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Spatial heterogeneities and spatial separation of hosts are often seen as key

factors when developing accurate predictive models of the spread of pathogens.

The question we address in this paper is how coarse the resolution of the spatial

data can be for a model to be a useful tool for informing control policies. We

examine this problem using the specific case of foot-and-mouth disease spread-

ing between farms using the formulation developed during the 2001 epidemic

in the UK. We show that if our model is carefully parameterised to match epi-

demic behaviour, then using aggregate county-scale data from the USA is suf-

ficient to closely determine optimal control measures (specifically ring culling).

This result also holds when the approach is extended to theoretical distribu-

tions of farms where the spatial clustering can be manipulated to extremes. We

have therefore shown that while spatial structure can be critically important in

allowing us to predict the emergent population-scale behaviour from a knowl-

edge of the individual-level dynamics, for this specific applied question such

structure is mostly subsumed in the parameterisation allowing us to make pol-

icy predictions in the absence of high-quality spatial information. We believe

that this approach will be of considerable benefit across a range of disciplines

where data is only available at intermediate spatial scales.

Introduction

The spatial distribution of organisms is viewed as critically important for determining popu-

lation dynamics. Numerous examples from the epidemiological and ecological literature have

shown that spatial structure has a profound impact on how population-level dynamics emerge

from individual-level behaviour (1-4). For infectious diseases in particular, where transmission

generally occurs over relatively short distances, spatialstructure (and in particular the spatial

distribution of sessile hosts) plays three roles: hosts that are far from sources of infection are

at very little risk; local transmission and depletion of susceptible hosts can dramatically reduce
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the speed of epidemic growth; and local control measures canbe applied using spatial prox-

imity as a method of targeting at risk hosts. These three elements are present for any spatial

distribution of hosts, but are generally amplified by clustering. The impact of spatial structure

on the spread of infectious disease has been examined for humans (5), wildlife (6-7) and live-

stock (8-9), but the ability to make useful quantitative predictions relies on the availability of

good quality spatial and epidemic data. In recent years considerable research has focused on

the spread of livestock infections due to the extreme vulnerability of the livestock industry, the

potential economic costs, the variety of strategies that can be used as control measures and the

costs associated with such measures.

The UK 2001 epidemic of foot-and-mouth disease (FMD) provides a prime example of what

can be achieved when comprehensive spatial models, detailed host data and detailed case data

are brought together. This approach provided important insights and guidance during the 2001

epidemic (8-9) and has been used retrospectively to investigate a range of alternative control

strategies (10-12). Whilst the location of livestock holdings in the UK is known, the same is not

true for many other countries. In particular, in the USA, although the United States Department

of Agriculture holds an agricultural census every five years, most of the census data that resides

in the public domain is aggregated to county-scale preserving the anonymity of farmers but

losing valuable spatial information. From the 2007 census,we find that the United States’ live-

stock industry is dominated by cattle, with 936,669 premises recorded as having cattle, 83,134

as having sheep, 75,442 as having pigs (or hogs) and 91,462 ashaving goats.

In the event of an outbreak of FMD (or other livestock disease) in the USA, it is likely that

predictions from mathematical models would be an integral part of policy making and would

help advise regarding optimal control strategies to limit the size and duration of the outbreak.
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The likelihood of a particular farm being infected with FMD is based upon many factors, includ-

ing the type and size of the holding in question, but the proximity to other infectious farms has

been consistently demonstrated to be the main contributingfactor (13-15). It therefore seems

vital to have complete information regarding the location and size of all farms in the region of

an outbreak.

Given that information is only available at the county-scale in the USA, we consider the

impact of making the naive assumption that farms are distributed randomly within each county.

This assumption still allows us to implement spatial models, but loses any clustering that is

present in the distribution of farms. In particular, we consider how a model using a random

distribution of farms would be parameterised to match the temporal profile of an observed epi-

demic and show that this approach has strong applied benefitseven in the absence of fine-scale

positional data.

The model

The model used throughout this paper is an adaptation of the model developed by Keelinget al

(2001) (8) during the 2001 FMD epidemic, and discussed in detail elsewhere (16). The rate at

which an infectious farmi infects a susceptible farmj is given by:

Rateij =







∑

s∈species
[Ns,j]

psSs





×







∑

s∈species
[Ns,i]

qsTs





× K(dij) (1)

Ns,i is the number of livestock speciess recorded as being on farmi, Ss andTs measure the

species-specific susceptibility and transmissibility,dij is the distance between farmsi andj and

K is the distance-dependent transmission kernel, estimatedfrom contact tracing (8).ps andqs

are power law parameters accounting for a non-linear increase in susceptibility and transmissi-

bility for speciess as animal numbers on a farm increase (see Supplementary Material). This

form of spatial transmission model has been shown to providean accurate and robust description
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of the UK 2001 outbreak of foot-and-mouth, capturing national, regional and individual-level

patterns of infection (16-18). In keeping with observations from the UK 2001 epidemic, we as-

sume that a farm acts as a single infectious unit, once infected it enters the latent period (which

lasts 5 days) before becoming infectious where it remains until its livestock are culled. We note

that, whilst this assumption may be valid for regions of the USA with similar farming practices

as the UK, very different behaviour may occur in very large cattle farms (19). All parameters

for the UK county models using the true farm locations take the same values as that obtained

for the UK 2001 epidemic as discussed in detail elsewhere (16).

During the UK foot-and-mouth outbreaks in 2001 and 2007, in addition to routine culling of

infected premises (IPs), all “premises where animals have been in direct contact with infected

animals or have, in any way, become exposed to infection” were defined by veterinary judge-

ment as dangerous contacts (DCs) and were pre-emptively culled in an effort to control disease.

In our model, DCs are identified based on their risk of infection from the infecting source, biased

toward identifying farms that have actually been infected (11), assuming that veterinary judge-

ment benefits from a range of detailed local knowledge. Here we assume that once identified

all livestock on an infected premises are culled within 24 hours and all associated pre-emptive

culling is undertaken within 48 hours; this is somewhat optimistic but was one of the principle

aims during the 2001 epidemic.

Retrospective analysis of the 2001 epidemic has determinedthat a policy of IP and DC culling

alone would have resulted in a much larger epidemic than actually occurred, implying that other

culling strategies, including culling of contiguous premises and farms within 3km of IPs, aided

in disease control (12). With this in mind, we investigate the effectiveness of ring culling in

addition to IP and DC culling. When an IP is reported, all farms within a particular radius of

that IP will be targeted for culling. The radius of the ring isallowed to vary between simulations

and we seek the radius which minimises the “Epidemic Impact”, defined as the total number of
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farms with livestock culled (either as IPs, DCs or ring culled farms). The optimal ring size is

clearly a trade-off between too little culling, in which case the epidemic is not controlled, and

too much culling, in which case an excessive number of farms lose their livestock.

Methodological Approach

Our goal is to test the accuracy of predictions made when detailed spatial data are not available,

and the only recourse is to randomly scatter farms across thelandscape. As a first step, and

focusing on regions where the location of farms (and their livestock composition) is known, we

perform multiple simulations to determine the range of epidemics that can be expected. Using

the same spatial data, we then conduct further simulations to determine the ring cull radius (RT )

that minimises the total number of farms losing livestock toeither infection or control.

In the second step, we distribute the same farms randomly within the given region to simulate

the effects of not having the precise spatial locations but knowing the heterogeneities in the

number of livestock. At this stage, we could simulate epidemics on the random spatial data set

using the original UK parameters. However,it is naive to assume that the UK 2001 parameters

could be used for a future epidemic in a different farm demography. We therefore choose in-

stead to mimick what would happen during a real epidemic and estimate the parameters that

allow us to accurately predict the epidemic behaviour – in this case matching the attack rates

obtained using the randomly distributed farms to the attackrates obtained using the true spatial

location of farms. This parameterisation is achieved by fitting a 2 parameter description of the

transmission kernel (determining kernel width and height,Kw andKh respectively), and uses

the same approach as outlined in Tildesleyet al (2008) (16) – to provide a best fit, parameters

are found that minimise the average difference on a daily basis between ‘simulated epidemics’

from the random location data to the ‘observed epidemic’ simulated on the true spatial data

for the cumulative number of farms reported and culled as well as the cumulative number of
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cattle and sheep on such farms (see Supplementary Material). Using this random distribution

of farms, but with a refined parameterisation, we determine the optimal ring cull radius for the

random-location reparameterized model (RRR). Comparison betweenRT andRRR, and the

Epidemic Impact under both culling regimes provides important insights into the necessity of

detailed spatial data for informing policy. In all simulations, a single farm is randomly selected

and seeded with infection. The onset of ring culling occurs 48 hours after the first case is re-

ported, with subsequent ring culling occurring 48 hours after the reporting of the relevant IP.

In essence our approach is to use the first set of simulations (using the true spatial locations) as

a surrogate for real epidemic data; this has the advantage that a variety of control options can

be tested and compared using both true and randomised spatial data. We now examine how this

approach can be applied to county-level data from the UK and USA, as well as hypothetical

data with arbitrary clustering.

County-Level Data

We begin by examining spatial location data for the county ofCumbria in the UK. Cumbria has

a high density of large cattle farms, and as a consequence wasone of the worst affected areas

in the UK 2001 outbreak. Comparing the true and randomised locations (figure 1a) we see sig-

nificant local clustering as captured by the average densityof farms around each farm. We note

that the farm-centred density for randomised spatial locations is not constant (as theoretically

expected) due to the finite scale of the region. For counties in the United States, although the

true locations of farms are generally unknown, farms were geo-located for a handful of counties

representing a diverse mixture of livestock operations within the USA. This spatial and hetero-

geneous farm information was generated using local and national agricultural, regulatory, farm

subsidy, business, and tax assessor databases containing addresses or coordinates of farms. The

locations of the farms were then georeferenced, visually checked, and modified if necessary
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with aerial imagery, Google Streetview, Google & Mapquest maps, and other ancillary data.

In a few cases where available data sources were not able to locate the number of farms that

were indicated by the agricultural census, probable farm locations were based on land-parcels

that were predominantly pasture, had farm buildings, and had access to a drinking water source.

Figure 1b shows example data from Lancaster County in Pennsylvania, where we observe far

stronger local clustering than in Cumbria despite a comparable density of farms. This pattern

of local clustering of farms is consistent across other counties in the UK and USA (figure 1c),

although the strength of clustering and the overall densityof farms differs considerably. We

show later that these farm-centred density plots can be captured as the sum of exponentials.

For the counties in the USA considered here, precise parameter values are unknown. Should

UK parameters be applied to the USA, the lower overall farm density means that epidemics do

not generally take off. Therefore, in order to provide epidemics of a sufficient size and duration

for comparison with the random location model, we scale the UK values ofKh andKw for the

clustered distribution of farms (‘true data’) according tothe relative densities of these counties

in comparison to the UK, thus preserving the overall number of contacts between farms. It is

not intended that the Epidemic Impacts given for the US counties should be in any indicative

of the actual Epidemic Impacts in the event of an epidemic – rather it is the level of agreement

between the results for the ‘true data’ and ’random data’ which is of importance for targeting of

control in the event of future epidemics.

Epidemics simulated on the true Cumbrian data predict an average Epidemic Impact of 2505

(31% of the population). In contrast, if the randomised datais used (with the same parameters)

the average Epidemic Impact drops to 1765 as the lack of spatial clustering means that it is more

difficult for the epidemic to spread – in the clustered scenario the minimum distance between

farms is less and so the epidemic spreads more easily. However, we can re-parameterise such

that the random model gives comparable Epidemic Impacts to the fully clustered model. Table
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Region Epidemic Impact (T) Epidemic Impact (R) Epidemic Impact (RR)

Cumbria 2505 (2121 − 2976) 1765 (101 − 2287) 2429 (1432 − 3054)

Devon 519 (27 − 1998) 190 (31 − 561) 545 (34 − 981)

Clwyd 679 (475 − 1131) 388 (52 − 798) 641 (148 − 1355)

Aberdeenshire 80 (20 − 263) 25 (16 − 41) 76 (21 − 121)

Lancaster, PA 1284 (954 − 1634) 75 (20 − 216) 1197 (576 − 1545)

Cuming, NE 454 (443 − 461) 441 (423 − 453) 453 (437 − 463)

Wright/Humboldt, IA 134 (78 − 171) 121 (60 − 152) 133 (75 − 165)

Franklin, TX 244 (20 − 318) 118 (15 − 182) 220 (16 − 304)

Table 1: Mean epidemic impact for epidemics seeded within a given county for the true clus-

tered location data (T) and for an equivalent data set with random farm locations (R) within

each county. Epidemic impact is also given for random farm locations but with the model repa-

rameterised to provide a best fit to epidemics simulated on the true location data (RR). Values

in brackets give the 95% prediction intervals; all results are from 10000 stochastic simulations.

1 gives a full list of Epidemic Impacts for all nine counties examined in figure 1 (note Wright

and Humboldt counties border one another so the combined epidemic impact is given here); in

all cases re-parameterisation for the random locations generates epidemic impacts that are in

close agreement with predictions from the full spatial model – this is unsurprising as the results

of the full spatial model are used for parameterisation.

Whilst obtaining a good fit to the epidemic profile and hence being able to predict the likely

extent of an epidemic are potentially informative, by far the most useful application of mathe-

matical models is to inform the optimal policy for controlling an epidemic. As such accurate

mathematical models can be used to experimentally test a variety of control strategies to assess
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which is optimal – although it is the role of policy makers to decide which quantity needs to

be optimised. Here we consider ring culling (in addition to IP and DC culling) and determine

what size of ring minimises the average Epidemic Impact. Thesimplest way to determine this

value is through multiple simulations. We first adopt this approach using the true locations

of farms in Cumbria and Lancaster counties (figure 2a and b, blue lines) which predict clear

minima at the optimal radii (RT ) of approximately 3.6km (2.24 miles) in both cases. A similar

approach can be used to optimise other forms of control, suchas vaccination under logistical

constraints (11) or localised (contiguous) culling (12). However, the key question is whether

we can perform the same meaningful calculation in the absence of detailed spatial location data.

We therefore perform the same numerical experiment using the reparameterised model and the

random farm locations (red line, figures 2a and b), and observe that although using random

spatial locations leads us to over-estimate the effect of control measures, the optimal ring cull

radius (RRR) is close to the result from fully clustered spatial simulations. In fact this level of

agreement is so close that using the ring cull radiusRRR in the fully clustered simulations only

has a marginal effect on the average Epidemic Impact. For Lancaster county using a ring cull

radius ofRRR =3.8km leads to an average epidemic impact of 678 farms, an increase of just 3

farms from the true optimal value atRT =3.6km. Table 2 shows how this process holds across

all nine counties discussed so far.

Whilst the optimal ring cull radius is predicted to vary between counties, the increase in

Epidemic Impact from the use of predictions made in the absence of spatial information is lim-

ited to no more than 2 or 3 farms in each case. This implies that, for the counties considered

in this analysis, precise knowledge of farm location is not required to advise regarding optimal

control strategies. It should be stressed that the reparameterisation of the model is a crucial step

in this process – should this be omitted from the procedure, models are unable to predict the

true optimal radii with any accuracy. This effect is particularly noticeable in Lancaster county
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Region RT RRR Epidemic Impact Difference

Cumbria 3.6 (3.5-3.8) 3.8 (3.6-4.0) 3 (0-11)

Devon 2.8 (2.7-3.0) 2.8 (2.7-3.1) 0 (0-3)

Clwyd 3.6 (3.5-3.7) 3.2 (3.1-3.4) 3 (1-7)

Aberdeenshire 2.4 (2.3-2.7) 2.0 (1.9-2.2) 2 (1-3)

Lancaster, PA 3.6 (3.5-3.7) 3.8 (3.7-4.0) 2 (0-6)

Cuming, NE 0 (0-0) 0 (0-0) 0 (0-0)

Wright/Humboldt, IA 0 (0-0) 0 (0-0) 0 (0-0)

Franklin, TX 5.5 (5.4-5.6) 6.0 (5.8-6.1) 1 (0-3)

Table 2: The optimal ring cull radius in kilometres which minimises the epidemic impact for

both the true clustered location data (RT ) and the reparameterised random location data (RRR).

Also shown is the increase in epidemic impact if the optimal ring cull radius for the reparame-

terised random data were implemented on the true location data (as opposed to the optimal ring

cull radius for the true data). 95% confidence intervals for optimal ring cull radii and epidemic

impact difference are given in brackets. All results are for10000 stochastic simulations.
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– in the absence of reparameterisation, the random-location model predicts very low epidemic

impacts and the optimal strategy is to employ no ring culling. After reparameterisation, as dis-

cussed above, it is optimal to ring cull at≈3.8km.

Spatial Clustering

Whilst the nine counties considered so far imply that our results are general, to fully test this

approach we generate alternative farm distributions basedaround a given average farm-centred

density distribution,D(r). We defineD(r) as the number of farms per unit area at a distance

r from an index farm, averaged over all possible index farms inthe population. For highly

clustered distributions, we expectD(r) to decrease nonlinearly withr as observed in figure (1).

In practice we find thatD(r) can be fit by a sum of exponentials:

D(r) = Sinf + (S0 − Sinf)

(

∑

i

Aie
−Bir

)

(2)

whereSinf defines the long-distance asymptotic density,S0 defines the average local density

around a farm, and we insist that
∑

i Ai = 1. We find that a sum of three exponentials (and

hence 7 parameters) is sufficient to fully capture the observed density distributions from all

nine counties (see Supplementary Material).

We now generate theoretical spatial distributions of farmsto test the validity of our approach

over a wider range of parameters. In particular, we distribute N = 1000 farms in a50 × 50

km area, according to a given density distribution. For eachsimulation, one farm is randomly

seeded with infection. To simplify our analysis we ignore heterogeneity in farm size and com-

position, and use a reduced formulation for the density distribution; in particular, transmission

of infection between infectious and susceptible farms is now a highly simplified version of equa-

tion 1, depending only on their separation (Rateij = K(dij)), while the density distribution is
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defined in terms of a single exponential decay:

D(r) = Sinf + (S0 − Sinf) e−Br (3)

We fix the population size and area that we are going to study, which reduces our free parame-

ters to the ratioS0 : Sinf , and the exponentB. Figure 2c and 2d, show an example of applying

our methodology to these theoretical spatial distributions (S0 : Sinf = 10, B = 0.4, N = 1000

such thatSinf = 0.4). This distribution is far more clustered than any of the previous real-world

examples, and yet reparameterising and determining the optimal ring cull radius remains a valid

approach. The estimated optimal radiusRRR is an over-estimate of the true value, but culling

in the highly clustered distribution with a radius ofRRR only increases the epidemic impact by

3 farms from the true optimal value of 152 farms. Here we find that our methodology bene-

fits from a general principle that it is usually better to over-target control (ie bias control more

toward high risk hosts than is strictly optimal) than under-target, hence it is better to ring cull

using a radius that is slightly larger than optimal comparedto one that is smaller than optimal.

We can expand these theoretical spatial distributions to a range of clustering, and repeat

our basic analysis (figure 3); we allow our two fundamental parameters (S0 : Sinf andB) to

vary over a grid of values. For each clustered distribution,figure 3a shows the percentage re-

duction in the epidemic impact from the full clustered model(compared to IP and DC culling

alone) by introducing ring culling at the optimal radius (RRR) predicted from a random dis-

tribution of farms. This illustrates the substantial applied benefits that can be accrued from

using well-parameterised mathematical models, even when some of the finer scale spatial in-

formation is missing. Localised ring culling is seen to havethe greatest percentage impact as

the ratioS0 : Sinf decreases and asB increases; that is a decrease in epidemic impact of ap-

proximately 90% is possible unless the spatial distribution is strongly clustered over relatively

large spatial scales. However, it is important to understand whether better data would allow
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us to improve on these results; figure 3b shows the further reduction in epidemic impact to be

gained by culling at the true optimal radius (RT ) rather than the radius (RRR) predicted from a

random distribution. We observe that over the vast majorityof spatial patterns considered, there

is only a relatively small average improvement to be gained from using exact spatial knowledge.

For models such as these to be used prospectively in the eventof an epidemic of FMD, the

approach described above could not be adopted in the same way. The results so far all use the

entire epidemic on the clustered location data to reparameterise a random location model, prior

to the development of preferred ring cull strategies. In order for such a model to be used during

an outbreak, as soon as an epidemic is reported, the early pattern of cases must be used to fit a

model allowing an early investigation of intervention strategies. We therefore repeat the process

described above, but this time use only the first two weeks of the epidemic from the true spatial

model to fit the kernel parameters for the random location model. In the absence of ring culling,

epidemics on the true spatial distribution of farms last fortypically 100-120 days, so the first

14 days of the epidemic represents the early growth phase. The fitting process is identical to

that described above: kernel parameters are determined that generate a best fit to the first two

weeks of data; we find the optimal cull radius as suggested by these parameters and the random

location model; and finally we determine the effects of culling at this radius in the true model

which contains the clustered locations of farms. The results are summarised in figures 3c and

d. If ring culling atRRR were implemented within the model using the true clustered locations

of farms, then the percentage reduction in the epidemic compared with IP and DC culling alone

is still around 90% for most of parameter space with a reduction to around 65-70% if farms are

clustered over large spatial scales (figure 3c), mirroring that seen when we fit to the entire epi-

demic. From figure 3d we see that there is a further reduction in epidemic impact when culling

at the true optimal radiusRT but this improvement, though slightly higher than when we fitto

14



the entire epidemic, is still relatively small. This resulthighlights that, during the early stages

of an outbreak, epidemic data could be used to fit a random location model which could then be

used to predict preferred strategies for targeted interventions.

Discussion

Spatial clustering of individuals plays a highly significant role in ecological dynamics (1-2;

20-21) and in the spread of infectious disease (22-24). Therefore, when precise demographic

data is unavailable, alternate methods need to be adopted for mathematical modellers to predict

the best control policy to combat an epidemic and therefore provide useful policy advice. In

the context of livestock diseases, in the event of an animal movement ban, the location of

individual livestock is fixed, with infection between farmsonly occurring via movement of

people, machinery and other forms of local transmission. This epidemiological situation has

been investigated in detail for the UK, Denmark, Australia and New Zealand (25-26) where

detailed spatial location data is recorded and available, but not for the USA where only data

aggregated at the county scale is released.

This paper investigates the effect of assuming that farms are randomly located within a

county (or given area), ignoring the spatial clustering that is known to exist; it is also assumed

throughout that numbers of cases are also only available at this aggregated scale. The first ob-

servation is that using the same basic model parameters (i.e. identicalKw andKh), but ignoring

spatial clustering, leads to far smaller epidemics that underestimate the true level of optimal con-

trol. However, when the models using random spatial locations are re-parameterised to match

epidemics (either from real or surrogate sources), they canstill be used to provide meaning-

ful predictions for control. In this paper we have focused onoptimal control by localised ring

culling, although alternative measures such as ring vaccination or stringent quarantine (27),

could be investigated in the same way. The optimal ring size predicted from random spatial
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locations (but a reparameterised model) is in general a slight over-estimate of the true opti-

mal radius; using this over-estimate still leads to a substantial improvement in the predicted

epidemic impact and is only slightly worse than using the true value optimised to account for

spatial structure in the distribution of farms.

We therefore find that recognising that these epidemics takeplace in a spatial landscape is

vital (measures such as ring culling cannot be applied in a non-spatial environment) but once

a model has been parameterised to match the epidemic data, much of the spatial structure is

subsumed into the re-parameterisation. As such, aggregatedata and aggregate case reports can

be used to derive predictions for control of epidemics with spatially localised transmission. Al-

though we have focused on the spread of foot-and-mouth disease between livestock on farms,

many other examples of localised transmission of infectionoccur which could be considered

with a similar methodology, including plant and crop diseases (28), wildlife diseases (29), hu-

man infections (30-31) and other livestock diseases (32).

In the USA, where precise knowledge of farm location is unknown but aggregate farm statis-

tics are available, this work provides an insight into the role that mathematical modelling can

still play in informing disease control policy. However, several further points are worth consid-

ering. Firstly, this methodology relies on the availability of epidemic data, and can therefore

only be used once an epidemic is in progress; it cannot be usedto inform policy before an

epidemic arises as case report data is vital if the model is tobe re-parameterised to capture

the effects of spatial structure. For detailed predictive models to be available before an epi-

demic occurs would either require a vast change to the way information on farms is handled

and distributed, or would require ground-truthed synthetic maps based on topological and geo-

graphical features. As an extension to this work, alternatemaps could be developed for regions

with known farm locations such as the UK, using these known geographical features to elimi-

nate regions such as mountains and lakes which are not suitable for farming. This would affect
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the spatial clustering of farms and potentially the subsequent disease dynamics. Using the same

approach as adopted in this paper, this work would provide strong support for the development

of ground-truthed synthetic maps such as those for the five counties in the USA investigated

in this paper. However, even when such spatial information is available, the different farming

and management practices in different regions of the country make it difficult to utilise a uni-

versal model of transmission. Our approach can only be used reactively; therefore it is vitally

important that case report data is available in real-time and parameterisation is performed us-

ing state-of-the-art methodology, such that timely policyadvice can be given during the early

stages of the epidemic when it will have the greatest effect.However, given the simplicity and

parsimony of our approach it is likely that it can be used robustly in many situations, providing

rapid policy advice that could minimise potential losses.

Acknowledgements

This work was funded by the MIDAS (NIGMS, NIH), the Wellcome Trust, the SFC/DEFRA

VTRI programme, the RAPIDD program of the Science & Technology Directorate, Depart-

ment of Homeland Security, and the Fogarty International Center, National Institutes of Health.

Support for MJT was also provided through a Wellcome Trust strategic award for the Centre for

Immunology, Infection and Evolution, University of Edinburgh.

References

1. Hassell, M.P & May, R.M. (1974) Aggregation of Predators and Insect Parasites and its Ef-

fect on Stability.J. An. Ecol. 43 567-594.

2. Pacala, S.W., Hassell, M.P. & May, R.M. (1990) Host Parasitoid Associations in Patchy En-

vironments.Nature 344150-153.

17



3. Kareiva, P. (1990) Population-Dynamics in Spatially Complex EnvironmentsPhil. Trans.

Roy. Soc. Lond. B 330175-190.

4. Tilman,D. (1994) Competition and Biodiversity in Spatially Structured HabitatsEcology 75,

2-16.

5. Ferguson, NM; Cummings, DAT; Cauchemez, S,et al (2005) Strategies for containing an

emerging influenza pandemic in Southeast AsiaNature 437209-214.

6. Swinton, J., Harwood J., Grenfell B.T. & Gilligan C.A. (1998) Persistence thresholds for

phocine distemper virus infection in harbour seal Phoca vitulina metapopulations.J. An. Ecol.

6754-68.

7. Gudelj, I. & White, K.A.J. (2004) Spatial heterogeneity,social structure and disease dynam-

ics of animal populations.Theoretical Population Biology 66 (2), 139-149.

8. Keeling, M.J., Woolhouse, M.E.J., Shaw, D.J., Matthews,L., Chase-Topping, M.E., Haydon,

D.T., Cornell, S.J., Kappey, J., Wilesmith, J. & Grenfell, B.T (2001) Dynamics of the 2001

UK foot and mouth epidemic: stochastic dispersal in a heterogeneous landscape.Science 294,

813-817.

9. Ferguson, N.M., Donnelly, C.A. & Anderson, R.M. (2001a) Transmission intensity and im-

pact of control policies on the foot and mouth epidemic in Great Britain.Nature 413, 542-548.

10. Keeling, M.J., Woolhouse, M.E.J., May, R.M., Davies, G.& Grenfell, B.T. (2003) Mod-

elling vaccination strategies against foot-and-mouth disease.Nature 421, 136-142.

11. Tildesley, M.J., Savill, N.J., Shaw, D.J., Deardon, R.,Brooks, S.P., Woolhouse, M.E., Gren-

fell, B.T. & Keeling, M.J. (2006) Optimal reactive vaccination strategies for a foot-and-mouth

outbreak in Great BritainNature 440, 83-86.

12. Tildesley, M.J., Bessell, P.R., Keeling, M.J. & Woolhouse, M.E.J. (2009) The role of pre-

emptive culling in the control of Foot-and-Mouth Disease.Proc. Roy. Soc. B, 276, 3239-3248.

13. Hugh-Jones, M.E. (1972) Epidemiological studies on 1967-1968 Foot and Mouth Epidemic

18



- attack rates and cattle density.Research in Veterinary Science13:5, 411-417

14. Ferguson, N.M., Donnelly, C.A. & Anderson, R.M. (2001b) The foot-and-mouth epidemic

in Great Britain: pattern of spread and impact of interventions.Science 292, 1155-1160.

15. Taylor, N.M., Honhold, N., Paterson, A.D. & Mansley, L.M. (2004) Risk of foot-and-mouth

disease associated with proximity in space and time to infected premises and the implications

for control policy during the 2001 epidemic in Cumbria.Veterinary Record 154, 617-626.

16. Tildesley, M.J., Deardon, R., Savill, N.J., Bessell, P.R., Brooks, S.P., Woolhouse, M.E.J,

Grenfell, B.T. & Matt J Keeling, M.J. (2008) Accuracy of models for the 2001 Foot-and-Mouth

Epidemic.Proc. Roy. Soc. B 275(1641), 1459-1468.

17. Diggle, P.J. (2006) Spatio-temporal point processes, partial likelihood, foot and mouth dis-

ease.Statistical Methods in Medical Research 25, 325-336.

18. Deardon, R., Brooks, S.P., Grenfell, B.T., Keeling, M.J., Tildesley, M.J., Savill, N.J., Shaw,

D.J. & and Mark E. J. Woolhouse, M.E.J (2009) Inference for individual-level models of infec-

tious diseases in large populations.Statistica Sinica, in press.

19. Bates, T.W., Thurmond, M.C. & Carpenter, T.E. (2001) Direct and indirect contact rates

among beef, dairy, goat, sheep, and swine herds in three California counties, with reference

to control of potential foot-and-mouth disease transmission. American Journal of Veterinary

Research 62, 1121-1129.

20. Leibold, M.A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J.M., Hoopes, M.F.,

Holt, R.D., Shurin, J.B., Law, R., Tilman, D., Loreau, M., Gonzalez, A. (2004) The metacom-

munity concept: a framework for multi-scale community ecology. Ecology Letters 7, 601-613.

21. Rahbek, C. (2005) The role of spatial scale and the perception of large-scale species-

richness patterns.Ecology Letters 8, 224-239.

22. Keeling, M.J. (1999) The effects of local spatial structure on epidemiological invasions.

Proc. Roy. Soc. Lond. B 266859-867.

19



23. Eames, K.T.D. & Keeling, M.J. (2003) Contact Tracing andDisease Control.Proc. Roy.

Soc. Lond. B 2702565-2571

24. Brown, D.H. & Bolker, B.M. (2004) The effects of disease dispersal and host clustering on

the epidemic threshold in plants.Bulletin of Mathematical Biology 66, 341-371.

25. Tildesley, M.J. & Keeling, M.J. (2008) Modelling foot-and-mouth disease: A comparison

between the UK and Denmark.PREVET 85, 107-124.

26. Garner, M.G. & Beckett, S.D. (2008) Modelling the spreadof foot-and-mouth disease in

Australia.Australian Veterinary Journal 83, 758 - 766.

27. Akey, B.L. (2003) Low-Pathogenicity H7N2 Avian Influenza Outbreak in Virginia during

2002. Avian Diseases 42 Special Issue, Proceedings of the Fifth International Symposium on

Avian Influenza, 1099-1103.

28. Marcus, R., Fishman, S., Talpaz, H., Salomon, R. & Bar-Joseph, M. (1984) On the spatial

distribution of citrus tristeza virus disease.Phytoparasitica 12 (1), 45-52.

29. Dobson, A. & Foufopoulos, J. (2001) Emerging infectiouspathogens of wildlife.Phil.

Trans. Roy. Soc B, 356, 1001-1012.

30. Lipsitch M.et al. (2003) Transmission dynamics and control of severe acute respiratory

syndrome.Science 300, 1966-1970.

31. Wearing, H.J. & Rohani, P. (2006) Ecological and immunological determinants of dengue

epidemics.PNAS 103, 11802-11807.

32. Savill, N.J., St Rose, S.G., Keeling, M.J. & Woolhouse, M.E.J (2006) Silent spread of H5N1

in vaccinated poultry.Nature 442, 757.

20



Figure Legends

Figure 1 Graphs showing the average density of farms against radius around each farm as the

radius varies for the true data (blue line) and random data (red line) in (a) Cumbria, UK and (b)

Lancaster County, USA. Insets show farm locations for each respective county for the true data

(left plot) and the random data (right plot). The color scaleon the insets shows the number of

cattle on each farm. (c) Average density of farms against radius around each farm for the true

data for Devon, Aberdeenshire, Clwyd in the UK and Cuming, Wright, Humboldt and Franklin

in the USA.

Figure 2 Epidemic impact against ring cull radius for epidemics in (a) Cumbria and (b) Lan-

caster County. In both figures, the blue line shows the mean epidemic impact for simulations

using the true location data whilst the red line shows the mean epidemic impact for the reparam-

eterised random data. Both lines are calculated as locally smooth splines fit to 10000 simulation

results. (c) Farm network and (d) mean epidemic impact against ring cull radius for the random

data (red line) and the true data (blue line). For (c) and (d),S0 = 4, N = 1000, B = 0.4. In (a),

(b) and (d), the black dots show the minima of each line.

Figure 3 Using the full clustered data, these graphs showing the impact of ring culling at the

true (RT ) and approximated (RRR) optimal radius, as the distribution of farms controlled bythe

parameterB and the ratioS0 : Sinf vary. In (a) and (b) the random location model is fitted to

the entire epidemic derived from a simulation using the spatially clustered location data, whilst

in (c) and (d) only the first 14 days of the epidemic are used to fit the random location model. In

(a) and (c) the colour scale gives the percentage of farms that would be saved by additional ring

culling at radiusRRR compared with IP and DC culling alone. In (b) and (d) the colour scale

gives the additional saving in the epidemic impact when ringculling at the true optimal radius
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(RT ) compared with atRRR.
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