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Abstract

Processes that spread through local contact, including outbreaks of infectious diseases, are inherently noisy, and are frequently
observed to be far noisier than predicted by standard stochastic models that assume homogeneous mixing. One way to reproduce
the observed levels of noise is to introduce significant individual-level heterogeneity with respect to infection processes, such that
some individuals are expected to generate more secondary cases than others. Here we consider a population where individuals can
be naturally aggregated into clumps (subpopulations) with stronger interaction within clumps than between them. This clumped
structure induces significant increases in the noisiness of a spreading process, such as the transmission of infection, despite complete
homogeneity at the individual level. Given the ubiquity of such clumped aggregations (such as homes, schools and workplaces for
humans or farms for livestock) we suggest this as a plausible explanation for noisiness of many epidemic time series.
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1. Introduction

Processes that spread between individuals in a population
have, under various guises, been extensively studied and
applied to many biological and physical problems (Boccaletti
et al., 2006; Danon et al., 2011). It has been noticed for some
time that many models of these processes do not capture
the noisy behaviour of empirical data. For example many
epidemic outbreaks are far noisier than predicted by simple
models (Watts et al., 2005), suggesting that some element (or
elements) are missing from these.

This enhanced variability has several important implications
for the dynamics, especially during the early stages of invasion.
Most notably, early extinctions will be far more common than
anticipated from a birth-death process, and we may expect to
observe several small outbreaks before the number of cases
becomes large. This latter phenomenon has been observed in
several real epidemics, as for example in the case of SARS
in 2002–2003 (Anderson et al., 2004). Another possible
explanation for such stuttering chains is due to a change in
transmissibility due to evolutionary factors, such that the
basic reproduction number, R0, transitions from below one to
above one (Lloyd-Smith et al., 2009). This phenomenon has
been identified as an evident gap in modelling and a natural
question arises of whether, in a given outbreak, stuttering
is a consequence of evolutionary factors or simply a result
of natural variability (Lloyd-Smith et al., 2009). Obviously,
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once many individuals are infected, the relative impact of the
noise is reduced. Still, fully accounting for the variability
is important in order to better inform decision making, for
example via uncertainty analyses which capture the extent of
probabilistic uncertainty surrounding the effectiveness of inter-
ventions (Black et al., 2013; Gilbert et al., 2014). Therefore
understanding and capturing this larger-than-expected noise
is of fundamental public-health importance in terms of un-
derstanding invasion, persistence and eradication of infection.
Incorrect assumptions could substantially bias our parameter
inferences (and hence predictions) from early outbreak data.

One plausible modification to simple stochastic epidemic
models is to add individual-level heterogeneity to the popula-
tion structure, such that individuals respond differently to the
spreading process. In the context of infectious diseases this
heterogeneity is often incorporated in terms of risk-structured
populations where different risk groups have different rates
of transmission (Andersson and Britton, 2000; Keeling and
Rohani, 2007); at a more local scale, similar heterogeneity can
also be derived within network-based models through varying
degree distributions, with the presence of super-spreaders being
a key example (Lloyd-Smith et al., 2005). For such network
models, the early expected infection prevalence then grows
at a rate proportional to the second moment of the degree
distribution, while the early variance about this expected
growth scales with the third moment of the degree distribu-
tion (Graham and House, 2013). It is therefore possible to
generate enhanced variability while maintaining a given growth
rate through judicious choice of the degree distribution. One
objection to this method for generating increased variability is
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that power-law like degree distributions that allow large third
moments but modest second moments, are considered by some
to be unrealistic representations of real social transmission
networks (Clauset et al., 2009). Another objection is that
this approach would necessitate a fine tuning of moments that
would need to hold for all networks exhibiting significant noise
in spreading dynamics.

A question of both theoretical and applied interest is whether
greater variability can be replicated with a simpler and more
robustly tuneable model. Here we rely on the natural aggrega-
tion (clumping) of individual hosts and consider a model with
two-levels of mixing – within-clumps and between-clumps –
but where all individuals are homogeneous; that is, all individ-
uals are identical, but there are differential rates of transmission,
high within a clump and low between clumps. Specifically,
we consider a population made up of N = m × n individuals,
in a total of m clumps each of size n, which we index with
i = 1, . . . ,m. We consider a stochastic epidemic process on this
population: clump i has S i susceptibles and Ii infectives, such
that S i + Ii ≤ n. The rates of this process are:

(S i, Ii)→ (S i − 1, Ii + 1), at rate S i

 βIi

(n − 1)
+
α

N

m∑
j=1

I j

 ;

(S i, Ii)→ (S i, Ii − 1) , at rate γIi, (1)

where β is the effective within-clump transmission rate pa-
rameter, α is the effective between-clump transmission rate
parameter and γ is the per-infective recovery rate. Note that
frequency-dependent transmission is used in Eq. (1). Another
common choice is density-dependent transmission where β is
not scaled by the factor 1/(n − 1). We do not present results for
this form of transmission as it allows for unrealistically large
within-clump transmission, but we do discuss how our results
are changed by this.

We wish to consider the limit as the number of patches, m,
becomes large but where the patch size, n, remains finite and
often relatively small. Note that for such a population structure,
individuals are homogeneous, and the network topology (de-
fined by within and between clump contact rates) also exhibits
the desirable ‘small worlds’ property of high clustering and
low shortest path lengths (Travers and Milgram, 1969; Watts
and Strogatz, 1998). Many real-world populations exhibit this
clumped population structure, where strong links exist within
a clump and weaker links exist between clumps. High-profile
examples include the transmission of avian influenza in poultry
aggregated into sheds (Savill et al., 2006), spread of Foot-and-
Mouth disease in livestock aggregated into farms (Tildesley
et al., 2006), transmission of measles by children aggregated
into schools (Riley et al., 1978), and the spread of a number
of infections such as pandemic influenza through human
populations that are aggregated into households (Black et al.,
2013). For this type of clumped population, expressions for the
probability of a major outbreak (successful invasion) and the
final size of an epidemic (and hence results for percolation as a

special case) have been derived (Ball et al., 1997).

Our aim is to assess the variability of spreading in this
clumped population during the early phase of an epidemic be-
fore there is a significant depletion of susceptible clumps in the
overall population. Within this early phase we can identify two
dynamical regimes (see Figure 1). (i) Initial behaviour: Here
the epidemic dynamics are well approximated by a branch-
ing process between clumps. (ii) Early asymptotic behaviour:
After a significant number of between-household transmission
events, the proportion of infected individuals becomes signifi-
cant and the mean prevalence of infection, 〈I(t)〉, grows expo-
nentially with fixed, early growth rate r,

〈I(t)〉 ∝ ert . (2)

Figure 1 shows stochastic simulations of this process to
illustrate the dynamics of the two regimes. Figure 1(a) shows
typical dynamics from a random-mixing model (n = 1) while
Figure 1(b) shows dynamics from the clumped model (n = 20).

During the initial phase (i) clumping of the population
mainly affects the variability in the timing of the start of
the exponential growth phase, often giving rise to stuttering
dynamics. Using the branching process approximation, we
calculate a number of quantities which allows us to understand
how the variability changes across clump sizes and within-
clump transmission rates. To investigate the variability in stage
(ii) we derive an analytic diffusion approximation to calculate
the variance in the infectious process (Kurtz, 1970, 1971).
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Figure 1: Stochastic simulations of the process Eq. (1) illustrating the early time
behaviour and the two dynamical regimes with n = 1 (a) and n = 20 (b). The
variability in the first phase mainly affects the timing of the second, exponential
phase. Parameters: m = 104, β = 20, r = 1.

To maintain a fair comparison across clump sizes, n, and
within-clump transmission rates, β, we calculate all quantities
for the same early growth rate, which we fix arbitrarily as
r = 1. For given values of β and n we scale the between-clump
transmission rate, α, to achieve this. There is another quantity
which we could instead fix: the clump reproductive ratio R∗,
which is the expected number of secondary clumps infected
by a primary clump (Ball et al., 1997; Ross et al., 2010). We
note that these two quantities are linked (Svensson, 2007;
Wallinga and Lipsitch, 2007) and we chose to fix r instead
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of R∗ because the early growth rate is most easily estimated
from data. Throughout this paper we also fix the recovery
rate at γ = 1, which can be done without loss of generality by
rescaling time.

2. Initial behaviour

During this phase the epidemic dynamics are well ap-
proximated by a branching process between clumps (Ball
et al., 1997; Ross et al., 2010). The within-clump dynamics
are modelled as a continuous-time Markov chain, X(t), with
transition rate matrix Q = (qi j; i, j ∈ S ). The transition rates are
as in Eq. (1) with α = 0 and qii = −

∑
j∈S qi j. The state space is

S = A ∪ C, where C is an irreducible set of transient states (all
possible states of a clump with I > 0 and S + I ≤ n) and A is
the set of absorbing states (corresponding to I = 0) within the
clump. The function I(X(t)) then gives the number of infected
individuals within a clump at time t. New clumps are then
infected according to a Poisson process with time-dependent
rate αI(X(t)).

The growth rate of the process, r, is defined by the equation
(Ball et al., 1997),

E
[∫ ∞

0
αI(X(t))e−rtdt

]
= 1. (3)

The left-hand-side of Eq. (3) can be efficiently evaluated numer-
ically using exponential discounting (Ross et al., 2010). Com-
bined with a basic root finding algorithm, this allows us to eas-
ily compute r. All results are derived by finding the value of
α which gives r = 1 for a given clump size and within-clump
transmission rate β. Figure 2 shows contours of constant r for
different sized clumps. This extends to larger values of β than
α as it is typically assumed that the within-clump transmission
rate will be larger than the between-clump transmission rate.
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Figure 2: Values of α and β which give the same early growth rate, r = 1.
Clump sizes are: 2, 4, 10 and 20 (crosses, circles, stars and plain line respec-
tively).

By fixing the mean growth rate for all clump sizes and pa-
rameters, the mean number of infected individuals in the early
stages of the epidemic is also fixed. The spreading dynamics
will be an interplay of the within-clump and the between-clump
dynamics and hence, although the mean growth rate remains

fixed, there can be a large change in the variability of the
process with different parameters. This variability in the initial
stages of the branching process is crucial for understanding
the variability in the numbers of patches infected and hence
the probability of a major outbreak (or, disease extinction)
and the timing of the start of the exponential growth phase.
Intuitively, more variability will lead to a greater probability of
extinction and a larger variability in the timing of the start of
the exponential phase.

To understand how the variability of the spreading process
changes with clump size and other parameters we calculate
three main quantities. The first is the offspring distribution, de-
noted by h(m). This is the probability distribution of the number
of secondary clumps infected by a primary clump. This will be
Poisson with a random mean,

h(m) =

∫ ∞

0
ρ(b)

e−bbm

m!
db, (4)

where ρ(b) is the probability density function corresponding to
the random variable β =

∫
αI(X(t))dt, which is the total force

of external infections created by a clump. Previous work has
detailed how the offspring distribution can be efficiently calcu-
lated (Ross et al., 2010). The mean of the offspring distribution
is then just R∗, the expected number of secondary clumps in-
fected by a primary. Alternatively, R∗ can be calculated more
efficiently using path integral techniques, (Pollett and Stefanov,
2002; Ross et al., 2010)

R∗ = E
[∫ ∞

0
αI(X(t))dt

]
. (5)

The second quantity we calculate is the time to first infection
of a secondary clump, conditioned on there being such an
infection, which we denote by τ and henceforth refer to as the
conditional first infection time. In Appendix A we detail how
this can be calculated efficiently.

The last quantity we consider is the final size distribution
within a clump. This is the probability distribution that a given
proportion of the clump will have been infected over the course
of the within-clump epidemic. This can be calculated via a
number of methods (Ball, 1986; House et al., 2013).

2.1. Results

Figure 3 shows the mean and variance of the offspring
distribution as a function of β and n; the mean is equal to R∗.
This clearly displays non-monotonic behaviour indicating that
the distribution changes in complex ways as the parameters
are varied. Figure 4 shows the mean and variance of the
conditional first infection time as a function of β and n. Once
again, non-monotonic behaviour can be seen, but the mean
time and in particular the variance do not show nearly as
significant decrease with increasing β for fixed n; an increase
in the clump size n, in particular across very small clump
sizes, significantly increases both the mean and variance of
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conditional first infection time. Finally, the mean and variance
of the final size distribution, as a function of β and n, is
shown in Figure 5. Here the mean increases monotonically
with both n and β, whereas the variance is non-monotonic.
Taken together, Figures 3, 4 and 5 show that there is a
complex interplay between the spread of the disease between
the clumps and the within-clump dynamics which changes
significantly as the clump size and transmission rates are varied.

In deciphering the dynamics of this branching process it
helps to consider the two different types of scaling that are
possible. The most natural, and of primary interest for this
paper, is keeping β fixed while increasing the clump size n.
A basic consequence of this is that for larger n, less clumps
contribute to the overall prevalence, hence if the within clump
dynamics are noisy, so will the overall dynamics. Another
scaling is to hold n fixed and vary β. This is a less natural
situation as the extremes are somewhat unphysical, but it can
aid our understanding of the dynamics.

As it is independent of α, the easiest aspect to understand is
the within-clump dynamics and hence the final size distribu-
tion. The mean and variance are shown in Figure 5 along with
the actual distributions for three values of β. Firstly, given that
γ = 1, it is required that β > 1 for a large epidemic within the
clump to occur. This sets a threshold for an epidemic, although
we can see that even for β < 1 there is some probability of
multiple infections within the patch. As β is increased, large
epidemics become possible and the final size distribution
becomes strongly bimodal. This can be seen clearly in the
variance which is non-monotonic. Importantly, the time-scale
of the within-clump epidemic decreases as β is increased. At
the extreme, as β → ∞ then the clump increasingly acts as
one unit, such that after the initial infection the whole clump
becomes infected very quickly (this fact is used to derive an
approximation in the next section of the paper.) The variance
then decreases as the probability of no further infection
decreases.

Understanding the changes in the offspring and conditional
first infection time distribution follow on from the within-
clump dynamics. As larger within-clump epidemics become
possible, then R∗ also increases as a clump can potentially give
rise to more external infections. The bi-modality in the final
size distribution then accounts for the rise in the variance in the
offspring distribution. For a large enough value of β, increasing
n leads to a linear increase in the proportion of the clump that
becomes infected. An important point here is, that because we
hold r fixed, an increase in R∗ must be offset by an increase
in the time between clump infections, hence why Figure 4
shows an increase in the mean time to first infection. When
β → ∞ the mean time a patch is infectious for is controlled
almost completely by the recovery process as the whole clump
becomes infectious straight after initial infection.

Multiple components of the behaviour illustrated in Figures
3-5 drive the early stochastic dynamics. When β and n are
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Figure 3: The mean (a) and variance (b) of the offspring distribution. The mean
is equal to R∗.
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Figure 4: The mean (a) and variance (b) of τ, the conditional time to first infec-
tion.

large (and hence α is small to maintain r = 1, Figure 2),
the within-clump dynamics are characterised by rapid spread
that generally infects the vast majority of the clump within
a short period of time (Figure 5). Yet the mean time to
infect another clump is relatively long with high variance
(Figure 4). Therefore we are likely to see saw-tooth aggregate
dynamics, where the level of infection in one clump starts to
decline before other clumps are infected. A secondary effect
predominates at intermediate β (and high n), due to the high
variance in within-clump final size (Figure 5) – which in turn
generates high variance in both the offspring distribution and
conditional time to first infection (Figures 3 and 4). These high
variances combine to give long (and variable) periods between
the seeding of infection and the onset of sustained exponential
growth once a significant number of clumps are infected.
Together these two elements of highly variable dynamics and
rapid within-clump dynamics compared to between-clump
transmission, explain the early behaviour observed in Figure
1(b).

3. Early asymptotic behaviour

After transmission has become established, but before there
has been an appreciable depletion of susceptible clumps, the
mean prevalence of infection grows exponentially. The branch-
ing process discussed in the previous section is still valid and
would allow us to calculate the variance in the overall number
of infected but the method is problematic to implement (Ner-
man, 1981; Ball and Donnelly, 1995). Instead, we investigate
this phase of the epidemic by deriving a diffusion approxima-
tion for the process in the limit of the number of clumps m→ ∞
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Figure 5: The mean (a) and variance (b) of the final size distribution for the
within-clump epidemic. Parts (c), (d) and (e) show the final size distribution
for a clump size of 15 with β = 0.8, 3 and 8 respectively. The variance tends to
decrease as we increase β past this threshold as large outbreaks become more
probable. For a large value of β increasing the clump size just increases the
proportion who become infected.

(Kurtz, 1970, 1971). This is a perturbative expansion in m−1,
the inverse number of clumps, which allows us to approximate
the full stochastic dynamics with a deterministic part, describ-
ing the mean behaviour, plus a stochastic correction (van Kam-
pen, 1992; Black and McKane, 2011). From this we can calcu-
late the variance in the total prevalence of infection. The details
of this calculation are given in Appendix B, but are summarised
here. Asymptotically, we find that

Var(I(t))→ ve2rt , (6)

where v is independent of time. As we fix r = 1 for all
calculations, the variation induced by the clumping comes
entirely from the multiplicative factor v. This gives the size
of the envelope around the mean in which typical stochastic
realisations lie.

Of particular interest is how the variance (Eq. (6)) increases
with clump size, n, for fixed values of within-clump transmis-
sion, β. In the limit β → ∞ we can derive an expression for
the variance by assuming that each between clump transmis-
sion leads to rapid (instantaneous) infection of the entire clump;
this is therefore equivalent of a standard SIR model where each
transmission event causes a change of magnitude n in the global
susceptible and infected population sizes:

(S , I)→ (S − n, I + n) . (7)

In this limiting case, and using the same steps as for the full
model, we find that the factor v increases linearly with the
clump size n,

v =
n(r + γ) + γ

r
. (8)

Again, full details of this calculation are given in Appendix C.
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Figure 6: The asymptotic early value of v = 〈I2〉e−2rt as a function of the clump
size, n, and the within-clump transmission parameter, β, assuming density-
dependent transmission (a) and frequency-dependent transmission (b). Density
dependent transmission assumes that the transmission rate β is not scaled by the
factor 1/(n− 1). Panel (c) shows v as a function of n for β = 20. The green line
is the asymptotic result from Eq. (8). The blue and red points assume density-
and frequency-dependent transmission respectively.

Figure 6 shows numerical results for v as a function of the
clump size, n, and within-clump transmission rate. As we fix
r = 1 throughout, then the mean overall level of infection grows
at the same rate for all parameters. Here we consider both
frequency-dependent transmission as in the previous section,
and also density-dependent transmission, where β is not scaled
by the factor 1/(n − 1). Density-dependent transmission allows
for much larger transmission rates within a clump and so is a
better comparison with the limiting case, (8), where β → ∞.
Figure 6 shows that, as in the very early stages, changes in
clump size alone can induce large differences in the variability
of the spreading process. In contrast to the early stages, the vari-
ance increases monotonically with both clump size and within-
clump transmission rate. Figure 6(c) shows how v changes with
clump size for a fixed value of transmission parameter β, and
also includes the theoretical limit from Eq. (8), which is a linear
increase with n. For finite values of β the increase in variance
is always sub-linear.

4. Discussion and Conclusion

We have shown that increased variability, in comparison
to a homogeneous-mixing model, can be generated with a
simple model of spreading, having two levels of mixing –
within-clump and between-clump – but with all individuals
homogeneous. In both the initial phase (i) and the early growth
phase (ii), increasing the clump size, while keeping all other
factors constant, increases the variance in the process. The
enhanced variability arises in the early dynamics through the
variability in the lag before the early growth phase begins,
and hence gives rise to stuttering behaviour as seen in actual
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epidemics (Anderson et al., 2004; Watts et al., 2005). Com-
bined with partial detection of cases, this could be mistaken as
stochastic fade-out followed by re-introductions of infection.

In Section 2 we presented results using what is know as
frequency-dependent transmission where the transmission rate
parameter, β, is scaled by 1/(n− 1). Another common choice is
density-dependent transmission where β is not scaled. In terms
of our model, frequency-dependent transmission is the most
realistic scenario, as within-clump transmission rates cannot
become too large. Using density-dependent transmission
means that large clumps have much stronger rates of infection,
leading to larger / faster outbreaks, due to their increased
number of susceptible individuals. In terms of our results in
Section 2, the more extreme within-clump dynamics which
results from assuming density dependent transmission means
the window where we observe interesting population level
dynamics is much reduced. In Section 3 we do present results
using density-dependent transmission. This is primarily to
compare with the analytic β → ∞ limit, which is obviously
easier to achieve when β is not scaled by 1/(n − 1).

All of the methods used to analyse the dynamics in stage
(i) can be naturally extended to more realistic models such
as SE2I2R – that is the model considered here extended to
have Erlang-2 distributed exposed and infectious periods, more
clearly reflecting the shape of the true distributions – which has
been used for pandemic influenza studies (Black et al., 2013).
This involves using larger stochastic matrices, so there is a
computational cost, but because most of our methods only rely
on solving linear sets of equations, they scale efficiently.

Our model is clearly related to meta-population models, that
have been considered previously as models of infection spread
in aggregated populations (Lloyd and May, 1996; Riley and
others, 2003; Rozhnova et al., 2012). The novelty in our work
is that we consider a different population level limit – meta-
populations often are considered as a small number of large
clumps (for example representing cities in a country), where as
we consider a large number of small clumps (more reminiscent
of households within a country). Taking this limit of a large
number of clumps means we can analyse the variability in
the early growth phase (ii) using a diffusion approximation,
but currently this does have limitations, most obviously in the
range of clump sizes for which we can explicitly calculate the
variance. This is due to numerical errors in calculating the
eigenvectors of the Jacobian matrix, which in turn are used to
expand a matrix exponential, Eq. (B.13). In practice, clump
size n = 16 was the largest value we could use over the entire
range of the other parameters. It is possible that a different
approach to evaluating the coefficients of this expansion would
allow us to go to higher values of n. It is possible to extend the
diffusion approximation result to heterogeneous populations,
but the usefulness of this is questionable. For example, the
results will depend on the proportions of each size of clump
and this has to be incorporated via careful choice of initial
conditions.

To conclude, we have shown that a simple model, which
involves a very generic structure and relatively little parame-
ter tuning can reproduce real-world features as has only been
demonstrated with highly heterogeneous approaches to date. It
has also uncovered a number of interesting features which war-
rant further investigation.
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Appendix A. Initial behaviour methodology

Offspring distribution
The offspring distribution, denoted by hi(m), is the probabil-

ity mass function of the number of secondary clumps infected
by a primary clump conditional on starting in state i. This will
be Poisson with a random mean,

hi(m) =

∫ ∞

0
ρ(b)

e−bbm

m!
db, (A.1)

where ρ(b) is the probability density function corresponding to
the random variable β =

∫
αI(X(t)|X(0) = i)dt, which is the

total force of external infection created by a clump. We evaluate
the offspring distribution as detailed in (Ross et al., 2010).

Conditional first infection time
Next we wish to calculate the mean and variance of τ, the

conditional first time to infection. This uses basic theory of
Markov processes (Waugh, 1958; Norris, 1997).

First, we augment the original Markov chain, representing
the within-clump dynamics, with a third variable, a, which
counts the number of external infections caused by the clump.
The transition rates for this new chain are then,

(S , I, a)→ (S − 1, I + 1, a), at rate
βS I

(n − 1)
(S , I, a)→ (S , I, a + 1), at rate αI

(S , I, a)→ (S , I − 1, a), at rate γI

(A.2)

Next we condition the Q matrix on observing at least 1 external
infection, i.e. a > 0. This involves modifying the elements of
the transition matrix Q (Waugh, 1958):

q̄i j =

(
u j

ui

)
qi j , (A.3)

for all states i from which ui > 0 and q̄i j = qi j otherwise, where
ui is the probability of at least 1 external infection given that
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the process starts from state i. These probabilities correspond
to the complementary probability of no further infections, avail-
able from the offspring distribution, as detailed earlier, starting
from each state i; that is, ui = 1 − hi(0). Finally, we make the
states of the system corresponding to a = 1 absorbing by set-
ting the relevant elements of q̄i j equal to zero. The mean of the
conditional first infection time starting from state j, 〈τ〉 j, is then
found by solving a set of linear equations (Norris, 1997),∑

j∈C

q̄i j〈τ〉 j = −1. (A.4)

The second moment can be found from,∑
j∈C

q̄i j〈τ
2〉 j = −2〈τ〉i, (A.5)

which allows us to calculate the variance.

Appendix B. Diffusion approximation for exponential
growth phase

Before we go into the details of this calculation, we give a
brief outline of the various steps. The first step is to show that
the stochastic process is of the correct form, so that we can
derive a diffusion approximation in the limit that the number
of clumps, m → ∞. Once this is done we then apply the ap-
proximation to our system, giving equations for the mean and
variance of the proportions of the clumps of each type. Finally,
we describe how these equations can be approximately solved
when we consider just the early time dynamics. This is valid in
the period of time between when the exponential growth starts
and before the peak in the epidemic.

Diffusion approximation

We define Hx,y(t) as the number of clumps with x susceptible
and y infected at time t. The state of the system is then defined
as H(t) = {Hx,y(t)|x + y ≤ n} where n is the size of the clumps.
This is equivalent to the original process, but reduces the num-
ber of variables in the problem from 2m to (n + 1)(n + 2)/2.
In this representation an infection or recovery event results in
a clump in the current configuration being replaced by a clump
with the updated configuration. The total number of infected in-
dividuals across all clumps is given by Y(t) = y ·H(t), where y
gives the number of infected in each clump configuration. The
transition rates for this new process are then,

(Hx,y,Hx,y−1)→ (Hx,y − 1,Hx,y−1 + 1)
at rate γyHx,y ,

(Hx,y,Hx−1,y+1)→ (Hx,y − 1,Hx−1,y+1 + 1)
at rate xHx,y (βy + αY(t)) .

(B.1)

We next define the proportion of clumps in each configura-
tion, φx,y(t) = m−1Hx,y(t), and the overall proportion infected,
I(t) = (nm)−1Y(t). From herein we drop the dependence on

time of the Hx,y and φx,y for clarity. The two transmission rates
can then be written as

γyHx,y = myγφx,y ,
xHx,y (βy + αY(t)) = mxφx,y (βy + αI(t)) .

(B.2)

These are of the correct form for a density-dependent Markov
chain, and the results of Kurtz give a simple procedure for de-
riving the diffusion approximation (Kurtz, 1970, 1971). The
same results can be obtained from a linear-noise approximation
or a WKB approximation (van Kampen, 1992; Black and McK-
ane, 2011).

To leading order in the diffusion approximation, the propor-
tions of clumps in each configuration is given by a set of ODEs,

φ̇ = F =
∑
µ=1,2

lµwµ. (B.3)

where (w1)i = γyiφi and (w2)i = (αI(t) + βyi)xiφi The two ma-
trices lµ encode all the recovery (µ = 1) and infection (µ = 2)
events respectively. The elements of these are

(l1)i j = −δyi,y j + δxi,x jδyi−1,y j , yi, j > 0,
(l2)i j = −δxi,x j + δxi−1,x jδyi+1,y j , xi, j > 0.

(B.4)

Each column of the two matrices l1 and l2 represents the
changes in the number of households of each type caused by
a given event. Some columns will be all zero where no events
can take place. Writing Eq. (B.3) in terms of its components we
find,

d
dt
φx,y = γ

(
−yφx,y + (y + 1)φx,y+1

)
+ β

(
−xyφx,y + (x + 1)(y − 1)φx+1,y−1

)
+ αI(t)

(
−xφx,y + (x + 1)φx+1,y−1

)
.

(B.5)

This rigorously establishes a number of results from so called
‘self-consistent’ methods (Ghoshal et al., 2004; House and
Keeling, 2008).

The next order in the diffusion approximation quantifies the
stochastic fluctuations around the deterministic trajectory given
by Eq. (B.3). Firstly, the Jacobian of the system evaluated about
the time-dependent trajectory given by (B.3) is,

B(t) = ∇F(t). (B.6)

The time-varying covariance matrix of this process can then be
expressed as (Kurtz, 1970, 1971)

Σ2(t) = M(t)
∫ t

0
M−1(s)G(s)(M−1(s))Tds (M(t))T, (B.7)

where

M(t) = exp
(∫ t

0
B(s)ds

)
, (B.8)

and
G(t) =

∑
µ=1,2

lµ diag(wµ) lTµ (B.9)

is the local covariance matrix, where diag(wµ) is a matrix with
the elements of wµ along the diagonal.
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Early time approximation

In the early growth phase we can make a number of approxi-
mations to make the equations above tractable, yielding insight
into the dynamics of the system. As with simpler epidemic
models with no clump structure, Eq. (B.3) has an unstable fixed
point, φ∗ = δn,xδ0,y, which corresponds to all clumps being sus-
ceptible. Linearising Eq. (B.3) about this fixed point gives an
approximate solution

φ(t) = δn,xδ0,y + φ̂εert, (B.10)

where φ̂ is the eigenvector of the dominant eigenvalue, r, of the
Jacobian, evaluated at the unstable fixed point and ε � 1 is a
small perturbation away from this. This approximation is accu-
rate while the proportion of susceptible clumps remains high,
i.e. before the peak in the epidemic. Substituting this solution
into the equations for the Jacobian and the local covariance ma-
trix, we find that the Jacobian is constant, i.e. B(t) = B̂ + O(ε)
while

G(t) = εĜert + O(ε2). (B.11)

The matrix Ĝ is found by substituting the initial condition,
φ(0) = δn,xδ0,y + φ̂ε, into equation Eq. (B.9) and retaining only
terms of order ε, i.e.,

Ĝ =
dG(0)

dε

∣∣∣∣∣
ε=0

. (B.12)

As the Jacobian is constant then Eq. (B.8) becomes M(t) = eB̂t.
The eigenvalues of B̂ are distinct, apart from n + 1 repeated ze-
ros. However, the zero eigenvalues can be made to have distinct
eigenvectors so we can do a spectral decomposition and write
the matrix exponential as

M(t) = eB̂t =
∑

Wieκit, (B.13)

where the matricies Wi need to be determined and i runs over
the eigenvalues of the problem. The inverse, which is needed
for the integral in Eq. (B.7), is simply

M−1(t) = e−B̂t =
∑

Wie−κit. (B.14)

The matrices, Wi, are constructed from the eigenvectors of B̂.
Specifically, Wi = viyT

i , where v j is the right eigenvector cor-
responding to the jth eigenvalue and yT

j is the jth row of V−1

where V is the matrix whose columns are the right eigenvectors
of B̂ (Moler and Van Loan, 2003). It then follows from the or-
thogonality of the eigenvectors that Wi W j = 0 for i , j. This
allows us to simplify Eq. (B.7) considerably, as many of the
terms are zero. We find,

Σ2(t) = ε
∑
i, j

W2
i Ĝ(W2

j )T e(κi+κ j)t
∫ t

0
e−(κi+κ j−r)sds. (B.15)

This is the most general expression we can give, as for some i
and j the eigenvalues in the integrand sum to zero and for n > 2
the eigenvalues can also be complex. As r is the only positive

eigenvalue then it is easy to find the fastest growing part, which
gives the asymptotic solution,

Σ2
F(t) = W2

FG(W2
F)T e2rt/r (B.16)

where WF is the matrix in expansion (B.13) corresponding to
the dominant eigenvalue.

Defining the matrix Π = y · yT/n2, the variance in the overall
number of infectives is Var(I(t)) =

∑
i, j Πi jΣ

2
i j(t). Asymptoti-

cally
Var(I(t))→ ve2rt , (B.17)

where v is independent of time. As we fix r = 1 for all calcu-
lations, the variation induced by the clumping comes entirely
from the multiplicative factor v.

Appendix C. Large β limit

In the limit β → ∞ we can derive an equation for the vari-
ance via a modified stochastic process. In this limit the entire
clump becomes infected straight after the initial infection, so
we can approximate this process by a simple SIR model with
transitions,

(S , I)→ (S − n, I + n), at rate
αS I
m

;

(S , I)→ (S , I − 1), at rate γI,
(C.1)

where n the clump size. The deterministic approximation (m→
∞) of this process is

ẋ = −nαxy,

ẏ = nαxy − γy.
(C.2)

where x = S/m and y = I/m. Linearising about the unstable
fixed point (x, y) = (1, 0) we find ẏ = (nα − γ)y, thus the early
growth rate is r = nα − γ. The Jacobian evaluated at the fixed
point is,

B =

(
0 nα
0 nα − γ

)
. (C.3)

The matrix exponential is then straightforward to calculate,

eBt =

(
1 nα
0 0

)
+

(
0 −nα
0 1

)
ert = W0 + W1ert. (C.4)

The local covariance matrix is,

G(x(t), y(t)) =

(
n2αx(t)y(t) −n2αx(t)y(t)
−n2αx(t)y(t) n2αx(t)y(t) + γy(t)

)
. (C.5)

Substituting in the early time solutions we can write this as

G(t) =

(
n2α −n2α
−n2α n2α + γ

)
I(0)ert = ĜI(0)ert (C.6)

where I(0) is the initial proportion infected. Using Eq. (B.16),
from the full household model, the fastest growing part of the
covariance matrix is given by

Σ2
F(t) = W2

1Ĝ(W2
1 )T I(0)e2rt/r. (C.7)
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Carrying out the matrix multiplications we find the part corre-
sponding to the variance in the number infected,

Σ2
I (t) =

n2α + γ

nα − γ
I(0)e2(nα−γ)t. (C.8)

Finally we make the substitution α = α′/n where α′ is the trans-
mission rate when n = 1, which is fixed for a given r and γ, i.e.
α′ = r + γ. This gives,

Σ2
I (t) =

n(r + γ) + γ

r
I(0)e2rt. (C.9)

Thus the factor multiplying the exponential is linear in n. Set-
ting n = 1, we recover the basic SIR result in Dangerfield et al.
(2009).
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