The impact of spatial clustering on disease transmissidrogtimal control:
Supplementary I nfor mation

We now present some of the formal material relevant to therteait, and additional sensitivity results
concerning the main conclusions.

M ethodological approach for the Optimization Procedure

In order to investigate the accuracy of random location rigdieese models must first be parameterised to
match epidemics on the truth data. This is done in the folgwiay:

For the UK counties, we use the parameters which have pralyibeen identified to provide the best
fit to the UK 2001 FMD epidemic (Tildeslest al 2008) and run 1000 epidemics within each county using
the 2001 farm demography truth data for those counties (Ciaribevon, Aberdeenshire and Clwyd). For
each epidemic, on each day the cumulative number of farntstexpand culled as well as the cumulative
number of cattle and sheep on such farms (param@ter stored. Ignoring any epidemics which do not
take df, one epidemic is then selected at random for the matchingepkore (we note that the particular
choice of epidemic is incidental - this work is focused onabdity of random location models to capture
epidemic behaviour and control that would be seen on thh ttata). For each county, each farm is now
allocated a random location within the county borders aeda@mdom location farm database model is now
re-parameterised to provide a “best fit” to the epidemic sgethe truth data. This parameterisation is
achieved by running 10000 simulations of the random locatiodel and allowing the transmission kernel
parameters (kernel width and heighkty, and K}, respectively) to vary such that the averag@aitence on
a daily basis between ‘simulated epidemics’ from the randoration data to the ‘observed epidemic’
simulated on the true spatial data for parameté minimised. Once this optimization has been carried
out, 10000 simulations are run for the “truth data” model &rdthe random location model (with “best
fit” parameters) with ring culling including, to determirteetoptimal ring cull radius for each demography
which minimises the Epidemic Impact.

In the US scenario, for all four counties data sets investgjflancaster PA, Franklin TX, Cuming NE
and the adjoining counties of Wright and Humboldt in low&g same procedure is carried out. However,
owing to much lower livestock densities in the US, shouldUleparameters be applied directly to the US
system, epidemics in these five counties are restricted amdfhl of farms in each case. However, it would
be naive to assume that the same transmission kernel wowalidefor an outbreak of FMD in USA. For
the US counties the kernel widHy, is scaled for the truth data in each county such that:

Kw(US) _ Df(UK)
Kw(UK) — Df(US)

1)

whereKy(UK) is the width of the UK dispersal kerndD(UK) is the overall density of farms in the
UK whilst Ky, (US) andD;(US) are the width of the dispersal kernel and the overall dgditarms in the
US county under consideration respectively. This scaliiily @n average, preserve the overall number of
contacts per farm and result in much larger epidemics. Thedafic Impacts presented in table 1 of the
main text are therefore not an indication of Epidemic Impaet would necessarily expect in the event of
an epidemic but are a feature of this scaling. The scalirdf its carried out to investigate robustness of
the random location model results in the US scenario — a randodel will fit very easily to epidemics
which do not take fi and optimal control policies for both the random model anthtdata model will be
identical (i.e. no ring culling); when the epidemics do takéthe fitting procedure is much more complex
and preferred ring culling strategies are not obvious witlsimulation.



Random density

In order to investigate clustering properties of the farrtadiiscussed in the main body of the paper, we
consider a population dfl farms, indexed by = 1,..., N. ThenN;(r) is the number of farms a distance

from farmi and
Ni(r)

Di(r) =~ N= Ni(eo) +1,Vi. @)

We are particularly interested in the mean density
D(r) := . § Di(r) 3)
L N I I 3

although we may also wish to consider measures of farm-lewgbility such as prediction intervals. In
the case of an infinite population with random locations, weeetD(r) = D. For a finitel x | square, with
internal uniform density of farmB = N/(1?) and no external farms,

D(r) = (1— T)+o(|5)2 . 4)

This explains the negative linear slope seen in spatialtjustered farm networks in the main text.

Generation of non-random spatial arrangement

Given a number of points in a unit square we generate a spatatgement with target mean distribution
D(r) using the following highly schematic algorithm:

1. Assignx- andy-locations randomly to each pointgivingr; = (i, Vi).
2. Calculate the current mean distributidgr) and calculate the errer= |D — DJ2.

3. Pick a random pointand propose a new locatidén = (x; + 6X, yj + 8y) wheresx, sy are drawn from
a normal distribution of unit variance until the proposechition lies within the square.

4. Calculate the modified distributidd(r) if the location ofj were changed to the proposal.
5. Ife =|D-D]? > &, accept by setting; — andD — D. Otherwise leave the system unchanged.
6. Repeat steps 3-5 until convergence or failure.

Empirically, we find convergence for all the distributiohsit we wish to consider.

Parameterisation of non-random spatial arrangement

We are interested in monotonically decreasing functiooahs forD(r), which means from the theory of
Z transforms that we can write the mean density in the form

mnax
D(r) =S+ > Ane™", (5)
m=1

wheremnax represents the number of terms used in the sum of exporeatiad the total number of param-
eters in the model will bé = 1 + 2mya«. Clearly, increasingvl will provide a more accurate description
of the mean spatial arrangement, but potentially at the rsgef introducing excess parameters into the
model. We therefore make use of the Akaike information date(AIC, Akaike 1974) to justify an Ansatz
for mean density. Given a set nfdistances, at which the mean density is sampled, we useimesr-least
squares fitting to fit a model to the data poiti¥r,)} for a = 1,...,n. For a model predictiofD(r,)} the
residual sum of squares is

R =y (D(ra) - B(ra))’ (6)

n
a=1



We then try to minimise the standard AIC:
A:2M+n(ln(¥)+1). 7

This process is applied in Supplementary Fig@Pe Pane?? shows the distance kernel for infection,
which motivates a set of distance bins and a distancdicdtbe binned mean density distribution of farms
defined in (3) in Cumbria is shown in paf®@, together with prediction intervals showing the varidiikt
individual farm level. This binned mean is shown as a serfesroles in pane??. A sequence of fitted
curves corresponding toféerent values oM within the general Ansatz of equation (5) is also shown in
pane??. The value ofA as defined above for each of these is shown in g&showing that the value of
M = 3 used in the text provides a good fit, aktd= 5 (investigated below) is actually preferrebll = 7

is formally optimal — over this value extra parameters doprovide a better adjusted fit, however given
both the extremely small information-theoretical likeldd gain and our epidemiological results we do not
consider this extra complexity to be justified.

Resultsfor the two-exponential model

For the two-exponential model, we again generate farm @jouis in a 50< 50 km grid, with a variety of
density profiles as defined by the parameters in equationZimtain text. In order to explore networks
with highly spatial clustering, we assign the following gas to the parameters in equation 2

1<S0<100

01<S <10

0<A<1
0.1< B < 10 8)

With these parameter values, farm networks of 1000 and 268/@ipes are generated. We note that, given
that all other parameters are defined, in addition to the rurabfarms in the network and the area of the
domain, the final paramet@®; can be calculated in terms of the remaining parameter valliee same
investigation as desribed in the main text is carried outhat epidemics are simulated on the generated
farm networks and a random location model is fitted to eachwatievariation ofK;, andK,,. Each network

is then investigated for the optimal value of ring cull ragliuhich minimises the epidemic impact for the
random and “truth” networks.

The results for networks of 2000 farms are summarised in Bomntary Figure 2 (the same overall
behaviour is found for 1000 farm networks). 8g/Sixs is increased, wittA and By fixed, farms become
increasingly spatially clustered (panes 2a—d). For fartwaokks with low Sg/Sis and a corresponding
low degree of clustering (panes 2a,b), optimal ring culliwuads independent of precise knowledge of
farm location after reparameterisation (panes 2a,b) S§Sins is increased, farms appear more spatially
clustered (panes 2c,d) and a random location model tendgetestimate optimal ring cull radius (panes
2c,d). In the case of a 2000 farm network, the increased twlrasity means that there is more spatial
structure apparent between clusters than for a 1000 farmonlet The éfect of over-culling in this case
results in an increase in epidemic impact of around 20% (ouradt 25 farms) over ring culling at the
optimal radius in the worst case scenario (pane 2c). Howewagrculling at this radius still “saves” around
88% of the farms that would have livestock culled if no rindliog were carried out. We again observe a
flattening out of the epidemic impact curve for the truth dathis case (pane 2c). For very highly clustered
farm networks $o/Sins = 1000), whilst the random model still predicts larger ringes than the optimal
value on the truth data, théect of this over culling is reduced (pane 2d). Tlieets of increasing, (with
So/Sine = 250 andA = 0.8) are summarised in panes 2e—h. A simil@eet to increasino/Sins is observed
— increasingBy causes farms to be increasingly densely clustered (pardg.2&he random data again
slightly overpredicts the optimal ring cull radius with,arworst case scenario, a corresponding increase in
epidemic impact of around 20% (or 40 farms, pane 2e). As fémmesme increasingly clustered, theet
on epidemic impact of this overculling is found to decregmmes 2f—h). Therefore, as the density of the
farm network increases, it is not, as might be naively suiggeghe very highly clustered demographies



that would result in the largest increase in epidemic imfabte random model were assumed. Rather it
is the “larger cluster” networks, with limited intermediagtructure between clusters, for which the random
model causes the greatest increase in epidemic impact. Wehmad of all the county data analysed in this

paper, none are as clustered as these “intermediate” cag@dgimportant to establish whether such farm
demographies exist in practice.
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