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A B S T R A C T

Quantum technologies have progressed beyond the laboratory set-

ting and are beginning to make an impact on industrial development.

The construction of practical, general purpose quantum computers

has been challenging, to say the least. But quantum cryptographic

and communication devices have been available in the commercial

marketplace for a few years. Quantum networks have been built in

various cities around the world, and plans are afoot to launch a ded-

icated satellite for quantum communication. Such new technologies

demand rigorous analysis and verification before they can be trusted

in safety and security-critical applications.

In this thesis we investigate the theory and practice of equivalence

checking of quantum information systems. We present a tool, Quan-

tum Equivalence Checker (QEC), which uses a concurrent language

for describing quantum systems, and performs verification by check-

ing equivalence between specification and implementation. For our

process algebraic language CCSq, we define an operational seman-

tics and a superoperator semantics. While in general, simulation of

quantum systems using current computing technology is infeasible,

we restrict ourselves to the stabilizer formalism, in which there are

efficient simulation algorithms and representation of quantum states.
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By using the stabilizer representation of quantum states we introduce

various algorithms for testing equality of stabilizer states.

In this thesis, we consider concurrent quantum protocols that be-

have functionally in the sense of computing a deterministic input-

output relation for all interleavings of a concurrent system. Crucially,

these input-output relations can be abstracted by superoperators, en-

abling us to take advantage of linearity. This allows us to analyse the

behaviour of protocols with arbitrary input, by simulating their op-

eration on a finite basis set consisting of stabilizer states. We present

algorithms for the checking of functionality and equivalence of quan-

tum protocols. Despite the limitations of the stabilizer formalism and

also the range of protocols that can be analysed using equivalence

checking, QEC is applied to specify and verify a variety of interesting

and practical quantum protocols from quantum communication and

quantum cryptography to quantum error correction and quantum

fault tolerant computation, where for each protocol different sequen-

tial and concurrent model are defined in CCSq.

We also explain the implementation details of the QEC tool and

report on the experimental results produced by using it on the verifi-

cation of a number of case studies.
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We have seen that computer programming is an art,

because it applies accumulated knowledge to the world,

because it requires skill and ingenuity, and especially

because it produces objects of beauty.

— Donald E. Knuth [70]
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1
I N T R O D U C T I O N

Quantum Information Processing (QIP) is an emerging field at the bound-

ary of quantum physics and computer science. The success of quan-

tum mechanics in understanding the physical world on one hand, and

expanding the domain of computer science on the other hand, has left

QIP in the spotlight of many researchers across engineering, physics,

mathematics and computer science.

The idea of building a computational device based on quantum me-

chanical laws dates back to 1980s [47] and [77]. In particular, Deutsch

introduced the Quantum Turing Machine in [35].

The Classical Turing Machine [98] operates on digital bits, where

they have binary values of 0 or 1. In contrast, the Quantum Turing

Machine can operate on quantum bits (qubits), where their values are

determined by quantum states, which can be not only 0 or 1, but also

can be in a combination (superposition) of 0 and 1.

Quantum Computers are devices that work with qubits and they op-

erate according to the laws of quantum mechanics, e. g. they are ab-

stracted by a quantum Turing machine. It has been shown that quan-

tum computers can outperform digital computers in some computa-

tional tasks: Deutsch-Jozsa [36], Bernstein-Vazirani [18] and Simon’s al-
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introduction 2

gorithm [96] are among early examples of Quantum Algorithms which

are faster than their classical analogues. It was in 1995 that Shor intro-

duced a polynomial time algorithm for integer factorization and discrete

logarithms using a quantum computation model [95]. Shor’s discov-

ery revived research in QIP, because of the importance of these two

problems in cryptography, and the consequences of solving them for

current communication security technologies.

The prospect of QIP is not limited to a novel computational model,

it also offers new ways of developing fast and secure communication

systems. Quantum communication technologies use unique character-

istics of quantum mechanics such as Quantum Entanglement and No-

Cloning theorem to enhance the security of communicating systems.

Bennett and Brassard introduced the first quantum cryptographic

protocol in 1984 (BB84) for distributing classical secret keys (QKD)

using qubits [15]. The importance of quantum cryptography is due to

the fact that it is unconditionally secure [79] (unless quantum mechan-

ics is fundamentally wrong). Later Bennett et al. [17] presented the

Quantum Teleportation protocol for transferring quantum states using

only classical communication, local quantum operations and quan-

tum entanglement.

With a growing interest in security of communications, many in-

dustrial and governmental agencies are looking into opportunities

that quantum technologies can present in the future [86]. Neverthe-

less, to realise quantum technologies, physicists and engineers have

to be able to control quantum phenomena. This is a difficult task due
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to the existence of noise at the quantum level, which affects quantum

computational processes and creates quantum decoherence. Quantum In-

formation Theory tries to understand quantum decoherence and trans-

mission of information by qubits within a mathematical formalism.

Remarkably, it has been discovered that with the help of Quantum

Error Correction codes and keeping the level of noises within a certain

threshold, quantum decoherence can be overcome [27].

Today, theoretical developments in QIP are followed by our ad-

vances in implementing QIP systems in the laboratory and industry.

This is emphasised by a recent physics Nobel prize to Wineland and

Haroche for their achievements in experimenting with fundamental

aspects of QIP, such as entanglement, in laboratory [1]. Companies

like ID Quantique and MagiQ Technologies are selling quantum cryp-

tography products, based on QKD, to the private and public sectors.

There is even a Canadian company called D-Wave, selling a product

based on Adiabatic Quantum Computation [43] for solving specific opti-

mization problems, and major companies and organisations such as

Google and NASA purchased their systems despite divided opinions

on whether they have truly quantum devices. Quantum communica-

tion networks based on QKD have been built around the world, such

as DARPA Quantum Network in Boston [42], the SeCoQC network

around Vienna [103] and the Tokyo QKD Network [93]. Recently, as

a part of EU project, qubits have been teleported over 140 km of open

space, between two Canary Islands [76]. Moreover, there are plans to
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launch satellites capable of QKD based communications in the near

future [104].

Naturally, one should distinguish between information-theoretic

proofs of the security of quantum cryptography and the security of

implementation of such systems. The growing complexity of QIP sys-

tems demands alternative and novel ways of analysis. In particular,

in this thesis, we are interested in investigating the formal verification

of QIP systems.

1.1 formal verification

Formal verification combines logical and deductive reasoning with

algorithmic techniques to model and understand software, hardware

and distributed systems. The scope of formal verification techniques

in analysing complicated systems has grown dramatically in the past

few decades. As a result, today there exists a wide spectrum of verifi-

cation techniques from Model Checking and Theorem Proving, to Process

Calculus, all of which have helped us grasp a better analytical under-

standing of sophisticated computer systems.

In model checking [28], [13], a system S is described by its state

space (i. e. configuration of systems at any given time) and a model

MS, described by a Labelled Transition System (LTS) and consisting of

states and transitions between them. Every state in MS is labelled with

atomic propositions that represent basic properties satisfied at the
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given state. A property of S, denoted by φS is a logical formula e. g.

in Temporal Logic which describes the intended specification. Model

checking involves that MS � φS, that is to show that φS is satisfied

on all paths from initial states to reachable states of MS. There are vari-

ations of model checking with respect to different kind of models

(such as probabilistic) and properties (such as CTL, LTL, CTL*, etc.).

The main limitation of model checking is the explosion of states, as

the number of states grows exponentially in the size of the input,

especially when there are many processes and communications. Sym-

bolic Model Checking [25] and Bounded Model Checking [29] have been

developed to tackle the state explosion problem. In Symbolic Model

Checking, a concise representation of a model is constructed by using

Binary Decision Diagrams (BDD) [24], and the checking of properties

on BDD can be done rapidly in many important cases [25]. Bounded

Model Checking however, explores models incrementally. Properties

on paths of length k are checked first, and if necessary, model check-

ing then proceeds on paths of length k + 1. Bounded Model Checking

in some cases avoids explosion of states [29].

Since its introduction three decades ago, model checking has pro-

gressed from an ambitious theoretical technique to successful indus-

trial practice. Many model checkers are used for the verification of

various software, hardware and safety-critical systems. Some exam-

ple of model checkers in use are Symbolic Model Checker SMV [25],

PRISM [72] (for probabilistic model checking), SPIN [67], BLAST [20] (for

checking C programs), JAVA Path Finder (JPF) [64] (for verification of
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Java byte codes) and UPPAAL [74], (which verifies real-time systems

using timed automata) among others.

An alternative way of reasoning about computer systems is to for-

mally prove certain properties as theorems, in a well defined deduc-

tion system. The idea is to formulate theories in a deduction system

by defining necessary rules and axioms and then implement system-

atic procedures for derivation of the theorems (constructing proofs)

by applying rules to the axioms. The introduction of Higher Order

Logic (HOL) to analyse programming languages in one hand and de-

velopment of Automated Theorem Provers such as HOL [57],Isabelle

[85] and later Coq [89] and Agda [21] on the other hand, has con-

tributed significantly to the area of formal verification. Although Au-

tomated Theorem Proving provides more generality in terms of verifica-

tion compared to Model Checking, it needs user intervention to guide

proofs for specific problems, which is a drawback.

Process calculi are frameworks for analysing observable behaviours

of distributed systems. This idea was studied by Milner [81] in the

Calculus of Communicating Systems (CCS), where the algebraic struc-

ture of concurrent systems and equational reasoning for processes

was developed. At around same time, Hoare introduced Communi-

cating Sequential Processes (CSP) [66] as a programming language for

describing concurrent systems. Later, inspired by CCS, a semantics

of CSP was defined in [23]. For concurrent systems where the con-

figuration is changing, Milner introduced a more flexible calculus,

called π-calculus [92]. In this calculus, processes in a network can also
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communicate names of channels, thus possibly changing the config-

uration of the network. There have been numerous applications in

developing π-calculus style formalisms, such as calculus for crypto-

graphic protocols (Spi-Calculus) [5] and stochastic process calculus

for analysing biological networks [88].

Combining process calculus and model checking resulted in process

oriented model checking. In particular, showing behavioural equivalence

(or bisimulation) of processes using model checkers is the most impor-

tant application of process oriented model checking. Model checkers

CWB-NC (Concurrency Work Bench of the New Century) for CCS [30]

and FDR (Failures Divergences Refinement) for CSP [91] are among

successful examples of applying process oriented model checking to

industrial problems.

1.2 formal verification in qip

This thesis makes a contribution to the application of formal verifica-

tion techniques to QIP, particularly by using equivalence checking. Over

the last decade there have been efforts to bridge computer science

areas such as programming languages and formal verification with

QIP. The Quantum Pseudo Code of Knill [69], for describing quantum

algorithms at a higher level than quantum circuits, is an early exam-

ple of using formal languages in QIP. Meanwhile, different quantum

programming languages for future quantum computers have been de-
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signed (see the survey by Gay [50]), among which is Selinger’s Quan-

tum Programming Language (QPL) [94]. In another direction, Abramsky

and Coecke [6] have defined categorical semantics for quantum proto-

cols, which lead to the formulation of categorical quantum mechanics,

giving more insights into the foundation of quantum mechanics us-

ing theoretical computer science methods.

Process calculus has been extended to the quantum setting. Com-

municating Quantum Processes (CQP) by Gay and Nagarajan [53] is

an instance in which π-calculus is modified with QIP constructs for

the analysis of quantum communication systems. Subsequently, be-

havioural equivalence (bisimulation) for CQP processes has been in-

vestigated in [33]. Another example of quantum process calculus is

qCCS, introduced by Ying et al. [102]. In addition to an operational

semantics, a denotational semantics of qCCS is defined using super-

operators. These are linear transformations acting on subspaces of the

Hilbert Space (the vector space that qubits live in) and of great sig-

nificance in quantum mechanics. Superoperators will be defined in

Chapter 2 and used throughout this thesis. Equivalence relations for

qCCS and different variations of bisimulation (i.e open and symbolic

bisimulation) are studied in [44], [34] and [46].

The aforementioned formal approaches to QIP are based on a par-

ticular model for quantum computation, which we will explain in

Chapter 2 and use throughout the thesis. However, there are other

quantum computational models such as measurement based [61], [83]

and [90], and linear optical quantum computation [40]. Measurement
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Calculus [32] and Linear Optical Quantum Processes [48] study formal

aspects of these alternative models of computation.

Despite theoretical developments in formal analysis of quantum

systems, still there is a demand for tool support. For this purpose,

Quantum Model Checker (QMC) [56] has been implemented. This tool

verifies quantum protocols using property oriented model checking.

Properties in QMC are described in Quantum Computation Tree Logic

(QCTL) [14], a logic for specifying quantum states. In general analysing

quantum systems with classical computers is infeasible. QMC can only

verify a restricted class of quantum protocols, which lie under Stabi-

lizer Formalism (see Chapter 5 for definitions). This is a class of quan-

tum computation which represents Stabilizer States in polynomial space

and simulates certain operations on them in polynomial time. Further-

more, simulation tools for the stabilizer formalism have been devel-

oped in [4] and [7]. This formalism is a useful for many applications

in QIP, and will be introduced in Chapter 5. Nevertheless, the stabi-

lizer formalism does not cover all possible quantum states and opera-

tions, therefore model checking of quantum protocols using stabilizer

formalism only provides a witness rather than a proof for the correct-

ness of quantum protocols. Among other examples of tool supports

for QIP is Quantomatic which is a tool for reasoning about categor-

ical semantics of quantum protocols as mentioned earlier [38]. The

input to this tool are graphs representing the underlying categorical

structure of quantum systems and rules are translated as graphical
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operations on the input. However, this tool is not fully automatic and

user intervention can be complicated.

At the circuit level, the aim of tool development is to optimise syn-

thesis of quantum circuits for different implementations of quantum

algorithms. Despite scalability issue, there have been many imple-

mentations of such tools (see for example [22], [100]). Among very

recent quantum circuit simulators with a programming interface are

Quipper [62] and Liquid [80], developed at Dalhousie University and

Microsoft, respectively.

1.3 outline and contribution

In Chapter 2 we give necessary definitions from quantum mechanics

and linear algebra. Then in Chapter 3 we review related work, some

of which were mentioned in the introduction, in more detail.

In Chapter 4, we review the language QPL [94] and discuss its su-

peroperator semantics. Then we introduce a concurrent language CCSq

for describing concurrent QIP protocols. This language is based on

CCS and allows the mixing of classical and quantum data.

In terms of concurrency, we consider the synchronised interleaving

model, and provide a justification for this choice. Furthermore, we

present reduction rules for CCSq. We define its semantics by reducing

each interleaving to a sequential QPL program and interpreting it as

a superoperator.
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In Chapter 5, we explain the stabilizer formalism and the main sim-

ulation algorithm along with many normal form algorithms. We give

details of the Stabilizer Basis (SB) [51] for the space of density matrices,

i. e. the linear space which superoperators act upon. We also present

three algorithms for equality testing of stabilizer states, based on al-

gebraic and information theoretic aspects of stabilizer states. Subse-

quently, we show how to interpret CCSq protocols with arbitrary in-

puts using the linearity of superoperator semantics. We will define

functional quantum protocols, i. e. quantum protocols that behave de-

terministically with respect to the input/output relation and show that

we are able to verify them by our equivalence checking technique.

Furthermore, we we present our algorithm for the verification of func-

tional concurrent protocols which uses stabilizer states equality testing,

stabilizer basis and the linearity of superoperators. A discussion on

computational complexity of this algorithm follows. We also consider

how error correction protocols with general errors can be verified using

the linearity argument. The extension of linearity arguments for veri-

fication of stabilizer quantum circuits, using map state duality, is also

discussed.

In Chapter 6 we give implementation details of an equivalence

checking tool Quantum Equivalence Checker (QEC), followed the def-

inition of models for quantum protocol used in case studies. The case

studies, include the verification of a range of protocols from quan-

tum communication, quantum fault tolerant protocols to quantum
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cryptography. Finally, experimental results of equivalence checking

will be discussed.



2
B A C K G R O U N D

In this chapter we review fundamental concepts of quantum mechan-

ics and QIP which are necessary for presentation of this thesis. We

start from linear algebra and vector spaces, then we explain basic prin-

ciples of quantum mechanics followed by main elements of quantum

computation and quantum information theory. For more elaborate

details the reader may consult [84]. It should be noted that although

our approach to study QIP is based on formal rather than quantitative

analysis, recalling main results of quantum information theory makes

the context of this thesis more clear.

2.1 linear algebra

Linear algebra studies vector spaces and linear transformations. An

important vector space in mathematics and physics is Hilbert Space,

where quantum mechanics is formulated. In the following, first we

give basic definitions and notations, then Hilbert Space will be for-

mally defined.

13
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Vectors are represented by Dirac’s ket notation [37] : |v〉. Let complex

conjugate be denoted by |v〉∗ and |v〉† stands for conjugate transpose,

then bra notation represents dual vector :

〈v| = |v〉†

Inner product for two vectors |v〉 and |w〉 in the vector space V is

defined as a function: Inner product

〈v|w〉 : V ×V → C

which satisfies the following properties:

1. 〈v|∑i αi|wi〉 = ∑i αi〈v|wi〉

2. 〈v|w〉 = 〈w|v〉∗

3. 〈v|v〉 ≥ 0
Outer product

Similarly the outer product is defined as a function which maps two

vectors to another vector:

|w〉〈v| : V ×V → V

such that

|w〉〈v|(α) = |w〉〈v|α〉
Trace Function

Let A be a matrix representation of an operator ρ. Trace of ρ, denoted

by tr(ρ), is a matrix function which returns the sum of diagonal ele-

ments of A:

tr(ρ) = ∑i Aii
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A Hilbert Space H is a complex vector space, equipped with inner

product, zero 0 and unit 1 elements, satisfying following conditions

for all |v〉, |w〉, |u〉 ∈ H: Hilbert Space

|v〉+ |w〉 = |w〉+ |v〉

(|v〉+ |u〉) + |w〉 = |v〉+ (|u〉+ |w〉)

0 + |v〉 = |v〉

α(β|v〉) = (αβ)|v〉

(α + β)|v〉 = α|v〉+ β|v〉

α(|v〉+ |w〉) = α|v〉+ α|w〉

1|v〉 = |v〉

〈v|w〉 = 〈w|v〉∗

〈v|v〉 ≥ 0

(α〈v|+ β〈w|)|u〉 = α〈v|u〉+ β〈w|u〉

A useful operator on Hilbert Space is called Tensor Product. This linear Tensor Product

operator describes how Hilbert Spaces can be composed to construct

a larger Hilbert Space.

Formally, for Hilbert spaces H1 and H2 with dimensions n1 and

n2 respectively, the Tensor Product maps these two spaces to a n1 · n2

Hilbert space H1 ⊗H2, which is constructed in the following way:

Let 〈|〉1, 〈|〉2 and 〈|〉 be the inner products defining H1 , H2 and

H1 ⊗ H2, respectively. Suppose v1, w1 ∈ H1 and v2, w2 ∈ H2, we

have:
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〈v1 ⊗ v2|w1 ⊗ w2〉 = 〈v1|w1〉1 〈v2|w2〉2

The space H1 ⊗H2 is then spanned by linear combinations of tensor

products, that is also satisfies the following properties:

1. For a complex number c and states |v〉 ∈ H1 and |w〉 ∈ H2:

c(|v〉 ⊗ |w〉) = (c|v〉)⊗ |w〉 = |v〉 ⊗ (c|w〉)

2. For states |v1〉, |v2〉 ∈ H1 and w ∈ H2:

(|v1〉+ |v2〉)⊗ |w〉 = |v1〉 ⊗ |w〉+ |v2〉 ⊗ |w〉

3. For states v ∈ H1 and |w1〉, |w2〉 ∈ H2:

|v〉 ⊗ (|w1〉+ |w2〉) = |v〉 ⊗ |w1〉+ |v〉 ⊗ |w2〉

2.2 quantum mechanics

Quantum Mechanics is the mathematical theory which formalises

quantum systems (e.g. sub-atomic particles) and their behaviours.

Each quantum system is abstracted by Hilbert Spaces and their com-

ponents are described by quantum states, as vectors of Hilbert Spaces.

In this way, many phenomena of physics at quantum level such as

non-locality, contextuality and no-cloning can be explained mathemati-

cally. Some cases such as non-locality and contextuality, are impossible

to be described merely by a classical probabilistic model (Hidden Vari-
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able model [41]). The impossibility results of this kind are referred as

no-go theorems, and play an important role in foundations of physics.

Nevertheless, results in quantum mechanics are based on a few

principles, known as postulates of quantum mechanics. In the follow-

ing we introduce these principles, then we generalise pure quantum

states to density matrices and finally, superoperators will be introduced.

2.2.1 Postulates of Quantum Mechanics

As a mathematical theory, quantum mechanics provides a model for

understanding quantum phenomena. The definitive rules in which

quantum systems must follow are not given in quantum mechanics,

instead a conceptual framework where such rule can be inferred, is pro-

vided. In the following we list this framework, known as postulates of

quantum mechanics:

1. Postulate 1: Any physical system (which is assumed to be iso-

lated) is abstracted by a Hilbert Space which is called state space.

The system is completely specified by unit vectors in it state

space, known as state vectors.

2. Postulate 2: Evolution of a closed quantum system is described

by a unitary operator U, that is a linear transformation operat-

ing on the state vector and has the property UU† = I. It should

be noted that timed evolution of quantum states is described

by a differential equation, called Schrödinger equation [84, p 82]
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however, this formulation is not necessary for this thesis argu-

ments.

3. Postulate 3: Quantum measurement is described by a set of op-

erators {Mm} where m corresponds to the measurement out-

comes. For a state |φ〉, the probability of measuring with out-

come m is:

p(m) = 〈φ|M†
m Mm|φ〉 (2.1)

and after performing measurement, |φ〉 permanently changes

to

Mm|φ〉√
〈φ|M†

m Mm|φ〉
(2.2)

Measurements operators are subject to the completeness equation,

which ensures the probabilities adds up to 1:

∑
m

M†
m Mm = I (2.3)

2.2.2 Density Matrices and Superoperators

An alternative way of describing a quantum state to vector state is by

using density operator. The benefit of using density operators is two

folds: Firstly, often in QIP we need to deal with uncertainties about

quantum states. Density operators can describe uncertain state vectors
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(mixed state) in a compact and convenient way, although these two

representations of quantum states are mathematically equivalent. In

the following we give two formulations of density operators, one uses

probabilities and another is in terms of trace preserving matrices. Then

we present two significant applications of density operators namely

reduced density operator and Superoperators.

Definition 2.1 Let {(|φi〉, pi)} be an ensemble of a quantum state , where

pis are probabilities (i. e. ∑i pi = 1). The density operator corresponding to Density Operator

(defined by

ensemble)

the above ensemble is defined as:

ρ := ∑i pi|φi〉〈φi|

where |φi〉〈φi| denote outer product as in Section 2.1.

Another characterisation of density operators uses structural alge-

braic properties:

Theorem 2.1 The operator ρ is a density operator associated with the en-

semble {(|φi〉, pi)} if and only if it satisfies following conditions: Density Operator

(Defined by positive

matrices)
1. (Trace condition): tr(ρ) = 1.

2. (Positivity): 〈φ|ρ|φ〉 ≥ 0.

3. (Hermitian) : ρ† = ρ.

As a corollary of Theorem 2.1, a criterion for deciding if a quantum

state is mixed or pure, are obtained.

Corollary 2.1 For every density operator ρ, we have:



2.2 quantum mechanics 20

1. tr(ρ2) ≤ 1.

2. tr(ρ2) = 1 if and only if ρ is pure state otherwise, ρ is in mixed state.

An important application of density operators is reduced density op-

erators for describing composite quantum systems. Using reduced

operator, one can obtain partial trace of a larger quantum state. For-

mally, suppose ρAB is a density operator corresponding to two differ-

ent quantum systems A and B. In order to obtain a density operator

corresponding to the system A, we need to trace out system B from

the joint state. This can be done by using partial trace function, as-

suming trB applies trace function to B:

ρA = trB(ρAB) (2.4)

For example, suppose we have given the following entangled quan-

tum state, known as Bell pair in density operator form:

ρAB =
1√
2
(|00〉+ |11〉) 1√

2
(〈00|+ 〈11|)

tracing out the second half of this state gives:

ρA = trB(ρAB)

=
trB(|00〉〈00|) + trB(|00〉〈10|) + trB(|00〉〈01|) + trB(|00〉〈11|)

2

=
|00〉〈00|+ |11〉〈11|

2

=
I
2
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Recalling Corollary 2.1, the final reduced density operator in the

above example is mixed state, indicating that in quantum mechan-

ics it is possible to know a joint quantum state with certainty but be

uncertain about its individual subsystems.

Another application of density operators is the notion of Superoper-

ators. These linear operators acting on density operators and describe

how quantum state in the form of density operators evolve. The fol-

lowing theorem characterise superoperators:

Theorem 2.2 (Superoperator Characterisation) A map between density op-

erators ρ and ρ′, S : ρ 7→ ρ′ is a Superoperator if and only satisfy the Superoperators

following conditions:

1. preserves Hermitian: ρ′ is Hermitian⇔ ρ is Hermitian.

2. preserves trace : tr(ρ′) = 1⇔ tr(ρ) = 1.

3. preserves positivity: ρ′ is positive⇔ ρ is positive.

4. Linearity: S(ρ1 + ρ2) = S(ρ1) + S(ρ2).

Remark 2.1 The above characterisation of superoperators is based on operator-

sum representation, which we shall use in this thesis. However, there is

another representation of superoperators known as Krause representation

(see [71]).
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2.3 quantum computation

In this section we explain fundamental concepts of quantum compu-

tation. We present circuit model as a widely used formalism to describe

quantum computation and algorithms.

The basic element of quantum information is quantum bit or qubit.

The state of a qubit q is defined by a state vector |φ〉q in the Hilbert

space H⊗2.

Definition 2.2 (Qubit) The state of a quantum bit q is defined to be the

following state vector in H⊗2: Quantum bit:qubit

|φ〉q := α|0〉+ β|1〉

Where |α|2 + |β|2 = 1, α, β ∈ C. For n qubits, the tensor product 2.1 of

individual qubits defines the quantum state i. e. :

|Ψ〉 = α1|00 . . . 0〉+ . . . + αn|11 . . . 1〉

Such that ∑i |αi|2 = 1 for αi ∈ C.

A primitive model of quantum computation is Quantum Circuit Model.

In this model each computational process consists of a number of Quantum Circuits

Quantum Gates, operating on qubits. Quantum gates can have arity

one or more e. g. Pauli operators (see Figure 2.1) have arity one and

controlled CNot, Toffoli have arity two and three respectively. The

Pauli gate X operates as the quantum not gate. Z and Y gates change

the phase of a qubit state. CNot gate consists of a control qubit and

a target qubit, depending on the value of control qubit, it applies X
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X =

(
0 1
1 0

)
, Z =

(
1 0
0 −1

)
, Y =

(
0 −i
i 0

)
, I =

(
1 0
0 1

)

Figure 2.1: Matrix representation of arity-1 quantum operations

CNot =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , Toffoli =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


Figure 2.2: Matrix representation of arity-2,3 quantum operations

gate on the target qubit. Finally, Toffoli gate has two controlled qubits

and depending on both of them applies X gate on the third (target)

qubit. Remarkably, any classical circuit can be replaced by an equiva-

lent circuit with only Toffoli gates.

In the quantum circuit model, measurement is done using the Mea-

surement gate. This gate performs general measurement i. e. in the stan-

dard basis. The outcome of measurement gate is a classical piece of

information and permanently changed quantum state. It should be

noted that often we need to apply a special case general measure-

ment or projective measurement (i. e. in other basis than standard basis

(see [84, p 87]). In quantum circuit model, this kind of measurement

can be achieved using series of unitary gates prior the measurement

gates.
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|ψ〉 • H •

|0〉

|0〉 H • X Z |ψ〉

Figure 2.3: Teleportation Circuit

Using a discrete set of quantum gates, any quantum circuit can be

approximated to an arbitrary precision. In other words, similar to

the set of classical gates {AND, OR, NOT}, there is a set of quan-

tum gates capable of approximating universal quantum computation.

For example, Solovay-Kitaev theorem [84, p 617] states that a circuit

with m arbitrary unitaries, can be approximated for any ε using only

O(m logc(m/ε)) gates from the universal set:

{Hadamard, Phase, CNOT, π/8}

Quantum circuits usually are depicted with wires as for qubits and

boxes for quantum gates (e. g. X ). Double wire appears after

quantum measurement, denoting classical outcome of measurement

gate (depicted by ). Controlled gates are shown with circle

for control qubit and dots for target qubits. For example the circuit

in the Figure 2.3 shows how to perform quantum Teleportation [17],

using Pauli and measurement gates. We shall present Teleportation

protocol in the Chapter 6

Main quantum algorithms such as Shor’s algorithms [95] for fac-

toring integer and discrete logarithm are presented using quantum

circuits. From complexity point of view, these algorithms belong to

the class BQP, i. e. the problems which can be decided by a uniform
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family of polynomial sized quantum circuits with bounded error prob-

ability. The aforementioned Solovay-Kitaev theorem gives a uniform

construction of quantum circuits. A remarkable result in quantum

complexity theory connects quantum computing with classical com-

puting and states that BQP ⊆ PSPACE [19]. More details on quantum

computational complexity can be found in [19].

2.4 quantum information

In the previous section we have presented closed QIP system. In re-

ality, we need to deal with noises, and in fact this is a challenging

part in the implementation of quantum systems. Quantum Information

Theory investigates the dynamics of open quantum systems (i. e. systems

which are affected by noises). The success of quantum information

theory follows from the progresses which have been made during

development of Quantum Error Correction and Quantum Fault Tolerant

computation. In this section, the main results in quantum informa-

tion theory are briefly presented. We start from the model of quan-

tum error corrections, then we look into the quantum fault tolerant

computation. The case studies related to these areas are presented in

6. Finally, we introduce the notion of overlap of quantum states, arises

in many applications of quantum information theory. In particular,

by computing fidelity between two quantum states, we can measure

how close two quantum states are. This of course gives us an alterna-
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tive way of testing equality of quantum states and therefore suggests

another method for implementing equality test in Chapter 5. Quantum Error

ModelIn quantum error correction theory, errors or noises are considered

to be superoperators E , acting on density operators. This model can

describe dynamics of open quantum systems that are weakly or even

strongly coupled with environment, assuming that the effect of er-

rors/noises are quantum operations themselves. A useful feature of

this model is that it describes changes to quantum states, discretely,

making it more convenient for formal analysis.

Let ρ be a density operator corresponding to the states which we

want to protect with error correcting code and let E be as above. Let

C denote a quantum error correcting code i. e. a subspace of a larger

Hilbert state than the ρ’s initial Hilbert space (some examples of such

codes are given in Chapter 6). Then an error correction protocol is

successful if there is a superoperator R, such that it can correct E to

retrieve ρ:

(R ◦ E)(ρ) ∝ ρ (2.5)

The Equation 2.4 is in its most general form, however in our case

studies we have performed perfect recovery, that is to say we substi-

tute ∝ with equality. The following theorem [84, p 436] formalises the

conditions needed for error correction protocols:

Theorem 2.3 For a quantum code C, and a error correction protocol P

which can be thought as a projector onto C and errors E = {Ei}, a nec-



2.4 quantum information 27

essary and sufficient condition for the existence of correction operator R is

that there is a Hermitian operator α such that

PE†
i EjP = αijP

Moreover, a remarkable discovery by Calderbank and Shor [27] shows

that in fact such an error correcting scheme can always be constructed.

A major application of quantum error correction is in realising

fault tolerant quantum computation. The main idea here is to replace Fault Tolerant

Quantum Computationqubits in quantum protocols with encoded blocks of qubits using quan-

tum error correction codes. Quantum gates has to be modified to

operate on encoded blocks of qubits. In this way quantum computa-

tion processes can be protected from noisy environment and avoid

de-coherence. Interestingly, such a fault tolerant schemes exist if the

faults probabilities are kept low during the computation.

Theorem 2.4 (Threshold theorem) [84, p 481] Suppose a circuit has

p(n) gates, depending on the circuit’s input size . Assume the probability

that quantum gates fail is at most p and that is always bounded by a con-

stant threshold p ≤ Pth. Then with probability of error at most ε, there is a

quantum fault tolerant scheme which uses

O(poly(logp(n)/ε)p(n))

gates to simulate the circuit on a faulty hardware.

In Chapter 6 we will analyse two protocols which implement fault

tolerant CNOT gate.
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Comparison of quantum data in terms of information theoretic

measures, is a central task in quantum information theory. Several Fidelity between

quantum statesmetrics for quantum states have been proposed in the literature, among

them is the notion of fidelity between quantum states.

Definition 2.3 Let σ and ρ be quantum states, the (Uhlmann) fidelity be-

tween two states is defined by:

F(ρ, σ) = tr
√

ρ1/2σρ1/2 (2.6)

The following proposition, which is a direct consequence of Uhlmann’s

theorem [84, p 410], characterizes the properties of fidelity, in particu-

lar a criteria for equality of two states. In Chapter 5, an algorithm for

testing equality of stabilizer states based on fidelity will be presented.

Proposition 2.1 Suppose F(ρ, σ) denotes the fidelity, according to the Def-

inition 2.3. Then F has the following properties:

1. F(ρ, σ) = F(σ, ρ).

2. 0 ≤ F(ρ, σ) ≤ 1.

3. F(ρ, σ) = 1 if and only if ρ = σ, F(ρ, σ) < 1 if and only if ρ 6= σ.
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F O R M A L M E T H O D S I N Q U A N T U M I N F O R M AT I O N

P R O C E S S I N G

Quantum computation and information are mostly studied in the

quantum circuit model, i. e. in the level of hardware of quantum de-

vices. With growing complexity of quantum technologies, it has be-

come imperative to develop high level interfaces, like programming

languages, specifically designed for QIP. In this chapter we review for-

mal methods techniques which have been applied to QIP. We start by

introducing Quantum Programming Language (QPL) [94], its syntax

and semantics. This language has been used in the early version QEC

tool [9]. We review QMC [56], its main features and its limitations.

Then we introduce process algebraic languages, such as, CQP [53]

and qCCS [102] and the main results surrounding them. We will move

on to present the tool Quantomatic [38], based on graphical language

for QIP.

3.1 quantum programming language (qpl)

This language is designed by Selinger [94], primarily for describing

quantum algorithms. QPL is structured for a quantum device with

29
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P,Q ::= input x|output x|newbit b|newqbit q|discard x

skip|P;Q|q*= S|

if b then P else Q end| measure q then P else Q end |

while b do P | proc X:{P} in Q | call X

Figure 3.1: Compact Syntax of QPL

classical control, thus it handles both classical and quantum data in

order to express both quantum data and control flow. The main fea-

tures of QPL are as following:

1. Mixing classical data and quantum data.

2. Expressing both quantum data flow and classical control flow,

so it can express recursion and loops as well as classical conditions

and quantum measurement.

3. Having denotational semantics in terms of superoperators (see

Chapter 2).

4. Designed as a functional language, so it is convenient for de-

scribing complex quantum algorithms with many subroutines.

5. QPL is statically typed, thus can be checked against runtime

errors.

The syntax of QPL can be described by a textual language and also

by quantum flow charts [94]. Figure 3.1 shows the textual syntax of

QPL. Quantum programs in QPL are initialised with input variables Syntax of QPL

by input x. Quantum variables correspond to qubits can be declared

by newqbit x, as well as classical variables by newbit x. Unitary op-

erators on qubits are represented by q *= U. Quantum measurement
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program Teleportation

input q0:qbit

//Preparing EPR pair.

newqbit q1;

newqbit q2;

q1*=H;

q1q2*=CNot;

//Entangling Alice's qubit.

q0q1*=CNot;

q0*=H;

//Alice's Measurement and Bob's corrections.

measure q0 then q2*=Z else q2*=I end;

measure q1 then q2*=X else q2*=I end

output q0:qbit

Figure 3.2: Teleportation in QPL

in QPL is expressed as measure q then P else Q end, where each

branch corresponds to a classical outcome of quantum measurement.

Qbits in QPL are discarded by discard x, where it is assumed that

there is an operating system which gives or reset access to a finite

number of qubits and thus, qubits are never created or dumped in

QPL. As an example, Teleportation protocol (see Chapter 6) in QPL

is illustrated in Figure 3.2. In [94], the semantics of QPL has been Semantics of QPL

thoroughly investigated. The operational semantics for this sequen-

tial language is straightforward and therefore we focus our attention

to the denotational semantics of QPL. Each fragment of a program in

QPL is described by a superoperator, and thus the two primitives of

defining denotational semantics, namely abstraction and composition,

are obtained by using properties of superoperator.
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In the following we define the domain in which detonations of

fragments of QPL are defined. This will be followed by the formal

definition of QPL denotational semantics.

Definition 3.1 (Set of density operators) Set of density operators of dimen-

sion n is defined by:

Un = {A ∈ Cn×n | A positve Hermitian and tr(A) ≤ 1}

Definition 3.2 (Löner partial order) For matrices A, B ∈ Cn×n, A v B if

and only if B− A ≥ 0.

Lemma 3.1 The partial order set (Un,v) has least upper bounds for mono-

tone sequences.

Proof See Proposition 3.6 in [94].

In particular, Lemma 3.1 implies that the set of density operators with

Löner partial order is well defined, makes it usable for defining deno-

tational semantics.

Definition 3.3 (Denotational Semantics of QPL) The semantics of a QPL

program P is defined by a superoperator of the form:

[[P ]] : (Un,v) 7−→ (Un,v)

A key aspect for developing a useful domain specific language of

quantum systems is the ability to handle both classical and quantum

data at the same time. This is particularity important in QPL, where
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we assume there is a classical control in place. In order to mix classi-

cal and quantum data, in [94] concepts of trace, adjoints and Unitaries

of density operators are extended to tuples of density operators, fol-

lowed by formal procedure of combining classical and quantum data.

These steps are shown in the Definition 3.4 and Definition 3.5.

Definition 3.4 Trace, adjoint and unitaries of the tuples of density opera-

tors are defined by:

• tr(A0, . . . , An) := ∑i tr(Ai).

• (A0, . . . , An)∗ := (A∗0 , . . . , A∗n).

• U(A0, . . . , An)U∗ := (UA0U∗, . . . , UAnU∗).

Definition 3.5 Suppose a fragment of a QPL program consist of n bits

and m qubits. Then we can represent the semantic of this fragment with

the tuple A = (A0, . . . , A2n−1) where each Ai is a density operator of the

dimension 2m × 2m. All operations on density operators can be extended

as defined in the Definition 3.4. Likewise, superoperators corresponding to

the denotational semantics in the Defintion 3.3, with classical data, can be

defined on the space of tuples such as A:

[[P ]] : (Un
m,vn) 7−→ (Un

m,vn)

Where vn is lexicographic generalisation of v.

The superoperator semantics that which we consider in this work

(and is also implemented in [9]) is slightly different than the one pre-

sented in [94]. For example, introducing new qubits in this work is
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Superoperator Action

[[newqubit(q)]] ρ 7→ ρ⊗ |0〉〈0|
[[newbit(b)]] ρ 7→ (0, ρ)

[[b:=1]] (0, ρ) 7→ (ρ, 0)

[[b:=0]] (ρ, 0) 7→ (0, ρ)

[[U(q)]] ρ 7→ UρU∗

[[Output(q)]] ρ 7→ Trq(ρ)

[[Measure(q)]] ρ 7→ ρ(p0M0(q) + p1M1(q))

Figure 3.3: Actions of Superoperator

done by increasing the dimension of the underlying quantum state,

whereas in [94], it is assumed that there is a a collection of qubits and

a operating system which assigns them to quantum variables. Simi-

larly, deallocation of qubits in [94] is done using the mentioned oper-

ating system resetting the access to the storage of qubits, whereas we

deallocate quantum variables by tracing out qubits, using partial trace

function. Our approach however, presents a more realistic model of

the current quantum technology devices. Figure 3.3 summarises the

actions of superoperators in QPL.

However, the main limitation of QPL for specifying QIP system

is its sequential structure. Concurrency, especially in the presence of

quantum entanglement, needs a more expressive language with con-

current constructs. Languages CQP [53], QMCLang [56], qCCS [102]

and CCSq, which will be introduced in Chapter 4, are examples of

concurrent languages.
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3.2 quantum model checking (qmc)

A model checking tool for quantum system is developed in [56], [52]

and [87]. The modelling language is called QMCLang, has an imper-

ative style language where different process are defined separately

and can communicate to each other either by sending classical or

quantum variables. QMC

Properties in QMC are expressed by formulas of Quantum Com-

putation Tree Logic (QCTL) [14], a logic for expressing properties of

quantum states. The models in QMC are restricted to those in stabi-

lizer formalism, i. e. only stabilizer states and Clifford operators and

measurements are allowed (see Section 5.1). On the other hand, of-

ten evaluation of QCTL properties in QMC needs to convert quan-

tum states stabilizer representation to the state vector representation,

adding to the complexity of model checking. A model expressing

quantum Teleportation in QMC can be found in [52, p 457]. In this

model there are three processes EPR, Alice and Bob. A formula Alice.q

refers to the qubit q defined as a variable inside the process Alice. His-

tory variables are defined as “history Alice.q", and stores the quantum

state (in the stabilizer representation). Thus, the property for checking

Teleportation in QMC is as following:

history Alice.q == Bob.epr2 (3.1)
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QMC checks the property in Equation 3.1 on all possible interleavings

of Teleportation’s processes and on all possible stabilizer states, as the

input. Models in QMC are constructed using a process scheduler and

a model interpreter which is based on stabilizer formalism. The main

features of QMC is summarised as follows:

1. A flat concurrent language, QMCLang, to model quantum pro-

cesses and communication between them (classical or quantum).

2. QMCLang supports both classical and quantum variables.

3. QMCLang has formal operational semantics [87, p 61].

4. QMCLang has a type system that facilitate type checking.

5. Properties in QMC are expressed with history variables.

6. QMC tool comprises a process scheduler to extracts interleav-

ings, an Interpreter which uses stabilizer simulation and a prop-

erty interpreter.

7. Properties are checked on all possible interleaving arising from

protocols models on all possible stabilizer states. It provides a wit-

ness for the correction of protocols, since checking a continuum

of quantum states, as the input, is not feasible.

8. A number of quantum protocols have been modelled and anal-

ysed in QMC [87].

For more details on QMC, reader may consult [87] and [52]. It should

be noted that checking models in QMC on all possible stabilizer states
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can not guarantee the correctness of quantum protocols. Also the QM-

CLang has a flat concurrency structures i. e. a number of processes

are defined without explicit parallel compositions. Finally, not all de-

sired properties of quantum protocols are easily expressible in QCTL

and checkable in QMC, and that is why properties in QMC’s case

studies share a simple form, rather than QCTL formulas.

3.3 probabilistic reasoning of quantum systems

Reasoning about probabilistic systems using model checking has been

studied extensively in the past, and applied to a range of areas using

well developed automated tools such as PRISM [72]. So it seems natu-

ral, to use probabilistic model checking in analysing and verification

of QIP protocols.

Gay et al. [54] have investigated the application of PRISM tool in

verification of quantum protocols. For example in Teleportation, the

follow property is specified for PRISM:

P ≥ 1 [true U ((telep-end) ∧ ((st = s1) ∨ . . . ∨ (st = sn))))

Where telep-end is a predicate which by the end of protocols it is true

and s1, . . . , sn represent finite set of quantum states (a continuum of

states can not be verified in this method).

A major challenge in this method is scalability of verifying larger

protocols with a higher number of qubits, due to lack of efficient
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representation of arbitrary quantum states. Also without a dedicated

language, specification of more complicated protocols and their prop-

erties becomes a difficult task.

Probabilistic model checking abstracts systems in terms of Markov

Chains, where they are defined by a (infinite) set of states and proba-

bilistic transition function on the states set. In quantum system, quan-

tum Markov Chain is defined on a (infinite) set of quantum states (pos-

sibly mixed) and a set of superoperators that represent the transi-

tion between states. In particular Feng et al. [45], introduced a model

checking technique and algorithm for quantum Markov Chains. In

their work, normal probability distribution is replaced with superop-

erator valued distribution [45], for example the specification for QKD

protocols in this formalism is as following:

s |= P.0H [� fail] ∧ P& 1
2I

[�≤4 succ]

which means QKD never fails and within 4 steps and the probability

at least one half, QKD terminates successfully. (here . and & are

defined according to superoperator valued distribution [45])

Although, quantum Markov Chains are convenient for specifying

quantum cryptography protocols, there is no available tool that im-

plements this technique yet.
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Alice(x : Qbit, c : [̂0..3], z : Qbit) =
{z, x∗ = CNot}.{z∗ = H}.c![measurez, x].0
Bob(y : Qbit, c : [̂0..3]) =
c?[r : 0..3].{y∗ = (case r of0⇒ I, 1⇒ X, 2⇒ Z, 3⇒ Y)}.Use(y)
System(x : Qbit, y : Qbit, z : Qbit) =
(new c : [̂0..3])(Alice(x, c, z)|Bob(y, c))

Figure 3.4: Teleportation in CQP

3.4 quantum process calculi

In this section we look into two process algebraic formalisms for

analysing quantum systems. We will introduce CQP (Communicating

Quantum Processes) [53] and qCCS (Quantum Communicating Con-

current Processes) [102]. Main features and results around these lan-

guages will be reviewed.

Gay and Nagarajan [53] introduced CQP for analysing quantum

systems. CQP is designed based on π-calculus, extended with quan-

tum operations and communications. The syntax of CQP has primi- CQP

tive data types: Int, Unit and Qubit for integers, unitary operators and

qubits. Channel types are constructed by [̂T] and Op(n) is for n-qubit

quantum operations. The full syntax can be found in [53]. For exam-

ple, Teleportation in CQP is defined in the Figure 3.4, where 0 denote

empty process and Use(y) means using variable y in the continuation

of the protocol.

The operational semantics of CQP is defined by reduction rules of

the following form
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t −→ �i pi · ti

where t and ti denote configurations of the form (σ, φ, e). Here config-

urations contain process expressions along with quantum state. Also

�i denotes probability distribution of configurations with probabili-

ties pi. The full operational semantics of CQP can be found in [53].

Davidson in [33], has studied theory of equivalence between CQP

processes, by defining a bisimulation relation for quantum processes CQP Equivalence

that is preserved in all contexts, in other words it is a congruence re-

lation. This definition is based on mixed configurations, i. e. quantum

states are in density operator form. The conditions for this defini-

tions consists of action matchings and probability distribution matchings.

Let S be the set of configurations and R be the bisimulation relation

as above, and suppose (s, t) ∈ R for s, t ∈ S. Let µD(x) denote the

probability distribution on D. Then the condition regarding probabil-

ity distributions on configuration in the aforementioned bisimulation

definition says that for s and t we must have:

µD(s) = µD(t) , ∀D ∈ S \ R

Thus if actions are matched according to the definition in [33, p 95],

then we also need to ensures that the probabilities are paired with

configurations consistently. The full proof that this bisimulation rela-

tion is also a congruence relation, is detailed in [33, Section 4.3].

Main features of CQP and results in the theory CQP, are sum-

marised as following:
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1. A process calculi for specifying quantum communication and

cryptography protocols.

2. It is designed based on π-calculus.

3. It handles both classical and quantum data.

4. It has a full type system.

5. Operational semantics is defined by reduction rules, similar to

the π-calculus.

6. Bisimulation relation, which is also proved to be congruence, is

defined for CQP in [33].

7. There is no available tool support for CQP.

Now we review the process calculi qCCS developed by Ying et al.

[102]. In the early version of qCCS only quantum variables were in-

volved, in contrast to CQP with both classical and quantum variables, qCCS

however, classical features are added to the new version [102], [44].

he quantum interactions in qCCS has a more general form in terms

of superoperators rather than unitary operators. This makes qCCS more

expressive when it comes to describe open quantum systems, e.g. sys-

tems with noises. The syntax of qCCS is based on CCS [81] and is

outlined in [102]. In particular, for a set of quantum variables x and a

qCCS process P, prefixes of the form E(x).P, where E(x) denotes a su-

peroperator E acting on x, are defined. As an example, Teleportation

in qCCS is shown in the Figure 3.5, where CN , M and σi denote Cnot,

measurement and Pauli operators. Operational semantics of qCCS is
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Alice = c?q.CN [q, q1].H[q].M[q, q1 : x].e!x.nil

Bob = e?x. ∑
0≤≤3

(if x = i then σi[q2].d!q2.nil)

Tel = (Alice ‖ Bob) \ {e},

Figure 3.5: Teleportation in qCCS

defined using configurations of the form 〈P, σ〉, where P is a qCCS

process expression and σ is a density operator.

The theory of equivalence of qCCS is studied extensively in a se-

ries of papers [44], [46]. Different bisimulation relations for qCCS are

defined, and proved to be congruence. These relations are defined on qCCS Equivalence

two primitives of action matching and probability distribution matching.

The difference with CQP bisimulation is that in case of quantum in-

put/output action, the bisimulation relation should be preserved for

all superopeator acting on bisimilar configurations, and yet superop-

erators form a continuum, make it impossible to construct bisimula-

tion relation computationally. However, in [46] a symbolic bisimulation

relation for qCCS is introduced, along with a variant of bisimulation

relation, called ground symbolic bisimulation. For the latter bisimula-

tion, an algorithm proposed that only works on quantum input free

process [46]. For example in the Figure 3.5, if we remove c?q from Al-

ice and d!q2 from Bob, the results is quantum input free Teleportation.

We summarise qCCS main features and results in the following:

1. A quantum process algebra for describing quantum systems.

2. Designed based on CCS, extended to include superoperators.
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3. Bisimulation is defined and proved to be congruence, using an

infinite set of superoperators.

4. Symbolic bisimulation, and an algorithm for ground symbolic

bisimulation is introduced.

5. No tool support is available for qCCS.

3.5 quantomatic

In their seminal paper [6], Abramsky and Coecke have developed a

novel approach for reasoning about quantum systems, based on a

category-theoretic formulation of quantum mechanics. This elegant

formulation of quantum mechanics, as it is called categorical quantum

mechanics, provides a high level understanding of QIP systems.

Inspired by their work, diagrammatic reasoning techniques, based

on category theory, have been developed by Coecke and Duncan

in [31]. Furthermore this idea has been implemented in the tool Quan-

tomatic [38], that uses graph rewriting in order to automate diagram-

matic reasoning about underlying categorical structure.

The input of Quantomatic tool is graphical, in contrast to our tool

which has programming language interface. Also, our tool verifies

quantum protocols in a fully automatic way, whereas Quantomatic

is a semi-automatic tool that needs a considerable amount of user

intervention. This point is recently highlighted by Duncan in a case
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Figure 3.6: ZX Wires and their interpretation

study, that verifies Steane Quantum Error Correction code [97] with

Quantomatic [39].

The graphical interface of Quantomatic uses ZX-language [31], a

network of components joined by wires, similar to circuit diagrams.

The wires can be bended or braided, each have a particular meaning

and components may contain dots or boxes. In this graphical repre-

sentation, dots with red colour indicate Z-basis whereas dots in green

denote X-basis.

A diagram D in ZX-language, can be interpreted by an operator

D : Qn −→ Qm, with n qubits as input and m output qubits. For

example, Figure 3.6 which shows the interpretation of ZX-language

wires in Hilbert space.

As an example, a proof of the correctness of Teleportation proto-

col [31], specified in ZX-language can be seen in the Figure 3.7. The

boxes and dots corresponds to Alice and Bob’s operations. The goal

is to show equivalence of Teleportation to identity using diagram-

matic reasoning, where Quantomatic automates parts of this process.

Comparing to our QEC tool, one can see that Quantomatic does not

perform simulation of quantum states and operations and treat them
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Figure 3.7: Diagrammatic proof of Teleportation

in a very high level manner. On the other hand, QEC adopts model

checking rather theorem proving, so potentially can provide counter

example, in case a protocol could get wrong. We summarise main

feature of Quantomatic as follows:

1. High level graphical interface based upon categorical quantum

mechanics, for specification of QIP systems.

2. Provides proof of correctness for protocols such as Teleporta-

tion, hence can be thought of as a quantum proof assistant.

3. Semi-automatic verification of QIP protocols, using graph rewrit-

ing techniques.

Duo to technicality of categorical quantum mechanics, that is be-

yond the scope of this thesis, we refer the reader to [6], [31] and [38],

for more details.
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S P E C I F I C AT I O N O F C O N C U R R E N T Q U A N T U M

P R O T O C O L S : S Y N TA X A N D S E M A N T I C S

In this chapter we discuss how to specify concurrent quantum proto-

cols. Our goal is to design a concurrent language suitable for applying

equivalence checking for the analysis of quantum protocols. To this

end, we introduce a process algebraic language, CCSq, for the spec-

ification of concurrent quantum protocols. It shares many features

of the languages described in Chapter 3, such as inclusion of both

classical and quantum data and also considers concurrency. However,

it differs from QMCLang [55], by having a more general model of

concurrency, i. e. processes in CCSq are defined with explicit parallel

compositions. Alos, in contrast to QMCLang, the semantics of CCSq

is defined by superoperators. This makes verification of QIP systems

with arbitrary input, not just stabilizer states, feasible.

The rest of chapter is organised as follows: first we introduce CCSq

by presenting its concrete syntax and discuss the main features of the

language. Secondly, we define a full operational semantics in the style

of reduction semantics. In the third section, we explain how superop-

erators can be used to define a new semantics for our language, in

addition to the operational semantics.

46
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4.1 syntax

In this section we present the syntax of CCSq. Our focus in this thesis

is to understand the role of concurrency in quantum system, there-

fore we made the syntax compact and simple. One reason to use this

language is to illustrate how designing concurrent quantum protocols

can be difficult and non intuitive compared to the design of classical

protocols. For example, quantum measurement is a destructive action,

so if a qubit is measured wrongly between parallel processes, this can

destroy the effect of the whole system.

The protocols that we analyse in CCSq are functional, i. e. they re-

ceive input at the beginning and produce output at the end of their

execution. This is the reason we have input and output declaration of

qubits in our language .

Although the current syntax is expressive enough to analyse our

case studies in Chapter 6, it can be extended to include loops and

recursion, while maintaining superoperator semantics in a similar way

to QPL [94]. Now we explain the main constructs of our language: CCSq Syntax

• There are two types of variables: classical bits, represented by V

and qubits are shown by Q in the syntax.

• Here L denotes lists of matching variables, which are used in

match conditionals.

• S is a lists of quantum variables.
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• Expressions (E) consist of unitary operators, measurement, in-

put/output and conditionals.

• Input and output variables are represented by a prefix of the

form input/output S, where they indicate initialisation or fi-

nalisation of the protocols execution. Similar to functional pro-

grams, we specify the input and output of protocols explicitly.

The difference is that we are computing a quantum function and

therefore the input action creates a quantum state. The output

action halts the execution and returns a quantum state. often by

applying partial trace to a larger state.

• Unitary operator U on a qubit r is denoted by the prefix U(r).

Similar to QMC, in QEC we only deal with Clifford operators

and thus it is assumed that unitary U belongs to the set:

{CNOT, H, P, X, Y, Z} (see Section 2.3). Nonetheless, the seman-

tic analysis in this chapter applies even if we have arbitrary uni-

taries.

• Quantum measurement is carried out by an expression of the

form x:= measure p, where the possible outcomes of measur-

ing a qubit p are assigned to a classical variable x.

• There are two types of conditionals, one with a single condition

on a classical variable such as x, where the qubit q is the target

qubit and is denoted by if x then U(q). The other one, imposes

multiple conditions by matching a list of variables and values of

the form match {xi : B} then U(r), where r is a qubit variable.
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• Process terms (P) are defined via prefixes in a similar way to

the original CCS [81]. The simplest process with no action is the

nil process.

• Sending and receiving a bit x over a classical channel c is done

using prefixes c!x and c?x. Similarly for a qubit q over a quan-

tum channel d, we use d!q and d?q . Note that this explicitness of

communication is not realised in the circuit diagrams, making

it difficult to specify concurrent protocols in terms of quantum

circuits.

• Finally, parallel composition is described by expressions of the

form “(P | Q)", where P and Q are process expressions. We use

brackets for multiple parallel compositions e. g. P | (Q | R).

This is another useful feature of our language that represents

parallel compositions explicitly, enabling us to add concurrency

to the specification of quantum protocols and analyse their be-

haviour.

The syntax of CCSq in Backus-Naur form is illustrated in Figure 4.1.

As an example of usage of our language, Figure 4.2 shows implemen-

tation of Teleportation in CCSq (see Chapter 6 for more details).

Note that although CCSq has a simple structure, it is much more ex-

pressive than quantum circuits which is widely used throughout QIP

literature. In this thesis we mainly concern with quantum communi-

cation and concurrency rather than quantum computation. However,
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B ::= 0 | 1
V ::= x | y | . . .
Q ::= p | r | . . .
L ::= V : B | L, V : B
S ::= Q | S, Q
E ::= V:= measure Q |U(Q) | if V then U(Q) |

match L then U(Q) | newqubit Q | input S | output S
P ::= nil | (P | P) |V!V.P |V?V.P |Q!Q.P |Q?Q.P | E.P

Figure 4.1: Syntax of CCSq

//Preparing EPR pair and sending to Alice and Bob:

newqubit y . newqubit z . H(y) . CNOT(y,z) . c!y . d!z .

nil

|

//Alice's process:

(input x . c?y . CNOT(x,y) . H(x) . m := measure x .

n := measure y . b!m . b!n . nil

|

//Bob's process :

d?w . b?m . b?n . if n then X(w) . if m then Z(w) .

output w . nil)

Figure 4.2: Quantum Teleportation
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it is desirable to add useful constructs such as loops, functions and

recursion to CCSq in the future.

4.2 operational semantics

In this section, the operational semantics of CCSq is studied in the

framework of reduction rules, defined by small step evaluation of ex-

pressions, inter-process communication and non-deterministic tran-

sitions. This approach has been adapted when defining semantics

of CQP [53], with the difference that in this work we do not con-

sider probabilities explicitly, and only consider non-deterministic be-

haviour arising from quantum measurements and parallel composi-

tion. In the following, we give necessary definitions and then present

reduction rules for the operational semantics.

Definition 4.1 (Configuration) Configurations of a concurrent quantum

system are defined by tuples of the form (σ, ρ, R) where σ denotes the assign-

ment of variables to classical values (boolean for classical bits and integers

for storing the index of qubits within a quantum state) and ρ represents

a density operator, whose dimension is determined by the number of qubit

variables. Finally, R represents a process term according to the grammar of

CCSq.

Reduction relations are defined on configurations and have the follow-

ing general form:

S −→ T
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P | nil ≡sc P (SC-NIL)

P1 | (P2 | P3) ≡sc (P1 | P2) | P3 (SC-ASSOC)

P1 | P2 ≡sc P2 | P1 (SC-COM)

Figure 4.3: The axioms of structural congruence

where S and T are configurations, and −→ denotes a reduction rela-

tion.

We use structural congruence in Definition 4.2, in order to simplify

process expressions at the top level.

Definition 4.2 (Structural congruence) The smallest relation that satisfies

axioms in Figure 4.3, is called structural congruence and denoted by: ≡SC.

Let τ represent silent action and [v/x] be the substitution of variable

v with variable x, so with this notation, Q[v/x] means in the process

Q, occurrences of variable v is substituted by variable x. We denote a

list of variables by the notation x̃.

Figure 4.4 presents reduction rules for configurations. Here i(q) de-

notes the index of qubit q to which an operation or measurement

is applied on. Therefore, by ρi(q) we mean the sub-matrix of the

global state ρ, corresponding to the qubit q. In the measurement rule,

the “m′s" stands for a boolean type outcome and � denote a prob-

ability distribution over m. Note that in this work we do not deal

with probabilities explicitly. Immediately after the measurement rule,

(R-NONDET) is applicable and it reduces the configuration to nonde-

terministic choices i. The rule R-COND applies a unitary conditional
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to the boolean condition b. Note that these rules are defined on con-

figurations as in Definition 4.1.

The rule (R-CONG) is defined according to the axioms of Fig-

ure 4.3. Communication and parallel composition follow (R-COM)

and (R-PAR), respectively.
Synchronisation

Remark 4.1 In this work communication between quantum processes are

done using synchronisation, which is reflected in the reduction rule R-COM.

One of the reasons for considering this model is that the current quantum

technologies do not have durable quantum memory, necessary to implement

buffers for asynchronous communications.

(R-QUBIT), specifies how a new qubit is declared in a protocol. The

reduction rule (R-INPUT) specifies how a protocol is initialised with

a basis density operator ρB at the beginning of the execution of the

protocol. For the output, however, (R-OUTPUT) reduces the system

to terminal configurations by applying a partial trace to the current

quantum state. Therefore, after applying this reduction, process con-

figurations become irreducible. These configurations may have mixed

quantum states, which are denoted by ρ∗.

4.3 superoperator semantics

In this section we define a Superoperator Semantics of our language

CCSq. This is an important step in the equivalence checking since it

provides a useful abstraction of the behaviour of concurrent quan-
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(σ, ρ, U(q).P) −→ (σ, Uρi(q)U†, P) (R-UNIT)

(where i(q) is the index of qubit q in ρ)

(σ, ρ, if b then U(q).P) −→ (σ, Ubρi(q)(U†)b, P) (R-COND)

(where i(q) is the index of qubit q in ρ)

(σ, ρ, a := measure q.P) −→ �0≤m≤1(σ[a/m], Mmρi(q)M†
m, P) (R-MEASURE)

(where i(q) is the index of qubit q in ρ)

�i (σi, ρi, Pi) −→ (σj, ρj, Pj) (where 0 ≤ i, j ≤ 1 ) (R-NONDET)

P ≡sc P′ (σ, ρ, P′) −→ (σ′, ρ′, Q′) Q ≡sc Q′

(σ, ρ, P) −→ (σ′, ρ′, Q)
(R-CONG)

(σ, ρ, c!v.P | c?x.Q) −→ (σ′, ρ, P | Q[v/x]) (R-COM)

(where σ′ is the updated classical store)

(σ, ρ, P) −→ (σ′, ρ′, P′)
(σ, ρ, P | Q) −→ (σ′, ρ′, P′ | Q)

(R-PAR)

(σ, ρ, (newqubit x).P) −→ (σ′, ρ⊗ |0〉〈0|, P[q/x]) (R-QUBIT)

(where q is a fresh variable and σ′ is the updated classical store)

(σ, ρ, (input x̃).P) −→ (σ′, ρ⊗ ρB, P[q̃/x̃]) (R-INPUT)

(where q̃ are fresh variables, σ′ is the updated classical store

and ρB is a basis state)

(σ, ρ, (output x̃).P) −→ (σ′, ρ∗, nil) (R-OUTPUT)

(where ρ∗ = trx̃(ρ))

Figure 4.4: The reduction rules for process configurations
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tum protocols. We will define functional quantum protocols, which

are special cases of quantum protocols with a simpler structure. Al-

though functionality of quantum protocols seems like a restriction, we

will show in the Chapter 6 that many important QIP protocols are

indeed functional.

Executing a concurrent quantum protocol, as formalised by the op-

erational semantics in the previous section, will inevitably produce

many interleavings (they are defined in the following). Due to quan-

tum measurement, probabilities may be associated to interleavings,

thus in general our knowledge about the configuration of a quan-

tum system at a given point could be probabilistic. To address this

issue mixed configurations were defined in [33], which are probability

distributions over configurations of CQP. On the other hand Ying

et al. [102] introduced Superoperator Valued Distributions (SVD) that

formalises concurrent quantum systems defined by qCCS.

In this work, we use superoperators to describe the behaviour of in-

terleavings arising from execution of concurrent protocols. In the fol-

lowing, we first define equivalence between superoperators, and then

discuss how the semantics of concurrent protocols can be captured

by superoperators. Finally, we define functional protocols, whose we

are able to establish their equivalence computationally through the

equivalence of corresponding superoperators.

The following definition explains what we mean by equivalence

between superoperators:
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Definition 4.3 Let S be a set of density operators as defined in Section 2.2.2,

then two superoperators E : S −→ E(S) and F : S −→ F (S), are said to Superoperators

Equivalencebe equivalent (denoted by h) if:

E hS F ⇔ ∀ρ ∈ S, E(ρ) = F (ρ)

Definition 4.4 (Configuration Tree) For a given concurrent quantum pro- Configuration Tree

tocol in CCSq, letR be the set of all reduction rules in the Section 4.2. Then,

the Configuration Tree CT is defined recursively such that the root is the

initial configuration and the children are defined using the rules in R. The

leaves consists of terminal configurations, i. e. no rules from R is applicable

to them.

Definition 4.5 (Interleaving) Each path from the root of a configuration

tree to the leaves, represents an interleaving of a concurrent protocol, consist-

ing a sequence of configurations, obtained by applying a sequence of reduc-

tion rules. Every interleaving has one application of (R-INPUT), parametrised

with the input quantum state. Final configurations are the result of apply-

ing (R-OUTPUT) and brings the execution of the protocol to the halt. A

schematic representation of interleaving is given in Figure 4.5.

Definition 4.6 Let V be the space of density operators, associated to a set

of qubits of a concurrent protocol P (i. e. the tensor product of each qubit

Hilbert space), and let I denote the set of their interleavings (according to

Definition 4.5). We define a function ∆P : V −→ V, which for all i ∈ I of

P , takes initial quantum states ρinput and returns final states ρoutput:

∆P (ρinput) = ρoutput
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(σ, ρ, P)

...

(σ′, ρ′ ⊗ ρB, P′)

...

(σ∗, ρ∗, nil)

ρB,(R-INPUT)

(R-OUTPUT)

Figure 4.5: Interleaving

Then we define DV(P) to be the set of all ∆Ps:

DV(P) = {∆P (ρ) | ρ ∈ V}

Suppose we have a CCSq protocol P such that its set of variables

corresponds to the space of density operators V and its set of inter-

leavings I is defined based on Definitions 4.4 and 4.5. As a conse-

quence of executing P , we obtain ∆P ∈ DV(P), However, this does

not immediately associate ∆P to the superoperators since we need to

check that whether it has the properties of superoperators according

to Theorem 2.2. Indeed this involves working explicitly with complex

matrices and real numbers. In the following we show how to avoid

this problem by restricting protocols to those who have I/O structure,

i. e. for each protocol there is an input declaration of variables (quan-

tum/classical) and there is an output declaration that shows the end

of the protocol and also have deterministic behaviour, which we call

it functional and will be defined in Definition 4.10.
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Definition 4.7 A concurrent quantum protocol, containing a number of

processes, is called I/O if there is a unique input declaration of quantum

(classical) bits at the beginning of one of its processes, and only one output

declaration of qubits (bits) appears at the end of one of its processes.

The benefit of defining interleavings for the I/O protocols of Defini-

tion 4.7 is that we can translate them into sequential QPL programs. Translating

Interleavings

to QPL

This will enable us to associate to each interleaving a superoperator

as in [94], without directly verify the properties of superoperators in

Theorem 2.2.

In the following section we will explain how this translation from

interleavings to QPL programs is defined.

Remark 4.2 We have separated classical and quantum data in Definition 4.1

for a simpler formulation. Nonetheless, classical and quantum data can be

mixed in a similar way as [94], using tuples of density matrices.

4.3.1 Translating Interleavings to QPL programs

The translation to QPL is done using a function from the set of inter-

leavings (where we will revisit the definition of interleaving in Defini-

tion 4.9)to a subset of QPL programs. In order to define this function,

first we define the Transition System for CCSq protocols. The reason

for having this definition is to obtain a syntactical construction of in-

terleavings which is independent from quantum states (in contrast
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〈P〉

...

〈Q〉

...

〈nil〉

α0

input q̃

α1

output q̃

Figure 4.6: Interleaving in Transition Tree

to Definition 4.5), and is suitable for translation to QPL. Figure 4.6

shows the general form of such interleavings.

Definition 4.8 (Transition System) A transition system for a CCSq pro-

gram is defined by a tuple of the form (Sp, Act,−→), in which: Transition System

for CCSq

1. Sp is a set of CCSq process terms as states. We denote states by 〈s〉,

where s is a process term.

2. Act is a set of actions such as unitary operations, measurements, etc.,

including τ (silent) action.

3. −→⊆ Sp × Act× SP. We denote (〈s〉, α, 〈s′〉) ∈−→ by 〈s〉 α−→ 〈s′〉.

Here transition relations are defined by the rules in Figure 4.7.

Definition 4.9 (Transition Tree and Interleavings) Executing a CCSq pro-

tocol results in a transition tree, where nodes are states (process terms) and

edges are labelled with actions, complying with the rules in Figure 4.7. More- Transition Tree

& Interleavingsover each path from the root of the transition tree to a leaf (e. g. an instance of
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〈input x̃.P〉 input x̃−−−→ 〈P〉
(r-input)

〈U(q).P〉 U(q)−−→ 〈P〉
(r-unit)

〈a := measure q.P〉 meas(q,a)−−−−−→ 〈P〉
(r-measure)

〈if b then U(q).P〉 cond(b,U(q))−−−−−−→ 〈P〉
(r-cond)

〈c!v.P | c?x.Q〉 τ−→ 〈P | Q[v/x]〉
(r-com)

〈P〉 α−→ 〈P′〉, α ∈ Act

〈P | Q〉 α−→ 〈P′ | Q〉
(r-par)

〈output x̃.P〉 output x̃−−−−→ 〈nil〉
(r-output)

Figure 4.7: Transition rules for CCSq transition system
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the state 〈nil〉) corresponds to an interleaving as defined in Definition 4.5.

For the translation we use this construction (paths in transition tree) as

the definition of interleaving, which has the general form as in Figure 4.6

(compare it to Figure 4.5).

Every path i in the transition tree is labelled by the sequence of

its edges labels (i.e. actions ti, including τ). We use the following

notation to represent paths: i := t1 . t2. . . . .tn

Translation FunctionLet I∗ be a set of interleavings (in the transition tree) and PQPL be

a set of QPL program, the translation function:

TQPL : I∗ −→ PQPL

is defined as the following, where Γ and Γ′ are environments (as de-

fined in [94]), p represents a QPL program and i ∈ I∗ is path in the

transition tree corresponding to an interleaving:

TQPL(i) = (Γ, p, Γ′)

we also need an auxiliary function T′ that returns p and the outbound

environment:

T′(i) = (p, Γ′)

For each path, input/output actions fix inbound and outbound envi-

ronments of the final translated QPL program. So we have the follow-

ing equation, where T′ is defined as in Figure 4.8:

TQPL(input x̃.t) = (x̃ : qbit , p, Γ′) (4.1)

Where T′(t) = (p, Γ′).
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1.T′(τ.t) = (skip; p′, Γ′) where T′(t) = (p′, Γ′)
2.T′(output x̃.t) = (skip , x̃ : qbit)
3.T′(U(q).t) = (q*=U; p′, Γ′) where T′(t) = (p′, Γ′)
4.T′(cond(b, U(q)).t) = (i f b then q*=U else skip; p′, Γ′) where T′(t) = (p′, Γ′)
5.T′(meas(q, a).t) = (newbit a; measure q then a := 1 else a := 0; p′, Γ′)where
T′(t) = (p′, Γ′)

Figure 4.8: Auxiliary translation function T′

Remark 4.3 For I/O protocols (see Definition 4.7), we are assured that each

path in the transition tree will eventually leads to an output action, and that

guarantees the soundness of our translation.

Example: Suppose we have the following concurrent protocol that

we want to translate to QPL:

input x.H(x).c!x.nil | c?y.H(y).output y.nil

Then Figure 4.9 shows the transition system for this protocol, where

its only interleaving is described by the path i:

i := input x.H(x).τ.H(x).output x

By applying translation function TQPL to i, and using the Equation 4.1,

we obtain the following QPL program:

T(i) = x : qbit , x∗ = H; skip; x∗ = H; skip , x : qbit
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〈input x.H(x).c!x.nil | c?y.H(y).output y.nil〉

〈H(x).c!x.nil | c?y.H(y).output y.nil〉

〈c!x.nil | c?y.H(y).output y.nil〉

〈nil | H(x).output x.nil〉

〈nil | output x.nil〉

〈nil | nil〉

input x

H(x)

τ

H(x)

output x

Figure 4.9: Example of Transition System

Remark 4.4 Note that in QPL [94], conditionals of the form “match then"

are not defined, however, one can translate them into a series of nested QPL

“if then else" conditions.
Functionality

Having defined the translation function TQPL, now we define func-

tional protocols, those we are able to associate them to the superop-

erators. In these protocols, all different interleavings exhibit determin-

istic with respect to input/output relation . Interestingly, it turns out

many useful QIP protocols are in fact functional. In Chapter 5 we will

present an algorithm for checking functionality and then in Chapter 6

, examples of functional protocols will be verified.

Definition 4.10 An I/O quantum protocol is called functional if for its

input density operators space V and the set of interleavings I , we have:

∀i, j ∈ I [[TQPL(i∗)]] hV [[TQPL(j∗)]]
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Where i∗ and j∗ are corresponding characterization of i and j according to

Definition 4.9.

Definition 4.10 says that by executing a functional protocol, all in-

terleaving will have the same effect on a given input density opera-

tor and thus this effect can be described by a unique superoperator

[[TQPL(i∗)]], which is independent from the choice of i∗. Superoperator

SemanticsFinally, in the following a superoperator semantics is defined for

concurrent functional I/O protocols.

Proposition 4.1 Assume for a functional I/O protocol P , we are given sets

of interleavings I according to Definition 4.5 and I∗ based on Definition 4.9.

Let i∗ ∈ I∗ and ∆P be as Definistion 4.6. Suppose V is the space of density

operators (corresponding to the protocol’s input variables) and [[ ]] denote

the superoperator semantics of a QPL program in [94]. Then we have the

following:

∀ρ ∈ V ∆P (ρ) = [[TQPL(i∗)]](ρ)

Remark 4.5 In Proposition 4.1, we assumed there is a correspondence be-

tween the two definition of interleavins presented in this thesis. However, Correspondence of

two definitions

of interleavings

the structure of interleavings in Definition 4.5 is more complicated than the

one in Definition 4.9, due to dealing with quantum states. For example, in

the case of measurement, an application of (R-MEASURE) together with

(R-NONDET) in the interleaving of Definition 4.5, corresponds to a single

application of “(r-measure)" in the interleaving of Definition 4.9.

Corollary 4.1 Any concurrent quantum protocol in CCSq, which is I/O

and functional can be described by a unique superoperator.
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4.4 concluding remarks

The design of domain-specific languages for QIP systems is a chal-

lenge since there exist more complex layers from low level physical

(sub-atomic particles) structures to high level classical interfaces. As

a consequence, many languages have been developed such as those

mentioned in the Chapter 3, for different applications. In this work we

have used a simple language for the verification of concurrent system

by automated equivalence checking, used in the QEC tool. The abil-

ity of specifying communications and parallel compositions, makes

CCSq much more expressive than commonly used circuit diagrams.

There are some aspects of our language that relates to the under-

pinning architectural structure, for example, in this thesis allocation

and de-allocation of qubits are interpreted as extending the global

quantum state of a system and calculating a reduced quantum state

whereas in QPL [94], it is assumed that qubits are not created nor

traced out but there is a special operating system which can give or

reset access to qubits.

We have studied the behaviour of concurrent systems, specified

in CCSq, using operational and superoperator semantics where we

have considered interleaving concurrency, as the underlying model.

This involves synchronisation between quantum processes when com-

munications occur. Now, it would be interesting to investigate other

models of concurrency, e. g. those with casual structure or true con-
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currency [82] and see whether they can be defined in the framework

of superoperators.



5
V E R I F I C AT I O N O F C O N C U R R E N T Q U A N T U M

P R O T O C O L S B Y E Q U I VA L E N C E C H E C K I N G

In this chapter we describe the core verification technique used in

QEC tool. Our approach is based on process-oriented model checking,

that is to verify the implementation of a QIP protocol behaves equiv-

alently to its specification. This is in contrast with QMC [55], where

property-based model checking is adopted. Of course the main chal-

lenge of applying model checking is explosion of states, however an-

other challenge in model checking of QIP systems is explosion of space,

i. e. the space needed to store quantum states representation grows

exponentially in the number of qubits.

In order to tackle explosion of space we confine ourself to the stabi-

lizer formalism, the part of quantum mechanics in which our verifica-

tion algorithms and system take advantage of compact representation

and efficient simulation algorithms for certain kind of quantum states,

known as stabilizer states. We also develop new algorithms based on

stabilizer formalism that help us in the developing equivalence check-

ing technique and QEC tool.

The chapter is organised as follows: we start from an introduction

of stabilizer formalism in Section 5.1, where we review stabilizer simu-

67
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lation and normal forms algorithms. Then in Section 5.2, we present

algorithms to test equality of stabilizer states. Section 5.3 describes

the construction of stabilizer basis for the space of density matrices

of n-qubit states. The Equivalence checking algorithm for sequential

protocols is presented in Section 5.4.

The algorithm that checks equivalence of specification and imple-

mentation ofconcurrent protocols, specified in CCSq, is explained in

Section 5.5. These algorithms make use of the stabilizer basis that spans

the space of density operators, and is outlined in Section 5.3. Finally,

we discuss the approximation of our equivalence notion, using the

algorithms in Section 5.1.2.

5.1 stabilizer formalism

In this section we explain the main concepts and algorithms about Sta-

bilizer Formalism, that is a simple, yet powerful model for describing

the underlying physical structure of many important QIP protocols

which are studied in this thesis.

Stabilizer Formalism was first introduced by Gottesman in [58], as

a formalism to describe Stabilizer Codes [58], i. e. the quantum version

of classical linear codes and has found numerous applications in quan-

tum error correction, quantum complexity and other areas of QIP.

The main idea of stabilizer formalism is to represent certain quantum

states by their Stabilizer Group, instead of an exponential number of
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complex amplitudes. Formally, for a stabilizer state |φ〉, the stabilizer

group is defined as follows:

Definition 5.1 Stab(|φ〉) = {S : S|φ〉 = +1|φ〉}

For |φ〉 consists of n-qubits, the stabilizer group Stab(|φ〉) can be el-

egantly represented by its n generators, where each generator is a

member of Pauli group, Pn, defined in the Definition 5.2.

Definition 5.2

Pn = {P : P = s.Pi ⊗ . . .⊗ Pn, Pi ∈ P1, s ∈ {±1,±i}}

where P1 = {P : P = s.P′, P′ ∈ {X, Y, Z, I}, s ∈ {±1,±i}}

An example of stabilizer state is two qubits entangled pair, known as

Bell state, specified by its amplitudes in the Equation 5.1, and with

its stabilizer group’s generators in Equation 5.2.

|φ〉 = 1√
2
|00〉+ 1√

2
|11〉 (5.1)

X⊗ X |φ〉 = |φ〉

Z⊗ Z |φ〉 = |φ〉
(5.2)

The efficient representation of stabilizer states on one hand, and the

structure of stabilizer group on the other hand, enables us to capture

the evolution of stabilizer states under a limited number of quantum
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operations, efficiently. More specifically, we have the following impor-

tant theorem that shows the scope of stabilizer formalism.
Gottesman-Knill

TheoremTheorem 5.1 (Gottesman-Knill, [84, p. 464]) Any quantum computation

which consists of only the following components:

1. State preparation, Hadamard gates, Phase gates, Controlled-Not gates

and Pauli gates.

2. Measurement gates.

3. Classical control conditions on the outcomes of measurements.

can be efficiently simulated in polynomial time with polynomial space in the

size of input (number of qubits), using a classical computer.

For equivalence checking, the ability of performing measurement and

imposing classical conditions on their outcomes, play a crucial role in

interpreting QIP protocols, specified in a high level language. In the

Section 5.1.1, we explain how stabilizer states are specified and the

effect of quantum operations on them are simulated. A number of

useful algorithms which use of stabilizer formalism are presented in

Section 5.1.2.

5.1.1 Simulation Algorithm

As a consequence of Theorem 5.1, several algorithms for simulation

of stabilizer formalism have been proposed [4], [84, p. 463], [7]. In

this work we adopt the algorithm in [4], where each stabilizer state
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is associated with two subgroups of Pauli group namely, a stabilizer

and a destabilizer group, where the latter is used for a more effi-

cient measurement simulation. Applying quantum operations and

measurements is thus manipulating this representation according to

the simulation algorithm. In the following we explain the representa-

tion of the stabilizer states and their simulation algorithm.

Definition 5.3 ([4]) Let S = 〈s1, . . . , sn〉 be a stabilizer group, as in Defi-

nition 5.1, with generators si, then the destabilizer group D = 〈d1, . . . , dn〉

is a subgroup of Pn in which each generator di anti-commutes with sj for

i = j and commutes with sj when i 6= j.

Each stabilizer state is represented by an array that keeps track of

stabilizer generators, destabilizer generators and the overall phase of

the state. A full stabilizer array, representing a stabilizer state, con-

sists of stabilizer rows, destabilizer rows, phase column and a scratch

row, i. e. an additional row for finding the outcomes of deterministic

measurements. Note the stabilizer array representation is not unique,

i. e. different stabilizer array may refer to the same stabilizer state.
Stabilizer Array

Definition 5.4 ([4]) Full stabilizer array consists of a pair A = (S ,D),

where S is a stabilizer group and D is its destabilizer group, a phase column

and a scratch row. A is represented in Figure 5.2. Each entry Ai,j in the

stabilizer or destabilizer rows is thus a Pauli operator. Destabilizer rows are

shown with entries di,j and stabilizer rows with si,j. The column with entries

of the form rp
i , represents the phase, following the encoding in Figure 5.1. The

last row in the array is the scratch row, with entries sci.
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+ 7→ 0 i 7→ 1
− 7→ 2 −i 7→ 3

Figure 5.1: Phase Encoding

d11 · · · d1n rd
1

...
. . .

...
...

dn1 · · · dnn rd
n

s11 · · · s1n rs
1

...
. . .

...
...

sn1 · · · snn rs
n

sc1 · · · scn sc(n+1)



Figure 5.2: Stabilizer Array

The columns in the stabilizer array correspond to qubits of the sta-

bilizer state. Simulation algorithm thus change the rows in the stabi-

lizer array by applying three kinds of operations: single qubit unitary

operation, CNOT operation between two columns and measurement

(deterministic or random).

Remark 5.1 In the previous version of QEC [9], we have used a different

representation of stabilizer array in the binary matrix form, which had been

used in [55] and [4].

Operations within Pauli group follow the multiplication table of

Figure 5.3, where the entries of this table are phased Paulis. In general,

the set of operations on n-qubits that are allowed in stabilizer formal-

ism are those in the Clifford Group, i. e. the group generated by the

following set:

{CNOT, P, H} (5.3)
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I X Y Z
I I X Y Z
X X I iZ −iY
Y Y −iZ I iX
Z Z iY −iX I

Figure 5.3: Pauli Operator Multiplication Table

Let Cn denote Clifford Group of n-qubits state. Then Cn is the normal-

izer of Pauli group Pn, meaning that for any C ∈ Cn and any Pauli

operator P, we have:

C P C† = P′ (5.4)

Where P′ ∈ Pn. Now by applying a Clifford operation to the stabilizer

array we compute instances of Equation 5.4, and additionally take

care of phase of the target row.

Simulation of CNOT operation is similar, namely we look into the

control column entries and update target column and the phase col-

umn. Finally, measurements in the standard basis, are simulated by

considering two cases:

case 1 : the outcome is deterministic and can be calculated using

row multiplication, (according to Figure 5.3). After necessary row

multiplications, the measurement outcome will be in the last

entry of stabilizer array sc(n+1).

case 2 : the outcome is random, so based on the chosen random out-

come we apply necessary row multiplications.
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Algorithm STABILIZER-SIMULATION(A, Operation, Arguments)

1: if applying Pauli σk to qubit j then
2: for all rows i ∈ A do
3: Ai,j = σk Ai,j σ†

k
4: ri = (ri + (1− αphase))%4
5: end for
6: end if
7: if applying Hadamard to qubit j then
8: for all rows i ∈ A do
9: Ai,j = HRotate(Ai,j)

10: ri = (ri + (1− αphase))%4
11: end for
12: end if
13: if applying Phase to qubit j then
14: for all rows i ∈ A do
15: Ai,j = PRotate(Ai,j)
16: ri = (ri + (1− αphase))%4
17: end for
18: end if
19: if applying CNOT to qubit j, r then
20: for all rows i ∈ A do
21: Ai,j = TCNOT[Ai,j,Ai,r]
22: ri = (ri + (1− αphase))%4
23: end for
24: end if

Figure 5.4: Stabilizer Simulation Algorithm

The complete algorithms for simulation of Clifford operators and

measurements in the standard basis, is given in Figures 5.4 and 5.6.

In Simulation algorithm, after applying a Pauli σk on qubit j, we

update each rows i and Ai,j according to Figure 5.3. This may cause

appearance of the phase αphase and that is used to update the overall

phase column ri. Here % denotes modulo function.

Hadamard and Phase operations on qubit j are done using HRotate

and PRotate, based on Figure 5.5. These are called rotation because

geometrically they act as rotations of quantum state’s vectors.
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Uniary rotations X Y Z
I X Y Z

PH Z X Y
HP† Y Z X

PHP† −X Z Y
HPPHP† Y X −Z

H Z −Y X

Figure 5.5: Single qubit rotations

The two qubits CNOT operation acts on two qubits, represented as

control and target columns , i. e. is done using CNOT table TCNOT (see

[12]). By applying a CNOT, both columns are updated, e. g. if we have

X and Z in control and target columns, then after applying CNOT we

will have −Y and Y, respectively.

Figure 5.5 shows an interesting fact that all Clifford operators can

be implemented as a sequence of Hadamard and Phase operations

together with CNOT.

For Measurement, first we check whether it is random or not. Then

if we encounter random measurement, we choose an outcome and

apply a series of row multiplications and finally update the scratch

row. In case we have deterministic measurement, after applying row

multiplications we look into the scratch row’s phase column and de-

termine the outcome as follows:

Outcome =


1 i f rsc = 2

0 otherwise
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Algorithm STABILIZER-MEASUREMENT(A, q)
1: boolean IsRandom;
2: for all Stabilizer rows i ∈ A do
3: if Ai,j = σx orAi,j = σy then
4: return IsRandom = true
5: else
6: return IsRandom = f alse
7: end if
8: end for
9: if IsRandom = true then

10: r = K
11: while Ar,q = I orAr,q = σz, do
12: for all destabilizer rows d ∈ A do
13: multiply row d with row r
14: end for
15: for all stabilizer rows m s.t. m 6= r, Am,q = σx orAm,q = σy

do
16: multiply row m and r
17: end for
18: Asc,q = αOutcomeσz
19: r = r + 1;
20: end while
21: end if
22: if IsRandom = f alse then
23: for all destabilizer rows d ∈ A do
24: if Ad,q = σx orAd,q = σy then
25: multiply scratch row (sc) with dth stabilizer row.
26: end if
27: end for
28: end if

Figure 5.6: Stabilizer Measurement
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5.1.2 Normal Forms Algorithms

In the previous section we have seen that stabilizer states can be ele-

gantly represented by Pauli generators. Unfortunately, this represen-

tation is not unique, e. g. row operations such as multiplication do

not change the state, but change the representation. For various ap-

plications of stabilizer formalism, one needs to obtain unique normal

forms of the stabilizer representations. Luckily, there are efficient algo-

rithms to obtain such normal forms and they are thoroughly investi-

gated by Audenaert and Plenio in [12]. Their motivation for obtaining

normal forms was mainly concerned with expressing entanglement

in stabilizer formalism, however, other useful algorithms are also in-

troduced in [12], that are essential for the implementation of our tool,

QEC.

In this section we briefly review algorithms related to the normal

forms that have been used in the equivalence checking tool QEC.

More details as well as proofs of correctness of these algorithms can

be found in [12]. Row Reduced Echelon Form (RREF) of a stabilizer RREF

array can be obtained by applying a sequence of row operations on

the stabilizer array. A stabilizer array is in RREF, if its stabilizer gen-

erators part can be recursively defined by the cases depicted in Fig-

ure 5.7.

Here RREF denotes a subarray that is in RREF. In the second case,

P represents a Pauli operator and Pi’s can be either identity or Pauli
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
I
... RREF
I




P P1 . . . Pn

I
... RREF
I





P1 P1
1 . . . Pn

1

P2 P1
2 . . . Pn

2

I
... RREF
I


Figure 5.7: RREF Cases

operators. Likewise in the third case, P1 and P2 are Pauli operators,

but Pj
i can be identity as well. Also P1 and P2 anti-commute.

The algorithm goes through these cases and in each case, applies a

series of row multiplications and transposes until the entire stabilizer

array has been put into RREF. For details of a the algorithm, please

refer to [12]. Independence

CheckingAn important application of RREF algorithm is independence check-

ing of a set of Pauli generators [12]. After applying RREF algorithm

to a stabilizer array, the dependencies between stabilizer generators

appear as rows containing only identity. The remaining stabilizer gen-

erators form an independent set of generators. Partial Trace

AlgorithmAnother useful application of RREF algorithm is to obtain a par-

tial trace of stabilizer states, using PTRACE algorithm [12]. This is

crucial for QEC tool since we mostly deal with I/O protocols (see

Definition 4.7), and therefore for computing the output of protocols

we need to call PTRACE many times, depending on how many qubits

have to be traced out. Partial trace algorithm changes quantum states

and often results in mixed stabilizer states, so this fact has to be con-

sidered when it comes to further stabilizer simulation. However, in



5.1 stabilizer formalism 79

Algorithm PTRACE(A, q)
1: RREF (Aq).
2: In the column q, if there is no Pauli operator, do nothing.
3: In the column q, if there is only one kind of Pauli operator σ, remove

the first row i where Ai,q = σ.
4: In the column q, if there are two kinds of Pauli operators σ1 and σ2

such that they anti-commute, remove the first rows i and j, where
Ai,q = σ1 and Aj,q = σ2.

5: Remove column q.

Figure 5.8: PTRACE Algorithm

principle it is possible to defer partial trace to the end of execution

of protocols, avoiding operations on mixed states. In particular QEC

adopted the latter approach. The description of PTRACE algorithm is

given in Figure 5.8, where Aq denotes column q as a subarray. Note

that it is possible to apply PTRACE to a set of columns (correspond-

ing to qubits). CNF

Another important normal form, discussed in [12] is Column Nor-

mal Form (CNF), that in addition to row operations uses rotations in

Figure 5.5. An stabilizer array after performing CNF would have the

general form depicted in Figure 5.9. The CNF algorithm in each iter-

ation counts the number of different Pauli operators in every column

of the stabilizer array, then it applies a series of row operations and

column operations as in Figure 5.9. For each column, there are three

cases to consider: no Pauli operator in the column, there is only one

kind of Pauli operators and finally, there are at least two different

Pauli operators in the column. The details of each case of the algo-

rithms can be found in [12]. Note that in contrast to RREF algorithm,

CNF changes the stabilizer state, permanently.
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X I · · · I I · · · I
I X · · · I I · · · I
...

...
. . .

...
...

...
...

I I · · · X I · · · I
I I · · · I I · · · I
...

...
...

...
...

...
...

I I · · · I I · · · I



Figure 5.9: Column Normal Form (CNF)[
A1

A2

]

Figure 5.10: Combined Stabilizer Array

The most important application of CNF, as far as this work con-

cerns, is in computing fidelity between two stabilizer states based

on their stabilizer array representations. The concept of fidelity is Fidelity Algorithm

discussed in Section 2.4 and is an information theoretic measure of

similarity between two quantum states. The input of the algorithm

for calculating fidelity [12] consists of two stabilizer arrays A1 and

A2. The algorithm first brings the combined array in Figure 5.10 into

CNF, by only considering the A1 because column operations will be

automatically extended to A2. Then, for each column we will have

three cases, similar to the CNF algorithm.

For each case, the algorithm applies a series of column and row op-

erations as well as maintaining values of certain variables for comput-

ing fidelity. After finishing iterations, based on these values, fidelity

will be computed and the algorithm terminates. See [12] for more

details.
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5.2 equality test algorithms for stabilizer states

This section introduces algorithms for testing equality of two sta-

bilizer states. Our ability to test equality of stabilizer states stems

from having classical efficient description in terms of stabilizer arrays.

However, testing equality of two arbitrary quantum states (perfectly)

by relying only on measurement, is not possible (see [84, p. 86]).

Considering non unique representation of stabilizer states by sta-

bilizer arrays, equality tests require to incorporate normal form al-

gorithms. In this regard, Independence Checking (IC) and Inner Product

(IP) equality tests both rely on using RREF normal form algorithm. IC Equality Test

The main idea of IC equality test is two prove equality of stabilizer

states based on equality of their corresponding stabilizer groups. One

can do the latter by looking into the dependence of their generators

in the stabilizer array (we also take phases into account).

Let |φ1〉 and |φ2〉 be stabilizer states and Stab(|φ1〉) and Stab(|φ2〉)

their stabilizer groups respectively. We have the following Lemma:

Lemma 5.1 ([9]) |φ1〉 = |φ2〉 ⇔ Stab(|φ1〉) = Stab(|φ2〉)

Proof (of Lemma 5.1) To show |φ1〉 = |φ2〉 ⇒ Stab(|φ1〉) = Stab(|φ2〉)

suppose x ∈ Stab(|φ1〉) then from x|φ1〉 = x|φ2〉, |φ1〉 = |φ2〉 we have

x|φ2〉 = |φ2〉, therefore x ∈ Stab(|φ2〉) and Stab(|φ1〉) ⊆ Stab(|φ2〉).

Similarly we have Stab(|φ2〉) ⊆ Stab(|φ1〉).

For the other direction we need to show Stab(|φ1〉) = Stab(|φ2〉) ⇒

|φ1〉 = |φ2〉.
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Suppose in contrary, |φ1〉 6= |φ2〉, then ∃v ∈ Stab(|φ1〉) s.t. v|φ1〉 6= v|φ2〉

and that leads to Stab(|φ1〉) 6= Stab(|φ2〉).

The algorithm for IC equality test receives two input stabilizer arrays

A1 and A2. Here the size of stabilizer arrays (number of qubits) is

denoted by NAi and the number of identity rows, i. e. rows of the

form +I I . . . I, is shown by NumAi
I . Sum of sets of rows is denoted

by ∪. The algorithm first puts the input arrays into RREF, then com-

putes the rank of stabilizer arrays ,ri, by numbering the identity rows.

At this point if they have distinct rank, then stabilizer states are not

equal and the algorithm terminates, otherwise it continues by ap-

plying RREF to the sum of the stabilizer array rows and checking

whether the rank, r, is matched with ri’s. If that is the case, the states

are equal, otherwise, we conclude they are non-equal. Figure 5.11

gives the algorithm for checking IC equality.

Knowing that RREF algorithm has the complexity of O(n3), we

conclude that the IC equality test algorithm terminates in polynomial

time:

Proposition 5.1 ([9]) There is a polynomial time algorithm which decides

for any stabilizer states |φ〉 and |ψ〉, whether or not |φ〉 = |ψ〉.
IP Equality Test

Another way of testing equality of two stabilizer states is comput-

ing their inner product, based on their stabilizer representation. This

has been introduced in [4], and is given in the following definition.

Definition 5.5 (Inner product of two stabilizer states [4]) Let |φ〉 and |ψ〉

be two stabilizer states. For each set of generators G = {G1, . . . , Gn}, repre-
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Algorithm IC-EQUALITY(A1,A2)
1: A1 = RREF(A1)

2: r1 = NA1 − NumA1
I

3: A2 = RREF(A2)

4: r2 = NA2 − NumA2
I

5: if (r1 6= r2) then
6: return False
7: end if
8: A = A1 ∪A2
9: A = RREF(A)

10: r3 = NA1 + NA2 − NumAI
11: if (r3 = r1 = r2) then
12: return True
13: else
14: return False
15: end if

Figure 5.11: IC Equality Test Algorithm

senting Stab(|φ〉) and H = {H1, . . . , Hn}, representing Stab(|ψ〉), define

D(G, H) to be the number of generators such that Gi 6= Hi. Then, there are

two cases:

1. If in all sets of generators such as G and H, there exists generators Gi

and Hi in which they have equal Pauli operators with opposite sign,

then 〈φ|ψ〉 = 0.

2. Otherwise for all such G and H we have 〈φ|ψ〉 = 2(−minG,H D(G,H))/2.

The algorithm for testing equality first has to bring the input states

to normal forms in order to avoid iteration on all possible sets of

generators. In this work we choose RREF, but in [4] a different normal

form is used. The subroutine ISORTHG(A,B) checks whether the

case 1 of Definition 5.5 applies, by looking into all stabilizer rows and
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Algorithm IP-EQUALITY(A1,A2)
1: A1 = RREF(A1)
2: A2 = RREF(A2)
3: if ISORTHG(A1,A2) = True then
4: return False
5: else
6: if 2(−minG,H D(G,H))/2 = 1 for G’s in A1 and H’s in A2 then
7: return True
8: else
9: return False

10: end if
11: end if

Figure 5.12: IP Equality Test Algorithm

comparing their phases. The complete algorithm is presented in the

Figure 5.12.

Remark 5.2 In quantum information theory, equality of quantum states

are usually considered in terms of fidelity between two states. Fidelity is

defined in Definition 2.3 for general states and the algorithm for computing

it, in the case of stabilizer states, is discussed in Section 5.1.2 and [12].

From Proposition 2.1, we know that if two (mixed) stabilizer state are

equal, then their fidelity is equal to 1 , otherwise they are not equal. Note

that by using stabilizer states fidelity algorithm (Figure 5.2, [12]), we invoke

CNF algorithm (Figure 5.9, [12]) that changes the states permanently, in

contrast with the previous equality tests. Since computing fidelity of two

stabilizer states uses CNF algorithm, the complexity at worst case is O(n3),

where n is the number of columns (qubits) in the stabilizer arrays.
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5.3 stabilizer basis

In Section 5.4 and Section 5.5 we will describe decision procedures for

testing functionality of quantum protocols (see Definition 4.10). How-

ever, for integrating these tests in QEC we need to have a workable

basis set, that is consisting of only stabilizer states. In [51], Gay has

introduced a stabilizer basis for the space of density matrices. We

review this result in the following:

Theorem 5.2 ([51]) The space of density matrices for n-qubit states, con-

sidered as a (2n)2-dimensional real vector space, has a basis consisting of

density matrices of n-qubit stabilizer states.

Write the standard basis for n-qubit states as {|x〉 | 0 6 x < 2n},

considering numbers to stand for their n-bit binary representations.

We omit normalization factors when writing quantum states. With

this notation, for n > 1 let GHZn = |0〉+ |2n − 1〉 and iGHZn = |0〉+

i|2n − 1〉, as n-qubit states.

Lemma 5.2 ([51]) For all n > 1, GHZn and iGHZn are stabilizer states.

Proof By induction on n. For the base case (n = 1), we have that |0〉+ |1〉

and |0〉+ i|1〉 are stabilizer states, by applying H and then P to |0〉.

For the inductive case, GHZn and iGHZn are obtained from GHZn−1⊗ |0〉

and iGHZn−1 ⊗ |0〉, respectively, by applying CNot to the two rightmost

qubits.
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Lemma 5.3 ([51]) If n > 1 and 0 6 x, y < 2n with x 6= y then |x〉+ |y〉

and |x〉+ i|y〉 are stabilizer states.

Proof ([51]) By induction on n. For the base case (n = 1), the closure

properties imply that |0〉+ |1〉, |0〉+ i|1〉 and |1〉+ i|0〉 (equivalent to |0〉−

i|1〉 by scalar multiplication) are stabilizer states.

For the inductive case, consider the binary representations of x and y.

If there is a bit position in which x and y have the same value b, then

|x〉 + |y〉 is the tensor product of |b〉 with an (n − 1)-qubit state of the

form |x′〉 + |y′〉, where x′ 6= y′. By the induction hypothesis, |x′〉 + |y′〉

is a stabilizer state, and the conclusion follows from the closure properties.

Similarly for |x〉+ i|y〉.

Otherwise, the binary representations of x and y are complementary bit

patterns. In this case, |x〉+ |y〉 can be obtained from GHZn by applying X

to certain qubits. The conclusion follows from Lemma 5.2 and the closure

properties. The same argument applies to |x〉+ i|y〉, using iGHZn.

Proof (of Theorem 5.2 [51]) This is the space of Hermitian matrices and

its obvious basis is the union of

{|x〉〈x| | 0 6 x < 2n} (5.5)

{|x〉〈y|+ |y〉〈x| | 0 6 x < y < 2n} (5.6)

{−i|x〉〈y|+ i|y〉〈x| | 0 6 x < y < 2n}. (5.7)
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Algorithm BASIS(n)
1: B = ∅
2: Add standard basis by applying σX to the qubits of the state
|0102 . . . 0n〉 to B.

3: Add GHZ and iGHZ states to B: by applying a H or HP and then
a sequence of CNOTs with the initial state |00 . . . 0〉.

4: Consider logical qubits:
∣∣∣b̂1b̂2 . . . b̂n

〉
. Construct GHZ and iGHZ

states of step (3) on the syndrome qubits, i. e. positions b̂i with dif-
ferent binary value, and add them to B. Also add the states such
that σX is applied to the b̂is with the same value.

5: return B

Figure 5.13: Algorithm for generating Stabilizer Basis

Now consider the union of

{|x〉〈x| | 0 6 x < 2n} (5.8)

{(|x〉+ |y〉)(〈x|+ 〈y|) | 0 6 x < y < 2n} (5.9)

{(|x〉+ i|y〉)(〈x| − i〈y|) | 0 6 x < y < 2n}. (5.10)

This is also a set of (2n)2 states, and it spans the space because we can obtain

states of forms (5.6) and (5.7) by subtracting states of form (5.8) from those

of forms (5.9) and (5.10). Therefore it is a basis, and by Lemma 5.3 it consists

of stabilizer states.

We used the construction in the proof of Theorem 5.2 and present

an algorithm in the Figure 5.13, for the generation of stabilizer basis.
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5.4 equivalence checking of sequential protocols

In this section we explain the core idea of verifying sequential func-

tional protocols using equivalence checking, as we previously inves-

tigated in [9]. We use the superoperator semantics, in [94] (see Sec-

tion 3.1), to show that the implementation of a functional quantum

protocol in QPL is equivalent to its specification. In order to automate

this procedure, we take advantage of linearity of supeoperators (see

Theorem 2.2) and iterate equivalence checking, for each basis vectors

of the input space in Section 5.3, avoiding continuum of input density

matrices.

Our first step is to check the functionality of given implementation

and specification protocols. Assume we have given a sequential pro-

tocol, P, e. g. a QPL program, with the input space V. Suppose P has

M branching points, e. g. there are M random measurements in the

program, then we assign to each branch i, a superoperator Ei as in [9].

Also From [94], we know that the semantics of P is described by a

unique superoperator, ∆. Thus to show that P is functional it suffices

to prove that:

∀ 1 ≤ i ≤ 2M, Ei h ∆ (5.11)

We can write Equation 5.11 with density matrices as following:

∀ 1 ≤ i ≤ 2M, ∀ ρ ∈ V, Ei(ρ) = ∆(ρ) (5.12)
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However, the input space V in the above equation can be infinite, mak-

ing automating the functionality test infeasible. To solve this problem,

we use the fact that V is a linear space and also superoperators are

linear operators. So it suffices to check validity of Equation 5.12 for

each vectors in a basis of the space V. Let BV be such basis, then

Equation 5.12 can be rewritten as:

∀ 1 ≤ i ≤ 2M, ∀ ρ ∈ BV , Ei(ρ) = ∆(ρ) (5.13)

Proposition 5.2 ([9]) Checking functionality of any sequential protocol,

such as aforementioned P (specified in QPL or CCSq), is decidable.

Proof Let the protocol P receive n qubits as input, then the dimension of

V is 22n and therefore we have |BV | = 22n. Following the approach of [9],

starting from a pure basis state, |b〉 ∈ BV , and for each branch i, Ei(|b〉) =∣∣φb
i
〉

with probability 2−M, where M is the number of branching points (e. g.

random measurements). Equation 5.13 is then proved by checking that for

every basis state, as input, all branches end up in an equal state:

∀|b〉 ∈ BV ∀1 ≤ i, j ≤ 2M
∣∣∣φb

i

〉
=EqT

∣∣∣φb
j

〉
(5.14)

Here =EqT denotes an equality test between pure quantum states such as

those explained in Section 5.2.

Now for given QPL programs Pi, i ∈ {1, 2}, representing the specifi-

cation and implementation of a sequential protocol, we want to check
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their equivalence P1
∼= P2. Let Si(ρ)

(j) denote the output state for the

branch j of program Pi, for input state ρ. The equivalence checker

first use the above procedure for functionality test then examines the

equivalence of two programs, for all states in the stabilizer basis con-

structed by the algorithm in Figure 5.13, which is denoted by BV . In other

words it computes the following (informal) expression:

∀ρ ∈ BV . ∀j, k. S1(ρ)
(j) = S1(ρ)

(k)

∧ ∀ρ ∈ BV . ∀j, k. S2(ρ)(j) = S2(ρ)(k)

∧ ∀ρ ∈ BV . S1(ρ) = S2(ρ)

Let paths(P, s) denote the set of possible paths, indexed by inte-

gers from 1 upwards, when executing program P on input state s.

Let StabSim(P, s, j) denote the final state produced by the stabilizer

simulation algorithm in Section 5.1, starting with input state s and

executing path j of program P. Let EQS(v, w) be the equality tests al-

gorithm in Section 5.2. Then the above procedure corresponds to the

algorithm in Figure 5.14.

Remark 5.3 The overall complexity of the above algorithm is

O(22n poly(m + n)), where n is the number of input qubits and m is the

number of qubits inside the programs (i.e those created by newqbit).

5.5 equivalence checking of concurrent protocols

In the classical theory of computation several equivalence checking

methods have been introduced for concurrent systems namely: bisim-
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1: for all v ∈ BV do
2: for all i ∈ {1, 2} do
3:

∣∣φv
i
〉
= StabSim(Pi, v, 1)

4: for all j ∈ paths(Pi, v)− {1} do
5: if ¬EQS(StabSim(Pi, v, j),

∣∣φv
i
〉
) then

6: return Pi non-functional
7: end if
8: end for
9: end for

10: if ¬EQS(|φv
1〉, |φv

2〉) then
11: return P1 � P2
12: end if
13: end for
14: return P1

∼= P2

Figure 5.14: Algorithm for checking equivalence of QPL programs.

ulation based, automata based, game semantics and trace semantics.

All of these methods are coupled with a notion of state, that is clas-

sical. However in QIP, systems are defined with quantum states and

therefore the above techniques are not applicable directly.

In this work we use superoperator semantics, defined in the previ-

ous chapters, as a suitable abstraction of concurrent functional quan-

tum protocols. Similar to the case of sequential protocols, we restrict

ourself to the functional concurrent protocols (see Definition 4.10) that

are specified in CCSq. In the following we show that in principle,

functionality test of concurrent I/O protocols is decidable.

To show functionality of concurrent I/O protocols, all possible in-

terleavings have to be considered. Then we use Proposition 4.1 to

obtain an associated superoperator to each interleaving. Let I be the

set of all interleavings of a given concurrent I/O protocol and assume
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Fi is the associated superoperator to the interleaving i. To check func-

tionality of such a protocol, we need to show that:

∀ 1 ≤ i ≤ |I|, Fi h ∆ (5.15)

where ∆ is a unique superoperator. Subsequently, we get the follow-

ing equation:

∀ 1 ≤ i ≤ |I|, ∀ ρ ∈ V, Fi(ρ) = ∆(ρ) (5.16)

where V is the input space. Similar to the sequential case, we use the

basis set BV to check the functionality, feasibly:

∀ 1 ≤ i ≤ |I|, ∀ ρ ∈ BV , Fi(ρ) = ∆(ρ) (5.17)

Now each interleaving in Equation 5.17 is separately checked for func-

tionality as a sequential case, according to Proposition 5.2.

Proposition 5.3 ([11]) Checking the functionality of any concurrent I/O

protocol in CCSq is decidable.

Proof Let V be the input state of n qubits density matrices and BV be the

basis set. Assume I denote the interleavings set. Starting from the pure basis

state |b〉, for each interleaving i, we calculate the effect of its superoperator

on the basis b, Fi(|b〉). If i is branching, then first we run decision procedure

of the Proposition 5.2. By iteration on basis vectors we show:

∀ 1 ≤ i, j ≤ |I|, ∀ |b〉 ∈ BV , Fi(|b〉) =EqT Fj(|b〉)
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The following algorithm describes how to check functionality of a

given concurrent I/O protocol by first scheduling, then interpreting it

in the stabilizer formalism, using stabilizer simulation algorithm (in

Section 5.1.1), and finally testing equality of the reached final states,

(in Section 5.2).

Remark 5.4 In QEC, we represent density matrices (mixed states) implic-

itly. This is done by interpreting protocols with pure stabilizer states on

different runs of the protocol’s model. However it may possible to work with

mixed stabilizer states directly [4].

for a concurrent program P, let I(P, v) denote all possible inter-

leavings of the program with initial state v in the stabilizer basis B,

produced by a scheduler and indexed by positive integers. Let Ii de-

note the ith interleaving and suppose StabSim∗(P, v, i) shows the final

state given by stabilizer simulation algorithm in [4] applied to Ii, on

initial basis state v. Finally, let EQS(v, w) be one of the the equality

test algorithms in Section 5.2, then Figure 5.15 shows the equivalence

checking algorithm for two concurrent programs P1 and P2, and es-

tablishes the following result.

Proposition 5.4 Given two functional concurrent quantum protocols, which

only use operations in the stabilizer formalism, one can decide whether they

are equivalent with respect to their superoperator semantics on every possible

input.

The cost of running the above equivalence checking algorithm in-

creases exponentially in the size of input qubits, because of iteration
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1: for all v ∈ B do
2: for all i ∈ {1, 2} do
3:

∣∣φv
i
〉
= StabSim∗(Pi, v, 1)

4: for all j ∈ I(Pi, v)− {1} do
5: if ¬EQS(StabSim∗(Pi, v, j),

∣∣φv
i
〉
) then

6: return Pi non-functional
7: end if
8: end for
9: end for

10: if ¬EQS(|φv
1〉, |φv

2〉) then
11: return P1 � P2
12: end if
13: end for
14: return P1

∼= P2

Figure 5.15: Algorithm for checking equivalence of concurrent quantum pro-
tocols.

over all basis states, and the number of concurrent processes, because

of scheduling to determine interleavings. The following proposition

gives the computational complexity of our equivalence checking al-

gorithm. Note that in classical computing, the equivalence checking

problem or implementation verification of concurrent systems (where

only the containment problem is considered, not the simulation prob-

lem), is PSPACE-complete (see [63] for details).

Proposition 5.5 Checking equivalence of concurrent quantum protocols has

overall (time) complexity of O(N 22n poly(m + n)), where n is the number

of input qubits (basis size), m is the number of qubits inside a program (i.e

those created by newqbit) and N is the number of interleavings of processes

(where N =
(∑M

i ni)!
∏M

i (ni !)
for M processes each having ni atomic instructions) .

The analysis in Proposition 5.5 is based on three phases of our algo-

ritm namely: scheduling (where N comes from), basis generation (fac-
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tor 22n) and stabilizer simulation and equality test

(factor poly(m + n)).

Remark 5.5 The complexity of stabilizer simulation algorithm is ⊕L (par-

ity L) This is the class of all problems that are solvable by a non-deterministic

logarithmic-space Turing machine, that accepts if and only if the total num-

ber of accepting paths is odd (see [4] for more details).
Approximate

Equivalence CheckingSo far we have described an exact equivalence checking method.

That is, we prove that for a given specification PS and implementation

PI , with their associated superoperators ES and EI , respectively:

PS
∼= PI ⇐⇒ ES h EI (5.18)

The questions that may arise here are what happens when we get

non-equivalent implementation and specification in Equation 5.18?

Due to the complicated physical implementation of QIP systems, we

may have hidden noises/faults from the implementation protocol, so

is there any way of approximating equivalence checking with respect to

superoperator semantics? Assuming we stay in stabilizer formalism,

one way of approximating our equivalence checking can be described

as follows:

Let ρ1 and ρ2 be two density operators. A distance measure for

density operators is defined by Bures [26], and it is in Definition 5.6.

Definition 5.6 Let F(ρ1, ρ2) denote fidelity as in Definition 2.3. Then a

Bures distance between ρ1 and ρ2 is defined by:
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DB(ρ1, ρ2) = 2
√

1− F(ρ1, ρ2)

Now we define ε-equivalent protocols as follows:

Definition 5.7 Suppose PS and PI , corresponding to specification imple-

mentation of a protocol, are:

1. Functional.

2. Defined in the stabilizer formalism.

Let B = {b1 . . . bn} be the stabilizer basis, PS and PI are defined to be ε-

equivalent if:

maxb∈B DB(ES(b), EI(b)) = ε

The main drawback of Definition 5.7 is that it depends on the basis

B, so by choosing a different basis, a smaller approximation factor ε

may be achieved. Nevertheless, our approximation scheme is defined

in the stabilizer formalism and therefore is computationally efficient.

5.6 concluding remarks

In this chapter we have described how functionality and equivalence

of concurrent quantum protocols can be checked by using and de-

veloping techniques in the stabilizer formalism. We have illustrated

that for a certain class of quantum protocols with arbitrary input, one

can check the equivalence of specifications and implementations, effi-

ciently. This idea has been implemented in the tool QEC and applied
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to various well known QIP protocols that will be presented in the

Chapter 6

The equivalence checking algorithms are based on the use of sta-

bilizer basis for the state of density matrices and the linearity of su-

peroperators. This makes our algorithms computational complexity

exponential in the number of input qubits and number of concurrent

processes (see Proposition 5.5).

Equivalence checking can also be used to verify the synthesis of

large stabilizer circuits, and we know our method is scalable for the

verification of stabilizer circuits with bounded number of input/out-

put, but with a large number of internal gates (like the circuits used

in quantum error correction [27]). Now the question is how equiva-

lence checking can be applied to the stabilizer circuits with a large

number of input qubits? It turns out that with some preprocessing,

one can check equivalence of such circuits: Gay has proposed 1 us-

ing the notion of map-state duality, that is a bijection between linear

maps of the form V1 −→ V2 and the elements of their tensor product

space V1 ⊗V2, assuming Vis are finite dimensional. It is shown 2 that

for any stabilizer circuits with n inputs and m internal gates, its dual,

which is an stabilizer state, can be constructed in O(n2 + mn). So for

a given specification and implementation circuits one can obtain the

dual stabilizer states and apply one of the quality tests, discussed in

this chapter.

1 private communication
2 Unpublished work by S J Gay



6
Q U A N T U M E Q U I VA L E N C E C H E C K I N G I N

P R A C T I C E

In the previous chapters we have studied the equivalence checking

problem for the specification and implementation of QIP protocols.

It turns out that many interesting and well known QIP protocols,

those that are definable in the stabilizer formalism, can be verified by

our equivalence checking method. This has led us to implement the

equivalence checker tool, QEC. In the previous version of QEC [9],

sequential quantum protocols were specified in QPL (see Figure 3.1)

whereas in the concurrent version they are specified in CCSq and ap-

plied to concurrent protocols. In particular QEC implements the core

equivalence algorithms, studied in Chapter 5 on given specification

and implementation of protocols, and checks whether they are func-

tional and equivalent.

In this chapter we explain details of the QEC implementation and

give a range of case studies. Each case study is implemented with

different models, for example we specify protocols sequentially with

QPL and in the concurrent CCSq model, and then compare the results

of verification.

98
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In the following, first we explain the structure and implementa-

tion of the QEC tool. Then we present cases studies, their underlying

structure, specifications and implementations of them. Finally in Sec-

tion 6.2, experimental results and comparison of different models are

discussed.

6.1 implementation details

The Quantum Equivalence Checker is a tool that implements several

algorithms around the stabilizer formalism, as elaborated in the pre-

vious chapters. This tool, similar to QMC, has been developed in the

Java programming language. As a part of QEC, several stabilizer al-

gorithms have been implemented in Java and used.

The development of QEC consists of 30,327 Source Lines of Code

(SLOC). Comparing to QMC which contains 89,275 SLOC, our tool

has smaller size while is significantly more efficient in the verifica-

tion tasks and has a clearer structure because of the following design

decisions:

1. Separating Scheduling of concurrent protocols from it seman-

tics in contrast to QMC. This gave us a better understanding of

resources needed to execute a concurrent quantum protocol.

2. In QEC Stabilizer arrays are directly represented and imple-

mented rather than binary representation in [4], since we needed

to manipulate stabilizer arrays a lot by applying different algo-
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rithms on them. This gave us better picture of QEC operations

on quantum states without great impact on efficiency.

The tool consists of the following three major components:

1. Preprocessing

2. Model Construction

3. Verification

The first component, preprocessing, protocol’s implementation and

specification, and builds the abstract syntax tree for each of them. It

also produces the necessary stabilizer basis for later stages of veri-

fication. The second component constructs the model of the input

protocols, by scheduling and then interpreting them in the stabilizer

formalism. In order to check the complete model, all interleavings

and branches are explored by QEC. Finally, the verification unit car-

ries out functionality test and equivalence checking on the given pro-

tocols. The general architecture of QEC is depicted in the Figure 6.1.

QEC can be downloaded from [8]. It automatically constructs the

model, for all basis states, and verifies the given protocols by the

equivalence checking algorithm.

6.1.1 Preprocessing

Preprocessing in QEC is done in two phases. In the first phase, the

input protocols are parsed and the Abstract Syntax Tree (AST) is pro-
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System Representation
(Implementation)

Equivalence Checker

Checked
Or Counterexample

System Specification

Concurrency Scheduler

Stabilizer Simulator

Preprocessing

Stabilizer Basis

Parser

Figure 6.1: Structure of QEC

duced, using SableCC [49] tool. This is a general purpose compiler to

compiler software that automatically generates parser and AST based

on a given grammar. It also checks the given protocols against syn-

tax errors. The back end of SableCC is then usable by Java Runtime

Environment (JRE).

Another important part of preprocessing is the generation of sta-

bilizer basis. To this end a visitor [49] to the automatically generated

AST is implemented, based on the algorithm in Figure 5.13.

Remark 6.1 In the previous version of QEC [9] we have used the simple

QPL language and its grammar, i. e. described by the syntax in Figure 3.1

without recursions and loops, for the specification of quantum protocols.

However, in concurrent QEC, the grammar is based on CCSq, and in ad-

dition to the concurrent structure, it has other features such as matching

expressions and explicit measurement expressions.
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6.1.2 Model Construction

The model construction unit of QEC consists of a scheduler and an

interpreter. In the sequential QEC, the scheduler produces branches

by implementing a visitor to the QPL’s SableCC generated AST. This

visitor constructs a binary tree with its branches corresponding to

the quantum measurements with random outcomes, generated by the

following command:

masure q then . . . else . . . end

Each path from root (corresponds to the input point) to the leaves

(correspond to the output point) in this binary tree, is encoded by a

sequence of 0’s and 1’s, that guides us which measurement outcome

has to be chosen.

Scheduling of concurrent protocols are more complicated since we

need to consider communications and parallel compositions to pro-

duce interleavings. The core idea of QEC’s concurrency scheduler is

to separate the scheduling from the semantics of the input language.

In that sense, our scheduling technique is very different from QMC,

where scheduling was based on executability predicates, relating it

to the operational semantics of QMCLang. The advantages of our

scheduling method are reflected in the implementation of a more

clear, faster and bug free scheduler.

QEC scheduler uses a Java interface, called Schedulable with three

methods in it : Options(), Select() and Reset(). The scheduler uses this
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interface and determines for each process a list of available options

in the schedule. Options for each process could be receiving, sending

or internal (τ) actions. In CCSq, Nil is a process without any options.

Selecting an option triggers Select() to pass an available action to the

stabilizer simulator. Finally, Reset() resets the scheduler to a previous

scheduling point.

In the case of parallel composition of two process, the scheduler

options list would be the sum of each process’s options set. There-

fore at each step of protocol execution, a list of scheduling options is

maintained by the scheduler. This vector of options lists corresponds

to a scheduling tree, where at each level of the tree we have a list

of available options. QEC scheduler applies a depth-first search on

this tree to explore all possible scheduling paths. Note that QEC does

not construct the whole scheduling tree at once, but instead extracts

possible schedules from AST. When one scheduling path is fully ex-

plored and interpretation of it is done, it will be removed. The above

procedure will be iterated until the whole scheduling tree is explored

and depth-first search is terminated.

The second part of model construction concerns with interpreting

quantum protocols in the stabilizer formalism. To this end the stabi-

lizer simulation algorithm discussed in Section 5.1.1 is implemented

in Java.

Since we deal with I/O protocols, in addition to the stabilizer sim-

ulation, the partial trace algorithm (Section 5.1.2) is used to interpret

the output command that terminates the execution of the protocols.
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Once the model is constructed for a given input basis state, a vector

of stabilizer arrays, corresponding to the reachable final states, will be

stored.

6.1.3 Verification

The first phase of verification is to test whether an input protocol is

functional. This is done using Proposition 5.2 for the sequential QPL

protocols and is implemented in [9], whereas in the case of concurrent

CCSq protocols, Proposition 5.3 is implemented.

In the implementations of QEC, functionality of protocols are checked

by repeating IC− EQUALITY test (Section 5.2) on the vectors of sta-

bilizer arrays (constructed models).

Once the functionality of specification and implementation pro-

tocols is checked, QEC enters the second phase where the equality

test will be applied to a pair of stabilizer states, one from specifica-

tion’s constructed model and one from implementation’s model. This

process will be repeated for all basis states, where the equivalence

checking algorithms (see Chapter 5) terminate. If no instance of non-

equality is found, QEC reports equivalence is checked otherwise it

shows on which basis , the specification and implementation are not

equivalent.

QEC is a fully automatic tool such it can be used easily in the

terminal as shown in Figure 6.2, where specification and implemen-
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> check Specification.ccs Implementation.ccs

Figure 6.2: QEC usage

> Basis generated with N states.

> Equivalence is Checked on M runs of Specification and

L runs of Implementations.

> Final evaluation is -.

> Verification time: - ms.

Figure 6.3: QEC output

tation are stored in two separate files, Specification.ccs and Implementa-

tion.ccs, respectively (see [8]). The output of tool represents how many

basis is generated for the equivalence checking, the number of runs

for specification and implementation protocols, final result of equiv-

alence checking considering all runs and finally the verification time

is reported. Figure 6.3 shows a how the output of the tool looks like.

6.2 case studies

In the following sections we apply QEC tool to verify a range of QIP

protocols. These examples are chosen from different areas of QIP

such as quantum communication, quantum error correction, quan-

tum cryptography and quantum fault tolerant computations.

For each example we explain the specification and implementation

in different modelling languages such as quantum circuit, QPL and

CCSq.
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The general structure of concurrent models is presented by dia-

grammatic representation, where boxes represent processes and ar-

rows denote the interactions between processes (dotted arrows for

classical communications and line arrows for quantum communica-

tions). In these diagrams, the input of protocols located in the pro-

cess with • token and the output process is distinguished with the

token ?.

6.2.1 Communication and Cryptographic Protocols

In this section we present three quantum protocols: Teleportation,

Dense Coding and Quantum Secret Sharing, along with the details

of their specification and implementation.

6.2.1.1 Teleportation

Teleportation [17] is a quantum communication protocol designed

to use only local quantum operations and classical communications

(LOCC). It is an important primitive in QIP and many computational

schemes and models depend on it. Teleporting a given quantum state

from Alice to Bob in this protocol can be achieved by only using

entanglement, two instances of classical communications, local quan-

tum operations and measurements. Teleportation in

Quantum CircuitThe implementation of Teleportation is usually described by a quan-

tum circuit, shown in Figure 2.3, where three lines (from top) cor-

respond to Alice’s qubit, Alice’s share of entangled pair and Bob’s
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q : |ψ〉 I q : |ψ〉

Figure 6.4: Teleportation Specification in Quantum Circuits

program Teleportation_Specification

input q0:qbit

output q0:qbit

Figure 6.5: Teleportation Specification in QPL

qubit, respectively. The first two columns of the circuit, applied to the

second and third qubits represent preparation of entangled pair. The

third and forth columns show Alice’s operations. Alice’s measure-

ments are shown by the fifth column and finally, Bob’s operations

depending on the outcomes of Alice’s measurements, are shown in

the fifth and sixth columns.

The specification of Teleportation can be described by the circuit in

Figure 6.4, where I denotes identity gate applied to q with the state

|ψ〉 and output q with the same state. Teleportation in

QPLThe sequential QEC [9] uses a programming interface to describe

Teleportation i. e. the implementation is described by a QPL program,

as it is shown in Figure 3.2. The spefication of Teleportation in the

sequential equivalence checker is a program which has the effect of

identity, i. e. given a qubit q0, the specification outputs the same qubit

without any operation on it, as is illustrated in Figure 6.5. Teleportation in

CCSq
The concurrent model of Teleportation is specified in the language

CCSq as follows: there are three processes EPR, Alice and Bob that

interact according to Figure 6.6. Each process runs in parallel to oth-

ers, while the input occurs in Alice process and Bob ends up with
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Alice • Bob ?

EPR

Figure 6.6: Diagrammatic Teleportation

//Specification of concurrent Teleportation:

input x.output x.nil

Figure 6.7: Teleportation Specification in CCSq

the output of the protocol. The complete model Teleportation’s im-

plementation is shown in Figure 4.2.

In the concurrent model we can model the physical separation of

Alice and Bob, a feature that can not be captured within the quantum

circuit model or QPL programs. Also the communications between

EPR process, Alice and Bob are made explicit. The specification of

Teleportation in this case is a protocol consisting of a process, passing

the input to the output without any prefix (action). This is shown in

Figure 6.7.

As an interesting example to show how the design of concurrent

quantum protocols can be non intuitive, suppose in the Alice process

of Figure 4.2, quantum measurements and sending outcomes are run

concurrently, e. g. we have the following term, instead:

( m := measure x . b!m | n := measure y . b!n )
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|x〉

|y〉

|0〉 H • X Z • H |x〉

|0〉 |y〉

Figure 6.8: Dense Coding Implementation in Quantum Circuits

then specification and implementation become non-equivalent, be-

cause Bob’s actions are determined by both m and n, and therefore

the measurement and sending the outcomes can not be interleaved.

6.2.1.2 Dense Coding

Dense Coding [16] is another quantum communication protocol which

takes advantage of entanglement. In this protocol, Alice communi-

cates two pieces of classical information only by sending one qubit to

Bob and using a pair of entangled qubits. The fact that Dense Coding

needs an entangled pair means it does not offer a more efficient way

of classical communications, nevertheless it illustrates how peculiar

QIP could be. Dense Coding in

Quantum CircuitOne way to implement Dense Coding is to encode two classical

bits of input, say x and y onto two qubits, resulting in the state |x〉|y〉,

followed by the operations of Alice and Bob and get the output |x〉|y〉.

Figure 6.8 shows Dense Coding protocol in the language of quantum

circuits.

The circuit in Figure 6.8, in fact, computes a classical binary func-

tion with two inputs and outputs encoded on two qubits i. e. a binary
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|x〉 I |x〉

|y〉 I |y〉

Figure 6.9: Dense Coding Specification in Quantum Circuits

function on the set {00, 10, 01, 11}. For this reason, in both sequential

and QEC, Dense Coding is analysed on the mentioned set (standard

basis) and not the complete stabilizer basis in Chapter 5. The Specifi-

cation of Dense Coding is shown in Figure 6.9. Dense Coding in

QPLIt is shown in Figure 6.10 how Dense Coding is implemented in the

sequential QEC. The specification in this case is a QPL protocol with

two qubits input and output q0, q1, representing encoded classical bits,

as illustrated in Figure 6.9. Dense Coding in

CCSq
Finally, we have implemented Dense Coding in the concurrent QEC.

Similar to Teleportation, there are three processes of EPR, Alice and

Bob, where Alice holds the input and Bob has the output of the pro-

tocol. The general structure of concurrent Dense Coding is presented

in Figure 6.12, and the implementation is described in Figure 6.13.

The specification of concurrent Dense Coding protocol consists of

a process which passes two qubits input to the output and is shown

in Figure 6.14.

A different way of implementing Dense Coding is to define directly

inputs with classical bits. In that case we replace Alice measurements

in Figure 6.13 with the following classical conditions:

i f x then Z(a) . i f y then X(a)
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program DenseCoding_Specification

input q0,q1:qbit

output q0,q1:qbit

program DenseCoding_Implementation

input q0,q1:qbit

//EPR pair(q3 is in possesion of Bob)

newqbit q2;

newqbit q3;

q2*=H;

q2q3*=CNot;

//Alice operations

measure q0 then q2*=Z else q0*=I end;

measure q1 then q2*=X else q1*=I end;

//Bob operations

q2q3*=CNot;

q2*=H

output q0,q1:qbit

Figure 6.10: Dense Coding Implementation in QPL

program DC_Spec

input q0,q1:qbit

output q0,q1:qbit

Figure 6.11: Dense Coding Specification in QPL
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Alice • Bob ?

EPR

Figure 6.12: Dense Coding Diagrammatic

// Should only be checked on "standard" basis

//EPR prepares and send entangled pair:

newqubit a. newqubit b . H(a). CNOT(a,b) . c!a . d!b . nil

|

//Alice operations based on the classical outcome

of measurement as input:

(input x,y . c?a . m:= measure x . n:= measure y .

if m then Z(a) . if n then X(a) . q!a .nil |

|

//Bob

d?b.q?a.CNOT(a,b).H(a).output a,b.nil)

Figure 6.13: Dense Coding Implementation in CCSq

//Specification of concurrent Dense Coding:

input x,y.output x,y.nil

Figure 6.14: Dense Coding Specification in CCSq
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However in this case the semantics of the given protocol is a classical

binary function, rather than a superoperator, and therefore quantum

equivalence checking does not apply.

6.2.1.3 Quantum Secret Sharing

Quantum Secret Sharing protocol was first introduced by Hillery et al.

[65].1 The original problem of secret sharing involves an agent Alice

sending a classical message to two agents Bob and Charlie, one of

whom is dishonest. Alice does not know which one of the agents is

dishonest, so she must encode the message so that Bob and Charlie

must collaborate to retrieve it. For the quantum version of this proto-

col, the three agents need to share a maximally entangled three-qubit

state, called the GHZ state, prior to the execution of the protocol:

|000〉+|111〉√
2

. we assume that Charlie will end up with the original qubit

(a variation of the protocol will allow Bob to end up with it or Alice

can choose who gets the secret, randomly). The body of the protocol

has two main phases: committing a secret by Alice and collaboration

of agents to retrieve the secret. First, Alice entangles the input qubit

with her entangled qubit from a previously distributed GHZ state.

Then Alice measures her qubits and sends the outcome to Charlie

(committing the secret). Bob also measures his qubit and sends the

outcome to Charlie. Finally, Charlie is able to retrieve the original

qubit once he has access to the bits from Alice and Bob (collaboration

1 There is another Quantum Secret Sharing protocol, called Graph State Secret Shar-
ing [78], for sharing a classical bit or qubit, based on the same idea of using multi-
party entangled states.



6.2 case studies 114

|0〉 X Z Z |ψ〉

|0〉 •

|0〉 H • H

|ψ〉 • H

Figure 6.15: Secret Sharing Implementation in Quantum Circuit

and retrieval of the secret). The security of this protocol is a conse-

quence of no-cloning theorem and is discussed in [65]. Secret Sharing in

Quantum CircuitSecret sharing can be modelled, flatly, by a quantum circuit. In Fig-

ure 6.15, the first line corresponds to Charlie, who retrieves the secret.

Second line corresponds to Bob, who is Charlie’ s collaborator. Finally

the third and forth lines correspond to Alice, who gives the circuit

and commits the secret. The goal in quantum circuit sharing is to re-

trieve a secret (quantum state of a qubit) as it was, so the specification

circuit is the same as Teleportation (see Figure 6.4). Secret Sharing in

QPLThe sequential implementation of secret sharing in QPL is a pro-

gram with one input and output, as it is shown in Figure 6.16, where

the input qubit is q0 and the output qubit is q3. The specification in

this case is the same as Teleportation in Figure 6.5.

The problem with sequential modelling (in circuits and QPL) is that

it does not capture the concurrent and collaborative nature of quantum Secret Sharing in

CCSq
secret sharing. However, in concurrent QEC we can specify quantum

secret sharing in a more expressive way with explicit communications

between involved agents, according to the general structure presented

in Figure 6.17. Figure 6.18 shows how to model this protocol in CCSq
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input q0:qbit

//Preparing GHZ state

newqbit q1 ; newqbit q2 ; newqbit q3 ;

q1*=H; q1q2*=CNot; q2q3*=CNot;

//Alice commits a secret

q0q1*=CNot ; q0*=H ;

measure q0 then q3*=X else q3*=I end;

measure q1 then q3*=Z else q3*=I end;

//Bob and Charlie retrieve the secret

q1*=H;

measure q1 then q3*=Z else q3*=I end;

output q3:qbit

Figure 6.16: Secret Sharing Implementation in QPL

GHZ Alice •

Bob Charlie ?

Figure 6.17: Secret Sharing Diagrammatic

with four separate and communicating processes. The specification

of this protocols is the same as Teleportation in Figure 6.7.

6.2.2 Quantum Error Correction Protocols

In this section we present examples of quantum error correction pro-

tocols. The mathematical model behind these protocols is discussed

in Section 2.4.
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//Preparing GHZ state and sending to

//Alice, Bob and Charlie:

newqubit a . newqubit b . newqubit c . H(a) . CNOT(a,b) .

CNOT(b,c) . d ! a . e ! b . f ! c . nil

|

//Alice, who commit her qubit as a secret:

(input x . d ? a . CNOT(x,a) . H(x) . m := measure x .

n:=measure a . t ! m . w ! n . nil

|

//Bob, who is chosen as a collaborator:

(e ? b . H(b) . o:=measure b . u ! o . nil

|

//Charlie, who recovers the original quit from Alice:

f ? c . t ? m . w ? n . u ? o . if o then Z(c) .

if m then X(c) . if n then Z(c) . output c . nil))

Figure 6.18: Quantum Secret Sharing Implementation in CCSq
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Alice • Errors Bob ?

Figure 6.19: Error Correction Diagrammatic

Quantum systems in general are continuous however, discrete anal-

ysis of quantum systems as we do in verification of them, has a longer

history in QIP. A beautiful example is Stabilizer Codes which protect

quantum information against the environment’s errors, an important

requirement of building QIP systems. The intriguing feature of these

codes is that they are completely definable in the stabilizer formal-

ism, therefore can be analysed in our equivalence checking tool. The

general structure of error correction protocols, as it is shown in Fig-

ure 6.19, consists of three main components of Alice, who encodes the

information, Errors who alters the information by introducing errors,

and Bob who decodes the information.

Several stabilizer codes have been developed [84, p. 453]. Here we

explain the most compact codes such as bit error codes (bit flip and

phase flip) and five qubit code, introduced in [73] and also imple-

mented in the laboratory [68]. Interestingly, the five qubit code pro-

tects a single qubit against a continuum of errors only by protecting it

against a discrete subset of them, namely, bit flip and phase flip errors.

The design of error correcting protocols is very different than classi-

cal protocols in the sense that no-cloning theorem does not allow to

encode and send several copies of information, in the same way that

classical repetition codes work.
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|ψ〉 • •

Ebit

• • |ψ〉

|0〉 •

|0〉 •

Figure 6.20: Bit Flip Code Implementation in Quantum Circuit

In the following first we explain bit error codes, then five qubit

code will be studied.

6.2.2.1 Bit Error Codes

There are two kinds of bit error codes, namely bit flip and phase

flip codes. The firsts one, which has a classical analogue, corrects

qubit flipping error, that is when the effect of error is applying Pauli

operator X on a qubit. A more interesting example is phase flip code,

where there is no classical analogue, and which corrects errors with

the effect of flipping the phase of encoded qubits, in other words

applying a random Z operator on them.

The encoding phase of bit error codes entangles the input of the

protocol, a qubit which we want to protect, with two ancillary qubits.

Then errors are introduced, randomly, on one of the encoded qubits.

Finally, the original qubit is retrieved by applying right correcting

operations. In the last phase we need to introduce new qubits as er-

ror syndromes, since measurement destroys the original state of the

qubit.

The implementation of bit flip code is described by the circuit in Bit flip code

in Quantum CircuitFigure 6.20. Here, the Ebit block means a random Pauli operator X (as

error) is applied.
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00 do nothing
01 apply σ to third qubit
10 apply σ to second qubit
11 aplly σ to first qubit

Figure 6.21: Corrections of bit error codes

|ψ〉 • • H

Ephase

H • • |ψ〉

|0〉 H H •

|0〉 H H •

Figure 6.22: Phase flip Implementation in Quantum Circuit

By the end of this circuit, syndrome measurements are performed

and errors corrected depending on the outcomes of those measure-

ments. To do this, we follow the correction, shown in Figure 6.21,

where in the bit flip case σ = X. The specification circuit is of course

the same as Teleportation (Figure 6.4). Phase flip code

in Quantum CircuitThe implementation of phase flip is slightly different, because we

need to apply syndrome measurements in a different basis. Thus we

apply Hadamard gate to the qubits in the encoding and decoding

phase. Phase flip can be modelled using the circuit in Figure 6.22,

where Ephase denotes error block with a random Z error on one of

the qubits. In this example, the correction is done according to Fig-

ure 6.21, where it is assumed σ = Z. The specification circuit is the

same as bit flip code. Bit Error codes

in QPLError correction codes can be implemented in sequential QEC as

well, where unlike quantum circuits, the correction phase can be in-
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tegrated into a single QPL program, avoiding informal description

of the protocol. Moreover, we use random measurement, as a good

and natural source of randomness, to apply errors on the encoded

qubits. Figure 6.23 shows the implementation of bit flip code in QPL.

The specification of this protoocols is the same as Figure 6.5. Simi-

larly, phase flip code is implemented in Figure 6.24, with the same

specification program as bit flip code. Bit Error codes

in CCSq
Finally, Figures 6.25 and 6.26 show the implementation of bit error

codes in a concurrent model. There are three processes of Alice (en-

coder), Error (noises) and Bob (decoder), following the structure in

Figure 6.19. An advantage of extending CCSq with match expression

is that we can deal with explicit error syndromes and apply necessary

corrections in an easier way. The specification for these porotocol is

the same as Figure 6.7.

We conclude this section by mentioning that in our models, errors

(bit or phase flip) are introduced on at most one qubit. However, in

general errors can occur in more than one encoded qubits, resulting

in a more complicated scenario. In that case the original (input) qubit

can not be perfectly recovered, but with high probability errors can be

corrected.

6.2.2.2 Five Qubits Code

The idea of combining phase flip and bit flip codes into a single code

first appeared in Shor’s nine qubits protocol [84, p. 430]. Then it was

optimized to Steane seven qubit protocol. Finally, Laflamme et al. [73]
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program Bit_Flip_Implementation

input q0:qbit

//Encoding phase

newqbit q1; newqbit q2;

q0q1*=CNot; q0q2*=CNot;

//Generating random noise using measurement:

//either do nothing, or apply X to one of q0,q1,q2

newqbit q3; newqbit q4;

q3*=H; q4*=H;

measure q3

then

{measure q4 then q0*=X else q1*=X end}

else

{measure q4 then q2*=X else {} end}

end;

//Bob detects the error syndrome and corrects errors

newqbit q5; newqbit q6;

q0q5*=CNot; q1q5*=CNot;

q0q6*=CNot; q2q6*=CNot;

measure q5

then

{measure q6 then q0*=X else q1*=X end}

else

{measure q6 then q2*=X else {} end}

end;

//Bob recovers Alice's qubit

q0q1*=CNot; q0q2*=CNot;

output q0:qbit

Figure 6.23: Bit Flip Implementation in QPL
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program Phase_Flip_Implementation

input q0:qbit

//Encoding phase

newqbit q1; newqbit q2;

q0q1*=CNot; q0q2*=CNot;

q0*=H ; q1*=H ; q2*=H ;

//Generating random noise using measurement:

//either do nothing, or apply X to one of q0,q1,q2

newqbit q3; newqbit q4;

q3*=H; q4*=H;

measure q3

then

{measure q4 then q0*=Z else q1*=Z end}

else

{measure q4 then q2*=Z else {} end}

end;

//Bob detects the error syndrome and corrects errors

q0*=H ; q1*=H ; q2*=H ;

newqbit q5; newqbit q6;

q0q5*=CNot; q1q5*=CNot;

q0q6*=CNot; q2q6*=CNot;

measure q5

then

{measure q6 then q0*=Z else q1*=Z end}

else

{measure q6 then q2*=Z else {} end}

end;

//Bob recovers Alice's qubit

q0q1*=CNot; q0q2*=CNot;

output q0:qbit

Figure 6.24: Phase Flip Implementation in QPL
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//Alice Encoding the input

input x . newqubit a . newqubit b . CNOT(x,a) . CNOT(x,b).

c!x . d!a . e!b . nil

|

//Error generating random errors:

(c?x . d?a . e?b . newqubit w . newqubit z . H(w) . H(z) .

k:=measure w . l:=measure z . match k:0 and l:1 then X(x).

match k:1 and l:0 then X(a) . match k:1 and l:1 then X(b).

f!x . g!a . h!b . nil

|

//Bob corrects errors

f?x . g?a . h?b . newqubit s . newqubit t .

CNOT(x,s) . CNOT(a,s) . CNOT(x,t) . CNOT(b,t) .

m:= measure s . n:=measure t .

match m:1 and n:0 then X(a) . match m:0 and n:0 then X(b).

match m:1 and n:1 then X(x) .

CNOT(x,a) . CNOT(x,b) . output x . nil)

Figure 6.25: Bit Flip Implementation in CCSq
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//Alice Encoding the input

input x . newqubit a . newqubit b . CNOT(x,a) . CNOT(x,b).

H(x) . H(a) . H(b) .

c!x . d!a . e!b . nil

|

//Error generating random errors:

(c?x . d?a . e?b . newqubit w . newqubit z . H(w) . H(z) .

k:=measure w . l:=measure z . match k:0 and l:1 then Z(x).

match k:1 and l:0 then Z(a) . match k:1 and l:1 then Z(b).

f!x . g!a . h!b . nil

|

//Bob corrects errors

f?x . g?a . h?b .

H(x) . H(a) . H(b) .

newqubit s . newqubit t .

CNOT(x,s) . CNOT(a,s) . CNOT(x,t) . CNOT(b,t) .

m:= measure s . n:=measure t .

match m:1 and n:0 then Z(a) . match m:0 and n:0 then Z(b).

match m:1 and n:1 then Z(x).

CNOT(x,a) . CNOT(x,b) . output x . nil)

Figure 6.26: Phase Flip Implementation in CCSq
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showed that there is a five qubit protocol which does the same job as

Shor’s and Steane’s codes. The interesting fact about these codes is

they can protect a single qubit not only from bit flip and phase flip

errors, but also from arbitrary errors.

In the followings we explain how the model of five qubit code is

constructed: first the qubit that we want to protect against noises, is

encoded along with four other qubits according to [73]. Secondly, we

consider 16 different noises applied on a single qubit of the system,

that is including no error, Pauli X (bit flip), Pauli Z (phase flip) and

combined Pauli XZ (bit and phase flip) errors. Five qubit code

in Quantum CircuitThe circuit that implements five qubit code is presented in Fig-

ure 6.27. The input of the protocol is a qubit in the state |ψ〉. Here

L denotes the unitary operator XH, applying a Hadamard operator

followed by a Pauli operator X. The error block applies an arbitrary

unitary on one of the encoded qubits, randomly. Finally, the correc-

tion operator Uabcd is determined by the syndrome measurement out-

comes a, b, c and d. The protected qubit can be fully recovered by

applying the correction operator on |ψ〉. The specification circuit is

the same as Figure 6.4.

The sequential language QPL, as we have seen in Chapter 3, has

a very simple structure. In particular measurement outcomes are im-

plicit in the measurement terms. This is particularly unhelpful when

we have need to read measurement syndromes in a explicit way, in or-

der to correct errors. Therefore specification of five qubit code in QPL

will lead to an unreadable model, and for this reason we have not
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Figure 6.27: Five Qubit Code Implementation in Quantum Circuit

implemented five qubit code in the sequential equivalence checker.

Nevertheless, a sequential model of this protocol in CCSq with the

use of matching terms for syndrome detection, is constructed and

verified in the concurrent equivalence checker. Five qubit code

in CCSq
Also, a concurrent model of five qubit code can be implemented

in the concurrent QEC, conveniently with explicit errors syndrome

handling, as illustrated in Figure 6.28. The specification is the same

as Figure 6.7.

We conclude this section by the following remarks on the linear

models of error corrections and another source of errors.

Remark 6.2 An alternative verification method for quantum error correc-

tion is to construct models separately for each kind of errors e. g. in five

qubit code we could build 16 separate models, instead of generating random

errors with quantum measurements. This is another property of linearity in

our protocols models.

Remark 6.3 Five qubit code can also protect a single qubit against adver-

sary measurements, with high probability. Nevertheless, in the current ver-

sion of QEC we are not able to implement such error correction with close to

perfect recovery.
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//Five qubits Error Correction code:

// Alice Encoding process:

input x . newqubit a . newqubit b . newqubit c .

newqubit d . H(a) . X (a) .CNOT(a,b) . CNOT(a,c).

X(a) . H(a) . CNOT(a,d) . CNOT(x,a) . CNOT(x,b) .

X(x) . H(x) . CNOT(x,c) . CNOT(x,d) .

r ! x . s ! a . t ! b . u ! c . w ! d . nil

|

//Error process introducing random errors:

(r ? x . s ? a . t ? b . u ? c . w ? d . newqubit ea .

newqubit eb . newqubit ec . newqubit ed . H(ea). H(eb).

H(ec) . H(ed) . em:=measure ea .

en:=measure eb . eo:=measure ec . ep:=measure ed.

match em:0 and en:0 and eo:0 and ep:0 then X(x).

match em:1 and en:0 and eo:0 and ep:0 then X(a).

match em:0 and en:1 and eo:0 and ep:0 then X(b).

match em:0 and en:0 and eo:0 and ep:1 then X(c).

match em:1 and en:1 and eo:0 and ep:0 then X(d).

match em:0 and en:1 and eo:1 and ep:0 then Z(x).

match em:0 and en:0 and eo:1 and ep:1 then Z(a).

match em:1 and en:0 and eo:0 and ep:1 then Z(b).

match em:1 and en:1 and eo:1 and ep:0 then Z(c).

match em:0 and en:1 and eo:1 and ep:1 then Z(d).

match em:1 and en:0 and eo:1 and ep:1 then X,Z(x).

match em:1 and en:1 and eo:0 and ep:1 then X,Z(a).

match em:1 and en:1 and eo:1 and ep:1 then X,Z(b).

match em:0 and en:1 and eo:0 and ep:1 then X,Z(c).

match em:0 and en:0 and eo:1 and ep:0 then X,Z(d).

rr ! x . ss ! a . tt ! b . uu ! c . ww ! d . nil

|

//Decoding process, detecting syndromes and correction:

rr ? x . ss ? a . tt ? b . uu ? c . ww ? d . CNOT(x,d).

CNOT(x,c) . X(x) . H(x) . CNOT(x,b) . CNOT(x,a) . CNOT(a,d).

X(a) . H(a) . CNOT(a,c) . CNOT(a,b) . H(a) . X(a).

sm:=measure a . sn:=measure b . so:=measure c . sp:=measure d.

match sm:1 and sn:0 and so:1 and sp:1 then X,Z(x).

match sm:1 and sn:0 and so:0 and sp:0 then X(x).

match sm:0 and sn:0 and so:1 and sp:0 then X,Z(x).

match sm:1 and sn:1 and so:1 and sp:1 then X,Z(x).

match sm:1 and sn:0 and so:0 and sp:1 then X,Z(x).

match sm:1 and sn:0 and so:1 and sp:0 then X,Z(x).

match sm:0 and sn:1 and so:1 and sp:0 then Z(x).

match sm:1 and sn:1 and so:0 and sp:1 then X(x).

match sm:0 and sn:0 and so:1 and sp:1 then X(x).

match sm:1 and sn:1 and so:1 and sp:0 then Z(x).

match sm:0 and sn:0 and so:0 and sp:0 then Z(x).

match sm:0 and sn:1 and so:0 and sp:1 then X,Z(x).

match sm:0 and sn:1 and so:0 and sp:1 then X,Z(x).

match sm:0 and sn:1 and so:0 and sp:0 then X(x).

match sm:0 and sn:1 and so:1 and sp:1 then X(x).

match sm:1 and sn:1 and so:0 and sp:0 then Z(x).

match sm:0 and sn:0 and so:0 and sp:1 then Z(x).

output x . nil )

Figure 6.28: Five Qubit Code Implementation in CCSq
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6.2.3 Fault Tolerant Protocols

In this section, examples of fault tolerant protocols are demonstrated.

The main idea of fault tolerant computation is mentioned in Sec-

tion 2.4. On the other hand, there is a close relationship between

quantum error correction and fault tolerant computation i. e. using

error correction codes in the course of quantum computation to pro-

tect quantum systems against noises and faults. These protocols are

essential for realising QIP systems, and their existence stems from

Theorem 2.4.

In the following four fault tolerant protocols are analysed: two vari-

ations of Teleportation [105] along with two protocols for the fault

tolerant implementation of CNOT gates [105, 59].

6.2.3.1 X and Z Teleportation

The implementation of fault tolerant protocols involves designing

blocks of qubits and gates in which joint quantum operations are

only allowed inside of each block and not between different blocks.

For example, in Teleportation protocol we only apply quantum oper-

ations inside Alice, EPR or Bob process. However if we were allowed

to apply a CNOT operation on two qubits one from Alice and one

from Bob, (this is called prohibited CNOT) we would end up in a dif-

ferent model for Teleportation. These are called X-teleporation and

Z-Teleportation and explained below.
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|0〉 Z |ψ〉

|ψ〉 • H

Figure 6.29: Z-Teleportation Implementation in Quantum Circuit

input q0:qbit

newqbit q1;

q0q1*=CNot;

q0*=H ;

measure q0 then q1*=Z else q1*=I end;

output q1:qbit

Figure 6.30: Z-Teleportation Implementation in QPL

The implementation of X-Teleportation in quantum circuit contains

one prohibited CNOT gate and only one classical bit that is sent from

Alice to Bob, following a measurement by Alice. The Bob’s correc- X Teleportation

in Quantum Circuit

and QPL

tion therefore is applying one Pauli Z operation, if the bit value is 1,

as illustrated in Figure 6.29. The specification circuit is the same as

Teleportation, in Figure 6.4.

Similarly, Z-Teleportation is implemented in QPL as a program,

where only one measurement is needed. This is shown in Figure 6.30, Z Teleportation

in Quantum Circuit

and QPL

where its specification is identical to the one in Figure 6.5.

The implementation of X-Teleportation has a similar structure to

Z-Teleportation. Again there is only one measurement, where de-

pending on its outcome, Bob applies a single Pauli X on his qubit. Fig-

ure 6.31 and Figure 6.32 shows the implementation of X-Teleportation

in circuit and QPL model.
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|0〉 H • X |ψ〉

|ψ〉

Figure 6.31: X-Teleportation Implementation in Quantum Circuit

input q0:qbit

newqbit q1;

q1*=H;

q1q0*=CNot;

measure q0 then q1*=X else q1*=I end ;

output q1:qbit

Figure 6.32: X-Teleportation Implementation in QPL

A more interesting model for the above protocols can be built in

our concurrent QEC. In order to apply a prohibited joint operation

in these protocols, we can use concurrency, by sending each of the

involved qubits in a prohibited operation to a common process, fol-

lowed by applying the joint operation and sending them back to their

original process (block). In the concurrent implementation of X and Z

Teleportation, specified in CCSq, there are three process : Alice, who X/Z Teleportation

in CCSq

Alice • Bob ?

CNOT

Figure 6.33: X/Z-Teleportation Diagrammatic
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//Bob process:

newqubit a . c ! a . g ? a . e ? b . if b then Z(a) .

output a . nil

|

//Intermediate process for applying joint operations:

( c ? a . d ? x . CNOT(x,a) . f ! x . g ! a . nil

|

//Alice process:

input x . d ! x . f ? x . H(x) . b:= measure x .

e ! b . nil)

Figure 6.34: Z-Teleportation Implementation in CCSq

sends her qubit, an intermediate process for joint operations and Bob

who receives only one bit of classical information and retrieves Alice’s

qubit state, interacting to each other according to Figure 6.33. The im-

plementation models of these protocols are shown in Figure 6.34 and

Figure 6.35, where the specification is the same as Teleportation.

6.2.3.2 Remote CNOT

In remote CNOT protocol, Alice and Bob want to perform a joint

CNOT gate between their qubit without exchanging any qubit to each

other. However, they are allowed to use prior entanglement and clas-

sical communication. In this section we present two constructions of

such protocols introduced in [105] and [59].

The idea of the first remote CNOT protocol is that Alice runs a

X-Teleportation and Bob runs a Z-Teleportation , in parallel to each

other. To achieve that, two pairs of entangled qubits must be used

along with communicating four classical bits.
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//Alice process:

input x . d ! x . f ? x . b:=measure x . g ! b . nil

|

//Intermediate process for applying joint operations:

(c ? a . d ? x . CNOT(a,x) . e ! a . f ! x . nil

|

//Bob process:

newqubit a . H(a). c ! a . e ? a . g ? b . if b then X(a).

output a.nil)

Figure 6.35: X-Teleportation Implementation in CCSq

|α〉

|0〉 H • • X Z |α〉

|0〉 X Z |β〉

|β〉 • H

Figure 6.36: Remote CNOT Implementation in Quantum Circuit

Figure 6.36 shows how remote CNOT is implemented in the quan- remote CNOT

in Quantum Circuittum circuit model. The specification circuit in this example receives

two states |α〉 and |β〉 and applies a single CNOT operation, as pre-

sented in Figure 6.37.

Alternatively, remote CNOT can be implemented in sequential QEC.

Figure 6.38 shows the implementation of remote CNOT in QPL. In remote CNOT

QPLthis model there are two measurements, corresponding to Alice’s and

Bob’s correction. The specification in this case is a QPL program

|α〉 • |α〉
|β〉 |β〉

Figure 6.37: Remote CNOT Specification in Quantum Circuit
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input q0,q1:qbit

newqbit q2;

newqbit q3;

q2*=H;

q2q3*=CNot;

q2q0*=CNot ;

q1q3*=CNot ;q3*=H;

measure q0 then {q2*=X;q3*=X} else q2*=I end ;

measure q1 then {q2*=Z;q3*=Z} else q2*=I end ;

output q2,q3:qbit

Figure 6.38: Implementation of remote CNOT in QPL

input q0,q1:qbit

q0q1*=CNot;

output q0,q1:qbit

Figure 6.39: Specification of remote CNOT in QPL

which receives q0, q1 as input, applies a CNOT between them and

return them as output, shown in Figure 6.39.

Finally, we have implemented remote CNOT in concurrent QEC.

In this model there are four processes: Feeder, EPR, Alice and Bob.

Joint operations between two blocks, namely Alice and Bob, are not

allowed. The role of Feeder is to distribute input qubits to Alice and

Bob. EPR process shares an entangled pair to Alice and Bob, another

pair of qubits will be entangled later by Bob.

The general structure of this protocol’s concurrent model follows

from Figure 6.40. The implementation and specification of remote
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EPR Feeder •

Alice ? Bob

Figure 6.40: Remote CNOT Diagrammatic

CNOT in CCSq are illustrated in Figures 6.41 and 6.42, respectively.

In the implementation, Alice will have the output of the protocol, al- remote CNOT

CCSq
ternatively Bob could posses the output of the protocol. One can see

from the implementation model that this protocol is in fact a concur-

rent run of a X-Teleportation with a Z-Teleportation. However, the

concurrent nature of this protocol is not expressible in neither circuit

diagram, nor sequential QPL programs.

The second version of remote CNOT has been introduced in [59].

The structure of this protocol is different in the sense that it does

not run two Teleportations, and therefore reduces classical communi-

cations to only three bits. The quantum circuit that implements this

protocol (as we call it Remote CNOT (A)) is shown in Figure 6.43.

Similarly the QPL model for this example is shown in Figure 6.44.

In the concurrent model, Remote CNOT (A) has similar general

structure as before, with the only difference that the original input

qubits are returned as the output of protocols, not the ancillary qubits

as in the previous version. Figure 6.45 illustrates the implementation

of the alternative remote CNOT protocol is CCSq.
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//Feeder of inputs

input x,y . e ! x . p ! y . nil

|

//EPR process sharing entanglement

(newqubit a . newqubit b . H(a) . CNOT(a,b) .

c ! a . d ! b . nil

|

//Alice process (Block 1)

( e ? x . c ? a . CNOT(a,x) . u := measure x .

if u then X(a) . f ! u . g ? t . if t then Z(a) . h ? b .

output a,b . nil

|

//Bob process (Block2)

p ? y . d ? b . CNOT (y,b) . H(y). f ? u . if u then X(b) .

t:=measure y . if t then Z(b) . g ! t . h ! b . nil))

Figure 6.41: Implementation of remote CNOT in CCSq

input x,y . CNOT(x,y) . output x,y . nil

Figure 6.42: Specification of remote CNOT in CCSq

|α〉 • Z |α〉

|0〉

|0〉 H • • X H

|β〉 X |β〉

Figure 6.43: Implementation of Remote CNOT(A) in Quantum Circuit
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input q0,q1:qbit

newqbit q2; newqbit q3 ;

q2*=H ; q2q3*=CNot ;

q2q0*=CNot ; q1q3*=CNot ;

q1*=H ;

measure q0 then {q2*=X ; q3*=X} else q2*=I end ;

measure q0 then {q2*=Z ; q3*=Z} else q3*=I end ;

output q2,q3:qbit

Figure 6.44: Implementation of remote CNOT(a) in QPL

//Feeder of inputs

input x,y . e ! x . p ! y . nil

|

//EPR process sharing entanglement

(newqubit a . newqubit b . H(b) . CNOT(b,a) .

c ! a . d ! b . nil

|

//Alice process (Block 1)

( e ? x . c ? a . CNOT(x,a) . u := measure a . f ! u .

g ? t . if t then Z(x) . h ? y .

output x,y . nil

|

//Bob process (Block2)

p ? y . d ? b . CNOT (b,y) . f ? u . if u then X(b) .

if u then X(y) . H(b) . t:=measure b .

g ! t . h ! y . nil))

Figure 6.45: Implementation of remote CNOT(a) in CCSq
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Protocol Number of CM Number of SM SEC
Interleavings Branches

Teleportation 400 343 16 39 43

Dense Coding 100 120 4 22 30

Bit flip code 16 62 16 60 61

Phase flip code 16 63 16 61 62

Five qubit code 64 500 64 451 n/a

X-Teleportation 32 63 8 18 25

Z-Teleportation 72 78 8 19 27

Remote CNOT 78400 12074 64 112 140

Remote CNOT(A) 23040 4882 64 123 156

Quantum Secret Sharing 88480 13900 32 46 60

Figure 6.46: Experimental results of equivalence checking of quantum pro-
tocols. The columns headed by CM and SM show the results
of verification of concurrent and sequential models of proto-
cols in the current tool. Column SEC shows verification times
for sequential models in our previous tool [9]. The number of
branches for SM and SEC models are the same. Times are in
milliseconds.

6.3 experimental results

In this section we report on the experimental results of verification

of the protocols described in the previous section and also their com-

parison with [9]. The tool was run on a 2.5GHz Intel Core i3 machine

with 4GB RAM, and is available at [8]. In the concurrent model, the

number of interleavings is reported in addition to the time taken by

QEC to apply equivalence checking, whereas in sequential models,

the number of branches is presented along with running times. Fig-

ure 6.46 demonstrates the verification times and the comparisons.

For each protocol we have also implemented and verified sequen-

tial models in the concurrent version of QEC. Because scheduler in
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this version extracts schedules directly from abstract syntax tree, as

detailed in Section 6.1, the running times of sequential models veri-

fication are less than the previous version, where branches had been

extracted from the complete program graph.

The experimental results show how concurrency affects quantum

systems. Not surprisingly, with more sharing of entanglement and in-

creased classical and quantum communication, we have to deal with

a larger number of interleavings, particularly in the last three proto-

cols of Figure 6.46.

However, error correction protocols are inherently sequential and

therefore verifications of sequential and concurrent models in these

cases produce similar results.

An advantage of our tool is that we can change the level of con-

currency in the models, however we expect the impact of increasing

concurrency to be significant as we can see in the results of the two

remote CNOT protocols. The second version is three times faster than

the other, because it has less classical communications.

We would like to compare our results with those produced by the

model checker QMC [56], but we have not been successful in running

all the examples. This is partly because QMC is based on a different

approach to verification i. e., temporal logic model checking, rather

than equivalence checking.

The tool Quantomatic [38] is not fully automatic, therefore we are

not able to provide verification time comparisons of our case studies

in that tool, as well.
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We conclude this Chapter by the following final remarks: first, we

can easily add more inputs to each of our protocols, which means

that we are checking e. g. teleportation of one qubit in the presence

of entanglement with other qubits. This follows from linearity, but it is

never explicitly stated in standard presentations of Teleportation.

Secondly, we can model different implementations of a protocol,

e. g. by changing the amount of concurrency. These differences are

invisible at the level of circuit diagrams or sequential programs.



Quantum Information is more like the information

in a dream. Trying to describe your dream changes

your memory. Also you cannot prove to someone else

what you dreamed.

— Charles H. Bennett

7
C O N C L U S I O N A N D F U T U R E W O R K

In this thesis we have developed the theory and practice of equiva-

lence checking for the veriifcation of quantum information systems.

We have introduced a process algebraic language to specify concur-

rent quantum protocols, and for the class of functional protocols in

this language, a superoperator semantics is defined. By taking advan-

tage of the linearity of superoperators, we developed techniques to

check the equivalence of the implementation and specification of con-

current quantum protocols. We have built a tool QEC and applied

quantum equivalence checking to a number of case studies. While

we are restricted to the stabilizer formalism, we were able to verify

protocols with arbitrary input due to the linearity of superoperators.

In the following, we highlight the main results that have been

achieved in this thesis and the limitations of our work:

140
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• A process algebraic language is introduced to model various

concurrent QIP protocols. For this language, an operational se-

mantics and a superoperator semantics are defined. We also de-

fined the notion of functional protocols, which are used for our

case studies.

• For our verification technique, the requirement that protocols

should satisfy is the equivalence of their specification and im-

plementation. We used the the superoperator semantics to check

this requirement, by devising a verification algorithm that checks

the equivalence of implementation and specification. This is

done by showing the equivalence of their corresponding super-

operators for all quantum states in the stabilizer basis. There-

fore, this algorithm proves that for all inputs (where there is a

continuum of input states), the implementation of protocols is

equivalent to its specification, in a finite number of steps.

• We have designed a tool, QEC, to automate the above verifica-

tion procedure by implementing of stabilizer simulation algo-

rithms and other algorithms that we introduced and used such

as independence checking equality test, all of them based on

the stabilizer formalism. Unlike Quantomatic, our tool has a

programming interface and is fully automatic. Also, the results

of QEC stand as proofs of correctness of protocols rather than

evidence (similar to QMC) of correctness.
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• Our tool cannot be used directly when the correctness of pro-

tocols are not specified as an equivalence, such as the security

property of QKD.

• In contrast to QMC, our tool can be only applied to functional

protocols. Also, continuously running protocols with input/out-

put at intermediate points, need a more general notion of equiv-

alence such as bisimulation, which our tool lacks at this stage.

• In this work we are not able to analyse algorithms with non-

stabilizer elements, like Shor’s and Grover’s algorithm.

• Despite the mentioned limitations, QEC has been successfully

applied to verify several case studies in Chapter 6.

Finally, we discuss how we can further develop our tool and tech-

nique in order to analyse and verify more complex quantum systems:

• A natural way of extending our work is to define and automate

construction of bisimulation between processes that represent

QIP protocols. We have already mentioned in Section 3.4, the

theoretical results surrounding bisimulation for quantum pro-

cesses. However, the complexity of quantum systems necessi-

tates developing automated analysis. One approach to this prob-

lem is to compare our notion of equivalence, which is based on

input-output relations, with bisimulation relations that describe

the behavioural equivalence. For example, in [44] the weak bisim-
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ulation of dense coding with the following process is presented.

c?x . Setx[q1, q2] . d!x . nil (7.1)

Where Setx[q1, q2] sets the joint state of q1 and q2 depending on

the value x. Here it is assumed that q1 and q2 are entangled,

in contrast to our case studies (Chapter 6) where we explicitly

expressed preparation of entangled qubits. In Equation 7.1 no

internal (τ) action is specified, so the bisimulation in this case

only checks input-ouput actions. Now the question is, does our

equivalence relation in this case imply weak bismulation, con-

sidering the similarity of our language to the one in [44]? This is

a practically important question since there is no available tool

for checking bisimilarity of quantum processes yet. On the other

hand, for the same example, [44] illustrated strong bisimulation

where specification is:

c?x . τ7 . Setx[q1, q2] . d!x . nil (7.2)

The specification in Equation 7.2 considers internal actions, which

is beyond the scope of our notion of equivalence.

In general, we are interested in seeing how the linearity argu-

ments can be extended in order to construct bisimulation rela-

tions in a feasible way and implement it into QEC.
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While in [44], the bisimulation relation is defined using an in-

finite number of superoperators, Feng et al. [46] introduced a

bisimulation algorithm to check symbolic ground bisimilarity

of quantum processes in a feasible way. It will be useful to im-

plement this algorithm in a tool and apply it to our case studies.

• One important technical step in extending the scope of QEC is

going beyond the stabilizer formalism. Although [4] has already

mentioned the possibility of implementing a limited number of

non-Clifford operators with the stabilizer arrays, no one has yet

integrated this idea in a tool.

It may also be possible to extend our tool with a newly de-

veloped toolkit by Microsoft Research, called Liquid [80], for

simulation of quantum circuits with arbitrary quantum gates.

This tool is implemented in the F# language and includes an

optimised compiler and a fault tolerant architecture. While in

general, the issue of scalability will arise for a larger number of

qubits, we may be able to extend QEC to analyse more compli-

cated case studies using the Liquid simulation tool.

• Adding more features to the CCSq language would make it

more expressive and certainly broaden the applicability of QEC.

In particular implementing loops and recursions will be very

useful. We have already seen [94] how such language constructs

can be described by superoperators.
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• Fault tolerant protocols are essential for realisation of QIP sys-

tems. As we have seen in Section 2.4 and Theorem 2.4, fault

tolerant protocols are possible, in principle, because of viability

of quantum error correction. The close interconnection between

error correction and the stabilizer formalism suggests further

investigation of the formal analysis of quantum fault tolerant

systems. In a very recent study, Gottesman has investigated the

notion of overhead in fault tolerant protocols, that is the ratio of

logical qubits to physical qubits (e. g. ancillary qubits). A large

overhead in these protocols indicate a costly experimental im-

plementation. While Gottesman showed [60] that at the asymp-

totic limit this ratio is constant, there is no threshold similar to

Theorem 2.4 for overhead. So it might be possible to formally

analyse fault tolerant protocols with a relatively high overhead,

using our verification techniques in the absence of a theoretical

lower bound for the overhead.

• Cryptographic protocols are of great importance in QIP. Extend-

ing our verification technique to formally analyse such proto-

cols is a very interesting line for future work. The challenge here

is to integrate probabilistic reasoning capabilities into our tool,

since without such abilities analysing quantum cryptographic

protocols is not possible. Recently the area of device indepen-

dent quantum cryptography has emerged. In this formalism,

it is assumed that the device performing quantum encryption
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may malfunction due to adversary or noises. In particular, Vazi-

rani and Vidick have showed that Quantum Key Distribution

can be implemented in a fully device independent protocol [99].

The only assumption they have made is that the devices in the

protocol are physically separated. Formal analysis of such pow-

erful protocols is a desirable goal to pursue.

• Wiesner in [101] introduced the idea of quantum money, a ban-

knote that is impossible to counterfeit, using the no-cloning the-

orem in quantum mechanics. Several quantum money schemes

have been introduced [3]. In particular Aaronson, introduced

the first public-key quantum money, known as Stabilizer Money [2]

based on using stabilizer states. However, later a successful at-

tack on stabilizer money scheme has been discovered in [75].

Now it may be possible to analyse stabilizer money schemes

and the attacks on them using QEC, since stabilizer states are

already implemented in QEC. However, we need extra features

such as probabilistic reasoning, in order to fully analyse the sta-

bilizer money protocols.
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