
http://wrap.warwick.ac.uk/

Original citation:
Azar, Yossi, Englert, Matthias, Gamzu, Iftah and Kidron, Eytan (2014) Generalized
reordering buffer management. In: STACS ’14: 31st International Symposium on
Theoretical Aspects of Computer Science, Lyon, France, 5-8 Mar 2014. Published in:
STACS ’14: 31st International Symposium on Theoretical Aspects of Computer Science
pp. 87-98.
Permanent WRAP url:
http://wrap.warwick.ac.uk/65030

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work of researchers of the
University of Warwick available open access under the following conditions.

This article is made available under the Creative Commons Attribution- 3.0 Unported
(CC BY 3.0) license and may be reused according to the conditions of the license. For
more details see http://creativecommons.org/licenses/by/3.0/
A note on versions:
The version presented in WRAP is the published version, or, version of record, and may
be cited as it appears here.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

http://go.warwick.ac.uk/
http://wrap.warwick.ac.uk/65030
http://creativecommons.org/licenses/by/3.0/
mailto:publications@warwick.ac.uk

Generalized Reordering Buffer Management
Yossi Azar∗1, Matthias Englert†2, Iftah Gamzu3, and Eytan Kidron1

1 Blavatnik School of Computer Science, Tel-Aviv University, Israel
{azar,eytankid}@tau.ac.il

2 Department of Computer Science and DIMAP, University of Warwick, UK
englert@dcs.warwick.ac.uk

3 Yahoo! Research
iftah.gamzu@yahoo.com

Abstract
An instance of the generalized reordering buffer management problem consists of a service station
that has k servers, each configured with a color, and a buffer of size b. The station needs to serve
an online stream of colored items. Whenever an item arrives, it is stored in the buffer. At any
point in time, a currently pending item can be served by switching a server to its color. The
objective is to serve all items in a way that minimizes the number of servers color switches. This
problem generalizes two well-studied online problems: the paging problem, which is the special
case when b = 1, and the reordering buffer problem, which is the special case when k = 1.

In this paper, we develop a randomized online algorithm that obtains a competitive ratio of
O(
√
b ln k). Note that this result beats the easy deterministic lower bound of k whenever b < k2−ε.

We complement our randomized approach by presenting a deterministic algorithm that attains
a competitive ratio of O(min{k2 ln b, kb}). We further demonstrate that if our deterministic
algorithm can employ k/(1 − δ) servers where δ ∈ (0, 1), then it achieves a competitive ratio of
O(min{ln b/δ2, b/δ}) against an optimal offline adversary that employs k servers.

1998 ACM Subject Classification F.2.2 Nonnumerical algorithms and problems

Keywords and phrases Online algorithms, paging, reordering buffer

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.87

1 Introduction

We consider the generalized reordering buffer management problem. In this problem, there is
a service station, which is equipped with k servers and a buffer of size b. Each of the servers
is initially configured with some color. An online stream of colored items has to be served
by the service station. Whenever an item arrives, it is stored in the buffer. At any point in
time, a currently pending item can be served by removing it from the buffer and switching a
server to its color. In particular, if one of the servers is already configured with the color of
a pending item, this item can be served without switching any server. The goal is to serve
all items while minimizing the overall number of color switches of the servers.

This problem is a natural generalization of two well-studied online problems: the paging
problem, introduced by Sleator and Tarjan [19], is the special case when b = 1, and the
reordering buffer problem, introduced by Räcke et al. [18], is the special case when k = 1.

∗ Supported in part by the Israel Science Foundation (grant No. 1404/10) and by the Israeli Centers of
Research Excellence (I-CORE) program (Center No. 4/11).
† Supported in part by EPSRC award EP/D063191/1 and EPSRC grant EP/F043333/1.

© Yossi Azar, Matthias Englert, Iftah Gamzu, and Eytan Kidron;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 87–98

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.87
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

88 Generalized Reordering Buffer Management

Apart from this, the problem is also an interesting abstraction of a number of problem
scenarios occurring in computer science and manufacturing. We give two examples.

Consider a network device that can maintain a maximum of k TCP/IP connections open
at the same time. This device receives an online stream of unit sized packets that need
to be forwarded to specific destinations. Arriving packets can be forwarded if they are
addressed to one of the k currently open connections; otherwise, they have to be stored
in a finite-sized random access packet buffer. If the buffer is full, the device needs to
close one of the k open connections, and open a new one to the destination of one or
more packets stored in the buffer. These packets can then be forwarded using the new
connection and free up space in the buffer. The goal is to transmit all packets while
minimizing the number of connection open/close operations.
In the painting shop of a car manufacturing plant, car bodies traverse the final layer
of painting, where each car body is painted with its own predetermined top coat. The
painting shop is equipped with k painting machines and a finite-sized parking lot. Each
machine, once configured with a color, can paint multiple cars with that color. However,
switching a color in a machine causes non-negligible set-up and cleaning cost. The goal of
the painting shop is to paint all incoming cars with a minimum number of color switches.
The parking lot can be used to change the order in which the cars are painted, but it
must never overflow.

Chan et al. [9] seem to have been the first to mention the generalized reordering buffer
problem. They established that the offline variant of the problem, in which the entire stream
of items is known in advance, is NP-hard. To the best of our knowledge, no other work has
been done on generalized reordering buffer. In particular, no results are known for the online
setting of the problem which we study.

Our results. We develop a randomized online algorithm that attains a competitive ratio
of O(

√
b ln k). Note that for any b < k2−ε with ε > 0, our randomized upper bound beats

the easy deterministic lower bound of k that applies for any b. Our algorithm has its roots
in the randomized marking algorithm of Fiat et al. [12] for the paging problem, combined
with several clean-up procedures. We emphasize that one natural approach for designing
an algorithm for our generalized setting is to combine an algorithm for the reordering
buffer problem with an algorithm for the paging problem. Specifically, the reordering buffer
algorithm decides which color to serve next, and the paging algorithm decides which server
should switch to that color. Unfortunately, we do not know if there are combinations of
this nature that attain good performance guarantees. For example, we could combine the
O(ln k)-competitive randomized marking algorithm for paging with a deterministic algorithm
for the reordering buffer problem, some of which are O(ln b)-competitive or better. While one
can easily prove that this combination is an O(b ln k)-competitive algorithm, this guarantee
is still weak; for example, when b = k. In fact, we were unable to show any bounds that are
sublinear in k for such combinations.

We further present a deterministic online algorithm that attains a competitive ratio
of O(min{k2 ln b, kb}). This algorithm can complement our randomized algorithm in cases
where b is large. Note that any lower bound for the paging problem also applies to the
generalized reordering buffer management problem. To see this, consider any sequence
of requests for pages (colors). This sequence can be modified by replacing each request
to a page by b successive requests to that page. This does not change the cost for the
paging problem, but it neutralizes the buffer of size b in the generalized reordering buffer

Y. Azar, M. Englert, I. Gamzu, and E. Kidron 89

problem, i.e., at any time, all pending requests are always for the same page. Therefore, no
deterministic online algorithm can be better than k-competitive for our problem, and our
randomized online algorithm outperforms the best possible deterministic online algorithm for
any b = o((k/ log k)2). We also show that if our deterministic algorithm can employ k/(1− δ)
servers where δ ∈ (0, 1), then it achieves a competitive ratio of O(min{ln b/δ2, b/δ}) against
an optimal offline adversary that employs k servers. Notice that this implies that if our
algorithm can employ a constant fraction of servers more than the optimal algorithm then it
achieves logarithmic competitiveness.

Note that due to space constraints, some proofs are omitted from this extended abstract
and may be found in the full version of the paper.

Related work. The paging problem was introduced in the seminal paper of Sleator and
Tarjan [19]. They proved that the LRU and FIFO strategies are k-competitive, and established
that no deterministic algorithm can achieve a competitive ratio smaller than k. Karlin et
al. [14] showed that the same bound is achieved by the flush-when-full strategy. Fiat et
al. [12] presented a randomized 2Hk-competitive marking algorithm, outperforming the lower
bound for deterministic algorithms. Note that Hk is the kth harmonic number. They also
established a lower bound of Hk on the competitive ratio that any randomized algorithm can
achieve. Later on, Achlioptas et al. [1] and McGeoch and Sleator [17] provided algorithms
matching this lower bound.

The reordering buffer problem was introduced by Räcke et al. [18], who devised an
O(ln2 b) -competitive algorithm. Englert and Westermann [11] presented an algorithm with
an improved competitive ratio of O(ln b), which can be applied to a generalized non-uniform
cost setting. Avigdor-Elgrabli and Rabani [4] developed an LP-based algorithm whose
competitive ratio is O(ln b/ ln ln b). Adamaszek et al. [2] presented an algorithm whose
competitive ratio is O(

√
ln b), and established lower bounds of Ω(

√
ln b/ ln ln b) and Ω(ln ln b)

for deterministic and randomized algorithms, respectively. Recently, Avigdor-Elgrabli and
Rabani [6] developed a randomized online algorithm matching this lower bound.

Asahiro et al. [3] and Chan et al. [9] considered the offline variant of the reordering buffer
problem, and established that it is NP-hard. Very recently, Avigdor-Elgrabli and Rabani [5]
designed a constant factor approximation algorithm for this offline setting. The reordering
buffer problem has also been studied on other metric spaces [8, 15, 13]. For example, Englert
et al. [10] considered the more general variant in which items are associated with points in
a metric space, and obtained a competitive ratio of O(ln2 b lnn), where n is the number of
distinct points in the metric. Some research has been done on a maximization variant of the
problem [16, 7].

2 A Randomized Algorithm

In this section, we develop a randomized algorithm whose competitive ratio is O(
√
b ln k).

The algorithm sensibly combines the randomized marking algorithm due to Fiat et al. [12]
with several buffer clean-up procedures.

2.1 The algorithm
We begin by briefly describing the random marking algorithm for the paging problem. Recall
that in the underlying paging setting, there are k servers and a trivial buffer (i.e., b = 1).
The algorithm is made up of phases. At the beginning of each phase, all colors are unmarked.
When an item of color χ arrives, χ becomes marked and a server is moved to χ if there

STACS’14

90 Generalized Reordering Buffer Management

is no server there already. In order to decide which server moves, the algorithm chooses a
server uniformly at random from the servers which are located on unmarked colors. If there
is no such server, then the current phase ends and a new phase begins. At the end of a
phase, markings are removed from all colors. A crucial observation regarding this algorithm
is that although it has random components, the order in which the colors are marked is
deterministic and so is the partition into phases. We make use of this property also in the
analysis of our algorithm.

Our algorithm combines the random marking algorithm with several buffer clean-up
procedures. Similarly to the marking algorithm, our algorithm is also made up of phases.
Each color has a phase counter, which is set to 0 at the beginning of each phase. When an
item of color χ arrives, it is placed in the buffer, and the phase counter of χ is incremented
by 1. When the phase counter of a color reaches

√
b, the color becomes marked and is served

in a similar way to the marking algorithm. Note that the partition into phases is defined as
in the marking algorithm.

We further define a status to each color: marked, half-marked, or unmarked. At the end
of a phase, all half-marked colors become unmarked, and all marked colors become half-
marked. Accordingly, arriving items are said to be either marked, half-marked or unmarked
depending on the status of their color at their arrival time. For example, an item is said
to be half-marked if its color was marked in the previous phase. We partition the buffer
into two sub-buffers, each of size b/2. The unmarked sub-buffer stores unmarked items and
the half-marked sub-buffer stores half-marked items. Note that marked items never stay in
the buffer since a marked color always consists of a server that can immediately serve the
arriving item. In fact, this may also be true for half-marked items, but it is never true for
unmarked items. Namely, half-marked colors may or may not consist a server, but unmarked
colors never consist of a server. If a half-marked item arrives, and a server is present on its
corresponding color, then it is served immediately and does not need to be placed in the
half-marked sub-buffer. Note that the phase counter of that color is still incremented. In
order to avoid buffer overflows, we introduce the following three clean-up procedures:

Half-marked clean-up. A half-marked clean-up event takes place when the half-marked
sub-buffer is full, and also at the end of each phase. Upon a half-marked clean-up event, all
items in the half-marked sub-buffer are served. This is done by moving an arbitrary server
through all the colors of items in the half-marked sub-buffer. The server then returns to its
original position. Note that the number of half-marked clean-up moves in a half-marked
clean-up event is one plus the number of different colors in the half-marked sub-buffer at the
time of the event.

Targeted clean-up. A targeted single-color clean-up event takes place when a buffer counter
of some color reaches 2

√
b. The buffer counter maintains the number of items a color has

in the unmarked sub-buffer. Note that this counter should not be confused with the phase
counter used for marking. In a targeted single-color unmarked clean-up event, or simply
targeted clean-up event, the items of a single color from the unmarked sub-buffer are served.
An arbitrary server moves to that color and back to its original position. Hence, a targeted
clean-up event consists of two targeted clean-up moves.

Unmarked clean-up. An unmarked clean-up event takes place if there are
√
b/4 different

colors in the unmarked sub-buffer, and after
√
b targeted clean-up events. Similarly to a

half-marked clean-up event, upon an unmarked clean-up event, all items in the unmarked

Y. Azar, M. Englert, I. Gamzu, and E. Kidron 91

sub-buffer are served by an arbitrary server, which later returns to its original position. The
number of unmarked clean-up moves in an unmarked clean-up event is one plus the number
of different colors in the unmarked sub-buffer at the time of the event.

2.2 The analysis
We begin by pointing out that although the algorithm is randomized, it still has several
deterministic aspects: the points in time in which each color becomes marked, half-marked
and unmarked are deterministic, and so is the partition into phases. In particular, the
partition into phases is deterministic since a phase ends just before some color gets marked
when each of precisely k different colors already got

√
b items in that phase. The content of

the unmarked sub-buffer at every point in time is also deterministic, and consequently, so is
the point in time of every unmarked clean-up event and targeted clean-up event. Finally,
we point out that although the content of the half-marked sub-buffer is not deterministic,
and neither is the point in time of half-marked clean-up events, at the end of each phase the
half-marked sub-buffer is emptied. Thus, the content of the entire buffer is deterministic at
the beginning of every phase. The following lemma establishes the feasibility of the algorithm.

I Lemma 1. The algorithm never has a buffer overflow.

Proof. Recall that the buffer is partitioned into two sub-buffers, each of size b/2. The
half-marked sub-buffer never overflows since whenever it becomes full, a half-marked clean-
up event is initiated. The unmarked items in the unmarked sub-buffer are served by a
combination of unmarked clean-up events and targeted clean-up events. The unmarked
clean-up events make sure that there are never more than

√
b/4 different colors in the

unmarked sub-buffer, and the targeted clean-up events ensure that no such color has more
than 2

√
b items in the sub-buffer. Together, there cannot be more than b/2 unmarked items

in that sub-buffer. J

Let ON and OPT denote our algorithm and the optimal offline algorithm, respectively. We
also denote the respective overall number of server moves in ON and OPT by ON and OPT .
Note that ON is the expected number of moves since ON is randomized. In the remainder of
this section, we prove that ON is O(

√
b ln k)-competitive. We first partition ON according

to four types of moves that the servers of ON do: ON = ONM + ONH + ONT + ONU ,
where ONM is the expected number of marking moves, ONH is the expected number of
half-marked clean-up moves, ONT is the number of targeted clean-up moves and ONU is
the number of unmarked clean-up moves. We also define ONi to be the expected number of
ON’s server moves in phase i, and OPTi is the number of OPT’s server moves in phases i− 1
and i. Note this latter asymmetry, and notice that OPT ≤

∑
iOPTi ≤ 2 ·OPT . Similarly,

for a set S of consecutive phases, we define ONS =
∑
i∈S ONi. Note that we also use the

same notation as before when considering a partition of the expected number of ON’s server
moves in a phase or a set of phases to the four types of moves. For example, ONU

i is the
expected number of unmarked clean-up moves that ON servers makes in phase i. We now
turn to bound the ratios between each of ON’s movement types and OPT. The competitive
ratio ON/OPT is the sum of these ratios.

Marking moves and half-marked clean-up moves. We bound the expected number of
marking moves, ONM , and the expected number of half-marked clean-up moves, ONH ,
using similar techniques. Let Hk =

∑k
j=1 1/j be the kth harmonic number, and let mi be

STACS’14

92 Generalized Reordering Buffer Management

the number of colors that are marked in phase i but not marked in phase i− 1. We start
with a bound on the expected number of marking moves.

I Lemma 2. For every phase i, ONM
i ≤ miHk.

The proof uses the same arguments as the proof for randomized marking algorithm by Fiat
et al. [12] and is deferred to the full version of the paper. We now can use Lemma 2 to also
derive our desired upper bound on half-marked clean-up moves.

I Lemma 3. For every phase i, ONH
i = O(min{mi

√
b ln k,m2

i ln k/
√
b+mi}).

Proof. Recall that half-marked items may only accumulate at colors which had a server at
the beginning of the phase, and that server left the color during that phase. Lemma 2 implies
that there can be at most miHk such colors in expectation. Since at most

√
b half-marked

items can arrive from each such color, no more than miHk

√
b items enter the half-marked

sub-buffer during phase i in expectation.
An immediate consequence of the above observation is that ONH

i = O(mi

√
b ln k). This

follows since each half-marked clean-up move, except the last move in each such event,
cleans at least one item. The last moves of all half-marked clean-up events add at most a
multiplicative factor of 2 to the number of half-marked clean-up moves.

For the purpose of proving that ONH
i = O((m2

i ln k)/
√
b + mi), notice that the half-

marked sub-buffer is full with b/2 items every time that half-marked clean-up event is
initiated (except maybe the last half-marked clean-up event in every phase). So the number
of events is upper bounded in expectation by miHk

√
b/(b/2) + 1 = 2miHk/

√
b + 1. Note

that the additional 1 is due to the half-marked clean-up event done at the end of each phase.
Now, at any given time, there are no more than mi void half-marked colors, namely, colors
without a server. This implies that there are no more than mi colors in the half-marked
sub-buffer, and hence, a server makes at most mi + 1 moves in each such event. As a result,
ONH

i = (2miHk/
√
b+ 1)(mi + 1) = O(m2

i ln k/
√
b+mi). J

We next set a bound of the ratio between ONM +ONH and OPT . For this purpose, we
partition the phases into groups of marking phase sequences. Each marking phase sequence
contains consecutive phases, and each phase belongs to exactly one marking phase sequence.
We let S denote the set of phases in a marking phase sequence, and use last(S) to denote the
last phase in S. Our partition maintains the property that in every marking phase sequence
S (except maybe the last one), mi ≤ 3

√
b for every i ∈ S \ {last(S)}, and mlast(S) > 3

√
b.

Namely, the partition is set according to phases i such that mi > 3
√
b. Let mS =

∑
i∈Smi.

I Lemma 4. For every marking phase sequence S, ONM
S +ONH

S = O((mS+mlast(S)
√
b) ln k).

Proof. Notice that ONM
S =

∑
i∈S ON

M
i ≤

∑
i∈SmiHk = O(mS ln k), where the inequality

holds by Lemma 2. In addition, observe that

ONH
S =

∑
i∈S\{last(S)}

ONH
i +ONH

last(S)

=
∑

i∈S\{last(S)}

O((m2
i ln k/

√
b) +mi) +O(mlast(S)

√
b ln k)

=
∑

i∈S\{last(S)}

O (mi ln k) +O(mlast(S)
√
b ln k) = O((mS +mlast(S)

√
b) ln k) ,

where the second equality follows from Lemma 3, and the third equality holds since mi ≤ 3
√
b

for every i ∈ S \ {last(S)}. J

Y. Azar, M. Englert, I. Gamzu, and E. Kidron 93

We now turn to set a lower bound on OPTS , where OPTS is the overall number of server
moves of OPT in S and the last phase before S. Recall that OPTi is the number of server
moves of OPT in phases i and i− 1, and therefore, OPTS ≤

∑
i∈S OPT i ≤ 2 ·OPTS . We

first set a bound applicable for all marking phase sequences S having a large mS .

I Lemma 5. OPTS = Ω(mS/
√
b), for every marking phase sequence S having mS ≥ 3

√
b.

Proof. Observe that in each pair of phases i− 1 and i exactly k+mi colors are marked, and
the servers of OPT are present in no more than k +OPTi colors. Hence, there are at least√
b · (mi−OPTi) items that entered the buffer of OPT during phases i− 1 and i. The overall

number of items entering OPT’s buffer during S and the last phase before S is therefore at
least

√
b/2 ·

∑
i∈S(mi −OPTi), where the half factor is due to the fact that every item may

be counted twice. Now, notice that in each of the OPTS server moves, OPT can clear no
more than b items from its buffer. Moreover, there can be at most b items that may stay in
the buffer and not cleared at the end of S. Hence,

OPTS ≥
√
b/2 ·

∑
i∈S(mi −OPTi)− b

b
≥ mS

2
√
b
− OPTS√

b
− 1 ,

where the last inequality holds since
∑
i∈S OPT i ≤ 2 ·OPTS . This implies that OPTS =

Ω(mS/
√
b) since mS ≥ 3

√
b. J

The next lemma establishes a more specialized bound for all marking phase sequences S
having a large mlast(S).

I Lemma 6. OPTS = Ω(mS/
√
b + mlast(S)), for every marking phase sequence S having

mlast(S) > 3
√
b.

Proof. The fact that OPTS = Ω(mS/
√
b) follows from Lemma 5 by noticing that mS ≥

mlast(S) > 3
√
b. We now complete the proof by establishing that OPTS = Ω(mlast(S)). We

next prove a somewhat stronger argument stating that OPT i = Ω(mi), for every phase i
such that mi > 3

√
b. As a consequence, we attain that OPTS ≥ OPTlast(S) = Ω(mlast(S))

since mlast(S) > 3
√
b. For the purpose of proving the above argument, notice that the

number of items which arrived during phases i− 1 and i, and entered OPT’s buffer is at least√
b · (mi−OPTi). Since OPT’s buffer cannot overflow, we attain that b ≥

√
b · (mi−OPT i),

and therefore, OPTi ≥ mi−
√
b > 2mi/3, where the last inequality holds since mi > 3

√
b. J

The main result of this subsection is the following lemma.

I Lemma 7. ONM +ONH = O(
√
b ln k) ·OPT +O(b ln k).

Proof. Notice that OPT ≥
∑
S OPTS/2. Hence, it is sufficient that we establish the

above mentioned bound for each marking sequence. Lemma 4 and Lemma 6 prove that
ONM

S +ONH
S = O(

√
b ln k) ·OPTS , for every marking phase sequence S except maybe the

last marking phase sequence. Consider the last marking phase sequence S′. If mlast(S′) > 3
√
b

then the same bound also holds for S′. Otherwise, if mS′ > 3b then from Lemma 5 we know
that OPTS′ = Ω(mS′/

√
b), while from Lemma 4 we attain that ONM

S′ +ONH
S′ = O(mS′ ln k).

Namely, the same bound ratio holds also in this case. Finally, when mlast(S′) ≤ 3
√
b and

mS′ < 3b, we get that ONM
S′ +ONH

S′ = O(b ln k), which is exactly the additive term in the
above ratio. J

STACS’14

94 Generalized Reordering Buffer Management

Targeted clean-up moves. We now turn our attention to bound the number of targeted
clean-up moves ONT . Recall that each targeted clean-up event consists of two server moves,
and each such event happens when there are 2

√
b items of a single color in the unmarked

sub-buffer.

I Lemma 8. There is no time interval during which no server of OPT moves but more than
2
√
b targeted clean-up events occur.

Proof. Let us assume by way of contradiction that there exists a time interval I during which
no server of OPT moves and there are more than 2

√
b targeted clean-up events. Recall that

after every
√
b targeted clean-up events, the unmarked sub-buffer is cleared by an unmarked

clean-up event. This implies that the last
√
b targeted clean-up events in I clear items that

arrived during I. We next focus only on those
√
b targeted clean-up events. We number

them by 1, . . . ,
√
b.

Let χj be the color cleared in the jth targeted clean-up event. We say that a targeted
clean-up event j is an OPT-present clean-up event if OPT has a server on χj during I;
otherwise, this event is OPT-absent. Let ` be the number of OPT-present events and

√
b− `

be the number of OPT-absent events. In each of the
√
b − ` OPT-absent events, OPT

accumulates 2
√
b items arriving during I. We count only the first

√
b items in each such

event due to a reason that will be explained later. Thus, summing up over all OPT-absent
events, it follows that OPT accumulates at least

√
b(
√
b− `) items. The crucial observation

needed to complete the proof is that every OPT-present clean-up event implies that there is
an OPT server missing from a marked color at some phase. Specifically, let us concentrate
on an OPT-present clean-up event j. The 2

√
b unmarked items cleared at that event must

have been accumulated in the buffer of ON during at least two marking phases; otherwise,
the underlying color would have been marked. Let ij be the first phase during which the
unmarked items cleared by the jth targeted clean-up event started accumulating. Let di be
the number of OPT-present targeted clean-up events whose items started accumulating at
phase i, that is, di = |{j : i = ij}|. Notice that during the marking phase i, the servers of
OPT are not present on at least di colors that become marked. Since

√
b items arrive to

each of those colors, OPT accumulates in its buffer at least di
√
b items during that phase.

As a result, OPT accumulated at least `
√
b additional items as

∑
i di = `.

Notice that the number of items accumulated in OPT’s buffer during I is at least√
b(
√
b− `) + `

√
b = b, a contradiction to our assumption that OPT does not move during I.

Recall that we assumed that OPT accumulates
√
b (and not 2

√
b) items in each OPT-absent

event. This is required to ensure that the sets of accumulated items due to OPT-absent and
OPT-present events are disjoint. In general, an item cleared in a targeted clean-up move
may be counted as one of

√
b items that induced a marking move. However, none of the

first
√
b items accumulated may be counted towards a marking move since otherwise, the

underlying color becomes marked before the buffer counter reaches 2
√
b, and thus, a targeted

clean-up event cannot occur. J

Lemma 8 implies that ONT ≤ 4
√
b · (OPT + 1) since every targeted clean-up event

consists of two targeted clean-up moves. Since we may assume that OPT moves at least
once, this immediately gives us the following lemma.

I Lemma 9. ONT = O(
√
b) ·OPT .

Unmarked clean-up moves. We finally bound the number of unmarked clean-up moves
ONU . Recall that an unmarked clean-up event takes place when either (1) the unmarked

Y. Azar, M. Englert, I. Gamzu, and E. Kidron 95

sub-buffer has
√
b/4 different colors, or (2) after

√
b targeted clean-up events. For the sake

of the analysis, it is sufficient that we focus only on unmarked clean-up moves due to type
(1). Clean-up moves due to type (2) can be charged against the targeted clean-up moves
with an additional constant multiplicative factor. Specifically, one can observe that the
number of unmarked clean-up moves of type (2) is no more than ONT /8. During

√
b targeted

clean-up events there are 2
√
b targeted clean-up moves, while the unmarked clean-up event

that results from this sequence of targeted clean-ups has at most
√
b/4 unmarked clean-up

moves; otherwise, an unmarked clean-up event of type (1) would take place before that. As
a result, in the remainder of this subsection, when we refer to unmarked clean-up events or
moves, we specifically mean unmarked clean-up events or moves of type (1).

Let ui be the number of unmarked clean-up events in phase i. We partition the marking
phases into groups of clean-up phase sequences. A clean-up phase sequence is a sequence
of consecutive marking phases such that each phase belongs to exactly one clean-up phase
sequence. A clean-up phase sequence S ends when

∑
i∈S ui > 60

√
b. Let uS =

∑
i∈S ui, and

observe that a straightforward upper bound on the number of unmarked clean-up moves
in any sequence S is ONU

S = O(uS
√
b) since every unmarked clean-up event has

√
b/4 + 1

moves. Since we do not have an upper bound on uS , it is convenient to consider two types
of clean-up phase sequences: a clean-up phase sequence S that has a phase i ∈ S such that
ui > 6

√
b, and a sequence S that does not have such a phase.

I Lemma 10. OPT i = Ω(ui) for a phase i such that ui > 6
√
b.

Proof. Notice that all the unmarked items that were cleared during phase i, with the
exception of the items cleared in the first unmarked clean-up event of the phase, arrived
during phase i. As a result, the number of unmarked items which arrive during phase i is at
least (ui − 1) ·

√
b/4. Note that no color is associated with more than

√
b of these items. In

phase i − 1, there are k marked colors. None of the previously mentioned (ui − 1) ·
√
b/4

unmarked items can be from those colors as any item of those colors arriving in phase i
would not be considered an unmarked item. Let us restrict our attention to the first

√
b

items of each of those marked colors. Summing up, we know that (ui− 1) ·
√
b/4 + k

√
b items

arrived during phases i− 1 and i, and no single color has more than
√
b of these items.

During phases i− 1 and i, the servers of OPT could not have been located in more than
k +OPT i different colors. Therefore, they could have served no more than

√
b · (k +OPT i)

of the previously mentioned items. The remaining items must have entered the buffer of
OPT. Since OPT’s buffer cannot accommodate more than b items, then

(ui − 1)
√
b

4 + k
√
b−
√
b · (k +OPT i) =

√
b ·
(
ui − 1

4 −OPT i
)
≤ b .

This implies that OPT i ≥ (ui − 1)/4 −
√
b ≥ ui/24, where the last inequality holds since

ui > 6
√
b. J

We now introduce the notion of an extended phase. An extended phase is defined only
for phases i with ui > 0. The extended phase includes phase i and phases i− 1, i− 2, and
so on, until a phase i′ with ui′ > 0. As a result, any extended phase contains at least two
phases, and only the first and last of them has unmarked clean-up events. For any clean-up
phase sequence S, let OPTS be the number of moves of OPT servers during the extended
phases of all relevant i ∈ S.

I Lemma 11. OPTS = Ω(
√
b) for any clean-up phase sequence S such that ui ≤ 6

√
b in all

phases i ∈ S.

STACS’14

96 Generalized Reordering Buffer Management

Proof. Let us assume by way of contradiction that OPTS ≤
√
b/60. Let χS be the set of

colors that OPT visited during the extended phases of S. Since OPT makes at most
√
b/60

moves, |χS | ≤ k +
√
b/60. Let xi be the number of items arriving during the extended phase

i whose colors are not in χS . We next argue that xi ≥ ui
√
b/30 for every extended phase

i ∈ S. Then, we get that the number of items arriving during the extended phases of S whose
colors are not in χS is at least

∑
i∈S xi/2 ≥

∑
i∈S ui

√
b/60 > b, where the half factor is due

to the fact that every item belongs to at most two extended phases, and the last inequality
results since uS > 60

√
b. This implies that OPT must have accumulated more than b items

in its buffer, a contradiction.
We turn to prove the above-mentioned argument. Let us focus on the extended phase i,

and recall that phase i− 1 is within this extended phase. At phase i− 1, k colors receive
at least

√
b items and become marked. Let Ri be the set of these colors that are not in

χS , and let ri = |Ri|. Note that at least ri
√
b items arrive out of χS . If ri ≥ ui/30 then

xi ≥ ui
√
b/30, and we are done. Hence, in the remainder of this proof, we may assume that

ri < ui/30 and |χS ∪ Ri| < k +
√
b/60 + ui/30. Notice that no more than

√
b/60 + ui/30

of the colors in χS ∪Ri may correspond to unmarked items in phase i. This follows since
χS ∪Ri includes the k colors marked in phase i− 1. Each unmarked clean-up event cleans
items from

√
b/4 different unmarked colors, and at least

√
b/4 −

√
b/60 − ui/30 items of

colors outside χS . However,
√
b/4−

√
b/60− ui/30 = 7

√
b/30− ui/30 ≥

√
b/30, where the

last inequality follows since ui ≤ 6
√
b in any phase i ∈ S. This implies that at least ui ·

√
b/30

unmarked items were cleaned in phase i. Notice that an unmarked item cleaned in phase i
must have arrived at the extended phase i, and thus, xi ≥ ui

√
b/30. J

We can now complete the main contribution of this subsection.

I Lemma 12. ONU = O(
√
b) ·OPT +O(b).

Proof. Notice that OPT ≥
∑
S OPTS/2. Hence, it is sufficient that we establish the above

mentioned bound for each clean-up phase sequence. We prove that ONU
S = O(

√
b) ·OPTS ,

for every clean-up phase sequence S except the last one. We then complete the proof by
demonstrating that the last clean-up phase sequence contributes an additive value of O(b).

Consider a clean-up phase sequence S that is not the last one. Observe that if there
is a phase i ∈ S such that ui > 6

√
b then uS = Θ(maxi∈S ui). This observation uses the

fact that such a clean-up phase sequence ends when
∑
i∈S ui > 60

√
b. Using Lemma 10,

one can infer that OPTS = Ω(maxi∈S ui), and the claimed bound follows by recalling that
ONU

S = O(uS
√
b). In case that ui ≤ 6

√
b for all phases i of S, then uS = O(

√
b), and

therefore, ONU
S = O(b) = O(

√
b) · OPTS , where the last equality follows from Lemma 11.

Now, let us focus on the last clean-up phase sequence S′. Clearly, uS′ < 60
√
b, and hence,

ONU
S′ = O(b). J

Putting everything together. Combining the bounds from Lemma 7, Lemma 9, and
Lemma 12, gives the main theorem of this section. Note that in adherence to competitive
analysis and online algorithms research, we allow additive terms that are independent of the
input stream and its properties.

I Theorem 13. There is a randomized algorithm whose competitive ratio is O(
√
b ln k).

3 A Deterministic Algorithm

We develop two deterministic algorithms: the first has a competitive ratio of O(ln b/δ2)
in a δ-augmentation setting and a competitive ratio of O(k2 ln b) when there is no server

Y. Azar, M. Englert, I. Gamzu, and E. Kidron 97

augmentation, and the other has a competitive ratio of O(b/δ) in a δ-augmentation setting
and a competitive ratio of O(kb) with no augmentation. Then, one can execute the algorithm
that achieves a better competitive ratio depending on the underlying parameters k, b, and
δ. This results in a O(min{k2 ln b, kb})-competitive algorithm, and a O(min{ln b/δ2, b/δ})-
competitive algorithm for the δ-augmentation settings. Note that in a δ-augmentation setting,
an online algorithm may employ k/(1− δ) servers where δ ∈ (0, 1), while an optimal offline
adversary can employ at most k servers. Also note that all the proofs of this section can be
found in the full version of the paper.

Algorithm 1. Our first algorithm sensibly combines the algorithm for the reordering buffer
problem on arbitrary metric spaces [10], and the FIFO algorithm for the paging problem [19].
Specifically, we utilize the algorithm for reordering buffer to decide which color to serve next,
and then use the FIFO algorithm to decide which of the servers moves to serve this color.
Formally, the algorithm consists of alternating selection and service steps. We maintain a
cost cχ ∈ [0, 1] for every color χ, which is initially 0. During the selection step the buffer is
full, and the cost of all inactive colors, namely, colors that currently do not consist of a server,
is incremented. The cost of each color is incremented at a rate proportional to the number
of items it has in the buffer. Once the cost of some color reaches 1, this color is selected,
and the selection step ends. If more than one color reaches a cost of 1 then one of them is
selected arbitrarily. Once the selection step ends, the service step begins. In the service step,
a server is moved to the selected color. The choice of which server should be moved is done
in a FIFO manner, that is, we move the server that has not moved the longest. Then, the
cost of the selected color drops from 1 to 0, and all its items in the buffer are cleared and
served. This makes room in the buffer for more items. Arriving items from active colors are
served immediately, while items from inactive colors are accumulated in the buffer. Once the
buffer is full again, a new selection step starts. Note that colors retain their cost from the
previous selection step.

I Theorem 14. Algorithm 1 achieves a competitive ratio of O(ln b/δ2) in a δ-augmentation
setting and a competitive ratio of O(k2 ln b) when there is no server augmentation.

Algorithm 2. Our second algorithm is simply a FIFO algorithm. This algorithm completely
ignores the buffer, and serves the items according to their arrival order. Specifically, when
an item arrives, it is immediately served by either a server that is already located on the
corresponding color, or by moving a server that has not moved the longest to that color.

I Theorem 15. There is a deterministic algorithm whose competitive ratio is O(b/δ) in a
δ-augmentation setting and O(kb) when there is no augmentation.

4 Conclusions

We made a first step in analyzing the generalized reordering buffer management problem in an
online setting, and provided non-trivial upper bounds on the competitive ratio. An obvious
direction for future research is the design of new algorithms with further improved bounds.
By now, both the paging problem and the reordering buffer problem are very well understood.
It seems natural to utilize the known techniques and state of the art algorithms for these
problems in order to obtain better results for generalized reordering buffer. Nevertheless, it
turns out to be a challenging task to establish bounds on such combinations. We do not know
whether natural combinations of such algorithms can attain good performance guarantees,

STACS’14

98 Generalized Reordering Buffer Management

although we have identified several combinations that fail. Any progress in this direction
would be of great interest.

References
1 Dimitris Achlioptas, Marek Chrobak, and John Noga. Competitive analysis of randomized

paging algorithms. Theor. Comput. Sci., 234(1-2):203–218, 2000.
2 Anna Adamaszek, Artur Czumaj, Matthias Englert, and Harald Räcke. Almost tight

bounds for reordering buffer management. In STOC, pages 607–616, 2011.
3 Yuichi Asahiro, Kenichi Kawahara, and Eiji Miyano. Np-hardness of the sorting buffer

problem on the uniform metric. In FCS, pages 137–143, 2008.
4 Noa Avigdor-Elgrabli and Yuval Rabani. An improved competitive algorithm for reordering

buffer management. In SODA, pages 13–21, 2010.
5 Noa Avigdor-Elgrabli and Yuval Rabani. A constant factor approximation algorithm for

reordering buffer management. In SODA, pages 973–984, 2013.
6 Noa Avigdor-Elgrabli and Yuval Rabani. An optimal randomized online algorithm for

reordering buffer management. CoRR, abs/1303.3386, 2013.
7 Reuven Bar-Yehuda and Jonathan Laserson. Exploiting locality: Approximating sorting

buffers. Journal of Discrete Algorithms, 5(4):729–738, 2007.
8 Siddharth Barman, Shuchi Chawla, and Seeun Umboh. A bicriteria approximation for the

reordering buffer problem. In ESA, pages 157–168, 2012.
9 Ho-Leung Chan, Nicole Megow, Rob van Stee, and René Sitters. A note on sorting buffers

offline. Theoretical Computer Science, 423:11 – 18, 2012.
10 Matthias Englert, Harald Räcke, and Matthias Westermann. Reordering buffers for general

metric spaces. Theory of Computing, 6(1):27–46, 2010.
11 Matthias Englert and Matthias Westermann. Reordering buffer management for non-

uniform cost models. In ICALP, pages 627–638, 2005.
12 Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel Dominic Sleator,

and Neal E. Young. Competitive paging algorithms. CoRR, cs.DS/0205038, 2002.
13 Iftah Gamzu and Danny Segev. Improved online algorithms for the sorting buffer problem

on line metrics. ACM Transactions on Algorithms, 6(1):15:1–15:14, 2009.
14 Anna R. Karlin, Mark S. Manasse, Larry Rudolph, and Daniel Dominic Sleator. Competi-

tive snoopy caching. Algorithmica, 3:77–119, 1988.
15 Rohit Khandekar and Vinayaka Pandit. Online sorting buffers on line. In STACS, pages

584–595, 2006.
16 Jens S. Kohrt and Kirk Pruhs. A constant approximation algorithm for sorting buffers. In

LATIN, pages 193–202, 2004.
17 Lyle A. McGeoch and Daniel Dominic Sleator. A strongly competitive randomized paging

algorithm. Algorithmica, 6(6):816–825, 1991.
18 Harald Räcke, Christian Sohler, and Matthias Westermann. Online scheduling for sorting

buffers. In ESA, pages 820–832, 2002.
19 Daniel Dominic Sleator and Robert Endre Tarjan. Amortized efficiency of list update and

paging rules. Commun. ACM, 28(2):202–208, 1985.

	Introduction
	A Randomized Algorithm
	The algorithm
	The analysis

	A Deterministic Algorithm
	Conclusions

