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Abstract

In the Seel-Strack contest (Seel and Strack [2013]), n agents each privately
observe an independent copy of a drifting Brownian motion which starts above zero.
Each agent chooses when to stop the process she observes, and the winner of the
contest is the agent who stops her Brownian motion at the highest value amongst
the set of agents. The objective of each agent is to maximise her probability of
winning the contest. We will give a new derivation of the results of Seel and Strack
[2013] based on a Lagrangian approach. This approach facilitates our analysis of
the variants of the Seel-Strack problem.

We will consider a generalisation of the Seel-Strack contest in which the
observed processes are independent copies of some time-homogeneous diffusion. We
will use a change of scale to reduce this contest to a contest in which the observed
processes are diffusions in natural scale. It turns out that, unlike in the Seel-Strack
problem, the way of breaking ties becomes important.

Moreover, we will discuss an extension of the Seel-Strack contest to one in
which an agent is penalised when her strategy is suboptimal, in the sense that her
chosen strategy does not win the contest, but there existed an alternative strategy
which would have resulted in victory. We will see that different types of penalty
have different effects.

Seel and Strack [2013] studied the asymmetric 2-player contest in which the
observed processes start from different constants. We will redrive their results using
the Lagrangian method and then study a general asymmetric n-player contest. We
will find that some results in the 2-player contest do not hold for the general n-player
contest.

In a symmetric 2-player contest, the Seel-Strack model assumes that the
observed processes start from the same positive constant. We will extend the results
to the case where the starting values of the processes are independent non-negative

random variables that have the same distribution.
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Chapter 1

Introduction

Seel and Strack [2013] introduces a model of a gambling contest between agents
in which each agent privately observes a stochastic process and chooses a stopping
time to produce a stopped value. The agent wins the contest if her stopped value
is greater than the stopped values of the other agents, and the other agents get
nothing. The objective of each agent is not to maximise the expected value of the
process, but rather to maximise the probability that her stopped value is the highest
amongst the set of agents. Moreover, an agent has to stop if she goes bankrupt,
that is when her process hits zero.

The Seel-Strack model investigates the contests in which contestants are un-
able to observe their rivals and make decisions based only on their own progress.
It provides a stylised model for a competition between fund managers. In the com-
petition, each manager wants to outperform the others, only the most successful of
them will be given funds to invest over the next time period. In many cases, the
manager cannot infer the decisions of other managers. Another distinct strand of
the literature on modelling a competition between fund managers is represented by
Basak and Makarov [2014].

Although the problem described in Seel and Strack [2013] is very simple,
the solution is remarkably rich and subtle. Firstly, in equilibrium, agents must use
randomised strategies, so that the level at which the agent should stop is stochastic.
Secondly, the set of values at which the agent should stop forms an interval which is
bounded above. Several variants are discussed in Seel and Strack [2013], including
the extension to the asymmetric case where the starting values of the processes
observed by the agents are different.

Besides Seel and Strack [2013], there are many other articles which have

discussed contest models. Compared with the Seel-Strack model, one class of contest



models assumes that each contestant can observe the performance of all contestants
at all points in time. This contains the war of attrition models (see e.g. Hendricks
et al. [1988]; Bulow and Klemperer [1999]). In a war of attrition, each contestant
must choose a time at which she concedes in the event that other contestants have
not already conceded. The return to conceding decreases with time, but, at any
time, a contestant earns a higher return if other contestants concede first. Unlike
the war of attrition models, the Seel-Strack model has no cost over time, but there is
a bankruptcy constraint and the probability of bankruptcy is assumed to be strictly
positive.

Another class of contest models assumes that the optimal strategy does not
depend on information which arrives after the start of the contest, which is different
from the Seel-Strack model. This class includes the all-pay auction models (see
e.g. Hillman and Samet [1987]; Baye et al. [1996]). In an all-pay auction, each
bidder submits a non-negative sealed bid simultaneously, all bidders pay their bids,
and a prize is awarded to the highest bidder. We will see that the symmetric Nash
equilibrium of a Seel-Strack contest is quite similar to that of a common-value all-pay
auction with complete information and the stopped value of the process corresponds
to the auction bid. The comparison between a Seel-Strack contest and an all-pay

auction will be discussed in Section 1.3.

1.1 The Seel-Strack model

Now we introduce the mathematical model of the contest introduced in Seel and
Strack [2013].

There are n players with labels i € I = {1,2,...,n} who take part in the
contest. Player ¢ privately observes the continuous-time realisation of a stochastic
process X' = (X}),cp+ absorbed at zero with X} = z, where xg is a positive
constant which is the same for all players. We assume for simplicity that X’ is a
Brownian motion in this chapter. In fact, Seel and Strack considered the case where
X% is a Brownian motion with drift and scaling, and in Chapter 2 we will see that
this can be reduced to the case where X' is a Brownian motion.

Let Ff = c({X.: s < t}) and set F' = (F})i>0. The space of strategies for
agent i is the space of Fi-stopping times 7¢. Since zero is absorbing for X, without
loss of generality we may restrict attention to 7¢ < H{, where H{ is the first time
at which X hits 0 and is defined via

H! =inf{t >0: X =z} for any x € R.



Player i observes her own process X*, but not X7 for j # i; nor does she observe the
stopping times chosen by the other players. Moreover, the processes X’ are assumed
to be independent.

The player who stops at the highest value wins a prize. We normalize the
prize to one without loss of generality. So Vi € I, player i wins 1 if she stops at time
7% such that Xii > X i ; Vj # 4. If there are k players who stop at the equal highest
value, then these players each win % Therefore, player ¢ with stopping value Xii
receives pay-off )

%1{Xii:maxj€1 Xy

where k = HZ el: Xiz- = max e Xi]}‘ Here 15 denotes the indicator function of
the event FE, that is 1 is a random variable that takes value 1 when E happens
and value 0 when it does not happen.

The key insight of Seel and Strack [2013] is to observe that the problem
of choosing the optimal stopping time can be reduced to a problem of finding the
optimal law for Xii or equivalently an optimal target distribution. The pay-offs to
the agents only depend upon 7° via the distribution of X;Z Hence, the problem can
be considered in two stages, firstly find an optimal target distribution F*, and then
verify that there is a choice of 7¢ such that Xii has law F?. We focus on the first
stage.

The problem of finding 7 such that X, has law F' is a classical problem in
probability theory, and is known as the Skorokhod embedding problem (Skorokhod
[1965]). Since X is a Brownian motion started at xy and absorbed at 0, any dis-
tribution on R™ with mean less than or equal to z¢ can be embedded with a finite
stopping time 7 (and conversely, for any 7 the law of X has mean less than or equal
to xp). Note that there are multiple solutions to the Skorokhod embedding problem
for F'. All the solutions can be used to construct an optimal stopping strategy, and
these strategies will bring equal probability of success to an agent.

Notice that the distribution F' of Xii should satisfy that F'is a distribution
function such that P(X’;, < 0) = 0 and E(X";) < xo, which can be shown by the
fact that X* is a non-negative supermartingale and using Fatou’s lemma. We say
that such a distribution function F' is feasible.

Our aim is to find Nash equilibria for the problem. By the above remarks,
a Nash equilibrium can be identified with a family of feasible distribution functions
(F%);e1. Throughout the thesis, we will say that (F%);c; is a Nash equilibrium if F*
is feasible Vi € I and if, for each i € I, if the other agents use stopping rules 77 such

that X 7]_ ;~F 7, then the optimal target distribution for agent i is F, and she may



use any stopping rule 7% such that Xi,- ~ F*. Throughout the thesis, we will say a
Nash equilibrium is symmetric if F* does not depend on 4, and we will say that a
Nash equilibrium is atom-free if each F? is atom-free.

Given the symmetry of the situation in the sense that each agent observes
a martingale process started from the same level xg, it seems natural that a Nash
equilibrium is symmetric. Moreover, arguments over rearranging mass can be used

to show that it is never optimal for agents to put mass at the same positive point.
Theorem 1.1.1. Suppose a Nash equilibrium is symmetric, then it is atom-free.

Proof. Since the Nash equilibrium is symmetric, it is identified with a feasible dis-
tribution function F'(z). Introduce § = 1/n, and this helps us to extend the proof
to more general cases. Notice that § € [0,1) and 6 represents the way of breaking

ties.
(i) Assume that F'(x) places an atom of size p > 0 at z > 0. Let
F(z), ifxe0,z—€1)U[z+ €,00),

G(r) = F(x) +q, ifx €lz—e,2),
F(z)—(p—q), ifzé€|z,2+e),

14+6pn—1 (1—6)pn—1 » e1te2
serve that (z —€1)q+ (2 — €2)(p — q) = 2zp, which means that F' and G have the

n— n—1 €
where €y € (0, w), € € <(1+0p)2 z> and ¢ = 22 € (0,p). Ob-

same mean. And this implies that G is a feasible distribution function.

Suppose that Xi,- ~ F for any ¢ # 1. Let

o) =P (max Xi < x> .

1#1

Let Vg and Vg denote the expected pay-off of player 1 if player 1 chooses F' and
G, respectively, as her target distribution of XTll. Then

Vo= Vi =p(z—a)q+¢(z+e)(p—q) —p(z)p - 0p"
+ OgP (I?#alxXTi =z— 61> +0(p—q)P (Ig?lxXTi =z+ 62>

> p(z—e€1)g+ @z +e)(p—q) —o(z)p— 6p"

—p |l = @) =L+ ol + @) —— = () - 057
—p{lple+ ) - o] T~ () - 0z - )] —2— — g1



Since ¢(z + €2) — p(2) > p"tand 0 < (2) — p(z — ) <1,

€1 -1 €2 n—1
Vo —Vip > ek -0
¢ =P 61+62p €1 + €2 P
_ e1(1— O)pn_l - (1 + Gp”_l) €2 >0
€1 + €3 '

This means that Vi > Vg, which is a contradiction to the definition of Nash

equilibrium. Thus, F(x) is continuous on [0, 00).

Assume that F'(x) places an atom of size p € (0,1) at 0. Fix any ¢ such that
0 < ¢ < min {p vV2—0—p,1— p}. Since F' is continuous on [0, c0), there exists
e such that F'(¢) — p = ¢. Let G be given by

0, if z €[0,9),
G(z)=qp+q, ifzclde),
F(zx), ifz € e 00),

where § = [ yF( dy)/(p + ¢). Note that § € (0,¢), since [jyF(dy) > 0 and
fo yF(dy) = eF (e fo y)dy < eF(e) = €(p+q). Moreover, G is a distribution

function with the same mean as F. Thus, G is feasible.

Suppose that Xii ~ F for any ¢ # 1. Let VF and Vi denote the expected pay-off
of player 1 if player 1 chooses F' and G, respectively, as her target distribution
of XTII. Then

Vo — Ve = (p+ ) F(0)"" — 6p" — /0 F(y)" ' F(dy)

(p+ap" " =" —(p+q)" (p+q-Dp)
>(2-0)p"—(p+q)" >0.

v

Hence, player 1 would prefer strategy G to F', which is a contradiction to the
definition of Nash equilibrium. Thus, F'(0) = 0.

In conclusion, F'(z) is atom-free and thus the symmetric Nash equilibrium is atom-

free.

O]

Remark 1.1.1. The fact that the Nash equilibrium is atom-free relies on the fact

that the situation is symmetric in the sense that all agents stop Brownian motions

started from a common value xy. If the agents observe processes with different



starting points, then the Nash equilibrium may have masses at zero for some agents.
In that case, for a Nash equilibrium, no agent places mass at a positive point, and

at least one agent has an atom-free distribution.

1.1.1 Equilibrium distribution

In this section, we explain how Seel and Strack solved the problem in Seel and Strack
[2013]. To solve the problem, Seel and Strack started with deriving a candidate Nash
equilibrium that is symmetric and atom-free.

A symmetric and atom-free Nash equilibrium is identified with a continuous
distribution function F' such that F'(0) = 0. Suppose that the other agents all choose
F' as their target distribution. If agent ¢ chooses to stop at = then her probability

of winning u;(z) is given by

ui(z) = P(max X7, < z) = F(z)"!, (1.1)

gA T
since F i's atom-free. Let b = sup{x : F(x) < 1}. Let T(io,b) = inf{t : X} ¢ (0,b)},
that is 7, ;) is the first time at which X" leaves the interval (0,b). Seel and Strack
derived an equilibrium in which for any point x € (0,b), it is indifferent for agent 4

to stop at x or to play the continuation strategy T(io by Thus,

, — P X o<xi, J=1.P(X, = P(Xxi, =
u;(z) <I§I7EZZX 7 < T(O,b)) ( o b)+0 ( o 0)
X

_ i A
= P(Hj< H)) = o (1.2)
for any = € (0,b). Seel and Strack also argued that u;(xo) = 1/n by symmetry and
optimality of stopping at x¢, which then implies b = nzg by (1.2). Then using (1.1)

and (1.2), they obtained the candidate equilibrium distribution

Fo) = "futa) = /-

for any x € [0, nxo).
Now suppose that agent i chooses a stopping rule 7° such that Xii has

distribution F', then her probability of winning is

; o o g x 1
E|ui(X.)| = [ F(z)" 'F(dz) = —d ==,
[u( T )} /0 (x) ( x) /0 nxo nxo n

Seel and Strack proved that F' is indeed an equilibrium distribution by showing

that no other stopping rule gives agent i a winning probability greater than 1/n.



Specifically, consider any stopping time 7* < H{. Because u;(X?) is non-negative
and X' is a martingale, u;(X*) is a non-negative local martingale and thus a non-
negative supermartingale. Observe that here H} is finite almost surely, which means

7% is also finite almost surely. So we have

E [ui(X5)] < E [u(XD)] = wilao) = %

Thus, the candidate equilibrium distribution

F(x) = min{ "\1/7330, 1}

is indeed an equilibrium distribution for the contest.

1.2 The Lagrangian method

We rederive the Nash equilibrium using a different approach based on a Lagrangian
method. This brings new insights and yields a simpler proof for the Seel-Strack
problem and facilitates our analysis of the variants of the Seel-Strack problem.
Suppose that the other agents all choose F'(z) as their target distribution,
where F' is continuous and F'(0) = 0, then the expected pay-off of agent i with
stopping time 7¢ is given by
E|[F(XL)"].

Observe that the optimal 7¢ must satisfy that E(X;Z) = z9. Recall that IE(X;Z) < zp.
Assume now that X;i ~ G and G has mean x1 < g, then there exists (G, 7%) such
that G has mean z9, G < G and Xii ~ G. Clearly 7* dominates 7 as a strategy
since F(:z;)"_1 is non-decreasing. Hence we may restrict attention to stopping times
7% such that the distribution of Xii has mean xg.

Let A be the set of non-decreasing right-continuous functions f : [0,00) —

[0,00). Then the problem facing the agent i is to choose G to solve

max /000 F(z)"'G(dx) (1.3)

subject to [ 2G(dx) = xo and [;° G(dz) = 1. Introducing multipliers A and ~ for

the two constraints, the Lagrangian for the optimisation problem (1.3) is then

Lr(G;\,7v) = /000 {F(x)”_l — Az — 'y} G(dzx) + Azo + . (1.4)



Let Ap(zo) be the subset of A corresponding to distribution functions of random

variables with mean xg, then

Ap(zo) = {f G.AilTIgéf(:Ii) =1 and /Oooa;f(dx) ::1:0}.

Now we state a variant of the Lagrangian sufficiency theorem for our problem.

Proposition 1.2.1. If G*, \* and v* exist such that G* € Ap(xo), G* is continu-
ous, G*(0) =0 and

Lo (G*5 X", 7%) > Lo+ (G; N, 7") forall G € A, (1.5)

then G* is a symmetric, atom-free Nash equilibrium.

Proof. We seek a symmetric atom-free Nash equilibrium. Since there are no atoms,
we do not need to consider how to break ties and a symmetric atom-free Nash
equilibrium is identified with a continuous distribution function G* € Ap(zp) with
G*(0) = 0 and the property that

/ h G*(z)"1G*(dx) > / ” G*(z)" G (dx) VG € Ap(zo).
0 0

Thus, if all other agents follow a strategy yielding a stopped value with distribution
G*, (and then the maximum of the stopped values of the other agents has a dis-
tribution (G*)"~!) then the agent has a higher probability of winning by following
a strategy yielding a stopped value also with distribution G* than with a strategy
yielding any other distribution G.

Now suppose that G € Ap(xp), then

|G @r 6 = Lo Gx),

0

Then, under the hypotheses of the proposition,

/ G*(x)"1G*(dx) = Lo (G* N, 7%) > La= (G N, v%) / G*(x)"'G(dx).

Thus, G* is a symmetric, atom-free Nash equilibrium.
O

With Proposition 1.2.1, it is easy to verify the candidate Nash equilibrium.



Theorem 1.2.1. There exists a symmetric, atom-free Nash equilibrium for the prob-
lem for which Xii has law F(x), where for x >0,

F(x) = min{ "—\1/7%, 1} .

Proof. On [0,00) let G*(z) = min{ " /(nxg), 1}, A* = 1/(nzo) and v* = 0. From
the explicit form of G* it follows immediately that G* is continuous, G*(0) = 0 and
G* € Ap(zo). We then verify that for these multipliers (1.5) holds:

Lo (G N ,7") = / {G*(ac)”_l — Nz — 'y*} G(dz) + XN'xo+~*
0
1

o0 1
:/ {1—96} G(dz) + — < = = L= (G*; X, 7).
n n n

0 nro

Thus, there exists a symmetric, atom-free Nash equilibrium of the given form.

1.2.1 Derivation of the equilibrium distribution

This section is intended to illustrate how we derived the optimal multipliers and
the candidate Nash equilibrium. The Lagrangian approach gives a general method
for finding the optimal solution, which is distinct from the ideas in Seel and Strack
[2013], and can be generalised to other settings.

Recall the definition of the Lagrangian Lz (G; A, ~y) for the optimisation prob-
lem (1.3). Denote by Lr(x) the integrand in Lp, that is

Lp(z) = F(z)" ' — Xz — 1.

Then Lp(G; A7) = [y° Lr(x)G(dx) + Azo + 7.
In order to have a finite optimal solution, we require Lr(z) < 0 on [0, c0).
Let Dg be the set of (\,7) such that Lz(-; A,~) has a finite maximum. Then Dp is
defined by
Dr={(\,7): Lrp(z) <0on [0,00)}.

In order to reach the maximum value, we require G(dx) = 0 when Lp(z) < 0. This
means that for (A,v) € Dp the maximum of Lp(-;\,7y) occurs at G* such that
G*(dx) = 0 when Lp(z) < 0. Suppose the Nash equilibrium is symmetric then we
must have G*(z) = F(z). And then Lg+(z) <0, G*(dx) = 0 when Lg+(z) < 0 and
Lg+(xz) = 0 when G*(dzx) > 0.

Introduce @ = inf{z : G*(z) > 0} and b = sup{zr : G*(x) < 1}. Since



Lg+(z) = G*(2)" ! — Az — 7, we must have G*(z) = "V/Azr + v when G*(dx) > 0.
Since G* is non-decreasing and not constant we must have A > 0, which means
"/Ax + v is strictly increasing. Then, since we are searching for atom-free solu-
tions, we must have G*(z) = "+/Az + 7 on the whole of the interval [a, b].

Observe that 0 < F(0)"~! so that if (\,7) € Dr then + is non-negative. Since
G* is atom-free, G*(a) = 0 and hence Aa + v = 0. Then, by the non-negativity of a
and 7 and the positivity of ), it follows that v = 0 = a. Thus G*(z) = "VAz on
[0, b] for some A and b which we must find.

For a feasible solution, [;° G*(dz) =1 and [;° G*(dx) = xo, so that

b n—1 n—1 b n—1 ni\l/X n n—1 b
1:/ d( \/)\x): Vb: xoz/ a:d( \/)\:L'): bt = "V b
0 0 n n
Hence b = nxg and A = 1/(nxp). This gives us that G* is the distribution function

given in Theorem 1.2.1.

1.3 Comparison with all-pay auctions

In this section, we study an n-player all-pay auction with complete information. We
will use the Lagrangian method to derive the Nash equilibria for the all-pay auction,
and we will compare the all-pay auction with the Seel-Strack contest.

Suppose that there are n bidders with labels i € I = {1,2,...,n} in an all-
pay auction. Each bidder ¢ submits a non-negative bid b; and a prize is awarded to
the highest bidder. All bidders pay their bids, and their valuations of the prize are
the same, denoted by v. If there are k bidders who have the same highest bid, then
these agents each win v/k. Then the pay-off for bidder i is

v
% : 1{bi:maxj61 bJ} - bi?

where k = [{i € I : b; = max;er b }|.

It is clear that the expected pay-offs to the bidders only depend on the dis-
tributions of (b;);e;. Thus, a Nash equilibrium for the auction can be identified with
a family of distribution functions (F;);c;. We say that (F;);cs is a Nash equilibrium
if, for each ¢ € I, if the other bidders chooses b; such that b; ~ F}, then the optimal
bid b; for agent i should satisfy that b; ~ Fj.

Baye et al. [1990] found that there exists a unique symmetric equilibrium
and a continuum of asymmetric equilibria for the auction. The algebraic forms of

the families of equilibrium distributions are given in Theorem 1.3.1. They also show
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that those equilibria are all the possible equilibria by proving the following lemma.

Lemma 1.3.1. [Baye et al. [1990]] There are only two types of equilibria: either all
players use the same continuous mized strategy with support [0,Z]; or at least two
players randomise continuously over [0, Z] with no mass at 0 and each other player
i randomising continuously over (a;, x|, a; > 0, and having a masspoint at 0 equal
to Fi(cy). Here T is a strictly positive constant (in fact, T = v) and if o; > T then

player i places all mass at 0.

We will not present the proof of Lemma 1.3.1 here, see Baye et al. [1990]
for details. This lemma allows us to construct all the possible equilibrium distribu-
tions explicitly, and then we can use the Lagrangian method to verify these Nash

equilibria.

Theorem 1.3.1. [Baye et al. [1990]] Any Nash equilibrium (F;);c has the following

form:

hjl/m, Zf.f € [0,0éh+1>,
Fi(z)="---=Fy(z) = kfl/m, ifx € g, ap41), k=h+1,...,n—1,

nl/E if x € [, v],

and, foranyi=h+1,...,n,

i if x €10, q;),
Fi(a) = i fz€0,q)
Fl(x)7 fo € [aiav]u
where h € {2,3,...,n} is an arbitrary constant, «;’s are also arbitrary constants

and satisfy that 0 < apr1 < apro < - < ay, < v and p;’s are given by

o= " = gl k=41 h42. -1 (16)
) vlLjsgp;

Remark 1.3.1. Equation (1.6) ensures that all the given distribution functions

(F})icr are continuous. In fact, all Nash equilibria are atom-free on (0, 00).

Proof. Let A be the set of pairs (G, q) where ¢ € RT and G : [0,00) — [0,00)

is a non-decreasing right-continuous function with G(0) = ¢. An element of A is

identified with a measure v on [0, c0) such that G(z) = v ([0, z]) and ¢ = v({0}).
Fix any player i. Suppose that any other player j chooses (Fj,p;) as her

strategy with F; continuous Vj # i. Then the objective of agent i is to choose a law
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of b;, which corresponds to a pair (F}, p;), to solve

max E

v [T F5(0) - Lm0y + — H F5(0) - 1gp,—0y — bz‘]
JFi " i

Z(F%@{/(Om) (vjl_[#Fj(fﬂ) —ﬂf) (gpg) pz} (1.7)

subject to f(o 00) F;(dx) + p; = 1. Introducing multiplier 7; for the constraint, the

Lagrangian for the optimisation problem (1.7) is then

‘Capa(ﬂvpu'}/z)_/(o )(UHFj(LU)—x—%) ( Hp] )pi+7i'

J#i J#i
(1.8)

We first derive the candidate Nash equilibria. Suppose that (Fj,p;)ier is
a Nash equilibrium. Then, by a similar argument in Section 1.2.1, we get that
vz Fj(x) — 2 — v = 0 when Fj(dz) > 0 and ; [[;p; —v = 0if p; > 0. By

Lemma 1.3.1, F; are all continuous. Let

supp(F;) = {x : Fi(z1) < Fj(29) for all 21 < z < 29} .

Then, supp(F;) = [ay,Z], where Z and «; are constants such that 0 < a3 < ay <
- < a, <z and p; = Fj(o;). Moreover, suppose that oy =g =+ =ap, =0 <
apt1, where h € {2,3,...,n} is an arbitrary constant, then p; = ps =--- = p, = 0.

Thus, for any ¢ € I,

v [[ Fi(x) = x + i for any = € [y, T (1.9)
J#i

Since a1 = 0 and F»(0) = 0, we get v1 = v[]; 4 F;(0) = 0. Then, since F;(z) = 1
forany i € I, v = vy =0 forallv €  and x = v — v = v. Fix any k €
{h,h+1,...,n—1}. Then, by (1.9), we have that on [y, axt1], Fi(z) = p; Vi > k+1

and
x
Fi(z)=Fi(z) = v ———— V1<i<k,
UHj>kPj
Fi(z) = Fi(z) = ”_\1/5 Vl<i<n.
v

This gives us the family of functions (F;);c; described in the theorem. Moreover,

and on [, v],

since F(z) is continuous, we get (1.6) holds. Notice that ppy1 < ppia < -+ < pp.
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We next verify that (F;, p;)icr is indeed a Nash equilibrium. Fix any i € I. It
is obvious that Fj; is continuous and f(o,oo) Fi(dz)+p; = 1. Moreover, v [];; Fj(z) -
x=0on [a;,v] and v]]; 4 Fj() =2 =v—2 <0 on (v,00). Now suppose i > h+1
and fix any k € {h,h+1,...,i —1}. Observe that on [ay, ag+1]

UHFj(x)—x:v i k1 H pj—

i ij>kpj ”Hpkpﬂ >k, j#i

. _$<7k1 Q41 pk+1 z—z<0.
ij>kpj UH]>kp]

Thus, v[];4,; Fj(z) — 2 <0 on (0,00), and for any (Gj,q;) € A

(000) \  jii J#i
<0= v | Fi(x)—x -
= /(o,oo) ( g i(x) ) (Jl;lzpj) DPi

Then by the definition we get that (Fj, p;);es is a Nash equilibrium.

O]

Remark 1.3.2. The unique symmetric equilibrium is given by h = n. In fact, if

h = n, then by Theorem 1.3.1 the Nash equilibrium (F});er is given by Fj(z) =
min{"\1/> }foranyzel

We now compare the all-pay auction with the Seel-Strack contest. In the all-
pay auction, the cost from making a bid enters directly into the objective function
and the agent chooses any probability distribution on R*. In contrast, in the context
of gambling in contests there is no cost associated with the stopped value of the
process in the objective function, but the constraint that the target probability
distribution has mean z( introduces an extra term into the Lagrangian.

Theorem 1.3.1 shows that there exists a continuum of asymmetric equilibria
in the all-pay auction. Recall that in the Seel-Strack contest, we focused only on
the class of symmetric Nash equilibria. However, it is easy to see that because
of the mean constraint in the Seel-Strack contest, the asymmetric candidate Nash
equilibria proposed by Lemma 1.3.1 can not be Nash equilibria for the Seel-Strack
contest.

On the other hand, in the class of symmetric Nash equilibria, there are
strong parallels between the Seel-Strack contest and the all-pay auction in which

the stopped value of the process corresponds to the auction bid. Suppose that the
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Nash equilibrium is symmetric. Also suppose that other players all choose F' as
their target distribution and player ¢ chooses G as her target distribution. Then the

Lagrangian (1.8) for the all-pay auction becomes

LG, 0;7) = /O h (UF(x)"*l —x— 7) G(dz) + . (1.10)

Comparing with the Lagrangian (1.4) for the Seel-Strack contest, we see that modulo
a factor of v representing the size of the winnings and a relabelling of parameters,
the main difference is that in (1.10) the multiplier A on the bid level is set to 1/v.
Moreover, with v = nxg, the equilibrium distribution in the all-pay auction is exactly

the same as the equilibrium distribution in the Seel-Strack contest.

1.4 Overview of thesis

Seel and Strack [2013] considers the case where X' is a Brownian motion with drift
and scaling and derives a Nash equilibrium under a joint feasibility condition on
the drift parameter, scale parameter and the number of players. In Chapter 2, we
consider a generalisation of the Seel-Strack contest in which the observed processes
are independent copies of some time-homogeneous diffusion. This naturally leads
us to consider the problem in cases where the analogue of the feasibility condition
is violated. We solve the problem via a change of scale and a Lagrangian method.
Unlike in the Seel-Strack problem it turns out that the optimal strategy may involve
a target distribution which has an atom, and the rule used for breaking ties becomes
important.

Chapter 3 considers the impact of adding a penalty associated with failure
to follow a winning strategy. Again the objective of the agent is to maximise her
chances of winning the contest, but now she is penalised if she has not won the
contest, but there was an alternative strategy which would have led to her winning
the contest. Three variants of the problem will be considered: the agent is penalised
for stopping too soon, for stopping too late, or for stopping too soon or too late. We
will find that in the first problem, the effect of the penalty is equivalent to an increase
in the number of participants, and the second problem is both more difficult and
more interesting. Moreover, we will find that the third problem is exactly equivalent
to the original Seel-Strack contest.

Several variants of the original Seel-Strack contest have been discussed in
Seel and Strack [2013], including an extension to the asymmetric two-player case

where the starting values of the processes observed by the players are different
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constants. In Chapter 4, we start with rederiving the Nash equilibrium obtained by
Seel and Strack in the asymmetric 2-player case and then extend the results to the
asymmetric n-player case. We will show that there exists a Nash equilibrium (F});er
that has no atoms in (0, 00) and such that sup (supp(F;)) are the same. Moreover,
we will see that in equilibrium, when n > 2, the agents with lower starting values
may choose not to stop at small values but to wait for high values.

In a symmetric 2-player contest, Seel and Strack assumed that the observed
processes start from the same positive constant, that is the starting value is com-
mon knowledge. In contrast, we assume that the starting values of the processes
are independent non-negative random variables that have the same distribution in
Chapter 5. So we consider a symmetric 2-player contest in which the starting value
of the observed process is private information and only its distribution is commonly
known. We will prove the existence and uniqueness of a symmetric Nash equilibrium

for the problem.
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Chapter 2

Contests modelled with

diffusions

In Section 1.1, we described the Seel-Strack model and discussed the case where the
processes (Y?);cr privately observed by the contestants are continuous-time realisa-
tions of independent Brownian motions. However, Seel and Strack [2013] actually
considered the case where Y is a Brownian motion with drift and scaling and it
starts above zero and is absorbed at zero. And they derived a Nash equilibrium
under a joint feasibility condition on the drift parameter, scale parameter and the
number of contestants.

Specifically, in the Seel and Strack paper, each contestant privately observes
an independent copy of a continuous stochastic process Y = (Y;)t>0, where Y is
given by

Yi=yo+ put+ oW, (2.1)

with constant initial value yg > 0, constant drift coefficient 1 and constant diffusion
coefficient ¢ > 0. Here W is a Brownian motion. It is assumed that if Y hits zero
then it is absorbed there, and an agent has to stop if her process hits zero. Each
agent chooses a stopping time 7, and the stopped value Y, forms her entry into
the contest. The agent who stops at the highest value wins the contest, and the
objective of each agent is to maximise her probability of winning.

In a contest between n agents, Seel and Strack imposed a feasibility condition

1 o2
1 1 —_— 2.2
u<0g<+n1)2y0 (2.2)

With this condition in force, they showed that there exists a symmetric Nash equilib-

rium within the class of bounded stopping rules. A feature of the Nash equilibrium
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is that it involves a randomised strategy, and the aim of each agent is to choose a
stopping time 7 such that the final value of the stopped process Y, has distribution
F. The Nash equilibrium is unique in the sense that the target distribution F' is
unique, but in general there are many stopping times 7 such that Y, has law F. (The
optimal stopping times can be identified as solutions of the Skorokhod embedding
problem (Skorokhod [1965]).) It turns out that F' is the distribution function of a
continuous random variable (in particular it is atom-free) and has a density which
is strictly positive on a bounded interval, and is zero elsewhere.

We have explained how Seel and Strack solved the problem in Section 1.1.1.
We adopt a different method of proof based on a Lagrangian sufficiency theorem.
Moreover, our first step is to transform the problem into natural scale. This allows us
to consider more general models for the observed process, beyond drifting Brownian
motion, such that Y is a time-homogeneous diffusion. The change of scale method
explains the origin of the condition (2.2) and motivates us to study the problem
when (2.2) fails.

The effect of using the scale function is to transform the original contest into
a simpler contest in which the observed processes are continuous martingales. To
illustrate this procedure, consider the model used in Seel and Strack [2013], that is
the observed process Y is given by (2.1). Then the scale function of Y is given by

2 2
s(y) = 2 — T~ 2my/o?

:2u 2

(we have chosen a normalisation such that s(0) = 0). Define X by
X = s(¥),

then X is a diffusion in natural scale with starting value xg = s(yo) which solves
dX; =0 (1 — 2‘;2(’5) dWy, at least until it first hits zero, which is an absorbing point.

Observe that the state space of X is [0,s(c0)). Then it is easy to check that the
condition (2.2) imposed by Seel and Strack is equivalent to s(co) > nzg. We are

interested in the cases where s(c0) < nxg, which are not covered in Seel and Strack
[2013].

We introduce the mathematical model of this contest in Section 2.1. We start
with a contest in which the observed process is any non-negative time-homogeneous
diffusion. Then we explain how this contest is equivalent to a contest in which the
observed process is a diffusion in natural scale. In Section 2.2, we derive the Nash

equilibrium using a technique based on the Lagrangian sufficiency theorem. We will
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see that the choice of method used to break ties matters. We solve the problem for
two canonical ways of breaking ties. In Section 2.3, we discuss two examples of Y
and give explicit expressions for the Nash equilibrium and an optimal stopping rule
in each case. Finally, in Section 2.4, we explain the origin of the optimal multipliers
and the candidate Nash equilibrium distributions.

Our results show that the strategy that the agent should use in a Nash
equilibrium is determined by both the mechanism for the breaking of ties and the
value of the upper bound of the state space of the diffusion in natural scale. Unlike
in the Seel-Strack problem, it turns out that the optimal strategy may involve a
target distribution which has an atom, and the rule used for breaking ties becomes
important. Moreover, there exist multiple Nash equilibria if the way to break the
ties has been improperly chosen. There are close links between the problem and an
all-pay auction with a bid cap (Che and Gale [1998]).

2.1 The model

In the contest, there are n participants with labels ¢ € I = {1,2,...,n}. Agent
i privately observes an independent copy Y of a non-negative time-homogeneous
diffusion process Y = (¥});>¢ with constant initial value Yy = yo > 0. Assume the
state space of Y is an interval S with endpoints {0,r € (yo,o0]}.

If Y can reach an endpoint in finite time, then we assume that the endpoint
is absorbing. Further, to exclude degeneracies, we assume that lim;;o Y; exists,
almost surely (and then limuo, Y; € {0,7}) and that P(limpuee ¥Y; = 0) > 0. (We
return to this point in Remark 2.1.1 below.) Examples include Brownian motion
with drift, absorbed at zero, and exponential Brownian motion, provided that the
parameters are such that the process does not diverge to infinity, see Example 2.1.2.

Let FY' = o({Yi:s <t}) and set F¥' = (Ffi)tzo. The space of strategies
for agent ¢ is the space of Fyi—stopping times 7¢. Without loss of generality, we
restrict attention to 78 < inf{t > 0 : Y} = 0 or Y/ = r}. Note that 7% is not
necessarily assumed to be finite, that is agent ¢ may choose to never stop the process
Y, in which case her entry is taken to be lim¢o Y;. Note also that agent i observes
her own process Y, but not Y7 for j # i; nor does she observe the stopping times
chosen by the other agents.

The winner of the contest is the one who stops at the highest value, and she
wins unit reward, that is Vi € I, agent ¢ wins 1 if she stops at a time 7% such that
YTii > YTJJ Vj # 4. If there are k agents who stop at the equal highest value, then

these agents each win 0(k), where 6(-) : {1,2,...,n} + [0, 1] is some non-increasing
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(deterministic) function with #(1) = 1. Therefore agent i with stopping value Y,
receives pay-off

O(k) - 1{Y:i:maxj61 Yo
where k = Hz el:Y,= maxjerTjo.

In general, there are two canonical choices of the ways to break the ties. One
choice is to divide the prize evenly, that is to set #(k) = 1/k. This is equivalent
to randomly breaking ties. Another choice is to reward only outright wins, so that
no one wins if there is more than one player who stops at the highest value and
0(k) = 1g—13. (There is a third, less natural policy which is to set (k) = 1, or
equivalently to reward joint winners with the full prize. In this case, the problem is
degenerate, and a Nash equilibrium is obtained by all agents stopping immediately,
78 =0.) We will give explicit solutions for the first two cases in Section 2.2.

Suppose that Y is a solution of the stochastic differential equation (SDE)
dY; = a(Y)dW, + b(Y,)dt

where b is continuous and a is continuous and positive on the interior of S. Let

s = s(y) be the scale function of Y. Then s is a strictly increasing solution of

a(y)?s" (y) + 2b(y)s'(y) = 0.

In general, s(S) is an interval with endpoints {L,U} with —co < L < U < oo and
there are four sub-cases depending on whether either L or U is finite or not. In fact,
by the Rogozin trichotomy, our assumption that limsy Y; exists rules out the case
that s(S) = R, and the assumption that P(limyo ¥; = 0) > 0 rules out the case
that L = —oo. Since s is only determined up to affine transformation, we may set
s(0) = 0, and then s(S) is an interval with endpoints {0,U} where U = s(r) may
be finite or infinite. We could also insist that s(yp) = 1 but we do not choose to do
SO.
Define X by
X =s(Y).

Then X is a diffusion in natural scale on s(S) with starting value zp = s(yp), see
Rogers and Williams [2000, Section V.7] or Karatzas and Shreve [1991, Section 5.5].
Set FX to be the natural filtration of X (and by extension X" to be the natural
filtration of X = s(Y?)). Clearly, 7 is a FY-stopping time if and only if 7 is an FX
stopping time.

Since s(-) is a continuous, strictly increasing function, the pay-off of agent 4
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with stopping value Yfi can be rewritten as

0(k) - 1{X:i:maxje] X7y

where Xii = s(YTii) and k = Hz el: Xii = maXjeg Xi]}’ This implies the equi-
valence between the two contests in which players privately observe Y* and X*,
respectively, and the optimal stopping rule 7¢ is the same for both contests. In
particular, if we have a Nash equilibrium for which 7¢ is optimal for the process X*,
then we also have a Nash equilibrium for the process Y?. Hence, without loss of
generality, we may reduce the problem to the case in which the observed process is
a copy of a local martingale diffusion.

One of the insights of Seel and Strack [2013] is that since the pay-offs to the
agents are determined by the distribution of XL- rather than the stopping time 7°
itself, the problem of choosing the optimal stopping time 7¢ can be reduced to a
problem of finding the optimal distribution F% = F? of X;Z Then, once we have
found the optimal target distribution F?, the remaining work is to verify that there
exists 7% such that Xii has law F)’( It follows that YTii has law F{, = F)"( os.

Since X is a diffusion in natural scale, by the Dambis-Dubins-Schwarz The-
orem (e.g. Rogers and Williams [2000], Theorem 34.1, p. 64) X can be expressed
as a time change of Brownian motion. Then X; = Br, for some Brownian motion
B with By = xg and an increasing functional I'y = [X],. If F' is the distribution
function of any random variable on [0, U] with mean zg, there exists a FZ-stopping
time p such that p < inf{v > 0: B, = 0 or B, = U} and B, has distribution F.
Such a p is known as a solution of the Skorokhod embedding problem. In general
there are many such solutions. Then, if we take 7 = I'"! o p, we find X, = B, ~F
and 7 is also an embedding of Fy = Fx osin Y. Moreover 7 is a FY -stopping time.
If p <inf{v > 0: B, = 0 or B, = U}, then it follows that 7 is finite, and more
generally 7 <inf{v >0: X, =0or X, =U} =inf{v >0:Y, =0o0r Y, =r} < cc.

If U < oo, then (Xt/\inf{vZO:XUZO or X“:U})t>0 is a martingale and every
candidate target distribution F'x for X must have mean xy. However, the stochastic
process (Xt/\inf{vzo:xvzo or XU=U})t>0 is a priori only a local martingale if U = oc.
Nonetheless, it is a non-negative supermartingale, and hence cannot explode to U =
00, and limsee Xy = 0 = limypoe Y almost surely. In this case, for any distribution
F with mean strictly less than z, with associated embedding 7, there exists (F,7)
such that F has mean xg, F < F and X, ~ F. Clearly, 7 dominates 7 as a strategy,
which means such (F ,7) must not be optimal. Thus, we may restrict attention to

stopping times 7 such that E [X’,] = .
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Remark 2.1.1. For the duration of this remark, relax the assumptions that lims o, Y3
exists and that P(limyoo ¥z = 0) > 0. If limyo Y3 does not exist then s(S) = R.
If limyoo Y7 exists and is equal to r almost surely, then s(0) = —oo. In either case,
lim sup;y, Y3 = 7 with probability 1, and then any stopping rule that involves stop-
ping at Y; = ¢ for § < r can be improved upon by waiting until Y hits (§ + r)/2.
Hence, either the optimal strategy is to wait until Y hits r (either in finite time, or
in the limit) or there is no optimal strategy.

In terms of the process in natural scale limsup;, ¥; = r is equivalent to
lim supyo, X+ = U which is the case if and only if L = —oco. This is why we have

excluded the case.

Example 2.1.1. (Drifting Brownian motion) Let Y be drifting Brownian motion
so that Y; = yo + pt + oWy, where yo > 0, p # 0 and o > 0 are all constants. Let
Hy = inf{u >0: Y, = 0} and let Y} = }7;/\[30. Then Y = (Y})s>0 is drifting Brownian
motion absorbed at zero and has state space S = [0, 00). The scale function of both
Y and Y is s(y) = % — %6*2”/”2. Since s(0) = 0 and s(o0) < o0, limye Vs
exists and P(limyoo Y = 0) > 0. In particular, if 1 > 0 then s(oo) = % < oo and
P(limspoe Y = 0) = 1 — s(yo)/s(o0) = e~2m0/7” whereas if ;1 < 0 then s(00) = 0o
and thus P(limyo Y7 = 0) = 1.

Drifting Brownian motion absorbed at zero is the process considered in the

original Seel and Strack paper, although they do not map it into natural scale.

Example 2.1.2. (Exponential Brownian motion) Now suppose Y is exponential
Brownian motion, so that Y solves dY; = uY.dt + oY;dW;, subject to Yy = yg > 0,
where yg, p and o # 0 are all constants. Y has state space (0, 00) and scale function
s(y) = y*/k for k # 0 and s(y) = Iny for k = 0, where kK = 1 — 2u/0?. We assume
x> 0 to ensure that s(0) is finite so that lims o Y3 exists and P(limyo Yz = 0) > 0.
If k < 0 then P(lim sup;, Yz = 00) = 1 and this example is degenerate.

Asin Section 1.1, we say that a distribution function F' is feasible if it satisfies
that F(0—) = 0 and [;° zF(dx) < zo. We aim to find a Nash equilibrium for the
problem in the sense of a family of the optimal feasible target distributions (F%);c;
of (X;Z)Ze 7. We will say that a Nash equilibrium has no atoms in [0, U) if each F*
has no atoms in [0,U).

Given that the contest is symmetric in the sense that each agent observes a
local martingale process started from the same level z, it seems natural to search for
Nash equilibria which are symmetric. Further, a simple argument over rearranging
mass shows that provided (k) < 1 for some k > 2, it is never optimal for k agents

to put mass at a same point x € (0, U)—any of them could benefit by modifying the
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target distribution to put a proportion N/(N + 1) of this mass at (z + N~2) and a
proportion 1/(N + 1) at (z — N~!) (where N is a sufficiently large number)—and
thus it is possible to deduce that any optimal solution puts no mass at any point
which belongs to (0,U). A more detailed proof is provided by Theorem 1.1.1. Notice
that this argument does not apply to the case where the mass point is U. In fact,
in Section 2.2, we will see that in some cases it is indeed optimal to put mass at the

upper bound U.

Remark 2.1.2. Theorem 1.1.1 shows that a symmetric Nash equilibrium has no
atom at zero. Notice that the fact that the Nash equilibrium has no atom at 0 relies
on the fact that the situation is symmetric. If the observed processes have different
starting points, then the Nash equilibrium may have masses at zero for some agents.
In that case, for a Nash equilibrium, at least one agent must put no mass at zero.

We will only consider the symmetric case in this chapter.

Remark 2.1.3. When U > nzg (for example when U = o0), the solution to our
problem can be identified with the solution provided in Seel and Strack [2013]. In
this case, we expect that there exists a unique symmetric Nash equilibrium.

The novel part of our solution, beyond the fact that we consider general
diffusion processes, is that in the case U < nzg, we identify a Nash equilibrium.
This equilibrium may depend on the method used to break ties, but provided this
method has been chosen sensibly then there is a symmetric Nash equilibrium, which
may involve an atom at U. We expect this to be the unique symmetric Nash

equilibrium, but our focus is on proving that such equilibria exist.

2.2 Equilibrium distribution

From Section 2.1, we know that the original contest can be reduced to a new contest
in which each agent i privately observes an independent copy X' of a continuous
local martingale process X = (X;)¢>0 where Xo = x9 > 0 is a constant. The process
X takes values in [0, U], where 9 < U < oco. Agent i who stops at Xii receives
pay-off
Ok) 1 x4, cmaxyer X7, 1

where k = HZ el: Xii = maxngin.

In this section, we explicitly discuss the two canonical choices of 6(-), 6(k) =
1/k and (k) = 1(;—1) (and briefly, 6(k) = 1 in Remark 2.2.6), for the general n-
player contest. These correspond to the cases where ties are broken randomly, and

only outright wins earn the prize, respectively (and thirdly the case where all joint
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winners are rewarded with the full prize). We give the candidate Nash equilibrium
solution and then verify the candidate Nash equilibrium using the Lagrangian suf-
ficiency theorem. We will see that the two different choices of 0(-) give us different

results.

Theorem 2.2.1. (i) Suppose U > nxg, and recall 0(k) < 1 for all k. Then there
exists a symmetric Nash equilibrium for the problem that is atom-free and Xii
has law F(z), where for z > 0

F(x) = min{ n_\l/nTx[f 1}.

(it) Suppose xo < U < nxy.

(a) If 0(k) = 1yu—1y, then there exists a symmetric Nash equilibrium for the

problem that has no atoms in [0,U) but an atom at U of size (’f_of)%, and

Xj_i has law F such that for 0 <z < U

n(U — xg) x
F(z) = 22 =20 naf T
@ == VT
(b) If O(k) = 1/k, then there exists a symmetric Nash equilibrium for the prob-
lem that has no atoms in [0,U) but an atom at U of size p = 1 — ¢, where
XS (0, "/ U/(n:co)) solves ®(x) = 0. Here ®(z) = xo (2" —1)—-U(x—1).
Further, Xii has law F such that for 0 <z <U

F(xz) = min { "—\1/”7%, QS} .

Proof. Let A be the set of pairs (H, h) where H : [0,U) — [0, 00) is a non-decreasing
right-continuous function and h € R*. An element of A is identified with a measure
v on [0,U] such that H(z) = v ([0,z]) and h = v ({U}).

Fix agent ¢ € I. Suppose that the other players all choose (F,p) as their
target measure with F' continuous and F'(0) = 0. Then agent i aims to choose a

feasible law of XL-, which corresponds to a pair (G, q), to solve

max { /[ P Glde) + imk)c,’i:ipk-lu—p)"-’f] q} (2.3)
0,U

(Gy)eA |

subject to f[o ) xG(dx)+Uq = xo and f[o ) G(dz) +q = 1. Introducing multipliers

A and « for the two constraints, the Lagrangian for the optimisation problem (2.3)
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is then

Lon(Graid) = [ [P = xs =] Gldn)
[0,U)

Z&(k)Ck 1, k— 1(1 p)n_k—)\U—’Y
k=1

+ q+ Axg + 7.

(2.4)

Let Ap(zo) be the subset of A identified with probability measures with
mean zo. Then Ap(zg) is given by

Ap(xg) = {(H,h) € A:liTn[}H(x)—i-h: 1 and / a:H(dx)—i—Uh:xo}.
T [0

7U)
Now we state a variant of the Lagrangian sufficiency theorem for our problem.

Proposition 2.2.1. If there exist G*, ¢*, \* and v* such that (G*,q¢*) € Ap(xo),
G*(0) =0, G* is continuous on [0,U) and

£G*,q* (G*a q*a >\*a 7*) > ['G*,q* (Ga q; >\*7 7*) fO’f’ all (G7 Q) € A’ (25)

then (G*,q*) is a symmetric Nash equilibrium that has no atoms in [0,U).

Proof. We seek a symmetric Nash equilibrium that has no atoms in [0,U). Since
there are no atoms in [0, U), a Nash equilibrium is identified with a pair (G*, ¢*) €
Ap(zg) such that G*(0) = 0, G* is continuous on [0, U) and for all (G, q) € Ap(zo)

G* ()" G (dx) +
0.0)

z’ﬂ: k 1(1 q*)n—k] q*

> 0(k)Cr (") M (1 - q*)”k] q. (2.6)

k=1

> [ G G(dx) +
0.0)

If (G, q) € Ap(xg), then using the definition of the Lagrangian,

G*(2)"'G(dx) + [Z o(k 1 - q*)"’“] q =L g (G g X, 77).
0.0)

Then, since L+ ¢«(G*,q"; X", v*) > Lg= ¢+ (G, ¢; \*,7*), we have that (2.6) holds.
Thus, (G*, ¢*) is a symmetric Nash equilibrium that has no atoms in [0, U).
O

Return to the proof of Theorem 2.2.1.
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(i) Suppose U > nzp. On [0,00) let G*(z) = mln{ "z /(nxo), 1} ¢ =0, \ =
1/(nxo) and v* = 0. It is immediate that (G*, ¢*) correspond to a distribution
with mean z9, G*(0) = 0 and G* is continuous on [0,U), and so it remains to

verify (2.5) for the given multipliers.
Since 0(k) <1 for all k we have that

n

ZH(k)CS:}( )k 1 n k < ch 1 1 q*)nfk
k=1
(q +(1—g)" =1,
and then

Lo g+ (G, q; X", 7")

§/ {G*(x)”_l - Nz — 7*} Gdz)+ (1 —=XNU—~")g+ XN'zo+7*
[0,U)

1
[ (- e+ (-2 g
(nzo,U) nxo nTo n

< :EG*,q*(G*aq*;A*77*)'

S

Thus, by Proposition 2.2.1, (G*, ¢*) is a symmetric, atom-free Nash equilibrium.

(ii) Suppose zg < U < nxp.

(a) Set (k) = L(p_1y. On [0, 00) let G*(z) = [ i) \ﬂ 1pety + 10y

* nxg—U n(U—mzo)]"™

= e 1)U, AF = {(nil)U} ! U~! and v* = 0. From the explicit form
of G* and ¢*, it is clear that G*(0) = 0, G* is continuous on [0,U) and
(G*,q*) € Ap(xp). Now we verify that for these multipliers (2.5) holds.
Since 0(k) = 1(3—1},

EG*,q* (Gv q; )‘*a ’7*)
:/ [G*(m)”_l -\ — fy*] G(dx)
[0,U)

+ [(1 —¢")" XU~ ﬂ q+Nxo+7"

B [n(U - xg)}"l xo

“w-no| T e @G

(b) Set (k) = 1/k. On [0,00) let G*(z) = mm{ "V/a[(n20), 6} - Lzary +
1>y, @ = 1= ¢, A* = 1/(nxg) and v* = 0, where ¢ € (0,1) solves
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®(z) = 0. Because ®(0) =U —x¢ > 0, (1) =0, ®'(0) = -U <0, (1) =
nxo — U > 0 and ® is convex on (0, 00), there exists a unique solution ¢ to
® (z) = 0 such that qﬁ € (0,1). Moreover, since ®(¢) = 29" —Up+U—z¢ =
0 and ¢ € (0,1) , MO = 1( ¢>’;) = (1+¢+¢2+---+¢>”_1) > ¢" ! and
thus ¢ < "VU/(nzxy).
Again by he explicit form of G* and ¢*, we get that G*(0) = 0, G* is
continuous on [0,U) and (G*,¢*) € Ap(xp). Next we verify that for these
multipliers (2.5) holds. Since ¢* # 0 and (k) = 1/k, and since C*~1/k =
Cr/n,

Z Ck: 1 k 1(1 q*)n—k

k=1
_ L i B = )" = 1= (1= )]
nq =1 n
1 ny U
:n(1—¢)(1_¢)_nx0’

and we have

L:G*,q* (G7 q; )‘*7 /Y*)

U
= / {G*(az)”*l -\ — fy*] G(dx) + [ — XU =~ g+ XNaxg+7*
[0,U)

nTo
n—1 T 1 1 ¥ k. \ % %
= ¢ - — G(d$)+*§*:EG*,q*(G7Q7A7/Y )
(nzogn=1,U) no nen

Thus, (G*,¢*) is a symmetric Nash equilibrium that has no atoms in [0,U) by
Proposition 2.2.1.

O]

Remark 2.2.1. In the case where U cannot be reached in finite time, if the optimal
target law places mass on U then this corresponds to the optimal stopping rule

7 = oo for that part of the sample space where X, = U.

Remark 2.2.2. Similar to Section 1.3, in the class of symmetric Nash equilibria,
there are strong parallels between our model and an all-pay auction in which the
stopped value of the process corresponds to the auction bid, so that the choice over
distributions for the stopped value of the process corresponds to the choice over
distributions for the bid size. The upper bound on the state space of the stochastic

process in natural scale corresponds to the bid cap.
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It follows that the same Lagrangian methods can be applied to the all-pay
auction. Consider a symmetric all-pay auction with a cap m on bids, where m €
(0,00] is the maximum allowable bid. We assume that there are n bidders in the
auction, and all bidders have the same valuation v of the prize. The Lagrangian for

this problem is

L2(G i) = /[0 [orert o] et

n

v Z Q(k)C’,’fbjpk*I(l — p)"*k —m—7
k=1

+ q+. (2.7)

Comparing with (2.4) we see that modulo a factor of v representing the size of the
winnings and a relabelling of parameters, the main difference is that in (2.7) the
multiplier A on the bid level is set to 1/v.

In the case where m > v or the case where m € (v/n,v) and (k) = 1/k, the
equilibrium distribution in this all-pay auction is exactly the same as the equilibrium
distribution in our model with m = U and v = nzy. In the case where m € (0, v) and

0(k) = 1{;—1}, these two equilibrium distributions are also the same with m = U

and v =U [é?&j;[g)}n_l

Remark 2.2.3. Expanding on the previous remark, for the most standard tie-
breaking rule, i.e. (k) = 1/k, Theorem 2.2.1 shows that if xo < U < nxg, then
there is a “hole” in the support of the equilibrium distribution. Specifically, in
equilibrium, players stop with positive probability on [O,nx(](b”*l}, players stop
with zero probability on (nxg¢”_1, U), and players stop at U with probability 1 — ¢.
Similar equilibrium distributions with holes have been found in all-pay auctions with
bid caps, e.g., Che and Gale [1998], Dechenaux et al. [2006] or Szech [2011] and also
in wars of attrition, e.g., Hendricks et al. [1988] and Damiano et al. [2012].

Remark 2.2.4. If 9 < U < nxg, 0(k) = 1g—1y (so that only outright wins
are rewarded) and all other agents follow strategies which yield the optimal target
distribution stated in Case (ii.a) of Theorem 2.2.1, then whatever stopping rule
?;U__lfl‘})r_l In the other two
cases, Cases (i) and (ii.b) of the theorem, if other agents use the Nash equilibrium

agent 4 chooses her expected pay-off is equal to 77 [

strategy, then the agent achieves the same expected pay-off as the optimal strategy,

provided she puts no mass in (nwzg, U] or (nze¢™ ', U), respectively.

Remark 2.2.5. The choice of the tie-breaking rule is crucial in determining the
Nash equilibrium, at least in cases where the upper bound is sufficiently small. This

phenomena is also a feature of some variants of the all-pay auction in which optimal
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bid distributions include an atom, see for example Che and Gale [1998], Dechenaux
et al. [2006], Cohen and Sela [2007], and Szech [2011].

Szech [2011] studies a two-player all-pay auction in which each player is
restricted to choose her bid from the interval [0,m]. She introduces an asymmetry
whereby it is assumed that if both bidders submit the same bid, bidder 1 wins with
probability « € [0, 1], otherwise bidder 2 wins. In this auction, Szech shows that the
Nash equilibrium depends on the choice of tie-breaking rule via (a,m), and takes

one of three distinct forms.

Remark 2.2.6. If the way of breaking ties has not been chosen appropriately, then
there might exist multiple Nash equilibria. (In the context of all-pay auctions, Cohen
and Sela [2007] show that there may be multiple symmetric equilibria even in the
standard case 6(k) = 1/k, but there the phenomena arises from the discreteness of
the set of possible bids.)

Take 6(k) =1 (in which tied winners all win the full prize) as an example in
the context of this section. It is clear that the stopping rule such that every agent
stops immediately is a symmetric Nash equilibrium and that the associated target
distribution consists of unit mass at xg € [0,U). Moreover, there exists a symmetric
Nash equilibrium that has no atoms in [0,U). This can be proved similarly to
the proof of Theorem 2.2.1. In fact, if U > nxg, then there exists a symmetric
Nash equilibrium for the problem that has no atoms and Xii has law F'(z), where
F(x) = min{ "‘\l/x/(To),l} for x > 0; if g < U < nzo then there exists a
symmetric Nash equilibrium for the problem that has no atoms in [0, U) but an atom
at U of size (1 — ¢), and X'; has law F such that F(z) = min{ "z /(nzo), ¢3} for
0 <z < U. Here, ¢ € (0,1) solves ®(z) = 0, where &(z) = Uz" —nUz +n(U — xo).

2.3 Examples

In this section, we give explicit expressions for the optimal target distribution and
associated stopping time. The optimal stopping time is based on the Azéma-Yor
solution of the Skorokhod embedding problem (Azéma and Yor [1979]). Note that
any other solution for the Skorokhod embedding problem (see Hobson [2011]; Oblé;
[2004] for a survey) can also be used to construct an optimal strategy, but the

Azéma-Yor solution is both relatively simple and quite concrete.

2.3.1 Drifting Brownian motion

Suppose the diffusion process Y is a drifting Brownian motion absorbed at zero and
solves dY; = udt + odW; where Yy = 4o > 0, it # 0 and o > 0 are all constants. Set
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v = 2p/a%. The scale function of Y is s(y) = % - %e_w. Let X = s(Y); then, X is
a diffusion in natural scale on [0, U) with starting value zo = s(yo), and U = s(c0).
If 1 > 0 then U = s(o00) = 1/7, else if 4 < 0 then U = s(00) = 0.

Seel and Strack [2013] discussed the case where U > nxg, which is equivalent

to the condition (2.2), i.e. v < y% log ~*5. Here we discuss the general case.

(i) Suppose U > nxg, that is suppose v < yiolog - Recall that 6(k) < 1 for

all k, then by Case (i) of Theorem 2.2.1, the optimal distribution of X, is

F(z) = min{ "/ (nxg), 1} for z > 0. Define

1
- /[mo) yF (dy) (2.8)

for x < inf{x : F(z) =1} and ¢ (x) = = otherwise. Then v is the barycentre

function. Thus, ¢(z) = x for z > nxy, and for 0 < z < nxg,

P(z)

1o (= n/(n—1)
() = o L E‘:%l/(nl) :

nro

(2.9)

The Azéma-Yor embedding of F' in Brownian motion started at z¢p = (1 —
e~ 70) /v is T = inf {t >0:9(Xy) < X't}, where X = sup,<; X;.

We want to reinterpret this solution in terms of the drifting Brownian motion
Y. Set Fy = F o s so that Fy(y) =0 for y <0,

| 1—e Yy

1 —
Fy(y) = "7 m fory € <O7_’leg [1 —n(l—e 790)]) 7

and Fy (y) =1 for y > —%log [1—n(l—e ).

Then, since s is strictly increasing, we rewrite 7 as 7 = inf {t >0:9(Y) < Yt}
where ¥(y) := s~ 1(¢(s(y))) is given by

(1—e~7Y) n/(n—1)
1 i C=)
I _ — e YY%0
¥ly) = ~y log [ 1—(1—¢ ) 1 _ (=) 1/(n—1)
(=)

(2.10)

ifo<y< —% log [1 —n(1 — e 7%)] and ¥(y) = y otherwise.

Suppose rg < U < nxg, that is suppose v > y%log 7. Assume agents
receive no reward if they are a tied winner so that 6(k) = 17,—;;. By Case

(ii.a) of Theorem 2.2.1, the optimal distribution of X, has law F such that
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(iii)

F(z) = YEELU__S[(}) ”*\1/% for 0 <2 < U and F(z) = 1 for # > U. Then, by the

definition of the barycentre function ¢ in (2.8), () = x for x > U and

Y(z) = Gl B ni\% for z € [0, U]. (2.11)
n—1-n(l-7) "*\1/%

and

l—e s~ Hz) = _ log(1—vyx)
¥

Recalling that U = % and substituting s(y) = 5
(2.11) into the expressions Fy = F os and ¥(y) = s~} (¢(s(y))) yields

Fy(y) = = 167%/0 "V e,

n—
n—1—(n—-1+e ) "V1—-eW
n—1—ne 1 "1 —e W 7

1
U(y) = yo— —log (
Y
for 0 <y < oo. In particular, if n = 2 then
1
U(y) =y + —log (67(90“”) —2e7 + 2) :
Y

Note that vyg > log2 by hypothesis, so that the term inside the logarithm is

positive.

Then 7 = inf {t >0:9(Y) < }_/t} is the Azéma-Yor optimal stopping rule for
the original contest. We have that limyo Fy(y) < 1, so there is a nonzero
probability that 7 = oo and that the agent achieves an infinite entry into the

contest.

Again suppose v > y% log ~"5 but assume 0(k) = 1/k. The optimal distribution
F of X, is given by Case (ii.b) of Theorem 2.2.1 as F(z) = min{ n-l nixo,qﬁ}

— — n—1/_U
for 0 <z < U and F(z) =1 for ¢ > U, where U = 1/ and ¢ € (0, \1/7%)
solves ®(z) = 0 with ®(x) = 2o (2™ — 1) — U(x — 1). Then, by the definition
(2.8) of the barycentre function, for 0 < z < nxe¢" !, ¥(z) is given by (2.9),
for nxgp" ! < x < U we have ¥(x) = U, and for x > U, 9 (z) = .

Let Fy = F os. Then, for y > 0, Fy(y) = min{ nﬂ/ﬁ, gb}.

Let U(y) = s~ 1(1(s(y))). Then, ¥(y) is given by (2.10) if y € [0, s~ (nzop™ )]
with s7! (nzog" 1) = —%log (1 —n¢" (1 —e %)) and ¥(y) = oo other-
wise. Moreover, the Azéma-Yor optimal stopping rule for the original contest
is 7 = inf {t >0:0(Y) < }_Q} Again there is a nonzero probability that

7 = oo and that the agent achieves an infinite entry into the contest.
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2.3.2 Exponential Brownian motion

The above methods extend easily to any non-negative time-homogeneous diffusion
with state space an interval with endpoints {0, € (0, 00]} provided the scale func-
tion s satisfies L = s(0) > —oo. Then we can normalise s so that s(0) = 0.
Depending on the value of U = s(r) we are in one of the cases of Theorem 2.2.1. In
each case, for the diffusion in natural scale, the optimal target law is given as in the
theorem, and by formula (2.8) for the barycentre 1, we can construct an optimal
stopping rule. The barycentre and the stopping time are exactly as in Section 2.3.1.
Finally, it remains to interpret these stopping times as stopping times for the ori-
ginal process, and only at this stage do the calculations look different to the drifting
Brownian motion case.

As a further example, now suppose agents privately observe independent
copies of an exponential Brownian motion Y. Suppose Y is a solution of dY; =
uYzdt + oYidWy, where Yo = yo > 0, and yg, u and o # 0 are all constants. In light
of the discussion in Example 2.1.2, we assume p € (—00,02/2). The scale function
of Y is s(y) = y*/k, where k = 1 — 2u/0? and k > 0 . Let X = s(Y); then X is a
diffusion in natural scale on (0, c0) with starting value z¢ = s(yo).

In this case U = s(00) = oo and trivially U > nxo. Provided that (k) <1
for all k, then by Case (i) of Theorem 2.2.1, the optimal distribution of X, is
F(x) = min{ Yz /(nxo), 1} for > 0 and the barycentre function 1 is the same
as shown in (2.9). Then the optimal law of Y is Fy = F o s where for y > 0

Fy(y) :min{ na Y 1}

nyg’

Using the Azéma-Yor embedding, one solution is 7 = inf{t > 0: ¥(Y;) < Y;},

® \ n/(n—1)\ 1/* £\ 1/(n—1)\ ~V/F
‘I’(y)—yo<1—<yn) ) (1—(‘””) )

if 0 <y < yon'/* and ¥(y) = y otherwise. Note that lim
hence 7 < inf {u 1Y, = ygnl/’“‘}.

where

ytyont/® Y(y) = yOnl/H and
2.4 Derivation of the equilibrium distribution

This section is devoted to the derivation of the optimal multipliers, and the candidate
Nash equilibrium distributions given in Theorem 2.2.1.

Recall the definition of the Lagrangian Lr,(G,q; A, ) for the optimisation
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problem (2.3). Let I(p) = S0, 0(k)C*~1pF=1 (1 — p)"F — AU — ~ and Lp(z) =
F(x)"~! — Az — v, then

Lrp(G,q:\,7) = / Lp(2)G(dz) + 1(p)q + Mz + 7.
0

In order to have a finite optimal solution, we require Lp(x) < 0 on [0,U) and
l(p) <0. Let D be the set of (A, ) such that L (-, ; A, y) has a finite maximum.
Then D is defined by

Dr={(\,7): Lrp(z) <0on [0,U) and I(p) < 0}.

In order to reach the maximum value, we require G (dx) = 0 when Lp(x) <0
and ¢ = 0if [(p) < 0. This means that for (\,7v) € Dp the maximum of Lg,(-,-; A, 7)
occurs at (G*, ¢*) such that G*(dx) = 0 when Lp(x) < 0 and ¢* = 0 when I(p) < 0.
If the Nash equilibrium is symmetric, then we must have G*(x) = F(z) and ¢* = p,
which means Lg+(2) = 0 when G*(dz) > 0 and [(¢*) = 0 when ¢* > 0.

Because Lg+(z) = G*(2)"~! — Az — 7, we have G*(z) = "/Az + v when
G*(dx) > 0. Since G* is non-decreasing and not constant, we must have A > 0. Set
a = inf{z : G*(x) > 0} and b = sup{x : G*(x) < (1 — ¢*)}. Since we are searching
for the G*(x) that has no atom on [0, U) and since "~+/Ax + 7 is strictly increasing,
we must have G*(z) = "/Az + 7 on the whole of the interval [a, b).

Observe that 0 < F™~1(0) < v, so that if (\,7) € D then v is non-negative.
Since G* has no atom on [0,U), G*(a) = 0 and hence Aa + v = 0, and by the
non-negativity of @ and ~ and the positivity of A, it follows that v = 0 = a. Thus
G*(x) = "V Az on [0,b) for some X\ > 0 and b < U which we must find. Further,
we must find ¢* € [0, 1) that solves (¢*) = 0 if ¢* # 0.

For a feasible solution, G* and ¢* should satisfy f[O,U) xG*(dx) + Uq* = zo
and f[O,U) G*(dx) + ¢* = 1. Thus, to get G* and ¢*, we should solve the following
system of equations

20 = [y od ("VAT) + Ugq=b"YNb— 5L () 7T + Uq = L "VAb+ Ug,
1= f[ojb)d<”*\1/ﬂ> +q="VXb+gq,
Ug) = Xioy 0(k)CR_1¢" (1 — )" F =AU =0, if ¢ #0.
(2.12)
If ¢ = 0, then from (2.12) we obtain b = nxg and A = 1/(nxg). Thus, ¢ =0
is a feasible solution if b = nxy < U and is not a feasible solution otherwise. Next

we search for nonzero ¢ that is feasible.
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(i)

(i)

Set 0(k) = 1g4—1}. Then the third equation in (2.12) can be reduced to (1 —
Q)" ! — AU =0 if ¢ # 0. Thus, for ¢ # 0, (2.12) can be reduced to

(=gt (=gt
A= i : b= \ ;
1—q)" U(l— U 1)U
P ) LU= ( q)+Uq: +(n—-1)Uq
n n n

-1
This gives us the optimal ¢* = &x_ol_)l[]] and then A\* = [Tz;l{;fl(})}n U~! and

b* = U, which then gives us the G* given in the theorem.
Set (k) = 1/k. Observe that we have shown Y 1, %Cﬁ:iqk*1(1 =
niq [1 — (1 —¢q)"] if ¢ # 0 in the proof of Theorem 2.2.1. For g # 0, (2.12) can

be reduced to

1-—(1-¢q)" (1—g)"
nUq ’ A ’ (2.13)
(1—q)" Uq(1—q)" Uq
— Uvg=————~> +UUg= —— . 2.14
o Y + Uq 1—(1—q)"+ q 1—(1—gqr ( )

Let ¢ =1 — g then (2.14) can be rewritten as ®(¢) = 0, where ®(x) = xgz™ —
Uz +U — Zg-

Since @ is convex on (0,1), we can find that there exists an solution ¢ to
®(z) = 0 such that ¢ € (0,1) if and only if U < nxg. Moreover, such solution

is unique. Denote ¢* by this solution if it exists.

Therefore, if U < nz then ¢* = 1 — ¢* and then \* = 1/(nzg) and b* =
nxzo(1 — ¢*)"~! using (2.13). And this gives us the G* given in the theorem.
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Chapter 3
Contests with regret

Recall the Seel-Strack contest introduced in Section 1.1. In the contest, each player
privately observes a transient diffusion process and chooses when to stop it. The
player with the highest stopped value wins the contest, and each player’s objective
is to maximise her probability of winning the contest. This chapter considers an
extension of the contest to one in which a penalty associated with failure to follow
a winning strategy is added.

We add a behavioural finance aspect to the contest, in the form of regret
theory in the sense of Loomes and Sugden [1982]. Again the objective of the agent
is to maximise her chances of winning the contest, but now she is penalised if she
has not won the contest, and she has behaved sub-optimally, in the sense that there
was an alternative strategy which would have led to her winning the contest. Thus,
in a competition between fund managers, a fund manager who has followed a poor
strategy is not merely given a new role within the firm, but instead is terminated
with disgrace.

Specifically, we will consider the following variant of the problem. The agent’s
choice of stopping rule determines her stopped value X. But if with hindsight we
look at the best possible time she could have chosen, then we get a maximum value
M she might have attained. We consider a problem in which the agent receives a
reward of 1 if her stopped value is higher than the highest stopped value Y of all
other agents, but she is penalised K if her stopped value is not the highest, and
yet if she had stopped at the maximum value she might have attained M then she
would have been the winner. If she is not the winner, and there is no strategy she
might have followed which would led to her being the winner, then her reward is
zero. Thus, her objective is to maximise P(X >Y) - KP(X <Y < M).

In fact we consider three variants of the problem, in which an omniscient
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being (or the agent’s supervisor) penalises the agent for stopping too soon, for
stopping too late, or for stopping too soon or too late. In the first case, the agent
faces regret over stopping too soon, and we consider the maximum value to be the
maximum value attained by her process after the moment she chose to stop. In the
second case the maximum is taken only over that part of the path which occurs
before the chosen stopping time and the agent faces regret over stopping too late.
In the third case we take the maximum over the whole path.

Our results are that in the first problem, the effect of the penalty is precisely
equivalent to an increase in the number of opponents. An increase in K provides
the agent with an incentive to aim for higher values, at the cost of stopping at
low values more often. This is the same as the effect of competition from more
opposing agents. In the second problem, which is both harder and more interesting,
the optimal strategy is modified in a more subtle way. This case is relevant if the
agent’s process is unobservable from the point at which it is stopped, for instance if
it is the gains from trade process arising from a dynamic investment strategy chosen
by the agent. Now the agent faces a risk of a penalty whenever she stops below the
value of the current maximum. For this reason she is reluctant to do so, although
it is also sub-optimal to wait until her process hits zero, as this is a sure losing
strategy. An increase in K gives her an incentive to stop more quickly. The third
problem might be expected to be a combination of the two previous problems, but
in fact there is a natural simplification which leads to the optimum being the same
solution as the original Seel-Strack problem.

The remainder of this chapter is constructed as follows. In Section 3.1 we
introduce the contest with regrets, which we then solve in the three cases described
above in Sections 3.2, 3.3 and 3.4, respectively. In Section 3.5 we explain the origin
of the optimal multipliers and the candidate Nash equilibrium distributions. Finally,
in Section 3.6 we show how our results for Brownian motion absorbed at zero extend

to general time homogeneous diffusions.

3.1 The model

Recall the model introduced in Section 1.1. There are n players with labels i €
I = {1,2,...,n} who take part in the contest. Player ¢ privately observes the
continuous-time realisation of a Brownian motion X* = (X}),cgp+ absorbed at zero
with X§ = 9 > 0, where z¢ is a constant. Let 7} = o({X! : s < t}) and set
Fi = (ff)tzo. Player i chooses an Fi-stopping time 7¢, and without loss of generality

we restrict attention to 70 < H§ = inf{t > 0 : X} = 0}. Player i observes her own
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process X', but not X7 for j # 4; nor does she observe the stopping times chosen
by the other agents. Moreover, the processes X* are assumed to be independent.

We now assume that there is an omniscient judge who can observe the path
of X', and not just the stopped value, and who penalises the agent for the failure
to use a winning stopping rule if such a strategy exists. This judge represents the
supervisor of the agent, and the agent faces penalties (such as dismissal) in cases
where after the fact she is seen to have followed a losing strategy, when a winning
strategy existed.

The player with the highest stopping value wins unit reward, that is Vi € I,
player i wins 1 if she stops at time 7¢ such that XL- > Xij Vj #i. (We discuss the
award of the prize in the case of a tie below.) In addition, the player is penalised
K > 0 if her stopped value is not the highest, and if she had an alternative strategy
which would, with the benefit of hindsight, have allowed her to win. (The case
K = 0 corresponds to the standard problem.) Given that the best strategy for
agent i is to stop at the maximum value M* attained by X, this means that player
i loses K if she stops at 7° such that X', < max;; Xi]- < M.

There are several different potential definitions for the quantity M* which
represents the maximum the agent could have achieved. Depending on the interpret-
ation, this could be the maximum over the entire path M* = max{X};0 <t < H}},
or it could be that only that part of the path before the agent’s chosen stopping
time is considered, M’ = max{X};0 <t < 7'}, or only that part of the path after
the agent’s chosen stopping time, M* = max{X};7" <t < H{}. These different
interpretations will lead to different Nash equilibria. We consider the three cases
separately in the next three sections.

As before, ties are broken randomly. If there are k players who stop at the
highest value then these players each wins % Further, player ¢ loses K5 if she stops
at 7¢ such that X;'i < max;; ij = M*, where 0 < Ky < K. Hence player i who
stops at Xii with maximum value M? has pay-off

1

-1

k {Xf_i:maxje] Xij} - K — Ko

1{in<max#i X7, <Mi} 1{in <max;jz; X7 =M}
where k = |{i € I: X!, = maxjer X7, }|.

Our objective is to find a Nash equilibrium which is represented by a fam-
ily of stopping rules (7%);c;. Since the values (Xii, M?);er are sufficient statistics
for the problem, the Nash equilibrium can be characterised by the laws (v%);c; of
(X%, M?%);cs. Then, in equilibrium, the agent can use any stopping rule for which

T

(Xt,, M%) has law v*.

T
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In our generalised setting we will limit our search to symmetric atom-free
Nash equilibria. Then, since there are no atoms, the probability of a tie is zero.
Thus, neither the method of breaking ties nor the value of Ky will affect our results.
Suppose that the other players all choose F(x) as their target distribution of
X, where F' is continuous and such that F(0) = 0. Let ¥ = max;; Xi]-. Then Y
has cumulative distribution function Fy given by Fy (y) = F(z)"~! and conditional

on (Xﬁl =z, M* = m), the expected pay-off to agent i is
P(Y <2) = KP(z <Y <m) = F()"™ = K [F(m)"~! = F(z)"""|
=1+ K)F(z)" ! — KF(m)" %

We say v = v(dz,dm) is a feasible measure if v is a possible joint law of (X7;, M").

Then the aim of agent ¢ is to choose a feasible measure to maximise
(1+ K)E[F(X;.)""] = KE[F(M")"]. (3.1)

Note that the set of feasible measures depends on the definition of M. In particular,
we must have E(X_Zrl) < x0, since X* is a non-negative supermartingale and 7 is

finite almost surely.

3.2 Contest with regret over future failure to stop

In this section we consider the contest in which the agent is penalised for stopping
too soon. We consider the maximum value M°? to be defined by

M' = M/

i i = SUP X;.

TI<t<H{

Theorem 3.2.1. There exists a symmetric, atom-free Nash equilibrium for the prob-
lem for which X'; has law F(x), where for x >0

F(x) = min{ NWI/NLxO’ 1}
with N =n+ K(n —1).

Remark 3.2.1. The agent follows exactly the same optimal strategy as an agent
in a different setup, where there is no penalty, but the total number of contestants
is increased to N =n + K(n — 1).

Proof. Fix any ¢ € I. Denote by v the joint distribution of Xii and M} and

(7", H]
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denote by G(z) the marginal distribution of X;, Then, using the strong Markov
property and the martingale property of X,

v([0,2] x [0,9]) = P (XL < 0, M{Ls o < )
= /0 P (M[ri,Hg] <yl XL = Z) G(dz)
= / P (Hj < Hyy.| Xk = 2) G(dz)
0

= /OI]P> (Hé < H},.|X§ = z) G(dz) = /

0 Y

TYVET 20, (3.2)

where HY = inf{t > 0: X} = w} and H} = inf{t > 7% : X} = w} for any w > 0.

Let A be the set of non-decreasing right-continuous functions f : [0, 00) —
[0,00). Suppose that the other players all choose F'(x) as their target distribution of
X;, where F(z) is continuous and satisfies F'(0) = 0. Substituting (3.2) into (3.1),
the expected pay-off of player i becomes

/Ooo /Ooo [(1 + K)F(q:)"*l _ KF(y)n—l} V(da}, dy)
:/000(1 + K)F(2)" G (dx) — /OOO /:o KF(y)nflédyG(dx)

00 © B n—1
= /0 l(1+K)F(x)”_1 ~ Kz /x (yy)2dy] G(dx).

Thus, given other players’ choices, player ¢ would like to choose G to solve

(o)
max
GeA 0

subject to [;° 2G(dz) < xo and [§¥ G(dx) = 1.

Introducing multipliers A and ~ for the two constraints, the Lagrangian for

n—

1+ K)F(z)" ! - Kz /oo F(Z)zldyl G(dx) (3.3)

the optimisation problem (3.3) is then

(1+ K)F(a)" ! - Ka / TR

) dy — Az — ’y] G(dx)

0

+)\ZEO + .

Let Ap(zo) be the subset of A corresponding to distribution functions of random
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variables with mean less than or equal to xg, that is

Ap(xo) = {f E.A:iiTrglof(m) =1and /Ooozrf(dm) < 1‘0}.

Now we state a variant of the Lagrangian sufficiency theorem for our problem.

Proposition 3.2.1. If G*, \* and ~* exist such that \* > 0, G*(0) = 0, G* is
continuous, G* € Ap(xq), [y° ©G*(dz) = xo and

Lo+ (G5 N, ~") > Lo« (G X, v7) forall G € A, (3.4)

then G* is a symmetric, atom-free Nash equilibrium.

Proof. We seek a symmetric atom-free Nash equilibrium. A symmetric atom-free
Nash equilibrium is identified with a continuous distribution function G* € Ap(zg)
with G*(0) = 0 and the property that for any G € Ap(zo)

00 o0 Yk n—1
/0 1+ K)G*(z)" ! - KZL‘/ G(;/gdy] G*(dr)
0o 00 * n—1
> /0 [(1 + K)G*(z)" ! = K:U/ G(yygdy] G(dz).

IfG e AD(I()) then

r

1+ K6 @) — K [ Gf)dy] G(da)

— L (6N 7") = X [0~ [ aGlde)] < Lan (G,
0

since A* > 0 and fooo xG(dz) < xg. Then, under the hypotheses of the proposition,

r

1+ K)G @) — K [ G"g;’“dy] G (dr)

= Lo (G N, 7") > Lo (G N, 7")

oo . . 00 G*(y)n—l
2/0 [(1+K)G (z) 1—Ka:/x gﬁdy] G(dx).

Thus, G* is a symmetric, atom-free Nash equilibrium.
O

Return to the proof of Theorem 3.2.1. Let G*(x) = min {1, Nﬂl/a:/(Nmo)}
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on [0,00), A* = 1/(Nxg) and v* = 0, where N = n+ K(n —1). It is easy to check
that A* > 0, G*(0) = 0, G* is continuous, G* € Ap(zg) and [;° 2G*(dz) = xo.

Moreover,

00 vk n—1
1+ K)G*(z)"! - Kx/ %dy — Nz —~*| G(dzx)

'CG*(Ga )‘*77*) - / 2
0 )

+ Nwo +7*

/oo {1 L ]G(d)+ Lol @y
g — €T s = = G* , 5 .
va L Nag N-N 7
Hence, by the Lagrangian sufficiency theorem (Proposition 3.2.1), G* is a symmetric,
atom-free Nash equilibrium.

O

Remark 3.2.2. In this version of the problem, the stopping decision depends on
the current value of X alone, and not on the current maximum. This is because the
penalty depends on the future maximum, which conditional on the current value of

the process is independent of the past maximum.

3.3 Contest with regret over past failure to stop

This section discusses the contest with regret over past failure to stop, that is player
is penalised when she could have won if she had stopped sooner. This case is relevant
when the omniscient being can only observe the realisation of X? up to the stopping

time chosen by the agent. In this case the maximum value M? is defined by

M= Mil = sup th
0<t<ri

Consider the problem facing a single agent under the assumption that the
strategies of the other agents in the contest are fixed. Temporarily we drop the
subscript denoting the label of the agent. Recall that the pay-off to the agent is
(1+ K)F(X,)" ! - KF(M,;)"!. For a continuous martingale Kertz and Rosler
[1990] characterises all possible joint laws of (X, M;) and hence the problem is
reduced to a search over measures with these characteristics. However, an alternative
is to split the optimisation problem into a two-stage procedure: first for any feasible
distribution of X; (a non-negative random variable with mean less than or equal to
xo) find the joint law of (X, M;) for which M is as small as possible in distribution

(in the sense of first order stochastic dominance)—such a joint law exists by results
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of Perkins [1986]—and then minimise a modified objective function over feasible
laws of X .

For a given atom-free law of X, (recall that we are seeking a symmetric,
atom-free distribution, so we focus on this case), the joint law of (X, M;) for which
M, is minimised is such that mass is placed only on the set A = {(z,z) : >
2o} U{(z,®(x)) : * < zo}, where ® : (0,29) — (xo,00) is a strictly decreasing
function. Let ¢ be inverse to ®. Then, if G denotes the marginal law of X, and
E(X;) = xg, we can conclude from Doob’s submartingale inequality, in conjunction
with the set identity (M, > m) = (X, > m) U (X; < ¢(m)), that for m > zg

0=E[m—X; X; >m|+E[m— X;; X; <¢(m)]

:/ (m — y)G(dy) +/0 (m —y)G(dy) (3:5)

m

which, since X, has mean xg, is equivalent to
0= m a0+ (m—9m)Glo(m) ~ | Gl (36)
In differential form, assuming G and ¢ are differentiable, this becomes

0= ¢'(m)(m — (m))G'(¢(m)) + 1+ G(g(m)) — G(m). (3.7)

It follows from the results of Perkins [1986] and Hobson and Pedersen [2002], that
if G is the law of an atom-free non-negative random variable, then there exists a

decreasing function ¢ solving (3.5). Further, if £ is a random variable such that

= — G(dU) Oor any s X
P(QS)“"( /@0,8)1—G<u>+a<¢<u>>> for any s > o

and if 7 = 7¢ A 74 where 7 = inf{t > 0|M; > &} and 74 = inf{t > 0|X; < ¢(My)},
then X, has law G and (X, M;) places no mass outside of A. Moreover, amongst
the class of joint laws for (X, M;) such that X, has law G, M, is as small as

possible in distribution.

Theorem 3.3.1. Suppose there exists a finite real number r > xg, a once differen-
tiable strictly decreasing function ¢ : [xo,7] — [0,x0], a thrice differentiable strictly
increasing and strictly convex function 1) : [zg,r] — [0,1] and a once differentiable

strictly decreasing function 0 : [xg, 7] — [0, 1] such that ¢, 1 and 0 solve the following
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system of equations

(WY (y) = (1+ K)0'(y), (3.8)

1) BV () =y —ow)v" ), (3.9)
y— ¢>(y L no2

0'(y) = (V)™ —1)0(y)" — 0(y), (3.10)

and satisfy that ¢(xg) = xo, Y(r) = 1, Y'(r—) = K+1 (=) = (frg-i-l) and
0(xo) = (z0).

(i) Then

K ¢'(y)?
K + 1 ,(/)//( ) :

0(y) =(y) — (3.11)

(i) Moreover, there exists a symmetric, atom-free Nash equilibrium for the problem
for which Xii and Mj, have joint law v* that is determined by the marginal
distribution G* of X', given by G*(x) =0 for x <0, G*(x) =1 for x > r and

G (x) = {0((?_1(1@)%1 AR (3.12)

()T ,ifao <a <,

otherwise, and the conditional distribution of M;Z given Xii such that

M = | |
o HXL) , if 0< XY, < ao.

Proof. The conditions in the theorem imply some properties of function ¢: let y =
r— in (3.9), then since ¢/(r—) = £t and ¢/ (r—) = w we have ¢(r) = 0; since
(3.9) holds and by the positivity of ¢’ and ¥", we have ¢(y) < y on (zg,7).

(i) Integrating (3.8) with respect to y,

(K +1)6(2) — (K + 1)0(x0)

/ e = 60/ (2) — olan) oot) — [ o ()dy. (3.13)

Rearranging (3.9) and integrating it,

[ s = [ - [ xmay

= 2/(2) — 2ot (zo+) — (1 + K)ip(2) + (1 + K)t (o).
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Combining this equation with (3.13), we find

1

0(y) = K+1

(D(y) =)' (y) + »(y). (3.14)

Then, substituting (3.9) into (3.14), (3.11) follows.

(ii) Let £(xp) be the set of measures v(dx,dm) on [0,00) x [0,00) such that
v(dzx,dm) has no mass on {(x,m) : m < xorm < x0}, and let Ep(zg) be the
subset of £(xg) corresponding to probability measures of a pair of random variables
X < M such that X is a random variable with mean less than or equal to xy and
E[X —2z;M > z] <0 for all z > zp. Note that the last equation comes from the
Doob’s submartingale inequality, applied in the continuous supermartingale case.

Fix player i € I. Suppose that the other players all choose F(z) as their
target distribution of X, and suppose that F' is continuous with F'(0) = 0. Then

the aim of player 7 is to choose v to solve

max { /0 h /0 [+ K) Py — KFm) | vida, dm)} (3.15)

ve€(xo

subject to [ [7° av(dz,dm) < o, [5° [)Tv(dz,dm) = 1 and [ 20 [ (z —
z)v(dz,dm) <0 Vz > xo.

Introduce multipliers A and ~ for the first two constraints, and for each
z > x introduce a Lagrange multiplier 7 (z) for the last constraint: the constraint
becomes [° [0 [I"  {n(z)(x — z)dz} v(dx,dm) = 0. Then the Lagrangian for the

zZ=x0
optimisation problem (3.15) is

Lr(vi\,v,n) = /000 /000 [(1 + K)F(z)" ' = KF(m)" ' = x —~

— /m n(z)(z — z)dz|v(dz,dm) + Azg + . (3.16)

o
Now we state a variant of the Lagrangian sufficiency theorem for problem (3.15).

Proposition 3.3.1. Ifv*, \*, v* and n* exist such that \* > 0, n* > 0, v* € Ep(xo),
IS S wvt(da,dm) = xo, [ 2[00 (¢ — z)v*(de,dm) = 0 for all z > xo, G* is

continuous, G*(0) = 0 and
LoV 507", n%) > Lo (v; A, 9%, n%) for all v € E(xp), (3.17)
where G*(z) = v*([0,z] x [0,00)), then v* is a symmetric, atom-free Nash equilib-

rium.
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Proof. A symmetric atom-free Nash equilibrium is identified with a measure v* €
Ep(xp) with the property that G* is continuous, G*(0) = 0 and for any measure
v e Ep(xo)

/OOO /OOO [(1 +K)G*(;c)n*1 _ KG*(m)nfl} V*(dm,dm)
Z/O /0 [(1 +K)G*(m)n—1 _ KG*(m)n—l} v(d, dm),

where G*(z) = v*([0, z] x [0,00)) for all x > 0.
Ifve ED(xo) then

/OOO /Ooo {(1 + K)G* ()" — KG*(m)”*l} v(dz, dm)
= Lo (A7 07) =X [% B /OOO /0°° a?l/(dx,dm)}

B /z:o n°(2) /::00 /mo;(w — 2)v(dz, dm)dz

< Lo=(v; Xy, n").

Then, under the hypotheses of the proposition,

/ / (1+ K)G* ()"t = KG*(m)" "] v* (da, dm)
0 0
= LoV N 75,0%) = Lo (v; X9, n")

> /OOO /OOO (1 4+ K)G* ()" = KG*(m)" "] v(da, dm).

Thus, v* is a symmetric, atom-free Nash equilibrium.
O

Now return to the proof of Theorem 3.3.1. On [0,00) x [0,00) let v* be the
joint law given in the theorem and G* be its marginal distribution with respect to
X;. In particular, G* is given by (3.12). Let \* = ¢/(zo+), v* = ¥ (x0) —20¢’ (x0+),
n*(y) = " (y) for zp <y < r, and n*(y) = 0 for y > r. It is clear that \* > 0 and
n* > 0.

We first show that G*(0+) = 0, limyc G*(y) = 1, G*(y) is continuous and
non-decreasing, [, uG*(du) = g and [~/ yoiz(:c — 2)v*(dz,dy) = 0 for all z > x.
This implies that v* € Ep(zo).

Letting y = r— in (3.11), we find 6(r) = 0. Then since ¢(r) = 0, we
have G*(04) = 0(¢~1(0))/=1 = 9(r)1/ (=1 = 0. Moreover, lim,o, G*(y) = 1
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follows from the finiteness of 7. We have ¢~!(z¢) = zo and hence G* is continu-
ous at xg. Since both ¢ and 6 are decreasing and continuous on [z, 7], G* (z) =
0(¢~(x))"/ (=1 is increasing and continuous on [0, zg]. Then, since 1(y) is increas-
ing and continuous on [xg,7], G* is continuous and non-decreasing on the whole
interval of [0, r]. Note that this implies » = sup{z > 0: G*(z) < 1}.

For y > xo, we have G*(¢(y)) = 0(y)"/"D and so ¢/'(y)(G*) (8(y)) =
0(y)"/=D=1¢'(y)) /(n — 1). Then, using (3.10),

& )l — o)) (6l) = 0(w) =L 2D gy

1 1

=¢(y)"T —1-0(y)" T =G (y) — 1 -G (d(y)).

Hence,

¢ (W) (y — oW))(G™) (B(y)) + (1 = ¢'(¥) G ((y)) = G*(y) — 1 — ¢'(y)G"(6(v)),

and integrating from x to r

r o(x)
(& — $(@))G ($(x) = —(r — z) + / G (y)dy + / G'pdy.  (3.18)

Then, setting = = xo, we recover zg = [; (1 — G*(y))dy so that a random variable
with distribution function G* has mean x.

Finally, from its construction we have that v* only puts mass on A. Hence,
from (3.5),

/:O /OO (x — 2)v"(dz, dy) = /0¢(Z)(m — 2)G*(dx) + /;(m )G (da) = 0.

Now we prove that (3.17) holds. Let

L*(z,y) = (14 K)G*(2)" ™' = KG*(y)" ™ = Nw =" — /y n(2)(x — 2)dz

o

and then La-(v; A, v*,n*) = [° [o° L* (z, y)v(dz, dy) + XNzo + 7"
For notational convenience, extend the domain of % to [0,7] by defining

— 9/ —1 / -1
P(x) = (¢~ () for z € [0, ). Then, for z < zq, ' (x) = ¢§j§§§ :j L
0, where the last equality comes from (3.8). Moreover ¢" (x) = % < 0.
Thus, 9 is increasing on [0,7], ¥"(x) < 0 if x € (0,x0) and " (z) > 0 if z € (zo, 7).
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Fix y € [zg,r]|. For any 0 <z <y,

L (z,y) = (1+ K)Y(z) — K(y) — ' (wo+)x
—(x0) + 20 (w0+) — /ZJ P'(2)(x — 2)dz
= (14 K)(W(x) = 9(y) + (y — )¢ (y). (3.19)

We have L*(6(y), y) = (1 + K)(0(y) — $(»)) + (4 — 6(4))¥(y), and then by (3.11)
and (3.9), L*(¢(y),y) = 0. It is also clear that L*(y,y) = 0. Differentiating (3.19)

with respect to z,

OL* 2L
gy (@) = (L+ K@) = ¢'(y); 522

(z,y) = (1 + K)y"(z).

Then, ‘?TL;(x,y) < 0 on (0,z9) and 8 L (x,y) > 0 on (x0,y). Since %((ﬁ(y),y) =
P'(

(1 KW (6l0) = 0/) = (14 K) /() = 0 and 420,) = KV') >0
it follows that 22 (z,y) > 0ifz € (0,6(y)), 2 (z,y) < 0ifz € (¢(y),:ﬁ) and
‘9L —(z,y) >0 1f3: € (z,y), where T € (zo,y) is such that aL —(7,y)|z=z = 0. It
follows that L*(z,y) < 0 for x € [0, ¢(y)) U (¢(y),y).

Now fix y > r. For any 0 < z < y, since ¢'(r—) = (K + 1)/r and writing
$(@) = 9(z) — 2/,

L*(z,y) = (1+ K)Y(x) — K =/ (zo+)x

— (z0) + 2ot (@0 +) — / $'(2) (& — 2)dz

0

=L+ E)(W(x) = 1) + (r —a)¢/(r—) = (1 + K)d(2).

If z € (r,y] then L*(z,y) = (1 + K)i[r — z] < 0. Now suppose z € (0,7). Since
¢(r) = 0, we have ¢/(0+) = % and thus ¢/(04+) = 0. Further ¢/(r—) = E >
Then, by the sign of 1" (z), we get /(x) is negative and then positive on (0,7).
Since ¥(0) = () = 0, we deduce that 1(x) < 0 on (0,7). Thus L*(z,y) < 0 for
€ (0,7).
From above analysis, we know L*(x,y) < 0 for any (z,y) such that 0 <z <y
and y > . This means that, for any v € £(xg), since Xz + v* = ¥ (xo),

Lo(vi N, 7", n") < (wo) = LoV N, 7", 1%).

Thus, v* is a symmetric, atom-free Nash equilibrium from Proposition 3.3.1.
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It remains to show that there exists a constant r and functions (¢, 6, ¢) which
satisfy the hypotheses of Theorem 3.3.1 and hence that a symmetric atom-free Nash
equilibrium always exists. The following lemma is key in defining the appropriate

entities.

Lemma 3.3.1. Let J(u) solve the ordinary differential equation

J(w)+1 = (1= )/

1) —
T = B DI u— S (3.20)
subject to J(0) =0 and u > 0. Let u* = sup {u sJ(u) < (1— u)l/("_l)}.
(i) Let z* =1 —u* and define
H(z) = ot (3.21)

(K+1)[z—J(1 — 271

on [z*,1]. Then, z* > 0, H is positive on (2*,1) and le* exp (ful) H(v)dv) dw <

(K +1).
(ii) Define
. l‘o(K + 1)
(K+1)-— le* exp (ful) H(U)dv) dw
and . . .
W) = e [+ 1) - / exp (/w H(v)dv) dw]

n [2%,1]. Let ¥ = U1 be the inverse function of W. Then, g < r < o0

and ¥ : [xo, 7] — [0,1] is a thrice differentiable strictly increasing and strictly
convex function that satisfies ¥(r) =1, ¢'(r—) = £ and ¢"(r—) = K(E+1)

r2

(iii) Define

_ KY'(y)
V" (y)

Then ¢ : [xo,r] — [0,20] is a once differentiable strictly decreasing function

with ¢(xo) = xo.

o(y) =

(3.22)

(iv) Define
0(y) = K+1/ ¢'(z

Then 0 : [zq,r] — [0,1] is a once differentiable strictly decreasing function with

0(x0) = 1(w0). Moreover, 0(y) =1(y) — (y — ¢(y)¥'(y)/ (K +1).
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Proof. 1t is easily seen that J(u) is a strictly increasing function at least until J(u) =
"V/1 —u, and that u* < 1.

(i)

(iii)

Since u* < 1, z* = 1 —u* > 0. Since J is increasing, for any u € (0,u*),
Jw) ! < Jw) Pand thus 1 —u — J(u)" > 1 —u— J)" ! =u* —u.
This means that, for any z € (2*,1), we have z — J(1 —2)""! > z— 2* > 0 and

then 0 < H(z) < . Moreover,

K
(K+1)(z—z*)

1 1 K
dv | d
/z*e"p</w E+Dw—2" )"
! Kll—z*d_ll—z*%ﬂd
_/Z*eXp<K+1nw—z*) w—/Z* <w—z*> v

= (1— 2R (1= )R (K +1) = (1 - 2*)(K + 1) < (K +1),

and it follows that le* exp (f; H(v)dv) dw < (K +1).

Since 0 < (K +1) — le* exp (ful} H(v)dv) dw < (K 4 1), we have that g < r <
00. By the differentiability of J and the form of W, W is thrice differentiable.
Taking derivatives of ¥ on (2*,1), we find ¥'(z) = " exp (le H(v)dv) >0
and ¥’ (z) = —H(z)¥'(z) < 0. Then, since ¥(z*) = 9 and ¥ (1) = r, ¥ is

a strictly increasing and strictly concave function from [z*,1] to [zg,r]. Thus,

Y =W~ [zg,7] + [0,1] is a thrice differentiable strictly increasing and strictly

convex function satisfying ¢(r) = 1.

Moreover, 9'(y) = m and thus 9" (y) ; —%W. Then, since
U(l)=r, ¥(l-) = KL-H and U/ (1—-) = _(KT+71)2’ we get (r) =1, ¢/ (r—) =
wiry = S and 07 (r—) = - Tt = S

Letting u = 1 — z in (3.20), we get

L) 41— YD) . )
109 = G e~ (91 e

Letting x = z in (3.21) and differentiating it with respect to z,

K1+ mn-1)J1-2)"2J(1-2)]
(K +1) [z — J(1 — 2)n—1)?

H'(z) = —

Substituting (3.23) into previous equation,

H,<Z) - _%H@:)Q 1+ <n o 1)J(1 o Z)n_zﬂ(Z) (J(l - Z) +1- anl):| )
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which implies that gég% < —&H and is equivalent to

H'(2) = —WH(@?’ [T =22 (1- zﬁ) +J(1= 2]
K+1
- H(z)?. (3.24)

Note that ¢ is once differentiable because v is thrice differentiable and ¢'(y) =

1-K (1 — Yy ) Ef,zé)Q(y)). Since H(z) = —?I,,((j)) = $/(SII\I/(S;%’ we have that

_¥'()
Y (y)?

H((y)) (3.25)

"1 1" 2 / n
and thus H'(¢(y))Y' (y) = i/(;i’g - 25’/(%; . This implies that 1 — % =

—H/(iﬁ(y))% — 1 and therefore

H'(¥(y))

YO = K g2

+K+1. (3.26)

It follows that ¢'(y) < 0.
Since 1/ (r—) = £XL 4/(y) > 0 and ¥ (y) > 0 on (xg,7), we know ' (xo+) is

T

bounded. Then, since Z’,’Eg%% = H(¢(z0)) = H(2*) = 400, we get ¢ (zo+) =

+00. Substituting these values into (3.22), we obtain ¢(xg) = 0.

(iv) The statements about 6 are either trivial, or follow as in the derivation of
(3.14).

O]

Theorem 3.3.2. Let r, ¥, ¢, 0 be as defined in Lemma 3.3.1.

Then there exists a symmetric, atom-free Nash equilibrium for the problem
for which X'; has distribution F where F(x) =0 for x <0, F(z) =1 for x > r and
otherwise )

1 .
Flo) - {9(¢ E))H if0 < < 0,
P(x)n—1 ifvg <x <.

Y’ (y)?

Proof. By (3.22) and (3.25), H(wl(y)) = Ty = yfz(y)d/(y). Hence 0(y) = ¥(y) —
Wllgfﬁb(y)) = J(1 —(y))" L. Thus, letting z = 1 (y) in (3.24),

1) = ~ I ) [ (1 wl)™) 60)5F +0)|
- S m ),
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Graph of G*(y) with Xy = landn=3

Figure 3.1: Graph of G*(x) for different K with g =1 and n = 3.

and using (3.26) and rearranging above equation,

yn—ib(ly) ¢’g)ﬂy) __ [Q(y) + (1 _ ¢(y)<n11>> g(y)zﬂ ,

Then, substituting (3.8) into above equation, (3.10) follows. Therefore, (1) holds.
Then, using Theorem 3.3.1, we obtain the symmetric, atom-free Nash equilibrium

given in Theorem 3.3.2.
O

Example 3.3.1. As an example we consider a 3-player contest. Set o = 1 and
n = 3. In Figures 3.1 and 3.2 we give graphs of the optimal distribution G*(x) and
its density function ¢g*(x) for various values of K.

As we can see in Figure 3.1, the right endpoint r = r(K) of G*(x) decreases
as K increases. Moreover, r(K) tends to n = 3 as K decreases to 0 and tends to zo
as K increases to +00. We also find that G*(x) tends to the equilibrium distribution
of the original contest as K decreases to 0 and G*(x) tends to the Heaviside function
H x>z} as K increases to +oo. From Figure 3.2, we find ¢*(x) jumps at z¢ if K > 0
and g*(x) tends to 400 as y tends to 0.

Intuitively, if K is very large, then the player does not aim for large values of

the stopped process, for then she risks a moderate value of the maximum together
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Partial enlarged graph of g*(y) with Xy = landn=3

K =0
- - —-K=1

ST - = K=10 [|

K =100

4t , .

/
| .
25 3

Figure 3.2: Enlarged graph of g*(z) for different K with o = 1 and n = 3.

with a small and losing value for the stopped process. Because of the large penalty

she wishes to avoid such outcomes.

Example 3.3.2. In the 2-player contest we can give explicit expressions for several
of the quantities of interest.
Set n = 2. Substituting (3.8), (3.9) and (3.11) into (3.10), we get

(5 — 6W)—— 6 (1) (1) = (b(y) — 1) — () + KKH?J—K‘JS(?J)

TR Y (y).

Defining ¢(y) = y — ¢(y), the above equation simplifies to ¢(y)¢'(y) = f;,al) Dif-

ferentiating this expression and using (3.9), we have

’ r_ P (y) _ — 7
()¢ (y)] = —(K + ”w’w = —(K+ 1)¢(y)¢,(y) K¢'(y),
and then
()¢’ (y) = —Kp(y) + Ko(r) + o(r)¢' (r—). (3.27)

Since ¢(r) = 7 and ¢/(r—) = £, we have ¢/(r—) = 1. Then (3.27) becomes

o(y)¢"(y) = =Kp(y) +r(K + 1), which using the boundary condition ¢(r) = r has

solution

r_y:r(f;rl)ln((KJrD_Ki(y))_T—I;P(y)
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Using ¢(z0) = zo — ¢(z0) = 0,

K2
(K +1)[K —In (1 + K)]

r=xp

and therefore the implicit form of ¢(y) for y € [xg, 7] is

K—-In(1+K)
Kl‘o

(y)_ Zo
K K-In(1+K)

y=1x0— In {1 —o(y)

and ¢(y) = y — p(y). It is possible to express ¢ and 6 in terms of ¢, and thence
the optimal distribution G* of XL- and the optimal conditional distribution of Mj,

given X;, but these expressions are not so compact.

3.4 Contest with regret over failure to stop at the best
time

In this section, we discuss the contest with regret over failure to stop at a winning

time, when alternative times both before and after the chosen time are permitted. A

player experiences regret if she could have won if she had stopped at the maximum

value over the whole path. The maximum value M? is given by
M = M;I, = sup Xf
O 0<t<H]

Theorem 3.4.1. There exists a symmetric, atom-free Nash equilibrium for the prob-
lem for which X'; has law F(z), where for z >0

F(z)= min{ "\1/7%, 1} :

Proof. The agent’s expected pay-off is
(1+ K)E[F(X7)" "] = KE[F(M;)""]

But the latter term is independent of the stopping rule used by the agent. Hence, in
determining her optimal strategy the agent need only consider (1+ K)E[F(X’,)"1].
Modulo the factor of (1+ K), this is the same objective function as in the standard
case.

O]

Remark 3.4.1. The agent follows exactly the same Nash equilibrium strategy as
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an agent in the original contest, in which there is no penalty. The intuition behind
is that the regret is determined by M?% . but player cannot change the distribution
. 0 .
of M}, by changing the choices of stopping time 7.
0

3.5 Derivation of the equilibrium distribution

This section is intended to illustrate how we derived the optimal multipliers and the
candidate Nash equilibria in Sections 3.2 and 3.3 and also the boundary conditions
in Section 3.3. The Lagrangian approach gives a general method for finding the
optimal solution, which is distinct from the ideas in Seel and Strack [2013], and can

be generalised to other settings.

3.5.1 Contest with regret over stopping too soon

Recall the definition of the Lagrangian Lz(G;\,~) for the optimisation problems
(3.3). Denote by Lp(x) the integrand in Lp, that is

Lp(z)=(1+ K)F(z)" ! —Ka:/oo F@:ldy—)\x—'y,

x
so Lp(G;\,y) = [;° Lr(z)G(dz) + Azg + 7. In order to have a finite optimal
solution, we require Lp(x) < 0 on [0,00). Let Dp be the set of (A7) such that
Lp(-; A7) has a finite maximum. Then Dy is defined by

Dr ={(\,7v): Lp(z) <0on [0,00)}.

Observe that Ly (0) = (14 K)F(0)" ! —~, which implies that if (\,7) € D then v
is non-negative. In order to reach the maximum value, we require G(dz) = 0 when
Lp(xz) < 0. This means that for (A,v) € Dr the maximum of Lp(-;\,7) occurs at
G* such that G*(dz) = 0 when Lp(z) < 0. If the Nash equilibrium is symmetric,
then we must have G*(x) = F(z), and then Lg+(z) < 0, and Lg-(x) = 0 when
G*(dz) > 0. Introduce a = inf{z : G*(x) > 0} and b = sup{x : G*(z) < 1} which
are the limits on the support of G*.
Let 1 (z) = G*(z)"!, then Lg+(z) becomes

1/’35?;) dy — Az — 7. (3.28)

Thus, we expect 1(x) is the solution to Lg«(z) = 0 at least when t(dzx) > 0.

Lg+(x) = (1+ K)y(x) —Kx/oo
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Setting Lg+(x) = 0 and differentiating (3.28) twice with respect to z, we find
(14 K)¢"(x)z + K¢'(z) = 0.

Thus, ¥ (z) = Cla:K%Ll +C9, where C} and Cy are some constants, and then G*(x) =
n_\l/ C’lxﬁ + Cy when G*(dx) > 0. Since we are seeking an atom-free non-constant
solution, we must have G*(x) = "y C’lgcf(%r1 + C5 on the whole interval of [a, b],
where C7 > 0.

Substituting ¢ (z) = G*(z)"! = (C’19101<#+1 + C2) A1 into (3.28), and setting
Lg+(x) = 0, we have that, Vx € [a, b],

b — o)

i Cry®F + C 1
o:(1+K)(ClxK1+1+02)—Kx/ w;Qde—Kx/ IR
T b

= [+ K)CpEa +K02—K—Ab}%+c2—7.

This gives us optimal multipliers \* = % [(1 + K)Cle#+1 + KCy — K} and v* = Ch.
Since G* is atom-free, G*(a) = 0 and hence C’laK#+1 +C5 = 0. Then, from the
non-negativity of @ and v* = C5 and the positivity of C, it follows that Cy = a = 0.
n—1 _1
Thus, G*(x) =  \/Ciz®+T on [0,b] for some C; and b which can be identified
using the fact that G* corresponds to a probability distribution with mean xg. In
particular, setting N = 1+ (K 4 1)(n — 1), for a feasible solution,

1= ['d ( nl/ClxKlH> = Y Cp D),
n—t/ n— (K+1)(n—1)+1
0= [y xd( 1 Clm{lﬂ) - (K+1)(\Z(?11)+1b e = Y/Of g
Hence, C; = b~ YE+D and then b = Nz and C; = K+ ﬁ. Thus G*(x) =
N~/x/Nzg on [0, Nxg].

3.5.2 Contest with regret over past failure

Recall the definition of the Lagrangian Lp(v; A, ~y,n) for the optimisation problem of
Section 3.3. Let Lp (x,y) be the integrand in the definition of L as given in (3.16).
In order to have a finite optimal solution, we require Lz (z,y) < 0 on [0, 00) X [z, 00).
Let D be the set of (\,7,n) such that Lg(-;\,7,7n) has a finite maximum. Then
Dr is defined by

Dp ={(\,v,n) : Lp(z,y) <0;2 >0,y > xo}.
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For (\,7v,n) € Dp, the maximum of Lg(+; A,y,7n) occurs at a measure v* such that
v*(dz,dy) = 0 when Lp(z,y) < 0.

Let G*(z) = v*({(u,y) : u < z,z9 <y < o0o}) be the marginal of v*. If the
Nash equilibrium is symmetric, then we must have G*(x) = F(z) and Lg+(x,y) =0
when v*(dx,dy) > 0. Motivated by the results of previous sections, we expect G*
to place mass on an interval [a,b] where 0 = a < xg < b. In this section we write
b = r for the upper limit.

It follows from the discussion before Theorem 3.3.1 that for an optimal solu-
tion either Xii = M;Z or XL- = (b(Mi,) for some decreasing function ¢. Hence, for
xg <y < r, we expect v*(dz,dy) > 0 if and only if either z = y or z = ¢(y). Let
(x) = G*(x)"" 1. Then Lg+(x,y) becomes

L(z,y) = Lg+(z,y) = (1 + K)Y(z) — K¢(y) — Az — v — /y n(z)(x — 2)dz.

Zo

Fixing y € (zo,r), and using L(z,y) < 0 for any 0 < x < y, together with

L(¢(y),y) = 0, we expect GE(¢(y),y) = 0.
Thus, Yy € (zg,7), ¥ and ¢ must solve

L) =0 =M -1 - [ "0y — 2)dz =0, (3.29)
L(o(y),y) = 1+ K)v(o(y)) — Kip(y) — Ao(y)

- / n(2)(0(y) — 2)dz = 0, (3.30)
S0 = L+ KW w) A [0 @3

Differentiating (3.29) with respect to y yields

P (y) — X — /y n(z)dz = 0. (3.32)

0

Comparing (3.31) with (3.32), we find ¢'(y) = (1 + K)¢'(¢(y)). If we now set
0(y) = ¥ (p(y)), then (3.8) follows. From (3.32) we find

V' (y) —n(y) = 0. (3.33)

Then, differentiating (3.30) with respect to y, and using (3.31), we obtain — K1’ (y)—
n(y)(¢(y) —y) = 0 and (3.9). Finally, (3.10) comes directly from (3.7) on noting
that G(¢(m)) = (m)Y/ (=1,

Next we deduce the boundary conditions. First note that from (3.5) we
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can infer that ¢(z9) = xo and ¢(r) = 0. Hence §(z9) = ¢ (x¢) and 6(r) = 0.
Given that (3.8) and (3.9) hold, as in the proof of Theorem 3.3.1, we have that
(3.14) holds. Letting y = r and using ¥ (r) = 1, ¢(r) = 0 and (r) = 0, we find
0 = 7¢'(r—) +(r) and hence ¢"(r—) = KL Further, letting y = r in (3.9),
we get 1" (r—) = K(K +1)/r? as required.

Lastly, we derive the optimal multipliers which we write as n*, A* and ~*.
From (3.33), n*(y) = ¢"(y) for y € (xo,r). Then, from (3.32), \* = ¢'(y) —
fo n*(z)dz = ' (y) — 317/0 V"(2)dz = ' (xo+). Finally, (3.29) yields

Y =Yy) — Ay — /y n*(2)(y — 2)dz

Zo

= uly) — 90/t - [ " (@) — 2)dz = ¥(zo) — zod (zot).

3.6 Extension to the case of time homogeneous diffu-

sions

Our results in this chapter can be extended to the case where the processes observed
by the agents are independent copies of some time-homogeneous diffusion process
Y which converges almost surely to the lower bound on its state space. The idea
has been specifically explained in Chapter 2. Briefly speaking, the idea is to use a
change of scale to transform the problem into natural scale.

Denote by s(-) the scale function of Y and denote by {l1,l2} the endpoints
of the state space of Y with —oco < I3 < Yy = yg < ls < co. We assume that Y
converges to the lower boundary, which implies that s(l1) is finite whereas s(l2) = co.
Without loss of generality, we may set s(l;) = 0. Then, X = s(Y) is a continuous
local martingale that converges to zero almost surely (and if zero can be reached in
finite time, then zero is absorbing).

As explained in Section 2.1, the contest in which players privately observe
independent copies of Y is equivalent to the contest in which players privately ob-
serve independent copies of X, and the choice of the optimal 7¢ is the same for both
contests.

The problem is then to find a Nash equilibrium (G%);c; for YTii and then
verify that there exists 7¢ such that YTZ has law G*. Under our transformation, this
is the same as finding a Nash equilibrium (F?%);c; for Xii where F! = G o s,
where s7! is the inverse of s. To solve the problem for X, then either we argue
that the only properties of X that we use are the strong Markov property, the local
martingale property, and the fact that X converges to zero, so that the theory of
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this chapter applies to the local martingale diffusion X, or we argue that since X
is a non-negative martingale diffusion, X is a time-change of Brownian motion and
X: = DBr, for some increasing functional I'y. Then, if F' is any distribution with
mean less than or equal to zg, and o is a stopping time such that B, ~ F', then we

may take 7 =I'"! oo and then X, = B, ~ F and 7 is an embedding of G in Y.
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Chapter 4
Contests: Asymmetric case

Several variants of the original Seel-Strack contest have been discussed in Seel and
Strack [2013], including an extension to the asymmetric two-player case where the
starting values of the processes observed by the players are different constants.
In this chapter, we start with rederiving the Nash equilibrium obtained by Seel
and Strack in an asymmetric 2-player contest and then extend the results to an
asymmetric n-player contest. We assume that the starting values of the observed
processes are strictly positive constants and all of these constants may be different.

By analogy with the symmetric case studied in Chapter 1, we expect that
in equilibrium no agent places mass at a positive point and not all agents can have
a mass point at zero. However, the Nash equilibrium may have masses at zero for
some agents. We will show that there exists a Nash equilibrium such that it has
no atoms in (0, 00) and satisfies that the highest levels at which the agents should
stop are the same. Furthermore, we will see that in the equilibrium, when n > 2,
the agents with lower starting values may choose not to stop at small values but to
wait for high values.

The remainder of this chapter is constructed as follows. In Section 4.1, we
introduce the mathematical model of the asymmetric 2-player contest used in Seel
and Strack [2013] and rederive the equilibrium distributions using the Lagrangian
method. Then we study an asymmetric n-player contest in Section 4.2. In Sec-
tion 4.2.1 we provide and prove the sufficient conditions for the Nash equilibrium
distributions. Then, based on the conditions, we give a more detailed form of the
equilibrium distributions. We will analytically prove the existence of the equilibrium
in two special cases. For more complicated cases, we may need to solve the problem
numerically. We will take the 3-player case as an example. And in Section 4.2.2 we

explain the origin of the candidate Nash equilibrium distributions.
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4.1 2-player contest

In an asymmetric 2-player contest, Seel and Strack [2013] assumed that the processes

privately observed by the two players are given by
Y;gi =vy; + it + O',‘Wti, (4.1)

where y; > 0, p; # 0 and o; > 0 are all constants, i € {1,2}. It is assumed that Y
and Y? are absorbed at zero and W' and W? are independent Brownian motions.
Seel and Strack also imposed an upper bound on the drifts u;, that is they assumed
that p; < 0 and pz < 0.

Under these assumptions, they have proved the following theorem. Note

. 2 2
that the scale function of Y is given by s;(y) = 2"}; - 2% exp(—2uy/0?) (we set

Si(O) = 0).

Theorem 4.1.1. [Seel and Strack [2013]] There exists unique b; > y; which satisfies

b;
/0 (54(01) — 54(2)] 85(d2) = 0 (4.2)

with j # i, fori € {1,2}. Suppose by > by. Let b* = by and ps = 0.
(i) There exists p1 € [0,1] that satisfies

s1(y1)s2(b")

. . 4.3
I s1(2)sald) (43)

pr=1-

(ii) There exists a Nash equilibrium in which the equilibrium distributions G1 and
G2 satisfy that

55(0%)
where j # i and s;(+) is the scale function of Y with s;(0) =0, i = 1,2.

Gi(y) = min {pi—i- (1= pp)il¥) ,1}, (4.4)

Seel and Strack solved the problem using a similar approach as described
in Section 1.1.1. Briefly speaking, they solved the problem by writing down can-
didate value functions for the problem, and then verifying that the candidate value
functions are martingales up to the optimal stopping times for each player.

We solve the problem using the Lagrangian approach, and it is easy to see

that Theorem 4.1.1 holds for a more general model rather than (4.1).
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4.1.1 Equilibrium distribution

In this section, we use a more general model instead of (4.1). We assume that
Y! and Y? are two independent non-negative time-homogeneous diffusion processes
with constant starting values Y3 = y; > 0 and Y = y2 > 0. In addition, assume
that Y! and Y? have the same state space which is an interval with endpoints
{0,7}, where max{y;,y2} < r < oo, and assume that Y! and Y2 both converge
almost surely to zero.

Let s;(-) be the scale function of Y, then s;(0) is finite and s;(r) = oo by
the convergence assumption. Without loss of generality we set s;(0) = 0.

Fix player i € {1,2}. Given that player j # i chooses G; as her target
distribution, where G is continuous, then the expected pay-off of agent i with

stopping time 7¢ is given by

Let X; = s;(Y}). Note that s; is strictly increasing. Denote by s; ' the inverse
function of s;. Then, s; ! is also strictly increasing and s;(0) = 0. Moreover, the

expected pay-off becomes
—1(yi 1
E [Gj o8 (X7i) - Lixi oy +5G5(0) Lixi —oy | -

Since {Gj 057 () - Lis0p + 3G;(0) - 1{120}} is non-decreasing and X* is a non-
negative super-martingale and using a similar argument as described in Section 1.2,
we get that every candidate stopping rule 7% should satisfy that E [X;] = X}, which
is equivalent to E [s;(Y)] = s:(Yy) = si(yi).

Let A be the set of pairs (G,p), where p € RT and G : [0,00) +— [0,00)
is a non-decreasing right-continuous function with G(0) = p. An element of A is
identified with a measure v on [0, c0] such that G(y) = v ([0,y]) and p = v ({0}).

Suppose that the other player j # i chooses (G, p;) as her target measure
with G; continuous. Then by (4.5), the problem facing agent ¢ is to choose a law of

YTii, which corresponds to a pair (Gj, p;), to solve

max { / Gj(z)Gi(dz)—i—;pjpi} (4.6)
(0,00)

(Gi,pi)eA

subject to f(o o) 5i(2)Gi(dz) = si(y;) and f(o o) Gi(d2) + pi = 1. Introducing multi-

pliers A; and ~; for the two constraints, the Lagrangian for the optimisation problem
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(4.6) is then

(G (2) = Xisi(z) — vl Gi(dz) + B

Li(Gi,pis Nisvi) —/ D) —%} Pi+ Nisi(yi) + i

(0,00)

Let A% (y;) be the subset of A that consists of probability measures of a
random variable Y such that E [s;(Y)] = s;(y;), that is A% (y;) is given by

A (y) = {(G,p) cA: liTm G(y) = 1 and / 5i(2)G(dz) = si(yi)} .
ytoo ©

700)
Now we state a variant of the Lagrangian sufficiency theorem for this problem.

Proposition 4.1.1. Suppose that, for alli € {1,2}, there exists (G, pf; Af, ) such
that (GF,p}) € A (vi), GF is continuous and

2

Li(GY,pis M) = Li(Gayps A,y ) forall (Giypi) € A. (4.7)

(3
Then the family (G}, p;)ief1,2y i a Nash equilibrium that has no atoms in (0, 00).

Proof. Our aim is to find a Nash equilibrium that has no atoms in (0,00). Such
a Nash equilibrium is identified with a pair of probability measures (G7,p;)icf1,2)
such that, for any i € {1,2}, (G},p}) € A (y;), G is continuous and with j # i

G (z)G(dz) + Spip; > Gi(2)Gi(dx) + spipi - Y(Gipi) € Ap(yi).
(0,00) 2 (0,00) 2

Fix any i € {1,2}. If (G;,pi) € A% (y;) then

* 1 >k * *
Gi(2)Gi(dx) + Spipi = Li(Gi, pi; A}, 77 )-
(0.00) 2

Then, under the hypotheses of the proposition,

* * 1 k %k * >k * *
G (2)G; (dz) + spip; = Li(Gpis AL, 7))
(0,00) 2

* * * 1 *
2LCopi X)) = [ E@GE) + g

Thus, (G}, pj)ieq1,2) is a Nash equilibrium that has no atoms in (0, 00).

Now we prove Theorem 4.1.1 using Proposition 4.1.1.
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Proof of Theorem 4.1.1. Fix any ¢ € {1,2} and let j # 4. Define B;(z) =
o [si(yi) — si(2)] sj(dz). Since s; and s; are strictly increasing, B; is strictly increas-
ing on (0,y;) and strictly decreasing on (y;, 00). It is easy to get that B;(oo) = —oo,
since s; and s; are strictly increasing, s;(co) = oo and s;(c0) = co. Then, because
B;(0) = 0, there exists unique b; > y; that satisfies B;(b;) = 0.

Suppose by > by and let b* = by. Since b* > by and by the shape of Bq,
By (b*) < 0, which is equivalent to fé’* s1(z)s2(dz) > fob* s1(y1)s2(dz) = s1(y1)s2(b%).
This implies that p; given by (4.3) is non-negative. And it is obvious that p; < 1.
Thus, p; € [0, 1].

Suppose G are given by (4.4). Let pj =3 = p1, p5 =77 =0, A7 = 1/s1(b%)
and A5 = (1 — p1)/s2(b*). It is easy to get that G is continuous on (0,00) and
(Gr,p;) € Al(y;), for i € {1,2}. We then verify that for these multipliers (4.1.1)
holds. For any i € {1,2} and with j # i, since \[s;(b*) +~ = 1 and s; is strictly

increasing,
LiCopiN i) = [ [0 st ] aitaz)

1, \
+ [219]- - ’ﬁ] pi + Aisi(yi) +

> * * 1 * * * *
Z/b (1= N/si(2) = /] Gi(dz) + [2]7]‘ - %} pi + A si(ys) + i

< Aisiyi) + i = Li(GLpis AL i)

Thus, there exists a Nash equilibrium of the given form by Proposition 4.1.1.
O

In the rest of this section we explain how to derive the candidate Nash
equilibrium and the optimal multipliers. Recall the definition of the Lagrangian
Li(Gi, pi; Ni, i) for the optimisation problem (4.6), and let L;(z) = G;(2) — Aisi(z) —
Vi

In order to have a finite optimal solution, we require L;(z) < 0 on (0, 00)
and %p]’ — 7 < 0. Let D; be the set of (\;,7;) such that £;(-,-; \;,~;) has a finite

maximum. Then D; is defined by
1
D; = {(}\Z,’yl) : LZ(Z) <0Vz>0and §pj -7 < 0} .
For (A, v:) € D;, the maximum of £;(+, -; A\;,y;) occurs at (G, p;) such that G;(dz) =

0 when L;(2) < 0 and p; = 0 if 3p; —v; < 0. Thus, if G;(dz) > 0 then L;(z) = 0
and if p; > 0 then %pj — 5 =0.
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Since L;i(z) = Gj(2) — Nisi(2) — 7, we must have Gj(z) = Nisi(z) + Vi
when Gj(dz) > 0. Since G, is non-decreasing and not constant, we must have
Ai > 0, which means \;s;(z) +; is strictly increasing. This implies that G;(dz) > 0
if and only if G;(dz) > 0, inf{z : Gi(z) > 0} = inf{z : Gj(z) > 0} £ a and
sup{z : Gi(z) < 1} = sup{x : G;(z) < 1} £ b. Then since we are searching for
solutions that have no positive atoms, we must have G;(z) = A;si(z) + 75 on the
whole of the interval [a, b].

Observe that p; > 0, so that if (A;,7;) € D; then ~; is non-negative. Since
either G;(a) = 0 or Gj(a) = 0 and by the non-negativity of a, v; and 7; and the
positivity of A\; and A;, it follows that @ = 0. Furthermore, p; = G;(0) = ~; and
pj = Gj(0) = -

For a feasible solution, f(O,oo) s1(2)G1(dz) = s1(y1), f(o,oo) Gi(dz) +p1 =1,
f(O,oo) s2(2)Ga(dz) = s2(y2) and f((),oo) Gso(dz) + p2 = 1, so that

b b
/ s1(2)Aas2(dz) = s1(y1); / Aosa(dz) +v1 = 1; (4.8)
0 0
b b
/ 82(2))\181(dz) = Sg(yg); / A181 (dZ) + v =1. (49)
0 0

Recall that we expect that in equilibrium not all agents can have a mass point at
zero. This means either po = 0 or p; = 0, and thus either v = 0 or 9 = 0. Assume

that 72 = 0. Then, using (4.9) and (4.2), we get b = by. Further, by (4.8), we get
51(u1) Jo? s2(d2)
Jo? s1(2)sa(dz)
is feasible only if f0b2 [s1(y1) — s1(2)] s2(dz) < 0. However, this inequality holds if
and only if by < by. Thus, if by > by then v = 0; if by > bs then v = 0. Now
51(y1)s2(b2)
Jo? 51(2)sa(dz)

v =1-— . Note that we require v; > 0, which means that v = 0

suppose by > by. Then, v =0,b=10by, 11 =1 — and we get the Nash

equilibrium described in Theorem 4.1.1.

4.2 n-player contest

We study an asymmetric n-player contest in this section and focus on the case
where heterogeneity only exists in the starting values of the observed processes.
The problem is simplified by homogeneity of the scale functions of the observed
processes.

Recall the model introduced in Section 1.1. There are n agents with labels
i €I =1{1,2,...,n} in the contest, where n > 2. Agent i privately observes the
continuous-time realisation of a Brownian motion X* = (X});>o absorbed at zero

with Xé = x; where x; is a constant. We assume that 0 < 21 < 29 < --- < x,,.
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We also assume that there exists ¢ € I such that x; < z,, that is we only consider
asymmetric cases.

Each agent decides when to stop her own process, and the agent who stops
at the highest value wins unit reward. Agent i observes her own process X*, but not
X7 for j # i; nor does she observe the stopping times chosen by the other agents.
Moreover, the processes X* are assumed to be independent.

Fix any agent ¢ € I. Given that agent j chooses Fj as her target measure
with F} continuous Vj # 4, then the expected pay-off of agent ¢ with stopping time

7% is given by

- 1
E[TFG)- Lixisop + [T F0)- Lixi =0y -
i i
Then, by a similar argument as described in Section 1.2 and in Section 4.1.1, we get
that every candidate stopping rule 7° should satisfy that E [X',] = X§ = x;. Thus,

we restrict attention to stopping times 7 such that E [X;,] = x;.

Remark 4.2.1. The results in this chapter can be extended to the case where the
observed processes are independent realisations of some time-homogeneous diffusion
process Y which converges almost surely to the lower bound on its state space. The

idea has been explained in Chapter 2 and in Section 3.6.

4.2.1 Equilibrium distribution

In this section, we first use the following Lemma 4.2.1 to describe a Nash equilibrium
for the contest, and a more explicit form of such a Nash equilibrium will be given in
Theorem 4.2.1. Lemma 4.2.1 provides the sufficient conditions for a family of equi-
librium distributions that has no positive atoms. The candidate Nash equilibrium
is verified using the Lagrangian sufficiency theorem. Recall that the support of a

distribution function F'is defined by
supp(F) = {x > 0: F(z1) < F(z2) for all z; <z < z2}.

Lemma 4.2.1. Suppose a family of functions (F;);er satisfies the following condi-

tions:

(i) F; is a distribution function with mean x;, F; is continuous and F,(0) = 0, for

any i € I;

(ii) supp(F;) = [a;, b;], where 0 < a; < b; < co are some constants, for any i € I;
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(iii) by = ag for anyi € I and 0 = ap = ap—1 < ap—2 < --- < ay < ag, where agy is

some constant;

(iv) For any i < n,
x

[[Fi2) =~

J#

on [a;, ap], and

[I Fi(x) = (1HF3'(0))+HF 0)

j#n Jj#n J#n
on [0, ag).
Then the family (F;)ier is a Nash equilibrium for the problem.

Proof. Let A be the set of pairs (F,p) where p € RT and F : [0,00) — [0,00) is
a non-decreasing right-continuous function with F(0) = p. A pair (F,p) € A is
identified with a measure v on [0, 00) such that F(x) = v ([0, z]) and p = v ({0}).
Fix agent i € I. Suppose that, for any j # i, agent j chooses (F},p;) as her
target measure with F; continuous, then the aim of agent ¢ is to choose a law of

X’L

!:, which corresponds to a pair (F,p;), to solve

Fi(dx) + — Y2 % 4.10
(Fl,szA{/OooFéZ Ei Jl;[l j } (4.10)

subject to [ xFj(dz) = x; and [;° F;(dx) 4+ p; = 1. Introducing multipliers \; and
~v; for the two constraints, the Lagrangian for the optimisation problem (4.10) is
then

[ Fi(x) = Xz — pitAii+i.

JF

Hp] Vi

" i

Li(Fi, pis Ni, Vi) :/

(0,00)

Let Ap(z) be the subset of A identified with probability measures with mean
x, then Ap(x) is given by

F(dz)+p:1and/ zF(dz)::L"}.
(0,00)

Now we state a variant of the Lagrangian sufficiency theorem for our problem.

Ap(z) = {(F,p) cA:
(0,00)

Proposition 4.2.1. Suppose that, for all i € I, there exists (F},pl; A5, 7)) such
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that (F,pY) € Ap(zi), Fj is continuous and

E ( 3 7p@7)‘17’72) > ﬁ (E7p27)\1771) f07’ all (E7p’5) € A (411)

Then the family (F}, p})ier is a Nash equilibrium that has no atoms in (0,00).

Proof. We seek a Nash equilibrium that has no atoms in (0,00). Such a Nash
equilibrium is identified with a family of probability measures (F*, p})icr such that,
for any i € I, (F},p}) € Ap(x;), F;* is continuous and

/ 11 F; (@) F; (dz) + = Hp]pl _/ 1 F; (2)Fi(dz) + - Hpjp, (4.12)
(0,00) j#i ];éz (o, ];éz ]751
for all (Fj,p;) € Ap(zi).

Fix any i € I. If (F;,p;) € Ap(x;), then, using the definition of the Lag-
rangian,

/ 1 E; (z)Fi(dz) + = Hp]pz = Li(Fi,pi; A}, ;)
0,00) jiti i
Then, since L;(F,pf;A5LvF) > Li(Fi,pi; Af, 7)), we have (4.12) holds. Hence,
(E},pf)ier is a Nash equilibrium for the contest.
O]

Return to the proof of Lemma 4.2.1. Suppose (F}");cr satisfies all the condi-
tions described in the lemma. Let pf = F;(0). Let 77 = 0 and A} = 1/ag for any
i <n,and let v, = [[;., pj and A}, = (1—7;)/ao. It is clear that (F",p}) € Ap(w;)
and F}* is continuous. We only need to verify that (4.11) holds for all i € I.

Fixanyi € {1,2,...,n—2}. Observe that F'_,(z) < F}_,(a;) = p; = F/(x)
and [[ -1y £ (x) = & on [0,a;]. Also observe that [[;.; Fi(z) = 2= on |a;, agl.

Then, since p}; = F¥(0) =0,

£ (Fl7pl7)\*7f>/’;k)
[[Ff(z) = N = | F Hp] i A+

/0 (0,00) | jizi i
= - — Fz dx + 1—— FWz dx + —
/o a:) lao FZ ) ao] (dz) a0 ao (dz) ao

Ly * * %
7_£(F 7pz7)‘ 777,’)-

ao
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Moreover, since Hj#n_l) Fi(z) = a% on [0, ag] and p;, =0,

. . o0 T Lo
ﬁn—l(Fn—hpn—l; )\nflvfynfl) = / (1 - ) E(d:ﬂ) + .
ao

J

ao ao

Tn—1

< ao = EH—I(F:—lvp;—l;)‘:{1—177;;—1)7

and since [];, F(z) = (1 — H#np;f) a0+ 1 P} on [0, a0],

Lo (Fo, i An 1)

- (1_Hp§) /aoo (1—$)Fn(dx)+(1_rzl>pnﬂp§+/\2$n+’yﬁ

, a ,
J#n 0 J#n

S Non v = La(Fyphi A vm)-

Thus, (F})ier is a Nash equilibrium for the problem by Proposition 4.2.1.

O]

Now we explicitly characterize the algebraic form of the Nash equilibrium

described in Lemma 4.2.1.

Theorem 4.2.1. Let ap—1 = ap = 0, 29 = 0, po = 1 and [[;cop; = po = 1.

Suppose that

there exists {p1,D2,- -+, Pn—1,00,G1, - An—2,%Yn, An} Such that p; > 0

foranyi=1,2,....n—=1,0<a,—2 < - <ap <ag and N\, > 0 and it solves the

following system of equations

Ani + v =07 [ pss Vi=0,1,...,n—1, (4.13)
j<i
o Giapiel —aip (n—iwm ,
T T = T g T i P P,
Vi=1,2,...,n—1, (4.14)
_ LS (=) (agp; —ajapj1) | 45 P
ao j=1 (TL —J+ 1))\77, Anaj—l + Y
a’gpj (TL _j)gr)/n
TN 4 - 5 (Pj—1 — ;)|
@i+ (n—J+1)A\2
if Tho1 < Ty, (4.15)
Yo =0 and pp—1 = 0, if Th—1 = xp. (4.16)

(i) If xp—1 < Ty, then 0 < pp1 < ppo < -+ < pr < 1land v, > 0. If zpy <

Tl = -

= X, for some m € {1,2,...,n — 2}, then 0 = pp_q1 = -+ =

Pl <P < <p1 <L,y =0and0=ap_1 =" = ams+1 < Gm-
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(ii) For anyi € {2,3,...,n}, if x; = x;_1, then p; = pi—1 and a; = a;_1.
(iii) Define function F,_1(-) by
nj’ﬂ%? if v € [akaak—l)a k=1,2,...,n—1,
Fn—l(x) — j<kPi
17 fo € [CLO,OO)7

and define function F,(-) by

For any i <n — 1, define
Fi(z) = max {p;, Fr—1(z)} .

Then, the family (F;);cr satisfies all the conditions in Lemma 4.2.1 and thus
is a Nash equilibrium for the asymmetric contest.

Moreover, for any i € {2,3,...,n}, if x; = x;—1, then F;(x) = F;_1(z) for all
z € [0,00).

Proof. (i) Suppose that z,_1 < x,. Assume that there exists k € {1,2,...,n — 1}
such that py = 0. Then v, =[], p; = 0. By (4.14),

L Vi=1,2,...,n—1, (4.17)

n—1 a;—1Pj—1—0a;pP;

which means that z,_1 =>_ . However, since v, = 0 and \,ap =1

Jj=1 n—j+1
and by (4.15), =, = ?;11 W = x,_1, which is a contradiction. Thus,

pi>0forali=1,2,...,n—1, and then v, = [[;,, p; > 0. By (4.13),

An(ai — ai_1) = (p?—i —p?__f) [Ipi Vi=1,2,...,n—1. (4.18)
1<t
Then, since A\, > 0and 0 = a1 < ap—2 < - < a1 < ag, we get that 0 < pp,—1 <
Pn—2 < <p1<po=1.
Suppose that z,, < Ty41 = -+ = @y, for some m € {1,2,...,n — 2}. Then,
by (4.16), v, = 0 and p,—1 = 0. By (4.17) and since a,,—1 = 0, we get

n—1 n
A;—1Pi—1 = Z(n—j—i—l)(mj—mj_l) = Z:):j—(n—i—i—l)wi_l, Vi=1,2,...,n—1.
Jj=t j=t

(4.19)
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Then, since Ty, < Tmg1 = - =Ty, a;p; = 0if m+1<i<n—1and a;p; > 0 if
0 <i<m. Thus, a; > 0 and p; > 0 V0 < i < m. Further, by (4.13) and v, = 0, we
get that a; = p; =0Vm+1 <1i<n—1. Then, by (4.18) and since A\, > 0 and 0 <
am < - <ap <ag,wegetthat 0=pp 1= =pmr1 <Pm < -~ <p1 <pp=1.

(ii) Fix any 7 € {2,3,...,n — 1} and suppose that x;_; = x;. Substituting
(4.13) into (4.14) and since v, = [, pj, we get that

(p? ERRE lH) [lj<ipi + (n— i+ Dyn(pi — pi-1)

Tt (n—i+ 1)\,
(i1 = p2) (S5 poapl™ ) Myipy + (0 =i+ D)0 = pi-1) Tjcn 2y
N (n—i+ 1)\,
N 01 T, il U mat 01 V= 0 8
e (n—i+ 1)\, bi-

j<t

Observe that by (i) we know 0 < p,—1 < pp—2 < -+ < p; < 1. Now assume that
pi—1 > p;- Then, Z;L:_é T s =i+ )PP > (n—i+ 1) ;‘:_ilpj and
[li<ipi = pﬁj > 0. This means that x; > x;_1, which is a contradiction. Thus,
pi—1 = pi- Then, by (4.18), we get a;—1 = a;. Now if x,,_; = x,, then, by (4.16), it
is clear that p,_1 =p, =0 and a,_1 = a, = 0.

(iii) By the definitions of Fj, it is clear that the second and third condition
given in Lemma 4.2.1 hold and F,(0) = 0.

We next show that F,,_;(x) is continuous at {aog,a1,az,...,an—2}. Fix any

ke {1,2,...,n—2}. By the definition of F,,_1(x),

A A
Fo_i(ap—) = n—+ An@k T Fo_i(ay) = "¢ An@k Y
V ILj<(kt1) P [Lj<k P

Then, using (4.13), we get F,,—1(ax—) = px = Fn—1(ag). Further, F,_1(ap—) =
1 )‘”?04;: = 1= F,_1(ap). Hence, F,,_ is continuous, which implies that all F;
are conjt<i111uous.
Since A, > 0 and by the continuity of Fj, it is clear that F; is non-decreasing.
Then, since Fj(ag) = 1, F; is a distribution function.
Now we show that the mean of F; is equal to x;. Fixany ¢ € {1,2,...,n—1}.

By the definition of F; and since F; is continuous,
/ xF; dx Z / xd "=k m
0 _] i<k Dj
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Using the method of integration by parts

% ‘ Anp— A
0 = 1<k pj [k pj
n—k+1

_on—k Ip /‘“”“1 g2t
n—k+1 )‘TL ag Hj<kpj ‘

Then, using (%), we get

fe'e) 7 n—k H .y ) )
/ eFi(de) =) [aklpkl — appr — J<kXJ (pz_fﬂ — k+1)
0

= n—k+1 A\,
: Ak—1Pk—1 — OkPk (n — k) }
= E — Dp_ 4.20
k_l{ n—k+1 (n—k‘—I—l))\n(pk Pr-1) (420)

i
= (@) — xp—1) = @i,
k=1

that is F; has mean x;. Next calculate the mean of F),. Suppose that z,_1 = x,.
Then, since vy, = 0 and A\yag = 1, it is clear that [;° 2F,(dz) = [;° 2F,—1(dz) =
Tp_1 = Tpn. Suppose that x,_1 < x,. Then, by the form of F,,

o 1 & n—k [ n +
0 agp k=1 )\’n ag H]<k‘ p]
S
ak—1 n—k
+ / J:Qd()\nx + n) }

Ok "/ j<r pj

Because
ak—1 %kfl 2 2
/ x2d(>\n33 + )" _ WeaPk—1 GpDk
ay nik/Hj<k Dj Anlg—1+ Tn AnQk + Yn

2(n — k-1 n n
2n k:)/ P
>\n ar Hj<kpj

> 1 (n— k) (axpr — ag—1pk—1) az_1Pk-1
Fn d = +
/O v ( x) ao k:zl{ (TZ —k+ 1)>\n )\nak_l + Tn

and using (4.20) and (4.15), we get

2 2
o appk (n—k)"m B B
N +m =kt 1 P p’“)} -
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Thus, the mean of F, is z,,.

Fix any ¢ < n and fix any k <i. For any z € [ag, ar—1],

() = | () = ) (At _w/a0 @
JH#FJ( ) (jl;[kpj) (jzg#ﬂ( )) (jgkpj) <Hj<kpj ) An + Y0 ao

Now consider i = n. Fix any £ <n — 1. For any x € [ak, ag—1],

M- (1) 10 50) - (1) () e oo
J#n i<k J>k,j#n i<k j<kPj

Further, because a,-1 = 0 and by (4.13), we get v, = [[;,,p; and A\, = (1 —
Tn)/ap = (1 - Hj<npj> Jap. Thus, (F;);cr satisfies the last condition in Lemma
4.2.1.

Using (ii) and (4.16), it is clear that, for any i € {2,3,...,n}, if x; = 2;_1,
then Fj(z) = F;_1(z) for all = € [0,00).
]

Remark 4.2.2. It is clear that the optimal distribution functions (F;);er in The-
orem 4.2.1 satisfy that Fy(x) > -+ > F,_1(z) > F,(x).

In general, it is difficult to prove the existence of a solution to the system of
equations (%) and also is difficult to analytically solve (x). However, there are two
special cases where (x) can be significantly simplified and the existence of a Nash
equilibrium can be analytically proved. One case corresponds to the scenario where
there are multiple highest starting values of the observed processes, and another
case corresponds to the scenario where the highest starting value is unique and the

rest of the starting values are the same.

Theorem 4.2.2. Recall the definitions ap—1 = ap, = 0, xg = 0, po = 1 and
[lj<opj =po = 1.

(i) Suppose 0 < x1 < -+ < Xy < 1 = -+ - = Ty, for somem € {1,2,...,n—2}.
Let Tn = 0; ag = Z?:l Zj, )‘TL = 1/@0, Pn—1 = Pn—2 = = Pm+1 = 0;
p—2=0ap-3 ="+ = apy1 =0,

o - n—k+1 Z?:k-l-lxj_(n_k)xk .
pz—H 7 1 ,1=1,2...,m,
k=1 j—k i — (n—k+ 1xp—
and s ( )
Pz — (n—1)x;
a; = ==L Li=1,2,...,m.

bi
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Graph ofFi(x)withn:4and 0'5:X1:X =X <x4:l

0.2 _ — b
- R =F00=F,(x)
F4(x) 4
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0 0.5 1 15 2 2.5 33

X

Figure 4.1: Graph of (F})jer withn =4 and 0.5 =21 =29 =23 < x4 = 1.

Then, {p1,p2,---,Pn—1,00,01,.-.0n-2,Yn, An} is the unique solution to (*)
such that p; > 0 for any i = 1,2,....n—1, 0 < ap_2o < --- < a1 < q
and Ay, > 0. Moreover, (F;);cr defined by Theorem 4.2.1 is a Nash equilibrium

for the asymmetric contest.

Suppose 0 < x1 = -+ = Tp_9 = Tp—1 < Tn. Let p € (0,1) be the unique

solution to P(z) = x1/xy, where

_ —1)2" —nz" 41
P(z) = (1- 21 (n :
(2) ( ? ) nz?"=2 —(n—1)22" +n(n—3)z" 1 +1

Andlet v, =p" L, pr=po=- - =ppo=p, a1 =ay =" =a,_o =0,
nry (1 _ pnfl) 1 _pnfl
ag = and \p = ——.
P+ De-1t T a
Then, {p1,p2,---,Pn—1,00,01,.-.0n-2,Yn, An} is the unique solution to (*)

such that p; > 0 for any i = 1,2,....,n— 1,0 < a, 2 < --- < a1 < ag and
An > 0. Furthermore, (F;)icr defined by Theorem 4.2.1 is a Nash equilibrium

for the asymmetric contest.

Example 4.2.1. Before proving Theorem 4.2.2, we give two examples of these two

special cases to illustrate the general shape for graphs of the distribution functions
(Fi)ier-

In Figure 4.1, we study the special case where the highest starting value is

unique and the other starting values are the same. It can be seen that the player
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Figure 4.2: Graph of (F;);e; withn=5and0.1=21 <20=04<23=0.7< x4 =
Iy = 1.

with the higher starting value puts no mass on zero while the other players with the
lower starting value put a mass of size p on zero, but the support of the distribution
functions are all [0, ag].

The other special case is shown in Figure 4.2. As is shown in the figure,
similar to the previous case, the player with a lower starting value has a larger
probability of stopping at zero. But in this case, the support of the distribution
functions are no longer the same. In particular, the largest values at which the
players should stop are all ag, while the smallest nonzero value at which the player

should stop increases as the starting value of the player decreases.

Proof of Theorem 4.2.2. (i) Suppose that z,, < zpy1 = -+ = z, for some
m € {1,2,...,n — 2}. Then, by (i) in Theorem 4.2.1, 7, = 0, 0 = pp_1 = -+ =
Pmtl <Pm <---<pr<land 0 =ap—1 =+ = amt1 < . Further, by (4.19),
P x— (n—i)ay
ai:Z]%H i )Z,i:(),l,...,m.
bi
Because pg = 1and 29 = 0, ag = Z?Zl xj. Now obgerve that A\paip; = p?_iﬂ IT;<ips
which leads to (z;;i i —(n— z)x) = pP " [L; pj. Thus,
—k+1
Pk _ n—k+1 pZ * H]<k p] _ n—k+1 ?=k+l x] - (n - k)xk’
Prk—1 pZ:IerZ Hj<k—1 Dj Z?:k zj—(n—k+ 1)3;]6*17
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for any k = 1,2,...,m. Then, by p; = [[i, f’“ , we get the p; stated in the

Pr—-1
theorem.

(ii) Suppose 1 = -+ = Tp_9 = Tp_1 < Zp. First we show that there exists a
unique solution p to P(z) = z1/x, such that p € (0,1). Observe that P(0) = 1 and

P(1) = 0. Next we show that P is strictly decreasing on (0,1). Let

(n=1)p" —np" ' +1

Pi(p) = 1
and - ( )2 : ) ,
np"“—(n—1p"+n(n—-3)p" " +1
Py(p) = P b 0 b ,
(I—p» 1)
then P(p) = Pi(p)/P2(p). Because
, n—1 n—2
Pip) = P g — (0 - 1) <0
(I—p 1)
and ( )2
! — n—1 pn n n—1
PQ(p)—(l_pn_l)g[—(n—Q)p + np —np+n—2]>0

on (0,1), P(p) = Pi(p)/Pa(p) is strictly decreasing on (0,1). Then, since 0 <
x1/xn < 1, there exists a unique solution p to P(z) = z1/x, such that p € (0,1).

Because 1 = -+ = x,_2 = x,,—1 and by Theorem 4.2.1, p; = -+ = p,_2 =
pn—1 and a3 = -+ = ap—2 = ap—1 = 0. Then (x) can be reduced to
)\nao + Tn = 17
Yo =p7 T,
— ao (n=D)yn -1
X1 n + nAn (pl )a
—1 —1)2y,
s = to 1~ S + S0 - ]

1—n, o nz1(1—yn)

-1
Thus, 7 =Py An = =%, a0 = (=) (- Drn(p—1) 20
Tp 1 np%”_2 —(n— 1)2p? +n(n— S)p?_1 +1 1
z o 1—pp! (n—1)pt —np}~' +1 P(p1)’

The last equation shows that p; is a solution to P(z) = x1/zy,.
O

Remark 4.2.3. Recall that the optimal distribution functions (F;);cs for a 2-player

asymmetric contest is given by Theorem 4.1.1. Suppose 0 < 1 < x3. Since now
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Graph of F1(x) withn =5, X, = 0.2, Xy = 0.8 and X, =X = 1

1

Graph of F2(x) withn =5, X, = 0.2, Xy = 0.8 and X, =Xg = 1
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Figure 4.3: Graph of (F;);cs for different zo with n = 5, 1 = 0.2, 3 = 0.8 and
T4 = x5 = 1.

the processes that observed by the players are Brownian motions, in a 2-player

asymmetric contest (F;);er are given by

. Ty ry X . x
F = 1—-— ——1 F = — 1.
1) m1n{< 562) * T 229’ }’ 2() m1n{2x2, }

. 1 1\ _ 2 . . . 1 .

Since P (H,, < Hy) = %, Xz, 1{H%2 <) has the same distribution as X_;. This
implies that, in the 2-player asymmetric contest, an optimal strategy for player 1 is
to wait until X} € {0, 22} and then use the same strategy as player 2 if X* hits 5.

But this result does not hold for a general asymmetric n-player contest.

Example 4.2.2. Consider an example of the first special case where there are
multiple highest starting values. Set n = 5, 1 = 0.2, z3 = 0.8 and x4 = x5 = 1.
We give the graphs of the optimal distribution functions (F;);cs for various values

of x9. Figure 4.3 shows that when x5 is larger, player 2 has a smaller probability of
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Figure 4.4: Graph of (F;);c; for different x1 with n =4 and 21 = 29 = 23 <y = 1.

stopping at zero while the other players j € {i € I : x; < z,} \ {2} have a larger
probability of stopping at zero. It also shows that when xo increases, the smallest
nonzero value a; at which player j € {i € I : ; < 2} should stop increases, while
the smallest nonzero value a; at which player j € {i €I:2y <z <x,} should
stop decreases. And when x5 increases, the largest value ag at which a player should
stop increases. Moreover, as xy increases, the probability that player 2 will stop at
small values decreases while the probability that player j € {i € [ : x9 < z;} will

stop at small values increases.

Example 4.2.3. We consider an example of the second special case where the
highest starting value is unique. Set n = 4 and x4 = 1 and let 1 = 22 = x3. We
show the graphs of (F;);c; for various values of x1. As shown in Figure 4.4, when
x1 increases, the largest value ag at which a player should stop increases and the
probability p that the player with a lower starting value (player 1, 2 or 3) will stop
at zero decreases. Further, as x; increases, the probability that player 1 will stop at
small values decreases while the probability that player 4 will stop at small values

increases. And Figure 4.5 shows that F(x) tends to Fy(z) as x; tends to zy4.

Example 4.2.4. Now we consider another example of the second special case. Set
0=z = - =z,-1 <z, =1. We give the graphs of (F});cs for various values of
n. It can be seen from Figure 4.6 that when the number of participants n increases,
the largest value ag at which a player should stop increases and the probability that
a player will stop at small values increases (the same trends exist in the symmetric
case where 1 = -+ = x,_1 = x,). In particular, Figure 4.7 shows that when n

is very large, the probability p that player 1 will stop at zero is close to 1 and the
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Graph of F1(x) = F2(x) = Fs(x) > F4(x) with n =4 and Xg =X, =Xg SX, = 1

Fix)

Figure 4.5: Graph of (F;);c; for different x1 with n =4 and 21 = 29 = 3 <y = 1.
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Enlarged graph of F1 (x) = F2(x) =.=F _(x) Enlarged graph of Fn(x)
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Figure 4.7: Enlarged graph of (F;);er for different n with 0.5 =21 = = 2,1 <
Ty = 1.

probability that player n will stop at very small values is also close to 1.

Fix any i € I. Define Cj(z) = [°(y — 2)Fi(dy) and observe that Ci(z) =
Fi(z) — 1. Thus, Figure 4.6 implies that as n increases, the function C;(z) increases
for any = > 0, which can also be seen from Figure 4.8. Suppose that 7¢ is a stopping
time such that X’, ~ F;. Then, by Chacon and Walsh [1976] and the fact that
E [X;Z] = 1z; for any n, we get that as n increases 7° increases (the same trend
exists in the symmetric case where 1 = -+ = x,_1 = x,), that is as the number of

participants increases a player should stop later.

For more complicated cases, it might be difficult to analytically solve (x)
which gives us a Nash equilibrium for our problem, but it may be possible to find

solve (%) numerically. We take a 3-player game as an example.

Example 4.2.5. Set n = 3 and suppose that 0 < z1 < 9 < x3. Then, as = az = 0,
xo =0, po = 1, and (%) can be reduced to

p2=p1— 2(127;“),

V3 = p1p2 = i — 2(‘%2&7?1)]01,
i .

ag = 1;373 =a + ﬁa%,

. 2p3—3p+1 9
vy = (1= pr)ar + 2 2,

6(2p7 —p1)(z2—x1)%a1+12(z2—z1) (1—p1)p3 ai+(3p] —4p3+1)ad
6p1(z2—x1)(a1—2z1p1+2z2p1 —alp%) .

xr3 =
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Figure 4.8: Graph of (C;);es for different n with 0.5 =21 =+ =z,1 <z, = 1.

Using the last two equations, we get that a; = Ai(p1)/A2(p1) and p; € (0,1)
solves Q(p) = 0, where Ai(p) £ 2(x2 — x1)p [4xsp? + (321 + 4a3)p + (321 + 23)],
As(p) £ daspt+ (41 + 220 +4a3)p3 + (3x1 +4as — 323)p? +4(22 — 23)p+ 221 — T2 — T3
and

Q(p) & 4(x1 + 220)x2p® + 2a3(x1 + 220) (311 + 329 + 223)p°
323 +12(zo + 23)x? + (1223 + 18x0x3 + x3)2) + 122523 — 2233‘2.7)%} pt

[63:? + (1229 — 623)2? + (1823 — 6x913 — 1623) ) — 81‘2.%'?))} P

+
+

+ _(18x2 — 6x3)a? + (1223 — 4a2)2) — 302323 + 1O$2x§} P

+ _6m§’ + (249 + 623)xT + (—1823 — 36x9w3 + 823)xy + 6x3w3 + 41‘233‘%} P
+

3:81(1’2 —2x1 + x3)2.

It is difficult to find an explicit solution to Q(p) = 0, but we can numerically solve
it. Moreover, it can be shown that there is one and only one solution p; to Q(p) = 0
such that p; € (0,1). The numerical result is given in Figure 4.9. In this figure, we
also present the graphs of the Nash equilibrium distributions (F;);ec; for the other

three cases.

4.2.2 Derivation of the equilibrium distribution

This section illustrates how we obtained the sufficient conditions for the Nash equi-
librium given in Lemma 4.2.1. Recall that 0 < 7 < 29 < --- < z, and recall the
definition of the Lagrangian L;(F;,p;; \i,7;) for the optimisation problem (4.10).
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Figure 4.9: Graph of Nash equilibria (F;);c; with n = 3.

Let Li(x) = [1,4 Fj(x) — Aiz — i, then the Lagrangian is given by

1
Li(Fi, pis Misvi) = / Li(z)Fi(dz) + | = [[pj — v | pi + Niwi + .
(0,00) " i

In order to have a finite optimal solution, we require L;(z) < 0 on (0,00) and
%H#i pj —vi < 0. Let D; be the set of (A;,7;) such that £;(-,; \;,y;) has a finite

maximum. Then D; is defined by

D; = { (A\i,7i) : Li(z) <0 Ve >0 and %Hpj -7 <0
J#i

For (\;,7i) € D;, the maximum value of L;(-,; \;,7;) occurs at (Fj,p;) such that
Fi(dx) = 0 when L;(z) < 0 and p; = 0 when %H#i pj —vi < 0. Thus, if Fj(dz) >0
then Li(z) = [I;4 Fj(z) — Aiz —~; = 0 and if p; > 0 then %Hjﬁpj —v =0.

By analogy with the symmetric case, we expect that the support of the dis-
tribution functions F; are all intervals. Denote by {a;, b;} the endpoints of supp(F;)
with a; < b;. We also expect that the right-endpoints are the same, that is b; = ag

for any i € I, where ag is some positive constant. Thus, J[,; Fj(z) — Az — 5 =0
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on [aj, ap]. Further, the left-endpoints are expected to satisfy that 0 = a,, = ap,—1 <
Ap_o < - < a; < ag.

Recall that we expect that there is at least one agent who puts no mass at
zero and all agents put no mass at any positive point, which implies F; is continuous
and there exists k£ € I such that F(0) = 0. We now argue that F,,(0) = 0. Assume
that F,(0) # 0, that is k # n. Then, since p, > 0 and py = 0, v, = %H#npj =
0. Further, since Fi(a;) = 0 and ar, > 0 = a,, Aar = Izn Fj(ar) — v = 0.
Observe that Anag = [];4, Fj(a0) — v = 1 > 0, which means A\, > 0, ap > 0
and ay = 0. Since [, Fj(ar) — Akar — v = 0, v = [1;4 F3(0) > 0. Then, by
Anao = 1 = Agag + Yk, A = Ag. Thus, on (0, ag), since [Lzn Fj(z) = Az and
[Tk Fi(2) = A + i, we get II:::E;"; —-1= ’\k/\i# —-1= W > 0. This
means that F,(x) > Fi(z) on [0,ap]. But this is possible only if x,, = zy, since

we require F, has mean x, and Fj has mean x;. Now suppose x, = xj, then
F,(z) = Fi(z) on [0, ap], which contradicts F},(0) # 0. Thus, F,,(0) = 0.

Fix any ¢ < n. Suppose that z; = z,. We claim that F;(z) = F,(z),
v = 0 and A\; = 1/ag. Assume that F;(0) # 0. Then, since F,(0) = 0 and by
previous arguments, we get that F;(z) > F,(x) on [0,ag]. Further, since x; = x,
Fi(x) = F,(z) on [0, ag], which contradicts F;(0) # 0. Thus, F;(0) = 0. Then, we
get v, = H#nFj(O) =0, Fi(a;) = 0 and \ya; = [Lzn Fj(a;) — yn = 0. Because
Anap = 1 > 0, we have a9 > 0, A\, > 0 and a; = 0. Then since F,(0) = 0,
vi = Il F;(0) = 0 and thus \jap = 1 = A\,ap. This means that \; = A\, = 1/ag
and Fj(x) = F,(z).

Fix any i < n. Suppose that x; < x,. We claim that F;(0) > 0, v; = 0
and \; = 1/ag. Assume that F;(0) = 0. Then, by previous arguments, we get that
Fi(z) = Fyu(z), which contradicts [~ xFj(dx) = x; < ®, = [;° aF,(dz). Thus,
F;(0) > 0. Moreover, since p; > 0 and p, = 0, v; =
Aiag + i = 1z Fj(ao) = 1, i = 1/ao.

It is now clear that 7; = 0 and \; = 1/ag for all i < n. Then, since F;(dx) > 0

[1;2ip; = 0. Further, since

1
n

on (a;,ag), H#i Fj(z) = N + v = x/ag on [a;, ag).

Because [,(dr) > 0 on (0,a0), [[;z, Fj(z) — Apz — 9 = 0 on [0,ag]. Let-
ting * = 0 and z = ag, we get v, = [[;4, F5(0) and A, = (1 — y)/a0 =
(1= Ty F5(0)) Jao. Thus, Tl Fy(@) = (1= 0 F5(0)) & + 10 F5(0) om
[Oa aO]‘
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Chapter 5

Contests with random initial

law

Recall the Seel-Strack contest introduced in Section 1.1. In the contest, each player
chooses a stopping rule to stop a privately observed stochastic process. The player
who stops her process at the highest value wins a prize. And the objective of each
player is not to maximise the expected stopping value, but rather to maximise the
probability that her stopping value is the highest amongst the set of all players.

Seel and Strack studied the symmetric case where all the processes start from
the same strictly positive real number. In contrast, we will discuss the symmetric
case where all the starting values are independently drawn from the (commonly
known) distribution p with p ((—o0,0)) = 0 and finite mean (i.e. [~ zu(dz) < 00).
In this case, we will also see that in equilibrium, players use randomised strategies,
so that the level at which the player should stop is stochastic. Moreover, the set of
values at which the agent should stop forms an interval, but now the interval may
not be bounded from above. We will restrict attention to the 2-player case. This
allows us to describe an explicit way of constructing a Nash equilibrium.

The difference between the Seel-Strack model and our setting is that we
assume the initial starting value is also private information and only its distribution
is commonly known. This assumption is relevant if the ability of each contestant is
private information or if a random or luck component is considered.

The remainder of this chapter is constructed as follows. In Section 5.1, we
introduce the mathematical model of the contest, and we will see that a Nash equilib-
rium is identified by a pair of probability measures. Then in Section 5.2, we explain
that if a measure satisfies certain conditions then this measure gives us a symmetric

Nash equilibrium. Some preliminary properties are proved in Section 5.3. In Section
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5.4.1, we show an explicit way of constructing a symmetric Nash equilibrium when
the starting random variable takes only a finite number of distinct values. Then in
Section 5.4.2, we discuss the existence of a symmetric Nash equilibrium in the gen-
eral case where the starting value is some non-negative random variable. And the
uniqueness of a symmetric Nash equilibrium will be proved in Section 5.5. Finally
in Section 5.6, we explain how to derive the sufficient conditions that gives us the

unique symmetric Nash equilibrium.

5.1 The model

Suppose that there are only two agents in the contest. Agent i privately observes
the continuous-time realisation of a Brownian motion X = (X});cg+ absorbed at
zero, where i € {1,2}. Assume X} has law y, which is the same for both players,
and assume that u is the law of a non-negative random variable with finite mean
zo € RT. Moreover, we assume the processes X° are independent.

Let Fj = o({X! : s < t}) and set F' = (F});>0. A strategy of agent i is a
Fi-stopping times 7°. Since zero is absorbing for X*, without loss of generality we
may restrict attention to ¢ < H§ = inf{t > 0: X} = 0}. Both the process X* and
the stopping time 7° are private information to agent i. That is, X* and 7¢ cannot
be observed by the other agent.

The agent who stops at the highest value wins a prize, which we normalize
to one without loss of generality. In the case of a tie in which both agents stop
at the equal highest value, we assume that each of them wins 6, where 6 € [0, 1).

Therefore player ¢ with stopping value Xii receives payoff
Lixi ey ¥ 00 oy

where j # i, i € {1,2}.

Again since the payoffs to the agents only depend upon 7° via the distribution
of X';, a Nash equilibrium can be characterised by the laws (Ui)ie{m} of (Xii)ie{lz}-
Then, in equilibrium, the agent can use any stopping time 7* such that X?; ~ v".

We now introduce some notations. Throughout the chapter, for any measure

w, define F,(z) = w((—o0, z]),
Caw) = [ (- a)ldy) and Puls) - /0 “(& — y)w(dy),

for any 2 > 0. Note that Cx(x) — Po(x) = [ yw(dy) — z [, w(dy).
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Suppose that v has the same mean as p and C,:(z) > C,(z) for any = > 0,
then by Chacon and Walsh [1976] there exists 7° such that Xii ~ vi. Conversely,
suppose that there exists 7 such that XL- ~ ', then a simple application of Jensen’s
inequality shows that v* must satisfy C,:(x) > C,(x) for all z > 0, and since X" is
a non-negative supermartingale, the mean of v* must be less than or equal to the
mean of p, that is [~ 21" (dz) < xo. Further, C,i > C}, implies that F,:(0) > F,(0).
We will say that a measure v* is admissible if there exists a stopping time 7% such
that X', ~ v/,

Our aim is to find a pair of admissible measures (v!,1?) such that, for each
i € {1,2}, given that the other agent j # i uses a stopping rule 77 such that
X7,

i 7, then the optimal target law for agent i is v¢, and she may use any stopping

rule 7¢ such that Xii ~ 1. And we say that this pair of admissible measures (1!, v?)
is a Nash equilibrium.

We will say a Nash equilibrium is symmetric if v!((—o0, 2]) = v?((—o0, z]) for
any x € R. This chapter investigates the existence and uniqueness of a symmetric
Nash equilibrium. It seems natural that a Nash equilibrium is symmetric, since
the contest is symmetric in the sense that each agent observes a martingale process
started from the same law p. Then simple arguments over rearranging mass can be
used to show that it is never optimal for two agents to put mass at the same positive

point x.

Theorem 5.1.1. Suppose (v,v) is a Nash equilibrium, then F,(x) is continuous on
[0,00) and F,(0) = F,(0).

Proof. (i) Assume that F,(x) places an atom of size p > 0 at z > 0. Let measure o
be given by
F,(z), if x€[0,z—¢€)U[z+ €,00),
Fy(z) = F,(z) +q, if v € [z — €1, 2),
FV(x)_(p_Q)’ if z € [Z7Z+€2)a

where ey € (O, (11;99)517), €1 € (%fﬁg;;z,z) and ¢ = =E- € (0,p). Observe that
(z —€1)g+ (2 + €)(p — q) = zp, which means that F}, and F, have the same
mean. Moreover, observe that C,(z) = Cy(z) if z € [0,2 — €1) U [z + €2,00),
Co(z) =Cp(x)+[x—(2—e€1)|qifx € [z—e€1, 2), and Cy(x) = Cp(2)+(2+e2—2x)(p—q)
if € [2,2+ €2). This implies that Cy(z) > C,(x) > C,(x). Thus, o is admissible.

Suppose that X72_2 ~ F,. Let p(z) =P (sz < z). Let V,, and V,, denote the

expected payoff of player 1 if player 1 chooses v and o, respectively, as her target
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law of XTll. Then

Vo=V, =p(z —e1)g+ ¢(z + ) (p — q) — o(2)p — Op*
—i—HIP’(ng :z—el)q—l—OIF’(ng =z+62) (p—1q)

> (2 — €e1)g + (2 + €2)(p — q) — (z)p — Op*

—p |l — @) =L+ ol + @) —— — () - o)
€2
—p{lole+ ) - o]~ ~ () ~ 0l - )] —2— b}

Since p(z 4+ €2) —p(z) > pand 0 < @(z) —p(z —€) <1,

VU—V,,Zp[ €1 €2 _ep}:pel(l—é’)p—(l—i-ﬁp)

€1 + €2

€2
D >0,
€1 + €2 €1+ €

which contradicts the definition of Nash equilibrium. Thus, F,(x) is continuous on
[0, 00).

(ii) Let p = F,(0) and p, = F,(0). Since pt =cz v, p > p,. Assume that
p > pu. Fix any ¢ such that 0 < ¢ < min {p\/ﬂ, 1-— p}. Since F), is continuous
on [0,00), there exists € > 0 such that v((0,¢)) = g. Then F,(e) = p + ¢q. For any
¢ € (0,1), let measure o, be given by

(1—9¢)F,(z), if x € [0,9),
Foy(2) = Y ¢(p+q) + (1 = 9)Fy(x), ifx € [d,¢),
F,(z), if z € [€,00),

where § = [ yv(dy)/(p+q). Then oy is a probability measure with the same mean
as v.
Suppose that ng ~ F,. Let V,, and V;, denote the expected payoff of player

1 if player 1 chooses v and o4, respectively, as her target law of Xil. Then

Vo, = Vi = 0{ 0+ OFL(5) — 0% - /0 iy}

> ¢{(p+ap— 00— (p+a)af = {(1-0)p* —¢*} >0.
Hence, if 04 is admissible then player 1 would refer strategy o4 to v.
Making ¢ and e smaller if necessary, and using the fact that C,(04) = p —

1>p,—1= C;(O—i—), we can insist that C,(xz) — Cy(x) > (p — pu)r/2 for x €
(0,¢). Observe that Cy(z) — Cs,(z) = 0 for x > €. Moreover, for x € [0, ¢), since
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(z) < ¢F,(9), Cu(x) = C

vy (T) < @F,(d)x. Then, if ¢ < 2F 5), we have

Coy(2) = Cul@) = (Cu (@) = Cu(@)) = (Cul@) = Co, ()

5(1’ pu)r — dF,(8)z >0

—_

for all z € (0,¢), and thus p =, 04. This contradicts the definition of Nash
equilibrium. Hence, F,(0) = F},(0).
O

Remark 5.1.1. Our results in this chapter can be extended to the case where the
processes observed by the agents are independent copies of a time-homogeneous
diffusion process Y under certain assumptions. The idea has been explained in
Chapter 2 and in Section 3.6. Again we use a change of scale to transform the
problem into natural scale.

Denote by {l1,l2} the endpoints of the state space of Y with —oo <1[; <y <
00, and denote by s(-) the scale function of Y. Assume that s(l1) > —o0, s(l2) = 0o
and E[s(Yp)] < co. Set s(l1) = 0. Then, X = s(Y) converges to zero almost surely
(and if zero can be reached in finite time, then zero is absorbing), Xy > 0 almost
surely since Xo = s(Yp) > s(l1) = 0, and E[X(] < oo.

Again the contest in which players privately observe independent copies of
Y is equivalent to the contest in which players privately observe independent copies
of X, and the choice of optimal stopping rule is the same for both contests. In
particular, once we have found a Nash equilibrium (F, Fy) for (XTll , ng), where F;
is the distribution function of Xii’ then letting G; = F; o s, we see that (G1,G2) is
a Nash equilibrium for (Y},Y3).

5.2 Nash equilibrium

In this section, we first provide the sufficient conditions for a symmetric Nash equi-

librium for the contest.

Theorem 5.2.1. Let A}, be the set of all measures v satisfying all the following

conditions:

(1) v((—00,0)) =0, v((—00,00)) =1, F, is continuous on (0,00), F,(0) = F,(0),
Jo~ av(dz) = xo, and Cy(x) > C ( ) for all z > 0;

(ii) F,(x) is strictly increasing and concave on [0,7];

(iit) if Cy(x) > Cu(x) on some interval J C [0,r] then Cy,(x) is quadratic on J,
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where r = sup{x : Fy,(z) < 1} and r may be infinity. If v* € A}, then (v*,v") is a

symmetric Nash equilibrium for the problem.

Remark 5.2.1. We explain the necessity of the first condition in this remark. The
necessity of the other two conditions can be seen in Section 5.6. Recall that X§ ~ u
and g has mean zq. It is clear that the optimal law v of XL- should be a probability
measure such that v((—o0,0)) = 0, [;°av(dz) < xo and Cy(z) > Cy(z) for all
x > 0. Recall that if (v,v) is a Nash equilibrium then F, is continuous on [0, 00)
and F,(0) = F,,(0) by Theorem 5.1.1. Now observe that if Xz ~  and 7 has mean
strictly less than g, then there exists (v, 7) such that v has mean xq, F),(z) < Fy(x)
for all z, and X, ~ v. Clearly 7 dominates 7 as a strategy. Hence the optimal law

v must have mean xzg.

We will show that the number of members of set A7, is less than or equal to 1
in Section 5.5. In Section 5.4.1 and Section 5.4.2, we will see that A}, is non-empty,

and thus A, is actually a singleton.

Theorem 5.2.2. ‘AZ

Before proving Theorem 5.2.1 we first present some examples. And Theorem

5.2.2 will be proved in later sections.

Example 5.2.1. Let v = U]0,2x¢], where U stands for the continuous uniform
distribution. Suppose p satisfies that C,, < C,,. Then, it is easy to see that v € Aj,

and thus (v,v) is the unique symmetric Nash equilibrium for the problem.

Example 5.2.2. Suppose p satisfies that F,(z) is continuous on [0, o) and strictly
increasing on [0,7,], where r, = sup{z: F,(z) < 1}. If F, is concave on [0,7,],
then p € A}, and (y, 1) is the unique symmetric Nash equilibrium for the problem.
If F,, is convex on [0,7,] and F},(0) = 0, then it can be verified that C,, < C,, (see
Proposition 5.3.1 for a detailed proof), where v = U[0, 2z, and thus (v,v) is the

unique symmetric Nash equilibrium for the problem.

Example 5.2.3. (Beta distribution) Suppose p is a beta distribution with shape
parameters o = 2 and 8 = 3, that is u = Beta(2,3). Then, the mean of p is 2/5,

Cu(r) = (%af’ — 2zt 4223 —x + %) 1i,<1y, and Fy(z) = min{3z* — 82° + 622, 1}.

1
’3
satisfy that C)(z) = ar?—x+ % on [0, ca], where ¢; > 0 and ¢y > 0 are constants.

Since F),(z) is convex on (0, §) and concave on (3, 1), the equilibrium measure v must

Moreover, ¢; and ¢y satisfy that C,(c2) = c1c3 — o + % and CI;(CQ) = 2c1c9 — 1.

Solving the system of equations, we get ¢; = 4@%“‘0 and ¢ = %. Define
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function C(z) by

2
Cw) = (1® =242 ) Luclpen + Cul®)  Lucleaoo)

and let v be given by
FV($) =2 - 1:176[0,62) + F,u(x) ’ lwe[cg,oo)'

Then C,(z) = C(z) for any > 0. Note that c; € (3,1) and Fl(co—) = 2¢1 >
FL(CQ), which means that F,(z) is concave. And by the exact form of F,(z), it can
be seen that v € Aj,. Thus, (v,v) is the unique symmetric Nash equilibrium for the

problem.

Example 5.2.4. (Atomic measure) Suppose that p = %51,E + %51+6, where € €
(0,1), and 0, is a Dirac measure on set {x}. Then the mean of  is 1 and Cy(z) =
(1 =) 1yc0,1-¢) + t(l+e—z)- Lye[i—e,14¢)- By calculations, if € € (0,1/2] then
C, < C,, where v =U[0,2]. Thus, if € € (0,1/2] then (v, v) is the unique symmetric
Nash equilibrium for the problem. Next suppose € € (1/2,1). Define function C(x)
by

22 —8(1—¢)(z—1) 72 — 8ex + 1662
C(l’) = 8(1 —_ 6) ’ 1I€[0,2(176)) + 8(36 — 1) ’ 1I€[2(176),46)7

and let v be given by

x x+4(2¢ —1)
F,(z) = TR locio2(1—e) + TABe—1) locp(1—e),4e) T Lacfte,00)-

Then C,(x) = C(x) for any z > 0. It can be seen that v € Aj,. Hence, (v,v) is the
unique symmetric Nash equilibrium for the problem if € € (1/2,1).

In the rest of this section we present the proof of Theorem 5.2.1.

Proof of Theorem 5.2.1. The proof is based on a Lagrangian method. Let A,
be the set of all measures v satisfying that v((—o00,0)) = 0, v((—o0,0)) =1, F), is
continuous on (0,00), F,(0) > F,,(0), [;* zv(dx) = x, and Cy () > Cy(z) for all
x > 0. A symmetric Nash equilibrium is identified with a measure v* € A, with

the property that, for any v € A,

/ Fye (2)0*(dz) + 0, (0) Fye (0) > / Fye (2)0(dz) + 0F, (0)Fy(0).  (5.1)
(0,00) (0,00)
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Fix any v* € A}, and fix any v € A,. Suppose that A, v and ¢ > 0 are some
finite constants and 7(-) satisfies that n(dz) > 0 Vz > 0. Define

5u*(V;>\,%Cﬂ7)=/

(0,00)

F«(x)v(dz) + 0F,«(0)F,(0) + A <x0 - /(0 xu(dw))

700)

+7<1—/ v(dr) — ()>+C( v(0) = Fu(0))
(0,00)

+[ @) - ) (5.2)
(0,00)
= / (F,,* () — Az —~v+ / (x — z)n (dz)) v(dz) + Azg + 7y
(0,00) (0,z)
+ (0F,«(0) — v+ ) F, / O,( — CF,(0). (5.3)

Rearranging (5.2), and since ¢ > 0, F,(0) > F,(0), n(dz) > 0 and C,(z) > Cy,(2)
Vz >0,

/ Fye(2)u(da) + 0F,- (0)F,(0)
0,00)
=Ly (A7, ¢n) — C(F,(0) — Fu(0)) — / (Cu(z) = Cu(z)) n(dz)
(0,00)
< ‘CU* (V;)‘vvagan)' (54)

Furthermore, if 7 satisfies that Cy«(2) = Cy(z) for any z where n(dz) > 0, then
since F,«(0) = F,(0),

/( ) P @) 4 0B O) B (0) = £0r (42,7, ) (5.5)

Define r* = sup{x: F,«(z) < 1} and r* < oco. Because Fy~ is continuous
and concave, it is absolutely continuous, which means that there exists a function
fu= such that F«(2) = [ fu+(y)dy + F,+(0). Moreover, f,«(z) = f; ¥(dz), where
¥ is some measure given by ¥((z1,22]) = fu+(z1+) — fux(22+) for any 23 < zo.
Since f,+ is non-increasing, 1(dz) > 0. And since v* € Aj,, if Cp«(2) > Cy(2) then

fu+ is constant near z, which implies that 1(dz) = 0. Also observe that, for any
x € (0,7%), since [ zip(dz) = [ [ dyp(dz) = [ fy p(dz)dy,
/0 zp(dz) = /0 (for(y) = for(2)) dy = Fyr (x) — F,» (0) — zfor (). (5.6)

(i) Suppose fy«(0) < oo. Let A" = fi+(0), v* = Fy=(0), ¢* = (1 — 0)F,~(0)
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and n*(dz) = ¢ (dz) for any z € (0,7*) with n*(dz) = 0 elsewhere. Notice that
A < oo, v < o0, 0 < (" < 0o and n* satisfies that n*(dz) > 0 Vz > 0 and
Cy«(2) = Cy(z) for any z where n*(dz) > 0.

Define T'(z) = Mz + 7* — [ (z — 2)n*(dz) for all 2 > 0. Then, for any

€ (0,7%), T(2) = fur (0)2 + F,(0) — [§'(z — 2)¥(d2). By (5.6), — [§ (x dz) =
—x (fu(0) = fux(x)) + Fy+(x) — F,+(0) — xfy«(x). Thus, I'(z) = l,*( ) for any
€ (0,7r*).

Observe that I' is continuous and non-decreasing. This implies that Fy«(z) <
I'(x) for any > 0. Also observe that 0F,-(0) —~v* + ¢* = 0. Thus, by (5.4) and
(5.3),

|7 Fotomtan) + 05, OF0) < XMoo - [T G @) - RO, (51)

and by (5.5) and (5.3),
/Ooo F«(2)v*(dx) +0F,«(0)F,«(0) = N'zo++* —/ Cyu( —("FL(0). (5.8)

Note [;° Cp(z) fo ¥ (dz) < xof,+(0) < oo so that the right-hand side
of (5.7) and (5.8) is Well deﬁned and positive. Thus, for any v € A,

/ " By (2)u(dz) + 0B, (0 / Fye(2)v* (dz) + 0F,« (0)F,(0).
0

Hence, from the definition (5.1) of a Nash equilibrium, (v*, v*) is a symmetric Nash
equilibrium for the problem.

(ii) Suppose f,«(0) = co. Fix any € > 0. Let A\c = fu«(€), e = Fu+(
Jo 2¢(dz), ¢ = ~ve — 0F,~(0) and ne(dz) = ¢(dz) for any z € (e,7*) with n(dz)
elsewhere. Notice that Ac < 00, ve = F,+(€) — €f,=(€) < 00, 0 < (1 — 0)F,+(0)
s z1(dz) = ¢ < oo and 7. satisfies that 7e(dz) > 0 Vz > 0 and Cy+(z) = Cy(z) for
any z where 7.(dz) > 0.

Define I'c(z) = Aex + 7e — [y (x — 2)ne(dz) for any x > 0. Then, for any x €
(6,7%), Te(x) = fur(e)x+ Fe(0) + [y 2p(dz) —x [F1p(dz). Using (5.6), [ 2 (dz) —
2 [ Y(d2) = Fye () = Fyr (0) — 2o () — 2 (for (€) — fy (x)). Thus, Ty(x) = Fye(x)
for any x € (e,r*). Further, I'c«(z) = fu«(e)(x — €) + Fu«(€) on [0, €], and if r* < oo
then I'c(z) =1 on [r*, 00).

On (0,¢€), T'c(z) is linear and F,-(z) is concave. Then, since I'.(e) = f,«(¢)
and I'c(e) = F,«(€), we have F«(z) < T'c(z) and F () — Le(x) > F«(0) — T'e(0) =
— [y #2¢(dz), for any x € (0,¢). Thus, F,«(x) < De(z) for any « > 0. Then, since
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0F,«(0) — v + ¢ = 0 and by (5.4) and (5.3),
/( - F«(z)v(dz) + 0F,«(0)F,(0) < Aexo + e — /0 h Cu(2)ne(dz) — CF,(0),

and since [j (Fy+(x) — Te(2)) v*(dz) > — (Fy+(€) — F<(0)) [ ztb(dz) and using (5.5)
and (5.3),

/(0 )Fy* (x)v*(dz) 4+ 0F,-(0)F,+(0)
> — (Fy«(e) — Fu+(0)) /OE z(dz) + Aexo + Ve — /000 Cu(2)ne(dz) — (Fu(0).
Observe that, since lim, | foe z(dz) =0,
13%1 {)\611:0 + Ye — /00 Cu(z)ne(dz) — CFu (O)}
- hm {fl, €)xo + F - / Cu( — 0)F,~ (O)FM(O)}
—gﬂF<m+[<%—qxnww>< ewwmmmﬁ
=R+ [ (0= Cul2) ¥lde) — (1= ) OF,0)
Since xg — Cu(2) < 2z A xg for any z > 0 and using (5.6),
| @-cuepia < | @Axw¢wd=jAOzwwd%ﬂmﬂdm)<@>

which means that lim. o {A\ezo + ve — fo z2)ne(dz) — ¢ F,(0)} < oo. Then, since
lim g {— (F,+(e) — F,+(0)) foe z2p(dz)} =

/( B @) (d2) 4 0B 0)Fr 0)
>tim {5 [ Cuendd) - GE0)
> /( B @lda) + 05 OB, 0)
Hence, from the definition (5.1) of a Nash equilibrium, (v*,v*) is a symmetric Nash

equilibrium for the problem.
O
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5.3 Preliminaries

In this section we state and prove some technique results which will be required

later.

Proposition 5.3.1. Let Y be the set of non-negative random variables Y with
mean 7y € (0,00). Denote by FY the distribution function of Y. Let si = inf{u :
FY(u) >0} >0 and s =sup{u: F¥(u) <1} < .

(i) Let Yy = {Y €Y : FY is conver on (—oo,sﬂ } Then, for Y € Ve, P(Y =
0) = 0.
(a) Suppose H is convex. Then, supycy, fozy ZlyH
(b) Suppose H is concave. Then, supycy, E[H(Y)] = H(y).

(ii) Let Ve, = {Y €Y : FY is concave on [O,oo)}. Then, for Y € Ve, s1 = 0.

(a) Suppose H is convex. Then, supycy,, E[H(Y)] =H(0)+ gjlimmoo @

(b) Suppose H is concave. Then, supycy,  E[H f2y L >=H(y

The bounds are all best possible. The bounds in (i.a) and (ii.b) are attained by
Y ~ U[0,2y]. The bound in (i.b) is attained by Y ~ 05. The bounds in (i.b) and
(ii.a) are valid for all distributions on R™ with mean § and not just those with

convez (or concave) distribution functions.
Remark 5.3.1. This result is stated for completeness; the result we will use is (i.a).

Proof. Let U be a U[0, 1] random variable.

(i.a) Suppose Y € V... It is obvious that the distribution function of Y,
F = FY is strictly increasing on (s}, s} ), and F(s1) = 0. So the inverse function
G(y) & F~1(y) of F exists on [0,1]. Since G(U) is distributed as Y, E[H(Y)] =
E[H(G(U))] = [y H(G(w)du and [y G(u)du = E[G(U)] = E[Y] = §.

It is clear that G is concave on [ 1] and G(0) = sI" > 0. Then, since
fo 2yudu = fo w)du, there exists a unique u* € (0,1) such that G(u*) = 2gyu*
(see the left graph in Figure 5.1). Moreover, 2yu < G(u) < 2yu* for u € [0,u*] and
25u* < G(u) < 2ju for u € [u*,1]. Since E[H (25U)] = [} H(2ju)du,

u* 1
E[H (V)| ~E[H(2U)] = /O (H(G(w) ~ H(2gu) dut [ (H(G(w) - H(2jw) du

*
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Figure 5.1: Comparison of G(u) and 2yu. Since G is the inverse of the CDF of a
mean y random variable, the area under G is y. Then the areas under G and the
line 2yu are the same. Hence, if G is either convex or concave, there is a unique
crossing point u* of G and the line 2yu.

Let H  denote the left derivative of the convex function H, then H (ug) — H(up) <

(ug — ul)Hl_ (ug) for any u; and ug. This means that

H(2yU)]

[
u* 1
< /0 (G(u) — 2gu)H  (25u*)du + / (G(u) — 2gu) H_(2ju*)du

u*

1
_ H (2u") /0 (G() — 2gu)du = 0. (5.9)

Thus, E[H(Y)] < E[H(2yU)] f02y 1H )dy. Moreover, it is obvious that the
bound is attained by Y ~ U[0, 2y].

(i.b) Since H is concave for any Y € ), Jensen’s inequality gives E[H(Y)] <
H(E[Y]) = H(y). Also if Y ~ 5 then Y € YV,

(ii.a) Fix any z > 0. Since H is convex, H(z) < H(0) + 2(H(xz) — H(0)) for
any x > z. Letting  tends to oo, H(z) < H(0) + zlimgyee H(z)/x. This implies
that for Y € Y, E[H(Y)] < E[H(0) + Y limyoo H(x) /2] = H(0) +ylimyoo H(x) /2.

It remains to show that the bound is best possible. Let Y, ~ (1 — %) do +
%U[O, 2yn]. Then Y,, € V.. Also

1 2yn H
lim E[H(Y,)] = hnll<1__>fﬂo)+ Ezhh]
n—o00 n—00 n n Jo 20n
1 _
=t [ (1= ) moyver [0
n—oo n 0 Qynu

m@/l H(x)
= H(0)+ 2y li du=H(0)+7yl )
O 2y = ), v =HO +o =,
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(ii.b) Suppose Y € V. It is clear that s} = 0 and F = FY is strictly
increasing on (0, s3 ). This means that its inverse function F~!(-) exists on [F(0), 1].
Now define G(y) = F~1(y) for any y € [F(0),1] and G(y) = 0 for any y < F(0).
Similar to (i.a), we have that G(U) is distributed as Y, E[H(Y)] = fol H(G(u))du,
fo u)du = y and fo 2yudu = 3.

It is clear that G( ) is convex on [F'(0), 1] and G(y) = 0 on [0, F'(0)]. Then,
since fo 2yudu = fo u)du, there exists a unique u* € (0,1) such that G(u*) =
2yu* (see the right graph in Figure 5.1). Moreover, G(u) < 2yu < 2yu* for u € [0, u*|
and 2yu* < 2yu < G(u) for u € [u*, 1].

Then, since H is concave, H(ug) — H(u1) < (ug —u1)H (uy), for any u; and
ug. Again we have (5.9) holds. Thus, E[H(Y)] < E[H(2yU)] f2y £ H(y)dy, and
it is obvious that the bound is attained by Y ~ U[0, 2y].

O

Proposition 5.3.2. Let H be twice differentiable, and suppose that h = H' s
concave. Suppose that H(0) = 0, h(0) > 0, ' (0) < 0 and h is not constant. Then,
for any w > 0 such that H(w) = 0, we have h(w) + h(0) <0, i.e. |h(w)| > h(0).

Proof. Since h is not constant and h is concave, there is a solution @ to h(w) =
—h(0). Let 6 = —2h(0)/w be the slope of the line joining (0,R(0)) to (w,—h(0)).
Then, on (0,1%), h(w) > h(0) + dw and H(w) = [ h(z)dz > h(0)w + dw?/2. So
that H(w) > 0. Then, by concavity of H and since H( ) =0, w > w. Thus,
h(w) < h(w) = —h(0) and the result follows.

O

Proposition 5.3.3. For any measure v € Aj,, if Cy(x) = Cy(z) for some z > 0,

then C,(-) is differentiable at x and C,(z) = C’;L(a:)

Proof. Suppose that v € Aj,. Then, C, is continuously differentiable and C, > C,.
Because C,,(y)—Cu(y) > 0 = C,(x)—C,(x) for any y < x and by the definition of left
derivatives, we get C,,(z—) —C;(x—) < 0. Similarly, we have C, (z+) —C’;(az—k) > 0.
Thus, C’l;(x—l—) < C(a+) = C(z—) < Cl;(:n—). Observe that C';(ZE—) < C’;(:E—{—)
since C), is convex. Hence, C’;(m’—) = C;(:L’—i—), which means that C’;(m‘) exists and
Cl(zx) = C’;L(x)

O

Proposition 5.3.4. Fiz any measure v € Aj,. Suppose that C,(x) = ¢(x) on some
closed interval J = [j1,72], where 0 < j1 < jo and ¢(-) is a quadratic function
defined on (—o0,00) with ¢" > 0. Then jy < co and Cy(z) < ¢(x) on (j2,00).
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Proof. Assume that jo = oco. Then C, is quadratic on (ja,00) with strictly positive
quadratic coefficient. This means that (), is not ultimately decreasing, which is a
contradiction. Thus, j» < co. Since C’,// is continuous and concave and since ¢’ is
linear, it is clear that C,(z) < ¢(x) on [j2,00).

O

5.4 Existence of a Nash equilibrium

This section shows how to construct a measure that belongs to A;.

5.4.1 Atomic Initial Measure

We start with the case where the initial law p is an atomic probability measure.
We will construct a function P(x) that satisfies certain conditions, and then define
a measure v via v((—oo,z]) = P'(x). Using the conditions that P satisfies, it will
be seen that this measure v belongs to Aj. Then, by Theorem 5.2.1 and Theorem

5.2.2, (v,v) is the unique symmetric Nash equilibrium for the problem.

Theorem 5.4.1. Suppose p is a measure with finitely many atoms, that is p =
Zévzlpjégj, where 0 < & < & < --- <&y and pj € (0,1) for all1 < j < N. Let
m = Z;VZI pi&; and suppose that m € [0,00). Then, there exists a unique measure v
such that v((—00,0)) =0, v(R) = u(R), F, is continuous on (0,00), F,(0) = F,(0),
IS zv(dz) = m, Cy(z) > Cyu(x) Yo > 0, and v has a piecewise constant density p

and p only decreases when Cy,(x) = C,(x).

Proof. Let &g = 0, En41 = o0 and pg = 0. Then

Pu(y) = ij(y_fy) lfy € [£i7£i+1)7 1= 0717"'>N'
7=0

If 41 is a point mass at zero, then set v({0}) = ©({0}) and the construction
is complete. Otherwise, let Q1(r,y) = yF,(0) + ry*/2. Then there exists a unique

value of r (1 say) such that

Q1(r1,y) = Pu(y) Yy = 0 and Q1 (r1,y) = Pu(y) for some y > 0.

Let y; = max{y > 0 : Qi(r1,y) = Pu(y)}. Then necessarily P;L(yl) exists and

(%Ql(rl,yl) = P/;(yl). Note that y1 ¢ {&1,&, -+ ,&n} since P/; has a kink at
these points. Let mj be such that &,, < y1 < &u,+1- If n1 = N (equivalently
Pl;(yl) = Z;-V:O pj = u(R)) then stop. Otherwise we proceed inductively.
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Pu(y)

/
// Q3(,y)

Q2(r2,y)
Q1(r,y)

0=y Y1 V2

Figure 5.2: Construction of Q(y). The dashed curve is Qs(r,y) with r < r3. Qi(r,y)
are quadratic functions of y such that Q;(r,y;—1) = P.(yi—1) and G%Qi(r, Yie1) =

Pl;(yi,l). And 7; is the unique value of r such that Q;(r;,y) > P,(y) for ally > y;4
and Q;(ri,y) = P,(y) for some y > y;_1.

Let yo = 0. Suppose we have found 0 < y; < Y2 < - < yp < &n
(yi ¢ {&1,&,-+,&n} V1 <@ < k) and Q(+) on [0,yx| such that @ is continuously
differentiable, Q(y;) = P.(y;) and Q' (y;) = P/;(yz) for any 0 < i < k, @Q is piecewise

quadratic, in particular @ is quadratic on {(yi—1,¥i)};<;<; With representation

1

Qy) = Qi(ri,y) 2 Pulyi-1) + (y — yim1) P, (i—1) + 57"1'(3/ —yi-1)?

on [y;—1,v;]. We will see that (r;)1<i< is a decreasing sequence. Let Qp41(r,y) =
Pu(yr) + (y — yk)P,;(yk) + 2r(y — yk)?, then there exists a unique r (rj4; say) such
that

Qr+1(rkt1,y) = Pu(y) Yy > yp and Qr41(7x+1,y) = Pu(y) for some y > yy.

Since Qg(rk,y) > Pu(y) for all y > yg, it is clear that 0 < rpy; < 7. Set
i1 = max{y > gy : Qr41(rer1,y) = Bu(y)}. Then, P, (yp11) exists, P (ypr1) =
a%QkH(rkH,ka), and yr41 ¢ {&1,&2,-- &N} since P, has changes in slope at
these points. Set Q(y) = Qr+1(rk+1,y) on [y, yr+1]- Repeat up to and includ-
ing the index T' — 1 for which yx11 > &n. Then yr—1 < £y < yr and then set
Qy) = Pu(y) for y > yr.

Now set p(y) = Q" (y). Then p(y) = ri on (yi—1,y:)1<i<r and p(y) = 0 on
(yr,00). Furthermore, p is decreasing and p only decreases at points where P,(y) =
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Q(y). Let v be the measure with density p and an atom at 0 of size F},(0). Recall that
yr > &n. Then, P (y) = Q(y) = Pu(y), F,(0) = Fu(0), Fu(y) = P,(yr) = P,(yr) =
u(R) for any y > yr and [;* yv(dy) = yrF,(yr) — P.(yr) = yru(R) — Pu(yr) = m.
Furthermore, C,(y) = P,(y) + m —yu(R) > P,(y) + m —yu(R) = Cu(y). It then
follows that v satisfies all the conditions in the theorem.

O

Remark 5.4.1. Fix any k € {1,2,...,T}. Let ny be such that &, < yr < &np41-
Then, in the mapping p — v, the atoms (£1,&2,- -+ , &y, ) of 1 are mapped to [0, yx],
and v([0,yk]) = P, (ye) = X5%, pj. Moreover, [ yv(dy) = yeFy(ye) — Po(yr) =
Y 2551 0 — Pu(yr) = yk 55, 05 — 2055 pi(ye — &) = 255, pi&5-

Example 5.4.1. Suppose that u = pde with £ > 0. Then P,(y) = p(y — §)*. Let
Q1(r,y) = ry*/2. Then, Q1(r,y) > P,(y) if and only if r > p/(2¢) = ry, and for
r = ry we have Q1(r1,y) > P,(y) with equality at y = 0 and y = y; = 2§. Then
y1 > & = &y so that the construction ends and v = pU|0, 2¢].

The rest of this section proves a useful lemma which will be used in the next

section to find the optimal target law for a general initial measure.

Lemma 5.4.1. Suppose u is a probability measure with finitely many atoms. Sup-
pose that p((—o0,0)) = 0 and p has mean xo € RT. Denote by v the probability
measure that satisfies all the conditions in Theorem 5.4.1. Suppose w is any prob-
ability measure such that w has mean xg and p < w, where <., denotes “less than

or equal to in convex order.”

(i) Let X, be a random variable has law w. Define X, as a random variable that
has conditional distribution X,, ~ U[0,2x] given X,, = x. Let & be the law of
X,. Then v =e @. In particular, C,(z) < Cy(x).

(ii) Define D, (z) = —C.(z) for any x > 0. Then,

D,(x) < inf Guly) < inf Caly)
y<e x—y T y<z x —y

for any x > 0.

Further, limgjoc  infy <, C‘”_(Z) =0.

Proof. Suppose p = Zéyzlpjégj, where 0 < & < & < -+ < &N, pi € (0,1),
Y ipj=Tand o) pi&; = ao.

(i) Let o = Z;\[zl p;U|0,2¢;] where U[0,0] denotes dp. We first show that
v Zeqw fi. For any m € {1,2,..., N}, define u™ = "7 p;d¢; and suppose v is the

corresponding measure derived using the algorithm in Theorem 5.4.1.
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___________________ L pmHl
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0 —_ .,m+1 m+1 m+1 y
y 1= Vi1 mi Y& = Yrm+t

Figure 5.3: Graph of constant piecewise functions p™(y) and p™*!(y). Claim that
p™ < p™FL In particular, (p™*! — p™) is non-decreasing on (O,y;n,ﬂl).

If N =1, then p = pidg, and v = p1U[0,2¢;] and the result holds. Now
suppose that N > 2, then v = vN = Z%;%(ym“ v"™) +v!. Provided we can show
that (™ — ™~ 1) has increasing density, it then follows from Proposition 5.3.1 that
(7 — 171 < p;UL0,2€;]. Then, since convex order is preserved under addition of
measures, V <z Z 1 pU[0,285] = [

We use a suffix m to label quantities constructed in Theorem 5.4.1, to show
that they are constructed from measure p'™. Fix any 1 < k < T™. By construction
QY (ri",y) = Pum(y) on (yiy, 00). If also Q' (ri",y) > Pym+1(y) on (y;",00), then
(Qm( T Y), Y; ) - and (Q;”H(T‘}"Jrl,y) y;nH)jZl will be the same up to j = k.

Suppose that QY (ri,y) = Pymi1(y) on (yi |, 00) for all 1 <k < T™. Then,
it is clear that 7 =T +1, y, < yTT”Tﬂl and densities p™*! and p™ satisfy that
Pt = p™ on interval (0, Y. =y pmtt mebl gyt

m4+1 , m+1

e, is constant on (ypm , Ypmr1) and p™
is zero on (ygwm *, Ymr1). In particular, (p

m+1 m+1

— p"™) is non-decreasing (0, y 1)
Suppose that there exists

k 2 inf {1 <kE<ST™: QP (ri',y) £ Pym+1(y) on (yi 1, oo)}

Then, it must be that in the construction we have p™*! = p™ on interval (0, yi =

yl’:“rll) p™ 1 is constant (denoted as rj’?nﬂl) on (yz”ll, yg?,ﬂl) p™ is decreasing and

strictly less than r?,ﬂl on (yZH'll, mi) p™ is zero on (Y., o0) and that T = k.
We want to argue that y7i, < miH, which then implies that (o™ — p™) is non-
decreasing on (0, mi+1) (see e.g. Figure 5.3).

We first construct a new measure 7. Let P, 11(y) = Z;":ll pj(y—&;) and
define

1 2

—r(y —ypm_1)°.

A (1) & Pun (Yffm 1) + (Y = Y1) Bum (Y1) + 5
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Figure 5.4: Graph of Q™*!(y). The dashed curve Q! (#™+1 y) is a quadratic
function of y. Let ™+ be the measure with den51ty FH = (Qm)” and an
atom at 0 of size F,(0). Then, p™™ = p™ on (0,y%._;) and p™*! is con-
stant on (yP._1,9™11). Note that p™ is constant on (Yfm_yi,ypm). Further,

P (Y, 7)) = (W1, Ema]) and v (Y1, yifn)) = m([Yfm_1, Em))-

( ~m-+1

Then, there exists a unique r say) such that

I (1 9) = Pra(y) Yy > 0 and Q7 (7™, y) = Py (y) for some y > 0.

Let 4! be the point such that Qi (7™ *+1, g™ +1) = Ppyy(§™*1), then ™! >
Yy and £ m“("“+1 gty = Pl (™). Now let Q™+1(:) be given by

m

Q™ (y) = P (y) - Logm, )+ O (T ) Lpym  gminy + Praga (y) - 1gmet o)

[Ym _

(see Figure 5.4, which illustrates the shape of Q"1).

Let 7™t (y) = (Q™)"(y), and let ! be the measure with density
! and an atom at 0 of size Fj,(0). Then, Pym+1(y) = Q™ (y), Fymii(y) =
Pl ™) = Sdp if y > gt and [Tyt (dy) = G Py (57 —
Py (771) = S5yt

Note that in the construction of v the masses at points (§n5@m_1+1, coy&m)
are embedded in the interval (y. |,¥%.), and in the construction of 7™*! the

~m-+1

masses at points (§nm,  +1,...,&m+1) are embedded in (yifm_;,§™ ). Moreover,

™ has constant density over (Y. ;,y%) and 7" has constant density over
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FMHL(R) = yMHL(R) f--mmmmmmm - mmmmmmmmmmmm oo ; ; Fym+1(y)
Fym+1(y) l i
V(R) fommmmmmmmmmmm oo oo ! i i Fym(y)
FO) =yl oyt oy gt oyl =ymil g

Figure 5.5: Graph of F,m+1, Fym and Fzmt1 with k< 1m. By the constructions,
Fynis(y) = Fon(y) = Fyma(y) on [0,57 ), Fymei(y) > Fym(y) = Fymea(y) on

m+1 ~m+1

(y]%_1 yYfm_q) and Fymi1 is linear on (y/fm_q, 9™ ). Since Fm+1 and Fym+1 have

the same mean, the area between the line #™"!(R) and F,m+1 must be equal to the

area between the line #"*1(R) and Fym+1. Hence g™t < y;”,ﬂl.

(y. 1, 5™ ). Comparing the means of ™ and 7™, we have
1 m m
SRR L0 B DR VD DR 13
J=npm_;+1 J=npm_y+1
and
1 m+1 m+1
“m+1
B (ernm_l + "t ) Z pj = Z pi&;-
J=ngm _+1 J=ngm_;+1
Hence,

23 e, 41D (51' - y;’Fm_1>
ZT:n?,,Lil-i-l Dj
+1
2 Zgnzng}mAH pj (fj - yTTnm—l)

m—+1 .
2jen +1Pj

m
Tm—1

m m _
Yrm —Ypm_1 =

~m—+1

< =y — Ypm_1

and then y/, < g™+l

Next compare 7! with v+, Recall that 7™T(R) = v™+(R) and 7™ !
and ™! have the same mean. Moreover, F,mi1(y) = F,m(y) = Fym+1(y) on
[O,yg‘jll], and if k < T™ then F,m+1(y) > Fym(y) = Fym+1(y) on (ygl_ﬁl,yj”?m_l] (see
e.g. Figure 5.5). This implies that §™! < y;@nﬂl if k< T™ and g™+ = y?,;’]}l if
k =1T™. Thus, g™ < yg?rﬂl, and then y7h, < y;?nﬂl
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Xo

xCa(y")
x—y*
| Ca(y)
0 v x Y
i . 3 Ca(y) : : *
Figure 5.6: The infimum of ooy Overy € [0, 2] is attained at y*.

Therefore, we find that (p™*! — p™) is non-decreasing on (O,y?:;}l), and
(vl — ™) is a positive measure with increasing density on its support. Hence
V Zex -

Next we show that i <., @. Observe that E {Xw} = [ xF,(dz) = xo. Let
X,, ~ ji, then

B B B 2u (QZ _ Z)Jr
Pi(z) = E[(z — X,)*] = /m,oo) p(du) /O 4z + k()
o .2
2107;)($—U)M(du)+ﬁ T pldu) + 2F,(0)
N T\T * z?
_Fu(2)2+/(07; FM(“)du_Fu(§)§+ x/2F”(u)@du7

T T 00 x2 o0 5132
O_pE Po(w)——du= | P,(u)—du.
DB+ [ Bwggd= [ R
Similarly, we have Pg(x) = f;/oQ Pw(u)%du. Since P, < P, Py(x) < Py(z). Thus,
i =ep @ and then v <., . In particular, C,(z) < Cg(x).
(ii) Fix any x > 0. Since C, is convex, for any y < z, Cy(z) — C,(y) <
(¢ = )C,(x), and then G, (y) = Cy(z) + (¢ — y)Dy(x) = (x —y)Dy(z). Thus,
D,(x) < inf Gly) < inf CL(?J)
ySex—y  y<e x— Y
Observe that Cy is decreasing and convex. Denote by y* the point where
the infimum of Cy(y)/(x —y) over y € [0, z] is attained (see e.g. Figure 5.6). Then,

*

y* is in fact the point supporting the tangent to Cg(-) which crosses point (z,0),
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and zCyz(y*)/(z — y*) is actually the y-coordinate of the y-intercept of this tangent.

C@ * . . . C:Z;
xfz*) =0, that is limyyeo z infy<, xfz) =0.

Since limytoo Cp () = 0, limgpoo @
O

5.4.2 General Initial Measure

This section discusses the case where the initial law is a general probability measure
with finite mean. We show that there exists a measure v such that v belongs to
set A;’l. Then by Theorem 5.2.1 and Theorem 5.2.2, (v,v) is the unique symmetric
Nash equilibrium for the problem.

Theorem 5.4.2. Let p be the law of a non-negative random variable with finite mean
xg € RT. Then, there exists a unique probability measure v such that v((—o0,0)) =
0, F, is continuous on (0,00), F,(0) = F,(0), v has mean xq, C,(x) > C,(x) for
all x > 0, v has a decreasing density p, and p only decreases at points such that
Cy(xz) = Cu(x). Moreover, (v,v) is the unique symmetric Nash equilibrium for the

problem.

Proof. Let {{in},~; be a sequence of atomic probability measures with finite support
such that F),, (0) - F,,(0), pn, has mean g and p,, T @ in convex order, i.e. C,, 1 Cp.
For every pu,, there exists a probability measure v, that satisfies all of the conditions
described in Theorem 5.4.1 and thus v, € A;n. Define

Dy (z) = —C’,,,n (x) =1—F,, (x) forallz > 0.

Let r, = sup{x: F,,(z) < 1}. By the construction of v, in the proof of Theorem
5.4.1 and Proposition 5.3.4, it can be seen that r,, is finite. Thus, D,, is a decreasing,
convex function with D, (0) =1 — F,(0), Dy, (r,) =0, D,, > 0 and

/OO D, (z)dx = /rn D, (z)dx = rp,Dy(ry) — /rn xDy(dx) = /rn vy (de) = xp.
0 0 0 0 (5.10)
Now let us introduce the Helly theorem (see e.g. Helly [1912]; Filipéw et al. [2012],
Theorem 1.3).

Lemma 5.4.2. (Helly) If {fn}n>1 is a uniformly bounded sequence of monotone
real-valued functions defined on R then there is a subsequence {fn, }k>1 which is

pointwise convergent.

This theorem means that there exists a convergent subsequence of {D), },>1.

Without loss of generality, we assume {D,, }»>1 is pointwise convergent. Denote by

102



Dy, the limit function. Since D, is decreasing and convex for any n > 1, Dy, is

decreasing and convex. Moreover, by Fatou’s lemma and (5.10),

/ Dy d:c—/ lim inf D, (x dx<11m1nf/ D, (z)dx = x.

n—oo n— oo

Because D, is decreasing and fooo Do (x)dz < 00, limgpee Doo(z) = 0.

Define a probability measure v via v((—o00,x]) = 1 — Do (). It is clear that
F,(0) = F,(0), F,(z) is continuous and v has a non-increasing density p. Next we
show that v has mean xy. Suppose Y ~ v and Y,, ~ v, for any n > 1. Recall that
F,, (x) = 1— Dy(z). Because lim,_, Dy(x) = Do (), Y, converges in distribution
to Yo. We next argue that the random variables {Y},},,>1 are uniformly integrable.

For any o > 0,
E[Y,;Y, > o] =E[Y, —; Y, > o] + aP(Y,, > a) = C,,, () + aDy(«).

Let X ~ p and define X via X|X ~ U[0,2X]. Let C(x) = E[(X —x)"]. Then, since
Cy, < C,, and by Lemma 5.4.1, C,,, (o) < C(a) and aDy,(a) < ainfy<q g(fo;) Thus,

since limy—00 C(@) = 0 and limg—s00 ainfy<q g(ay) —0,

Jim supE[Yn; Y, > o] = lim sup (Cy, (@) + aDn(a))

a—0o0 g
< lim (C’(a) + «a inf C(a)) = 0.
a—r00 y<a o — Yy

From the definition, we get that {Y},},>1 are uniformly integrable. Then, since Y,
converges to Y in distribution, E[Ys] = lim,jo E[Y;] = 2o, that is v has mean .

Observe that P, (z) = E[(z — Y,)"] and P,(z) = E[(z — Y&)T]. Fix any
x > 0. Since p(y) = (x — y)T is a bounded, continuous, real-valued function and
since Y;, converges in distribution to Y., we have limpo E[p(Yn)] = Ep(Yso)],
that is P,(z) = limp—o0 Py, (z). Thus, Cy(x) = limy 00 Cy, (x). Then because
Con(@) > G, (@), Cula) > Cu(a).

Suppose Cy(z) > Cy(x) on some interval J, then there exists Ny > 0 such
that C,, (z) > Cy(z) on J for all n > Ny. Then on J, Dy(x) is a linear function.
It is easy to see that Dy (2) = limyteo Dp(2) is also linear on 7. Thus, the density
of v only decreases when C,(z) = C,(x).

It can be seen that v satisfies all the conditions in the theorem, which implies
that v € Aj. The uniqueness of v then follows from Theorem 5.2.2. Furthermore, by

Theorem 5.2.1, (v, v) is the unique symmetric Nash equilibrium for the problem. [

103



5.5 Uniqueness of a Nash equilibrium

<1

Section 5.4 shows that set Aj, is non-empty. In this section, we prove that ’AZ ,

which then proves Theorem 5.2.2 that states A}, is a singleton.

Proof of Theorem 5.2.2. Assume that there exists two distinct elements in set
Ay, v and o. Recall that if C,(x) > Cy(x) then C), is locally a quadratic function
near z, so it is with C,. Moreover, both C, and C,, are concave.

Observe that, for any x > 0, we cannot have C,,(y) > Cy(y) for all y € (x, 00):
if so then C,(y) > Co(y) > C,(y) on (z,00) and C,, is quadratic on (z,c0), which
is impossible by Proposition 5.3.4.

Let K > 0 be such that C,(K) # C,(K). Without loss of generality, suppose
that C,(K) > Cy(K). Define 1 = inf {z > K : C)(z) = C,(x)} . By the observa-
tion above z1 < co. Also note that Cy(z) > Cy(x) for all z € [K, z1).

Suppose that C, (1) = C5(x1) > Cpu(x1). Then, near z,

Co(x1) + Bua(r — x1) + 1 (z — 71)2,
Co(21) + ot (z — 71) + Vo1 (z — 21)2,

——
Q0
—_~
SRS
N~— ~—
[

for some constants 3,1 <0, B51 <0, 7,1 > 0 and 5,1 > 0. Here, the signs of these
constants come from C,(z1) < 0, C, (1) < 0, C,(x1) > 0 and C,, (z1) > 0. Since
Cy(z) > Cy(x) to the left of xy, it is clear that 8,1 < By1.

Assume that 8,1 = f51. Then since Cy(x) > Cy(x) on [K,z;), we have
Y1 > You. Let Ty =inf {x > z1 : Cy(x) = Cu(x)}, then Cy () = Cp(x1)+Bu1(x—
r1) + ya(r — x1)% on [£1,%y,1] and T,1 < oo by Proposition 5.3.4. Further, by
Proposition 5.3.4, Cy(z) < Cyp(21) + Bo1(r — 1) + Vo1 (x — 21)% on (71, 00). Thus,
Cy(Tv1) < Cu(Ty,1) = Cu(Ty1), which is a contradiction. Hence f,1 < fo1 < 0.
Similarly, let To1 = inf{x > 21 : Cy(x) = Cy(x)} < oo and if 7,1 < 70,1 then
Cy(Tg1) < Co(Ty1) = Cu(To), which is a contradiction. So we conclude that
Bui < Bo1 <0and y,1 > Y51 > 0. Set ¥ = By1 — Bu1 > 0.

Now we introduce a useful lemma.

Lemma 5.5.1. Suppose xy, is such that Cy,(x) = Cy(x) > Cu(xy). Then, xp >0

and in a neighbourhood of xi we can write

Cy (k) + Bup(z — k) + Yk — z)?,
Co() + Bok(x — xk) + Yo (z — z)?.

—
G
ONC)
|

Moreover, there is an interval to the left of xy on which Cy(z) — Cy(x) is either
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0 Xk+1  Zk Yk Xk

Figure 5.7: Graph of R(z). Since R'(z) = f,(z) — f,(z) is non-decreasing on
(241, x;) and R (y;,) = 0, R is concave on [z 1, yx] and strictly convex on [y, ).
Since R’ (z) = Cll,(,x) - CZ,(:F), R (xx41) = Bugi1 — Bors1 > 0 and R (zg) = Bup —
Bok < 0. Then, R (y;) < R (x) < 0, and there exists a unique 2z, € (2x41,yx) such
that R(zz) = R(yg). Further, R (z341) > R (z) > 0.

strictly positive or strictly negative. Suppose that C,(z) — Cy(z) > 0 on some
interval (x1, — €,xy): if not then interchange the roles of v and o. Then, B, <
Bok <0 and vy > Yor > 0.

Define xy11 = sup{z <z, : C,(x) = Cy(z)}. Then, xip11 > 0, Cp(xp41) =
Co(zg41) > Cu(xiy1) and hence in a neighbourhood of xy41 we can write

Co(Tr+1) + Bust1(® — Tt1) + Yo pr1 (T — Tpg1)?,

Co(Ths1) + Bok+1( — Tpi1) + Yort1 (T — Tpi1)?

(5.11)

—
oo
— ~—~
8 B
~— ~—
[

Further, Bs k41 < Buk+1 <0, Yokt1 > Vo kt1 > 0 and By g1 —Bokt1 > Bok—Bug >
0.

Proof. Exactly as in the case k = 1 from the proof of Theorem 5.2.2, we conclude
that 8,1 < Bor <0 and v, > Yo r > 0.

Assume that C,(2441) = Cy(vg41) = Cu(wgs1). Then Oy (z511) = Co(Tps1)
by Proposition 5.3.3. Since C,, () > Cy(x) on (zg41,xx), C,, is linear on [z, zx].
Then because C,, is concave, it is clear that C, (z) < C, () on (241, 2x). This im-
plies that C,(xx) < C,(xf), which is a contradiction. Hence C,(xg4+1) = Cp(2kt1) >
Cu(Tpt1)-

It then follows that zxy1 € (0,2%) and both C, and C, are quadratic in
a neighbourhood of xj41. In particular, C, is quadratic on (zg41,2x) and v, =
Vv k+1- Using a similar argument described in the case & = 1 from the proof of
Theorem 5.2.2, we get that By 1 < By k1 <0 and Yo py1 > Y41 > 0.

Denote by f, the density function of measure v. Then f, is constant on
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(k41, k). In contrast, f, is non-increasing, f,(2x) = Yo < Yok = fo(xr) and
fo(@r+1) = Yo k1 > Yokt1 = fu(@py1)- Set yp =sup{y <z : fo(y) = fu(y)}, then
Y € (p11,7k). Further, R(z) £ C,(z) — C,(z) defined on [xy, 1, 7] is zero at the
endpoints, has increasing second derivative and is concave on [rg41, yx| and strictly
convex on [y, zx| (see e.g. Figure 5.7).
Let z; € (xps1,yx) be the unique value such that R(z;p) = R(yx). Then
R (zp41) > R'(z) > 0 and R (yx) < R'(x) < 0. Set H(x) = R(yr — ) — R(yx)
on [0,y — zx] in Proposition 5.3.2, then we get R (z,) > ‘R/(yk)‘ Hence, By 541 —
Bort = R (wr41) 2 B (20) = |[R ()| > | (@1)] = Bok = B > 0.
]

Return to the proof of Theorem 5.2.2. Using Lemma 5.5.1, we construct a

decreasing sequence of points (xj)g>1 at which C, — C, changes sign. Moreover,

Coew) = Colan)] = 1Bk = B

that limgpoo (B — Bok) = C, (o) — C’:,(xoo) exists. However, lim supy o (Bux —
Bok) = ¥ > 0and lim infryo0 (Byk — B k) < —¥ < 0, which is a contradiction. Hence,

> V. Let 2o = limpyoo 75 then x4, > 0. Observe

there cannot be distinct elements v and o in set Aj.

The above is predicated on the assumption that C,(x1) = Cy(21) > Cu(z1).
Now suppose C(z1) = Cs(x1) = Cy(x1). Recall that C,, > C, on an interval
to the left of x1. Let x9 = sup{x <z : Cy(x) = Cy(x)}. Then, z9 € [0, K) and
Cu(z) > Cy(x) on (x2,21).

Assume that C,(z2) = Cs(x2) = Cu(x2). Then, by Proposition 5.3.3,
C,(x1) = Co(x1) and O, (x2) = C,(x2) (recall that C,,(0) = C,(0) = F,(0) — 1).
Because C,, is linear and C., is concave on (z2, x1), C, (z) < C, (z) for all z € [z9, z1].
This means that Cy,(z) < C,(x) for all € [x2, z1], which is a contradiction. Hence
Cy(x2) = Cy(x2) > Cp(x2).

Now starting the construction at xo, rather than z1, we are in the same case
as discussed previously. In particular, there cannot be distinct elements v and o in
set Aj,.

0

5.6 Derivation of the sufficient conditions

This section is devoted to the derivation of the last two conditions in Theorem 5.2.1.
Let A be the set of all measures v satisfying v((—o0,0)) = 0. Given that the

other agent j chooses v; as her target law, where F),; is continuous, agent i aims to
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choose a measure v; to solve

max {/(0700) Fy, (z)vi(dx) + OF,, (O)F,,i(O)} (5.12)
subject to f(o,oo) rvi(dz) = xg, f(O,oo) vi(dz) + F,,(0) = 1, F,,(0) > F,(0) and
Cy,(2) > Cyu(z) for all z > 0.

Introduce multipliers A, v and ¢ > 0 for the first three constraints, and for
each z > 0 introduce a multiplier 7(z) for the last constraint. The Lagrangian for
problem (5.12) is

‘CV]'(VZ';)\”V?Cvn) = /

Fy (z)vi(dz) + 0F,;(0)F,,(0) + A (;1:0 — /
(0,00) (0

,00)

T (1 = [ e - Fyi<o>> ¢ (F(0) — Fu(0))
(0,00)
" /( ERCACREADIEICE:

which gives us (5.2). Since fo o C = J(0.00) fo (0.0)(@ n(dz)v;(dz),

Euj (vis A7, Com) = /

<F (2) Az~ + / (o - z)n(dz>> (d) + Ao+
(0,00) (0,x)

4 (07,(0) =7 +¢) Fu(0) - /( - Culem(a) ~CEL0),
which gives us (5.3). Here n should satisfy that n(dz) > 0 for all z > 0.
Define L,,(z) = F,,(z) — Az — v + f(o (@ = 2)n(dz). Let Dy, be the set of
(A7, ¢, m) such that £, (; A, v,¢,n) has a finite maximum, then D, is defined by

Dy, = {(A\7,¢m) : Ly (x) <0 forall x>0 and 0F,, (0) — v+ ¢ <0}

In order to reach the maximum value, we must have v;(dz) = 0 when L, (x) < 0
and Fy,(0) = 0 when 0F,,(0) — v+ ¢ < 0. This means that for (\,v,(,n) € D,,,
the maximum of £, (-; A, v, (,n) occurs at v* such that v*(dxr) = 0 when L, (z) <0
and F,«(0) = 0 when 0F, (0) — v+ ¢ < 0. Since we search for a symmetric Nash
equilibrium, we must have F, (v) = F,«(z). Thus, L,«(x) < 0 for all z > 0,
Ly+(z) = 0 when v*(dz) > 0, and 0F,-(0) — v + ¢ = 0 if F,-(0) > 0.

Let T'(z) = Az +~ — [ (z — 2)n(dz), then 1/*( ) < T'(x) for any x > 0 and
v*(z) = ['(z) when v*(dz) > 0. Observe that I'(z) = A — [ n(dz) and T" (z) =
—n(dz). Since n(dx) > 0, I' is concave on [0,00). Let | = inf {CL‘ : By« (x) > 0}
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and r = sup{x : Fy«(z) < 1}. By the concavity of I' and the definition of r, we
must have that I'(x) is strictly increasing on (—oo, ). Then since F,- is continuous,
F«(z) = T'(z) Ya € [l,r]. Thus, F,~ is continuous, strictly increasing and concave
on [l,r].

Assume that [ > 0. Because I' (x) > 0 for z < r, T'(z) < T'(l) = F,- (1) for all
x € [0,1). But notice that F,«(x) = Fy«(I) for all x € [0,1), since F,+ is continuous
on (0,00) and [ > 0. This means F,«(z) > I'(x) on [0,1), which is a contradiction.
Thus, [ < 0. Then by the non-negativity of [, it follows that [ = 0.

Now by Kuhn-Tucker condition, v* should satisfy that if C,« (z) > C,,(z) then
n(dxz) = 0. So if Cy«(x) > C,(x) on some interval J C [0,7], then Fy«(x) =I'(x) is

linear on 7.
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