
The impact of spatial clustering on disease transmission and optimal control:

Supplementary Information

We now present some of the formal material relevant to the main text, and additional sensitivity results
concerning the main conclusions.

Methodological approach for the Optimization Procedure

In order to investigate the accuracy of random location models, these models must first be parameterised to
match epidemics on the truth data. This is done in the following way:

For the UK counties, we use the parameters which have previously been identified to provide the best
fit to the UK 2001 FMD epidemic (Tildesleyet al 2008) and run 1000 epidemics within each county using
the 2001 farm demography truth data for those counties (Cumbria, Devon, Aberdeenshire and Clwyd). For
each epidemic, on each day the cumulative number of farms reported and culled as well as the cumulative
number of cattle and sheep on such farms (parameterγ) is stored. Ignoring any epidemics which do not
take off, one epidemic is then selected at random for the matching procedure (we note that the particular
choice of epidemic is incidental - this work is focused on theability of random location models to capture
epidemic behaviour and control that would be seen on the truth data). For each county, each farm is now
allocated a random location within the county borders and the random location farm database model is now
re-parameterised to provide a “best fit” to the epidemic seenon the truth data. This parameterisation is
achieved by running 10000 simulations of the random location model and allowing the transmission kernel
parameters (kernel width and height,Kw andKh respectively) to vary such that the average difference on
a daily basis between ‘simulated epidemics’ from the randomlocation data to the ‘observed epidemic’
simulated on the true spatial data for parameterγ is minimised. Once this optimization has been carried
out, 10000 simulations are run for the “truth data” model andfor the random location model (with “best
fit” parameters) with ring culling including, to determine the optimal ring cull radius for each demography
which minimises the Epidemic Impact.

In the US scenario, for all four counties data sets investigated (Lancaster PA, Franklin TX, Cuming NE
and the adjoining counties of Wright and Humboldt in Iowa), the same procedure is carried out. However,
owing to much lower livestock densities in the US, should theUK parameters be applied directly to the US
system, epidemics in these five counties are restricted to a handful of farms in each case. However, it would
be naive to assume that the same transmission kernel would bevalid for an outbreak of FMD in USA. For
the US counties the kernel widthKw is scaled for the truth data in each county such that:

Kw(US )
Kw(UK)

=
D f (UK)

D f (US )
(1)

whereKw(UK) is the width of the UK dispersal kernel,D f (UK) is the overall density of farms in the
UK whilst Kw(US ) andD f (US ) are the width of the dispersal kernel and the overall density of farms in the
US county under consideration respectively. This scaling will, on average, preserve the overall number of
contacts per farm and result in much larger epidemics. The Epidemic Impacts presented in table 1 of the
main text are therefore not an indication of Epidemic Impacts we would necessarily expect in the event of
an epidemic but are a feature of this scaling. The scaling itself is carried out to investigate robustness of
the random location model results in the US scenario – a random model will fit very easily to epidemics
which do not take off and optimal control policies for both the random model and truth data model will be
identical (i.e. no ring culling); when the epidemics do takeoff the fitting procedure is much more complex
and preferred ring culling strategies are not obvious without simulation.
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Random density

In order to investigate clustering properties of the farm data discussed in the main body of the paper, we
consider a population ofN farms, indexed byi = 1, . . . ,N. ThenNi(r) is the number of farms a distancer
from farmi and

Di(r) ≔
Ni(r)
πr2

, N = Ni(∞) + 1,∀i . (2)

We are particularly interested in the mean density

D(r) ≔
1
N

∑

i

Di(r) , (3)

although we may also wish to consider measures of farm-levelvariability such as prediction intervals. In
the case of an infinite population with random locations, we expectD(r) = D̄. For a finitel × l square, with
internal uniform density of farms̄D = N/(l2) and no external farms,

D(r) = D̄
(

1−
r
l

)

+ O
(r

l

)2
. (4)

This explains the negative linear slope seen in spatially unclustered farm networks in the main text.

Generation of non-random spatial arrangement

Given a number of points in a unit square we generate a spatialarrangement with target mean distribution
D(r) using the following highly schematic algorithm:

1. Assignx- andy-locations randomly to each pointi, giving ri = (xi, yi).

2. Calculate the current mean distributionD̃(r) and calculate the error ˜ǫ = |D − D̃|2.

3. Pick a random pointj and propose a new locationr̂ j = (x j + δx, y j + δy) whereδx, δy are drawn from
a normal distribution of unit variance until the proposed location lies within the square.

4. Calculate the modified distribution̂D(r) if the location of j were changed to the proposal.

5. If ǫ̂ = |D − D̂|2 > ǫ̃ , accept by settingr j → r̂ j andD̃ → D̂. Otherwise leave the system unchanged.

6. Repeat steps 3–5 until convergence or failure.

Empirically, we find convergence for all the distributions that we wish to consider.

Parameterisation of non-random spatial arrangement

We are interested in monotonically decreasing functional forms forD(r), which means from the theory of
Z transforms that we can write the mean density in the form

D(r) = S +
mmax
∑

m=1

Ame−kmr , (5)

wheremmax represents the number of terms used in the sum of exponentials, and the total number of param-
eters in the model will beM = 1+ 2mmax. Clearly, increasingM will provide a more accurate description
of the mean spatial arrangement, but potentially at the expense of introducing excess parameters into the
model. We therefore make use of the Akaike information criterion (AIC, Akaike 1974) to justify an Ansatz
for mean density. Given a set ofn distances, at which the mean density is sampled, we use non-linear least
squares fitting to fit a model to the data points{D(ra)} for a = 1, . . . , n. For a model prediction{D̃(ra)} the
residual sum of squares is

R =

n
∑

a=1

(

D(ra) − D̃(ra)
)2

. (6)

2



We then try to minimise the standard AIC:

A = 2M + n

(

ln

(

2πR
n

)

+ 1

)

. (7)

This process is applied in Supplementary Figure??. Pane?? shows the distance kernel for infection,
which motivates a set of distance bins and a distance cutoff. The binned mean density distribution of farms
defined in (3) in Cumbria is shown in pane??, together with prediction intervals showing the variability at
individual farm level. This binned mean is shown as a series of circles in pane??. A sequence of fitted
curves corresponding to different values ofM within the general Ansatz of equation (5) is also shown in
pane??. The value ofA as defined above for each of these is shown in pane??, showing that the value of
M = 3 used in the text provides a good fit, andM = 5 (investigated below) is actually preferred.M = 7
is formally optimal – over this value extra parameters do notprovide a better adjusted fit, however given
both the extremely small information-theoretical likelihood gain and our epidemiological results we do not
consider this extra complexity to be justified.

Results for the two-exponential model

For the two-exponential model, we again generate farm populations in a 50× 50 km grid, with a variety of
density profiles as defined by the parameters in equation 2 in the main text. In order to explore networks
with highly spatial clustering, we assign the following ranges to the parameters in equation 2

1 ≤ S 0 ≤ 100

0.1 ≤ S inf ≤ 1.0

0 ≤ A ≤ 1

0.1 ≤ B0 ≤ 10 (8)

With these parameter values, farm networks of 1000 and 2000 premises are generated. We note that, given
that all other parameters are defined, in addition to the number of farms in the network and the area of the
domain, the final parameterB1 can be calculated in terms of the remaining parameter values. The same
investigation as desribed in the main text is carried out, inthat epidemics are simulated on the generated
farm networks and a random location model is fitted to each onewith variation ofKh andKw. Each network
is then investigated for the optimal value of ring cull radius which minimises the epidemic impact for the
random and “truth” networks.

The results for networks of 2000 farms are summarised in Supplementary Figure 2 (the same overall
behaviour is found for 1000 farm networks). AsS 0/S inf is increased, withA andB0 fixed, farms become
increasingly spatially clustered (panes 2a–d). For farm networks with low S 0/S inf and a corresponding
low degree of clustering (panes 2a,b), optimal ring cull radius is independent of precise knowledge of
farm location after reparameterisation (panes 2a,b). AsS 0/S inf is increased, farms appear more spatially
clustered (panes 2c,d) and a random location model tends to overestimate optimal ring cull radius (panes
2c,d). In the case of a 2000 farm network, the increased overall density means that there is more spatial
structure apparent between clusters than for a 1000 farm network. The effect of over-culling in this case
results in an increase in epidemic impact of around 20% (or around 25 farms) over ring culling at the
optimal radius in the worst case scenario (pane 2c). However, ring culling at this radius still “saves” around
88% of the farms that would have livestock culled if no ring culling were carried out. We again observe a
flattening out of the epidemic impact curve for the truth datain this case (pane 2c). For very highly clustered
farm networks (S 0/S inf = 1000), whilst the random model still predicts larger ring sizes than the optimal
value on the truth data, the effect of this over culling is reduced (pane 2d). The effects of increasingB0 (with
S 0/S inf = 250 andA = 0.8) are summarised in panes 2e–h. A similar effect to increasingS 0/S inf is observed
– increasingB0 causes farms to be increasingly densely clustered (panes 2e–h). The random data again
slightly overpredicts the optimal ring cull radius with, ina worst case scenario, a corresponding increase in
epidemic impact of around 20% (or 40 farms, pane 2e). As farmsbecome increasingly clustered, the effect
on epidemic impact of this overculling is found to decrease (panes 2f–h). Therefore, as the density of the
farm network increases, it is not, as might be naively suggested, the very highly clustered demographies
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that would result in the largest increase in epidemic impactif the random model were assumed. Rather it
is the “larger cluster” networks, with limited intermediate structure between clusters, for which the random
model causes the greatest increase in epidemic impact. We note that of all the county data analysed in this
paper, none are as clustered as these “intermediate” cases and it is important to establish whether such farm
demographies exist in practice.
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