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Abstract

Statistical inference and model choice for partially observed epidemics pro-

vide a variety of challenges both practical and theoretical. This thesis studies some

related aspects of models for epidemics and their inference.

The use of the matrix exponential to facilitate exact calculations in the Gen-

eral Stochastic Epidemic (GSE) is demonstrated, most usefully in providing the

exact marginal likelihood when infection times are unobserved.

The bipartite graph epidemic is defined and shown to be a flexible framework

which encompasses many existing models. It also provides a way in which a deeper

understanding of the relation between existing models could be obtained.

The Indian buffet epidemic is introduced as a non-parametric approach to

modelling unknown heterogeneous contact structures in epidemics. Inference for

the Indian buffet epidemic is a challenging problem, some progress has been made.

However the algorithms which have been studied do not yet scale to the size of

problem where significant differences from the GSE are apparent.

Evidence confirming and demonstrating the importance of understanding

the tail behaviour of proposals in importance sampling is presented. The adverse

impact of heavy tailed proposals on the Grouped Independence Metropolis-Hastings

(GIMH) and Monte Carlo within Metropolis (MCWM) algorithms is demonstrated.

A new algorithm, the Kernel Metropolis Hastings (KMH), is proposed as an

approximate algorithm for low dimensional marginal inference in situations where

the GIMH algorithm fails because of sticking. The KMH is demonstrated on a

challenging 2-d problem.
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Chapter 1

Introduction

Inference for partially observed epidemic models provides a variety of challenges.
These include an appropriate choice of model, in particular for the contact process
which has a major effect on the infection process. A second challenge is that existing
Markov chain Monte Carlo (MCMC) algorithms for inference on epidemics have
difficulty scaling to large populations. This thesis provides new results in three
themes which form the basis of three planned papers which are:

• Exact calculation in epidemic models and inference

• Indian buffet epidemics and their inference

• Analysis of a related group of MCMC algorithms introduced in section 1.3.

These are presented as an integrated thesis, with the necessary background, in the
chapters:

• 2 Epidemic Models

• 3 MCMC

• 4 Epidemic Inference

A detailed introduction to each chapter is given at its beginning, first a summary
and introduction to the three themes is given, highlighting the original contributions
of this thesis.
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1.1 Exact Calculation in Epidemic Models and Infer-
ence

Many asymptotic results have been obtained for epidemic models which provide
valuable insight into their behaviour in large populations. Advances in computer
power mean that calculations using the exact Markov chain representation of an
epidemic and the matrix exponential are now feasible. The representation was first
noted by Bailey (1953) but not pursued in detail. More recently it has been described
by several authors including Allen (2008) and Keeling and Ross (2008). In this thesis
it is used to perform exact numerical computations and identify some previously
unreported features of the epidemic threshold, it is also used to compare a regularly
observed continuous time epidemic model with a binomial based model. The main
motivation for investigating the Markov chain representation is to demonstrate its
use in inference, this is done in two ways. The potential for using the exact transition
matrix for inference in regularly observed general stochastic epidemics (GSEs) is
demonstrated. Exact calculation of the marginal likelihood for the removal times
of the GSE is developed and demonstrated to be feasible on a population of 120.
An approximation that will allow scaling to larger populations is described in an
appendix. The potential for a bi-modal posterior distribution for the parameters of
an in progress GSE has been identified.

1.2 Indian Buffet Epidemics and their Inference

The class of epidemic models on bipartite graphs provides a powerful way of con-
structing new models and comparing existing models. The bipartite graph epidemic
model is defined which provides a foundation for the new model, the Indian buf-
fet epidemic, which is developed and studied through simulation. Inference for the
Indian buffet epidemic using a variety of MCMC algorithms is studied, the most
succesful algorithm does not scale to interesting problem sizes. The reasons for
difficulties with other approaches are identified.

1.3 Analysis of GIMH andMCWM via SEMH and SAMH
and the Kernel MH algorithm.

The grouped independence Metropolis-Hastings (GIMH) algorithm which was in-
troduced by Beaumont (2003) and generalised by Andrieu and Roberts (2009) is a
potentially useful MCMC algorithm, for inference in many situations including epi-

2



demics. However when a poor proposal is used it can suffer from ”sticking”. A novel
analysis of some aspects of the GIMH and the bias of the closely related approx-
imate algorithm the Monte Carlo within Metropolis algorithm (MCWM) (O’Neill
et al., 2000) is presented. The analysis is presented in more general terms, to dis-
tinguish the original algorithm from the generalised algorithm the name stochastic
exact Metropolis-Hastings (SEMH) is introduced. The analysis of GIMH is based
on an analysis of some aspects of importance sampling in tractable situations which
is given in section 3.2. The analysis in section 3.5.3 shows that the variance of
the weights distribution can explain the sticking of the GIMH and the bias of the
MCWM.

A new approximate algorithm, the Kernel Metropolis-Hastings (KMH) is
proposed in section 3.6 which is expected to overcome the difficulties encountered
in applying the GIMH algorithm in practice which are described in chapter 4. The
KMH is demonstrated on a multimodal heavy tailed target distribution.

3



Chapter 2

Epidemic Models

2.1 Introduction

This chapter considers two distinct aspects of stochastic models for epidemics, the
Markov representation of the general stochastic epidemic (GSE) and bipartite graph
epidemics from which the Indian buffet epidemic is introduced.

The Markov representation of the general stochastic epidemic (GSE) model
is used to derive exact distributions of various quantities which are of interest in
their own right and are used as the basis for exact inference in chapter 4. Some of the
known limitations of the simple models are used as motivation for considering models
based on bipartite graphs for epidemics with heterogeneous contact processes.

As a pre-requesite in section 2.1.1 the basic epidemic models and the epidemic
threshold are introduced. In section 2.3 the transition matrix of the GSE is used
to perform exact numerical computations and identify some previously unreported
features of the GSE.

The embedded Markov chain (EMC) of the Markov representation is intro-
duced and used in section 2.3.3 to calculate the final size distribution in the GSE.
This is then used to investigate the threshold between “minor” and “major” epi-
demics and identify the regions of the parameter space where the classic bi-modal
behaviour is present.

The EMC is also used to calculate the joint distributions of final size and the
number of infectives immediately after the first removal, also the joint distribution
of final size and the maximum number of infectives at any time is calculated.

Continuous features of the GSE are studied in section 2.3.4 where the con-
tinuous time Markov process is used to calculate the exact distribution of duration
conditioned on final size. A plot based on a well known martingale is introduced

4



in section 2.3.5 which is later used to portray the difference between the GSE and
other models. An exact comparison between the regularly observed GSE and a very
similar binomial discrete time model is made in section 2.4.1.

As motivation for the development in sections 2.6 and 2.7 of the Indian buffet
epidemic section 2.5 reviews epidemic models incorporating heterogeneous contact
structures. As further motivation section 2.6.4 shows how some of these models can
be considered as particular instances of the bipartite graph epidemic.

The Indian buffet epidemic is introduced and studied in section 2.7. After
describing the Indian Buffet Process (IBP) section 2.7.2 defines the new epidemic
model. The remainder of the chapter studies features of this new epidemic model,
presenting results of simulations showing the aspects of the variability that emerge.

2.1.1 Basic Epidemic Models

A number of different stochastic and deterministic models for epidemics have been
proposed, in both continuous and discrete time. The models are all an approxima-
tion in medical or veterinary terms to the complex processes involved in acquiring,
incubating and transmitting a disease. All models must balance the often competing
aspects of simplicity, realism and tractability for analytic results. A good qualitative
understanding of fundamental behaviour of both simple and complex models can be
obtained from analytic results obtained from simple models and their asymptotic
behaviour. It should be noted that a model that is intractable for analytic results
may be amenable to modern computational techniques of statistical inference and
Mollinson in chapter 2 of Mollison (1995) states

"The realistic detail of a stochastic model, specifying such things as the
probability that one individual will infect another at a particular time
and place, has long been recognised as a strength from the point of view
of understanding and fitting models, but has generally been regarded as a
grave handicap when it comes to analysis; even stochastic analyses have
traditionally dealt whenever possible with massed variables such as the
total number of infectives. However, in recent years there has been an
increasing recognition that the unnecessary detail of a stochastic model
framed in terms of individuals and their interactions can in many cases
allow insights not possible from a higher level stochastic or deterministic
model."

Several books are available that consider a wide range of models, for example Brauer
et al. (2008), while other books focus on a more detailed analysis of a subset of
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models e.g. Daley and Gani (1999).
There is always a trade off between the realism of assumptions in the model

and ease of analysis and identifiability of parameters. All the models considered
in this thesis categorise individuals as being in one of a small number of states,
with transitions between them at well defined but often unobserved times. This
approximation can be justified by the lack of data in most situations1 on which any
more complex model could be based. The three states in the basic model considered
are:

Susceptible The individual is uninfected and could be infected.

Infectious Capable of transmitting the disease, they have been infected with the
disease and are capable of spreading the disease to those in the susceptible
state.

Removed is the compartment used for those individuals who have been infected
and then recovered from the disease or been isolated or died. In all the mod-
els considered those in this category are not able to be infected again or to
transmit the infection to others.

The initial letters of the names of the states Susceptible,Infectious,Removed provide
the name for this class of models: SIR models. The most notable omission in this
model, particularly for some diseases such as smallpox is the lack of an exposed
state, this is frequently added as an additional state giving rise to the class of SEIR
models which incorporate this additional state:

Exposed The individual is infected but not yet infective, they are in a latent period
and will progress to the Infectious state.

A more realistic model might have non-constant infectivity during the infectious
period or include modelling of symptoms which are usually taken as coincident
with the infectious period. Diseases such as malaria involving a parasite and those
with variants and/or partial immunity require additional states, other states such as
asymptomatic but infectious may be needed for some diseases. Long lasting diseases
and childhood diseases such as measles, require consideration of births and deaths.
These aspects are not considered further in this thesis.

A range of observed or unobserved co-variates for individuals, in particular
age or location, can have significant effects on some or all of contact patterns,

1except in a few laboratory experiments
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infectiousness, susceptibility and durations of phases. Some aspects of this are
considered in section 2.5.

Approaches to the modelling of the transitions between the states can be
categorised as deterministic or stochastic and continuous or discrete time. The dis-
tinction between a discrete time model and discrete time observation of a continuous
model is considered in section 2.4. Deterministic models usually give rise to a system
of differential equations which are closely related to an equivalent stochastic model,
and often shed light on the non-linear evolution of expected values in the stochastic
model and the presence of thresholds, they are not considered explicitly.

2.2 Continuous Time Epidemic Models

2.2.1 The General Stochastic Epidemic (GSE)

This standard SIR homogeneous mixing model is generally called the general stochas-
tic epidemic (GSE) and was first described in the papers by Kermack and McK-
endrick in 1927 reprinted in Kermack and McKendrick (1991a,b,c). Diekmann has
pointed out (Diekmann et al., 1990) that their General Stochastic Epidemic model
was more flexible than the basic Markov SIR model often attributed to them and
described here as the GSE. This model provides a good starting point for more
complex models, most of which can be considered as generalisations of the GSE.
This seemingly simple model also provides interesting challenges for inference, some
of which are studied in chapter 4. A good understanding of this seemingly simple
model is necessary for fully understanding more complex models and to give insight
into difficulties that can be encountered in inference.

Two equivalent approaches to presenting SIR models are possible, either
based on counts of individuals in the categories S,I,R and rates of transition or based
on the state of individuals and their duration in each state. The latter approach is
more easily extended to non-exponential distributions of time in the infectious state
and also has some advantages in inference, both in the GSE and more complex
models. The counts approach is used here as it naturally gives the Markov process
representation which is used below. Although the duration of infectiousness is clearly
not exponentially distributed, it can be shown that most bulk properties of the model
are only affected by the mean of the distribution (Andersson and Britton, 2000) and
so the implied use of an exponential distribution can be justified.

This widely studied SIR epidemic model considers the progress of an epidemic
in an initially susceptible population of np individuals, after an initial infection from
outside the population of one individual. Each individual is in one of the three states
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Susceptible, Infective, Removed2, and the epidemic progresses via two independent
transitions:

infection S → I one susceptible individual changes from Susceptible to Infective,

removal I → R one infected individual changes from Infective to Removed.

The transition rates between the states are taken to be Markov, dependent only
on the counts of individuals in the two states Susceptible and Infective at time t
denoted (S (t) , I (t)). In this model the population transitions are Poisson with
time and state dependent rates:

S → I at rate λS (t) I (t), the state changes to (S (t)− 1, I (t) + 1)
I → R at rate ρI (t), the state changes to (S (t) , I (t)− 1) .

and can be shown in equivalent terms of transition probabilities as

P (S (t+ dt) = S (t)− 1 & I (t+ dt) = I (t) + 1) = λS (t) I (t) dt (2.2.1)

P (I (t) = I (t)− 1) = ρI (t) dt (2.2.2)

Authors differ in notation, sometimes the population is described in terms of
N initial susceptibles and a initial infectives, giving a total population of np = N+a,
and sometimes a factor of 1/N is extracted from the infection rate, each choice
simplifies the notation for some calculations and complicates others, also the use of
N + a can clarify most asymptotic results. Some modellers argue over the presence
of the 1/N and the meaning of infection rates with and without it, a clarification is
given by Begon et al. (2002).

The number removed is denoted R (t) and S (t) + I (t) +R (t) = np for all t.
When it is necessary to refer to the cumulative number that have been infected at
any time in the interval [0, t] then C (t) = R (t) + I (t) is used.

When the GSE is presented in the form give by equation 2.2.1 it is apparent
that it belongs to the class of density dependent jump processes studied in the
monograph by Kurtz (1981) and so a rich set of asymptotic results are applicable,
such as the convergence to a diffusion process, which is described briefly below.

The epidemic threshold and major epidemics The most significant feature
of the GSE, in common with most SIR epidemic models is the existence of an

2including recovered, quarantined or death
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epidemic threshold. Two typical example simulations of a GSE with the same pa-
rameters λ = .015, ρ = 5, np = 1000 are shown in figure 2.2.1, with very different
outcomes, the epidemic is labelled “major” or “minor” dependent on whether the
final size is a significant proportion of the population. In this example over many
simulations approximately 67% of the epidemics would be “major”. As np →∞ the
distinction becomes clearer and the stochastic epidemic converges to the equivalent
deterministic model. If λ and ρ vary with np such that limnp→∞ npλ/ρ exists then
the limit is called the basic reproduction number R0. A common assumption is
that λ = npβ for some constant β (see previous page) and ρ is constant, in this
caseR0 controls the asymptotic behaviour as np → ∞. In particular in an infinite
population if R0 ≤ 1 then with probability 1 only a finite number will be infected
whereas if R0 > 1 there is a positive probability of an infinite number of infections
(Whittle, 1955). In finite populations and more complex models there can be some
ambiguity over the definition of both a “major” epidemic and of R0, it is however
a useful concept both theoretically to guide deeper understanding and practically
to guide interventions such as vaccination. Many results, particularly in inference,
condition on the epidemic being “major” often without defining it, an exception is
Demiris and O’Neill (2006) where a clear definition and analysis is made. An inves-
tigation on the boundaries between “major” and “minor” epidemics is given below.
The usual definition of R0 is the expected number of infections directly caused by
the initial infective, see Pellis et al. (2012) for a study of R0 in household models.

In the GSE the expected number of infections caused by the initial infective
is (np− 1)λ/ρ, for simplicity in notation the simpler formula R0 = npλ/ρ is used to
define R0 in the finite GSE considered here.

The total number of infections when the epidemic terminates, with zero
infectives, is called the final size which is denoted by R∞. The distribution of
this and its relation to R0 is investigated in section 2.3.3 using the Markov chain
representation developed below.

Diffusion approximation In large populations the variability of the GSE can
be represented by a diffusion approximation, which is presented in several books
for example Allen (2008). The mean and variance (to order ∆t) of the increments
∆Xt = Xt+∆t − Xt of the stochastic process Xt = (S (t) , I (t))T follows from the
definition in equation 2.2.1 as

E (∆Xt) =
(

−λS (t) I (t)
λS (t) I (t)− ρI (t)

)
∆t
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Figure 2.2.1: Simple examples of SIR GSE R0 = 3, λ = .015, ρ = 5, np = 1000 (the
counts in the right hand plot have been “jitter-ed” to separate the lines). The line
labeled M(t) in the plot is the cumulative number of infections C(t).

and

Var (∆Xt) =
(

λS (t) I (t) −λS (t) I (t)
−λS (t) I (t) λS (t) I (t) + ρI (t)

)
∆t

Because the covariance matrix is symmetric and positive definite it has a unique
square root and an equivalent Itô SDE representation is possible. When considering
large populations the scaled process Xt/np is usually studied.

The results of Kurtz (1978) provide a more rigorous derivation and give
asymptotic results for where the approximation is valid. The most important re-
striction is that the approximation is only valid away from the absorbing state of
I (t) = 0, the exact calculations below investigate the relation between the early
states when I (t) is small and the eventual outcome.

2.3 The Markov Representation of the General Stochas-
tic Epidemic (GSE)

The Markov representation of the GSE Xt = (S (t) , I (t))T was first noted by Bailey
(1953) but not pursued in detail. More recently, as readily available computational
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power has become available it has been described by several authors including Allen
(2008) and Keeling and Ross (2008). The Kolmogorov forward equations of this pro-
cess were used by Bailey (1964) to derive differential equations for the moment gen-
erating function of I (t). Here after presenting some well known matrix techniques,
a matrix representation of the transition matrix of the GSE is used to perform ex-
act numerical computations and identify some previously unreported features of the
GSE.

2.3.1 Matrix Techniques for Markov Processes and Chains

The theory of Markov processes and chains is well developed and covered in many
books for example Parzen (1962) or Norris (1998), on which this section is based.
A general formulation is in terms of a stochastic process {Xt, t ∈ T }, where T is an
ordered set and Xt is a family of random variables Xt : Ω → S, where S is some
measurable space. The sets S and T are the state space and an index space, usually
time, the mathematical level is significantly reduced by only considering finite3

state spaces S and distinguishing two time index sets T , when T ⊂ Z we refer to
a Markov chain and when T ⊂ R we refer to a Markov process, terminology still
differs and though common this usage is not universal. The fundamental property
that distinguishes a Markov process (or chain) from other stochastic processes is that
given the current state the future is independent of the past, this can be expressed
as

P
(
Xtn = xtn |Xt1 = x1, Xt2 = x2, . . . Xtn−1 = xn−1

)
= P

(
Xtn = xtn |Xtn−1 = xn−1

)
for any ordered set of n times t1 < t2 < . . . < tn, all ∈ T .

A time homogeneous Markov chain Xn, with T = Z+ = {0, 1, 2, ..} is defined
by its transition probability matrix P = (pij : i, j ∈ S) where

P (Xn+1 = j|Xn = i) = pij ∀ i, j ∈ S

and its initial distribution P (X0 = i) = pinit
i ∀ i ∈ S, where

∑
j pij = 1 ∀ i ∈ S and

pij ≥ 0, the initial distribution pinit = (pinit
i , i ∈ S) is taken to be a row vector. The

Chapman-Kolmogorov equation then gives

P (Xn+2 = k|Xn = i) =
∑
j∈S

pijpjk ∀ i, k ∈ S and n ∈ T

3This chapter only considers finite spaces, the chapter on MCMC where larger state spaces are
used does not make use of this section.
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and so the n step transitions are obtained using matrix multiplication as

P (Xn+m = j|Xm = i) = [Pn] ij ∀ i, j ∈ S,

and the distribution at time n is

P (Xn = i) =
[
pinitPn

]
i
∀ i ∈ S.

The structure and long term behaviour of a chain is governed by the commu-
nicating classes of the chain. A state k is said to be accessible from j if [Pn] jk > 0
for some n ∈ T and if both k is accessible from j and j is accessible from k we say
that j and k communicate. This symmetric and transitive relation gives the com-
municating classes, C(j) ⊂ S where k ∈ C(j) if and only if j and k communicate, a
chain with a single communicating class is called irreducible. A state j is absorbing
if C(j) = {j} and pjj = 1. The communicating class of a state j will be empty, if the
states accessible from j and those from which j is accessible are disjoint. A state is
recurrent if eventual return to it occurs with probability 1, otherwise it is transient.

A Markov process, with T = R+ = [0,∞), can be defined by the distribution
of the initial state P (X0) (as in the discrete case) and a matrix of transition rates
Q = (qij , i, j ∈ S) where qij ≥ 0 for all i 6= j and

∑
j∈S qij = 0∀ i ∈ S it is convenient

to introduce qi = −qii and noting that qi ≥ 0 we have

P (Xt+δ = j|Xt = i) =

δqij + o(δ) ∀ i 6=, j ∈ S

1− δqi + o(δ) i = j
.

The right hand side can be written in matrix form as (I + δQ)ij and the
transition probability matrix for any t ≥ 0, is given by P(t) = etQ where [P(t)]ij =
P (Xt+s = j|Xs = i), see for example Norris (1998) chapter 2. The matrix exponen-
tial is defined by etQ =

∑∞
j=0

(tQ)k
k! , methods for numerical calculation and some

properties of it are given in Appendix A. Term by term differentiation gives

d

dt
P(t) =

∞∑
k=1

tk−1Qk

(k − 1)!
= P(t)Q = QP(t)

the Kolmogorov forward and backward equations.

Embedded Markov Chain

Associated with any continuous time Markov process on a finite state space is the
embedded Markov chain (EMC) which describes the path through the states, with-
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out regard to time. It is sometimes called the jump chain, (§2.6 of Norris, 1998).
This chain is used to derive expressions for several quantities in the GSE. The EMC
is a discrete time Markov chain, denoted Xi on the same state space as the full
Markov process {Xt, t ∈ T }. The subscripts i, j, k are used to indicate discrete time
and s, t continuous time. The transition matrix (pij) for Xi is obtained from Q the
transition rate matrix of Xt as

pij =



qij/
∑
k 6=i qik i 6= j and qii 6= 0

0 i = j and qii 6= 0

0 i 6= j and qii = 0

1 i = j and qii = 0

(2.3.1)

or equivalently P = I − diag(Q)−1Q (taking 0/0 as 1 on the diagonal, for any
absorbing states).

The Fundamental matrix of an absorbing Markov chain

The fundamental matrix of an absorbing Markov chain Kemeny and Snell (1976)
is a powerful way of calculating some moments and probabilities on an absorbing
Markov chain. Consider a discrete time absorbing chain with transition matrix P
with m absorbing states and n transient states, with a suitable ordering of states
we have

P =
(

S R
0 I

)

where S is an n×n matrix of transition probabilities within the transient states, R
is an n ×m matrix of transition probabilities from the transient to the absorbing
states and I is an m×m identity matrix. Sometimes it is convenient to merge the
absorbing states into a single absorbing state.

Definition 1. The fundamental matrix N of an absorbing Markov chain has entries
[N ]ij which are the expected number of visits to state j before absorption starting
from state i.

Theorem 1. The fundamental matrix of an absorbing Markov chain can be calcu-
lated as N = (I− S)−1.

Proof. The proof is given by Kemeny and Snell (1976) (theorem 3.2.1) based on
N =

∑∞
k=0 Sk giving the probability of a visit to a state at step k. The matrix

inverse always exists.
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Corollary 1. The expected number of steps before absorption starting at state i is∑n
j=1 Nij or µs = N1.

Proof. Kemeny and Snell (1976) (theorem 3.2.4)

Corollary 2. The probability of being absorbed in absorbing state j when starting
from transient state i is [B]ij where B = NR.

Corollary 3. The variance of the number of steps before absorption, starting at
state i, is the ith term of (2N − I)µs − µs ◦ µs, where ◦ indicates a Hadamard
product.

The Fundamental matrix of an absorbing Markov process

The fundamental matrix of an absorbing Markov process, and similar results to those
above, are derived from the Markov chain results as follows. Consider a continuous
time absorbing Markov process with transition rate matrix Q with m absorbing
states and n transient states, with a suitable ordering of states we have

Q =
(

S R
0 0

)

where S is now an n × n matrix of transition rates within the transient states, R
is an n ×m matrix of transition rates from the transient to the absorbing states.
Consider the Markov chain with transition probability matrix P = eδQ for some
δ > 0, as δ approaches 0 we can write Pδ = I + δQ, dropping the o(δ) terms, this is
a stochastic matrix so long as δ < mini(qi).

Lemma 1. The fundamental matrix of an absorbing Markov process is N = −S−1

and [N]ij is the expected time spent in state j before absorption starting from state
i.

Proof. Denote the fundamental matrix of Pδ as Nδ where

Pδ =
(

Sδ Rδ

0 I

)

so Sδ = I + δS and Rδ = R and Nδ = (I − Sδ)−1 = (−δS)−1 and δ [Nδ]ij is the
expected time spent in state j before absorption starting from state i and δNδ =
−S−1. Now consider the limit as δ → 0, it follows from theorem 2.8.2 of Norris (1998)
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that the Markov chains with transition probability matrix Pδ = eδQ converge to the
Markov process with transition rate matrix Q.

Corollary 2 for the discrete chain applies unchanged, and is repeated here.

Corollary 4. The probability of being absorbed in absorbing state j when starting
from transient state i is [B]ij where B = NR.

Corollary 1 requires a change of words to:

Corollary 5. The expected time before absorption starting at state i is
∑n
j=1 Nij

or µd = N1.

A small change is required to corollary 3 to give

Corollary 6. The variance of the time to absorption, starting at state i, is the ith
term of 2Nµd − µd ◦ µd.

Proof. The time to absorption for the Pδ chain is δ× the number of steps, so the
mean is δµs and the variance of the time to absorption is δ2 ((2Nδ − I)µs − µs ◦ µs)
as δ → 0 δµs → µd and noting that Nδ = N/δ the variance is ((2N− δI)δµs − δµs ◦ δµs)
which → 2Nµd − µd ◦ µd.

Distribution of time to absorption of a Markov process

Lemma 2. The joint probability density function (p.d.f.) of time to absorption and
probability of final state j of a Markov chain starting at state i is [Q exp(tQ)]ij,
where j ∈ Iabs and Iabs ⊂ S is the set of absorbing states.

Proof. We have where P (Xt+s = j|Xs = i) =
[
etQ

]
ij
for any i, j and as j is absorb-

ing this is the cumulative distribution function (c.d.f.) of time to absorption in j

times the probability that ultimate absorbtion is in j. The result follows by term
by term differentiation of the power series for exp(tQ).

Corollary 7. The p.d.f. of time to absorption of a Markov process from an initial
distribution pinit is

∑
i p

init
i

∑
j∈Iabs

[Q exp(tQ)]ij

2.3.2 Representation of the GSE as a Markov Process

We match the usual notation for state space models by denoting the state at time
t as Xt = (S (t) , I (t)) and the parameters by θ = (λ, ρ), with λ > 0 and ρ > 0.
Xt ∈ X ⊂ Z2 such that S (t) + I (t) ≤ np. X has size ns = (np + 1)(np + 2)/2 which
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limits the sizes of problem that can be handled directly using the exact Markov
transition matrix. However sizes up to np = 120 can be handled efficiently for all
the calculations using the approaches developed below and the calculations based
on the EMC have been performed for np = 1200.

Recall that the possible transitions are

S → I at rate λS (t) I (t) the state changes to (S (t)− 1, I (t) + 1)
I → R at rate ρI (t) the state changes to (S (t) , I (t)− 1) .

.

The transition rate matrix Qθ is readily computed from the transition rates
above and contains O(n2

p) non zero entries from which the exact probability of any
transition can be computed as:

P(Xt+s = xt+s|Xt = xt) = [exp(sQθ)]xt,xt+s (2.3.2)

and so for the given initial state X0 = (np− 1, 1) the probabilities of the GSE being
in any state at time t are available. As the state space is finite, certain technical
details that are needed for infinite but countable state spaces are not discussed.

We can see that this describes a random walk on Z2, and the dynamics are
such that no state is visited twice. The state space and possible transitions for a
very small example are shown in figure 2.3.1 where the green circles indicate the
absorbing states and blue transient states and the label indicates the number in
each of the S,I,R states.

In order to use standard 2-d matrices for computational purposes a mapping
from the state space (in Z2) to Z is required, the ordering chosen is lexicographic
on (R (t) , I (t)) as this makes the transition matrix upper triangular.

2.3.3 Final Size Distribution

The use of the embedded Markov chain (EMC) to calculate the final size distribution
in the GSE has been known since Bailey (1953), but it is frequently overlooked in
favour of a triangular set of equations derived by Whittle (1955) which has the
advantage that it has been extended to non-Markovian distributions by Ball (1986).
However this set of equations, which is suitable for small populations, is numerically
unstable for populations of more than about 60. The population size at which
the instability appears varies with the parameters. Demiris and O’Neill (2006)
used multiple precision arithmetic to overcome these difficulties and made some
comparisons of approximate and exact results, they also introduced a new definition
of the epidemic threshold. The approach taken here produces identical results but

16



Figure 2.3.1: State space for SIR np = 5

also allows other distributions, including joint and conditional distributions to be
computed.

The transition probability matrix of the EMC for the GSE is denoted G (or
gjk for a term where j and k are both ∈ Z2) and can be calculated using equation
2.3.1 from the generator matrix of the full process or directly. As there at most two
transitions from each state the non-zero values of each row are simply obtained, the
recovery term is ρnI

ρnI+λnInS = ρ
ρ+λnS for nI > 0 and as R0 = npλ/ρ the terms of the

matrix are obtained as

g(nI ,nS)(n′I ,n
′
S) =


1

1+nSR0/np
nS = n

′
S , nI = n

′
I − 1, nI > 0

nSR0
np+nSR0

nS = n
′
S − 1, nI = n

′
I + 1, nI > 0

0 otherwise

(2.3.3)

The maximum number of steps until absorption is 2np−1, which only occurs
when all susceptibles are infected and so the distribution of final states is given by
pfsz = p0G

2np−1 where p0 is the distribution of initial states, usually (np−1, 1). This
is straightforward to calculate, using a sparse matrix library, for any value of R0,
a further improvement in computational speed is available by noting that as pfsz is
invariant for G then pfsz = p0G

2l for any l > log2(2np−1) and G2l is efficiently calcu-
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lated by repeated squaring. Examples of pfsz are shown in figure 2.3.2, the left hand
plot indicates for a small population how the shape of the distribution changes with
R0 and the bimodal nature of the distribution when R0 > 1. For larger populations
the distinction between “minor” and “major” epidemics becomes more pronounced
and the probabilities have a larger range, the right hand plot shows the final size
distributions for np = 1000, with a log scale, and shows that for R0 = 2 there is a
large range of final size values (100−600) where the probability is negligible, in fact
the cumulative probability only changes from 0.5020668 to 0.5020656 on this range.
The curve for R0 = 1.3 is distinctly bimodal while the second mode on the curve
for R0 = 1.1 is barely discernible. The possible shapes are generally described as
“J” or “U” shaped for the unimodal and bimodal distributions, see for example Ball
and Nåsell (1994), a further refinement is possible. The unimodal distibution for
small R0 has its maximum at the boundary, corresponding to no further infections.
If more than one infective is introduced at the start of the epidemic then the mode
can move to a small value, away from the boundary, this is not considered further.
The bimodal distributions can be further distinguished into cases where the mode
corresponding to a “major” epidemic is at the boundary, corresponding to all sus-
ceptibles becoming infected or only a significant proportion. These two cases are
described as “U” shaped or “S” shaped (consider the S rotated 90◦), the examples
on the left of figure 2.3.2 are “J” or “U” shaped and those on the right “S” shaped.
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Figure 2.3.2: Final size distributions for the GSE. The left hand plot for n = 10 has
a linear y-scale, the right hand plot for n = 1000 has a log y-scale.

The shape of the final size distributions for the GSE has been determined for
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Figure 2.3.3: Shape of final size distributions for the GSE, with lines indicating the
boundary between regions.

a range of R0 and populations np the results are plotted in figure 2.3.3. The mean,
which can be calculated using the fundamental matrix described above, is a poor
measure of a bimodal distribution, however for a uni-variate distribution the means
of the two halves are usually good descriptive statistics, when the bi-modality is
indistinct the choice of where the split should be can affect the results. For the final
size distribution the choice of split is equivalent to defining “major” and “minor”
epidemics, which in the case of large R0 or large np is unambiguous. A well known
asymptotic result is that as np → ∞ the distribution of the final size, conditioned
on it being a “major” epidemic, converges to a normal distribution (see Andersson
and Britton (2000) section 4.4 for example), of interest is how good the resulting
approximation is for finite np. An exact study requires a clear understanding of the
definition of a “major” epidemic and we therefore study the bi-modality in more
detail.

Demiris and O’Neill (2006) introduced a definition of a “major” epidemic
based on the first probability less than ε, which they take as 10−3 for their example
calculations, for small np such as shown at the left of figure 2.3.2 ε would need
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to be changed. A new threshold M(R0) for R0 > 1 is introduced based on the
asymptotic extinction probability 1/R0, a “major” epidemic is defined as one with
final size greater thanM(R0) which is defined by

M(R0)
.=
{
M |

M−1∑
i=1

pfsz(i) ≤ 1/R0 <
M∑
i=1

pfsz(i)
}
. (2.3.4)

.
Some examples, including those plotted in figure 2.3.2, of the thresholds are

shown in table 2.3.1 together with the overall and conditional means and locations
of the turning points, if any. TheM(R0) threshold is plotted along with the more
obvious local minimum in figure 2.3.4, the main difference is that for small R0

the local minimum is undefined, for R0 = 1.2 it only exists for np ≥ 74 and for
R0 = 1.1 it only exists for np ≥ 1000 and no points are plotted. The increasing
difference between M(R0) and the local minima as np increases is an indicator of
the arbitrary nature of the choice of threshold in an area of close to zero probability.
This highlights the importance of defining the threshold, especially for small np or
small R0, when asymptotic results conditioned on a major outbreak are being used.

np R0 M(R0) overall mean mean local local
mean minor major minimum maximum

10 1.001 10 2.555 - - - -
10 1.01 9 2.573 2.5039 10.00 - -
10 1.3 5 3.177 1.8557 7.78 6 7
10 2.5 3 5.409 1.3792 8.42 4 10
10 6.0 2 8.162 1.1383 9.72 4 10

1000 1.1 106 27.883 6.7946 239.63 171 235
1000 1.3 51 94.371 3.7644 396.81 160 455
1000 2.0 18 397.070 1.9419 792.26 326 801

Table 2.3.1: sizes and thresholds for major and minor epidemics

An alternative way of viewing the final size distributions, as np and R0 vary,
is to examine P (R∞ ≤ c) the probability of the final size being less than a threshold
c, where c is itself a function of the distribution. As above we consider the three
valuesM(R0) and the local minima and maxima, when they exist.

The figures 2.3.7,2.3.6,2.3.5 show two distinct families of distributions as R0 varies,
with a transition region between them. Figure 2.3.5 shows that for R0 = 2 and
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Figure 2.3.4: Epidemic thresholdsM(R0) and local minima of final size distribution

4 there is a sensible threshold for a major epidemic, either the local minimum or
M(R0), for all values of np and the local maxima increases from the asymptotic
value as np decreases. However in figure 2.3.7 for R0 = 1.25 we can see that
the local maxima and minima approach each other and for np < 75 the final size
distribution is monotonically decreasing. For smaller R0 this change happens for
larger np, there is a transitional range for R0 in [1.28, 1.3] where the critical np is
small. These critical values of np are shown in table 2.3.2.

R0 1.05 1.10 1.15 1.20 1.25 1.3

ncrit > 1200 ≈ 800 ≈ 250 75 30 6

Table 2.3.2: Critical population sizes for R0 , below which the final size distribution
is “J” shaped.

The main impacts are that for R0 > 1 and close to 1.

• a very large population is needed to have a clear distinction between major
and minor epidemics,

• simulated “major” epidemics will have a wide range of final sizes and dissimilar
trajectories,

• care is needed in inference which is conditioned on a “major” epidemic.
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Figure 2.3.5: Final size thresholds, upper range of R0
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Figure 2.3.6: Final size thresholds, transition range of R0

Distribution of the Number of Infectives at the First Removal

Although simulated data have a time origin of the first infection, in analysis of real
epidemics the time origin is usually taken as the first removal, at which time the
number of infectives is unknown. Here the exact distribution of this number I

(
TR1

)
is derived, which only depends on R0 and not directly on the removal rate ρ. Maxi-
mum likelihood estimation of this quantity has been considered by Kypraios (2009)
using a different approach. The distribution is obtained directly by considering the
Markov chain on a reduced state space with only 0 or 1 recoveries and making all the
states with 1 recovery absorbing. The resulting continuous time Markov chain can
be used to derive the distribution of the time to the first recovery, but this does not
appear to have a practical use, except possibly to use as a prior in the Bayesian es-
timation discussed in chapter 4. The embedded chain provides the structure, which
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Figure 2.3.7: Final size thresholds, lower range of R0

can be used directly for calculation, or simplified to give:

Proposition 1. In the GSE the distribution of the number of infectives immediately
after the first removal pl = P

(
I
(
TR1

)
= l
)
is given by

pl =


1

1+R0(1−n−1
p ) l = 0

1
1+(np−l−1)R0/np

∏l−1
i=0(1− pi) l ≥ 1

Proof. At each step the probability of removal before infection is pnS = 1
1+nSR0/np

(see equation 2.3.3) from which the result follows.

Joint distribution of infectives after first recovery and final size

Potentially of more interest is the joint distribution of final size and the number of in-
fectives immediately after the first removal from which the conditional distributions
can be obtained. The calculation of the final size distribution (section 2.3.3) in fact
calculates the full transition matrix which is P

(
R∞|I

(
TR1

)
= l
)
, so the joint distri-

bution is obtained from P
(
R∞, I

(
TR1

))
= P

(
I
(
TR1

))
P
(
R∞|I

(
TR1

))
and hence

the conditional distribution P
(
I
(
TR1

)
|R∞ = j

)
= P

(
R∞ = j, I

(
TR1

))
/pfsz(j).

The number infected at the first recovery and the final size are strongly correlated,
as np increases I

(
T I1

)
becomes a good predictor of final size. Examination of plots

of these distributions for a fixed population size does not reveal any great surprises,
they have previously been investigated by simulation, examples are shown in 2.3.8,
these exact distributions could be of use in inference.

The conditional distribution of the number infected at the first recovery given

23



5 10 15

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

population size 50 R0= 6

number infected at first recovery

co
nd

iti
on

al
 p

ro
ba

bi
lit

y

final size

10
30
45
50

5 10 15

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

population size 50 R0= 2

number infected at first recovery

co
nd

iti
on

al
 p

ro
ba

bi
lit

y

final size

10
30
45
50

Figure 2.3.8: Conditional distribution of infectives after first recovery given final
size

the final proportion of the population infected (this is often called the “attack rate”,
although it is a ratio not a rate) appears to be independent of np for large enough
np, e.g. for R0 = 2 for np ≥ 100, however there is a dependence on R0 which is
illustrated by comparison of the two halves of figure 2.3.9.

Joint distribution of maximum number of infectives and final size

Also of interest is the joint distribution of final size and the maximum number of
infectives at any time, for some diseases such as influenza this can be of as much
interest as the final size, as if the proportion of the population infected at one time
is too large, there will be difficulty maintaining essential services. This requires
the construction of a Markov chain with an expanded state space. An additional
random variable is defined as Wt = maxτ≤t I (t) and the expanded state at time t
is Xt = (S (t) , I (t) ,Wt) where Xt ∈ X ⊂ Z3 s.t. S (t) + I (t) ≤ np and Wt ≥ I (t),
X and has size O(n3

p) .
The possible transitions are now:

rate from state to state condition
S → I λS (t) I (t) (S (t) , I (t) ,Wt) (S (t)− 1, I (t) + 1,Wt + 1) if I (t) = Wt

S → I λS (t) I (t) (S (t) , I (t) ,Wt) (S (t)− 1, I (t) + 1,Wt) if I (t) < Wt

I → R ρI (t) (S (t) , I (t) ,Wt) (S (t) , I (t)− 1,Wt) .

.

The generator matrix Qθ is readily computed from either the transition rates
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Figure 2.3.9: Expected attack rate conditional on the number infected at the first
removal, for R0 = 1, 2

above or from the generator for the unexpanded model and still contains O(n2
p) non

zero entries as in the unexpanded state.
The marginal distribution of Wt is immediately available and an example

for R0 = 2, np = 100 is shown in figure 2.3.10, where all the distributions have
been conditioned on it being a “major” outbreak based on the local minimum. The
conditional distributions are also available and the right hand plot compares the
final size distribution only conditioned on it being “major” (i.e. > 31) with two
distributions only conditioned on the maximum taking the values 12 or 30 (note the
supports differ).

2.3.4 Distribution of the Duration of the GSE

The calculations so far presented have been based on the EMC and have not used
the times of transitions of the Markov chain, here the duration of the epidemic
is considered. The duration, Tdurn = TRm , where m = R∞ is the final size, is
the time until the last removal, which in the Markov representation is the time to
absorption in one of the states with no infectives and so is immediately available
using the standard results given in section 2.3.1. These results also provide the
joint distribution of final size and duration and hence the distribution of duration
conditioned on final size. The general formula in lemma 2 applied to the GSE gives
the joint probability of final size and the p.d.f. of the duration as in the case of the
GSE each of the absorbing states corresponds to a particular final size which we
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Figure 2.3.10: Distribution of maximum number of infectives and final size condi-
tioned on max for R0 = 2, np = 100

identify.
Three examples are examined with (np,R0) = (81, 2.025),(81, 1.3) and (120, 1.3),

the first is the model examined by Barbour (1975) and has been chosen to be
“well behaved”, with clear local minimum and maximum in the final size distri-
bution, the second has a weaker bi-modality. For each of a set of 50 duration
times t, chosen to cover most of the support of the distribution, and all sizes
m = 1 . . . np calculate the joint probability/p.d.f. fdurn(t,m) where fdurn(t,m)dt =
P (Tdurn ∈ [t, t+ dt) and R∞ = m), contour plots of log(fdurn(t,m)) are shown in
the right half of figure 2.3.12, summing over m gives the marginal distribution of
duration shown in the left half of 2.3.11 and the conditional distributions from
fdurn(t,m)/pfsz(m) where pfsz is obtained as described previously in section 2.3.3.

The left hand plot of figure 2.3.11 matches figure 2 of Barbour (1975) with a
change of timescale, as he uses a recovery rate of 2 or 0.5 whereas 1 has been used
here.

Comparison of the results for np = 81,R0 = 1.3 and np = 120,R0 = 1.3
shown in figure 2.3.12 shows the conditional distributions of duration given final
sizes of 20 (out of 81) and 30/120 are very similar. This is an example of a general
observation, from other examples not shown here, that the distribution of duration
conditioned on attack rate is independent of population size for np greater than
quite small values and that there is little dependence on R0.

The expected duration E(Tdurn) could be calculated by numerical integra-
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Figure 2.3.11: Distribution of duration, marginal (left), conditional on final size
(right) np = 81,R0 = 2.025

tion of the p.d.f. obtained in the previous paragraph but a faster and more direct
method is to use the fundamental matrix which gives the mean and variance directly
using the formula in equation 5, this has also been suggested by Keeling and Ross
(2008). However the bi-modality of the distribution as shown in section 2.3.3 again
means that it is not a useful statistic, for that example E(Tdurn) = 4.917603, and we
are more interested in the mean conditioned on a “major” outbreak. The calcula-
tion using the fundamental matrix also gives E(Tdurn) starting from each transient
state, from which the expected duration of example epidemics with different initial
numbers of infectives is obtained, for this example it increases up to 5 initial infec-
tives, then decreases, this is because the probability of a “major” outbreak increases
rapidly with the number of infectives but once 5 is reached the “major” outbreak
is almost certain and increasing the number of initial infectives removes the time
needed to infect them. More useful expectations can also be obtained, for exam-
ple the expected remaining duration after the nth removal, ignoring any known
removal times before it. The distribution of number of infectives at the nth removal
is available from the EMC, which is used as initial distribution over states, and
then calculated from the same fundamental matrix. An alternative approach is to
condition on the final size using a technique described by Kemeny and Snell (1976)
p64, conceptually a modified Markov chain is constructed with just one absorbing
state, they show how the fundamental matrix of the modified chain is obtained from
that of the original chain.
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81,R0 = 2.025, 1.3 and np = 120,R0 = 1.3
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I0 1 2 3 4 5 6 7 8 81
E(Tdurn) 4.92 6.88 7.64 7.90 7.93 7.86 7.75 7.63 4.98

Table 2.3.3: Expected duration of example epidemics with different initial numbers
of infectives

Barbour has shown that the final size and duration are asymptotically inde-
pendent and his formula for the distribution of the duration, based on asymptotics,
is good even for moderate values of np. An example of the departure from indepen-
dence is shown in the contour plots in figure 2.3.12. The main advantage of using the
exact Markov representation is to investigate conditioning on other events, an exam-
ple question is: given we observe R (tc) at tc, what is the distribution of remaining
duration and final size ?

2.3.5 Martingale Plots of the GSE Trajectory

The visualisation of possible trajectories of the GSE through the state space is useful
for understanding the variability of the GSE and comparison of other models with
the GSE. A plot based on a well known martingale is introduced which assists in
interpretation of variability and is used below to illustrate some features of the
bipartite graph epidemic models.

In Becker and Hasofer (1997) several martingales derived from the GSE
are used to develop estimators of the parameters. One of these M(t) = S(t)(1 +
R0/np)R(t) can be used to study the trajectory, the EMC provides a simple proof
that {M(t) : t ≥ 0} is a martingale.

Theorem 2. In the GSE {M(t) = S(t)(1 +R0/np)R(t) : t ≥ 0} is a martingale.

Proof. Consider the sequence Mj = M(Tj) where Tj is a transition time, infection
or removal, the two possible changes from the state (s, i, r) withMj = s(1+R0/np)r

and their probabilities are:

next state Mj+1 probability Mj+1 −Mj

infection (s− 1, i+ 1, r) (s− 1)(1 +R0/np)r sR0/np
1+sR0/np

−(1 +R0/np)r

removal (s, i− 1, r + 1) s(1 +R0/np)r+1 1
1+sR0/np

sR0/np(1 +R0/np)r

and so E(Mj+1) = Mj and E(|Mj+1|) <∞ and as M(t) is constant between
Mj for each j then {M(t) : t ≥ 0} is a martingale.

On simulated data from the GSE it is straightforward to calculate Mj and plot
against the number of removals, this is done in figure 2.3.13 for a set of 1000 major
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Figure 2.3.13: Martingale plots of 1000 simulated GSE R0 = 2, a shaded density
highlights the most likely trajectories, single trajectories are not all visible. Exact
quantiles of the distrbution of Mj and the absorbing boundary at zero infectives are
included.

epidemics simulated on a population of 1000 with R0 = 2; also shown are the
absorbing boundary with zero infectives and the median and two quantiles calculated
using equation 2.3.3. For most of the epidemic the curves are as might be expected:
fairly close to a horizontal line, however at the right hand side when close to the
absorbing boundary the probability is close to 1 of a removal with a resulting small
increase inMj and there is a small probability of a large decrease inMj . It should be
noted that if an estimated R0 is used thenM is no longer a martingale, in particular
if we use the estimator (see chapter 4) based on the same martingale equation, the
end point is fixed as a function of final size. It would be possible to derive a goodness
of fit test from the calculated bounds, however this would require full data which
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are rarely available. Similar plots are used below to portray the difference between
some models incorporating heterogeneity and the GSE.

2.4 Discrete Time Epidemic Models

Usually complete data are unavailable and the only data available are regular, i.e.
daily, counts of those Removed. The observation interval is often one day, sometimes
more and rarely less. There are two approaches to modelling these data, one is to
consider a continuous time model with regular observation, the other is to use a
discrete time stochastic process. The first approach is typified by considering the
GSE with daily counts of those Removed, so the observations are Yt = np − S (t)−
I (t) at t = j∆t for j = 1, 2 . . . T where ∆t is the fixed observation interval. We
can consider this as a Hidden Markov model (HMM) where the observation is a
deterministic many to one mapping X 7→ 0 . . . np and the transition probability
matrix Pθ = e∆tQθ . This approach is considered further in chapter 4.

The differences between this and more usually considered HMM are that the
process is acyclic, and the transition matrix is sparse. Other characteristics are that
the observations have limited information about θ and that calculating the exact
transition matrix Pθ = e∆tQθ is slow. Also a significant feature of the SIR epidemic
is that at all stages, particularly the very early and late stages there is a significant
chance that the epidemic dies out. In terms of the HMM it enters an absorbing
state, although there may be further data indicating this is wrong, or in terms of
the support of the posterior, states with zero infectives are excluded, except the
final state.

Discrete time models also have a long history, the Reed-Frost model was
developed in 1928 and the Greenwood in 1931 (see for example sect §3.8.1 of Allen
(2008)). These models work in terms of generations of infection rather than calendar
time and are appropriate for modelling diseases with either long latent periods, so
that generations of infection can be identified, or in very small populations such
as households. They can also be used to obtain useful analytic results e.g. Scalia-
Tomba (1985), collectively these and other variants are called chain binomial models.
Becker (1989) gives a description of this class of model for generations as: with
probability qi an individual escapes infection when there are i infectives, the Reed-
Frost model has qi = qi, and the Greenwood model qi = q for i > 0 and a single
parameter q ∈ (0, 1). The number infected each generation is N I

k+1 = NS
k − NS

k+1
where NS

k+1|NS
k is binomially distributed as
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Pr(NS
k+1|NS

k = s,N I
k = i) ∼ bin(s, qi), (2.4.1)

the epidemic stops the first time N I
k+1 = 0.

In the Reed-Frost model the parameter p = 1−q is interpreted as the proba-
bility that a given infective individual infects any given susceptible individual during
the former’s infectious period.

2.4.1 A Binomial Model for Regularly Observed Epidemics

An alternative binomial model is described here which could be considered as an
approximation to the regularly observed continuous time GSE or considered as a
distinct model. Again this is a Markov chain on the same state space as the GSE,
and in the layout of figure 2.2.1 motion is again only to the right or down but
whereas the GSE only moves 1 step, here the size of moves is only limited by the
boundary of the state space. Analytic asymptotic results on this model are harder
to obtain than in the continuous time GSE, however computation of the likelihood
is significantly easier. Standard HMM techniques for inference could be applied to
this model or it could be used as a proposal distribution in MCMC for the regularly
observed GSE.

At each step k of the chain the number of new infections Vk and removals
Wk of current infectives are independently binomial distributed with parameters pR
and pI(.) as

Vk ∼ binomial(S (k) , pI(I (k)))

and
Wk ∼ binomial(I (k) , pR).

The next state of the Markov chain is then determined by S (k + 1) = S (k) − Vk
and I (k + 1) = I (k) + Vk −Wk. The parameter pI is dependent on the number of
infectives and the obvious approach is to link them to the parameters of the GSE
by pR = 1− exp(−ρ) and pI(ν) = 1− exp(−λν), this model differs from the GSE in
that recoveries can not occur on the same day as infection, which in many situations
will be more realistic. This model can now be compared to the related regularly
observed continuous time model. The distributions of Vk andWk are compared with
the equivalent exact marginal distributions of the GSE, in figure 2.4.1. The example
chosen has R0 = 3,∆t = 0.5, the distributions are plotted for transitions from two
states, one near the beginning, one in the middle. Examination of those and other
plots suggests that the marginal distributions are close except when N I

t = 1 or 2,
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the differences are mainly that the binomial model ignores the correlation present
in the GSE and in the early stages newly infected individuals don’t contribute to
the infectious pressure until the next day.

Figure 2.4.1: Comparison of GSE and binomial models, np = 120. The upper pair
are at the start of the epidemic S=118,I=2,R=0. The lower pair are in the middle
at S=40,I=40,R=40. R0 = 3, ∆t = 0.5.

2.5 Models for Epidemics Incorporating Heterogeneity

The crucial term in the SIR model is the non-linear term for the infection process
λS (t) I (t) which incorporates the least justifiable assumptions, that of homoge-

33



neous mixing of the population, equal infectiousness and equal susceptibility. Much
work has been done developing models that incorporate different aspects of the true
heterogeneity. A range of observed or unobserved co-variates for individuals, in par-
ticular age or location, can have significant effects on some or all of contact patterns,
infectiousness, susceptibility and durations of phases, some aspects of some models
for heterogeneity are considered in this section.

Much work has been done developing models that incorporate different as-
pects of the true heterogeneity, many established results are in books such as Molli-
son (1995) which includes sections on heterogeneity and grouped populations. Mod-
els which allow for variation in either infectiousness or susceptibility are common, for
instance (Becker and Yip, 1989) point out that “variation in susceptibility of indi-
viduals can give the impression that the infection rate is declining over time, because
highly susceptible individuals tend to be infected earlier” or it could give rise to other
incorrect assumptions. Another approach is that of Severo (1969b) who introduces
a heuristic model where the term λS (t) I (t) is replaced by λ(S (t))1−b(I (t))a/N
with a > 0 and b < 1.

Different aspects of heterogeneity will provide departures from the homoge-
neous model in a variety of ways which may operate at different timescales. The
effects may manifest themselves as increased variance or as a mixture of epidemics
with different time origins. Consideration must also be given to whether they should
be modelled as random effects or unknown parameters.

The most general model incorporating heterogeneity in infectivity allows a
different infection rate λi,j between each pair of individuals, denoting the state of
individual j at time t as Xj,t ∈ {S, I,R} for each j

P(Xj,t+dt = I |Xj,t = S) =
∑

λi,j1(Xi,t = I)dt (2.5.1)

P(Xj,t+dt = R |Xj,t = I) = ρdt

the resulting population rate of infection is
∑
i∈S

∑
j∈I λi,j . With O(N2) parameters

and O(N) data points, clearly this is not identifiable. A wide variety of models have
been proposed that assume a plausible structure for the infectious contact rates.
The unsolved problem from both a practical and a theoretical perspective is how to
choose an appropriate model and measure if it is a plausible fit for observed data
in a principled manner. Co-variate data can be modelled by using a linear or log
linear model for the λi,j in equation 2.5.1, an example of such a model is described
in Jewell and Roberts (2012). Imposing more structure enables a deeper analysis
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and the most widely studied classes of models are briefly described.

2.5.1 Household Epidemic Models

For most human diseases there is a much greater chance of infection within a house-
hold than outside, and data are often available at this level. A large body of work
has studied both inference and asymptotic results, a recent example is Ball et al.
(2010a) which combines variable infectiousness with a household model and shows
that it is possible to discriminate between the models by comparing the Kullback-
Leibler divergence for the fitted models to data. The usual formulation is that each
individual is subject to two independent sources of infection, global and within the
house. The overall infection rate on a susceptible individual is λGIG (t) + η (IH (t))
where IG (t) is the global number of infected individuals, IH (t) the number infected
within the same household, λG the global infection rate and η (n) a function for
the within household infection rate when n are infected. The usual form is either
η (n) = nλH or sometimes η (n) = 1 [n > 0]λH .

2.5.2 Spatial models

On a large scale the progression of many diseases is dominated by the spatial aspects
and so the full range of spatial analysis techniques can often be applied. An example
is the analysis of the 2001 foot and mouth epidemic in the UK (Diggle, 2006) using
partial likelihoods for the spatio-temporal spread of the disease. For human diseases
in industrialised countries and some diseases of intensively farmed animals, the
variation in the contact process is often non-Euclidean and alternatives include
network models which are described below.

2.5.3 Multitype population models

Populations can frequently be partitioned into groups based on location such as
town or school or on categorical co-variates such as sex or age group e.g. pre-
school, school age, adult. A commonly used model assumes homogeneous mixing
within a group and different infectiousness within and between groups. The basic
model is that if the population in group j is nj and counts of individuals in the two
states Susceptible and Infective at time t are denoted by (S (j, t) , I (j, t)) infection
occurs within that group at rate

∑
i ψi,jS (j, t) I (j, t) and ψi,j is the rate of infection

between an infective in group i and a susceptible in group j, usually the matrix ψi,j
is assumed symmetric. These are sometimes called meta-population models. An
example of statistical inference on a simple version of this model is that of Becker
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(1989, chapter 5) who analyses an epidemic of a respiratory disease on Tristan da
Cunha and shows that from final size information alone it is possible to identify
a higher rate of transmission in school children. These models are important as
outbreak control measures are often based around structures within populations
(e.g. school closures).

The difference from a homogeneous model depends on the infection rate, at
high infection rates the epidemic rapidly spreads to all groups and then behaves
similarly to a heterogeneous model. While at lower infection rates the epidemic
may be delayed or absent in some groups, so making the probability of multiple
modes in the distributions of summary statistics of the epidemic.

2.5.4 Epidemics on Networks or Graphs

In several animal diseases a contact network4 based on known animal movements
between farms and other potential infectious contacts is known. An analysis based
on these networks is possible, examples include Jewell et al. (2008, 2009a); Jonkers
et al. (2010). Human movement and contact patterns are considerably more complex
and difficult to identify or model, further consideration of human contact networks
is given in section 2.5.5. Standard homogeneous models including SIR, SEIR, SIS
and Reed-Frost have all been extended by using a graph (or network) to model the
allowable infection paths, we continue to concentrate on the SIR model. Epidemic
models are constructed on a graph G = (V,E) where V is the set of np individuals,
labelled w.l.o.g. with integers e.g. i, j, and E the set of edges indicates that an
infectious contact is possible. This could be considered as a special case of equation
2.5.1 where λi,j = 0 if there is no edge between i and j, the case considered most
frequently of undirected, unweighted graphs corresponds to λi,j = λ > 0 if there is
an edge between i and j. The SIR epidemic on a graph can be simply defined via the
adjacency matrix A, A = ai,j (np × np) where ai,j = 1 if there is an edge between i
and j else 0. Denote the state of individual j at time t asXj,t ∈ {S, I,R} and the set of
individuals in each state at t as S(t), I(t) and R(t) where |S(t) ∪ I(t) ∪R(t)| = np.
Then for each j we have

P(Xj,t+dt = I |Xj,t = S) = λ
∑

ai,j1(Xi,t = I)dt (2.5.2)

P(Xj,t+dt = R |Xj,t = I) = ρdt . (2.5.3)

Recent interest in models for random networks in other contexts has gener-
4We use the terms graph and network interchangeably, mainly using the former when discussing

mathematical aspects and the latter for actual examples.
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ated considerable interest in the study of epidemics on random graphs. Results typ-
ically investigate the existence of and conditions for epidemic thresholds on graphs
chosen from a distribution, usually uniform, over a family of graphs. These mod-
els can be considered as random effects models where the λi,j in equation 2.5.1
are chosen from a binary distribution, for example the Erdös-Rényi random graph
corresponds to choosing λi,j = λj,i = λ with probability p, otherwise 0. A recent
summary of models for random graphs in the context of epidemics is given in sec-
tion 2.7 of Danon et al. (2011). Much of the recent literature considers the effect of
degree distribution and clustering of the graph on the epidemic, but as pointed out
by Eubank et al. (2004)

Both degree distribution and clustering are relevant to short-term
propagation in a network, but longer time dynamics will be driven by
global graph properties. It is thus natural to consider estimation schemes
for global topological measures, such as expansion. Informally, the higher
the expansion, the quicker is the spread of any phenomenon (such as
disease, gossip or data).

One approach to modelling both local and large scale structure in graphs, that
provides the option of incorporating relevant geography is the geographical threshold
graph Masuda et al. (2005). The bipartite approach taken below also naturally
incorporates both large and small scale features.

Recently several significant results have been obtained for the evolution of
epidemics on graphs chosen randomly from particular distributions on a subset of
all possible graphs. The results of Volz proved by Decreusefond et al. (2010) and
of Ball et al. (2010b) are particularly significant while that of Ball et al. (2014) is
considered in section 2.6.

2.5.5 Data on Human Contact Networks

Obtaining accurate data on human contact networks is difficult because of several
fundamental problems of definition of a contact and appropriate sampling, these are
considered in more depth in Danon et al. (2011). There is still a gap between theory
and application, two approaches to obtaining contact data relevant to the spread of
human epidemics are described below.
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POLYMOD

The POLYMOD study Mossong et al. (2008) studied the social interactions within
8 European countries of 7,290 participants, recording characteristics of 97,904 con-
tacts, including age, sex, location, duration, frequency, and occurrence of physical
contact. They found that mixing patterns and contact characteristics were remark-
ably similar across different European countries, (reproduced in figure 2.5.1). The
POLYMOD matrices have been widely used as a significant improvement on the
assumption of homogeneous mixing, for example in Medlock and Galvani (2009) the
cost-effectiveness of vaccination of different age-classes during the H1N1 pandemic
in 2009 is studied. However the usual approach is to use the matrices directly as if
true, a more flexible approach regarding the data as a sample from an underlying
non-parametric structure such as Gaussian random field could be usefully investi-
gated.

Figure 2.5.1: POLYMOD contact rates by age and country. Each plot is for one
country and shows the reported contact rates between pairs of individuals of different
ages. White is high, blue low, the age of the participant is on the x-axis and age of
reported contact on the y-axis.

EpiSims

The EpiSims project (Eubank et al., 2004) has developed a large scale simulation of
epidemic spread in a metropolitan area, the example used in their paper is a hypo-
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thetical smallpox outbreak in Portland, Oregon. Using census and transportation
data a dynamic bipartite contact graph is constructed for 1.5 million people and
180,000 locations, which is a synthesis of realistic models of disease propagation,
human behaviour and available data. They use the bipartite graph to construct a
weighted graph which is used within the simulation to provide contact rates. Al-
though they provide their derived contact graph for 1,515,271 individuals, they do
not provide the underlying bipartite graph. The marginal distributions of the bi-
partite graph are given in figures 2a and 2b of the reference which are similar to
those shown in figure 2.7.7.

2.6 Epidemic Models on Bipartite Graphs

Epidemics on bipartite graphs have received much less attention than epidemics
on graphs. This section shows that a wide variety of other epidemic models can
be formulated as bipartite graph models and so provides a unifying framework for
comparison of models.

2.6.1 Bipartite Graphs

An alternative model for the possible contacts between individuals is to consider
a set of locations at which individuals mix homogeneously. The locations may be
of different types such as schools, households, work places. Individuals visit one
or more of these locations. This can be represented by a bipartite graph such as
that shown in the upper half of figure 2.6.1 where the upper nodes represent loca-
tions and the lower nodes individuals. A link indicates visits or association with the
location and so a potential contact. A range of other epidemic models for hetero-
geneity can be considered as bipartite graph models, and some are presented below,
these alternative representation are largely of use in understanding the relation be-
tween models. Software for bipartite graph epidemics can also be used on these
representations.

A bipartite graph G = (U, V,E) consists of two disjoint sets U and V com-
prising the nodes or vertices5, and a set of edges E where each edge is a pair of nodes
(u, v), u ∈ U, v ∈ V . Both directed and undirected bipartite graphs can be studied,
here only undirected graphs are considered. In general the two sets U and V can be
of the same type so that all vertices in U and V are in some larger set of vertices,
here U and V are distinct with U representing individuals who may become infected
and V an abstract set of possible contacts, which may include physical premises such

5the terms are used interchangeably
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as schools, houses or work places and can include a temporal aspect. A convenient
representation is the adjacency matrix A = (aij , i ∈ U, j ∈ V ) where aij = 1 if and
only if (i, j) ∈ E and aij = 0 otherwise.

Figure 2.6.1: Example bipartite graph (Newman)

Two projections from a bipartite graph G = (U, V,E) to two unipartite
graphs GU = (U,EU ) and GV = (V,EV ) are possible (see Latapy et al. (2008)
for details), they correspond to paths of length 2 in the bipartite graph. A small
example bipartite graph, which is taken from Newman (2003), is shown in the upper
part of figure 2.6.1 (where U = {P1, P2, . . . , P11} and V = {L1, L2, L3, L4}) and
the two projections are shown in the lower part. The upper projection, shown on
the left, corresponds to connections between places, the lower projection to con-
nections between people i.e. the standard graph widely considered and described
briefly in section 2.5.4. The adjacency matrices of the upper and lower projections
are obtained from the adjacency matrix of the bipartite graph A from ATA and
AAT by replacing the diagonals with 0 and entries ≥ 1 with 1. Properties of the
two projections may provide information that can provide insight into epidemics on
the graphs for example their diameters provide information on how fast an epidemic
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might spread.
The following result links the two diameters :

Theorem 3. The diameters of the upper and lower projections of a connected bi-
partite graph differ by at most 1.

Proof. For any connected graph G with adjacency matrix A and diameter d, Gd is
a complete graph. As An+1

low = AAntopA
T and all aij > 0, where Alow is the adjacency

matrix of the lower projection and Atop that of the upper projection.

Graph Decomposition

Any graph can be decomposed into cliques which corresponds to a bipartite rep-
resentation, however the decomposition is not unique and determining an optimal
representation, with the minimal number of columns, is known to be a hard problem
(NP complete 6), however much research has been done into finding approximations
to the minima, for example Barber (2008). Except in special cases, such as where
the graph has been obtained from the projection of a bipartite graph, this mapping
from a contact graph to a bipartite graph is unlikely to be useful.

A combined spatial bipartite graph epidemic model The importance of
spatial aspects of the contact process has been mentioned above, one approach
to the study of spatial epidemics is to study epidemics on regular grids, however a
regular grid lacks both the heterogeneity and strong local clustering that real contact
processes exhibit. A flexible model based on the bipartite graph epidemic, which
combines aspects of a spatial model with more local contacts is readily constructed.
By taking a finite grid, either rectangular or triangular and placing a number of
individuals at each node and one or more individuals in both groups along each
edge, a flexible model can be constructed. Simulations of some examples of these
models show interesting properties, including final size distributions that are close
to uniform combined with epidemic curves that are similar to those from the GSE.
Further investigation of their properties is planned.

.

2.6.2 Random Bipartite Graphs

Recently many models for unipartite graphs have been proposed, that give rise to
distributions over subsets of the space of possible graphs, see for example Durrett

6http://en.wikipedia.org/wiki/Clique_cover
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(2007). In a similar way a variety of models can be proposed for bipartite graphs
that give rise distributions over subsets of the space of possible graphs, those that
relate to epidemics are described below. The criteria for choice will depend on the
purpose of the study but analytic tractability is often the principal concern.

Random Intersection Graph

The simplest model is the random intersection graph (RIG), which is the lower
projection of an Erdös-Renyi bipartite graph in which each link occurs independently
with probability r. Two examples of their use in studying epidemics are Britton et al.
(2008) who describes the RIG as:

Random intersection graphs were introduced in Singer (1995)7 and Karon-
ski et al. (1999). In its simplest form, the model is defined as follows:
Given a set V of n vertices and a set A of m auxiliary vertices, construct
a bipartite graph Bn,m,r by letting each edge between vertices v ∈ V and
a ∈ A exist independently with probability r. The random intersection
graph Gn,m,r with vertex set V is obtained by connecting two vertices
v, w ∈ V if and only if there is a vertex a ∈ A such that a is linked to
both v and w in Bn,m,r.

A recent paper by Ball et al. (2014) derives expressions for a threshold parameter
R∗ in a class of RIG, so that in a large population an epidemic with few initial
infectives can give rise to a large outbreak if and only if R∗ > 1 and shows that a
law of large numbers can be derived. The extension to other distributions of graphs
would not be straightforward. Their model differs from our model based on the
same bipartite graph, they have a constant infection rate for individuals linked by
one or more edges, whereas in our model the infection rate is greater for individuals
with more contacts.

Fixed margin random graphs In the context of the analysis of contingency
tables the distribution and simulation of binary matrices with fixed marginals has
been investigated by Besag and Clifford (1989) and Chen et al. (2005). These are
the bipartite equivalent of the widely studied “configuration network” for unipartite
graphs.

7see Britton for these references

42



2.6.3 Epidemics on Bipartite Graphs

The extensions of standard epidemic models, both discrete time and continuous
time, with homogeneous mixing to the bipartite network are straightforward to
define and simulate. Here the focus is again on the continuous time SIR model, the
extensions to other models are obtained in a similar way.

Two approaches to defining the infection rate in continuous time models are
possible, a single infection rate could apply to all pairs of individuals connected
through one or more locations, this approach is used in the papers described in
section 2.6.2. We use an alternative that has an increased infection rate between
pairs of individuals that have more than one class8 in common, as well as reflecting
reality, that increased potential routes of infection are likely to give an increased
infection rate, it permits the representations of other models in this framework as
described in section 2.6.4, subsequently any reference to an epidemic on a bipartite
graph should be taken to be of this form.

Epidemic Thresholds on Bipartite Graphs

Newman (2003) has considered epidemics on a class of random bipartite networks
using results from percolation theory to derive asymptotic thresholds, he asserts
that the position of the epidemic threshold decreases with increasing clustering.
The implication that this applies to all graphs is unproven. Britton et al. (2008)
have considered a Reed-Frost model in a similar way saying:

The approximation gives rise to expressions for the epidemic threshold
and the probability of a large outbreak in the epidemic. It is investigated
how these quantities varies with the clustering in the graph and it turns
out for instance that, as the clustering increases, the epidemic threshold
decreases.

The interpretation of existing results on epidemic thresholds on graphs requires care
as the result combines both the probability of selecting a graph with the probability
of an epidemic on that graph.

Definition of a Bipartite Graph Epidemic

A bipartite graph epidemic on a bipartite graph G = (U, V,E) with adjacency
matrix A = (aij , i ∈ U, j ∈ V ) is defined as follows. Denote the state of individual
j ∈ U at time t as Xj,t ∈ {S, I,R} and the set of individuals in each state at t

8the terms class, group and column are used interchangeably

43



as S(t), I(t) and R(t)9 where S(t) ∪ I(t) ∪ R(t) = U . Each class k ∈ V has an
associated infection rate λk ≥ 0, possibly constant across classes or drawn from a
specified prior distribution such as a gamma. Then for each susceptible individual
j ∈ S(t) the rate of infections at time t is

ηj (t) =
∑
k∈V

ajkλkIk (t) (2.6.1)

where
Ik (t) =

∑
l∈U

alk1 [Xl,t = I] =
∑
l∈I(t)

alk (2.6.2)

is the number of individuals that are in class k and infective at time t. The re-
movals happen independent of class at a rate of ρ for each individual in I(t). The
initial infective is chosen with distribution Pι, a distribution on U , and the complete
stochastic process for the epidemic is represented as BipE (A,λ, ρ,Pι) where λ is
the vector of infection rates λk k ∈ V .

The likelihood for the bipartite graph epidemic is presented in section 4.5.1
where it is used for inference.

Algorithm to simulate a bipartite graph epidemic

The linear structure across columns of the infection rate permits an efficient algo-
rithm for simulation, which keeps track of the state of each individual Xj,t ∈ {S, I,R}
and the counts of infectives Ik (t) and susceptibles Sk (t) in each column k. This is
shown in algorithm 2.1 where without loss of generality we take U = {1 . . . np} and
V = {1 . . . nK}.

9note that R(0) and R0 are distinct
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Algorithm 2.1 Simulation of a bipartite graph epidemic

1. sample initial infective i ∼ Pι

2. initialise:

(a) set t = 0;

(b) for k = 1 . . .K set Ik (0) = aik; Sk (0) = np − aik ; I (0) = 1;
S (0) = np − 1

(c) set Xi,0 = I, for j ∈ {1 . . . np} \ {i} set Xj,0 = S

3. repeat the remaining steps for each event time t,

(a) a maximum of 2np − 1steps will be taken

4. calculate infection rates for each column

(a) rk = λkIk (t)Sk (t)

5. calculate total event rate λ = ρI (t) +
∑nk
k=1 rk

6. sample ∆t the time to the next event exponential rate λ.

7. set t′ = t+ ∆t

8. sample the event type:

(a) with probability ρI (t) /λ it is a removal

i. sample the individual to be removed uniformly from
{j : Xj,t = I}

ii. set Xj,t′ = S; I (t) = I (t)− 1;
for each k set Ik (t) = Ik (t)− ajk

(b) with probability rk/λ it is an infection in column k

i. sample the individual to be infected uniformly from
{j : Xj,t = S & ajk = 1}

ii. set Xj,t′ = I; I (t) = I (t) + 1 ;S (t) = S (t)− 1;
iii. for each k set Ik (t) = Ik (t) + ajk and Sk (t) = Sk (t)− ajk

9. set t = t′, record t and its event type

10. if I (t) is zero return the epidemic times and stop
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2.6.4 Bipartite Representations of Standard Epidemic Models

In this section several commonly used epidemic models which incorporate some form
of heterogeneity are shown to have a bipartite graph based representation.

Household model

The widely studied household model, described briefly above, with a within house-
hold infection rate η (n) = nλH , is readily represented as a bipartite graph epidemic.
When the number of households is nh this has a bipartite graph representation with
an adjacency matrix of size np × (nh + 1) where np is the sum of all the household
sizes. With a fixed household size m then np = nhm.

The bipartite graph epidemic of equation 2.6.1 is obtained by setting λ1 = λG

and λj+1 = λH for 1 ≤ j ≤ m and the adjacency matrix is ai,1 = 1 for all i ≤ np and
ai,j+1 = 1 for Nj−1 < i ≤ Nj , where N0 = 0 and Nj is the sum of household sizes
1 . . . j. For example for 4 houses of sizes 2,3,3,4 the adjacency matrix and associated
infection rates is shown in table 2.6.1.

λG λH λH λH λH
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

Table 2.6.1: bipartite representation of a household model

Multi-type model

The frequently used multi-type model mentioned in section 2.5.3 with infection rates
ψi,j between an infective in group i and a susceptible in group j, can be considered
as a bipartite graph epidemic model subject to conditions on ψi,j .
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Theorem 4. If Ψ = (ψi,j 1 ≤ i, j ≤ m) is symmetric and ψi,i ≥
∑
j 6=iψi,j for all i

then a multi-type epidemic model with m types and infection rates Ψ has an equiv-
alent representation as a bipartite graph epidemic model with m(m+ 1)/2 groups.

Proof. By construction, set λk = ψi,i −
∑
j 6=i ψi,j for k = 1 . . .m and assign the

elements of ψi,j where i < j to λk for k = m + 1 . . .m(m + 1)/2. Construct an
adjacency matrix with columns k = 1 . . .m for the within type infections each being
an indicator vector for type k and the remainingm(m−1)/2 columns for the between
type infections being a ’logical or’ of columns i and j.

The condition will usually apply if the groups are geographically separate but
may not if the groups are split by ages or if varying susceptibility and infectiousness
is modelled by a product form for ψi,j . For example for 3 types of sizes 3,2,4

ψ1,1 − ψ1,2 − ψ1,3 ψ2,2 − ψ2,1 − ψ2,3 ψ3,3 − ψ3,1 − ψ3,2 ψ1,2 ψ1,3 ψ2,3

1 1 1
1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1
1 1 1
1 1 1

.

Bipartite graph epidemics with asymmetric infection rates A frequently
studied model has both susceptibility and infectiousness varying between groups so
that ψi,j = cidj where ci is the infectiousness and dj the susceptibility of individuals
in groups i and j. An extension to the bipartite graph epidemic defined in section
2.6.3 could be considered: where the infection rates λk k ∈ V are replaced by two
sets of rates λck and λdk and equations 2.6.1 and 2.6.2 are replaced by

ηj (t) =
∑
k∈V

ajkλ
d
k

∑
l∈I(t)

alkλ
c
kIk (t) (2.6.3)

as the rate of infections at time t for each susceptible individual j ∈ S(t). This would
give an immediate correspondence between this extended model and the important
subset of multitype models, but at the expense of extra complexity and is not
considered further here.
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Other models

Random graph Although any graph can be represented in a bipartite form
using the clique decomposition, the usual model with a constant infection rate along
each edge does not in general have a bipartite graph epidemic representation. The
exceptions include the set of graphs formed from the lower projection of a bipartite
graph with an adjacency matrix that contains no repeated rows with more than one
1. This set is composed of graphs composed of cliques with the overlap between
cliques containing at most one vertex.

Spatial models A frequently used spatial model for epidemics is to have the infec-
tion rate between two individuals depend inversely on a spatial kernel, a very similar
set of infection rates can be obtained by combining a bipartite graph epidemic, with
overlapping spatial tilings.

The simplest example is to choose a small number m of tilings, 3 for example
and construct the first tiling with vertices at (im, jm) for i, j ∈ Z and subsequent
ones at (im+ 1, jm+ 1) (im+ 2, jm+ 2) etcetera. Now take the spatial locations,
suitably scaled, and for each tiling and each individual determine which square
contains the location, each square on each tiling corresponds to a group/column.
Any pair of rows/individuals will be in the same square for 0,1,2 or 3 tilings and
so have 0,1,2 or 3 columns in common. The infection rates of the spatial kernel
model and the proposed bipartite graph model will be approximately proportional.
Increasing m will bring the models closer but increases the computational burden.

A three level model A model incorporating households, schools and workplaces
is considered by Britton et al. (2011) which can also be represented as a bipartite
graph epidemic model. Their example has 500 households of size 4, where the 2
adults in a house each attend one of 40 work places and the 2 children attend the
same school of size 100. A straightforward extension of the household representa-
tion above is used to represent this with 551 columns 500+40+10 + 1 for a global
infection possibility. This model goes a long way to capturing the most obvious
heterogeneities in urban life and has been used to simulate examples from their
model.

2.7 Indian Buffet Epidemic (IBufE)

When the contact structure underlying the epidemic is unknown, but believed to
be both non-homogeneous and possibly having significant effects, a non-parametric
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approach to modelling the contact structure is appropriate as it provides more flex-
ibility and less unexpected consequences than choosing a model from a restricted
set which may inadvertently imply unexpected features. The Indian Buffet Epi-
demic model provides such an approach, it has been developed to provide a model
that fits a wide range of heterogeneity in the contact process with two parameters
that describe the departure from homogeneity but which does not require detailed
knowledge of individuals contact behaviour. An Indian Buffet Processes is used to
provide a distribution over the space of possible bipartite graphs which provides
the contact distribution for the epidemic, this original concept is described in the
remainder of this chapter.

2.7.1 Indian Buffet Processes

The Indian Buffet Process (IBP) was introduced by Griffiths and Ghahramani
(2005) as a generalisation of the Dirichlet process and the Chinese restaurant pro-
cess. In the original application it provides a distribution for a latent class mem-
bership matrix Z which is indirectly observed via a linear observation process. A
recent review article is Griffiths and Ghahramani (2011) where the IBP is described
as a stochastic process defining a probability distribution over equivalence classes
of sparse binary matrices with a finite number of rows and an unbounded number
of columns. The IBP is a possible distribution in any situation requiring a binary
matrix with unidentifiable columns and so after describing the IBP it will be com-
bined with the bipartite graph epidemic model to give the Indian Buffet Epidemic
(IBufE), where the IBP matrix Z is used as a bipartite adjacency matrix for the
epidemic. The finite number of rows correspond to the population and the columns
to unspecified locations and/or times of potential contacts. It was pointed out in
section 2.6.1 that any graph or contact structure can represented as a bipartite graph
and so as the IBP provides a distribution over all binary matrices it can be used as
a distribution over all contact structures.

The IBP has several representations all of which yield equivalent distributions
over slightly different equivalence classes of binary matrices and which allow a variety
of different approaches to MCMC for an IBP based problem. The name comes from
a metaphor for a sequential process where each new individual selects classes (dishes)
from an infinite Indian Buffet and the choice is recorded as the elements zi,k of the
matrix Z. The original IBP has one parameter α > 0, which governs the expected
number per row. The two parameter IBP is mentioned as a possible extension in
several papers and as explained later is necessary to give realistic contact structures
for an epidemic. The reason is that with high probability the one parameter IBP
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has one or more columns which are nearly all 1 and so nearly indistinguishable
from homogeneous mixing. The clearest definition of the two parameter IBP is in
Ghahramani et al. (2007) which is followed here, the single parameter distribution
is obtained by setting β = 1. As β is increased the matrices become sparser with
more columns and a lower maximum column count.

The limit definition of the IBP is the limit of a distribution over matrices
with K columns, as K →∞, first a distribution for finite K is introduced. For finite
K and N consider the distribution over all 2NK binary N ×K matrix, with entries
zi,k where for each column or class k, the entries zi,k ∼ Bernoulli(ψk) independently
for i = 1 . . . N and for k = 1 . . .K ψk has a beta(αβ/K, β) distribution10. The
probability of Z is

P (Z) =
K∏
k=1

∫ 1

0

N∏
i=1

ψ
zi,k
k (1− ψk)1−zi,kbeta(ψk;αβ/K, β)dψk

The independence of the zi,k within a column means the probability of Z depends
only on mk =

∑N
j=1 Zj,k and is a product of beta-binomial distributions

P (Z) =
K∏
k=1

B(mk + αβ
K , N −mk + β)
B(αβK , β)

(2.7.1)

where the usual term
( N
mk

)
from the beta-binomial distribution is absent because of

the many Z which have the same mk. The beta-binomial distribution is described
in appendix B together with some results on IBP distributions.

As we are interested in unlabelled columns it is appropriate to consider equiv-
alence classes of matrices that permit the study of the distributions of infinite ma-
trices. The “left ordered form” function lof (Z) is a many to one mapping of all
binary matrices which is defined in terms of the binary representation of each col-
umn. Each column is considered as a binary number < 2N with the first row as
the most significant bit. The function lof (Z) orders the columns of Z in decreasing
order of their binary representation, two examples are shown in figure 2.7.1 (a) has
β = 1 while (b) has β > 1. We denote the set of equivalence classes of matrices with
distinct left ordered forms as Zlof.

Definition 2. The Indian Buffet Process with parameters α, β defines a distribution
on Zlof which is denoted IBP (α, β,N). If Z ∼ IBP (α, β,N) and[Z] is the lof
equivalence class containing Z then

10The notation for the the beta function B(x, y) and beta distribution are defined in appendix D
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Figure 2.7.1: Simulations of Indian Buffet process, both in left ordered form (lof)
N = 260, (a) α = 15, β = 1 , (b) α = 8, β = 4

P ([Z]) = (αβ)K+∏2N−1
h=1 Kh!

e−K+

K+∏
k=1

B(mk, N −mk + β) (2.7.2)

where Kh is the number of columns with binary representation h, mk =
∑N
j=1 Zj,k

and K+ is the number of non-zero columns, mk > 0, these three terms are functions
of Z, hence the non appearance of Z on the r.h.s.. The expected value of K+ is
represented as K+ = E (K+) = α

∑N
j=1

β
β+j−1 .

It is easily shown (see Griffiths and Ghahramani (2005)) that the number
of classes for an individual/row

∑K
k=1 zi,k has a Poisson distribution with mean α

independently of K.
Figure 2.7.1 (a) shows an example Z ordered in left-ordered binary form

(lof ), it can be seen that a few columns on the left contain nearly all individuals.
The reason that the number in the largest class in the IBP is close to N can be
seen by noting that it will usually coincide with the largest ψk. As when β = 1
ψk ∼Beta(α/K, 1) with p.d.f. ∝ xα/K−1 and c.d.f. = xα/K the distribution of the
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maximum of K such random variables ψ(K) is therefore xα which is concentrated
near 1.

IBP two parameter sequential form The sequential formulation in terms of
the restaurant metaphor is that each customer chooses previously sampled dishes
with probability dependent on the the number of times previous customers have
chosen the dish. The first customer chooses Poisson(α) dishes, which sets z1,k = 1
for k up to the sampled value. Subsequent customers, i > 1, choose each previously
sampled dish with probability P (zi,k = 1) = mi,k/(β+i−1) (i chooses dish k) where
mi,k =

∑i−1
j=1 zjk and also takes a number of new dishes, denoted Ki,E sampled from

a Poisson distribution, Ki,E ∼ Poisson (αβ/(β + i− 1)). The average number of
dishes per customer is α, that is E (

∑∞
k=1 zik) = α for each each row i.

The sequential formulation does not generate matrices that are always in
lof (.) form, and we denote the set of possible matrices by Zseq. The distribution is

P (Z) = (αβ)K+∏N
i=1Ki,E !

e−K+

K+∏
k=1

B(mk, N −mk + β) (2.7.3)

which is very similar to the lof form and equation 2.7.2 is obtained by replacing∏N
i=1Ki,E ! with

∏2N−1
h=1 Kh!, which corresponds to the combinations of columns in

the lof map of Zseq to Zlof.

Stick Breaking A third construction of the IBP based on stick breaking is given
in Teh et al. (2007), however it is only presented for the one parameter form where
use is made of the cumulative product of νk i.i.d. Beta(α, 1) random variables,
giving ψ(k) = νkψ(k−1) =

∏k
l=1 νl where ψ(k) is the decreasing ordering of ψk. This

cannot be extended to β 6= 1 so is not considered here.

Simulating the IBP Simulation of the IBP is a pre-requisite for simulating
the Indian buffet epidemic described below and for MCMC inference on it which is
described in chapter 4. It is straightforward to simulate the IBP using any of the
formulations, for β > 1 the finite K method would require allocating a large matrix,
which is avoided in the sequential method. Converting a simulated matrix to lof
form is usually unnecessary, when it is required it is relatively time consuming.

2.7.2 Definition of the Indian Buffet Epidemic

In defining the Indian buffet epidemic we can consider two scenarios, which differ in
the unlikely case of observing two epidemics with identical contact structures. We
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can consider the matrix Z to represent some real but unknown and unobservable
contact matrix, where the IBP is a Bayesian prior on Z. Alternatively we can
consider Z to be part of a random effects model where the distribution of Z reflects
the randomness inherent in contact processes. In the former case multiple epidemics
would use the same Z, in the latter case each epidemic would sample a new Z.

Definition 3. The Indian Buffet Epidemic on a population of size np with parame-
ters θ = (α, β, λ, ρ), an infection rate scaling function ξ (n, λ) and an initial infective
distribution Pι is a two level stochastic process. A contact matrix Z ∼ IBP (α, β, np)
is used as the adjacency matrix for a bipartite graph epidemic as defined in sec-
tion 2.6.3, the infection rate within each column k of Z is λk = ξ (mk, λ) where
mk =

∑np
j=1 zjk and these are used in equations 2.6.1, 2.6.2 to define the epidemic.

The complete stochastic process is denoted IBufE (θ, np, ξ,Pι).

2.7.3 Analysis of the Indian Buffet Epidemic

Understanding the characteristics of the Indian buffet epidemic and the differences
from a homogeneously mixing epidemic is a challenging problem, extension of ex-
isting analytic results such as those for epidemics on graphs is hindered by the
dependence within the IBP and in particular the existence of columns within the
IBP that contain a single entry and have no impact on the epidemic. Analysis
has largely relied on simulations which although simple to perform are complex to
analyse. Analytic results are limited to analysis of the initial infection rate which
is described below. Simulating the Indian buffet epidemic is in principle straight-
forward, first a Z ∼ IBP is generated, then the epidemic is simulated using the
bipartite algorithm given in section 2.6.3. The hierarchical nature of the model
means that choices must be made of what to hold constant between simulations and
what to vary, even for a fixed set of parameters.

At first sight simulations of the IBufE look quite similar to the GSE and as
with the GSE, as the ratio of infection rate to recovery rate is varied different shapes
of infective curves are obtained, some examples are discussed below.

Infection Rate Scaling Function The form chosen for the infection rate scaling
function ξ (n, λ) is also important, it reflects the way in which infectivity scales with
population, and as mentioned in section 2.2.1 the paper by Begon et al. (2002)
considers this topic. Initial experiments used ξ (n, λ) = λ, particularly when β ≤ 1
one column contains most individuals, mk ≈ np and this column dominates the
epidemic, which is then indistinguishable from the GSE. Household models typically
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have very different global and household infection rates, in a similar vein a choice
such as ξ (n, λ) = λ/n seems appropriate, which in some sense makes each column
have similar effect on the epidemic, this is used subsequently. Other choices such
as ξ (n, λ) = λ/

√
n have also been simulated, further choices could be made by

consideration of studies such as that by Hethcote (1994) of five human diseases in
communities with population sizes from 1,000 to 400,000. By fitting an incidence
of the form NνSI/N he finds that ν is between 0.03 and 0.07. The communities
he studies are themselves combinations of the smaller groups implicit in the Indian
buffet epidemic so the value of ν is not necessarily appropriate for the choice of
ξ (n, λ). An analysis of the effect different choices of infection rate scaling function
have on the epidemics requires a deeper understanding of the other components of
the Indian buffet epidemic and unless explicitly mentioned ξ (n, λ) = λ/n is used in
the remainder of this thesis.

Example Simulations of the Indian Buffet Epidemic As an illustration of
the variation that can arise, some examples are shown in figure 2.7.2 of simulations
on a single Z ∼ IBP (4, 25, 1000). This example has K+ = 374 and 285 columns
with more than one entry. The 1000 rows have between 0 and 11 entries, and the
bipartite graph, excluding 8 empty rows, is connected. Each sub-figure shows 2 or
3 epidemics with the same initial infective and value for λ, although each infective
curve could be from a GSE there is more variation. The plots in sub-figures (a) and
(c) have the same value of λ = 0.5 and are fairly similar, differing in the number of
groups the initial infective is in. The plots in sub-figures (b) and (d) have a lower
infection rate and show a much larger variation.

Effects of Parameters on the Indian Buffet Epidemic The parameters θ =
(α, β, λ, ρ) and the initial infective distribution Pι of the Indian buffet epidemic
obviously affect the epidemic distribution in different ways. The removal rate ρ
only affects the scaling of time and can be taken w.l.o.g. as 1. The infection rate
parameter λ can readily be understood in a qualitative way, for small values of λ
the epidemic has a high probability of being very small and if not small, the peak
incidence will probably be small. Large values of λ will give large epidemics and
often will have a rapid increase in infectives, however in contrast to the GSE as
λ → ∞ the final size will converge on the size of the component containing the
initial infective. Usually there will be a giant component which is smaller than the
population np and so the final size will have a distribution with a mean strictly
smaller than np.
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(a) λ = .5, 3 initial groups
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(b) λ = .25, 11 initial groups
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(c) λ = .5, 6 initial groups
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(d) λ = .33, 11 initial groups

Figure 2.7.2: Example simulations of Indian buffet epidemics, with the same Z ∼
IBP (4, 25, 1000), each sub-figure contains epidemics with the same initial infective
and value for λ. (Note the axes differ between sub-figures)

Understanding the influence of the other parameters of the Indian buffet epi-
demic, including the distribution of the initial infective, on the outcome is made
more difficult by the increased variability described in the preceding paragraph and
illustrated in figure 2.7.2 which must be accounted for in the analysis. The most
obvious outcomes of a single outbreak are final size, peak incidence and duration
which can all be analysed by simulation. When a set of epidemics is considered,
results on the probability of a “major” epidemic are difficult to obtain as there are
many cases with no clear threshold in the final size distribution. However consid-
eration of the first infection after the initial infective permits some progress to be
made.
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Initial Infective An important difference from the GSE is the importance of
the choice of initial infective from the distribution Pι. In models for epidemics on
graphs it is well known that the choice of initial infective has a strong influence on
the probability of a major epidemic and also on the duration. In bipartite graph
epidemics the choice of initial infective has a larger effect on the probability of a
major epidemic as the initial infection rate is roughly proportional to the number
of groups that the initial infective is in. Three simulations with the same Z ∼
IBP (6, 1, 600), ξ (n, λ) = λ/n and different initial infectives are plotted in figure
2.7.3, they have similar final sizes and the effect is visible of the number of groups
which the initial infective is in on the time to get established and hence the duration.
The epidemic which starts in 8 groups also shows a flattened peak, which arises from
the total number of infectives being the sum of epidemics in two large groups with
slightly different time scales.

initial number of groups

1
4
8

Figure 2.7.3: Three simulations showing the number of infectives, from the same
Z ∼ IBP (6, 1, 600), with initial infectives in 1,4 or 8 groups.

Properties of the IBP that Affect the Epidemic

An approach to investigating the choice of parameters for the IBP that reflect reality
and their effect on the IBufE is to examine the two graph projections along with the
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marginal distributions of the adjacency matrix. Several statistics are available for
the IBP, the distributions of some are known but others relevant to the connectivity
of the lower projection are not. Here some empirical results on their distributions
are given.

First to clarify the motivation for the relevant statistics an example of a small
IBP matrix (N = 15) with two empty rows (13,15) and 6 columns (3,4,5,8,9,10)
containing a single 1 is given.

1 2 3 4 5 6 7 8 9 10
1 1 . . . . . . . . .
2 1 1 1 . . . . . . .
3 1 . . 1 . . . . . .
4 1 1 . . 1 . . . . .
5 . 1 . . . 1 . . . .
6 . 1 . . . 1 . . . .
7 . 1 . . . . 1 . . .
8 . . . . . 1 . . . .
9 . . . . . 1 . . . .
10 . . . . . . 1 . . .
11 . . . . . . 1 . . .
12 . . . . . . . 1 . .
13 . . . . . . . . . .
14 . . . . . . . . 1 1
15 . . . . . . . . . .

The nodes corresponding to the empty rows can obviously not be infected
and in terms of the connectivity of the lower projection are obviously isolated.
The columns containing a single bit cannot affect the epidemic and can be deleted
without effect, when these columns are deleted rows 12 and 14 become empty. The
connectivity of this example, is a single connected component containing nodes 1 to
11 and 4 isolated nodes, this is the form that most simulated IBP matrices have for
large N . The dependence of the structure and connectivity on the parameters α,
β and N is non-linear. For example for β=1 and α ≥ 4 there is a single connected
component with high probability for N > 10. Whereas for β=8 and α = 2 the
aymptotic region is only reached around N ' 104.

In the example above if row 15, column 10 contained a 1, an additional
component containing nodes 14 and 15 would be formed, leaving two isolated nodes.
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Figure 2.7.4: Number of empty rows in the IBP. The left hand plot compares
the counts of simulated data for Z ∼ IBP (4, 2, 500) with a binomial distribution
resulting from an assumption of independence and an empirically fitted negative
binomial distribution. The right hand plot shows the same data as a log hazard.

In a large number of simulations the vast majority have been of the former kind,
a fully connected core and isolated nodes. Some are of the second type, with a
giant component with most of the non-isolated nodes and a few small components
each with 2 or 3 nodes. In no cases was the second largest component a significant
fraction of the size of the giant component. The actual size of the giant component
is strongly dependent on the IBP parameter α and the value of N at which the giant
connected component emerges is strongly dependent on β.

Several statistics are available for the IBP, the distributions of some are
known but others relevant to the connectivity of the lower projection are not. Here
some empirical results on their distributions are given.

Recall that each row has a Poisson distribution with mean α but these are
highly correlated and the number of empty rows has an over-dispersed distribution
relative to the naive binomial distribution with probability exp(−α) that would
result from independence. Empirical study shows that a negative binomial distri-
bution fitted to the known mean and observed variance gives a reasonable fit to all
the examples studied. Some examples are shown in figures 2.7.4,2.7.5.

The connectivity of the remaining rows has also been studied. In a large num-
ber of simulations the vast majority have been of the former kind, a fully connected
core and isolated nodes. Some are of the second type, with a giant component with
most of the non-isolated nodes and a few small components each with 2 or 3 nodes.
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Figure 2.7.5: Number of empty rows in the IBP. The left hand plot, with β = 8
shows a much wider distribution than the previous plot with β = 2, compares
the counts of simulated data for Z ∼ IBP (2, 8, 5000) with a binomial distribution
resulting from an assumption of independence and an empirically fitted negative
binomial distribution. The right hand plot shows the same data as a log hazard.

In no cases was the second largest component a significant fraction of the size of the
giant component. The actual size of the giant component is strongly dependent on
the IBP parameters α and β through the distribution of empty rows as described
above.

An example of the distibution of the connectivity is shown in figure 2.7.6 for
1000 simulations of Z ∼ IBP (3, 2, 2000) the size of the giant component (gc), the
number of components (nc) and the number of nodes with row sum > 0 (notgc)
are shown together with other statistics.

In summary the graphs formed from the IBP with high probability have the
following form:

• a set of individuals/rows that are completely disconnected, which are chosen
from a distribution with mean N exp(−α).

• a giant connected component, which usually contains all the remaining rows
after the empty rows are removed.

• a set of groups/columns that are irrelevant to the epidemic, containing only a
single entry.

This observation and the simulation results above leads to the following conjecture:
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Figure 2.7.6: Connectivity of IBP lower projection. This pairs plot, displays the
pairwise dependence and marginal distribution of 7 statistics from 1000 simulations
of Z ∼ IBP (3, 2, 2000). The variables are numbers of: K columns, N1 non-empty
rows, K2 columns with at least 2 bits, tot total number of bits, gc size of the giant
component, notgc nodes with row sum > 0 and not in the giant component, nc
number of components with size > 1
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Figure 2.7.7: Distribution of marginal sums for an example IBP, N = 105 , α = 4,
β = 25. The left hand plot is a standard histogram, the right hand a count of
counts.

Conjecture 1. As N → ∞ the bipartite graph formed from the non-zero rows of
Z ∼ IBP (α, β,N) has a giant connected component almost surely. The fraction of
nodes in the giant component converges to 1− exp(−α).

Impact of Margins of the IBP on the Indian Buffet Epidemic The be-
haviour of the epidemic is strongly affected by the distribution of the two margins
of the IBP both of which can be calculated, the row sums are available explicitly as
a Poisson(α) distribution. The distribution of column sums can be approximated
numerically from the finite K representation, details are given in appendix B.3.
An example of the distribution of the margins for a large IBP with parameters
(N = 105, α = 4, β = 25), is shown in figure 2.7.7, which shows similarity with the
distributions obtained in the EpiSims project for estimates of the contact matrices
for several cities which was mentioned in section 2.5.5. This gives support to the
belief that the IBP gives a plausible model for contact distributions.

The distribution of the column sums has a heavy tail in terms of group size,
with many small values and a few large values. As the columns of Z are ordered in lof
form the distribution is strongly correlated with the position of the column, however
as interest is in the joint distribution of all the column sums consideration of the
cumulative probability provides the desired distribution. The finite K distribution
can be used to approximate numerical values of the IBP distribution arbitrarily
accurately, examples are shown in figure 2.7.8 for three values of K, together with
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Figure 2.7.8: Distribution of IBP group size(people/group). Comparison of simu-
lated examples with finite K approximations.

the distribution from a single simulated example. The closeness of the simulated
curve to the calculated curves, for all except K = 100 in the right hand plot where
β = 32 , suggests that the approximations are good.

For epidemics, columns with a single entry, mk = 1, have no influence on the
epidemic and so can usually be ignored, they are included in the distribution of the
IBP margins shown in figure 2.7.7, as the left hand column in the histogram of row
sums and the point in the upper-left corner of the plot of column sums.

Final size of the Indian Buffet Epidemic

The distribution of the final size of an IBufE combines two parts, the final size
conditioned on Z ∼ IBP (α, β, np) and the size of the component of the bipartite
graph containing the initial infective, usually a giant component will be present,
unless the population np is small (e.g. < 50). Both parts of the distribution are
dependent on the distribution of the row-sums of Z which we denote here by Xi =∑
k zik.

The size of the giant component is clearly less than the number of rows
which contain at least one 1. The distribution of the number of isolated individuals
is bounded by the distribution of the number of Xi which are 0.

Simulations show that the mean final size of epidemics conditioned on Z are
approximately proportional to the sample mean of the Xi, X̄ = n−1

p

∑
iXi. From

the definition of the IBP the expected value of X̄ is α, but although the distribution
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of an individual Xi is Poisson(α) they are strongly correlated. The joint distribution
of the row sums can be obtained recursively from the sequential representation as:

X1 ∼ Poisson (α)

X2 ∼ binomial(X1, 1/(β + 1)) + Poisson (αβ/(β + 1))

. . .

Xi ∼ binomial(Xi−1, 1/(β + i− 1)) + Poisson (αβ/(β + i− 1))

from which the distribution can be evaluated numerically.
An example of two final size distributions for Indian buffet epidemics is shown

in figure 2.7.9 both have a population of np = 103, the two IBufE curves are from
more than 105 simulations with α = 8 and β = 4 or 25. When compared with the
exact GSE distribution, which is also plotted, it can be seen, bearing in mind the
log scale of probability, that the distributions are much wider. The distributions
shown are not conditioned on a “major” epidemic and although the local minima
would give plausible thresholds for defining a “major” epidemic the simple results
in the GSE linking the probability of a “major” epidemic, initial infection rate and
final size distribution do not apply. The exact probabilities for the first few values
of the final size (including the initial infective) are similar:

Final size 1 2 3 4 5

GSE 0.357 0.0822 0.0378 0.0218 0.0140
β = 4 0.363 0.0778 0.0351 0.0191 0.0122
β = 25 0.370 0.0812 0.0347 0.0202 0.0125

.

Initial Infection Rate of the Indian Buffet Epidemic The most obvious
outcomes of a single outbreak are final size, peak incidence and duration which
are difficult to analyse, however consideration of the first infection after the initial
infective permits some progress to be made. It is easy to see the strong effect the
choice of initial infective has by looking at the probability that at least one additional
individual is infected. The total initial infection rate bi when the initial infective
is i is

bi =
K∑
k=0

zik (mk − 1)λk

which gives the probability of a further infection as bi
ρ+bi and of immediate extinction
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Figure 2.7.9: Final size distributions for two Indian buffet epidemics with population
np = 103, α = 8 and β = 4 or 25.
The two IBufE curves are from 181,225 and 114,710 simulations, the left hand plot
shows the probabilties directly estimated from the counts. For comparison the exact
probabilities for the GSE are also shown. The right hand plot shows kernel density
estimates obtained from the simulated counts.

as (1 + bi/ρ)−1. If the initial infective is chosen to be i with probability gi

P (second infection) =
np∑
i=1

gi
bi

ρ+ bi
. (2.7.4)

In the Indian buffet epidemic as the number of connected columns for any row in
the IBP has a Poisson(α) distribution and the distribution of mk is beta-binomial,
E (bi) can be approximated by assuming that Zi,. and mk are independent. This is
conjectured to be asymptotically true for large np.
If λk = ξ (mk, λ) is chosen to be c/ (mk − 1) where c is a constant which is loosely
related to R0 (e.g. λ/ρ) ) then bi is c times the number of groups which i is in and
so if the initial infective is chosen uniformly the probability of no further infections
is approximately 1/(1+cα). So by analogy with the branching process result for the
GSE it is conjectured that the probability of a “major epidemic” is approximately
1 − 1

cα , further it is convenient to introduce RIB = αλ/ρ as a parameter that is
expected to be strongly related to the outcomes and loosely connected to R0 for the
GSE.

When ξ (n, λ) is other than λ/(n− 1) the approximation for E (bi) assuming
the two marginals of the IBP are independent is obtained from

64



bi =
K∑
k=0

zik (mk − 1) ξ (mk, λ) .

Simulations suggest the importance of RIB in understanding the variation in
epidemic outcomes, further work is needed to relate the distribution of outcomes of
the epidemics to the parameters of the Indian buffet epidemic .

2.8 Concluding Remarks on Epidemic Models

Two complementary topics have been presented in this chapter Markov representa-
tions of the GSE and bipartite graph epidemic models and in particular the Indian
buffet epidemic.

The Markov representation has been shown to be a mechanism for gaining
insight into the GSE and closely related models. Exact calculations have revealed
the boundaries for the existence of the classic bimodal final size distribution.

The class of epidemic models on bipartite graphs provides a powerful way
of constructing new models and comparing existing models. The bipartite graph
epidemic model defined in section 2.6.3 provides a foundation for the Indian buffet
epidemic which is also developed above. Extensions of both bipartite graph and
Indian buffet epidemic models to SEIR and discrete time models are straightforward
and have not been described, in particular the combination of the Indian buffet
epidemic and the binomial model described in section 2.4.1 should give a model
capable of scaling to larger populations.

A graph theoretic conjecture on the existence of a giant component in the
IBP has been posed based on simulated examples.

The Indian buffet epidemic has been shown to be an interesting model for
an epidemic in a heterogeneously mixing population. Similarities, shown in section
2.7.3, between the distribution of the IBP and the best available estimates of contact
structures for an urban human population obtained by the EpiSims project show
the plausibility of the Indian buffet epidemic. Analytic results on the Indian buffet
epidemic remain elusive but simulation of the epidemic is straightforward using the
algorithm above and and numerical results for some of the relevant distributions
have been obtained.
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Chapter 3

MCMC

3.1 Introduction

The primary aim of this chapter is to present a novel analysis of some aspects of
the grouped independence Metropolis-Hastings (GIMH) algorithm which was intro-
duced by Beaumont (2003) and generalised by Andrieu and Roberts (2009). The
bias of the closely related approximate algorithm the Monte Carlo within Metropo-
lis algorithm (MCWM) (O’Neill et al., 2000) is also investigated. The analysis is
presented in more general terms, to distinguish the original algorithm from the
generalised algorithm the name stochastic exact Metropolis-Hastings (SEMH) is in-
troduced. The analysis of GIMH requires a good understanding of some aspects of
importance sampling, so a new study of the properties of importance sampling in
tractable situations is given in section 3.2.

The necessary parts of the extensive theory of MCMC are described along
with the notation which is used. The GIMH is introduced, understanding the stick-
ing that can occur in the GIMH is facilitated by studying it in the more general
terms of the SEMH. A new analysis in section 3.5.3 shows that the variance of
the weights distribution can explain the sticking of the GIMH and the bias of the
MCWM.

A new approximate algorithm the Kernel Metropolis-Hastings (KMH) is pro-
posed in section 3.6 which is expected to overcome the difficulties encountered in
applying the GIMH algorithm in practice which are described in chapter 4. The
KMH is demonstrated on a multimodal heavy tailed target distribution.

66



3.1.1 Some Basic Monte Carlo methods

Monte Carlo methods are central to many of the techniques of modern statistics, in
particular Markov chain Monte Carlo (MCMC) methods which have a long history
of successful use since their introduction to the statistics community by Hastings
(1970) a history is given by Robert and Casella (2011) and relevant references are
given below, particularly in the section on MCMC. The successful application to
increasingly difficult problems has depended on the parallel development of im-
provements in the theoretical underpinnings and the exponential increase in the
power of computers. However in the case of high dimensional Bayesian posterior
distributions the basic methods are not sufficient and require more advanced tech-
niques, either exact or approximate, which are the subject of continuing research.
Many of these techniques combine simpler techniques in various ways, in particular
the techniques described in section 3.4 combine MCMC and importance sampling
both of which are described below.

All of the methods depend on the generation of large numbers of random
variables with a chosen distribution, which is invariably based on pseudo-random
generators. In the early days of Monte Carlo methods the pseudo-random genera-
tors available outside the classified community had major defects and bad genera-
tors where widely used, however since the 1980s reliable pseudo-random generators
have been widely available. Care in using pseudo-random generators is particularly
needed in two situations, in parallel computation and when investigating tail events
where the difference between discrete computer arithmetic and the continuous ideal
is important. In long MCMC runs events that are of zero probability in a continuous
model can occur with a small probability when finite computer arithmetic is used,
defensive programming is necessary to ensure valid results. All results in this thesis
have used the standard R Mersenne-Twister generator (Matsumoto and Nishimura,
1998). Further discussion of pseudo-random generators and references are available
in several books for example (Robert and Casella, 2004).

Target distributions

Underlying all Monte Carlo methods is the aim to produces samples from a tar-
get distribution, which we represent by a generic density π(x) with an implied
dominating measure ν over some unspecified space X ⊂ Rd × Zm. Typically in
practical situations π will often be a Bayesian posterior distribution, we use π

to represent an arbitrary unspecified distribution and follow the common practice
of distinguishing different distributions by their argument. These samples can be
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used to estimate expectations of known functions h(.) of the random variable X,
EX(h(X)) =

∫
S h(x)π(x)ν(dx) where X ∼ π(.) and S is the support of the distribu-

tion. In realistic examples we are unable to simulate directly from π which may be
on a high dimensional space and S may or may not be connected. In pedagogical
examples S will be known, however when the target is a Bayesian posterior, par-
ticularly if it includes hidden variables, π may have discontinuities and S may not
be known. So that we can investigate the performance of techniques and observe
general principles, simple pedagogical examples are considered below where S is
known and simulation from π may be possible.

3.2 Importance Sampling

Importance sampling was originally introduced as a variance reducing mechanism
(Hammersley and Handscomb, 1964) for estimating low probability events, it has
since found much wider applicability. In particular is is used below, in the GIMH,
to estimate marginal posterior distributions, the description here is given in general
terms and the studies in this section use simple parametric distributions to provide
insight into the behaviour of the importance weights when they are intractable as
is invariably the case within the GIMH.

The importance sampler uses an approximation q(x) to the target density
π(x) which is chosen so that we can simulate from it and easily compute q(x),
the choice is problem specific and a good choice can be problematic. We refer
to this as the proposal, it is sometimes referred to as an importance density or
instrumental density. Usually interest is in estimating the integral EX(h(X)) =∫
S h(x)π(dx) where X ∼ π(.) and h is some known function and S is the support
of the distribution. So long as we know that Sq the support of q(.) is larger than
S, S ⊆ Sq, and that both q() and π() have densities w.r.t. the same dominating
measure ν() we can write for A ⊆ Sq

P (X ∈ A) =
∫
A
π(x)ν(dx) =

∫
A

π(x)
q(x)

q(x)ν(dx) (3.2.1)

Eπ(h(X)) =
∫
S
h(x)π(x)ν(dx) =

∫
Sq
h(x)π(x)

q(x)
q(x)ν(dx) (3.2.2)

and by simulating n i.i.d. observations x1 . . . xn from q() we can estimate the ex-
pectation by

ĥ = n−1
n∑
i=1

h(xi)
π(xi)
q(xi)

(3.2.3)
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where xi ∼ q(). The convergence of ĥ→Eπ(h(X)) is guaranteed by the law of large
numbers. The random ratios wi = π(xi)/q(xi) are called the importance weights,
their distribution is a function of the distribution of X, W (X) = π(X)/q(X), and
this governs the behaviour of the estimate. Clearly the expected value of W (X) is
1 and a good choice of q() will be such that the weights are close to 1 in some sense,
while maintaining the condition on the support.

The impact of a poor choice of proposal is understood by experts and the
impact of infinite variance is mentioned in most introductory texts, sometimes im-
plying that the a.s. convergence with finite variance is sufficient to give an adequate
estimator. We investigate the difficulties that can be experienced in more detail.

Even in simple pedagogical examples it is usually difficult to calculate the
distribution exactly, however simulation can be used to examine it. The weights
typically have extremely skewed distributions, in the case of finite variance the
skewness is reduced by the averaging in equation 3.2.3, however in realistic cases it
is often difficult to ensure that the variance of W is finite and more importantly it
is difficult to control the tail behaviour.

3.2.1 Exponential target distribution

A simple analytically tractable example is where both the target and proposal
distributions are negative exponential. The target is π(x) = λe−λx and proposal
q(x) = e−x, the proposal is good (heavier tail) if λ ≥ 1 and poor for small λ. Defin-
ing the transformed random variable for the weight W = λeX(1−λ) the distribution
of W when X ∼ q(.) can be calculated and has p.d.f.

fW (w) = exp(log(w/λ)/(λ− 1))/w|(1− λ)| ∝ w1/(λ−1)−1

where W takes values in (0, λ] if λ > 1 or [λ,∞) if λ < 1.1

The moments are readily calculated as E(W p) = λp/(1 + p(λ− 1)) for λ ≥ 1
and p ≥ 0, for λ < 1 the moments only exist for p < 1/(1 − λ) and so we can see
that for λ ≤ .5 the variance is infinite. The densities for a range of λ are plotted
in figure 3.2.1, remembering that all have mean 1 it should be noted that all the
distributions are skewed except for λ = 2 and have a very appreciable skew except
when λ is close to 2. This suggests that in more complex situations where the form
and scale of π(.) are unknown the weights should usually be assumed to be highly
skewed and efforts made to ensure finite variance.

1If λ = 1 then W =1 and E(W p) =1
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Figure 3.2.1: Density of importance sample weights for exponential target and pro-
posal. (linear scale on left, log scale on right)

3.2.2 Importance sampling in higher dimensions

In higher dimensions the performance of importance sampling will be reduced be-
cause the skewness will increase. For example in d dimensions if the target and
proposal distributions are both of product form, π(x) =

∏d
i=1 f(xi; θ) and q(x) =∏d

i=1 f(xi; θq), for some parametric p.d.f. f , the composite weight has the distri-
bution of the product of d weights each with the distribution from the univariate
weight. Only in the simplest cases are the products tractable, the case of expo-
nentials considered above with λ = 2, which results from using a proposal with
p.d.f. e−x and target p.d.f. 2e−2x. This gives the weights a uniform distribution
where W ∼ U(0, 2) which often might be regarded as a good proposal. We use
this to illustrate that a proposal with good performance in one dimension will of-
ten have significantly reduced performance in higher dimensions. The density of
an individual product term is fW (w) = 2−d log

(
2d/w

)d−1
/(d − 1)! for w ∈ [0, 2d]

and the moments are E(W p) = (2p/(p + 1))d. Although the increase in variance
with d is obvious, the serious impact on the importance sampler is less obvious and
investigated below.

The distribution of the sample mean and variance from samples of size n can
easily be simulated, results of a large simulation for n = 108 are shown in table 3.2.1,
of particular note is the large variability in the sample standard deviation, also of
more significance are the columns ngt1, ngtmu which are the number of samples
> 1 and > W̄ (the sample mean) showing the extreme skewness as the dimension
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sample sample
d mean s . d . 50% 99% 100% ngt1 ngtmu
2 1.0000 0 .88 7 .468 e−01 3 .448 e+00 3 .999 e+00 40340000 40340000
3 0 .9999 1 .17 5 .518 e−01 5 .171 e+00 7 .983 e+00 34480000 34490000
4 1 .0000 1 .47 4 .069 e−01 7 .022 e+00 1 .568 e+01 30200000 30200000
6 0 .9999 2 .15 2 .206 e−01 1 .074 e+01 5 .768 e+01 24020000 24020000
8 0 .9999 2 .99 1 .195 e−01 1 .400 e+01 1 .716 e+02 19610000 19610000
12 0 .9989 5 .51 3 .505 e−02 1 .796 e+01 1 .195 e+03 13620000 13630000
16 0 .9998 9 .88 1 .028 e−02 1 .837 e+01 5 .663 e+03 9754000 9754000
20 1 .0020 17 .53 3 .015 e−03 1 .612 e+01 2 .041 e+04 7106000 7100000
30 1 .0050 79 .40 1 .401 e−04 7 .783 e+00 4 .216 e+05 3367000 3359000
40 0 .9982 229 .60 6 .521 e−06 2 .595 e+00 1 .346 e+06 1656000 1657000
50 0 .9389 450 .30 3 .031 e−07 6 .865 e−01 3 .152 e+06 832700 859000
60 2 .6720 17670.00 1 .407 e−08 1 .532 e−01 1 .766 e+08 423400 257900
70 1 .3100 4544.00 6 .550 e−10 3 .025 e−02 4 .322 e+07 219300 192400
80 0 .4636 688 .80 3 .046 e−11 5 .396 e−03 3 .782 e+06 114000 163200
90 0 .3591 643 .60 1 .415 e−12 8 .867 e−04 4 .225 e+06 59850 95790
100 0 .3096 856 .80 6 .579 e−14 1 .352 e−04 6 .532 e+06 31520 54030
120 0 .0382 62 .05 1 .423 e−16 2 .713 e−06 3 .157 e+05 8688 36840

Table 3.2.1: Simulated product of d U(0, 2) weights, n = 108, sample mean, s.d.
and quantiles . (The mean and standard deviation are also plotted in figure 3.2.2)

increases.
The sample mean and standard deviation are plotted together with a set of

simulations each of 105 in figure 3.2.2. We know the sample mean has mean 1 and
variance ((4/3)d − 1)/n, so taking a variance of 1 as a necessary threshold we need
n > (4/3)d and we obtain

d 5 10 20 30 40 50 60 80 100 120
n 4 .2 17 .8 315 5600 1e5 1 .7 e6 3 .1 e7 9 .9 e+9 3 .1 e+12 9 .8 e+14 .

For d below 20 the simulated results on standard deviation indicate that 105

samples would be sufficient for most applications, for d between 30− 50, 108 would
be required and for d ≥ 60 even 108 is insufficient.

An alternative approach to understanding the distribution of these weights in
high dimensions is to consider the transformed variable Y = log(2d/W ) = d log(2)−
Z then Y has a standard gamma distribution with shape parameter d, and scale
parameter 1, which can be used to evaluate quantiles of W, which are in agreement
with the sampled values in table Table 3.2.1 on page 71. Also as d increases the
distribution of Y approaches a normal distribution and so W approaches a log-
normal distribution.
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Figure 3.2.2: Simulated product of d U(0, 2) weights, sample mean (left), sample
standard deviations (right). Comparison of sample size 105 and 108 with true value.

3.2.3 Conclusions on Importance Sampling

Although the impact of a poor proposal distribution on importance sampling is
well known, this study illustrates the problem and highlights the difficulties that
can arise even in well understood situations and with variance known to be finite,
in particular in higher dimensions. The increasing error in the sample standard
deviations shown in figure 3.2.2 shows that examination of the variance of weights
is not sufficient to guarantee acceptable behaviour. Better methods for robustly
diagnosing poor performance from analysis of samples would be very useful.

72



3.3 Markov Chain Monte Carlo

Since the introduction of the first MCMC techniques to the statistics community
by Hastings (1970) they have been extended and since (Gelfand and Smith, 1990)
they have enjoyed widespread use. The basic concept is easily stated but sometimes
difficult to apply successfully: in order to sample from a target density π(x) on
X with a dominating measure ν a Markov chain on X is constructed which has a
transition kernel density K(x, .) with invariant density π(x). A long sample x1 . . . xn

from this will provide correlated samples from π(x). The kernel is constructed
so that an ergodic theorem applies which justifies using the samples to estimate
expectations of known functions h(), Eπ(h(X)) =

∫
S h(x)π(x)ν(dx) by the estimate

ĥ = n−1∑n
i=1 h(xi). In general it is necessary to prove that the kernel is irreducible,

aperiodic and has the correct invariant distribution. A key result is theorem 1
of Roberts and Smith (1994) reproduced here as theorem 5, which requires the
definition of ψ-irreducible.

Definition 4. A Markov chain is ψ-irreducible if there exists a non-zero measure
ψ on X such that for all A ⊆ X with ψ(A) > 0 and for all x ∈ X , there exists a
positive integer n such that Kn(x,A)>0.

Theorem 5. If K is ψ-irreducible and aperiodic then, for all x ∈ S,

1. |Knx − π| → 0 as n→∞

2. for real valued,π-integrable h,

n−1
n∑
i=1

h(Xi)→
∫
h(x)π(x)ν(dx) a.s. as n→∞.

A sufficient condition is that it satisfies the detailed balance conditions

π(x)K(x, x′) = π(x′)K(x′, x) (3.3.1)

which also ensure the chain is reversible.
See standard texts such as (Robert and Casella, 2004) for further details.
Construction of a chain that has the correct invariant distribution and con-

verges is simplified by the use of standard basic algorithms. The two main classes of
basic algorithms are the Metropolis-Hastings and Gibbs which are described below
and form the basis of a wide range of more advanced techniques. It is necessary to
choose a value of n that ensures that ĥ is sufficiently close to h, heuristic methods
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are still necessary in most practical situations. Visual examination of plots of com-
ponents of the chain and their auto-correlation are often sufficient to identify poor
choices in the construction of the kernel. Study of rates of convergence of chains
in increasingly realistic situations is still an active area of research, an important
conclusion is that, as in importance sampling, it is necessary for the proposal to
have heavier tails than the target, see for example (Jarner and Roberts, 2007) and
the references therein.

3.3.1 Metropolis-Hastings

The basic Metropolis-Hastings MCMC sampler (Hastings, 1970) (MH) is particu-
larly useful in Bayesian statistics as it only requires knowledge of the target density
up to an unknown constant of proportionality. A Bayesian posterior of θ given data
y denoted π(θ|y) is given by π(θ|y) ∝ L(y; θ)p(θ) := πu(θ|y) where p is the prior,
L the likelihood and πu the un-normalised density. That is πu = Cπ where C is
an unknown constant independent of θ, subsequently we generally use π without
the suffix u unless we need to emphasise the difference and also generally do not
show the dependence on data and in this chapter use π(x) for a generic target which
would often in practice be of the type πu(θ|y).

The Metropolis-Hastings algorithm requires the choice of an initial distribu-
tion q0 (which can be a constant) and a proposal distribution q(.|x) which in general
will depend on the current state x,

Algorithm 3.1 Metropolis-Hastings

1. Initialise by sampling X0 from q0(.)

2. for t = 1, 2, . . . n repeat steps 3-5

3. sample a proposed value X ′ ∼ q(.|xt−1)

4. compute the acceptance ratio Aa by

A(X ′|xt−1) = π(X ′)q(xt−1|X ′)
π(xt−1)q(X ′|xt−1)

(3.3.2)

5. set Xt = X ′ with probability A(X ′|xt−1) ∧ 1
else set Xt = xt−1

anote we use A for the acceptance ratio, not the acceptance probability
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the probability of the state remaining unchanged is called the rejection prob-
ability

r(x) = 1−
∫
q(y|x) min(A(y|x), 1)dy

and we use the term acceptance probability for the average acceptance rate from x,
a(x) =

∫
q(y|x) min(A(y|x), 1)dy = 1− r(x).

The resulting transition kernel can be written as

K(x, y) = q(y|x) min(A(y|x), 1) + δx(y)r(x).

Conditions for the resulting transition kernel K having the correct invariant dis-
tribution are given by Theorem 3 of Roberts and Smith (1994) showing that the
convergence properties of K are inherited from the proposal q the theorem is

Theorem 6.

1. If q is aperiodic, or P (Xt = Xt−1) > 0 for some t ≥ 1, then the Metropolis-
Hastings algorithm is aperiodic.

2. If q is ψ-irreducible and q(x, y) = 0 if and only if q(y, x) = 0 then the
Metropolis-Hastings algorithm is ψ-irreducible.

An analysis of rates of convergence is given by Roberts and Tweedie (1996).
The choice of proposal is still wide and two particular choices the independence and
the random walk are popular because of their simple implementation, they are often
adequate for simple problems but can struggle in multi-modal or high dimensional
situations. An important consideration in their use remains that of the choice of
scaling parameters which is described in section 3.3.3.

Independence Metropolis-Hastings

If the proposal q does not depend on the current value, the algorithm is called the
independence Metropolis-Hastings and the acceptance ratio can be written as

A(X ′|xt−1) = π(X ′)/q(X ′)
π(xt−1)/q(xt−1)

(3.3.3)

which shows a close connection with the independence sampler described in section
3.2. Again the choice of q close to π, but with heavier tails, is essential and the
performance can degrade significantly in higher dimensions.
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Random walk Metropolis-Hastings

The random walk Metropolis-Hastings (MH) sampler is applicable to many situa-
tions, in particular when the support of π, S is a connected subset of Rd. Use on
other spaces for example subsets of Zd depends on the target distribution having
some smoothness with respect to a metric on S. The simplest form uses symmetric
proposals where q(x′|x) = q(x|x′) which gives the original Metropolis algorithm.
The acceptance ratio now simplifies to

A(X ′|xt−1) = π(X ′)
π(xt−1)

. (3.3.4)

The simplest symmetric form is the random walk q(x′|x) = f(x′ − x) where f is a
density on X w.r.t. the dominating measure, or often q(x′|x) = f(|x′ − x|) where
f is a density on R+. Valid, but not necessarily optimal, choices for f include any
distribution with support larger than S or when S is connected a much wider choice.
Common choices in Rd include multivariate normal, t, or uniform distributions, the
choice of scaling parameters is still an issue which can have significant effects on
the convergence rates and so on the length of chain that must be simulated, this is
discussed further in section 3.3.3.

Boundaries of support of target

When the support is bounded some random walk proposals will be outside the
support, the simplest approach is to use them and the resultant value of A = 0, if
π has large values close to the boundary, such as a gamma distribution with shape
parameter < 1, then the closely related approaches of using a log transform of X
or using a log-normal proposal may be appropriate. The log-normal proposal is not
symmetric but the ratio q(x|x′)/q(x′|x) simplifies to x′/x and so calculation of the
proposal density is not needed.

3.3.2 Gibbs sampler

The Gibbs sampler, which also originated in physics and has had a long history in
statistics , is used in two situations, the original is where the conditional distributions
can be sampled exactly and is often used in high dimensions. The second is where
other Markov kernels are combined within a Gibbs framework, typically Metropolis
kernels giving the “Metropolis within Gibbs” sampler. The basic algorithm on a
space X = X1 × . . . × Xd samples each dimension i either regularly in a specified
order or in a random order. At each step Xt+1 ∼ π(Xi|X1, . . . Xi−1, Xi+1, . . . Xd), a
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key result is theorem 2 of Roberts and Smith (1994) which is

Theorem 7. If ν is n-dimensional Lebesgue measure, n ≥ d, π is lower semi
continuous at 0,

∫
π(x)dxi is locally bounded for i = 1, . . . , k, and S is connected,

the results of Theorem 5 apply to the Gibbs kernel.

3.3.3 Scaling and Adaptation of Proposal distributions

The choice of proposal distribution for the MH algorithm as either a heavy tailed
independence sampler or a random walk is one aspect of the choice. An equally
important problem is that of the choice of scaling for the proposal. As shown in
section 3.2 the variance of importance samplers can be large or infinite even for
matching parametric families and in higher dimensions the performance degrades
exponentially unless the scaling of the proposal is a close match to the target. As
most target distributions are Bayesian posteriors the choice of scaling for an inde-
pendence sampler will be problem specific. When the popular choice of a symmetric
random walk proposal is used (RWM) it has been known since the original paper
by Metropolis that the choice of scaling has a very significant effect on the rate
of convergence of the algorithm. In particular if proposals are all small then most
moves will be accepted but movement around the target space X will be slow, on
the other hand if proposals are too large then most proposals will be rejected and
the chain will remain for long periods at particular values.

Asymptotic results on the choice of scaling parameters for MCMC proposal
kernels have been studied by several authors including Roberts and Rosenthal (2001)
and Bédard (2008) in situations amenable to analytic investigation. These studies
have provided useful guidance to the choice of scaling, mainly in terms of accep-
tance rates, 0.234 is close to ’optimal’ for many RWM problems. Practically one
or more pilot runs are performed with a range of scaling parameters after which a
value is chosen for a long run. An alternative approach is to use adaptive methods
which automatically adjust the scaling to match the target, care is needed with these
methods for both theoretical and practical reasons. A recent summary of the closely
linked fields of optimal scaling and adaptive MCMC is given by Rosenthal (2011)
with a useful “Frequently asked questions” section which gives a concise summary
of many results and much experience. The theoretical problems are now largely un-
derstood, however practically there are still issues with the use of adaptive methods
on multimodal distributions as the adaption can often lead to only one mode being
explored.

Many posteriors that arise in complex models have highly discontinuous mul-
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timodal distributions, often with disconnected support. A challenge is to transfer
the existing results on scaling and adaptive methods to these distributions, for in-
stance are the same acceptance rates optimal ? An example of such a posterior
arises in the partially observed GSE, which is discussed in more detail in chapter 4
along with the more challenging posterior for the Indian buffet epidemic.

3.4 Marginal MCMC

In many situations a hidden data model is either the natural representation or ex-
tending the model with augmented data provides a powerful tool for inference. In
particular inference for epidemics where the infection times are unobserved provides
such an example where usually the primary interest is in the distribution of pa-
rameters rather than the conditional distribution of the number of infectives. This
is considered in detail in chapter 4 where the GIMH and MCWM algorithms are
applied. A generic hidden data model with parameters θ ∈ Θ is that X ∈ X is unob-
served or augmented data and Y ∈ Y is observed data with a joint distribution that
has a natural factorisation π(y,x, θ) = π(y|x, θ)π(x|θ)p(θ) where p is the prior2.
When interest is in the marginal posterior π(θ|y), rather than the joint posterior
π(θ,x|y) and the marginal is both intractable and difficult to sample from then the
pseudo marginal algorithms of Andrieu and Roberts (2009) are often an appropriate
choice.

3.4.1 Full posterior approach

Most previous approaches target π(θ,x|y) and then marginalise by ignoring x in
the samples obtained from the Markov chain. A standard approach is to use a de-
terministic scan Gibbs sampler at the top level on x, θ, often the exact distributions
π(θ|X,Y) and π(X|θ,Y) are unavailable and so MH steps are used. The resulting
algorithm is given in algorithm 3.2.

3.4.2 GIMH

The grouped independence Metropolis-Hastings (GIMH) algorithm was introduced
by Beaumont (2003) in a genetics context, and is described by Andrieu and Roberts
in terms of the marginal π(θ) of π(θ, Z). An importance sampler estimate π̃N (θ)
of π(θ) is used within a Metropolis-Hastings step, the justification for this is given in
more general terms in section 3.5, in particular in their terms π̃N (θ) =

∑N
i=1 π(θ, Zi)/qθ(Zi)

2we use p rather than π to distinguish prior from target
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Algorithm 3.2 MH within Gibbs algorithm for hidden data
The target is π(θ, X|y) each outer step repeats these steps

1. MH sample of θ|X,y ∝ π(X,y|θ)p(θ) by

2. Propose θ′ from q(θ′|θ)

3. Accept θ′ with probability min(A, 1) where

A = π(X,Y|θ′)p(θ′) q(θ|θ′)
π(X,Y|θ)p(θ) q(θ′|θ)

4. MH sample of X|θ,y ∝ π(X,y|θ) by

5. Propose X′ from q(X′|X)

6. Accept X′ with probability min(A, 1) where

A = π(X′,Y|θ) q(X|X′)
π(X,Y|θ) q(X′|X)

where Zi ∼ qθ(.) in the case we are considering Z is identical to X and the full pos-
terior is

π(θ, Z) = π(θ,X,Y)
π(Y)

∝ π(Y|θ,X)π(X|θ)p(θ)

the constant π(Y) cancels in the calculation of the acceptance ratio and the estimate
π̃N (θ) becomes

π̃N (θ) =
nz∑
i=1

π(y|θ,xi)π(xi|θ)p(θ)
qθ(xi)

(3.4.1)

where the xi are nz values i.i.d. ∼ qθ(.) 3.
A simple (but rarely optimal) choice for qθ(.) is π(X|θ) which is often easy

to sample from, in this case the calculation of π̃N (θ) simplifies as qθ(.) cancels and
this also speeds the calculation, especially when π(X|θ) is expensive to calculate.

In chapter 4 the GIMH is applied to the Indian buffet epidemic.
A common problem with the GIMH algorithm is that the Markov chain can

get stuck with a very small probability of moving, this happens when the estimate
π̃N (θ) is much larger than π(θ) and so also larger than π(θ′) for nearly all proposed
θ′. Although the eventual escape and convergence to the exact target is guaranteed
as the number of steps → ∞ it may require an unacceptable time to do so. The

3Their N has been replaced with nz to avoid confusion with other n’s and N’s

79



solution is to improve the estimate of π(θ), the obvious approach of increasing nz in
generating π̃N (θ) will help, but if qθ(.) is such that the weight distribution has the
typical heavy tail nz, then the results from section 3.2 show that nz would have to
be increased exponentially to achieve the desired improvement. An analysis of the
reasons for the sticking of the chain is presented below in section 3.5. The analysis
is given in more general terms and to distinguish the original algorithm from the
generalised algorithm the name stochastic exact Metropolis-Hastings (SEMH) is
introduced.

3.4.3 MCWM

A closely related approximate algorithm was introduced by O’Neill et al. (2000)
the Monte Carlo within Metropolis algorithm (MCWM), which is also analysed and
generalised by (Andrieu and Roberts, 2009). In the absence of a better proposal
qθ(.) this provides an alternative which in general does not suffer from sticking but
has a bias that in general is not known. The generalisation of MCWM is called
the Stochastic Approximate Metropolis-Hastings algorithm (SAMH), and the bias
is analysed in section 3.5.4.

Effect of Limited Support on the Proposal

In complex hidden data models it can be difficult to know the support of X given
y and so proposals will generate values of x that give zero likelihood, this is not
a problem for standard MCMC or the GIMH algorithms as these proposals are
rejected, the only effect is to reduce the acceptance rate. However in some of the
examples considered in chapter 4 this happened sufficiently often that the probability
of all nz importance samples being zero and hence W = 0 in one or more steps of a
long run was significant. MCWM when both W = 0 and W ′ = 0 requires specifying
the behavior as accepting with probability p0 ∈ [0, 1], the subsequent examples all
used p0 = 0.

3.4.4 MCWM bias

Simulations have been performed to illustrate the bias in the MCWM algorithm
as the dimension d increases, the target chosen has the same dimension d for θ
and Z with a known marginal, π(θ) multivariate normal ∼ N(0d, 1d) and π(Z|θ) ∼
N(θ, 1d). In order to compare the d-dimensional simulated distributions with the
true values we compare the distance from the origin, which is χ2, and plot the sample
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median against the expectation. The points shown in figure 3.4.1 are for increasing
dimension and 3 values of nz=10,20,40.

Figure 3.4.1: Bias of MCWM multivariate normal, sample median vs true median
nz = 10 (black), 20 (red), 40 (blue)

3.5 Stochastic Exact Metropolis-Hastings Algorithm

A recently discovered aspect of the MH sampler is that if the calculation of the
target density π(x) is replaced by an estimate π̃(x) and used in the MH algorithm,
subject to some conditions a valid algorithm results which still has an exact invariant
density π. The first algorithm to use this technique was the grouped independence
Metropolis-Hastings (GIMH) algorithm Beaumont (2003) which was analysed fur-
ther and generalised by Andrieu and Roberts (2009), who give detailed convergence
results. A simplified presentation of their results in a more general form is given by
Wilkinson (2011) on his blog, which inspired this description and study. This de-
scription separates the analysis of the GIMH into components, the Stochastic exact
Metropolis-Hastings described here, which uses an importance sampler as described
above and the integration of these into the GIMH which is described in section
3.4. In other situations alternative estimates π̃(x) could be used in place of the
importance sampler but these are not considered here.

The motivating situation is the GIMH described below, where π̃ is an im-
portance sampler for π which is an intractable marginal distribution. More gen-
erally we consider for any x ∈ X a stochastic estimate π̃(x) of π(x) and define
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W (x) = π̃(x)/π(x), which is a random variable for each x, W may be discrete or
continuous and have a finite or infinite support. We also require that E(W (x)) = c

where c > 0 is a constant independent of x. The Stochastic exact Metropolis-
Hastings algorithm simply replaces π with π̃ in the acceptance ratio (equation 3.3.2)
of the standard MH algorithm giving

A(X ′|xt−1) = π̃(X ′)q(xt−1|X ′)
π̃(xt−1)q(X ′|xt−1)

. (3.5.1)

The key to understanding the algorithm is the observation by Beaumont that
this defines a Markov chain of (X,W ) on X ×W, W ⊂ R where W is not directly
observed, this is encapsulated in:

Lemma 3. The Metropolis-Hastings algorithm using equation 3.5.1 has an invariant
distribution π(x,w) = π(x)wfW (w|x) on X ×W, W ⊂ R, where W = π̃(X)/π(X)
is not directly observed and fW (.|x) denotes the density of π̃(x)/π(x) w.r.t. an
appropriate measure on W.

Proof. This follows from rewriting π̃(X ′) = π(X ′)W ′ so adding the dependence on
W , equation 3.5.1 is replaced by

A(X ′,W ′|xt−1, w) = π(X ′)W ′q(xt−1|X ′)
π(xt−1)wq(X ′|xt−1)

(3.5.2)

and we can write this as

A(X ′,W ′|xt−1, w) = π(X ′)W ′fW (W ′|X ′) fW (w|xt−1)q(xt−1|X ′)
π(xt−1)wfW (w|xt−1) fW (W ′|X ′)q(X ′|xt−1)

(3.5.3)

which is the acceptance ratio for a MH Markov chain on X × W with target
π(X)WfW (W |X) and proposal density fW (W ′|X ′)q(X ′|xt−1), so the result follows
from the standard MH result.

Corollary 8. The marginal distribution of X from the Markov chain on X ×W is
π(X)E(W |X) and as E(W |X) = c, independent of X, the marginal distribution is
π(.).

Proposition 2. If π̃(x) is a point-wise estimator of π(x) such that E (π̃(x)/π(x)) =
c where c > 0 is independent of x then the Metropolis-Hastings algorithm, using
equation 3.5.2 as the acceptance ratio, has a stationary distribution π(x) when q()
satisfies the conditions for the standard algorithm.
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Proof. The conditions on q() ensures that the basic chain on X is irreducible, W
is chosen independently from fW (.|x) for each x and so the chain on X × W is
irreducible. A similar argument shows it is aperiodic. The result follows from
lemma 3 and corollary 8.

When used within the GIMH algorithm the analysis will require the prob-
ability of remaining in state (w,x) or accepting a move from it, which is just an
extension of the notation above to acknowledge the expanded state. We have r(w, x)
and a(x,w)

r(x,w) = 1−
∫
X

∫
W

min(A(x′, w′|x,w), 1)fW (w′|x′)q(x′|x)dw′dx′ (3.5.4)

.

3.5.1 Conditional weight distribution

In analysing the performance of the algorithm it is necessary to consider the condi-
tional distribution ofW for a fixed x, as the invariant distribution is∝ π(xt−1)WfW (W |x)
which we know is a density because of the condition E(W ) = c. We note that the fac-
torW ensures that this density has a heavier tail thanW , which is as pointed out in
section 3.2 is often already heavy tailed if π̃ is an importance sampler. Considering
the importance sample weight distribution derived from the exponential distribution
in section 3.2.1 as fW (w) =∝ w1/(λ−1)−1 on either w ∈ (0, λ] or w ∈ [λ,∞) if λ < 1,
so the invariant distribution is of similar form ∝ w1/(λ−1). It is important to note
from this example the general result that for the pth moment ofWfW (W |x) to exist
it is necessary for the (p+1) moment of fW () to exist.

Another example where this is readily studied is for W log-normal and so
fW (w) = 1

wσ
√

2π exp(− (logw−µ)2

2σ2 ), w > 0 where µ, σ are possibly dependent on
x but subject to E(W ) = exp(µ + σ2/2) = c, the invariant distribution is ∝
exp(− (logw−µ)2

2σ2 ) which by noting (logw−µ)2 = (logw−µ−σ2)2−2σ2 logw+constant
can be seen to again be log-normal with parameters µ+ σ2, σ.

Examples of conditional weights

An alternative approach to deriving the same equations is to consider the Markov
chain on W with proposal fW (.) and acceptance ratio A = w′/w which has the
invariant density ∝ wfW (w), this also provides a mechanism for understanding the
behaviour. Sample density estimates from simulations, each of length 105, for a
variety of weight distributions were compared with the exact invariant density and
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are shown in figure 3.5.1 those on the right are of the log weights which have a
density e2xfW (ex).

Figure 3.5.1: Simulations of weights in SEMH

3.5.2 Examples of Stochastic exact Metropolis-Hastings

Wilkinson gives simple pedagogical examples which demonstrate good performance
with runs of length 104, however remembering that in the GIMH W will be from
an importance sampler (section 3.2) and so very likely to have a highly skewed
distribution. We investigate his example with a more realistic noise distribution, in
particular we use his target N(0, 1) and a uniform U [−.5, .5] proposal, but replace
the noise with a log-normal distribution with parameters µ = −4.5, σ = 3, which is
more typical of the weights from an importance sampler, in particular it corresponds
to a 9-dimensional problem with exponential target described in section 3.2.2. This
gives the typical behaviour of GIMH getting stuck, see the left half of figure 3.5.2,
the longer run on the right shows that in spite of the long stick periods, and the
very high auto correlation it appears to be converging slowly.

3.5.3 Sticking of chain

All MH algorithms remain in the same state for periods, the distribution of lengths of
these runs is geometric with the rejection probability r(x) and so the expected num-
ber of consecutive repeats of x is r(x)/(1−r(x)). In the Stochastic exact Metropolis-
Hastings as the state space is extended to include W which is unknown, on entry
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Figure 3.5.2: Stochastic exact Metropolis-Hastings example showing typical GIMH
“sticking”

to a state (x,w) the rejection probability is sampled from r(x,W ). Although each
W is sampled from fW (.|x) the accepted states at equilibrium have the conditional
weight distribution wfW (w|x)/E(W ). The description is simplified by assuming for
the remainder of section 3.5 that w.l.o.g. E(W ) = 1 . First we introduce a term
acceptance bound which we use below in the analysis of the SEMH , it is applicable
to the analysis of any MH chain.

Definition 5. acceptance bound ζ(x) =
∫ π(y)
π(x)q(x|y)dy which is an upper bound

on a(x).

Lemma 4. a(x) ≤ ζ(x)

Proof. follows from the definitions

a(x) =
∫
q(y|x) min(A(y|x), 1)dy ≤

∫
q(y|x)A(y|x)dy =

∫
π(y)q(x|y)
π(x)q(y|x)

q(y|x)dy.

We note that for the independence MH sampler ζ(x) = q(x)/π(x) which
relates ζ to the well known requirement for proposals to have heavier tail.

To understand the behaviour, initially we consider the limiting case of con-
centrating the proposal on the current value, so replacing q(x′|x) with δx(x′) in
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equations 3.5.2 and 3.5.4 and taking expectations we get

rδ(x,w) = 1−
∫
W

min(w
′

w
, 1)fW (w′|x)dw′ (3.5.5)

and as A = w′/w and recalling that the invariant distribution of W has density
wfW (w|x) (a density as E(W ) = 1)

E(rδ(x,W )) =
∫
wfW (w|x)rδ(x,w)dw

= 1−
∫
W

∫
W
wmin(w

′

w
, 1)fW (w′|x)fW (w|x)dw′dw (3.5.6)

this can be evaluated for some weight distributions, see section 3.5.3. However it is
the tail behaviour that has a significant effect on the performance of the algorithm
for realistic lengths of chain. If the expected rejection probability E(r(x,W )) is close
to one for a value of x that is sampled then a long sequence of repeated values will
result with high probability, so informally for an acceptable chain it is necessary
that r(x,W ) is only close to 1 for a set of x that has a very low probability of being
sampled, this result is formalised in Theorem 8 of Andrieu and Roberts (2009) to
give conditions for geometric convergence.

Bounds on expected time in a state

We can obtain bounds on the expected time of remaining in a state x after entry,
denoting the number of time steps that the chain remains at x after entry by Nb(x).

Proposition 3. E(Nb(x)) ≥ E(W 2
x )− 1

Proof. We have

E(Nb(x)) =
∫
wfW (w|x) r(x,w)

1− r(x,w)
dw =

∫
wfW (w|x) 1

1− r(x,w)
dw − 1

which as 1− r(x,w) ≤
∫
W

y
wfW (y|x)dy = 1/w gives the result.

Remark 1. It is necessary for Wx to have finite variance for all x with π(x) > 0 to
ensure the chain does not get stuck.

Comparison of the bound with exact calculation for selected weight distri-
butions (section 3.5.3) shows that the bound is close for large variance.
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Acceptance rates for selected weight distributions

The mean acceptance probability on entry to a state x,w is for a δx(.) proposal

a(w) =
∫
W

min( y
w
, 1)fW (y)dy =

∫ w

0

y

w
fW (y)dy + 1− FW (w) (3.5.7)

for some distributions of weights this can be calculated analytically. In particular
for the exponential IS weights and log-normal considered in section 3.2.

1. For the exponential ratio

FW (w) =

(w/λ)ξ on [0, λ] λ > 1

1− (w/λ)ξ on [λ,∞] λ < 1

where ξ = 1/(λ− 1) straightforward integration yields the acceptance rate

a(w) =

1− (w/λ)ξ/(1 + ξ) λ > 1

1/w + (w/λ)ξ/(1 + ξ) λ < 1

noting that the (1 + ξ) term is of opposite sign in the two cases.

2.
For the log-normal fW (w) = 1

wσ
√

2π exp
(
− (lnw−µ)2

2σ2

)
a(w) = w−1

∫ w

0

1
σ
√

2π

(
−(lnw − µ)2

2σ2

)
dy + 1− Φ((log(w)− µ)/σ)

substituting x = (log(y)− µ)/σ in the integral, it becomes

(2π)−1/2
∫ (log(w)−µ)/σ

−∞
exp(µ+ σx− x2

2
)dx

completing the square and noting that for E(W ) = 1 exp(µ+ σ2/2) = 1 gives

a(w) = w−1Φ(−σ + (log(w)− µ)/σ) + 1− Φ((log(w)− µ)/σ)
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3. For the d-dimensional exponential ratio

fW (w) = (− log(w/2d))d−1/Γ(d) w ∈ [0, 2d]

transforming with Y = log(2d/W ) then Y has a standard gamma distribution with
shape parameter d, denoting its c.d.f. by FΓ(.)

a(w) = w−1
∫ ∞
d log(2)−log(w)

yd−1 exp(−2y + d log(2))/Γ(d)dy + FΓ(d log(2)− log(w))

a(w) = 1
w

(1− FΓ(2(d log(2)− log(w))) + FΓ(d log(2)− log(w))

Comparison of empirical acceptance rates from simulations with the exact formulae
compare well up to the largest weight in the samples.

Calculating expected “stick length” numerically

In order to compare the exact value of the expected stick length with the lower
bound we need to evaluate

∫∞
0 wfW (w) 1

a(w)dw where fW (.) and a(w) are analytically
known, numerical integration of this directly using quadpack via the R integrate

routine4 works well when the distribution of W is concentrated near one but can
give numerical problems for realistic IS distributions. A log transform yields a stable
integral

∫∞
−∞ e

2xfW (ex)/a(ex)dx, which has been used to calculate the exact values
for E(Nb(x)) numerically for the three weight distributions considered above for a
range of parameters. The example of a log normal weight distribution is shown in
figure 3.5.3, the results for the other distributions are very similar, showing a close
approximation of E(Nb(x)) by the variance for all cases where sticking may be of
concern.

3.5.4 Stochastic approximate Metropolis-Hastings

A closely related approximate algorithm was introduced by O’Neill et al. (2000)
the Monte Carlo within Metropolis algorithm (MCWM), which is also analysed
and generalised by (Andrieu and Roberts, 2009). In terms of the Stochastic exact
Metropolis-Hastings at each stage this resamples a new weight W ∼ fW (.|xt1) for
the current state as well as W ′ ∼ fW (.|X ′) for the proposed state, and then uses
them both to calculate an acceptance ratio

4Based on QUADPACK routines dqags and dqagi by R. Piessens and E. deDoncker-Kapenga,
see Piessens et al. (1983).
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Figure 3.5.3: Comparison of exact calculation and lower bound for a log-normal
weight distribution.

A(X ′|xt−1) = W ′

W

π(X ′)q(xt−1|X ′)
π(xt−1)q(X ′|xt−1)

(3.5.8)

which is the same as equation 3.5.2. However this generates a Markov Chain on
X with an unknown invariant distribution, whose bias is unknown both in size
and type. We call this the stochastic approximate Metropolis-Hastings algorithm,
reserving MCWM for the case where W results from an importance sampler. The
exact invariant distribution can be calculated when both X and W are finite and
discrete by constructing the transition matrix, some examples are given below. In
the particular case considered by O’Neill et al. they are able to approximate the
bias and introduce a bias correction. As motivation for this study of the possible
biases the example from section 3.5.2 is repeated using this approximate algorithm,
showing a distinct bias but apparently acceptable otherwise, see figure 3.5.4. This
example illustrates that standard MCMC diagnostics will not reveal the presence or
absence of significant bias.

The increasing bias in a multivariate normal case, as the dimension increases,
of the standard MCWM, is described below in section 3.4.4.

We examine the bias in some particular cases and make some general conclu-
sions, first we examine the kernel density estimates for simulations from a variety of
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Figure 3.5.4: Bias of MCWM variant of SEMH

weight distributions, all using a N(0,1) target with a U(-.5,.5) proposal, for compar-
ison results are also shown for GIMH. The results for weight distributions which are
independent of x are shown in the left half of figure 3.5.5 where log-normal weights
are used, with σ = 1, 2, 3, 4 and variance 1.72, 53.6, 8.10 × 103, 8.89 × 106 as the
variance and skewness increases so does the bias. More interesting is the right hand
set where the variance decreases with x (labelled z in the legend) and so with the
target density π(x). Each of these three examples results in the mass of the invariant
density being pushed away from the mode of the target distribution, resulting in a
bi-modal density when fW (w|x) is log-normal with σ = 2/(1 + x2).

Acceptance rates for stochastic approximate Metropolis-Hastings

When the weight distribution is independent of x for a δx(.) proposal the equivalent
to equation 3.5.3 above for the average acceptance rate is

aδ =
∫
W

∫
W

min( y
w
, 1)fW (y)fW (w)dwdy

this integral is symmetric about the line y = w and so can be written as

aδ = 2
∫ ∞
0

∫ w

0

y

w
fW (y)fW (w)dydw

the inner integral can be evaluated for the three examples we get the following:
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Figure 3.5.5: Simulated MCWM and GIMH, left half weights independent of x, right
half variance increases as density decreases.

log-normal

aδ = 2
∫ ∞
0

w−1Φ(−σ + (log(w)− µ)/σ)φ((log(w)− µ)/σ)dw

which can be numerically integrated.

d-dimensional exponential ratio

aδ = 2
∫ 2d

0

1
w

(1− FΓ(2(d log(2)− log(w)))fW (w)dw

3.5.5 Conclusions of Analysis of SAMH and SEMH

The novel analysis presented here of the SEMH shows that the analysis of GIMH
and MCWM are simplified by considering them in a more general framework. The
typical examples of weight distributions studied here show behaviours in the result-
ing SEMH algorithms that are expected to transfer qualitatively to more complex
situations such as the GIMH and MCWM. The least unsurprising observation is
that the spikiness and sticking of the chain gets worse as the variance of the weights
increases, a tight lower bound is derived. The bias of the SAMH increases as the
variance of the weights increases. When the distribution of the weights depends on
x when the variance is higher in the tails the SEMH algorithm struggle to reach the
tails, the MCWM variant shows more pronounced light tails. When the variance is
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Figure 3.5.6: Simulated MCWM and GIMH, left half variance decreases with den-
sity, right half variance increases with density.

higher, near the mode the MCWM variant can display pronounced bias, such as a
bimodal result for a true unimodal target.

3.6 Kernel Density Metropolis-Hastings Algorithm

When θ has a small dimension and the marginal posterior π(θ|y) is believed to be
smooth a new algorithm is proposed which overcomes the sticking of the GIMH
and the bias of MCWM by utilizing the assumed smoothness. We note in passing
that when the distribution of Y is considered then the exact marginal π(θ|Y) is a
random function.

We have again assumed that we have available unbiased but noisy point
estimates π̃(θ) of π(θ), where π̃ is often a posterior distribution of a high dimensional
model and want to use MCMC to investigate it, the estimates could be obtained
from an importance sampler as used in the GIMH described above or via other
methods such as a particle filter.

The proposed algorithm is based on a sequence π̃(.)j of kernel density esti-
mates of π(θ), these are estimates of the whole density in contrast to the underlying
point estimates. A standard Metropolis-Hastings is run over θ using π̃(.)j to calcu-
late the acceptance ratio, the algorithm is

1. initialise θ

2. initialise π̃(θ)0
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3. for j = 1 . . . Nmcmc

(a) propose θ∗ from q(θ∗|θ)

(b) obtain π̃(θ∗)

(c) calculate the new density estimate dj = π̃(θ)

(d) accept θ∗ with probability min(A, 1) where

A = π̃(θ∗)jq(θ|θ∗)
π̃(θ)jq(θ∗|θ)

Conceptually at (c) we compute it for all θ, in practice we only need it at the points
θ and θ∗. Note that we make use of all the estimates π̃(θ∗) in computing π̃(θ). We
use a standard kernel estimate

π̃(θ)n =
n∑
i=1

π̃(θi)K(θ − θi
hn

)/
n∑
i=1

K(θ − θi
hn

) (3.6.1)

where hn is a predefined non-increasing sequence of bandwidths and K(.) is a sym-
metric kernel. Computationally the use of a kernel with bounded support gives
several options for efficiently computing the KDE sequentially. When the target is
a Bayesian posterior the initial estimate π̃(θ)0 can be taken from the prior on θ.

This algorithm generates a sequence of values of θ which because of the
dependence on past values is no longer Markov. It is hoped that the sequence will
converge to π(θ) subject to some conditions on the target and proposal distributions
and the sequence hn. The initial experiments described below have used a constant
value, in this case the best that can be hoped for is that π̃(.)j converges to the
convolution of the target π(θ) and the kernel with bandwidth h.

3.6.1 Kernel MH Algorithm - Naive implementation

A naive implementation which is computationally inefficient has been used to inves-
tigate the behaviour on the example used in section 3.5.2 and a more challenging 2-d
example. At each iteration n the KDE is recomputed for the two values θ, θ∗ from
the stored values θj π̂(θj) j = 1 . . . n which is O(n2). A Gaussian kernel with a range
of constant bandwidths (bw=1,.1,.01,.001) gives the results shown below (which can
be compared with the GIMH results in figure 3.5.2), bw=1 is over smoothed giving
biased results, on this short run on a simple toy bw=.1 may be the best. The KDE
was initialised from 100 observations from “a prior” of N(2,2), this initialisation is
still visible in these short runs for all bandwidths < 1.
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Figure 3.6.1: Kernel MH example, bw=1, .1

Figure 3.6.2: Kernel MH example, bw=.01, .001

Himmelblau Example Distribution

The Kernel Metropolis-Hastings (KMH) algorithm has been investigated in higher
dimensions, 2-d and 5-d and appears to work well, further programming to improve
efficiency is needed before any more extensive runs. A 5-d N(µ, I5) target is used,
the run time is still O(n2) the KMH appears to work well where the SEMH would
get stuck, running independent parallel chains circumvents the worst effects of the
O(n2).
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In 2-d a challenging multimodal example with heavy tails based on the Him-
melblau function5 H(x, y) = (x2 + y − 11)2 + (x + y2 − 7)2 has been used. The
target density is π(x, y) ∝ 1/(1 +H(x, y)) and contours of its logarithm are shown
in figure alongside a perspective view.

Figure 3.6.3: Himmelblau example target distribution, the log-likelihood is shown
as contours and a perspective view.The green dots indicate the position of local
maxima, the red dot a local minima.

The marginal distributions are intractable and so an “exact” MH run of
length 108 was used to obtain them along with the table below. Although the
positions of the 4 modes are known exactly, the position of them on the two marginals
is not, they are close to the projections of the peaks. Comparisons have been made
using these as exact probabilities (shown below as %).

(− In f ,−10] (−10 ,−5] (−5 ,0] ( 0 , 5 ] ( 5 , 1 0 ] (10 , I n f ]
(− In f ,−10] 0 .12 0 .08 0 .08 0 .07 0 .06 0 .10
(−10 ,−5] 0 .07 0 .39 1 .05 0 .69 0 .26 0 .06
(−5 ,0] 0 .07 0 .74 16 .83 21 .26 0 .76 0 .07
( 0 , 5 ] 0 .07 0 .52 24 .28 29 .01 0 .56 0 .07
( 5 , 1 0 ] 0 .06 0 .25 0 .98 0 .72 0 .19 0 .06
(10 , I n f ] 0 .09 0 .07 0 .07 0 .07 0 .06 0 .09

Results in 2-d

KMH runs have been compared with the SEMH and SAMH algorithms for a range
of parameters. The “noise” is log-normal with parameter σ one of 2,3,4,5. For σ = 2

5Himmelblau’s function
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Figure 3.6.4: Himmelblau example, 1-d marginal densities of the 2-d target. The
left hand plot shows the true densities obtained by an MCMC run of length 108.
The right hand plot shows an estimate obtained from a KMH run of ≈ 3× 106.

the SEMH algorithm worked well, a longer run would be necessary in practice, the
SAMH was heavily biased not identifying the modes and putting too much weight
in the tails, the bias of SAMH is expected to increase with σ so was not considered
for higher values of σ. For σ = 3 the SEMH algorithm showed significant sticking
but was still acceptable, (see left hand plot in 3.6.5). The KMH for σ = 3 at
3 bandwidths produced slightly better results, as measured by χ2 identification
of the 4 modes and tails, for a lower number of samples, but with the current
implementation required more cpu time. The SEMH with σ = 4 got badly stuck,
longer runs are unlikely to improve this. The KMH for σ = 4 at 3 bandwidths
produced significantly better results, (see right hand plot in 3.6.5), although longer
runs are necessary the 4 modes are correctly identified. Even with σ = 5 useful
results are obtained, tuning of its parameters and/or a longer run is necessary to
fully sample all 4 modes.

Programming details

Different approaches have been tried in the 2-d and 5-d examples they must be
integrated. Currently logarithms of densities are calculated as the smoothing is
linear, computation is dominated by the exp(.) function, this should be changed.
In 2-d an index of which observations are in each of a grid of squares side h, is
maintained so that the kernel is not evaluated when known to be zero. In 5-d a
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Figure 3.6.5: KMH SEMH comparisons

decreasing kernel bandwidth h is used.

KMH on Indian Buffet Posteriors

Attempts have been made to use the KMH on Indian Buffet Posteriors, these are not
described in detail, or described in the next chapter as they have been unsuccesful.
The reason appears to be the far greater variance of the log likelihood estimates,
which can be equivalent to a log normal parameter σ of 100 or more. The result is
that the samples become concentrated in an area centered on one large value but
matching the proposal distribution.

3.7 Concluding Remarks on MCMC

Although the impact of a poor proposal distribution on importance sampling
is well known, the study in section 3.2 illustrates the problem and highlights the
difficulties that can arise even in well understood situations where the variance is
known to be finite. The deleterious effect of increasing dimension has been demon-
strated for dimensions as low as 50. The increasing error in the sample standard
deviations shown in figure 3.2.2 shows that examination of the variance of weights
is not sufficient to guarantee acceptable behaviour. Better methods for robustly
diagnosing poor performance from analysis of samples would be very useful.

The SEMH algorithm can provide good estimates of the target distribution
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for moderate values of the variance of the estimator π̂(x) of the target density. The
bias of the SAMH has been investigated and it has been shown that the bias can
be significant, it provides a useful algorithm for exploratory analysis in low variance
situations but requires great care in other uses. In GIMH the variance is often
unknown and often infinite, effort should be concentrated on improved proposal
distributions to reduce this variance. When a better proposal can not be found and
the GIMH is sticking badly then the KMH provides a useful approximate algorithm
whose bias appears to be much smaller than that of MCWM. However until some
theoretical underpinning is available it does not merit the programming effort needed
to implement it efficiently.
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Chapter 4

Epidemic Inference

4.1 Introduction

Inference for the parameters of epidemic models has been studied for many years
but still provides challenges and lags the development of models. Classic approaches
are described in the monograph by (Becker, 1989), and more recent approaches in
the book by (Andersson and Britton, 2000).

This chapter presents results for inference in the homogeneous GSE using the
exact marginal likelihood for both continuously and regularly observed epidemics.
Attention then switches to the much more challenging problem of inference in het-
erogeneous models, focusing on the Indian buffet epidemic.

Data on epidemics are almost always incomplete in several ways and in prac-
tical situations the choice of model and availability of data cannot be cleanly sep-
arated. The times of infection are invariably unavailable, except in rare laboratory
experiments (such as Charleston et al., 2011). An important distinction for infer-
ence is whether the epidemic is still in progress and prediction is the primary aim
or complete and a retrospective study is being performed, the relevance of this dis-
tinction is shown below by the bi-modality of the Bayesian posterior distribution of
the infection rate.

An additional way in which data are incomplete is the resolution of recording
times of events, usually data on epidemics are only available on a daily basis, or
sometimes less frequently. In a slowly progressing disease such as AIDS this will
not be an issue but in any disease where the infectious period is only a few days
the distinction is important. When data are only available at regular times e.g.
daily, two approaches to model choice and subsequent inference are possible, either
a discrete time model as described in section 2.4 or a continuous time model with
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discrete observations. The choice between these classes of model will often be guided
by epidemiological considerations, for instance it could be argued that a discrete
time model is more appropriate as there are clearly differences in infection processes
during a day. For example it is often the case that adults and children mainly mix
with the same age group from 9am-5pm, within the family 7am-9am, and 5pm-
12pm and only with a partner at night. These differences in contact rates might be
influential if an age stratified model is in use. Exact inference for the homogeneous
GSE is demonstrated below for both approaches.

A range of observed or unobserved covariates for individuals, in particular
age or location, can have significant effects on some or all of contact patterns,
infectiousness, susceptibility and durations of phases in an epidemic. When covariate
data are available the number of parameters increases and care must be taken to
ensure that the extra parameters in the model are identifiable. Good inference
with co-variates builds on a good understanding of the underlying model and so
co-variates are not considered here.

4.2 Inference for the General Stochastic Epidemic (GSE)

Given complete data of all infection and removal times T Ij and TRj the likelihood
of the GSE is readily obtained from the definition in equation 2.2.1 and the stan-
dard non-stationary Poisson process likelihood, from which classical or Bayesian
inference may proceed. Before giving the equation two points on the data should
be noted which are important when the complete data is inferred as part of an
MCMC approach. The complete data include the time of infection, from outside
the population and the scope of the stochastic model, of the initial infective T I1 . In
some circumstances such as when considering simulated data or experimental data
this initial infection time may be known, tI1, and could be taken as the time origin,
however usually only times of removal are available and the natural time origin is
the first removal, in which case T I1 < 0 is a random time relative to 0. The second
point is that data are often available as counts of infectives and removals and the
individuals are unlabeled, that is the times T Ij and TRj cannot be paired and each
set of times is ordered. The full data likelihood for the GSE with parameters (λ, ρ)
in a population size np observed over the period from tI1 to Tobs with m infections
at tIj j = 1 . . .m, including the initial one, and n removals at tRi i = 1 . . . n is
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L =
n∏
i=1

ρI
(
tRi −

) m∏
j=2

λS
(
tIj−

)
I
(
tIj−

)
exp

{
−
∫ Tobs

tI1

(λS (t) I (t) + ρI (t)) dt
}

(4.2.1)
where n ≤ m ≤ np and tIj and tRi are ordered. S (t) and I (t) are the numbers
of susceptibles and infectives at t and limits from the left are indicated by S (t−).
The counts are obtained from the times as S (t) = np −

∑m
j=1 1

[
t ≥ tIj

]
and I (t) =

np − S (t)−
∑n
i=1 1

[
t ≥ tRi

]
.

To ensure that S (t) I (t) > 0 the event times must satisfy tIj+1 < tRj for j < n.
When data are available as paired times, which is necessary when considering non-
exponential distributions of removal times, the likelihood must be modified. See
Jewell and Roberts (2012) for details of the general case, if the epidemic is known
to be finished I (Tobs) = 0 and m = n a simpler form can be used as given by Neal
and Roberts (2005),

L ∝ ρn
m∏
j=2

λS
(
tIj−

)
I
(
tIj−

)
exp

−
∫ Tobs

tI1

(λS (t) I (t)) dt−
m∑
j=1

ρ
(
tRj − tIj

)
(4.2.2)

where tIj < tRj for 1 ≤ j ≤ n and I (t) > 0 for t < maxj(tIj ).
As the GSE is a superposition of two non-stationary Poisson processes, which

are independent conditioned on the state, the likelihood separates and so simple
MLE are available.

λ̂ = m− 1∫ Tobs
tI1

S (t) I (t) dt
(4.2.3)

ρ̂ = n∫ Tobs
tI1

I (t) dt
(4.2.4)

The Bayesian conjugate prior for a Poisson distribution is a gamma distribution
and so if the prior for (λ, ρ) is taken to be independent gamma distributions the
Bayesian posterior is also immediately available.

However data at this level of detail are very rarely available and so neither
is this straightforward approach to inference. Data are usually only available for
the removal times and so inference for this situtation has been extensively studied,
the two most important approaches are MCMC and martingales, both of which are
described below.
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4.2.1 Martingale Estimators for the GSE

Martingales can provide a powerful approach to point estimates with missing data
and asymptotic results can be used to provide confidence intervals. If M(t; θ) is a
martingale observed on [0, T ] settingM(T ; θ) = 0 can provide an equation in θ which
can be used as an estimator. The monograph by Becker (1989) shows in chapter
7 that the martingale M(t) = C (t) −

∫ t
0 λS (τ) I (τ) dτ can be used to derive the

same estimate for the infection rate as the MLE given in equation 4.2.3, and gives
its standard error using the martingale variation process. Perhaps more usefully he
shows that a martingale estimate for R0 based only on the final size ν can be derived
as R̂0 = (np/ν)

∑ν
i=1 (np − i)−1 and again gives the standard error. In a paper

Becker and Hasofer (1997) show how the martingale M(t) = S(t)(1 + R0/np)R(t),
which was described in section 2.3.5, can be used to derive an estimator for the
removal rate ρ only based on the removal times, however it requires knowledge of
either T I1 the time of the first infection or the number of infectives at the first
removal, which are generally not known.

4.2.2 Inference for R0 the Basic Reproduction Number in the GSE

When analysis is being conducted on a completed epidemic, the martingale estimator
above shows that direct inference for R0 is possible using only the final size. The
asymptotic values for the standard error can be inaccurate for small np or small R0.
The embedded Markov chain (EMC) described in chapter 2 can be used to provide
exact calculations for the probabilities of the final size for a given parameter value
and hence used in its estimation. It is straightforward to calculate numerical values
of the probabilities of each final size 0, 1, . . . np at a suitable chosen set of R0 values,
so giving the likelihood. A contour plot of the log likelihood for np = 120 is shown in
figure 4.2.1. Numerical integration, using linear interpolation between the calculated
values of the log likelihood, can be used to obtain the marginal likelihood for R0

given the final size as shown in the right hand plot.

Impact of the choice of prior on the posterior of R0

Multiplication of the likelihood on the grid by a prior provides a posterior density
which can be used to give a Bayesian estimate for R0, some care is needed in the
choice of prior. In particular when the final size = np a prior that is at least
moderately informative is needed for the posterior R0 to exist. An example is
shown in figure 4.2.2 for a population of size 50 with a prior ∼ Γ(3, 1) (mean and
variance 3), for less informative priors the posterior density for final size 50 can not
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Figure 4.2.1: GSE log likelihood for R0 given final size. Sub-figure b shows vertical
cross sections of sub-figure a.

be integrated.
As the likelihood separates into terms dependent on the two rates (λ, ρ), the

natural and often taken approach is two use independent conjugate priors, which
are gamma distributions. However care must be taken, as it was shown in chapter
3 that a ratio of gammas can imply a very heavy tailed prior on R0, which can
imply a heavy tailed posterior. The implied prior on R0 must be considered when
performing MCMC for (λ, ρ) as if the posterior forR0 is heavy tailed it will adversely
affect the mixing of MCMC. The same effect has also been identified in Clancy and
O’Neill (2008) where they show that the heavy tailed posterior can result in large
values for E (R0) and also say “Such findings illustrate the need for caution when
using R0 alone as a summary measure of an epidemic”.

4.2.3 MCMC Inference for the GSE

Two papers Gibson and Renshaw (1998) and O’Neill and Roberts (1999) introduced
the use of MCMC for epidemics where only the removal times are observed, the basic
algorithms have since been extended to more complex algorithms and improvements
such as the use of non-centering (Neal and Roberts, 2005) have been introduced.
The basic approach is to provide a prior on (λ, ρ, T I1 ) and given the removal times
tRj j = 1 . . . n use MCMC to generate samples from (λ, ρ, T Ij j = 1 . . .m) from which
the marginal distribution of (λ, ρ) is obtained. Two approaches are possible, either
paired or ordered infection and removal times. The use of paired infection and
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Figure 4.2.2: Posterior densities for R0, in the GSE in a population of 50

removal times has the advantage of handling non-exponential distributions. The
alternative which facilitates handling epidemics which are still in progress is to use
the ordered infection times as originally proposed by Gibson and Renshaw and
demonstrated by O’Neill and Roberts (1999), these approaches have been combined
and extended by Jewell and Roberts (2012). When the epidemic is known to be
complete, n = m and the posterior is on a subset of Rn+2, the conditions on the
support of the likelihood, given in equation 4.2.1, create a posterior with a com-
plicated support and other discontinuities. These discontinuities also explain why
other algorithms that handle missing data such as the EM (Dempster et al., 1977)
cannot be used sucessfully. When the epidemic is still in progress n ≤ m and reverse
jump MCMC is needed to sample from the posterior.

Although a variety of MCMC algorithms are often used successfuly on epi-
demic data and have been applied to large problems, for example Jewell et al. (2008),
the mixing of the MCMC can be poor and some data appear to give posteriors that
are more difficult to sample.

An approach to understanding these problems using the exact marginal dis-
tribution is considered in the next section, which also provides an alternative algo-
rithm.
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4.3 Inference for the GSE using the Exact Marginal
Distribution

The marginal distribution of the removal times from the GSE is not readily avail-
able in an analytic form, however the Markov representation of the GSE Xt =
(S (t) , I (t))T and the availability of software to calculate the matrix exponential
allows numerical calculation of the marginal likelihood. The use of the matrix expo-
nential to calculate probabilities in SIR epidemics, has been known as a theoretical
result for many years, but computational resources limited its use. The calcula-
tion of the exact marginal likelihood using it is believed to be original. The use in
inference and the identification of the bimodal nature of the likelihood is original.

The calculation of the likelihood for the GSE Markov process would be very
simple if the stateXt was observed at the removal times, it is not, all that is known is
that S (t)+I (t) = np−j for t ∈ [tRj , tRj+1). However by constructing a set of modified
chains the joint distribution of state and time between removals is obtained. In
order to calculate the distribution between tRj−1 and tRj a modified transition matrix
is constructed in which all the states with j removals, where S (t)+I (t) = np−j are
absorbing. First some notation, extending that in section 2.3.2 is introduced: the full
state space X ⊂ Z2, of size ns = (np + 1)(np + 2)/2 is partitioned by the number of
removals into X =

⋃np
j=0Xj , where Xj =

{
(s, i) ∈ Z2 : s+ i = np − j, s ≥ 0, i ≥ 0

}
.

The possible transitions are either infections which remain in the same subset Xj or
removals which move from Xj to Xj+1. The transitions of Xt between tRj and tRj+1
are governed by the subset of the transition rate matrix for the entire process Qθ on
the states Xj ∪Xj+1. The modified transition matrix Qj where Xj+1 is absorbing is

Qj =
(

QXj ,Xj QXj ,Xj+1

0 0

)
(4.3.1)

this is a valid transition rate matrix as the only transitions out of Xj are to Xj+1.
The joint density of time between removals j and j + 1 and probability of

the state at removal j + 1, conditioned on the state at removal j, is denoted

fj (t, xj+1|xj) = lim
dt→0

P (Xs+t = xj+1, Xs+t−dt ∈ Xj |Xs = xj) /dt

on the Markov process governed by Qj . This can be calculated using lemma 2 as

fj (t, xj+1|xj) = [Qj exp(tQj)]xjxj+1
(4.3.2)

and a recursive calculation gives the marginal likelihood. The distribution of the
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number of infectives immediately after the first removal was given in proposition 1,
and so for subsequent removals the joint density of the removal times 1 . . . j and the
probability of the state at removal j, denoted gj (t1:j , xj) is calculated as

gj+1 (t1:j+1, xj+1) =
∑
i∈Xj

gj (t1:j , i) fj (tj+1 − tj , xj+1|i) (4.3.3)

where g1 (t, l) = pl is independent of t and pl is from proposition 1, dropping the
zero term as we know there is at least one infective

pl = 1
1 + (np − l − 1)R0/np

l−1∏
i=1

(1− pi)

(the product for l = 1 is taken as 1).
After the last observed removal at tn two situations are considered, the epi-

demic is known to be complete or it is observed until time Tobs > tn without any
further removals. In the first case the final state is known and is xc = (np − n, 0),
so the density of the last transition is fn−1 (t, xc|xn−1).

Lemma 5. The marginal likelihood of the n removal times t1 . . . tn of a completed
GSE is

L =
∑

i∈Xn−1

gn−1 (t1:n−1, i) fn−1 (tn − tn−1, xc|i) (4.3.4)

Proof. by construction using the recursion in equation 4.3.3

Lemma 6. The marginal likelihood of the n removal times t1 . . . tn of GSE still in
progress, observed until tn is

L =
∑
i∈Xn

gn (t1:n, i) (4.3.5)

Proof. directly from equation 4.3.3

The likelihood can now be used for inference, either by numerical maximization
for a point estimate or in a straightforward MCMC for the parameters (λ, ρ). A
motivation for obtaining this exact marginal likelihood was to understand the diffi-
culties sometimes encountered in MCMC for epidemic models and so contour plots
of the log likelihood have been calculated, an example is shown in figure 4.3.1 super-
imposed on a shaded scatter plot of the results of an MCMC run using the algorithm
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Figure 4.3.1: Abakiliki posteriors

and data from O’Neill and Roberts (1999) for 30 smallpox cases in a population of
120 from Abakaliki, which confirms that both approaches produce the same results.
These data were also used as an example by Fearnhead and Meligkotsidou (2004)
who use an alternative way of calculating the exact likelihood and then multiply the
likelihood by a prior for θ and normalize by numerical integration.

4.3.1 Calculating the Matrix Exponential

The algorithm presented above depends fundamentally on the ability to calculate the
matrix exponential repeatedly for different parameter values. This can be limited
by the memory and cpu time required for the calculations. The memory problems
are alleviated by the use of standard sparse matrix techniques, such as those imple-
mented in the R Matrix1 package. Several ideas for accurate approximation have
been considered, in particular techniques based on the Fréchet derivative have been

1http://Matrix.R-forge.R-project.org/
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tried and appear to have considerable potential. However further work is needed to
obtain bounds on the size of the approximation errors and so they have not been
used for the results presented in this thesis and are outlined in appendix A together
with other techniques used in the computations.

Although the complete state matrix is large, the matrix exponential is only
calculated on subsets defined in equation 4.3.1 which are O(np). So larger popula-
tions can be handled by this algorithm than can be by algorithms which are reliant
on the exponential of the full Markov rate matrix, such as those described in section
4.4.

4.3.2 Bi-modality of Posterior Distribution for the In Progress GSE

As an epidemic progresses and more data in the form of removal times becomes
available the posterior distribution of the parameters evolves and becomes more
informative. The exact calculation of the marginal likelihood that was derived above
provides a mechanism by which the evolution of the posterior has been studied. In
practical terms there is usually more interest in inference for an epidemic that is
in progress than for one that is known to be complete. The results show that for
simulated epidemics the likelihood for the “in progress” case is bi-modal, with one
mode approaching the mode for the complete epidemic and another corresponding
to a very high infection rate, with many cases still infected.
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Figure 4.3.2: GSE marginal likelihood for simulated epidemic with np = 50, R0 =
1.2, left hand plot complete epidemic size=25, right hand plot epidemic in progress,
x-axis is the infection rate and the y-axis is the recovery rate. The green dot indicates
the true parameters, and the red dot the MLE for the completed epidemic, the
straight lines indicate R0 = 1.2, 2, 5.

Figure 4.3.3: GSE marginal likelihood complete and in progress
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Figure 4.3.4: GSE marginal likelihood complete and in progress

Figure 4.3.5: GSE marginal likelihood complete and in progress long tail example

Some examples are shown in figures 4.3.2-4.3.5, of contours of the exact
marginal log likelihood for simulated data on a population of 50, in each figure the
green dot indicates the true parameters, and the red dot the MLE for the completed
epidemic, the straight lines indicate R0 = 1.2, 2, 5, the x-axis is the infection rate
and the y-axis is the recovery rate. Figure 4.3.2 shows the difference between a
complete and in progress epidemic and has “nice” elliptical contours matching the
simulated R0 value of 1.2, an MCMC algorithm on these data might be expected to

110



perform well. The example in figure 4.3.3 is more surprising, the final size is 50, all
are infected and the marginal estimate of the recovery rate is reasonable, however
the posterior for the infection rate covers a wide range of values. Figures 4.3.4 and
4.3.5 also correspond to the whole population being infected, with the first from
a small population showing even less information in the posterior on the infection
rate.

4.4 Inference for Regularly Observed Epidemics

Exact Bayesian inference for epidemics in which all the removal times are observed
exactly has been considered in section 4.3, however usually data on epidemics are
only available on a daily basis, or sometimes less frequently. Two approaches to
model choice and subsequent inference are possible, either a discrete time model as
described in section 2.4 or a continuous time model with discrete observations. The
choice between these classes of model will often be guided by epidemiological consid-
erations, which are not considered here. It is often easier to obtain analytic results
from a continuous time model than from a realistic discrete time model however
when numerical computations are used this advantage is reduced considerably.

The Markov representation of the GSE as described in section 2.3 combined
with the matrix exponential and the binomial model developed in section 2.4 provide
two very similar discrete time, discrete state space hidden Markov models (HMM).
Inference for the parameters of an HMM has an extensive literature, in addition
to the even larger literature studying estimates of the hidden states with known
parameters.

This section considers a general finite state space HMM. We follow the
common practice of denoting ranges of vectors or random variables as X1:a =
X1, X2 . . . , Xa and using X−t = (X1:t−1, Xt+1,T ) where T is the size of X and known
from the context. We frame the description in general terms and consider the case
where there are ns states, and the state at t is Xt we have T observations Y1:T and
the transition matrix is P = (pij) i, , j ∈ {1 . . . ns} where pij = P (Xt+1 = j|Xt = i)
with an initial state distribution P (X1 = i) = νi, the observation distribution is
P (Yt = j|Xt = i) = gi (j) and is independent of the other X.

In many applications of HMM the transition matrix is known exactly, and
interest is in efficient algorithms to calculate the exact marginal posterior distribu-
tions P (Xt|Y1:n) which can be calculated using the forward-backward algorithm a
standard technique see e.g. Rabiner (1989) also the MAP path or the Viterbi path
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can be calculated2. These calculations and the inference algorithms below rely on
recursive computations of quantities, often known as alpha and beta. In the case of
finite state and time, which we are considering, they are the probabilities defined as

αt(i) = P (Y1:t, Xt = i) and βt(i) = P (Yt+1:T |Xt = i) (4.4.1)

in more general cases the definitions are similar, Cappé et al. (2005) gives details,
he also describes the scaling necessary to prevent underflow in their calculation.
These are calculated as α1(i) = νigi(y1) for 1 ≤ i ≤ ns and a forward recursion

αt+1(j) =
∑
i

αt(i)pijgj(yt+1) for 1 ≤ t < T

and βT (i) = 1 for 1 ≤ i ≤ ns and a backward recursion

βt(i) =
∑
j

βt+1(j)pijgj(yt+1) for 1 ≤ t < T

the calculation of both recursions is O(n2
sT ).

Figure 4.4.1: Exact marginal and full data log likelihood, for regularly observed
GSE. 2 simulations numbered 17 and 87 both with np = 50. In the marginal
likelihood the epidemic is assumed complete.

2The MAP is not necessarily a valid path the Viterbi is.
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Many authors have considered inference in HMM, the book Cappé et al.
(2005) provides a comprehensive treatment, also of note is Fearnhead (2011). The
particular case of Markov jump processes, of which the SIR epidemic is an exam-
ple, has been considered by Bladt and Sorensen (2005) who compare the EM and
a standard MCMC algorithm. Golightly and Wilkinson (2011) describe a Pseudo
Marginal Metopolis Hastings (PMMH) algorithm for a rabge of Markov jump pro-
cesses. Often in the HMM literature the state space is assumed to be small and the
parameter space is large and the noise in the observations is significant, whereas in
the models we are considering the state space is large, the parameter space is small
and the observations are partial without noise.

This section demonstrates that the exact calculation of the transition matrix
using the matrix exponential can be used in standard HMM algorithms to provide
exact inference for small population sizes.

We frame the algorithms in general terms and consider the case where there
are ns states, and the state at t is Xt we have T observations Y1:T and the transition
matrix is P = (pij) i, j ∈ {1 . . . ns} where pij = P (Xt+1 = j|Xt = i) the dependence
on θ is often dropped below to ease the notation.

Care is needed when using the term likelihood as it can mean P (X1:T , Y1:T |θ)
or P (Y1:T |θ), the full data likelihood is readily calculated as

P (X1:T = x1:T |θ) P (Y1:T = y1:T |x1:T , θ) = P (X1 = x1|θ)
T∏
t=2

pxt−1xt

T∏
t=1

gxt(yt)

while the marginal or observed data likelihood is obtained from the forward
recursions as

P(y1:n) = P(y1)
T∏
t=2

P(yt|y1:t−1) (4.4.2)

Consideration of the boundary conditions is important and problem specific,
usually the first state is assumed to be drawn from a specified distribution and the
final state is unconstrained. The SIR epidemic differs, often the epidemic is assumed
complete corresponding to a known final state XT . Although the epidemic model
starts with a known number of infectives, which is taken to be 1, the time of the
first infection is unknown and therefore so is the number of infectives at the first
observation.

113



Figure 4.4.2: Exact marginal and full data log likelihood, for regularly observed
GSE. 2 simulations numbered 17 and 87 both with np = 50. In the marginal
likelihood it is not asssumed that the epidemic is complete.

Given values of the parameters θ the exact transition matrix can be calcu-
lated using the matrix exponential as shown previously. The likelihoods for example
data can then be calculated using the forward recursions and can be maximised nu-
merically to calculate a MLE. Contour plots of likelihoods for simulated epidemics
are shown in figure 4.4.1 showing the greater dispersion of the marginal likelihood
over the full data likelihood. Thes plots are for ∆t = 1 similar plots (not shown) were
obtained for ∆t = 0.1. When the epidemic is complete the likelihood is uni-modal,
however when this assumption is not made a bi-modal distribution is possible. The
same data are analysed without the assumption of complete data and contours are
shown in figure 4.4.2. The two modes corresponds to the true model and a “false”
model with a high infection rate with a low recovery rate giving a large number
of infectives at the last observation. These calculations can be used in a Bayesian
framework by multiplying the likelihood by a prior for θ and normalizing by numer-
ical integration, this approach was taken by Fearnhead and Meligkotsidou (2004)
using a continuous time observation model, and an alternative way of calculating
the exact likelihood.
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MCMCAlgorithms for Regularly Observed Epidemics A variety of MCMC
algorithms have been developed for inference in HMM, a recent review is given in
Fearnhead (2011). Investigation of the relative performance of the algorithms de-
scribed there and other GIMH algorithms using the exact transition matrix for the
GSE would be useful topic for future study. These algorithms are described in
appendix C.

4.4.1 Concluding Remarks on Inference for Regularly Observed
Epidemics

Although the matrix of transition rates for the GSE is very sparse the transition
probability matrix is dense, which limits the size of problem that can be handled in
this way. However the majority of elements are extremely small and replacing those
less than some threshold with zero is a pragmatic approach. Some investigation
would be needed to determine suitable values of the threshold.

The calculation of the matrix exponential is the limiting factor in the use
of these MCMC algorithms and as mentioned previously further consideration of
it’s calculation is given in appendix A. As these algorithms all use the full state
transition matrix the limit on population sizes is much smaller than that for the
exact marginal algorithm for continuous observation given in section 4.3.

Inference for the binomial model described in section 2.4.1 is straightforward,
with the same choice of algorithms as for the regularly observed GSE. The calcu-
lation of the transition matrix is much quicker than using the matrix exponential
but suffers from the same memory limitations unless thresholding of probabilities is
used.

4.5 Inference on Heterogeneous Epidemic Models

Inference for epidemic models that incorporate some form of heterogeneity has been
widely studied, in order to make progress models that are believed to incorporate
the most important components of variability but maintain simplicity have been
studied. The two areas that have received the widest attention are household models
and multitype epidemics, which are briefly reviewed.

Inference for Household Epidemic Models Household models provide a nat-
ural breakdown of the population where infection rates are expected to differ, they
are also at a level at which data is frequently available. Inference can be based
purely on the numbers infected in each household without knowledge of the times
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of infection and removal. The monograph by Becker (1989) shows how compara-
tively simple methods can be used. A limitation of this approach is that it is only
applicable after an epidemic is complete, however it can be important for providing
information relevant to vaccination strategies.

The same stochastic model can be applicable to farm animals kept in groups
where the transmission within a group is much higher than that between groups an
example of such an analysis is given by Hohle et al., 2005.

Inference for Multitype Epidemic Models The general multitype epidemic
described in section 2.5.3 withm types has up tom2+1 parameters ψi,j i, , j ∈ 1 . . .m
and ρ, and usually they will not all be identifiable. An example of statistical inference
on a simple version of this model is that of Becker (1989, chapter 5) who analyses
an epidemic of a respiratory disease on Tristan da Cunha and shows that from final
size information alone it is possible to identify a higher rate of transmission in school
children. These models are important as outbreak control measures are often based
around structures within populations (e.g. school closures).

A frequently studied model has both susceptibility and infectiousness vary-
ing between groups so that ψi,j = cidj where ci is the infectiousness and dj the
susceptibility of individuals in groups i and j. Inference for this model has been
studied by Britton (1998) who derives maximum likelihood estimators for the fully
observed process and martingale estimators for the partially observed process.

An approach to the more general case has been studied in a series of papers
by Demiris and O’Neill (2005a,b) who develop MCMC algorithms for inference from
final-outcome data.

Inference for Other Heterogeneous Epidemic Models Inference for more
complex models invariably uses MCMC approaches and are typified by the compu-
tationally intensive results obtained in Jewell et al. (2009b) which are illustrated by
an analysis of the 2001 UK Foot and Mouth epidemic, and modelling the potential
risk from a possible future Avian Influenza epidemic to the UK Poultry industry.

4.5.1 Inference on Bipartite Graph Epidemic Models

The bipartite graph epidemic BipE (A,λ, ρ, gi) defined in section 2.6.3 is in gen-
eral not amenable to analytic inference, however MCMC techniques are in principle
straightforward and are investigated. A variety of combinations of known and un-
known parameters can be considered, many of which may be unidentifiable, also
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restrictions on the parameters could be considered. The case where A and gi are
known and λ and ρ are unknown is considered.

Two variants of the full data likelihood for the GSE were given above in equa-
tions 4.2.1 and 4.2.2, as the infection rate of BipE (A,λ, ρ, gi) depends on which
individuals are infected when, the likelihood can only be sensibly considered for
labeled data where the infection and removal times are associated to a row of A
and so are available as paired times, which is also necessary when considering non-
exponential distributions of removal times. The likelihood is an extension of that
for the GSE, the time dependent infection rate in the GSE is λS (t) I (t) which is
replaced by a sum of individual infection rates. The instantaneous rate of infections
on a susceptible individual j was given in equations 2.6.1 and 2.6.2 which are re-
peated here, for each susceptible individual j ∈ S(t) the rate of infections at time t
is

ηj (t) =
∑
k∈V

ajkλkIk (t) (4.5.1)

where
Ik (t) =

∑
j∈U

ajk1 [Xj,t = I] =
∑
j∈I(t)

ajk (4.5.2)

and the likelihood where the n infections are at tIj and m removals at tRj and tIj < tRj
for 1 ≤ j ≤ n and I (t) > 0 for t < maxj(tIj ) is

L =
∏
j∈B

ηj
(
tIj

)
exp

−
∫ Tobs

tIinit

np∑
j=1

ηj (t) dt

× (4.5.3)

∏
j∈R(Tobs)

ρ exp
{
tIj − tRj

} ∏
j∈I(Tobs)

exp
{
tIj − Tobs

}

where R(Tobs) is the set of individuals who are infected and recover by Tobs, I(Tobs)
the set of individuals still infectious at Tobs, B = R(Tobs)∪I(Tobs) is the set who have
been infected by Tobs and tIinit = minj(tIj ). To incorporate a general distribution for
the recovery period the term inside the second product is replaced with its p.d.f.
and the third by its c.d.f..

MCMC for Completely Observed Bipartite Graph Epidemics

When all the times are available and the parameters ρ and λ are unknown a standard
approach to inference on a bipartite graph epidemic is to use MCMC, a range of pos-
sible algorithms exist, the appropriate choice will depend on the size and structure
of A. As an example a standard random walk Metropolis-Hastings algorithm was

117



used on an example where A was 1000× 21 and λk = .5/nk, the resulting epidemic
has has 626 infections and the number of infectives is plotted against time in figure
4.5.1.

Figure 4.5.1: Bipartite graph epidemic example of 626 infections, a simulation with
A 1000× 21 and λk = .5/nk

An example of the MCMC output, using a moderately informative prior, a
set of independent exponential distributions mean 1, is shown in figure 4.5.2. The
mixing was adequate without any special effort and the posteriors for the first two
columns are compatible with the true values, 0.00058 0.00150, however the posterior
for column 21, shown in the bottom plot is very close to the prior. This is because the
non zero entries of column 21 of A were not infected and so provide no information
on λ21, which had a true value of 0.17000.

The main purpose of investigating such algorithms was as preparation for,
and later to help in understanding difficulties, encountered with MCMC for the
Indian Buffet Epidemic, however when combined with imputation of infection times
they would provide a general means of investigating inference for other models with
a bipartite graph representation.

4.6 Inference for the Indian Buffet Epidemic (IBufE)

The Indian Buffet Epidemic, which was introduced and defined in section 2.7.2 pro-
vides a flexible model which includes a wide range of heterogeneity in the contact
process. When little is known about the structure of the contact process an al-
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Figure 4.5.2: MCMC results for a bipartite graph epidemic

ternative to specific models such as a household model is to consider the structure
as unknown and estimate some aspect of it. This has been done in papers such
as Britton and O’Neill (2002) where the parameter p of an Erdös-Renyi graph is
estimated. In a related way, here we consider marginal inference for the parameters
of the Indian Buffet Epidemic not specific estimates of the underlying matrix Z.

Inference for IBufE (θ, np, ξ, gi) where both the parameters of the IBP (α, β)
and the epidemic parameters (λ, ρ) are unknown and the population np, the infection
rate scaling function ξ (n, λ) and the initial infective distribution gi are known, is
in principal straightforward using MCMC, however in practice it provides several
challenges. The remainder of this section describes the approaches taken and the
progress made.

All of the approaches have considered the case where both infection times
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and removal times are available and are based on augmenting the data with the
contact matrix Z ∼ IBP (α, β, np). The likelihood of the observed data consisting of
n infections at tIj and m removals at tRj under IBufE (θ, np, ξ, gi) when augmented
with Z is the product of the likelihood of Z given by the appropriate choice from the
three equations 2.7.1,2.7.2 or 2.7.3 and that of the epidemic given by equation 4.5.3.
If the distribution of the initial infective gi is other than uniform or deterministic
then it must also be incorporated into the likelihood.

The calculation of the likelihood of the IBP can be relatively time consuming,
as can sorting a matrix into lof form. The main terms involve only the sums of
columns, mk, but the term that differs between the sequential and lof forms is
more complex. When generated by the sequential IBP process the term

∏N
i=1K

(i)
1 !

is available immediately. However if generated from an alternative method it is
necessary to identify any repeated columns, and calculate Kh!, when np > 50 with
high probability the repeats havemk = 1, 2 ormk = np−1, np but there is a non zero
probability of other repeats as well. This can be calculated efficiently by noting that
for columns to be the same they must have the same column sum mk. Identifying
the position of the first and last 1 in each column with the samemk further identifies
columns that cannot be repeats.

4.6.1 RandomWalk Metropolis-Hastings for the Indian Buffet Epi-
demic

Some initial investigations looked at using a random walk for Z over ZK (all 2npK

binary np × K matrices) for a fixed K and known β = 1. As the data include
infection and removal times and the likelihood factorises, ρ can be independently
estimated using maximum likelihood or a Bayesian analysis. Three random walk
Metropolis-Hastings steps within a Gibbs framework are used, each samples from
the conditional posterior distributions of each parameter given complete data and
the other parameters.

Each step of the MCMC algorithm executes the following three substeps :

1. sample λ ∼MH using a random walk with Gaussian proposal

2. sample α ∼MH using a random walk with Gaussian proposal

3. sample Z ∼MH on Z, proposal methods are described below, the acceptance
probability is calculated using equation 2.7.1.

Where MH indicates a standard Metropolis-Hasting proposal and acceptance step
as described in chapter 3. The first heuristic proposal for Z moves was at each step
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to do one of three moves "flip","swap" or "permute” chosen at random: where “flip”
is pick i and k uniformly and set zik = 1− zik, “swap” zik ←→ zi′k′ , and “permute”
was a permutation of rows within one column; this performed poorly with very low
acceptance rates. A second proposal method was developed:

1. At each step: K i.i.d. column flip probabilities ψk are sampled from a beta
distribution with parameters K and 0.8/K.

2. Within each column, each bit is “flipped” independently with probability ψk.

These parameters were chosen so that the expected number of flips in each column
is close to 1 but there is a small chance of a large number of flips, so that there is a
small probability of a large step and a large probability of small step. This algorithm
still performed poorly except on small problems and performance was very variable
across data sets.
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Figure 4.6.1: Example results for a heuristic random walk Metropolis-Hastings al-
gorithm on an Indian buffet epidemic with population 28.

A typical example of diagnostic plots from three parallel chains on an example
simulation with parameters np = 28, K = 8, α = 2, λ = 0.1 is shown in figure
4.6.1. This appears to show reasonable convergence of α and λ, however the log-
liklihood is showing large variations which were caused by jumping between modes
with significantly different IBP matrices Z. This algorithm scaled very poorly with
population size np and much longer runs and better tuning of proposals would have
been required to achieve convergence on this example. This algorithm was not
considered further.
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4.6.2 Non Centered Parameterisation for the Indian Buffet Process

One of the problems identified in the first algorithm was the strong correlation
between the IBP parameter α and the matrix Z. On many other difficult MCMC
problems the “non-centered” approach of Papaspiliopoulos et al. (2007) has proved
useful, for instance in Neal and Roberts (2005), and so non centered algorithms
where investigated.

The approach is to augment the problem with a uniformly distributed matrix
U and a vector V from which the matrix Z is defined for given IBP parameters by
a deterministic function h(U, V, α, β), so aiming to reduce the correlation between
the imputed data and the parameters of interest.
Two mappings from the random U, V and the IBP parameters α and β to Z =
h(U, V, α, β) have been considered, the length of V is different for the two mappings.
One based on the the finite K representation which produces Z ∈ ZK and an
alternative based on the sequential representation of the IBP which generates Z ∈
Zseq. The simpler mapping using the finite K representation was found to be more
efficient, a large value of K is chosen, e.g. 2np and a uniform(0, 1) random np ×K
matrix U and a uniform(0, 1) random K vector V = (V1, V2 . . . VK) are used. V is
mapped to ψ using the inverse of the c.d.f. of the beta distribution

ψj = F−1(vj ;αβ/K, β)

where F (.;α, β) is the c.d.f. of the beta distribution; Z is then simply given Zi,j =
1(Ui,j < ψj).

The sequential mapping Z = h(U, V, α, β) is described according to the
metaphor for the sequential representation of the IBP. A uniform(0, 1) random
np × Kw matrix U and a uniform(0, 1) random np vector V = (V1, V2 . . . Vnp) are
used. Conceptually U has an infinite number of columns, only a finite number Kw

are used. V is mapped to the number of ’extra’ dishes for each row and U is mapped
to the entries of Z which are dependent on the previous customers. The mapping
from U and V to Z, h(U, V, α, β) is defined by the sequential algorithm 4.1.
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Algorithm 4.1 Sequential non-centered generation of IBP

1. for i = 1 . . . np calculate Ni the number of extra dishes for
customer i as Ni = F−1(vi;αβ/(β + i − 1)) where F (.;α)is
the c.d.f. for Poisson mean α.

2. set K+ =
∑np
i=1Ni

3. if K+ > Kw

(a) increase size of U to np ×K+ and set Kw = K+

(b) set new columns of U to uniform(0, 1)

4. set Zi,j = 0 for i = 1 . . . np and j = 1 . . .K+

5. set Z1,j = 1 for j = 1..N1

6. set vector m = Z1,.

7. repeat the following steps for each i in 2 . . . N do

(a) for each j set Zi,j = 1 if Uij > mj/(β + i− 1)

(b) set Zi,j = 1 for j in the Ni extra columns

(c) for each j set mj = mj + Zi,j

Although this sequential algorithm appeared to have some advantages over
the finite K algorithm, it in fact disrupts the key property of a non-centered rep-
resentation. A small change in α gives a discontinuous change in the number of
’extra dishes’ which causes different columns of U to be used and a small change
in β gives different values of the cumulative counts m both resulting in potentially
large changes in the components of the likelihood.

Various approaches to the top level MCMC algorithm are possible, the ap-
proach chosen was to produce samples of p(θ, U, V |TI , TR) where θ = (α, β, λ) using
a mix of M.H and Gibbs steps within a Gibbs MCMC by the following steps
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Repeat the following steps

1. M.H. step on V, a random walk proposal is used which selects
10% of values and on these uses i.i.d. N(0, σV )

2. M.H. step on U, a random walk proposal is used which selects
10% of rows and 10% of columns and on these uses i.i.d.
N(0, σU )

3. M.H. step on infection rate λ, a random walk proposal is used
∼ N(0, σλ)

4. MH step on the IBP parameters α and β, a random walk
proposal is used ∼ N(0, σα) and∼ N(0, σβ)

Concluding Remarks on Non-centering for the IBP

Initialisation of the non centered variables U and V requires further consideration,
if they are generated uniformly a large number of attempts are often required to
obtain a value of Z within the support of the posterior. An alternative is force a
feasible initial value, the simplest approach is to set one column of U to all 1’s. Using
this or other feasible initialisations gives a Markov chain that has started close to a
mode and invariably struggles to find other modes.

Although this algorithm performed much better than the previously de-
scribed heuristic random walk algorithm, there were still problems, one of which
was identified but not solved. The close relation between the infection rate and the
IBP causes problems, a similar effect was noted by Britton and O’Neill (2002) and
Neal and Roberts (2005) in their analyses of epidemics on Erdös-Renyi graphs. They
found that pλ was very close to constant in the posterior, where p is the edge prob-
ability in the graph and λ is the infection rate3. An additional problem is that the
likelihood of the epidemic conditional on Z is the same as that obtained by repeating
every column and halving the infection rate, denoting the matrix of size np × 2K
with repeated columns as Z|Z we have BipE (Z,λ, ρ, gi) = BipE (Z|Z,λ/2, ρ, gi)
considered as distributions of the infection and removal times. The problem arises
because the likelihood of Z ∼ IBP (α, β, np) is similar to Z|Z ∼ IBP (2α, β, np) and
so the posterior has many modes of similar heights, this strong multimodality makes
the design of any random walk MCMC algorithm difficult. A reparameterisation
using RIB (see section 2.7.3) might alleviate this problem. Although this exact
duplication could be identified within an algorithm, the multimodality arises also

3they use β for the infection rate, λ is used to avoid confusion with the IBP parameter β
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from very similar values of the likelihood when columns only differ for non-infected
individuals or by a single position. Also although in the bipartite graph epidemic re-
peated columns are redundant, in the Indian buffet epidemic they are a mechanism
where higher infection rates within one group can be modelled.

4.6.3 IBP Proposal Distribution in the Support of the Posterior
Distribution for the Indian Buffet Epidemic

The difficulties described above in developing MCMC algorithms for inference for
the Indian Buffet Epidemic provided insight that has enabled better algorithms to be
developed. The key lesson from the different approaches which have been studied is
that a proposal distribution for Z that is closer to the posterior is needed to achieve
a reliable algorithm, in particular restricting the proposal to be close to the support
while still being able to calculate its density is needed. Given a set of epidemic data
times T a large fraction of Z ∈ Zlof are infeasible for T ∼ BipE (Z,λ, ρ, gi). That is
the likelihood is zero or equivalently they are outside the support of the posterior
of Z|T,λ, ρ, which is denoted Zsup (T). The initial infective in T is assumed to be
within the support of gi. The infection hull of a set of infection and removal times,
is the set of sets of possible infectors and is denoted H (T), this is called the “set of
suspects” in Britton and O’Neill (2002).

The infection hull H (T) can be used with many epidemic models, in par-
ticular any bipartite graph epidemic, to rapidly check if the structure is consistent
with the observed or imputed times. To clarify the relation between the infection
hull and the network an example simulation of an epidemic, run on an example bi-
partite network of 11 nodes (from figure 2.6.1) is shown in 4.6.2. The infection hull
can be considered as a directed graph, with edges where infection is possible. The
intersection of this graph and the graph on which the epidemic is runnning gives
the possible, infection paths.

A difficulty with designing a proposal restricted to Zsup (T) is that that the
ratio of the size of the support |Zsup (T)| to that of the sample space |Zlof| is often
very small and the probability changes significantly with the IBP parameters and
the final size of the epidemic. The smallest probabilities are for small α, large β and
large final size.

4.6.4 Efficient Independence Sampler for Indian Buffet Epidemics

The first algorithm using the infection hullH (T) combined a rapid check if the struc-
ture is consistent with the observed or imputed times with the sequential generation
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vertex Infection time Removal time Hull
1 0.000 2.822
4 0.723 1.606 1,4,7
7 0.753 0.959 1,4
2 0.845 0.872 1
11 0.866 0.993 1,4
3 1.229 1.251 1,2,4,7

Figure 4.6.2: Example of a simulated bipartite epidemic showing the Infection Hull.
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of an IBP to provide an independence sampler which generates Z ∼ IBP (α, β, np),
but is aware of H (T) and on detecting that Z /∈ Zsup (T) abandons the generation
and returns a flag. The MCMC algorithm immediately rejects the proposal with-
out having to calculate the likelihood. This sampler is computationally efficient, in
avoiding unnecessary calculations, but suffers from the usual problems of exponen-
tially decreasing acceptance rates as the dimension of the problem, which is ∝ np,
increases.

Figure 4.6.3: Examples of posteriors for IBufE parameters, from 4 simulated epi-
demics, using the efficient independence sampler.

The algorithm performs well on populations up to 25 and adequately up to 50,
unfortunately for such small populations most epidemics are indistinguishable from
a GSE and so the algorithm is of limited use. The resulting posterior distributions
for the IBP parameters are close to the prior, and the posterior for the infection
rate is wider than that obtained assuming a GSE and is strongly dominated by the
observed final size, examples of posteriors are shown in figure 4.6.3 for runs on 4
example epidemics..

4.6.5 Algorithm for Sequential IBP Proposal Distribution in the
Support of an Epidemic

The standard sequential algorithm for the generation of an IBP can be combined
with H (T) to provide a proposal distribution for Z ∈ Zsup (T) which it is hoped
is close to Z ∼ IBP (α, β, np) |Z ∈ Zsup (T). The difference is that the epidemic is
considered in order of infection times and at each stage at least one bit is added
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to ensure that Z ∈ Zsup (T). The probability of Z ∈ Zsup (T) is also calculated
sequentially, it is shown in algorithm 4.2. The resulting Z and q(Z) can be used in
a Markov Chain Independence sampler.

Algorithm 4.2 Sequential generation of IBP proposal in the support of an epidemic.

1. for i = 1 sample N1 from N1 ∼ ZTPoisson(α), the zero trun-
cated Poisson distribution.

2. for i = 2 . . . np sample Ni the number of extra columns from
Ni ∼ Poisson(αβ/(β + i− 1))

3. set qp to the sum of the log probabilities of Ni

4. for j = 1 . . . N1 set Z1,j = 1 and mj = 1

5. set K = N1

6. repeat the following steps for each i in 2 . . . np do

(a) set Hi to H (i) the set of possible infectors of i

(b) for each j inHi set pj = mj/(β+i−1) the IBP sequential
algorithm probability

(c) for each j in Hi set Zij = 1 with probability pj and
update qp

(d) choose a j from Hi with probabilities ∝ pj set Zij = 1
and update qp

(e) for each j in Hi set mj = mj + Zij

(f) for j = 1 . . . Ni set Z1,j+K = 1 and mj = 1

(g) set K = K +Ni

7. return Z and qp

4.6.6 GIMH algorithm for Indian Buffet Epidemics

The grouped independence Metropolis-Hastings (GIMH) was described in chapter 3
and appears ideally suited to inference for the Indian buffet epidemic where interest
is in the marginal posterior distribution of the parameters θ = (α, β, λ, ρ) not in the
posterior distribution of Z. The algorithm combines the efficient independence sam-
pler described in section 4.6.4 with the GIMH algorithm. The GIMH algorithm uses
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Algorithm 4.3 GIMH algorithm for the Indian buffet epidemic

1. Sample initial value for θ = (α, β, λ, ρ) from prior.

2. For i = 1 . . . nz i.i.d. sample Zi ∼ IBP (α, β, np), calculate π̃N (θ) using equa-
tion 4.6.1.

3. Repeat the following steps a large number of times

(a) sample θ′ = q(θ′|θ)
(b) For i = 1 . . . nz i.i.d. sample Zi ∼ IBP (α′, β′, np), calculate π̃N (θ′)
(c) Accept θ′ with probability min(A, 1) where

A = π̃N (θ′)p(θ′) q(θ|θ′)
π̃N (θ)p(θ) q(θ′|θ)

an estimate of the marginal likelihood π̃N (θ) to compute the acceptance ratio for a
Metropolis-Hastings algorithm for θ. Although the infection times are available and
so the posterior for the removal rate ρ could be separated, if independent conjugate
priors are used, the general case is considered with ρ within the GIMH framework.
Using the IBP as the proposal for Zi means that π̃N (θ) given in equation 3.4.1
simplifies to

π̃N (θ) =
nz∑
i=1

L (T|θ,Zi) p(θ) (4.6.1)

where the Zi are nz values i.i.d. ∼ IBP (α, β, np), L is the conditional likelihood
given by equation 4.5.3 and p(θ) is the prior for θ. The resulting algorithm is given
in algorithm 4.3.
The results for this algorithm were variable, GIMH runs were performed on a set
of simulated epidemics with population sizes of np = 20, 50, 100, 150, 250. Adequate
mixing was obtained more frequently with the smaller populations but some exam-
ples sometimes worked well but occasionally, with a different seed for the random
number generator, failed to mix adequately, other examples failed most of the time.
For np = 20 mixing was generally adequate but the posterior for the IBP parame-
ters was indistinguishable from the prior, an example is shown in figure 4.6.4. For
np = 50 mixing was sometimes adequate on some examples but very poor on others,
for np = 100 it was poor and for larger population sizes mixing was hopeless. The
main problem was identified as the sticking of the GIMH algorithm which happens
when a sampled value π̃N (θ) is much bigger than the true value π(θ), the result is
that the current state of the Markov chain is then maintained for a long time often
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Figure 4.6.4: Example output from GIMH algorithm on an IBufE example with
population size np = 20
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103 samples or more. As a check on the algorithm and programming π̃N (θ) has
been evaluated at a grid of θ values for large values of nz = 400, 000, an example is
shown in figure 4.6.5.

Figure 4.6.5: Contours of log likelihood for example IBufE np = 20, α = 3, obtained
using π̃N (θ) with N = 400000 from the GIMH algorithm.

A new variant was investigated which is called the interleaved GIMH algo-
rithm (IGIMH) which alternates a simple GIMH step with an i.i.d. independence
proposal qθ(.) for Z, with a local move on Z which targets the same distribution.
This new algorithm is designed to overcome the sticking problem while remaining
within the pseudo marginal framework and so inheriting the results in Andrieu and
Roberts (2009). The performance was very similar to the GIMH, still getting badly
stuck.
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4.6.7 MCWM Algorithm for Indian Buffet Epidemics

The Monte Carlo within Metropolis algorithm (MCWM) was described in chapter 3
and is also ideally suited to inference for the Indian buffet epidemic and only requires
a small change to the program used for the GIMH. Unfortunately it is known to be
biased and as shown in chapter 3 the size of the bias can be large but is generally
unknown. The MCWM does not usually suffer from getting stuck as badly as the
GIMH as π̃N (θ) is re-sampled for the existing state as well as the proposed state at
each iteration. An inappropriate choice of the scaling for the proposal distribution
q(θ′|θ) can still result in some sticking.

In early results on very small examples this algorithm performed better than
any of the other algorithms considered, at that stage, comparisons of the results
shown in figure 4.6.6 with results from the GIMH and calculations of the marginal
likelihood at a grid (shown in figure 4.6.5) does not reveal any obvious bias. Slow
performance limited study on larger epidemics.

4.6.8 MCWM on Hagelloch Data

A real example dataset chosen to try and demonstrate the ability of the IBufE to
detect heterogenity is the 1861 Hagelloch measles epidemic, which has 188 cases
in a population of 197 children, (previously analysed by Neal and Roberts (2004)
and subsequently by Britton et al. (2011) and Groendyke et al. (2011)). These
data are known to involve spatial and classroom clustering and so it was thought
they might show some heterogenity in the contact process when analysed without
using the spatial locations. Computational improvements to the existing MCWM
algorithm were necessary to work adequately on larger data sets, such as this. The
improvements made to the basic MCWM algorithm result in the MCWM Hull reject
algorithm 4.4.

Attempts were made to run the MCWM algorithm on the data, 188 paired
infection and removal times, from the Hagelloch epidemic (obtained from the R
epinet package). Various combinations of proposal scaling and priors were tried
however none was fully acceptable. Two examples are shown in figure 4.6.7, the first
attempt used, a moderately informative prior the second a more informative prior.
The priors used are all offset gamma distributions, some with an offset from zero
and are shown in table 4.6.1.
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Algorithm 4.4 MCWM Hull reject algorithm for the Indian buffet epidemic

1. Sample initial value for θ = (α, β, λ, ρ) from prior.

2. For i = 1 . . . nz i.i.d. sample Zi ∼ IBP (α, β, np),

(a) check if Zi ∈ Zsup (T) if not set Zi to NULL
(b) calculate π̃N (θ) using equation 4.6.1.

3. Repeat the following steps a large number of times

(a) sample θ′ = q(θ′|θ)
(b) For i = 1 . . . nz i.i.d. sample Zi ∼ IBP (α′, β′, np),

i. check if Zi ∈ Zsup (T) if not set Zi to NULL
(c) calculate π̃N (θ′) using that first set of Zi using 0 for the probability when

Zi is NULL
(d) For i = 1 . . . nz i.i.d. sample Zi ∼ IBP (α, β, np)

i. check if Zi ∈ Zsup (T) if not set Zi to NULL
(e) calculate π̃N (θ) using the second set of Zi using 0 for the probability

when Zi is NULL
(f) Accept θ′ with probability min(A, 1) where

A = π̃N (θ′)p(θ′) q(θ|θ′)
π̃N (θ)p(θ) q(θ′|θ)
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Figure 4.6.6: Example of the MCWM algorithm on a simulated IBufE, N=20.
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Figure 4.6.7: MCWM output from Hagelloch epidemic data. The priors used are
shown in table 4.6.1.

α β λ ρ

figures shape rate offset shape rate offset shape rate shape rate

4.6.6 2 2 0 1 1 1 1 1 1 1
4.6.7 l, 4.6.8 2 2 0 1 1 1 1 1 1 1
4.6.7 r, 4.6.9 2 0.1 1 2 0.1 1 1 10−3 1 10−3

Table 4.6.1: Priors used in MCWM runs on IBufE

4.6.9 Results for the MCWM and Hull Independence Sampler

Hull Independence Sampler on Hagelloch Data

The new algorithm appears to work well, trace plots showed good mixing, two sets
of runs with different priors are shown here.

In the first a set of 5 parallel chains of length 5 × 105 had acceptance rates
of 0.437, 0.621, 0.494, 0.436, 0.897, plots are shown in figure4.6.8. The performance
and results are strongly influenced by the choice of prior and proposal distribution.
An informative prior was used for α and β, while an uniformative prior was used for
the infection rate parameter ξ (n, λ). The independence proposal distribution used
was also informative. In this first set there is little difference between the proposal
and posterior for α and β.

In the second set a different prior for α and β was used which kept them
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Figure 4.6.8: Density and autocorrelation plots for the Hull Independence Sampler
on Hagelloch Data. The results of the density estimates are shown in red, the prior
in green and the proposal in black.
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Figure 4.6.9: Density and autocorrelation plots for the Hull Independence Sampler
on Hagelloch Data. The results of the density estimates are shown in red, the prior
in green and the proposal in black.

from the low values where the contact structure is indistinguishable from homoge-
neous mixing. In this set 3 parallel chains of length 5 × 105 had acceptance rates
of 0.030, 0.165, 0.055, plots are shown in figure4.6.9. The posteriors show some
difference from both the prior and proposal distributions.

4.7 Concluding Remarks on Inference for Epidemic Mod-
els

Exact inference for the GSE, where the data consist of removal times has been
demonstrated using a new algorithm based on caclulating the exact marginal likeli-
hood using the matrix exponential. The exact marginal likelihood has been used to
demonstrate that for an in progress epidemic the posterior can be bi-modal.

Although MCMC algorithms for linear models based on the IBP have been
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succesfully demonstrated inference for non-linear models such as the Indian buffet
epidemic is significantly harder. The principal reason is the small ratio of the size
of the support to the size of the IBP sample space.

Some understanding of the difficulties in MCMC inference for the Indian
Buffet Epidemic has been achieved and algorithms have been developed that permit
inference on complete data. Alternative sequential algorithms were also considered,
it was hoped to combine the sequential process with the evolution of the epidemic.
An algorithm based on infection trees inspired by the algorithm presented in Britton
and O’Neill (2002) was also investigated, however although the Indian buffet process
is exchangeable, if an ordering based on the epidemic such as infection times is used
this is dependent on the structure and destroys this property.

The key lesson from the different approaches which have been studied is that
a proposal distribution for Z that is closer to the posterior is needed to achieve a
reliable algorithm, in particular restricting the proposal to be close to the support
while still being able to calculate its density is needed. A n algorithm that does this
has been implemented, a performance difficulty remains because the ratio of the size
of the support |Zsup (T)| to that of the sample space |Zlof| is small and changes with
the IBP parameters.

An alternative algorithm, still using the independence proposal, is the kernel
Metropolis-Hasting algorithm described in chapter 3, which appeared promising on
toy examples, but appears to suffer from similar sticking as the GIMH and bias as
does the MCWM. The bias is thought to be affected by the wide changes in variance
of the likelihood estimates as the parameters vary. When a reliable algorithm is
identified for the situation considered here, where both infection times and removal
times are available, it is planned to consider the more realistic situation of only
having removal times by combining it with existing algorithms for imputing the
infection times.
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Chapter 5

Conclusions

Inference and model choice for partially observed epidemics provides a variety of
challenges. This thesis has studied some related aspects of models for epidemics,
their inference and some underpinning aspects of the GIMH algorithm, the key
advances are summarised in the following paragraphs.

Exact Calculation in the General Stochastic Epidemic The use of the ma-
trix exponential to facilitate exact calculations in the GSE has been demonstrated
in providing the basis for inference in continuous and regularly observed epidemics.
The use of the exact marginal likelihoood for inference is demonstrated in section
4.3 and the exact matrix of transition probabilities is used for HMM inference in
section 4.4.

Bipartite Graph Epidemics The bipartite graph epidemic has been defined and
shown to be a flexible framework which encompasses many existing models. It also
provides a way in which a deeper understanding of the relation between existing
models could be obtained.

Indian Buffet Epidemics The Indian buffet epidemic has been introduced as a
non-parametric approach to modeling unknown heterogeneous contact structures in
epidemics. Inference for the Indian buffet epidemic is a challenging problem, the
algorithms which have been studied do not yet scale to the size of problem where
significant differences from the GSE are apparent.

Importance Sampling and its Impact on GIMH and MCWM Evidence
confirming and demonstrating the importance of understanding the tail behaviour
of proposals in importance sampling has been presented in section 3.2. The adverse
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impact of heavy tailed proposals on the GIMH and MCWM algorithms has been
shown.

Kernel Metropolis Hastings Algorithm A new algorithm, the KMH, has
been proposed to provide an approximate algorithm for low dimensional marginal
inference in situations where the GIMH algorithm fails because of sticking. The
KMH has been demonstrated on a challenging 2-d problem. Further work is envis-
aged in two areas: a more efficient implementation in programming terms and more
detailed understanding of the reasons for sticking and the size of the approximation
and its impact on the posterior.
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Appendix A

Matrix Exponentials and their
Calculation

A.1 Matrix Exponentials

The matrix exponential can be defined for any square complex matrix A as

eA =
∞∑
j=0

Aj/j!

proofs of convergence and many other properties can be found in Higham (2008).
In this thesis interest is only in finite square matrices with real entries. The most
basic properties are that for any matrices A and B of the same dimension, integer
n and scalar c :

ecA = eceA

enA = (eA)n.
Many but not all properties are inherited from the scalar exponential a significant
difference is that

eA+B 6= eAeB unless A and B commute.

A.2 Calculating Matrix Exponentials

We have used calculations of etQ which in the context of inference have the potential
for considerable speed up, with little loss of accuracy, using approximations. Calcu-
lating matrix exponentials is a well studied problem, see Moler and Van Loan (2003),
and reliable software is available in R which has been used. The expm function in
the Matrix package works on sparse matrices, the expm package contains newer
(faster and more accurate) algorithms for expm() and includes logm and sqrtm but
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only works on standard matrices.
The condition number of the matrix exponential function can also be calcu-

lated to study the numerical accuracy of the caclulation, the results obtained have
not shown any evidence of numerical instability and as interpretation of condition
numbers is not straightforward a detailed analysis of numerical accuracy has not
been performed. Further study would be needed to relate the magnitude of er-
rors in the calculation of etQ with errors in a likelihood calculation that uses many
calculations.

The acyclic property of the transition matrix for the SIR epidemic results
in Q being upper triangular1 and sparse, Stewart (1991) says that the references
Severo (1969a) and Maire et al. (1987) contain more efficient ways of calculating
eQ when it is acyclic which could speed up all the algorithms but would not affect
the relative performance significantly. An alternative approach which ensures the
results are distributions is developed by van de Liefvoort and Heindl (2005). Bladt
and Sorensen (2005) suggest using B = I + ψ−1Q where ψ ≥ maxi(−qii) and the
identity Qt = −ψtI + ψtB to calculate exp(Qt) from

exp(Qt) =
∞∑
j=0

e−ψt
(ψt)n

n!
Bn

however as the row sums of B are all 1, truncating the series at n will give row
sums < 1, an open question is how to adjust this and other algorithms to ensure
the resulting matrix is stochastic.

A.2.1 Approximate Matrix Exponential Calculation

The greatest effect on the speed of inference algorithms which use the matrix ex-
ponential will come from using good approximations to exp(Qθ′) calculated from
exp(Qθ) when |θ − θ′| is small. Because of the Markov property, or equivalently
because tQ and sQ commute, we know exp((t+s)Q) = exp(tQ) exp(sQ) ∀s, t ≥ 0.
So when the change in θ is effectively a small change in timescale, θ′ = θ(1 + δ), we
have Qθ′ = (1 + δ)Qθ and so

exp(Qθ′) = exp(Qθ) exp(δQθ) ≈ exp(Qθ)(I + δQθ). (A.2.1)

Changes in exp(Qθ) from changes in θ in the orthogonal direction, (a change
in the R0 for the epidemic) can by approximated using results of Al-Mohy and

1with the chosen lexicographic ordering of states
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Higham (2008) who describe how to compute the Fréchet derivative which can be
used to approximate exp(Qθ′). The general approximation result they give is:

exp(A(t+ θh)) = exp
(
A+ θ

p∑
i=1

hi
∂A

∂t

)

= exp (A) + θL

(
A,

p∑
i=1

hi
∂A

∂ti

)
+ o(θ)

where L(A,B) denotes the Fréchet derivative of exp(A) in the direction B. In
the case we are considering the matrix is linear in the parameters so the partial
derivatives simplify.

Calculation of the Fréchet derivative of exp(A) is implemented in the R
package expm and this has been used to calculate approximations to the matrix
exponentials used in the GSE and compare them with the exact value. Initial results
show the approximation appears good on Q of dimension 7381× 7381, (which arise
from the population of 120 used in the calculations for figure 4.3.1), for changes
of up-to 20% in θ from (.01,.1), which would cover a large part of the posterior
distribution as calculated by O’Neill and Roberts (1999). Further work is needed to
quantify the range of |θ− θ′| over which the approximations are reasonable and the
size of the error induced in the posterior distributions.

A.3 Semi-symbolic computation

A new approach called semi-symbolic has been used for all the calculations involving
matrices in this thesis. The approach has potential for wider use in any stochastic
process where Q is a linear function of a low dimensional parameter θ, that is
Qθ =

∑
iQiθi where Qi are known fixed matrices. The uses here have all involved

a matrix Q which is of the form λQI + ρQR where QI and QR are sparse integer
matrices. With a lexicographic ordering of states QI and QR are upper triangular
and nil-potent. From the representation as 2 sparse integer matrices we can generate
either

• sparse numeric matrices

• symbolic input for Maple, Mathematica

• manipulate directly (for example for aggregation of the states of a Markov
chain)
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only the first use has been reported above. This technique also permits delaying the
substitution of numerical values for λ and ρ until needed which facilitates efficient
computations.
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Appendix B

Indian Buffet Process -
Properties and Examples

B.1 Introduction

Distributions of many aspects of the Indian buffet process are given in Griffiths and
Ghahramani (2011), various other derived distributions are useful in understanding
the process and presented here.

B.2 Probability of Repeated Columns

The probability of repeated columns can be obtained from another representation of
the IBP called a “history collection” in Griffiths and Ghahramani (2005). Each of the
2N − 1 possible columns has between 1 and N bits, which we denote their number
by m. The number of each possible column has a Poisson distribution with rate
γ = αB(m,N−m+1) so the probability Pm of all being ≤ 1 is {(1 + γ) exp(−γ)}(

N
m).

For small N we can calculate these directly, but rounding errors are sig-
nificant for N> 50 so taking logs and noting that γ = α

m(Nm) , expanding logPm
gives

logPm = α

m

∞∑
j=1

(−γ)j

j + 1
(B.2.1)

The probability is concentrated on the ends of the range and using the exact
expression for m = 1 and the first 3 terms of the expansion appears to give numeri-
cally accurate values. The probabilities for N = 10 and α = 2, 4 are shown in figure
B.2.1.
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Figure B.2.1: Probabilities of any repeated columns with m bits in the IBP for
N = 10 and α = 2, 4

To examine the variation of these probabilities as N varies the probabilities
for m = 1, 2, N − 1, N are plotted in figure B.2.2 together with some composite
probabilities, the probability that there are any repeated columns is labeled “all”,
and is nearly coincident with the probability for m = 1 which is the dominany value.
The line labeled “all>1” is the more relevant for the Indian buffet epidemic and is
the probability that there is a repeated column with more than 1 bit. The line
labeled “rest” is the probability of a repeated column which contains between 3 and
N − 2 bits.

B.3 Beta Binomial Distribution and the IBP

The beta-binomial distribution is a compound distribution on 0 . . . n which arises
in several situations as the beta and binomial distributions are conjugate. It can be
defined directly by its p.m.f.

P (X = k) =
(
n

k

)
B(k + α, n− k + β)

B(α, β)

for 0 ≤ k ≤ n with parameters n a positive integer and α > 0,β > 0.
Often it is derived as a mixture where the parameter p in the binomial

distribution is drawn from a beta distribution so
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Figure B.2.2: Repeated column probabilities in the Indian Buffet Process

P (X = k|p) =
(
n

k

)
pk(1− p)n−k

and the density of p is pα−1(1−p)β−1

B(α,β) .
The mean is nα

α+β and variance is nαβ(α+β+n)
(α+β)2(α+β+1) .

The c.d.f. is only available in terms of a generalized hypergeometric function.

IBP Row Sum Distribution

The distribution of the rowsums of Z is of interest, where Z ∼ IBP (α, β,N),
we denote the rowsums by Xi =

∑
k zik. The distribution of the number of isolated

individuals is bounded by the distribution of the number of Xi = 0, simulations
show that the mean final size of epidemics conditioned on Z are approximately
proportional to the sample mean of X̄ = N−1∑

iXi. From the definition of the
IBP the expected value of X̄ is α, but although the distribution of an individual Xi

is Poisson(α) they are strongly correlated. The joint distribution can be obtained
recursively from the sequential representation as:

X1 ∼ Poisson (α)

X2 ∼ binomial(X1, 1/(β + 1)) + Poisson (αβ/(β + 1))

. . .

Xi ∼ binomial(Xi−1, 1/(β + i− 1)) + Poisson (αβ/(β + i− 1))
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which can be evaluated numerically.

IBP Column Sum distribution

1 5 10 50 100 500 1000

−
20

−
15

−
10

−
5

0

lo
gp

se
t

IBP beta

1
2
4
8
16
32

Figure B.3.1: Distribution of IBP column sums

The distribution of the column sums of the IBP are obtained by consideration
of the finite K representation, where they have a beta binomial distributed with
parameters (N,αβ/K, β). As K increases the probability of zero increases and it is
the distribution conditional on being greater than zero that is of interest.
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Appendix C

MCMC Algorithms for Hidden
Markov Models

C.1 Introduction

A wide variety of MCMC algorithms have been developed for inference in HMM,
differences in the sizes of the state space, parameter space and observed data, can
have a significant effect on the relative performance of these algorithms.

Many authors have considered inference in HMM, the book Cappé et al.
(2005) provides a comprehensive treatment of the theory. Other relevant literature
includes Scott (2002) and a recent review by Fearnhead (2011) and for state space
models, Doucet and Andrieu (2001).

This appendix briefly describes candidate algorithms, including GIMH algo-
rithms, for use in inference for the GSE or the binomial epidemic model using the
exact transition matrix building on the likelihood calculations described in section
4.4.

C.2 Full posterior algorithms

The basic MCMC algorithms which have been widely studied in a range of appli-
cations perform separate θ and X1:T steps within a Gibbs framework with target
π(θ,X1:T |Y1:T ). The distribution of the end states X1 and XT depends on the mod-
elling assumptions. For the SIR model if the epidemic is assumed complete then
XT = (np − YT , 0) the initial state is usually taken from a specified initial prior
distribution.
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C.2.1 Forward recursion backwards sampling algorithm

We use the forward recursions to calculate the ’alphas’ which we then sample from
in reverse to give a value of X1:T ∼ P (X1:T |θ, Y1:T ), this step is alternated with
an update of θ ∼ P (θ|X1:T ), in a standard MCMC algorithm. In continuous time
epidemic models a conjugate prior is often used for θ, however there do not appear
to be equivalent priors for the regular observation model, so a Metropolis-Hastings
(MH) step will be used to update θ. The main limitation of this algorithm is that
the calculation of the ’alphas’ for large state spaces is slow O(n2

sT ).

C.2.2 Backward recursion forwards sampling algorithm

A variation on the previous algorithm, we use the backwards recursions to calculate
the ’betas’ which we then sample from to give a value of X1:T ∼ P (X1:T |θ, Y1:T ),
this step is alternated with an update of θ ∼ P (θ|X1:T ), in a standard MCMC
algorithm. The performance of this algorithm will be very similar to the previous
and the same comments apply, any differences will be largely due to the boundary
conditions, it is expected that this algorithm may be better for complete epidemics
and the previous for incomplete.

C.2.3 Single site Gibbs algorithm

A single site Gibbs algorithm where again updates of X and θ are alternated with
Xt sampled as Xt ∼ P (Xt|Yt, X−t, θ) = P (Xt|Yt, Xt−1, Xt+1, θ) where

P (Xt = k|yt, Xt−1 = i,Xt+1 = j, θ) ∝ pikpkjgk(yt) (C.2.1)

This algorithm is widely used in other HMM, and the usual choices of deter-
ministic versus random scan choices of t must be made. The main problem reported
is that of slow mixing, in the case of SIR epidemics this does not appear to be true.
The need to recalculate the pij for each θ makes it unusable for epidemics in this
simple form, however it forms the core of the algorithm described below C.3.5.

C.3 Marginal algorithms

In the case of epidemics there is usually no interest in the distribution of states
and so marginal algorithms which target π(θ|Y1:T ) directly are appropriate. This
also has the advantage that one time costs of calculations for a given value of θ are
used efficiently. The algorithms are based on the grouped independence Metropolis-
Hastings (GIMH) algorithm Beaumont et al. (2002). In these algorithms several
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entire hidden paths are simulated, to simplify notation and correspond with that in
Andrieu and Roberts (2009) we use Z = X1:T and Zk for one of a set of nz simulated
paths through X T , which are then used in an importance sampler. The augmented
target π(θ,X1:T |Y1:T ) ∝ P (X1:T |θ) P (Y 1:T |θ,X1:T )π(θ) where π(θ) is the prior not
the target. As the constant of proportionality P (Y 1:T ) always cancels in a ratio we
define π(θ, Z) = P (X1:T |θ) P (Y 1:T |θ,X1:T )π(θ), the full data likelihood × the prior
on θ.

C.3.1 Exact marginal

This algorithm is a variant of C.2.1 and should have the same statistical properties
but be much quicker, for each proposed θ we sample several paths X1:T .

Given a previous θ and the corresponding π̃N (θ) repeat the following steps:

1. sample θ′ ∼ q(θ, .)

2. calculate α s using θ∗

3. for k = 1 . . . nz sample Zk ∼ qθ∗(.) = P (X1:T |θ∗, Y1:T ) using the forward
recursion backward sampling algorithm

4. compute π̃N (θ∗) = n−1
z

∑nz
k=1 π(θ∗, Z)/qθ∗(Zk)

5. accept θ∗ based on the MH ratio

π̃N (θ∗)q(θ∗, θ)
π̃N (θ)q(θ, θ∗)

C.3.2 GIMH fixed θ̂

This is described in Fearnhead (2006), and uses one value of θ to generate all pro-
posed Z, so they are exact for one value and used as importance samples for other
values of θ.

After the initialization in steps 1 and 2 steps 3,4,5,6 are repeated many times.

1. choose θ̂ typically an approximation to the MLE.

2. calculate α s once for θ̂

3. propose θ∗ ∼ q(θ, .)

4. for k = 1 . . . nz sample Zk ∼ qθ∗(.) = P
(
X1:T |θ̂, Y1:T

)
using the forward

recursion backward sampling algorithm, the proposal for Z is independent of
θ and qθ∗(.) = qθ̂(.) ∀θ.
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5. compute π̃N (θ∗) = n−1
z

∑nz
k=1 π(θ∗, Zk)/qθ∗(Zk)

6. accept θ∗ based on the MH ratio

π̃N (θ∗)q(θ∗, θ)
π̃N (θ)q(θ, θ∗)

In many other HMM this algorithm would appear to have significant advantages,
these are reduced significantly for the case we are considering as it is necessary to
calculate exp(Qθ∗) in order to calculate the importance weights.

Attempts to obtain smooth estimates of the likelihood Pitt (2002) are often
hampered by the dependence of the proposal on θ, this approach could possibly
combined with those techniques.

C.3.3 GIMH 1 step

This algorithm is the simplest GIMH using a simple forward simulation, although
quick and simple to implement it is unlikely to be efficient and is described for
completeness.

Given a previous θ and the corresponding π̃N (θ) repeat the following steps:

1. propose θ∗ ∼ q(θ, .)

2. for k = 1 . . . nz sample Zk ∼ qθ(.) i.i.d. where qθ(.) samples P (X1|Y1) ∝
P (X1, Y1) then recursively for t = 2 . . . T from P(Xt|Xt−1, Yt) ∝ P(Xt, Yt|Xt−1)

3. compute π̃N (θ∗) = n−1
z

∑nz
k=1 π(θ∗, Zk)/qθ∗(Zk)

4. accept θ∗ based on the MH ratio

π̃N (θ∗)q(θ∗, θ)
π̃N (θ)q(θ, θ∗)

Particularly at early stages of the epidemic this is likely to lead to cases
where the epidemic dies out although the observations continue. An alternative is
to use the look ahead algorithm below.

C.3.4 GIMH look ahead

This is a novel algorithm1, although it could be applied to a general HMM it is
designed for the SIR to prevent early termination of the simulated epidemic while
remaining easy to calculate.

Given a previous θ and the corresponding π̃N (θ) repeat the following steps:
1although the auxiliary particle filter approximates the same distribution

153



1. propose θ∗ ∼ q(θ, .)

2. for k = 1 . . . nz sample Zk ∼ qθ(.) i.i.d. where qθ(.) samples P (X1|y1, y2) then
for t = 2 . . . T

P (Xt|xt−1, yt, yt+1) ∝ P (Xt, yt, yt+1|xt−1) =
∑
xt+1

P(Xt|xt−1)P(xt+1|Xt)P (yt|Xt) P (yt+1|Xt)

(C.3.1)

3. compute π̃N (θ∗) = n−1
z

∑nz
k=1 π(θ∗, Zk)/qθ∗(Zk)

4. accept θ∗ based on the MH ratio

π̃N (θ∗)q(θ∗, θ)
π̃N (θ)q(θ, θ∗)

C.3.5 Marginal Gibbs

This is a novel algorithm which replaces the sampling of nz i.i.d. paths each sequen-
tially sampled for t = 1 . . . T with a Markov sequence of nz paths obtained from the
single site Gibbs sampler described in C.2.3.

Given a previous θ and the corresponding π̃N (θ) repeat the following steps:

1. propose θ∗ ∼ q(θ, .)

2. Sample Z1 from an initial feasible distribution by,

(a) set Zp0 as a feasible path, e.g. 1 infective remains at each time step 2

(b) run nb burn-in Gibbs steps, for k = 1 . . . nb Zbk ∼ qθ(.|Zbk−1) 3

(c) set Z1 = Zbnb

3. for k = 2 . . . nz sample Zk ∼ qθ(.|Zk−1) where the proposal qθ consists of a
number of single site Gibbs steps, these can be fixed or random scan. Initial
work has used a random ordering of all sites 1 . . . T .

4. Calculate π̃N (θ∗) = n−1
z

∑nz
k=1 π(θ∗, Zk)wi

5. accept θ∗ based on the MH ratio

π̃N (θ∗)q(θ∗, θ)
π̃N (θ)q(θ, θ∗)

2until the final removal
3using the same sampler as described below
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The Gibbs Markov chain ensures that the Zk have an invariant distribution of
P (X1:T |θ∗, Y1:T ) so using wi = 1 gives an approximate algorithm, which appears
to work. The weights wi can also be derived from the Gibbs proposal Markov chain.

C.4 Particle MCMC algorithms

A related approach to inference in Markov jump processes is that described by Go-
lightly and Wilkinson (2011) where a particle MCMC algorithm is reported to work
well for noisy measurements. The SIR models considered here are assumed to be
without observation noise and so the posterior distribution of X1:T is very concen-
trated. Preliminary investigations of this and similar algorithms using particle filters
encountered difficulties in the particle filter stage as many of the sampled epidemics
terminate early. Use of the auxiliary particle filter may alleviate this difficulty.
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Appendix D

Notation

D.1 Abbreviations

EMC embedded Markov chain, see section 2.3.1,

lof left ordered form, see section 2.7.1,

GIMH Grouped Independence Metropolis-Hastings algorithm

GSE General Stochastic Epidemic

HMM Hidden Markov model,

KMH Kernel Metropolis-Hastings algorithm,

MCMC Markov chain Monte-Carlo, see chapter 3,

MCWM Monte Carlo within Metropolis algorithm

MH Metropolis-Hastings algorithm

RWM Random walk Metropolis algorithm

SAMH Stochastic Approximate Metropolis-Hastings algorithm, the generalisation
of MCWM

SEMH Stochastic Exact Metropolis-Hastings algorithm, the generalisation of GIMH

SIR Susceptible Infectious Removed epidemic model
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D.2 Basic statistical notation

• ∼ is used to indicate “is distributed as” e.g. X ∼ f where X is a random
variable and f is some specification of a distribution

• Φ(x) the c.d.f. of the standard normal distribution Φ(x) = 1√
2π
∫ x
−∞ exp(−x2/2)dx

• Γ(x) with a single argument is the gamma function.

• Γ(x;λ, ν) is the p.d.f. of the gamma distribution ∝ xν−1λν exp(−λx) .

• B(x, y) is the beta function B(x, y) = Γ(x) Γ(y)
Γ(x+ y)

• beta(x; a, b) is the p.d.f. of the beta distribution beta(x; a, b) = xa−1(1−x)b−1

B(a,b)

• Bernoulli distribution

• binomial(x;n,p) is the binomial distribution

• log(x) natural logarithms are used throughout

• π(.) used in the MCMC chapter for an unspecified target probability measure,
for which the interpretation is clear from the context.

• P (.) a general unspecified probability measure, for which the interpretation is
clear from the context, often a discrete distribution.

• EX to denote expectation with respect to the random variable X.

• 1 [A] the indicator function

D.3 Epidemic model notation

• λ the raw infection rate in an SIR epidemic

• ρ the recovery rate in an SIR epidemic

• R0 the basic reproduction number, for the GSE R0 = npλ/ρ

• S (t) the number susceptible at time t

• I (t) the number infectious at time t

• C (t) = np − S (t) the total number that have been infected by time t , (this
includes the initial infective)
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• R (t) the number recovered by time t

• R∞ = R (∞) the total number infected at the end of the epidemic

Note that R (t) and C (t) are counting processes, while I (t) is the difference of two
counting processes. The associated times are

• T Ij , tIj the time of the jth infection r.v. and a value

• TRj , tRj the time of the jth recovery r.v. and a value

• TR1 , tR1 the time of the first recovery r.v. and a value

• I
(
TR1

)
the number infectious immediately after the first recovery at TR1

• l a value of I
(
TR1

)
the number infectious immediately after the first recovery

D.4 Matrix notation

• matrices are generally in bold, and may be defined by their components as
P = (pij i, , j ∈ S)

• a term of a matrix or matrix expression is denoted by [P]ijto indicate the i, jth
term

• I indicates an identity matrix of appropriate dimension

• diag(A) is a vector formed from the diagonal of a matrix A

• diag(v) is a matrix with v on the diagonal and 0 elsewhere

D.5 IBP

• Zlof the set of equivalence classes of binary matrices with distinct left ordered
forms

• Zseq the set of possible binary matrices generated by the sequential IBP

• Z one of Zlof or Zseq, which will be clear from the context

• lof (Z) left ordered form, a many to one mapping of all binary matrices→ Zlof

• Zuc the set of equivalence classes of matrices with the same unique columns
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• Zu2 the set of equivalence classes of matrices with the same unique columns,
and all column counts ≥ 2.

• IBP (α, β,N) the IBP distribution

• Hβ
N a generalisation1 of the standard harmonic number, Hβ

N =
∑N
j=1

β
j+β−1

D.5.1 Indian Buffet Epidemic

• ξ (n, λ) the infection rate scaling function defines the within group infection
rate for a group of size n, e.g. ξ (n, λ) = λ/n or ξ (n, λ) = λ/

√
n

• a Zλbip the set of equivalence classes of matrices which give the same bipartite
epidemics with infection rate vector λ.

• a ZξIBufE the set of equivalence classes of matrices which give the same bipartite
epidemics with scaling function ξ.

• gi a distribution over the population for the initial infective.

D.6 MCMC acceptance terminology and notation

Authors differ on both the words and notation for the many closely related quanti-
ties, here we define them as used in this thesis.

D.6.1 Definitions

invariant π is an invariant distribution for a Markov chain with transition kernel
K if π(dy) =

∫
X π(dx)K(x, dy). If the state space is finite then π is a left

eigenvector of the transition matrix with eigenvalue 1.

D.6.2 Metropolis Hastings

A key difference between authors is whether a conditional or measure theory type
notation is used for proposals and Markov chain densities, eg from x to y can be
written as q(y|x) or Q(x,dy), q(x,y)

proposal distribution The density of a proposed move from x to y (w.r.t. an
implied measure usually Lebesgue on Rd or counting on Zd)

q(y|x)
1not to be confused with the standard generalisation

∑
j
j−m
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acceptance ratio a non negative number
A(y|x) = π(y) q(x|y)

π(x) q(y|x)

specific acceptance probabilty The probability that in a MH step a proposed
move from x to y is accepted

alternative values are possible e.g. Barker
α(y|x) = min(1,A(y|x))

acceptance probabilty The probability that in a MH step a move from x is
accepted, depends on x and proposal

a(x) =
∫
q(y|x) min(A(y|x), 1)dy

in SEMH the state is x,w so a(x,w) is used.

rejection probabilty The probability that in a MH step a move from x is ac-
cepted, depends on the state x and proposal

r(x) = 1− a(x)
in SEMH the state is x,w so r(x,w) is used.

acceptance rate The probability that at equilibrium a proposal is accepted, it is
the expected value of a(X).

a =
∫
π(x)

∫
q(y|x)α(y|x)dydx

usually dependence on parameters of the proposal or target will be indicated e.g.
for scaling

a(s) =
∫
π(x)

∫
qs(y|x) min(A(y|x), 1)dydx

acceptance bound An upper bound on a(x)
ζ(x) =

∫ π(y)
π(x)q(y|x)dy

D.6.3 SEMH and SAMH

expected acceptance/rejection probabilty The expectation over W of the
probability that a move from x is accepted.

ā(x) = E(a(x,W ))

small move acceptance/rejection probabilty The probability that a very
small move from x is accepted, depends on the state x,w and proposal q(y|x) = δx(y)

aδ(x) =
∫
X
∫
W min(A(y, w′|x,w), 1)fW (w′|y)q(y|x)dw′dy

rδ(x) = 1− aδ(x)
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specific acceptance probabilty The probability that in SAMH a proposed move
from x to y is accepted

ᾱ(y|x) =
∫
W
∫
W min( zwA(y|x), 1)fW (z|y)fW (w|x)dwdz

• π̃ to indicate an estimate of π which will be calculated at a finite set of points,

• r(x,w) the rejection probability for Stochastic exact Metropolis-Hastings when
the sampled state is x,w ,

• a(x) expected acceptance rate for Stochastic exact Metropolis-Hastings when
the sampled weight is w,

• fW (w|x) p.d.f. of weight W

• K(x, dx) a Markov chain transition kernel,
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