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Spatial heterogeneities and spatial separation of hosts aroften seen as key
factors when developing accurate predictive models of thegsead of pathogens.
The question we address in this paper is how coarse the resaion of the spatial
data can be for a model to be a useful tool for informing contrd policies. We
examine this problem using the specific case of foot-and-mtudisease spread-
ing between farms using the formulation developed during tle 2001 epidemic
in the UK. We show that if our model is carefully parameterisel to match epi-
demic behaviour, then using aggregate county-scale datadm the USA is suf-
ficient to closely determine optimal control measures (spdecally ring culling).
This result also holds when the approach is extended to theetical distribu-
tions of farms where the spatial clustering can be manipulatd to extremes. We
have therefore shown that while spatial structure can be ctically important in
allowing us to predict the emergent population-scale behawur from a knowl-
edge of the individual-level dynamics, for this specific apieed question such
structure is mostly subsumed in the parameterisation allowng us to make pol-
icy predictions in the absence of high-quality spatial infomation. We believe
that this approach will be of considerable benefit across a nage of disciplines

where data is only available at intermediate spatial scales

Introduction

The spatial distribution of organisms is viewed as criticahportant for determining popu-
lation dynamics. Numerous examples from the epidemiol@od ecological literature have
shown that spatial structure has a profound impact on howlptpn-level dynamics emerge
from individual-level behaviour (1-4). For infectious deses in particular, where transmission
generally occurs over relatively short distances, spatraicture (and in particular the spatial
distribution of sessile hosts) plays three roles: hostsdhafar from sources of infection are

at very little risk; local transmission and depletion of sgstible hosts can dramatically reduce



the speed of epidemic growth; and local control measuredeaapplied using spatial prox-
imity as a method of targeting at risk hosts. These three eisrare present for any spatial
distribution of hosts, but are generally amplified by clusig. The impact of spatial structure
on the spread of infectious disease has been examined fartau(8), wildlife (6-7) and live-
stock (8-9), but the ability to make useful quantitativedicéions relies on the availability of
good quality spatial and epidemic data. In recent yearsiderable research has focused on
the spread of livestock infections due to the extreme valoiéity of the livestock industry, the
potential economic costs, the variety of strategies thatogaused as control measures and the

costs associated with such measures.

The UK 2001 epidemic of foot-and-mouth disease (FMD) presid prime example of what
can be achieved when comprehensive spatial models, dkbakt data and detailed case data
are brought together. This approach provided importamglis and guidance during the 2001
epidemic (8-9) and has been used retrospectively to irgagstia range of alternative control
strategies (10-12). Whilst the location of livestock halgs in the UK is known, the same is not
true for many other countries. In particular, in the USAhaligh the United States Department
of Agriculture holds an agricultural census every five yearsst of the census data that resides
in the public domain is aggregated to county-scale presgrthe anonymity of farmers but
losing valuable spatial information. From the 2007 censugsfind that the United States’ live-
stock industry is dominated by cattle, with 936,669 presiigeorded as having cattle, 83,134

as having sheep, 75,442 as having pigs (or hogs) and 91,46®axg) goats.

In the event of an outbreak of FMD (or other livestock disg¢aséhe USA, it is likely that
predictions from mathematical models would be an integaal pf policy making and would

help advise regarding optimal control strategies to liiné size and duration of the outbreak.



The likelihood of a particular farm being infected with FM®hased upon many factors, includ-
ing the type and size of the holding in question, but the pmityi to other infectious farms has
been consistently demonstrated to be the main contribdgictgr (13-15). It therefore seems
vital to have complete information regarding the locatiod &ize of all farms in the region of

an outbreak.

Given that information is only available at the county-scal the USA, we consider the
impact of making the naive assumption that farms are digidbrandomly within each county.
This assumption still allows us to implement spatial modblg loses any clustering that is
present in the distribution of farms. In particular, we ddes how a model using a random
distribution of farms would be parameterised to match thepieral profile of an observed epi-
demic and show that this approach has strong applied beeeditsin the absence of fine-scale

positional data.

The model

The model used throughout this paper is an adaptation of duzhadeveloped by Keeling al
(2001) (8) during the 2001 FMD epidemic, and discussed inidelsewhere (16). The rate at
which an infectious farm infects a susceptible farpnis given by:

Rate;; = ( Z [Ns7j]p555> X( Z [Ns,i]qus) x K(d;;) (1)

sespecies sespecies

N, is the number of livestock speciesecorded as being on farin S, and7, measure the
species-specific susceptibility and transmissibilityjs the distance between farmand; and
K is the distance-dependent transmission kernel, estinfietedcontact tracing (8)p, andg,
are power law parameters accounting for a non-linear iser@asusceptibility and transmissi-
bility for speciess as animal numbers on a farm increase (see Supplementaryidllat&his

form of spatial transmission model has been shown to prandeccurate and robust description
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of the UK 2001 outbreak of foot-and-mouth, capturing nagipnegional and individual-level
patterns of infection (16-18). In keeping with observasiérom the UK 2001 epidemic, we as-
sume that a farm acts as a single infectious unit, once idatenters the latent period (which
lasts 5 days) before becoming infectious where it remaitisitalivestock are culled. We note
that, whilst this assumption may be valid for regions of tl®AUvith similar farming practices
as the UK, very different behaviour may occur in very largtledarms (19). All parameters
for the UK county models using the true farm locations taledhme values as that obtained
for the UK 2001 epidemic as discussed in detail elsewherk (16

During the UK foot-and-mouth outbreaks in 2001 and 2007 dditton to routine culling of
infected premises (IPs), all “premises where animals haes lin direct contact with infected
animals or have, in any way, become exposed to infectionéwlefined by veterinary judge-
ment as dangerous contacts (DCs) and were pre-emptivédgadnlan effort to control disease.
In our model, DCs are identified based on their risk of infatfrom the infecting source, biased
toward identifying farms that have actually been infectet) (assuming that veterinary judge-
ment benefits from a range of detailed local knowledge. Hexreassume that once identified
all livestock on an infected premises are culled within 24rsand all associated pre-emptive
culling is undertaken within 48 hours; this is somewhatmjttic but was one of the principle
aims during the 2001 epidemic.

Retrospective analysis of the 2001 epidemic has deterntivech policy of IP and DC culling
alone would have resulted in a much larger epidemic tharaligtoccurred, implying that other
culling strategies, including culling of contiguous press and farms within 3km of IPs, aided
in disease control (12). With this in mind, we investigate #ffectiveness of ring culling in
addition to IP and DC culling. When an IP is reported, all fawithin a particular radius of
that IP will be targeted for culling. The radius of the ringlbbwed to vary between simulations

and we seek the radius which minimises the “Epidemic Impaletfined as the total number of



farms with livestock culled (either as IPs, DCs or ring cdlfarms). The optimal ring size is
clearly a trade-off between too little culling, in which eathe epidemic is not controlled, and

too much culling, in which case an excessive number of faoses their livestock.

Methodological Approach

Our goal is to test the accuracy of predictions made whernlddtspatial data are not available,
and the only recourse is to randomly scatter farms acrosktigscape. As a first step, and
focusing on regions where the location of farms (and the&stiock composition) is known, we
perform multiple simulations to determine the range of epicts that can be expected. Using
the same spatial data, we then conduct further simulatmdstermine the ring cull radiug(-)
that minimises the total number of farms losing livestockitber infection or control.

In the second step, we distribute the same farms randomhimtihe given region to simulate
the effects of not having the precise spatial locations Imawkng the heterogeneities in the
number of livestock. At this stage, we could simulate epigdsmon the random spatial data set
using the original UK parameters. However,it is naive taiass that the UK 2001 parameters
could be used for a future epidemic in a different farm derapgy. We therefore choose in-
stead to mimick what would happen during a real epidemic atichate the parameters that
allow us to accurately predict the epidemic behaviour — is tlase matching the attack rates
obtained using the randomly distributed farms to the attatds obtained using the true spatial
location of farms. This parameterisation is achieved bngta 2 parameter description of the
transmission kernel (determining kernel width and height,and K, respectively), and uses
the same approach as outlined in Tildestegl (2008) (16) — to provide a best fit, parameters
are found that minimise the average difference on a dailishietween ‘simulated epidemics’
from the random location data to the ‘observed epidemic'utated on the true spatial data

for the cumulative number of farms reported and culled ad agthe cumulative number of



cattle and sheep on such farms (see Supplementary Matddisifig this random distribution
of farms, but with a refined parameterisation, we deterntieeoptimal ring cull radius for the
random-location reparameterized modgBlz;). Comparison betweeR; and Rirr, and the
Epidemic Impact under both culling regimes provides imgairinsights into the necessity of
detailed spatial data for informing policy. In all simulatis, a single farm is randomly selected
and seeded with infection. The onset of ring culling occi8$durs after the first case is re-
ported, with subsequent ring culling occurring 48 houreratte reporting of the relevant IP.

In essence our approach is to use the first set of simulatitsisg the true spatial locations) as
a surrogate for real epidemic data; this has the advantage thariety of control options can
be tested and compared using both true and randomised| sjz@&ia\We now examine how this
approach can be applied to county-level data from the UK a8é as well as hypothetical

data with arbitrary clustering.

County-Level Data

We begin by examining spatial location data for the count@uibria in the UK. Cumbria has
a high density of large cattle farms, and as a consequenceneasf the worst affected areas
in the UK 2001 outbreak. Comparing the true and randomiseatilons (figure 1a) we see sig-
nificant local clustering as captured by the average deonsigrms around each farm. We note
that the farm-centred density for randomised spatial lonatis not constant (as theoretically
expected) due to the finite scale of the region. For countigse United States, although the
true locations of farms are generally unknown, farms werelgeated for a handful of counties
representing a diverse mixture of livestock operationsiwithe USA. This spatial and hetero-
geneous farm information was generated using local andmaltagricultural, regulatory, farm
subsidy, business, and tax assessor databases contaldnegses or coordinates of farms. The

locations of the farms were then georeferenced, visualgclkbd, and modified if necessary



with aerial imagery, Google Streetview, Google & Mapquesips) and other ancillary data.
In a few cases where available data sources were not abledtelthe number of farms that
were indicated by the agricultural census, probable fawations were based on land-parcels
that were predominantly pasture, had farm buildings, amibtaess to a drinking water source.
Figure 1b shows example data from Lancaster County in Pérarsg, where we observe far
stronger local clustering than in Cumbria despite a confpardensity of farms. This pattern
of local clustering of farms is consistent across other tieann the UK and USA (figure 1c),
although the strength of clustering and the overall derditiarms differs considerably. We
show later that these farm-centred density plots can beieapas the sum of exponentials.
For the counties in the USA considered here, precise paeamalues are unknown. Should
UK parameters be applied to the USA, the lower overall farmsig means that epidemics do
not generally take off. Therefore, in order to provide epittes of a sufficient size and duration
for comparison with the random location model, we scale tKevalues of K, and K, for the
clustered distribution of farms (‘true data’) accordinghe relative densities of these counties
in comparison to the UK, thus preserving the overall numbbeoatacts between farms. It is
not intended that the Epidemic Impacts given for the US dearghould be in any indicative
of the actual Epidemic Impacts in the event of an epidemidherat is the level of agreement
between the results for the ‘true data’ and 'random datatWis of importance for targeting of
control in the event of future epidemics.

Epidemics simulated on the true Cumbrian data predict arageeEpidemic Impact of 2505
(31% of the population). In contrast, if the randomised daitesed (with the same parameters)
the average Epidemic Impact drops to 1765 as the lack ofadghistering means that it is more
difficult for the epidemic to spread — in the clustered scendre minimum distance between
farms is less and so the epidemic spreads more easily. Howesean re-parameterise such

that the random model gives comparable Epidemic Impactsetéully clustered model. Table



Region Epidemic Impact (T) Epidemic Impact (R) Epidemic Impact (RR
Cumbria 2505 (2121 — 2976) | 1765 (101 — 2287) | 2429 (1432 — 3054)
Devon 519 (27 — 1998) 190 (31 — 561) 545 (34 — 981)
Clwyd 679 (475 — 1131) 388 (52 — 798) 641 (148 — 1355)
Aberdeenshire 80 (20 — 263) 25 (16 — 41) 76 (21 — 121)
Lancaster, PA 1284 (954 — 1634) 75 (20 — 216) 1197 (576 — 1545)
Cuming, NE 454 (443 — 461) 441 (423 — 453) 453 (437 — 463)
Wright/Humboldt, IA| 134 (78 — 171) 121 (60 — 152) 133 (75 — 165)
Franklin, TX 244 (20 — 318) 118 (15 — 182) 220 (16 — 304)

Table 1: Mean epidemic impact for epidemics seeded withiivengcounty for the true clus-
tered location data (T) and for an equivalent data set witldoen farm locations (R) within
each county. Epidemic impact is also given for random farcations but with the model repa-
rameterised to provide a best fit to epidemics simulated enrtke location data (RR). Values

in brackets give the 95% prediction intervals; all resuttssfeom 10000 stochastic simulations.

1 gives a full list of Epidemic Impacts for all nine countiesaenined in figure 1 (note Wright
and Humboldt counties border one another so the combinel@ e impact is given here); in
all cases re-parameterisation for the random locationsrgégs epidemic impacts that are in
close agreement with predictions from the full spatial mMeddis is unsurprising as the results

of the full spatial model are used for parameterisation.

Whilst obtaining a good fit to the epidemic profile and hencedp@able to predict the likely
extent of an epidemic are potentially informative, by fag thost useful application of mathe-
matical models is to inform the optimal policy for contrallj an epidemic. As such accurate

mathematical models can be used to experimentally tesietyaf control strategies to assess



which is optimal — although it is the role of policy makers tectle which quantity needs to
be optimised. Here we consider ring culling (in additionfoand DC culling) and determine
what size of ring minimises the average Epidemic Impact. Sihmplest way to determine this
value is through multiple simulations. We first adopt thigp@ach using the true locations
of farms in Cumbria and Lancaster counties (figure 2a andug lahes) which predict clear
minima at the optimal radii) of approximately 3.6km (2.24 miles) in both cases. A simila
approach can be used to optimise other forms of control, asclaccination under logistical
constraints (11) or localised (contiguous) culling (12)owéver, the key question is whether
we can perform the same meaningful calculation in the alesefhdetailed spatial location data.
We therefore perform the same numerical experiment usegeparameterised model and the
random farm locations (red line, figures 2a and b), and olestirat although using random
spatial locations leads us to over-estimate the effect nofrobomeasures, the optimal ring cull
radius (Rgr) is close to the result from fully clustered spatial simigias. In fact this level of
agreement is so close that using the ring cull radiug in the fully clustered simulations only
has a marginal effect on the average Epidemic Impact. Focdstar county using a ring cull
radius of Rrr =3.8km leads to an average epidemic impact of 678 farms, aease of just 3
farms from the true optimal value &t =3.6km. Table 2 shows how this process holds across

all nine counties discussed so far.

Whilst the optimal ring cull radius is predicted to vary beenm counties, the increase in
Epidemic Impact from the use of predictions made in the atissefnspatial information is lim-
ited to no more than 2 or 3 farms in each case. This implies tbathe counties considered
in this analysis, precise knowledge of farm location is mojuired to advise regarding optimal
control strategies. It should be stressed that the repaesisegion of the model is a crucial step
in this process — should this be omitted from the proceduaeis are unable to predict the

true optimal radii with any accuracy. This effect is partasly noticeable in Lancaster county
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Region Ry Rrr Epidemic Impact Difference
Cumbria 3.6 (3.5-3.8)| 3.8 (3.6-4.0) 3(0-11)
Devon 2.8 (2.7-3.0)| 2.8 (2.7-3.1) 0 (0-3)
Clwyd 3.6 (3.5-3.7)| 3.2 (3.1-3.4) 3 (1-7)
Aberdeenshire 2.4 (2.3-2.7)| 2.0 (1.9-2.2) 2 (1-3)
Lancaster, PA 3.6 (3.5-3.7)| 3.8 (3.7-4.0) 2 (0-6)
Cuming, NE 0 (0-0) 0 (0-0) 0 (0-0)
Wright/Humboldt, IA| 0 (0-0) 0 (0-0) 0 (0-0)
Franklin, TX 5.5 (5.4-5.6)| 6.0 (5.8-6.1) 1 (0-3)

Table 2: The optimal ring cull radius in kilometres which miises the epidemic impact for
both the true clustered location dafa;() and the reparameterised random location dA&tg|.
Also shown is the increase in epidemic impact if the optinrad cull radius for the reparame-
terised random data were implemented on the true locatitan(da opposed to the optimal ring
cull radius for the true data). 95% confidence intervals fatrmoal ring cull radii and epidemic

impact difference are given in brackets. All results arelfd@00 stochastic simulations.
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—in the absence of reparameterisation, the random-locatmdel predicts very low epidemic
impacts and the optimal strategy is to employ no ring cullidfier reparameterisation, as dis-

cussed above, it is optimal to ring cullaB.8km.

Spatial Clustering

Whilst the nine counties considered so far imply that ouultssare general, to fully test this
approach we generate alternative farm distributions basmehd a given average farm-centred
density distributionD(r). We defineD(r) as the number of farms per unit area at a distance
r from an index farm, averaged over all possible index farmthepopulation. For highly
clustered distributions, we expebi(r) to decrease nonlinearly withas observed in figure (1).

In practice we find thaD(r) can be fit by a sum of exponentials:

D(r) = Sins + (S0 — Sinr) <Z Az'@Bir> (2)

where S;,s defines the long-distance asymptotic densi{ydefines the average local density
around a farm, and we insist tha;, A; = 1. We find that a sum of three exponentials (and
hence 7 parameters) is sufficient to fully capture the olesedensity distributions from all

nine counties (see Supplementary Material).

We now generate theoretical spatial distributions of fatortest the validity of our approach
over a wider range of parameters. In particular, we disteldi = 1000 farms in a50 x 50
km area, according to a given density distribution. For eaotulation, one farm is randomly
seeded with infection. To simplify our analysis we ignoréshegeneity in farm size and com-
position, and use a reduced formulation for the densityitigion; in particular, transmission
of infection between infectious and susceptible farms 8 adighly simplified version of equa-

tion 1, depending only on their separatidtafe;; = K (d;;)), while the density distribution is
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defined in terms of a single exponential decay:
D(T) = Sips + (S() — Sinf) €_Br (3)

We fix the population size and area that we are going to stukdighwreduces our free parame-
ters to the ratia5, : Si,¢, and the exponenB. Figure 2c and 2d, show an example of applying
our methodology to these theoretical spatial distribwgiffy : S;,r = 10, B = 0.4, N = 1000
such thatS;,; = 0.4). This distribution is far more clustered than any of thevpres real-world
examples, and yet reparameterising and determining thmalaing cull radius remains a valid
approach. The estimated optimal radigy is an over-estimate of the true value, but culling
in the highly clustered distribution with a radius Bf;z only increases the epidemic impact by
3 farms from the true optimal value of 152 farms. Here we firat thur methodology bene-
fits from a general principle that it is usually better to etemget control (ie bias control more
toward high risk hosts than is strictly optimal) than untlget, hence it is better to ring cull

using a radius that is slightly larger than optimal compdceoine that is smaller than optimal.

We can expand these theoretical spatial distributions tange of clustering, and repeat
our basic analysis (figure 3); we allow our two fundamentabpeeters £, : Sy, and B) to
vary over a grid of values. For each clustered distributimure 3a shows the percentage re-
duction in the epidemic impact from the full clustered mo@eimpared to IP and DC culling
alone) by introducing ring culling at the optimal radiusg) predicted from a random dis-
tribution of farms. This illustrates the substantial apglibenefits that can be accrued from
using well-parameterised mathematical models, even wbere ©f the finer scale spatial in-
formation is missing. Localised ring culling is seen to h#ve greatest percentage impact as
the ratioS, : Si,r decreases and d$ increases; that is a decrease in epidemic impact of ap-
proximately 90% is possible unless the spatial distribuigostrongly clustered over relatively

large spatial scales. However, it is important to undestahether better data would allow
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us to improve on these results; figure 3b shows the furtherctexh in epidemic impact to be
gained by culling at the true optimal radiug) rather than the radiusirz) predicted from a
random distribution. We observe that over the vast majoffigpatial patterns considered, there

is only a relatively small average improvement to be gaimechfusing exact spatial knowledge.

For models such as these to be used prospectively in the elvantepidemic of FMD, the
approach described above could not be adopted in the sameltvayesults so far all use the
entire epidemic on the clustered location data to reparniseta random location model, prior
to the development of preferred ring cull strategies. Ireofdr such a model to be used during
an outbreak, as soon as an epidemic is reported, the eat&ypat cases must be used to fit a
model allowing an early investigation of intervention stgies. We therefore repeat the process
described above, but this time use only the first two weekseg&pidemic from the true spatial
model to fit the kernel parameters for the random locationehdd the absence of ring culling,
epidemics on the true spatial distribution of farms lasttjgnically 100-120 days, so the first
14 days of the epidemic represents the early growth phase fiffing process is identical to
that described above: kernel parameters are determinedeharate a best fit to the first two
weeks of data; we find the optimal cull radius as suggestetidgetparameters and the random
location model; and finally we determine the effects of agjlat this radius in the true model
which contains the clustered locations of farms. The resareé summarised in figures and
d. If ring culling at Rrr were implemented within the model using the true clusteoedtions
of farms, then the percentage reduction in the epidemic eoetpowith IP and DC culling alone
is still around 90% for most of parameter space with a redadt around 65-70% if farms are
clustered over large spatial scales (figueg Birroring that seen when we fit to the entire epi-
demic. From figure @we see that there is a further reduction in epidemic impaenadulling

at the true optimal radiug; but this improvement, though slightly higher than when wecfit
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the entire epidemic, is still relatively small. This reshighlights that, during the early stages
of an outbreak, epidemic data could be used to fit a randomidocanodel which could then be

used to predict preferred strategies for targeted intdives

Discussion

Spatial clustering of individuals plays a highly signifitanle in ecological dynamics (1-2;
20-21) and in the spread of infectious disease (22-24). efbe¥, when precise demographic
data is unavailable, alternate methods need to be adoptethtbematical modellers to predict
the best control policy to combat an epidemic and therefoogige useful policy advice. In
the context of livestock diseases, in the event of an anin@lement ban, the location of
individual livestock is fixed, with infection between farrmgly occurring via movement of
people, machinery and other forms of local transmissions €pidemiological situation has
been investigated in detail for the UK, Denmark, Australa &New Zealand (25-26) where
detailed spatial location data is recorded and availahlenbt for the USA where only data
aggregated at the county scale is released.

This paper investigates the effect of assuming that farrasramdomly located within a
county (or given area), ignoring the spatial clustering th&nown to exist; it is also assumed
throughout that numbers of cases are also only availablésaatjgregated scale. The first ob-
servation is that using the same basic model parameterglgmtical K, and K3,), but ignoring
spatial clustering, leads to far smaller epidemics thatuestimate the true level of optimal con-
trol. However, when the models using random spatial looata&re re-parameterised to match
epidemics (either from real or surrogate sources), theystiirbe used to provide meaning-
ful predictions for control. In this paper we have focusedptimal control by localised ring
culling, although alternative measures such as ring vation or stringent quarantine (27),

could be investigated in the same way. The optimal ring sieelipted from random spatial
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locations (but a reparameterised model) is in general &tstiger-estimate of the true opti-
mal radius; using this over-estimate still leads to a sutisteimprovement in the predicted
epidemic impact and is only slightly worse than using the tvalue optimised to account for
spatial structure in the distribution of farms.

We therefore find that recognising that these epidemicsptdcee in a spatial landscape is
vital (measures such as ring culling cannot be applied inragpatial environment) but once
a model has been parameterised to match the epidemic dath, shthe spatial structure is
subsumed into the re-parameterisation. As such, aggrdgtdeand aggregate case reports can
be used to derive predictions for control of epidemics wthtglly localised transmission. Al-
though we have focused on the spread of foot-and-mouthslidestween livestock on farms,
many other examples of localised transmission of infectioour which could be considered
with a similar methodology, including plant and crop dis=ag8), wildlife diseases (29), hu-
man infections (30-31) and other livestock diseases (32).

In the USA, where precise knowledge of farm location is umambut aggregate farm statis-
tics are available, this work provides an insight into thie that mathematical modelling can
still play in informing disease control policy. Howeveryseal further points are worth consid-
ering. Firstly, this methodology relies on the availapilif epidemic data, and can therefore
only be used once an epidemic is in progress; it cannot be teasgdorm policy before an
epidemic arises as case report data is vital if the model [zetoe-parameterised to capture
the effects of spatial structure. For detailed predictivadeis to be available before an epi-
demic occurs would either require a vast change to the wayrmdtion on farms is handled
and distributed, or would require ground-truthed synthetaps based on topological and geo-
graphical features. As an extension to this work, alternaps could be developed for regions
with known farm locations such as the UK, using these knowoggggphical features to elimi-

nate regions such as mountains and lakes which are not leuiteitfarming. This would affect
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the spatial clustering of farms and potentially the subsagdisease dynamics. Using the same
approach as adopted in this paper, this work would provigegtsupport for the development
of ground-truthed synthetic maps such as those for the fivatas in the USA investigated
in this paper. However, even when such spatial informasoavailable, the different farming
and management practices in different regions of the cguméke it difficult to utilise a uni-
versal model of transmission. Our approach can only be wesatdively; therefore it is vitally
important that case report data is available in real-tingk @arameterisation is performed us-
ing state-of-the-art methodology, such that timely pobcivice can be given during the early
stages of the epidemic when it will have the greatest effdotvever, given the simplicity and
parsimony of our approach it is likely that it can be used stlguin many situations, providing

rapid policy advice that could minimise potential losses.
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Figure Legends

Figure 1 Graphs showing the average density of farms against radiusmd each farm as the
radius varies for the true data (blue line) and random dathl{ine) in (a) Cumbria, UK and (b)
Lancaster County, USA. Insets show farm locations for eashective county for the true data
(left plot) and the random data (right plot). The color saatethe insets shows the number of
cattle on each farm. (c) Average density of farms againstisaaround each farm for the true
data for Devon, Aberdeenshire, Clwyd in the UK and Cumingight; Humboldt and Franklin
in the USA.

Figure 2 Epidemic impact against ring cull radius for epidemics inQGambria and (b) Lan-
caster County. In both figures, the blue line shows the meatesyc impact for simulations
using the true location data whilst the red line shows themegademic impact for the reparam-
eterised random data. Both lines are calculated as logalbpgh splines fit to 10000 simulation
results. (c) Farm network and (d) mean epidemic impact agaimg cull radius for the random
data (red line) and the true data (blue line). For (c) and4g¢l}+ 4, N = 1000, B = 0.4. In (a),

(b) and (d), the black dots show the minima of each line.

Figure 3 Using the full clustered data, these graphs showing the e¢tngfaring culling at the
true (Rr) and approximatedi{zz) optimal radius, as the distribution of farms controllecthg
parameterB and the ratiaS, : Sj, vary. In (a) and (b) the random location model is fitted to
the entire epidemic derived from a simulation using theiapatclustered location data, whilst
in (c) and (d) only the first 14 days of the epidemic are used tbdirandom location model. In
(a) and (c) the colour scale gives the percentage of farmsvihiald be saved by additional ring
culling at radiusRrz compared with IP and DC culling alone. In (b) and (d) the colxale

gives the additional saving in the epidemic impact when galljng at the true optimal radius
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(Rr) compared with alR z .
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