustic interest.

After pre-processing and annotation, the recorded utterances, having a me-

dian length of 20 syllables, resulted in a total of 54707 fundamental frequency curves.

Each F0 curve corresponds to the rhyme portion of one syllable. The three female

and two male participants were native Taiwanese Mandarin speakers. Using the

in-house developed speech processing software package COSPRO toolkit [311; 312],

the fundamental frequency (F0) of each rhyme utterance was extracted at 10ms in-

tervals, a duration under which the speech waveform can be regarded as a stationary

signal [131]. Associated with the recordings were characterizations of tone, rhyme,

adjacent consonants as well as speech break or pause. Importantly the presented

corpus is a real language corpus and not just a series of nonsensical phonation pat-

terns and thus while designed to include all tonal combinations, it still has semantic

meaning.

More specifically the syllables are labeled with one of the four lexically speci-

fied tones or a sign that are phonologically toneless (tone 5). In addition contextual

information is also associated with each curve (see Table 2.2 for a list of covariates

included). Fig. 2.5 shows time-normalized example realizations of all 5 tones for all
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Effects Values Meaning Notation-
mark

Fixed effects
previous tone 0:5 Tone of previous syllable, 0 no

previous tone present
tnprevious

current tone 1:5 Tone of syllable tncurrent
following tone 0:5 Tone of following syllable, 0

no following tone present
tnnext

previous conso-
nant

0:3 0 is voiceless, 1 is voiced, 2 not
present, 3 sil/short pause

cnprevious

next consonant 0:3 0 is voiceless, 1 is voiced, 2 not
present, 3 sil/short pause

cnnext

B2 linear Position of the B2 index break
in sentence

B2

B3 linear Position of the B3 index break
in sentence

B3

B4 linear Position of the B4 index break
in sentence

B4

B5 linear Position of the B5 index break
in sentence

B5

Sex 0:1 1 for male, 0 for female Sex
Duration linear 10s of ms Duration
rhyme type 1:37 Rhyme of syllable rhymet
Random Effects
Speaker N(0,σ2

speaker) Speaker Effect SpkrID

Sentence N(0,σ2
sentence) Sentence Effect Sentence

Table 2.2: Covariates examined in relation to F0 production in Taiwanese Mandarin.
Tone variables in a 5-point scale representing tonal characterization, 5 indicating a
toneless syllable, with 0 representing the fact that no rhyme precedes the current
one (such as at the sentence start). Reference tone trajectories are shown in Fig.
2.4.

5 speakers.

2.5.2 Oxford Romance Language Dataset

The Oxford Romance Language Dataset was collected by Prof. John Coleman in

the Phonetics Laboratory of University of Oxford between 2012-13. It consists of

natural speech recordings of four languages; French, Italian, Portuguese and Spanish.

Spanish recordings where classified as American or Iberian Spanish. For the purpose

of this study American and Iberian Spanish are treated as distinct languages. The

speakers utter the numbers one to ten in their native language and dialect. The

dataset is inherently unbalanced; we have seven (7) French speakers, five (5) Italian

speakers, five (5) American Spanish speakers, five (5) Iberian Spanish speakers and
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three (3) Portuguese speakers. We were unable to have records for all 10 digits

from all speakers, this finally resulting in a sample of 219 recordings. The sources of

the recordings were either collected from freely available recordings from language

training websites or standardized recording made by university students.

Language Number of Speakers (F/M)

French 7 (4/3)
Italian 5 (3/2)

American Spanish 5 (3/2)
Iberian Spanish 5 (4/1)

Portuguese 3 (2/1)

Table 2.3: Speaker-related information in the Romance languages sample. Numbers
in parentheses show how many female and male speakers are available.

An important caveat regarding this dataset is it is “real world”. This con-

trasts with the COSPRO dataset that was recorded under phonetic laboratory con-

ditions. The Romance language dataset consisted of recordings people made under

non-laboratory settings (eg. classes, offices). It is also heterogeneous in terms of bit-

rate sampling, duration and even format. As such before any phonetic or statistical

analysis took place, all data were converted in *.wav files of 16Khz. This clearly un-

dermines the quality of the recordings compared to the ones acquired by COSPRO

but these conversions were deemed essential to ensure sample homogeneity. Fig. 2.1

shows a typical waveform reading.

The Romance language dataset is exclusively used for the phylogenetic appli-

cations showcased in Chapt. 6 as it provides an obvious “well-examined” [105; 230;

106] sub-sample of the greater Romance languages linguistic family; some “standard

members” of the Romance family like Catalan and Romanian were not included.

Fig. 2.6 shows an unrooted linguistic phylogenetic tree T of nominal phylogenetic

distances for the languages at hand based on Grey et al on [106].
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Figure 2.6: Unrooted Romance Language Phylogeny based on [106]. Branch lengths
do not correspond to lexical clock time.
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Chapter 3

Statistical Techniques for

Functional Data Analysis

Functional Data Analysis (FDA) defines a framework where the fundamental units

of analysis are functions. The dataset are assumed to hold observations from an

underlying smoothly varying stochastic process. FDA application works in both a

parametric and a non-parametric setting. Using a parametric framework one usually

assumes that the underlaying process is a member of a specific class of functions,

eg. Gaussian [122], Dirichlet [236], Poisson [147] or some other generalization of

point-processes (eg. Cox processes) [40; 26]. Under a non-parametric framework

one directly usually utilizes a spline- [254] or a wavelet-based [115] representation

of the data. Nevertheless irrespective of the framework used as stated by Valder-

rama: “approximations to FDA have been done from two main ways: by extending

multivariate techniques from vectors to curves and by descending from stochastic

processes to real world” [317].

In particular if one considers a smooth 1 function Y (t), t ∈ T , if E{Y (t)}2 <
∞ and E{

∫
Y 2(t)dt} < ∞, Y is said to be squared integrable in the domain T .

Additionally if one assumes that the instances of function Y , ie. a functional dataset

Yij , define a vector space in L2[0, 1] that space has a vector space basis spanning it.

A smooth random processes Y can be defined to have a mean function:

µY (t) = E[Y (t)] (3.1)

1Contrary to more rigorous definitions of smoothness, here smoothness in relation to a dataset’s
properties is defined as possessing “one or more derivatives” [254]. This assumption is in place as
it allows for a minimum penalization in terms of roughness.
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and a symmetric (CY (s, t) = CY (t, s)) auto-covariance function as:

CY (s, t) =Cov[Y (s), Y (t)] (3.2)

=E[(Y (t)− µY (t))(Y (s)− µY (s))]. (3.3)

Taking advantage of the symmetric and positive semi-definite nature of the covari-

ance function CY (s, t) its spectral decomposition follows by Mercer’s theorem [207]

as:

CY (s, t) =
∞∑
ν=1

λνφν(s)φν(t), (3.4)

where λ1 ≥ λ2 ≥ ... ≥ 0 are ordered eigenvalues of the operator CY with
∑∞

ν=1 λν <

∞ (effectively restating its semi-positive definite nature and ensuring that the op-

erator CY has a finite trace respectively) and φν ’s are the corresponding and by

definition orthogonal, eigenfunctions in L2([0, 1]× [0, 1]). Finally given Eq. 3.4, the

Karhunen-Loeve expansion of the observations Y [121], registered over a common

finite grid indexed by i and j for the curve and time index respectively, is presented

as:

Yij = µY (tij) +
∞∑
ν=1

ξiνφν(tij) + εij (3.5)

where ξiν is the zero-meaned functional principal component score with variance

proportional the corresponding λν ; φν acting as the basis for the space spanned by

Yij .

Typical functional datasets are collections of curves [255; 11] and shapes [162]

but also surfaces [281], general three dimensional objects [174] or even more high-

dimensional objects [71; 237] are increasingly considered. It is safe to say that with

the increased use of real-time measurement instruments (and data storage resources)

dataset of functional forms will become increasingly more common [65]. Intrinsically

the main attribute that enables a dataset to be considered functional is that the data

themselves are registered on a continuum, that usually being time or space [257].

More “exotic” continua like acidity (pH scale) or molecular mass [170] have already

been considered, as micro-array data offer abundance of readings. The current thesis

mostly deals with simple one-dimensional instances that are presented in the form of

curves, the continua in question being time (in the case of F0 curves), and pH (in the

case of proteome profiles). Nevertheless as shown in certain cases the generalizations

from curves (1-D objects) to surfaces (2-D objects) can be relatively straightforward;

an example being the speech spectrograms that are shown in section 2.1.

Functional objects have an internal structure which can prove both restric-

tive and concurrently supportive to the practitioner’s insights. On the one hand,
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arbitrary permutations of a function’s values are invalid sample transformations as

they distort the continuity of the underlying function model. On the other hand,

differentiating a sample can capture the sample’s rate of change in a similar man-

ner to differentiating a displacement function results in an object’s speed [258]. In

general the fact that the space over the dataset is indexed, allows not only for the

data to be interpreted over that space but also enables a practitioner to transform

the dataset by exploiting that space’s physical properties. For example the study of

growth curves has often been conducted with respect to the first-difference of the

data as this transformation exemplifies changes in growth patterns [254].

Pioneering the concept of FDA was Rao, who first defined a statistical frame-

work where a sample of curves is viewed as the realizations of a smooth stochastic

process [261; 262]. The usual smoothness assumptions when working with functional

data is that observed longitudinal data are twice differentiable [254]. Approximately

at the same time as Rao, Tucker [315] also introduced the idea of a function as the

fundamental unit of statistical analysis. From there on most of the functional data

analysis literature follows the evolution of spline literature (eg. [6; 60]), only to

reach the early 80’s when Ramsay published his eponymous article “When the data

are functions” [257]. At roughly the same time (late 70’s) the works of Diggle [67]

and Ripley [269] on spatial patterns began formulating the spatial point processes

literature that gave raise to subsequent point-processes in FDA. Ramsey’s early

work was later extended and established by the works of Rice and Silverman [267]

and Ramsey and Silverman [254] in an autonomous field of statistical study and

has lead to the modern day definition of functional data as given by Ferraty and

Vieu: a random variable x being called functional variable if it takes values in an

infinite dimensional space (or functional space) [83]. Therefore the general form of

a functional linear model assuming a function-valued response variable Y (s), s ε S,

conditional on the functional response variables X(t), t ∈ T takes the form:

yi(t) = µy(t) +

∫
T
β(t, s)xi(s)ds+ εi(t) (3.6)

εi being independent and zero-meaned random errors and β(·, ·) being a square

integrable bivariate regression function [7]. As it will be shown in later sections the

current work does not examine cases of functional response variables explicitly. It is

based on the orthogonal decomposition of response sample curves as it is presented

in Eq. 3.5. This particular format of functional regression was explicitly formulated

in this way by Faraway [78], with the extensions to the case of a multi-level design

following in early 2000’s [252; 72]. Nevertheless the idea behind functional regression

was at least partially presented by Massy during 60’s and his work in Principal

Component regression [326].
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In the following sections we outline a standard methodology when working

with functional data [254]. We start with smoothing and interpolation, we then

conduct data registration (feature alignment) and finally progress into exploring

a dataset variability using dimensionality reduction (feature extraction) as well as

functional regression techniques (predictive and explanatory analysis).

3.1 Smoothing & Interpolation

When handling functional data one mostly works under the assumptions that he has

either a sample of sparse (and possible irregularly sampled) observations [337], or a

sample of densely/perfectly observed discretised instances of smooth varying func-

tions [11]. In both cases, one does assume though the existence of a smooth generat-

ing function w such that the observed dataset is a collection of function realizations

and that the observed “deviations” from smoothness are due to measurement errors

and/or simply noise. It is essential therefore as a first step to ensure the sample

curves wi are “smooth”. We recognize three different, though not totally unrelated,

techniques to achieve this: localized kernel smoothing [57], smoothing splines [115]

and wavelet smoothing [8]. The current work employs almost exclusively the first

technique.

Examining kernel smoothing one encounters the notion of a kernel, its use

is directly analogous with the use of windowing examined earlier in section 2.1. A

kernel is a non-negative real-valued integrable function K satisfying the following

two requirements: ∫ +∞

−∞
K(t)dt =1 and (3.7)

K(−t) =K(t) for all values of t. (3.8)

A kernel’s bandwidth b plays a key role in kernel density estimation; it can be viewed

as analogous to the characteristic length scale of a Gaussian process [263] and it in-

formally encodes how far does the correlation between the points of the continuum

over the points are measured upon extends. The most basic kernel smoother is the

Nadaraya-Watson kernel smoother; it is effectively a weighted mean µNW , where the

weights are given by the kernel function K and bandwidth b used. Therefore evaluat-

ing y(ti) for a given ti involves the simple calculation of µNW (ti) =

∑L
i=1 K

(
ti−t
b

)
y(t)∑L

j=1 K
(
tj−t
b

)
[62]. Gasser and and Müller [96] having proposed a similar smoother with better

properties as: µGM (ti) = 1
b

∑L
i=1

∫ si
si−1

K(u−tib )y(t), where si = xi−1+xi
2 . General-

izing these and in line with Chiou et al. [57] we currently use a locally weighted

least squares smoother, SL, in order to fit local linear lines to the data and produce

31



smooth data-curves interpolated upon a common time-grid of L points on a dimen-

sionless interval [0, 1]. We essentially take a weighted average of the points laying

within the smoother’s bandwidth for a given point t. In particular the form of the

(Gaussian) kernel smoother used is the following:

SL{t; b, (ti, y(ti))i=1,...,L} = (3.9)

argmin
α0

{min
α1

(
s∑
i=1

K(
t− tj
b

)[y(ti)− {α0 + α1(t− tj)}]2))}

the actual kernel used being the Gaussian kernel function K(x)

K(x) =
1√
2π
e−

x2

2 (3.10)

Here, the value of the curve at a point t found at the center of a smoothing window

[t − b, t + b] is calculated to equate the intercept of the weighted regression line

among the data of the smoothing window. The fixed parameter bandwidth b, which

corresponds to a tuning parameter, is estimated using cross-validation [149]. Qual-

itatively, smaller values of b come to the expense of high-variability where larger

values of b to the expense of higher bias as broader smoothing windows incorporate

information from possibly “unrelated” distant points.

Cross-validation is done in the following way: For a given bandwidth b and

for each curve wi in our dataset we produce a smoothed estimate for a curve wi

while randomly excluding one of the wi readings beforehand, wi(trandom). We then

record the “reconstruction” error associated with this smoothed curve, wi(trandom)−
ŵi(trandom), and associate a residual sum of squares (RSS) cost with each given value

of b we test for. The value resulting in the smaller RSS cost is the one we carry

forward in our analysis.

It is important to note that by employing a locally weighted least squares

smoother we take account of a second issue that might arise during data recording;

irregular sampling. While ideally all sample curves are sampled over the same exact

dense grid of points, this is often not the case. In reality missing values (treated as

MCAR 2), non-equidistant sampling points, and/or different sampling rate might

result to an irregularly sampled dataset. An irregularly sampled dataset can be

problematic when using techniques that rely on the number of readings available

(eg. functional principal component analysis).

Therefore by setting the number of estimation points t, L within the context

of the smoother SL, we provide the equidistant grid over which our smoothed reading

will lie. As with the case of b, L the number of grid points is found empirically 3.

2Missing Completely At Random
3In practice one sets L equal to the expected number of readings per case for the sample at
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Arguably the choice of L is less standardized; nevertheless given that one does

not use “extreme values” that would result in finite sampling effects, this choice

should not affect the analysis in any significant manner [117]. The kernel function

K is set to the Gaussian kernel function K(x) = 1√
2π
e−

x2

2 . Common alternative

kernels are also the Epanechnikov (K(x) = 3
4(1−x2)δ|x|<1) and the triangular kernel

(K(x) = (1 − |x|)δ|x|<1) [149]. This is in a way analogous with windowing a signal

to conduct short-time analysis. Fitting a weighted linear model within the kernel’s

window corresponds roughly to the windowing idea that the signal/sample within

that window is stationary and the model’s intercept is a good estimate for the overall

behaviour of the windows sample.

As an alternative to kernel smoothing, Guo [115] presented a test-case where

the smoothing framework employed a generalization of smoothing splines [173]. The

basic idea behind the use of spline functions is that one breaks the sample into

smaller adjacent sub-samples at some particular break-points (or knots) and fits a

different polynomial in each region 4. In the case of standard spline smoothing,

the number of knots, the number of basis functions and the order of the spline

employed affect the final result; the computation of smoothed curves laying on

the quantification of the roughness of the smoothing. Koopman & Durbin put

smoothing splines into state space form where a univariate Kalman filter smoother

algorithm provided the fitted smoothing spline [173]. Filtering then constituted

recursively estimating the values of the state equation of the associated multivariate

Gaussian linear state space model at the predetermined time-points t. Interestingly

under this paradigm while originally the curve (or more generally the system at

hand) is considered time-invariant, one can directly use time-variant components to

encapsulate non-stationarity by requiring certain diffuse priors. This is definitely

a welcome functionality but we note that for most phonetics analysis applications

syllable phonemics are considered to be stationary along their recorded trajectories.

A third alternative is based on the notion of multi-resolution signal decom-

position as this is implemented by using wavelets [202]. Wavelet estimators use

projections onto subspaces of L2[0, 1] to represent successive approximations of the

dataset but in contrast with a standard orthogonal basis (eg. Fourier polynomi-

als) that might be localized only in a single domain (eg. Fourier polynomials are

localized in frequency) wavelets can be localized both in time and in frequency.

Therefore as presented by Morris & Carroll one can use wavelets (and in particular

the Discrete Wavelet Transformation - DWT) to smooth the original noisy func-

tional data [218]. Under this paradigm, where clearly one must use a continuous

hand.
4An extreme case of knot usage is associated with the concept of a smoothing spline where each

point of the sample is used as a knot, smoothing being achieved by quantifying the roughness of
the resulting function

∫
[D′′y(t)]2dt [254].
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mother-wavelet, smoothing is achieved by thresholding; certain wavelet coefficients

are “thresholded” in order to exclude parts considered to be noise.

As with the two techniques proposed above, while extremely flexible, wavelet

smoothing is in its core a semi-parametric technique. In the case of wavelets smooth-

ing the “parameter” being the choice of the original mother wavelet, in the case

of spline smoothing, the type of splines and the order employed, and in the case

of kernel smoothing the “parameter” being the choice of kernel and bandwidth.

“Purely” parametric techniques have also been employed; a number of other para-

metric bases have been at times suggested (Fourier polynomials, step-functions,

power bases [254]) but they have not enjoyed wide spread use in the functional

data literature. Nevertheless a parametric technique [93] is employed in the last

section based on the notion of the two dimensional discrete cosine transform (DCT)

[299; 272].

Ultimately the use of kernel, splines or wavelets estimators are techniques

to a non-parametric regression problem; given a signal y(t) they return ysmooth(t),

such as:

ysmooth = Hy, (3.11)

H being the projection or hat matrix. On a conceptual level one might argue that

smoothing is a dimension addition as it generates readings across a whole continuum

that was beforehand unpopulated. Numerically, both spline and wavelet smoothing

have been reported to be more computationally efficient than using kernel smoothing

[331; 43; 308]. Nevertheless for a phonetic related application the additional compu-

tational cost of kernel smoothing does not hinder further analysis. Kernel smoothing

gives a semi-parametric way of directly smoothing our sample in a straight-forward

manner that is easily adaptable to specific problem mechanics we may wish to adhere

to (eg. not smoothing edge readings). An additional advantage of this approach is

that we are not making an explicit assumption about the underlying form of the

function fitting the data at hand. While this might be problematic if one wishes

to have specific mathematic expressions describing the smoothed curve, in applied

terms that is not usually an issue.

3.2 Registration

Registration is probably one of the most intrinsic pre-processing procedures; as

humans we conduct registration procedures constantly and effortlessly. The need

to register stems from the fact that there might be a misalignment between the

chronological time we know a signal (or better yet a process) to evolve and the real

time we perceive it evolving. Our word recognition mechanism is a prime example:
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while no new single utterance we ever listen to is completely identical in terms of

intensity or tempo with one we have heard before, we nevertheless understand the

majority of the spoken words directed to us because we can associate them with a

“reference” word we already know. Thus, common patterns between what we hear

and what we have already heard allow us to deduce what is communicated (usually).

These common patterns are recognized through the registration (or aligning) of the

query signal to some reference signal we already know the meaning of. Sakoe and

Chiba’s seminal work on registration addresses the same problem where it focused

on eliminating “fluctuations in a speech pattern time axis” [279]. It importantly

was one of the first references introducing the concept of a warping function; “a

model of time-axis fluctuations in a speech pattern” where it could be “viewed as a

mapping from the time axis of pattern A onto that of pattern B”. Registration for

functional data tries to achieve the same; align the data by mapping all of them onto

a common chronological time-scale facilitating statistical inference. Effectively what

we are trying to do is decipher the shape of the function where by shape we mean,

as Le & Kendall postulate, “what is left when the effects associated with translation,

scaling and rotation are filtered away” [185]. As it will be presented later (Chapt.

5), this will allow one to formulate models that account concurrently for variation

that can be attributed to registration differences (phase), as well as deterministic

variation attributed that is independent of ”timing effects” (amplitude).

Given a functional dataset we recognize variation in intensity and tempo

to correspond to amplitude and phase variations respectively (Fig. 3.1). We need

to therefore register the dataset onto a common time-scale. The obvious way of

registering a dataset is through landmark detection. Landmarks are “points of

interest” [294]. Assuming a density function D, calculating some property of interest

within a neighbourhood Ω, a point x ε Ω is consider a landmark L if:

L = {x| ||D(x)|| > Dµ + λDσ ∧ ||D(x)|| ≥
∣∣∣∣D(x′)

∣∣∣∣ ∀(x′)εΩ}
where Dµ and Dσ are the average and the standard deviation of the density function

D over the entire space X and λ is a user-defined threshold. In practical terms, a

point x is a landmark if it exceeds some threshold given by Dµ + λDσ and is larger

or equal of all other points x′ in it’s neighbourhood Ω (eg. the amplitude peaks in

Fig. 2.3) Having found the landmarks, registration transforms the individual time

so the landmarks appear synchronized. Formally given a query curve wi and refer-

ence curve wj where a landmark feature appear at times ti,landmark and tj,landmark

respectively, registering wi onto wj consists of finding the warping function hi such

that the warped instance of wi, w
∗
i :

w∗i (t) = wi[hi(t)] (3.12)
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allowing (given that the amplitude characteristics of the sample at hand are approx-

imately equal among the realizations examined)

w∗i (tj,landmark) ≈ wj(tj,landmark) (3.13)

or as put forward by Ramsay and Silverman the two curves “have more or less iden-

tical argument values for any given landmark” [254]. Here hi the warping function,

follows the same exact properties as put forward by Sakoe and Chiba [279] but this

time under a functional rather than a discrete framework:

• Strict monotonicity : For t1 < t2 where ti ∈ [0, T ], hi(t1) ≤ hi(t2)

• Boundary conditions: hi(0) = 0 and hi(T ) = T

• Continuity conditions: |t2 − t1| < δ ⇒ |hi(t2)− hi(t1)| < ε, ε > 0 and δ > 0

The basic landmark definition outlines the main “problem” of using land-

marks; they are not rigorously defined or guaranteed to be detectable; occasionally

they can be truly absent. In such cases registration is either wrong (as we would

align incompatible characteristic) or simply impossible (as there would be nothing

to align for in the first place). Landmark registration is highly parametrized by

the successful detection of landmarks. A more robust measure would be a met-

ric identifying phase variation utilizing the whole shape of the objects aligned; for

example least squares criterion [254] utilizing the Procrustes method [256]. In con-

trast with landmark registration this is an iterative procedure aiming to minimize
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Figure 3.1: Illustration of three different types of variation in functional data. The
left subplot shows four data-curves displaying only phase variations. The central
subplot shows four data-curves displaying only amplitude variations and the right
subplot shows four data-curves displaying concurrent phase and amplitude varia-
tions. Here the peak of the “Gaussian bump” serves as an obvious landmark.
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the registered curves sum of squares errors REGSEE where that is defined as:

REGSEE =
N∑
i=1

∫
T

[wi(δi + t)− µ̂w(t)]2ds (3.14)

=
N∑
i=1

∫
T

[w∗i (t)− µ̂w(t)]2ds (3.15)

where δi is the shift related to each point of wi and µ̂w is the empirically estimated

sample mean calculated prior to each Procrustes step. Following this rationale, in

each iteration we minimize the integrated sum of square differences between the

warped objects w∗ and the sample mean µ̂w. This is clearly more robust in the

misspecification of landmarks but it does make the restrictive assumption of treating

all discrepancies between any two given objects wi and wj as products of phase

variations. In a way it “warps too much”; it does not incorporate a way of penalizing

excessive phase distortion. A number of different approaches to address this; most

techniques follow the idea of minimizing a penalizing squared error criterion where

the penalization is relative to the squared norm of the warping function h [256]

and/or decomposing the sample in terms of splines where the spline coefficients

are estimated by combining information from the whole sample [98]. Both time-

registration techniques can be utilized not only in terms of the dataset y but also

with its derivatives Dy. Dy is not only used to highlight topological characteristics

(eg. peaks in the case of landmark registration) but also for optimization purposes

(eg. commonly in Procrustes-like methods [254]).

The current work examined two different non-parametric techniques of curve

registration: 1. pairwise synchronization [304] and 2. area under the curve synchro-

nization [340]. Both methodologies put forward a number of additional assumptions

regarding the nature of the functional dataset W and the corresponding warping

function H. In addition to those, two complimentary curve-registration frameworks

are show-cased; one based on self-modelling warping functions [98] and one based on

the square-root velocity function of the curve samples [209; 176]. We need to stress

that despite our critique on the short-comings of landmark registration, for most

alignment procedures landmark registration, where usually landmark detection has

been done manually by an expert user, serves as benchmark for these non-parametric

techniques [168; 304]. If clear and consistent landmark features such as local ex-

trema or inflection points are present in a dataset it is reasonable for them to be

exploited; such an approach being forwarded by the concept of “structural average”

[168]. Registration studies using functional data analysis in phonetics have already

taken advantage of similar characteristics such as the onset and offset of accented

vowels in the sentence [113] or the kinematic zero-crossings, time points where the

tongue tip is about to move away from the position extrema, during speech [188].
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Nevertheless they have also identified certain shortcomings; such having too short

trajectories to identify reliable landmarks [114] or being considerably variable to the

point of rendering derivative readings uninformative [171]. These giving us further

motivation to explore a “landmark-” and “derivative-” free approach.

3.2.1 A non-linguistic dataset

For the next section only we introduce a non-linguistic dataset to showcase dif-

ferences between the presented time-synchronization frameworks. This is because

the complex covariate structure of our linguistic datasets can make difference in

registration hard to immediately visualize. The Flour Beetle Dataset [148] is a com-

prehensive dataset of 849 growth curves of flour beetle from larvae to pupae; the

average length of the larval period, our T was 17.56 days. We use a sub-sample of 60

random selected growth curves to keep the illustration straightforward. Contrary to

Irwin & Carter’s approach of using a smoothing spline fit we use a simple Nadaraya-

Watson smoother where the bandwidth b was evaluated using cross-validation to give

smooth initial curves, as this is the procedure that will be used in our later data

analyses.

3.2.2 Pairwise synchronization

Pairwise (curve) synchronization in a broad sense works by employing the Law of

Large Numbers [62]; if one averages over the 1-to-1 random mappings of a query

curve yi against a sufficiently large sample of reference curves yj ’s, the expected

mapping will be the global mapping of the query curve against the reference time of

the sample of curves Y (Eq. 3.19). Formally by utilizing the formulation presented

by Tang & Müller [303] one can introduce two types of functions, wi and hi; wi and

hi are associated with our observed curve yi , i = 1, . . . , N that is the i-th curve in

the sample of N curves. As such for a given curve yi, wi is the amplitude variation

function on the domain [0, 1] while hi is the monotonically increasing phase variation

function on the domain [0, 1], such that hi(0) = 0 and hi(1) = 1, these being the

same properties put forward by Sakoe and Chiba [279].

One could distinguish between deterministic and random phase variation.

Both can occur within certain experimental settings. Nevertheless the work pre-

sented focuses exclusive in the random case.

For generic random phase variation or warping functions h and a sample

time domain [0, T ], Ti being the duration of the i-th curve, we consider time trans-

formations u = h−1( tT )) from [0, T ] to [0, 1] with inverse transformations t = Th(u).

Then, the measurement curve yi over the interval t ∈ [0, Ti] is assumed to be of the
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form:

yi(t) = wi(h
−1(

t

T
))⇔ wi(u) = yi(Thi(u)) (3.16)

where u ∈ [0, 1]. As such, a curve yi is viewed as a realization of the amplitude

variation function wi evaluated over u, with the mapping h−1
i (·) transforming the

scaled real time t onto the universal/sample-wide time-scale u as per Eq. 3.12.

Because hi is a piecewise-linear function, if one views hi as just the linear

interpolation of p predetermined knots (ζ1, . . . , ζp) and given that hi has to follow

specific end-point assumptions the whole function hi is reduced into estimating

p spline coefficients. Complementary to that, wi, aside the obvious smoothness

assumption, is assumed that is of the form:

wi(t) = µ(t) + δVi(t) (3.17)

where µ is a smooth bounded twice differentiable fixed function and importantly Vi

is a smooth random trajectory such that:

• E(Vi(t)) = 0 and

• Vi, V ′i and V ′′i are all bounded by a constant C1 ∈ (0,∞)

Therefore for any t1 and t2 in [0,1], if t1 < t2 then it exists a pair ω1 and ω2 in (0,∞)

such that if ω1ω2 ≤ 0 any valid pairwise warping function gk,i(t) = hk(h
−1
i (t)) has

to satisfy ω1 ≤ (g(t1) − g(tt2))/(t1 − t2) ≤ ω2. Thus we ensure the statistical

identifiability of model (Eq. 3.16) by the exclusion of essentially flat amplitude

functions wi for which time-warping cannot be reasonably identified. Also, it encodes

the assumption that the time-variation component reflected by the random variation

in hi asymptotically dominates (but does not account wholly) the total variation.

This is a very important modelling assumption as it dictates the interpretation of

the samples at hand.

More specifically in computational terms if one defines the pairwise warping

function gk,i(t) as the 1-to-1 mapping from the i-th curve time-scale to that of the

k-th (Fig. 3.2) and that the inverse of the average gk,i(·) (Eq. 3.21) for a curve i

is the curve yi’s corresponding warping function hi. hi is therefore a map between

individual-specific warped time to absolute time [304]. Because gk,i(·), is a time-scale

mapping, it has a number of obvious restrictions on its structure. Firstly, gk,i(0) = 0

and gk,i(1) = 1. Secondly, it should be monotonic, i.e. gk,i(tj) ≤ gk,i(tj+1), 0 6 tj <

tj+1 6 1. Finally, E[gk,i(t)] = t. This final condition is the one used to ensure we

can obtain a final estimate for h−1
i as:

h−1
i (t) = E[gk,i(t)|hi(t)] (3.18)
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with an equivalent finite sample version being:

ĥ−1
i (t) =

1

m

m∑
k=1

ĝk,i(t), m ≤ N (3.19)

These theoretical requirements of the estimation of pairwise warping functions gk,i

in practical terms mean that: 1. gk,i(·) needs to span the whole domain, 2. we

can not go “back in time” mapping a time-point tj at a time after the one that a

time-point tj+1 was mapped at and 3. the time-scale of the sample is the average

time-scale followed by the sample curves. With these restrictions in place we can

empirically estimate gk,i(·) as ĝk,i(t) = argmingD(yk, yi, g) where the “discrepancy”

cost function D is defined as:

Dλ(yk,yi, g) = E{
∫ 1

0
(yk(g(t))− yi(t))2 + λ(g(t)− t)2dt|yk, yi}, (3.20)

λ being an empirically evaluated non-negative regularization constant. Intuitively

the optimal gk,i(·) minimizes the differences between the reference curve yi and the

“warped” version of fk subject to the amount of time-scale distortion produced on

the original time scale t by gk,i(·). Having a sufficiently large sample of m pairwise

warping functions gk,i(·) for a given reference curve yi, the empirical internal time-
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Figure 3.2: Illustration of pairwise warping function. The left subplot shows gik with
respect to an identity warping function (perfect synchronization between curves);
the piece-wise linear nature of it is evident. The right subplot shows the query
curve’s 1-to-1 mapping into the reference curve. The query curve “evolves slower”
than the reference curve during its first half.
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scale for yi is :

ĥ−1
i =

1

m

m∑
k=1

ĝk,i(t), (3.21)

the global warping function hi being easily obtainable by simple inversion of h−1
i .

One can note that this framework is almost directly generalizable in the case of a

two-dimensional functional objects that has a single relevant axis (See Sect. 6.2.1).

Fig. 3.3 shows an example of pairwise warping applied on a real dataset. It is

immediately evident that the growth curves appear more aligned when warped than

unwarped; the warping functions show small phase variations all across the spectrum

of T .

As a final note attention is drawn to the previous fact that estimation of gik

effectively is the estimation of the p predetermined knots for the piecewise linear

spline it represents. The standard literature does not appear to provide theoretical

results about the convexity of this optimization problem. The default implemen-

tation of this method (as implemented in the MATLAB package PACE [304]) relies on

BFGS. A second implementation of the optimization procedure, implemented by the

author of this thesis, employs Simulated Annealing. This random search method

has given solutions that are qualitative comparable with the ones provided by BFGS

but with a significant speed-up (∼ 25x). Preliminary investigation using the linear

approximation optimization algorithms (COBYLA [243]) provided results with an

even more significant speed-up (∼ 50x +).
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Figure 3.3: Illustration of pairwise warping of 60 beetle growth curves5. The left
subplot shows the unwarped sample; the middle subplot the warped sample and the
right subplot the corresponding warping functions.

5Warping was implemented in MATLAB using PACE version 2.16; it contains solver modifications
by PZH.
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3.2.3 Area under the curve synchronization

As the name suggests the area under the curve (AUC) time-registration defines the

concept of area under some n-dimensional curve and focuses on normalizing the

curve trajectory in a way that the area covered up to a certain point in the trajec-

tories of the sample curves is approximately equal. For that reason this approach is

also known as quantile synchronization [340]; this also alludes that the main analyses

types this approach is intended for, are the analysis of distribution functions [203] as

well as any other instance of data where the sample can be considered to represent

a density [64]. While the theoretical framework under which an AUC framework is

presented treats the data as being density functions, it is important to note that for

any (curve) sample where we can assume that the variation observed is dominated

by the “phase” variation, this AUC time-registration is applicable. An archetypi-

cal example of this is the examination of density functions; in that case the phase

variation is often considered a nuisance and we want to completely exclude it. Nev-

ertheless, the only question is if it is reasonable to assume that the differentiation

observed between the sample instances is due to phase alone or not. For example

when comparing microarray data [35], or protein population properties [170]; this is

a coherent way of interpreting variation because the observed amplitude differences

are due to the internal phase variation of the process observed and at least in theory

all external source of amplitudal variation are controlled for. On the contrary for

generic phonetic data this approach is almost surely an oversimplification; interest-

ingly though in the case that one has well-defined functional shape-forms (as in the

cases of tonal languages) this assumption might hold true.

Similar to the way that pairwise synchronization works by averaging over a

sufficient number of 1-to-1 mappings of pairwise synchronization curves gik, AUC

works in the premisses of quantile averaging [92]. In particular given a sample of

density functions yi, i = 1, . . . , n, where as before yi(t), t ε [0, T ] and additionally

yi(t) ≥ 0, ∀ t ε [0, T ] and
∫ T

0 yi(t)dt = 1, we assume we can work with the smoothed

functions. We then calculate the corresponding cumulative distribution functions

(CDFs) estimates Ỹi and then by simple inversion we get their quantile functions

Ỹ −1
i . These quantile functions are then treated as synchronization functions and the

functional averaging takes place in their domain. In particular the quantile functions

can be seen as directly analogous to the inverse warping functions h−1 presented in

the pairwise synchronization framework above.

Taking this into account the quantile-synchronized distribution function y⊕

is estimated as:

y⊕(t) = φ{ 1

n

n∑
k=1

Ỹ −1
i }, t

′ε[0, T ] (3.22)
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Figure 3.4: Illustration of Area Under the Curve warping. The left subplot shows 25
slightly noisy “Gaussian bumps” that differ mostly due to their initial displacement
from the beginning of the recording time. While the signals have different ampli-
tudes, these are treated as independent of their phase variations (and are effectively
ignored). The central subplot shows exactly the strongly piece-wise linear nature of
warping functions h where they dictate the time that “bump” should occur. The left
subplot shows the warped sample curves; all the curves have effectively “collapsed”
on the timing followed by F−1

0 .

where the density warping map φ : Y −1 7→ y maps the synchronized time t′ to the

natural time t over which the processes are observed. The question that remains

to be answered in that of the estimation of the actual time-registration functions h.

Taking a step backwards we can define the sample-wide smooth quantile function

F0 as:

F−1
0 (t) = E{F−1} (3.23)

where each individual quantile function is modelled as:

F−1(t) = F−1
0 (t) + δ(t) (3.24)

meaning that if random smooth deviation function δ is zero-meaned then we can

estimate the sample estimate of F−1
0 (t) as:

F−1
0 (t) =

1

n

n∑
k=1

F̃−1
k (t). (3.25)

and ultimately means that the h−1 will be equal to δ plus the inverse of the identity

warping function (effectively no-warping) and any difference from absolute normally

will be due to F0 being away from an identity warping function. From there as before

simple inversion of h−1 will provide the final h estimates. Interestingly AUC can

be seen a non-heuristic version of the pairwise warping. In contrast with previously

mentioned methodology though, there is no explicit “warping function” formulation,
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and for that reason it is not based on the assumption of having piecewise linear

functions (despite the fact that it will eventually result exactly to that, eg. Fig. 3.4).

Nevertheless AUC will suffer from “underwarping” because it is overly restrictive in

regards with the sample variational assumptions it assumes; in particular because

it assumes phase variation should govern all observed differences and that phase

variation is calculated in terms of normalized cumulative density functions, small

differences that are unrelated to the actual warping can negate phase effects and

underestimate the final phase-variation effects (Fig. 3.5). Despite that though, it

presents a conceptually straightforward and computationally cheap way of warping

algorithm. As before we examine the performance of the algorithm in a standardized

real-dataset (Fig. 3.5); one can easily notice that the growth curves are minimally

warped. This expected as the normalized area under the curve corresponding to

each is not greatly different from one another. Furthermore initial growth rate

differences propagate their influence in later parts of the continuum T and result to

higher variability in the warped data Y changes in the start of the curve
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Figure 3.5: Illustration of area under the curve warping of 60 beetle growth curves6.
The left subplot shows the unwarped sample; the middle subplot the warped sample
and the right subplot the corresponding warping functions.

3.2.4 Self-modelling warping functions

The idea of self-modelling warping function is rooted in the work for Kneip & Gasser

and the concept of structural mean µ [168; 95]. In effect there one assumes that the

“structural points”, local extrema and inflection points, define a structural mean

curve and that the deviations from that curve are what one perceives in a sample’s

realization. Based on this the generative model of the sample of curves y becomes:

yi(t) = aiµ{h−1
i (t)}+ εi(t) (3.26)

6Warping was implemented in MATLAB by PZH.
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where as before h−1
i is the inverse warping function hi and ε are random errors such

that E{εi(t)} = 0. An additional caveat being a 6= 0 and E(a) = 1. Given this

generative model of a sample curves y, the idea of self-modelling warping functions is

that one can decompose a warping function h in terms of spectral-like decomposition:

hi(t) = t+

q∑
j=1

sijφj(t) (3.27)

where as before i = 1, . . . , n, t ∈ T and this time si are the zero-meaned score (or

weight vectors) dictating the effect carried from each component φi(t):

φi(t) = cTj β(t). (3.28)

However φ is not an eigenbasis because β(t) is a vector of B-spline basis functions;

thus allowing φ’s to effectively account of variability in different segments of T .

This acts as an attempt to “back-engineer landmark registration”[98]. This reverse-

engineering happens because intuitively one would expect that the landmarks follow

roughly at the same points and the variation (phase or amplitudal) between these

time points is irrelevant to the actual warping. Following that rationale, estimating

the spline knot-locations is actually related to estimating the landmark locations.

That is why E(s) = 0 after all; on average one would assume that the landmark

location would be stable, and the deviations from that location would be due to the

phase variations. If “nothing happened”, ie. sij = 0 for a fixed i, then the warping

function associated with that index i should be the identity function, t.

As before, a number of conditions are put forward to ensure identifiability of

Eq. 3.26 & 3.27:

• cjk ≥ 0, k = 1, . . . , p

• ||cj || = 1, j = 1, . . . , q

• C = (cjk)εR
q×p has a block structure such that: 1 ≤ K1 ≤ K2 ≤ · · · ≤ p + 1

where cjk = 0k<Kj ,k≥Kj=1

• cj1 = cjp = 0∀j

In effect those conditions ensure the sign of the resulting components, its norm,

its support and its boundary conditions respectively. With these restrictions in

place the actual cost function minimized by the time-registration step is the average

integrated square error between the estimated structural mean µ and the warped
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instance of the function yiw(t) defined as:

AISEn =
1

n

n∑
i=1

∫ b

a
[yi{hi(t)} − aiµ(t)]2h′i(t)dt (3.29)

where the functional structural mean is defined as :

µ̂(t) =

∑n
i=1 âiĥ

′
iyi{ĥi(t)}∑n

i=1 â
2
i ĥ
′
i(t)

(3.30)
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Figure 3.6: Illustration of self-modelling warping of 60 beetle growth curves7. The
left subplot shows the unwarped sample; the middle subplot the warped sample and
the right subplot the corresponding warping functions.

The main critiques regarding the performance of self-modelling warping func-

tions stem from their use of B-splines and their overall idea of a common structural

mean. Additionally as AUC synchronization beforehand, this framework follows the

concept that “all” variability is due to phase variations and that can prove quite

restrictive. In particular looking at Fig. 3.6 where essentially the first 60% of func-

tion space is collapsed on the structural mean, all of these issues are exemplified

immediately. First one sees that as there is an obvious inflection point in approx-

imately at .7T , we have no reason to believe or disbelieve that such an inflection

point actually exists in our data; especially given that most the raw data seem not

to exhibit such a point. Additionally almost the entire first half of sample Y ap-

pears collapsed on a common structural mean, again this might not be wrong but

it seems highly unlikely that all growth curves evolve on exactly the same way only

to reach an inflection point and then “fan out”. One might even argue that this

is an artefact of the whole warping process. This happening due to the fact that

all amplitude variation is assumed to be “phase related” and the structural mean

7Warping was implemented using the MATLAB functions provided by D. Gervini : https://

pantherfile.uwm.edu/gervini/www/programs.html
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is modelled by using B-splines: essentially what happens is that up until the inflec-

tion point all data are collapsed to the structural mean and then they “fan out” by

necessity because of their different values at times t = T . Let us stress that this

framework critique, and any other warping-related issue can not be assumed a priori

to falsify a framework (or justify it for that matter). Each framework has its own

different modelling assumptions; given one meets them, any difference is completely

justifiable.

3.2.5 Square-root velocity functions

Square-root velocity (SRV) based work is a differential geometry based model of

elastic curves [209]. Similar to the previous frameworks the curve sample is assumed

to be realization of the model:

yi(t) = ciw(h−1
i (t)) + εi (3.31)

c being a scaling constant, w being the underlying amplitude variation, ε being

random noise and h being the corresponding warping function. Importantly this

warping function is now viewed not only as a mapping but also as an orientation

preserving diffeomorphism on the unit interval where the function yi is assumed to be

observed [176]. Based on that the SRV framework effectively treats each curve yi as

being translation and scaling invariant and defines a continuous mapping Q : R→ R

such that:

Q ≡


dyi
dt√∣∣∣∣∣∣ dyidt ∣∣∣∣∣∣ if

∣∣∣∣∣∣dyidt ∣∣∣∣∣∣ 6= 0

0 if otherwise

This is effectively the square-root of the velocity (ie. derivative 8) function of our

original functional yi.

Going back now to the original space Y of functions yi and assuming v1, v2 ε

Ty(Y ), Ty(Y ) being the tangent space of Y one can define a corresponding mean in

the space. That metric being called the Fisher-Rao Riemannian metric and being

defined as the inner product:

〈v1, v2〉y =
1

4

∫ 1

0

v1(t)

dt

v2(t)

dt

1∣∣∣∣∣∣y(t)
dt

∣∣∣∣∣∣dt (3.32)

This warping-invariant metric while complicated does have the property that be-

comes a standard L2 metric under a SRV framework. As such one can define the

distance dFR(y1, y2) = ||q1 − q2|| and based on the isometric property of the warping

8The 2nd derivative informally considered as the torsion or curvature function.
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procedure define ||q1 − q2|| = ||(q1, h)− (q2, h)||. Given one can define the Fisher-

Rao distance between two warping functions as:

dFR(h1, h2) = cos−1(

∫ 1

0

√
h1

dt

√
h2

dt
dt) (3.33)

as well as the Karcher mean of h to equal:

hKm = argmin
hεH

n∑
i=1

dFR(h, hi)
2 (3.34)

and the Karcher mean of the SRV transformed orbits [µ]n in the space S = L2/H

to equal:

[µ]n = argmin
qεS

n∑
i=1

d(q, qi)
2 (3.35)

As Kurtek et al. note the “Karcher mean [µ]n is actually an orbit of functions,

rather than a function”[176]. This means that we are actually looking to find a

specific element µn of this mean orbit that would ultimately be our “mean” warping

function. To do this we perform a two-stage procedure. First we recognize that

for each qi its corresponding hi should be minimized ||q − (qi, h)|| where q is any

element of the orbit [µ]n. Then having found hi’s one can compute the mean hi,

hKm using Eq. 3.34 and then subsequently using the isometry relation mentioned

above to find the center of the orbit as µn = (q, h−1
Km). This µn will serve as our

template in L2.

Having found that central orbit computing the actual warping functions hi

are done by solving hi = argminqεS ||µn − (qi, h)||. We essentially align the individual

warping functions to match our template µn. Finally given we estimated the warping

functions we use them to align our original data yi.

The important advantage of this approach is its flexibility on multidimen-

sional objects. Applications to 3-D objects have already appeared and appear com-

petitive to other custom approaches [174; 177]. Theoretically SRV-framework defines

an excellent approach where the metric used is scale-, translation-, rotation- and re-

parametrization- invariant. The main critique is that is actually so successful that

it “over-warps”. By that we mean that it fails to allow for multiple hi and as such

“collapses” the data in a common time-template. As a result if one then tries to

analyse these warped data instances the differences among them will be not only

due to random amplitude variations; the warped data will still contain phase vari-

ations and meaningful statistical inference will be difficult. As a general comment

this can work in opposite direction also, if one enforces all the warped data on a
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single trajectory, this extreme alignment will also enforce spurious phase variations.

Interestingly looking at the Fig. 3.7 one immediately spots this tendency to en-

force common warping templates in all data. The warping functions plots shows a

handful of rather distinct patterns what are assumed to be common among certain

instances. This results to “under-synchronized” curves in comparison with all other

methodologies examined.
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Figure 3.7: Illustration of square-root velocity warping of 60 beetle growth curves9.
The left subplot shows the unwarped sample; the middle subplot the warped sample
and the right subplot the corresponding warping functions.

3.3 Dimension Reduction

As mentioned earlier, functional data can be considered as extending multivariate

techniques to a functional domain [64]. Aside the obvious size-constraints, it is pos-

sible that we are encoding redundant, unrelated or even misleading information in a

high-dimensional dataset. It is therefore to a modeller’s benefit to extract features

or modes of variations that are informative and less prone to corrupted informa-

tion. Especially in the cases of two- or three-dimensional data the visualization

of a complex dataset is by definition harder than that of a simple dataset and for

that reason one would strive to have a more succinct dataset to display; moreover

even higher dimensional datasets might have an adequate, in terms of variation ex-

plained, representation in two or three dimensions thus allowing their previously

impossible visualization. Finally exactly because of the redundancy of information

we are expecting, a reduced dimension representation of the dataset could be used as

a surrogate dataset for the original high-dimensionality dataset analysed, as not only

would it present an obvious “space-complexity” advantage but it could potentially

“filter” unstructured information out of original dataset.

9Warping was implemented using the R package fdasrvf version 1.4.1.
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Dimension reduction is based on the notion that we can produce a compact

low-dimensional encoding of a given high-dimensional dataset. The current work

utilizes one main methodology to achieve this task: Functional Principal Compo-

nents Analysis (FPCA) [121]. FPCA is inherently linear and unsupervised [99]; also

it is known to be used in FDA on a number of different application fields. By lin-

ear one means that the dataset at hand lies close to a linear subspace and such an

accurate approximation of the data can be obtained by using a coordinate system

that spans that linear subspace alone [17]. As such in the case of FPCA the original

zero-meaned dataset Y of N observations is assumed to be approximated by the

form:

αν,n =

∫ T

0
φν(t)yn(t)dt (3.36)

where φν(t) is the functional principal component of the ν-th order and αν,n is the

corresponding FPC score where as in Eq. 3.5, V ar(αν,n) = λν . These scores be-

ing the projections of the dataset Y into the coordinate systems defined by their

respective components or in layman’s terms the mixing coefficients dictating “how

much” of each components is used to reconstruct the i-th instance of sample Y . In

contrast with linear methods, the archetypal non-linear (but still unsupervised) di-

mension reduction algorithm is that of kernel PCA [284], a number of other popular

non-linear algorithms (eg. Locally linear embedding (LLE) [275] and Semi-definite

Embedding (SDE) [323]) can also be cast as kernel PCA [99]. In brief in the case of

kernel PCA each point Yi of the original data Y is projected onto a point ψ(yi) by

employing a non-linear transform ψ(·). Then “standard” PCA is performed at that

possibly high-dimensional domain; while we will not explore this in any detail, we

need to stress that the whole “trick” behind kernel PCA is that one does not need

to explicitly compute ψ(Yi) but rather to compute the ψ(Yi)
Tψ(Yj) directly through

the use of a valid kernel K(·, ·) such that K = ψ(Yi)
Tψ(Yj). As mentioned FPCA is

unsupervised; by that ones means that there is no prediction variable Ŷ (as it would

be for instance in the case of linear regression) that it can be used as a “supervi-

sor” indicating the goodness of the solution. On the contrary if for example one

had access on some notion of class information in forming the projection, then that

information would be beneficial because it would allow informed within-class co-

variance estimates that would themselves inform the across-class sample covariance.

Fisher’s Linear Discriminant analysis is a typical example of a supervised linear di-

mensionality reduction algorithm [17]. As final note, a problem we have re-iterated

through the text, is that of the selection of the number of dimensions to retain. This

is still an open problem but it is effectively a model selection problem addressed by

multiple researchers [141; 208]. The basic solutions stem by reformulating the di-
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mensionality determination task as the optimization of an equivalent information

criterion 10; these Information Criteria materialize even in simple truncation-based

heuristics (eg. the broken stick model). More formally though the work of Tipping

& Bishop in Probabilistic PCA serves as the back-bone framework for this dimension

determination tasks in some cases [309].

3.3.1 Functional Principal Component Analysis

Castro et al. [51] work is one of the first to formalize the concept of dimensionality

reduction via covariance function eigendecomposition for functional data as it was

first presented on Eq. 3.4. This, as with the standard PCA, provides not only a

convenient transformation for dimensionality reduction but also as a way to built

characterizations of the sample’s trajectories around an overall mean trend function

[337]. The functional principal components act as the building blocks of our sample.

Given a vector process Y = (y1, y2, .., yp)
T , where y1, y2, ..., yp are scalar vectors, an

expression of the form:

Ŷ = M +
m∑
ν=1

ανZν(t), (3.37)

is called a m-dimensional model of Y , where M denotes the mean vector of the

process (M = E{Y }), Z1, Z2, ..., Zm are fixed unit length p vectors and α1, α2, ..., αk

are scalar variates dependent on Y. Where the mean squared error S2
k = minE{||Y −

Ŷ ||} is minimized by the vectors Zi then Ŷ is called the best m-dimensional linear

model for Y .

If a process Y (t) is observed at p distinctive times t1, t2, ..., tp it then yields

the analogous random vectors y(t), describing the stochastic process Y = (y(t1),

y(t2), ..., y(tp))
T , fitting perfectly with the theoretical notions of longitudinal data

being a variation of repeated measurements. Returning to the original notion of a

stochastic process Y (t), the m-dimensional linear model for such process is:

yj(t) = µ(t) +

m∑
ν=1

αν,jφν(t), (3.38)

where αν are once more the uncorrelated random variables with zero mean and refer

to the ν-th principal component score of the j-th subject and φν are linear inde-

pendent basis-functions, of the random trajectories Yj . This expansion (Eq. 3.38)

is referred to as the Karhunen-Loève or FPC expansion of the stochastic process Y

[121] where now φν(t) refers to continuous pairwise orthogonal real-valued functions

in L2[0, T ], as before µ(t) = E{y(t)}, tε[0, T ]. Similarly the mean squared error is

reinstated here as the integrated square error ||yj(t) − ŷi(t)||2 =
∫

[y(t) − ŷ(t)]2ds,

10Information Criteria will be discussed in detail in the related Model selection section (Sect.
3.4.3).
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with the choice of optimal φ’s encoding the best m-dimensional model for Y . Empir-

ically finding these unit norm φ require first the definition of the sample covariance

function ĈY (s, t) in a way similar to Eq. 3.3:

ĈY (s, t) =
1

N

N∑
i=1

(Yi(s)− µ̂(s))(Yi(t)− µ̂(t)) (3.39)

where µ̂(t) = 1
N

∑N
i=1 Yi(t)

11 and then the subsequent eigendecomposition of ĈY (s, t)

for the zero-meaned sample Y as:

ĈY (s, t) =

N∑
ν=1

λ̂ν φ̂ν(s)φ̂ν(t) (3.40)

or equivalently in matrix notation ĈY = ΦΛΦT , the later being also known as the

principal axis theorem [156]. Ultimately, exactly because of the optimality of the

FPC’s in terms of variance explained, these modes of variations will be the ones

explaining the maximum amount of variance in the original sample.

It must be noted here, that as Rice and Silverman emphasized, the mean

curve and the first few eigenfunctions are smooth and the eigenvalues λi tend to

zero rapidly so that the variability is predominantly of large scale [267]. A further

important qualitative view of the FPC’s is as representing a rotation of the original

dataset in order to diagonalize the covariance matrix of the data; thus making the

new coordinates of the dataset uncorrelated [28]. This functionality of PCA even

allowing it to be reformulated within a phylogenetic framework [266].

In physical terms, smoothness of data is critical so that the discrete sample

data can be considered functional [253]. For example as seen in the work on Chen

& Müller [55] in the case of two-dimensional functional data, the discretisation and

the subsequent interpolation can have significant implications in one’s results (the

authors advocating a two-way FPCA to counter these issues).

As noted in the previous section a number of smoothing techniques have been

proposed over the years concerning FPCA; basis function methods such as wavelet

or regression splines bases, or smoothing by local weighting using local polynomial

smoothing or kernel smoothing, being some of the most frequently encountered. Ker-

nel presmoothing, considered to be the optimal choice in the case of local weighting

[83], is the one applied in all the cases of this work due to its simplicity and compu-

tational ease, yielding smooth sample curves. Finally we draw upon the fact that we

do work with a discretised version of a functional sample Y and that a core require-

ment for FPCA to be applied directly is that the sample Yi has the same number of

equi-spaced readings (see [337] for a case where one can apply FPCA in sparse and

11 ĈY (s, t) is biased by N−1
N

but this is considered asymptotically negligible in the current context.
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irregularly sampled data by employing a conditional expectation procedure). This

requirement being easily fulfilled by the smoothing and concurrent interpolation of

the sample.

Interestingly a number of regularized or smoothed functional PCA approaches

have appeared over the years. In such cases smoothness is imposed in multiple ways.

Either by penalizing the roughness of the candidates φ based by means of their in-

tegrated squared second derivative [254] or by projecting the original sample down

to a lower dimensional domain where the data appear smoother, probably by tak-

ing advantage of a periodic basis like Fourier polynomials and carry out standard

FPCA in that domain. The basic qualitative difference between the two approaches

being that in the first case smoothing occurs directly on the FPCA step, while in

the later we smooth the data directly. In our primary work with F0 we smooth and

interpolate the data beforehand but we do not impose secondary smoothing tech-

niques as the ones mentioned above; an initial smoothing is adequate and additional

smoothing will only draw attention away from our true sample dynamics. On the

contrary when working with spectrograms (chapter 6) exactly because we do not

smooth the data originally, we do smooth the spectrogram’s readings after initial

interpolation (section 6.2.1).

3.4 Modelling Functional Principal Component scores

As mentioned in this previous section’s introduction the current work does not uti-

lize a functional linear regression approach with a functional response directly as

shown in Eq. 3.6. Instead it employs the previously presented dimension reduction

methodology to identify Φ and Aφ as shown in Eq. 3.36. Knowing these we conduct

inference related to using Aφ scores as surrogate data for our sample (as Φ is fixed)

and functional regression is formulated as in Eq. 3.38. At this point we recognize

that given the structure of our phonetic dataset, simple linear models fail to encap-

sulate its complexity. We will therefore utilize linear mixed effects models as the

appropriate technique to conduct inference on Aφ.

3.4.1 Mixed Effects Models

Linear mixed effects (LME) models serve as an extension to the standard linear

regression model. As Pinheiro and Bates [238] present: “(LME models) extend

linear models by incorporating random effects which can be regarded as additional

error terms to account for correlation among observations within the group”. The

term “mixed” derives from the fact that LME models combine fixed and random

effects. The fixed effects are attributed to an otherwise unknown deterministic

component while the group effects are treated as random variables rather than fixed
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parameters; occasionally these random effects can be treated as nuisance [190; 84].

More formally, and using the classical linear mixed effect model notation [325],

combined with the distributions notation presented by Faraway [77], a standard

univariate fixed effect model with normal errors:

a = Xβ + ε or a ∼ N (Xβ, σ2I) (3.41)

can be extended to account for random effects in the following form:

a = Xβ + Zγ + ε or a|γ ∼ N (Xβ + Zγ, σ2I) (3.42)

where in the presented case a is the vector of length n×1 readings of the dependent

variable a, X is the n × k model matrix, the vector ε of length n encapsulates the

random variables representing measurement errors, and β is a vector of length k

that contains the linear (fixed) regression coefficients, k being the number of those

coefficients. The extension of this model now to account for mixed effects is such

that Z is a model matrix n× l 12 associated with a vector γ of random effects.

In this work, we will assume that the random effects are by definition random

variables themselves [15]. As such, the γ vector will follow a multivariate Gaussian

distribution γ ∼ N (0,Σγ), where Σγ represents the covariance matrix of the ele-

ments in vector γ and are therefore assumed to vary at random around their mean 0.

In a similar manner, the error residual vector ε will follow a multivariate Gaussian

distribution where ε ∼ N (0,Σε) and Σε is the covariance matrix for residuals in

vector ε. In many applications Σε is assumed to be diagonal. Under the formulation

the variance of a can subsequently be expressed as:

V ar(a) = V ar(Zγ) + V ar(ε) = ZΣγZ
T + Σε (3.43)

resulting in the unconditional distribution :

a ∼ N (Xβ,ZΣγZ
T + Σε) (3.44)

Importantly if we are interested in the joint distribution of a and γ that is given as:[
a

γ

]
∼ N

([
Xβ

0

]
,

[
V ar(a) ZΣT

γ

ΣγZT Σγ

])
(3.45)

An obvious question is how to differ a fixed from a random effect. This is

still an open question [238; 325; 296] but it is significant to identify that this a de-

sign question. Therefore the important indicator for this design question’s answer

12 l < n in usual cases
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Figure 3.8: Illustration of why LMMs can be helpful: Given the original α data
(upper left graph) a standard marginal α ∼ N (Xβ, σ2I) model would yield seem-
ingly unstructured residuals (lower left graph), however a careful examination of
some sample trait Z can reveal a highly structured pattern both in the original data
(upper center graph) and the corresponding residuals of the marginal model (lower
center graph). Using a model conditional on α, α|γ ∼ N (Xβ+Zγ, σ2I) (upper right
graph) allows for “truly” unstructured estimates (lower right graph). Importantly
“shrinkage” of β might also occur.

is whether or not we assume our sample’s structure is in itself a random realization

that occurred during sampling or it is a fixed structure that arose based on our

experimental questions. For example if we wish to characterize the effect that stress

has on speaker utterances given some arbitrary qualitative stress-scale, stress is a

fixed effect; it is not a question if certain stress states occurred by accident; we

wanted them to be recorded. On the contrary, we will inevitably use a number of

volunteer speakers who are part of the greater speaker population. While we might

try to stratify our sample in a way (eg. by having an equal number of female and

male speakers) our sample speakers are not the interest of the study itself, we want

to gain insights about the speaker population; if anything, an individual’s stress re-

sponses are not known beforehand. This also begs another design question regarding

the type of random effects used; while in their vanilla variant random effects are

modelled as random intercepts (Fig. 3.8), the inclusion of random slopes can also

be beneficial. If random slopes are indeed present and are omitted, this may lead
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to anti-conservative evaluation of fixed-effects [283] and to non-generalizable results

[18]. Computationally there are also some less well-documented considerations.

Given that we “generally” assume Gaussianity in regard with the random effects

structures and that of identifiability purposes [190] we assume that
∑

i γ̂i = 0, a

minimum number of random effects level is necessary to have meaningful inference.

While no definite reference exist on this matter the norm is “more than 5 or 6 at a

minimum” [34].

The next design question is concerned with the structure of the random

effects. When a factor (random or fixed) is exclusively measured within a given re-

alization of another random factor (eg. the speakers within a predetermined region

(Fig. 3.9), then it is considered to be nested within the levels of the higher levels

factor; this is because random effects models are commonly associated with hier-

archical models as one might assume there is a certain hierarchy between factors.

On the contrary if a factor can be measured within multiple levels of another factor

(eg. a sentence being read by multiple users (Fig. 3.10), then it is considered to

be crossed with the levels of the other factor [15; 117]. Here we also add a caveat

regarding the existence of a balanced or imbalanced design; regardless if we have an

equal number of realizations for each random effect level. While important to have

some concept of balance, it is not crucial and with the exception of pathological

cases it is usually unimportant.

Ultimately the big question about the LME models is the level of inference

which we choose to focus on. Is one interested in within-group or across-group

variance? ie. Is one interested in conditional or marginal inference? This is once

more an open question [190] where the answer is in essence embedded in the question

Sample

V1 V2 Vα

S1

Vd Vd+1 Vβ

S2

Ve Ve+1 Vγ

Sl

R1

Vh Vh+1 Vδ

Sl+1

Vi Vi+1 Vε

Sl+2

R2

Vj Vj+1 Vη

SL

RM

︸ ︷︷ ︸
N

Figure 3.9: Illustration of a simple nested design: Given a linguistic field study of a
language, across different regions R (black circles), different speakers S (red circles)
are uttering a number of voice recordings V. Clearly a voice recording Vi is only
due to a single speaker Sj and a specific speaker (assuming no travelling speakers)
is classified as a member of specific population residing at region Rk. Because of
the huge combination of lexical instances in a language, a record corpus V has to be
treated as a sample rather than an exhaustive list (population). Similarly within a
region, one can not realistically hope to record all speakers; the speakers S available
are just a random sample from the greater speaker population.
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V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 VN−1 VN

U1 U2 Uk S1 S2 Sl

Figure 3.10: Illustration of a simple crossed design: Given a linguistic study where
we use a determined set of sample sentence utterances U and a sample of speakers
S, because all speakers ultimately say all utterances, the voice recordings V are
subjected to random effects both due to the Speaker and Sentence utterance effects.

itself: do we aim to produce subject specific (conditional) or population average

(marginal) estimates? A marginal model E(α) = Xβ is clearly the distribution of

the observed data but it is unable to control for the unobserved random effects;

on the other hand the conditional model E(α) = Xβ + Zγ does provide that, but

in the expense of possible “shrinkage”. This means that the inference on the fixed

effects might be different from the one made by the marginal model. In short

this happens algebraically because in comparison with a standard linear / fixed-

effects only model, where β̂ = (XTΣ−1
ε X)−1XTΣ−1

ε a, in the case of mixed effects

model β̂ = (XT (ZΣγZ
T + Σε)

−1X)−1XT (ZΣγZ
T + Σε)

−1a13. As a consequence

the resulting diagonal of the mixed-effect error variance will be greater and the

resulting β̂’s will be smaller. In effect we borrow strength from the other sample

points to model the variance in a single point therefore the β are smaller (closer to

0), annealing their influence towards a population estimate.

A final note of this introductory section is that while the current work as-

sumes all realizations of γ to be of Gaussian nature, non-Gaussian distributions can

be used [189; 240; 274; 136] to model the realization of the random effects offering

greater robustness at the cost of a more parametrized model.

3.4.2 Model Estimation

Model construction requires the use of a definition for the goodness of fit achieved

by the model estimated. Existing literature suggests the log-likelihood function

as a standard choice [238; 300]. Nevertheless, a number of issues in mixed effects

models have to be highlighted. An important problem arising when estimating the

log-likelihood function of the data is that the unrestricted Maximum Likelihood

Estimator (MLE) might involve a negative variance, which is clearly unacceptable

13This being eventually a GLS estimator.
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[288]. Moreover the MLEs of β are downwards biased [300] because given that the

number of samples in the random vector might be quite small, as in the case of

speakers in a linguistic study, the difference between a biased and an unbiased MLE

can be significant. Therefore when estimating the final parameters, the Restricted

Maximum Likelihood (REML) is used. In brief, REML tries in essence to find

linear combinations of the responses, K, such that KTX = 0 and thus to exclude

any fixed terms parameters from the likelihood function. However, ML is used

for the model selection procedure as the theory for model comparisons is based on

ML estimation. As REML will try to transform the fixed effect response in the

manner described above, this would lead to a series of different transformations for

each model setting, making them incomparable. Therefore it is essential to use ML

estimators if likelihood ratio tests are to be implemented.

In particular, when trying to estimate the mixed model via the model’s like-

lihood, we observe that usual maximum likelihood (ML) estimation underestimates

the mixed model’s variance components [234]; this does not refer to the shrinkage

effect mentioned previously. Based on Eqs. 3.42 & 3.45 the log-likelihood function

L(a|γ) can be seen as:

L(a|γ) = −N
2

log(2π)− 1

2
log |Σε| −

1

2
εTΣ−1

ε ε, (3.46)

ε = a−Xβ − Zγ (3.47)

Additionally exactly because we assume that γ ∼ N (0,Σγ), L(γ) is of the form:

L(γ) = −M
2

log(2π)− 1

2
log |Σγ | −

1

2
γTΣ−1

γ γ (3.48)

and leads to the joint pseudo-log-likelihood estimate (ignoring fixed terms) :

L(a, γ) = −1

2
γTΣ−1

γ γ − 1

2
(a−Xβ − Zγ)TΣ−1

ε (a−Xβ − Zγ). (3.49)

Differentiating with respect to γ and β and setting to 0, gives the respective MLE

estimates. Then the mixed model equations of the LMM regression can be written

as: [
XTΣ−1

ε X XTΣ−1
ε Z

ZTΣ−1
ε X ZTΣ−1

ε Z + Σ−1
γ

] [
β

γ

]
=

[
XTΣ−1

ε a

ZTΣ−1
ε a

]
(3.50)

From that point onwards if Σε and Σγ were known we would get estimates for β

and γ immediately. The problem is that this is not usually the case, so we have

to estimate them. One essentially uses an iterative procedure. First setting β

and γ on some arbitrary values ones estimates Σε and Σγ and then based on the
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newly estimated Σε and Σγ β and γ; this iterative procedure is then repeated until

convergence. We mention though that these estimates will be biased. Here this bias

comes specifically from the fact that we lose degrees of freedom, when we treat our

“intermediate” mean estimates of the procedure (sample estimates effectively) as the

true population estimates and we subsequently use those to estimate the population

variance. Qualitative this is the same phenomenon that is observed when one uses
1
N (y − ȳ) instead of 1

N−1(y − ȳ) to calculate a sample variance. This ambiguity

surrounding the LME’s degrees of freedom does not only affect estimation; it also

significantly complicates the application of Log-likelihood-Ratio Tests [62] making

the standard notion of p-value associated with β not straightforward to obtain (eg.

“how many” parameters does one account a single random effect to convey? Or,

do two random effects with significantly different number of levels encode the same

amount of information in terms of degrees of freedom lost?)

To bypass these issues at least partially, we use REML. The restricted Maxi-

mum likelihood utilizes a matrix K such that the expression KTa = KTXβ+KTZγ

no longer contains β, ie. as mentioned above KTXβ = 0⇔ KTX = 0. Realistically

the matrix K is equivalent to K = TM where:

M =I −X(XTX)−1X (3.51)

and T =[Iq10q2 ], q1 = rank(M), q2 = N − q1. (3.52)

This together with KTa ∼ N (0,KT (ZΣγZ
T + Σε)K) resulting in the final estimate

of the restricted log-likelihood:

LREML(θ) = −1

2
[(N − r) log(2π) + log(|Ψ|) +

−→
Ω TΨ−1−→Ω ] (3.53)

where Ω = KTa and Ψ = KT (ZΣγZ
T + Σε)K.

As in the case of MLE (Eq. 3.49) we optimize Eq. 3.53 by employing

an iterative procedure based on penalized least squares [21]. The details of the

procedure are explained in section 5.3.8 for the case of multivariate A instead of a

univariate a but they are directly applicable.

3.4.3 Model Selection

“All models are wrong but some are useful” by George E. P. Box is probably one of

the most worn statistical quotes. It does highlight though the obvious intuition that

a (statistical) model is a simplification of reality that allows the modeller to infer

the dynamics behind the model’s components. If one is therefore presented with

multiple models it is essential he can estimate the performance of different models

“in order to choose the best one” [129]; this procedure being commonly referred as
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model selection.

Given we have a sample y from an unknown parametric model m(x; θ), and

estimates from an associated predictive model ŷ = m̂(x; θ), an obvious test for the

goodness of our estimation is how well our estimate ŷ can predict y in terms of

mean squared error [62]. For example, assuming a squared loss function given as:

C = (ŷ − y)2, the expected C equals:

E[C] = E[(ŷ − y)2] (3.54)

= E[(ŷ − y − E[ŷ] + E[ŷ])2] (3.55)

= E[ŷ − E[ŷ]]2 + E[y − E[ŷ]]2 + 2E[(E[ŷ]− y)(ŷ − E[ŷ])] (3.56)

where the final term equates to zero and we get:

= E[ŷ − E[ŷ]]2 + E[y − E[ŷ]]2 (3.57)

= var(ŷ) + bias2(ŷ) (3.58)

We see that the more we decrease the bias of our predictor, the more we increase

its variance; the more we overfit our data the closer we get to our actual estimation

points. This results in a model m that has poor predictive power for unseen data

and poor explanatory power for the population dynamics from which the sample was

taken from. This maximum likelihood approach succeeded in giving us the model

that maximizes the likelihood function p(D|m), where D are our observed dataset

and m a model from our model space M . Unfortunately direct maximization of

the likelihood function p(D|m) results in choosing increasingly larger models. To

alleviate this limitation of direct maximum likelihood estimation we are using two

different approaches: one data-driven, and one based on analytical results. The

data-driven approach is based on cross-validation and resampling principals while

the analytical approach works by making meaningful approximations between our

estimated distribution and the “true” distribution of the data.

As mentioned in section 3.1, cross-validation is based on the idea that you

exclude a portion of your data as a validation set [28]. In the case of a k-fold

cross-validation one randomly partitions his dataset in k (usually of equal size)

partitions, uses k − 1 available partitions to train his model and then the model’s

fitting is evaluated using the k-th partition excluded. We thus use a (k−1
k )% of our

available data each time. This procedure is executed k times, and at the end of

it (usually) the performance scores from the k runs are averaged in order to get

the final estimate for the model’s performance. We then proceed in comparing the

different model performances and choose the best one. A similar approach based on

resampling the data is jackknifing. During jackknifing instead of using a validation

and a test set we generate k sub-samples yjack by resampling our original sample y,

evaluate our model’s performance in that sub-sample yjack and average over the k
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runs to give the final performance estimate.

A second approach data-driven approach would be to use bootstrapping [129].

Focusing on the parametric bootstrap, we first fit the parametric model for which

we want to assess the performance of our data. We then resample from that model

in order to produce “bootstrapped samples” yboot of size N , N being our original

sample size. Repeating this procedure k times we re-fit each time our model using the

new yboot produced. Similarly to cross-validation we then average the performance

scores from the k runs in order to get the final estimate for the model’s performance
14.

Without looking into theoretical problems stemming from resampling, a com-

mon problem encountered by all resampling-based approaches is that of computa-

tional costs. Both in terms of memory and CPU time, resampling and/or refitting

a large number of models is an expensive procedure. Even a simple ordinary least

squares model requires usually the Cholesky decomposition of the XTX matrix or

the QR decomposition of the design matrix X; these procedures being of approxi-

mate asymptotic order 1
3N

2 and 4
3N

2 respectively [101] (the obvious time trade-off

between the two being at the computational time of the matrix-matrix multiplica-

tion XTX). Repeating this millions of times can become extremely time-consuming.

Finally stating almost the obvious, this inferential procedure is based on random

sampling, these results are not strictly deterministic, another sample gives slightly

different values.

An optimal solution could be to find a procedure that you can use only once

and access the “goodness of the model”. This is achieved by a series of approxi-

mations; the intuition for these approximations comes from two directions. First

we want an approximation that tells us how good we do based on “population esti-

mates”; this is why we used resampling after all. Second we recognize that a problem

with using a maximum likelihood approach stems from failing to penalize unneces-

sarily complex models; a problem relating directly to the parsimony principal of Oc-

cam’s razor [62]; “it is vain to do with more what can be done with fewer”. Occam’s

razor is the driving force behind a number of information criteria (IC). The current

study relies almost exclusively to Akaike’s Information Criterion (AIC) [5], which

is established as the “standard” among ICs. A second almost equally popular IC

is the Bayesian or Schwarz Information Criterion (BIC or SIC respectively). These

information-based model selection criteria aiming to essentially balance model com-

plexity and predictive power, providing a way to rationally penalize each parameter

14Resampling can also be formulated in a Bayesian context; there sampling is done from the
posterior distribution of the parameters estimated. For each parameter a higher posterior density
(HPD) interval over some value q% can be created from the empirical cumulative distribution
function of the sample as the shortest interval for which the difference in the empirical cumulative
distribution function values of the endpoints equates with q; ie. they “minimize the volume among
q-credible regions and, therefore, can be envisioned as optimal solutions in a decision setting”[271].
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added to the model with the respect to the “explanatory power” it provides.

The theoretical machinery behind AIC is Kullback-Leibler (K-L) divergence15.

K-L divergence is a distance between an unknown distribution t(x) and an approxi-

mate distribution q(x) in terms of additional amount of information one needs to use

to specify x due to the fact of using q(x) instead of t(x) [28]. Thus K-L divergence

is given by:

KL(t||q) = −
∫
t(x) log q(x)dx− (−

∫
t(x) log t(x)dx)

= −
∫
t(x) log

q(x)

t(x)
dx (3.59)

It needs to be stressed that K-L divergence concept is akin to a likelihood ratio

statistic. Exactly because AIC reflects “additional” information the smaller it is

the better [62]. Clearly for the application of AIC the main issue is that one does

not know the t(x) beforehand. Akaike’s solution was to estimate it; AIC score

is an asymptotically unbiased estimate of the cross-entropy risk. In other words

as the sample size n → ∞, the model with the minimum AIC score will possess

the smallest Kullback-Leibler divergence. Interestingly despite its rather involved

theoretical justification, AIC is computed as :

AIC = −2L(θ) + 2p (3.60)

where p is the number of parameters in the model and the L(θ) is the likelihood

of the model used with respect to θ. A general comment is that when the number

of parameters in a model, is not significantly smaller than the number of available

samples (40 ≥ n
p ), then using a version of AIC correct for smaller samples is desirable

[44]: AICc. AICc is defined as:

AICc = −2L(θ) + 2p+
2p(p+ 1)

n− p− 1
(3.61)

where evidently as n
p → ∞ one gets back the original AIC (n being the number of

available samples).

AIC (and AICc) approach takes a full frequenist approach regarding model

selection and is based on asymptotic behaviour properties of the estimator used

(K-L divergence); a Bayesian approach was proposed by Schwarz [287] leading to

the formulation of BIC. In brief one assumes that all candidate models are equali-

probably (essentially having an un-informative prior) and that the “true” model

is among the candidate models; then by finding the model that gives the higher

15The term relative entropy is sometimes used interchangeably with KL-divergence.
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posterior probability[17]:

p(mi|D) =
p(D|mi)p(mi)

p(D)
(3.62)

where: p(D) =
M∑
i=1

p(D|mi)p(mi) and p(D|mi) =

∫
p(D|θi,mi)p(θi|mi)dθi (3.63)

one finds the “most-probable” model that generated the data (from the subset of

examined models of course). Two caveats immediately arise: 1. we are fairly certain

that some models are more probable than others and 2. we have no reason to

believe that the “true” model is among our candidate models. Nevertheless in a

Bayesian approach there is no need to explicitly penalize model complexity as that

is incorporated by the integral over the posterior parameter distribution. Given

these initial assumptions BIC is calculated as:

BIC = −2L(θ) + p log(n) (3.64)

An important note is that while BIC selection is consistent AIC is not [62];

where one by consistency means that the probability of the “true” model being

selected tends to 1 as n→∞. As Davison [62] shows if a model m′ is close to mtrue,

where the respective number of parameters in each model is p and q, if p−q is small

(< 10) then it not improbable that one chooses m′ instead of mtrue.

Returning to our original LME model case we already identified that “generic”

model estimation should occur within a REML framework. Nevertheless exactly

because the matrix K is reformulating the response vector a into KTa in a model

specific way, the residuals associated with two LME models with a different num-

ber of fixed effects will not be directly comparable. In practice that can be seen

as K changing the “residual” term of the likelihood (ΩTΨ−1Ω). This being even

more obvious if we see the alternative formulation of AIC as n
2 log(RSS) + p [123];

RSS =
∑n

i=1(yi − ŷi)2.

Both ICs can be inconclusive; as a general rule of thumb when the absolute

difference between two models is less or equal to two (2), there is no obvious reason

to select one model over another. In relation to that Burnham and Anderson note:

“A substantial advantage in using information-theoretic criteria is that they are valid

for non-nested models. Of course, traditional likelihood ratio tests are defined only

for nested models, and this represents another substantial limitation in the use of

hypothesis testing in model selection.”[44].

In practical terms constructing and finding the best model relating to a pro-

cess of interest in somewhat heuristic. Two main methodologies are usually em-
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ployed; forwards and backwards model selection. In the case of forwards model

selection one starts with the smallest (or least complex) relevant model for the re-

lationship between independent and dependent variables and through consecutive

comparison among the candidate variables the variable that most substantially “bet-

ters” the model’s fit is added. The process being iterated until convergence; ie. no

variable can be added that improves the model (based on some information criterion

or LR test). Backwards model selection is effectively the opposite. One defines the

largest (most complex) relevant model for the dataset at hand and then removes

the “least helpful” variable based on the definition of helpfulness. An important

point to be made here is that we need to always remember that the interoperabil-

ity of the model is of interest; forgetting that and employing a stepwise selection

technique as forwards or backwards selection process will ultimately result in data

dredging ; essentially discovering causally irrelevant associations between otherwise

disassociated physical terms.

It is worth mentioning that a completely different approach to model selec-

tion is to conceptually merge the estimation and the selection procedure as this is

exhibited in the case of SCAD or LASSO [146]. In these cases one effectively builds

in the complexity penalization procedure within the model estimation step. Within

a linear mixed effect modelling framework Lan [180] presents the penalization of β

while Bondell et al. [36] present an even more generalized approach where β and

γ are penalized in an iterative manner. Finally it is notable that following the in-

creasing popularity of ensemble approach in statistical learning [41; 88], ensemble

approaches for variable selection have also started to appear [342; 332].

An obvious matter that is often either ignored or left unattended is data

quality. Bad data will give bad results irrespective of how successful the results

might look in explaining the original research question. Missing or corrupted data

are an aspect of an analyst’s research life and that should never be forgotten. Nev-

ertheless one might advocate, model under-fitting is more damaging than model

over-fitting when it comes to model-based inference given a set of fixed quality data

[44]. Ultimately the usage of AIC, BIC, MDL or any other model selection method

guarantees that under certain assumptions the best candidate model will be chosen

from a set of candidate models. If a “good” model is not part of the set of candidate

models, it will not be discovered by model selection algorithms.

3.5 Stochastic Processes and Phylogenetics

A major question when examining a dynamical system is what leads to it; how this

system came to be. And while language is definitely a dynamical system, the first

questions of this kind were most probably Biology-related. Given that domestication
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of dogs started prior to 35000 years ago and with certainty the concept of different

types of dogs had emerged (as depicted in Ancient Egyptian tombs) 5000 years ago;

people must have noticed certain trait regularities were somehow correlated [70; 233]

and that there was some concept of “ancestry”. This giving raise to questions

about phyla, (φὺλα, “races”) and how did these phyla were generated; namely

Phylogenetics.

Phylogenetics can be defined as the science of the evolutionary relationships

among species [232]; the primary forces behind Evolution being natural selection,

random genetic drift and founder effects. This definition though only hints towards

their true nature: Phylogenetics are applied stochastic processes in Biology where

researchers have employed the concept of random walks (and especially Brownian

Motion (BM) from the late 70’s [181; 182]); this concept being finally established by

the now seminal work of Felsenstein [80; 81]. As such the major questions behind

Phylogenetics: I. reconstructing ancestral states, II. quantifying adaptation, III.

dating divergence between species and IV. estimating rates of evolution are simply

questions about random walks, their properties and their past states. Mathemati-

cally “evolution is viewed as proceeding in two steps: (1) selection, determined by

the fitness (i.e., survivability and fecundity) which the trait confers on each individ-

ual relative to others, and (2) inheritance, controlled by the mating patterns and

genetics of the survivors (breeding adults)” [102]. These two steps convey the basic

idea behind evolution and Phylogenetics: Given a population of breeding adults

with certain traits, an inherently noisy replication process allows them to propa-

gate those traits based on the fitness potential of those traits. This means that in

mathematical terms, for a given trait x we have a Markovian process because :

P (Xchild = xchild|Xparent = xparent, Xgrandparent = xgrandparent, . . . , X0 = x0) =

(3.65)

P (Xchild = xchild|Xparent = xparent)

and if we make the least assumptions possible and assume that the replication

process is subjected to Gaussian noise with some intensity of random fluctuations

σn:

Xchild = Xparent +N(0, σn) (3.66)

or by subtracting Xparent from both sides, for a given time t:

dX(t) = N(0, σn). (3.67)

This being a simplification of the standard (one-dimensional) Brownian motion
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Why do we understand each other (sometimes)?
Assume one is observing a group of children growing up in a population us-
ing a language L with a set dictionary D. Ideally each child is using exactly
the same language as any other child as this would ensure perfect intelligi-
bility between them; therefore if X represents the percentage of words hav-
ing the same semantic meaning with the words in dictionary D but not the
same vocalizations, Xopt = 0%. Perfect semantic as well as vocal matching is
quite improbable though; for instance what constitutes “cold weather” or how
does one pronounce “data”16is highly dependent on your upbringing as well as
surroundings. Additionally even if all children have exactly the same exter-
nal stimuli, small changes (usually counted in terms of Levensthein distances)
due to imperfect language acquisition can be detected between children’s and
parents’ vocalization patterns leading to small fluctuations in the X value of
children. Nevertheless these children are mutually intelligible and can directly
interact with each other and past generations if they are not “too far away”
from Xopt. A child with a vocabulary largely different than the one used by
all his peers would clearly be unfit in terms of communication and would face
extreme evolutionary pressure in social terms; a child with just a very small
number of different words though would be still fine. While trivialized, this ex-
ample does illustrate all three main evolutionary forces: 1. Founder Effects, 2.
Random Drift and 3. Natural Selection, each taking the form of parents’ states,
imperfect language acquisition and communication efficiency respectively.

where a collection of random variables X(t), t ≥ 0 satisfies [184]:

• X(t0) = 0

• For t1 ≤ t2, X(t2)−X(t1) ∼ N (0, t2 − t1) and

• t→ B(t) is continuous.

Then if one builds the concept of optimality as Xopt when some constant α mea-

sures the strength of selection towards that optimum, the final model for evolution

becomes:

dX(t) = N(0, σn) + α(Xopt −X(t)) (3.68)

and we have just stated a simple Ornstein-Uhlenbeck model [125] or the “Hansen

model” as it is known in Evolutionary Biology [46], the earlier model of Eq. 3.67

being known as the “method of independent contrasts” [80]. These models thus

define a covariance function that we can use in order to define an association between

readings. A phylogeny is thereof mathematically “a rooted binary tree with labeled

leaves”[138].

16 [‘deIt@], or [‘dæt@] depending mostly if you are in England or US respectively.
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This inferential framework though immediately raises a number of issues

[119] :

• When examining a phylogeny, the empirical information is typically only avail-

able for extant taxa, represented by leaves of a phylogenetic tree, whereas

evolutionary questions frequently concern unobserved ancestors deeper in the

tree.

• The available information for different organisms in a phylogeny is not inde-

pendent since a phylogeny describes a complex pattern of non-independence;

observed variation is a mixture of this inherited variation and taxon-specific

variation [56].

• The phylogenetic tree itself is treated as representing the true evolutionary

history between its leaves and is not a subject of investigation [144].

• Phylogenetic inference is focused on scalar (or in the best case multivariate)

traits. There is already an emerging literature on function-valued traits [167;

307; 298] recognizing that many characteristics of living organisms are best

represented as a continuous function rather than a single factor or a small

number of correlated factors. Such characteristics include growth or mortality

curves [242], reaction-norms [166] and distributions [340], where the increasing

ease of genome sequencing has greatly expanded the range of species in which

distributions of gene [219] or predicted protein [170] properties are available.

We will examine all of the previous questions but we will mostly focus on the last

one.

3.5.1 Gaussian Processes & Phylogenetic Regression

A Gaussian Process (GP) is defined as a probability distribution over functions Y (s)

such that the set of values of Y (s) evaluated at an arbitrary set of points s1, . . . , sN

jointly have a Gaussian distribution. Importantly this means that if one chooses to

work with a zero-meaned Gaussian processes, these GPs will be completely spec-

ified by their second-order statistics [28]. Drawing analogy with spatial statistics

methodology and kriging, these inference would be referred as simple kriging. To

formulate this function-space view of Gaussian processes we can write a GP as a

function f(x) such that:

f(x) ∼ GP (m(x), k(x, x′)) (3.69)
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where as stated beforehand if m(x) = 0, the covariance function k(x, x′) can be seen

as :

K(, x′) = E{(f(x)−m(x))(f(x′)−m(x′))} (3.70)

= E{(f(x))(f(x′))} if m(x) = 0 (3.71)

where f(x) is the value of the function f at point x [263]. Having this very basic

formulation in place it is interesting to look more specifically on the covariance

functions’ level. Covariance functions encode not only the covariance of the sample

points among the observed points but also they offer an insight in the dynamics of

the whole process.

In addition, the realization of the covariance function K as the covariance

matrix K between all the pair of points x and x′ specifies a distribution on functions

and is known as the Gram matrix. Importantly, because every valid covariance func-

tion is a scalar product of vectors, by construction the matrix K is a non-negative

definite matrix. Equivalently, the covariance function K is a non-negative definite

function in the sense that for every pair x and x′ , K(x, x′) ≥ 0, if K(·, ·) ≥ 0 then K

is called semi-positive definite. Importantly the non-negative definiteness of K en-

ables its spectral decomposition using the Karhunen-Loeve expansion. Basic aspects

that can be defined through the covariance function are the process’ stationarity,

isotropy and smoothness [17].

Stationarity refers to the process’ behaviour regarding the separation of any

two points x and x′. If the process is stationary, it depends on their separation,

x− x′, while if non-stationary it depends on the actual position of the points x and

x′; an example of a stationary process is the Ornstein-Uhlenbeck (O-U) process.

If the process depends only on |x − x′|, the Euclidean distance (not the

direction) between x and x′ then the process is considered isotropic. A process that

is concurrently stationary and isotropic is considered to be homogeneous[110]; in

practice these properties reflect the differences (or rather the lack of them) in the

behaviour of the process given the location of the observer.

Ultimately Gaussian processes translate as taking priors on functions and

the smoothness of these priors can be induced by the covariance function [17]. If we

expect that for “near-by” input points x and x′ their corresponding output points

y and y′ to be “near-by” also, then the assumption of smoothness is present. If we

wish to allow for significant displacement then we might choose a rougher covariance

function. Extreme examples of the behaviour, is the Ornstein-Uhlenbeck covariance

function and the squared exponential where the former is never differentiable and

the latter infinitely differentiable.

Periodicity refers to inducing periodic patterns within the behaviour of the
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process. Formally, this is achieved by mapping the input x to a two dimensional

vector u(x) =(cos(x), sin(x)). As outlined earlier a stochastic process with great

biological interest is the O-U process. This is because we recognize that what we

ultimately want is a Gaussian-Markov process; a stochastic process that satisfies the

requirements of both a Gaussian (in terms of changes) and a Markovian (in terms

of finite memory) process. With this in mind using a standard noisy measurement

O-U kernel in the context of a phylogenetic GP ( f(L) ∼ N (0,K(L,L, θ)) ) would

therefore be resulting in the following covariance structure:

K(li, lj) = s2
f exp(−|li − lj |/λ) + s2

nδli,lj (3.72)

where for a given trait f(L) on a finite set of co-ordinates “leaf” L, K(L,L, θ) is the

matrix of covariances of pairs (li, lj ) with hyperparameters θ; θ being in this case

composed by three components:

• s2
f : intensity of random fluctuations in evolution due to balance between the

restraining forces / amplitude of function variation

• λ : phylogenetic horizon (how many generations back a trait is influence by)

/ characteristic length scale ( “roughly the distance you have to move in input

space before the function value can change significantly” [263] and

• s2
n: interspecies variation, changes unaccountable from the relations conveyed

by the phylogeny / Gaussian noise.

With this at hand the final estimation due to the predictive distribution is

found under a standard maximum likelihood framework where one maximizes the

phylogenetic GP’s LogLikelihood:

log p(f(L)|θ) = −1

2
f(L)TK(L,L, θ)f(L)− 1

2
log|K(L,L, θ)| − |L|

2
log(2π) (3.73)

in order to find the optimal values of θ, θopt.

Through θopt one is immediately able to answer questions regarding the evo-

lutionary properties of the sample at hand. For example if s2
f << s2

n then is almost

obvious that the phylogeny at hand is able to account only for a very small propor-

tion of the observed variance and thus probably the phylogeny is not useful. The

same insight being conveyed when λ → 0, where effectively this mean that each

node is in practice agnostic of all other nodes in the phylogeny and no “information

transferral” takes place. In any case the fact is that if one fixes the values of θ the

posterior distribution for ancestral states A is immediately available through the
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posterior of the Gaussian distribution that the (univariate) traits describe. Namely:

f(A)|f(L) ∼ N (K(A,L)K(L,L)−1f(L),K(A)−K(A,L)K(L,L)K(A,L)T ).

(3.74)

While phylogenetic GPR will be revisited in chapter 6, we need to immediately

highlight the fact that we not only get a posterior mean estimate for f(A), we are

also able to quantify our uncertainty about that estimate by variance attributed

to that point in the phylogeny that is independent of the actual observations value

f(L) [157].

Combining this notation with the previously presented concept of an O-U

process translates the covariance structure K into a reflection of the perturbations

due to selective demands from unconsidered selective factors. These being due,

in the case of a language, to semantic correlations of the sounds produced, voicing

correlations between the biomechanics of phonation, environmental fluctuations, and

obviously random ”mutations” that materialize as ”corruption” of the initial sounds.

Expanding on this, phylogenetic time is the concept that serves as the continuum

over which data are observed (in the case of observed leaf nodes) or assumed to exist

(unobserved ancestral nodes). To that extend Xopt cannot be defined as having a

single physical notion but as (under simplifying assumptions) conceptual optimal

state where a language conveys using speech perfectly all the information required

by its speakers.

3.5.2 Tree Reconstruction

The estimation method presented above makes a critical assumption: The phyloge-

netic relations among the “leaves” of the phylogenetic tree used are correct. This

can’t be further than truth; in reality the phylogenetic tree is at best a sensible

approximation [61; 154]. Three main approaches have been presented as suitable

approximation schemes:

• Distance-based trees

• Maximum Parsimony-based trees

• Maximum Likelihood-based trees

The idea behind distance-based trees is analogous to that used in clustering.

One utilizes a metric of similarity between the given extant taxa of the phylogeny

and based on that metric a distance matrix is computed. Aside the obvious choice of

Euclidean distance other distances metrics eg. Levenshtein distance in Linguistics

studies, are popular choices. Using the distance matrix produced, two approaches

can be taken. Either a top-bottom or a bottom-up [129]. In the first case one finds
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a point that best partitions data in two well-distinct partitions and then recursively

applies the same splitting among the two resulting partitions. On the bottom-up

approach one first merges the two data-points closer together and assigns them in

the same cluster. Afterwards the same approach is used but this time the merged

cluster is treated as a single point. This approach while rather straightforward

has a problematic property: it does not account for the root. This bottom-up

approach, known in the Computer Science literature as agglomerative clustering,

is the essence of one of the most popular early phylogenetic tree reconstruction

algorithms, neighbour joining (NJ), the other being Unweighed Pair Group Method

with Arithmetic mean (UPGMA) [31]. Algorithmically both NJ and UPGMA run in

O(N3) time. While computationally efficient in comparison with other approaches

though, both implementations do not guarantee that will result in a tree where no

edge lengths are negative; also they are obviously extremely sensitive to the choice

of the distant metric used, and as such have been deemed “inappropriate” for most

modern day phylogenetic analysis. Often NJ or UPGMA tree serve as an “initial

solution” tree for advances methods.

The parsimony based approach views each phylogeny as a model of evolution

and tries to fit the most parsimonious model; it is based on the same theoretical prin-

cipals as model selection: Occam’s razor [86]. The parameters of a model in the case

of phylogenetic trees though, are evolutionary transitions, roughly speaking specia-

tion events. Unfortunately while this appears reasonably coherent, it often results

into over-simplified models. It enforces phylogenetic affinity, by requiring two leaves

that exhibit the same trait to be related. While quite plausible, convergent 17 evolu-

tion among species have shown this not to be a necessary condition. This manifests

in the well-known problem of long branch attraction, ie. the clustering together of

otherwise unrelated species. The main critique against maximum-parsimony relies

in its inconsistency. As with any information measurement used for model selec-

tion one would expect the P (choose the true model) → 1 as the number of sample

N →∞, but maximum parsimony does not guarantee that. Algorithmically maxi-

mum parsimony does describe an NP -hard problem and while certain well-adapted

heuristic algorithms do exist this also tends to make it undesirable. Additionally it

is often the case that a number of “equally” good parsimony trees might be pro-

duced for a given dataset. In those cases a majority rule is enforced but it is not

guaranteed to resolve this collision situation, especially in cases where the data are

not highly informative in regards with the phylogeny in question [154]. Ultimately

parsimonious reconstructed trees have been generally outperformed by ML-based

methods.

17As convergent evolution we define the independent evolution of similar features in species of
different phylogenies, eg. the presence of wings in bats and birds.
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The ML-based trees are exactly that; the phylogenies that maximize the

likelihood of observing the extant taxa under the evolutionary model assumed [79].

In short, “likelihood methods produce a number of trees, one of which is usually

found to be the most likely tree”[154]. Under this approach one specifies a model

of evolutionary change (eg. the OU model presented beforehand) and then calcu-

lates the probability of the data given the evolutionary history presented by the

tree. Evidently the quality of this methodology is related to the successful choice

of evolutionary model. ML-based methods, in contrast with maximum parsimony

based methods do use branch length to calculate the distance between point of the

phylogeny; exactly because of that they also enable the practitioner to seamlessly

infer ancestral states along the phylogeny in question. The most obvious theoretical

limitation of “simple” ML-based methods is the fact they assume a unique rate of

change along a phylogeny. Multiple rates can be possibly assumed but especially

when one is presented with a smaller dataset, overfitting can be an issue. Obviously

standard information criteria (eg. AIC) can be also employed here. In practice one

starts with a specified tree derived from the input set (eg. using NJ tree) and then

branch lengths are changed in order to produce the “ML-tree” [154]; other method-

ologies go as far as sampling the whole tree-space, effectively examining 2N different

trees but this is obviously an extremely expensive approach for all but the smallest

datasets. Direct generalizations of this approach are presented within a Bayesian

setting [143; 273]. While we do not explore this in detail, the presence of priors

is used in order to account for prior assumptions regarding certain branch-lengths,

evolutionary optima, and other model parameters.

Interestingly none of the proposed methodologies addresses internally the

issue of rooting a tree. In general they are two approaches: mid-point routing and

outgroup usage [165]. The first approach assumes that the longest path between two

extant taxa denotes the most “archaic” split and therefore the tree is rooted at the

mid-point of that path. The second approach is first fitting an unrooted phylogenetic

tree T on the original data and adding an obvious “phylogenetic outlier” to that

tree. The new node connecting the original unrooted tree to the outgroup taxon,

is considered to be the root of the tree. The rationale behind this technique is

straightforward: if for example Greek is added in Romance languages phylogeny the

bifurcation between Greek language and all the other Romance languages must be

the “oldest” one. Clearly this method can be problematic because one might either

pick an outgroup that is actually related to some of the original member of the

phylogeny or either the outgroup that is so extreme (for instance a Papuan language

in the case of a Romance phylogeny) that the rooting results become “random” as

they are no meaningful similarities to start with.
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Chapter 4

Amplitude modelling in

Mandarin Chinese

4.1 Introduction

As already mentioned, while in many languages pitch differences are mostly detected

in matters of intonation or semantic alterations (such as expression of sarcasm), in

tonal languages, such as Taiwanese Mandarin, pitch (and the closely related F0)

plays a crucial role in the actual lexical entry of the word; má(↗) said with a mid

rising tone means hemp, while articulated with a high falling tone, mà (↘), means

to scold. In the past, linguistic studies treated F0 as a single point by utilizing target

values [158; 29] or obtained estimates of the F0 contour by treating it as a bounded

rigid curve through processes of averaging [333]. Such approaches though, by ne-

cessity, impose simplifying assumptions which make interpretation difficult when

considering a complete corpus of data from a more natural language experiment.

Here, a different approach is adopted as a first attempt to introduce FDA for

the phonetic analysis of a language. In the proposed model F0 curve is character-

ized as the realization of a stochastic Gaussian process; essentially a generalization

of a multivariate Gaussian random variable to an infinite index set [290]. As a con-

sequence, our methodology treats the fundamental frequency of each rhyme as a

bounded continuous curve, rather than a time-indexed vector of readings.

As a starting point, a smoothing and interpolation procedure is utilized to

change the measurement from real-time into that of normalized word time, build-

ing partially on the assumption of syllable-synchronization [244]. Next, regression

models are introduced to help identify significant covariates of speech production.

Afterwards, a penalized system of model selection is put forward to obtain the final

models. Given the amount of data present in the study, over-fitting is a concern,

and therefore a penalty on the number of regressors in the model is imposed through
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an AIC approach (as outlined by Faraway [77]) and a jackknifing model selection

procedure to further enhance and test the robustness of the findings. This use of

FPCA and mixed effects modelling offers a generalized semi-parametric approach

to the linguistic modelling of Mandarin Chinese F0.

In particular, a functional principal component analysis (FPCA) is first per-

formed on the dataset’s F0 measurements to extract the principal curves. This

“curve-basis” serves as the coordinate system which explains the most variation in

the data. Similar approaches might utilize Legendre polynomials [104], quadratic

splines [135] or Fourier analysis to derive lower and higher ranking basis functions

that would correspond to slower and faster varying components of the utterance.

However, these functions are fixed in advance rather than derived directly from the

data and are not guaranteed to be optimal in terms of the minimal number required

to explain a certain percentage of the variation in the data, as in the case of prin-

cipal component functions [258]. In order to compute the FPC’s, the sample mean

is subtracted from the data, and then the covariance of the data is calculated, as

in section 3.3. Another possible approach would be to subtract the speaker specific

mean from each syllable, prior to further analysis. We chose not to follow this di-

rection as determining the effect of speaker on each of the components is of interest.

However, as one might expect, the two approaches yield very similar results; because

this might be of interest (especially regarding the insights provided by FPCA) some

intermediate results are shown in the Sect. A.3 of the Appendix.

Building on the FPCA findings, the functional principal component (FPC)

scores are used as the dependent variables in a series of linear mixed effect (LME)

models, allowing the scores to act as proxy data for the complete curves. The scores

essentially quantify the weight each FPC carries in the final F0 curve formation,

as was discussed in Sect. 3.3.1. LME models allow the inclusion of both fixed and

random effects to achieve a flexible modelling of the data (See Sect. 3.4.1 for more

details). In the current case, the differences between individual speakers due to

genetic, environmental [260] or even chance factors [109] are modelled as a series of

random additive effects acting on the F0 contours [15; 11].

The methodology presented here addresses the issue that, while it has been

widely accepted and documented that F0 undergoes variations due to phonetic pro-

cesses in speech production attributed to fixed effects (eg. the sex of the speaker),

unmeasurable variables such as the length of the speaker’s vocal folds or the state

of their health also affect the final F0 utterance. This immeasurability problem is

countered by considering such covariates as random effects. This theoretical per-

spective is not ad-hoc; it corresponds directly with the linguistic, para-linguistic

and non-linguistic parameters presented in the work of Fujisaki [89; 214]. The Fu-

jisaki model implementations have been extended by Mixdorff [212] to account for
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micro-prosodic effects by taking advantage of the MOMEL algorithm [135]. Other

approaches utilize the automatic intonation modelling approach as offered by the

INTSINT [196; 134] and/or the TILT [305] algorithmic implementations. Further-

more, the qTA model [244] also builds on Fujisaki’s assumption, proposing a de-

scription of the physiological mechanisms behind F0 production, a goal somewhat

different from the one here. In the present framework and analogous to the Fujisaki

rationale, F0 is the dependent variable of interest with standard fixed effects such

as the vowel in the rhyme corresponding to linguistic effects, sentence variations

and break points within the utterance corresponding to para-linguistic effects, and

speaker variations corresponding to non-linguistic effects.

W1 W2 W3 W4

Figure 4.1: The first four eigencomponents
(top row) are used to construct the final syl-
lable estimate of F0 (bottom row). The in-
dividual component magnitude (third row)
is calculated by using the weight estimates
(wi) obtained as the sum of the relevant ut-
terance covariates from the LME model and
the component specific random intercept (2nd
row). Subsequently, these components added
together produce the centralized syllable es-
timate (row 4). Finally, the addition of the
sample mean (row 5) produces the final sylla-
ble estimate of F0 (bottom row).

As Evans et al. have already

presented [75] and Aston et al. have

further extended [11], the explana-

tory power that can be yielded from

the application of LME models for

F0 is insightful in cases of tonal lan-

guages. In the current study, the F0

track of each rhyme in the utterance

is used; as a result, while the two

previously mentioned works focused

on one position in a frame sen-

tence, in this project a large num-

ber of read texts of varying lengths

are investigated, adding new dimen-

sions of complexity and further en-

hancing the generality of the ap-

proach by analysing complete cor-

pus data. In addition, while the

previous studies utilized two phono-

logically level tones, Mandarin has

both level and contour tones as well

as toneless syllables and thus poses

a significantly more complex ana-

lytical challenge.

As a final note we need to

emphasize that the application of

FDA (Functional Data Analysis) in

relation with phonetic analysis is

not without precedence. Early work
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of Ramsay et al. [259] used FDA to model the coordinates of lip motion in order to

infer basic principles of lip coordination. Since then a number of speech production

related questions associated with articulatory issues [198; 188; 48; 113], as well as

with issues of physiological interests [172; 151; 264], have been addressed with FDA.

The current work differs from the above mentioned projects by employing an entire

corpus as raw data. Rather than using a small linguistic sample by a single speaker

[214], employing monosyllabic utterances and a small number of sentences [223]

and/or frames within the utterances [198; 172; 11; 333; 114] to minimize possible

confounds at the data collection level, a large corpus is analysed and the confounds

are explicitly modelled. In contrast to existing intonation synthesis algorithms, the

current methodology’s primary goal is to offer insights into how linguistic and non-

linguistic factors are combined in the estimation of F0 and thus presents an auxiliary

approach for existing speech synthesis algorithms in terms of modelling the acoustic

shapes of tones.

Overall, the complete procedure to obtain the F0 estimate is as follows: Once

the components FPCi are fixed, their scores A are used as dependent variables to find

the optimal LME models describing those components’ dynamics. Their estimates

âi = wi are then used in order to present a reconstructed curve and check the

practical alongside the theoretical prowess of our models. A visual summary is

offered in Figure 4.1.

4.2 Sample Pre-processing

We focus our attention on modelling fundamental frequency (F0) curves. The am-

plitude of F0, usually measured in Hz, quantifies the rate/frequency of the speaker’s

vocal folds’ vibration. Reiterating on the importance of the F0 curves analysed to be

“smooth”, ie. they possess “one or more derivatives” [254], we follow the method-

ology of Chiou et al. [57] and use a locally weighted least squares smoother, SL,

in order to fit local linear polynomials to the data and produce smooth data-curves

interpolated upon a common time-grid of L points on a dimensionless interval [0, 1].

As mentioned in section 3.1, different approaches using smoothing splines [115] or

wavelets [218] could also be used. The form of the kernel smoother used is shown

in Eq. 3.9. Similar to section 3.1 the kernel function K was set to the Gaussian

kernel function K(x) = 1√
2π
e−

x2

2 providing an infinite support. Smoothing within

our context effectively constitutes the estimation of a0 in Eq. 3.9. The choice

for this linear is due to the fact while we do accept that higher order polynomials

might reflect that general variation trend across a speaker’s utterance, the local-

ized variation patterns are inherently linear. Additionally assuming a higher order

polynomial would conceptually reflect a stronger smoothness assumption than the
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one of double-differentiability we currently examine within the Ramsay & Silverman

theoretical framework used.

The curves in the COSPRO sample have an average of 16 readings per case,

hence the number of grid points chosen was L = 16. The analysis was also conducted

using 12- and 20- point interpolation so that the impact of the smoothing could be

more easily identified, but this produced negligible differences. In some occasions

sign reversals on some of the eigenfunctions of the covariance operators were noted

but that carried no impact to our modelling assumptions. The smoother bandwidth

b was set to 5% of the relative curve length using leave-one-out cross-validation. As

is common in a dataset of this size, occasional missing values have occurred and

curves having 5% or more of the F0 readings missing were excluded from future

analysis. These missing values usually occurred at the beginning or the end of a

syllable’s recording and are most probably due to the delayed start or premature

stopping of the recording. We define the newly formed, smoothed and equi-sized

version of COSPRO-1’s F0 curves as Y . At this point we need to stress that the

use of a common 16-points grid for all Y effectively constitutes a time-normalization

(rather than synchronization) step that enforces an “identity” warping function on

all Yi’s. While simplistic, this is standard in Linguistic studies; a more sophisticated

approach will be explored in chapter 5.

4.3 Data Analysis and Results

Having established the smoothness of the data, the next step in the actual imple-

mentation of the m-dimensional linear model for such processes as this is shown in

Eq. 3.38. Here it takes the form:

yi(t) = µ(t) +
m∑
ν=1

αν,i(t)φν(t) (4.1)

where µ(t) is the functional average of the F0 curves in sample Y and αν are the FPC

scores associated with the FPC φν(t). As such the sample covariance function is

calculated using Eq. 3.39. This is shown in Fig. 4.2. Immediately we recognize three

significant qualitative findings: 1. The largest variance is exhibited at the initial F0

curve placement. 2. The covariance appears overall smooth and expectedly confirms

the intuition that points located further apart on the F0 curve exhibit less covariance

than points closer to each other. 3. Along the diagonal axis of the covariance matrix

a slight “sink” appears. This suggests that probably the edge placements as a whole

are more important for the final F0 realization compared with the middle of the

phone.

Then, following the same methodology as Aston et al. [11], given that one
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Figure 4.2: Covariance function of the 54707 smoothed F0 sample curves, exhibiting
smooth behaviour. Interpolation on a 16-point grid.

solves Eq. 3.40 1, the FPCA Ai,ν scores are estimated as:

Âi,ν =
s=16∑
i=1

{yi(tj)− µ̂(tj)}φ̂ν(tj)∆j , (4.2)

where ∆j = tj− tj−1 accounts for the discrete nature of our theoretically continuous

data. These scores, Ai,ν , are the ones finally used for the estimation analysis by

the LME models. It must be noted that because by definition the FPC’s are or-

thogonal, their scores are also considered mutually orthogonal. As such we employ

a series of univariate LME regressions rather than a single multivariate one. The

choice and number of FPC’s used is related to the amount of variation that each of

these components reflects. Given the large number of available sample utterances, a

relatively high number of FPC’s is required in order to account for phonetic effects

that might occur in just a relatively small number of sample instances. Despite the

need for statistical accuracy, it should be mentioned that the actual information

content found in the FPC scores is of importance. Thus, only the FPC’s reflect-

ing variation that is audible are selected. In reality, only pure tone F0 fluctuations

above a 2 Hz threshold can definitely be clearly perceived by the human auditory

system (Just Noticeable Difference - JND) [45]; in the presence of noise, JND is at a

minimum of 10Hz. As advocated by Kochanski [302], in the case of human speech,

the JND for pitch motions seems to be rather larger. Black and Hunt [29] show that

1Numerically this is solved by employing the Generalized Schur or QZ decomposition.
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a 9.9 Hz RMS error is not detrimental to the model’s success. This threshold will

be used throughout this work; however our approach is flexible enough for other

practitioners to utilize with different cut-off thresholds.

We must emphasize that while the statistical robustness of the methods

employed is crucial, the actual targets of this project are the phonetic significance

and interpretation of its results. The analysis requires high-specificity as some tonal

combinations and other covariate interactions of interest are relatively sparse within

the data, eg. certain tones (eg. Tone 3) are inherently less common than others (eg.

Tone 1). Therefore, initially at least 99.99% of the total variation in the original

data has to be accounted for. This figure results from the need to ensure effects that

might only systematically alter a small number of sample curves are not missed in

the analysis. Thus, the first 12 FPC’s were selected as necessary to incorporate in

the modelling procedure. This unusually large number of FPC’s was also dictated

by the fact that significant regression-related effects might actually appear in a small

percentage of the sample variation. These 12 FPC’s account for the 99.992% of the

total variation in the sample (Table 4.1, Columns 2 & 3). Nevertheless, even by

accounting for such high variation, relevant characteristics that may occur in five

syllables (or fewer) within the corpus could be filtered away (based on the residual

variation of the discounted FPC’s).

In addition, given the large number of samples, by taking the upper model

percentile (99%) of the FPC scores and multiplying it by the maximum absolute

value of each eigenfunction, we can effectively derive an upper limit of the actual

variation attributed to each component in Hz, the unit that was originally used for

measurement. This is of interest because any actual variation found to be below the

minimum threshold assumed (9.9 Hz in this case) is likely to remain unnoticed. This

cut-off threshold in essence excludes all FPC’s with rank equal to or higher than five,

which were previously deemed as of possible importance (see Table 4.1, Columns

4 & 5). Statistically, it should be emphasized that our estimates of the maximum

actual auditory variation per FPC are quite conservative as they are based on a

99% quantile. As shown in Table 4.1, if a 95% quantile were used, it would suggest

that we actually exclude the components that are below 20.7 Hz and ultimately use

a significantly narrower F0 range.

As mentioned in the previous sections, not only the smoothness of the co-

variance function of this transformation is essential, but also the smoothness of the

eigenfunctions themselves. A visual inspection of our results confirms that the ker-

nel smoothing undertaken was successful, with the data being smooth enough for

the notions of FDA to be applicable (even though only a minimal smoothing was

performed). The mean and FPC curves (Figure 4.3) appear smooth through their

values. It must be noted though that the 5th and 6th FPC’s seem somewhat less
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FPC # Individ. Cumul. Hz (99%) Hz (95%)
Variation Variation

FPC1 88.23 88.23 133.3 101.3
FPC2 9.78 98.01 55.3 38.3
FPC3 1.42 99.43 35.8 20.7
FPC4 0.32 99.75 19.1 9.1
FPC5 0.11 99.86 8.9 4.2
FPC6 0.05 99.91 5.7 2.5
FPC7 0.03 99.94 3.6 1.7
FPC8 0.02 99.96 2.9 1.2
FPC9 0.01 99.97 2.4 1.1
FPC10 0.01 99.98 1.8 .85
FPC11 0.01 99.99 1.7 .68
FPC12 0.01 99.99 1.3 .45

Table 4.1: Individual and Cumulative Variation Percentage per FPC. Actual Audi-
tory Variation per FPC (in Hz) (human speech auditory sensitivity threshold ≈ 10
Hz).

smooth in appearance, further signifying that the transformation starts to reach an

explanatory threshold and these components start to exhibit the characteristics of

noise. It is also noticeable that the eigenfunctions appear to exhibit a distinctive

polynomial pattern, with each successive FPC’s eigenfunction reflecting the compo-

nent rank in the eigenfunction’s curvature (Figure 4.3). This result concurs with

the assumed contour shapes of Grabe et al. [104] where Legendre polynomials L0

to L3 were utilized for the contour basis of F0 to examine intonation (See Appendix

for actual shapes). In principle, given our statistical findings and the well attested

shapes of Mandarin tones in the literature, the basic tone curve of the syllable can

essentially be reconstructed by using FPC1, FPC2 and FPC3, as can be seen from

the actual shape of those components, with FPC4 allowing contextual movement

between tones.

While the kernel smoothing and interpolation was implemented by a custom

built C++ program utilizing the GSL package [91], the calculation for the eigen-

function decomposition and the production of the FPC scores were conducted using

standard built-in MATLAB procedures [204]. The rest of the analysis was carried out

in the statistical environment R [247]. Except for the obvious standard R meth-

ods used (density(), lm(), etc.) the major body of the analysis was done using

methods from the statistical package lme4 [22] for the LME model estimation and

prediction. As mentioned in section 3.4.3, we examined the robustness of the se-

lected models also through jackknifing; extensive sub-sampling was implemented

using 180 5-sub-sample partitions of our original samples, yielding a total of 900
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Figure 4.3: Mean Function and 1st, 2nd, 3rd, 4th, 5th and 6th Functional Principal
Components. Together these account for 99.994% of the sample variance, but only
the first four have linguistic meaning (99.933 % of samples variation) and as such
the 5th and 6th were not used in the subsequent analysis.

sub-samples.2

The model selection procedure was initiated by selecting a large but still

linguistically plausible model and then de-constructing it using AIC, excluding co-

variates that were viewed as statistically redundant, or insignificant. The following

equation presents the original basis equation:

FPCX = {[tnprevious ∗ tncurrent ∗ tnnext]+

[cnprevious ∗ tncurrent ∗ cnnext]+

[(B2) + (B2)2 + (B2)3+

(B3) + (B3)2 + (B3)3+

(B4) + (B4)2 + (B4)3+

(B5) + (B5)2 + (B5)3] ∗ Sex+ [rhymet]}β

+ {[Sentence] + [SpkrID]}γ + ε.

(4.3)

The standard R notation is used here for simplicity regarding the interaction

effects; [K*L] represents a short-hand notation for [K + L + K:L] where the colon

specifies the interaction of the covariates to its left and right [14]. Table 2.2 offers

a list of each covariate and its definition. It must be pointed out that, from the set

2For a detailed discussion and relevant histograms refer to the Appendix Sect. A.7.
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of fixed effects, all fixed covariates, with the exception of break counts, are in factor

form. Break (or pause) counts represent the number of syllables between succes-

sive breaks of a particular type and are initialized in the beginning of the sentence

and are subsequently reset every time a corresponding or higher order break occurs.

They represent the perceived degree of disjunction between any two words, as de-

fined in the ToBi annotations [158]. B2 break types correspond to smaller breaks

occurring usually at the end of words, while B5 types occur exclusively at a full stop

at the end of each utterance; essentially signifying an utterance boundary pause.

Breaks B3 and B4 represent intermediate or intonational phrase stops, respectively.

B1 breaks were not used as these are coincident with our data observation unit (ie.

each syllable). Table 2.1 offers a comprehensive list of what each break represents.

During data generation, each speaker read the text in his/her natural manner, and

these recordings were then hand annotated with break information. Allowing the

break indexes to form interactions with the speaker’s sex, the model can associate

different rates of curvature declination among male and female speakers. This effect

was found to be usually associated with lower order breaks (faster variational com-

ponents). Furthermore, the ability to allow different curvature declinations between

speakers of different genders enables the modelling of more complex down-drift pat-

terns. This approach allows an analogy to be drawn with the phrase component used

in the Fujisaki modelling approach [89]. The different tones of each syllable may be

associated with the accent component as proposed by Mixdorff. The linguistic data

were transcribed using ASCII symbols [313] to encode the 9 vowels [@, @~, a, e, i, E,

y, o, u]. Combinations of these vowels, with and without final [-n, -N], add up to

37 rhymes, which are listed in the Appendix, Sect. A.1. As a final note we draw

attention to the fact that design-wise we do not incorporate random slopes along

with random intercepts for our models. The reason to avoid this is two-fold: first,

we assume that especially regarding the speaker random effect, where we have only

5 speakers, over-fitting can be a major problem. Additionally, because we include so

many fixed effects interactions between speaker’s sex and the break information we

do offer “enough flexibility” in our model through its fixed effect so that if random

slopes were prominent in our approach, at least we have circumvented partially that

issue.

As shown earlier in Table 2.2, 13 possible covariates (not counting their in-

teractions) were included in the model. Eleven of them account for fixed effects and

two for random effects. The initial model incorporates 3-way interactions and their

embedded 2- and 1-way interactions. Three-way interactions have been known to be

present in Taiwanese Mandarin and therefore were deemed as significant effects to in-

corporate [333; 11; 310] both in the form of previous tone : current tone : next tone

interaction as well as a previous consonant : current tone : next consonant inter-
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action. Consonant refers only to the consonant’s voicing status, not the identity of

the sound. Four levels were present in the consonant covariate. It is well attested

that syllables with no initial consonant in Chinese can have an epenthetic glottal

stop before the rhyme, as in the second syllable of [tCiāuPaù] “proud” (e.g., as in

Lin [193]). The glottal stop [P] is defined as a voiceless sound, as the glottis cannot

be simultaneously closed and vibrating. However, there are two reasons why we did

not simply label all such syllables as beginning with a voiceless consonant. First,

glottal stop is not always inserted in this context, being most likely after a higher

order break, such as B4 or B5. Second, recent research on this topic (for example

Borroff [37])has shown that voicing is often continuous through a perceived glottal

stop. Thus, glottal stop is neither predictably present nor always voiceless. For

these reasons, we have labelled zero-initial as neither voiced nor voiceless but as

its own category. Furthermore, break counts were allowed to assume squared and

cubic values, as this would allow up to a cubic form of down-drift in the final model.

In addition to the inclusion of speaker identity as a random effect, which was in-

cluded for reasons such as age, sex, health and emotional condition among others,

utterance instance was incorporated as a random effect, since it is known that pitch

variation is associated with the utterance context (eg. commands have a different

F0 trajectory than questions).

The initial analysis shows that in all cases the random effects of speaker

and sentence were found to be significant, in spite of the fact that certain effects

(especially sentence) appeared to be rather smaller than the actual model residuals

(Table 4.2).

FPC1 Estimate FPC2 Estimate FPC3 Estimate FPC4 Estimate
(.025,.975) (.025,.975) (.025,.975) (.025,.975)

Speaker 71.755 4.682 6.976 3.094
(16.931,133.304) (1.002,8.669) (1.644 ,12.970) (0.722,5.768)

Sentence 30.823 3.497 1.956 0.596
(28.505,33.124) (2.893,4.011) (1.676 ,2.203) (0.400,0.747)

Residual 118.917 45.089 21.241 12.119
(118.145,119.601) (44.799,45.349) (21.102 ,21.363) (12.042,12.190)

Table 4.2: Random Effects and parametric bootstrap confidence intervals (2.5%,
97.5%) for the 1st, 2nd, 3rd and 4th FPC scores models as produced by using 10000
samples.

Furthermore, it is shown that while third order interactions are not present in

the analysis of the first FPC (this being partially expected as the first FPC appears

to specify curve placement), third order interactions are present on the modelling of

the second and third FPC’s, those that appear to represent phonological rather than

physiological features. In addition, the second eigenfunction reflects a considerable
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proportion (9.78%) of the total sample variation; thus significantly affecting the

beginning and the end of the curve, dictating the syllable’s overall trend.

We now outline the role that each individual eigenfunction plays in the F0

curve formation. As mentioned, the first eigenfunction appears to have a shifting ef-

fect on the F0 curve itself, raising or lowering the overall F0. In contrast, the second,

third and fourth eigenfunctions have an average effect on the F0 curve quite close to

0 over the entire trajectory (as can be easily seen on the plots themselves). There-

fore FPC2, FPC3 and FPC4 do not have an overall shifting effect on the curve, but

rather only dictate properties of the curve’s shape, essentially bending it. Finally,

it should be pointed out that FPC4 findings were rather interesting linguistically in

the sense that the sinusoid-like suggested F0 formation does not correspond to any

known/formal individual Mandarin tones. Nevertheless, it appears native speak-

ers do indeed exhibit components of sinusoidal-shape in their production of F0, as

FPC4 accounts for 19 Hz variation, hence represents an audible signal. It is likely

that this F0 curve component is needed to move between different tones in certain

tonal configurations, as will be discussed below. Finally we note that the dynamics

FPCs used where found to be robust and clearly identifiably when tested in smaller

subsets of the COSPRO dataset (Sect. A.4).

Reviewing each model eigenfunction in an individual manner, it is important

to stress the main qualitative features that each model suggests. We must also note

that during the modelling procedure the fixed effects do not incorporate an intercept

as such. Tone 1, the presence of a voiceless next consonant, the absence of a next

or a previous tone and the vowel type @ (schwa) served as intercepts in the cases of

tones, consonants, next or previous tone and vowel type covariates, respectively3;

for each FPC the corresponding model was fit separately from other FPCs. Taking

into account the results from AIC and jackknifing, the following model for FPC1

was chosen:

FPC1 = {[tnprevious ∗ tncurrent] + [tncurrent ∗ tnnext]+

[cnprevious ∗ tncurrent[+[tncurrent ∗ cnnext]+

[cnprevious ∗ cnnext]+

[(B2) + (B2)2 + (B2)3 + (B3) + (B3)2

+ (B3)3 + (B4) + (B4)2 + (B4)3+

(B5) + (B5)2 + (B5)3] ∗ Sex+

[rhymet]}β + {[Sentence] + [SpkrID]}γ + ε.

(4.4)

The first eigenfunction is almost exclusively associated with the speaker’s F0

3For a detailed listing of the relevant covariates and the jackknifing results refer to the Appendix
Sections A.6 - A.8.
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curve placement. Complex third order tonal interactions were not present. The

speaker-identity random effect is significantly high despite the inclusion of speakers’

sex as a covariate. Thus, this random effect captures speaker related variance that

can not be accounted for by indexing the sex of the speaker alone. Tones-2, -3 and -4

register lower in F0 than tone 1. Also, a number of rhymes appear to have significant

associations with the first eigenfunction, indicating that a number of rhymes have

a characteristic influence or shift on F0 (see Appendix, chapter A.8 ). These results

are all relatively well known, but it is reassuring to find them all present in the

model.

The type of voicing of the rhyme’s neighbouring consonants is of significance

for all tone types. Specifically, the voicing of the preceding consonant resulted

in a statistically significant lower overall F0 placement, when compared to the F0

placement associated with a preceding voiceless consonant. Overall, voiced neigh-

bouring/initial consonants (including epenthetic glottal stop) resulted in lower F0

placements, although the value of the effect depended on the tone type.

Break types B2, B3 and B4 associated both with males and females are

statistically significant emphasizing the role of speech units larger than the word

(but smaller than the utterance) on the formation of F0. In contrast, B5 breaks, in

effect syllable index within the utterance, did not appear significant individually in

terms of p-values; however, AIC deemed them worthy of incorporating as a group,

yielding a cubic curve, thus demonstrating that while one covariate value might

exhibit insignificant effects, the group might be quite important. A more detailed

examination of the break term coefficients reveals more information about the down-

drift effects in the samples. These suggest that, as the speaker progresses, while F0

might exhibit short jumps because of the generally additive effect of B2, the negative

effects of B3 and B4 start to carry more weight and the down-drift becomes more

prominent forcing the F0 estimate to be lower. Furthermore, the break interactions

with the speaker’s sex suggest that male speakers do not exhibit B2-related effects

to such an extent, but due to their B3 and B4-related interaction their F0 track

drifts to lower frequency levels more smoothly as the additive lowering effects of B3

and B4 influences become more prominent. These types of features are reminiscent

of the kinds of features that can be explored using a Fujisaki approach to the data.
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The model for FPC2 was chosen as:

FPC2 = {[tnprevious ∗ tncurrent ∗ tnnext]+

[cnprevious ∗ tncurrent ∗ cnnext]+

[(B2) + (B2)2 + (B2)3 + (B3) + (B3)2+

(B3)3 + (B4) + (B4)2 + (B4)3] ∗ Sex+

[(B5) + (B5)2 + (B5)3]+

[rhymet]}β + {[Sentence] + [SpkrID]}γ + ε.

(4.5)

The second eigenfunction scores exhibit third order interactions incorporating both

triplet types tested, previous tone : current tone : next tone and previous consonant

: current tone : next consonant. These kind of interactions are of importance as

they reflect not only physiological but also linguistic relations in the language corpus.

At first glance, only uncommon triples (such as the tone triple 1-4-3 or 1-3-2 and the

consonant-vowel-consonant triplets where the tones 2 and 3 occur in-between voiced

consonants) appear statistically significant. Nevertheless, the effects that both third

order interactions groups have in the final modelling outcome were found to enhance

the whole model in a statistically significant way by AIC. It is noteworthy that both

the speaker’s identity and the sentence random effects carry almost equal weight in

the eigenfunction’s final formation, but their individual impacts are a whole scale of

magnitude smaller than the model’s residual (See Table 4.2). Thus, while they are

not excluded by the model during our selection procedure, it is clear that their effect

(or rather lack of it) suggests that non-linguistic covariates play a lesser role in the

formation of this FPC. As expected from the shape of FPC2, tones 2 and 4 appear

significantly affected by the second eigenfunction, as the slopes of these two tones

are phonological mirror-images. As a consequence, the two have actual parameter

values of opposite signs (-73 & 95 for tones 2 and 4 respectively). Analogous with

the known Mandarin tones, the negative parameter effect in tone 2 will cause tone

2 curves to have an upward curvature, while a positive parameter effect in tone 4

will cause downwards bending of the syllable’s curve. Fewer rhymes appear to be

associated with FPC2 and thus with the shaping of its contour. Breaks do come

through as significant covariates, despite not having significant interactions with the

speaker’s sex, showing that the overall down-drift effect in an utterance is a sex-

independent phenomenon for this FPC. Finally, the voicing nature of the adjacent

neighbouring consonants proved of importance both individually and in association

with the syllable’s tone. The influence of a voiced initial consonant was negative

overall, resulting in lowering the start and raising the end of the F0 curve. However,

the following consonant’s voicing effect depended mostly on the associated tone.
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The scores associated with FPC3 had the following model chosen:

FPC3 = {[tnprevious ∗ tncurrent] + [tncurrent ∗ tnnext]+

[tnprevious ∗ tnnext]+

[cnprevious ∗ tncurrent ∗ cnnext]+

[(B2) + (B2)2 + (B2)3 + (B3) + (B3)2

+ (B3)3] ∗ Sex+ [rhymet]}β+

{[Sentence] + [SpkrID]}γ + ε

(4.6)

The third eigenfunction possibly plays a dual role. Firstly, it is mostly as-

sociated with tone 3 in terms of its covariate value, which is unsurprising given its

shape. It also appears to have strong effects on many tonal and voicing interactions,

indicating that it is being used in transition between syllables. In addition, the

speaker’s identity random effect appears to play a statistically significant role to

the eigencomponent’s final weight, especially when compared to the sentence effect.

FPC3 appears to carry statistically significant associations with the majority of

different rhymes considered; suggesting that a hill, valley or a flattening in the cur-

vature of the rhyme of the vowel is a prominent feature. Furthermore emphasizing

the linguistic and local relevance of FPC3, B2 and B3 break types appear to have

the highest association both as individual covariates and in interaction with sex.

As in the case of FPC2, the voicing nature of the surrounding consonants

interacting with the current rhyme tone influences the final curvature. This effect

was most prominent in the cases where the rhyme occurred immediately after a

short pause or another rhyme (i.e. there was no preceding consonant) and resulted

in the curvature exhibiting a clear hill-top tendency. Also noteworthy is that this

eigenfunction appears to have significant interactions when modelling adjacent pairs

of the same tone, its positive influence easily seen in the cases of tones 2 and 3.

The model for the fourth FPC was chosen as:

FPC4 = {[tnprevious ∗ tncurrent] + [tnnext]+

[cnprevious ∗ tncurrent] + [tncurrent ∗ cnnext]+

[cnprevious ∗ cnnext]+

[(B2) + (B2)2 + (B2)3 + (B3) + (B3)2+

(B3)3] ∗ Sex+ (B4) + (B4)2 + (B4)3+

[rhymet]}β + {[Sentence] + [SpkrID]}γ + ε.

(4.7)

This fourth eigenfunction, which does not display the shape characteristics of

a single Mandarin tone, shows strong association with the voicing of the next initial

consonant. This eigenfunction appears to reflect strongly localized effects mostly
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FPC# LM −R2
a LME −R2

a

FPC1 .6271 .7056
FPC2 .6109 .6161
FPC3 .3645 .4136
FPC4 .1083 .1491

Table 4.3: Adjusted R2 scores for the selected linear models before and after the
inclusion of Speaker and Sentence related random effects.

associated with the transition from one tonal segment to another. As expected,

specific tones do not exhibit correlation with this eigenfunction, however, the inter-

action between current tone and next consonant appears statistically significant in

all cases; suggesting a phonetic functionality that is associated with linguistic char-

acteristics of the following syllable. While only a handful of rhymes appeared to have

statistical significance in terms of p-values, AIC does not exclude them, showing that

at least part of the eigenfunction’s shape is indeed reflected in the rhyme shaping.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
170

180

190

200

210

220

230

240

250

260

t (normalized)

H
z

Example Model Tone Estimates

 

 

Tone1

Tone2

Tone3

Tone4

Figure 4.4: Example tone estimates pro-
duced by the model utilizing all four
FPC’s. Tone 5 is not represented as
it lacks a general estimate, always being
significantly affected by non-standardized
down-drift effects. Phonologically, tone-
less syllables do not specify a pitch target.

Another important issue is that

breaks 2 and 3 (prosodic word and

phrase) have much influence on the

F0 contour through this eigenfunc-

tion. B4 (breath group) has a very

small influence, and B5 (paragraph)

was not deemed statistically significant

enough to even incorporate. Thus,

this eigenfunction reflects the influence

of prosodic units no larger than the

prosodic phrase. It can be suggested

that such a small percentage of F0 vari-

ance approaches the limit of the ex-

planatory power of our modelling ra-

tionale. Therefore, fluctuations smaller

than this (small) magnitude are due

to articulatory and/or phonetic effects

that are beyond the mostly linguistic co-

variates the current model entails.

Choosing the relevant covariates

from each FPC for the syllable of inter-

est, summing them up, and using this

sum as a factor to weigh the influence

of each respective eigenfunction to the
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original sample mean, yields the final F0 estimate (see Figures 4.1 & 4.5). Here

the estimates correspond to generic speakers and to estimations of the behaviour of

the underlying Gaussian process. The estimates do not specify individual speakers;

therefore the random effects are set to 0 across all FPC’s as random effects always

have mean 0. As can be seen, the example tone estimates (Figure 4.4) generated by

the model exhibit qualitatively similar characteristics with those of the YR Chao

tone chart (Fig. 2.4).

Table 4.3 gives a brief overview of each eigencomponent model’s performance

in terms of adjusted R2
a with and without the incorporation of random effects [77].

It is immediately seen that the overall adjusted R2
a score is declining as the models

try to capture the highly variable nature of each higher order individual eigencom-

ponent. Nevertheless, in all cases the inclusion of random effects seems beneficial

and was not rejected by the full sample AIC model comparison or the jackknifing

model selection procedure. While the third and fourth components’ R2
a are very low,

this likely results from the inherent variability in the sample data being captured

by these components, beyond the explanatory factors available to model the data

(such as speaker mood through the experiment, changes in attention, etc).

0 0.5 1
50

100

150

200

250

300

350

H
z

t

Tone1

0 0.5 1
50

100

150

200

250

300

350

H
z

t

Tone2

0 0.5 1
50

100

150

200

250

300

350

H
z

t

Tone 3

0 0.5 1
50

100

150

200

250

300

350

H
z

t

Tone4

0 0.5 1
50

100

150

200

250

300

350

H
z

t

Tone5

 

 

M01

M02

F01

F02

F03

Estim. M

Estim. F

Figure 4.5: One randomly selected syllable for each of the five tones; the functional
estimates (bold) for each different tone are shown as well as the corresponding
original speaker interpolated data over a dimensionless rhyme time interval t.
(Estimated vowel rhymes: [uei, oN, @N, uan, @] for each of the 5 tones respectively.
See Appendix Table A.9 for contextual covariate information.)

Given the break information in the model, it is also possible to construct the
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F0 track for rhymes over time. As can be seen in Figure 4.6 4, the curves estimated

from the models are not only fairly good fits to the data on a rhyme by rhyme basis

(including the expected estimation error), but the overall time normalized track

from rhyme to rhyme is captured through the break covariate estimation. Thus, in

a similar manner to the Fujisaki framework, estimation can be achieved for tracks

both associated with single rhyme curves and also longer phrasal (multiple rhyme)

instances.
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di2 si1 nai4 de5yuan2le4

Figure 4.6: Randomly chosen F0 trajectory over (normalized) time. Here six con-
current F0 tracks for rhymes are shown for speaker F03. As can be seen, the match
is fairly close for most syllables, with the estimates associated with the break infor-
mation controlling the temporal down drift effects.
(Tonal sequence: 2-1-4-4-2-5 ; Estimated vowel rhymes: [i, ę, ai, @, yEn, @]. See
Appendix Table A.10 for contextual covariate information.)

4.4 Discussion

Overall, the presented methodology allows for an analysis of the linguistic corpus

at hand. Specifically, the qualitative analysis of the eigenfunctions suggests the

strong dependence of pitch level to the speaker’s identity. The influence of triplets

in the case of tones 2 and 4 and the subsequent slope-like shape they exhibit is

also demonstrated in the case of tone 2 where F0 initially drops before the rise, the

effect being most prominent when tone 2 is spoken after either a tone 1 or tone 2.

The model also suggests that statistically significant differences are present on the

down-drift effect between speakers of different gender. Nevertheless, except FPC1

(the curve’s F0 placement component), all the other FPC’s did not show significant

associations with the speakers’ sex, suggesting that males and females have the

same generic tone shapes; the actual shaping is statistically gender-independent.

Furthermore, the fact that a number of rhymes have specific shaping attributes

that are concurrently speaker and sentence independent is also put forward. The

4See Appendix, Table A.10, for detailed listing of relevant covariates.
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model proposes that the presence of voiced consonants adjunct to a rhyme alters

its curvature to a noteworthy level; thus it is essentially validating empirically the

sequential target approximation assumption used by Prom-on et al. in the qTA

model [244]. Additionally, an interesting yet not surprising result is that, as the

modelling procedure focuses on higher order FPC’s, higher order breaks (namely

B4 and B5) seem to carry decreasing importance to the final model. This result is

in line with the fact that higher order FPC’s reflect more localized effects influenced

by changes in B2 and B3 indexing. The model estimates (Figure 4.55) show that

the proposed model succeeds in capturing the overall dynamics of the speaker’s

pronunciation, giving good qualitative and quantitative estimates. This success

is obtained despite the fact that the sample exhibits large variance and possible

distortion through its measurements even after the initial data were preprocessed.

Note that Shih and Kochanski [293] ran into similar issues concerning distorted

tone shapes. Collectively, these findings are in line with those of other studies [333],

specifically when reviewing the effect of adjacent tones. Durational differences are

not taken into account by the current modelling approach. As it will be shown in

the next chapter, one can benefit from incorporating time-warping normalization

on the rhyme time in order to ensure that possible discrepancies due to durational

differences are excluded.

The current findings are also analogous to those of Aston et al. [11] in their

study on Luobuzhai Qiang, a tonal Sino-Tibetan language of the Sichuan Province in

central-southern China. This fact could reflect a series of shared features among this

language family. It could be of interest to review and compare these findings with

those of other languages, especially those that are genealogically and geographically

distant, to highlight any differences found in the components recovered from the F0

trajectory.

Each of the FPCx models constructed are unit but not scale invariant; al-

ternative models could be postulated for semitones or bark scale following the exact

same methodology. Indeed the analysis was repeated using a semitone scale but the

contours recovered were almost identical. Other effects, such as the text frequency

of the syllable were not incorporated as model covariates. While it could be argued

that this would upgrade the overall performance of the model, this would never-

theless steer the model away from its phonetic foundations. Therefore, inclusion of

such factors as text frequency, intonation pattern, etc., remains for future research.

Moreover, because of the time-normalization, observed curvature fluctuations are

per syllable rather than on an absolute time scale. The full body of the analysis was

re-implemented using Legendre polynomials, shifted and normalized in L2(0, 1) as

5Figure 4.5 Tone 1 : Sentence 564, Word 2; Tone 2 : Sentence 124, Word 1; Tone 3 : Sentence
336, Word 1; Tone 4 : Sentence 444, Word 4; Tone 5 : Sentence 529, Word 3; See Appendix, Table
A.9, for detailed listing for relevant covariates.
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a set of basis functions for the data instead of FPC’s. This representation gave very

similar explanatory results, because of Legendre polynomials having similar shape

to the FPC’s. However, as discussed in the introduction, Legendre polynomials do

not represent an optimal basis in terms of most variation of the data explained6 and

thus the first four Legendre polynomials did not explain as much of the data as the

first four eigenfunctions.

The model’s novelty is that while the syllable curve was assumed to be part

of the whole utterance as in the Fujisaki approach, the syllable curve itself was

treated as a continuous random process modelled by different FPC’s. In addition,

micro-prosodic phenomena also known to be present are not systematically excluded

by the current framework. In that sense, statistical methodology is the mechanism

excluding irrelevant or immeasurable components of the sample, the notion of JND

allows an informal auditory selection procedure to be formed. As the FPC’s are or-

thogonal to each other, FPC scores account for non-overlapping variations. Higher

degrees of FPC’s might reflect further micro-prosodic variations than the ones rec-

ognized by this study, but as the total amount of information in these FPC’s is

considered below an auditory threshold, these FPC’s are rendered unnecessary to

the actual modelling procedure.

The future steps following from this initial project are fourfold. First, by us-

ing the model it may be possible to make meaningful inference from other corpora,

allowing more realistic speech recognition and speech processing. Secondly, by tak-

ing advantage of the surrogate variables generated (FPC’s, covariance surfaces etc.),

possibilities arise to infer associations between languages that share common phono-

logical characteristics under a functional phylogenetic framework. Such a framework

has already been sketched by Aston et al.[307] and presented with a proof-of-concept

biological application by the main author [119] (more details are given in Chapt.

6). Third, by validating this method on a language where many of the effects on

F0 are known, it now becomes possible to investigate numerous effects and their

interactions in the production of F0 in less-studied languages, and to be confident

of the results. One can be confident that this will at least for tonal languages be an

attainable target as it has already been used for two different applications [11; 117].

Finally the current framework presents a tested methodology that is readily ex-

tendible not only towards the investigation of the dynamics within a single set of

curves, but also towards the investigation of the interactions between two different

sets of curves and the concurrent modelling of their variations. This last point is

the focus of the next chapter.

6See Appendix Sect. A.2.
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Chapter 5

Joint Amplitude and Phase

modelling in Mandarin Chinese

5.1 Introduction

As exemplified in the last chapter the modulation of the pitch of the sound is an

integral part of the lexical definition of a word. Thus, any statistical approach at-

tempting to provide a pitch typology of the language must incorporate the dynamic

nature of the pitch contours into the analysis [111; 245]. Nevertheless pitch contours,

and individual human utterances generally, contain variations in both the amplitude

and phase of the response, due to effects such as speaker physiology and semantic

context. Therefore, to understand the speech synthesis process and analyse the in-

fluence that linguistic (eg. context) and non-linguistic effects (eg. speaker) have, we

need to account for variations of both types. As seen in the last chapter tradition-

ally, in many phonetic analyses, pitch curves have been linearly time-normalized,

removing effects such as speaker speed or vowel length, and these time normalized

curves are subsequently analysed as if they were the original data [334; 11]. How-

ever, this has a major drawback: potentially interesting information contained in

the phase is discarded as pitch patterns are treated as purely amplitude variational

phenomena.

In a philosophically similar way to Kneip and Ramsay [169], we model both

phase and amplitude information jointly and propose a framework for phonetic anal-

ysis based on functional data analysis (FDA) [254] and multivariate linear mixed-

effects (LME) models [179]. Using a single multivariate model that concurrently

models amplitude, phase and duration, we are able to provide a phonetic typology

of the language in terms of a large number of possible linguistic and non-linguistic

effects, giving rise to estimates that conform directly to observed data. Following

the rationale presented in the previous section, we focus on the dynamics of F0 [226]
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in Mandarin Chinese. We utilize two interlinked sets of curves; one set consisting of

time normalized F0 amplitude curves and a second set containing their correspond-

ing time-registration/warping functions registering the original curves to a universal

time-scale. Using methodological results from the compositional data literature [2],

a principal component analysis of the centred log ratio of the time-registration func-

tions is performed. The principal component scores from the amplitude curves and

the time warping functions along with the duration of the syllable are then jointly

modelled through a multivariate LME framework.

One notable aspect in our modelling approach is that it is based on a com-

positional representation of the warping functions. This representation is motivated

by viewing the registration functions on normalized time domains as cumulative dis-

tribution functions, with derivatives that are density functions, which in turn can

be approximated by histograms arbitrarily closely in the L2 norm. We may then

take advantage of the well-known connection between histograms and compositional

data [191; 235].

As before our dataset for this work is COSPRO-1. Unfortunately this dataset

is prohibitively large to analyse with usual multivariate multilevel computational

implementations [22; 116], so a specific computational approach for the analysis of

large multivariate LME models is developed. Using the proposed model, we are

able to identify a joint model for Mandarin Chinese that serves as a typography

for spoken Mandarin. This study thus provides a robust and flexible statistical

framework describing intonation properties of Mandarin Chinese with accounting

both for amplitude and phase variations.

5.2 Phonetic Analysis of Mandarin Chinese utilizing

Amplitude and Phase

We focus our attention again on modelling fundamental frequency (F0) curves. The

observation units of investigation are brief syllables: F0 segments that typically span

between 120 and 210 milliseconds (Figure 5.1) and are assumed to be smooth and

continuous throughout their trajectories. Linguistically our modelling approach of

F0 curves is motivated by the intonation model proposed by Fujisaki [89] where

linguistic, para-linguistic and non-linguistic features are assumed to affect speaker

F0 contours. Another motivation for our rationale of combining phase and amplitude

variation comes from the successful usage of Hidden Markov Models (HMM) [249;

338] in speech recognition and synthesis modelling. However, unlike the HMM

approach, we aim to maintain a linear modelling framework favored by linguists for

its explanatory value [15; 75] and suitability for statistical modelling.

Usual approaches segment the analysis of acoustic data as seen in chapter
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Figure 5.1: An example of triplet trajectories from speakers F02 & M02 over natural
time. F (emale)02 tonal sequence: 4-5-1, M(ale)02 tonal sequence: 2-1-4; Mandarin
Chinese rhyme sequences [oN-@-iou] and [ien-in-ğ] respectively. See Appendix, Sect.
A.11 for full contextual covariate information.

4. First, one applies a “standard” Dynamic Time Warping (DTW) treatment to

the sample using templates [278], registers the data in this new universal time scale

and then continues with the analysis of the variational patterns in the synchronized

speech utterances [183]. In contrast, we apply Functional Principal Component

analysis (FPCA) [51] to the “warped” F0 curves and also to their corresponding

warping functions, the latter being produced during the curve registration step. The

warping technique employed is the Pairwise synchronization framework introduced

in Sect. 3.2.2. These functional principal component scores then serve as input for

using a multivariate LME model.

We use the same set of covariates used in the “amplitude” only investiga-

tion presented in the previous chapter. Therefore, in total, aside from Speaker and

Sentence information, associated with each F0 curve are covariates of break index

(within word (B2), intermediate (B3), intonational (B4) and utterance (B5) seg-

ments), its adjacent consonants, its tone and rhyme type (Table 2.2). In our work

all of these variables serve as potential scalar covariates and with the exception of

break counts, the fixed covariates are of categorical form [158]. As mentioned pre-

viously break counts are very significant as physiologically a break has a resetting

effect on the vocal folds’ vibrations; the qualitative description of the break counts

is provided in the Table 2.1.
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5.3 Statistical methodology

5.3.1 A Joint Model

Concurrent phase and amplitude variation is expected in linguistic data and as pho-

netic datasets feature “dense” measurements with high signal to noise ratios [254],

FDA naturally emerges as a statistical framework for F0 modelling. Nevertheless

in all phonetic studies mentioned in chapter 4, the focus of the phonetic analysis

has been almost exclusively the amplitude variations (the size of the features on a

function’s trajectory) rather than the phase variation (the location of the features

on a function’s trajectory) or the interplay between the two domains. To allevi-

ate this limitation we utilize the formulation presented by Tang & Müller [303] and

introduce two types of functions, wi and hi. For a given F0 curve yi, wi is the ampli-

tude variation function on the domain [0, 1] while hi is the monotonically increasing

phase variation function on the domain [0, 1], such that hi(0) = 0 and hi(1) = 1.

For generic random phase variation or warping functions h and time domains [0, T ],

T also being random, we consider time transformations u = h−1( tT )) from [0, T ] to

[0, 1] with inverse transformations t = Th(u). Then, the measurement curve yi over

the interval t ∈ [0, Ti] is assumed to be of the form:

yi(t) = wi(h
−1(

t

Ti
))⇔ wi(u) = yi(Tihi(u)) (5.1)

where u ∈ [0, 1] and Ti is the duration of the ith curve. A curve yi is viewed

as a realization of the amplitude variation function wi evaluated over u, with the

mapping hi(·) transforming the scaled real time t onto the universal/sample-wide

time-scale u. This being essentially Eq. 3.16. In addition to the generative model

presented in Eq. 3.16 though, each curve here can depend on a set of covariates, fixed

effects Xi, such as the tone being said, and random effects Zi, where such random

effects correspond to additional speaker and context characteristics. While each

individual curve has its own length Ti, the lengths are normalized at the beginning

of the analysis of the functional part of the data, and the Ti are included in the

modelling as part of the multivariate linear mixed effect framework, allowing not

only amplitude and phase, but also duration to be included in the model.

In our application, the curves yi are associated with various covariates, for

example, tone, speaker, sentence position. These are incorporated into the model

via the principal component scores which can be viewed as taking a common prin-

cipal component approach [25] to the analysis, where we assume common principal

components (across covariates) for the amplitude functions and another common

set (across covariates) for phase functions (but these two sets can differ). As will be

discussed in section 5.4, this is not a strong assumption in this application. Of the
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covariates likely present in model, tone is known to affect the shape of the curves

(indeed it is in the phonetic textual representation of the syllable), and therefore

the identification of warping functions is carried out within tone classes as opposed

to across the classes as otherwise very strong (artefactual) warpings will be present

in the analysis.

As a direct consequence of our generative model (Eq. 5.1), wi dictates the

size of a given feature and h−1
i dictates the location of that feature for a particular

curve i. We assume that wi and hi are both elements of L2[0, 1]. As a first result

wi can be expressed in terms of a basis expansion:

wi(u) = µw(u) +

∞∑
k=1

Awi,kφk(u), where µw(u) = E{w(u)}. (5.2)

The hi are a sample of random distribution functions which are square integrable but

are not naturally representable as a basis expansion in the Hilbert space L2[0, 1],

since the space of distribution functions is not closed under linear operations. A

common approach to circumvent this difficulty is to observe that log( ddthi) is not

restricted and can be modelled as a basis expansion in L2[0, 1]. This observation is

done in the following way: first one notices that the integrals of the original func-

tions hi are by definition continuous and that the exponent of them is by definition

positive. As such by reversing this procedure (ie. taking the log of the derivatives

of hi) we ensure that they will define a vector space. In the same manner, a restric-

tion however is that the densities hi have to integrate to 1, therefore the random

functions si = log( ddthi) are modelled with the unrestricted basis expansion:

si(u) = µs(u) +
∞∑
k=1

Asi,kψk(u), where µs(u) = E{s(u)}. (5.3)

A transformation step is then introduced to satisfy the integration condition, which

then yields the representation:

hi(u) =

∫ t
0 e

si(u
′)du′∫ 1

0 e
si(u′)du′

(5.4)

for the warping functions hi; the denominator normalizing the final product to

ensure the integration condition and allow si to be modelled in L2[0, 1]. Clearly

different choices of bases will give rise to different coefficients A which then can be

used for further analysis. A number of different parametric basis functions can be

used as basis; for example Grabe et al. advocate the use of Legendre polynomials

[104] for the modelling of amplitude. We advocate the use of a principal component

basis for both wi and si in Eqs. 5.2 & 5.3, as will be discussed in the next sections,
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although any basis can be used in the generic framework detailed here. However, a

principal components basis does provide the most parsimonious basis in terms of a

residual sum of squares like criterion [254].

We note that in order to ensure statistical identifiability of model (Eq. 5.1)

several regularity assumptions were introduced in [303], such as the exclusion of

essentially flat amplitude functions wi for which time-warping cannot be reasonably

identified, and more importantly, assuming that the time-variation component that

is reflected by the random variation in hi and si asymptotically dominates the total

variation. In practical terms, we will always obtain well-defined estimates for the

component representations in Eqs. 5.2 & 5.3.

For our statistical analysis we explicitly assume that each covariate Xi in-

fluences, to different degrees, all of the phone’s components/modes as well as in-

fluencing the phone’s duration Ti. Additionally, as mentioned above in accordance

with the Fujisaki model, we assume that each phone component includes Speaker-

specific and Sentence-specific variational patterns; we incorporate this information

in the covariates Zi. Then the general form of our model for a given sample curve

yi of duration Ti with two sets of scalar covariates Xi and Zi is:

E{wi(u)|Xi, Zi} = µw(u) +

∞∑
k=1

E{Awi,k|Xi, Zi}φk(u), (5.5)

and

E{si(u)|Xi, Zi} = µs(u) +
∞∑
k=1

E{Asi,k|Xi, Zi}ψk(u). (5.6)

Assuming that we have a fixed set of basis functions φ and ψ for the amplitude and

the phase variation respectively, the scores Ai act as surrogate data for curve yi.

The final joint model for amplitude, phase and phone duration is then formulated

as:

E{[Awi,k, Asi,m, Ti]|Xi, Zi} = XiB + ZiΓ, Γ ∼ N (0,ΣΓ) (5.7)

where Γ is assumed to have mean zero and ΣΓ to be the covariance matrix of the

amplitude, phase and duration components with respect to the random effects.

5.3.2 Amplitude modelling

In our study, amplitude analysis is conducted through a functional principal compo-

nent analysis of the amplitude variation functions in an analogous way to chapter 4.

Qualitatively, the wi are the time-registered versions of the original F0 samples. Uti-

lizing FPCA, we identify the principal modes of amplitude variation in the sample
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and use those modes as a basis to project our data to a finite subspace by imposing

a finite truncation point on the number of basis terms. Specifically, we define the

kernel Cw of the covariance operator Cw as:

Cw(u, u∗) = E{(wi(u)− µw(u)) (wi(u
∗)− µw(u∗))} (5.8)

and by Mercer’s theorem[207], the spectral decomposition of the symmetric ampli-

tude covariance function Cw can be written as:

Cw(u, u∗) =
∞∑

pw=1

λpwφpw(u)φpw(u∗), (5.9)

where φ is treated as the FPCA-generated empirical basis of the amplitude vari-

ation functions. Additionally, the eigenvalues λpw allow the determination of the

total percentage of variation exhibited by the sample along the p-th principal com-

ponent and show whether the examined component is relevant for further analysis.

As shown in chapter 4, the choice of the number of components is based on acous-

tic criteria [302; 29] with direct interpretation for the data, such that components

which are not audible are not considered. Having fixed Mw as the number of φ

modes / functional principal components (FPC’s) to retain, we use φ to compute

Awi,p, the amplitude projections scores associated with the i-th sample and its p-th

corresponding component (Eq. 5.10) as:

Awi,p =

∫
{wi(u)− µw(u)}φp(u)dt, where as before µw(u) = E{w(u)} (5.10)

where a suitable numerical approximation to the integral is used for practical anal-

ysis.

5.3.3 Phase modelling

When examining the warping functions it is important to note that we expect the

mean of warping function to correspond to the identity (ie. the case of no warping).

Therefore, assuming their domains are all normalized to [0,1], with t = Th(u):

u = E{h(u)},where under certain circumstances: ≈ E{h−1(u)}, (5.11)

and we therefore interpret the deviations from this equality as phase distortions.

This clearly also applies conceptually when working with the function s(u). As with

the amplitude analysis, phase analysis is carried out using a principal component

analysis approach. Utilizing the FPC’s of the si, we identify the principal modes

of variation of the sample and use those modes as a basis to project our data to

a finite subspace. Directly analogous to the decomposition of Cw, the spectral
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decomposition of the phase covariance function Cs is:

Cs(u, u∗) =

∞∑
ps=1

λpsψps(u)ψps(u
∗), (5.12)

where ψ(t) is the FPCA-generated empirical basis of the phase variation functions.

As in the case of amplitude modelling, the eigenvalues λps allow the determination

of the total percentage of variation exhibited by the sample along the p-th mode

and help us determine the relevance of the component. As before we will base

our selection processes not on an arbitrary threshold based on percentages but on

acoustic perceptual criteria [246; 150] for perceivable speed changes. Fixing Ms as

the number of ψ modes / functional principal components to retain, we use ψ(u) to

compute Asi,p, the phase projections scores associated with the i-th sample and its

p-th corresponding component (Eq. 5.13) as:

Asi,p =

∫
{hi(u)− µs(u)}ψp(u)dt, where as before µs(u) = E{s(u)} (5.13)

It is worth stressing that our choice of the number of components to retain

will be naturally determined by the phonetic application rather than using a purely

statistical criterion. Purely data driven approaches have been developed [208] as

well as a number of different heuristics [50] if preferred in another application where

no natural choice is available.

5.3.4 Sample Time-registration

The estimation of the phase variation/warping functions is based on the method-

ology of Tang & Müller, as implemented in the routine WFPCA in PACE [304] as

it is presented in section 3.2.2. There, one defines the pairwise warping function

gk,i(t) = hk(h
−1
i (t)) as the 1-to-1 mapping from the i-th curve time-scale to that of

the k-th. The inverse of the average gk,i(·) (Eq. 5.14) for a curve i is then defined

as the curve yi’s corresponding warping function hi. hi is therefore a map between

individual-specific warped time to absolute time [304].

ĥ−1
i (t) =

1

m

m∑
k=1

ĝk,i(t), m ≤ N (5.14)

The actual sample registration was conducted using two knots. It also focused on

warping together F0 utterances from the same tonal category (tone 1 curves with

other tone 1 curves, tone 2 curves with other tone 2 curves, etc.). Once again we did

employ the concept of rhyme time: that is the curves were projected in a common
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time-grid T ∈ [0,1]. As noted earlier though their durations where recorded so we

can reconstruct them in their physical domain.

5.3.5 Compositional representation of warping functions

Two caveats need to be addressed when working with warping functions. First the

warping functions themselves do not define a vector space [27]. Second, despite the

fact that hi is treated as a function, in real terms one works with step function

approximations to the warping functions hi, thus being subjected to the limitation

stemming from the fact that there is a discrete grid over which the values yi are

recorded. This motivates viewing the warping functions as instances of composi-

tional data. In particular, by compositional data one refers to data where sample

space is formed by a positive simplex:

Sd = {(x1, . . . , xd) : xj > 0(j = 1, . . . , d), x1 + · · ·+ xd < 1 (5.15)

or in a more general form
∑d

j=1 xj = K, where K is some arbitrary constant.

Therefore when examining a warping function hi the differences in levels be-

tween adjacent steps give rise to a histogram that represents the discretised warping

function; the function hi being qualitative similar to a cumulative distribution func-

tion [340]. The values of this histogram are then naturally assumed to define a

simplex. This is where the connection to the compositional decomposition comes

into play as the
∑ d

dthi = K. Specifically, based on standard compositional data

methodology (centred log-ratio transform)[2], the first difference ∆h of a discretised

instance of hi over an (m+ 1)-dimensional grid is used to evaluate si as:

si = log
∆hi,j

(∆hi,1 ·∆hi,2 · · ·∆hi,m)
1
m

j = {1, . . . ,m} (5.16)

the reverse transformation being:

hi =
∑
j

esi,j∑
j e

si,j
. (5.17)

This ensures that the monotonicity (hi,j < hi,j+1) and boundary requirements

(hi,1 = 0, hi,m+1 = 1) are fulfilled as put in place by the time-registration step.

In functional terms it yields the discretised version of Eq. 5.4.

Qualitatively when we employ the centred log-ratio transform for the analysis

of the compositional data, we essentially divide the values of ∆hi by their geometric

means and then take their logarithms (Eq. 5.16). This allows our sample to have a

vector space structure with the standard operations of perturbation, powering and
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inner product defined respectively as:

z =x⊕ y = C[x1ẏ1, . . . , xdẏd], (5.18)

z =λ� x = C[xλ1 , . . . , x
λ
d ], (5.19)

z =〈x, y〉 =
1

D

D∑
i>j

log
xi
xj

log
yi
yj
⇔ (5.20)

clr(x)clrT (y). (5.21)

The centred log-ratio transform used here has been the established method

of choice for the variational analysis of compositional data; alternative methods

such as the additive log-ratio [2] or the isometric log-ratio [74] are also popular

choices. In particular, the centred log-ratio, as it sums the transformed components

to zero by definition, presents itself as directly interpretable in terms of “time-

distortion”, negative values reflecting deceleration and positive values acceleration

in the relative phase dynamics. Clearly this summation constraint imposes a certain

degree of collinearity in our transformed sample [85]; nevertheless it is the most

popular choice of compositional data transformation prior to PCA [3; 4] and allows

direct interpretation as mentioned above.

5.3.6 Further details on mixed effects modelling

Given an amplitude-variation function wi, its corresponding phase-variation function

si and the original F0 curve duration Ti, each sample curve is mapped on a Mw +

Ms + 1 vector space of partially dependent measurements. Here, Mw is the number

of functional principal components encapsulating amplitude variations, Ms is the

number of functional principal components carrying phase information and the 1

refers to the curves’ duration. The final discretised form of our generative model for

a given sample curve yi of duration Ti and sets of scalar covariates Xi and Zi in a

mixed effect form is:

[Awi,k, A
s
i,m, Ti] = XiB + ZiΓ + Ei, Γ ∼ N (0,ΣΓ), E ∼ N (0,ΣE) (5.22)

ΣE being the diagonal matrix of measurement error variances (Eq. A.3). The covari-

ance structures ΣΓ and ΣE are of particular forms; while ΣE (Eq. A.3) assumes in-

dependent measurements errors, the random effects covariance ΣΓ (Eq. A.2) allows

a more complex covariance pattern. In particular, ΣΓ is assumed to have a highly

structured dependency pattern between the amplitude, phase and duration. As a

result and in line with previous work [117], we assume independence between FPC

projections of the same group (ie. the amplitude FPC’s are orthogonal/uncorrelated

among themselves due to their PCA construction, the same also being true for the
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phase FPC’s). On the contrary, the amplitude FPC projection scores are not un-

correlated with those of phase and neither projection family is uncorrelated with

the duration measurements (Eq. A.2). The choice of an unstructured covariance ΣΓ

for the random effects is necessary; we have found no theoretical or empirical evi-

dence to believe any particular structure such as a compound symmetric covariance

structure, for example, is present within the FPC’s and/or duration. Neverthe-

less our framework would still be directly applicable if we chose another restricted

covariance (eg. compound symmetry) structure and if anything it will become com-

putationally easier to investigate as the number of parameters would decrease. As

mentioned earlier the main purpose of the structure ΣΓ is account for variation that

is not phonetically systematic but a by-product of data generation procedure.

Our sample curves are concurrently included in two nested structures: one

based on “speaker” (non-linguistic) and one based on “sentence” (linguistic) (Figure

.5.2). We therefore have a crossed design with respect to the random-effects structure

of the sample [11; 42], which suggests the inclusion of random effects (Eq. 5.23):

An×p = Xn×kBk×p + Zn×lΓl×p + En×p. (5.23)

This generalization allows the formulation of the conditional estimates as:

A|Γ ∼ N (XB + ZΓ,ΣE) (5.24)

or unconditionally and in vector form for
−→
A as:

−→
Anp×1 ∼N ((Ip ⊗X)

−→
B np×1,Λnp×np), (5.25)

Λ =(Ip ⊗ Z)(ΣΓ ⊗ Il)(Ip ⊗ Z)T + (ΣE ⊗ In) (5.26)

where X is the matrix of fixed effects covariates, B the matrix of fixed effects

coefficients, Z the matrix of random effects covariates, Γ the matrix of random

effects coefficients (a sample realization dictated by N(0,ΣΓ)), ΣΓ = D
1
2
Γ PΓ D

1
2
Γ

T

the random effects covariance matrix, DΓ the diagonal matrix holding the individual

variances of random effects, PΓ the correlation matrix of the random effects between

the series in columns i, j and ΣE the diagonal measurement errors covariance matrix.

Kronecker products (⊗) are utilized to generate the full covariance matrix Λ of
−→
A as

the sum of the block covariance matrix for the random effects and the measurement

errors.

The main advantage of this approach is two-fold: It is both theoretically

consistent in the sense that incorporates prior knowledge of phase variation being

present in speech, as well as allows insights on how speech amplitude patterns (what

practically is ”simplistically” interpreted as speech) is affected by random phase
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variations.

5.3.7 Estimation

Estimation is required in two stages: generating the warping functions and mul-

tivariate mixed effects regression estimation. Requirements for the estimation of

pairwise warping functions gk,i were discussed in section 5.3.4. In practical terms

these requirements mean that: 1. gk,i(·) needs to span the whole domain, 2. we can

not go “back in time”, i.e. the function must be monotonic and 3. the time-scale of

the sample is the average time-scale followed by the sample curves. With these re-

strictions in place we can empirically estimate gk,i(·) as ĝk,i(t) = argmingD(yk, yi, g)

where the “discrepancy” cost function D is defined as:

Dλ(yk,yi, g) = E{
∫ 1

0
(yk(g(t);Tk)− yi(t;Ti))2 + λ(g(t)− t)2dt|yk, yi, Tk, Ti},

(5.27)

λ being an empirically evaluated non-negative regularization constant, chosen in a

similar way to Tang & Müller [304]; see also Ramsay & Li [256]; Ti and Tk being

used to normalized the curve lengths. Intuitively the optimal gk,i(·) minimizes the

differences between the reference curve yi and the “warped” version of fk, subject to

the amount of time-scale distortion produced on the original time scale t by gk,i(·).
Having a sufficiently large sample of m pairwise warping functions gk,i(·) for a given

reference curve yi, the empirical internal time-scale for yi is given by Eq. 5.14, the

global warping function hi being easily obtainable by simple inversion of h−1
i . It is

worth noting that in Mandarin, each tone has its own distinct shape; their features

are not similar and therefore should not be aligned. For this reason, the curves were

warped separately per tone, i.e. realizations of tone 1 curves were warped against

other realizations of tone 1 only, the same being applied to all other four tones.

Sample

V1 V2 V3 V22480 V22481 V22482 V54706 V54707

P1 P2 P598 S5S2S1

Figure 5.2: The multivariate mixed effects model presented exhibits a crossed (non-
balanced) random structure. The vowel-rhyme curves (V ) examined are cross-
classified by their linguistic (Sentence - Pi) and their non-linguistic characterization
(Speaker - Si).
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Finally to estimate the mixed model via the model’s likelihood, we observe

that usual maximum likelihood (ML) estimation underestimates the model’s vari-

ance components [234] as mentioned in section 3.4.2. We therefore utilize Restricted

Maximum Likelihood (REML); this is essentially equivalent to taking the ML esti-

mates for our mixed model after accounting for the fixed effects X. The restricted

maximum (log)likelihood estimates are given by maximizing the following formula:

LREML(θ) = −1

2
[p(q − r) log(2π) + log(|Ψ|) +

−→
Ω TΨ−1−→Ω ] (5.28)

where q is the total number of readings (n ∗ p), r the number of fixed effects (k ∗ p),
Ψ = KTΛK and Ω = KTA; K being the “whitener” matrix such that 0 = KT (Ip⊗
X) [288]. Based on this we are in position to concurrently estimate the random

effect covariances while taking into account the possible non-diagonal correlation

structure between them. However, because we “remove” the influence of the fixed

effects, if we wished to compare models with different fixed effects structures we

would need to use ML rather REML estimates. Standard mixed-effects software

such as lme4 [22], nlme [239] and MCMCglmm [116] either do not allow the kinds of

restrictions on the random effects covariance structures that we require, as they are

not designed to model multivariate mixed effects models, or computationally are not

efficient enough to model a dataset of this size and complexity; we were therefore

required to write our own implementation for the evaluation of REML/ML. Exact

details about the optimization procedure used to do this are given in the following

section.

5.3.8 Multivariate Mixed Effects Models & Computational Con-

siderations

Generalizing from a univariate (Eq. 3.42) to a multivariate mixed effects model is

clearly of interest in the case of high dimensional data. There, instead of working

with a vector a (N ×1) one works with matrix A (N ×p) as our dependent variable.

Actual computation of the random effects variances requires a more involved

computational approach than maximizing the restricted log-likelihood given in Eq.

5.28 directly; that is because in its straightforward form the estimation of det(Ψ)

involves in the case of a multivariate model the Cholesky decomposition of an np×np
full matrix; a very computationally expensive process in terms of computational time

and memory. Such an approach does not take advantage of the highly structured

nature of K and of the matrices that construct it. To solve this computational

issue we use the formulation presented by Bates and DebRoy [21] for evaluating

the profiled REML deviance. This means that we optimize not for the variance-

covariance and measurement error magnitudes directly but for a ratio between them.

105



As a result, the vector θ holds ν p(p+1)
2 values, ν being the total number of

different random effects structures and p the total number of components in our

multivariate MLE. Starting with the model:

A = XB + ZΓ + E (5.29)

where as before A is of dimensionality (n × p), X is of dimensionality (n × k), B

is of dimensionality (k × p), Z is of dimensionality (n × l), Γ is of dimensionality

(l× p) and E is of dimensionality (n× p). Eq. 5.29 translates in vector notation as:

−→
A = (Ip ⊗X)

−→
B + (Ip ⊗ Z)

−→
Γ +

−→
E (5.30)

where we have that:

−→
E ∼ N (0,ΣE ⊗ In×n),

−→
Γ ∼ N (0,ΣR ⊗ Il) (5.31)

where ΣE and ΣR are of dimensions (p × p); l being the number of levels in the

random effects. Significantly ΣR has a structure that can easily accommodate for

sparse patterns of covariance. This structure can be enforced by multiplying the

candidate ΣR by a 0− 1 “boolean matrix” Mbool of dimensions (p× p) that sets to

zero all entries not explicitly assumed to be non-zeros by design; effectively updating

R as:

Σ0
R = ΣR◦Mbool (5.32)

where ◦ is the Hadamard product (or Schur product) between two matrices. Impos-

ing in this way can be problematic and lead to non-positive-definite sparse “variance

matrices”. In such case one might use Tikhonov regularization (R← R+λI, λ→ 0);

qualitatively this equates with having more noise in the observed values. Following

that and given that Σ0
R remains a valid covariance matrix, thus being positive def-

inite, it can be expressed as Σ0
R = LLT and additionally can be expressed in term

of a relative precision factor [238] as:

Σ0
R

1
σ2

= ∆∆T . (5.33)

We need to draw attention to the fact here that σ2 can be, and is in our multivariate

case of no intrinsic meaning. The variance it expresses is a “sample-wide” variance

that does not reflect any single variance of the p dimensions of the model. We can

use it nevertheless because of our hypothesis that ΣE is diagonal, therefore the ratio
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expressed in ∆ can be formulated even if it is only for algorithmic simplicity. Taking

this into account, Eq. 5.30 can then be re-written as:

−→
A = (Ip ⊗X)

−→
B + [(Ip ⊗ Z)][

−→
Γ ] +

−→
E (5.34)

and restate the universal random effects (pl × pl) matrix ΣRU as:

Σ−1
RU

= SST (5.35)

where:

S =(∆ ⊗ Il) (5.36)

∆∆T =
Σ0
R

1
σ2

(5.37)

in accordance with the above. We therefore can reformulate our model as the

minimization of the following penalized least squares expression:

min
Γ,B

−→
A aug − Φ(θ)

[−→
Γ aug−→
B

]
(5.38)

where:

Aaug =

[
A

0

]
,
−→
Γ aug = [

−→
Γ ], Φ(θ) =

[
Zaug Xaug

S(θ) 0

]
, (5.39)

Zaug = [(Ip ⊗ Z)] and Xaug = (Ip ⊗X) (5.40)

Aaug being the original n×p matrix A augmented by a zero l×p bottom submatrix

leading to a final dimensionality of (n+ l)× p and Φ(θ) being the augmented model

matrix (now of dimensions p(n + l) × p(k + l)). To solve this we form, proceeding

analogously to Bates [21], Φe = [Φ, Ã] (of dimensionality p(n + l) × p(l + k + p))

and define RTe Re to be the Cholesky decomposition of the ΦT
e Φe. Thus instead

of working with a (np × np) matrix, we now work with a matrix of dimensions
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(p(l + k + p)× p(l + k + p)). In particular, in matrix notion we have the following:

ΦT
e Φe =

Z
T
aug S(θ)T

XT
aug 0

ATaug 0

[Zaug Xaug
−→
A aug

S(θ) 0 0

]
(5.41)

=

Z
T
augZaug + Σ−1

RU
ZTaugXaug ZTaug

−→
A aug

XT
augZaug XT

augXaug XT
aug

−→
A aug−→

AT
augZaug

−→
AT
augXaug

−→
AT
aug

−→
A aug

 (5.42)

= RTe Re, where RTe :

RTe =

RZZ RZX rZA

0 RXX rXA

0 0 rAA

 (5.43)

where RZZ and RXX are both upper triangular, non-singular matrices of dimensions

pl×pl and pk×pk respectively; RZX is of dimensionality pl×pk. Similarly, rZA, rXA

and rAA are of dimensions pl×1, pk×1 and 1×1. As a result the conditional REML

estimates for
−→
B are given by the solving the following triangular system:

RXX
−→
B̂ = rXA. (5.44)

Similarly, we have:

σ̂2 =
rTAArAA
p(n− k)

(5.45)

with the profiled log-restricted-likelihood being:

−2LREML(θ) = log(
|ΦTΦ|
|Σ−1
RU
|
) + (p(n− k))[1 + log(2πσ̂2)] (5.46)

or the profiled log-likelihood as:

−2LML(θ) = log(|ΦTΦ|) + pn[1 + log(2π
rTAArAA
pn

)]. (5.47)

Finally, the conditional expected value of Γ is given by the solution of the system:

RZZ
−→
Γ̂ aug = rZA −RZX

−→
B̂ (5.48)

and the conditional σ̂i, i = 1, . . . , p for a given component of the original multivariate
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Figure 5.3: Corresponding amplitude variation functions w (top row) and phase
variation functions h (bottom row) for the triplets shown in Fig. 5.1.

model equals:

σ̂i =

√
1

n− k
Σ[(Âi −Ai)2 + U2

i ] (5.49)

where Ui is the l-dimensional random vector such that Â = Xaug

−→
B̂ + ZaugΣRU

−→
U

[20]. We briefly note that the current approach of estimation does not examine

Bayesian approaches. To that effect after assuming that
−→
B̂ ,
−→
Γ̂ and

−→
Ê follow a

multivariate normal distribution such as :
−→
B
−→
Γ
−→
E

 ∼ N


−→
B0

0

0

 ,
ΣB 0 0

0 ΣR ⊗ Il 0

0 0 ΣE ⊗ In


 (5.50)

where
−→
B0 is the prior means for the fixed effects with prior covariance function ΣB

and ΣR ⊗ Il and ΣE ⊗ In are the expected covariances of the random effects and

residuals respectively, the parameters of the mixed model (
−→
B and

−→
Γ ) can be sampled

using Gibbs sampling in an EM methodology to evaluate the respective likelihood.

This method being presented by Garcia et al. in [94] and being successfully utilized

in the package R MCMCglmm by Hadfield[116].

5.4 Data Analysis and Results

5.4.1 Model Presentation & Fitting

We use the smoothing procedure from section 4.2 and note each curve’s original

time duration (Ti) so that it can be used within the modelling. At this point the F0

curve sample is not time-registered but has been smoothed and interpolated to lay

on a common grid. We register our dataset following the procedure in section 5.3.7.

Then using the exposition outlined in Eq. 5.7, the following model is proposed, as
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it accounts for all the linguistic effects that might be present in a dataset of this

form [117]:

ComponentX = {[tnprevious ∗ tncurrent ∗ tnnext] + [cnprevious ∗ tncurrent ∗ cnnext]+

[(B2) + (B2)2 + (B2)3 + (B3) + (B3)2 + (B3)3 + (B4) + (B4)2+

(B4)3 + (B5) + (B5)2 + (B5)3] ∗ Sex+ [rhymet]}β+

{[Sentence] + [SpkrID]}γ + ε.

(5.51)

The same notation as in chapter 4 is used. First examining the fixed effects struc-

ture, we incorporate the presence of tone-triplets and of consonant:tone:consonant

interactions, using the same rationale with the previous chapter where both types

of three-way interactions are included. We also look at break counts, our only co-

variate that is not categorical. A break’s duration and strength significantly affects

the shape of the F0 contour and not just within a rhyme but also across phrases.

Break counts are allowed to exhibit squared and cubic patterns as cubic downdrift

has been previously observed in Mandarin studies [11; 117]. We also model breaks

as interacting with the speaker’s sex since we want to provide the flexibility of hav-

ing different curvature declination patterns among male and female speakers. This

partially alleviates the need to incorporate a random slope as well as a random in-

tercept in our mixed model’s random structure. The final fixed effect we examine

is the type of rhyme uttered. Each rhyme consists of a vowel and a final -n/ -N if

present; rhyme types are the single most linguistically relevant predictors for the

shape of F0’s curve as when combined together they form words; words carrying

semantic meaning. Examining the random effects structure we incorporate speaker

and sentence. The inclusion of speaker as a random effect is justified as factors of

age, health, neck physiology and emotional condition affect a speaker’s utterance

and are mostly immeasurable but still rather “subject-specific”. Additionally we

incorporate Sentence as a random effect since it is known that pitch variation is

associated with the utterance context (eg. commands have a different F0 trajectory

than questions). We need to note that we do not test for the statistical significance of

our random effects; we assume they are “given” as any linguistically relevant model

has to include them. However if one wished to assess the statistical relevance of their

inclusion, the χ2 mixtures framework utilized by Lindquist et al. [194] provides an

accessible approach to such a high-dimensional problem, as re-sampling approaches

(bootstrapping) are computationally too expensive in a dataset of the size consid-

ered here; Wei and Zhou having focused on the same problem from an Information

Criterion point of view [322]. Fixed effects comparisons are more straightforward;

assuming a given random-effects structure, AIC-based methodology can be directly
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Amplitude/(w) Phase/(s)

FPC1 88.67 (88.67) 49.40 (49.40)
FPC2 10.16 (98.82) 19.25 (68.65)
FPC3 0.75 (99.57) 9.02 (77.68)
FPC4 0.22 (99.80) 6.53 (84.19)
FPC5 0.10 (99.90) 4.34 (88.53)
FPC6 0.05 (99.94) 2.98 (91.51)
FPC7 0.02 (99.97) 2.32 (93.83)
FPC8 0.01 (99.98) 1.96 (95.79)
FPC9 0.01 (99.99) 1.29 (97.08)

Table 5.1: Percentage of variances reflected
from each respective FPC (first 9 shown).
Cumulative variance in parenthesis.

Amplitude/(w)

FPC1 121.16(121.16)
FPC2 66.52 (187.68)
FPC3 31.22 (218.90)
FPC4 17.50 (236.40)
FPC5 9.00 (245.39)
FPC6 4.86 (250.26)
FPC7 3.64 (253.90)
FPC8 2.71 (256.61)
FPC9 1.96 (258.56)

Table 5.2: Actual deviations in
Hz from each respective FPC
(first 9 shown). Cumulative
deviance in parenthesis. (hu-
man speech auditory sensitivity
threshold ≈ 10 Hz)

applied [108]. Fitting the models entails maximizing REML of model (Eq. 5.28).

Our findings can be grouped into three main categories, those from the am-

plitude analysis, those from the phase and those from the joint part of the model.

Some examples of the curves produced by the curve registration step are given in

Figure 5.3. However, overall, as can be seen in Figure 5.4, there is a good corre-

spondence between the model estimates and the observed data in its original domain

when the complete modelling setup is considered.

0 5 10 15 20 25 30 35 40 45
150

200

250

300

H
z

t (10ms)

F0 track segment Tone Sequence 4−5−1 
         Speaker: F02, Sentence: 530

 

 

Original F02 Track

Estimated F0 Track

0 5 10 15 20 25 30 35 40 45 50

80

100

120

140

160

180

200

220

H
z

t (10ms)

F0 track segment Tone Sequence 2−1−4
         Speaker: M02, Sentence: 106

 

 

Original F0 Track

Estimated F0 Track

Figure 5.4: Functional estimates (continuous curves) are shown superimposed on
the corresponding original discretised speaker data over the physical time domain t.

Empirical findings from the amplitude FPCA: The first question one asks
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when applying any form of dimensionality reduction is how many dimensions to

retain, or more specifically in the case of FPCA how many components to use. We

take the same perceptual approach as in chapter 4. Instead of using an arbitrary

percentage of variation, we calculate the minimum variation in Hz each FPC can

actually exhibit (Tables 5.1-5.2). Based on the notion of Just Noticeable Differ-

ences (JND) [45] we use for further analysis only FPC’s that reflect variation that

is actually detectable by a standard speaker (F0 JND: ≈10 Hz; Mw = 4 ). The em-

pirical wFPC’s (Figure 5.5) correspond morphologically to known Mandarin tonal

structures (Figure 2.4) increasing our confidence in the model. Looking into the

analogy between components and reference tones with more detail, wFPC1 corre-

sponds closely to Tone 1, wFPC2 can be easily associated with the shape of Tones 2

and 4 and wFPC3 corresponds to the U -shaped structure shown in Tone 3. wFPC4

appears to exhibit a sinusoid pattern that can be justified as necessary when moving

between different tones in certain tonal configurations [117]. The amplitude FPCs

derived during the application of FPCA correspond well (if not identically in terms

of qualitative characteristics) to the FPCs found during the FPCA step conducted

in chapter 4. This being partially expected as ultimately the variational patterns of

phonetic sample analysed as mostly due to amplitude variation, therefore one would

not expect the lack of registration in Chapt. 4 to lead into significant changes of

the main modes of variation in this dataset.
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Figure 5.5: W (Amplitude) Functional Principal Components Φ: Mean function
([.05,.95] percentiles shown in grey) and 1st, 2nd, 3rd, 4th, 5th, and 6th functional
principal components of amplitude.
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Figure 5.6: H (Phase) Functional Principal Components Ψ: Mean function ([.05,.95]
percentiles shown in grey) and 1st, 2nd, 3rd, 4th, 5th, and 6th functional principal
components of phase. Roughness is due to differentiation and finite grid; the corre-
sponding warping functions in their original domain are given in Figure A.7 in the
Appendix.

Empirical findings from the phase FPCA: Again the first question is how

many components to retain. Based on existing Just Noticeable Differences in tempo

studies [246], [150], we opt to follow their methodology for choosing the number

of “relevant” components (tempo JND: ≈ 5% relative distortion; Ms = 4 ). We

focus on percentage changes on the transformed domain over the original phase

domain as it is preferable to conduct Principal Component analysis [3]; sFPC’s also

corresponding to “standard patterns” (Figure 5.6). sFPC1 and sFPC2 exhibit a

typical variation one would expect for slow starts and/or trailing phone utterances

where a decelerated start leads to an accelerated ending of the word - a catch-

up effect- and vice versa. sFPC3 and sFPC4 on the hand show more complex

variation patterns that are most probably rhyme specific (eg. ia) or associated with

uncommon sequences (eg. silent pause followed by a Tone 3) and do not have an

obvious universal interpretation. While the curves in Figure 5.6 are not particularly

smooth due to the discretised nature of the modelling, as can be seen in Figure A.7

in the Appendix, the resulting warping functions after transformation are smooth.

However it should be noted that the curves in Figure A.7 cannot be combined

linearly whereas those from Figure 5.6 can.
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Figure 5.7: Random Effects Correlation Matrices. The estimated correlation be-
tween the variables of the original multivariate model (Eq. 5.23) is calculated by
rescaling the variance-covariance submatrices ΣR1 and ΣR2

1of ΣΓ to unit variances.
Each cell i, j shows the correlation between the variance of component in row i and
that of column j; Row/Columns 1-4 : wFPC1−4, Row/Columns 5-8 : sFPC1−4,
Row/Columns 9 : Duration.

Empirical findings from the MVLME analysis: The most important joint

findings are the correlation patterns presented in the covariance structures of the

random effects as well as their variance amplitudes. A striking phenomenon is the

small, in comparison with the residual amplitude, amplitudes of the Sentence effects

(Table 5.3). This goes to show that pitch as a whole is much more speaker dependent

than context dependent. It also emphasizes why certain pitch modelling algorithms

focus on the simulations of “neck physiology”[89; 305; 196]. In addition to that we

see some linguistically relevant correlation patterns in Figure 5.7 (see also A.4-A.5

in the Appendix). For example, wFPC2 and duration are highly correlated both

in the context of Speaker and Sentence related variation. The shape of the second

wFPC is mostly associated with linguistic properties [117] and a phone’s duration

is a linguistically relevant property itself. As wFPC2 is mostly associated with the

slope of phone’s F0 trajectory, it is unsurprising that changes in the slope affect the

duration. Moreover, looking at the signs we see that while the Speaker influence is

negative, in the case of Sentence, it is positive. That means that there is a balance

on how variable the length of an utterance can be in order to remain comprehensible

(so for example when a speaker tends to talk more slowly than normal, the effect

of the Sentence will be to “accelerate” the pronunciation of the words in this case).

In relation to that, in the speaker random effect, sFPC1 is also correlated with

duration as well as wFPC2; yielding a triplet of associated variables. Looking

1See Sect. 5.3.8 for ΣRi ’s definitions.
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specifically to another phase component, sFPC2 indicating mid phone acceleration

or deceleration that allow for changes in the overall pitch patterns, is associated

with a phone’s duration, this being easily interpreted by the face that such changes

are modulated by alterations in the duration of the phone itself. Complementary to

these phenomena is the relation between the phone duration and wFPC1 sentence

related variation. This correlation does not appear in the speaker effects and thus

is likely due to more linguistic rather than physiological changes in the sample. As

mentioned previously, wFPC1 can be thought of as dictating pitch-level placement,

and the correlation implies that higher-pitched utterances tend to last longer. This

is not contrary to the previous finding; higher F0 placements are necessary for a

speaker to utter a more pronounced slope differential and obviously need more time

to be manifested.

Interestingly a number of lower magnitude correlation effects appear to as-

sociate wFPC1 and sFPC’s. This is something that needs careful interpretation.

wFPC1 is essentially “flat” (Figure 5.5, upper middle panel), and as such cannot

be easily interpreted when combined with registration functions. Nevertheless this

shows the value in our joint modelling approach for these data. We concurrently ac-

count for all these correlations during model estimation and, as such, our estimates

are less influenced by artefacts in individual univariate FPC’s.

Estimate wFPC1 wFPC2 wFPC3 wFPC4 Duration

Speaker 89.245 6.326 3.655 1.330 2.806
Sentence 38.674 4.059 0.045 0.102 0.043
Residual 114.062 44.386 15.399 10.072 4.481

Estimate sFPC1 sFPC2 sFPC3 sFPC4

Speaker 0.289 0.023 0.022 0.030
Sentence 0.049 0.043 0.042 0.043
Residual 0.959 0.591 0.431 0.370

Table 5.3: Random effects std. deviations.

Examining the influence of fixed effects2, the presence of adjacent consonants

was an important feature for almost every component in the model. Additionally

certain “domain-specific” fixed effects emerged too. The syllable’s rhyme type ap-

peared to significantly affect duration; the break-point information appeared to

influence the amplitude of the F0 curve and specific consonant-vowel-consonant (C-

V-C) triplets to play a major role for phase. Phase also appeared to be related to

the rhyme types but to a lesser extent.

More specifically regarding duration of the F0 curve, certain rhyme types

(eg. oN , iEn) gave prominent elongation effects while others (eg. u, ę) were as-

2Table of B̂ and associated standard errors available in https://tinyurl.com/COSPRO-Betas
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sociated with shorter curves. The same pattern of variability in the duration was

associated with the adjacent consonants information; when a vowel was followed by

a consonant the F0 curve was usually longer while when the consonant preceded

a vowel the F0 curve was shorter. Amplitude related components are significantly

affected by the utterances’ break-type information; particularly B2 and B3 break

types. This is not a surprising finding; a pitch trajectory, in order to exhibit the

well-established presence of “down-drift” effects [89], needs to be associated with

such variables. As in the case of duration, the presence of adjacent consonants

affects the amplitude dynamics. Irrespective of its type (voiced or unvoiced), the

presence of consonant before or after a rhyme led to an “overall lowering” of the

F0 trajectory. Tone type and the sex of the speaker also influenced the dynamics

of amplitude but to a lesser degree. Finally, examining phase it is interesting that

most phase variation was mainly due to the adjacent consonants and the rhyme type

of the syllable; these also being the covariates affecting duration. This confirms the

intuition that as both duration and phase reflect temporal information, they would

likely be affected by the same covariates. More specifically, a short or a silent pause

at the edge of rhyme caused that edge to appear decelerated, while the presence of

a consonant caused that edge to be accelerated. As before, certain rhymes (eg. a,

ai) gave more pronounced deceleration-acceleration effects. Tone types, while very

important in the case of univariate models for amplitude [117], did not appear sig-

nificant in this analysis individually; they were usually significant when examined

as Vowel-Consonant or Consonant-Vowel pairs. However, this again illustrates the

importance of considering joint models versus marginal models, as it allows a more

comprehensive understanding of the nature of covariate effects.

5.5 Discussion

Linguistically our work establishes the fact that when trying to make a typology of a

language’s pitch one needs to take care of amplitude and phase covariance patterns

while correcting for linguistic (Sentence) and non-linguistic (Speaker) effects. This

need was prominently presented by the strong correlation patterns observed (Figure

5.7). Clearly we do not have independent components in our model and therefore a

joint model is appropriate. This has an obvious theoretical advantage in comparison

to standard linguistic modelling approaches such as MOMEL [135] or the Fujisaki

model [212; 89] where despite the use of splines to model amplitude variation, phase

variation is ignored.

Focusing on the interpretation of our results, it is evident that the covari-

ance between phase and amplitude is mostly due to non-linguistic (Speaker-related)

rather than linguistic features (Sentence-related). This is also reflected in the dy-

116



namics of duration, where the Speaker related influence is also the greatest. Our

work as a whole presents a first coherent statistical analysis of pitch incorporating

phase, duration and amplitude modelling into a single overall approach.

The obvious technical caveats with this work stem from three main areas:

the discretisation procedure, the time-registration procedure and the multivariate

mixed effects regression. Focusing on the discretisation, the choice of basis is of

fundamental importance. While we used principal components for the reasons men-

tioned above, there have been questions as to whether a residual sum of squares

optimality is most appropriate. It is certainly an open question when it comes to

application specific cases [43]. Aside from the case of parametric bases, non para-

metric basis function generation procedures such as ICA [145] have recently become

increasingly more prominent. These bases could be used in the analysis, although

the subsequent modelling of the scores would become inherently more complex due

to the lack of certain orthogonality assumptions.

Regarding time-registration, there are a number of open questions regarding

the choice of the framework to be used. Aside from the pairwise alignment frame-

work we employ [304], as mentioned in section 3.2 we have identified at least two

alternative approaches based on different metrics: the square-root velocity function

metric [175] and the area under the curve normalization metric [340], that can be

used interchangeably, depending on the properties of the warping that are most im-

portant. Indeed it has been seen that considering warping and amplitude functions

together, based on the square-root velocity metric, can be useful for classification

problems [314]. However, we need to stress that each method makes some explicit

assumptions to overcome the non-identifiability between the hi and wi (Eq. 5.1)

and this can lead to significantly different final estimates. Nevertheless, we have

reimplemented the main part of the analysis using the AUC methodology of Zhang

& Müller [340] (results shown in Appendix, Sect. A.14) and while the registration

functions obtained are different, the analysis resulted in almost identical insights

for the linguistic roles of wi and si, again emphasising the need to consider a joint

model as well as the generality of this approach. The choice of the time-registration

framework ultimately relies on the theoretical assumptions one is willing to make

and the nature of the sample registered. For this work it is not unreasonable to

assume that the pairwise alignment corresponds well to the intuitive belief that in-

trinsically humans have a “reference” utterance where they “map” what they hear

in order to comprehend it [24].

Finally, multivariate mixed effects regression is itself an area with many

possibilities. Optimization for such models is not always trivial and as the model

and/or the sample size increases, estimation of the model tends to get computation-

ally expensive. In our case we used a hybrid optimization procedure that changes
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between a simplex algorithm (Nelder-Mead) and a quasi-Newton one (Broyden-

Fletcher-Goldfarb-Shanno (BFGS)) [161]; in recent years research regarding the

optimization tasks in an LME model has tended to focus on derivative free proce-

dures. In a related issue, the choice of covariance structure is of importance, while

we chose a very flexible covariance structure, the choice of covariance can convey

important experimental insights. A related modelling approach is that of Zhou et

al. concerning paired functional data [341], the dimensionality of their application

problem is though smaller and their regression problem more parametrized as they

operate in a reduced rank framework. A final note specific to our problem was the

presence of only five speakers. Speaker effect is prominent in many components

and appears influential despite the small number of speakers available; neverthe-

less we recognize that including more speakers would be certainly beneficial if they

had been available. Given that the Speaker effect was the most important random-

effect factor of this study, the inclusion of random slopes might also have been of

interest [283; 18]. Nevertheless, the inclusion of generic linear, quadratic and cu-

bic gender-specific down-drift effects presented through the break components allow

substantial model flexibility to avoid potential design-driven misspecification of the

random effects, and as such random slopes were not included.

In conclusion, a comprehensive modelling framework was proposed for the

analysis of phonetic information in its original domain of collection, via the joint

analysis of phase, amplitude and duration information. The models are interpretable

due to the LME structure, and estimable in a standard Euclidean domain via the

compositional transform of the warping functions. The resulting model provides

estimates and ultimately a typography of the shape, distortion and duration of

tonal patterns and effects in one of the world’s major languages.
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Chapter 6

Phylogenetic analysis of

Romance languages

6.1 Introduction

With the increased availability of computational resources the number and quality

of evolutionary trees is increasing rapidly both in Biology [201; 192] and in Linguis-

tics [105; 206]. However, knowing evolutionary relationships through Phylogenetics

is only one step in understanding the evolution of their characteristics [336]. Three

issues are particularly challenging. The first is limited information: empirical infor-

mation is typically only available for extant taxa, represented by tips or leaves of

a phylogenetic tree, whereas evolutionary questions frequently concern unobserved

ancestors deeper in the tree. The second is dependence: the available information for

different organisms in a phylogeny is not independent since a phylogeny describes a

complex pattern of non-independence; observed variation is a mixture of this inher-

ited and taxon-specific variation [56]. The third is high dimensionality: the emerging

literature of biological function-valued traits [167; 307; 298] recognizes that many

characteristics of living organisms are best represented as a continuous function

rather than a single factor or a small number of correlated factors. This is a slowly

emerging trend also in Linguistics [307]. Evolutionary phonetics research has so far

focused both on binary and discrete characteristics of a language [224], as well as

continuous multivariate ones [320]. Function-valued linguistic traits [307; 114; 112],

however, have not been investigated yet in the context of phylogenetic evolution.

In the case of biological characteristics such characteristics include growth

or mortality curves [242], reaction-norms [166] and distributions [340], where the

increasing ease of genome sequencing has greatly expanded the range of species in

which distributions of gene [219] or predicted protein [170] properties are available.

On the other side, in the case of Linguistics and more specifically Phonetics and
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Acoustics, such characteristics can be lip motions, phonation patterns, F0 curves

or even syllable spectrograms. Using these formulations, a function-valued trait in

a phylogeny (irrespective of the phylogeny’s type) is defined as a phenotypic trait

that can be represented by a continuous mathematical function [166] in one or more

dimensions.

Previous work [157] proposed an evolutionary model for function-valued data

y related by a phylogeny T. The data are regarded as observations of a phylogenetic

Gaussian Process (PGP) at the leaves of T. That work shows that a PGP can

be expressed as a stochastic linear operator Q on a fixed set φ of basis functions

(independent components of variation), so that

y = QTφ. (6.1)

However, that study does not address the linear inverse problem of obtaining es-

timates φ̂ and Q̂ of φ and Q nor how to recover a tree if one is unavailable. Our

first contribution in this work is to provide an approach to address these problems

in sections 6.2.1 and 6.2.2 via the use of functional principal components analysis

(FPCA [121]) and phylogenetic Gaussian process regression (PGPR) respectively.

Hadjipantelis el al. [119] have shown FPCA to work successfully in the case

of one-dimensional functional data as curves. We here extend this work in the case

of two-dimensional functional data, eg. spectrograms based on two-dimensional

techniques that are directly analogous to their one-dimensional counterparts [19;

164]. As a pre-processing step we also smooth, interpolate and time-warp the sample

at hand in order to account for possible noise corruption, uneven signal sizes and

phase variation respectively; these steps are described in detail in section 6.2.1.

Given this projection framework one refers to Q as the mixing matrix, and to the

(i, j)th entry of Q as the mixing coefficient of the jth basis function at the ith taxon

in the tree. It is these mixing coefficients that we model as evolving. For each fixed

value of j, the Qij are correlated (due to phylogeny) as i varies over the taxa. On

the contrary the spectrogram basis functions themselves do not evolve in our model

and are assumed constant across all stages of a language’s evolutionary history.

In section 6.2.2 we focus on the obvious problem inherited in every phyloge-

netic study: tree reconstruction [82]. While most biological studies focus on either

the tree-estimation [186] or the ancestral reconstruction task [127; 119], linguistic

phylogenies have far from widely established phylogenies [206; 12]. For that reason

given a basic phylogenetic linking relation as this is shown in Fig. 2.6, we opti-

mize using the likelihood of a prespecified evolutionary forward model as a fitting

criterion and the data at the leaves as our “evidence”. We then construct the “ML-

optimal” tree for these leaf-readings and branching relations. It must be noted that

our tree-reconstruction and model will be based upon a consensus tree [82] between
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the ten digits used. The basic methodology behind this step is outlined in section

6.2.2.

In section 6.2.3, we address the problem of estimating the statistical structure

of the mixing coefficients by performing phylogenetic Gaussian process regression

(PGPR) on the mixing coefficient found in Q̂ of each of the jth bases separately; this

work essentially applying the work presented in [119] but for a much smaller tree.

This corresponds to assuming orthogonality between the rows (i.e. that the coeffi-

cients of the different basis functions evolve independently). Given it is commonly

argued in the quantitative genetics literature [46] that evolutionary processes can

be modelled as Ornstein-Uhlenbeck (O-U) processes, the estimation of the forward

operator is reduced to the estimation of a small vector θ of parameters [157]. This

model is the O-U model used in section 6.2.2 to estimate the “most likely” trees.

Finally in section 6.3 we clarify the interpretation of these parameters θ in

linguistic evolutionary contexts. The estimation of θ is known to be a challenging

statistical problem [23]; nevertheless the explicit PGPR posterior likelihood function

is used to obtain maximum likelihood (MLE) estimates for θ. In contrast with [119]

we can not employ bagging [41] due to the small number of taxa (languages) we

work with. Recent work from Bouchard et al. [38] also addresses this problem

by employing a resampling technique. With lack of a better alternative we report

the MLE estimate directly based on multiple initializations of the initial solution

θ0, with θ0 itself being more constrained (having one less free hyperparameter) in

comparison with the θ used in [119]. Clearly, as we utilize “just” 10 words from 5

languages, the robustness of the produced estimates will be sub-optimal but they

should still be insightful for the evolutionary dynamics of the languages examined.

The PGPR step also returns a posterior distribution for the mixing coefficient

of each basis function at each ancestral taxon in the phylogeny. At any particular

ancestor (protolanguage) the estimated basis functions can be therefore combined

statistically using the posterior distributions of their respective mixing coefficients,

to provide a two-dimensional function-valued posterior distribution. Since the uni-

variate posterior distributions of mixing coefficients are Gaussian, and the mixing is

linear, the posterior for the function-valued trait has a closed form representation as

a Gaussian process (Eq. 6.25) which provides a major analytical and computational

advantage for the approach.

We close this chapter by commenting on the phonetic properties of the ances-

tral estimates as well as the general insights provided by this phylogenetic analysis.

Overall, our methods (sections: 6.2.1, 6.2.2 & 6.2.3), and results (Sect. 6.3) ap-

propriately combine developments in functional data analysis with the evolutionary

dynamics of quantitative phenotypic traits.
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6.2 Methods & Implementations

6.2.1 Sample preprocessing & dimension reduction

As shown in section 2.1, spectrograms can be assumed to provide a full two-dimensional

characterization of a syllable’s phonetic properties within the limitation of their

physical characteristic (sampling frequency, window length and type). Here we uti-

lize them under the assumption that all possible phonetic characteristics of syllables,

starting with the zeroth harmonic F0 and going all the way up to higher formants
1 (eg. F2 or F3) assumed to be of importance in Indo-european languages [97], are

reflected in those syllables’ spectrograms.

The original acoustic dataset was first resampled at 16Khz; using that the

spectrograms were computed by using a window length of 10ms. This resulted into

a window size of 160 readings per frame. Because we used a 16 Khz sampling rate,

our maximal effective frequency detected is 8Khz, the Nyquist frequency of our

sampling procedure. A Gaussian window was used during windowing of each frame.

The original power spectral density is shown after a 10 log10(·) transform so it is

depicted in decibels (dB).

Despite having an otherwise perfectly balanced grid with no missing values,

we can not exclude instances of noise corruption because of the rather heteroge-

neous sample quality as well as the non-laboratory recording conditions during the

sample’s generation. For this reason we employ a penalized least squares filtering

1F0 is not a formant as it does not refer to acoustic resonance.

Figure 6.1: Unsmoothed and smoothed spectrogram of a male Portuguese speaker
saying “un” (ũ(N)). It is immediately evident that throughout all frequencies there
is small-scale unstructured variation that the smoothing algorithm filters out.
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technique for grid data [93] which is based on the discrete cosine transformation

in two dimensions; this is in contrast with our work in the previous sections where

we used a kernel smoother. Here because we wanted to keep our implementation

fast and efficient we chose a parametric basis for our data. The basic idea behind

this parametric assumption stems from the use of Eq. 3.11 as a smoother. We

see that effectively the smoothed data are the projections of the original data in

another domain. Choosing to penalize the roughness of our data by the use of their

second-order difference (their second derivative in the case of functional data), Eq.

3.11 can be re-expressed as a penalized regression system of the form:

(I + sBTB)ŷ = y (6.2)

where s corresponds to the smoothing parameter used, B to the second order differ-

encing matrix and as always I is the identity matrix. The tridiagonal square matrix

B being defined as:

Bi,i−1 =
−2

ri−1(ri−1 + ri)
, Bi,i =

2

ri−1ri
, Bi−1,i =

−2

ri(ri−1 + ri)
(6.3)

for 2 ≤ i ≤ N −1 where N is the number of elements in ŷ and ri represents the step

between ŷi and ŷi+1. Assuming repeating border elements (y0 = y1 and yN+1 = yN )

then: B1,1 = −B1,2 = r−2
1 and −BN,N−1 = BN,N = r−2

N−1. When if ri = 1 for

i = 1, . . . , N matrix B is of the form:

B =



1 −1 0 · · · · · · 0

−1 2 −1
. . .

. . .
...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . . −1 2 −1

0 · · · · · · 0 −1 1


(6.4)

Obviously if s → 0 no smoothing takes places as one retrieves the original

signal directly and if s → ∞ one just recovers the second order polynomial fit to

the data [324]. Given that B has an eigendecomposition of B = UΛUT , Λ being

the diagonal matrix with the eigenvalues of B, Eq. 6.2 can be rewritten as:

ŷ = U(I + sΛ2)−1UT y. (6.5)

The computational efficiency of this approach comes from the realization that as

Garcia presents: “UT and U are actually n-by-n type-2 discrete cosine transform
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(DCT) and inverse DCT matrices, respectively”[93], the orthogonal form of type-2

DCT kernel matrix being:

[C2]i,j =

√
2

N
ξ(i)cos(

i(j + 1
2)π

N
), i, j = 0,1, . . . , (N − 1) (6.6)

ξ(p) =


√

1
2 if p = 0 or p = N,

1 if p = 1,2, . . . , N − 1
(6.7)

and thus resulting in the equation:

ŷ = [C−1
2 ]((I + sΛ2)−1[C2]y). (6.8)

Then taking advantage of the known eigenvalues formulas for tridiagonal matrices

like B [339], (I + sΛ2) can also be rewritten as 1 + s(2− 2cos((i− 1)π/n))2 where

i corresponds to the i-th eigenvalue of the original matrix B. We then define Γ =

(I + sΛ2)−1 = diag([1 + s(2− 2cos((i− 1)π/n))2]−1) giving the final estimate of y

as:

ŷ = [C−1
2 ](Γ[C2]y). (6.9)

One can immediately see the computational efficiency of Garcia’s algorithm

compared to standardized smoothing techniques as well as compared to standard

matrix decompositions. Especially in regards with this second claim, even the most

“efficient” matrix decomposition for the solution of a least squares problem, the

Cholesky decomposition is of 1
3n

3 order complexity [225], while the 2-D DCT 2 (and

IDCT) is of the order n2 log(n) [297], yielding significant speed-ups even for small

datasets. Finally while Garcia advocates the use of generalized cross-validation for a

choice of s, the current implementation used s = 0.5, this value being determined by

qualitatively examining the resulting smoothed spectrograms. The generalization of

this technique to the two-dimensional object employs simply the two-dimensional

DCT instead of the one-dimensional, the two-dimensional DCT being especially

popular as it is the back-bone of the well-known JPEG format [272] for digital

pictures. Finally after smoothing is conducted, the sample is interpolated over a

common time grid assumed to represent “word time”.

Two important caveats need to be mentioned: First, using Garcia’s method

we enforce a discrete transformation on functional data. Second, this smoothing

methodology is based on the theoretical assumption that a function is periodic and

2The two-dimensional DCT takes the one-dimensional DCT of each column followed by a one-
dimensional DCT of each row of the resulting matrix [30].
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extends outside the domain over which it is observed. The first caveat, is an over-

simplification that as mentioned is done for the sake of computational efficiency.

It cannot hide the fact though that higher order fluctuations might be truncated

as only 64 two-dimensional basis functions are used. What can be argued though

is that given the relatively small sample from which we want to draw conclusions,

the choice of 64, highly informative in the case of two-dimensional patters, basis is

not limiting the insights behind our analysis; it does not ”meaningfully” exclude

information. The second caveat concerns the theoretical foundations of this type-2

DCT smoothing framework and is more ambiguous. In standard periodic signals the

assumption of ”extending outside the observable domain” might be non-restrictive

one; in the current case though and especially when examining a frequency contin-

uum where the concept of negative values is a highly not trivial one conceptually

(assuming that one can interpreter ”negative time” as going back in time), this ap-

proach can be questionable. Countering this second caveat is based on dynamics of

the physical system we investigate. In the case of frequencies, one has practically no

fluctuations below a very low threshold. Frequencies below 20Hz are effectively out

of our vocal range. Thus assuming that the border of ”zero-th” fluctuations extends

”in negative frequencies” does not meaningfully alter the boundary condition we

employ. These two caveats were made not cancel the efficiency or the elegance be-

hind Garcia’s method of smoothing, they were done because one should not naively

move methodologies from a discrete domain to a continuous one; if he chooses to do

so, he must be able to offer a meaningful interpretation of the assumptions imposed.

In addition to noise distortions, as mentioned earlier, phase distortions are

almost certain to exist in any acoustic signal. Here using spectrograms as our

acoustic signal units of analysis, we are presented with two-dimensional instead of

one-dimensional objects. While in general in a two-dimensional object phase vari-

ation cannot be assumed to influence a single dimension exclusively, under specific

circumstances all variation can be assumed to occur along a single “relevant axis”.

In particular when one focuses on the analysis of spectrograms, an inherently two-

dimensional object over a frequency and a time axis, phase variations are relevant

only in the context of time; frequency can be assumed to occur in absolute time as

the phonation procedure of speaker affects only the timing of the sound excitation

and not the amplitude of it (at least directly). One can therefore reformulate the

original pairwise warping criterion from simple one-dimensional objects as curves

(as in chapter 5 where pairwise curve synchronization was utilized) to slightly more

complex two dimensional objects. Assuming yi(t, f) and yk(t, f) being two spectro-

grams with an equal size of frequency index, their “discrepancy” cost function D′
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is:

D′λ(yk, yi, g
′) = (6.10)

E{
∫ FNyq

f=0

∫ 1

t=0
(yk(g

′(t), f ;Tk)− yi(t, f ;Ti))
2 + λ(g′(t)− t)2dtdf |yk, yi, Tk, Ti},

or in its discretised version:

D′λ(yk, yi, g
′) = E{

r∑
f=0

1∑
t=0

(yk(g
′(t), f ;Tk)− yi(t, f ;Ti))

2 + λ(g′(t)− t)2|yk, yi, Tk, Ti},

(6.11)

where as in 3.2.2, λ is an empirically evaluated non-negative regularization constant,

Ti and Tk are used to normalize the spectrograms time lengths and g′k,i(·) is the

pairwise warping function mapping the time evolution of yi(t, f) to that of yk(t, f).

Thus we are led to the one-dimensional reformulation of the cost function D′ as:

D′λ(yk, yi, g
′) = E{

1∑
t=0

(−→yk(g′r(t);Tk)−−→yi (t;Ti))2 + λ(g′(t)− t)2dt|−→yk ,
−→yi , Tk, Ti},

(6.12)

where −→yk is the concatenated across frequencies vectorized form of the spectrogram

yk and g′r is the version of the pairwise warping function mapping g′k,i(·) repeated

r times, r being the number of discrete points along the frequency axis f . This

ultimately being a two-dimensional version of Eq. 5.27. Thus similar to the one-

dimensional case of the pairwise warping curves, Eq. 3.21 is used to recover the

final warping function by taking advantage of the Law of Large numbers; giving

a two-dimensional version of the pairwise synchronization framework presented in

Sect. 3.2.2. Fig. 6.2 shows the subtle changes warping induces to a spectrogram’s

structure in our dataset. With the completion of this step we are presented with

219 smoothed and warped spectrograms. Importantly the warping itself was done

within digit and gender clusters. That means that the speakers of different genders

uttering a specific digit (irrespective of their language) had their utterances time-

registered only among themselves. We made this choice for two reasons: first, we

know from previous findings that intonation dynamics differ significantly between

speakers of opposite sexes [117], second, we also know that registration of completely

unrelated data will produce spurious results; for example, the word “un” ([Ẽ]) and

the word “quatro” ([’kwatro]) (French for one and Spanish for four respectively) will

exhibit different inclination patterns and the time-registration procedure will fail to

recognize meaningful similarities to exploit. For modelling purposes the “word time”

T was represented by a vector of 100 equi-spaced values between 0 and 1.
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Spectrograms are almost by definition objects with a complex internal struc-

ture; as instances of functional data they appear as two-dimensional functions of

time and frequency. While it is possible to directly work in this function-space for

computational efficiency and conceptual conciseness given a dataset y of function-

valued traits as shown in Eq. 6.1, we would like to find appropriate estimates Q̂

and φ̂ of the mixing matrix Q and the basis set φ respectively. The first task is

to identify a good linear subspace S of the space of all continuous functions by

choosing basis functions appropriately. Evidently these basis functions in the case

of spectrogram data will be two dimensional. The purpose of this task is to work,

not with the function-valued data directly, but with their projections in S. As for-

malized in Sect. 3.3 we may say that the chosen subspace S is good if the projected

data approximate the original data well while the number of basis functions is not

unnecessarily large, so that S has the “effective” dimension of the data. The warped

spectrograms W , as in previous sections, are assumed to be adequately expressed

as:

Wi(u, f) = µW (u, f) +
∞∑
k=1

Ai,kφk(u, f), where: µW (u, f) = E{W (u, f)} (6.13)

where as before u ∈ [0, 1] is the absolute time-scale the spectrograms are assumed

to evolve in and f is the frequency domain (here modelled as the domain between

0 and 8Kz in 100Hz intervals).

Before applying FPCA to our sample we recognize that the ultimate goal

Figure 6.2: Unwarped and warped spectrogram of a male Portuguese speaker saying
“un” (ũ(N)). Notice how the warped instance of the spectrogram is registered on a
universal “word time” rather than absolute time; ridges among formant frequencies
appear more prominently.
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of this work is to provide language-specific descriptions; scalar estimates that can

be utilized within the context of a phylogenetic tree. Additionally we know that

digit-wide FPC’s would be unrealistic as they would combine non-comparable vari-

ation patterns, and that it would be beneficial to incorporate the minimum prior

knowledge that the sex of the speaker has at least “some influence” in the phonetic

characteristic encoded by the spectrogram. In a manner similar with section 5.3,

given W d, the spectrograms for a given digit d one formulates:

E{wdi (u, f)|Xd
i } = µw,d(u, f) +

∞∑
k=1

E{Adi,k|Xd
i }φdk(u, f). (6.14)

Given the structure of our data, we use a fixed effect rather than a mixed effect model

to account of speaker variation within a given language l. The reason for this design

choice is that we do not have enough speaker realizations to provide meaningful

estimates in certain cases. For example, we have a single male speaker in Spanish

and in Portuguese; a random effects model could not meaningfully decompose the

variation due to the sex of the speaker and the variation due to speaker’s unique

characteristic. Taking that into account, our final estimates for the language-specific

Figure 6.3: Functional Principal Components for the digit one spectrograms. Two
different views are shown. Top row shows the viewing angle from a (−50, 50) azimuth
rotation and vertical elevation; bottom row shows the viewing angle from a (0, 90)
viewpoint (completely top to bottom). It is immediately seen that the majority
of variation is encapsulated by the first two FPC’s. Mean spectrogram shown in
Appendix, Fig.A.11.
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FPC scores βd,l0 are given by the language-gender interaction model:

E{Ad,li,k|X
d,l
i } = Xd,l

i βd,l (6.15)

where (βd,l)T = [βd,l10 , βd,l20 , βd,l30 , βd,l40 , βd,l50 , βd,l11 , βd,l21 , βd,l31 , βd,l41 , βd,l51 ] and the de-

sign matrix Xd,l
i is simply a n×m indicator matrix, where n equals the number of

all speakers uttering digit d and m equals 2 ∗ 5, such that:

X =
[
δl1 . . . δl5 δsexl1 . . . δsexl5

]
(6.16)

where the column vectors δli and δsexli are defined respectively as:

δli

{
1 for language li,

0 otherwise
(6.17)

and

δsexli =


1 for language li iff

the speaker is male,

0 otherwise

(6.18)

where i = {1, 2, 3, 4, 5} corresponds to each of the five languages represented in

the current tree. In that way using these averaged scores 3 we are offered effective

representatives of language l for a specific digit d investigated by combining all our

digit-specific readings. This allows us to create in a way “language exemplars” scores

(βd,li0 ), these scores being the ones used for the phylogenetic analysis. Clearly one

could also construct “language exemplar” spectrograms4, that could be then uti-

lized to compare the final protolanguage against. Notably, given the design matrix

X used, the protolanguage estimates will correspond to female speakers, as the male

gender effects should be encapsulated in the βd,l1,k term that is not carried forward in

the analysis. Examining these artificial spectrograms, interestingly American Span-

ish appear to downplay the effect of the second vowel in their utterance compared to

the other “two-vowel” languages, while on the contrary French (somewhat expect-

edly given the phonation of “un” in French) have a strong almost singly peak-like

spectrogram. The actual interpretation of the first three FPC’s is almost obvious;

the first FPC captures the variation due to the phonation of the first vowel present

in the utterances of digit one5. Even if another vowel exists (as in the cases of Italian

and Spanish), that vowel is not as strongly stressed as the first one; it is therefore

3See Appendix, Table A.12 for actual values.
4See Appendix, Fig. A.13. E{wd,l} = µw,d(u, f) +

∑∞
k=1 β

d,l
0,kφ

d
k(u, f)

5In IPA these are encoded as: [ũ(N)] in Portuguese, [’u:no] in Italian, [’u:no] in Spanish and [Ẽ]
in French.

129



expected that the major point of variance will be at the beginning of the word. This

finding is in accordance with the finding of the previous chapters where in all cases

the beginning of a syllable exhibits greater influence in the syllables dynamics than

the other parts. The second and the third FPC’s encapsulate the presence of the sec-

ond vowel. They reflect a phonation event occurring in the second half of the word

utterance. It can be also argued upon investigating the second FPC’s shape, that it

partially compliments the first FPC; it allows the difference between the two vowels

to come forward more strongly. In similar but less pronounced manner, the third

FPC also compliments the first FPC but in a more localized manner; the highly lo-

calized frequency drop in the amplitude of the third FPC, occurring approximately

in the center of the word’s first half, is counter-balanced by an overall amplitudal

increase in the lower frequencies of the word’s half. For the fourth FPC it could be

argued that the long ridge exhibited approximately at the 6KHz band is a speaker

specific construct. One would not expect phylogenetically attributed phonetic vari-

ation in that range as it is highly speaker dependent, in the sense that this might be

due to a specific speaker’s dynamics or (more worryingly) to speaker specific record-

ing equipment. For that reason we do not examine higher order FPC’s. As seen

in Table 6.1 these components exhibit variation that is rather small in percentage

terms and taking into account that we have “just” 22 instances of the digit one, it is

not reasonable to believe these FPC’s generalized to sample-wide variation patterns.

In particular individual variation reflected by each FPC quickly falls below a value

(1/22 ≈ 4.5%) that could be attributed to a variational pattern present to a single

spectrogram.

FPC # Individ. Cumul. FPC # Individ. Cumul.
Variation Variation Variation Variation

FPC1 50.66 50.66 FPC7 2.18 85.67
FPC2 16.42 66.08 FPC8 1.82 87.50
FPC3 6.65 72.74 FPC9 1.71 89.20
FPC4 4.30 77.04 FPC10 1.60 90.80
FPC5 3.58 80.61 FPC11 1.33 92.14
FPC6 2.89 83.50 FPC12 1.17 93.31

Table 6.1: Individual and cumulative variation percentage per FPC.

6.2.2 Tree Estimation

As first mentioned in section 2.4 we begin with an unrooted linguistic phylogenetic

tree T which has arbitrary branch-lengths where only the branching events are set.

As previous work has commented [119], branch length distributions are surprisingly

consistent across organisms [318]; with that in mind, we make the assumption that
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the same effect is prominent in a linguistic phylogeny. Utilizing the scalar mix-

ing coefficients associated with each FPC in φ̂(u, f) one treats these coefficients as

“the data at the tips”. One then constructs a maximum likelihood consensus tree.

In particular, based on the work of Hansen [124] that was later popularized by the

work of Butler and King [46], the evolutionary model assumed is that of an Ornstein-

Uhlenbeck stochastic model. We find the ML tree associated with each coefficient by

doing a random search. To generate candidate branch lengths we assumed that the

distribution of branch lengths approximated that of a log-normal log(b) ∼ N (µ, σ2);

this assumption is supported by empirical investigation of tree contained in Tree-

fam [192]. We do this because as we assume the notions of glottoclock in Linguistics

and molecular clock in Biology to share the same intrinsic meanings in their respec-

tive fields, we consider that the observed diffusion patterns will also be similar in

a qualitative level. For the sake of generality we do not assume that the tree at

hand is ultrametric (in an ultrametric tree all the extant taxa are on the same time-

depth in the tree; this being formally expressed as d(ti, tj) ≤ d(ti, tk) = d(tj , tk)

for every triplet i, j, k of extant taxa nodes). After finding the ML-optimal trees

for each of the k projections utilized, we construct the consensus tree for the lan-

guages at hand. The consensus tree is constructed by applying the median branch

length (MBL) rationale [82]: given that we have k candidate trees with the same

branching topology, the consensus tree is constructed by assigning to each edge of

the consensus tree, the median branch length from the k candidate “ML-optimal”

trees associated with each branch. One in effect computes the “median tree”. A

number of complementary methodologies have also been proposed with variants of

the majority-rule consensus tree being the most popular [186; 137]. We do not

advocate a majority-rule consensus tree on the grounds that our sample is quite

small and therefore bootstrapping techniques (as those are extensively used for the

generation of majority-rule consensus trees) are not reliable. Additionally we also

do not examine a possible clustering of correlation effects in the phylogenies and

a subsequent clustering that they might induce [82]. Finally we do not explicitly

examine the possibility of a multifurcating tree, ie. a trifurcation or higher degree

branching events. While such events might have some gravity in the case of small

population linguistic phylogenetic studies, where one can assume rapid branching of

different groups of people [38], we do not find it plausible for cases of widely spoken

languages as the ones found in the Romance language family. We do though allow

for arbitrary small edge lengths, so we can in effect facilitate this possibility as one

trifurcation would be associated with a zero branch length for an internal edge.

Implementing these assumptions we begin with the unrooted linguistic phy-

logenetic tree T with 5 leaves, shown in Fig. 2.6. This tree is based on [106];

American Spanish have been added though as a distinct language. We make the
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assumption that American Spanish share a common ancestor with Iberian Spanish,

with that “Spanish protolanguage bifurcation” occurring more recently than any

other linguistic bifurcation event in the examined Romance language phylogeny.

Having fixed the branching structure of the tree we assign at its leaves the FPC

scores. Each 5-language FPC score grouping is considered independent not only

along the scores associated with the same digit but also with the scores from the

other digits. As we are using digits one to ten, having generated 4 FPC surfaces for

each digit, we test 40 different sets of “data at the tips”. Using the O-U model we

tested against 5120 candidate trees and reported as the optimal tree, the tree with

the maximum likelihood for that given set of FPC scores. To conduct this testing

step the function fitContinuous() from the R package geiger [128] was utilized;

for each candidate tree branch sample “fitting”, 700 random initializations of the

routine were tested. As mentioned, while the branching events are treated as fixed,

the branch lengths are not. Candidate branch lengths b were sampled from a log-

normal such that log(b) ∼ N (−2.29, 1.662); the actual values of µ and σ shown here

were estimated by using the trees publicly available in Tree-fam 6. Tree-fam ver. 8

[192] contains 16604 trees in total; for this task though, trees with less than 5 or

more than 20 nodes were excluded from the analysis because we assumed that they

do not present plausible exemplars for a Romance languages linguistic phylogeny.

The reasons behind this heuristic rule are three: First, smaller trees may often con-

vey domain-specific relations even within a biological setting. Second, larger trees

are also less plausible as linguistic exemplars because they often aggregate different

families of organisms with well understood distinctions in a way that is irrelevant for

linguistics. Third, based on existing literature [221; 224; 106] Romance languages

are not assumed to incorporate more than approximately 20 leaves. Based on these

points this cut-off resulted in a 3593 tree sub-sample that was ultimately used to es-

timate m̂u and σ̂. Having estimated the 40 “ML-optimal” trees, the “median tree”

(show in Fig. 6.4) was constructed and assumed to be the tree that most accurately

reflects our modelling assumptions as well as the universal linguistic phylogenetic

association between the languages examined.

6.2.3 Phylogenetic Gaussian process regression

As already noted, FPCA returns the estimated mixing coefficients at tip taxa, Q̂ as

well as the basis Φ̂. The next step in our linguistic phylogenetic study is to perform

PGPR [157] separately on each 5-member mixing coefficient set associated with a

basis φj(u, f). We assume knowledge of the phylogeny T (as constructed in the

previous step), in order to obtain posterior distributions for all mixing coefficients

throughout the tree T. This means that we get estimates for the internal linguistic

6See Appendix, Fig. A.12.
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Romance Language Heuristic Phylogeny
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Figure 6.4: Median branch length consensus tree for the Romance language dataset,
gray ωi circles corresponding to protolanguages, Italian emerging as being clearly
the modern language closer to a “universal” Romance protolanguage indexed as ω0.
All 10 digits were used to construct this tree.

taxa in T as well as the leaves themselves.

Gaussian process regression (GPR) [263] is a flexible Bayesian technique in

which prior distributions are placed on continuous functions. Its range of priors

includes the Brownian motion and Ornstein-Uhlenbeck (O-U) processes, which are

by far the most commonly used models of character evolution [125; 46]. (Gaussian

and the Matérn kernels enjoying popularity in spatial statistics literature [68].) Its

implementation is particularly straightforward since the posterior distributions are

also Gaussian processes and have closed forms. Using notation standard in the

Machine Learning literature (see, for example, [263]), a Gaussian process may be

specified by its mean surface and its covariance function K(θ), where θ is a vector of

parameters. Since the components of θ parameterize the prior distribution, they are

referred to as hyperparameters. The Gaussian process prior distribution is denoted:

f ∼ N (0,K(θ)).

If x′ is a set of unobserved coordinates and x is a set of observed coordinates,

the posterior distribution of the vector f(x′) given the observations f(x) is:

f(x′)|f(x) ∼ N (A,B) (6.19)
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where

A =K(x′, x, θ)K(x, x, θ)−1f(x), (6.20)

B =K(x′, x′, θ)

−K(x′, x, θ)K(x, x, θ)−1K(x′, x, θ)T (6.21)

and K(x′, x, θ) denotes the |x′| × |x| matrix of the covariance function K evaluated

at all pairs x′i ∈ X ′, xj ∈ X. Equations 6.20 and 6.21 convey that the posterior

mean estimate will be a linear combination of the given data and that the posterior

variance will be equal to the prior variance minus the amount that can be explained

by the data. The interpretation of these in the context of a phylogenetic tree is

twofold: first that all ancestral states can be expressed as linear combinations of

the observed leaf states and second that the covariance among this data will be

only due to phylogenetic associations. If phylogenetic associations are not present a

phylogenetic model will return a simple arithmetic mean as its estimate A (Eq. 6.20)

and the covariance structure B will be zero-th as the non-phylogenetic fluctuations

are considered independent to each other in your generative model (Eq. 6.23).

Additionally, the log-likelihood of the sample f(x) is

log p(f(x)|θ) =− 1

2
f(x)TK(x, x, θ)−1f(x)− 1

2
log(det(K(x, x, θ)))− |x|

2
log 2π.7

(6.22)

It can be seen from Eq. 6.22 that the maximum likelihood estimate is subject

both to the fit it delivers (the first term) and the model complexity (the second

term). Obviously this does not constitute a full model selection procedure as with

the cases examined in Sect. 3.4.3. AIC scores are occasionally used but given one

fixes the number of parameters of the model a priori (as it will be shown immedi-

ately afterwards we fix that number to 2), AIC score changes are exclusively due to

changes in the model’s likelihood/parameters θ. Thus, Gaussian process regression

is non-parametric in the sense that no assumption is made about the structure of the

model: the more data gathered, the longer the vector f(x), and the more intricate

the posterior model for f(x′). This views GPR as non-parametric, stemming from

Machine-Learning literature [290]. A counter-argument could be that GPR is an

extremely parametric procedure that just “fits k numbers to dataset”, k being the

number of hyperparameters utilized in θ. Complementary to this approach, where

the results of a two-dimensional FPCA are utilized, is the work of Shi et al. [292]

7While we do not focus on computational matter explicitly we draw attention to the fact that
one does not need to compute the inverse covariance matrix K(x, x, θ)−1 nor the determinant
det(K(x, x, θ)) directly. For the purposes of evaluating log p(f(x)|θ), in a manner similar to section
5.3.8 one utilizes the Cholesky decomposition of the matrix.
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on Gaussian Process Functional regression, there the mean function is modelled by

functional regression model and the covariance structure by a Gaussian process.

To that extend the current methodology is more simplified and does not explicitly

model the mean function separately. On the other hand the methodology of Shi

et al. by using B-splines in order to model the mean structure assume that un-

derlying structure can be assumed to be piecewise polynomial while the proposed

methodology based on FPCA offers an empirical alternative to that assumption.

Phylogenetic Gaussian Process regression (PGPR) extends the applicability

of GPR to evolved function-valued traits as spectrograms. A phylogenetic Gaussian

process is a Gaussian process indexed by a phylogeny T, where the function-valued

traits at each pair of taxa are conditionally independent given the function-valued

traits of their common ancestors. When the evolutionary process has the same co-

variance function along any branch of T beginning at its root (called the marginal

covariance function), these assumptions are sufficient to uniquely specify the co-

variance function of the PGP, KT. As we assume that T is known in our inverse

problem based on the tree-estimation step presented above, the only remaining

modelling choice is therefore the marginal covariance function. As can be seen from

Eq. 6.23, K is a function of patristic distances on the tree rather than Euclidean

distances as standard in spatial GPR.

In phylogenetic comparative studies, where one has observations at the leaves

of T, the covariance function KT may be used to construct a Gaussian process prior

for the function-valued traits, allowing functional regression. In the model that we

use, this is equivalent to specifying a Gaussian prior distribution for the set of mixing

coefficients used. This may be done by regarding those coefficients as observations

of a univariate PGP. As noted in [157], if we assume that the evolutionary process

is Markovian and stationary, then the modelling choice vanishes and the marginal

covariance function is specified uniquely: it is the stationary O-U covariance func-

tion. If we also add explicit modelling of non-phylogenetically related variation at

the tip taxa, the univariate prior covariance function has the unique functional form

presented in Eq. 6.23. We do not assume knowledge of the parameters of Eq. 6.23

however. To estimate them we use the consensus tree generated in section 6.2.2,

shown in Fig. 6.4, and the two-dimensional basis functions generated in section

6.2.1, shown in Fig. 6.3. This fixes the experimental design for our simulation and

inference.

Commenting on the specific parameters chosen for the phylogenetic O-U

processes, as in [124] we refer to the strength of selection parameter α and the

random genetic drift σn: we add superscripts j to these parameters to distinguish

between the four different O-U processes. With this notation, the mixing coefficients
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for a specific basis have the following covariance function:

Kj
T(ti, tg) =(σjf )2 exp

(
−2αjPT (ti, tg)

)
+ (σjn)2δeti,tg (6.23)

where σjf =
√

(σj)2

2αj
, PT (ti, tg) denotes the phylogenetic or patristic distance (that

is, the distance in T) between the ith and gth tip taxa, σn is defined as above, and

δeti,tg =

{
1 iff ti = tg and ti is a tip taxon,

0 otherwise

adds non-phylogenetic variation to extant taxa as discussed above, ie. δe evaluates

to 1 only for extant taxa, thus σn quantifies within-species genetic or environmental

effects and measurement error in the i -th mixing coefficient. As a direct consequence

the patristic distance which is effectively the sum of the evolutionary time between

the ith and gth tip taxa and their common ancestor offers the space upon which

evolutionary differences are defined. This is an important modelling assumption:

estimates for latent ancestral states will account only for phylogenetic variation

between the taxa. All non-phylogenetic variation has to be accounted for in the

extant taxa level. Therefore, we see from Eq. 6.23 that the proportion of variation

in the mixing coefficients attributable to the phylogeny is
(σjf )2

(σjf )2+(σjn)2
. Clearly if this

ratio tends to 0, non-phylogenetic variation dominates our sample and phylogenetic

inference is impossible. In the Gaussian process regression literature in Machine

Learning, 1
2α is equivalent to `, the characteristic length-scale [263] of decay in the

correlation function and in the following work we work with the latter.

Aiming to provide the best possible basis in terms of an RSS reconstruction

criterion along with the minimal amount of prior assumptions, we use the FPCA-

generated basis. In general, there is no reason for our inference procedure to be

sensitive to the particular shape of the basis functions; indeed other bases eg. ICA-

based [145] could easily be employed. Concerning inference for a specific digit d (eg.

one) the four simple two-dimensional orthogonal functions shown in Fig. 6.3 were

therefore chosen as examples. For computational purposes each basis function was

stored numerically as a matrix of dimensions 81 by 100, so that the basis matrix φd

was in this case size 4 × 8100, each row storing a different basis function. This is

in accordance with standard methodology used in spectrogram and face recognition

analysis where an image is represented as a concatenated vector [241; 19]. As we will

discuss in the final section, given that someone is willing to make certain assumptions

about the noise structure applicable, a variety of different models is also available

[19; 197; 142].

The mixing coefficients generated by FPCA are stored in Qd. Our modelling

assumption is that the mixing coefficients for distinct basis functions φd1, φ
d
2, φ

d
3, φ

d
4
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are statistically independent of each other as they are produced using standard

FPCA. It is therefore sufficient to describe the stochastic process generating the

mixing coefficient for each basis independently using the phylogenetic model pro-

posed above (Eq. 6.23). We need to emphasize again at this point that we focus

on one digit d, where d = 1 in this case. The only instance where all 10 digits were

combined, was in the previous subsection for the construction of the MBL tree.

The “extant” function-valued trait at tip taxon i is thus
∑4

j=1Qi,jφj (a vec-

tor of length 8100), while the ancestral function-valued trait at internal taxon g is∑4
j=1Hg,jφj , H storing the values of the mixing coefficients in the ancestral (histor-

ical) states. As commented above, the ancestral function-valued traits exhibit only

phylogenetic variation, while the extant function-valued traits exhibit both phylo-

genetic and non-phylogenetic variation. Of course, it is not possible to reconstruct

non-phylogenetic variation using phylogenetic methods. Non-phylogenetic variation

is nevertheless a “fact of life” concerning the data at the extant taxa and we need

to account for it explicitly. As Hadjipantelis et al. [119] have demonstrated though,

this noise does not prevent the reconstruction of the phylogenetic part of variation

for ancestral taxa.

Commenting further on the role of parameters in the phylogenetic O-U pro-

cess described above in Eq. 6.23, exceptionally small characteristic length-scales `

relative to the tree patristic distances, practically suggest taxa-specific phylogenetic

variation, ie. non-phylogenetic variation. This holds also in its reverse: exception-

ally large characteristic length-scales suggest a stable, non-decaying variation across

the examined taxa that is indifferent to their patristic distances, again suggesting

the absence of phylogenetic variance among the nodes.

Since the posterior distributions returned by PGPR depend on the hyper-

parameter vector θ, we must estimate θ in order to reconstruct ancestral function-

valued traits; the estimation procedure correcting for the dependence due to the

phylogeny. Maximum likelihood estimation (MLE) of the phylogenetic variation,

non-phylogenetic variation and characteristic-length-scale hyperparameters σjf , σjn

and `j respectively may be attempted numerically using the explicit prior likelihood

function (Eq. 6.22).

Estimating hyperparameters is commonly hindered by problems of non-identifiability

[263; 160] and, as a direct consequence, concurrent estimation of all components of

θj = (σjf , σ
j
n, `j) is problematic. As commented by Beaulieu et al. [23], the influ-

ence of sample size on the bias and precision of α is particularly pronounced, in our

setting this problem is even more evident. In particular given that we have only 5

languages estimating 3 hyperparameters we realize that our estimation procedure is

going to suffer. Thus we propose fixing the length scale `. This does not mean that

we enforce phylogenetic variation but rather that we fix the distance over which
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the covariance can meaningfully occur. If there is “nothing but non-phylogenetic

variation”, that will be reflected by the
(σf )2

(σn)2 → 0. Hadjipantelis et al. [119] have

shown that overall θ estimates may be further improved if one knows a priori the

value of the ratio
(σf )2

(σn)2 , which is closely related to Pagel’s λ [228]. We do not exam-

ine this possibility here though as we have little prior knowledge over the sample’s

phylogenetic dynamics in a linguistic application. The final estimated parameters

θ̂ are shown in Table 6.2. It is immediately seen that only one FPC, the second

FPC, encapsulates plausible phylogenetic associations. This is not surprising, given

our small sample; plausible associations might not be provided “enough structure”

from the tree itself for them to come forward as significant effects. In particular,

seeing the hyperparameter estimates for the first FPC of digit one, θ1, it is striking

that all variation is considered to be non-phylogenetic; we expect that because, as

mentioned, FPC1 appears to encapsulate mostly the presence of the initial vowel

in each word. Given that all words in the sample start with variants of “u” there

are not enough differences to be accounted within a phylogeny. To a lesser extent

the opposite can be attributed for FPC3. It encodes a highly specialized pattern of

counter-balanced variation between high-frequency early-timed and low-frequency

later-timed vocal excitations within the same word, however being so “specialized”

there is not enough structure for it to come across as phylogenetically relevant (if

indeed it is). Seeing both these FPC’s we see that our decision to fix ` does not

seem unreasonable, given the gross absence of any phylogenetic signal. On the con-

trary, examining FPC2 we witness a noisy but plausible phylogenetic variation. The

length-scale ` here might not be optimal but it does not preclude the detection of

phonetic associations due to a phylogeny. In a way we expected this; as mentioned

in the earlier section, FPC2 is mostly modelling the possible interplay between the

second and the first vowel of a word (and if there is no second vowel it comes out

close to zero). This is a strong association which is not so specific as in the case

of FPC3. We can not say that FPC2 is certainly encapsulating phylogenetic vari-

ations, if anything the
σjf

σjn
being close to unity signifies the significant presence of

non-phylogenetic variation; it nevertheless seems to offer plausible insights.

The final FPC analysed, FPC4, gives peculiar hyperparameter choices. One

could naively even say that it is encapsulating only phylogenetic signal. This is

clearly not the case as we very well understand that it is practically impossible

for a phylogenetic trait (assuming that one is encoded by FPC4) to have retained

absolutely no “non-phylogenetic” variability across a phylogeny. What is more, if

we investigate the actual number (700.814), we see it is significantly higher than the

standard deviation of the sample coefficients it tried to model originally (279.430).

In effect it “amplifies” the phylogenetic variation to such a level so that it acts as

“non-phylogenetic” variation with strong practically constant variational amplitude
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across all nodes. θ4 are just artefacts of the numerical optimization procedure used.

We do not expect any phylogenetic variation in FPC4 and clearly this choice of

θ′s reflects just that. It does draw attention though to the fact that if numerical

optimization methods are employed one has to always question the significance of

their results not only technically but also conceptually. As mentioned above sample

size is an issue that has significant impact on the power of this analysis; we revisit

this point in section 6.4.

θi # σif σin
σif
σin

1 2.802∗10−4 2095.101 1.337∗10−7

2 363.358 370.084 0.982
3 1.074∗10−5 473.240 2.270∗10−8

4 700.814 7.988 ∗10−8 1.383∗109

Table 6.2: The MLE estimates for the hyperparameters in Eq. 6.23 for digit one.
Each row corresponds to a given estimate of the vector θi. These estimates provide
the maximum likelihood value for Eq. 6.22. When ` is denoted as non-applicable,
it is because there is no phylogenetic variation in the sample.

6.3 Results: Protolanguage reconstruction & Linguistic

Insights

Having been presented with function-valued data, we extracted the functional ba-

sis φ̂d(u, f) and the associated mixing coefficients Q̂d, (Sect. 6.2.1) and estimated

the most relevant tree (Sect. 6.2.2). We then performed PGPR (Sect. 6.2.3) on

each mixing coefficient set associated with a specific basis, to obtain the univariate

Gaussian posterior distribution for the mixing coefficient at any internal taxon t′.

As discussed in Sect. 6.2.3, the Gaussian process prior distribution has covariance

function (Eq. 6.23). Because estimating σjf and `j alone is challenging [23] (although

the estimation improves significantly with increased sample size), and we have fur-

ther increased the challenge by introducing non-phylogenetic variation, we fix the

length scale ` across all simulations. The actual number of it was set to equate the

median branch length within the tree used. Previous works [119; 286] have com-

mented that the median branch length can serve as a good approximate measure for

a phylogenetic horizon in the absence of other information; θj constitutes thereof of

σjf and σjn only.

We substitute θ̂j into Eq. 6.23. Taking a simple and direct approach, our

estimate φ̂d obtained in Sect. 6.2.1 may then be substituted into Eq. 6.14 to obtain

the function-valued posterior distribution ft′ for the function-valued trait at taxon
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t′. Since our estimated basis functions are stored numerically as vectors of length

8100, this gives the same discretisation for the ancestral traits.

Conditioning on our estimated mixing coefficients Q̂d for the tip taxa for a

given basis function j, the posterior distribution of Gjt′ is:

Gjt′ ∼ N (Âj , B̂j) (6.24)

where the vector Âj and matrix B̂j are obtained from Eq.’s 6.20 and 6.21, taking

f(x) = Q̂dj , x
′ = t′ and θ = θ̂j respectively for our observed values at the ex-

tant taxa, estimation coordinates and hyperparameter vector. Therefore since our

prior assumption is that the mixing coefficients of any two bases are statistically

independent of each other, it follows from Eq. 6.1 that:

ft∗ ∼ N (Σk
j=1Âjφ̂j(u, f),Σk

j=1B̂
T
i φ̂i(u, f)B̂i). (6.25)

The component specific marginal distributions of this representation (mean

and standard deviation) are shown in Table 6.3, the reconstructed protolanguage

for the root node ω0 is shown in Fig 6.5.

i Âi
√
B̂i

1 0.000 2095.10
2 147.679 504.70
3 0.000 473.24
4 (6.328) 0 618.91

Table 6.3: The posterior estimates for the parameters of Gjt′ for digit one at the
root node ω0. Each row corresponds to a given estimate of the marginal distribution
Gjt′ . As mentioned FPC4 does not reflect true phylogenetic variation, therefore Â4

despite having a non-zero value, for the protolanguage reconstruction purposes a
zero value is used.

Examining first the table 6.3 one notices two striking but entirely expected

facts. First for FPC1 and FPC3 our mean estimate is zero. This is expected

as no phylogenetic signal is detected. Given that the ML estimate of zero-meaned

Gaussian is zero, that is expectedly returned. This is what effectively also happens in

the case of FPC4; a prediction of 6.328 in the context of a Gaussian with σ = 618.91

is “the mean”. The small deviance observed exists due to the overfitting we already

noted during the estimation of the θ4; exactly because of this extremely strong

artificial phylogenetic variance, a small deviation from the mean is observed due to

the structure of the phylogeny. On the other hand FPC2 does present certain degree

of phylogenetic variance thus being away from the “naive mean” of zero. The second

striking finding is the magnitude of the estimates’ standard deviation. In all cases
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Figure 6.5: Centred (compared to the average of the 22, digit one spectrograms)
spectrogram for the Romance protolanguage (top row) and the actual spectrogram
of the protolanguage (bottom row).

(even in the case of FPC2), standard deviation is very large. We do expect that

though, given that we have in effect “just five numbers”, noting also that these are

in accordance with the standard deviations observed in the raw data initially (Table

A.12); the effects of these large confidence intervals can be visually inspected in

Fig. A.14. Continuing with the examination of the actual Romance protolanguage

spectrogram we see first the main effect conveyed by the centred spectrogram (Fig.

6.5, top row), this being that it lowers the stress of a first vowel. This means in a

way, it tries to downplay the stress of the first vowel found in “uno” and amplify the

second half of the utterance, thus leading to a final unimodally stressed word for the

digit one so that even though it has a second vowel, it is not distinctively stressed;

much like the constant power-spectrum pattern observed in American Spanish. We

have to note here that this finding is not unexpected given the mean of original data;

there the sample mean does appear as a single-stressed word. This is also foreseeable

by the fact the only FPC that actually influences this spectrogram is FPC2, the

FPC we do know to have exactly this property controlling the interplay between the

second and the first vowel. With these findings we would expect American Spanish
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(the most mild two-vowel utterance of the three examined), to be the closest to the

“Romance protolanguage” in terms of their utterance of the digit one.

6.4 Discussion

We restricted ourselves to this phylogenetic problem because, as shown in [157], a

wide class of phylogenetic Gaussian process models have exactly the linear decom-

position in Eq. 6.1. Given Eq. 6.1 in the setting of mathematical inverse problems

where, given data y, a phylogeny T and function-valued data y at its leaves, we

wish to infer the forward operator QT and model φ such that

y = QT(φ). (6.26)

Even though the data y are of discrete dimensions and typical of small number

of correlated factors per tip taxon, a variety of statistical approaches are available

(e.g. see [280], [116]). When the data are functions, phylogenetic Gaussian processes

(PGP) [157; 163] have been proposed as the forward operator.

Our dimensionality reduction methodology in Sect. 6.2.1 can be easily varied

or extended. For example, any suitable implementation of PCA may be used to per-

form the initial dimension reduction step: in particular, if the data have an irregular

design (as happens frequently with function-valued data), the method of Yao et al.

[337] may be applied to account for this; the ICA step then proceeds unchanged.

Additionally, assuming someone is prepared to make assumptions about the local

features of the noise structure, a number of two dimensional PCA techniques have

been proposed especially in regards with the analysis of eigenfaces [197; 335], with

the 2DPCA algorithm appearing as the popular choice. As commented in section

3.3.1, sparse two-dimensional PCA are already available in the case one is presented

with irregularly sampled data [55] 8, nevertheless our implementation does not suffer

from an irregular or sparse grid; as Cheng and Müller comment “we (C. & M.) found

that in the dense regular case, these two approaches give nearly identical results”.

We also note that while we employed a principal component analysis approach, other

dimensionality reduction decompositions could also prove successful. Similar work

with one-dimensional functional data has used ICA (and in particular the CubICA

implementation of ICA rather than the most widely employed FastICA [145]). We

nevertheless caution the direct application of ICA as, given the small number of

variables, even small changes in the ordering of the samples can manifest in differ-

ences in the quality of the produced independent components. In addition to that, if

the mixing matrix Q is Gaussian, then PCA returns scores which are approximately

8The authors having shown extremely different results in the case; view Sup. Material of [55].
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statistically independent equating the results of ICA; however, no general positive

statement can be made about independence of the entries of Q̂.

In order to approximate the solution of the inverse problem in Eq. 6.1,

the assumption of orthogonality between the basis functions stored in φ was made.

This is clearly more restrictive than the maximal independence being incorporated

by ICA but on the other hand it is more robust to the smaller samples utilized here.

We can rank though these eigensurfaces by their respective eigenvalues and acquire

a better understanding of the phylogenetic processes assumed to take place.

Tree estimation followed a standard phylogenetic framework; it was not the

main focus of this work. Despite that a phylogeny was generated that corresponds

closely to the phylogenies published in the literature on this subject [206; 106].

While we examined the prospect of using a weighted median based on the variance

explained from each FPC used during the construction of the consensus tree, we

decided against it because we wanted to keep in line with current literature.

Numerically our work on hyperparameter estimation in Sec. 6.2.3 cannot

directly circumvent the effects of overfitting due to small sample size [23; 59] by

employing bagging in order to bootstrap our sample [119]. Recognizing this, we

restrict our approach to a problem of smaller dimensions. Conceptually our work

on hyperparameter estimation, when taken together with Sec. 6.2.1, relates to the

character process models of [242] and orthogonal polynomial methods of [167], which

give estimates for the autocovariance of function-valued traits. Writing out Eq. 6.1

for a single function-valued trait (at the ith tip taxon, say), our model may be

viewed as:

f(x) =

4∑
j=1

gi,jφj(x) +

4∑
j=1

ei,jφj(x) (6.27)

where the mixing coefficient qi,j has been expressed as the sum of gi,j , the genetic (i.e.

phylogenetic) part of variation, plus ei,j , the non-phylogenetic (eg. environmental)

part of variation, just as in these references. Then the autocovariance of the function-

valued trait is:

E[f(x1), f(x2)] =

4∑
j=1

(
(σfj )2 + (σnj )2

)
φj(x1)φj(x2). (6.28)

The estimates of σfj and σnj obtained in section 6.2.3 may be substituted into Eq.

6.28 to obtain an estimate of the autocovariance of the function-valued traits under

study. This estimate has the attractions both of being positive definite (by construc-

tion) and taking phylogeny into account. Eq. 6.28 being practically the phylogenetic

variant of the GP regression model with a functional mean structure outlined by

Shi et al. in [292]. To that extend Shi et al.’s work on batch functional data offers
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an interesting alternative formulation on the treatment of linguistic corpora where

“batching” can be assumed both in terms of speaker-speciic recordings but more

importantly language.

Overall, this formulation of the ancestral state reconstruction and evolution-

ary dynamics investigation tasks allows us to have a full inverse problem view of

the phylogenetic regression problem [76; 152]. Clearly there is an obvious issue of

time-reversibility and how one treats time as a one-way continuum but we will not

expand on the matter. It is noteworthy that this question, especially in relation

with the notion of a molecular clock that dictates the rate of evolutionary change of

biological characters, is one of the central questions in Evolutionary Biology [143; 9];

the notion of glottoclock being subjected to the same conceptual issues.

Various frameworks exist which could be used to generalize the method pre-

sented in Sec. 6.2.3, to model heterogeneity of evolutionary rates along the branches

of a phylogeny [266] or for multiple fixed [46] or randomly evolving [126; 23] local

optima of the mixing coefficients. For the stationary O-U process the optimum trait

value appears only in the mean, and not in the covariance function, and so does not

play a role as a parameter in GPR (see [263]). We have not implemented such ex-

tensions here, effectively assuming that a single fixed optimum is adequate for each

mixing coefficient. Nonetheless our framework is readily extensible to include such

effects, either implicitly through branch-length transformations [229], or explicitly

by replacing the O-U model with the more general Hansen model [126]; in that

respect Butler & King [46] have already shown an implementation with multiple

local optima. Numerically these are implemented by reformulating Eq. 6.23 to have

subtree specific covariance terms through the use of further δti,tg -like functions.

On a similar manner we briefly comment on the theoretical as well as numeri-

cal implications of the sample size used. Small sample size undermines the statistical

power of any study. This is because there might already be a small probability of

finding a true effect and in addition even if a true effect is found it might be exagger-

ated [47]. Moreover, one can not assume that the probability of Type II errors is 0.

As mentioned the “standard” solution employed in Phylogenetics (and other disci-

plines) to partially alleviate these concerns is bootstrapping. Unfortunately because

of our small sample, resampling approaches are not directly applicable at least in

theory. In addition, because ultimately we are solving an optimization problem we

cannot ignore the potential presence of local extrema in the log-likelihood function

L. For these realistic concerns we can comment three things: first, that we do not

find phylogenetic association “everywhere”. Indeed, based on biological insights one

will always expect environmental (ie. non-phylogenetic) variation to be prominent

and this is clearly put forward by our estimates. Second, the mode of variation

found to exhibit phylogenetic associations is the most linguistic plausible. Finally,

144



the absolute magnitude of the phylogenetic signal found is well within reasonable

estimates both in terms of overall FPC variation as well as intra-FPC variation. For

these reasons we believe that the analysis conducted holds at least some weight and

it presents the most plausible findings for the sample available.

Commenting exclusively on our linguistic findings, we draw attention to two

areas; the theoretical implications from our consensus tree and the protolanguage

estimate for digit one. Regarding the tree that was generated using all digits, it

is undoubted that Italian is closer to all other Romance languages examined to a

Romance protolanguage. Even our simplifying procedure and small data confirmed

that. What would be interesting would be to add Romanian in the set of examined

languages as Romanian is the other “popular choice” of a modern language that

closely approximates the original Latin root [222]. In the same manner the addition

of Catalan would be helpful as it would allow a finer geographical grid. We must not

forget that the carriers of a “language gene” are humans and humans are subjects to

spatial constraints. This finding is independent of the fact that specific words may

appear closer to the tree’s protolanguage as is the case with digit one examined here.

Second, regarding our protolanguage estimate of one, we believe that the “closer”

estimate to a protolanguage estimate of digit one is probably American Spanish.

As American Spanish appears closer to a “Romance phylogenetic mean” we might

even argue that exactly because of that deviation as a population effect, the current

speakers might retain more characteristics of an archaic version of the languages

compared to the “original language’s” newer version. This phenomenon is, at least

partially, exhibited in the case of Quebec and Metropolitan French [329]; a Latin

language case where the Atlantic barrier resulted in the linguistic evolution of two

mutually intelligible but distinct descendants of Classical French.

In conclusion, we have proposed a modelling framework for the phylogenetic

analysis of phonetic information within the greater Functional Data Analysis frame-

work. We believe that this is probably one of the first applications of Linguistics

functional Phylogenetics. We strived to combine established methodologies, while

making the least amount of theoretical assumptions possible and always trying to

draw direct analogies that our statistical manipulations of the sample have in the ac-

tual sample space. Whether these were in the preprocessing steps with time-warping

the spectrograms, the dimension reductions procedure conducting FPCA or the ac-

tual phylogenetic Gaussian process regression, we feel that the current chapter just

scratches the surface of another fruitful and insightful area of research.
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Chapter 7

Final Remarks & Future Work

In Phonetics the use of Functional Data Analysis is often under-represented. That

despite the fact that FDA appears more theoretically coherent in a number of situ-

ations than the current multivariate approaches used. The current thesis showcases

the issues and insights that an FDA framework entails when applied in Phonetics. It

starts with a simple application, disregarding issues of time-distortion. While some-

what simplified, that approach can offer a deep understanding about the linguistic

components involved. We are able to identify linguistically meaningful associations

with a minimal amount of prior linguistic knowledge. Our work then moves to for-

mulate a framework where one can conduct concurrent analysis of amplitude and

phase information. Through this we are presenting a first quantitative insight on

how these two domains interact. We close by showcasing an application of FDA

in Linguistic Phylogenetics. While highly experimental, this approach shows a first

paradigm of a Functional Data Analysis approach in Phylogenetics as a whole. We

are able to draw certain conclusions and conduct a full evolutionary inference pro-

cedure in data that would otherwise be either ignored or deemed unsuitable for such

an analysis.

We draw three key conclusions, each from the respective chapters of this

thesis. The first one being that Functional Data Analysis is an appropriate tool to

utilize in Phonetic Corpus Linguistics, allowing complex behaviours to be directly

analysed. As shown in chapter 4, a number of vowel sequences and consonant-vowel

sequences significantly influence the final F0 utterance. In most cases the patterns

recognized adhere to known grammatical rules. The important thing is that these

grammatical rules were not incorporated in the analysis but were recognized as

already documented by an expert in the field (Dr. Evans). This is significant

evidence for the usefulness of FDA in the analysis of Phonetic data and we feel

confident that more languages with less well-documented grammatical rules can

also benefit. The second conclusion is that the intertwined nature of amplitude and

phase information in a phonetic dataset cannot be ignored a priori. Chapter 5 makes
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a definite case that there are non-negligible correlations between the two domains.

This in a way shows the partial “inability” for the warping algorithms presented to

fully separate the two domains of variation. If they were fully successful then one

should not observe any strong correlation between the two domains; something that

our findings obviously disprove. Clearly there is a question of whether or not one

tries to put more weight in this requirement; after all the previous step (that ignored

phase information) was successful. We need to emphasize though that one needs to

know what is ignored before he decides to exclude it from the analysis. For instance,

we see that F0 slope changes are correlated with changes in the duration patterns

of a speaker. So if one aims to model each are of variation independently and then

combine them, important effects might be excluded. On the other hand, if one aims

to model finer speaker F0 effects, vowel duration is largely immaterial. Finally we

advocate that Functional Data Analysis can be used for Phylogenetics with great

potential. Chapter 6, as well as the closely related research paper [119], show that

the combination of FDA and known phylogenetic techniques is far from inapplicable

or tedious to achieve. Instead, well-established Phylogenetics techniques are almost

directly applicable within a FDA framework and those techniques can be used to

answer questions that FDA did not recognize as a potential field of applications. In

this work we presented a framework under which one is in position of evaluating the

evolutionary relations between languages (or any other object of analysis used within

a phylogeny), as well as making estimates about their prior states. While our current

insights were “trivial” 1, our estimates are not; reconstructing protolanguages is an

open question in Linguistics and our flexible and tested approach is advancing the

current literature.

There are a number of future works that can directly stem from the current

project:

• Data integration. A logical next step will be an application of the methods

shown in chapter 6 on a bigger dataset. “Bigger”, referring to the number of

languages explored, the number of speakers included as well as the number of

words utilized. The number of languages explored is the obvious short-coming

of the current work. The small phylogeny it employs does not assist the asymp-

totic assumptions made nor allows for standard bootstrapping techniques to

be employed. We already identified two “easily” sampled languages 2. It would

also be reasonable to include an outgroup language if we want to achieve a

deeper understanding of the tree-reconstruction step. Secondly, more speakers

per language will allow for better “language exemplar” word estimate. As it

1Finding that Italian is closer to a Latin ancestral language than French, Portuguese and Spanish
does not constitute an advancement in the Evolutionary Linguistics literature.

2Catalan and Romanian.
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stands, our language exemplars are based on a simple language-gender inter-

action model; more sophisticated models can be used if one has more data.

Finally, the sample analysed, is a design choice that can have very pronounced

effects. The Romance languages recording data are just one dataset analysed;

there are a number of specially constructed datasets for Phylogenetics. More-

over even in a bigger dataset, all word instances are used as “independent” with

one another; something that is clearly an oversimplification. This is definitely

an aspect that any Linguistic study should consider and while documented

since early applications of Linguistic Phylogenetics [76], it has not received

proper attention. This last issue is in practice a data integration problem,

as different avenues provide different datasets that have non-obvious ways of

being combined.

• Protolanguage acoustic estimates. Ultimately the question of a protolanguage

is “how it sounded”. Direct reconstruction of signal from a spectrogram is

problematic exactly because one “loses” the phase information of the Short

Time Fourier Transform encapsulated in its imaginary part. There are certain

methodologies of how to reconstruct a signal from its spectrogram but they

are not immediately applicable. Translating our findings to actual acoustic

signal is something that would not only benefit current research but also open

up a whole new different field of research as currently there is no concept

of Historical Acoustics exactly because there are no “acoustic fossils” to be

analysed.

• Multilevel functional time-registration. As Di et al. have shown multilevel

FPCA can be insightful [66]. Nevertheless in a best case scenario a researcher

recognizes that certain instances “can not be meaningfully warped together”

and uses a cluster specific warping [304]. In particular, Di et al. [66] propose

a model for a functional dataset Y such that:

yij(t) = µ(t) + ηj(t) +

N1∑
k=1

ξikφ
(1)
k (t) +

N2∑
l=1

ζijlφ
(2)
l (t) + εij(t) (7.1)

ξik ∼ N(0, λ
(1)
k , ζijl ∼ N(0, λ

(2)
l ), εij(t) = N(0, σ2) (7.2)

where µ(t) is the overall functional mean, ηj(t) is the component specific func-

tional mean, ξik and ζijl the level 1 and level 2 principal component scores

and φ
(1)
k (t) and φ

(2)
l (t) the level 1 and 2 eigenfunctions respectively. As such,

one is given the ability to recognize two different domains of variation within

unwarped data that the current methodologies would naively merge. Instead,
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a time-distortion model can be used where instead of the standard:

yij(t) = wi(h
−1
i (t)) + εij (7.3)

where as before wi is the amplitude and the hi the phase variation function, the

time-registration is conducted over two levels. One over the reduced dimension

data y
(1)
ij (t):

y
(1)
ij (t) = µ(t) +

N1∑
k=1

ξikφ
(1)
k (t) = w

(1)
i (h

−1(1)
i (t)) + ε

(1)
ij (7.4)

and a second one over the reduced dimension dataset y
(2)
ij (t) for each j indi-

vidually:

y
(2)
ij (t) = ηj(t) +

N2∑
l=1

ζijlφ
(2)
l (t) = w

(2)
i (h

−1(2)
i (t)) + ε

(2)
ij (7.5)

where clearly:

yij(t) = y
(1)
ij (t) + y

(2)
ij (t) + εij(t). (7.6)

This exposition offers a simple sketch of a broader idea. As multilevel tech-

niques become more prominent, time-warping methodology will have to ac-

count for “level-related” design properties instead of plainly segmenting the

data based on empirical insights.

• Decomposition of functional data. Having made the choice of working in a

lower dimensional space than the one a functional dataset lies originally, the

choice of dimension reduction framework is an open one. In the current work

we used FPCA because it is the most well-studied and widely used decomposi-

tion. There was no intrinsic reason why one would not use another basis, this

choice becoming even more prominent when we consider functional objects be-

ing defined on more than one continuum. In particular, as shown in [119] ICA

[145] can be fruitful if used in conjunction with FPCA for curves. Especially

for phylogenetic applications, where one might not be presented with phylo-

genetic information, this tandem dimension reduction approach can provide

highly robust components. Nevertheless, we chose not to use this method-

ology in chapter 6. We decided that because we believed concatenating a

two-dimensional functional object in a one-dimensional vector, while under-

stood and investigated in the context of FPCA, is not in the context of ICA

and that could jeopardize the statistical coherence of our approach. There
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is already a small literature of ICA applications for two-dimensional objects

(eg. [276; 153]); nevertheless especially taking into account the small language

specific sample that we might be presented with, issues of multiple optima in

the negentropy function used by the ICA algorithm cannot be ignored and

therefore caution is still needed. Therefore we recognize decompositions com-

plementary to FPCA and ICA for two-dimensional objects in particular, as a

potentially fruitful field of investigation.

It is thus evident that there is a series of emerging challenges for functional

data analysis, both theoretical and applied. It appears that functional data analysis,

generalizing on the findings of multivariate techniques, can offer tools for the further

advancement of Phonetics as well as applied research in general.
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Appendix A

A.1 Voicing of Consonants and IPA representations for

Chapt. 4 & 5

The voicing characterization was based on the SAMPA-T (Speech Assessment Meth-

ods Phonetic Alphabet - Taiwan), and the correspondence between the SAMPA-T

system and the IPA system were based on the material provided by Academia Sinica.

The following consonants were present in the dataset.

Labial Dental Retro-

flex

(Alveo-)

Palatal

Velar

Stop p ph t th k kh

Affricate ts tsh t s t sh tC tCh

Fricative f s
s z

C x

Nasal m n

Approx. l j

This led to the following voicing characterization:

IPA t tC ts t s f k x kh l m n

Voiced 0 0 0 0 0 0 0 0 1 1 1

IPA p z ph s s - C th tCh tsh t sh

Voiced 0 1 0 0 0 3 0 0 0 0 0

Mandarin Chinese rhymes are transcribed with symbols corresponding to:

[@, @~, a, ai, an, aN, au, ei, i, ia, iaN, iau, iE, iEn, in, iN, iou, @n, @N, o, oN, ou, u, ę, ğ,

ua, uai, uan, uaN, uei, u@n, uo, y, yE, yEn, yn, yoN].
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Figure A.1: Sample FPC’s normalized
on L[0,1]
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Figure A.2: Legendre polynomials in
L[0,1]

A.2 Comparison of Legendre Polynomials and FPC’s

for Amplitude Only model

The shifted Legendre polynomials are a standard choice for an orthogonal basis

expansion in the interval [0, 1] being defined as:

P̂n(x) =
1

n!

dn

dxn
(x2 − x)n (A.1)

While it is clearly seen that the two bases look similar (Fig. A.1 & A.2),

Legendre polynomials present a number of limitations compared to Functional Prin-

cipal Components:

a) Each successive one LP does not reflect diminishing amount of auditory informa-

tion,

b) given a fixed number of components, the FPC’s reflect larger tonal content (eg.

FCP1-4 : 243.5 Hz compared to LP0-3 : 170.6Hz),

c) the FPC’s are a non-parametric basis so they represent a meaningful basis com-

pared to an arbitrary orthogonal basis and

d) FPC’s do not make the implicit assumption that the signal is periodic by nature.

LP# Hz (99%) Hz (95%)

LP1 126.6478 95.9651
LP2 28.4172 18.7645
LP3 10.8092 7.1530
LP4 4.7961 2.6287
LP5 9.1977 6.8812
LP6 5.5564 3.5870

LP# Hz (99%) Hz (95%)

LP7 10.7919 8.1306
LP8 6.4458 4.2775
LP9 12.9543 9.7760
LP10 7.6454 5.0587
LP11 15.2197 11.4753
LP12 8.7689 5.7868

Table A.1: Auditory variation per LP (in Hz) (human speech auditory sensitivity
threshold ≈ 10 Hz).
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A.3 Speaker Averaged Sample for Amplitude Only model

While the paper rationale follows standard principal component analysis method-

ology, thus subtracting the sample mean prior to the Karhunen-Loève expansion,

the subtraction of speaker-specific means is also possible, yet not desirable from

an explanatory perspective. Subtracting the speaker-specific means would result in

altering the sample’s eigenvectors in a non-obvious way, thus distorting the whole

rationale that FPCA is based upon; Miranda et al. 2008 have already presented

the optimality of subtracting the sample wide mean. Nevertheless, because of the

uniformly scattered nature of our data, the resulting sample covariance surface and

functional principal components (Fig. A.3 & A.4 respectively) are almost identical

to their non-speaker specific counterparts. Furthermore following the framework

outlined in the paper, it can also be seen that the resulting components are not only

of same qualitative nature but also carry comparable variational amplitude (Tables

A.2). Finally it should be mentioned that subtracting the speaker-specific means

would render the speaker related random effect powerless. Thus we would not be

able to quantify the effect it carries to each specific component individually (eg. we

would miss out the intuition that the FPC2 is less influenced by the speaker effect

than FPC3.) but give only a very general estimation about the collective influence

it carries on the whole reconstructed curve.
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Figure A.3: Covariance function of
the 54707 smoothed F0 sample curves
having already subtracted the speaker
associated mean from each curve, ex-
hibiting smooth behaviour.
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Figure A.4: Mean Function and 1st,
2nd, 3rd, 4th, 5th and 6th Functional
Principal Components. Together these
account for 99.86% of the sample vari-
ance but actually only the first four
having linguistic meaning (99.59 % of
sample variation); the 5th and 6th were
not used in the subsequent analysis.
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FPC# Hz (99%) Hz (95%)

FPC1 112.8356 81.5929
FPC2 68.1571 43.7576
FPC3 32.1981 17.584
FPC4 18.4580 8.8473
FPC5 8.8254 4.1947
FPC6 5.4575 2.4836

FPC# Hz (99%) Hz (95%)

FPC7 3.5902 1.7232
FPC8 2.8679 1.2725
FPC9 2.3779 1.0709
FPC10 1.8927 0.8478
FPC11 1.6555 0.6787
FPC12 1.0636 0.4531

Table A.2: Auditory variation per FPC in the Speaker-centerd sample (in Hz)
(Speaker-Adjusted Sample)

A.4 Functional Principal Components Robustness check

for Amplitude Only model

0 0.2 0.4 0.6 0.8 1
−0.5

−0.375

−0.25

−0.125

0

0.125

0.25

0.375

0.5

t

FPC 1

 

 

Expected values for FPC1

Upper FPC values

Lower FPC values

0 0.2 0.4 0.6 0.8 1
−0.5

−0.375

−0.25

−0.125

0

0.125

0.25

0.375

0.5

t

FPC 2

 

 

Expected values for FPC2

Upper FPC values

Lower FPC values

0 0.2 0.4 0.6 0.8 1
−0.5

−0.375

−0.25

−0.125

0

0.125

0.25

0.375

0.5

t

FPC 3

 

 

Expected values for FPC3

Upper FPC values

Lower FPC values

0 0.2 0.4 0.6 0.8 1
−0.5

−0.375

−0.25

−0.125

0

0.125

0.25

0.375

0.5

t

FPC 4

 

 

Expected values for FPC4

Upper FPC values

Lower FPC values

Figure A.5: To assess the robustness of the resulting FPCs, FPCA is conducted in
subsamples of the original COSPRO dataset. In particular we segmented the orig-
inal 54707 curve sample in 10 random subsamples of approximately equal size and
computed the FPC of each subsample independently; the procedure was repeated
2048 times resulting in 20480 FPCs curve realizations of each component. The re-
sults show strong robustness as the FPC shape characteristic remain universal along
all samples.
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A.5 Model IDs for Amplitude Only model

Model ID DF
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1 245 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

1 247 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 241 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0

2 243 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

3 155 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

3 157 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 151 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0

4 153 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

5 145 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 0

5 147 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1

6 145 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 0

6 147 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1

7 145 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 0

7 147 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1
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16 143 0 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 0

16 145 0 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1

17 140 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 0

17 142 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1

18 127 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0

18 129 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

19 131 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0

19 133 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

20 132 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0

20 134 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

21 102 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0

21 104 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

22 103 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0

22 105 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

23 112 0 0 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0

23 114 0 0 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

24 78 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0

24 80 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

25 54 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0

25 56 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 1

26 79 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 0

26 81 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1

27 57 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 0 0

27 59 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 0 1

28 61 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 0

28 63 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1

29 57 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 1 0 0 0

29 59 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 1 0 0 1

30 61 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 1 0 1 0

30 63 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 1 0 1 1

31 57 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 1 0 0 0 0

31 59 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 1 0 0 0 1

32 61 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 1 0 0 1 0

32 63 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 1 0 0 1 1

33 57 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0

33 59 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 1

34 61 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 1 0

34 63 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 1 1
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35 54 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0

35 56 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1

36 126 0 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0

36 128 0 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1

37 120 0 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1 0

37 122 0 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1 1

A.6 AIC scores (ML-estimated models) for Amplitude

Only model

Model ID RandEff DF AIC1 AIC2 AIC3 AIC4

1 0 301 690545.4 572791.6 493957.2 430858

1 1 303 679331.4 572518 490142.8 428528.4

2 0 268 690531.4 572845.2 493988.6 430893.8

2 1 270 679313 572569 490184.2 428566.4

3 0 211 690502.8 572916 494009 430801.2

3 1 213 679299.2 572635.2 490191 428480.6

4 0 178 690486.2 572973.8 494014.6 430838.2

4 1 180 679277.8 572690 490210.6 428520.4

5 0 172 690611 572988.4 494016.8 430831.2

5 1 174 679419.2 572701 490210.2 428513.8

6 0 172 692536.2 573028.2 494017 430843.4

6 1 174 680412.6 572734.6 490212.4 428526.6

7 0 172 694361.8 573199 494202.2 430902.8

7 1 174 684558.4 572927.6 490357.4 428556.8

8 0 172 690784.6 573347.4 494367.8 430853.8

8 1 174 679613.6 573073.2 490556 428545.6

9 0 154 698791 573844.2 494728.6 430958

9 1 156 688653 573574 490867.6 428617.8

10 0 142 691728.2 573486.6 497839.6 431481.2

10 1 144 680510.6 573196.8 494299 429154.4

11 0 169 690524.8 572997.2 494083 430917.8

11 1 171 679318 572712.6 490279 428596.2

12 0 166 690599.2 573966.6 494381.6 431543.2

12 1 168 679453 573671.4 490579.2 429233.4

13 0 167 690809.8 574897.4 499304.6 431147.4

13 1 169 679693.8 574584 495824.2 428838.6

14 0 157 690622.4 573990 494478 431636

14 1 159 679473.8 573694.6 490674.8 429322

15 0 158 690846 574920.8 499352.2 431233.2

15 1 160 679732.2 574606.6 495873.4 428920.2

16 0 155 690920.6 575746.6 499676.6 431858.8

16 1 157 679864.4 575423.8 496174.2 429561.6

17 0 146 690945.8 575779.2 499753 431963.2

17 1 148 679888.8 575456.2 496252.4 429661.8

18 0 154 690488.2 573027.6 494026.8 430820

18 1 156 679297.8 572744.8 490221 428502.2

19 0 158 691285.6 578417.6 494156.4 430841.2

19 1 160 680233.6 578171.2 490366 428527.2

20 0 159 690739.8 573939.2 494413 431150

20 1 161 679591.2 573644 490663.6 428828.8

21 0 134 691287.4 578465.6 494175.6 430833.8

21 1 136 680254 578219.2 490383.2 428520.8

22 0 135 690742.4 573989.2 494423.8 431133.2

22 1 137 679610.8 573694.4 490671.6 428811.2

23 0 139 691548 579330.4 494567 431152

23 1 141 680554 579093.6 490832.4 428834.4

24 0 105 693468 582328 496822.2 432434.2

24 1 107 682954.2 582046 493245 430183.6
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25 0 70 728608 582183.8 505304.6 432549.2

25 1 72 682220.8 581871.6 497062.4 430091.4

26 0 83 692059 582129.8 500487 432373.4

26 1 85 681224.8 581850.8 497064 430070.6

27 0 61 733509.4 582753.4 505888 432593

27 1 63 689222.8 582450.4 497615.4 430154.6

28 0 65 699435.6 582726.8 501093.6 432478.6

28 1 67 688974 582456.6 497610.4 430155.8

29 0 61 731863.6 582725 505863.6 432582

29 1 63 688013.6 582435.6 497612.6 430139.6

30 0 65 697040.8 582698.2 501092.4 432461

30 1 67 687555.2 582440.2 497614.2 430140.8

31 0 61 730496.4 582501.2 505606 432566.6

31 1 63 684428.4 582189.6 497350.4 430120

32 0 65 694879.8 582431.8 500790.6 432397

32 1 67 683744.8 582155.4 497352 430105.4

33 0 61 733275.8 582411.6 505483.8 432600.6

33 1 63 689255 582101.8 497187 430147.4

34 0 65 699178.2 582380.2 500643.6 432469

34 1 67 689220.4 582103.2 497180 430131.8

35 0 58 733764.6 582777.2 505884.4 432608.6

35 1 60 690291 582479.6 497613 430168

36 0 145 690526.4 573050.8 494097.2 430899.8

36 1 147 679338.6 572767.2 490291.2 428578.2

37 0 139 690650.4 573065.4 494098.6 430892.8

37 1 141 679481 572778.4 490290.2 428571.8

Table A.4: Best Jackknifing models in bold; sample-wide best AIC models under-
lined.

A.7 Jackknifing for Amplitude Only model

As mentioned in the main body of the study, in order to account for the robustness

of our approach we relied on re-estimating the optimal model under the AIC frame-

work, using random samples of our initial dataset. We implemented 180 runs where

in each run we randomly partitioned our data in 5 sub-samples that we then treated

as independent and then we subsequently performed FPCA and LME analysis on

each sub-sample. Figure A.6 displays our findings: As we see in all cases the model

selected by re-sampling does not contradict our finding for the optimal models when

utilizing the whole sample. In cases that the jackknifing suggested a different model,

we examined if the model proposed by jackknifing was not providing a significantly

less optimal fit for the whole dataset. In all 3 cases that fit proposed by jackknifing

was qualitatively comparable to that of the whole data. While it is only reasonable

that the larger full sample will allow the detection of more rare events, we choose

the slightly smaller models proposed by the Jackknifing as to ensure we are not

overfitting our sample data.

A.8 Estimate Tables for Amplitude Only model

The estimates were produced using the function lmer() from the lme4 package.

10000 samples were used to generate the bootstrap estimates. The first two columns

show the actual model estimate and the bootstrap mean estimate. Unsurprisingly

both estimates are quite close. The next two columns are the lower and higher 95%
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Figure A.6: Bar-chart showing the relative frequencies of model selection under
jackknifing; models selected for the thesis’ work are pointed with an arrow.

confidence density intervals. Because these estimates are referring to the final mod-

els used, ReML (Restricted Maximum Likelihood) principle was used during their

computation.

Table A.5: All fixed effects and 95% confidence intervals for the 1st FPC scores
models.

FPC1 Covariate Estimate BoostrapMean (0.025, .975)

VoicePRc0 290.6276 288.8879 196.2904 374.8958

VoicePRc1 238.0884 236.3364 144.5801 323.6155

VoicePRc2 239.5133 237.7425 148.8227 326.4128

VoicePRc3 267.4338 265.2797 172.3652 356.5443

tone 2 -158.0311 -157.7912 -188.1032 -127.2074

tone 3 -236.2368 -237.4759 -287.7277 -190.2561

tone 4 -62.6604 -62.9837 -93.7334 -32.6068

tone 5 23.063 23.8788 -33.8707 85.5422

VoiceNXc1 -4.9446 -4.9248 -10.5301 0.8918

VoiceNXc2 -18.3991 -18.5359 -25.11 -11.8492

VoiceNXc3 -22.8719 -22.9102 -28.7349 -16.938

rhyme @~ -3.0514 -2.9682 -22.3141 14.8717

rhyme a -46.2323 -46.1669 -54.6929 -38.2717

rhyme ai -52.9713 -52.9681 -60.5208 -45.4837

rhyme an -13.6657 -13.7609 -21.1268 -6.2696

rhyme aN -26.0789 -26.1654 -34.4352 -17.9603

rhyme au -31.256 -31.2592 -41.3548 -21.4167

rhyme ei 6.5566 6.6786 -3.1349 15.2371

rhyme i 9.7728 9.7161 3.3253 16.0293

rhyme ia -44.3547 -44.4112 -55.5068 -33.7468

rhyme iaN -27.5415 -27.8218 -36.8506 -18.3873

rhyme iau -29.2383 -29.3334 -38.7381 -19.7165

rhyme iE -20.1994 -20.0965 -28.3356 -11.14

rhyme iEn -15.4923 -15.5871 -22.7544 -8.5272

rhyme in 9.5284 9.5247 1.5088 17.3305

rhyme iN 9.5004 9.3795 2.6279 16.2537

rhyme iou 14.7058 14.8752 6.5932 22.6325

rhyme @n 2.3474 2.3451 -4.8613 9.2021
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Table A.5 – continued from previous page

FPC1 Covariate Estimate BoostrapMean (0.025, .975)

rhyme @N 1.5957 1.6013 -5.5467 8.7776

rhyme o 14.1393 14.4102 -4.6814 34.1881

rhyme oN 19.5683 19.5685 12.5981 25.9998

rhyme ou -21.0314 -20.9471 -30.6301 -10.7955

rhyme u 24.6549 24.6187 18.0004 31.2778

rhyme ę 28.8474 28.8205 19.0472 38.7886

rhyme ğ -16.4383 -16.4949 -23.1142 -10.051

rhyme ua -46.813 -46.7781 -69.4845 -23.3788

rhyme uai -5.025 -5.0709 -25.3445 13.6476

rhyme uan -16.3199 -16.1793 -25.8464 -6.2835

rhyme uaN -12.967 -12.8079 -25.5231 0.199

rhyme uei -8.7169 -8.7723 -15.9956 -0.5403

rhyme u@n -12.5026 -12.882 -24.7355 -0.1808

rhyme uo -8.2602 -8.3119 -14.8086 -1.5086

rhyme y 6.2325 6.2694 -2.8333 15.4397

rhyme yE -8.0661 -7.9792 -18.6677 3.0846

rhyme yEn -7.8194 -7.6844 -17.8876 2.7967

rhyme yn 5.1034 4.7621 -9.1294 19.8606

rhyme yoN -19.6194 -19.128 -38.6167 0.3638

B2 57.1172 56.6871 29.8611 82.5396

B22 -37.0934 -36.9394 -49.0051 -24.6728

B23 5.8102 5.7959 4.1001 7.5416

B3 -54.4534 -54.2685 -57.3363 -51.0481

B32 4.5697 4.54 4.0036 5.0901

B33 -0.1073 -0.1061 -0.1312 -0.0808

B4 -5.4305 -5.422 -5.783 -5.0433

B42 0.0889 0.0888 0.0803 0.0962

B43 -4e-04 -4e-04 -4e-04 -3e-04

B5 0.0157 0.0112 -0.3048 0.3331

B52 -0.008 -0.0079 -0.0136 -0.0021

B53 0 0 0 1e-04

SexM -376.6931 -374.6379 -514.8648 -230.1063

pr to11 11.3611 11.3534 -1.0841 24.0511

pr to12 8.3474 8.5974 -3.7404 21.184

pr to13 -27.6911 -27.6533 -39.8136 -15.502

pr to14 -28.098 -27.8887 -39.8373 -15.6739

pr to15 -8.9191 -8.8892 -22.0691 4.8133

nx to11 58.0072 57.9872 39.5891 76.1897

nx to12 95.2594 95.0824 76.6345 113.0094

nx to13 100.7655 100.6452 81.969 119.7754

nx to14 91.3527 91.2734 73.0661 109.2332

nx to15 82.7454 82.5712 62.6679 102.3617

VoicePRc1:tone 2 58.5001 58.6905 47.2799 69.4968

VoicePRc2:tone 2 49.2041 49.2381 37.6237 60.2795

VoicePRc3:tone 2 -1.4369 -0.7953 -20.9772 19.1905

VoicePRc1:tone 3 47.3256 47.3421 34.6181 59.9143

VoicePRc2:tone 3 93.4332 93.3471 80.9414 105.942

VoicePRc3:tone 3 -8.4085 -7.9649 -27.1386 10.557

VoicePRc1:tone 4 61.4711 61.5369 50.1995 72.2303

VoicePRc2:tone 4 39.2997 39.2255 28.1767 49.9861

VoicePRc3:tone 4 54.2863 54.6372 35.6353 73.7137

VoicePRc1:tone 5 69.8676 69.7713 51.959 87.2013

VoicePRc2:tone 5 0.8532 0.5029 -71.0162 72.737

tone 2:VoiceNXc1 -16.4104 -16.4537 -25.0188 -8.3611

tone 3:VoiceNXc1 -0.4894 -0.4076 -11.6462 9.5844

tone 4:VoiceNXc1 26.4155 26.4383 17.756 34.3044

tone 5:VoiceNXc1 6.6469 6.6998 -7.2493 21.0618

tone 2:VoiceNXc2 20.4874 20.5795 10.8909 30.0312

tone 3:VoiceNXc2 24.1558 24.4312 13.1255 35.7025

tone 4:VoiceNXc2 35.579 35.6253 27.0235 44.0081

tone 5:VoiceNXc2 39.2385 39.2833 22.1407 56.9877

tone 2:VoiceNXc3 -17.2567 -17.2356 -25.0453 -8.8607

tone 3:VoiceNXc3 -4.1604 -4.1127 -13.8619 5.6609

tone 4:VoiceNXc3 2.777 2.7105 -4.7611 10.8425

tone 5:VoiceNXc3 12.1734 12.0102 -1.5924 25.376

VoicePRc1:VoiceNXc1 -5.696 -5.8193 -14.1012 2.6284

VoicePRc2:VoiceNXc1 15.7127 15.7708 5.9286 26.3005

VoicePRc3:VoiceNXc1 19.6739 19.5784 1.5294 38.722

VoicePRc1:VoiceNXc2 -23.1075 -23.1455 -31.8518 -14.8163

VoicePRc2:VoiceNXc2 -4.8746 -4.7196 -15.5983 5.6

VoicePRc3:VoiceNXc2 -4.5734 -4.3496 -22.3144 13.9796

VoicePRc1:VoiceNXc3 3.6451 3.5978 -3.1243 11.3571

VoicePRc2:VoiceNXc3 13.9163 14.1232 5.5181 22.573

VoicePRc3:VoiceNXc3 9.1536 9.022 -6.7493 24.7472
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Table A.5 – continued from previous page

FPC1 Covariate Estimate BoostrapMean (0.025, .975)

B2:SexM -59.9615 -61.1271 -114.4364 -7.4205

B22:SexM 22.8947 23.5349 -1.2096 48.5743

B23:SexM -2.6511 -2.7509 -6.2431 0.7627

B3:SexM 34.9644 34.8186 29.5378 40.4671

B32:SexM -3.2994 -3.2756 -4.2318 -2.3553

B33:SexM 0.0716 0.0706 0.0273 0.1159

B4:SexM 3.0225 3.0178 2.2673 3.7602

B42:SexM -0.0466 -0.0467 -0.0638 -0.0293

B43:SexM 2e-04 2e-04 1e-04 3e-04

B5:SexM 0.7157 0.7215 0.1842 1.2752

B52:SexM -0.0086 -0.0087 -0.0183 0.0011

B53:SexM 0 0 0 1e-04

tone 2:pr to11 -60.2238 -60.5252 -76.9758 -42.6763

tone 3:pr to11 -21.8393 -22.1284 -42.5022 -1.4912

tone 4:pr to11 -44.4751 -44.4725 -59.981 -28.5539

tone 5:pr to11 -68.6406 -67.7035 -109.5356 -29.4246

tone 2:pr to12 -42.6642 -43.4623 -61.2588 -25.4739

tone 3:pr to12 1.5465 0.943 -19.6645 20.2377

tone 4:pr to12 -29.4712 -29.5414 -45.2254 -14.0662

tone 5:pr to12 -75.6004 -74.9938 -114.4153 -37.7349

tone 2:pr to13 -31.1371 -31.6078 -49.9722 -13.6739

tone 3:pr to13 25.4096 25.3295 4.4349 44.9896

tone 4:pr to13 -14.9275 -14.9296 -30.4286 0.8937

tone 5:pr to13 -112.8046 -112.0038 -152.5997 -74.4657

tone 2:pr to14 -39.4836 -40.1734 -56.7008 -24.3313

tone 3:pr to14 -4.0889 -4.6106 -23.7978 13.4256

tone 4:pr to14 -40.3277 -40.5586 -55.0776 -24.9944

tone 5:pr to14 -132.2049 -131.8285 -169.4348 -93.2712

tone 2:pr to15 -59.3155 -59.9608 -79.5509 -40.9645

tone 3:pr to15 -20.1592 -20.476 -43.5351 1.7043

tone 4:pr to15 -26.6009 -26.7389 -44.0419 -9.0468

tone 2:nx to11 30.6341 30.8807 4.041 57.6933

tone 3:nx to11 -50.2163 -48.9955 -93.5112 -1.4287

tone 4:nx to11 8.4709 8.9067 -17.9105 35.9684

tone 5:nx to11 -107.4177 -108.9408 -160.1863 -60.4522

tone 2:nx to12 13.9168 14.2746 -13.1296 40.0327

tone 3:nx to12 -80.5023 -78.7329 -124.5513 -30.9264

tone 4:nx to12 -8.3446 -7.77 -35.6853 18.8548

tone 5:nx to12 -138.1171 -139.6188 -189.9929 -89.5657

tone 2:nx to13 35.7075 35.9982 6.5297 63.8812

tone 3:nx to13 40.4142 42.1176 -4.0413 89.8268

tone 4:nx to13 3.5714 4.0745 -23.7456 31.9801

tone 5:nx to13 -103.3212 -104.6503 -156.0392 -53.4573

tone 2:nx to14 -1.0191 -0.7386 -28.3151 25.9497

tone 3:nx to14 -78.1722 -76.6589 -120.7483 -29.5356

tone 4:nx to14 7.8174 8.3478 -18.1823 35.7335

tone 5:nx to14 -101.4688 -102.9794 -153.7719 -53.769

tone 2:nx to15 -1.6216 -1.1639 -30.5745 26.7324

tone 3:nx to15 -68.6251 -67.1657 -112.9532 -18.8865

tone 4:nx to15 15.9053 16.4964 -12.7233 45.3096

tone 5:nx to15 -112.194 -113.1722 -169.7683 -58.6162

Table A.6: All fixed effects and 95% confidence intervals for the 2nd FPC scores
models.

FPC2 Covariate Estimate BoostrapMean (0.025, .975)

VoicePRc0 -55.1365 -54.7171 -78.5651 -31.1631

VoicePRc1 -72.6605 -72.2879 -96.8907 -47.1767

VoicePRc2 -85.1283 -84.7967 -109.3434 -60.047

VoicePRc3 -78.5898 -78.4467 -104.4681 -52.9534

tone 2 -73.7193 -73.9095 -102.9649 -44.96

tone 3 11.2662 9.839 -24.4518 45.2179

tone 4 96.1069 95.4212 68.6346 121.8028

tone 5 44.7093 45.0487 -23.1462 110.7547

VoiceNXc1 -1.2175 -1.222 -3.4634 1.1315

VoiceNXc2 0.9049 0.8273 -1.7245 3.5228

VoiceNXc3 -7.203 -7.2326 -9.7105 -4.8955

rhyme @~ 17.0032 17.0258 9.5984 23.8516

rhyme a -2.7102 -2.6994 -6.0067 0.2809

rhyme ai -3.9288 -3.9343 -6.8222 -1.067

rhyme an -5.4668 -5.4977 -8.2447 -2.698
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rhyme aN -8.5036 -8.5368 -11.5707 -5.3685

rhyme au -6.9612 -6.9723 -10.6442 -3.4191

rhyme ei -3.8492 -3.815 -7.5873 -0.602

rhyme i -7.209 -7.2291 -9.6442 -4.7985

rhyme ia -0.6193 -0.6377 -4.7092 3.601

rhyme iaN -1.778 -1.8924 -5.2855 1.7738

rhyme iau 3.803 3.771 0.1355 7.3157

rhyme iE 8.3833 8.4248 5.3091 11.7694

rhyme iEn 3.1438 3.108 0.4882 5.8118

rhyme in -9.993 -10.0025 -13.0501 -7.0466

rhyme iN -4.0968 -4.1457 -6.6685 -1.5281

rhyme iou 0.1112 0.18 -3.0258 3.1433

rhyme @n -8.3946 -8.4058 -11.1002 -5.7295

rhyme @N -3.2974 -3.2952 -5.8977 -0.6915

rhyme o 0.0828 0.1913 -6.9279 7.5206

rhyme oN -11.4959 -11.503 -14.2345 -9.1074

rhyme ou 1.5709 1.59 -2.0972 5.3308

rhyme u -3.2349 -3.2552 -5.801 -0.6302

rhyme ę -4.0987 -4.1139 -7.7061 -0.3483

rhyme ğ -12.1963 -12.224 -14.6863 -9.9134

rhyme ua -11.0644 -11.0337 -19.6088 -2.3057

rhyme uai 14.4336 14.4252 6.7642 21.4253

rhyme uan -6.5375 -6.4904 -10.1722 -2.9514

rhyme uaN -6.396 -6.3237 -10.898 -1.4799

rhyme uei 1.2593 1.2383 -1.4841 4.3228

rhyme u@n -0.473 -0.6101 -5.0683 4.0646

rhyme uo -4.9202 -4.933 -7.4728 -2.2334

rhyme y -3.2406 -3.218 -6.6975 0.2635

rhyme yE 0.964 0.994 -2.9668 5.191

rhyme yEn 0.1873 0.2431 -3.6973 4.1574

rhyme yn -0.0506 -0.192 -5.504 5.4832

rhyme yoN -14.201 -14.0114 -21.4925 -6.9524

B2 49.5581 49.382 39.1802 59.3965

B22 -17.5691 -17.5039 -22.1279 -12.8292

B23 1.765 1.7586 1.1173 2.3978

B3 8.5594 8.6278 7.459 9.8386

B32 -1.2355 -1.2465 -1.4474 -1.0383

B33 0.047 0.0474 0.0377 0.0571

B4 0.3127 0.3154 0.1851 0.4518

B42 -0.0037 -0.0038 -0.0068 -9e-04

B43 0 0 0 0

SexM 12.5843 12.9564 -3.2395 27.8896

B5 -0.0598 -0.0609 -0.1642 0.0443

B52 9e-04 9e-04 -9e-04 0.0027

B53 0 0 0 0

VoicePRc1:tone 2 12.1902 12.345 5.7717 18.1931

VoicePRc2:tone 2 52.4587 52.5053 46.6116 58.2919

VoicePRc3:tone 2 -10.2526 -9.7495 -21.1179 2.4176

VoicePRc1:tone 3 19.9557 19.9745 12.3652 26.3248

VoicePRc2:tone 3 60.54 60.6041 53.6109 67.6125

VoicePRc3:tone 3 7.5041 7.723 -2.4652 18.5094

VoicePRc1:tone 4 11.4891 11.5343 5.0592 17.2883

VoicePRc2:tone 4 -8.5501 -8.4677 -14.0362 -3.2256

VoicePRc3:tone 4 10.1887 10.4488 -1.1982 20.967

VoicePRc1:tone 5 7.2615 7.2801 -2.223 16.2358

VoicePRc2:tone 5 18.0003 17.252 -44.0874 81.1793

VoicePRc1:VoiceNXc1 12.1663 12.2032 1.9988 22.0752

VoicePRc2:VoiceNXc1 5.3369 5.492 -4.04 15.021

VoicePRc3:VoiceNXc1 -0.7397 -0.69 -19.6948 18.9607

VoicePRc1:VoiceNXc2 -19.6794 -19.652 -31.8338 -7.026

VoicePRc2:VoiceNXc2 -4.065 -3.9156 -15.6236 7.1063

VoicePRc3:VoiceNXc2 15.923 16.4523 -0.3985 32.5721

VoicePRc1:VoiceNXc3 -5.0862 -5.0067 -13.961 4.0456

VoicePRc2:VoiceNXc3 6.8973 7.1601 -1.6448 15.6579

VoicePRc3:VoiceNXc3 18.9485 18.9442 4.2693 34.1169

tone 2:VoiceNXc1 23.4502 23.4727 19.6506 27.3912

tone 3:VoiceNXc1 13.5009 13.4666 8.2982 18.3188

tone 4:VoiceNXc1 -17.1168 -17.0758 -20.6017 -13.8666

tone 5:VoiceNXc1 -0.265 -0.1967 -6.0675 5.8212

tone 2:VoiceNXc2 14.6606 14.7549 10.6417 18.8869

tone 3:VoiceNXc2 8.836 8.9786 3.9855 13.9276

tone 4:VoiceNXc2 -14.2639 -14.2197 -17.6571 -10.8181

tone 5:VoiceNXc2 4.0263 3.9825 -3.4159 11.4243

tone 2:VoiceNXc3 7.3145 7.3369 3.7046 10.9925
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tone 3:VoiceNXc3 18.1506 18.2121 13.2193 22.9061

tone 4:VoiceNXc3 11.0196 11.0255 7.7186 14.1552

tone 5:VoiceNXc3 6.3309 6.2626 0.8324 11.6404

B2:SexM -3.7263 -4.1555 -24.3888 16.248

B22:SexM 1.3359 1.5735 -7.7241 11.0957

B23:SexM -0.0592 -0.0966 -1.3963 1.1933

B3:SexM -6.2132 -6.2684 -8.3068 -4.1545

B32:SexM 0.9787 0.9878 0.6359 1.3348

B33:SexM -0.0374 -0.0378 -0.0539 -0.0204

B4:SexM 0.1189 0.1195 -0.0893 0.3365

B42:SexM -0.0044 -0.0045 -0.0101 7e-04

B43:SexM 0 0 0 1e-04

VoicePRc1:tone 2:VoiceNXc1 -21.6617 -21.8552 -33.2943 -10.1615

VoicePRc2:tone 2:VoiceNXc1 -3.0881 -3.0963 -15.0374 9.2013

VoicePRc3:tone 2:VoiceNXc1 -5.3977 -5.8114 -30.5647 19.4289

VoicePRc1:tone 3:VoiceNXc1 -23.649 -23.5841 -36.4229 -11.2344

VoicePRc2:tone 3:VoiceNXc1 -14.2272 -14.2603 -27.46 -2.0278

VoicePRc3:tone 3:VoiceNXc1 -11.7879 -11.5737 -34.0496 10.6165

VoicePRc1:tone 4:VoiceNXc1 -14.3334 -14.3495 -25.69 -2.6545

VoicePRc2:tone 4:VoiceNXc1 -12.3186 -12.6714 -24.0698 -1.2268

VoicePRc3:tone 4:VoiceNXc1 -6.9237 -7.1444 -30.4638 14.7665

VoicePRc1:tone 5:VoiceNXc1 -13.2769 -13.8272 -30.8302 4.1496

VoicePRc2:tone 5:VoiceNXc1 -26.94 -26.6178 -137.743 72.9093

VoicePRc1:tone 2:VoiceNXc2 14.5083 14.3874 1.0476 27.9608

VoicePRc2:tone 2:VoiceNXc2 -0.8828 -1.0245 -14.4198 12.5352

VoicePRc3:tone 2:VoiceNXc2 -29.8622 -30.4682 -51.557 -9.7455

VoicePRc1:tone 3:VoiceNXc2 2.1638 2.167 -12.6299 16.9567

VoicePRc2:tone 3:VoiceNXc2 -16.9368 -17.0992 -30.8034 -3.0288

VoicePRc3:tone 3:VoiceNXc2 -30.1949 -30.8398 -49.928 -11.2423

VoicePRc1:tone 4:VoiceNXc2 19.3024 19.2627 6.2905 32.0349

VoicePRc2:tone 4:VoiceNXc2 13.1436 13.0818 0.6847 26.705

VoicePRc3:tone 4:VoiceNXc2 2.6683 2.3374 -18.6881 24.1459

VoicePRc1:tone 5:VoiceNXc2 20.9372 21.1857 2.3534 39.6359

VoicePRc2:tone 5:VoiceNXc2 -11.8072 -9.3565 -115.4742 95.9099

VoicePRc1:tone 2:VoiceNXc3 0.1367 -0.0074 -10.8838 10.5941

VoicePRc2:tone 2:VoiceNXc3 -7.7753 -7.8538 -18.1848 2.2904

VoicePRc3:tone 2:VoiceNXc3 4.1457 3.7963 -15.8408 22.3894

VoicePRc1:tone 3:VoiceNXc3 3.1164 3.0046 -10.9786 16.4457

VoicePRc2:tone 3:VoiceNXc3 -2.6328 -3.0458 -15.948 9.7904

VoicePRc3:tone 3:VoiceNXc3 -13.7885 -13.683 -32.2288 4.2681

VoicePRc1:tone 4:VoiceNXc3 1.1082 1.0307 -8.9988 11.2283

VoicePRc2:tone 4:VoiceNXc3 -4.3281 -4.5965 -14.3616 5.968

VoicePRc3:tone 4:VoiceNXc3 -25.1533 -25.2413 -44.203 -7.1016

VoicePRc1:tone 5:VoiceNXc3 -4.473 -4.5404 -18.6902 10.3206

VoicePRc2:tone 5:VoiceNXc3 -0.5173 0.063 -72.4659 74.665

tone 3:pr to10:nx to10 101.6367 105.0943 11.1516 198.8864

tone 4:pr to10:nx to10 115.6575 115.1975 28.8751 199.5071

tone 1:pr to11:nx to10 -16.8138 -17.112 -42.498 7.21

tone 2:pr to11:nx to10 19.6554 19.3336 -5.8986 43.9835

tone 3:pr to11:nx to10 7.9736 7.9675 -66.3041 74.4283

tone 4:pr to11:nx to10 15.0227 15.1612 -11.0979 40.9997

tone 5:pr to11:nx to10 -11.3525 -11.2083 -79.3497 55.6357

tone 1:pr to12:nx to10 -24.8641 -25.4731 -51.5981 2.0528

tone 2:pr to12:nx to10 13.3109 12.7534 -10.6155 36.5669

tone 3:pr to12:nx to10 35.5947 35.7219 -7.3317 80.7352

tone 4:pr to12:nx to10 -7.1849 -7.5416 -28.0149 14.3637

tone 5:pr to12:nx to10 -75.606 -75.3686 -149.2602 -1.9087

tone 1:pr to13:nx to10 -23.9136 -24.9399 -54.9375 4.5577

tone 2:pr to13:nx to10 -26.935 -27.1223 -53.0324 0.6546

tone 3:pr to13:nx to10 4.7553 5.2722 -36.0818 49.5299

tone 4:pr to13:nx to10 0.1662 0.225 -25.1744 23.1774

tone 5:pr to13:nx to10 -105.254 -106.4849 -177.3401 -31.7441

tone 1:pr to14:nx to10 -14.0656 -14.3929 -41.2967 11.9205

tone 2:pr to14:nx to10 16.6597 16.125 -7.1853 38.9183

tone 3:pr to14:nx to10 -52.4262 -51.2365 -96.2843 -11.3077

tone 4:pr to14:nx to10 -24.7441 -24.4976 -42.6501 -5.5905

tone 5:pr to14:nx to10 -53.9567 -54.3104 -119.0375 12.1411

tone 1:pr to15:nx to10 -16.7572 -17.2168 -46.0134 13.4463

tone 2:pr to15:nx to10 3.6759 3.2044 -24.1059 28.8141

tone 3:pr to15:nx to10 -28.8919 -29.7464 -74.9947 10.7947

tone 4:pr to15:nx to10 -1.8321 -1.8609 -24.9081 20.4914

tone 5:pr to15:nx to10 -73.2126 -74.0311 -159.7225 4.3332

tone 1:pr to10:nx to11 -1.7504 -2.3459 -25.172 22.0864

tone 2:pr to10:nx to11 -11.8728 -12.1666 -33.5904 8.9453
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tone 3:pr to10:nx to11 9.6114 10.4732 -17.7928 39.8643

tone 4:pr to10:nx to11 -36.3512 -36.2614 -53.6752 -18.1896

tone 1:pr to11:nx to11 -7.4055 -7.9031 -31.2004 14.279

tone 2:pr to11:nx to11 32.6939 32.428 13.8937 51.6283

tone 3:pr to11:nx to11 22.6017 23.4215 -3.7105 52.2199

tone 4:pr to11:nx to11 -2.2867 -2.1628 -17.7332 13.6569

tone 5:pr to11:nx to11 -27.9219 -28.8282 -88.2958 34.9256

tone 1:pr to12:nx to11 -9.3674 -9.865 -33.1301 13.1215

tone 2:pr to12:nx to11 28.1893 27.7952 8.4658 46.3054

tone 3:pr to12:nx to11 43.589 44.4484 15.8553 71.8933

tone 4:pr to12:nx to11 -13.3802 -13.1781 -28.0788 2.4967

tone 5:pr to12:nx to11 -38.2292 -38.9793 -101.0543 25.4858

tone 1:pr to13:nx to11 -18.2586 -18.794 -42.0093 3.4051

tone 2:pr to13:nx to11 4.6878 4.3521 -15.2653 23.0203

tone 3:pr to13:nx to11 34.0424 34.8481 7.7051 62.9437

tone 4:pr to13:nx to11 -39.8427 -39.5179 -54.9898 -23.7336

tone 5:pr to13:nx to11 -68.6674 -69.5136 -130.6959 -5.8038

tone 1:pr to14:nx to11 -7.447 -7.8785 -30.8378 14.6941

tone 2:pr to14:nx to11 13.4496 13.0934 -5.9657 31.7754

tone 3:pr to14:nx to11 6.0577 6.8493 -19.5702 35.5389

tone 4:pr to14:nx to11 -31.0144 -30.8113 -45.3844 -15.3511

tone 5:pr to14:nx to11 -51.1698 -52.0104 -113.2777 11.3219

tone 1:pr to15:nx to11 -9.1543 -9.4805 -33.2955 14.4519

tone 2:pr to15:nx to11 3.6566 3.3315 -16.3827 24.2356

tone 3:pr to15:nx to11 23.7225 24.4991 -2.9063 53.9889

tone 4:pr to15:nx to11 -16.6219 -16.4375 -32.3829 -0.6164

tone 5:pr to15:nx to11 -58.1701 -59.3175 -137.7954 13.6044

tone 1:pr to10:nx to12 -13.9319 -14.5387 -37.6165 7.9855

tone 2:pr to10:nx to12 -22.959 -23.2272 -44.5176 -2.182

tone 3:pr to10:nx to12 17.8095 18.8712 -8.8113 48.5249

tone 4:pr to10:nx to12 -29.793 -29.7134 -44.9211 -13.627

tone 1:pr to11:nx to12 -7.8789 -8.4937 -31.3398 13.9898

tone 2:pr to11:nx to12 20.2484 19.8904 1.0619 38.7764

tone 3:pr to11:nx to12 28.5462 29.4817 3.116 55.519

tone 4:pr to11:nx to12 8.3141 8.5606 -5.9531 23.386

tone 5:pr to11:nx to12 -14.3312 -15.0129 -74.4424 48.1137

tone 1:pr to12:nx to12 -12.3109 -12.7462 -35.4923 9.1689

tone 2:pr to12:nx to12 11.4785 11.1904 -8.2357 29.5635

tone 3:pr to12:nx to12 28.4092 29.2552 3.8419 56.2169

tone 4:pr to12:nx to12 1.2757 1.5481 -13.4178 16.8355

tone 5:pr to12:nx to12 -30.7632 -31.4806 -91.4351 32.8205

tone 1:pr to13:nx to12 -20.104 -20.5774 -43.7844 1.4863

tone 2:pr to13:nx to12 -23.0034 -23.4554 -43.1309 -3.9478

tone 3:pr to13:nx to12 27.1374 28.0946 1.0162 55.3247

tone 4:pr to13:nx to12 -28.744 -28.5364 -43.0742 -13.2919

tone 5:pr to13:nx to12 -58.6922 -59.4856 -119.4555 4.4171

tone 1:pr to14:nx to12 -13.3235 -13.8781 -37.4411 8.2828

tone 2:pr to14:nx to12 -4.6904 -5.0528 -23.8202 13.8281

tone 3:pr to14:nx to12 16.395 17.393 -9.1676 44.9638

tone 4:pr to14:nx to12 -15.6026 -15.4509 -30.1997 -0.366

tone 5:pr to14:nx to12 -37.1466 -38.3692 -98.489 24.1067

tone 1:pr to15:nx to12 -12.0483 -12.6333 -35.942 9.578

tone 2:pr to15:nx to12 -18.7752 -19.1284 -39.0121 0.2406

tone 3:pr to15:nx to12 25.7779 26.6916 -1.1341 55.6438

tone 4:pr to15:nx to12 -1.8342 -1.7028 -16.8771 14.3297

tone 5:pr to15:nx to12 -46.6468 -48.1566 -118.2517 23.7084

tone 1:pr to10:nx to13 -12.0923 -12.6576 -36.9103 11.4675

tone 2:pr to10:nx to13 -16.352 -16.4911 -38.4721 4.4972

tone 3:pr to10:nx to13 -81.3311 -80.436 -108.1673 -51.3743

tone 4:pr to10:nx to13 -23.6362 -23.261 -39.0506 -6.637

tone 1:pr to11:nx to13 -7.5688 -8.1399 -31.8408 14.057

tone 2:pr to11:nx to13 20.4492 20.0849 0.2266 39.1585

tone 3:pr to11:nx to13 -68.1374 -67.1968 -94.0982 -40.2004

tone 4:pr to11:nx to13 7.7073 7.8612 -7.4976 23.26

tone 5:pr to11:nx to13 -20.9665 -21.8103 -82.9129 41.8535

tone 1:pr to12:nx to13 -8.0237 -8.452 -31.8263 13.9852

tone 2:pr to12:nx to13 14.2476 13.9358 -5.4354 32.3326

tone 3:pr to12:nx to13 -75.0723 -74.1022 -99.8194 -46.515

tone 4:pr to12:nx to13 -3.7422 -3.4725 -18.3103 12.1486

tone 5:pr to12:nx to13 -40.1174 -40.9195 -102.02 21.6723

tone 1:pr to13:nx to13 -25.3501 -25.9055 -49.1369 -3.7995

tone 2:pr to13:nx to13 -32.2174 -32.591 -51.1518 -13.3

tone 3:pr to13:nx to13 -82.2105 -81.0979 -107.8514 -53.3537

tone 4:pr to13:nx to13 -27.7528 -27.585 -42.5845 -12.2096
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tone 5:pr to13:nx to13 -75.921 -76.7584 -138.5995 -14.762

tone 1:pr to14:nx to13 -13.765 -14.1962 -37.9891 7.7865

tone 2:pr to14:nx to13 -13.9513 -14.3176 -32.9609 4.0947

tone 3:pr to14:nx to13 -86.0466 -85.2191 -111.8112 -57.7592

tone 4:pr to14:nx to13 -10.4534 -10.3241 -24.7667 4.4491

tone 5:pr to14:nx to13 -41.0237 -41.8405 -102.6446 22.7566

tone 1:pr to15:nx to13 -7.2141 -7.9496 -31.368 15.5023

tone 2:pr to15:nx to13 -29.5429 -30.0742 -50.3535 -11.0984

tone 3:pr to15:nx to13 -120.3475 -119.1951 -146.638 -92.241

tone 4:pr to15:nx to13 1.9487 2.2308 -13.4403 18.541

tone 5:pr to15:nx to13 -54.075 -55.25 -119.426 10.8672

tone 1:pr to10:nx to14 -15.203 -15.7089 -39.6079 8.5117

tone 2:pr to10:nx to14 -0.4917 -0.5765 -20.7014 19.5545

tone 3:pr to10:nx to14 1.9763 3.0449 -24.4956 31.7442

tone 4:pr to10:nx to14 -37.3719 -37.1035 -52.6694 -20.6655

tone 1:pr to11:nx to14 -10.3643 -10.9365 -33.8825 11.423

tone 2:pr to11:nx to14 25.2936 25.0123 5.7742 43.1298

tone 3:pr to11:nx to14 19.9265 20.7707 -6.3479 47.8206

tone 4:pr to11:nx to14 -11.8556 -11.6618 -25.8497 2.7874

tone 5:pr to11:nx to14 -32.9288 -33.6833 -92.9116 29.632

tone 1:pr to12:nx to14 -15.6351 -16.0886 -38.6477 6.1265

tone 2:pr to12:nx to14 20.2749 19.8222 0.8886 38.4218

tone 3:pr to12:nx to14 25.9886 26.7961 -0.4789 52.8299

tone 4:pr to12:nx to14 -14.311 -14.0267 -28.9034 1.1648

tone 5:pr to12:nx to14 -53.7245 -54.7109 -115.7413 8.8372

tone 1:pr to13:nx to14 -24.222 -24.7703 -47.691 -1.9079

tone 2:pr to13:nx to14 -13.2756 -13.5627 -32.5484 4.9443

tone 3:pr to13:nx to14 24.4285 25.4143 -0.517 52.2013

tone 4:pr to13:nx to14 -37.7049 -37.5202 -51.4598 -22.4737

tone 5:pr to13:nx to14 -82.0019 -82.8576 -143.3108 -20.0986

tone 1:pr to14:nx to14 -16.2711 -16.7218 -39.237 5.78

tone 2:pr to14:nx to14 3.9737 3.6287 -14.9908 22.4613

tone 3:pr to14:nx to14 6.1508 7.0322 -19.0234 34.1592

tone 4:pr to14:nx to14 -28.0252 -27.8251 -42.3609 -12.6807

tone 5:pr to14:nx to14 -49.2009 -50.0778 -110.7767 12.3673

tone 1:pr to15:nx to14 -18.618 -19.1626 -42.3024 3.7481

tone 2:pr to15:nx to14 -1.6736 -2.1438 -21.6123 16.3799

tone 3:pr to15:nx to14 19.8391 20.7008 -6.8748 48.6743

tone 4:pr to15:nx to14 -5.7495 -5.6331 -19.9799 9.4225

tone 5:pr to15:nx to14 -53.6318 -54.5386 -119.4443 9.1279

tone 1:pr to10:nx to15 -15.3183 -15.4899 -48.9972 19.0682

tone 2:pr to10:nx to15 11.3191 11.3725 -20.8398 45.4125

tone 3:pr to10:nx to15 9.4356 10.3112 -21.5988 43.6474

tone 4:pr to10:nx to15 -15.4534 -16.5175 -47.7756 14.7355

tone 1:pr to11:nx to15 1.4198 0.8726 -22.0436 23.7766

tone 2:pr to11:nx to15 53.572 53.4328 32.255 73.5825

tone 3:pr to11:nx to15 26.3094 27.1114 -0.0619 57.1681

tone 4:pr to11:nx to15 -1.2357 -1.0688 -17.5302 14.9482

tone 5:pr to11:nx to15 -24.6921 -25.4393 -89.5747 40.5193

tone 1:pr to12:nx to15 -7.4658 -8.0599 -30.759 14.8021

tone 2:pr to12:nx to15 61.7266 61.2917 41.1879 80.8714

tone 3:pr to12:nx to15 34.6563 35.4982 8.0884 63.2603

tone 4:pr to12:nx to15 -2.5878 -2.3444 -17.2604 13.0575

tone 5:pr to12:nx to15 -40.8395 -41.4054 -150.8349 61.799

tone 1:pr to13:nx to15 -12.8073 -13.3405 -36.8492 9.3534

tone 2:pr to13:nx to15 -13.4868 -13.74 -34.8098 6.6653

tone 3:pr to13:nx to15 44.5205 45.2745 18.0732 74.125

tone 4:pr to13:nx to15 -40.4052 -40.1977 -55.0641 -24.3558

tone 5:pr to13:nx to15 -79.6052 -80.2113 -144.5495 -16.5066

tone 1:pr to14:nx to15 -7.6141 -8.1342 -31.5627 14.4889

tone 2:pr to14:nx to15 27.7412 27.321 7.6862 45.9698

tone 3:pr to14:nx to15 7.4389 8.252 -19.0024 35.0655

tone 4:pr to14:nx to15 -29.5352 -29.2832 -44.179 -13.0956

Table A.7: All fixed effects and 95% confidence intervals for the 3rd FPC scores
models.

FPC3 Covariate Estimate BoostrapMean (0.025, .975)

VoicePRc0 -24.2007 -24.6511 -54.1754 6.5912

VoicePRc1 -23.0395 -23.4703 -53.1449 8.0658

VoicePRc2 -39.6155 -40.0254 -70.7885 -8.882
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Table A.7 – continued from previous page

FPC3 Covariate Estimate BoostrapMean (0.025, .975)

VoicePRc3 -41.6149 -41.9354 -72.9321 -10.175

tone 2 12.0664 12.027 6.4178 17.5482

tone 3 22.2355 22.4578 13.6794 31.64

tone 4 10.714 10.7838 5.2627 16.3114

tone 5 -2.2683 -2.3923 -13.2311 8.107

VoiceNXc1 5.4562 5.4578 4.3214 6.5622

VoiceNXc2 2.1731 2.2077 0.9238 3.4127

VoiceNXc3 1.6484 1.6615 0.5651 2.8157

rhyme @~ -4.5691 -4.58 -7.8081 -1.0934

rhyme a 7.4083 7.4035 6.0306 8.9141

rhyme ai 3.8653 3.8692 2.5233 5.2143

rhyme an 7.6447 7.6634 6.3592 8.9902

rhyme aN 8.5254 8.5446 7.0654 10.0144

rhyme au 4.2842 4.2888 2.5714 6.0476

rhyme ei 3.2304 3.2157 1.6918 4.9915

rhyme i -1.7896 -1.7792 -2.9248 -0.654

rhyme ia 15.0941 15.1045 13.1738 17.0402

rhyme iaN 19.3056 19.3614 17.6562 20.9317

rhyme iau 14.743 14.7596 13.0929 16.4207

rhyme iE 1.4665 1.4491 -0.1282 2.9047

rhyme iEn 15.0395 15.0584 13.7833 16.3103

rhyme in 6.0707 6.077 4.725 7.5196

rhyme iN 7.3755 7.3988 6.1715 8.5743

rhyme iou 1.4798 1.4491 0.063 2.9719

rhyme @n 5.4363 5.4442 4.2228 6.696

rhyme @N 6.9344 6.9339 5.6872 8.1692

rhyme o 1.4862 1.4483 -2.0209 4.8291

rhyme oN 6.3025 6.3056 5.1489 7.5854

rhyme ou 2.6953 2.6842 0.892 4.3809

rhyme u -3.462 -3.4517 -4.6697 -2.2819

rhyme ę -7.2924 -7.2849 -9.0474 -5.5551

rhyme ğ -5.3966 -5.3822 -6.4932 -4.2027

rhyme ua 9.0999 9.0915 5.0334 13.1846

rhyme uai -3.3283 -3.3212 -6.6142 0.2448

rhyme uan 12.065 12.0414 10.3544 13.7304

rhyme uaN 9.7182 9.6846 7.4229 11.9541

rhyme uei 1.2739 1.2851 -0.1749 2.5521

rhyme u@n 10.2114 10.2773 8.0492 12.4162

rhyme uo 1.7555 1.7655 0.5267 2.9456

rhyme y -3.7381 -3.747 -5.3617 -2.1157

rhyme yE 3.9225 3.9114 1.9569 5.7962

rhyme yEn 18.5084 18.4855 16.6136 20.3134

rhyme yn 3.2909 3.3556 0.7027 5.8353

rhyme yoN 16.6355 16.5432 13.1849 20.0667

B2 12.6831 12.7634 8.0831 17.5311

B22 -3.5336 -3.5629 -5.7919 -1.4053

B23 0.2529 0.2558 -0.048 0.5576

B3 2.5789 2.5462 1.9693 3.108

B32 -0.3343 -0.3291 -0.4282 -0.2342

B33 0.012 0.0118 0.0073 0.0164

SexM -14.9165 -15.1718 -29.7392 -1.2207

pr to11 8.9777 9.5068 -22.4381 38.122

pr to12 5.0858 5.7483 -25.323 33.4453

pr to13 -1.3269 -0.6748 -32.6002 27.8196

pr to14 2.6105 3.1185 -28.4503 31.8424

pr to15 3.5195 4.1549 -26.5598 32.4958

nx to11 1.7628 2.412 -29.4204 31.0962

nx to12 0.4202 1.0828 -31.1247 28.5619

nx to13 -1.6538 -1.0591 -33.42 27.6034

nx to14 5.4889 6.0709 -25.7206 34.5225

nx to15 0.5241 1.2044 -30.4156 29.4233

VoicePRc1:tone 2 -3.5369 -3.6107 -6.3881 -0.4976

VoicePRc2:tone 2 31.1358 31.1146 28.4621 33.896

VoicePRc3:tone 2 22.4298 22.192 16.6017 27.5998

VoicePRc1:tone 3 -1.8105 -1.8141 -4.7868 1.7504

VoicePRc2:tone 3 19.1386 19.1098 15.9581 22.3832

VoicePRc3:tone 3 6.6268 6.5235 1.5736 11.3142

VoicePRc1:tone 4 -11.1624 -11.1814 -13.7957 -8.1046

VoicePRc2:tone 4 -28.0451 -28.0853 -30.5611 -25.4555

VoicePRc3:tone 4 -15.8456 -15.9633 -20.9926 -10.4787

VoicePRc1:tone 5 -3.6551 -3.6568 -7.9256 0.7715

VoicePRc2:tone 5 22.6037 22.9828 -7.357 51.8202

VoicePRc1:VoiceNXc1 -3.2089 -3.2263 -7.8053 1.6608

VoicePRc2:VoiceNXc1 -6.1985 -6.2728 -10.8227 -1.8854
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Table A.7 – continued from previous page

FPC3 Covariate Estimate BoostrapMean (0.025, .975)

VoicePRc3:VoiceNXc1 2.0479 2.0268 -7.4384 10.9661

VoicePRc1:VoiceNXc2 -0.2128 -0.22 -6.0502 5.5104

VoicePRc2:VoiceNXc2 -0.8242 -0.8936 -6.1321 4.4928

VoicePRc3:VoiceNXc2 11.2991 11.063 3.4481 18.5324

VoicePRc1:VoiceNXc3 1.6373 1.5979 -2.6063 5.7981

VoicePRc2:VoiceNXc3 -1.1334 -1.2529 -5.2857 2.889

VoicePRc3:VoiceNXc3 6.5301 6.5299 -0.6951 13.3577

tone 2:VoiceNXc1 -0.3429 -0.3512 -2.1593 1.4183

tone 3:VoiceNXc1 -7.7717 -7.7523 -10.0578 -5.3505

tone 4:VoiceNXc1 -10.1751 -10.191 -11.7106 -8.5377

tone 5:VoiceNXc1 -5.7418 -5.7748 -8.6426 -3.0129

tone 2:VoiceNXc2 0.5261 0.4822 -1.4418 2.4477

tone 3:VoiceNXc2 -2.4512 -2.5143 -4.8657 -0.1457

tone 4:VoiceNXc2 -5.0009 -5.018 -6.6158 -3.3183

tone 5:VoiceNXc2 -0.5452 -0.5215 -3.9625 2.9553

tone 2:VoiceNXc3 5.7134 5.701 3.9849 7.3756

tone 3:VoiceNXc3 3.8945 3.8684 1.6643 6.1314

tone 4:VoiceNXc3 0.6201 0.6198 -0.8549 2.195

tone 5:VoiceNXc3 0.942 0.9703 -1.535 3.6009

B2:SexM -3.8809 -3.6799 -13.3596 6.0878

B22:SexM 2.042 1.931 -2.5493 6.3209

B23:SexM -0.2475 -0.2301 -0.8525 0.3897

B3:SexM -0.545 -0.5187 -1.5136 0.4405

B32:SexM 0.0697 0.0655 -0.0989 0.2302

B33:SexM -0.0022 -0.002 -0.0099 0.0058

tone 2:pr to11 11.6652 11.7132 8.5714 14.7508

tone 3:pr to11 6.4852 6.5255 2.8881 10.2134

tone 4:pr to11 8.9332 8.921 6.0856 11.622

tone 5:pr to11 6.4926 6.3181 -0.7318 13.5639

tone 2:pr to12 7.9949 8.1285 4.9612 11.2857

tone 3:pr to12 5.2042 5.3038 1.8458 8.9626

tone 4:pr to12 2.2011 2.201 -0.5528 4.9864

tone 5:pr to12 2.1578 2.0472 -4.5631 9.007

tone 2:pr to13 2.411 2.491 -0.5659 5.7141

tone 3:pr to13 9.6923 9.6998 6.1179 13.4199

tone 4:pr to13 -2.1128 -2.1245 -4.8033 0.7793

tone 5:pr to13 -0.0055 -0.1456 -6.6917 6.9196

tone 2:pr to14 4.5119 4.6308 1.8239 7.4753

tone 3:pr to14 1.5382 1.6223 -1.6343 5.0004

tone 4:pr to14 4.4456 4.477 1.6755 7.0474

tone 5:pr to14 1.5611 1.491 -5.2628 8.1966

tone 2:pr to15 8.1353 8.2473 4.9865 11.7221

tone 3:pr to15 4.4769 4.5261 0.472 8.6226

tone 4:pr to15 3.7708 3.7868 0.6607 6.8479

tone 2:nx to11 -6.6413 -6.6721 -11.4818 -1.7318

tone 3:nx to11 -1.231 -1.4497 -9.753 6.4113

tone 4:nx to11 3.2017 3.1256 -1.6894 8.0713

tone 5:nx to11 3.2732 3.5261 -5.4756 12.8298

tone 2:nx to12 -4.7406 -4.7927 -9.4877 0.0691

tone 3:nx to12 -5.1117 -5.4241 -14.0997 2.7736

tone 4:nx to12 -0.7796 -0.8803 -5.728 4.0402

tone 5:nx to12 4.4055 4.6553 -4.1854 14.2764

tone 2:nx to13 -5.2049 -5.244 -10.2462 -0.2212

tone 3:nx to13 -3.588 -3.8855 -12.5806 4.1431

tone 4:nx to13 -0.7865 -0.8699 -5.8747 4.2493

tone 5:nx to13 4.3033 4.5303 -4.7074 13.8183

tone 2:nx to14 -4.3714 -4.4101 -9.1412 0.5584

tone 3:nx to14 -0.8238 -1.0863 -9.4513 6.5894

tone 4:nx to14 0.068 -0.0215 -4.9312 4.9212

tone 5:nx to14 2.7575 3.0129 -5.8152 12.2777

tone 2:nx to15 1.0478 0.978 -4.019 6.1388

tone 3:nx to15 2.1937 1.9558 -6.8026 10.263

tone 4:nx to15 -1.6452 -1.7467 -6.7542 3.6445

tone 5:nx to15 11.1285 11.277 0.9826 21.7781

pr to11:nx to11 -6.3663 -6.9343 -35.8879 24.7384

pr to12:nx to11 -2.9177 -3.6522 -31.6539 27.8274

pr to13:nx to11 -3.0492 -3.7621 -32.3956 28.0283

pr to14:nx to11 -3.3115 -3.9073 -33.1018 27.216

pr to15:nx to11 -4.617 -5.3461 -34.5598 25.5572

pr to11:nx to12 -7.0852 -7.6443 -36.0935 24.051

pr to12:nx to12 -5.5488 -6.3061 -33.5511 25.2265

pr to13:nx to12 -3.2749 -3.9656 -32.0704 27.2997

pr to14:nx to12 -3.6984 -4.2635 -32.9469 27.2943

pr to15:nx to12 -5.5957 -6.2678 -34.9123 23.8519
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Table A.7 – continued from previous page

FPC3 Covariate Estimate BoostrapMean (0.025, .975)

pr to11:nx to13 -6.3202 -6.8086 -35.8283 25.3928

pr to12:nx to13 -3.6931 -4.3936 -32.5107 27.3731

pr to13:nx to13 -3.0741 -3.7061 -32.8057 28.8387

pr to14:nx to13 -2.0538 -2.5654 -32.0438 29.1977

pr to15:nx to13 -4.3395 -4.9627 -34.2406 26.1625

pr to11:nx to14 -9.6354 -10.1275 -38.6825 21.5843

pr to12:nx to14 -5.7209 -6.3836 -34.236 24.4036

pr to13:nx to14 -4.5489 -5.1748 -33.2572 26.7302

pr to14:nx to14 -4.5711 -5.0912 -33.7706 26.3689

pr to15:nx to14 -5.8492 -6.4431 -34.9574 24.4991

pr to11:nx to15 -12.9451 -13.5376 -42.1258 17.9917

pr to12:nx to15 -10.8438 -11.5779 -39.2433 21.0191

pr to13:nx to15 -12.7015 -13.4135 -41.6006 17.7332

pr to14:nx to15 -7.3909 -7.9891 -36.1214 24.106

pr to15:nx to15 -6.8695 -7.5779 -36.0681 24.399

VoicePRc1:tone 2:VoiceNXc1 3.9855 4.0754 -1.4733 9.483

VoicePRc2:tone 2:VoiceNXc1 -7.6385 -7.635 -13.5086 -1.9333

VoicePRc3:tone 2:VoiceNXc1 -0.364 -0.1734 -12.2781 11.2117

VoicePRc1:tone 3:VoiceNXc1 -1.0087 -1.0389 -6.7362 4.9582

VoicePRc2:tone 3:VoiceNXc1 -3.4653 -3.4516 -9.219 2.7144

VoicePRc3:tone 3:VoiceNXc1 -5.707 -5.8182 -15.947 4.8614

VoicePRc1:tone 4:VoiceNXc1 2.7952 2.8033 -2.6344 8.0559

VoicePRc2:tone 4:VoiceNXc1 5.2133 5.3791 -0.2104 10.7107

VoicePRc3:tone 4:VoiceNXc1 -0.521 -0.4149 -10.5925 10.4273

VoicePRc1:tone 5:VoiceNXc1 5.1969 5.4577 -2.9219 13.1671

VoicePRc2:tone 5:VoiceNXc1 2.4031 2.2428 -44.9853 53.0327

VoicePRc1:tone 2:VoiceNXc2 2.2865 2.3413 -4.0576 8.6375

VoicePRc2:tone 2:VoiceNXc2 -7.1758 -7.1079 -13.4436 -0.8515

VoicePRc3:tone 2:VoiceNXc2 -11.171 -10.8947 -20.5228 -1.0919

VoicePRc1:tone 3:VoiceNXc2 -1.6289 -1.6368 -8.6105 5.3565

VoicePRc2:tone 3:VoiceNXc2 -1.5497 -1.4773 -8.1808 5.0167

VoicePRc3:tone 3:VoiceNXc2 0.2703 0.5557 -8.6232 9.5255

VoicePRc1:tone 4:VoiceNXc2 -0.1767 -0.1658 -6.166 5.9312

VoicePRc2:tone 4:VoiceNXc2 -2.5313 -2.5002 -8.9372 3.3139

VoicePRc3:tone 4:VoiceNXc2 -13.4843 -13.3486 -23.4748 -3.2626

VoicePRc1:tone 5:VoiceNXc2 0.154 0.0396 -8.8461 9.0315

VoicePRc2:tone 5:VoiceNXc2 -10.0907 -11.2636 -60.3628 38.1805

VoicePRc1:tone 2:VoiceNXc3 -0.5476 -0.4737 -5.3918 4.5669

VoicePRc2:tone 2:VoiceNXc3 1.3367 1.3723 -3.473 6.2631

VoicePRc3:tone 2:VoiceNXc3 -9.9242 -9.7602 -18.7124 -0.5812

VoicePRc1:tone 3:VoiceNXc3 -7.5122 -7.4661 -13.7963 -0.9006

VoicePRc2:tone 3:VoiceNXc3 -8.2915 -8.0973 -14.0435 -2.029

VoicePRc3:tone 3:VoiceNXc3 -10.311 -10.3553 -18.8454 -1.9403

VoicePRc1:tone 4:VoiceNXc3 -3.2395 -3.2008 -8.0096 1.5005

VoicePRc2:tone 4:VoiceNXc3 -1.3768 -1.2527 -6.2659 3.3877

VoicePRc3:tone 4:VoiceNXc3 -3.6136 -3.5721 -12.0295 5.4762

VoicePRc1:tone 5:VoiceNXc3 -6.3464 -6.3188 -13.3485 0.2029

VoicePRc2:tone 5:VoiceNXc3 -7.1153 -7.3997 -43.351 25.9848

Table A.8: All fixed effects and 95% confidence intervals for the 4th FPC scores
models.

FPC4 Covariate Estimate BoostrapMean (0.025, .975)

VoicePRc0 1.397 1.3006 -2.7321 5.6755

VoicePRc1 1.4855 1.3873 -2.8497 5.9286

VoicePRc2 10.9811 10.8804 6.5633 15.1911

VoicePRc3 7.9499 7.8076 3.2818 12.4613

tone 2 2.5776 2.6303 0.9794 4.3325

tone 3 3.2176 3.2449 1.3839 5.1827

tone 4 0.849 0.869 -0.5824 2.2754

tone 5 2.3633 2.3066 -1.4231 6.116

VoiceNXc1 5.2725 5.2715 4.7037 5.8579

VoiceNXc2 3.4829 3.4648 2.8004 4.1221

VoiceNXc3 1.6075 1.6045 1.0025 2.2087

rhyme @~ -3.522 -3.5132 -5.4311 -1.7138

rhyme a -0.6564 -0.6519 -1.5068 0.1208

rhyme ai -0.4601 -0.4613 -1.2343 0.2924

rhyme an -1.3065 -1.3167 -2.0403 -0.573

rhyme aN -2.9934 -3.0035 -3.8436 -2.1912

rhyme au -0.556 -0.5588 -1.547 0.3895

rhyme ei -0.412 -0.4046 -1.4153 0.4714
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Table A.8 – continued from previous page

FPC4 Covariate Estimate BoostrapMean (0.025, .975)

rhyme i -1.7725 -1.7781 -2.4224 -1.1321

rhyme ia -2.4031 -2.4094 -3.5139 -1.321

rhyme iaN -5.098 -5.1282 -6.018 -4.1644

rhyme iau -1.9505 -1.9599 -2.9101 -1.0069

rhyme iE 0.4021 0.4156 -0.417 1.2981

rhyme iEn 0.1865 0.1772 -0.5083 0.8856

rhyme in -1.388 -1.3903 -2.1917 -0.6207

rhyme iN -2.0048 -2.018 -2.6869 -1.342

rhyme iou 0.3379 0.3546 -0.5072 1.154

rhyme @n -1.884 -1.8874 -2.6155 -1.1919

rhyme @N -3.0794 -3.0801 -3.7923 -2.3732

rhyme o -0.2095 -0.1857 -2.066 1.7053

rhyme oN -1.3406 -1.3425 -2.0618 -0.6809

rhyme ou -1.5987 -1.5931 -2.5636 -0.5848

rhyme u -1.2897 -1.2946 -1.9483 -0.5863

rhyme ę 0.8912 0.8873 -0.0546 1.9033

rhyme ğ 1.8975 1.89 1.2202 2.5306

rhyme ua -1.7652 -1.7587 -4.0698 0.5496

rhyme uai -1.1721 -1.1803 -3.2236 0.6667

rhyme uan -0.4153 -0.4013 -1.3571 0.5781

rhyme uaN -0.0347 -0.0184 -1.2726 1.2356

rhyme uei -0.7378 -0.7451 -1.4681 0.0733

rhyme u@n 0.563 0.5248 -0.682 1.7667

rhyme uo 1.1763 1.1714 0.5236 1.8733

rhyme y -1.933 -1.9264 -2.8442 -1.0126

rhyme yE 0.7127 0.7201 -0.3407 1.8151

rhyme yEn 0.1926 0.2062 -0.8273 1.2316

rhyme yn 3.3897 3.354 1.9361 4.8304

rhyme yoN 4.0722 4.1226 2.1635 6.0763

B2 -3.2315 -3.2789 -5.9851 -0.6106

B22 1.3945 1.4122 0.1755 2.6585

B23 -0.1673 -0.1691 -0.3427 0.0076

B3 -0.5276 -0.5098 -0.8282 -0.1847

B32 0.1181 0.1152 0.0602 0.172

B33 -0.0049 -0.0048 -0.0074 -0.0022

SexM 1.2175 1.3424 -5.1356 7.9374

pr to11 -0.8875 -0.89 -2.0903 0.3921

pr to12 -0.3507 -0.3279 -1.5453 0.9354

pr to13 1.5634 1.5681 0.3748 2.8549

pr to14 0.228 0.2485 -0.9009 1.4698

pr to15 0.2866 0.2903 -1.0529 1.668

nx to11 -1.2466 -1.2283 -2.2694 -0.186

nx to12 -2.8751 -2.8598 -3.8525 -1.8743

nx to13 -3.1308 -3.1129 -4.1768 -2.0745

nx to14 0.1721 0.1898 -0.8887 1.2

nx to15 -3.1912 -3.1754 -4.2869 -2.1049

B4 0.0483 0.049 0.025 0.0736

B42 -7e-04 -7e-04 -0.0013 -2e-04

B43 0 0 0 0

VoicePRc1:tone 2 2.7985 2.8215 1.7065 3.9122

VoicePRc2:tone 2 -3.2316 -3.2284 -4.3921 -2.127

VoicePRc3:tone 2 4.0455 4.1113 2.0885 6.1303

VoicePRc1:tone 3 3.4622 3.4627 2.185 4.7022

VoicePRc2:tone 3 -2.8914 -2.9065 -4.1668 -1.6543

VoicePRc3:tone 3 5.015 5.0563 3.0931 6.9238

VoicePRc1:tone 4 4.3405 4.3468 3.2386 5.4039

VoicePRc2:tone 4 2.7484 2.7391 1.6489 3.8042

VoicePRc3:tone 4 0.3115 0.3463 -1.5828 2.3165

VoicePRc1:tone 5 1.1211 1.1232 -0.5422 2.8286

VoicePRc2:tone 5 -7.8781 -7.8952 -15.205 -0.6614

tone 2:VoiceNXc1 1.5289 1.527 0.6905 2.3966

tone 3:VoiceNXc1 -4.4757 -4.4597 -5.5567 -3.4442

tone 4:VoiceNXc1 -6.4255 -6.4192 -7.2434 -5.6516

tone 5:VoiceNXc1 -4.1648 -4.16 -5.5898 -2.7312

tone 2:VoiceNXc2 1.2838 1.2949 0.3563 2.2374

tone 3:VoiceNXc2 -0.3477 -0.3109 -1.4454 0.8001

tone 4:VoiceNXc2 -4.9084 -4.8994 -5.7567 -4.059

tone 5:VoiceNXc2 -3.5388 -3.5373 -5.2426 -1.7487

tone 2:VoiceNXc3 -3.5439 -3.5457 -4.3464 -2.7316

tone 3:VoiceNXc3 -4.7781 -4.7714 -5.7783 -3.7753

tone 4:VoiceNXc3 -3.2292 -3.2366 -4.001 -2.4348

tone 5:VoiceNXc3 -2.1557 -2.1716 -3.5532 -0.7833

VoicePRc1:VoiceNXc1 -0.8628 -0.8754 -1.6808 -0.0113

VoicePRc2:VoiceNXc1 -2.9106 -2.9045 -3.928 -1.8561
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Table A.8 – continued from previous page

FPC4 Covariate Estimate BoostrapMean (0.025, .975)

VoicePRc3:VoiceNXc1 -4.6218 -4.6307 -6.4314 -2.6753

VoicePRc1:VoiceNXc2 0.7657 0.76 -0.1128 1.6023

VoicePRc2:VoiceNXc2 -2 -1.9827 -3.0642 -0.9458

VoicePRc3:VoiceNXc2 -2.873 -2.844 -4.713 -1.0069

VoicePRc1:VoiceNXc3 0.4644 0.4599 -0.251 1.2388

VoicePRc2:VoiceNXc3 0.3999 0.4206 -0.4802 1.259

VoicePRc3:VoiceNXc3 -4.0995 -4.1164 -5.6858 -2.5615

B2:SexM -2.5962 -2.7057 -8.2485 2.7293

B22:SexM 0.7136 0.7743 -1.7569 3.3184

B23:SexM -0.0699 -0.0794 -0.4302 0.2698

B3:SexM 0.1028 0.0889 -0.4479 0.6554

B32:SexM -0.0464 -0.0442 -0.1406 0.0503

B33:SexM 0.0019 0.0018 -0.0026 0.0064

tone 2:pr to11 -6.3244 -6.3531 -8.0101 -4.5725

tone 3:pr to11 -2.7697 -2.7952 -4.8525 -0.7216

tone 4:pr to11 1.3626 1.3618 -0.1779 2.9751

tone 5:pr to11 -0.6703 -0.5825 -4.7947 3.3122

tone 2:pr to12 -3.3807 -3.4576 -5.2266 -1.6652

tone 3:pr to12 -2.7326 -2.7879 -4.8068 -0.7793

tone 4:pr to12 1.8683 1.861 0.3167 3.3705

tone 5:pr to12 1.5398 1.5914 -2.3477 5.445

tone 2:pr to13 -0.0663 -0.1164 -1.9359 1.6222

tone 3:pr to13 -3.0023 -3.0109 -5.1146 -1.0273

tone 4:pr to13 2.1397 2.1374 0.5317 3.6741

tone 5:pr to13 3.7198 3.7891 -0.1484 7.4674

tone 2:pr to14 -1.4564 -1.5257 -3.1219 0.0544

tone 3:pr to14 -1.7293 -1.778 -3.7354 0.0653

tone 4:pr to14 1.0424 1.0162 -0.4234 2.5411

tone 5:pr to14 1.0445 1.0732 -2.6103 4.9265

tone 2:pr to15 -1.6132 -1.6769 -3.6302 0.2285

tone 3:pr to15 -1.312 -1.3421 -3.5382 0.966

tone 4:pr to15 2.145 2.1269 0.404 3.847

A.9 Covariates for Figures 4.5 and 4.6

SpkrID SentIdx RhymeIdx Tone PrevTone NextTone B2 B3 B4 B5 PrevCons NextCons VowelRhyme
* 564 2 1 2 2 2 2 2 2 k l uei
* 124 1 2 0 3 1 1 1 1 n NA oN
* 336 1 3 0 4 1 1 1 1 t t @N
* 444 4 4 1 5 2 4 4 4 t t uan
* 529 3 5 1 1 3 3 3 3 t C @

Table A.9: Specific covariate information for the F0 curves in Fig. 4.5.

SpkrID SentIdx RhymeIdx Tone PrevTone NextTone B2 B3 B4 B5 PrevCons NextCons VowelRhyme
F03 537 33 2.0 1.0 1.0 1 1 33 33 t s i
F03 537 34 1.0 2.0 4.0 2 2 34 34 s n W[ę]
F03 537 35 4.0 1.0 4.0 3 3 35 35 n l ai
F03 537 36 4.0 4.0 2.0 1 4 36 36 l NA @
F03 537 37 2.0 4.0 5.0 2 5 37 37 NA t yEn
F03 537 38 5.0 2.0 2.0 3 6 38 38 t sil @

Table A.10: Specific covariate information for the F0 track in Fig. 4.6.
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A.10 Covariance Structures for Amplitude & Phase model

ΣΓ =


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(A.2)

Random Effects covariance structure. The zeros represent the orthogonality con-

straints arising from principal components.

ΣE =


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(A.3)

Measurement error / Residual covariance structure; full independence among errors

in different components shown.
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A.11 Linguistic Covariate Information for Fig. 5.4

SpkrID SentIdx RhymeIdx Tone PrevTone NextTone B2 B3 B4 B5 PrevCons NextCons VowelRhyme
F02 530 7 4 2 5 2 4 7 7 dz d oN
F02 530 8 5 4 1 3 5 8 8 d NA @
F02 530 9 1 5 1 4 6 9 9 NA sj iou
M02 106 70 2 2 1 1 3 13 70 n dj ien
M02 106 71 1 2 4 2 4 14 71 dj sp in
M02 106 72 4 1 4 1 5 15 72 dz‘ d ğ

.

Table A.11: Specific covariate information for the estimated F0 track in Fig. 5.4.

A.12 Numerical values of random effects correlation ma-

trices for Amplitude & Phase model

P̂Spkr ID =



1.00 0.00 0.00 0.00 −0.29 −0.09 0.05 0.08 −0.15

0.00 1.00 0.00 0.00 −0.36 0.03 0.03 0.00 −0.89

0.00 0.00 1.00 0.00 0.01 0.04 −0.03 −0.04 −0.04

0.00 0.00 0.00 1.00 −0.03 −0.01 0.00 0.01 0.00

−0.29 −0.36 0.01 −0.03 1.00 0.00 0.00 0.00 0.36

−0.09 0.03 0.04 −0.01 0.00 1.00 0.00 0.00 −0.01

0.05 0.03 −0.03 0.00 0.00 0.00 1.00 0.00 −0.04

0.08 0.00 −0.04 0.01 0.00 0.00 0.00 1.00 −0.01

−0.15 −0.89 −0.04 0.00 0.36 −0.01 −0.04 −0.01 1.00


(A.4)

P̂Sentence =



1.00 0.00 0.00 0.00 −0.89 −0.22 −0.17 0.06 0.42

0.00 1.00 0.00 0.00 0.41 −0.55 −0.09 0.10 0.57

0.00 0.00 1.00 0.00 0.01 −0.27 −0.06 0.85 0.39

0.00 0.00 0.00 1.00 −0.12 −0.39 0.82 −0.03 0.30

−0.89 0.41 0.01 −0.12 1.00 0.00 0.00 0.00 −0.12

−0.22 −0.55 −0.27 −0.39 0.00 1.00 0.00 0.00 −0.51

−0.17 −0.09 −0.06 0.82 0.00 0.00 1.00 0.00 0.14

0.06 0.10 0.85 −0.03 0.00 0.00 0.00 1.00 0.42

0.42 0.57 0.39 0.30 −0.12 −0.51 0.14 0.42 1.00


(A.5)
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A.13 Warping Functions in Original Domain
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Figure A.7: Modes of variation in the original warping function space due to the
components of the transformed domain; produced by applying the inverse trans-
formation on the functional principal components Ψ; gray band around the mean
function shows [.05, .95] percentile of sample variation.

A.14 Area Under the Curve - FPCA / MVLME anal-

ysis

To verify the generality of the presented framework the core of the analysis in Sect.

5.3 was re-implemented utilizing the Area Under the Curve framework presented in

Sect. 3.2.3. The results confirm our assertion that the choice of time-registration

framework while crucial does not render the findings from an joint analysis as the

one described in the main body of this work, specific to a single framework. The

insights offered by the application of FPCA in the new amplitude and phase variation

functions HAUC and SAUC (Figures A.8 and A.9 respectively) as well as the insights

from the subsequent MVLME analysis of AUC based projections scores (Fig. A.10)

communicate very similar insights as the ones offered by PACE in Chapt. 5.
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Figure A.8: WAUC (Amplitude) Functional Principal Components ΦAUC computed
when using an AUC time-registration framework: Mean function ([.05,.95] per-
centiles shown in grey) and 1st, 2nd, 3rd, 4th, 5th, and 6th functional principal
components of amplitude.
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Figure A.9: SAUC (Phase) Functional Principal Components ΦAUC computed when
using an AUC time-registration framework: Mean function ([.05,.95] percentiles
shown in grey) and 1st, 2nd, 3rd, 4th, 5th, and 6th functional principal components
of phase.
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Figure A.10: Random Effects Correlation Matrices using AUC time-registration.
The estimated correlation between the variables of the original multivariate model
(Eq. 5.23) is calculated by rescaling the variance-covariance submatrices ΣR1 and
ΣR2 of ΣΓ to unit variances. Each cell i, j shows the correlation between the vari-
ance of component in row i and that of column j; Row/Columns 1-4 : wFPC1−4,
Row/Columns 5-8 : sFPC1−4, Row/Columns 9 : Duration.

A.15 FPC scores for digit one

FPC # Ital. Am.Sp. Ib.Sp. Port. Fr. Std.Dev

1 -1212.400 971.46 -3112.900 1622.70 2685.20 2332.66
2 631.330 310.64 273.530 862.54 -140.20 381.6019
3 342.530 454.02 -142.920 -126.97 -871.65 523.445
4 11.737 368.56 86.611 -407.40 83.43 279.4301

Table A.12: The averaged FPC scores and their sample standard deviation across
FPC. Briefly commenting on them: the clear distinction due to the qualitative
characteristics of FPC1 is apparent as the three lower scores are detected in the
two-vowel words of Italian and Spanish whereas the higher order FPC4 appears to
almost focus on a distinction between American Spanish and Portuguese, a rather
specialized assumption given to the languages in the sample.
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A.16 Auxiliary Figures for Chapt. 6

Figure A.11: Mean spectrogram for the instances of digit one. It shows a clear
variation pattern due to a strong excitation effect in the beginning of a word.
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Figure A.12: Empirical distribution of logged branch lengths retrieved from Tree-
fam ver.8.0; Skewness = 0.312, Kurtosis = 2.998.
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Figure A.13: The language specific spectrograms, as before two different view points
are utilized. It is clear that: 1. in French, where the “u” is uttered like “a”, more
energy is carried on higher frequencies; 2. Italian and the two varieties of Spanish
have the most “elongated” spectrograms in terms of power spectral densities as
they encapsulate two instead of one vowel; and 3. there is an obvious cut-off in
Portuguese, approximately at 5Khz, that is most possibly an artefact of the data
rather than a real phenomenon.
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Figure A.14: The protolanguage spectrogram along with its 95% confidence interval
(two standard deviations). It is easily seen that the uncertainty regarding our esti-
mate is very strong; in effect the confident intervals give a very wide area over which
our estimate may lie. It can be noted that certain frequency bands appear to contain
significant variation. It also draws attention to the significant edge effects presented
thus emphasizing the important role laboratory conditions play in the quality of the
sample; edge effects definitely related (among other things) with background noise
and discretisation effects. These confidence intervals are not unexpected though; as
seen in Table A.12 the original input coefficients were highly variant and it is only
natural for this to propagate along the PGR estimates.
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