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Abstract

In the Seel-Strack contest (Seel and Strack [2013]), n agents each privately
observe an independent copy of a drifting Brownian motion which starts above zero.
Each agent chooses when to stop the process she observes, and the winner of the
contest is the agent who stops her Brownian motion at the highest value amongst
the set of agents. The objective of each agent is to maximise her probability of
winning the contest. We will give a new derivation of the results of Seel and Strack
[2013] based on a Lagrangian approach. This approach facilitates our analysis of
the variants of the Seel-Strack problem.

We will consider a generalisation of the Seel-Strack contest in which the
observed processes are independent copies of some time-homogeneous diffusion. We
will use a change of scale to reduce this contest to a contest in which the observed
processes are diffusions in natural scale. It turns out that, unlike in the Seel-Strack
problem, the way of breaking ties becomes important.

Moreover, we will discuss an extension of the Seel-Strack contest to one in
which an agent is penalised when her strategy is suboptimal, in the sense that her
chosen strategy does not win the contest, but there existed an alternative strategy
which would have resulted in victory. We will see that different types of penalty
have different effects.

Seel and Strack [2013] studied the asymmetric 2-player contest in which the
observed processes start from different constants. We will redrive their results using
the Lagrangian method and then study a general asymmetric n-player contest. We
will find that some results in the 2-player contest do not hold for the general n-player
contest.

In a symmetric 2-player contest, the Seel-Strack model assumes that the
observed processes start from the same positive constant. We will extend the results
to the case where the starting values of the processes are independent non-negative
random variables that have the same distribution.
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Chapter 1

Introduction

Seel and Strack [2013] introduces a model of a gambling contest between agents
in which each agent privately observes a stochastic process and chooses a stopping
time to produce a stopped value. The agent wins the contest if her stopped value
is greater than the stopped values of the other agents, and the other agents get
nothing. The objective of each agent is not to maximise the expected value of the
process, but rather to maximise the probability that her stopped value is the highest
amongst the set of agents. Moreover, an agent has to stop if she goes bankrupt,
that is when her process hits zero.

The Seel-Strack model investigates the contests in which contestants are un-
able to observe their rivals and make decisions based only on their own progress.
It provides a stylised model for a competition between fund managers. In the com-
petition, each manager wants to outperform the others, only the most successful of
them will be given funds to invest over the next time period. In many cases, the
manager cannot infer the decisions of other managers. Another distinct strand of
the literature on modelling a competition between fund managers is represented by
Basak and Makarov [2014].

Although the problem described in Seel and Strack [2013] is very simple,
the solution is remarkably rich and subtle. Firstly, in equilibrium, agents must use
randomised strategies, so that the level at which the agent should stop is stochastic.
Secondly, the set of values at which the agent should stop forms an interval which is
bounded above. Several variants are discussed in Seel and Strack [2013], including
the extension to the asymmetric case where the starting values of the processes
observed by the agents are different.

Besides Seel and Strack [2013], there are many other articles which have
discussed contest models. Compared with the Seel-Strack model, one class of contest
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models assumes that each contestant can observe the performance of all contestants
at all points in time. This contains the war of attrition models (see e.g. Hendricks
et al. [1988]; Bulow and Klemperer [1999]). In a war of attrition, each contestant
must choose a time at which she concedes in the event that other contestants have
not already conceded. The return to conceding decreases with time, but, at any
time, a contestant earns a higher return if other contestants concede first. Unlike
the war of attrition models, the Seel-Strack model has no cost over time, but there is
a bankruptcy constraint and the probability of bankruptcy is assumed to be strictly
positive.

Another class of contest models assumes that the optimal strategy does not
depend on information which arrives after the start of the contest, which is different
from the Seel-Strack model. This class includes the all-pay auction models (see
e.g. Hillman and Samet [1987]; Baye et al. [1996]). In an all-pay auction, each
bidder submits a non-negative sealed bid simultaneously, all bidders pay their bids,
and a prize is awarded to the highest bidder. We will see that the symmetric Nash
equilibrium of a Seel-Strack contest is quite similar to that of a common-value all-pay
auction with complete information and the stopped value of the process corresponds
to the auction bid. The comparison between a Seel-Strack contest and an all-pay
auction will be discussed in Section 1.3.

1.1 The Seel-Strack model

Now we introduce the mathematical model of the contest introduced in Seel and
Strack [2013].

There are n players with labels i ∈ I = {1, 2, . . . , n} who take part in the
contest. Player i privately observes the continuous-time realisation of a stochastic
process Xi = (Xi

t)t∈R+ absorbed at zero with Xi
0 = x0, where x0 is a positive

constant which is the same for all players. We assume for simplicity that Xi is a
Brownian motion in this chapter. In fact, Seel and Strack considered the case where
Xi is a Brownian motion with drift and scaling, and in Chapter 2 we will see that
this can be reduced to the case where Xi is a Brownian motion.

Let F it = σ({Xi
s : s ≤ t}) and set Fi = (F it )t≥0. The space of strategies for

agent i is the space of Fi-stopping times τ i. Since zero is absorbing for Xi, without
loss of generality we may restrict attention to τ i ≤ H i

0, where H i
0 is the first time

at which Xi hits 0 and is defined via

H i
x = inf{t ≥ 0 : Xi

t = x} for any x ∈ R.
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Player i observes her own process Xi, but not Xj for j 6= i; nor does she observe the
stopping times chosen by the other players. Moreover, the processes Xi are assumed
to be independent.

The player who stops at the highest value wins a prize. We normalize the
prize to one without loss of generality. So ∀i ∈ I, player i wins 1 if she stops at time
τ i such that Xi

τ i > Xj
τ j
∀j 6= i. If there are k players who stop at the equal highest

value, then these players each win 1
k . Therefore, player i with stopping value Xi

τ i

receives pay-off
1
k

1{Xi
τi

=maxj∈I Xj

τj
},

where k =
∣∣∣{i ∈ I : Xi

τ i = maxj∈I Xj
τ j

}∣∣∣. Here 1E denotes the indicator function of
the event E, that is 1E is a random variable that takes value 1 when E happens
and value 0 when it does not happen.

The key insight of Seel and Strack [2013] is to observe that the problem
of choosing the optimal stopping time can be reduced to a problem of finding the
optimal law for Xi

τ i or equivalently an optimal target distribution. The pay-offs to
the agents only depend upon τ i via the distribution of Xi

τ i . Hence, the problem can
be considered in two stages, firstly find an optimal target distribution F i, and then
verify that there is a choice of τ i such that Xi

τ i has law F i. We focus on the first
stage.

The problem of finding τ such that Xτ has law F is a classical problem in
probability theory, and is known as the Skorokhod embedding problem (Skorokhod
[1965]). Since X is a Brownian motion started at x0 and absorbed at 0, any dis-
tribution on R+ with mean less than or equal to x0 can be embedded with a finite
stopping time τ (and conversely, for any τ the law of Xτ has mean less than or equal
to x0). Note that there are multiple solutions to the Skorokhod embedding problem
for F . All the solutions can be used to construct an optimal stopping strategy, and
these strategies will bring equal probability of success to an agent.

Notice that the distribution F of Xi
τ i should satisfy that F is a distribution

function such that P(Xi
τ i < 0) = 0 and E(Xi

τ i) ≤ x0, which can be shown by the
fact that Xi is a non-negative supermartingale and using Fatou’s lemma. We say
that such a distribution function F is feasible.

Our aim is to find Nash equilibria for the problem. By the above remarks,
a Nash equilibrium can be identified with a family of feasible distribution functions
(F i)i∈I . Throughout the thesis, we will say that (F i)i∈I is a Nash equilibrium if F i

is feasible ∀i ∈ I and if, for each i ∈ I, if the other agents use stopping rules τ j such
that Xj

τ j
∼ F j , then the optimal target distribution for agent i is F i, and she may
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use any stopping rule τ i such that Xi
τ i ∼ F i. Throughout the thesis, we will say a

Nash equilibrium is symmetric if F i does not depend on i, and we will say that a
Nash equilibrium is atom-free if each F i is atom-free.

Given the symmetry of the situation in the sense that each agent observes
a martingale process started from the same level x0, it seems natural that a Nash
equilibrium is symmetric. Moreover, arguments over rearranging mass can be used
to show that it is never optimal for agents to put mass at the same positive point.

Theorem 1.1.1. Suppose a Nash equilibrium is symmetric, then it is atom-free.

Proof. Since the Nash equilibrium is symmetric, it is identified with a feasible dis-
tribution function F (x). Introduce θ = 1/n, and this helps us to extend the proof
to more general cases. Notice that θ ∈ [0, 1) and θ represents the way of breaking
ties.

(i) Assume that F (x) places an atom of size p > 0 at z > 0. Let

G(x) =


F (x), if x ∈ [0, z − ε1) ∪ [z + ε2,∞),

F (x) + q, if x ∈ [z − ε1, z),

F (x)− (p− q), if x ∈ [z, z + ε2),

where ε2 ∈
(
0, (1−θ)pn−1z

1+θpn−1

)
, ε1 ∈

(
(1+θpn−1)ε2

(1−θ)pn−1 , z

)
and q = ε2p

ε1+ε2 ∈ (0, p). Ob-
serve that (z− ε1)q+ (z− ε2)(p− q) = zp, which means that F and G have the
same mean. And this implies that G is a feasible distribution function.

Suppose that Xi
τ i ∼ F for any i 6= 1. Let

ϕ(x) = P
(

max
i 6=1

Xi
τ i < x

)
.

Let VF and VG denote the expected pay-off of player 1 if player 1 chooses F and
G, respectively, as her target distribution of X1

τ1 . Then

VG − VF = ϕ(z − ε1)q + ϕ(z + ε2)(p− q)− ϕ(z)p− θpn

+ θqP
(

max
i 6=1

Xi
τ i = z − ε1

)
+ θ(p− q)P

(
max
i 6=1

Xi
τ i = z + ε2

)
≥ ϕ(z − ε1)q + ϕ(z + ε2)(p− q)− ϕ(z)p− θpn

= p

[
ϕ(z − ε1) ε2

ε1 + ε2
+ ϕ(z + ε2) ε1

ε1 + ε2
− ϕ(z)− θpn−1

]
= p

{
[ϕ(z + ε2)− ϕ(z)] ε1

ε1 + ε2
− [ϕ(z)− ϕ(z − ε1)] ε2

ε1 + ε2
− θpn−1

}
.
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Since ϕ(z + ε2)− ϕ(z) ≥ pn−1 and 0 ≤ ϕ(z)− ϕ(z − ε1) ≤ 1,

VG − VF ≥ p
[

ε1
ε1 + ε2

pn−1 − ε2
ε1 + ε2

− θpn−1
]

= p
ε1(1− θ)pn−1 −

(
1 + θpn−1) ε2

ε1 + ε2
> 0.

This means that VG > VF , which is a contradiction to the definition of Nash
equilibrium. Thus, F (x) is continuous on [0,∞).

(ii) Assume that F (x) places an atom of size p ∈ (0, 1) at 0. Fix any q such that
0 < q < min

{
p n
√

2− θ − p, 1− p
}
. Since F is continuous on [0,∞), there exists

ε such that F (ε)− p = q. Let G be given by

G(x) =


0, if x ∈ [0, δ),

p+ q, if x ∈ [δ, ε),

F (x), if x ∈ [ε,∞),

where δ =
´ ε

0 yF (dy)/(p + q). Note that δ ∈ (0, ε), since
´ ε

0 yF (dy) > 0 and´ ε
0 yF (dy) = εF (ε)−

´ ε
0 F (y)dy < εF (ε) = ε(p+q). Moreover, G is a distribution

function with the same mean as F . Thus, G is feasible.

Suppose that Xi
τ i ∼ F for any i 6= 1. Let VF and VG denote the expected pay-off

of player 1 if player 1 chooses F and G, respectively, as her target distribution
of X1

τ1 . Then

VG − VF = (p+ q)F (δ)n−1 − θpn −
ˆ ε

0
F (y)n−1F (dy)

≥ (p+ q)pn−1 − θpn − (p+ q)n−1(p+ q − p)

> (2− θ)pn − (p+ q)n > 0.

Hence, player 1 would prefer strategy G to F , which is a contradiction to the
definition of Nash equilibrium. Thus, F (0) = 0.

In conclusion, F (x) is atom-free and thus the symmetric Nash equilibrium is atom-
free.

Remark 1.1.1. The fact that the Nash equilibrium is atom-free relies on the fact
that the situation is symmetric in the sense that all agents stop Brownian motions
started from a common value x0. If the agents observe processes with different
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starting points, then the Nash equilibrium may have masses at zero for some agents.
In that case, for a Nash equilibrium, no agent places mass at a positive point, and
at least one agent has an atom-free distribution.

1.1.1 Equilibrium distribution

In this section, we explain how Seel and Strack solved the problem in Seel and Strack
[2013]. To solve the problem, Seel and Strack started with deriving a candidate Nash
equilibrium that is symmetric and atom-free.

A symmetric and atom-free Nash equilibrium is identified with a continuous
distribution function F such that F (0) = 0. Suppose that the other agents all choose
F as their target distribution. If agent i chooses to stop at x then her probability
of winning ui(x) is given by

ui(x) = P(max
j 6=i

Xj
τ j
< x) = F (x)n−1, (1.1)

since F is atom-free. Let b = sup{x : F (x) < 1}. Let τ i(0,b) = inf{t : Xi
t /∈ (0, b)},

that is τ i(0,b) is the first time at which Xi leaves the interval (0, b). Seel and Strack
derived an equilibrium in which for any point x ∈ (0, b), it is indifferent for agent i
to stop at x or to play the continuation strategy τ i(0,b). Thus,

ui(x) = P
(

max
j 6=i

Xj
τ j
< Xi

τ i(0,b)

)
= 1 · P

(
Xi
τ i(0,b)

= b

)
+ 0 · P

(
Xi
τ i(0,b)

= 0
)

= P
(
H i
b < H i

0

)
= x

b
, (1.2)

for any x ∈ (0, b). Seel and Strack also argued that ui(x0) = 1/n by symmetry and
optimality of stopping at x0, which then implies b = nx0 by (1.2). Then using (1.1)
and (1.2), they obtained the candidate equilibrium distribution

F (x) = n−1
√
ui(x) = n−1

√
x

nx0
,

for any x ∈ [0, nx0].
Now suppose that agent i chooses a stopping rule τ i such that Xi

τ i has
distribution F , then her probability of winning is

E
[
ui(Xi

τ i)
]

=
ˆ ∞

0
F (x)n−1F (dx) =

ˆ nx0

0

x

nx0
d n−1

√
x

nx0
= 1
n
.

Seel and Strack proved that F is indeed an equilibrium distribution by showing
that no other stopping rule gives agent i a winning probability greater than 1/n.
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Specifically, consider any stopping time τ̃ i ≤ H i
0. Because ui(Xi) is non-negative

and Xi is a martingale, ui(Xi) is a non-negative local martingale and thus a non-
negative supermartingale. Observe that here H i

0 is finite almost surely, which means
τ̃ i is also finite almost surely. So we have

E
[
ui(Xi

τ̃ i)
]
≤ E

[
ui(Xi

0)
]

= ui(x0) = 1
n
.

Thus, the candidate equilibrium distribution

F (x) = min
{

n−1

√
x

nx0
, 1
}

is indeed an equilibrium distribution for the contest.

1.2 The Lagrangian method

We rederive the Nash equilibrium using a different approach based on a Lagrangian
method. This brings new insights and yields a simpler proof for the Seel-Strack
problem and facilitates our analysis of the variants of the Seel-Strack problem.

Suppose that the other agents all choose F (x) as their target distribution,
where F is continuous and F (0) = 0, then the expected pay-off of agent i with
stopping time τ i is given by

E
[
F (Xi

τ i)
n−1

]
.

Observe that the optimal τ i must satisfy that E(Xi
τ i) = x0. Recall that E(Xi

τ i) ≤ x0.
Assume now that Xi

τ̃ i ∼ G̃ and G̃ has mean x1 < x0, then there exists (G, τ i) such
that G has mean x0, G ≤ G̃ and Xi

τ i ∼ G. Clearly τ i dominates τ̃ i as a strategy
since F (x)n−1 is non-decreasing. Hence we may restrict attention to stopping times
τ i such that the distribution of Xi

τ i has mean x0.
Let A be the set of non-decreasing right-continuous functions f : [0,∞) 7→

[0,∞). Then the problem facing the agent i is to choose G to solve

max
G∈A

ˆ ∞
0

F (x)n−1G(dx) (1.3)

subject to
´∞

0 xG(dx) = x0 and
´∞

0 G(dx) = 1. Introducing multipliers λ and γ for
the two constraints, the Lagrangian for the optimisation problem (1.3) is then

LF (G;λ, γ) =
ˆ ∞

0

[
F (x)n−1 − λx− γ

]
G(dx) + λx0 + γ. (1.4)
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Let AD(x0) be the subset of A corresponding to distribution functions of random
variables with mean x0, then

AD(x0) =
{
f ∈ A : lim

x↑∞
f(x) = 1 and

ˆ ∞
0

xf(dx) = x0

}
.

Now we state a variant of the Lagrangian sufficiency theorem for our problem.

Proposition 1.2.1. If G∗, λ∗ and γ∗ exist such that G∗ ∈ AD(x0), G∗ is continu-
ous, G∗(0) = 0 and

LG∗(G∗;λ∗, γ∗) ≥ LG∗(G;λ∗, γ∗) for all G ∈ A, (1.5)

then G∗ is a symmetric, atom-free Nash equilibrium.

Proof. We seek a symmetric atom-free Nash equilibrium. Since there are no atoms,
we do not need to consider how to break ties and a symmetric atom-free Nash
equilibrium is identified with a continuous distribution function G∗ ∈ AD(x0) with
G∗(0) = 0 and the property that

ˆ ∞
0

G∗(x)n−1G∗(dx) ≥
ˆ ∞

0
G∗(x)n−1G(dx) ∀G ∈ AD(x0).

Thus, if all other agents follow a strategy yielding a stopped value with distribution
G∗, (and then the maximum of the stopped values of the other agents has a dis-
tribution (G∗)n−1) then the agent has a higher probability of winning by following
a strategy yielding a stopped value also with distribution G∗ than with a strategy
yielding any other distribution G.

Now suppose that G ∈ AD(x0), then
ˆ ∞

0
G∗(x)n−1G(dx) = LG∗(G;λ∗, γ∗).

Then, under the hypotheses of the proposition,
ˆ ∞

0
G∗(x)n−1G∗(dx) = LG∗(G∗;λ∗, γ∗) ≥ LG∗(G;λ∗, γ∗) =

ˆ ∞
0

G∗(x)n−1G(dx).

Thus, G∗ is a symmetric, atom-free Nash equilibrium.

With Proposition 1.2.1, it is easy to verify the candidate Nash equilibrium.
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Theorem 1.2.1. There exists a symmetric, atom-free Nash equilibrium for the prob-
lem for which Xi

τ i has law F (x), where for x ≥ 0,

F (x) = min
{

n−1

√
x

nx0
, 1
}
.

Proof. On [0,∞) letG∗(x) = min
{
n−1
√
x/(nx0), 1

}
, λ∗ = 1/(nx0) and γ∗ = 0. From

the explicit form of G∗ it follows immediately that G∗ is continuous, G∗(0) = 0 and
G∗ ∈ AD(x0). We then verify that for these multipliers (1.5) holds:

LG∗(G;λ∗, γ∗) =
ˆ ∞

0

[
G∗(x)n−1 − λ∗x− γ∗

]
G(dx) + λ∗x0 + γ∗

=
ˆ ∞
nx0

[
1− x

nx0

]
G(dx) + 1

n
≤ 1
n

= LG∗(G∗;λ∗, γ∗).

Thus, there exists a symmetric, atom-free Nash equilibrium of the given form.

1.2.1 Derivation of the equilibrium distribution

This section is intended to illustrate how we derived the optimal multipliers and
the candidate Nash equilibrium. The Lagrangian approach gives a general method
for finding the optimal solution, which is distinct from the ideas in Seel and Strack
[2013], and can be generalised to other settings.

Recall the definition of the Lagrangian LF (G;λ, γ) for the optimisation prob-
lem (1.3). Denote by LF (x) the integrand in LF , that is

LF (x) = F (x)n−1 − λx− γ.

Then LF (G;λ, γ) =
´∞

0 LF (x)G(dx) + λx0 + γ.
In order to have a finite optimal solution, we require LF (x) ≤ 0 on [0,∞).

Let DF be the set of (λ, γ) such that LF (·;λ, γ) has a finite maximum. Then DF is
defined by

DF = {(λ, γ) : LF (x) ≤ 0 on [0,∞)}.

In order to reach the maximum value, we require G(dx) = 0 when LF (x) < 0. This
means that for (λ, γ) ∈ DF the maximum of LF (·;λ, γ) occurs at G∗ such that
G∗(dx) = 0 when LF (x) < 0. Suppose the Nash equilibrium is symmetric then we
must have G∗(x) = F (x). And then LG∗(x) ≤ 0, G∗(dx) = 0 when LG∗(x) < 0 and
LG∗(x) = 0 when G∗(dx) > 0.

Introduce a = inf{x : G∗(x) > 0} and b = sup{x : G∗(x) < 1}. Since
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LG∗(x) = G∗(x)n−1 − λx− γ, we must have G∗(x) = n−1√λx+ γ when G∗(dx) > 0.
Since G∗ is non-decreasing and not constant we must have λ > 0, which means
n−1√λx+ γ is strictly increasing. Then, since we are searching for atom-free solu-
tions, we must have G∗(x) = n−1√λx+ γ on the whole of the interval [a, b].

Observe that 0 ≤ F (0)n−1 so that if (λ, γ) ∈ DF then γ is non-negative. Since
G∗ is atom-free, G∗(a) = 0 and hence λa+ γ = 0. Then, by the non-negativity of a
and γ and the positivity of λ, it follows that γ = 0 = a. Thus G∗(x) = n−1√λx on
[0, b] for some λ and b which we must find.

For a feasible solution,
´∞

0 G∗(dx) = 1 and
´∞

0 xG∗(dx) = x0, so that

1 =
ˆ b

0
d
(
n−1√

λx
)

= n−1√
λb; x0 =

ˆ b

0
xd
(
n−1√

λx
)

=
n−1√λ
n

b
n
n−1 = n−1√

λb
b

n
.

Hence b = nx0 and λ = 1/(nx0). This gives us that G∗ is the distribution function
given in Theorem 1.2.1.

1.3 Comparison with all-pay auctions

In this section, we study an n-player all-pay auction with complete information. We
will use the Lagrangian method to derive the Nash equilibria for the all-pay auction,
and we will compare the all-pay auction with the Seel-Strack contest.

Suppose that there are n bidders with labels i ∈ I = {1, 2, . . . , n} in an all-
pay auction. Each bidder i submits a non-negative bid bi and a prize is awarded to
the highest bidder. All bidders pay their bids, and their valuations of the prize are
the same, denoted by v. If there are k bidders who have the same highest bid, then
these agents each win v/k. Then the pay-off for bidder i is

v

k
· 1{bi=maxj∈I bj} − bi,

where k = |{i ∈ I : bi = maxj∈I bj}|.
It is clear that the expected pay-offs to the bidders only depend on the dis-

tributions of (bi)i∈I . Thus, a Nash equilibrium for the auction can be identified with
a family of distribution functions (Fi)i∈I . We say that (Fi)i∈I is a Nash equilibrium
if, for each i ∈ I, if the other bidders chooses bj such that bj ∼ Fj , then the optimal
bid bi for agent i should satisfy that bi ∼ Fi.

Baye et al. [1990] found that there exists a unique symmetric equilibrium
and a continuum of asymmetric equilibria for the auction. The algebraic forms of
the families of equilibrium distributions are given in Theorem 1.3.1. They also show
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that those equilibria are all the possible equilibria by proving the following lemma.

Lemma 1.3.1. [Baye et al. [1990]] There are only two types of equilibria: either all
players use the same continuous mixed strategy with support [0, x̄]; or at least two
players randomise continuously over [0, x̄] with no mass at 0 and each other player
i randomising continuously over (αi, x̄], αi > 0, and having a masspoint at 0 equal
to Fi(αi). Here x̄ is a strictly positive constant (in fact, x̄ = v) and if αi > x̄ then
player i places all mass at 0.

We will not present the proof of Lemma 1.3.1 here, see Baye et al. [1990]
for details. This lemma allows us to construct all the possible equilibrium distribu-
tions explicitly, and then we can use the Lagrangian method to verify these Nash
equilibria.

Theorem 1.3.1. [Baye et al. [1990]] Any Nash equilibrium (Fi)i∈I has the following
form:

F1(x) = · · · = Fh(x) =


h−1
√

x
vΠk>hpk , if x ∈ [0, αh+1),

k−1
√

x
vΠj>kpj , if x ∈ [αk, αk+1), k = h+ 1, . . . , n− 1,

n−1
√

x
v , if x ∈ [αn, v],

and, for any i = h+ 1, . . . , n,

Fi(x) =

pi, if x ∈ [0, αi),

F1(x), if x ∈ [αi, v],

where h ∈ {2, 3, . . . , n} is an arbitrary constant, αi’s are also arbitrary constants
and satisfy that 0 < αh+1 ≤ αh+2 ≤ · · · ≤ αn ≤ v and pi’s are given by

pn = n−1

√
αn
v
, pk = k−1

√
αk

vΠj>kpj
, k = h+ 1, h+ 2, . . . , n− 1. (1.6)

Remark 1.3.1. Equation (1.6) ensures that all the given distribution functions
(Fi)i∈I are continuous. In fact, all Nash equilibria are atom-free on (0,∞).

Proof. Let A be the set of pairs (G, q) where q ∈ R+ and G : [0,∞) 7→ [0,∞)
is a non-decreasing right-continuous function with G(0) = q. An element of A is
identified with a measure ν on [0,∞) such that G(x) = ν ([0, x]) and q = ν({0}).

Fix any player i. Suppose that any other player j chooses (Fj , pj) as her
strategy with Fj continuous ∀j 6= i. Then the objective of agent i is to choose a law
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of bi, which corresponds to a pair (Fi, pi), to solve

max
bi
E

v∏
j 6=i

Fj(bi) · 1{bi>0} + v

n

∏
j 6=i

Fj(0) · 1{bi=0} − bi


= max

(Fi,pi)∈A


ˆ

(0,∞)

v∏
j 6=i

Fj(x)− x

Fi(dx) + v

n

∏
j 6=i

pj

 pi
 (1.7)

subject to
´

(0,∞) Fi(dx) + pi = 1. Introducing multiplier γi for the constraint, the
Lagrangian for the optimisation problem (1.7) is then

Lapai (Fi, pi; γi) =
ˆ

(0,∞)

v∏
j 6=i

Fj(x)− x− γi

Fi(dx) +

 v
n

∏
j 6=i

pj − γi

 pi + γi.

(1.8)
We first derive the candidate Nash equilibria. Suppose that (Fi, pi)i∈I is

a Nash equilibrium. Then, by a similar argument in Section 1.2.1, we get that
v
∏
j 6=i Fj(x) − x − γi = 0 when Fi(dx) > 0 and v

n

∏
j 6=i pj − γi = 0 if pi > 0. By

Lemma 1.3.1, Fi are all continuous. Let

supp(Fi) = {x : Fi(z1) < Fi(z2) for all z1 < x < z2} .

Then, supp(Fi) = [αi, x̄], where x̄ and αi are constants such that 0 ≤ α1 ≤ α2 ≤
· · · ≤ αn ≤ x̄ and pi = Fi(αi). Moreover, suppose that α1 = α2 = · · · = αh = 0 <
αh+1, where h ∈ {2, 3, . . . , n} is an arbitrary constant, then p1 = p2 = · · · = ph = 0.
Thus, for any i ∈ I,

v
∏
j 6=i

Fj(x) = x+ γi for any x ∈ [αi, x̄]. (1.9)

Since α1 = 0 and F2(0) = 0, we get γ1 = v
∏
j 6=1 Fj(0) = 0. Then, since Fi(x̄) = 1

for any i ∈ I, γi = γ1 = 0 for all i ∈ I and x̄ = v − γi = v. Fix any k ∈
{h, h+1, . . . , n−1}. Then, by (1.9), we have that on [αk, αk+1], Fi(x) = pi ∀i ≥ k+1
and

Fi(x) = F1(x) = k−1

√
x

v
∏
j>k pj

∀1 < i ≤ k,

and on [αn, v],

Fi(x) = F1(x) = n−1

√
x

v
∀1 < i ≤ n.

This gives us the family of functions (Fi)i∈I described in the theorem. Moreover,
since F1(x) is continuous, we get (1.6) holds. Notice that ph+1 ≤ ph+2 ≤ · · · ≤ pn.
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We next verify that (Fi, pi)i∈I is indeed a Nash equilibrium. Fix any i ∈ I. It
is obvious that Fi is continuous and

´
(0,∞) Fi(dx)+pi = 1. Moreover, v

∏
j 6=i Fj(x)−

x = 0 on [αi, v] and v
∏
j 6=i Fj(x)− x = v− x < 0 on (v,∞). Now suppose i ≥ h+ 1

and fix any k ∈ {h, h+ 1, . . . , i− 1}. Observe that on [αk, αk+1]

v
∏
j 6=i

Fj(x)− x = v
x

v
∏
j>k pj

k−1

√
x

v
∏
j>k pj

∏
j>k,j 6=i

pj − x

= x

pi
k−1

√
x

v
∏
j>k pj

− x ≤ x

pi
k−1

√
αk+1

v
∏
j>k pj

− x = pk+1
pi

x− x ≤ 0.

Thus, v
∏
j 6=i Fj(x)− x ≤ 0 on (0,∞), and for any (Gi, qi) ∈ A

ˆ
(0,∞)

v∏
j 6=i

Fj(x)− x

Gi(dx) + v

n

∏
j 6=i

pj

 qi
≤ 0 =

ˆ
(0,∞)

v∏
j 6=i

Fj(x)− x

Fi(dx) + v

n

∏
j 6=i

pj

 pi.
Then by the definition we get that (Fi, pi)i∈I is a Nash equilibrium.

Remark 1.3.2. The unique symmetric equilibrium is given by h = n. In fact, if
h = n, then by Theorem 1.3.1 the Nash equilibrium (Fi)i∈I is given by Fi(x) =
min

{
n−1
√

x
v , 1

}
for any i ∈ I.

We now compare the all-pay auction with the Seel-Strack contest. In the all-
pay auction, the cost from making a bid enters directly into the objective function
and the agent chooses any probability distribution on R+. In contrast, in the context
of gambling in contests there is no cost associated with the stopped value of the
process in the objective function, but the constraint that the target probability
distribution has mean x0 introduces an extra term into the Lagrangian.

Theorem 1.3.1 shows that there exists a continuum of asymmetric equilibria
in the all-pay auction. Recall that in the Seel-Strack contest, we focused only on
the class of symmetric Nash equilibria. However, it is easy to see that because
of the mean constraint in the Seel-Strack contest, the asymmetric candidate Nash
equilibria proposed by Lemma 1.3.1 can not be Nash equilibria for the Seel-Strack
contest.

On the other hand, in the class of symmetric Nash equilibria, there are
strong parallels between the Seel-Strack contest and the all-pay auction in which
the stopped value of the process corresponds to the auction bid. Suppose that the
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Nash equilibrium is symmetric. Also suppose that other players all choose F as
their target distribution and player i chooses G as her target distribution. Then the
Lagrangian (1.8) for the all-pay auction becomes

LapaF (G, 0; γ) =
ˆ ∞

0

(
vF (x)n−1 − x− γ

)
G(dx) + γ. (1.10)

Comparing with the Lagrangian (1.4) for the Seel-Strack contest, we see that modulo
a factor of v representing the size of the winnings and a relabelling of parameters,
the main difference is that in (1.10) the multiplier λ on the bid level is set to 1/v.
Moreover, with v = nx0, the equilibrium distribution in the all-pay auction is exactly
the same as the equilibrium distribution in the Seel-Strack contest.

1.4 Overview of thesis

Seel and Strack [2013] considers the case where Xi is a Brownian motion with drift
and scaling and derives a Nash equilibrium under a joint feasibility condition on
the drift parameter, scale parameter and the number of players. In Chapter 2, we
consider a generalisation of the Seel-Strack contest in which the observed processes
are independent copies of some time-homogeneous diffusion. This naturally leads
us to consider the problem in cases where the analogue of the feasibility condition
is violated. We solve the problem via a change of scale and a Lagrangian method.
Unlike in the Seel-Strack problem it turns out that the optimal strategy may involve
a target distribution which has an atom, and the rule used for breaking ties becomes
important.

Chapter 3 considers the impact of adding a penalty associated with failure
to follow a winning strategy. Again the objective of the agent is to maximise her
chances of winning the contest, but now she is penalised if she has not won the
contest, but there was an alternative strategy which would have led to her winning
the contest. Three variants of the problem will be considered: the agent is penalised
for stopping too soon, for stopping too late, or for stopping too soon or too late. We
will find that in the first problem, the effect of the penalty is equivalent to an increase
in the number of participants, and the second problem is both more difficult and
more interesting. Moreover, we will find that the third problem is exactly equivalent
to the original Seel-Strack contest.

Several variants of the original Seel-Strack contest have been discussed in
Seel and Strack [2013], including an extension to the asymmetric two-player case
where the starting values of the processes observed by the players are different
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constants. In Chapter 4, we start with rederiving the Nash equilibrium obtained by
Seel and Strack in the asymmetric 2-player case and then extend the results to the
asymmetric n-player case. We will show that there exists a Nash equilibrium (Fi)i∈I
that has no atoms in (0,∞) and such that sup (supp(Fi)) are the same. Moreover,
we will see that in equilibrium, when n > 2, the agents with lower starting values
may choose not to stop at small values but to wait for high values.

In a symmetric 2-player contest, Seel and Strack assumed that the observed
processes start from the same positive constant, that is the starting value is com-
mon knowledge. In contrast, we assume that the starting values of the processes
are independent non-negative random variables that have the same distribution in
Chapter 5. So we consider a symmetric 2-player contest in which the starting value
of the observed process is private information and only its distribution is commonly
known. We will prove the existence and uniqueness of a symmetric Nash equilibrium
for the problem.
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Chapter 2

Contests modelled with
diffusions

In Section 1.1, we described the Seel-Strack model and discussed the case where the
processes (Y i)i∈I privately observed by the contestants are continuous-time realisa-
tions of independent Brownian motions. However, Seel and Strack [2013] actually
considered the case where Y i is a Brownian motion with drift and scaling and it
starts above zero and is absorbed at zero. And they derived a Nash equilibrium
under a joint feasibility condition on the drift parameter, scale parameter and the
number of contestants.

Specifically, in the Seel and Strack paper, each contestant privately observes
an independent copy of a continuous stochastic process Y = (Yt)t≥0, where Y is
given by

Yt = y0 + µt+ σWt (2.1)

with constant initial value y0 > 0, constant drift coefficient µ and constant diffusion
coefficient σ > 0. Here W is a Brownian motion. It is assumed that if Y hits zero
then it is absorbed there, and an agent has to stop if her process hits zero. Each
agent chooses a stopping time τ , and the stopped value Yτ forms her entry into
the contest. The agent who stops at the highest value wins the contest, and the
objective of each agent is to maximise her probability of winning.

In a contest between n agents, Seel and Strack imposed a feasibility condition

µ < log
(

1 + 1
n− 1

)
σ2

2y0
. (2.2)

With this condition in force, they showed that there exists a symmetric Nash equilib-
rium within the class of bounded stopping rules. A feature of the Nash equilibrium
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is that it involves a randomised strategy, and the aim of each agent is to choose a
stopping time τ such that the final value of the stopped process Yτ has distribution
F . The Nash equilibrium is unique in the sense that the target distribution F is
unique, but in general there are many stopping times τ such that Yτ has law F . (The
optimal stopping times can be identified as solutions of the Skorokhod embedding
problem (Skorokhod [1965]).) It turns out that F is the distribution function of a
continuous random variable (in particular it is atom-free) and has a density which
is strictly positive on a bounded interval, and is zero elsewhere.

We have explained how Seel and Strack solved the problem in Section 1.1.1.
We adopt a different method of proof based on a Lagrangian sufficiency theorem.
Moreover, our first step is to transform the problem into natural scale. This allows us
to consider more general models for the observed process, beyond drifting Brownian
motion, such that Y is a time-homogeneous diffusion. The change of scale method
explains the origin of the condition (2.2) and motivates us to study the problem
when (2.2) fails.

The effect of using the scale function is to transform the original contest into
a simpler contest in which the observed processes are continuous martingales. To
illustrate this procedure, consider the model used in Seel and Strack [2013], that is
the observed process Y is given by (2.1). Then the scale function of Y is given by

s(y) = σ2

2µ −
σ2

2µe
−2µy/σ2

(we have chosen a normalisation such that s(0) = 0). Define X by

X = s(Y ),

then X is a diffusion in natural scale with starting value x0 = s(y0) which solves
dXt = σ

(
1− 2µXt

σ2

)
dWt, at least until it first hits zero, which is an absorbing point.

Observe that the state space of X is [0, s(∞)). Then it is easy to check that the
condition (2.2) imposed by Seel and Strack is equivalent to s(∞) > nx0. We are
interested in the cases where s(∞) ≤ nx0, which are not covered in Seel and Strack
[2013].

We introduce the mathematical model of this contest in Section 2.1. We start
with a contest in which the observed process is any non-negative time-homogeneous
diffusion. Then we explain how this contest is equivalent to a contest in which the
observed process is a diffusion in natural scale. In Section 2.2, we derive the Nash
equilibrium using a technique based on the Lagrangian sufficiency theorem. We will
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see that the choice of method used to break ties matters. We solve the problem for
two canonical ways of breaking ties. In Section 2.3, we discuss two examples of Y
and give explicit expressions for the Nash equilibrium and an optimal stopping rule
in each case. Finally, in Section 2.4, we explain the origin of the optimal multipliers
and the candidate Nash equilibrium distributions.

Our results show that the strategy that the agent should use in a Nash
equilibrium is determined by both the mechanism for the breaking of ties and the
value of the upper bound of the state space of the diffusion in natural scale. Unlike
in the Seel-Strack problem, it turns out that the optimal strategy may involve a
target distribution which has an atom, and the rule used for breaking ties becomes
important. Moreover, there exist multiple Nash equilibria if the way to break the
ties has been improperly chosen. There are close links between the problem and an
all-pay auction with a bid cap (Che and Gale [1998]).

2.1 The model

In the contest, there are n participants with labels i ∈ I = {1, 2, . . . , n}. Agent
i privately observes an independent copy Y i of a non-negative time-homogeneous
diffusion process Y = (Yt)t≥0 with constant initial value Y0 = y0 > 0. Assume the
state space of Y is an interval S with endpoints {0, r ∈ (y0,∞]}.

If Y can reach an endpoint in finite time, then we assume that the endpoint
is absorbing. Further, to exclude degeneracies, we assume that limt↑∞ Yt exists,
almost surely (and then limt↑∞ Yt ∈ {0, r}) and that P(limt↑∞ Yt = 0) > 0. (We
return to this point in Remark 2.1.1 below.) Examples include Brownian motion
with drift, absorbed at zero, and exponential Brownian motion, provided that the
parameters are such that the process does not diverge to infinity, see Example 2.1.2.

Let FY it = σ({Y i
s : s ≤ t}) and set FY i = (FY it )t≥0. The space of strategies

for agent i is the space of FY i-stopping times τ i. Without loss of generality, we
restrict attention to τ i ≤ inf{t ≥ 0 : Y i

t = 0 or Y i
t = r}. Note that τ i is not

necessarily assumed to be finite, that is agent i may choose to never stop the process
Y i, in which case her entry is taken to be limt↑∞ Yt. Note also that agent i observes
her own process Y i, but not Y j for j 6= i; nor does she observe the stopping times
chosen by the other agents.

The winner of the contest is the one who stops at the highest value, and she
wins unit reward, that is ∀i ∈ I, agent i wins 1 if she stops at a time τ i such that
Y i
τ i > Y j

τ j
∀j 6= i. If there are k agents who stop at the equal highest value, then

these agents each win θ(k), where θ(·) : {1, 2, . . . , n} 7→ [0, 1] is some non-increasing
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(deterministic) function with θ(1) = 1. Therefore agent i with stopping value Y i
τ i

receives pay-off
θ(k) · 1{Y i

τi
=maxj∈I Y j

τj
},

where k =
∣∣∣{i ∈ I : Y i

τ i = maxj∈I Y j
τ j

}∣∣∣.
In general, there are two canonical choices of the ways to break the ties. One

choice is to divide the prize evenly, that is to set θ(k) = 1/k. This is equivalent
to randomly breaking ties. Another choice is to reward only outright wins, so that
no one wins if there is more than one player who stops at the highest value and
θ(k) = 1{k=1}. (There is a third, less natural policy which is to set θ(k) ≡ 1, or
equivalently to reward joint winners with the full prize. In this case, the problem is
degenerate, and a Nash equilibrium is obtained by all agents stopping immediately,
τ i = 0.) We will give explicit solutions for the first two cases in Section 2.2.

Suppose that Y is a solution of the stochastic differential equation (Sde)

dYt = a(Yt)dWt + b(Yt)dt

where b is continuous and a is continuous and positive on the interior of S. Let
s = s(y) be the scale function of Y . Then s is a strictly increasing solution of

a(y)2s′′(y) + 2b(y)s′(y) = 0.

In general, s(S) is an interval with endpoints {L,U} with −∞ ≤ L < U ≤ ∞ and
there are four sub-cases depending on whether either L or U is finite or not. In fact,
by the Rogozin trichotomy, our assumption that limt↑∞ Yt exists rules out the case
that s(S) = R, and the assumption that P(limt↑∞ Yt = 0) > 0 rules out the case
that L = −∞. Since s is only determined up to affine transformation, we may set
s(0) = 0, and then s(S) is an interval with endpoints {0, U} where U = s(r) may
be finite or infinite. We could also insist that s(y0) = 1 but we do not choose to do
so.

Define X by
X = s(Y ).

Then X is a diffusion in natural scale on s(S) with starting value x0 = s(y0), see
Rogers and Williams [2000, Section V.7] or Karatzas and Shreve [1991, Section 5.5].
Set FX to be the natural filtration of X (and by extension FXi to be the natural
filtration of Xi = s(Y i)). Clearly, τ is a FY -stopping time if and only if τ is an FX

stopping time.
Since s(·) is a continuous, strictly increasing function, the pay-off of agent i
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with stopping value Y i
τ i can be rewritten as

θ(k) · 1{Xi
τi

=maxj∈I Xj

τj
},

where Xi
τ i = s(Y i

τ i) and k =
∣∣∣{i ∈ I : Xi

τ i = maxj∈I Xj
τ j

}∣∣∣ . This implies the equi-
valence between the two contests in which players privately observe Y i and Xi,
respectively, and the optimal stopping rule τ i is the same for both contests. In
particular, if we have a Nash equilibrium for which τ i is optimal for the process Xi,
then we also have a Nash equilibrium for the process Y i. Hence, without loss of
generality, we may reduce the problem to the case in which the observed process is
a copy of a local martingale diffusion.

One of the insights of Seel and Strack [2013] is that since the pay-offs to the
agents are determined by the distribution of Xi

τ i rather than the stopping time τ i

itself, the problem of choosing the optimal stopping time τ i can be reduced to a
problem of finding the optimal distribution F iX ≡ F i of Xi

τ i . Then, once we have
found the optimal target distribution F i, the remaining work is to verify that there
exists τ i such that Xi

τ i has law F iX . It follows that Y i
τ i has law F iY = F iX ◦ s.

Since X is a diffusion in natural scale, by the Dambis-Dubins-Schwarz The-
orem (e.g. Rogers and Williams [2000], Theorem 34.1, p. 64) X can be expressed
as a time change of Brownian motion. Then Xt = BΓt for some Brownian motion
B with B0 = x0 and an increasing functional Γt = [X]t. If F is the distribution
function of any random variable on [0, U ] with mean x0, there exists a FB-stopping
time ρ such that ρ ≤ inf{v ≥ 0 : Bv = 0 or Bv = U} and Bρ has distribution F .
Such a ρ is known as a solution of the Skorokhod embedding problem. In general
there are many such solutions. Then, if we take τ = Γ−1 ◦ ρ, we find Xτ = Bρ ∼ F
and τ is also an embedding of FY = FX ◦ s in Y . Moreover τ is a FY -stopping time.
If ρ < inf{v ≥ 0 : Bv = 0 or Bv = U}, then it follows that τ is finite, and more
generally τ ≤ inf{v ≥ 0 : Xv = 0 or Xv = U} = inf{v ≥ 0 : Yv = 0 or Yv = r} ≤ ∞.

If U < ∞, then
(
Xt∧inf{v≥0:Xv=0 or Xv=U}

)
t≥0

is a martingale and every
candidate target distribution FX for X must have mean x0. However, the stochastic
process

(
Xt∧inf{v≥0:Xv=0 or Xv=U}

)
t≥0

is a priori only a local martingale if U = ∞.
Nonetheless, it is a non-negative supermartingale, and hence cannot explode to U =
∞, and limt↑∞Xt = 0 = limt↑∞ Yt almost surely. In this case, for any distribution
F̃ with mean strictly less than x0 with associated embedding τ̃ , there exists (F, τ)
such that F has mean x0, F ≤ F̃ and Xτ ∼ F . Clearly, τ dominates τ̃ as a strategy,
which means such (F̃ , τ̃) must not be optimal. Thus, we may restrict attention to
stopping times τ i such that E

[
Xi
τ i
]

= x0.
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Remark 2.1.1. For the duration of this remark, relax the assumptions that limt↑∞ Yt

exists and that P(limt↑∞ Yt = 0) > 0. If limt↑∞ Yt does not exist then s(S) = R.
If limt↑∞ Yt exists and is equal to r almost surely, then s(0) = −∞. In either case,
lim supt↑∞ Yt = r with probability 1, and then any stopping rule that involves stop-
ping at Yt = ŷ for ŷ < r can be improved upon by waiting until Y hits (ŷ + r)/2.
Hence, either the optimal strategy is to wait until Y hits r (either in finite time, or
in the limit) or there is no optimal strategy.

In terms of the process in natural scale lim supt↑∞ Yt = r is equivalent to
lim supt↑∞Xt = U which is the case if and only if L = −∞. This is why we have
excluded the case.

Example 2.1.1. (Drifting Brownian motion) Let Ỹ be drifting Brownian motion
so that Ỹt = y0 + µt + σWt, where y0 > 0, µ 6= 0 and σ > 0 are all constants. Let
H̃0 = inf{u ≥ 0 : Ỹu = 0} and let Yt = Ỹt∧H̃0

. Then Y = (Yt)t≥0 is drifting Brownian
motion absorbed at zero and has state space S = [0,∞). The scale function of both
Ỹ and Y is s(y) = σ2

2µ −
σ2

2µe
−2µy/σ2 . Since s(0) = 0 and s(∞) ≤ ∞, limt↑∞ Yt

exists and P(limt↑∞ Yt = 0) > 0. In particular, if µ > 0 then s(∞) = σ2

2µ < ∞ and
P(limt↑∞ Yt = 0) = 1 − s(y0)/s(∞) = e−2µy0/σ2 , whereas if µ < 0 then s(∞) = ∞
and thus P(limt↑∞ Yt = 0) = 1.

Drifting Brownian motion absorbed at zero is the process considered in the
original Seel and Strack paper, although they do not map it into natural scale.

Example 2.1.2. (Exponential Brownian motion) Now suppose Y is exponential
Brownian motion, so that Y solves dYt = µYtdt + σYtdWt, subject to Y0 = y0 > 0,
where y0, µ and σ 6= 0 are all constants. Y has state space (0,∞) and scale function
s(y) = yκ/κ for κ 6= 0 and s(y) = ln y for κ = 0, where κ = 1− 2µ/σ2. We assume
κ > 0 to ensure that s(0) is finite so that limt↑∞ Yt exists and P(limt↑∞ Yt = 0) > 0.
If κ ≤ 0 then P(lim supt↑∞ Yt =∞) = 1 and this example is degenerate.

As in Section 1.1, we say that a distribution function F is feasible if it satisfies
that F (0−) = 0 and

´∞
0 xF (dx) ≤ x0. We aim to find a Nash equilibrium for the

problem in the sense of a family of the optimal feasible target distributions (F i)i∈I
of (Xi

τ i)i∈I . We will say that a Nash equilibrium has no atoms in [0, U) if each F i

has no atoms in [0, U).
Given that the contest is symmetric in the sense that each agent observes a

local martingale process started from the same level x0, it seems natural to search for
Nash equilibria which are symmetric. Further, a simple argument over rearranging
mass shows that provided θ(k) < 1 for some k ≥ 2, it is never optimal for k agents
to put mass at a same point x ∈ (0, U)—any of them could benefit by modifying the
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target distribution to put a proportion N/(N + 1) of this mass at (x+N−2) and a
proportion 1/(N + 1) at (x − N−1) (where N is a sufficiently large number)—and
thus it is possible to deduce that any optimal solution puts no mass at any point
which belongs to (0, U). A more detailed proof is provided by Theorem 1.1.1. Notice
that this argument does not apply to the case where the mass point is U . In fact,
in Section 2.2, we will see that in some cases it is indeed optimal to put mass at the
upper bound U .

Remark 2.1.2. Theorem 1.1.1 shows that a symmetric Nash equilibrium has no
atom at zero. Notice that the fact that the Nash equilibrium has no atom at 0 relies
on the fact that the situation is symmetric. If the observed processes have different
starting points, then the Nash equilibrium may have masses at zero for some agents.
In that case, for a Nash equilibrium, at least one agent must put no mass at zero.
We will only consider the symmetric case in this chapter.

Remark 2.1.3. When U ≥ nx0 (for example when U = ∞), the solution to our
problem can be identified with the solution provided in Seel and Strack [2013]. In
this case, we expect that there exists a unique symmetric Nash equilibrium.

The novel part of our solution, beyond the fact that we consider general
diffusion processes, is that in the case U < nx0, we identify a Nash equilibrium.
This equilibrium may depend on the method used to break ties, but provided this
method has been chosen sensibly then there is a symmetric Nash equilibrium, which
may involve an atom at U . We expect this to be the unique symmetric Nash
equilibrium, but our focus is on proving that such equilibria exist.

2.2 Equilibrium distribution

From Section 2.1, we know that the original contest can be reduced to a new contest
in which each agent i privately observes an independent copy Xi of a continuous
local martingale process X = (Xt)t≥0 where X0 = x0 > 0 is a constant. The process
X takes values in [0, U ], where x0 < U ≤ ∞. Agent i who stops at Xi

τ i receives
pay-off

θ(k) · 1{Xi
τi

=maxj∈I Xj

τj
},

where k =
∣∣∣{i ∈ I : Xi

τ i = maxj∈I Xj
τ j

}∣∣∣.
In this section, we explicitly discuss the two canonical choices of θ(·), θ(k) =

1/k and θ(k) = 1{k=1} (and briefly, θ(k) = 1 in Remark 2.2.6), for the general n-
player contest. These correspond to the cases where ties are broken randomly, and
only outright wins earn the prize, respectively (and thirdly the case where all joint
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winners are rewarded with the full prize). We give the candidate Nash equilibrium
solution and then verify the candidate Nash equilibrium using the Lagrangian suf-
ficiency theorem. We will see that the two different choices of θ(·) give us different
results.

Theorem 2.2.1. (i) Suppose U ≥ nx0, and recall θ(k) ≤ 1 for all k. Then there
exists a symmetric Nash equilibrium for the problem that is atom-free and Xi

τ i

has law F (x), where for x ≥ 0

F (x) = min
{

n−1

√
x

nx0
, 1
}
.

(ii) Suppose x0 < U < nx0.

(a) If θ(k) = 1{k=1}, then there exists a symmetric Nash equilibrium for the
problem that has no atoms in [0, U) but an atom at U of size nx0−U

(n−1)U , and
Xi
τ i has law F such that for 0 ≤ x < U

F (x) = n(U − x0)
(n− 1)U

n−1

√
x

U
.

(b) If θ(k) = 1/k, then there exists a symmetric Nash equilibrium for the prob-
lem that has no atoms in [0, U) but an atom at U of size p = 1− φ, where
φ ∈

(
0, n−1

√
U/(nx0)

)
solves Φ(x) = 0. Here Φ(x) = x0 (xn − 1)−U(x−1).

Further, Xi
τ i has law F such that for 0 ≤ x < U

F (x) = min
{

n−1

√
x

nx0
, φ

}
.

Proof. Let A be the set of pairs (H,h) where H : [0, U) 7→ [0,∞) is a non-decreasing
right-continuous function and h ∈ R+. An element of A is identified with a measure
ν on [0, U ] such that H(x) = ν ([0, x]) and h = ν ({U}).

Fix agent i ∈ I. Suppose that the other players all choose (F, p) as their
target measure with F continuous and F (0) = 0. Then agent i aims to choose a
feasible law of Xi

τ i , which corresponds to a pair (G, q), to solve

max
(G,q)∈A

{ˆ
[0,U)

F (x)n−1G(dx) +
[
n∑
k=1

θ(k)Ck−1
n−1p

k−1(1− p)n−k
]
q

}
(2.3)

subject to
´

[0,U) xG(dx) +Uq = x0 and
´

[0,U)G(dx) + q = 1. Introducing multipliers
λ and γ for the two constraints, the Lagrangian for the optimisation problem (2.3)
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is then

LF,p(G, q;λ, γ) =
ˆ

[0,U)

[
F (x)n−1 − λx− γ

]
G(dx)

+
[
n∑
k=1

θ(k)Ck−1
n−1p

k−1(1− p)n−k − λU − γ
]
q + λx0 + γ.

(2.4)

Let AD(x0) be the subset of A identified with probability measures with
mean x0. Then AD(x0) is given by

AD(x0) =
{

(H,h) ∈ A : lim
x↑U

H(x) + h = 1 and
ˆ

[0,U)
xH(dx) + Uh = x0

}
.

Now we state a variant of the Lagrangian sufficiency theorem for our problem.

Proposition 2.2.1. If there exist G∗, q∗, λ∗ and γ∗ such that (G∗, q∗) ∈ AD(x0),
G∗(0) = 0, G∗ is continuous on [0, U) and

LG∗,q∗(G∗, q∗;λ∗, γ∗) ≥ LG∗,q∗(G, q;λ∗, γ∗) for all (G, q) ∈ A, (2.5)

then (G∗, q∗) is a symmetric Nash equilibrium that has no atoms in [0, U).

Proof. We seek a symmetric Nash equilibrium that has no atoms in [0, U). Since
there are no atoms in [0, U), a Nash equilibrium is identified with a pair (G∗, q∗) ∈
AD(x0) such that G∗(0) = 0, G∗ is continuous on [0, U) and for all (G, q) ∈ AD(x0)

ˆ
[0,U)

G∗(x)n−1G∗(dx) +
[
n∑
k=1

θ(k)Ck−1
n−1(q∗)k−1(1− q∗)n−k

]
q∗

≥
ˆ

[0,U)
G∗(x)n−1G(dx) +

[
n∑
k=1

θ(k)Ck−1
n−1(q∗)k−1(1− q∗)n−k

]
q. (2.6)

If (G, q) ∈ AD(x0), then using the definition of the Lagrangian,

ˆ
[0,U)

G∗(x)n−1G(dx) +
[
n∑
k=1

θ(k)Ck−1
n−1(q∗)k−1(1− q∗)n−k

]
q = LG∗,q∗(G, q;λ∗, γ∗).

Then, since LG∗,q∗(G∗, q∗;λ∗, γ∗) ≥ LG∗,q∗(G, q;λ∗, γ∗), we have that (2.6) holds.
Thus, (G∗, q∗) is a symmetric Nash equilibrium that has no atoms in [0, U).

Return to the proof of Theorem 2.2.1.

24



(i) Suppose U ≥ nx0. On [0,∞) let G∗(x) = min
{
n−1
√
x/(nx0), 1

}
, q∗ = 0, λ∗ =

1/(nx0) and γ∗ = 0. It is immediate that (G∗, q∗) correspond to a distribution
with mean x0, G∗(0) = 0 and G∗ is continuous on [0, U), and so it remains to
verify (2.5) for the given multipliers.

Since θ(k) ≤ 1 for all k we have that

n∑
k=1

θ(k)Ck−1
n−1(q∗)k−1(1− q∗)n−k ≤

n∑
k=1

Ck−1
n−1(q∗)k−1(1− q∗)n−k

= (q∗ + (1− q∗))n−1 = 1,

and then

LG∗,q∗(G, q;λ∗, γ∗)

≤
ˆ

[0,U)

[
G∗(x)n−1 − λ∗x− γ∗

]
G(dx) + (1− λ∗U − γ∗)q + λ∗x0 + γ∗

=
ˆ

(nx0,U)

(
1− x

nx0

)
G(dx) +

(
1− U

nx0

)
q + 1

n

≤ 1
n

= LG∗,q∗(G∗, q∗;λ∗, γ∗).

Thus, by Proposition 2.2.1, (G∗, q∗) is a symmetric, atom-free Nash equilibrium.

(ii) Suppose x0 < U < nx0.

(a) Set θ(k) = 1{k=1}. On [0,∞) let G∗(x) =
[
n(U−x0)
(n−1)U

n−1
√

x
U

]
·1{x<U}+1{x≥U},

q∗ = nx0−U
(n−1)U , λ

∗ =
[
n(U−x0)
(n−1)U

]n−1
U−1 and γ∗ = 0. From the explicit form

of G∗ and q∗, it is clear that G∗(0) = 0, G∗ is continuous on [0, U) and
(G∗, q∗) ∈ AD(x0). Now we verify that for these multipliers (2.5) holds.
Since θ(k) = 1{k=1},

LG∗,q∗(G, q;λ∗, γ∗)

=
ˆ

[0,U)

[
G∗(x)n−1 − λ∗x− γ∗

]
G(dx)

+
[
(1− q∗)n−1 − λ∗U − γ∗

]
q + λ∗x0 + γ∗

=
[
n(U − x0)
(n− 1)U

]n−1 x0
U

= LG∗,q∗(G∗, q∗;λ∗, γ∗).

(b) Set θ(k) = 1/k. On [0,∞) let G∗(x) = min
{
n−1
√
x/(nx0), φ

}
· 1{x<U} +

1{x≥U}, q∗ = 1 − φ, λ∗ = 1/(nx0) and γ∗ = 0, where φ ∈ (0, 1) solves
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Φ(x) = 0. Because Φ(0) = U − x0 > 0, Φ(1) = 0, Φ′(0) = −U < 0, Φ′(1) =
nx0 − U > 0 and Φ is convex on (0,∞), there exists a unique solution φ to
Φ (x) = 0 such that φ ∈ (0, 1). Moreover, since Φ(φ) = x0φ

n−Uφ+U−x0 =
0 and φ ∈ (0, 1) , U

nx0
= 1−φn

n(1−φ) = 1
n

(
1 + φ+ φ2 + · · ·+ φn−1) > φn−1 and

thus φ < n−1
√
U/(nx0).

Again by he explicit form of G∗ and q∗, we get that G∗(0) = 0, G∗ is
continuous on [0, U) and (G∗, q∗) ∈ AD(x0). Next we verify that for these
multipliers (2.5) holds. Since q∗ 6= 0 and θ(k) = 1/k, and since Ck−1

n−1/k =
Ckn/n,

n∑
k=1

θ(k)Ck−1
n−1(q∗)k−1(1− q∗)n−k

= 1
nq∗

n∑
k=1

Ckn(q∗)k(1− q∗)n−k = 1
nq∗

[1− (1− q∗)n]

= 1
n(1− φ) (1− φn) = U

nx0
,

and we have

LG∗,q∗(G, q;λ∗, γ∗)

=
ˆ

[0,U)

[
G∗(x)n−1 − λ∗x− γ∗

]
G(dx) +

[
U

nx0
− λ∗U − γ∗

]
q + λ∗x0 + γ∗

=
ˆ

(nx0φn−1,U)

(
φn−1 − x

nx0

)
G(dx) + 1

n
≤ 1
n

= LG∗,q∗(G∗, q∗;λ∗, γ∗).

Thus, (G∗, q∗) is a symmetric Nash equilibrium that has no atoms in [0, U) by
Proposition 2.2.1.

Remark 2.2.1. In the case where U cannot be reached in finite time, if the optimal
target law places mass on U then this corresponds to the optimal stopping rule
τ =∞ for that part of the sample space where Xτ = U .

Remark 2.2.2. Similar to Section 1.3, in the class of symmetric Nash equilibria,
there are strong parallels between our model and an all-pay auction in which the
stopped value of the process corresponds to the auction bid, so that the choice over
distributions for the stopped value of the process corresponds to the choice over
distributions for the bid size. The upper bound on the state space of the stochastic
process in natural scale corresponds to the bid cap.
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It follows that the same Lagrangian methods can be applied to the all-pay
auction. Consider a symmetric all-pay auction with a cap m on bids, where m ∈
(0,∞] is the maximum allowable bid. We assume that there are n bidders in the
auction, and all bidders have the same valuation v of the prize. The Lagrangian for
this problem is

LapaF,p (G, q; γ) =
ˆ

[0,m)

[
vF (x)n−1 − x− γ

]
G(dx)

+
[
v

n∑
k=1

θ(k)Ck−1
n−1p

k−1(1− p)n−k −m− γ
]
q + γ. (2.7)

Comparing with (2.4) we see that modulo a factor of v representing the size of the
winnings and a relabelling of parameters, the main difference is that in (2.7) the
multiplier λ on the bid level is set to 1/v.

In the case where m ≥ v or the case where m ∈ (v/n, v) and θ(k) = 1/k, the
equilibrium distribution in this all-pay auction is exactly the same as the equilibrium
distribution in our model withm = U and v = nx0. In the case wherem ∈ (0, v) and
θ(k) = 1{k=1}, these two equilibrium distributions are also the same with m = U

and v = U
[

(n−1)U
n(U−x0)

]n−1
.

Remark 2.2.3. Expanding on the previous remark, for the most standard tie-
breaking rule, i.e. θ(k) = 1/k, Theorem 2.2.1 shows that if x0 < U < nx0, then
there is a “hole” in the support of the equilibrium distribution. Specifically, in
equilibrium, players stop with positive probability on

[
0, nx0φ

n−1], players stop
with zero probability on

(
nx0φ

n−1, U
)
, and players stop at U with probability 1−φ.

Similar equilibrium distributions with holes have been found in all-pay auctions with
bid caps, e.g., Che and Gale [1998], Dechenaux et al. [2006] or Szech [2011] and also
in wars of attrition, e.g., Hendricks et al. [1988] and Damiano et al. [2012].

Remark 2.2.4. If x0 < U < nx0, θ(k) = 1{k=1} (so that only outright wins
are rewarded) and all other agents follow strategies which yield the optimal target
distribution stated in Case (ii.a) of Theorem 2.2.1, then whatever stopping rule
agent i chooses her expected pay-off is equal to x0

U

[
n(U−x0)
(n−1)U

]n−1
. In the other two

cases, Cases (i) and (ii.b) of the theorem, if other agents use the Nash equilibrium
strategy, then the agent achieves the same expected pay-off as the optimal strategy,
provided she puts no mass in (nx0, U ] or (nx0φ

n−1, U), respectively.

Remark 2.2.5. The choice of the tie-breaking rule is crucial in determining the
Nash equilibrium, at least in cases where the upper bound is sufficiently small. This
phenomena is also a feature of some variants of the all-pay auction in which optimal
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bid distributions include an atom, see for example Che and Gale [1998], Dechenaux
et al. [2006], Cohen and Sela [2007], and Szech [2011].

Szech [2011] studies a two-player all-pay auction in which each player is
restricted to choose her bid from the interval [0,m]. She introduces an asymmetry
whereby it is assumed that if both bidders submit the same bid, bidder 1 wins with
probability α ∈ [0, 1], otherwise bidder 2 wins. In this auction, Szech shows that the
Nash equilibrium depends on the choice of tie-breaking rule via (α,m), and takes
one of three distinct forms.

Remark 2.2.6. If the way of breaking ties has not been chosen appropriately, then
there might exist multiple Nash equilibria. (In the context of all-pay auctions, Cohen
and Sela [2007] show that there may be multiple symmetric equilibria even in the
standard case θ(k) = 1/k, but there the phenomena arises from the discreteness of
the set of possible bids.)

Take θ(k) ≡ 1 (in which tied winners all win the full prize) as an example in
the context of this section. It is clear that the stopping rule such that every agent
stops immediately is a symmetric Nash equilibrium and that the associated target
distribution consists of unit mass at x0 ∈ [0, U). Moreover, there exists a symmetric
Nash equilibrium that has no atoms in [0, U). This can be proved similarly to
the proof of Theorem 2.2.1. In fact, if U ≥ nx0, then there exists a symmetric
Nash equilibrium for the problem that has no atoms and Xi

τ i has law F (x), where
F (x) = min

{
n−1
√
x/(nx0), 1

}
for x ≥ 0; if x0 < U < nx0 then there exists a

symmetric Nash equilibrium for the problem that has no atoms in [0, U) but an atom
at U of size (1− φ̂), and Xi

τ i has law F such that F (x) = min
{
n−1
√
x/(nx0), φ̂

}
for

0 ≤ x < U . Here, φ̂ ∈ (0, 1) solves Φ̂(x) = 0, where Φ̂(x) = Uxn−nUx+n(U −x0).

2.3 Examples

In this section, we give explicit expressions for the optimal target distribution and
associated stopping time. The optimal stopping time is based on the Azéma-Yor
solution of the Skorokhod embedding problem (Azéma and Yor [1979]). Note that
any other solution for the Skorokhod embedding problem (see Hobson [2011]; Obłój
[2004] for a survey) can also be used to construct an optimal strategy, but the
Azéma-Yor solution is both relatively simple and quite concrete.

2.3.1 Drifting Brownian motion

Suppose the diffusion process Y is a drifting Brownian motion absorbed at zero and
solves dYt = µdt+ σdWt where Y0 = y0 > 0, µ 6= 0 and σ > 0 are all constants. Set
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γ = 2µ/σ2. The scale function of Y is s(y) = 1
γ −

1
γ e
−γy. Let X = s(Y ); then, X is

a diffusion in natural scale on [0, U) with starting value x0 = s(y0), and U = s(∞).
If µ > 0 then U = s(∞) = 1/γ, else if µ < 0 then U = s(∞) =∞.

Seel and Strack [2013] discussed the case where U > nx0, which is equivalent
to the condition (2.2), i.e. γ < 1

y0
log n

n−1 . Here we discuss the general case.

(i) Suppose U ≥ nx0, that is suppose γ ≤ 1
y0

log n
n−1 . Recall that θ(k) ≤ 1 for

all k, then by Case (i) of Theorem 2.2.1, the optimal distribution of Xτ is
F (x) = min

{
n−1
√
x/(nx0), 1

}
for x ≥ 0. Define

ψ(x) = 1
1− F (x)

ˆ
[x,∞)

yF (dy) (2.8)

for x ≤ inf {x : F (x) = 1} and ψ(x) = x otherwise. Then ψ is the barycentre
function. Thus, ψ(x) = x for x ≥ nx0, and for 0 ≤ x < nx0,

ψ(x) = x0
1−

(
x
nx0

)n/(n−1)

1−
(

x
nx0

)1/(n−1) . (2.9)

The Azéma-Yor embedding of F in Brownian motion started at x0 = (1 −
e−γy0)/γ is τ = inf

{
t ≥ 0 : ψ(Xt) ≤ X̄t

}
, where X̄t = sups≤tXs.

We want to reinterpret this solution in terms of the drifting Brownian motion
Y . Set FY = F ◦ s so that FY (y) = 0 for y ≤ 0,

FY (y) = n−1

√
1− e−γy

n(1− e−γy0) for y ∈
(

0,−1
γ

log
[
1− n(1− e−γy0)

])
,

and FY (y) = 1 for y ≥ − 1
γ log [1− n(1− e−γy0)].

Then, since s is strictly increasing, we rewrite τ as τ = inf
{
t ≥ 0 : Ψ(Yt) ≤ Ȳt

}
where Ψ(y) := s−1(ψ(s(y))) is given by

Ψ(y) = −1
γ

log

1− (1− e−γy0)
1−

(
(1−e−γy)
n(1−e−γy0 )

)n/(n−1)

1−
(

(1−e−γy)
n(1−e−γy0 )

)1/(n−1)

 (2.10)

if 0 ≤ y < − 1
γ log [1− n(1− e−γy0)] and Ψ(y) = y otherwise.

(ii) Suppose x0 < U < nx0, that is suppose γ > 1
y0

log n
n−1 . Assume agents

receive no reward if they are a tied winner so that θ(k) = 1{k=1}. By Case
(ii.a) of Theorem 2.2.1, the optimal distribution of Xτ has law F such that
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F (x) = n(U−x0)
(n−1)U

n−1
√

x
U for 0 ≤ x < U and F (x) = 1 for x ≥ U . Then, by the

definition of the barycentre function ψ in (2.8), ψ(x) = x for x > U and

ψ(x) =
x0(n− 1)− x

(
1− x0

U

)
n−1
√

x
U

n− 1− n(1− x0
U ) n−1

√
x
U

for x ∈ [0, U ]. (2.11)

Recalling that U = 1
γ and substituting s(y) = 1−e−γy

γ , s−1(x) = − log(1−γx)
γ and

(2.11) into the expressions FY = F ◦ s and Ψ(y) = s−1(ψ(s(y))) yields

FY (y) = n

n− 1e
−γy0 n−1√1− e−γy,

Ψ(y) = y0 −
1
γ

log
(
n− 1− (n− 1 + e−γy) n−1√1− e−γy

n− 1− ne−γy0 n−1√1− e−γy

)
,

for 0 ≤ y <∞. In particular, if n = 2 then

Ψ(y) = y + 1
γ

log
(
eγ(y0+y) − 2eγy + 2

)
.

Note that γy0 > log 2 by hypothesis, so that the term inside the logarithm is
positive.

Then τ = inf
{
t ≥ 0 : Ψ(Yt) ≤ Ȳt

}
is the Azéma-Yor optimal stopping rule for

the original contest. We have that limy↑∞ FY (y) < 1, so there is a nonzero
probability that τ = ∞ and that the agent achieves an infinite entry into the
contest.

(iii) Again suppose γ > 1
y0

log n
n−1 but assume θ(k) = 1/k. The optimal distribution

F of Xτ is given by Case (ii.b) of Theorem 2.2.1 as F (x) = min
{
n−1
√

x
nx0

, φ
}

for 0 ≤ x < U and F (x) = 1 for x ≥ U , where U = 1/γ and φ ∈
(
0, n−1

√
U
nx0

)
solves Φ(x) = 0 with Φ(x) = x0 (xn − 1) − U(x − 1). Then, by the definition
(2.8) of the barycentre function, for 0 ≤ x ≤ nx0φ

n−1, ψ(x) is given by (2.9),
for nx0φ

n−1 < x ≤ U we have ψ(x) = U , and for x > U , ψ(x) = x.

Let FY = F ◦ s. Then, for y > 0, FY (y) = min
{

n−1

√
1−e−γy

n(1−e−γy0) , φ
}
.

Let Ψ(y) = s−1(ψ(s(y))). Then, Ψ(y) is given by (2.10) if y ∈
[
0, s−1(nx0φ

n−1)
]

with s−1 (nx0φ
n−1) = − 1

γ log
(
1− nφn−1(1− e−γy0)

)
and Ψ(y) = ∞ other-

wise. Moreover, the Azéma-Yor optimal stopping rule for the original contest
is τ = inf

{
t ≥ 0 : Ψ(Yt) ≤ Ȳt

}
. Again there is a nonzero probability that

τ =∞ and that the agent achieves an infinite entry into the contest.
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2.3.2 Exponential Brownian motion

The above methods extend easily to any non-negative time-homogeneous diffusion
with state space an interval with endpoints {0, r ∈ (0,∞]} provided the scale func-
tion s satisfies L = s(0) > −∞. Then we can normalise s so that s(0) = 0.
Depending on the value of U = s(r) we are in one of the cases of Theorem 2.2.1. In
each case, for the diffusion in natural scale, the optimal target law is given as in the
theorem, and by formula (2.8) for the barycentre ψ, we can construct an optimal
stopping rule. The barycentre and the stopping time are exactly as in Section 2.3.1.
Finally, it remains to interpret these stopping times as stopping times for the ori-
ginal process, and only at this stage do the calculations look different to the drifting
Brownian motion case.

As a further example, now suppose agents privately observe independent
copies of an exponential Brownian motion Y . Suppose Y is a solution of dYt =
µYtdt+ σYtdWt, where Y0 = y0 > 0, and y0, µ and σ 6= 0 are all constants. In light
of the discussion in Example 2.1.2, we assume µ ∈ (−∞, σ2/2). The scale function
of Y is s(y) = yκ/κ, where κ = 1 − 2µ/σ2 and κ > 0 . Let X = s(Y ); then X is a
diffusion in natural scale on (0,∞) with starting value x0 = s(y0).

In this case U = s(∞) = ∞ and trivially U ≥ nx0. Provided that θ(k) ≤ 1
for all k, then by Case (i) of Theorem 2.2.1, the optimal distribution of Xτ is
F (x) = min

{
n−1
√
x/(nx0), 1

}
for x ≥ 0 and the barycentre function ψ is the same

as shown in (2.9). Then the optimal law of Y is FY = F ◦ s where for y ≥ 0

FY (y) = min
{

n−1

√
yκ

nyκ0
, 1
}

Using the Azéma-Yor embedding, one solution is τ = inf{t ≥ 0 : Ψ(Yt) ≤ Ȳt},
where

Ψ(y) = y0

(
1−

(
yκ

nyκ0

)n/(n−1)
)1/κ(

1−
(
yκ

nyκ0

)1/(n−1)
)−1/κ

if 0 ≤ y < y0n
1/κ and Ψ(y) = y otherwise. Note that limy↑y0n1/κ Ψ(y) = y0n

1/κ and
hence τ ≤ inf

{
u : Yu = y0n

1/κ
}
.

2.4 Derivation of the equilibrium distribution

This section is devoted to the derivation of the optimal multipliers, and the candidate
Nash equilibrium distributions given in Theorem 2.2.1.

Recall the definition of the Lagrangian LF,p(G, q;λ, γ) for the optimisation
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problem (2.3). Let l(p) =
∑n
k=1 θ(k)Ck−1

n−1p
k−1 (1− p)n−k − λU − γ and LF (x) =

F (x)n−1 − λx− γ, then

LF,p(G, q;λ, γ) =
ˆ ∞

0
LF (x)G(dx) + l(p)q + λx0 + γ.

In order to have a finite optimal solution, we require LF (x) ≤ 0 on [0, U) and
l(p) ≤ 0. Let DF be the set of (λ, γ) such that LF,p(·, ·;λ, γ) has a finite maximum.
Then DF is defined by

DF = {(λ, γ) : LF (x) ≤ 0 on [0, U) and l(p) ≤ 0}.

In order to reach the maximum value, we require G (dx) = 0 when LF (x) < 0
and q = 0 if l(p) < 0. This means that for (λ, γ) ∈ DF the maximum of LF,p(·, ·;λ, γ)
occurs at (G∗, q∗) such that G∗(dx) = 0 when LF (x) < 0 and q∗ = 0 when l(p) < 0.
If the Nash equilibrium is symmetric, then we must have G∗(x) = F (x) and q∗ = p,
which means LG∗(x) = 0 when G∗(dx) > 0 and l(q∗) = 0 when q∗ > 0.

Because LG∗(x) = G∗(x)n−1 − λx − γ, we have G∗(x) = n−1√λx+ γ when
G∗(dx) > 0. Since G∗ is non-decreasing and not constant, we must have λ > 0. Set
a = inf{x : G∗(x) > 0} and b = sup{x : G∗(x) < (1 − q∗)}. Since we are searching
for the G∗(x) that has no atom on [0, U) and since n−1√λx+ γ is strictly increasing,
we must have G∗(x) = n−1√λx+ γ on the whole of the interval [a, b).

Observe that 0 ≤ Fn−1(0) ≤ γ, so that if (λ, γ) ∈ DF then γ is non-negative.
Since G∗ has no atom on [0, U), G∗(a) = 0 and hence λa + γ = 0, and by the
non-negativity of a and γ and the positivity of λ, it follows that γ = 0 = a. Thus
G∗(x) = n−1√λx on [0, b) for some λ > 0 and b ≤ U which we must find. Further,
we must find q∗ ∈ [0, 1) that solves l(q∗) = 0 if q∗ 6= 0.

For a feasible solution, G∗ and q∗ should satisfy
´

[0,U) xG
∗(dx) + Uq∗ = x0

and
´

[0,U)G
∗(dx) + q∗ = 1. Thus, to get G∗ and q∗, we should solve the following

system of equations
x0 =

´
[0,b) xd

(
n−1√λx

)
+ Uq = b n−1√λb− n−1

nλ (λb)
n
n−1 + Uq = b

n
n−1√λb+ Uq,

1 =
´

[0,b) d
(
n−1√λx

)
+ q = n−1√λb+ q,

l(q) =
∑n
k=1 θ(k)Ck−1

n−1q
k−1(1− q)n−k − λU = 0, if q 6= 0.

(2.12)
If q = 0, then from (2.12) we obtain b = nx0 and λ = 1/(nx0). Thus, q = 0

is a feasible solution if b = nx0 ≤ U and is not a feasible solution otherwise. Next
we search for nonzero q that is feasible.
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(i) Set θ(k) = 1{k=1}. Then the third equation in (2.12) can be reduced to (1 −
q)n−1 − λU = 0 if q 6= 0. Thus, for q 6= 0, (2.12) can be reduced to

λ = (1− q)n−1

U
; b = (1− q)n−1

λ
;

x0 = (1− q)n

nλ
+ Uq = U (1− q)

n
+ Uq = U + (n− 1)Uq

n
.

This gives us the optimal q∗ = nx0−U
(n−1)U and then λ∗ =

[
n(U−x0)
(n−1)U

]n−1
U−1 and

b∗ = U , which then gives us the G∗ given in the theorem.

(ii) Set θ(k) = 1/k. Observe that we have shown
∑n
k=1

1
kC

k−1
n−1q

k−1(1 − q)n−k =
1
nq [1− (1− q)n] if q 6= 0 in the proof of Theorem 2.2.1. For q 6= 0, (2.12) can
be reduced to

λ = 1− (1− q)n

nUq
; b = (1− q)n−1

λ
; (2.13)

x0 = (1− q)n

nλ
+ Uq = Uq(1− q)n

1− (1− q)n + Uq = Uq

1− (1− q)n . (2.14)

Let φ = 1− q then (2.14) can be rewritten as Φ(φ) = 0, where Φ(x) = x0x
n −

Ux+ U − x0.

Since Φ is convex on (0, 1), we can find that there exists an solution φ to
Φ(x) = 0 such that φ ∈ (0, 1) if and only if U < nx0. Moreover, such solution
is unique. Denote φ∗ by this solution if it exists.

Therefore, if U < nx0 then q∗ = 1 − φ∗ and then λ∗ = 1/(nx0) and b∗ =
nx0(1− q∗)n−1 using (2.13). And this gives us the G∗ given in the theorem.
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Chapter 3

Contests with regret

Recall the Seel-Strack contest introduced in Section 1.1. In the contest, each player
privately observes a transient diffusion process and chooses when to stop it. The
player with the highest stopped value wins the contest, and each player’s objective
is to maximise her probability of winning the contest. This chapter considers an
extension of the contest to one in which a penalty associated with failure to follow
a winning strategy is added.

We add a behavioural finance aspect to the contest, in the form of regret
theory in the sense of Loomes and Sugden [1982]. Again the objective of the agent
is to maximise her chances of winning the contest, but now she is penalised if she
has not won the contest, and she has behaved sub-optimally, in the sense that there
was an alternative strategy which would have led to her winning the contest. Thus,
in a competition between fund managers, a fund manager who has followed a poor
strategy is not merely given a new role within the firm, but instead is terminated
with disgrace.

Specifically, we will consider the following variant of the problem. The agent’s
choice of stopping rule determines her stopped value X. But if with hindsight we
look at the best possible time she could have chosen, then we get a maximum value
M she might have attained. We consider a problem in which the agent receives a
reward of 1 if her stopped value is higher than the highest stopped value Y of all
other agents, but she is penalised K if her stopped value is not the highest, and
yet if she had stopped at the maximum value she might have attained M then she
would have been the winner. If she is not the winner, and there is no strategy she
might have followed which would led to her being the winner, then her reward is
zero. Thus, her objective is to maximise P(X ≥ Y )−KP(X < Y ≤M).

In fact we consider three variants of the problem, in which an omniscient
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being (or the agent’s supervisor) penalises the agent for stopping too soon, for
stopping too late, or for stopping too soon or too late. In the first case, the agent
faces regret over stopping too soon, and we consider the maximum value to be the
maximum value attained by her process after the moment she chose to stop. In the
second case the maximum is taken only over that part of the path which occurs
before the chosen stopping time and the agent faces regret over stopping too late.
In the third case we take the maximum over the whole path.

Our results are that in the first problem, the effect of the penalty is precisely
equivalent to an increase in the number of opponents. An increase in K provides
the agent with an incentive to aim for higher values, at the cost of stopping at
low values more often. This is the same as the effect of competition from more
opposing agents. In the second problem, which is both harder and more interesting,
the optimal strategy is modified in a more subtle way. This case is relevant if the
agent’s process is unobservable from the point at which it is stopped, for instance if
it is the gains from trade process arising from a dynamic investment strategy chosen
by the agent. Now the agent faces a risk of a penalty whenever she stops below the
value of the current maximum. For this reason she is reluctant to do so, although
it is also sub-optimal to wait until her process hits zero, as this is a sure losing
strategy. An increase in K gives her an incentive to stop more quickly. The third
problem might be expected to be a combination of the two previous problems, but
in fact there is a natural simplification which leads to the optimum being the same
solution as the original Seel-Strack problem.

The remainder of this chapter is constructed as follows. In Section 3.1 we
introduce the contest with regrets, which we then solve in the three cases described
above in Sections 3.2, 3.3 and 3.4, respectively. In Section 3.5 we explain the origin
of the optimal multipliers and the candidate Nash equilibrium distributions. Finally,
in Section 3.6 we show how our results for Brownian motion absorbed at zero extend
to general time homogeneous diffusions.

3.1 The model

Recall the model introduced in Section 1.1. There are n players with labels i ∈
I = {1, 2, . . . , n} who take part in the contest. Player i privately observes the
continuous-time realisation of a Brownian motion Xi = (Xi

t)t∈R+ absorbed at zero
with Xi

0 = x0 > 0, where x0 is a constant. Let F it = σ({Xi
s : s ≤ t}) and set

Fi = (F it )t≥0. Player i chooses an Fi-stopping time τ i, and without loss of generality
we restrict attention to τ i ≤ H i

0 = inf{t ≥ 0 : Xi
t = 0}. Player i observes her own
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process Xi, but not Xj for j 6= i; nor does she observe the stopping times chosen
by the other agents. Moreover, the processes Xi are assumed to be independent.

We now assume that there is an omniscient judge who can observe the path
of Xi, and not just the stopped value, and who penalises the agent for the failure
to use a winning stopping rule if such a strategy exists. This judge represents the
supervisor of the agent, and the agent faces penalties (such as dismissal) in cases
where after the fact she is seen to have followed a losing strategy, when a winning
strategy existed.

The player with the highest stopping value wins unit reward, that is ∀i ∈ I,
player i wins 1 if she stops at time τ i such that Xi

τ i > Xj
τ j
∀j 6= i. (We discuss the

award of the prize in the case of a tie below.) In addition, the player is penalised
K ≥ 0 if her stopped value is not the highest, and if she had an alternative strategy
which would, with the benefit of hindsight, have allowed her to win. (The case
K = 0 corresponds to the standard problem.) Given that the best strategy for
agent i is to stop at the maximum value M i attained by Xi, this means that player
i loses K if she stops at τ i such that Xi

τ i < maxj 6=iXj
τ j
< M i.

There are several different potential definitions for the quantity M i which
represents the maximum the agent could have achieved. Depending on the interpret-
ation, this could be the maximum over the entire path M i = max{Xi

t ; 0 ≤ t ≤ H i
0},

or it could be that only that part of the path before the agent’s chosen stopping
time is considered, M i = max{Xi

t ; 0 ≤ t ≤ τ i}, or only that part of the path after
the agent’s chosen stopping time, M i = max{Xi

t ; τ i ≤ t ≤ H i
0}. These different

interpretations will lead to different Nash equilibria. We consider the three cases
separately in the next three sections.

As before, ties are broken randomly. If there are k players who stop at the
highest value then these players each wins 1

k . Further, player i loses K2 if she stops
at τ i such that Xi

τ i < maxj 6=iXj
τ j

= M i, where 0 ≤ K2 ≤ K. Hence player i who
stops at Xi

τ i with maximum value M i has pay-off

1
k

1{Xi
τi

=maxj∈I Xj

τj
} −K1{Xi

τi
<maxj 6=iXj

τj
<M i} −K21{Xi

τi
<maxj 6=iXj

τj
=M i},

where k =
∣∣∣{i ∈ I : Xi

τ i = maxj∈I Xj
τ j

}∣∣∣.
Our objective is to find a Nash equilibrium which is represented by a fam-

ily of stopping rules (τ i)i∈I . Since the values (Xi
τ i ,M

i)i∈I are sufficient statistics
for the problem, the Nash equilibrium can be characterised by the laws (νi)i∈I of
(Xi

τ i ,M
i)i∈I . Then, in equilibrium, the agent can use any stopping rule for which

(Xi
τ i ,M

i) has law νi.
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In our generalised setting we will limit our search to symmetric atom-free
Nash equilibria. Then, since there are no atoms, the probability of a tie is zero.
Thus, neither the method of breaking ties nor the value of K2 will affect our results.

Suppose that the other players all choose F (x) as their target distribution of
Xτ , where F is continuous and such that F (0) = 0. Let Y = maxj 6=iXj

τ j
. Then Y

has cumulative distribution function FY given by FY (y) = F (x)n−1 and conditional
on (Xi

τi = x,M i = m), the expected pay-off to agent i is

P(Y ≤ x)−KP(x < Y ≤ m) = F (x)n−1 −K
[
F (m)n−1 − F (x)n−1

]
= (1 +K)F (x)n−1 −KF (m)n−1.

We say ν = ν(dx, dm) is a feasible measure if ν is a possible joint law of (Xi
τ i ,M

i).
Then the aim of agent i is to choose a feasible measure to maximise

(1 +K)E[F (Xi
τ i)

n−1]−KE[F (M i)n−1]. (3.1)

Note that the set of feasible measures depends on the definition ofM . In particular,
we must have E(Xi

τ i) ≤ x0, since Xi is a non-negative supermartingale and τ i is
finite almost surely.

3.2 Contest with regret over future failure to stop

In this section we consider the contest in which the agent is penalised for stopping
too soon. We consider the maximum value M i to be defined by

M i := M i
[τ i,Hi

0] = sup
τ i≤t≤Hi

0

Xi
t .

Theorem 3.2.1. There exists a symmetric, atom-free Nash equilibrium for the prob-
lem for which Xi

τ i has law F (x), where for x ≥ 0

F (x) = min
{

N−1

√
x

Nx0
, 1
}

with N = n+K(n− 1).

Remark 3.2.1. The agent follows exactly the same optimal strategy as an agent
in a different setup, where there is no penalty, but the total number of contestants
is increased to N = n+K(n− 1).

Proof. Fix any i ∈ I. Denote by ν the joint distribution of Xi
τ i and M i

[τ i,Hi
0] and
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denote by G(x) the marginal distribution of Xi
τ i . Then, using the strong Markov

property and the martingale property of Xi,

ν([0, x]× [0, y]) = P
(
Xi
τ i ≤ x,M

i
[τ i,Hi

0] ≤ y
)

=
ˆ x

0
P
(
M i

[τ i,Hi
0] ≤ y|X

i
τ i = z

)
G(dz)

=
ˆ x

0
P
(
H̃ i

0 < H̃ i
y∨z|Xi

τ i = z
)
G(dz)

=
ˆ x

0
P
(
H i

0 < H i
y∨z|Xi

0 = z
)
G(dz) =

ˆ x

0

y ∨ z − z
y

G(dz), (3.2)

where H i
w = inf{t ≥ 0 : Xi

t = w} and H̃ i
w = inf{t ≥ τ i : Xi

t = w} for any w ≥ 0.
Let A be the set of non-decreasing right-continuous functions f : [0,∞) 7→

[0,∞). Suppose that the other players all choose F (x) as their target distribution of
Xτ , where F (x) is continuous and satisfies F (0) = 0. Substituting (3.2) into (3.1),
the expected pay-off of player i becomes

ˆ ∞
0

ˆ ∞
0

[
(1 +K)F (x)n−1 −KF (y)n−1

]
ν(dx, dy)

=
ˆ ∞

0
(1 +K)F (x)n−1G(dx)−

ˆ ∞
0

ˆ ∞
x

KF (y)n−1 x

y2dyG(dx)

=
ˆ ∞

0

[
(1 +K)F (x)n−1 −Kx

ˆ ∞
x

F (y)n−1

y2 dy

]
G(dx).

Thus, given other players’ choices, player i would like to choose G to solve

max
G∈A

ˆ ∞
0

[
(1 +K)F (x)n−1 −Kx

ˆ ∞
x

F (y)n−1

y2 dy

]
G(dx) (3.3)

subject to
´∞

0 xG(dx) ≤ x0 and
´∞

0 G(dx) = 1.
Introducing multipliers λ and γ for the two constraints, the Lagrangian for

the optimisation problem (3.3) is then

LF (G;λ, γ) =
ˆ ∞

0

[
(1 +K)F (x)n−1 −Kx

ˆ ∞
x

F (y)n−1

y2 dy − λx− γ
]
G(dx)

+ λx0 + γ.

Let AD(x0) be the subset of A corresponding to distribution functions of random
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variables with mean less than or equal to x0, that is

AD(x0) =
{
f ∈ A : lim

x↑∞
f(x) = 1 and

ˆ ∞
0

xf(dx) ≤ x0

}
.

Now we state a variant of the Lagrangian sufficiency theorem for our problem.

Proposition 3.2.1. If G∗, λ∗ and γ∗ exist such that λ∗ ≥ 0, G∗(0) = 0, G∗ is
continuous, G∗ ∈ AD(x0),

´∞
0 xG∗(dx) = x0 and

LG∗(G∗;λ∗, γ∗) ≥ LG∗(G;λ∗, γ∗) for all G ∈ A, (3.4)

then G∗ is a symmetric, atom-free Nash equilibrium.

Proof. We seek a symmetric atom-free Nash equilibrium. A symmetric atom-free
Nash equilibrium is identified with a continuous distribution function G∗ ∈ AD(x0)
with G∗(0) = 0 and the property that for any G ∈ AD(x0)

ˆ ∞
0

[
(1 +K)G∗(x)n−1 −Kx

ˆ ∞
x

G∗(y)n−1

y2 dy

]
G∗(dx)

≥
ˆ ∞

0

[
(1 +K)G∗(x)n−1 −Kx

ˆ ∞
x

G∗(y)n−1

y2 dy

]
G(dx).

If G ∈ AD(x0) then

ˆ ∞
0

[
(1 +K)G∗(x)n−1 −Kx

ˆ ∞
x

G∗(y)n−1

y2 dy

]
G(dx)

= LG∗(G;λ∗, γ∗)− λ∗
[
x0 −

ˆ ∞
0

xG(dx)
]
≤ LG∗(G;λ∗, γ∗),

since λ∗ ≥ 0 and
´∞

0 xG(dx) ≤ x0. Then, under the hypotheses of the proposition,

ˆ ∞
0

[
(1 +K)G∗(x)n−1 −Kx

ˆ ∞
x

G∗(y)n−1

y2 dy

]
G∗(dx)

= LG∗(G∗;λ∗, γ∗) ≥ LG∗(G;λ∗, γ∗)

≥
ˆ ∞

0

[
(1 +K)G∗(x)n−1 −Kx

ˆ ∞
x

G∗(y)n−1

y2 dy

]
G(dx).

Thus, G∗ is a symmetric, atom-free Nash equilibrium.

Return to the proof of Theorem 3.2.1. Let G∗(x) = min
{

1, N−1
√
x/(Nx0)

}
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on [0,∞), λ∗ = 1/(Nx0) and γ∗ = 0, where N = n+K(n− 1). It is easy to check
that λ∗ ≥ 0, G∗(0) = 0, G∗ is continuous, G∗ ∈ AD(x0) and

´∞
0 xG∗(dx) = x0.

Moreover,

LG∗(G;λ∗, γ∗) =
ˆ ∞

0

[
(1 +K)G∗(x)n−1 −Kx

ˆ ∞
x

G∗(y)n−1

y2 dy − λ∗x− γ∗
]
G(dx)

+ λ∗x0 + γ∗

=
ˆ ∞
Nx0

[
1− x

Nx0

]
G(dx) + 1

N
≤ 1
N

= LG∗(G∗;λ∗, γ∗).

Hence, by the Lagrangian sufficiency theorem (Proposition 3.2.1), G∗ is a symmetric,
atom-free Nash equilibrium.

Remark 3.2.2. In this version of the problem, the stopping decision depends on
the current value of X alone, and not on the current maximum. This is because the
penalty depends on the future maximum, which conditional on the current value of
the process is independent of the past maximum.

3.3 Contest with regret over past failure to stop

This section discusses the contest with regret over past failure to stop, that is player
is penalised when she could have won if she had stopped sooner. This case is relevant
when the omniscient being can only observe the realisation of Xi up to the stopping
time chosen by the agent. In this case the maximum value M i is defined by

M i := M i
τ i = sup

0≤t≤τ i
Xi
t .

Consider the problem facing a single agent under the assumption that the
strategies of the other agents in the contest are fixed. Temporarily we drop the
subscript denoting the label of the agent. Recall that the pay-off to the agent is
(1 + K)F (Xτ )n−1 − KF (Mτ )n−1. For a continuous martingale Kertz and Rösler
[1990] characterises all possible joint laws of (Xτ ,Mτ ) and hence the problem is
reduced to a search over measures with these characteristics. However, an alternative
is to split the optimisation problem into a two-stage procedure: first for any feasible
distribution of Xτ (a non-negative random variable with mean less than or equal to
x0) find the joint law of (Xτ ,Mτ ) for whichMτ is as small as possible in distribution
(in the sense of first order stochastic dominance)—such a joint law exists by results
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of Perkins [1986]—and then minimise a modified objective function over feasible
laws of Xτ .

For a given atom-free law of Xτ (recall that we are seeking a symmetric,
atom-free distribution, so we focus on this case), the joint law of (Xτ ,Mτ ) for which
Mτ is minimised is such that mass is placed only on the set A = {(x, x) : x ≥
x0} ∪ {(x,Φ(x)) : x < x0}, where Φ : (0, x0) 7→ (x0,∞) is a strictly decreasing
function. Let φ be inverse to Φ. Then, if G denotes the marginal law of Xτ and
E(Xτ ) = x0, we can conclude from Doob’s submartingale inequality, in conjunction
with the set identity (Mτ ≥ m) = (Xτ ≥ m) ∪ (Xτ ≤ φ(m)), that for m ≥ x0

0 = E[m−Xτ ;Xτ ≥ m] + E[m−Xτ ;Xτ ≤ φ(m)]

=
ˆ ∞
m

(m− y)G(dy) +
ˆ φ(m)

0
(m− y)G(dy) (3.5)

which, since Xτ has mean x0, is equivalent to

0 = m− x0 + (m− φ(m))G(φ(m))−
ˆ m

φ(m)
G(y)dy. (3.6)

In differential form, assuming G and φ are differentiable, this becomes

0 = φ′(m)(m− φ(m))G′(φ(m)) + 1 +G(φ(m))−G(m). (3.7)

It follows from the results of Perkins [1986] and Hobson and Pedersen [2002], that
if G is the law of an atom-free non-negative random variable, then there exists a
decreasing function φ solving (3.5). Further, if ξ is a random variable such that

P(ξ ≥ s) = exp
(
−
ˆ

(x0,s)

G(du)
1−G(u) +G(φ(u))

)
for any s ≥ x0

and if τ = τξ ∧ τφ where τξ = inf{t > 0|Mt ≥ ξ} and τφ = inf{t > 0|Xt ≤ φ(Mt)},
then Xτ has law G and (Xτ ,Mτ ) places no mass outside of A. Moreover, amongst
the class of joint laws for (Xτ ,Mτ ) such that Xτ has law G, Mτ is as small as
possible in distribution.

Theorem 3.3.1. Suppose there exists a finite real number r > x0, a once differen-
tiable strictly decreasing function φ : [x0, r] 7→ [0, x0], a thrice differentiable strictly
increasing and strictly convex function ψ : [x0, r] 7→ [0, 1] and a once differentiable
strictly decreasing function θ : [x0, r] 7→ [0, 1] such that φ, ψ and θ solve the following
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system of equations

(†)


φ′(y)ψ′(y) = (1 +K)θ′(y), (3.8)

Kψ′(y) = (y − φ(y))ψ′′(y), (3.9)
y − φ(y)
n− 1 θ′(y) =

(
ψ(y)

1
n−1 − 1

)
θ(y)

n−2
n−1 − θ(y), (3.10)

and satisfy that φ(x0) = x0, ψ(r) = 1, ψ′(r−) = K+1
r , ψ′′(r−) = K(K+1)

r2 and
θ(x0) = ψ(x0).

(i) Then

θ(y) = ψ(y)− K

K + 1
ψ′(y)2

ψ′′(y) . (3.11)

(ii) Moreover, there exists a symmetric, atom-free Nash equilibrium for the problem
for which Xi

τ i and M i
τ i have joint law ν∗ that is determined by the marginal

distribution G∗ of Xi
τ i, given by G∗(x) = 0 for x ≤ 0, G∗(x) = 1 for x ≥ r and

G∗(x) =

θ(φ
−1(x))

1
n−1 , if 0 < x < x0,

ψ(x)
1

n−1 , if x0 ≤ x < r,
(3.12)

otherwise, and the conditional distribution of M i
τ i given X

i
τ i such that

M i
τ i =

X
i
τ i , if Xi

τ i ≥ x0,

φ−1(Xi
τ i) , if 0 ≤ Xi

τ i < x0.

Proof. The conditions in the theorem imply some properties of function φ: let y =
r− in (3.9), then since ψ′(r−) = K+1

r and ψ′′(r−) = K(K+1)
r2 we have φ(r) = 0; since

(3.9) holds and by the positivity of ψ′ and ψ′′, we have φ(y) < y on (x0, r).
(i) Integrating (3.8) with respect to y,

(K + 1)θ(z)− (K + 1)θ(x0)

=
ˆ z

x0

φ′(y)ψ′(y)dy = φ(z)ψ′(z)− φ(x0)ψ′(x0+)−
ˆ z

x0

φ(y)ψ′′(y)dy. (3.13)

Rearranging (3.9) and integrating it,
ˆ z

x0

φ(y)ψ′′(y)dy =
ˆ z

x0

yψ′′(y)dy −
ˆ z

x0

Kψ′(y)dy

= zψ′(z)− x0ψ
′(x0+)− (1 +K)ψ(z) + (1 +K)ψ(x0).
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Combining this equation with (3.13), we find

θ(y) = 1
K + 1(φ(y)− y)ψ′(y) + ψ(y). (3.14)

Then, substituting (3.9) into (3.14), (3.11) follows.
(ii) Let E(x0) be the set of measures ν(dx, dm) on [0,∞)× [0,∞) such that

ν(dx, dm) has no mass on {(x,m) : m < x or m < x0}, and let ED(x0) be the
subset of E(x0) corresponding to probability measures of a pair of random variables
X ≤ M such that X is a random variable with mean less than or equal to x0 and
E[X − z;M ≥ z] ≤ 0 for all z ≥ x0. Note that the last equation comes from the
Doob’s submartingale inequality, applied in the continuous supermartingale case.

Fix player i ∈ I. Suppose that the other players all choose F (x) as their
target distribution of Xτ and suppose that F is continuous with F (0) = 0. Then
the aim of player i is to choose ν to solve

max
ν∈E(x0)

{ˆ ∞
0

ˆ ∞
0

[
(1 +K)F (x)n−1 −KF (m)n−1

]
ν(dx, dm)

}
(3.15)

subject to
´∞

0
´∞

0 xν(dx, dm) ≤ x0,
´∞

0
´∞

0 ν(dx, dm) = 1 and
´∞
x=0
´∞
m=z(x −

z)ν(dx, dm) ≤ 0 ∀z ≥ x0.
Introduce multipliers λ and γ for the first two constraints, and for each

z ≥ x0 introduce a Lagrange multiplier η (z) for the last constraint: the constraint
becomes

´∞
0
´∞

0
´m
z=x0

{η(z)(x− z)dz} ν(dx, dm) = 0. Then the Lagrangian for the
optimisation problem (3.15) is

LF (ν;λ, γ, η) =
ˆ ∞

0

ˆ ∞
0

[
(1 +K)F (x)n−1 −KF (m)n−1 − λx− γ

−
ˆ m

x0

η(z)(x− z)dz
]
ν(dx, dm) + λx0 + γ. (3.16)

Now we state a variant of the Lagrangian sufficiency theorem for problem (3.15).

Proposition 3.3.1. If ν∗, λ∗, γ∗ and η∗ exist such that λ∗ ≥ 0, η∗ ≥ 0, ν∗ ∈ ED(x0),´∞
0
´∞

0 xν∗(dx, dm) = x0,
´∞
x=0
´∞
m=z(x − z)ν

∗(dx, dm) = 0 for all z ≥ x0, G∗ is
continuous, G∗(0) = 0 and

LG∗(ν∗;λ∗, γ∗, η∗) ≥ LG∗(ν;λ∗, γ∗, η∗) for all ν ∈ E(x0), (3.17)

where G∗(x) = ν∗([0, x] × [0,∞)), then ν∗ is a symmetric, atom-free Nash equilib-
rium.
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Proof. A symmetric atom-free Nash equilibrium is identified with a measure ν∗ ∈
ED(x0) with the property that G∗ is continuous, G∗(0) = 0 and for any measure
ν ∈ ED(x0)

ˆ ∞
0

ˆ ∞
0

[
(1 +K)G∗(x)n−1 −KG∗(m)n−1

]
ν∗(dx, dm)

≥
ˆ ∞

0

ˆ ∞
0

[
(1 +K)G∗(x)n−1 −KG∗(m)n−1

]
ν(dx, dm),

where G∗(x) = ν∗([0, x]× [0,∞)) for all x ≥ 0.
If ν ∈ ED(x0) then
ˆ ∞

0

ˆ ∞
0

[
(1 +K)G∗(x)n−1 −KG∗(m)n−1

]
ν(dx, dm)

= LG∗(ν;λ∗, γ∗, η∗)− λ∗
[
x0 −

ˆ ∞
0

ˆ ∞
0

xν(dx, dm)
]

−
ˆ ∞
z=x0

η∗(z)
ˆ ∞
x=0

ˆ ∞
m=z

(x− z)ν(dx, dm)dz

≤ LG∗(ν;λ∗, γ∗, η∗).

Then, under the hypotheses of the proposition,
ˆ ∞

0

ˆ ∞
0

[
(1 +K)G∗(x)n−1 −KG∗(m)n−1

]
ν∗(dx, dm)

= LG∗(ν∗;λ∗, γ∗, η∗) ≥ LG∗(ν;λ∗, γ∗, η∗)

≥
ˆ ∞

0

ˆ ∞
0

[
(1 +K)G∗(x)n−1 −KG∗(m)n−1

]
ν(dx, dm).

Thus, ν∗ is a symmetric, atom-free Nash equilibrium.

Now return to the proof of Theorem 3.3.1. On [0,∞)× [0,∞) let ν∗ be the
joint law given in the theorem and G∗ be its marginal distribution with respect to
Xτ . In particular, G∗ is given by (3.12). Let λ∗ = ψ′(x0+), γ∗ = ψ(x0)−x0ψ

′(x0+),
η∗(y) = ψ′′(y) for x0 < y < r, and η∗(y) = 0 for y ≥ r. It is clear that λ∗ ≥ 0 and
η∗ ≥ 0.

We first show that G∗(0+) = 0, limy↑∞G
∗(y) = 1, G∗(y) is continuous and

non-decreasing,
´∞

0 uG∗(du) = x0 and
´∞
x=0
´∞
y=z(x− z)ν

∗(dx, dy) = 0 for all z ≥ x0.
This implies that ν∗ ∈ ED(x0).

Letting y = r− in (3.11), we find θ(r) = 0. Then since φ(r) = 0, we
have G∗(0+) = θ(φ−1(0))1/(n−1) = θ(r)1/(n−1) = 0. Moreover, limy↑∞G

∗(y) = 1
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follows from the finiteness of r. We have φ−1(x0) = x0 and hence G∗ is continu-
ous at x0. Since both φ and θ are decreasing and continuous on [x0, r], G∗ (x) =
θ(φ−1(x))1/(n−1) is increasing and continuous on [0, x0]. Then, since ψ(y) is increas-
ing and continuous on [x0, r], G∗ is continuous and non-decreasing on the whole
interval of [0, r]. Note that this implies r = sup{x ≥ 0 : G∗(x) < 1}.

For y > x0, we have G∗(φ(y)) = θ(y)1/(n−1) and so φ′(y)(G∗)′(φ(y)) =
θ(y)1/(n−1)−1θ′(y)/(n− 1). Then, using (3.10),

φ′(y)(y − φ(y))(G∗)′(φ(y)) = θ(y)
2−n
n−1

y − φ(y)
n− 1 θ′(y)

= ψ(y)
1

n−1 − 1− θ(y)
1

n−1 = G∗(y)− 1−G∗(φ(y)).

Hence,

φ′(y)(y − φ(y))(G∗)′(φ(y)) + (1− φ′(y))G∗(φ(y)) = G∗(y)− 1− φ′(y)G∗(φ(y)),

and integrating from x to r

−(x− φ(x))G∗(φ(x)) = −(r − x) +
ˆ r

x
G∗(y)dy +

ˆ φ(x)

0
G∗(y)dy. (3.18)

Then, setting x = x0, we recover x0 =
´ r

0 (1 − G∗(y))dy so that a random variable
with distribution function G∗ has mean x0.

Finally, from its construction we have that ν∗ only puts mass on A. Hence,
from (3.5),

ˆ ∞
x=0

ˆ ∞
y=z

(x− z)ν∗(dx, dy) =
ˆ φ(z)

0
(x− z)G∗(dx) +

ˆ r

z
(x− z)G∗(dx) = 0.

Now we prove that (3.17) holds. Let

L∗(x, y) = (1 +K)G∗(x)n−1 −KG∗(y)n−1 − λ∗x− γ∗ −
ˆ y

x0

η∗(z)(x− z)dz

and then LG∗(ν;λ∗, γ∗, η∗) =
´∞

0
´∞

0 L∗(x, y)ν(dx, dy) + λ∗x0 + γ∗.

For notational convenience, extend the domain of ψ to [0, r] by defining
ψ(x) = θ(φ−1(x)) for x ∈ [0, x0). Then, for x < x0, ψ′(x) = θ′(φ−1(x))

φ′(φ−1(x)) = ψ′(φ−1(x))
K+1 >

0, where the last equality comes from (3.8). Moreover ψ′′ (x) = ψ′′(φ−1(x))
(1+K)φ′(φ−1(x)) < 0.

Thus, ψ is increasing on [0, r], ψ′′(x) < 0 if x ∈ (0, x0) and ψ′′(x) > 0 if x ∈ (x0, r).
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Fix y ∈ [x0, r]. For any 0 ≤ x ≤ y,

L∗(x, y) = (1 +K)ψ(x)−Kψ(y)− ψ′(x0+)x

− ψ(x0) + x0ψ
′(x0+)−

ˆ y

x0

ψ′′(z)(x− z)dz

= (1 +K)(ψ(x)− ψ(y)) + (y − x)ψ′(y). (3.19)

We have L∗(φ(y), y) = (1 + K)(θ(y) − ψ(y)) + (y − φ(y))ψ′(y), and then by (3.11)
and (3.9), L∗(φ(y), y) = 0. It is also clear that L∗(y, y) = 0. Differentiating (3.19)
with respect to x,

∂L∗

∂x
(x, y) = (1 +K)ψ′(x)− ψ′(y); ∂2L∗

∂x2 (x, y) = (1 +K)ψ′′(x).

Then, ∂2L∗

∂x2 (x, y) < 0 on (0, x0) and ∂2L∗

∂x2 (x, y) > 0 on (x0, y). Since ∂L∗

∂x (φ(y), y) =
(1 + K)ψ′(φ(y)) − ψ′(y) = (1 + K)ψ

′(y)
K+1 − ψ

′(y) = 0 and ∂L∗

∂x (y, y) = Kψ′(y) > 0,
it follows that ∂L∗

∂x (x, y) > 0 if x ∈ (0, φ(y)), ∂L∗

∂x (x, y) < 0 if x ∈ (φ(y), x̃) and
∂L∗

∂x (x, y) > 0 if x ∈ (x̃, y), where x̃ ∈ (x0, y) is such that ∂L∗

∂x (x, y)|x=x̃ = 0. It
follows that L∗(x, y) < 0 for x ∈ [0, φ(y)) ∪ (φ(y), y).

Now fix y > r. For any 0 ≤ x ≤ y, since ψ′(r−) = (K + 1)/r and writing
ψ̃(x) = ψ(x)− x/r,

L∗(x, y) = (1 +K)ψ(x)−K − ψ′(x0+)x

− ψ(x0) + x0ψ
′(x0+)−

ˆ r

x0

ψ′′(z)(x− z)dz

= (1 +K)(ψ(x)− 1) + (r − x)ψ′(r−) = (1 +K)ψ̃(x).

If x ∈ (r, y] then L∗(x, y) = (1 + K)1
r [r − x] < 0. Now suppose x ∈ (0, r). Since

φ(r) = 0, we have ψ′(0+) = 1
r and thus ψ̃′(0+) = 0. Further ψ̃′(r−) = K

r > 0.
Then, by the sign of ψ′′(x), we get ψ̃′(x) is negative and then positive on (0, r).
Since ψ̃(0) = ψ̃(r) = 0, we deduce that ψ̃(x) < 0 on (0, r). Thus L∗(x, y) < 0 for
x ∈ (0, r).

From above analysis, we know L∗(x, y) ≤ 0 for any (x, y) such that 0 ≤ x ≤ y
and y ≥ x0. This means that, for any ν ∈ E(x0), since λ∗x0 + γ∗ = ψ(x0),

LG∗(ν;λ∗, γ∗, η∗) ≤ ψ(x0) = LG∗(ν∗;λ∗, γ∗, η∗).

Thus, ν∗ is a symmetric, atom-free Nash equilibrium from Proposition 3.3.1.
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It remains to show that there exists a constant r and functions (φ, θ, ψ) which
satisfy the hypotheses of Theorem 3.3.1 and hence that a symmetric atom-free Nash
equilibrium always exists. The following lemma is key in defining the appropriate
entities.

Lemma 3.3.1. Let J(u) solve the ordinary differential equation

J ′(u) = J(u) + 1− (1− u)1/(n−1)

(K + 1) [1− u− J(u)n−1] (3.20)

subject to J(0) = 0 and u ≥ 0. Let u∗ = sup
{
u : J(u) < (1− u)1/(n−1)

}
.

(i) Let z∗ = 1− u∗ and define

H(z) = K

(K + 1) [z − J(1− z)n−1] (3.21)

on [z∗, 1]. Then, z∗ > 0, H is positive on (z∗, 1) and
´ 1
z∗ exp

(´ 1
wH(v)dv

)
dw <

(K + 1).

(ii) Define

r = x0(K + 1)
(K + 1)−

´ 1
z∗ exp

(´ 1
wH(v)dv

)
dw

and
Ψ(z) = r

K + 1

[
(K + 1)−

ˆ 1

z
exp

(ˆ 1

w
H(v)dv

)
dw

]

on [z∗, 1]. Let ψ = Ψ−1 be the inverse function of Ψ. Then, x0 < r < ∞
and ψ : [x0, r] 7→ [0, 1] is a thrice differentiable strictly increasing and strictly
convex function that satisfies ψ(r) = 1, ψ′(r−) = K+1

r and ψ′′(r−) = K(K+1)
r2 .

(iii) Define

φ(y) = y − Kψ′(y)
ψ′′(y) . (3.22)

Then φ : [x0, r] 7→ [0, x0] is a once differentiable strictly decreasing function
with φ(x0) = x0.

(iv) Define

θ(y) = ψ(x0) + 1
K + 1

ˆ y

x0

φ′(z)ψ′(z)dz

Then θ : [x0, r] 7→ [0, 1] is a once differentiable strictly decreasing function with
θ(x0) = ψ(x0). Moreover, θ(y) = ψ(y)− (y − φ(y))ψ′(y)/(K + 1).
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Proof. It is easily seen that J(u) is a strictly increasing function at least until J(u) =
n−1√1− u, and that u∗ < 1.

(i) Since u∗ < 1, z∗ = 1 − u∗ > 0. Since J is increasing, for any u ∈ (0, u∗),
J(u)n−1 ≤ J(u∗)n−1 and thus 1 − u − J(u)n−1 ≥ 1 − u − J(u∗)n−1 = u∗ − u.
This means that, for any z ∈ (z∗, 1), we have z−J(1− z)n−1 ≥ z− z∗ > 0 and
then 0 < H(z) ≤ K

(K+1)(z−z∗) . Moreover,

ˆ 1

z∗
exp

(ˆ 1

w

K

(K + 1)(v − z∗)dv
)
dw

=
ˆ 1

z∗
exp

(
K

K + 1 ln 1− z∗

w − z∗
)
dw =

ˆ 1

z∗

( 1− z∗

w − z∗
) K
K+1

dw

= (1− z∗)
K
K+1 (1− z∗)

1
K+1 (K + 1) = (1− z∗)(K + 1) < (K + 1),

and it follows that
´ 1
z∗ exp

(´ 1
wH(v)dv

)
dw < (K + 1).

(ii) Since 0 < (K + 1)−
´ 1
z∗ exp

(´ 1
wH(v)dv

)
dw < (K + 1), we have that x0 < r <

∞. By the differentiability of J and the form of Ψ, Ψ is thrice differentiable.
Taking derivatives of Ψ on (z∗, 1), we find Ψ′(z) = r

K+1 exp
(´ 1

z H(v)dv
)
> 0

and Ψ′′(z) = −H(z)Ψ′(z) < 0. Then, since Ψ(z∗) = x0 and Ψ (1) = r, Ψ is
a strictly increasing and strictly concave function from [z∗, 1] to [x0, r]. Thus,
ψ = Ψ−1 : [x0, r] 7→ [0, 1] is a thrice differentiable strictly increasing and strictly
convex function satisfying ψ(r) = 1.

Moreover, ψ′(y) = 1
Ψ′(ψ(y)) and thus ψ′′(y) = −Ψ′′(ψ(y))ψ′(y)

Ψ′(ψ(y))2 . Then, since
Ψ(1) = r, Ψ′(1−) = r

K+1 and Ψ′′(1−) = − rK
(K+1)2 , we get ψ(r) = 1, ψ′(r−) =

1
Ψ′(1−) = K+1

r and ψ′′(r−) = −Ψ′′(1−)ψ′(r−)
Ψ′(1−)2 = K(K+1)

r2 .

(iii) Letting u = 1− z in (3.20), we get

J ′(1− z) = J(1− z) + 1− z1/(n−1)

(K + 1) [z − J(1− z)n−1] = H(z)
K

(
J(1− z) + 1− z

1
n−1
)
. (3.23)

Letting x = z in (3.21) and differentiating it with respect to z,

H ′(z) = −K
[
1 + (n− 1)J(1− z)n−2J ′(1− z)

]
(K + 1) [z − J(1− z)n−1]2

.

Substituting (3.23) into previous equation,

H ′(z) = −K + 1
K

H(z)2
[
1 + (n− 1)J(1− z)n−2H(z)

K

(
J(1− z) + 1− z

1
n−1
)]
,
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which implies that H′(z)
H(z)2 < −K+1

K and is equivalent to

H ′(z) = −(K + 1)(n− 1)
K2 H(z)3

[
J(1− z)n−2

(
1− z

1
n−1
)

+ J(1− z)n−1
]

− K + 1
K

H(z)2. (3.24)

Note that φ is once differentiable because ψ is thrice differentiable and φ′(y) =
1−K

(
1− ψ′(y)ψ′′′(y)

ψ′′(y)2

)
. Since H(z) = −Ψ′′(z)

Ψ′(z) = ψ′′(Ψ(z))
ψ′(Ψ(z))2 , we have that

H(ψ(y)) = ψ′′(y)
ψ′(y)2 (3.25)

and thus H ′(ψ(y))ψ′(y) = ψ′′′(y)
ψ′(y)2 − 2ψ′′(y)2

ψ′(y)3 . This implies that 1 − ψ′(y)ψ′′′(y)
ψ′′(y)2 =

−H ′(ψ(y)) ψ
′(y)4

ψ′′(y)2 − 1 and therefore

φ′(y) = K
H ′(ψ(y))
H(ψ(y))2 +K + 1. (3.26)

It follows that φ′(y) < 0.

Since ψ′(r−) = K+1
r , ψ′(y) > 0 and ψ′′(y) > 0 on (x0, r), we know ψ′(x0+) is

bounded. Then, since ψ′′(x0+)
ψ′(x0+)2 = H(ψ(x0)) = H(z∗) = +∞, we get ψ′′(x0+) =

+∞. Substituting these values into (3.22), we obtain φ(x0) = x0.

(iv) The statements about θ are either trivial, or follow as in the derivation of
(3.14).

Theorem 3.3.2. Let r, ψ, φ, θ be as defined in Lemma 3.3.1.
Then there exists a symmetric, atom-free Nash equilibrium for the problem

for which Xi
τ i has distribution F where F (x) = 0 for x ≤ 0, F (x) = 1 for x ≥ r and

otherwise

F (x) =

θ(φ
−1(x))

1
n−1 if 0 < x < x0,

ψ(x)
1

n−1 if x0 ≤ x < r.

Proof. By (3.22) and (3.25), 1
H(ψ(y)) = ψ′(y)2

ψ′′(y) = y−φ(y)
K ψ′(y). Hence θ(y) = ψ(y) −

K
(K+1)H(ψ(y)) = J(1− ψ(y))n−1. Thus, letting z = ψ(y) in (3.24),

H ′(ψ(y)) = −(K + 1)(n− 1)
K2 H(ψ(y))3

[(
1− ψ(y)

1
n−1
)
θ(y)

n−2
n−1 + θ(y)

]
− K + 1

K
H(ψ(y))2,
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Figure 3.1: Graph of G∗(x) for different K with x0 = 1 and n = 3.

and using (3.26) and rearranging above equation,

y − φ(y)
n− 1

φ′(y)ψ′(y)
K + 1 = −

[
θ(y) +

(
1− ψ(y)

1
(n−1)

)
θ(y)

n−2
n−1

]
.

Then, substituting (3.8) into above equation, (3.10) follows. Therefore, (†) holds.
Then, using Theorem 3.3.1, we obtain the symmetric, atom-free Nash equilibrium
given in Theorem 3.3.2.

Example 3.3.1. As an example we consider a 3-player contest. Set x0 = 1 and
n = 3. In Figures 3.1 and 3.2 we give graphs of the optimal distribution G∗(x) and
its density function g∗(x) for various values of K.

As we can see in Figure 3.1, the right endpoint r = r(K) of G∗(x) decreases
as K increases. Moreover, r(K) tends to n = 3 as K decreases to 0 and tends to x0

as K increases to +∞. We also find that G∗(x) tends to the equilibrium distribution
of the original contest as K decreases to 0 and G∗(x) tends to the Heaviside function
H{x≥x0} as K increases to +∞. From Figure 3.2, we find g∗(x) jumps at x0 if K > 0
and g∗(x) tends to +∞ as y tends to 0.

Intuitively, if K is very large, then the player does not aim for large values of
the stopped process, for then she risks a moderate value of the maximum together
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with a small and losing value for the stopped process. Because of the large penalty
she wishes to avoid such outcomes.

Example 3.3.2. In the 2-player contest we can give explicit expressions for several
of the quantities of interest.

Set n = 2. Substituting (3.8), (3.9) and (3.11) into (3.10), we get

(y − φ(y)) 1
1 +K

φ′(y)ψ′(y) = (ψ(y)− 1)− ψ(y) + K

K + 1
y − φ(y)

K
ψ′(y).

Defining ϕ(y) = y − φ(y), the above equation simplifies to ϕ(y)ϕ′(y) = K+1
ψ′(y) . Dif-

ferentiating this expression and using (3.9), we have

[
ϕ(y)ϕ′(y)

]′ = −(K + 1) ψ
′′(y)

ψ′(y)2 = −(K + 1) K

ϕ(y)ψ′(y) = −Kϕ′(y),

and then
ϕ(y)ϕ′(y) = −Kϕ(y) +Kϕ(r) + ϕ(r)ϕ′(r−). (3.27)

Since ϕ(r) = r and ψ′(r−) = K+1
r , we have ϕ′(r−) = 1. Then (3.27) becomes

ϕ(y)ϕ′′(y) = −Kϕ(y) + r(K + 1), which using the boundary condition ϕ(r) = r has
solution

r − y = r(K + 1)
K2 ln

(
(K + 1)− Kϕ(y)

r

)
− r − ϕ(y)

K
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Using ϕ(x0) = x0 − φ(x0) = 0,

r = x0
K2

(K + 1) [K − ln (1 +K)]

and therefore the implicit form of ϕ(y) for y ∈ [x0, r] is

y = x0 −
ϕ(y)
K
− x0
K − ln (1 +K) ln

[
1− ϕ(y)K − ln (1 +K)

Kx0

]

and φ(y) = y − ϕ(y). It is possible to express ψ and θ in terms of ϕ, and thence
the optimal distribution G∗ of Xi

τ i and the optimal conditional distribution of M i
τ i

given Xi
τ i , but these expressions are not so compact.

3.4 Contest with regret over failure to stop at the best
time

In this section, we discuss the contest with regret over failure to stop at a winning
time, when alternative times both before and after the chosen time are permitted. A
player experiences regret if she could have won if she had stopped at the maximum
value over the whole path. The maximum value M i is given by

M i := M i
Hi

0
= sup

0≤t≤Hi
0

Xi
t .

Theorem 3.4.1. There exists a symmetric, atom-free Nash equilibrium for the prob-
lem for which Xi

τ i has law F (x), where for x ≥ 0

F (x) = min
{

n−1

√
x

nx0
, 1
}
.

Proof. The agent’s expected pay-off is

(1 +K)E[F (Xi
τ i)

n−1]−KE[F (M i
Hi

0
)n−1]

But the latter term is independent of the stopping rule used by the agent. Hence, in
determining her optimal strategy the agent need only consider (1+K)E[F (Xi

τ i)
n−1].

Modulo the factor of (1 +K), this is the same objective function as in the standard
case.

Remark 3.4.1. The agent follows exactly the same Nash equilibrium strategy as
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an agent in the original contest, in which there is no penalty. The intuition behind
is that the regret is determined by M i

Hi
0
but player cannot change the distribution

of M i
Hi

0
by changing the choices of stopping time τ i.

3.5 Derivation of the equilibrium distribution

This section is intended to illustrate how we derived the optimal multipliers and the
candidate Nash equilibria in Sections 3.2 and 3.3 and also the boundary conditions
in Section 3.3. The Lagrangian approach gives a general method for finding the
optimal solution, which is distinct from the ideas in Seel and Strack [2013], and can
be generalised to other settings.

3.5.1 Contest with regret over stopping too soon

Recall the definition of the Lagrangian LF (G;λ, γ) for the optimisation problems
(3.3). Denote by LF (x) the integrand in LF , that is

LF (x) = (1 +K)F (x)n−1 −Kx
ˆ ∞
x

F (y)n−1

y2 dy − λx− γ,

so LF (G;λ, γ) =
´∞

0 LF (x)G(dx) + λx0 + γ. In order to have a finite optimal
solution, we require LF (x) ≤ 0 on [0,∞). Let DF be the set of (λ, γ) such that
LF (·;λ, γ) has a finite maximum. Then DF is defined by

DF = {(λ, γ) : LF (x) ≤ 0 on [0,∞)}.

Observe that LF (0) = (1+K)F (0)n−1−γ, which implies that if (λ, γ) ∈ DF then γ
is non-negative. In order to reach the maximum value, we require G(dx) = 0 when
LF (x) < 0. This means that for (λ, γ) ∈ DF the maximum of LF (·;λ, γ) occurs at
G∗ such that G∗(dx) = 0 when LF (x) < 0. If the Nash equilibrium is symmetric,
then we must have G∗(x) = F (x), and then LG∗(x) ≤ 0, and LG∗(x) = 0 when
G∗(dx) > 0. Introduce a = inf{x : G∗(x) > 0} and b = sup{x : G∗(x) < 1} which
are the limits on the support of G∗.

Let ψ(x) = G∗(x)n−1, then LG∗(x) becomes

LG∗(x) = (1 +K)ψ(x)−Kx
ˆ ∞
x

ψ(y)
y2 dy − λx− γ. (3.28)

Thus, we expect ψ(x) is the solution to LG∗(x) = 0 at least when ψ(dx) > 0.
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Setting LG∗(x) = 0 and differentiating (3.28) twice with respect to x, we find

(1 +K)ψ′′(x)x+Kψ′(x) = 0.

Thus, ψ(x) = C1x
1

K+1 +C2, where C1 and C2 are some constants, and then G∗(x) =
n−1
√
C1x

1
K+1 + C2 when G∗(dx) > 0. Since we are seeking an atom-free non-constant

solution, we must have G∗(x) = n−1
√
C1x

1
K+1 + C2 on the whole interval of [a, b],

where C1 > 0.
Substituting ψ(x) = G∗(x)n−1 = (C1x

1
K+1 + C2) ∧ 1 into (3.28), and setting

LG∗(x) = 0, we have that, ∀x ∈ [a, b],

0 = (1 +K)
(
C1x

1
K+1 + C2

)
−Kx

ˆ b

x

C1y
1

K+1 + C2
y2 dy −Kx

ˆ ∞
b

1
y2dy − λx− γ

=
[
(1 +K)C1b

1
K+1 +KC2 −K − λb

] x
b

+ C2 − γ.

This gives us optimal multipliers λ∗ = 1
b

[
(1 +K)C1b

1
K+1 +KC2 −K

]
and γ∗ = C2.

Since G∗ is atom-free, G∗(a) = 0 and hence C1a
1

K+1 +C2 = 0. Then, from the
non-negativity of a and γ∗ = C2 and the positivity of C1, it follows that C2 = a = 0.
Thus, G∗(x) = n−1

√
C1x

1
K+1 on [0, b] for some C1 and b which can be identified

using the fact that G∗ corresponds to a probability distribution with mean x0. In
particular, setting N = 1 + (K + 1)(n− 1), for a feasible solution,

1 =
´ b

0 d

(
n−1
√
C1x

1
K+1

)
= n−1

√
C1b1/(K+1),

x0 =
´ b

0 xd

(
n−1
√
C1x

1
K+1

)
=

n−1√C1
(K+1)(n−1)+1b

(K+1)(n−1)+1
(K+1)(n−1) = N−1

√
CK+1

1 b bN .

Hence, C1 = b−1/(K+1) and then b = Nx0 and C1 = K+1
√

1
Nx0

. Thus G∗(x) =
N−1
√
x/Nx0 on [0, Nx0].

3.5.2 Contest with regret over past failure

Recall the definition of the Lagrangian LF (ν;λ, γ, η) for the optimisation problem of
Section 3.3. Let LF (x, y) be the integrand in the definition of LF as given in (3.16).
In order to have a finite optimal solution, we require LF (x, y) ≤ 0 on [0,∞)×[x0,∞).
Let DF be the set of (λ, γ, η) such that LF (·;λ, γ, η) has a finite maximum. Then
DF is defined by

DF = {(λ, γ, η) : LF (x, y) ≤ 0;x ≥ 0, y ≥ x0}.
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For (λ, γ, η) ∈ DF , the maximum of LF (·;λ, γ, η) occurs at a measure ν∗ such that
ν∗(dx, dy) = 0 when LF (x, y) < 0.

Let G∗(x) = ν∗({(u, y) : u ≤ x, x0 ≤ y < ∞}) be the marginal of ν∗. If the
Nash equilibrium is symmetric, then we must have G∗(x) = F (x) and LG∗(x, y) = 0
when ν∗(dx, dy) > 0. Motivated by the results of previous sections, we expect G∗

to place mass on an interval [a, b] where 0 = a < x0 < b. In this section we write
b = r for the upper limit.

It follows from the discussion before Theorem 3.3.1 that for an optimal solu-
tion either Xi

τ i = M i
τ i or X

i
τ i = φ(M i

τ i) for some decreasing function φ. Hence, for
x0 ≤ y ≤ r, we expect ν∗(dx, dy) > 0 if and only if either x = y or x = φ(y). Let
ψ(x) = G∗(x)n−1. Then LG∗(x, y) becomes

L(x, y) := LG∗(x, y) = (1 +K)ψ(x)−Kψ(y)− λx− γ −
ˆ y

x0

η(z)(x− z)dz.

Fixing y ∈ (x0, r), and using L(x, y) ≤ 0 for any 0 ≤ x ≤ y, together with
L(φ(y), y) = 0, we expect ∂L

∂x (φ(y), y) = 0.
Thus, ∀y ∈ (x0, r), ψ and φ must solve

L(y, y) = ψ(y)− λy − γ −
ˆ y

x0

η(z)(y − z)dz = 0, (3.29)

L(φ(y), y) = (1 +K)ψ(φ(y))−Kψ(y)− λφ(y)

−γ −
ˆ y

x0

η(z)(φ(y)− z)dz = 0, (3.30)

∂L

∂x
(φ(y), y) = (1 +K)ψ′(φ(y))− λ−

ˆ y

x0

η(z)dz = 0. (3.31)

Differentiating (3.29) with respect to y yields

ψ′(y)− λ−
ˆ y

x0

η(z)dz = 0. (3.32)

Comparing (3.31) with (3.32), we find ψ′(y) = (1 + K)ψ′(φ(y)). If we now set
θ(y) = ψ(φ(y)), then (3.8) follows. From (3.32) we find

ψ′′(y)− η(y) = 0. (3.33)

Then, differentiating (3.30) with respect to y, and using (3.31), we obtain −Kψ′(y)−
η(y)(φ(y) − y) = 0 and (3.9). Finally, (3.10) comes directly from (3.7) on noting
that G(φ(m)) = θ(m)1/(n−1).

Next we deduce the boundary conditions. First note that from (3.5) we
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can infer that φ(x0) = x0 and φ(r) = 0. Hence θ(x0) = ψ(x0) and θ(r) = 0.
Given that (3.8) and (3.9) hold, as in the proof of Theorem 3.3.1, we have that
(3.14) holds. Letting y = r and using ψ(r) = 1, φ(r) = 0 and θ(r) = 0, we find
0 = −r

K+1ψ
′(r−) + ψ(r) and hence ψ′′(r−) = K+1

r . Further, letting y = r in (3.9),
we get ψ′′(r−) = K(K + 1)/r2 as required.

Lastly, we derive the optimal multipliers which we write as η∗, λ∗ and γ∗.
From (3.33), η∗(y) = ψ′′(y) for y ∈ (x0, r). Then, from (3.32), λ∗ = ψ′(y) −´ y
x0
η∗(z)dz = ψ′(y)−

´ y
x0
ψ′′(z)dz = ψ′(x0+). Finally, (3.29) yields

γ∗ = ψ(y)− λy −
ˆ y

x0

η∗(z)(y − z)dz

= ψ(y)− yψ′(x0+)−
ˆ y

x0

ψ′′(z)(y − z)dz = ψ(x0)− x0ψ
′(x0+).

3.6 Extension to the case of time homogeneous diffu-
sions

Our results in this chapter can be extended to the case where the processes observed
by the agents are independent copies of some time-homogeneous diffusion process
Y which converges almost surely to the lower bound on its state space. The idea
has been specifically explained in Chapter 2. Briefly speaking, the idea is to use a
change of scale to transform the problem into natural scale.

Denote by s(·) the scale function of Y and denote by {l1, l2} the endpoints
of the state space of Y with −∞ ≤ l1 < Y0 = y0 < l2 ≤ ∞. We assume that Y
converges to the lower boundary, which implies that s(l1) is finite whereas s(l2) =∞.
Without loss of generality, we may set s(l1) = 0. Then, X = s(Y ) is a continuous
local martingale that converges to zero almost surely (and if zero can be reached in
finite time, then zero is absorbing).

As explained in Section 2.1, the contest in which players privately observe
independent copies of Y is equivalent to the contest in which players privately ob-
serve independent copies of X, and the choice of the optimal τ i is the same for both
contests.

The problem is then to find a Nash equilibrium (Gi)i∈I for Y i
τ i and then

verify that there exists τ i such that Y i
τ i has law Gi. Under our transformation, this

is the same as finding a Nash equilibrium (F i)i∈I for Xi
τ i where F i = Gi ◦ s−1,

where s−1 is the inverse of s. To solve the problem for X, then either we argue
that the only properties of X that we use are the strong Markov property, the local
martingale property, and the fact that X converges to zero, so that the theory of
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this chapter applies to the local martingale diffusion X, or we argue that since X
is a non-negative martingale diffusion, X is a time-change of Brownian motion and
Xt = BΓt for some increasing functional Γt. Then, if F is any distribution with
mean less than or equal to x0, and σ is a stopping time such that Bσ ∼ F , then we
may take τ = Γ−1 ◦ σ and then Xτ = Bσ ∼ F and τ is an embedding of G in Y .
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Chapter 4

Contests: Asymmetric case

Several variants of the original Seel-Strack contest have been discussed in Seel and
Strack [2013], including an extension to the asymmetric two-player case where the
starting values of the processes observed by the players are different constants.
In this chapter, we start with rederiving the Nash equilibrium obtained by Seel
and Strack in an asymmetric 2-player contest and then extend the results to an
asymmetric n-player contest. We assume that the starting values of the observed
processes are strictly positive constants and all of these constants may be different.

By analogy with the symmetric case studied in Chapter 1, we expect that
in equilibrium no agent places mass at a positive point and not all agents can have
a mass point at zero. However, the Nash equilibrium may have masses at zero for
some agents. We will show that there exists a Nash equilibrium such that it has
no atoms in (0,∞) and satisfies that the highest levels at which the agents should
stop are the same. Furthermore, we will see that in the equilibrium, when n > 2,
the agents with lower starting values may choose not to stop at small values but to
wait for high values.

The remainder of this chapter is constructed as follows. In Section 4.1, we
introduce the mathematical model of the asymmetric 2-player contest used in Seel
and Strack [2013] and rederive the equilibrium distributions using the Lagrangian
method. Then we study an asymmetric n-player contest in Section 4.2. In Sec-
tion 4.2.1 we provide and prove the sufficient conditions for the Nash equilibrium
distributions. Then, based on the conditions, we give a more detailed form of the
equilibrium distributions. We will analytically prove the existence of the equilibrium
in two special cases. For more complicated cases, we may need to solve the problem
numerically. We will take the 3-player case as an example. And in Section 4.2.2 we
explain the origin of the candidate Nash equilibrium distributions.
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4.1 2-player contest

In an asymmetric 2-player contest, Seel and Strack [2013] assumed that the processes
privately observed by the two players are given by

Y i
t = yi + µit+ σiW

i
t , (4.1)

where yi > 0, µi 6= 0 and σi > 0 are all constants, i ∈ {1, 2}. It is assumed that Y 1

and Y 2 are absorbed at zero and W 1 and W 2 are independent Brownian motions.
Seel and Strack also imposed an upper bound on the drifts µi, that is they assumed
that µ1 < 0 and µ2 < 0.

Under these assumptions, they have proved the following theorem. Note
that the scale function of Y i is given by si(y) = σ2

i
2µi −

σ2
i

2µi exp(−2µiy/σ2
i ) (we set

si(0) = 0).

Theorem 4.1.1. [Seel and Strack [2013]] There exists unique bi > yi which satisfies

ˆ bi

0
[si(yi)− si(z)] sj(dz) = 0 (4.2)

with j 6= i, for i ∈ {1, 2}. Suppose b2 ≥ b1. Let b∗ = b2 and p2 = 0.

(i) There exists p1 ∈ [0, 1] that satisfies

p1 = 1− s1(y1)s2(b∗)´ b∗
0 s1(z)s2(dz)

. (4.3)

(ii) There exists a Nash equilibrium in which the equilibrium distributions G1 and
G2 satisfy that

Gi(y) = min
{
pi + (1− pi)

sj(y)
sj(b∗)

, 1
}
, (4.4)

where j 6= i and si(·) is the scale function of Y i with si(0) = 0, i = 1, 2.

Seel and Strack solved the problem using a similar approach as described
in Section 1.1.1. Briefly speaking, they solved the problem by writing down can-
didate value functions for the problem, and then verifying that the candidate value
functions are martingales up to the optimal stopping times for each player.

We solve the problem using the Lagrangian approach, and it is easy to see
that Theorem 4.1.1 holds for a more general model rather than (4.1).
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4.1.1 Equilibrium distribution

In this section, we use a more general model instead of (4.1). We assume that
Y 1 and Y 2 are two independent non-negative time-homogeneous diffusion processes
with constant starting values Y 1

0 = y1 > 0 and Y 2
0 = y2 > 0. In addition, assume

that Y 1 and Y 2 have the same state space which is an interval with endpoints
{0, r}, where max{y1, y2} < r ≤ ∞, and assume that Y 1 and Y 2 both converge
almost surely to zero.

Let si(·) be the scale function of Y i, then si(0) is finite and si(r) = ∞ by
the convergence assumption. Without loss of generality we set si(0) = 0.

Fix player i ∈ {1, 2}. Given that player j 6= i chooses Gj as her target
distribution, where Gj is continuous, then the expected pay-off of agent i with
stopping time τ i is given by

E
[
Gj(Y i

τ i) · 1{Y i
τi
>0} + 1

2Gj(0) · 1{Y i
τi

=0}

]
. (4.5)

Let Xi
t = si(Y i

t ). Note that si is strictly increasing. Denote by s−1
i the inverse

function of si. Then, s−1
i is also strictly increasing and s−1

i (0) = 0. Moreover, the
expected pay-off becomes

E
[
Gj ◦ s−1

i (Xi
τ i) · 1{Xi

τi
>0} + 1

2Gj(0) · 1{Xi
τi

=0}

]
.

Since
[
Gj ◦ s−1

i (x) · 1{x>0} + 1
2Gj(0) · 1{x=0}

]
is non-decreasing and Xi is a non-

negative super-martingale and using a similar argument as described in Section 1.2,
we get that every candidate stopping rule τ i should satisfy that E

[
Xi
τ i
]

= Xi
0, which

is equivalent to E
[
si(Y i

τ i)
]

= si(Y i
0 ) = si(yi).

Let A be the set of pairs (G, p), where p ∈ R+ and G : [0,∞) 7→ [0,∞)
is a non-decreasing right-continuous function with G(0) = p. An element of A is
identified with a measure ν on [0,∞] such that G(y) = ν ([0, y]) and p = ν ({0}).

Suppose that the other player j 6= i chooses (Gj , pj) as her target measure
with Gj continuous. Then by (4.5), the problem facing agent i is to choose a law of
Y i
τ i , which corresponds to a pair (Gi, pi), to solve

max
(Gi,pi)∈A

{ˆ
(0,∞)

Gj(z)Gi(dz) + 1
2pjpi

}
(4.6)

subject to
´

(0,∞) si(z)Gi(dz) = si(yi) and
´

(0,∞)Gi(dz) + pi = 1. Introducing multi-
pliers λi and γi for the two constraints, the Lagrangian for the optimisation problem
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(4.6) is then

Li(Gi, pi;λi, γi) =
ˆ

(0,∞)
[Gj(z)− λisi(z)− γi]Gi(dz)+

[1
2pj − γi

]
pi+λisi(yi)+γi.

Let AiD(yi) be the subset of A that consists of probability measures of a
random variable Y such that E [si(Y )] = si(yi), that is AiD(yi) is given by

AiD(yi) =
{

(G, p) ∈ A : lim
y↑∞

G(y) = 1 and
ˆ

(0,∞)
si(z)G(dz) = si(yi)

}
.

Now we state a variant of the Lagrangian sufficiency theorem for this problem.

Proposition 4.1.1. Suppose that, for all i ∈ {1, 2}, there exists (G∗i , p∗i ;λ∗i , γ∗i ) such
that (G∗i , p∗i ) ∈ AiD(yi), G∗i is continuous and

Li(G∗i , p∗i ;λ∗i , γ∗i ) ≥ Li(Gi, pi;λ∗i , γ∗i ) for all (Gi, pi) ∈ A. (4.7)

Then the family (G∗i , p∗i )i∈{1,2} is a Nash equilibrium that has no atoms in (0,∞).

Proof. Our aim is to find a Nash equilibrium that has no atoms in (0,∞). Such
a Nash equilibrium is identified with a pair of probability measures (G∗i , p∗i )i∈{1,2}
such that, for any i ∈ {1, 2}, (G∗i , p∗i ) ∈ AiD(yi), G∗i is continuous and with j 6= i

ˆ
(0,∞)

G∗j (x)G∗i (dx) + 1
2p
∗
jp
∗
i ≥
ˆ

(0,∞)
G∗j (x)Gi(dx) + 1

2p
∗
jpi ∀(Gi, pi) ∈ AiD(yi).

Fix any i ∈ {1, 2}. If (Gi, pi) ∈ AiD(yi) then
ˆ

(0,∞)
G∗j (x)Gi(dx) + 1

2p
∗
jpi = Li(Gi, pi;λ∗i , γ∗i ).

Then, under the hypotheses of the proposition,
ˆ

(0,∞)
G∗j (x)G∗i (dx) + 1

2p
∗
jp
∗
i = Li(G∗i , p∗i ;λ∗i , γ∗i )

≥Li(Gi, pi;λ∗i , γ∗i ) =
ˆ

(0,∞)
G∗j (x)Gi(dx) + 1

2p
∗
jpi.

Thus, (G∗i , p∗i )i∈{1,2} is a Nash equilibrium that has no atoms in (0,∞).

Now we prove Theorem 4.1.1 using Proposition 4.1.1.
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Proof of Theorem 4.1.1. Fix any i ∈ {1, 2} and let j 6= i. Define Bi(x) =´ x
0 [si(yi)− si(z)] sj(dz). Since si and sj are strictly increasing, Bi is strictly increas-
ing on (0, yi) and strictly decreasing on (yi,∞). It is easy to get that Bi(∞) = −∞,
since si and sj are strictly increasing, si(∞) = ∞ and sj(∞) = ∞. Then, because
Bi(0) = 0, there exists unique bi > yi that satisfies Bi(bi) = 0.

Suppose b2 ≥ b1 and let b∗ = b2. Since b∗ ≥ b1 and by the shape of B1,
B1(b∗) ≤ 0, which is equivalent to

´ b∗
0 s1(z)s2(dz) ≥

´ b∗
0 s1(y1)s2(dz) = s1(y1)s2(b∗).

This implies that p1 given by (4.3) is non-negative. And it is obvious that p1 ≤ 1.
Thus, p1 ∈ [0, 1].

Suppose G∗i are given by (4.4). Let p∗1 = γ∗2 = p1, p∗2 = γ∗1 = 0, λ∗1 = 1/s1(b∗)
and λ∗2 = (1 − p1)/s2(b∗). It is easy to get that G∗i is continuous on (0,∞) and
(G∗i , p∗i ) ∈ AiD(yi), for i ∈ {1, 2}. We then verify that for these multipliers (4.1.1)
holds. For any i ∈ {1, 2} and with j 6= i, since λ∗i si(b∗) + γ∗i = 1 and si is strictly
increasing,

Li(Gi, pi;λ∗i , γ∗i ) =
ˆ

(0,∞)

[
G∗j (z)− λ∗i si(z)− γ∗i

]
Gi(dz)

+
[1

2p
∗
j − γ∗i

]
pi + λ∗i si(yi) + γ∗i

=
ˆ ∞
b∗

[1− λ∗i si(z)− γ∗i ]Gi(dz) +
[1

2p
∗
j − γ∗i

]
pi + λ∗i si(yi) + γ∗i

≤ λ∗i si(yi) + γ∗i = Li(G∗i , p∗i ;λ∗i , γ∗i ).

Thus, there exists a Nash equilibrium of the given form by Proposition 4.1.1.

In the rest of this section we explain how to derive the candidate Nash
equilibrium and the optimal multipliers. Recall the definition of the Lagrangian
Li(Gi, pi;λi, γi) for the optimisation problem (4.6), and let Li(z) = Gj(z)−λisi(z)−
γi.

In order to have a finite optimal solution, we require Li(z) ≤ 0 on (0,∞)
and 1

2pj − γi ≤ 0. Let Di be the set of (λi, γi) such that Li(·, ·;λi, γi) has a finite
maximum. Then Di is defined by

Di =
{

(λi, γi) : Li(z) ≤ 0 ∀z > 0 and 1
2pj − γi ≤ 0

}
.

For (λi, γi) ∈ Di, the maximum of Li(·, ·;λi, γi) occurs at (Gi, pi) such that Gi(dz) =
0 when Li(z) < 0 and pi = 0 if 1

2pj − γi < 0. Thus, if Gi(dz) > 0 then Li(z) = 0
and if pi > 0 then 1

2pj − γi = 0.
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Since Li(z) = Gj(z) − λisi(z) − γi, we must have Gj(z) = λisi(z) + γi

when Gi(dz) > 0. Since Gj is non-decreasing and not constant, we must have
λi > 0, which means λisi(z) +γi is strictly increasing. This implies that Gj(dz) > 0
if and only if Gi(dz) > 0, inf{x : Gi(x) > 0} = inf{x : Gj(x) > 0} , a and
sup{x : Gi(x) < 1} = sup{x : Gj(x) < 1} , b. Then since we are searching for
solutions that have no positive atoms, we must have Gj(z) = λisi(z) + γi on the
whole of the interval [a, b].

Observe that pj ≥ 0, so that if (λi, γi) ∈ Di then γi is non-negative. Since
either Gi(a) = 0 or Gj(a) = 0 and by the non-negativity of a, γi and γj and the
positivity of λi and λj , it follows that a = 0. Furthermore, pi = Gi(0) = γj and
pj = Gj(0) = γi.

For a feasible solution,
´

(0,∞) s1(z)G1(dz) = s1(y1),
´

(0,∞)G1(dz) + p1 = 1,´
(0,∞) s2(z)G2(dz) = s2(y2) and

´
(0,∞)G2(dz) + p2 = 1, so that

ˆ b

0
s1(z)λ2s2(dz) = s1(y1);

ˆ b

0
λ2s2(dz) + γ1 = 1; (4.8)

ˆ b

0
s2(z)λ1s1(dz) = s2(y2);

ˆ b

0
λ1s1(dz) + γ2 = 1. (4.9)

Recall that we expect that in equilibrium not all agents can have a mass point at
zero. This means either p2 = 0 or p1 = 0, and thus either γ1 = 0 or γ2 = 0. Assume
that γ2 = 0. Then, using (4.9) and (4.2), we get b = b2. Further, by (4.8), we get
γ1 = 1 − s1(y1)

´ b2
0 s2(dz)´ b2

0 s1(z)s2(dz)
. Note that we require γ1 ≥ 0, which means that γ2 = 0

is feasible only if
´ b2

0 [s1(y1)− s1(z)] s2(dz) ≤ 0. However, this inequality holds if
and only if b1 ≤ b2. Thus, if b2 ≥ b1 then γ2 = 0; if b1 ≥ b2 then γ1 = 0. Now
suppose b2 ≥ b1. Then, γ2 = 0, b = b2, γ1 = 1− s1(y1)s2(b2)´ b2

0 s1(z)s2(dz)
and we get the Nash

equilibrium described in Theorem 4.1.1.

4.2 n-player contest

We study an asymmetric n-player contest in this section and focus on the case
where heterogeneity only exists in the starting values of the observed processes.
The problem is simplified by homogeneity of the scale functions of the observed
processes.

Recall the model introduced in Section 1.1. There are n agents with labels
i ∈ I = {1, 2, . . . , n} in the contest, where n ≥ 2. Agent i privately observes the
continuous-time realisation of a Brownian motion Xi = (Xi

t)t≥0 absorbed at zero
with Xi

0 = xi where xi is a constant. We assume that 0 < x1 ≤ x2 ≤ · · · ≤ xn.

63



We also assume that there exists i ∈ I such that xi < xn, that is we only consider
asymmetric cases.

Each agent decides when to stop her own process, and the agent who stops
at the highest value wins unit reward. Agent i observes her own process Xi, but not
Xj for j 6= i; nor does she observe the stopping times chosen by the other agents.
Moreover, the processes Xi are assumed to be independent.

Fix any agent i ∈ I. Given that agent j chooses Fj as her target measure
with Fj continuous ∀j 6= i, then the expected pay-off of agent i with stopping time
τ i is given by

E

∏
j 6=i

Fj(Xi
τ i) · 1{Xi

τi
>0} + 1

n

∏
j 6=i

Fj(0) · 1{Xi
τi

=0}

 .
Then, by a similar argument as described in Section 1.2 and in Section 4.1.1, we get
that every candidate stopping rule τ i should satisfy that E

[
Xi
τ i
]

= Xi
0 = xi. Thus,

we restrict attention to stopping times τ i such that E
[
Xi
τ i
]

= xi.

Remark 4.2.1. The results in this chapter can be extended to the case where the
observed processes are independent realisations of some time-homogeneous diffusion
process Y which converges almost surely to the lower bound on its state space. The
idea has been explained in Chapter 2 and in Section 3.6.

4.2.1 Equilibrium distribution

In this section, we first use the following Lemma 4.2.1 to describe a Nash equilibrium
for the contest, and a more explicit form of such a Nash equilibrium will be given in
Theorem 4.2.1. Lemma 4.2.1 provides the sufficient conditions for a family of equi-
librium distributions that has no positive atoms. The candidate Nash equilibrium
is verified using the Lagrangian sufficiency theorem. Recall that the support of a
distribution function F is defined by

supp(F ) = {x > 0 : F (z1) < F (z2) for all z1 < x < z2}.

Lemma 4.2.1. Suppose a family of functions (Fi)i∈I satisfies the following condi-
tions:

(i) Fi is a distribution function with mean xi, Fi is continuous and Fn(0) = 0, for
any i ∈ I;

(ii) supp(Fi) = [ai, bi], where 0 ≤ ai < bi <∞ are some constants, for any i ∈ I;
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(iii) bi = a0 for any i ∈ I and 0 = an = an−1 ≤ an−2 ≤ · · · ≤ a1 < a0, where a0 is
some constant;

(iv) For any i < n, ∏
j 6=i

Fj(x) = x

a0

on [ai, a0], and

∏
j 6=n

Fj(x) =

1−
∏
j 6=n

Fj(0)

 x

a0
+
∏
j 6=n

Fj(0)

on [0, a0].

Then the family (Fi)i∈I is a Nash equilibrium for the problem.

Proof. Let A be the set of pairs (F, p) where p ∈ R+ and F : [0,∞) 7→ [0,∞) is
a non-decreasing right-continuous function with F (0) = p. A pair (F, p) ∈ A is
identified with a measure ν on [0,∞) such that F (x) = ν ([0, x]) and p = ν ({0}).

Fix agent i ∈ I. Suppose that, for any j 6= i, agent j chooses (Fj , pj) as her
target measure with Fj continuous, then the aim of agent i is to choose a law of
Xi
τ i , which corresponds to a pair (Fi, pi), to solve

max
(Fi,pi)∈A


ˆ

(0,∞)

∏
j 6=i

Fj(x)Fi(dx) + 1
n

∏
j 6=i

pjpi

 (4.10)

subject to
´∞

0 xFi(dx) = xi and
´∞

0 Fi(dx) + pi = 1. Introducing multipliers λi and
γi for the two constraints, the Lagrangian for the optimisation problem (4.10) is
then

Li(Fi, pi;λi, γi) =
ˆ

(0,∞)

∏
j 6=i

Fj(x)− λix− γi

Fi(dx)+

 1
n

∏
j 6=i

pj − γi

 pi+λixi+γi.
Let AD(x) be the subset of A identified with probability measures with mean

x, then AD(x) is given by

AD(x) =
{

(F, p) ∈ A :
ˆ

(0,∞)
F (dz) + p = 1 and

ˆ
(0,∞)

zF (dz) = x

}
.

Now we state a variant of the Lagrangian sufficiency theorem for our problem.

Proposition 4.2.1. Suppose that, for all i ∈ I, there exists (F ∗i , p∗i ;λ∗i , γ∗i ) such
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that (F ∗i , p∗i ) ∈ AD(xi), F ∗i is continuous and

Li(F ∗i , p∗i ;λ∗i , γ∗i ) ≥ Li(Fi, pi;λ∗i , γ∗i ) for all (Fi, pi) ∈ A. (4.11)

Then the family (F ∗i , p∗i )i∈I is a Nash equilibrium that has no atoms in (0,∞).

Proof. We seek a Nash equilibrium that has no atoms in (0,∞). Such a Nash
equilibrium is identified with a family of probability measures (F ∗i , p∗i )i∈I such that,
for any i ∈ I, (F ∗i , p∗i ) ∈ AD(xi), F ∗i is continuous and
ˆ

(0,∞)

∏
j 6=i

F ∗j (x)F ∗i (dx) + 1
n

∏
j 6=i

p∗jp
∗
i ≥
ˆ

(0,∞)

∏
j 6=i

F ∗j (x)Fi(dx) + 1
n

∏
j 6=i

p∗jpi (4.12)

for all (Fi, pi) ∈ AD(xi).
Fix any i ∈ I. If (Fi, pi) ∈ AD(xi), then, using the definition of the Lag-

rangian, ˆ
(0,∞)

∏
j 6=i

F ∗j (x)Fi(dx) + 1
n

∏
j 6=i

p∗jpi = Li(Fi, pi;λ∗i , γ∗i ).

Then, since Li(F ∗i , p∗i ;λ∗i , γ∗i ) ≥ Li(Fi, pi;λ∗i , γ∗i ), we have (4.12) holds. Hence,
(F ∗i , p∗i )i∈I is a Nash equilibrium for the contest.

Return to the proof of Lemma 4.2.1. Suppose (F ∗i )i∈I satisfies all the condi-
tions described in the lemma. Let p∗i = F ∗i (0). Let γ∗i = 0 and λ∗i = 1/a0 for any
i < n, and let γ∗n =

∏
j<n p

∗
j and λ∗n = (1−γ∗n)/a0. It is clear that (F ∗i , p∗i ) ∈ AD(xi)

and F ∗i is continuous. We only need to verify that (4.11) holds for all i ∈ I.
Fix any i ∈ {1, 2, . . . , n−2}. Observe that F ∗n−1(x) ≤ F ∗n−1(ai) = p∗i = F ∗i (x)

and
∏
j 6=(n−1) F

∗
j (x) = x

a0
on [0, ai]. Also observe that

∏
j 6=i F

∗
j (x) = x

a0
on [ai, a0].

Then, since p∗n = F ∗n(0) = 0,

Li(Fi, pi;λ∗i , γ∗i )

=
ˆ

(0,∞)

∏
j 6=i

F ∗j (x)− λ∗ix− γ∗i

Fi(dx) +

 1
n

∏
j 6=i

p∗j − γ∗i

 pi + λ∗ixi + γ∗i

=
ˆ

(0,ai)

[
x

a0

F ∗n−1(x)
F ∗i (x) −

x

a0

]
Fi(dx) +

ˆ ∞
a0

(
1− x

a0

)
Fi(dx) + xi

a0

≤ xi
a0

= Li(F ∗i , p∗i ;λ∗i , γ∗i ).
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Moreover, since
∏
j 6=(n−1) F

∗
j (x) = x

a0
on [0, a0] and p∗n = 0,

Ln−1(Fn−1, pn−1;λ∗n−1, γ
∗
n−1) =

ˆ ∞
a0

(
1− x

a0

)
Fi(dx) + xn−1

a0

≤ xn−1
a0

= Ln−1(F ∗n−1, p
∗
n−1;λ∗n−1, γ

∗
n−1),

and since
∏
j 6=n F

∗
j (x) =

(
1−

∏
j 6=n p

∗
j

)
x
a0

+
∏
j 6=n p

∗
j on [0, a0],

Ln(Fn, pn;λ∗n, γ∗n)

=

1−
∏
j 6=n

p∗j

 ˆ ∞
a0

(
1− x

a0

)
Fn(dx) + (1− n)pn

n

∏
j 6=n

p∗j + λ∗nxn + γ∗n

≤ λ∗nxn + γ∗n = Ln(F ∗n , p∗n;λ∗n, γ∗n).

Thus, (F ∗i )i∈I is a Nash equilibrium for the problem by Proposition 4.2.1.

Now we explicitly characterize the algebraic form of the Nash equilibrium
described in Lemma 4.2.1.

Theorem 4.2.1. Let an−1 = an = 0, x0 = 0, p0 = 1 and
∏
j<0 pj = p0 = 1.

Suppose that there exists {p1, p2, . . . , pn−1, a0, a1, . . . an−2, γn, λn} such that pi ≥ 0
for any i = 1, 2, . . . , n − 1, 0 ≤ an−2 ≤ · · · ≤ a1 < a0 and λn > 0 and it solves the
following system of equations

(?)



λnai + γn = pn−ii

∏
j<i

pj , ∀i = 0, 1, . . . , n− 1, (4.13)

xi − xi−1 = ai−1pi−1 − aipi
n− i+ 1 + (n− i)γn

(n− i+ 1)λn
(pi − pi−1),

∀i = 1, 2, . . . , n− 1, (4.14)

xn = 1
a0

n−1∑
j=1

[
(n− j)(ajpj − aj−1pj−1)

(n− j + 1)λn
+

a2
j−1pj−1

λnaj−1 + γn

−
a2
jpj

λnaj + γn
+ (n− j)2γn

(n− j + 1)λ2
n

(pj−1 − pj)
]
,

if xn−1 < xn, (4.15)

γn = 0 and pn−1 = 0, if xn−1 = xn. (4.16)

(i) If xn−1 < xn, then 0 < pn−1 ≤ pn−2 ≤ · · · ≤ p1 < 1 and γn > 0. If xm <

xm+1 = · · · = xn, for some m ∈ {1, 2, . . . , n − 2}, then 0 = pn−1 = · · · =
pm+1 < pm ≤ · · · ≤ p1 < 1, γn = 0 and 0 = an−1 = · · · = am+1 < am.
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(ii) For any i ∈ {2, 3, . . . , n}, if xi = xi−1, then pi = pi−1 and ai = ai−1.

(iii) Define function Fn−1(·) by

Fn−1(x) =


n−k

√
λnx+γn∏
j<k

pj
, if x ∈ [ak, ak−1), k = 1, 2, . . . , n− 1,

1, if x ∈ [a0,∞),

and define function Fn(·) by

Fn(x) = x

(λnx+ γn)a0
Fn−1(x).

For any i < n− 1, define

Fi(x) = max {pi, Fn−1(x)} .

Then, the family (Fi)i∈I satisfies all the conditions in Lemma 4.2.1 and thus
is a Nash equilibrium for the asymmetric contest.

Moreover, for any i ∈ {2, 3, . . . , n}, if xi = xi−1, then Fi(x) = Fi−1(x) for all
x ∈ [0,∞).

Proof. (i) Suppose that xn−1 < xn. Assume that there exists k ∈ {1, 2, . . . , n − 1}
such that pk = 0. Then γn =

∏
j<n pj = 0. By (4.14),

xi − xi−1 = ai−1pi−1 − aipi
n− i+ 1 , ∀i = 1, 2, . . . , n− 1, (4.17)

which means that xn−1 =
∑n−1
j=1

aj−1pj−1−ajpj
n−j+1 . However, since γn = 0 and λna0 = 1

and by (4.15), xn =
∑n−1
j=1

aj−1pj−1−ajpj
n−j+1 = xn−1, which is a contradiction. Thus,

pi > 0 for all i = 1, 2, . . . , n− 1, and then γn =
∏
j<n pj > 0. By (4.13),

λn(ai − ai−1) =
(
pn−ii − pn−ii−1

)∏
j<i

pj , ∀i = 1, 2, . . . , n− 1. (4.18)

Then, since λn > 0 and 0 = an−1 ≤ an−2 ≤ · · · ≤ a1 < a0, we get that 0 < pn−1 ≤
pn−2 ≤ · · · ≤ p1 < p0 = 1.

Suppose that xm < xm+1 = · · · = xn, for some m ∈ {1, 2, . . . , n− 2}. Then,
by (4.16), γn = 0 and pn−1 = 0. By (4.17) and since an−1 = 0, we get

ai−1pi−1 =
n−1∑
j=i

(n− j+ 1)(xj −xj−1) =
n∑
j=i

xj − (n− i+ 1)xi−1, ∀i = 1, 2, . . . , n− 1.

(4.19)
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Then, since xm < xm+1 = · · · = xn, aipi = 0 if m + 1 ≤ i ≤ n − 1 and aipi > 0 if
0 ≤ i ≤ m. Thus, ai > 0 and pi > 0 ∀0 ≤ i ≤ m. Further, by (4.13) and γn = 0, we
get that ai = pi = 0 ∀m+ 1 ≤ i ≤ n− 1. Then, by (4.18) and since λn > 0 and 0 <
am ≤ · · · ≤ a1 < a0, we get that 0 = pn−1 = · · · = pm+1 < pm ≤ · · · ≤ p1 < p0 = 1.

(ii) Fix any i ∈ {2, 3, . . . , n − 1} and suppose that xi−1 = xi. Substituting
(4.13) into (4.14) and since γn =

∏
j<n pj , we get that

xi − xi−1 =

(
pn−i+1
i−1 − pn−i+1

i

)∏
j<i pj + (n− i+ 1)γn(pi − pi−1)

(n− i+ 1)λn

=
(pi−1 − pi)

(∑n−i
j=0 p

j
i−1p

n−i−j
i

)∏
j<i pj + (n− i+ 1)(pi − pi−1)

∏
j<n pj

(n− i+ 1)λn

= (pi−1 − pi)
∑n−i
j=0 p

j
i−1p

n−i−j
i − (n− i+ 1)

∏n−1
j=i pj

(n− i+ 1)λn

∏
j<i

pj .

Observe that by (i) we know 0 ≤ pn−1 ≤ pn−2 ≤ · · · ≤ p1 < 1. Now assume that
pi−1 > pi. Then,

∑n−i
j=0 p

j
i−1p

n−i−j
i > (n − i + 1)pn−ii ≥ (n − i + 1)

∏n−1
j=i pj and∏

j<i pj ≥ pi−1
i−1 > 0. This means that xi > xi−1, which is a contradiction. Thus,

pi−1 = pi. Then, by (4.18), we get ai−1 = ai. Now if xn−1 = xn, then, by (4.16), it
is clear that pn−1 = pn = 0 and an−1 = an = 0.

(iii) By the definitions of Fi, it is clear that the second and third condition
given in Lemma 4.2.1 hold and Fn(0) = 0.

We next show that Fn−1(x) is continuous at {a0, a1, a2, . . . , an−2}. Fix any
k ∈ {1, 2, . . . , n− 2}. By the definition of Fn−1(x),

Fn−1(ak−) = n−k−1

√
λnak + γn∏
j<(k+1) pj

and Fn−1(ak) = n−k

√
λnak + γn∏

j<k pj
.

Then, using (4.13), we get Fn−1(ak−) = pk = Fn−1(ak). Further, Fn−1(a0−) =
n−1

√
λna0+γn∏

j<1 pj
= 1 = Fn−1(a0). Hence, Fn−1 is continuous, which implies that all Fi

are continuous.
Since λn > 0 and by the continuity of Fi, it is clear that Fi is non-decreasing.

Then, since Fi(a0) = 1, Fi is a distribution function.
Now we show that the mean of Fi is equal to xi. Fix any i ∈ {1, 2, . . . , n−1}.

By the definition of Fi and since Fi is continuous,

ˆ ∞
0

xFi(dx) =
i∑

k=1

ˆ ak−1

ak

xd n−k

√
λnx+ γn∏

j<k pj
.
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Using the method of integration by parts

ˆ ∞
0

xFi(dx) =
i∑

k=1

[
ak−1 n−k

√
λnak−1 + γn∏

j<k pj
− ak n−k

√
λnak + γn∏

j<k pj

− n− k
n− k + 1

∏
j<k pj

λn

ˆ ak−1

ak

d

(
λnx+ γn∏

j<k pj

)n−k+1
n−k

]
.

Then, using (?), we get

ˆ ∞
0

xFi(dx) =
i∑

k=1

[
ak−1pk−1 − akpk −

n− k
n− k + 1

∏
j<k pj

λn

(
pn−k+1
k−1 − pn−k+1

k

)]

=
i∑

k=1

[
ak−1pk−1 − akpk

n− k + 1 + (n− k)γn
(n− k + 1)λn

(pk − pk−1)
]

(4.20)

=
i∑

k=1
(xk − xk−1) = xi,

that is Fi has mean xi. Next calculate the mean of Fn. Suppose that xn−1 = xn.
Then, since γn = 0 and λna0 = 1, it is clear that

´∞
0 xFn(dx) =

´∞
0 xFn−1(dx) =

xn−1 = xn. Suppose that xn−1 < xn. Then, by the form of Fn,

ˆ ∞
0

xFn(dx) = 1
a0

n−1∑
k=1

{
n− k
λn

ˆ ak−1

ak

xd n−k

√
λnx+ γn∏

j<k pj

+
ˆ ak−1

ak

x2d
(λnx+ γn)

1
n−k−1

n−k
√∏

j<k pj

}
.

Because

ˆ ak−1

ak

x2d
(λnx+ γn)

1
n−k−1

n−k
√∏

j<k pj
=

a2
k−1pk−1

λnak−1 + γn
− a2

kpk
λnak + γn

− 2(n− k)
λn

ˆ ak−1

ak

xd n−k

√
λnx+ γn∏

j<k pj

and using (4.20) and (4.15), we get

ˆ ∞
0

xFn(dx) = 1
a0

n−1∑
k=1

{
(n− k)(akpk − ak−1pk−1)

(n− k + 1)λn
+

a2
k−1pk−1

λnak−1 + γn

− a2
kpk

λnak + γn
+ (n− k)2γn

(n− k + 1)λ2
n

(pk−1 − pk)
}

= xn.
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Thus, the mean of Fn is xn.
Fix any i < n and fix any k ≤ i. For any x ∈ [ak, ak−1],

∏
j 6=i

Fj(x) =

∏
j<k

pj

 ∏
j≥k,j 6=i

Fj(x)

 =

∏
j<k

pj

(λnx+ γn∏
j<k pj

)
x/a0

λnx+ γn
= x

a0
.

Now consider i = n. Fix any k ≤ n− 1. For any x ∈ [ak, ak−1],

∏
j 6=n

Fj(x) =

∏
j<k

pj

 ∏
j≥k,j 6=n

Fj(x)

 =

∏
j<k

pj

(λnx+ γn∏
j<k pj

)
= λnx+ γn.

Further, because an−1 = 0 and by (4.13), we get γn =
∏
j<n pj and λn = (1 −

γn)/a0 =
(
1−

∏
j<n pj

)
/a0. Thus, (Fi)i∈I satisfies the last condition in Lemma

4.2.1.
Using (ii) and (4.16), it is clear that, for any i ∈ {2, 3, . . . , n}, if xi = xi−1,

then Fi(x) = Fi−1(x) for all x ∈ [0,∞).

Remark 4.2.2. It is clear that the optimal distribution functions (Fi)i∈I in The-
orem 4.2.1 satisfy that F1(x) ≥ · · · ≥ Fn−1(x) ≥ Fn(x).

In general, it is difficult to prove the existence of a solution to the system of
equations (?) and also is difficult to analytically solve (?). However, there are two
special cases where (?) can be significantly simplified and the existence of a Nash
equilibrium can be analytically proved. One case corresponds to the scenario where
there are multiple highest starting values of the observed processes, and another
case corresponds to the scenario where the highest starting value is unique and the
rest of the starting values are the same.

Theorem 4.2.2. Recall the definitions an−1 = an = 0, x0 = 0, p0 = 1 and∏
j<0 pj = p0 = 1.

(i) Suppose 0 < x1 ≤ · · · ≤ xm < xm+1 = · · · = xn for some m ∈ {1, 2, . . . , n− 2}.
Let γn = 0, a0 =

∑n
j=1 xj, λn = 1/a0, pn−1 = pn−2 = · · · = pm+1 = 0,

an−2 = an−3 = · · · = am+1 = 0,

pi =
i∏

k=1

n−k+1

√√√√ ∑n
j=k+1 xj − (n− k)xk∑n

j=k xj − (n− k + 1)xk−1
, i = 1, 2, . . . ,m,

and
ai =

∑n
j=i+1 xj − (n− i)xi

pi
, i = 1, 2, . . . ,m.
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Figure 4.1: Graph of (Fi)i∈I with n = 4 and 0.5 = x1 = x2 = x3 < x4 = 1.

Then, {p1, p2, . . . , pn−1, a0, a1, . . . an−2, γn, λn} is the unique solution to (?)
such that pi ≥ 0 for any i = 1, 2, . . . , n − 1, 0 ≤ an−2 ≤ · · · ≤ a1 < a0

and λn > 0. Moreover, (Fi)i∈I defined by Theorem 4.2.1 is a Nash equilibrium
for the asymmetric contest.

(ii) Suppose 0 < x1 = · · · = xn−2 = xn−1 < xn. Let p ∈ (0, 1) be the unique
solution to P (z) = x1/xn, where

P (z) =
(
1− zn−1

) (n− 1)zn − nzn−1 + 1
nz2n−2 − (n− 1)2zn + n (n− 3) zn−1 + 1 .

And let γn = pn−1, p1 = p2 = · · · = pn−2 = p, a1 = a2 = · · · = an−2 = 0,

a0 = nx1
(
1− pn−1)

(1− pn−1) + (n− 1)(p− 1)pn−1 and λn = 1− pn−1

a0
.

Then, {p1, p2, . . . , pn−1, a0, a1, . . . an−2, γn, λn} is the unique solution to (?)
such that pi ≥ 0 for any i = 1, 2, . . . , n − 1, 0 ≤ an−2 ≤ · · · ≤ a1 < a0 and
λn > 0. Furthermore, (Fi)i∈I defined by Theorem 4.2.1 is a Nash equilibrium
for the asymmetric contest.

Example 4.2.1. Before proving Theorem 4.2.2, we give two examples of these two
special cases to illustrate the general shape for graphs of the distribution functions
(Fi)i∈I .

In Figure 4.1, we study the special case where the highest starting value is
unique and the other starting values are the same. It can be seen that the player
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Figure 4.2: Graph of (Fi)i∈I with n = 5 and 0.1 = x1 < x2 = 0.4 < x3 = 0.7 < x4 =
x5 = 1.

with the higher starting value puts no mass on zero while the other players with the
lower starting value put a mass of size p on zero, but the support of the distribution
functions are all [0, a0].

The other special case is shown in Figure 4.2. As is shown in the figure,
similar to the previous case, the player with a lower starting value has a larger
probability of stopping at zero. But in this case, the support of the distribution
functions are no longer the same. In particular, the largest values at which the
players should stop are all a0, while the smallest nonzero value at which the player
should stop increases as the starting value of the player decreases.

Proof of Theorem 4.2.2. (i) Suppose that xm < xm+1 = · · · = xn for some
m ∈ {1, 2, . . . , n − 2}. Then, by (i) in Theorem 4.2.1, γn = 0, 0 = pn−1 = · · · =
pm+1 < pm ≤ · · · ≤ p1 < 1 and 0 = an−1 = · · · = am+1 < am. Further, by (4.19),

ai =
∑n
j=i+1 xj − (n− i)xi

pi
, i = 0, 1, . . . ,m.

Because p0 = 1 and x0 = 0, a0 =
∑n
j=1 xj .Now observe that λnaipi = pn−i+1

i

∏
j<i pj ,

which leads to λn
(∑n

j=i+1 xj − (n− i)xi
)

= pn−i+1
i

∏
j<i pj . Thus,

pk
pk−1

= n−k+1

√√√√ pn−k+1
k

∏
j<k pj

pn−k+2
k−1

∏
j<k−1 pj

= n−k+1

√√√√ ∑n
j=k+1 xj − (n− k)xk∑n

j=k xj − (n− k + 1)xk−1
,
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for any k = 1, 2, . . . ,m. Then, by pi =
∏i
k=1

pk
pk−1

, we get the pi stated in the
theorem.

(ii) Suppose x1 = · · · = xn−2 = xn−1 < xn. First we show that there exists a
unique solution p to P (z) = x1/xn such that p ∈ (0, 1). Observe that P (0) = 1 and
P (1) = 0. Next we show that P is strictly decreasing on (0, 1). Let

P1(p) = (n− 1)pn − npn−1 + 1
1− pn−1

and
P2(p) = np2n−2 − (n− 1)2pn + n (n− 3) pn−1 + 1

(1− pn−1)2 ,

then P (p) = P1(p)/P2(p). Because

P
′
1(p) = (n− 1)pn−2

(1− pn−1)2 [−pn + np− (n− 1)] < 0

and
P
′
2(p) = (n− 1)2pn

(1− pn−1)3

[
−(n− 2)pn + npn−1 − np+ n− 2

]
> 0

on (0, 1), P (p) = P1(p)/P2(p) is strictly decreasing on (0, 1). Then, since 0 <

x1/xn < 1, there exists a unique solution p to P (z) = x1/xn such that p ∈ (0, 1).
Because x1 = · · · = xn−2 = xn−1 and by Theorem 4.2.1, p1 = · · · = pn−2 =

pn−1 and a1 = · · · = an−2 = an−1 = 0. Then (?) can be reduced to

λna0 + γn = 1,

γn = pn−1
1 ,

x1 = a0
n + (n−1)γn

nλn
(p1 − 1),

xn = a0
[
1− (n−1)

n(1−γn) + (n−1)2γn
n(1−γn)2 (1− p1)

]
.

Thus, γn = pn−1
1 , λn = 1−γn

a0
, a0 = nx1(1−γn)

(1−γn)+(n−1)γn(p−1) and

xn
x1

= 1
1− pn−1

1

np2n−2
1 − (n− 1)2pn1 + n(n− 3)pn−1

1 + 1
(n− 1)pn1 − np

n−1
1 + 1

= 1
P (p1) .

The last equation shows that p1 is a solution to P (z) = x1/xn.

Remark 4.2.3. Recall that the optimal distribution functions (Fi)i∈I for a 2-player
asymmetric contest is given by Theorem 4.1.1. Suppose 0 < x1 ≤ x2. Since now
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Figure 4.3: Graph of (Fi)i∈I for different x2 with n = 5, x1 = 0.2, x3 = 0.8 and
x4 = x5 = 1.

the processes that observed by the players are Brownian motions, in a 2-player
asymmetric contest (Fi)i∈I are given by

F1(x) = min
{(

1− x1
x2

)
+ x1
x2

x

2x2
, 1
}
, F2(x) = min

{
x

2x2
, 1
}
.

Since P
(
H1
x2 < H1

0
)

= x1
x2
, X2

τ2 · 1{H1
x2<H

1
0} has the same distribution as X1

τ1 . This
implies that, in the 2-player asymmetric contest, an optimal strategy for player 1 is
to wait until X1

t ∈ {0, x2} and then use the same strategy as player 2 if X1 hits x2.
But this result does not hold for a general asymmetric n-player contest.

Example 4.2.2. Consider an example of the first special case where there are
multiple highest starting values. Set n = 5, x1 = 0.2, x3 = 0.8 and x4 = x5 = 1.
We give the graphs of the optimal distribution functions (Fi)i∈I for various values
of x2. Figure 4.3 shows that when x2 is larger, player 2 has a smaller probability of
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Figure 4.4: Graph of (Fi)i∈I for different x1 with n = 4 and x1 = x2 = x3 ≤ x4 = 1.

stopping at zero while the other players j ∈ {i ∈ I : xi < xn} \ {2} have a larger
probability of stopping at zero. It also shows that when x2 increases, the smallest
nonzero value aj at which player j ∈ {i ∈ I : xi < x2} should stop increases, while
the smallest nonzero value aj at which player j ∈ {i ∈ I : x2 ≤ xi < xn} should
stop decreases. And when x2 increases, the largest value a0 at which a player should
stop increases. Moreover, as x2 increases, the probability that player 2 will stop at
small values decreases while the probability that player j ∈ {i ∈ I : x2 < xi} will
stop at small values increases.

Example 4.2.3. We consider an example of the second special case where the
highest starting value is unique. Set n = 4 and x4 = 1 and let x1 = x2 = x3. We
show the graphs of (Fi)i∈I for various values of x1. As shown in Figure 4.4, when
x1 increases, the largest value a0 at which a player should stop increases and the
probability p that the player with a lower starting value (player 1, 2 or 3) will stop
at zero decreases. Further, as x1 increases, the probability that player 1 will stop at
small values decreases while the probability that player 4 will stop at small values
increases. And Figure 4.5 shows that F1(x) tends to F4(x) as x1 tends to x4.

Example 4.2.4. Now we consider another example of the second special case. Set
0.5 = x1 = · · · = xn−1 < xn = 1. We give the graphs of (Fi)i∈I for various values of
n. It can be seen from Figure 4.6 that when the number of participants n increases,
the largest value a0 at which a player should stop increases and the probability that
a player will stop at small values increases (the same trends exist in the symmetric
case where x1 = · · · = xn−1 = xn). In particular, Figure 4.7 shows that when n

is very large, the probability p that player 1 will stop at zero is close to 1 and the
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Figure 4.5: Graph of (Fi)i∈I for different x1 with n = 4 and x1 = x2 = x3 ≤ x4 = 1.
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Figure 4.6: Graph of (Fi)i∈I for different n with 0.5 = x1 = · · · = xn−1 < xn = 1.
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xn = 1.

probability that player n will stop at very small values is also close to 1.
Fix any i ∈ I. Define Ci(x) =

´∞
x (y − x)Fi(dy) and observe that C ′i(x) =

Fi(x)− 1. Thus, Figure 4.6 implies that as n increases, the function Ci(x) increases
for any x ≥ 0, which can also be seen from Figure 4.8. Suppose that τ i is a stopping
time such that Xi

τ i ∼ Fi. Then, by Chacon and Walsh [1976] and the fact that
E
[
Xi
τ i
]

= xi for any n, we get that as n increases τ i increases (the same trend
exists in the symmetric case where x1 = · · · = xn−1 = xn), that is as the number of
participants increases a player should stop later.

For more complicated cases, it might be difficult to analytically solve (?)
which gives us a Nash equilibrium for our problem, but it may be possible to find
solve (?) numerically. We take a 3-player game as an example.

Example 4.2.5. Set n = 3 and suppose that 0 < x1 < x2 < x3. Then, a2 = a3 = 0,
x0 = 0, p0 = 1, and (?) can be reduced to

p2 = p1 − 2(x2−x1)
a1

,

γ3 = p1p2 = p2
1 −

2(x2−x1)
a1

p1,

λ3 = p2
1−p1p2
a1

= 2(x2−x1)p1
a2

1
,

a0 = 1−γ3
λ3

= a1 + 1−p2
1

2(x2−x1)p1
a2

1,

x1 = (1− p1)a1 + 2p3
1−3p2

1+1
6(x2−x1)p1

a2
1,

x3 = 6(2p2
1−p1)(x2−x1)2a1+12(x2−x1)(1−p1)p2

1a
2
1+(3p4

1−4p3
1+1)a3

1
6p1(x2−x1)(a1−2x1p1+2x2p1−a1p2

1) .
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Figure 4.8: Graph of (Ci)i∈I for different n with 0.5 = x1 = · · · = xn−1 < xn = 1.

Using the last two equations, we get that a1 = A1(p1)/A2(p1) and p1 ∈ (0, 1)
solves Q(p) = 0, where A1(p) , 2(x2 − x1)p

[
4x3p

2 + (3x1 + 4x3)p+ (3x1 + x3)
]
,

A2(p) , 4x3p
4 +(4x1 +2x2 +4x3)p3

1 +(3x1 +4x2−3x3)p2 +4(x2−x3)p+2x1−x2−x3

and

Q(p) , 4(x1 + 2x2)x2
3p

6 + 2x3(x1 + 2x2)(3x1 + 3x2 + 2x3)p5

+
[
3x3

1 + 12(x2 + x3)x2
1 + (12x2

2 + 18x2x3 + x2
3)x1 + 12x2

2x3 − 22x2x
2
3

]
p4

+
[
6x3

1 + (12x2 − 6x3)x2
1 + (18x2

2 − 6x2x3 − 16x2
3)x1 − 8x2x

2
3

]
p3

+
[
(18x2 − 6x3)x2

1 + (12x2
2 − 4x2

3)x1 − 30x2
2x3 + 10x2x

2
3

]
p2

+
[
6x3

1 + (24x2 + 6x3)x2
1 + (−18x2

2 − 36x2x3 + 8x2
3)x1 + 6x2

2x3 + 4x2x
2
3

]
p

+ 3x1(x2 − 2x1 + x3)2.

It is difficult to find an explicit solution to Q(p) = 0, but we can numerically solve
it. Moreover, it can be shown that there is one and only one solution p1 to Q(p) = 0
such that p1 ∈ (0, 1). The numerical result is given in Figure 4.9. In this figure, we
also present the graphs of the Nash equilibrium distributions (Fi)i∈I for the other
three cases.

4.2.2 Derivation of the equilibrium distribution

This section illustrates how we obtained the sufficient conditions for the Nash equi-
librium given in Lemma 4.2.1. Recall that 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn and recall the
definition of the Lagrangian Li(Fi, pi;λi, γi) for the optimisation problem (4.10).
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Figure 4.9: Graph of Nash equilibria (Fi)i∈I with n = 3.

Let Li(x) =
∏
j 6=i Fj(x)− λix− γi, then the Lagrangian is given by

Li(Fi, pi;λi, γi) =
ˆ

(0,∞)
Li(x)Fi(dx) +

 1
n

∏
j 6=i

pj − γi

 pi + λixi + γi.

In order to have a finite optimal solution, we require Li(x) ≤ 0 on (0,∞) and
1
n

∏
j 6=i pj − γi ≤ 0. Let Di be the set of (λi, γi) such that Li(·, ·;λi, γi) has a finite

maximum. Then Di is defined by

Di =

(λi, γi) : Li(x) ≤ 0 ∀x > 0 and 1
n

∏
j 6=i

pj − γi ≤ 0

 .
For (λi, γi) ∈ Di, the maximum value of Li(·, ·;λi, γi) occurs at (Fi, pi) such that
Fi(dx) = 0 when Li(x) < 0 and pi = 0 when 1

n

∏
j 6=i pj − γi < 0. Thus, if Fi(dx) > 0

then Li(x) =
∏
j 6=i Fj(x)− λix− γi = 0 and if pi > 0 then 1

n

∏
j 6=i pj − γi = 0.

By analogy with the symmetric case, we expect that the support of the dis-
tribution functions Fi are all intervals. Denote by {ai, bi} the endpoints of supp(Fi)
with ai < bi. We also expect that the right-endpoints are the same, that is bi = a0

for any i ∈ I, where a0 is some positive constant. Thus,
∏
j 6=i Fj(x)− λix− γi = 0
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on [ai, a0]. Further, the left-endpoints are expected to satisfy that 0 = an = an−1 ≤
an−2 ≤ · · · ≤ a1 < a0.

Recall that we expect that there is at least one agent who puts no mass at
zero and all agents put no mass at any positive point, which implies Fi is continuous
and there exists k ∈ I such that Fk(0) = 0. We now argue that Fn(0) = 0. Assume
that Fn(0) 6= 0, that is k 6= n. Then, since pn > 0 and pk = 0, γn = 1

n

∏
j 6=n pj =

0. Further, since Fk(ak) = 0 and ak ≥ 0 = an, λnak =
∏
j 6=n Fj(ak) − γn = 0.

Observe that λna0 =
∏
j 6=n Fj(a0) − γn = 1 > 0, which means λn > 0, a0 > 0

and ak = 0. Since
∏
j 6=k Fj(ak) − λkak − γk = 0, γk =

∏
j 6=k Fj(0) ≥ 0. Then, by

λna0 = 1 = λka0 + γk, λn ≥ λk. Thus, on (0, a0), since
∏
j 6=n Fj(x) = λnx and∏

j 6=k Fj(x) = λkx + γk, we get Fn(x)
Fk(x) − 1 = λkx+γk

λnx
− 1 = (λn−λk)(a0−x)

λnx
≥ 0. This

means that Fn(x) ≥ Fk(x) on [0, a0]. But this is possible only if xn = xk, since
we require Fn has mean xn and Fk has mean xk. Now suppose xn = xk, then
Fn(x) = Fk(x) on [0, a0], which contradicts Fn(0) 6= 0. Thus, Fn(0) = 0.

Fix any i < n. Suppose that xi = xn. We claim that Fi(x) = Fn(x),
γi = 0 and λi = 1/a0. Assume that Fi(0) 6= 0. Then, since Fn(0) = 0 and by
previous arguments, we get that Fi(x) ≥ Fn(x) on [0, a0]. Further, since xi = xn,
Fi(x) = Fn(x) on [0, a0], which contradicts Fi(0) 6= 0. Thus, Fi(0) = 0. Then, we
get γn =

∏
j 6=n Fj(0) = 0, Fi(ai) = 0 and λnai =

∏
j 6=n Fj(ai) − γn = 0. Because

λna0 = 1 > 0, we have a0 > 0, λn > 0 and ai = 0. Then since Fn(0) = 0,
γi =

∏
j 6=i Fj(0) = 0 and thus λia0 = 1 = λna0. This means that λi = λn = 1/a0

and Fi(x) = Fn(x).
Fix any i < n. Suppose that xi < xn. We claim that Fi(0) > 0, γi = 0

and λi = 1/a0. Assume that Fi(0) = 0. Then, by previous arguments, we get that
Fi(x) = Fn(x), which contradicts

´∞
0 xFi(dx) = xi < xn =

´∞
0 xFn(dx). Thus,

Fi(0) > 0. Moreover, since pi > 0 and pn = 0, γi = 1
n

∏
j 6=i pj = 0. Further, since

λia0 + γi =
∏
j 6=i Fj(a0) = 1, λi = 1/a0.

It is now clear that γi = 0 and λi = 1/a0 for all i < n. Then, since Fi(dx) > 0
on (ai, a0),

∏
j 6=i Fj(x) = λix+ γi = x/a0 on [ai, a0].

Because Fn(dx) > 0 on (0, a0),
∏
j 6=n Fj(x) − λnx − γn = 0 on [0, a0]. Let-

ting x = 0 and x = a0, we get γn =
∏
j 6=n Fj(0) and λn = (1 − γn)/a0 =(

1−
∏
j 6=n Fj(0)

)
/a0. Thus,

∏
j 6=n Fj(x) =

(
1−

∏
j 6=n Fj(0)

)
x
a0

+
∏
j 6=n Fj(0) on

[0, a0].
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Chapter 5

Contests with random initial
law

Recall the Seel-Strack contest introduced in Section 1.1. In the contest, each player
chooses a stopping rule to stop a privately observed stochastic process. The player
who stops her process at the highest value wins a prize. And the objective of each
player is not to maximise the expected stopping value, but rather to maximise the
probability that her stopping value is the highest amongst the set of all players.

Seel and Strack studied the symmetric case where all the processes start from
the same strictly positive real number. In contrast, we will discuss the symmetric
case where all the starting values are independently drawn from the (commonly
known) distribution µ with µ ((−∞, 0)) = 0 and finite mean (i.e.

´∞
0 xµ(dx) <∞).

In this case, we will also see that in equilibrium, players use randomised strategies,
so that the level at which the player should stop is stochastic. Moreover, the set of
values at which the agent should stop forms an interval, but now the interval may
not be bounded from above. We will restrict attention to the 2-player case. This
allows us to describe an explicit way of constructing a Nash equilibrium.

The difference between the Seel-Strack model and our setting is that we
assume the initial starting value is also private information and only its distribution
is commonly known. This assumption is relevant if the ability of each contestant is
private information or if a random or luck component is considered.

The remainder of this chapter is constructed as follows. In Section 5.1, we
introduce the mathematical model of the contest, and we will see that a Nash equilib-
rium is identified by a pair of probability measures. Then in Section 5.2, we explain
that if a measure satisfies certain conditions then this measure gives us a symmetric
Nash equilibrium. Some preliminary properties are proved in Section 5.3. In Section
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5.4.1, we show an explicit way of constructing a symmetric Nash equilibrium when
the starting random variable takes only a finite number of distinct values. Then in
Section 5.4.2, we discuss the existence of a symmetric Nash equilibrium in the gen-
eral case where the starting value is some non-negative random variable. And the
uniqueness of a symmetric Nash equilibrium will be proved in Section 5.5. Finally
in Section 5.6, we explain how to derive the sufficient conditions that gives us the
unique symmetric Nash equilibrium.

5.1 The model

Suppose that there are only two agents in the contest. Agent i privately observes
the continuous-time realisation of a Brownian motion Xi = (Xi

t)t∈R+ absorbed at
zero, where i ∈ {1, 2}. Assume Xi

0 has law µ, which is the same for both players,
and assume that µ is the law of a non-negative random variable with finite mean
x0 ∈ R+. Moreover, we assume the processes Xi are independent.

Let F it = σ({Xi
s : s ≤ t}) and set Fi = (F it )t≥0. A strategy of agent i is a

Fi-stopping times τ i. Since zero is absorbing for Xi, without loss of generality we
may restrict attention to τ i ≤ H i

0 = inf{t ≥ 0 : Xi
t = 0}. Both the process Xi and

the stopping time τ i are private information to agent i. That is, Xi and τ i cannot
be observed by the other agent.

The agent who stops at the highest value wins a prize, which we normalize
to one without loss of generality. In the case of a tie in which both agents stop
at the equal highest value, we assume that each of them wins θ, where θ ∈ [0, 1).
Therefore player i with stopping value Xi

τ i receives payoff

1{Xi
τi
<Xj

τj
} + θ1{Xi

τi
=Xj

τj
},

where j 6= i, i ∈ {1, 2}.
Again since the payoffs to the agents only depend upon τ i via the distribution

ofXi
τ i , a Nash equilibrium can be characterised by the laws (νi)i∈{1,2} of (Xi

τ i)i∈{1,2}.
Then, in equilibrium, the agent can use any stopping time τ i such that Xi

τ i ∼ ν
i.

We now introduce some notations. Throughout the chapter, for any measure
$, define F$(x) = $((−∞, x]),

C$(x) =
ˆ ∞
x

(y − x)$(dy) and P$(x) =
ˆ x

0
(x− y)$(dy),

for any x ≥ 0. Note that C$(x)− P$(x) =
´∞

0 y$(dy)− x
´∞

0 $(dy).
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Suppose that νi has the same mean as µ and Cνi(x) ≥ Cµ(x) for any x ≥ 0,
then by Chacon and Walsh [1976] there exists τ i such that Xi

τ i ∼ νi. Conversely,
suppose that there exists τ i such that Xi

τ i ∼ ν
i, then a simple application of Jensen’s

inequality shows that νi must satisfy Cνi(x) ≥ Cµ(x) for all x ≥ 0, and since Xi is
a non-negative supermartingale, the mean of νi must be less than or equal to the
mean of µ, that is

´∞
0 xνi(dx) ≤ x0. Further, Cνi ≥ Cµ implies that Fνi(0) ≥ Fµ(0).

We will say that a measure νi is admissible if there exists a stopping time τ i such
that Xi

τ i ∼ ν
i.

Our aim is to find a pair of admissible measures (ν1, ν2) such that, for each
i ∈ {1, 2}, given that the other agent j 6= i uses a stopping rule τ j such that
Xj
τ j
∼ νj , then the optimal target law for agent i is νi, and she may use any stopping

rule τ i such that Xi
τ i ∼ ν

i. And we say that this pair of admissible measures (ν1, ν2)
is a Nash equilibrium.

We will say a Nash equilibrium is symmetric if ν1((−∞, x]) = ν2((−∞, x]) for
any x ∈ R. This chapter investigates the existence and uniqueness of a symmetric
Nash equilibrium. It seems natural that a Nash equilibrium is symmetric, since
the contest is symmetric in the sense that each agent observes a martingale process
started from the same law µ. Then simple arguments over rearranging mass can be
used to show that it is never optimal for two agents to put mass at the same positive
point x.

Theorem 5.1.1. Suppose (ν, ν) is a Nash equilibrium, then Fν(x) is continuous on
[0,∞) and Fν(0) = Fµ(0).

Proof. (i) Assume that Fν(x) places an atom of size p > 0 at z > 0. Let measure σ
be given by

Fσ(x) =


Fν(x), if x ∈ [0, z − ε1) ∪ [z + ε2,∞),

Fν(x) + q, if x ∈ [z − ε1, z),

Fν(x)− (p− q), if x ∈ [z, z + ε2),

where ε2 ∈
(
0, (1−θ)zp

1+θp

)
, ε1 ∈

(
(1+θp)ε2
(1−θ)p , z

)
and q = ε2p

ε1+ε2 ∈ (0, p). Observe that
(z − ε1)q + (z + ε2)(p − q) = zp, which means that Fν and Fσ have the same
mean. Moreover, observe that Cσ(x) = Cν(x) if x ∈ [0, z − ε1) ∪ [z + ε2,∞),
Cσ(x) = Cν(x)+[x−(z−ε1)]q if x ∈ [z−ε1, z), and Cσ(x) = Cν(x)+(z+ε2−x)(p−q)
if x ∈ [z, z + ε2). This implies that Cσ(x) ≥ Cν(x) ≥ Cµ(x). Thus, σ is admissible.

Suppose that X2
τ2 ∼ Fν . Let ϕ(x) = P

(
X2
τ2 < x

)
. Let Vν and Vσ denote the

expected payoff of player 1 if player 1 chooses ν and σ, respectively, as her target

84



law of X1
τ1 . Then

Vσ − Vν = ϕ(z − ε1)q + ϕ(z + ε2)(p− q)− ϕ(z)p− θp2

+ θP
(
X2
τ2 = z − ε1

)
q + θP

(
X2
τ2 = z + ε2

)
(p− q)

≥ ϕ(z − ε1)q + ϕ(z + ε2)(p− q)− ϕ(z)p− θp2

= p

[
ϕ(z − ε1) ε2

ε1 + ε2
+ ϕ(z + ε2) ε1

ε1 + ε2
− ϕ(z)− θp

]
= p

{
[ϕ(z + ε2)− ϕ(z)] ε1

ε1 + ε2
− [ϕ(z)− ϕ(z − ε1)] ε2

ε1 + ε2
− θp

}
.

Since ϕ(z + ε2)− ϕ(z) ≥ p and 0 ≤ ϕ(z)− ϕ(z − ε1) ≤ 1,

Vσ − Vν ≥ p
[

ε1
ε1 + ε2

p− ε2
ε1 + ε2

− θp
]

= p
ε1(1− θ)p− (1 + θp)ε2

ε1 + ε2
> 0,

which contradicts the definition of Nash equilibrium. Thus, Fν(x) is continuous on
[0,∞).

(ii) Let p = Fν(0) and pµ = Fµ(0). Since µ �cx ν, p ≥ pµ. Assume that
p > pµ. Fix any q such that 0 < q < min

{
p
√

1− θ, 1− p
}
. Since Fν is continuous

on [0,∞), there exists ε > 0 such that ν((0, ε)) = q. Then Fν(ε) = p + q. For any
φ ∈ (0, 1), let measure σφ be given by

Fσφ(x) =


(1− φ)Fν(x), if x ∈ [0, δ),

φ(p+ q) + (1− φ)Fν(x), if x ∈ [δ, ε),

Fν(x), if x ∈ [ε,∞),

where δ =
´ ε

0 yν(dy)/(p+ q). Then σφ is a probability measure with the same mean
as ν.

Suppose that X2
τ2 ∼ Fν . Let Vν and Vσφ denote the expected payoff of player

1 if player 1 chooses ν and σφ, respectively, as her target law of X1
τ1 . Then

Vσφ − Vν = φ

{
(p+ q)Fν(δ)− θp2 −

ˆ ε

0
Fν(y)ν(dy)

}
≥ φ

{
(p+ q)p− θp2 − (p+ q)q

}
= φ

{
(1− θ)p2 − q2

}
> 0.

Hence, if σφ is admissible then player 1 would refer strategy σφ to ν.
Making q and ε smaller if necessary, and using the fact that C ′ν(0+) = p −

1 > pµ − 1 = C
′
µ(0+), we can insist that Cν(x) − Cµ(x) > (p − pµ)x/2 for x ∈

(0, ε). Observe that Cν(x) − Cσφ(x) = 0 for x ≥ ε. Moreover, for x ∈ [0, ε), since
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Fν(x)− Fσφ(x) ≤ φFν(δ), Cν(x)− Cσφ(x) ≤ φFν(δ)x. Then, if φ ≤ p−pµ
2Fν(δ) , we have

Cσφ(x)− Cµ(x) = (Cν(x)− Cµ(x))−
(
Cν(x)− Cσφ(x)

)
>

1
2(p− pµ)x− φFν(δ)x ≥ 0

for all x ∈ (0, ε), and thus µ �cx σφ. This contradicts the definition of Nash
equilibrium. Hence, Fν(0) = Fµ(0).

Remark 5.1.1. Our results in this chapter can be extended to the case where the
processes observed by the agents are independent copies of a time-homogeneous
diffusion process Y under certain assumptions. The idea has been explained in
Chapter 2 and in Section 3.6. Again we use a change of scale to transform the
problem into natural scale.

Denote by {l1, l2} the endpoints of the state space of Y with −∞ ≤ l1 < l2 ≤
∞, and denote by s(·) the scale function of Y . Assume that s(l1) > −∞, s(l2) =∞
and E[s(Y0)] < ∞. Set s(l1) = 0. Then, X = s(Y ) converges to zero almost surely
(and if zero can be reached in finite time, then zero is absorbing), X0 ≥ 0 almost
surely since X0 = s(Y0) ≥ s(l1) = 0, and E[X0] <∞.

Again the contest in which players privately observe independent copies of
Y is equivalent to the contest in which players privately observe independent copies
of X, and the choice of optimal stopping rule is the same for both contests. In
particular, once we have found a Nash equilibrium (F1, F2) for

(
X1
τ1 , X2

τ2
)
, where Fi

is the distribution function of Xi
τ i , then letting Gi = Fi ◦ s, we see that (G1, G2) is

a Nash equilibrium for
(
Y 1
τ1 , Y 2

τ2
)
.

5.2 Nash equilibrium

In this section, we first provide the sufficient conditions for a symmetric Nash equi-
librium for the contest.

Theorem 5.2.1. Let A∗µ be the set of all measures ν satisfying all the following
conditions:

(i) ν((−∞, 0)) = 0, ν((−∞,∞)) = 1, Fν is continuous on (0,∞), Fν(0) = Fµ(0),´∞
0 xν(dx) = x0, and Cν(x) ≥ Cµ(x) for all x ≥ 0;

(ii) Fν(x) is strictly increasing and concave on [0, r];

(iii) if Cν(x) > Cµ(x) on some interval J ⊂ [0, r] then Cν(x) is quadratic on J ,
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where r = sup {x : Fν(x) < 1} and r may be infinity. If ν∗ ∈ A∗µ, then (ν∗, ν∗) is a
symmetric Nash equilibrium for the problem.

Remark 5.2.1. We explain the necessity of the first condition in this remark. The
necessity of the other two conditions can be seen in Section 5.6. Recall that Xi

0 ∼ µ
and µ has mean x0. It is clear that the optimal law ν of Xi

τ i should be a probability
measure such that ν((−∞, 0)) = 0,

´∞
0 xν(dx) ≤ x0 and Cν(x) ≥ Cµ(x) for all

x ≥ 0. Recall that if (ν, ν) is a Nash equilibrium then Fν is continuous on [0,∞)
and Fν(0) = Fµ(0) by Theorem 5.1.1. Now observe that if Xτ̃ ∼ ν̃ and ν̃ has mean
strictly less than x0, then there exists (ν, τ) such that ν has mean x0, Fν(x) ≤ Fν̃(x)
for all x, and Xτ ∼ ν. Clearly τ dominates τ̃ as a strategy. Hence the optimal law
ν must have mean x0.

We will show that the number of members of set A∗µ is less than or equal to 1
in Section 5.5. In Section 5.4.1 and Section 5.4.2, we will see that A∗µ is non-empty,
and thus A∗µ is actually a singleton.

Theorem 5.2.2.
∣∣∣A∗µ∣∣∣ = 1.

Before proving Theorem 5.2.1 we first present some examples. And Theorem
5.2.2 will be proved in later sections.

Example 5.2.1. Let υ = U [0, 2x0], where U stands for the continuous uniform
distribution. Suppose µ satisfies that Cµ ≤ Cυ. Then, it is easy to see that υ ∈ A∗µ,
and thus (υ, υ) is the unique symmetric Nash equilibrium for the problem.

Example 5.2.2. Suppose µ satisfies that Fµ(x) is continuous on [0,∞) and strictly
increasing on [0, rµ], where rµ = sup {x : Fµ(x) < 1}. If Fµ is concave on [0, rµ],
then µ ∈ A∗µ and (µ, µ) is the unique symmetric Nash equilibrium for the problem.
If Fµ is convex on [0, rµ] and Fµ(0) = 0, then it can be verified that Cµ ≤ Cυ (see
Proposition 5.3.1 for a detailed proof), where υ = U [0, 2x0], and thus (υ, υ) is the
unique symmetric Nash equilibrium for the problem.

Example 5.2.3. (Beta distribution) Suppose µ is a beta distribution with shape
parameters α = 2 and β = 3, that is µ = Beta(2, 3). Then, the mean of µ is 2/5,
Cµ(x) =

(
3
5x

5 − 2x4 + 2x3 − x+ 2
5

)
1{x≤1}, and Fµ(x) = min{3x4 − 8x3 + 6x2, 1}.

Since Fµ(x) is convex on (0, 1
3) and concave on (1

3 , 1), the equilibrium measure ν must
satisfy that Cν(x) = c1x

2 − x+ 2
5 on [0, c2], where c1 > 0 and c2 > 0 are constants.

Moreover, c1 and c2 satisfy that Cµ(c2) = c1c
2
2 − c2 + 2

5 and C
′
µ(c2) = 2c1c2 − 1.

Solving the system of equations, we get c1 = 4
√

10+140
243 and c2 = 10−

√
10

9 . Define
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function C(x) by

C(x) =
(
c1x

2 − x+ 2
5

)
· 1x∈[0,c2) + Cµ(x) · 1x∈[c2,∞),

and let ν be given by

Fν(x) = 2c1x · 1x∈[0,c2) + Fµ(x) · 1x∈[c2,∞).

Then Cν(x) = C(x) for any x ≥ 0. Note that c2 ∈ (1
3 , 1) and F

′
ν(c2−) = 2c1 >

F
′
µ(c2), which means that Fν(x) is concave. And by the exact form of Fν(x), it can

be seen that ν ∈ A∗µ. Thus, (ν, ν) is the unique symmetric Nash equilibrium for the
problem.

Example 5.2.4. (Atomic measure) Suppose that µ = 1
2δ1−ε + 1

2δ1+ε, where ε ∈
(0, 1), and δx is a Dirac measure on set {x}. Then the mean of µ is 1 and Cµ(x) =
(1 − x) · 1x∈[0,1−ε) + 1

2(1 + ε − x) · 1x∈[1−ε,1+ε). By calculations, if ε ∈ (0, 1/2] then
Cµ ≤ Cυ, where υ = U [0, 2]. Thus, if ε ∈ (0, 1/2] then (υ, υ) is the unique symmetric
Nash equilibrium for the problem. Next suppose ε ∈ (1/2, 1). Define function C(x)
by

C(x) = x2 − 8(1− ε)(x− 1)
8(1− ε) · 1x∈[0,2(1−ε)) + x2 − 8εx+ 16ε2

8(3ε− 1) · 1x∈[2(1−ε),4ε),

and let ν be given by

Fν(x) = x

4(1− ε) · 1x∈[0,2(1−ε)) + x+ 4(2ε− 1)
4(3ε− 1) · 1x∈[2(1−ε),4ε) + 1x∈[4ε,∞).

Then Cν(x) = C(x) for any x ≥ 0. It can be seen that ν ∈ A∗µ. Hence, (ν, ν) is the
unique symmetric Nash equilibrium for the problem if ε ∈ (1/2, 1).

In the rest of this section we present the proof of Theorem 5.2.1.

Proof of Theorem 5.2.1. The proof is based on a Lagrangian method. Let Aµ
be the set of all measures ν satisfying that ν((−∞, 0)) = 0, ν((−∞,∞)) = 1, Fν is
continuous on (0,∞), Fν(0) ≥ Fµ(0),

´∞
0 xν(dx) = x0, and Cν(x) ≥ Cµ(x) for all

x ≥ 0. A symmetric Nash equilibrium is identified with a measure ν∗ ∈ Aµ with
the property that, for any ν ∈ Aµ,
ˆ

(0,∞)
Fν∗(x)ν∗(dx) + θFν∗(0)Fν∗(0) ≥

ˆ
(0,∞)

Fν∗(x)ν(dx) + θFν∗(0)Fν(0). (5.1)
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Fix any ν∗ ∈ A∗µ and fix any ν ∈ Aµ. Suppose that λ, γ and ζ ≥ 0 are some
finite constants and η(·) satisfies that η(dz) ≥ 0 ∀z ≥ 0. Define

Lν∗(ν;λ, γ, ζ, η) =
ˆ

(0,∞)
Fν∗(x)ν(dx) + θFν∗(0)Fν(0) + λ

(
x0 −

ˆ
(0,∞)

xν(dx)
)

+ γ

(
1−
ˆ

(0,∞)
ν(dx)− Fν(0)

)
+ ζ (Fν(0)− Fµ(0))

+
ˆ

(0,∞)
(Cν(z)− Cµ(z)) η(dz) (5.2)

=
ˆ

(0,∞)

(
Fν∗(x)− λx− γ +

ˆ
(0,x)

(x− z)η(dz)
)
ν(dx) + λx0 + γ

+ (θFν∗(0)− γ + ζ)Fν(0)−
ˆ ∞

0
Cµ(z)η(dz)− ζFµ(0). (5.3)

Rearranging (5.2), and since ζ ≥ 0, Fν(0) ≥ Fµ(0), η(dz) ≥ 0 and Cν(z) ≥ Cµ(z)
∀z ≥ 0,
ˆ

(0,∞)
Fν∗(x)ν(dx) + θFν∗(0)Fν(0)

= Lν∗(ν;λ, γ, ζ, η)− ζ (Fν(0)− Fµ(0))−
ˆ

(0,∞)
(Cν(z)− Cµ(z)) η(dz)

≤ Lν∗(ν;λ, γ, ζ, η). (5.4)

Furthermore, if η satisfies that Cν∗(z) = Cµ(z) for any z where η(dz) > 0, then
since Fν∗(0) = Fµ(0),

ˆ
(0,∞)

Fν∗(x)ν∗(dx) + θFν∗(0)Fν∗(0) = Lν∗(ν∗;λ, γ, ζ, η). (5.5)

Define r∗ = sup {x : Fν∗(x) < 1} and r∗ ≤ ∞. Because Fν∗ is continuous
and concave, it is absolutely continuous, which means that there exists a function
fν∗ such that Fν∗(x) =

´ x
0 fν∗(y)dy + Fν∗(0). Moreover, fν∗(x) =

´ r∗
x ψ(dz), where

ψ is some measure given by ψ((z1, z2]) = fν∗(z1+) − fν∗(z2+) for any z1 < z2.
Since fν∗ is non-increasing, ψ(dz) ≥ 0. And since ν∗ ∈ A∗µ, if Cν∗(z) > Cµ(z) then
fν∗ is constant near z, which implies that ψ(dz) = 0. Also observe that, for any
x ∈ (0, r∗), since

´ x
0 zψ(dz) =

´ x
0
´ z

0 dyψ(dz) =
´ x

0
´ x
y ψ(dz)dy,

ˆ x

0
zψ(dz) =

ˆ x

0
(fν∗(y)− fν∗(x)) dy = Fν∗(x)− Fν∗(0)− xfν∗(x). (5.6)

(i) Suppose fν∗(0) < ∞. Let λ∗ = fν∗(0), γ∗ = Fν∗(0), ζ∗ = (1 − θ)Fν∗(0)
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and η∗(dz) = ψ(dz) for any z ∈ (0, r∗) with η∗(dz) = 0 elsewhere. Notice that
λ∗ < ∞, γ∗ < ∞, 0 ≤ ζ∗ < ∞ and η∗ satisfies that η∗(dz) ≥ 0 ∀z ≥ 0 and
Cν∗(z) = Cµ(z) for any z where η∗(dz) > 0.

Define Γ(x) = λ∗x + γ∗ −
´ x

0 (x − z)η∗(dz) for all x ≥ 0. Then, for any
x ∈ (0, r∗), Γ(x) = fν∗(0)x+Fν∗(0)−

´ x
0 (x−z)ψ(dz). By (5.6), −

´ x
0 (x−z)ψ(dz) =

−x (fν∗(0)− fν∗(x)) + Fν∗(x) − Fν∗(0) − xfν∗(x). Thus, Γ(x) = Fν∗(x) for any
x ∈ (0, r∗).

Observe that Γ is continuous and non-decreasing. This implies that Fν∗(x) ≤
Γ(x) for any x ≥ 0. Also observe that θFν∗(0) − γ∗ + ζ∗ = 0. Thus, by (5.4) and
(5.3),
ˆ ∞

0
Fν∗(x)ν(dx) + θFν∗(0)Fν(0) ≤ λ∗x0 + γ∗ −

ˆ ∞
0

Cµ(z)η∗(dz)− ζ∗Fµ(0), (5.7)

and by (5.5) and (5.3),
ˆ ∞

0
Fν∗(x)ν∗(dx)+θFν∗(0)Fν∗(0) = λ∗x0 +γ∗−

ˆ ∞
0

Cµ(z)η∗(dz)−ζ∗Fµ(0). (5.8)

Note
´∞

0 Cµ(z)η∗(dz) =
´ r∗

0 Cµ(z)ψ(dz) ≤ x0fν∗(0) <∞ so that the right-hand side
of (5.7) and (5.8) is well defined and positive. Thus, for any ν ∈ Aµ,

ˆ ∞
0

Fν∗(x)ν(dx) + θFν∗(0)Fν(0) ≤
ˆ ∞

0
Fν∗(x)ν∗(dx) + θFν∗(0)Fν∗(0).

Hence, from the definition (5.1) of a Nash equilibrium, (ν∗, ν∗) is a symmetric Nash
equilibrium for the problem.

(ii) Suppose fν∗(0) = ∞. Fix any ε > 0. Let λε = fν∗(ε), γε = Fν∗(0) +´ ε
0 zψ(dz), ζε = γε − θFν∗(0) and ηε(dz) = ψ(dz) for any z ∈ (ε, r∗) with ηε(dz) = 0
elsewhere. Notice that λε < ∞, γε = Fν∗(ε) − εfν∗(ε) < ∞, 0 ≤ (1 − θ)Fν∗(0) +´ ε

0 zψ(dz) = ζε <∞ and ηε satisfies that ηε(dz) ≥ 0 ∀z ≥ 0 and Cν∗(z) = Cµ(z) for
any z where ηε(dz) > 0.

Define Γε(x) = λεx+ γε −
´ x

0 (x− z)ηε(dz) for any x ≥ 0. Then, for any x ∈
(ε, r∗), Γε(x) = fν∗(ε)x+Fν∗(0) +

´ x
0 zψ(dz)−x

´ x
ε ψ(dz). Using (5.6),

´ x
0 zψ(dz)−

x
´ x
ε ψ(dz) = Fν∗(x)−Fν∗(0)− xfν∗(x)− x (fν∗(ε)− fν∗(x)). Thus, Γε(x) = Fν∗(x)

for any x ∈ (ε, r∗). Further, Γε(x) = fν∗(ε)(x − ε) + Fν∗(ε) on [0, ε], and if r∗ < ∞
then Γε(x) = 1 on [r∗,∞).

On (0, ε), Γε(x) is linear and Fν∗(x) is concave. Then, since Γ′ε(ε) = fν∗(ε)
and Γε(ε) = Fν∗(ε), we have Fν∗(x) ≤ Γε(x) and Fν∗(x)− Γε(x) ≥ Fν∗(0)− Γε(0) =
−
´ ε

0 zψ(dz), for any x ∈ (0, ε). Thus, Fν∗(x) ≤ Γε(x) for any x ≥ 0. Then, since
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θFν∗(0)− γε + ζε = 0 and by (5.4) and (5.3),
ˆ

(0,∞)
Fν∗(x)ν(dx) + θFν∗(0)Fν(0) ≤ λεx0 + γε −

ˆ ∞
0

Cµ(z)ηε(dz)− ζεFµ(0),

and since
´ ε

0 (Fν∗(x)− Γε(x)) ν∗(dx) ≥ − (Fν∗(ε)− Fν∗(0))
´ ε

0 zψ(dz) and using (5.5)
and (5.3),
ˆ

(0,∞)
Fν∗(x)ν∗(dx) + θFν∗(0)Fν∗(0)

≥ − (Fν∗(ε)− Fν∗(0))
ˆ ε

0
zψ(dz) + λεx0 + γε −

ˆ ∞
0

Cµ(z)ηε(dz)− ζεFµ(0).

Observe that, since limε↓0
´ ε

0 zψ(dz) = 0,

lim
ε↓0

{
λεx0 + γε −

ˆ ∞
0

Cµ(z)ηε(dz)− ζεFµ(0)
}

= lim
ε↓0

{
fν∗(ε)x0 + Fν∗(0)−

ˆ r∗

ε
Cµ(z)ψ(dz)− (1− θ)Fν∗(0)Fµ(0)

}

= lim
ε↓0

{
Fν∗(0) +

ˆ r∗

ε
(x0 − Cµ(z))ψ(dz)− (1− θ)Fν∗(0)Fµ(0)

}

= Fν∗(0) +
ˆ r∗

0
(x0 − Cµ(z))ψ(dz)− (1− θ)Fν∗(0)Fµ(0).

Since x0 − Cµ(z) ≤ z ∧ x0 for any z ≥ 0 and using (5.6),

ˆ r∗

0
(x0 − Cµ(z))ψ(dz) ≤

ˆ r∗

0
(z ∧ x0)ψ(dz) =

ˆ x0

0
zψ(dz) + x0fν∗(x0) <∞,

which means that limε↓0
{
λεx0 + γε −

´∞
0 Cµ(z)ηε(dz)− ζεFµ(0)

}
<∞. Then, since

limε↓0
{
− (Fν∗(ε)− Fν∗(0))

´ ε
0 zψ(dz)

}
= 0,

ˆ
(0,∞)

Fν∗(x)ν∗(dx) + θFν∗(0)Fν∗(0)

≥ lim
ε↓0

{
λεx0 + γε −

ˆ ∞
0

Cµ(z)ηε(dz)− ζεFµ(0)
}

≥
ˆ

(0,∞)
Fν∗(x)ν(dx) + θFν∗(0)Fν(0).

Hence, from the definition (5.1) of a Nash equilibrium, (ν∗, ν∗) is a symmetric Nash
equilibrium for the problem.
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5.3 Preliminaries

In this section we state and prove some technique results which will be required
later.

Proposition 5.3.1. Let Y be the set of non-negative random variables Y with
mean ȳ ∈ (0,∞). Denote by F Y the distribution function of Y . Let sY1 = inf{u :
F Y (u) > 0} ≥ 0 and sY2 = sup{u : F Y (u) < 1} ≤ ∞.

(i) Let Ycx =
{
Y ∈ Y : F Y is convex on

(
−∞, sY2

]}
. Then, for Y ∈ Ycx, P(Y =

0) = 0.

(a) Suppose H is convex. Then, supY ∈Ycx E[H(Y )] =
´ 2ȳ

0
1
2ȳH(y)dy.

(b) Suppose H is concave. Then, supY ∈Ycx E[H(Y )] = H(ȳ).

(ii) Let Ycv =
{
Y ∈ Y : F Y is concave on [0,∞)

}
. Then, for Y ∈ Ycv, sY1 = 0.

(a) Suppose H is convex. Then, supY ∈Ycv E[H(Y )] = H(0) + ȳ limx↑∞
H(x)
x .

(b) Suppose H is concave. Then, supY ∈Ycv E[H(Y )] =
´ 2ȳ

0
1
2ȳH(y)dy.

The bounds are all best possible. The bounds in (i.a) and (ii.b) are attained by
Y ∼ U [0, 2ȳ]. The bound in (i.b) is attained by Y ∼ δȳ. The bounds in (i.b) and
(ii.a) are valid for all distributions on R+ with mean ȳ and not just those with
convex (or concave) distribution functions.

Remark 5.3.1. This result is stated for completeness; the result we will use is (i.a).

Proof. Let U be a U [0, 1] random variable.
(i.a) Suppose Y ∈ Ycx. It is obvious that the distribution function of Y ,

F = F Y , is strictly increasing on (sY1 , sY2 ), and F (sY1 ) = 0. So the inverse function
G(y) , F−1(y) of F exists on [0, 1]. Since G(U) is distributed as Y , E[H(Y )] =
E[H(G(U))] =

´ 1
0 H(G(u))du and

´ 1
0 G(u)du = E[G(U)] = E[Y ] = ȳ.

It is clear that G is concave on [0, 1] and G(0) = sY1 ≥ 0. Then, since´ 1
0 2ȳudu =

´ 1
0 G(u)du, there exists a unique u∗ ∈ (0, 1) such that G(u∗) = 2ȳu∗

(see the left graph in Figure 5.1). Moreover, 2ȳu ≤ G(u) ≤ 2ȳu∗ for u ∈ [0, u∗] and
2ȳu∗ ≤ G(u) ≤ 2ȳu for u ∈ [u∗, 1]. Since E[H(2ȳU)] =

´ 1
0 H(2ȳu)du,

E[H(Y )]−E[H(2ȳU)] =
ˆ u∗

0
(H(G(u))−H(2ȳu)) du+

ˆ 1

u∗
(H(G(u))−H(2ȳu)) du.
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Figure 5.1: Comparison of G(u) and 2ȳu. Since G is the inverse of the CDF of a
mean ȳ random variable, the area under G is ȳ. Then the areas under G and the
line 2ȳu are the same. Hence, if G is either convex or concave, there is a unique
crossing point u∗ of G and the line 2ȳu.

Let H ′− denote the left derivative of the convex function H, then H(u2)−H(u1) ≤
(u2 − u1)H ′−(u2) for any u1 and u2. This means that

E[H(Y )]− E[H(2ȳU)]

≤
ˆ u∗

0
(G(u)− 2ȳu)H ′−(2ȳu∗)du+

ˆ 1

u∗
(G(u)− 2ȳu)H ′−(2ȳu∗)du

= H
′
−(2ȳu∗)

ˆ 1

0
(G(u)− 2ȳu)du = 0. (5.9)

Thus, E[H(Y )] ≤ E[H(2ȳU)] =
´ 2ȳ

0
1
2ȳH(y)dy. Moreover, it is obvious that the

bound is attained by Y ∼ U [0, 2ȳ].
(i.b) Since H is concave for any Y ∈ Y, Jensen’s inequality gives E[H(Y )] ≤

H(E[Y ]) = H(ȳ). Also if Y ∼ δȳ then Y ∈ Ycx.
(ii.a) Fix any z > 0. Since H is convex, H(z) ≤ H(0) + z

x(H(x)−H(0)) for
any x ≥ z. Letting x tends to ∞, H(z) ≤ H(0) + z limx↑∞H(x)/x. This implies
that for Y ∈ Y, E[H(Y )] ≤ E [H(0) + Y limx↑∞H(x)/x] = H(0)+ ȳ limx↑∞H(x)/x.

It remains to show that the bound is best possible. Let Yn ∼
(
1− 1

n

)
δ0 +

1
nU [0, 2ȳn]. Then Yn ∈ Ycv. Also

lim
n→∞

E[H(Yn)] = lim
n→∞

[(
1− 1

n

)
H(0) + 1

n

ˆ 2ȳn

0

H(z)
2ȳn dz

]

= lim
n→∞

[(
1− 1

n

)
H(0) + 2ȳ

ˆ 1

0
u
H(2ȳnu)

2ȳnu du

]

= H(0) + 2ȳ lim
x↑∞

H(x)
x

ˆ 1

0
udu = H(0) + ȳ lim

x↑∞

H(x)
x

.
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(ii.b) Suppose Y ∈ Ycv. It is clear that sY1 = 0 and F = F Y is strictly
increasing on (0, sY2 ). This means that its inverse function F−1(·) exists on [F (0), 1].
Now define G(y) = F−1(y) for any y ∈ [F (0), 1] and G(y) = 0 for any y < F (0).
Similar to (i.a), we have that G(U) is distributed as Y , E[H(Y )] =

´ 1
0 H(G(u))du,´ 1

0 G(u)du = ȳ and
´ 1

0 2ȳudu = ȳ.
It is clear that G(y) is convex on [F (0), 1] and G(y) = 0 on [0, F (0)]. Then,

since
´ 1

0 2ȳudu =
´ 1

0 G(u)du, there exists a unique u∗ ∈ (0, 1) such that G(u∗) =
2ȳu∗ (see the right graph in Figure 5.1). Moreover, G(u) ≤ 2ȳu ≤ 2ȳu∗ for u ∈ [0, u∗]
and 2ȳu∗ ≤ 2ȳu ≤ G(u) for u ∈ [u∗, 1].

Then, since H is concave, H(u2)−H(u1) ≤ (u2−u1)H ′−(u1), for any u1 and
u2. Again we have (5.9) holds. Thus, E[H(Y )] ≤ E[H(2ȳU)] =

´ 2ȳ
0

1
2ȳH(y)dy, and

it is obvious that the bound is attained by Y ∼ U [0, 2ȳ].

Proposition 5.3.2. Let H be twice differentiable, and suppose that h = H
′ is

concave. Suppose that H(0) = 0, h(0) > 0, h′(0) ≤ 0 and h is not constant. Then,
for any ŵ > 0 such that H(ŵ) = 0, we have h(ŵ) + h(0) ≤ 0, i.e. |h(ŵ)| ≥ h(0).

Proof. Since h is not constant and h is concave, there is a solution w̃ to h(w) =
−h(0). Let δ = −2h(0)/w̃ be the slope of the line joining (0, h(0)) to (w̃,−h(0)).
Then, on (0, w̃), h(w) ≥ h(0) + δw and H(w) =

´ w
0 h(x)dx ≥ h(0)w + δw2/2. So

that H(w̃) ≥ 0. Then, by concavity of H and since H(ŵ) = 0, ŵ ≥ w̃. Thus,
h(ŵ) ≤ h(w̃) = −h(0) and the result follows.

Proposition 5.3.3. For any measure ν ∈ A∗µ, if Cν(x) = Cµ(x) for some x > 0,
then Cµ(·) is differentiable at x and C ′ν(x) = C

′
µ(x).

Proof. Suppose that ν ∈ A∗µ. Then, Cν is continuously differentiable and Cν ≥ Cµ.
Because Cν(y)−Cµ(y) ≥ 0 = Cν(x)−Cµ(x) for any y < x and by the definition of left
derivatives, we get C ′ν(x−)−C ′µ(x−) ≤ 0. Similarly, we have C ′ν(x+)−C ′µ(x+) ≥ 0.
Thus, C ′µ(x+) ≤ C

′
ν(x+) = C

′
ν(x−) ≤ C

′
µ(x−). Observe that C ′µ(x−) ≤ C

′
µ(x+)

since Cµ is convex. Hence, C ′µ(x−) = C
′
µ(x+), which means that C ′µ(x) exists and

C
′
ν(x) = C

′
µ(x).

Proposition 5.3.4. Fix any measure ν ∈ A∗µ. Suppose that Cν(x) = φ(x) on some
closed interval J = [j1, j2], where 0 ≤ j1 < j2 and φ(·) is a quadratic function
defined on (−∞,∞) with φ′′ > 0. Then j2 <∞ and Cν(x) ≤ φ(x) on (j2,∞).
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Proof. Assume that j2 =∞. Then Cν is quadratic on (j2,∞) with strictly positive
quadratic coefficient. This means that Cν is not ultimately decreasing, which is a
contradiction. Thus, j2 < ∞. Since C ′ν is continuous and concave and since φ′ is
linear, it is clear that Cν(x) ≤ φ(x) on [j2,∞).

5.4 Existence of a Nash equilibrium

This section shows how to construct a measure that belongs to A∗µ.

5.4.1 Atomic Initial Measure

We start with the case where the initial law µ is an atomic probability measure.
We will construct a function P (x) that satisfies certain conditions, and then define
a measure ν via ν((−∞, x]) = P

′(x). Using the conditions that P satisfies, it will
be seen that this measure ν belongs to A∗µ. Then, by Theorem 5.2.1 and Theorem
5.2.2, (ν, ν) is the unique symmetric Nash equilibrium for the problem.

Theorem 5.4.1. Suppose µ is a measure with finitely many atoms, that is µ =∑N
j=1 pjδξj , where 0 ≤ ξ1 < ξ2 < · · · < ξN and pj ∈ (0, 1) for all 1 ≤ j ≤ N . Let

m =
∑N
j=1 pjξj and suppose that m ∈ [0,∞). Then, there exists a unique measure ν

such that ν((−∞, 0)) = 0, ν(R) = µ(R), Fν is continuous on (0,∞), Fν(0) = Fµ(0),´∞
0 xν(dx) = m, Cν(x) ≥ Cµ(x) ∀x ≥ 0, and ν has a piecewise constant density ρ
and ρ only decreases when Cν(x) = Cµ(x).

Proof. Let ξ0 = 0, ξN+1 =∞ and p0 = 0. Then

Pµ(y) =
i∑

j=0
pj(y − ξj) if y ∈ [ξi, ξi+1), i = 0, 1, . . . , N.

If µ is a point mass at zero, then set ν({0}) = µ({0}) and the construction
is complete. Otherwise, let Q1(r, y) = yFµ(0) + ry2/2. Then there exists a unique
value of r (r1 say) such that

Q1(r1, y) ≥ Pµ(y) ∀y ≥ 0 and Q1(r1, y) = Pµ(y) for some y > 0.

Let y1 = max{y > 0 : Q1(r1, y) = Pµ(y)}. Then necessarily P
′
µ(y1) exists and

∂
∂yQ1(r1, y1) = P

′
µ(y1). Note that y1 /∈ {ξ1, ξ2, · · · , ξN} since P ′µ has a kink at

these points. Let n1 be such that ξn1 < y1 < ξn1+1. If n1 = N (equivalently
P
′
µ(y1) =

∑N
j=0 pj = µ(R)) then stop. Otherwise we proceed inductively.
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Figure 5.2: Construction of Q(y). The dashed curve is Q3(r, y) with r < r3. Qi(r, y)
are quadratic functions of y such that Qi(r, yi−1) = Pµ(yi−1) and ∂

∂yQi(r, yi−1) =
P
′
µ(yi−1). And ri is the unique value of r such that Qi(ri, y) ≥ Pµ(y) for all y ≥ yi−1

and Qi(ri, y) = Pµ(y) for some y > yi−1.

Let y0 = 0. Suppose we have found 0 < y1 < y2 < · · · < yk < ξN

(yi /∈ {ξ1, ξ2, · · · , ξN} ∀1 ≤ i ≤ k) and Q(·) on [0, yk] such that Q is continuously
differentiable, Q(yi) = Pµ(yi) and Q′(yi) = P

′
µ(yi) for any 0 ≤ i ≤ k, Q is piecewise

quadratic, in particular Q is quadratic on {(yi−1, yi)}1≤i≤k with representation

Q(y) = Qi(ri, y) , Pµ(yi−1) + (y − yi−1)P ′µ(yi−1) + 1
2ri(y − yi−1)2

on [yi−1, yi]. We will see that (ri)1≤i≤k is a decreasing sequence. Let Qk+1(r, y) =
Pµ(yk) + (y − yk)P

′
µ(yk) + 1

2r(y − yk)
2, then there exists a unique r (rk+1 say) such

that

Qk+1(rk+1, y) ≥ Pµ(y) ∀y ≥ yk and Qk+1(rk+1, y) = Pµ(y) for some y > yk.

Since Qk(rk, y) > Pµ(y) for all y > yk, it is clear that 0 < rk+1 < rk. Set
yk+1 = max{y > yk : Qk+1(rk+1, y) = Pµ(y)}. Then, P ′µ(yk+1) exists, P ′µ(yk+1) =
∂
∂yQk+1(rk+1, yk+1), and yk+1 /∈ {ξ1, ξ2, · · · , ξN} since Pµ has changes in slope at
these points. Set Q(y) = Qk+1(rk+1, y) on [yk, yk+1]. Repeat up to and includ-
ing the index T − 1 for which yk+1 > ξN . Then yT−1 < ξN < yT and then set
Q(y) = Pµ(y) for y ≥ yT .

Now set ρ(y) = Q
′′(y). Then ρ(y) = ri on (yi−1, yi)1≤i≤T and ρ(y) = 0 on

(yT ,∞). Furthermore, ρ is decreasing and ρ only decreases at points where Pµ(y) =
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Q(y). Let ν be the measure with density ρ and an atom at 0 of size Fµ(0). Recall that
yT > ξN . Then, Pν(y) = Q(y) ≥ Pµ(y), Fν(0) = Fµ(0), Fν(y) = P

′
ν(yT ) = P

′
µ(yT ) =

µ(R) for any y ≥ yT and
´∞

0 yν(dy) = yTFν(yT )−Pν(yT ) = yTµ(R)−Pµ(yT ) = m.
Furthermore, Cν(y) = Pν(y) + m − yµ(R) ≥ Pµ(y) + m − yµ(R) = Cµ(y). It then
follows that ν satisfies all the conditions in the theorem.

Remark 5.4.1. Fix any k ∈ {1, 2, . . . , T}. Let nk be such that ξnk < yk < ξnk+1.
Then, in the mapping µ 7→ ν, the atoms (ξ1, ξ2, · · · , ξnk) of µ are mapped to [0, yk],
and ν([0, yk]) = P

′
µ(yk) =

∑nk
j=1 pj . Moreover,

´ yk
0 yν(dy) = ykFν(yk) − Pν(yk) =

yk
∑nk
j=1 pj − Pµ(yk) = yk

∑nk
j=1 pj −

∑nk
j=1 pj(yk − ξj) =

∑nk
j=1 pjξj .

Example 5.4.1. Suppose that µ = pδξ with ξ > 0. Then Pµ(y) = p(y − ξ)+. Let
Q1(r, y) = ry2/2. Then, Q1(r, y) ≥ Pµ(y) if and only if r ≥ p/(2ξ) = r1, and for
r = r1 we have Q1(r1, y) ≥ Pµ(y) with equality at y = 0 and y = y1 = 2ξ. Then
y1 > ξ = ξN so that the construction ends and ν = pU [0, 2ξ].

The rest of this section proves a useful lemma which will be used in the next
section to find the optimal target law for a general initial measure.

Lemma 5.4.1. Suppose µ is a probability measure with finitely many atoms. Sup-
pose that µ((−∞, 0)) = 0 and µ has mean x0 ∈ R+. Denote by ν the probability
measure that satisfies all the conditions in Theorem 5.4.1. Suppose ω is any prob-
ability measure such that ω has mean x0 and µ �cx ω, where �cx denotes “less than
or equal to in convex order.”

(i) Let Xω be a random variable has law ω. Define X̄ω as a random variable that
has conditional distribution X̄ω ∼ U [0, 2x] given Xω = x. Let ω̄ be the law of
X̄ω. Then ν �cx ω̄. In particular, Cν(x) ≤ Cω̄(x).

(ii) Define Dν(x) = −C ′ν(x) for any x ≥ 0. Then,

Dν(x) ≤ inf
y<x

Cν(y)
x− y

≤ inf
y<x

Cω̄(y)
x− y

for any x ≥ 0.

Further, limx↑∞ x infy<x Cω̄(y)
x−y = 0.

Proof. Suppose µ =
∑N
j=1 pjδξj , where 0 ≤ ξ1 < ξ2 < · · · < ξN , pi ∈ (0, 1),∑N

j=1 pj = 1 and
∑N
j=1 pjξj = x0.

(i) Let µ̄ =
∑N
j=1 pjU [0, 2ξj ] where U [0, 0] denotes δ0. We first show that

ν �cx µ̄. For any m ∈ {1, 2, . . . , N}, define µm =
∑m
j=1 pjδξj and suppose νm is the

corresponding measure derived using the algorithm in Theorem 5.4.1.
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Figure 5.3: Graph of constant piecewise functions ρm(y) and ρm+1(y). Claim that
ρm ≤ ρm+1. In particular, (ρm+1 − ρm) is non-decreasing on (0, ym+1

Tm+1).

If N = 1, then µ = p1δξ1 and ν = p1U [0, 2ξ1] and the result holds. Now
suppose that N ≥ 2, then ν = νN =

∑N−1
m=1(νm+1−νm)+ν1. Provided we can show

that (νm− νm−1) has increasing density, it then follows from Proposition 5.3.1 that
(νj − νj−1) �cx pjU [0, 2ξj ]. Then, since convex order is preserved under addition of
measures, ν �cx

∑N
j=1 pjU [0, 2ξj ] = µ̄.

We use a suffix m to label quantities constructed in Theorem 5.4.1, to show
that they are constructed from measure µm. Fix any 1 ≤ k ≤ Tm. By construction
Qmk (rmk , y) ≥ Pµm(y) on (ymk−1,∞). If also Qmk (rmk , y) ≥ Pµm+1(y) on (ymk−1,∞), then(
Qmj (rmj , y), ymj

)
j≥1

and
(
Qm+1
j (rm+1

j , y), ym+1
j

)
j≥1

will be the same up to j = k.
Suppose that Qmk (rmk , y) ≥ Pµm+1(y) on (ymk−1,∞) for all 1 ≤ k ≤ Tm. Then,

it is clear that Tm+1 = Tm+1, ymTm < ym+1
Tm+1 and densities ρm+1 and ρm satisfy that

ρm+1 = ρm on interval (0, ymTm = ym+1
Tm ), ρm+1 is constant on (ym+1

Tm , ym+1
Tm+1) and ρm

is zero on (ym+1
Tm , ym+1

Tm+1). In particular, (ρm+1 − ρm) is non-decreasing (0, ym+1
Tm+1).

Suppose that there exists

k̂ , inf
{

1 ≤ k ≤ Tm : Qmk (rmk , y) � Pµm+1(y) on (ymk−1,∞)
}
.

Then, it must be that in the construction we have ρm+1 = ρm on interval (0, ym
k̂−1 =

ym+1
k̂−1 ), ρm+1 is constant (denoted as rm+1

Tm+1) on (ym+1
k̂−1 , y

m+1
Tm+1), ρm is decreasing and

strictly less than rm+1
Tm+1 on (ym+1

k̂−1 , y
m
Tm), ρm is zero on (ymTm ,∞) and that Tm+1 = k̂.

We want to argue that ymTm < ym+1
Tm+1 , which then implies that (ρm+1 − ρm) is non-

decreasing on (0, ym+1
Tm+1) (see e.g. Figure 5.3).

We first construct a new measure ν̃m+1. Let Pm+1(y) =
∑m+1
j=1 pj(y−ξj) and

define

Q̃m+1
Tm (r, y) , Pµm(ymTm−1) + (y − ymTm−1)P ′µm(ymTm−1) + 1

2r(y − y
m
Tm−1)2.
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Figure 5.4: Graph of Q̃m+1(y). The dashed curve Q̃m+1
Tm (r̃m+1, y) is a quadratic

function of y. Let ν̃m+1 be the measure with density ρ̃m+1 = (Q̃m+1)′′ and an
atom at 0 of size Fµ(0). Then, ρ̃m+1 = ρm on (0, ymTm−1) and ρ̃m+1 is con-
stant on (ymTm−1, ỹ

m+1). Note that ρm is constant on (ymTm−1, y
m
Tm). Further,

ν̃m+1((ymTm−1, ỹ
m+1)) = µ([ymTm−1, ξm+1]) and νm((ymTm−1, y

m
Tm)) = µ([ymTm−1, ξm]).

Then, there exists a unique r (r̃m+1 say) such that

Q̃m+1
Tm (r̃m+1, y) ≥ Pm+1(y) ∀y ≥ 0 and Q̃m+1

Tm (r̃m+1, y) = Pm+1(y) for some y > 0.

Let ỹm+1 be the point such that Q̃m+1
Tm (r̃m+1, ỹm+1) = Pm+1(ỹm+1), then ỹm+1 >

ymTm−1 and ∂
∂y Q̃

m+1
Tm (r̃m+1, ỹm+1) = P

′
m+1(ỹm+1). Now let Q̃m+1(·) be given by

Q̃m+1(y) = Pνm(y) ·1[0,ym
Tm−1) + Q̃m+1

Tm (r̃m+1, y) ·1[ym
Tm−1,ỹ

m+1) +Pm+1(y) ·1[ỹm+1,∞)

(see Figure 5.4, which illustrates the shape of Q̃m+1).
Let ρ̃m+1(y) = (Q̃m+1)′′(y), and let ν̃m+1 be the measure with density

ρ̃m+1 and an atom at 0 of size Fµ(0). Then, Pν̃m+1(y) = Q̃m+1(y), Fν̃m+1(y) =
P
′
m+1(ỹm+1) =

∑m+1
j=1 pj if y ≥ ỹm+1 and

´∞
0 yν̃m+1(dy) = ỹm+1Fν̃m+1(ỹm+1) −

Pν̃m+1(ỹm+1) =
∑m+1
j=1 pjξj .

Note that in the construction of νm the masses at points (ξnm
Tm−1+1, . . . , ξm)

are embedded in the interval (ymTm−1, y
m
Tm), and in the construction of ν̃m+1 the

masses at points (ξnm
Tm−1+1, . . . , ξm+1) are embedded in (ymTm−1, ỹ

m+1). Moreover,
νm has constant density over (ymTm−1, y

m
Tm) and ν̃m+1 has constant density over
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Figure 5.5: Graph of Fνm+1 , Fνm and Fν̃m+1 with k̂ < Tm. By the constructions,
Fνm+1(y) = Fνm(y) = Fν̃m+1(y) on [0, ym+1

k̂−1 ], Fνm+1(y) > Fνm(y) = Fν̃m+1(y) on
(ym+1
k̂−1 , y

m
Tm−1] and Fν̃m+1 is linear on (ymTm−1, ỹ

m+1). Since Fνm+1 and Fν̃m+1 have
the same mean, the area between the line ν̃m+1(R) and Fνm+1 must be equal to the
area between the line ν̃m+1(R) and Fν̃m+1 . Hence ỹm+1 < ym+1

Tm+1 .

(ymTm−1, ỹ
m+1). Comparing the means of νm and ν̃m+1, we have

1
2
(
ymTm−1 + ymTm

) m∑
j=nm

Tm−1+1
pj =

m∑
j=nm

Tm−1+1
pjξj

and
1
2
(
ymTm−1 + ỹm+1

) m+1∑
j=nm

Tm−1+1
pj =

m+1∑
j=nm

Tm−1+1
pjξj .

Hence,

ymTm − ymTm−1 =
2
∑m
j=nm

Tm−1+1 pj
(
ξj − ymTm−1

)
∑m
j=nm

Tm−1+1 pj

<
2
∑m+1
j=nm

Tm−1+1 pj
(
ξj − ymTm−1

)
∑m+1
j=nm

Tm−1+1 pj
= ỹm+1 − ymTm−1

and then ymTm < ỹm+1.
Next compare ν̃m+1 with νm+1. Recall that ν̃m+1(R) = νm+1(R) and ν̃m+1

and νm+1 have the same mean. Moreover, Fνm+1(y) = Fνm(y) = Fν̃m+1(y) on
[0, ym+1

k̂−1 ], and if k̂ < Tm then Fνm+1(y) > Fνm(y) = Fν̃m+1(y) on (ym+1
k̂−1 , y

m
Tm−1] (see

e.g. Figure 5.5). This implies that ỹm+1 < ym+1
Tm+1 if k̂ < Tm and ỹm+1 = ym+1

Tm+1 if
k̂ = Tm. Thus, ỹm+1 ≤ ym+1

Tm+1 , and then ymTm < ym+1
Tm+1 .
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Figure 5.6: The infimum of Cω̄(y)
x−y over y ∈ [0, x] is attained at y∗.

Therefore, we find that (ρm+1 − ρm) is non-decreasing on (0, ym+1
Tm+1), and

(νm+1 − νm) is a positive measure with increasing density on its support. Hence
ν �cx µ̄.

Next we show that µ̄ �cx ω̄. Observe that E
[
X̄ω

]
=
´∞

0 xFω(dx) = x0. Let
X̄µ ∼ µ̄, then

Pµ̄(x) = E
[
(x− X̄µ)+

]
=
ˆ

(0,∞)
µ(du)

ˆ 2u

0

(x− z)+

2u dz + xFµ(0)

=
ˆ

(0,x2 )
(x− u)µ(du) +

ˆ ∞
x
2

x2

4uµ(du) + xFµ(0)

= Fµ(x2 )x2 +
ˆ

(0,x2 )
Fµ(u)du− Fµ(x2 )x2 +

ˆ ∞
x/2

Fµ(u) x
2

4u2du,

and then since P ′µ(x) = Fµ(x),

Pµ̄(x) = Pµ(x2 )− Pµ(x2 ) +
ˆ ∞
x/2

Pµ(u) x
2

2u3du =
ˆ ∞
x/2

Pµ(u) x
2

2u3du.

Similarly, we have Pω̄(x) =
´∞
x/2 Pω(u) x2

2u3du. Since Pµ ≤ Pω, Pµ̄(x) ≤ Pω̄(x). Thus,
µ̄ �cx ω̄ and then ν �cx ω̄. In particular, Cν(x) ≤ Cω̄(x).

(ii) Fix any x ≥ 0. Since Cν is convex, for any y ≤ x, Cν(x) − Cν(y) ≤
(x− y)C ′ν(x), and then Cν(y) ≥ Cν(x) + (x− y)Dν(x) ≥ (x− y)Dν(x). Thus,

Dν(x) ≤ inf
y≤x

Cν(y)
x− y

≤ inf
y≤x

Cω̄(y)
x− y

.

Observe that Cω̄ is decreasing and convex. Denote by y∗ the point where
the infimum of Cω̄(y)/(x− y) over y ∈ [0, x] is attained (see e.g. Figure 5.6). Then,
y∗ is in fact the point supporting the tangent to Cω̄(·) which crosses point (x, 0),
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and xCω̄(y∗)/(x− y∗) is actually the y-coordinate of the y-intercept of this tangent.
Since limx↑∞Cω̄(x) = 0, limx↑∞ x

Cω̄(y∗)
x−y∗ = 0, that is limx↑∞ x infy<x Cω̄(y)

x−y = 0.

5.4.2 General Initial Measure

This section discusses the case where the initial law is a general probability measure
with finite mean. We show that there exists a measure ν such that ν belongs to
set A∗µ. Then by Theorem 5.2.1 and Theorem 5.2.2, (ν, ν) is the unique symmetric
Nash equilibrium for the problem.

Theorem 5.4.2. Let µ be the law of a non-negative random variable with finite mean
x0 ∈ R+. Then, there exists a unique probability measure ν such that ν((−∞, 0)) =
0, Fν is continuous on (0,∞), Fν(0) = Fµ(0), ν has mean x0, Cν(x) ≥ Cµ(x) for
all x ≥ 0, ν has a decreasing density ρ, and ρ only decreases at points such that
Cν(x) = Cµ(x). Moreover, (ν, ν) is the unique symmetric Nash equilibrium for the
problem.

Proof. Let {µn}n≥1 be a sequence of atomic probability measures with finite support
such that Fµn(0) = Fµ(0), µn has mean x0 and µn ↑ µ in convex order, i.e. Cµn ↑ Cµ.
For every µn, there exists a probability measure νn that satisfies all of the conditions
described in Theorem 5.4.1 and thus νn ∈ A∗µn . Define

Dn(x) = −C ′νn(x) = 1− Fνn(x) for all x ≥ 0.

Let rn = sup {x : Fνn(x) < 1}. By the construction of νn in the proof of Theorem
5.4.1 and Proposition 5.3.4, it can be seen that rn is finite. Thus, Dn is a decreasing,
convex function with Dn(0) = 1− Fµ(0), Dn(rn) = 0, Dn ≥ 0 and
ˆ ∞

0
Dn(x)dx =

ˆ rn

0
Dn(x)dx = rnDn(rn)−

ˆ rn

0
xDn(dx) =

ˆ rn

0
xνn(dx) = x0.

(5.10)
Now let us introduce the Helly theorem (see e.g. Helly [1912]; Filipów et al. [2012],
Theorem 1.3).

Lemma 5.4.2. (Helly) If {fn}n≥1 is a uniformly bounded sequence of monotone
real-valued functions defined on R then there is a subsequence {fnk}k≥1 which is
pointwise convergent.

This theorem means that there exists a convergent subsequence of {Dn}n≥1.
Without loss of generality, we assume {Dn}n≥1 is pointwise convergent. Denote by
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D∞ the limit function. Since Dn is decreasing and convex for any n ≥ 1, D∞ is
decreasing and convex. Moreover, by Fatou’s lemma and (5.10),

ˆ ∞
0

D∞(x)dx =
ˆ ∞

0
lim inf
n→∞

Dn(x)dx ≤ lim inf
n→∞

ˆ ∞
0

Dn(x)dx = x0.

Because D∞ is decreasing and
´∞

0 D∞(x)dx <∞, limx↑∞D∞(x) = 0.
Define a probability measure ν via ν((−∞, x]) = 1−D∞(x). It is clear that

Fν(0) = Fµ(0), Fν(x) is continuous and ν has a non-increasing density ρ. Next we
show that ν has mean x0. Suppose Y∞ ∼ ν and Yn ∼ νn for any n ≥ 1. Recall that
Fνn(x) = 1−Dn(x). Because limn→∞Dn(x) = D∞(x), Yn converges in distribution
to Y∞. We next argue that the random variables {Yn}n≥1 are uniformly integrable.
For any α ≥ 0,

E[Yn;Yn ≥ α] = E[Yn − α;Yn ≥ α] + αP(Yn ≥ α) = Cνn(α) + αDn(α).

Let X ∼ µ and define X̄ via X̄|X ∼ U [0, 2X]. Let C̄(x) = E[(X̄−x)+]. Then, since
Cµn ≤ Cµ and by Lemma 5.4.1, Cνn(α) ≤ C̄(α) and αDn(α) ≤ α infy<α C̄(α)

α−y . Thus,
since limα→∞ C̄(α) = 0 and limα→∞ α infy<α C̄(α)

α−y = 0,

lim
α→∞

sup
n
E[Yn;Yn ≥ α] = lim

α→∞
sup
n

(Cνn(α) + αDn(α))

≤ lim
α→∞

(
C̄(α) + α inf

y<α

C̄(α)
α− y

)
= 0.

From the definition, we get that {Yn}n≥1 are uniformly integrable. Then, since Yn
converges to Y∞ in distribution, E[Y∞] = limn↑∞ E[Yn] = x0, that is ν has mean x0.

Observe that Pνn(x) = E[(x − Yn)+] and Pν(x) = E[(x − Y∞)+]. Fix any
x ≥ 0. Since p(y) = (x − y)+ is a bounded, continuous, real-valued function and
since Yn converges in distribution to Y∞, we have limn↑∞ E[p(Yn)] = E[p(Y∞)],
that is Pν(x) = limn→∞ Pνn(x). Thus, Cν(x) = limn→∞Cνn(x). Then because
Cνn(x) ≥ Cµn(x), Cν(x) ≥ Cµ(x).

Suppose Cν(x) > Cµ(x) on some interval J , then there exists N0 > 0 such
that Cνn(x) > Cµ(x) on J for all n ≥ N0. Then on J , Dn(x) is a linear function.
It is easy to see that D∞(x) = limn↑∞Dn(x) is also linear on J . Thus, the density
of ν only decreases when Cν(x) = Cµ(x).

It can be seen that ν satisfies all the conditions in the theorem, which implies
that ν ∈ A∗µ. The uniqueness of ν then follows from Theorem 5.2.2. Furthermore, by
Theorem 5.2.1, (ν, ν) is the unique symmetric Nash equilibrium for the problem.
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5.5 Uniqueness of a Nash equilibrium

Section 5.4 shows that set A∗µ is non-empty. In this section, we prove that
∣∣∣A∗µ∣∣∣ ≤ 1,

which then proves Theorem 5.2.2 that states A∗µ is a singleton.

Proof of Theorem 5.2.2. Assume that there exists two distinct elements in set
A∗µ, ν and σ. Recall that if Cν(x) > Cµ(x) then Cν is locally a quadratic function
near x, so it is with Cσ. Moreover, both C ′ν and C ′σ are concave.

Observe that, for any x ≥ 0, we cannot have Cν(y) > Cσ(y) for all y ∈ (x,∞):
if so then Cν(y) > Cσ(y) ≥ Cµ(y) on (x,∞) and Cν is quadratic on (x,∞), which
is impossible by Proposition 5.3.4.

Let K > 0 be such that Cν(K) 6= Cσ(K). Without loss of generality, suppose
that Cν(K) > Cσ(K). Define x1 = inf {x > K : Cν(x) = Cσ(x)} . By the observa-
tion above x1 <∞. Also note that Cν(x) > Cσ(x) for all x ∈ [K,x1).

Suppose that Cν(x1) = Cσ(x1) > Cµ(x1). Then, near x1,Cν(x) = Cν(x1) + βν,1(x− x1) + γν,1(x− x1)2,

Cσ(x) = Cσ(x1) + βσ,1(x− x1) + γσ,1(x− x1)2,

for some constants βν,1 < 0, βσ,1 < 0, γν,1 > 0 and γσ,1 > 0. Here, the signs of these
constants come from C

′
ν(x1) < 0, C ′σ(x1) < 0, C ′′ν (x1) > 0 and C ′′σ (x1) > 0. Since

Cν(x) > Cσ(x) to the left of x1, it is clear that βν,1 ≤ βσ,1.
Assume that βν,1 = βσ,1. Then since Cν(x) > Cσ(x) on [K,x1), we have

γν,1 > γσ,1. Let xν,1 = inf {x > x1 : Cν(x) = Cµ(x)}, then Cν(x) = Cν(x1)+βν,1(x−
x1) + γν,1(x − x1)2 on [x1, xν,1] and xν,1 < ∞ by Proposition 5.3.4. Further, by
Proposition 5.3.4, Cσ(x) ≤ Cσ(x1) + βσ,1(x− x1) + γσ,1(x− x1)2 on (x1,∞). Thus,
Cσ(xν,1) < Cν(xν,1) = Cµ(xν,1), which is a contradiction. Hence βν,1 < βσ,1 < 0.
Similarly, let xσ,1 = inf {x > x1 : Cσ(x) = Cµ(x)} < ∞ and if γν,1 ≤ γσ,1 then
Cν(xσ,1) < Cσ(xσ,1) = Cµ(xσ,1), which is a contradiction. So we conclude that
βν,1 < βσ,1 < 0 and γν,1 > γσ,1 > 0. Set ϑ = βσ,1 − βν,1 > 0.

Now we introduce a useful lemma.

Lemma 5.5.1. Suppose xk is such that Cν(xk) = Cσ(xk) > Cµ(xk). Then, xk > 0
and in a neighbourhood of xk we can writeCν(x) = Cν(xk) + βν,k(x− xk) + γν,k(x− xk)2,

Cσ(x) = Cσ(xk) + βσ,k(x− xk) + γσ,k(x− xk)2.

Moreover, there is an interval to the left of xk on which Cν(x) − Cσ(x) is either
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Figure 5.7: Graph of R(x). Since R′′(x) = fν(x) − fσ(x) is non-decreasing on
(xk+1, xk) and R

′′(yk) = 0, R is concave on [xk+1, yk] and strictly convex on [yk, xk].
Since R′(x) = C

′
ν(x)− C ′σ(x), R′(xk+1) = βν,k+1 − βσ,k+1 > 0 and R′(xk) = βν,k −

βσ,k < 0. Then, R′(yk) < R
′(xk) < 0, and there exists a unique zk ∈ (xk+1, yk) such

that R(zk) = R(yk). Further, R
′(xk+1) ≥ R′(zk) > 0.

strictly positive or strictly negative. Suppose that Cν(x) − Cσ(x) > 0 on some
interval (xk − ε, xk): if not then interchange the roles of ν and σ. Then, βν,k <
βσ,k < 0 and γν,k > γσ,k > 0.

Define xk+1 = sup {x < xk : Cν(x) = Cσ(x)}. Then, xk+1 > 0, Cν(xk+1) =
Cσ(xk+1) > Cµ(xk+1) and hence in a neighbourhood of xk+1 we can write

Cν(x) = Cν(xk+1) + βν,k+1(x− xk+1) + γν,k+1(x− xk+1)2,

Cσ(x) = Cσ(xk+1) + βσ,k+1(x− xk+1) + γσ,k+1(x− xk+1)2.
(5.11)

Further, βσ,k+1 < βν,k+1 < 0, γσ,k+1 > γν,k+1 > 0 and βν,k+1−βσ,k+1 > βσ,k−βν,k >
0.

Proof. Exactly as in the case k = 1 from the proof of Theorem 5.2.2, we conclude
that βν,k < βσ,k < 0 and γν,k > γσ,k > 0.

Assume that Cν(xk+1) = Cσ(xk+1) = Cµ(xk+1). Then C ′ν(xk+1) = C
′
σ(xk+1)

by Proposition 5.3.3. Since Cν(x) > Cσ(x) on (xk+1, xk), C
′
ν is linear on [xk+1, xk].

Then because C ′σ is concave, it is clear that C ′σ(x) ≤ C ′ν(x) on (xk+1, xk). This im-
plies that Cσ(xk) < Cν(xk), which is a contradiction. Hence Cν(xk+1) = Cσ(xk+1) >
Cµ(xk+1).

It then follows that xk+1 ∈ (0, xk) and both Cν and Cσ are quadratic in
a neighbourhood of xk+1. In particular, Cν is quadratic on (xk+1, xk) and γν,k =
γν,k+1. Using a similar argument described in the case k = 1 from the proof of
Theorem 5.2.2, we get that βσ,k+1 < βν,k+1 < 0 and γσ,k+1 > γν,k+1 > 0.

Denote by fν the density function of measure ν. Then fν is constant on
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(xk+1, xk). In contrast, fσ is non-increasing, fσ(xk) = γσ,k < γν,k = fν(xk) and
fσ(xk+1) = γσ,k+1 > γν,k+1 = fν(xk+1). Set yk = sup {y < xk : fσ(y) ≥ fν(y)}, then
yk ∈ (xk+1, xk). Further, R(x) , Cν(x)− Cσ(x) defined on [xk+1, xk] is zero at the
endpoints, has increasing second derivative and is concave on [xk+1, yk] and strictly
convex on [yk, xk] (see e.g. Figure 5.7).

Let zk ∈ (xk+1, yk) be the unique value such that R(zk) = R(yk). Then
R
′(xk+1) ≥ R

′(zk) > 0 and R
′(yk) < R

′(xk) ≤ 0. Set H(x) = R(yk − x) − R(yk)
on [0, yk − zk] in Proposition 5.3.2, then we get R′(zk) ≥

∣∣∣R′(yk)∣∣∣. Hence, βν,k+1 −

βσ,k+1 = R
′(xk+1) ≥ R′(zk) ≥

∣∣∣R′(yk)∣∣∣ > ∣∣∣R′(xk)∣∣∣ = βσ,k − βν,k > 0.

Return to the proof of Theorem 5.2.2. Using Lemma 5.5.1, we construct a
decreasing sequence of points (xk)k≥1 at which Cν − Cσ changes sign. Moreover,∣∣∣C ′ν(xk)− C

′
σ(xk)

∣∣∣ = |βν,k − βσ,k| ≥ ϑ. Let x∞ = limk↑∞ xk then x∞ ≥ 0. Observe
that limk↑∞(βν,k − βσ,k) = C

′
ν(x∞) − C ′σ(x∞) exists. However, lim supk↑∞(βν,k −

βσ,k) ≥ ϑ > 0 and lim infk↑∞(βν,k−βσ,k) ≤ −ϑ < 0, which is a contradiction. Hence,
there cannot be distinct elements ν and σ in set A∗µ.

The above is predicated on the assumption that Cν(x1) = Cσ(x1) > Cµ(x1).
Now suppose Cν(x1) = Cσ(x1) = Cµ(x1). Recall that Cν > Cσ on an interval
to the left of x1. Let x2 = sup {x < x1 : Cν(x) = Cσ(x)}. Then, x2 ∈ [0,K) and
Cν(x) > Cσ(x) on (x2, x1).

Assume that Cν(x2) = Cσ(x2) = Cµ(x2). Then, by Proposition 5.3.3,
C
′
ν(x1) = C

′
σ(x1) and C

′
ν(x2) = C

′
σ(x2) (recall that C ′ν(0) = C

′
σ(0) = Fµ(0) − 1).

Because C ′ν is linear and C
′
σ is concave on (x2, x1), C ′ν(x) ≤ C ′σ(x) for all x ∈ [x2, x1].

This means that Cν(x) ≤ Cσ(x) for all x ∈ [x2, x1], which is a contradiction. Hence
Cν(x2) = Cσ(x2) > Cµ(x2).

Now starting the construction at x2, rather than x1, we are in the same case
as discussed previously. In particular, there cannot be distinct elements ν and σ in
set A∗µ.

5.6 Derivation of the sufficient conditions

This section is devoted to the derivation of the last two conditions in Theorem 5.2.1.
Let A be the set of all measures ν satisfying ν((−∞, 0)) = 0. Given that the

other agent j chooses νj as her target law, where Fνj is continuous, agent i aims to
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choose a measure νi to solve

max
νi∈A

{ˆ
(0,∞)

Fνj (x)νi(dx) + θFνj (0)Fνi(0)
}

(5.12)

subject to
´

(0,∞) xνi(dx) = x0,
´

(0,∞) νi(dx) + Fνi(0) = 1, Fνi(0) ≥ Fµ(0) and
Cνi(z) ≥ Cµ(z) for all z > 0.

Introduce multipliers λ, γ and ζ ≥ 0 for the first three constraints, and for
each z > 0 introduce a multiplier η(z) for the last constraint. The Lagrangian for
problem (5.12) is

Lνj (νi;λ, γ, ζ, η) =
ˆ

(0,∞)
Fνj (x)νi(dx) + θFνj (0)Fνi(0) + λ

(
x0 −

ˆ
(0,∞)

xνi(dx)
)

+ γ

(
1−
ˆ

(0,∞)
νi(dx)− Fνi(0)

)
+ ζ (Fνi(0)− Fµ(0))

+
ˆ

(0,∞)
(Cνi(z)− Cµ(z)) η(dz),

which gives us (5.2). Since
´

(0,∞)Cνi(z)η(dz) =
´

(0,∞)
´

(0,x)(x− z)η(dz)νi(dx),

Lνj (νi;λ, γ, ζ, η) =
ˆ

(0,∞)

(
Fνj (x)− λx− γ +

ˆ
(0,x)

(x− z)η(dz)
)
νi(dx) + λx0 + γ

+
(
θFνj (0)− γ + ζ

)
Fνi(0)−

ˆ
(0,∞)

Cµ(z)η(dz)− ζFµ(0),

which gives us (5.3). Here η should satisfy that η(dz) ≥ 0 for all z ≥ 0.
Define Lνj (x) = Fνj (x) − λx − γ +

´
(0,x)(x − z)η(dz). Let Dνj be the set of

(λ, γ, ζ, η) such that Lνj (·;λ, γ, ζ, η) has a finite maximum, then Dνj is defined by

Dνj = {(λ, γ, ζ, η) : Lνj (x) ≤ 0 for all x ≥ 0 and θFνj (0)− γ + ζ ≤ 0}.

In order to reach the maximum value, we must have νi(dx) = 0 when Lνj (x) < 0
and Fνi(0) = 0 when θFνj (0) − γ + ζ < 0. This means that for (λ, γ, ζ, η) ∈ Dνj ,
the maximum of Lνj (·;λ, γ, ζ, η) occurs at ν∗ such that ν∗(dx) = 0 when Lνj (x) < 0
and Fν∗(0) = 0 when θFνj (0) − γ + ζ < 0. Since we search for a symmetric Nash
equilibrium, we must have Fνj (x) = Fν∗(x). Thus, Lν∗(x) ≤ 0 for all x ≥ 0,
Lν∗(x) = 0 when ν∗(dx) > 0, and θFν∗(0)− γ + ζ = 0 if Fν∗(0) > 0.

Let Γ(x) = λx + γ −
´ x

0 (x − z)η(dz), then ν∗(x) ≤ Γ(x) for any x ≥ 0 and
ν∗(x) = Γ(x) when ν∗(dx) > 0. Observe that Γ′(x) = λ −

´ x
0 η(dz) and Γ′′(x) =

−η(dx). Since η(dx) ≥ 0, Γ is concave on [0,∞). Let l = inf {x : Fν∗(x) > 0}
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and r = sup {x : Fν∗(x) < 1}. By the concavity of Γ and the definition of r, we
must have that Γ(x) is strictly increasing on (−∞, r). Then since Fν∗ is continuous,
Fν∗(x) = Γ(x) ∀x ∈ [l, r]. Thus, Fν∗ is continuous, strictly increasing and concave
on [l, r].

Assume that l > 0. Because Γ′(x) > 0 for x < r, Γ(x) < Γ(l) = Fν∗(l) for all
x ∈ [0, l). But notice that Fν∗(x) = Fν∗(l) for all x ∈ [0, l), since Fν∗ is continuous
on (0,∞) and l > 0. This means Fν∗(x) > Γ(x) on [0, l), which is a contradiction.
Thus, l ≤ 0. Then by the non-negativity of l, it follows that l = 0.

Now by Kuhn-Tucker condition, ν∗ should satisfy that if Cν∗(x) > Cµ(x) then
η(dx) = 0. So if Cν∗(x) > Cµ(x) on some interval J ⊂ [0, r], then Fν∗(x) = Γ(x) is
linear on J .
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