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Abstract

With the availability of cheap sensor nodes now it is possible to use hundreds of nodes

in a Wireless Sensor Network (WSN) application. Since then WSN applications have

been being used in a wide range of applications, including environmental, industrial,

military, health-care and indoor applications. WSNs are composed of sensor nodes,

also known as motes, that are small in size, usually battery powered, and have

limited memory and computing capabilities.

As opposed to other wireless networks of more powerful nodes such as laptops,

cellular phones, PDAs, etc., where communications can occur between any two

nodes, in WSNs there are mainly two communication types: (i) broadcast, where

a designated node, called a sink, disseminates data to all other nodes and (ii) con-

vergecast, where all nodes send their generated data to the sink.

After deploying sensor nodes in an area of interest, they are usually unattended

for a long time. Since motes are battery powered, the energy conservation is of great

importance. Furthermore, due to limited resources such as computing, memory and

energy, harsh environmental conditions and buggy programs, wireless sensors may

experience a number of different types of faults.
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Given the characteristics of sensor nodes and the environment they are deployed

in, any WSN communication protocol and algorithm should be energy efficient and

tolerant to faults. Several efficient communication protocols have been proposed

so far. However, there are several aspects that has seen very little activity in the

literature: (i) Handling transient faults and (ii) Dealing with two or more sinks.

Therefore, in this thesis, we are proposing to address some of the issues that are still

open. Specifically, we are planning to look at fault tolerance in data dissemination

and the development of an infrastructure for two sinks.

In this thesis, (i) we try to make data dissemination protocols resilient to faults

that can corrupt values stored in the memory and messages by presenting two algo-

rithms that when added to fault-intolerant dissemination protocols, make the code

dissemination protocols fault-tolerant, (ii) we try to minimize drawbacks of existing

code update maintenance algorithms by proposing a new algorithm that efficiently

maintains code updates in WSNs, and (iii) we propose an efficient data aggregation

convergecast scheduling algorithm for wireless sensor networks with two sinks.
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CHAPTER 1

Introduction

The advances in the area of wireless communications and Micro-Electro-Mechanical

Systems (MEMS) technology have made available cheaper, smaller and multifunc-

tional sensor nodes that are capable of communicating wirelessly. These features of

sensor nodes have attracted the attention of the research community over the world

as sensor nodes can be used in applications in different fields.

Wireless Sensor Networks (WSNs) are composed of sensor nodes, also known

as motes, equipped with a processing unit, a transceiver unit, a power unit and a

sensing unit. A typical sensor node usually is operated by battery power, has a

limited memory and computation capability. These characteristics of sensor nodes

restrict the node’s capabilities. However, combining a number of these motes into a

network makes them powerful and enables their use in a wide range of applications,

including environmental, industrial, structural, health, and military applications [86,

23, 62, 116, 69, 74, 14]. They are also used for many indoor applications in our

daily lives: for example temperature monitoring in office buildings, fire detectors in
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buildings and other applications in smart homes [60, 63].

Nevertheless, WSNs brought new challenges as previous communication proto-

cols and algorithms designed for wireless networks of more powerful devices such as

laptops, cellular phones, PDAs, etc., are not suitable for WSNs. Protocols designed

for WSNs should deal with the constraints of the sensor node and the environment

they are deployed in.

In this chapter we first explain the communication types of WSNs. After that

we explain the motivation behind our work. Then we present contributions and,

finally, present the structure of this thesis.

1.1 Communications in Wireless Sensor Networks

As opposed to other wireless networks where communications can occur between any

two network devices, there are mainly two types of communications in WSNs: (i)

One-to-many, also called broadcast, where data flows from the sink to sensor nodes,

and (ii) Many-to-one, also called convergecast, where data flows from sensor nodes

towards the sink. Most WSNs involve both of these communication types.

1.1.1 Broadcast

Broadcast type of communication is mainly used by a sink to transmit messages to

all sensor nodes in the network. When sensor nodes are not in the coverage range

of the sink, some sensor nodes could act as relays to forward the messages further

down, making the communication multi-hop. These messages could be commands

that request sensor nodes to do some task, queries that request sensor nodes to

send specific type of messages, or program updates that change the nodes’ program,

etc. [85, 115].

WSNs are deployed once and, in general, unattended for a long time. During this
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time we may need to retask the network by changing parameters, functions, codes,

etc. Changing these manually one-by-one is tedious, time and labour consuming

especially when the number of nodes in the network is very large. Moreover, de-

pending on the deployment place, manual change could be impractical or impossible

altogether. For example, in [112] motes are deployed on trees while in [116, 97, 17]

motes were deployed in harsh and hazardous places. Therefore, it is preferable

to retask the network wirelessly by disseminating corresponding data. This poses

other challenges such as designing efficient data dissemination protocols suitable for

WSNs.

1.1.2 Convergecast

Convergecast is the main type of communication in WSNs, as the main goal of a

wireless sensor network is to gather data about a physical object or event. Sensor

nodes, after generating data, periodically, or after detecting an event or receiving

a query, send their data to a more powerful device called a sink. The raw data

generated by a sensor node may be delivered as it is or may be aggregated at each

node on the way towards the sink. The sink usually forwards the collected data

to a monitoring center through the network so that the data can be processed and

analysed into meaningful information.

In wireless communications a message collision may occur at the receiving side;

when a receiver hears from more than one device at the same time, the transmitted

messages collide, resulting in unintelligible data. Thus, while convergecasting, if

message transmissions are not controlled somehow, messages may be lost due to

message collisions. Consequently, nodes should resend their messages to make sure

that the sink receives them. Therefore, the bigger the number of collisions, the

more the number of retransmissions and the more energy is consumed. Further, the

number of collisions increases when the network becomes denser. One of the ways
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of decreasing the number of collisions is to schedule the nodes’ transmissions such

that no colliding nodes transmit at the same time.

1.2 Motivation

One of the constraints of motes is that they have limited power as they are usually

operated by two AA (double A) batteries. When a node depletes its energy, the

node dies and may change the topology of the network and may make the network

disconnected. So the energy depletion of one node can make the entire network

disfunctional. While sometimes it is possible to replace batteries or use solar panels

as an energy source, sometimes it is impractical or impossible. Therefore, when

designing algorithms and protocols for WSNs, one of the most important goals is

energy conservation. Among other operations, communication consumes the most

energy [6]. For this reason communication is an important function in WSNs.

Several efficient communication protocols, including data dissemination and data

collection, have been proposed so far. However, there are several aspects that has

seen very little activity in the literature: (i) Handling transient faults and (ii) Dealing

with two or more sinks. Therefore, in this thesis, we are proposing to address some

of the issues that are still open. In general, we are planning to look at fault tolerance

in data dissemination and the development of an infrastructure for two sinks. In

particular, we try to address the following issues.

First, faults typically occur in wireless sensor networks. Due to limited resources

such as computing, memory and energy, harsh environmental conditions and buggy

programs, wireless sensors may experience a number of different types of faults. As

mentioned in [11], these faults can be classified as node failures and hardware faults,

communication faults and software faults. Some of these faults lead to transient

data faults [96, 40]. Transient data faults may severely impact the efficiency of the
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protocols and may lead to unexpected results. Several efficient data dissemination

protocols exist in the literature, however, few of them consider transient data faults.

Therefore, we try to solve data dissemination problem in the presence of transient

data faults.

Second, due to transient link failures or node mobility, some nodes may not

update their data during the dissemination phase. There exists algorithms that

maintain data update. However, they have drawbacks such as high latency or high

transmission energy consumption. Therefore, we try to minimize those drawbacks.

Third, due to sink failure, data collected from sensor nodes may not reach the

monitoring center. Therefore, to make WSN applications more resilient to sink

failures, more than one sink should be deployed, and nodes should send data to

all of them. Moreover, there exist WSN applications where more than one sink

exists, and sensor nodes are required to report data to each of these sinks [5]. In

other words, convergecast is done to more than one sink. Up to now several data

aggregation convergecast scheduling protocols have been proposed for networks with

single sink and, to our knowledge, only few consider multiple sinks. However, the

existing protocols designed for multi-sink WSNs provide convergecast scheduling

from many nodes to one sink. Therefore, as an initial work in this area, we try to

solve convergecast scheduling from many nodes to two sinks.

1.3 Contributions

In this thesis, we make the following contributions:

• We formalise the concept of code dissemination in WSN, and provide three

refined specifications, viz.: strong, consistent and best effort code dissemina-

tion.

• We show that (i) there is no deterministic algorithm that solves strong code
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dissemination in the presence of transient faults, and (ii) there is no determin-

istic 1-local algorithm that solves strong code dissemination in the presence of

a stronger class of transient faults, called detectable faults.

• We present two novel f -local algorithms called (i) BestEffort-Repair and (ii)

Consistent-Repair that, when added to any fault-intolerant code dissemina-

tion protocol, solve (i) BestEffort code dissemination and (ii) Consistent code

dissemination, and we prove the correctness of both protocols.

• We run real-world testbed and simulation experiments on our protocol, and

show their correctness and performance, especially the locality property of the

protocols.

• We present a case study where we add both protocols to an existing code

dissemination algorithm, namely Varuna [95]. We equip Varuna with a specific

detector which triggers the protocols upon detection of an error. We show that

both BestEffort-Repair and Consistent-Repair induce very little overhead on

Varuna in the presence of detectable transient faults. Further, Varuna, when

executed in the presence of even a single transient fault, led to all the nodes

downloading the wrong code. In contrast, when running Varuna with both

protocols, all the nodes eventually obtained the new code.

• We present an efficient code update maintenance algorithm called Triva. Triva

is more energy efficient and faster than existing algorithms of this type, and

works best for event-based type of Wireless Sensor Network applications. The

existing code maintenance algorithms consume energy due to transmission

even when there is no new code in the network or if asymmetric links exist

between nodes. We perform real-world testbed and simulation experiments,

and show the superiority of Triva over other algorithms.

6



1. Introduction

• We present an efficient data aggregation convergecast scheduling algorithm for

wireless sensor networks that have two sinks and show its correctness. The

algorithm is the first in its kind and is efficient in terms of energy and latency.

Further, in the algorithm every node is assigned at most 2 transmission slots

and contiguous reception slots which is important in applications where packet

sizes are small [7, 56]. Moreover, the algorithm decreases the number of nodes

that transmit twice to a minimum. We perform simulation and real-world

testbed experiments to show our algorithm’s performance.

1.4 Thesis Overview

This chapter has detailed the main goals, motivations and contributions of the re-

search presented in this thesis. The remainder of this thesis is organised as follows:

Chapter 2 presents a survey on related works. In particular, data dissemination

protocols and how they maintain data consistency are presented. Then some existing

data aggregation convergecast scheduling algorithms are presented. This chapter

also briefly reviews reliable broadcast protocols.

Chapter 3 describes the system and fault models under which our protocols are

designed.

Chapter 4 presents two algorithms, Best-Effort Repair and Consistent-Repair, which

make code dissemination protocols tolerant to transient state faults. Extensive sim-

ulations on a different number of faulty nodes are performed and their performances

are presented. Moreover, real-world testbed experiments on TelosB motes are per-

formed to confirm the simulation results. Also, this chapter presents a case study

where our protocols are added to an existing code dissemination protocol to show
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their performances.

Chapter 5 presents our code update maintenance algorithm called Triva. Before giv-

ing details on the algorithm, the chapter gives a brief description on the weaknesses

of other algorithms. Simulations and real-world testbed experiments are conducted

to show the performance of Triva over other algorithms.

Chapter 6 presents an efficient data aggregation convergecast scheduling algorithm

for WSNs with two sinks. The chapter first gives an algorithm which builds trees

and balances the number of children. Then, the data aggregation convergecast

scheduling algorithm is given. To show the performance of our algorithm simulation

and testbed experiment results are given.

Finally, Chapter 7 gives a conclusion and discusses future work.
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CHAPTER 2

Literature Survey

Lots of protocols have been developed for wireless networks. However, because of

the limitations of the sensor node, they might not be suitable for WSNs. Therefore,

a number of protocols have been designed specifically for WSNs since the first use

of WSNs. All of them consider the limitations of the sensor node and are thus more

efficient in terms of different metrics, such as energy and latency. In this chapter, we

survey protocols related to the works presented in this thesis, i.e., data dissemination

protocols, code update maintenance algorithms, and data aggregation convergecast

scheduling algorithms. Further, for the sake of completeness, we review protocols

focused on reliable broadcasting.

2.1 Data Dissemination Protocols

In WSNs dissemination protocols are typically used for sending commands, queries

and code updates. Many data dissemination protocols have been developed up to
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now. While some of the protocols have been designed for delivering specific type

of messages like delivering tasks [94], network parameters [111], and queries [117],

others have been designed specifically for delivering code updates. In the following,

we will first discuss about data dissemination protocols and then discuss about

algorithms that are used to maintain data consistency.

In [111], the authors propose a Sensor Network Management System (SNMS)

to monitor and control the node and network status. SNMS supports two traffic

patterns: Collection and Dissemination. Collection is used to gather health data

from the network, and Dissemination is used to distribute management commands

and queries. Collection is performed by building a higher-quality tree rooted at sink,

where each node continually update the parent selection. And for disseminating

queries and commands, the authors propose a dissemination protocol, called Drip.

Drip uses sequence numbers (versions) to identify whether the data received is new.

The protocol proposed in [57], called CodeDrip, is another dissemination protocol

designed for WSNs to disseminate small values. The main idea behind this protocol

is to use Network Coding [3] to decrease the number of transmitted messages and

consequently save energy. Network Coding is useful when recovering lost packets.

For example, consider that a sink should broadcast two packets P1 and P2 to two

nodes n1 and n2. If n1 receives only P1 and n2 receives only P2, then the sink have

to retransmit two packets again: P2 to n1 and P1 to n2. Instead, using Network

Coding technique, the sink transmits only one packet P3 = P1⊕P2. When the nodes

receive P3, n1 can obtain P2 = P3 ⊕ P1, while n2 can obtain P1 = P3 ⊕ P2.

Some dissemination protocols specifically have been designed for disseminating

code updates. The rest of the section describes code dissemination protocols existing

in the literature.

One of the earliest protocols, called XNP (Crossbow In-Network Programming) [31],

is a protocol which disseminates codes to the nodes that are in the communication
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range of the sink node. Nodes, when downloading, store the code capsules in the

external flash memory (EEPROM). After disseminating the entire code, the sink

broadcasts a query asking the nodes if they have missing capsules. The nodes scan

the EEPROM for the completeness of the code. If necessary, nodes can request

unreceived capsules from the sink by sending a negative acknowledgement (NACK)

packet. The use of NACK instead of acknowledgement (ACK) is more efficient in

terms of control traffic, as NACK is sent only for undelivered packets, which are con-

sidered to be much fewer than the number of successfully delivered packets. After

downloading the entire code, a node copies the new code to the program memory

and reboots the system.

One of the drawbacks of XNP is that there should always exist a bi-directional

link between each node and the sink. Otherwise, nodes may not request for unre-

ceived capsules from the sink. When the size of the network gets bigger, fulfilling this

requirement will be challenging as nodes are limited in transmission range. There-

fore, XNP may not work in large networks as only a subset of nodes that are in the

range of the sink gets the new code. Another drawback of XNP is if the link between

a node and the sink fails during code dissemination, then that node will not receive

the new code at all.

The protocol proposed in [105], called MOAP (Multihop Over-the-Air Program-

ming), is a reprogramming protocol which addresses the drawbacks of XNP. MOAP

disseminates code updates in a multi-hop fashion, meaning that nodes which receive

a new code from the sink or other neighbours, can relay the code further down. In

MOAP protocol, a code is disseminated in a neighbourhood-by-neighbourhood fash-

ion: at each neighbourhood only a few nodes become sources of the code. A node

can be a source if it has the entire code and has received a request message called

subscribe message from receivers for its code advertisement message called publish

message, which contains the version number of the code. MOAP is a NACK based
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protocol. Whenever a node detects a missing packet, it sends a NACK packet to the

source to ask the source to retransmit the missing packet. MOAP uses the Sliding

Window technique. In general, Sliding Window technique is used for controlling

transmitted data packets between two nodes where reliable and sequential delivery

of data packets is required.

A protocol called Deluge [50] is a protocol that is used to update codes of nodes

over the radio. Like MOAP, it uses NACK and windowing to manage required

segments during the download process. However, it differs from previous protocols

in that it divides the new code into fixed-size pages, which are further divided into

packets. The pages are delivered in a sequential order. Unlike MOAP, Deluge uses

pipelining technique, which does not wait for the entire code before forwarding it

further. As soon as a node receives a complete page it advertises its availability

and can forward the page further upon request. The pipelining technique decreases

the latency of dissemination. Another advantage of dividing the code into pages

is if a page is delivered with an error, then only that page is retransmitted. In

addition, unlike MOAP, Deluge deals with asymmetric links, which is very common

in wireless networks, using three-way handshaking (ADV-REQ-DATA). By sending

ADV and receiving REQ, two nodes understand that there is a link between them.

In general, three-way handshaking method is used to establish a connection between

two devices. Another protocol which uses pipelining technique, called Typhoon, has

been proposed in [80]. The idea is that it is enough to have only two hops distance

between concurrent transmissions if different frequency channels are used. Thus, the

main difference of Typhoon is that it uses channel switching technique to decrease

the dissemination latency.

A protocol called MNP (Multihop Network Reprogramming), proposed in [70],

is a multi-hop network reprogramming protocol. As Deluge, before dissemination

starts, MNP divides the new code into segments each having a fixed number of
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packets. It also uses the idea of using pipelining technique to make disseminations

fast. However, unlike Deluge, MNP uses a sender selection algorithm to select a

sender in a neighbourhood. It selects the sender in a way such that only one node

broadcasts the code at a time in a given neighbourhood. The sender is selected

after competing with other potential senders in the neighbourhood according to its

number of requesters. While competing, nodes include their number of requesters in

advertisement packet to inform other competing nodes in the neighbourhood about

its number of requesters. After transmitting advertisement packets N times, the

node with the largest number of requesters will be selected as a sender. Another

property of MNP is that if a node finds that there is a node transmitting in its

neighbourhood, then it goes to the sleep mode to conserve energy. One of the issues

of using pipelining technique is that all nodes’ radio in the network should be turned

on during reprogramming to support pipelining. Unlike Deluge, the latter property

of MNP tries to resolve this issue.

Because of the features of wireless sensor networks, e.g., transient link failures,

node failures, node mobility, or when a node is in sleep mode, not all nodes receive

disseminated data during the dissemination phase. To make all nodes download

the disseminated data, in addition to a dissemination protocol, there should be an

algorithm that ensures data consistency. The next section describes algorithms that

maintain data consistency.

2.1.1 Algorithms for Maintaining Data Consistency

Data consistency maintenance algorithms should update the nodes as soon as they

are able to receive messages, and this process should consume as little energy as

possible.

The simplest way to ensure the delivery of new data to all nodes in the network

is that any updated node should continuously check the consistency of its neigh-
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bours, by broadcasting advertisement(ADV) messages. Blindly broadcasting ADV

messages causes the so-called “broadcast storm problem” [93], a scenario in which

there is excessive number of redundant ADV broadcasts. Blindly broadcasting is

expensive in terms of energy and throughput. Therefore, this way is not suitable for

WSNs.

There exist algorithms which have been developed specifically to address this

problem. We will describe them in the next sections and go in details of two,

namely Trickle and Varuna, in Chapter 5 as they are most related to our work.

One of the algorithms that address the above problem is Trickle [79], which uses

a “polite gossip” policy to address the problem. In Trickle, a node suppresses its

advertisement message transmissions when it hears a number of messages identical to

its own. The next two algorithms, DIP and DHV, use the Trickle timer to maintain

data consistency. However, instead of advertising the version of each code, they try

to advertise a group of code versions and use other mechanisms to try to reduce

message overhead. Another algorithm that addresses the broadcast storm problem

is Varuna [95]. Varuna consumes constant energy in steady phase when the network

is in a steady state, i.e., when all nodes have the same data. These algorithms are

explained in the next sections.

2.1.1.1 Trickle

Trickle [79] is an algorithm that is used to suppress unnecessary transmissions. Many

dissemination algorithms such as [50, 80, 81, 111, 32, 57] adopt Trickle to maintain

data consistency. The idea of this algorithm is that when a node hears the same

advertisement as its own several times, the node will not broadcast the advertisement

message. Precisely, in Trickle, every node broadcasts advertisement messages that

contain a metadata that includes the version number of the data, at most once per

period t picked from the range [τ/2, τ ]. If a node hears more than k identical version
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Event Action

τ Expires Double τ , up to τh. Reset c, pick a new t

t Expires if c < k, transmit

Receive same metadata Increment c

Receive newer metadata Set τ to τl. Reset c, pick a new t

Receive newer code Set τ to τl. Reset c, pick a new t

Receive older metadata Send updates

Table 2.1: Trickle Pseudocode.

numbers from its neighbours before it transmits its advertisement, it suppresses its

broadcast and doubles the value of τ up to τh, which is an upper bound for τ . If

it hears a different version number, τ is set to τl, which is a lower bound for τ (see

Table 2.1 for a pseudocode).

By increasing the broadcast interval, τ , Trickle sends fewer advertisement mes-

sages, thus saving energy. By decreasing τ , Trickle can update nodes more quickly.

So, there is a trade-off between dissemination latency and energy to be achieved

when selecting τ .

In Trickle, the number of advertisement messages increases linearly as a function

of time, as the dissemination is irrespective of the mission of the WSN application.

2.1.1.2 DIP and DHV

Another data consistency maintenance protocol, named DIP, has been proposed

in [81]. DIP works better than Trickle in terms of message overhead when there

exist several code items per node in the network. The idea of DIP is that instead

of advertising the version number of each data item, DIP advertises the hash of its

key and versions of all data items. Using hash enables DIP to detect a difference

between versions in O(1) time. Whenever a node detects a difference between hashes

of size S, the node responds with two hashes of size S/2. By decreasing the hash

size, nodes can find the data item that has changes. Therefore, if there are D data
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items, the search algorithm in DIP finds N new data items with O(Nlog(D)) packets

(N < D), whereas Trickle finds with O(D) messages [32].

A code consistency maintenance protocol, called DHV, has been proposed in [32].

The goal of DHV is to further reduce the message overhead. DHV’s key contribu-

tion is its technique to efficiently determine when to perform code updates. DHV

is based on the observation that when two code versions are different, their corre-

sponding version numbers often differ in only a few least significant bits of their

binary representation. Precisely, to detect and identify code changes, a node n in

DHV first sends a hash of all versions of data items. If a receiving node m detects a

difference, m broadcasts the checksum of all versions. Node n compares the received

checksum with its own checksum, and finds the location of bits, say at index i, that

are different. Then n sends the bit slice consisting of all bits of all versions at index

i to m. After receiving the bit slice, node m checks to find which version number is

different and sends that version number to n. Then n compares the received version

with its version to check whether it is updated. Therefore, the total number of

messages to identify new items is O(N) for N new data items.

Nevertheless, both of the protocols, DIP and DHV, use the Trickle timer to

suppress unnecessary transmissions. Therefore, the number of messages in a given

period T , as noted in Varuna [95], is still linear O(T ) in the steady phase.

2.1.1.3 Varuna

Varuna [95] is another protocol which supports data consistency maintenance. Un-

like Trickle, DIP and DHV, where there is a continuous energy consumption due to

ADV broadcasts, energy consumption in Varuna is constant in the steady phase, a

phase where no dissemination is being done. (Note that, if the number of data items

per node is more than one, then the mechanisms used in DIP and DHV can also be

applied to Varuna to further reduce message overhead.) To achieve constant energy
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consumption in the steady phase in Varuna, nodes send advertisement messages only

when there is a change in their neighbourhood topology or metadata since their last

advertisement transmissions. To learn about this change, each node stores its neigh-

bour IDs in its neighbourhood table. A node stores only the IDs of neighbours that

are consistent with it, i.e., neighbours that have the same data version number as

it. For example, if a node n1 sends a message to a node n2, n2 checks the existence

of n1’s ID in its neighbourhood table. If it exists in the table, it is assumed to

be consistent with the n2, therefore, n2 does not send an advertisement message.

Otherwise, n2 checks the consistency of its data with the node n1 by sending an

advertisement message. If the version numbers are equal, n2 stores the ID of n1 in

its table. If they are different, the node which has the bigger version number sends

an advertisement message to let other nodes request and download the data with

the bigger version. After receiving the new data, the node resets its table (as it

has to detect new consistent nodes). When all nodes receive the newest data, every

node’s table will contain the IDs of all neighbouring nodes. This state stops sending

advertisement messages, which makes energy drain constant in steady phase after

some time.

In Varuna, a node detects inconsistency only if it receives a message from a node

which has a smaller version number. It means that, a node will not update its data

unless it communicates with a node with a new version number. This makes the

update latency, the time from the injection of new data to the time when all nodes

receive the new data, dependent to a communication rate of a node. Therefore,

update latency in Varuna increases linearly with data communication rate or with

the event time if the application is event based.
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2.1.2 Discussion

To handle the temporary node failures and disconnections problem during the data

dissemination phase, i.e., to maintain data/code consistency, MOAP uses the Late

Joiner mechanism where nodes should periodically send publish messages to adver-

tise their version numbers. This mechanism may make the message overhead too

large in steady phase and the latency too long when there is a new code in the

network. The authors noted that the version number could be included in data

packets instead of sending the version number alone as one packet. XNP does not

mention how they maintain code updates. However, as it is designed for one-hop

networks, it is enough for the sink to broadcast the new code periodically. Drip,

CodeDrip, DHV, Deluge and Typhoon adopt Trickle algorithm to maintain code

updates. MNP uses the same idea that nodes advertise every random interval and

this random interval increases exponentially when the node does not receive any

requests from its neighbours, which can make the latency too long.

2.2 Data Aggregation Scheduling

In WSNs, packets generated by sensor nodes can be delivered to a sink in two ways:

1) using aggregation technique, where packets are aggregated at each parent node, or

2) each generated packet is equally important and is delivered without aggregation.

In our work, which will be presented in Chapter 6, we assume that data aggregation

is used.

Data aggregation is a well-known technique and used to reduce the number of

packets to be transmitted by excluding redundancy, thereby conserving energy [68,

4]. A parent node, after receiving packets from its children, aggregates them accord-

ing to a function such as MIN, MAX, AVERAGE, etc., or the function could be just

removing duplicates.
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During convergecast, transmitted packets could collide if nodes’ transmissions are

not scheduled accordingly. Therefore, scheduling of packet transmissions influences

the overall performance, including energy consumption, latency and throughput.

Although the scheduling problem has been proven to be NP-complete [39, 28], a

number of collision-free convergecast scheduling protocols have been proposed so far.

Many of them are designed with different perspectives in mind. For example, while

some of them use data aggregation, multi-channels or load balancing, others do not.

In some of them the sink computes the scheduling by collecting all information about

the network while in some scheduling is done in a distributed manner, requiring only

local information.

In [75], a centralized energy-efficient collision-free scheduling is proposed. The

idea is to construct a set of trees in advance and use them dynamically at different

rounds keeping the load balance of the nodes.

Authors of [104] propose TreeMAC, a TDMA based MAC protocol designed for

real-time high-data-rate applications. They address possible horizontal collisions,

i.e., collisions of nodes that are equidistant from the root, by assigning different

frames (a set of slots). And address possible vertical collisions, collisions of nodes

that are on the same path from the root (i.e., when one node is a descendant of

another), by assigning different slots. The protocol achieves 1/3 of the maximum

throughput. In [9], to reduce the latency, authors propose a collision-free scheduling

algorithm by first constructing a convergecast tree and then allocating different codes

(DSSS/FHSS) to nodes.

As some hardware, such as Micaz and Telos, provides multiple frequencies, some

works done so far use multi-channel communication to improve communication per-

formance. In [119], the authors present a protocol which allocates different channels

to vertex-disjoint trees rooted at the sink and exploits parallel transmissions among

trees. The protocol improves network throughput and reduces collisions and is cen-
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tralized. Other works that use multiple frequencies can be found in [51, 64].

A work which considers, like our protocol in Chapter 6, the number of active-

sleep transitions is presented in [56]. Their idea is to assign contiguous time slots to

the children of a node. However, they assume several powerful gateways and it is a

cluster based protocol.

There are works on data aggregation scheduling which mainly focus on data

aggregation latency and give the latency bounds for their protocols [120, 49, 26].

A work in [53] proposes a crash-tolerant data aggregation scheduling protocol and

shows some impossibility results in the presence of crash failures. All these protocols

consider a single sink in a network which means they will not work properly in a

network with more than one sink.

Protocols that have been developed on data communication for networks with

multiple sinks can be found in [90, 108, 21, 59]. A scheme proposed in [90] performs

data collection from many nodes to many sinks. In [108], the authors propose

an algorithm that builds two node-disjoint paths from every node to two different

(drains) sinks to collect data to two sinks. The goal of the algorithm was to address

the problem of any single node failure. These algorithms address the problem at

routing level, i.e., neither of these two schemes generate a collision-free aggregation

schedule for a wireless sensor network with multiple sinks.

The work presented in [59, 21] are the most relevant to our work presented in

Chapter 6. In [59], in addition to an algorithm that forms shortest path trees rooted

at each sink in a network with multiple sinks, authors propose a scheduling algorithm

that use a graph coloring algorithm. The authors of [21], propose two algorithms

for scheduling data aggregation in multiple-sink sensor networks. The first of the

algorithm is Voronoi-based scheduling where the sensing area is divided into regions

forming k forests, one for each sink. Then the algorithm makes schedules for nodes.

The second algorithm is Independent scheduling which differs from the first in forest
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construction. As can be observed, both of the works propose data aggregation

scheduling algorithms where different portions of sensor nodes aggregate their data

to a single sink, whereas we consider the case where many nodes aggregate their

data to two sinks.

2.3 Reliable Broadcast

Reliable communication is preferred in most communication systems. Moreover,

for some systems reliability is of great importance. In wireless communication,

achieving reliable broadcast is more challenging than its wired counterpart as the

wireless channel is prone to failures such as collision and interference.

In data dissemination, it is important that the new data is delivered to nodes

in its entirety and without any bit changes. Since we focus on data dissemination

protocols, the problem of reliable broadcast is relevant. We provide a brief survey

here although the works assume permanent or Byzantine failures, where a node can

fail in arbitrary ways and behave unusually [72].

The work proposed in [67] is one of the earliest work that deal with the broadcast

problem in multihop radio networks. The authors propose fault-tolerant broadcast-

ing algorithms and give algorithms’ asymptotic bounds on completion time. They

assume permanent faulty nodes of unknown locations that do not receive and send

messages.

In [65], the author shows that it is possible to obtain a reliable broadcast when-

ever the number of Byzantine nodes, nodes which may behave arbitrarily, f , is no

more than some value. This f is defined in terms of a communication range r.

Moreover, the author shows that it is impossible to obtain reliable broadcast when

f is bigger than some threshold value. The work assumes the existence of a pre-

fixed time-slotted transmission schedule and everyone follows this schedule to avoid
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collisions.

In [20], the authors improve on [65] by making possibility bounds tighter. In

particular, it has been shown that it is possible to achieve reliable broadcast when

the number of faulty(Byzantine) nodes is strictly less than the threshold value for

which in [65] it is shown that it is impossible to achieve reliable broadcast.

In [66], unlike the previous work where there is no address spoofing and collision,

the authors relaxed this assumption and showed that reliable broadcast is possible

even in the presence of collisions and address spoofing as long as they are bounded

and the number of faulty nodes is less than some threshold value.

In [18], the authors address the broadcast problem in the presence of Byzantine

faults with faulty nodes having bounded number of messages mf . They show the

possibility of reliable broadcast whenever the number of messages, m, of the correct

node is lower bounded by some value defined in terms of mf . They assume the

existence of a prefixed time-slotted schedule, but faulty nodes may not follow the

schedule, thereby making collisions.

In [87], the authors propose a protocol which is safe, i.e., correct nodes do not

download an incorrect message. The protocol guarantees this property whenever

D ≥ H+ 2, where D is the shortest distance between two Byzantine nodes and H is

a protocol parameter which is assumed to be known by all correct nodes. The paper

also discusses the possibility of reliable broadcast in the torus network whenever

D ≥ 5 and H = 2. The same authors generalized this result to planar graphs

in [88]. In particular, the authors show that for D > Z, where Z is the maximal

number of edges per polygon, it is possible to achieve reliable broadcast.
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CHAPTER 3

System and Fault Model

In this chapter, we present the models under which our protocols are designed. In

particular, we present what network types and faults we assume in our protocols.

3.1 Graphs and Networks

We define a wireless sensor node as a computing device equipped with a wireless

interface and associated with a unique identifier. Communication in wireless net-

works is typically modelled with a circular communication range centred on the

node. With this model, a node is thought as able to exchange data with all devices

within its communication range.

A wireless sensor network is a collection of wireless sensor nodes and is modelled

as a directed graph G = (V,A), where V is the set of wireless sensor nodes of size

|V |, and A is a set of arcs or directed links. Each directed link is an ordered pair of

distinct nodes (m,n), meaning node m can communicate with node n. For a directed
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link (m,n), we call n a downstream neighbour of m, and m an upstream neighbour of

n. We denote by Md and Mu, the set of m’s downstream and upstream neighbours,

respectively. We also assume that, for every node m, Md,Mu 6= ∅. Whenever we

say a node n sends a message, we mean n sends the message to its downstream

neighbours, and when we say n receives a message, we mean n receives the message

from its upstream neighbours.

The d-hop neighbourhood of a node m, denoted by Md, is a set of nodes such

that the length of the shortest path from m to a node in the set is at most d. We

say that two nodes m and n can collide at node p if (m, p), (n, p) ∈ A1.

3.2 Distributed Programs

We model the processing on a WSN node as a process containing non-empty sets of

variables and actions. A distributed program P is then a finite set of communicating

processes. We represent the communication network of a distributed program by a

directed connected graph G = (V,A), where V is the set of processes and A is a set

of directed links. A link (m,n) ∈ A means that a process m can communicate with

a process n.

A variable vi takes values from a fixed and finite domain Di. We denote a variable

vi of process n by n.vi. Each process n has a special buffer variable, denoted by

n.b, modelling a FIFO queue of incoming data sent by other nodes. This variable

is defined over the set of (possibly infinite) message sequences. Every variable of

every process, including the buffer variable, has a set of initial values. The state of a

program P is an assignment to variables of values from their respective domains. The

set of initial states is the set of all possible assignments of initial values to variables

of the program. A state is called initial if it is in the set of initial states. The state

1We will say two nodes m and n can collide if such a node p exists.
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space of the program is the set of all possible value assignments to variables. An

action a at process n updates one or more variables of n atomically.

3.3 Semantics

3.3.1 Program

We model a distributed program as a transition system P = (Σ, I,∆), where Σ is

the state space, I ⊆ Σ the set of initial states, and ∆ ⊆ Σ × Σ the set of state

transitions (or steps). A computation of P is a maximal sequence of states s0 · s1 . . .

such that ∀i > 0, (si−1, si) ∈ ∆. If the computation is finite, then it terminates in

a final state. A state s of a computation is final if there is no state s′ such that

(s, s′) ∈ ∆.

In a given state s, several processes may be ready to execute, and a decision is

needed to decide which one(s) execute. A scheduler is a predicate over the set of

computations. In any computation, each step (s, s′) is obtained by the fact that a

non-empty subset of enabled processes atomically execute an action. This subset

is chosen according to the scheduler. A scheduler is said to be central [35] if it

chooses only one ready process to execute an action in any step. A scheduler is said

distributed [22] if it chooses at least one ready process to execute an action in any

execution step. A scheduler may also have some fairness properties [37]. A scheduler

is strongly fair if every process that is ready infinitely often is chosen infinitely often

to execute an action in a step. A scheduler is weakly fair if every continuously ready

process is eventually chosen to execute an action in a step. A synchronous scheduler

is a distributed scheduler where all ready processes are chosen to execute an action

in a step.

In this thesis, we assume a synchronous scheduler, capturing a synchronous sys-

tem where an upper bound exists on the time for a process to execute an action.
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This assumption is not unreasonable as WSNs are often time-synchronized to cor-

relate sensor readings from different devices. Overall, in this thesis, we assume a

synchronous system model.

3.3.2 Specification

A specification is a set of computations. A program P satisfies a specification Φ

if every computation of P is in Φ. Alpern and Schneider [8] stated that every

computation-based specification can be described as the conjunction of a safety and

liveness property. Intuitively, a safety specification states that something bad should

not happen, i.e., the safety specification defines a set of computation prefixes that

should not appear in any computation. On the other hand, a liveness specification

states that something good will eventually happen, i.e., the liveness specification

specifies a set of state sequences such that every computation has a suffix in the set.

We assume the specification to be fusion-closed and suffix-closed. A specification

is fusion-closed if two computations α · s · β and λ · s · γ are allowed by the specifi-

cation, then so are the computations α · s · γ and λ · s · β, where α and λ are finite

prefixes of computations, γ and β are suffixes of computations, and s is a program

state. Thus, fusion closure means that the next step of a program depends on the

current state and not on the previous history of the execution. A specification is

suffix-closed if a computation is allowed by the specification, then all suffixes of the

computation are allowed by the specification. Suffix closure enables us to discuss the

correctness of the program on the basis of its current state rather than potentially

arbitrary long program history [92]. The assumption of fusion closure is, in general,

reasonable given that most, if not all, protocol specifications in WSNs are inherently

fusion closed. Fusion closure basically implies that history information is available

in every state of the program. And usually history information is local in WSNs

specifications. For example, when assigning slot in TDMA, the collision freedom is
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an important property and it states that no two nodes within 2 hops of each other

will have the same slot. Thus, if a node n is choosing a slot in a state s, then n

should have enough history information to determine whether any node within 2

hops have chosen the same slot. Often, this history information is piggybacked onto

application messages, or specific control messages. Fusion closure is important in

our work because, like mentioned in the example above, it enables nodes to choose

their collision-free time slots. Moreover, if a data fault occurs, fusion closure en-

ables recovery to take place. Further, any non-fusion closed specification can be

transformed into an equivalent fusion closed one, through the addition of history

information to the program. And that history information will be part of the state

of the program. For example, the specification “x = 4 implies that previously x = 2”

is not fusion closed. However, it can be transformed by adding a history variable

h that is used to record the previous value of x. Thus, the above non-fusion closed

specification can be transformed to the fusion closed specification “never (x = 4 and

(x = 2)/∈ h)” [41].

3.3.3 Communication

We model synchronous communication as follows: after a process m broadcasts a

message in state si, a downstream neighbour process n executes the corresponding

receive in state si+1, i.e., the corresponding receive is executed before any other

enabled actions of process n, such that, in some sense, message deliveries take higher

priority. It is reasonable because most of the WSNs applications are written on

interrupt-driven operating system called TinyOS [1]. Typically there are two kinds

of interrupts in TinyOS - clock/timer and radio. And a radio interrupt occurs when

the radio receives a message [106].
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3.3.4 Faults

A fault model stipulates the way programs may fail. We consider transient data faults

that corrupt the state of the data dissemination program by artificially corrupting

the values held by the variables and messages. These faults are also known as soft

errors [96, 40]. There are other types of faults that can occur in the network: (i) crash

faults that may occur, for example, due to energy depletion, (ii) message losses that

may occur, for example, due to message collisions or link failures and (iii) Byzantine

faults that may occur, for example, due to hardware faults. As one of the goals of

the data consistency maintenance algorithm is to address crashes and message losses

(see Section 2.1.1), the data dissemination algorithm can tolerate the first two faults

by itself. The third fault type, Byzantine faults, has been theoretically studied (see

Section 2.3). However, to our knowledge, there is very little evidence of the actual

occurrences of Byzantine faults in WSNs.

Formally, our fault model is a set F of faulty actions [12]. These are similar

to program actions, as they may modify the variables of programs and thus alter

the program state. We say that a fault occurs if a fault action is executed. Fault

actions can interleave program actions and they might or might not be executed

when enabled. We say a computation is F -affected if the computation contains

program transitions and transitions from fault model F . We also assume that the

sink is able to retrieve an uncorrupted version of the data and version number (with

the sink acting as a gateway), though the sink itself can be corrupted.

28



CHAPTER 4

Repair: Making Code Dissemination Protocols Fault-tolerant

4.1 Introduction

Due to limited resources such as computing, memory and energy, harsh environ-

mental conditions and buggy programs, wireless sensors may experience a number

of different faults [19]. As mentioned in [11], these faults can be classified as node

failures and hardware faults, communication faults, and software faults. Some of

these faults may cause non-deterministic bit-flips in the main memory and lead to

memory corruptions [40, 33]. Moreover, because of the erroneous nature of wireless

communication transmitted messages may be corrupted [96]. For example, accord-

ing to the data obtained from the deployment at the outskirts of Uppsala, Sweden,

the ratio of corrupt packets to correctly received packets was at least 0.5 [47].

Due to these faults nodes may behave arbitrarily and negatively impact the

entire network. For example, in a deployment at Reventador [116], a software error

led to a 3-day network outage. In [16], due to temperature differences, network
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communication failed during mornings and evenings, but worked during day and

night. Recently, as reported in [55], transient faults have occurred with a probability

of approximately 0.1% in a large-scale deployment and such transient faults severely

impact on the efficiency of the protocols.

There have been several works done that are tolerant to transient memory faults

or present memory protection mechanisms from some actions that lead to this type

of faults, and [27, 30, 61, 71, 33] are among others. Also, there exists a tool that

is designed specifically for wireless sensors to emulate memory faults to check the

reactions of software to these faults [29].

As mentioned in Chapter 2, several data dissemination protocols have been pro-

posed thus far [111, 81, 32, 57, 70, 79, 95, 89]. However, to the best of our knowledge,

none of them tolerates transient data faults, i.e., data faults that corrupt the state

of the dissemination protocol due to memory and message corruptions.

Given that several data dissemination protocols work by advertising the meta-

data, viz. version number1, of the new data, e.g., [111, 32, 81, 50, 80, 70, 105, 79, 95,

15], any corruption of the version number in the advertisement messages (message

corruption) or those stored at the nodes (memory corruption) can, in the worst case,

lead to the network nodes having stale data, thereby reducing the ability of the net-

work to perform properly. Thus, it is important to make these data dissemination

protocols tolerate these transient data faults.

As most of the dissemination protocols have been designed for disseminating code

updates, we say code dissemination instead of data dissemination in the remaining

part of this chapter.

When a node decides that another node has an updated code fragment, generally,

it makes a request to the updated node which, subsequently, sends (i.e., broadcasts)

the update to the requesting node. The process of advertising code updates, sending

1In this chapter, whenever we say metadata, we mean version number.
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code requests and downloads is energy consuming. As the communication part con-

sumes a large portion of energy and the significant amount of energy per transmitted

bit used [99, 100], and given the size of codes, which may vary from 20 bytes up to

tens of kilobytes [31, 77, 45, 85, 70, 50], code dissemination consumes a significant

amount of energy. This is exacerbated when transient faults occur, as nodes may

mistakenly request and download stale code. In the worst case, the whole network

may download the stale code, at great energy expense.

There exists a hierarchy of fault tolerance properties namely fail-safe fault tol-

erance (which ensures that a program always satisfies its safety specification), non-

masking fault tolerance (which ensures that a program always satisfy its liveness

specification, even if safety is temporarily compromised) and masking fault toler-

ance (which ensures that both safety and liveness are satisfied, even in the presence

of transient faults) [12]. These fault tolerance types are shown in Table 4.1. As a

simple example, consider traffic light systems. A safety property of these systems

could be that at any point in time no two traffic lights that are situated on the

perpendicular roads turn on green. In the presence of faults if two traffic lights show

green simultaneously, then the system is not fail-safe tolerant. In this example, as

safety is much more important than liveness, the system should be at least fail-

safe. So, the system should never violate the safety property. However, if it violates

the safety property but then eventually corrects the fault, i.e., if the system works

properly again after some time, it is said to be non-masking fault tolerant. While

masking fault tolerance does not allow traffic lights to turn on green simultaneously,

and continues working properly in the presence of faults.

In the context of code dissemination, fail-safe fault tolerance amounts to a node

not downloading any code if it believes the code to be old. Masking fault tolerance

means that all nodes will only download the new code (as if no fault has occurred),

and only once. On the other hand, non-masking fault tolerance allows some erro-
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Live Not Live

Safe Masking Fail-safe

Not Safe Non-masking

Table 4.1: Fault tolerance types

neous downloads (i.e., downloads of old code) before eventually all nodes download

the updated code. Such erroneous downloads are only allowed to occur finitely,

though.

Given that code update dissemination is energy consuming, it is thus preferable

to reduce the number of erroneous downloads while ensuring that all nodes even-

tually download the updated code. Fail-safe fault tolerance is not suitable as it

means that some nodes may not update (which will impact of the usefulness of the

network). Masking fault-tolerant code dissemination protocols would minimise the

number of erroneous downloads but, given the nature of the WSNs and of the dis-

semination process, masking fault tolerance is not practical. Because it is expensive

or impossible to design such complex protocol for resource constrained sensor nodes

that allows to download only new codes. For example, it is difficult to handle such

a case: if the version number of a new code, say 5, in a node n has been corrupted

to 4, while the version number of the old code of a node m has been changed from 4

to 5, then n will download the old code of m. On the other hand, non-masking fault

tolerance means that nodes may erroneously download old code only finitely, but

they will eventually download the updated code. However, a small number of erro-

neous downloads can be tolerated if this means that the network state is consistent,

allowing the proper dissemination of the updated code.

To design non-masking fault tolerance, it is both necessary and sufficient for a

program to contain a specific type of fault tolerance component called a corrector. A

corrector is a class of program component that enforces a predicate on the execution

of a program. There exists different correctors that can guarantee non masking fault
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tolerance for a given program, however they may differ in their efficiency.

In this chapter, instead of proposing a specific non-masking fault-tolerant code

dissemination protocol2 for WSNs, we address the problem in a different way: we

first provide an abstract specification of the code dissemination problem, and based

on the definition, we propose (i) a definition of a corrector protocol and (ii) two

corrector protocols, called BestEffort-Repair and Consistent-Repair. Each can be

added to any existing (fault-intolerant) code dissemination protocol to transform it

into a fault-tolerant code dissemination protocol. Specifically, since the corrector

protocol is designed based on the code dissemination specification, rather than on

an actual implementation, if the corrector is added to any code dissemination imple-

mentation that satisfies the dissemination specification, then the resulting protocol

is non-masking fault tolerant [10]. Further, to detect state corruption, a detector

component, which detects the validity of a predicate in a given state, is designed

based on the protocol implementation.

The two corrector protocols developed has enabled us to observe a tradeoff during

recovery: Consistent-Repair results in a lesser number of erroneous downloads than

BestEffort-Repair. However, BestEffort-Repair has a shorter completion time in

that Consistent-Repair needs more time to make better update decision. A shorter

recovery time means that the network state becomes consistent faster, and can

perform useful work faster.

Overall, our approach is as follows: given a fault-intolerant code dissemination

protocol, we design a protocol-specific detector together with a generic corrector com-

ponent to obtain a corresponding non-masking fault-tolerant code dissemination pro-

tocol.

This chapter is structured as follows: We present a definition and specifications

for code dissemination in Section 4.2. We present some theoretical results in Sec-

2Henceforth, whenever we refer to fault tolerance in code dissemination, we mean non-masking
fault tolerance.
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tion 4.3. In Section 4.4, we present two f -local corrector algorithms that stabilise

the code dissemination of code updates. In Section 4.5, we present simulation results

to evaluate the performance of the proposed algorithms. Further, in this section, to

confirm the results obtained from the simulations we present testbed results. We

conclude the chapter in Section 4.6.

4.2 Specifications

In this section, we formally define the problem of code dissemination. We then

provide two refined specifications for solving the code dissemination problem: (i)

deterministic code dissemination, and (ii) stabilising code dissemination.

4.2.1 Abstract Specification of Code Dissemination

Before we provide problem definitions, we introduce some notations we use in the

rest of the chapter. We denote a code fragment by (π, vπ), with π being the code

and vπ being the version number of the code. We denote by v′π a possibly corrupted

version number for code π, i.e., if v′π = vπ, then the version number is not corrupted,

corrupted otherwise. We say that a code has code fragment (πn, v′πn) to mean that

a node n has the code fragment (π, vπ) but has version number v′π associated with it

instead. Thus, unless stated otherwise, whenever we say a node n has code fragment

π, we mean a node n has code fragment (π, v′π).

We assume the version number to be a scalar quantity and that the version

number can grow arbitrarily large. We also assume that the entire network use the

same version number for the same code and that the version number is incremented

by one as in [32, 81, 111], i.e., the version number of a new code should be one more

than that of the old code. Thus, for a network to be consistent, there must be at

most two version numbers in the network with a difference of 1. We assume only
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detectable faults, which rules out fault cases such as a fault that corrupts version

numbers in a way that the difference of them is at most 1 (see Section 4.3.1 for more

details on detectable faults).

Definition 1 (Consistent State in Code Dissemination) Given a network G =

(V,A) and a code dissemination program Ψ for G, the state of a neighbourhood G′

of G is said to be consistent in s, if there is at most 2 distinct version numbers,

with a difference of at most 1, in that neighbourhood in s, where s is a state of Ψ.

A process is said to have a consistent state in s if its code’s version number is the

same as that of at least one other neighbour process in s. A state of Ψ is consistent

in s if all neighbourhoods of G are consistent in s.

The above definition says that the state of a neighbourhood/node is consistent if

the neighbourhood contains at most two version numbers, i.e., the version number

of an old code and/or a new code. For example, if the version number of an old

code is 0 then, for a neighbourhood to be consistent, in the neighbourhood there

should be at most one more version number which is 1. In this case, for a node to

have a consistent state, its version number should be 0 or 1. Similarly, the state of

a program is consistent if all nodes in the network have either 0 or 1.

A node whose version number is neither 0 nor 1 is not consistent (if the version

number of old and new codes were 0 and 1, respectively), and we call such a node

f-affected node. A set of f-affected nodes is called f-affected area.

Definition 2 (F -affected node and F -affected area) Given a network G = (V,A)

and a fault F that corrupts the program state, a process n is F -affected in a state

if n will need to change its state to make the program state consistent. An area

G′ = (V ′, A′), with G′ being a subgraph of G, is F -affected in a state s iff ∀n ∈ V ′,

n is F -affected in s.
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When a node changes its state to make the program state consistent, we say that

the node corrects its state. As in most cases WSNs are deployed and unattended for a

long time, it is preferable to have algorithms that correct program states themselves.

A type of such algorithm is called a stabilizing algorithm.

Definition 3 (Stabilizing algorithm) Given a network G = (V,A), a problem

specification Φ for G, and an algorithm Ψ. Algorithm Ψ is said to be stabilizing to

Φ iff every computation of Ψ has a suffix which is a suffix of a computation of Φ

that starts in an initial state.

According to the definition above, in the context of code dissemination, an algorithm

is called stabilizing if it can eventually correct the state of an f-affected node.

Stabilizing algorithms may need additional information, such as information

about the network or neighbourhood, to work correctly. Due to stringent resource

constraints of sensor nodes, stabilizing algorithms that need less auxiliary infor-

mation from other nodes are more desirable. It may be the case that stabilizing

algorithm may need more information than information about 1-hop neighbours.

For example, instead of 1-hop neighbourhood information, it may need d-hop neigh-

bourhood information. Thus, we define d-local stabilizing algorithm as follows:

Definition 4 (d-local stabilizing algorithm) Given a network G = (V,A), a

problem specification Φ for G, and a stabilizing algorithm Ψ to Φ. Algorithm Ψ

is said to be d-local stabilizing to Φ iff the cost of correcting the state of a node is

bounded by functions of d.

According to this definition an algorithm is called d-local stabilizing, if the com-

plexity of correcting the state is O(d). Here d can be any metric, including the

number of transmitted messages, the number of nodes involved or the number of

hops. For example, if the algorithm corrects the state of a node with information
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from nodes that are at most d-hop away, then the algorithm is called d-local stabiliz-

ing. It is ideal if the information a node needs to correct its state depends on itself.

However, sometimes it may not be possible to correct the state using its own state

information. Therefore, the node may need to involve other nodes in the network

and acquire necessary information.

Definition 5 (Code Update) Given two code fragments (π, vπ) and (Π, vΠ), Π is

said to be an updated code over π if vΠ > vπ. If a node n changes its code from π

to Π and Π is a updated code over π, then we say that a node n updates its code to

Π. Otherwise, if a node n changes its code from Π to π, then we say that a node n

outdates its code to π.

We will say that Π is an updated code to mean that Π is an updated over

code π, whenever π is clear from the context. We will also say that a node n

updates/outdates its code to Π/π if Π and π is obvious from the context.

An updated code Π is a new code for a network.

Definition 6 (New Code for G) Given a code fragment (Π, vΠ) and a network

G, we say that Π is a new code for G if all nodes in G have code fragment π and

vΠ > vπ.

Definition 7 (Version View) Given a network G = (V,A), the version view of a

node n ∈ V is a function that maps n to a sequence of multiset of values.

Basically, the version view of a node n returns the distribution of version numbers

in the network, i.e., the distribution of version numbers at every hop in the network

centred on n. For example, if a node n has 3 1-hop neighbours with version numbers

1, 1 and 2 and 5 2-hop neighbours with version numbers 2, 2, 1, 2 and 3, then the

version view of n is {1, 1, 1, 2, 2, 2, 2, 3}.

We now provide an abstract definition of code dissemination.
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Definition 8 (Code Dissemination (CD)) Given a network G = (V,A), with a

dedicated node called a sink S ∈ V , and an updated code (Π, vΠ) to be disseminated.

Then, a code dissemination for Π is a sequence of sets of receivers 〈R0 ·R1 . . . RkΠ
〉

such that

1. RΠ
0 = {S}

2. ∀ i, 0 ≤ i ≤ (kΠ − 1) : ∀r ∈ RΠ
i+1, ∃s ∈ RΠ

i · (s, r) ∈ A

3.
⋃

0≤i≤kΠ
RΠ
i = V

Given a network G and an updated code Π, the code dissemination process starts

with the sink (condition 1). Then, the code update process propagates forward

(condition 2), i.e., all updated nodes forward the updated code to their neighbours,

one hop at a time, until all the nodes have received the updated code (condition 3).

The sequence represents the sequence in which the nodes updates their code.

In the above definition, we have made three assumptions: (i) when a code dissem-

ination process starts, all the nodes have the same code base, i.e., they all have the

same code, (ii) all nodes need to get the updated code (however, we can easily adapt

the definition to the case where only a subset of nodes require the code update),

and (iii) only one code dissemination can take place at a time, i.e., a code update

can only occur once a previous one has completed. We call kΠ, the dissemination

latency for Π. Observe that condition 2 does not warrant that all the downstream

neighbours of an updated node to receive the code update in the next round. Due

to issues such as message collisions and duty cycling, a downstream neighbour node

may not receive the update in the next round, but sometime later from, possibly,

another upstream neighbour.
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4.2.2 Local Specifications for Code Dissemination

The specification given in Definition 8 is a global specification in the sense that

it specifies the expected behaviour at the network level. In a distributed system,

the verification that a program satisfies the global specification is challenging, given

that global state is not instantaneously available. Thus, it is preferable to develop

node-level specifications, which we call local specifications, which are more amenable

to verification. The combination of local specifications (one for each process) result

in the global specification.

We now present three increasingly weaker local specifications through which

code dissemination could be achieved, which we call (i) strong code dissemination

(CD), (ii) consistent CD and (iii) best effort CD. The first specification, strong

CD, represents a gold standard and is satisfied by current dissemination protocols,

such as [95, 79, 70]. The weaker specifications become important especially when

transient faults occur in the network. We will define both specifications in terms of

safety and liveness [8].

4.2.2.1 Strong Code Dissemination

Intuition In the fault-free case, a node n, having code π, will only download a

code from a neighbor node, having code Π, if Π is an updated code. Further, n

will not download Π again. Current code dissemination protocols also guarantee

that, eventually, every node will download the updated code (even if some nodes are

temporarily disconnected from the network, due to duty-cycling, link failures etc).

Thus, we define strong CD as follows (Definition 9):

Definition 9 (Strong CD) Given a network G = (V,A), a node n ∈ V having a

code fragment π, and a new code fragment (Π, vΠ) for G. Then,

• Accuracy: Node n will only change its code to an updated one.
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• Update: Eventually node n will permanently update its code to Π.

The liveness part of the specification, i.e., the update property, for strong code

dissemination ensures that
⋃

0≤i≤kΠ
RΠ
i = V (see Definition 8). On the other hand,

Definition 9, through the accuracy property, puts an additional constraint on code

dissemination in that nodes only change their code with an updated one. In other

words,
⋂

0≤i≤kΠ
RΠ
i = ∅, i.e., no node updates more than once. In general, in

the absence of faults, it can be expected that the system will satisfy the strong CD

specification, e.g., [79, 95]. However, due to external factors, such as transient faults,

nodes may wrongly outdate their codes and, if they do so, they will eventually have

to correct these mistakes.

These wrong code changes (i.e., code outdates) give rise to various possible

weaker specifications, namely (i) consistent CD and (ii) best effort CD.

4.2.2.2 Consistent Code Dissemination

Intuition When transient faults occur, it may be the case that a node n cannot

distinguish between updated and outdated code. Specifically, a node n that has

already updated may download the old code from a neighbour, i.e., n becomes

outdated, if it believes that the neighbour has the code update. This is not an ideal

situation. However, a node m that has yet to be updated may believe that another

node m′, with the same code as m, has the code update and may wrongly download

the same (old) code. This specification forbids a node to outdate itself.

Definition 10 (Consistent CD) Given a network G = (V,A), a node n ∈ V

having a code fragment π, and a new code fragment (Π, vΠ) for G. Then,

• No outdate: Node n will never change its code to an outdated one.

• Update: Eventually node n will permanently update its code to Π.
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This means that, in consistent CD, if transient faults occur, before downloading

the new code nodes in the network may download the same code they have, however,

will not download the older code.

4.2.2.3 Best Effort Code Dissemination

Intuition The best effort CD specification allows for an updated node n to outdate

itself as n may wrongly believe some node m to have the new code while n has the

old code.

Definition 11 (Best Effort CD) Given a network G = (V,A), a node n ∈ V

having a code fragment π, and new code fragment (Π, vΠ) for G. Then,

• Eventual accuracy: Eventually, node n will only change its code to an updated

one.

• Liveness: Eventually node n will permanently update its code from π to Π.

An example is used to help better understand and differentiate between the three

different specifications proposed. At the start of the dissemination of the new code

Π, the old code π resides at every node in the network. Assume that the old code

has version 0 and the new code has version 1. Hence, for any node n in the network,

there are four possible code transitions in the presence of transient faults:

1. 0→ 0 : Node n has the old code and changes to the old code again - Redundant

2. 0→ 1 : Node n has the old code and changes to the new code - Code update

3. 1→ 0 : Node n has the new code and changes to the old code - Code outdate

4. 1 → 1 : Node n has the new code and changes to the new code again -

Redundant
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The strong CD specification only allows the second type of code transition. The

consistent CD specification allows the 1, 2 and 4 types of code transitions while

the best effort CD specification allows all of them. It can be observed then that

BestEffort specification allows more redundant downloads than either of the other

two specifications.

4.2.3 Fault Tolerance Issues: An Overview

It can happen that a code dissemination protocol that has been proved correct (i.e.,

satisfies its strong specification in the absence of faults), violates its specification in

the presence of faults due to it not being able to handle faults [12], i.e., the code dis-

semination protocol is fault-intolerant. As such, there is a variety of fault tolerance

properties that the program can satisfy, viz. fail-safe fault tolerance, non-masking

fault tolerance and masking fault tolerance [12]. A fail-safe fault-tolerant program

guarantees that safety will always be satisfied, while a non-masking fault-tolerant

program guarantees that liveness will eventually be satisfied, even if safety can be

temporarily violated. On the other hand, a masking fault-tolerant program (the gold

standard) guarantees that the program will satisfy its specification even in the pres-

ence of faults. To transform a fault-intolerant program into a fail-safe fault-tolerant

(resp. non-masking fault-tolerant) program, addition of program components called

detectors (resp. correctors) to the fault-intolerant program are both necessary and

sufficient. Thus, to make a program masking fault-tolerant, it is necessary and suf-

ficient to add both detectors and correctors [12]. A detector component is one that

asserts the validity of a predicate in a running program, while a corrector component

enforces a predicate on a running program.

In networking, a non-masking fault-tolerant program is generally suitable as it

guarantees that, eventually (i.e., when faults stop), the program will satisfy its spec-

ification again. Though non-masking fault tolerance entails the erroneous downloads
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of codes, it is the one more suited to code dissemination as masking fault tolerance

is very expensive, both spatially and temporally, to guarantee. Given the existence

of several code dissemination algorithms, it is not intended, in this work, to develop

another (non-masking) fault-tolerant code dissemination protocol. The thrust is

to develop a generic corrector protocol that, when added to a fault-intolerant code

dissemination protocol, will enable the resulting protocol to satisfy the liveness spec-

ification (i.e., eventually all nodes will permanently update with the updated code).

We also require that the corrector protocol is only executed when an erroneous state

is detected.

At this point, we need to define the properties of such a corrector protocol that

will capture its correctness. Since we wish this corrector protocol to be generic,

and work as a wrapper (i.e., it can plug in with various code dissemination proto-

cols), it cannot be based on any specific code dissemination protocol implementation.

Rather, the working of the corrector protocol should only be based on the specifi-

cation of the code dissemination protocol, more specifically its interface and speci-

fication. Such an approach is what has been termed as graybox stabilization [10].

Definition 12 (Corrector Component for Code Dissemination) Given a strong

code dissemination specification σs (Definition 9) and a weaker version σw (Defini-

tions 10 or 11), some transient fault model F , a protocol Σ that satisfies σs in the

absence of F but violates σs in the presence of F , and a program φ. Then, φ is a

σw-corrector program for σs iff

• Transparency: In the absence of F , (Σ ◦ φ) satisfies σs.

• Stabilizing: In the presence of F , (Σ ◦ φ) satisfies σw.

If σw is consistent CD (resp. best effort CD), then φ is a consistent (resp. best

effort) corrector for strong CD.
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Here, A ◦ B represents the addition of program A with program B [12]. The

set of computations of the composite system (A ◦ B) is the smallest fusion-closed

set that contains computations of A and B, with the initial states being the set

of common initial states of A and B. Definition 12 stipulates that, when there is

no transient fault in the network, the corrector program is transparent, i.e., it does

not interfere with the working of the code dissemination protocol and satisfies the

strong code dissemination. However, when transient faults are occurring, then the

corrector program will help the code dissemination protocol to eventually guarantee

that a node will permanently download the updated code, after possibly having

downloaded stale code.

4.3 Theoretical Results

In this section, we show that (i) it is impossible to solve the strong code dissemination

problem in the presence of transient faults, and (ii) there exists no 1-local algorithm

to solve the strong code dissemination problem in the presence of a stronger class of

transient faults, which we term as detectable faults.

4.3.1 Strong Code Dissemination in the Presence of Transient Faults

In this section, we investigate the possibility of developing an algorithm that solves

the strong code dissemination problem in the presence of transient faults. Ideally,

even in the presence of transient faults, it would be beneficial if a node only updates

with new code to prevent redundant downloads, thereby saving energy.

Intuition From the specification of strong code dissemination (Definition 9), it

is stated that nodes only update their codes when they are in the presence of a

newer code fragment. However, when transient faults occur, the version number

that is advertised by or stored at a node can be corrupted, possibly leading to nodes
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downloading old code fragments. Thus, the first main contribution of the chapter is

captured by Theorem 1, which states that it is impossible to solve the strong code

dissemination in the presence of transient faults.

Theorem 1 (Impossibility of strong CD) Given a network G = (V,A), a fault

model F that corrupts the program state, and an updated code fragment (Π, vΠ).

Then, there exists no deterministic algorithm that solves the strong code dissemina-

tion problem for Π in G in the presence of F .

Proof. Consider the network G, and assume a deterministic algorithm Ψ that

solves the strong code dissemination problem. We will construct an appropriate

state and show that, under Ψ, a node may wrongly update, hence a contradiction.

Assumptions: Two nodes ni and nj where ni (resp. nj) is both an upstream and

downstream neighbour of nj (resp. ni).

Consider a fault free computation C = s0 · s1 . . . of Ψ. In a given state sk in C,

two nodes ni, nj ∈ V \ {S} have the following code fragments: ni has Π and nj has

π.

Now, nodes ni and nj interact such that ni and nj inform each other of their

respective code fragments, i.e., about their respective version numbers. Given that Ψ

solves the strong code dissemination problem, node nj will eventually permanently

update its code with Π in a state sl, l > k as Π is an updated code fragment.

Now, consider a faulty computation C ′ = s′0 · s′1 . . . of Ψ, and a state s′k which

is exactly the same as sk (above) except for the following: (i) node ni has a code

fragment (Πni , v
′
Πni

) and node nj has code fragment (πnj , v
′
πnj

). In a state s′l, l > k

of C ′, assume that ni has the same version view as nj in sl and nj has the same

version view as ni in sl.

Since Ψ is deterministic and solves strong CD, node ni will permanently update

its code with π in s′l, which is a contradiction as π is an old code. Hence, no such
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deterministic Ψ exists.

The impossibility is underpinned by some major problems, the most prominent

being: (i) Nodes are not able to detect unexpected version numbers as, for example,

if nodes with the stale code have their respective version numbers corrupted to very

high values, old code may propagate through out the network, and (ii) nodes with

the updated code may have their respective version numbers corrupted to that of

the old code, while nodes with the old code have their respective version numbers

corrupted to the new one, i.e., all updated nodes appear as outdated and all outdated

nodes appear as updated.

To attempt to circumvent this impossibility of Theorem 1, there are different

possible avenues. For example, one may allow algorithms to make a finite number

of mistakes, thereby solving a weaker problem specification (such as the weak code

dissemination). Another example might be to solve the strong code dissemination

problem in the presence of a stronger fault model, i.e., a fault model where the set

of possible corruptions is constrained. For the first possibility, if the possibly few

updated nodes are overwritten with the old code, then the part of the network may

not get the new code. This case is illustrated in Figure 4.1. For example, if a node

C, that is three hops away from the sink, gets corrupted and the version number has

been changed from 2 to 5, then all nodes may start to download that code, as 5 > 2.

When a node that is a neighbour of the sink, say node A, downloads the code with

version number 5, node A may correct itself by downloading from the sink the code

with version number 2 (or 3 if it is the new code). However, node B will not get the

correct code as its version number 5. So, all nodes that are two or more hops away

from the sink may not get the code with version number 2 (or 3, respectively).

Thus, even if a finite number of mistakes are allowed (i.e., download of old code),

then there is no guarantee of the entire network getting the correct code. Therefore,

in this chapter, we follow the second possibility, i.e., we assume a stronger fault
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Figure 4.1: Current code version number is 2. The version number of node C is
corrupted to 5.

model.

Thus, the assumed fault model needs to be such that the two stated problems

are handled: we require the faults to result in detectable errors. Thus, we rule out

a few fault actions: (i) we require that the fault model does neither make outdated

nodes appear as updated and updated as outdated, (ii) nodes in a neighbourhood

need to be corrupted differently (so nodes in a neighbourhood do not appear as

outdated/updated). We call the resulting fault model as the detectable fault model,

which we assume in the rest of the chapter. An example of a possible fault ruled

out by the first constraint can be illustrated with an example: assume the old code

version is 1 and the new version is 2, and the version number increases by 1 for each

new update. An updated (resp. outdated) node cannot have its version number to

be corrupted to 1 (resp. 2). Also, say a node n has its version number corrupted to

5, then a node m in n’s neighbourhood cannot have its version number corrupted

to 6, as m will appear as updated to n.

Though these faults can actually occur in practice, the probability of such faults

to occur is very low. If these faults do occur, then it is impossible to guarantee that

dissemination of the new code will terminate properly. One way to circumvent this

problem is to require the sink to query the network after some time to determine
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if nodes have the proper code, using possibly a hash of the code and the version

number.

In the presence of detectable faults, a trivial solution to solve the strong code

dissemination is to require the sink to periodically start the dissemination process.

Whenever a node encounters a version that is unexpected (allowed under the de-

tectable fault model), it does not need to download the code associated with it.

When it sees a version number that is expected (i.e., realistic), and since the code

associated with the version number cannot be a stale one (as it is ruled out by the

fault model), the node can download the code. Unfortunately, such a scheme is

expensive as the network will need to spend lots of energy for dissemination, i.e.,

the protocol is a global one. Thus, we seek to determine whether nodes can rely

only on its 1-hop neighbourhood for code dissemination (just as in a fault-free case)

in the presence of detectable faults. This is captured in Theorem 2.

Theorem 2 (Impossibility of 1-local strong CD) Given a network G = (V,A),

a detectable fault model F , and an updated code fragment Π. Then, there exists no

1-local algorithm that solves the strong code dissemination problem for Π in G in the

presence of F .

Proof. The proof is trivial. If the 1-hop neighbourhood of a node is corrupted in

such a way that the version numbers are either unexpected ones or old ones, then

the node will not download any code. Hence, a 1-local protocol is not possible.

Intuitively, if a neighbourhood is corrupted by a detectable fault model, then

nodes will need to start downloading from uncorrupted nodes outside of the cor-

rupted neighbourhood. Hence, this points towards a f -local algorithm, where f is

the diameter of the affected area, that can solve the strong code dissemination algo-

rithm. However, given the nature of WSNs and of the code dissemination process,

strong code dissemination in the presence of faults is not appropriate, due to the
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overhead it induces on the network. To this end, we focus on the two other spec-

ifications, viz. best effort CD and consistent CD. In the next section, we present

two corrector programs that, when added to a fault-intolerant code dissemination

protocol, solve the BestEffort CD and Consistent CD problems.

4.4 Code Dissemination Correction: Two Generic Cor-

rector Protocols

In this section, we present two generic corrector programs, namely (i) BestEffort-

Repair and (ii) Consistent-Repair. Each of the two protocols can be added to a

fault-intolerant code dissemination protocol to make the code dissemination protocol

satisfy some correctness specification.

As stated before, rather than developing a single (non-masking) fault-tolerant

code dissemination protocol, the focus is on transforming existing fault-intolerant

code dissemination protocols into non-masking fault-tolerant ones. To enable this,

we adopt the technique for graybox stabilisation [10] whereby, rather than devel-

oping a corrector for a particular code dissemination protocol, a (generic) corrector

protocol is designed based on a specification. This corrector can then be added to

any implementation that satisfies the specification, resulting in the eventual program

to be non-masking fault-tolerant. In that way, the corrector is reusable.

Further, from the definition of a corrector component (Definition 12), the cor-

rector should be transparent to the code dissemination protocol when there are no

faults in the network, i.e., the behaviour of the composite corrector and dissemi-

nation protocol should be identical to that of the dissemination protocol alone in

the absence of faults. To achieve this, we include a detector component in the code

dissemination protocol that, when satisfied (during faulty periods), triggers the cor-

rector component. It would be advantageous to then be able to develop a detector
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based on a specification. However, in such a case, the efficiency of the detector is not

very high, in that it can suffer from high false positives or false negatives, which can

then cause the corrector to violate its transparency property [54]. What this means

is that, in general, a generic detector would miss some errors, leading to erroneous

downloads of code or, in the worst case, the whole network having the old code. For

instance, corruption of variables other than the version numbers can still lead to

the code dissemination protocols not working properly (e.g., in Varuna, corrupting

the neighbourhood table caused problems). To compensate, we design the detectors

based on protocol implementations, i.e., a detector is needed for each different code

dissemination protocol. Overall, our approach is to develop a protocol-specific de-

tector which, when its corresponding detection predicate becomes true, triggers the

execution of the generic corrector program, making the code dissemination protocol

non-masking fault-tolerant.

A design methodology suggested for graybox stabilisation is to design a program

that contains two different components [10]: (i) a process-specific component and (ii)

an interprocess-specific component. The process-specific component is responsible

for making the state of a single process consistent, whereas an interprocess-specific

component is responsible for correcting any inconsistency between different pro-

cesses. In a fault-intolerant code dissemination protocol, since the only relevant

information nodes keep about the code is the version number, then state inconsis-

tency at the process level is irrelevant, i.e., the state of a single process is trivially

consistent. On the other hand, state inconsistency can be detected when comparing

the version numbers of two different processes. Thus, interprocess-specific compo-

nent of a corrector program only needs to correct the states of processes that are

inconsistent with each other.

In Sections 4.4.1 and 4.4.2, we present two corrector protocols that correct any

state inconsistency between processes, transforming the fault-intolerant code dis-
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semination protocols in non-masking fault-tolerant ones. The BestEffort-Repair

protocol, as the name suggests, attempts to correct the state inconsistencies as fast

as possible, while the Consistent-Repair protocol attempts to correct the state con-

sistencies as intelligently as possible. In other words, the worst case scenario for

BestEffort-Repair may be worse than that of the Consistent-Repair but the best

case scenario for BestEffort-Repair is also better than that of Consistent-Repair.

4.4.1 The BestEffort-Repair Protocol

Before describing the BestEffort-Repair protocol and giving its formal description,

we present the main idea behind it, and the special packets it uses. Since 1-local

fault tolerance is not possible (Theorem 2), the main idea is to correct (i.e., repair)

the protocol state as fast as possible. Correcting a state inconsistency (i.e., error)

quickly means that the error does not propagate through out the whole network.

BestEffort-Repair uses six special types of data packets (we call them BestEffort-

Repair packets), which we describe below.

• Prob: It contains the code’s version number and it is used to ask a neigh-

bouring node to correct an error.

• Check: A node sends a Check packet to request the current version number

of neighbouring nodes.

• Rep: A node sends a Rep packet in response to a Check packet and it contains

the node’s (stored) version number.

• OK: It is used to release some nodes from the correction process.

• Cor: A node sends a Cor packet to inform other neighbouring nodes about

the correct version number.
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• Hello: A node sends a Hello packet to inform other neighbouring nodes about

the correct version number and also that it has the updated code.

Informally, BestEffort-Repair works as follows: When a node n1 detects an error

after communicating with a node n2, it attempts to correct the erroneous state.

A Prob packet is sent by n1 to n2 to indicate a problem, asking n2 to correct

the problem. If the error cannot be corrected by n2, i.e., the version numbers of

the neighbours of n2 are not same, then Check packets are broadcast, creating a

correction tree (see Figure 4.2), rooted at the node (n1) that detected the error.

The leaf nodes of the tree responds to Check packets by sending Rep packets. If

n2 detects an error with any of the leaf nodes, it will spawn a subtree, within the

main correction tree. Once a region in the network is reached where no fault has

occurred, i.e., outside of the fault-affected area (see Figure 4.2), then no more subtree

is spawned. This means that a node’s, say nl, neighbourhood (i.e., all the children

of the node within the correction tree) have the same code version, as the version

is correct (under the detectable fault model). In other words, nl has received Rep

packets from its children with the same version number. Then, ultimately, the node

nl responds through a Hello or Cor packet, and its subtree “disappears”. Any node

sending a Hello or Cor packet will cause its subtree to “disappear” since the node

has ascertained the correct version number (and in the case of Hello packet, nl also

notified its parent about the availability of the code as well).

4.4.1.1 BestEffort-Repair: An Overview

When a node n1 detects an error (which is protocol-specific) after receiving a message

from a neighbouring node n2, n1 sends a Prob packet to n2, thereby asking n2 to

check whether it is the source of the error (we will shortly explain what happens if

n2 does not receive the Prob packet from n1). Node n1 then goes to the Wait state,

where n1 will wait for some predefined time. In turn, n2 asks its neighbouring nodes,
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Figure 4.2: An example of a fault-affected area and correction tree. Star nodes are
faulty nodes

except n1, for their version numbers by broadcasting a Check packet. Node n2 then

goes to the Wait Rep state where it will wait for Rep packets from its neighbours

over a certain time interval. All nodes that receive the Check packet from n2 send

a Rep packet to n2. Now, node n2 will compare all the received version numbers

obtained from the Rep packets. If the version numbers are equal and match its own

version number, then n2 sends a Hello packet to n1. By sending a Hello packet, node

n2 says to node n1 that it has the correct version and it has the associated code too.

Now, if the received version numbers from the Rep packets are the same but

differ from that of n2, node n2 will send a Cor packet to n1 and corrects its code

fragment by downloading from one of the Rep senders. By sending a Cor packet to

n1, node n2 tells n1 about the currently available version, which n1 can download

from another node with the associated code. If at least one of the received Rep

packets contains a different version number i.e., the received version numbers are

not identical, then n2 goes to the Wait state and broadcasts a Prob packet, as done

by n1 earlier. This process continues until a node that sent a Prob packet will get a

Hello or Cor packet. Nodes that were in the Wait or Wait Rep state after updating

their code fragments, go to the Temp state where they broadcast a Hello packet a
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few times.

Because of reasons such as transient link failures, packets may not be delivered,

for example, a Prob packet sent by n1 may not be delivered to n2. To overcome

this issue n1 periodically sends a Prob packet to n2 some predefined times until n1

receives an implicit acknowledgement packet like Check, OK or Prob from n2 or

Hello or Cor from any node. To address the same problem, Hello packets are sent

more than once. In general, if a node n in a state s cannot send or receive packets

due to transient link failures, then n waits in s until the corresponding timer expires

and may restart the procedure. For example, if a node n after detecting an error

and going to the Wait state cannot correct its version number, n waits until the

corresponding timer expires and goes to the Stable state. After some time, n or

other node may detect the error and start the correction procedure again.

4.4.1.2 BestEffort-Repair: Formal Protocol Description

The variables and code for the BestEffort-Repair algorithm is shown in Figures 4.4

and 4.6.

Figure 4.3 illustrates the state machine of BestEffort-Repair, which we now de-

tail.

• Stable (PS) state:

– If a node n1 detects a fault after receiving an H 3 packet from a node n2,

it goes to the Wait state.

– If a node n1 receives a Check packet from a node n2, after waiting a

random time between [0, SendRep], it sends a Rep packet to n2.

– If a node n1 receives a Prob packet from a node n2 and if n1 is the

destination node, it waits SendProb+t time to receive other possible Prob

3Application layer packet or code update maintenance packet
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Stable 

Wait_Rep 

Wait 

Disseminate 

Temp 

Error detected 

rcv(Check) 

Timeout or (rcv(OK) and f1) 

Timeout and 

¬f3 or (rcv(Cor) and ¬f2) 

rcv(Hello) and ¬f2 

 Any dissemination protocol states  

send(Rep) 

rcv(Rep) 

send(Check) 

send(Prob) 

send(Hello) 

Figure 4.3: The state machine for BestEffort-Repair. Two states in dashed area
are the states of any dissemination protocol. f1=TRUE if sender of OK packet is
the node which sent H, f2=TRUE if Sender.Vers=Receiver.Vers, f3=TRUE if all
received metadata are the same.

Variables of process i:

PacketType ∈ {H,Prob, Check,Hello,OK,Rep}
% H packets are application layer(data)/code
update maintenance packets.
% The other packets are Repair packets.

state ∈ {Stable,Wait,Wait Rep, Temp,
Disseminate} Init state =Stable;
h, p, version, countH, countP : N
Init countH:= 0, countP:=0
firstProb ∈ {0, 1} Init firstProb = 1

TableProb, TableRep:{(id, version): id ∈ N, ver-
sion ∈ N}
% Keep track of nodes and version number they
sent/receive

% Protocol Timers

PeriodProb: Timer
SendProb: Timer
Wait Time: Timer
SendRep: Timer
WaitRep Time: Timer
SendCheck: Timer
Temp Time: Timer
SendHello: Timer
t: Timer
U: Timer % Parameter from application

layer for periodic traffic.

Figure 4.4: Variables of BestEffort-Repair algorithm.
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state==Stable
1 case(upon〈rcv (H,n, i)〉 and detect())
2 state:=Wait
3 setTimer(Prob, SendProb, n)
4 setTimer(WAIT, Wait Time)
5 case(upon〈rcv (Check, n, i)〉)
6 setTimer(Rep, SendRep, n)
7 case(upon〈rcv (Prob, n, i)〉)
8 if(firstProb==1)
9 firstProb:=0
10 setTimer(Timer, SendProb+t)
11 else
12 TableProb ∪ (n, n.version)
13 endif
14 case(upon〈rcv (Prob, n, ALL)〉)
15 if(i.version!=n.version)
16 state:=Wait Rep
17 setTimer(WAITREP, WaitRep Time)
18 setTimer(Check, SendCheck, ALL)
19 endif
20 endcase

21 if(timeout(Timer))
22 compare all nj .versions ∈ TableProb
23 if(all are equal)
24 bCast(OK, i, ALL)
25 state:=Temp
26 setTimer(TEMP, Temp Time)
27 else
28 state:=Wait Rep
29 setTimer(WAITREP, WaitRep Time)
30 setTimer(Check, SendCheck, ALL)
31 endif
32 endif

state==Wait
1 repeat every PeriodProb
2 send(Prob, i, n)
3 countP:=countP+1
4 until (rcv.type!=H or countP > p)
5 case(upon〈rcv (OK, n, i)〉)
6 state:=Stable
7 stopAllTimers()
8 TableProb:=∅
9 TableRep:=∅
10 case(upon〈rcv (Cor, n, i)〉)
11 if(i.version==n.version)
12 state:=Temp
13 setTimer(TEMP,Temp Time)
14 else
15 bCast(Cor, i, ALL)
16 endif
17 case(upon〈rcv (Hello, n, i)〉)
18 if(i.version==n.version)
19 state:=Temp
20 setTimer(TEMP,Temp Time)
21 else
22 state:=Disseminate
23 endif
24 endcase

25 if(timeout(WAIT ))
26 state:=Stable
27 stopAllTimers()
28 TableProb:=∅; TableRep:=∅
29 endif

state==Wait Rep
1 case(upon〈rcv (Cor, n, i)〉)
2 if(i.version==n.version)
3 state:=Temp
4 setTimer(TEMP, Temp Time)
5 else
6 bCast(Cor, i, ALL)
7 state:=Wait
8 setTimer(WAIT, Wait Time)
9 endif
10 case(upon〈rcv (Hello, n, i)〉)
11 if(i.version==n.version)
12 state:=Temp
13 setTimer(TEMP, Temp Time)
14 else
15 state:=Disseminate
16 endif
17 case(upon〈rcv (Rep, n, i)〉)
18 TableRep:= TableRep ∪ {(n, n.version)}
19 endcase

20 if(timeout(WAITREP))
21 compare all nj .versions ∈ TableRep
22 if(all and i.version are equal)
23 send(Hello, i, n)
24 state:=Wait
25 setTimer(TEMP, Temp Time)
26 elsif(all are equal and i.version is not equal)
27 state:=Disseminate
28 else
29 bCast(Prob, i, ALL)
30 state:=Wait
31 setTimer(WAIT, Wait Time)
32 endif
33 endif

Figure 4.5: BestEffort-Repair Algorithm.
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state==Temp
1 repeat every SendHello
2 bCast(Hello, i, ALL)
3 countH:=countH+1
4 until count>h
5 if(countH>h)
6 state:=Stable
7 stopAllTimers()
8 TableProb:=∅
9 TableRep:=∅
10 endif
11 case(upon〈rcv (Code Request, n, i)〉)
12 state:=Disseminate
13 countH:=0
14 endcase
15 if(timeout(TEMP))
16 state:=Stable
17 stopAllTimers()
18 TableProb:=∅; TableRep:=∅
19 endif

state==Disseminate
1 send/download the code.
2 state:=Temp
3 setTimer(TEMP,Temp Time)

1 if(timeout(PacketType, j))
2 if(j==ALL)
3 bCast(PacketType, i, ALL)
4 else
5 send(PacketType, i, j)
6 endif
7 endif

Figure 4.6: BestEffort-Repair Algorithm.

packets destined to n1, and compares the received metadata. If they are

equal n1 broadcasts OK packet, requests the new code fragment from one

of the Prob senders and goes to the Disseminate state. If at least one of

the received metadata is not equal, then n1 goes to the Wait Rep state.

– If a node n1 receives a Prob packet and it is not destination node, then

n1 compares its metadata with the received one, if they are not equal n1

goes to the Wait Rep state.

• Wait state: Let n1 be the node which transitions to the Wait state after

receiving an H packet from a node n2 and after detecting the fault.

– After waiting a random time between [0, SendProb], n1 sends a Prob

packet to n2.

– If n1 receives an OK packet from n2, it goes to the Stable state.

– Every PeriodProb time n1 sends a Prob packet to n2 upto p times unless

it receives OK, Check, Prob or Hello packet.
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– When n1 receives a Cor packet, it compares the received metadata with

its own. If they are the same, then n1 goes to the Temp state. If they

are different, then n1 broadcasts a Cor packet.

– If n1 receives a Hello packet from a node n3 and its metadata is the same

with the metadata of n3, then n1 goes to the Temp state. If metadata

are different, n1 requests the correct code fragment from n3 and goes to

the Disseminate state to update its code fragment.

– If n1 does not receive a Hello packet during the Wait Time, it goes to

the Stable state.

• Wait Rep state: Let n1 be the node which transitions to the Wait Rep state

after receiving a Prob packet from a node n2.

– After waiting a random time between [0, SendCheck ], n1 broadcasts a

Check packet.

– After waiting for WaitRep Time, the node n1 compares all metadata

received in Rep packets from the neighbours. If all of them are the same,

and if the metadata of n1 is equal to the received ones, n1 sends Hello to

n2 and goes to the Temp state. If all of them are equal, but metadata of n1

is not equal to the received ones, n1 requests the correct code fragment

from one of the Rep senders and goes to the Disseminate state. If at

least one of the received metadata is different from the other received

metadata, n1 broadcasts a Prob packet and goes to the Wait state.

– If n1 receives a Cor packet and its metadata is the same with the received

metadata, n1 goes to the Temp state. If the metadata are different, n1

broadcasts a Cor and goes to the Wait state.

– If n1 receives a Hello packet from a node n3 and its metadata is the same

with metadata of n3, n1 goes to the Temp state. If they are different,
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n1 requests the correct code fragment from n3 and goes to Disseminate

state.

• Temp state:

– After entering this state a node n1 broadcasts a Hello packet every Send-

Hello seconds upto h times during Temp Time.

– If during Temp Time n1 does not receive any request message, n1 goes

to the Stable state.

– If a node n1 receives request message it goes to the Disseminate state to

send the requested code fragment.

• Disseminate state: After sending or downloading requested code, a node

goes to the Temp state.

The idea of the algorithm is explained through the example illustrated in Fig-

ure 4.7. When node A receives a packet from node B and detects an error, it sends

a Prob packet to node B and goes to the Wait state 4.7(a). Node B broadcasts a

Check packet to its neighbours to ask their version numbers and goes to the Wait Rep

state 4.7(b). After waiting a random time, the neighbours send Rep packets to node

B 4.7(c). Notice that, as node A is in the Wait state, it does not reply to node

B. Then, node B compares if all the version numbers in the Rep packets are the

same. If the version numbers are the same, node B sends a Hello packet to node A

and goes to the Temp state, where it broadcasts Hello packet several times 4.7(d).

Otherwise, node B broadcasts a Prob packet and goes to the Wait state 4.7(e). The

same procedure will repeat until a node receives Rep packets from its neighbors that

contain the same version numbers 4.7(f), 4.7(g), 4.7(h). Then, when a node receives

a Hello packet, it sends a Hello packet to the node from which it has received a Prob

packet 4.7(i).
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Figure 4.7: The Best-Effort algorithm. Square nodes are in Wait state, triangular
nodes are in Wait Rep state, star nodes are in Temp state, circular nodes are in
Stable state.

We now prove that BestEffort-Repair is a corrector component.

Lemma 1 (Containment of BestEffort-Repair) Given a network G = (V,A),

detectable fault model F , an F -affected area G′ = (V ′, A′), then, at most O(|V ′|)

nodes will download the old code.

Proof From BestEffort-Repair, a node n, after sending Check packets to its

neighbours - due to receiving a Prob packet from a node n′, waits for Rep packets.

If the received Rep packets are all identical in their version numbers, then n will
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either broadcast a Cor packet (stating the expected correct version number and then

download the code) or it will broadcast a Hello packet. If the version number is the

old one, then, n will download the old code. All other nodes that receive the Hello

packet will also download the old code. Thus, at most, all nodes in m ∈ G′ and all

nodes p ∈Mu will receive a Hello packet with the version number being the old one.

From Lemma 1, it can be observed that only a finite number of nodes, including

updated ones, will change their code to the old one in presence of transient faults.

Since there will then be the old code and the new code in the network, eventually,

the code dissemination protocol will ensure that all nodes get the updated code.

This is captured in Theorem 3

Theorem 3 (Correctness of BestEffort-Repair) Given a network G = (V,A),

detectable fault model F , a strong code dissemination specification σ for G, Best-

Effort CD σb, a protocol Σ that satisfies σ in the absence of F but violates σ in

the presence of F . Then, BestEffort-Repair is a BestEffort-corrector component for

strong CD.

Proof. For the transparency property, since BestEffort-Repair is only triggered

when there is an error in the network, then safety is satisfied by the correctness of

Σ. The stabilizing property follows from Lemma 1 and the nodes will the old code

with ultimately download the correct code due to Σ.

4.4.2 The Consistent-Repair Protocol

4.4.2.1 Consistent-Repair: An Overview

Consistent-Repair works in a similar way to BestEffort-Repair, with differences when

a node changes its code.

When a node n1 detects an error (which is protocol-specific) after receiving a

message from a neighbouring node n2, n1 sends a Prob packet to n2, thereby asking
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n2 to check whether it is the source of the error (we will shortly explain what happens

if n2 does not receive the Prob packet from n1). Node n1 then goes to the Wait state,

where n1 will wait for some predefined time. In turn, n2 asks its neighbouring nodes,

except n1, for their version numbers by broadcasting a Check packet. Node n2 then

goes to the Wait Rep state, where it will wait for Rep packets from its neighbours

over a certain time interval. All nodes that receive the Check packet from n2 send

a Rep packet to n2. Now, node n2 will compare all the received version numbers

obtained from the Rep packets.

If all the received version numbers are equal and match its own version number,

then n2 sends a Hello packet to n1, stating that the correct version number is that

held by n2 and that it has the updated code too. If the received version numbers from

the Rep packets are the same but differ from that of n2, n2 downloads the available

code fragment by downloading from one of the Rep senders. After downloading the

code, n2 will eventually send Hello messages. Further, if there are only two different

version numbers received, then n2 chooses the higher one (as there are only two

versions in the network during the dissemination process).

On the other hand, if n2 obtains more than 2 version numbers, then this indicate

an error in the network. For any node n3 that sent Rep packets to n2 with version

numbers that violate the consistency predicate, n2 send Prob packets to n3. These

nodes, in turn, send check packets to their neighbours and the process is repeated.

Once the recovery process reaches a region outside of the fault-affected area (an

example of a fault-affected area is depicted in Figure 4.2), nodes on the border of

the fault-affected area will receive Rep packets with at most two different version

numbers (this is the case when only part of a neighbourhood has been updated).

Once a node receiving these Rep packets decides on the correct version number, it

broadcasts a Hello message (after possibly downloading the associated code, if it

does not already have it) a few times to ensure that its neighborhood learns about
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the correct version.

Because of reasons such as transient link failures, a Prob packet sent by n1 may

not be received by n2. To overcome this issue, n1 periodically sends a Prob packet to

n2 for some predefined times until n1 receives an implicit acknowledgement packet,

such as Hello or Check.

4.4.2.2 Consistent-Repair: Formal Protocol Description

The Consistent-Repair protocol, when added to a fault-intolerant code dissemination

protocols, transforms the protocol into a non-masking fault-tolerant one that satisfies

the Consistent CD specification. It leverages the fact that, at any time during the

new code dissemination, there will be at most two codes in the network: (i) the old

one and (ii) the new one. This means that any node only need to know about two

different version numbers. Once a node knows about these, it can choose the higher

one, which is associated with the updated code.

Figure 4.8 illustrates the state machine of the Consistent-Repair protocol, which

we now detail. The protocol is shown in Figure 4.9. The code for when the process

in in state 2 (Wait) and state 3 (Wait Rep) is shown. The code for when the process

is in state 1, 4 and 5 is the same as for BestEffort-Repair (Figure 4.6)

There are three main states in Consistent-Repair:

• Wait state: Let n1 be the node which transitions to the Wait state after

receiving an H packet from a node n2 and after detecting an error.

– If n1 receives a Hello packet first time, say from a node n3, it stores n3 and

its version number. Whenever n1 receives a Hello packet which contains a

different version number than the first one stored (version number of n3),

n1 compares the two received version numbers and its own metadata.

If the version number of n1 is equal to the bigger of the two received
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Stable 
Wait_Rep 

Wait Disseminate 

Temp 

rcv(Prob) 

rcv(Check) 

(Timeout or rcv(2nd Hello)) and ¬f2 

 Any dissemination protocol states  

rcv(Rep) 

Timeout and 
Error detected 

¬f2 

send(Rep) 

send(Check) 

send(Prob) 

Timeout 

send(Hello) 

Figure 4.8: The state machine for Consistent-Repair. The two states in dashed circle
are the states of any code dissemination protocol. f1=TRUE if the sender of an OK
packet is the node which sent an H packet, f2=TRUE if a node is updated, FALSE
otherwise.

versions, then n1 goes to the Temp state (n1 concludes that it already

has the updated code). Otherwise, it goes to the Disseminate state to

update its code fragment from the node which has the new metadata.

– After waiting for Wait time, if n1 has not received at least one Hello

packet, then it goes to the Stable state. If it receives one Hello packet,

then n1 goes to the Temp state if its metadata is not older than the

received one. Otherwise, n1 goes to the Disseminate state to update

its code fragment. Note that, when n1 receives two Hello packets with

different metadata, it goes to the Temp or Disseminate state as mentioned

above.

• Wait Rep state: Let n1 be the node which transitions to the Wait Rep state.

– After waiting for WaitRep Time, if n1 detects a fault after receiving Rep
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packets from its neighbours, then it broadcasts a Prob packet. Otherwise,

n1 checks if its metadata is newer than the received ones. If it is newer,

then it goes the the Temp state, else it goes to the Disseminate state to

update its code fragment.

We prove an important property of Consistent-Repair, in that Consistent-Repair

generates a correction tree of depth at most f + 2, where f is the diameter of the

F -affected area.

Lemma 2 (Correction Tree) Given a network G = (V,A), a detectable fault

model F , and an F -affected area G′, with the diameter of the area being f . Then,

Consistent-Repair constructs a tree of depth at most f + 2 rooted at the node that

first detects an error.

Proof:

Assumptions: We denote a node that first detects an error by n0, and we

denote a node a distance d from n0 by nd0. We assume that node n0 detects an error

after receiving a packet from some node n1
0, and that n0 is on the boundary of the

F -affected area (some of its neighbours are F -affected, some are not), and f > 1.

According to Consistent-Repair, n0 will send a Prob packet to n1
0 and then

goes to the Wait state. This starts a graph with n0 as the root at depth=0 (see

Figure 4.10). Node n1
0, the child of n0, has depth = 1. Node n1

0, in turn, broadcasts

Check packets to its neighbours. Node n1
0 then goes to the Wait Rep state to wait

for Rep packets from the informed neighbours, which are at depth=2.

Now, for node n1
0, since the diameter of the F -affected area is f , this means that

n1
0 will eventually send Prob packets to all senders of faulty Rep packets. We focus

on one such node, which we denote by n2
0. This process spawns a (sub)tree, with n1

0
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Variables of process i :
firstHello:{(id,version):id∈ N,version∈ N}

state==Wait

case(upon〈rcv (Hello, n, i)〉)
if(firstHello.version==∅)

firstHello.version:=n.version
firstHello.source:=n

elseif(firstHello.version > n.version)
if(i.version==firstHello.version)

state:=Temp
setTimer(TEMP,Temp Time)

else
state:=Disseminate

endif
elseif(firstHello.version < n.version)
if(i.version==n.version)

state:=Temp
setTimer(TEMP,Temp Time)

else
state:=Disseminate

endif
endif

endcase

if(timeout(WAIT ))
if(firstHello.version==∅)

state:=Stable
stopAllTimers()
TableProb:=∅; TableRep:=∅

else
if(i.version > firstHello.version)

state:=Temp
setTimer(TEMP, Temp Time)

else
state:=Disseminate

endif
endif

endif

state==Wait Rep

case(upon〈rcv (Rep, n, i)〉)
TableRep:= TableRep ∪ {(n, n.version)}

endcase

if(timeout(WAITREP))
if(detect())
bCast(Prob, i, ALL)
state:=Wait
setTimer(WAIT, Wait Time)

elseif(i.version < Table.version))
state:=Disseminate

else
state:=Temp
setTimer(TEMP, Temp Time)

endif
endif

Figure 4.9: Consistent-Repair Algorithm.
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Figure 4.10: Correction Tree Constructed by Consistent-Repair

as the root of the subtree, and node n2
0 will send Check packets to its neighbours

(see Figure 4.10). When the node nf0 (at the other end of the F -affected area is

reached), in the worst case, it will detect faulty Rep packet from at least one node,

which we denote by nf+1
0 (at a distance of f + 1 from n0). It will then send a Prob

packet to nf+1
0 , which, in turn, sends Check packets to its neighbours at a distance

of f + 2. Since the F -affected area is of diameter f , all of the Rep packets to node

nf+1
0 will hold at most two version numbers (and the tree does not grow anymore).

At this point, node nf+1
0 can decide on an appropriate version number. Hence, the

tree is of a depth of at most f + 2.

In effect, when a node sends a Prob or Check packet, new subtrees are created,

and the depth of the tree increases by 1. When a node receives identical information

from its children, it sends a Hello packet to its parent, indicating that it has the

associated code. At this point, the dependency of its children ends, reducing the

depth of the tree by 1. It should be further noted that a tree is constructed for every

node that detects an error. So, at any point in time, there may be several correction

trees in the network.

We now prove the correctness of Consistent-Repair.
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Lemma 3 (f-local correction) Given a network G = (V,A), a detectable fault

model F , and an F -affected area G′ of diameter f . Then, Consistent-Repair guar-

antees that, eventually, all nodes in G′ will have a state consistent with their neigh-

bourhood.

Proof.

We will prove by induction on the correction tree (see Lemma 2) that node n0,

and all nodes in G′, will eventually download the correct code.

Assumptions: (i) We assume a node n0 has downloaded the stale code, (ii)

node n0 has detected an error (state inconsistency) (i.e., node n0 is the root of the

correction tree). We will denote a node at a distance d from another node n0 by nd0.

Base case:

We prove for the case of a node, which we denote by nf+1
0 at depth = f + 1 (i.e.,

the last rooted subtree). Node nf+1
0 will eventually receive a set of Rep packets with

identical version numbers. Node nf+1
0 will then eventually download the correct

code from one of the Rep packets senders.

Inductive hypothesis:

Assume that a node ni0, where 0 < i ≤ f , eventually receives a Hello packet from

a node ni+1
0 and then updates its code.

Inductive Step:

We need to prove that a node ni−1
0 , a neighbour node of ni0, eventually receives

a Hello packet and updates its code.

In Consistent-Repair, node ni0 will broadcast Hello packets periodically up to h

times after receiving a Hello packet or having updated its code. If node ni−1
0 receives

a Hello packet from ni0, ni−1
0 will update its code from one of the ni0 nodes, which

proves the inductive step. Else, if due to message losses, ni−1
0 does not receive a

Hello packet from ni0, then, node ni−1
0 waits Wait Time and goes to PS state and

operates normally. Eventually, node ni−1
0 or a neighbour node of ni−1

0 will detect the
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error, and executes Consistent-Repair again. Assuming that the number of message

losses is finite, eventually, node ni−1
0 will eventually get a Hello packet, when ni−1

0

can download the code from the node it receives the Hello packet from.

4.5 Experimental Setup and Results

In this section, we first present the simulation setup and results to evaluate the

working and performance of both BestEffort-Repair and Consistent-Repair. Then,

to confirm the consistency of the simulation results, we first perform a deployment

of the protocols on a small-scale testbed available locally, and then, to obtain further

confirmation, we perform a large-scale deployment.

4.5.1 Simulation Experiments

4.5.1.1 Simulation Setup

To evaluate the overhead of both protocols in large-scale networks, we conducted

simulation experiments using TOSSIM [78] as simulator. The topology used in the

simulations is 20x20 grid, with the distance between two nodes set at around 10

ft, with nodes having a communication radius of 30 ft. In WSNs, the grid topol-

ogy is usually used to monitor (cover) a given area with the minimum number of

nodes [24, 118]. For example, the grid topology has been used in intrusion detection

and target tracking applications [11, 38]. However, note that no assumptions have

been made regarding the specific network topology and size (see Lemma 3 for algo-

rithm correctness and Section 4.5.2 for testbed experiments on a network with 3D

topology). The only implicit assumption made is that the network should be con-

nected, i.e., the node should have at least one bidirectional path to the sink, so that

the node could correct its state, in the worst case, using the information from the

sink. Further, as we use asymmetric links, the number of neighbours of the nodes
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varies. The network topology with asymmetric links is constructed by a tool given

on tinyos.net. Each node is given a noise model from the heavy-meyer noise trace

file located in Tossim/noise folder. TOSSIM takes a noise trace as input to generate

a model that can capture bursts of interference and other correlated phenomena to

improve the quality of the RF simulation [2].

Wait Time 50 (30,300) sec SendRep 2 sec

SendCheck 2 sec WaitRep Time 4 sec

SendHello 1.5 sec Temp Time 30 (20,150) sec

SendProb 1 sec t 0.2 sec

PeriodProb 7 sec p 5

U 60 (1) sec h 2

Table 4.2: Parameter values used in simulation and testbed experiments (testbed
values (small testbed, Indriya testbed) are within brackets, respectively).

The parameter values for the various timers of both protocols used in our testbed

and simulation experiments are given in Table 4.2. Check, Hello, Prob and Rep are

sent randomly between 0 and SendCheck, SendHello, SendProb and SendRep sec-

onds, respectively. These timers are used to reduce the number of packet collisions

and can be set to any other values. However, some of the parameter values de-

pend on other parameters. For example, the timer used in the Wait Rep state,

WaitRep Time, is the time for waiting for Rep packets after broadcasting a Check

packet. So, WaitRep Time ≥ SendCheck+SendRep. Wait Time should be set ac-

cording to the code size and the size of the network. If the network and code size is

large, this time should be large enough to allow neighbouring nodes to correct their

code and forward it. Otherwise, nodes in the Wait state may go to the Stable state

without correcting themselves, and re-run the Repair algorithm again. Therefore,

Wait Time may notably affect the performance of the algorithm. Usually nodes en-

ter the Temp state from the Wait state where it waits for a shorter time. The only

case when a node waits for Wait Time is when there is a packet loss. Temp Time

time is independent of other parameters. The value of t should be small because a
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node waits a maximum of SendProb time units to receive all possible Prob packets.

The values of h and p can be set to any value depending on the link quality of the

network. For example, if the network is lossy, then h could be set to higher values.

In our experiments, each node periodically broadcasts an application packet (or

any other traffic that drives the dissemination) H, with the period randomly selected

between [0, U ] at the start.

Recall that both BestEffort-Repair and Consistent-Repair is executed only when

an error (i.e., erroneous state) is detected, so the faults injected were such that

variables were modified in such a way to trigger an error that will be detected,

leading to the execution of Repair. In our case, faults were artificially injected in

Varuna by changing the version number and/or neighbourhood table entries of the

faulty nodes, as in these cases faults can be detected. In the experiments, the faulty

node(s) were booted after all correct nodes were successfully booted so as to assess

the impact of faulty nodes on a dissemination process that is already in progress.

Although we assume only transient data faults that may alter the values in

the memory and message (see Section 3.3.4), the algorithms by itself tolerate node

crashes and message losses as long as the network is connected. However, it may

take slightly longer latency if a node involved in the correction process crashes or

message losses occur during the correction process. For example, if a node n crashes

after receiving a request message, e.g., Prob or Check, or does not receive the same

packet due to message loss, from its neighbouring node m, m may not correct its

state as it will not get any information from n. However, as every state in the

protocol has a timer, after waiting for a definite time, m will go to the Stable state,

where it detects the error again and executes the algorithm to correct its state.
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4.5.1.2 Simulation Scenarios

In our simulations, we simulated two scenarios: (i) Scenario 1: we varied the

number of corrupted nodes per circular area, which has diameter of 60 feet (varying

the fault density), and (ii) Scenario 2: we kept the number of corrupted nodes

to 5 and increased the size of a given (square) area, i.e., decrease the fault density.

In both scenarios, the nodes to be corrupted were selected randomly in the given

area. We then counted (i) the number of Repair packets (BestEffort-Repair or

Consistent-Repair) sent, (ii) the number of involved nodes, i.e., nodes that sent at

least one Repair packet, and (iii) the number of nodes which changed their states

to Wait and/or Wait Rep states. For each given number of corrupted nodes in the

first scenario and for each length of square area in the second scenario, we ran the

simulations 5 times and computed the min, average and max values over the 5 runs.

4.5.1.3 Simulation Results

We first present the results of simulation experiments of BestEffort-Repair and then

the results of Consistent-Repair.

BestEffort-Repair

Number of nodes: From Figure 4.25(a), we observe that, on average, the number

of nodes executing the protocol varies linearly with the number of corrupted nodes.

Given that the number of nodes involved is much less than the size of the network,

it indicates that the number of nodes involved in the stabilisation process is propor-

tional to the size of the corrupted area. Further, in Figure 4.25(b), we observe that,

as the size of the area is increased (i.e., fault density decreases), the number of nodes

executing the protocol becomes almost constant, on the average. This is because,

with decreasing fault density, most faults tend to appear as a single independent

fault, with each of them involving a similar number of nodes, and may only involve
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at most their 2-hop neighbourhood. This implies that, in general, BestEffort-Repair

tends to access only a bounded neighbourhood (similar to Consistent-Repair). These

two observations support the fact that Repair is f -local, with f being the diameter

of the fault-affected region.

Number of packets: We notice a similar trend in Figure 4.11 that supports the

observation that, in general, BestEffort-Repair tends to access a bounded neigh-

bourhood. In Figure 4.11(a), we observe that the number of Repair packets sent

varies linearly with the number of corrupted nodes. Since the number of Repair

messages sent is much less than the size of the network, it implies that only part of

the network was involved in the stabilisation process.

The discrepancy between the maximum number and minimum number of nodes

or Repair packets is often due to the link quality, making retransmissions necessary.

Consistent-Repair

We now present the result of simulation experiments of Consistent-Repair.

Number of nodes: From Figure 4.12(a), we observe that, on average, the number

of nodes executing the Consistent-Repair varies linearly with the number of cor-

rupted nodes. Given that the number of nodes involved is much less than the size of

the network, it implies that the number of nodes involved in the stabilisation process

is proportional to the size of the corrupted area. We also observe, in Figure 4.12(b),

that, as the size of the area within which faults occur is increased (i.e., fault density

decreases), the number of nodes executing the protocol becomes almost constant,

on the average. This is because, with the decreasing fault density, most faults tend

to appear as single independent faults, i.e., the fault-affected area is of size 1. Each

corrupted node may only involve at most their 2-hop neighbourhood during recov-

ery. These two observations support the fact that Consistent-Repair in f -local, with

f being the diameter of the fault-affected region.
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Figure 4.11: Maximum, minimum and average number of transmitted BestEffort-
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Figure 4.12: Maximum, minimum and average number of nodes executing
Consistent-Repair

Number of packets: We observe a similar trend in Figure 4.13 that supports the

f -locality property of Consistent-Repair. In Figure 4.13(a), we observe that the

number of Repair packets sent varies linearly with the number of corrupted nodes.

Since the number of Repair messages sent is much less than the size of the network,
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Figure 4.13: Maximum, minimum and average number of transmitted Consistent-
Repair packets

it implies that only part of the network was involved in the stabilisation process.

As in the case with BestEffort-Repair, the discrepancy between the maximum

number and minimum number of nodes for Consistent-Repair packets is often due

to the link quality, making retransmissions necessary.
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Differences Between BestEffort-Repair and Consistent-Repair

From Figures 4.25 to 4.11 (for BestEffort-Repair) and Figures 4.12 to 4.13 (for

Consistent-Repair), it can be observed that, in general, Consistent-Repair involves

more messages and nodes. This is due to the fact that, given that Consistent-Repair

makes more informed decisions to prevent any erroneous downloads, more nodes

are involved and, thus, they send more messages. On the other hand, given that

BestEffort-Repair is biased towards fast recovery, it attempts to make the network

state consistent again, even if erroneous downloads are involved.

Tables 4.3 to 4.6 (for BestEffort-Repair) and Tables 4.7 to 4.10 (for Consistent-

Repair) confirm that (i) the best case for BestEffort-Repair (i.e., minimum val-

ues) is, in general, better than that of Consistent-Repair and (ii) the worst case

for BestEffort-Repair (i.e., maximum values) is, in general, worse than that of

Consistent-Repair. As mentioned earlier, BestEffort-Repair can, in the worst case,

involve the whole network during recovery, as opposed to Consistent-Repair which

will only involve its f + 2 hop neighbourhood. In the best case, BestEffort-Repair

may receive the proper Hello message first and helps the affected area to receiver

quickly, whereas Consistent-Repair will wait for several messages to arrive before

reaching the decision.

4.5.1.4 Case Study: Adding BestEffort-Repair and Consistent-Repair

To Varuna

In this section, we discuss the addition of BestEffort-Repair and Consistent-Repair

to Varuna [95]. The reason for choosing Varuna is that it is one of the latest code

dissemination protocols that have been proposed. The code that was used in the

deployment was reused for the simulation experiments described in this section.

As mentioned before, both protocols are triggered by the detection of an error

in the state of the code dissemination protocol, in this case Varuna. In Varuna,
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such a detection is enabled by one of the following conditions: (i) two nodes’ version

numbers are corrupted in such a way that the difference in versions is strictly greater

than 1, and (ii) the receiver of an advertisement message finds that its version is

bigger than the advertised one and, at the same time, the sender of the message

exists in its neighbourhood table. Also, we disallow faults, under the detectable fault

model, that cause old code to appear as new and new as old (i.e., all updated nodes

have old version numbers and non-updated nodes have the new version number).

Also, this disallows nodes to be corrupted in identical ways.

We simulated the composite protocol of Varuna and BestEffort-Repair and Con-

sistent-Repair in TOSSIM. The experimental setup is the same as in 4.5.1.1. All

nodes, except faulty nodes, are booted in the first minute. Faulty nodes are located

at the center of the network. A packet with new version number is injected after

2 minutes. We simulated three faulty scenarios: (i) with 1 fault, (ii) with 4 faults

and (iii) with 7 faults. For each faulty scenario, we booted the faulty nodes (i) 30

seconds, (ii) 45 seconds, and (iii) 60 seconds. This is so that only a proportion of

nodes has the updated code version. The reason for booting faulty nodes some time

after the updated code is injected is to ensure that nodes that have the stale code

are chosen to have faults injected into them. We are specifically interested in (i) the

overhead induced by Repair on the performance of Varuna and (ii) the number of

nodes with correct code at a given time. We simulated Varuna in conditions similar

to those detailed in Section 4.5. Further, the values for Varuna-specific parameters

are: DISS-RAND=2 sec, ADV-RAND=2 sec, τ=8 sec, TMOODY =1 min.

Performance of Best-Effort Repair

From Figures 4.14, 4.15 and 4.16, we make two important observations: (i) In all

cases, injecting transient faults in the network during Varuna execution causes the

whole network to disseminate stale code. This shows that Varuna cannot handle
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Figure 4.14: Varuna and Varuna ◦ Best-Effort-Repair: 1 faulty node booted at (a)
30 seconds after updated code injection, (b) 45 seconds after updated code injection,
(c) 60 seconds after updated code injection.

transient faults. On the other hand, when BestEffort-Repair is added to Varuna,

every node eventually downloads the correct code.

Special Case

In a special case, we simulated the case where, due to situations such as duty

cycling, some nodes may have been sleeping, missing the code update. In Figure 4.17,

4 such nodes are booted 180 seconds after the code update has been injected into

the network. Further, these 4 nodes are faulty as well. We observe that, in Varuna,

all nodes in the network eventually end up downloading the stale code, while the

composite protocol of Varuna and Repair ensures that the whole network has the

updated code, without any updated node erroneously downloading stale code.
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Figure 4.15: Varuna and Varuna ◦ Best-Effort-Repair: 4 faulty nodes booted at (a)
30 seconds after updated code injection, (b) 45 seconds after updated code injection,
(c) 60 seconds after updated code injection.

Packet Overhead In Figure 4.18(a), it can be seen that the packets overhead in-

duced by Repair on Varuna is low. Specifically, with 4 faulty nodes, the packet

overhead is 0.4% while, with 7 faulty nodes, the packet overhead is less than 3%.

From Figure 4.11, it can be observed that the number of Repair packets will in-

crease linearly with increasing number of corrupted nodes. The reason for the linear

increase (as opposed to a constant value) is that the fault density increases when

more corrupted nodes appear at the centre of the network (condition under which

we simulated the composite protocol).

Temporal Overhead In Figure 4.18(b), it can be observed that the whole network

receives the new code in approximately 80 seconds, after the new code has been

injected into the network. Further, it can be observed that, when there are faulty
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Figure 4.16: Varuna and Varuna ◦ Best-Effort-Repair: 7 faulty nodes booted at (a)
30 seconds after updated code injection, (b) 45 seconds after updated code injection,
(c) 60 seconds after updated code injection.

nodes in the network, the time for the whole network to receive the correct code is

approximately 80 seconds. Thus, there is almost no temporal overhead induced by

BestEffort-Repair on Varuna, highlighting the fact that BestEffort-Repair is biased

towards fast recovery.

Performance of Consistent-Repair

From Figures 4.19, 4.20 and 4.21, we make one important observation: When

Consistent-Repair is added to Varuna, every node eventually downloads the cor-

rect code.

Packet Overhead In Figure 4.22, it can be seen that the packets overhead induced

by Consistent-Repair on Varuna is very low. Specifically, with 4 faulty nodes, the
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Figure 4.17: 4 faulty nodes booted 180 seconds after updated code injection.
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Figure 4.18: Varuna ◦ BestEffort-Repair : Network Size: 20 * 20, Nodes corrupted
at random

packet overhead is less than 0.8% (see Figure 4.22). From Figure 4.13, it can be

observed that the number of Repair packets will increase linearly with increasing

number of corrupted nodes. The reason for the linear increase (as opposed to a

constant value) is that the fault density increases when more corrupted nodes appear

at the centre of the network (condition under which we simulated the composite

protocol).

Temporal Overhead In Figure 4.18(b), the whole network receives the new code

in approximately 80 seconds after the new code has been injected into the network.

Further, it can be observed that, when there are faulty nodes in the network, the

time for the whole network to receive the correct code is approximately 90-100
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Figure 4.19: Varuna and Varuna ◦ Consistent-Repair: 1 faulty node booted at (a)
30 seconds after updated code injection, (b) 45 seconds after updated code injection,
(c) 60 seconds after updated code injection.

seconds. Thus, there temporal overhead induced by Consistent-Repair on Varuna is

approximately 10%–20%. This supports the fact that Consistent-Repair needs more

time for informed decisions (as opposed to BestEffort-Repair).

Difference Between BestEffort-Repair and Consistent-Repair

Up to now, we have observed that when adding BestEffort-Repair and Consistent-

Repair to Varuna, all nodes eventually download the updated code, meaning that

both of them are correctors for strong CD. It has been shown that the temporal over-

head induced by BestEffort-Repair on Varuna is lower than that of Consistent-Repair

as well as the packet overhead of BestEffort-Repair (0.4%) on Varuna is roughly 2

times as low as Consistent-Repair (0.75%). This is due to the fact that BestEffort-
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Figure 4.20: Varuna and Varuna ◦ Consistent-Repair: 4 faulty nodes booted at (a)
30 seconds after updated code injection, (b) 45 seconds after updated code injection,
(c) 60 seconds after updated code injection.

Repair is biased towards fast recovery, requiring less packets. On the other hand, we

motivated Consistent-Repair to allow for more informed recovery in that it reduces

the number of erroneous downloads (where an updated node ends up downloading

the old code to eventually update again). In this respect, in our experiments, we

observed that, on average, BestEffort-Repair causes 5 erroneous downloads - which

is allowed under the BestEffort CD specification (to eventually download the correct

code), whereas, with Consistent-Repair, there were no erroneous downloads.

4.5.2 Testbed Experiments

As mentioned earlier, to confirm the consistency of the simulation results, we perform

experiments on real-world testbeds.
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Figure 4.21: Varuna and Varuna ◦ Consistent-Repair: 7 faulty nodes booted at (a)
30 seconds after updated code injection, (b) 45 seconds after updated code injection,
(c) 60 seconds after updated code injection.
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Figure 4.22: Number of (Repair + ADV) packets sent vs number of corrupted nodes
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4.5.2.1 Testbed Setup

We have run the experiments on Indriya testbed [36] which has 3D topology and

has been deployed over three floors (Figure 4.23) of School of Computing building

of the National University of Singapore. When we were performing experiments

the number of nodes in Indriya was about 100. The nodes, which are powered

over USB, are TelosB motes with C2420 radio, 8 MHz CPU, 10 KB RAM and

48 KB of program memory. The transmission power was set to the default value

31. We used the default channel 26, which has less interference with other wireless

technologies [36]. Each experiment, depending on the number of faulty nodes, took

from 15 to 30 minutes. On average, an experiment took 20 minutes. In total, we

have run about 600 experiments. So, all experiments took about 200 hours. The

experiments were conducted at different times of the day and on different days of

the week. For each experiment the transmitted packets and timings were logged

into a different file through USB for analysis purposes.

We have also run experiments on a small testbed consisting of 10 TelosB motes

in a lab setting. In the small testbed experiments we set the transmission power to

a very low level 2 to make a small multi-hop network of different topologies. We

used the default channel 26. The topologies used in small deployment experiments

are described in Section 4.5.2.2. The experiments were run during morning and day

times over a period of one week. The LEDs of motes were used to identify whether

the algorithm has completed correcting the states. For example, the red led of

mote was used to show that an error has occurred, the green led was used to show

that the mote is consistent with its neighbours. Whenever the algorithm completed

the correction, we manually reset all motes to repeat the experiment. During the

experiments the transmitted packets and latency were logged into a file through a

USB port.

Our implementation of BestEffort-Repair takes 222 bytes of memory, which in-
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Floor 3 

Floor 2 

Floor 1 

Figure 4.23: Indriya testbed

cludes two tables (TableProb and TableRep - see Figure 4.4), each of size 50 entries

of 2 bytes each, and other algorithm related variables. Depending on the size of the

network, the size of the tables can be varied. On the other hand, our implementation

of Consistent-Repair takes 144 bytes, which includes 3 arrays of size 3*2, with each

entry of size 2 bytes.

4.5.2.2 Testbed Scenarios

Small Testbed Scenarios

Our claim is that both BestEffort-Repair and Consistent-Repair can help any code

dissemination protocol that has enough state to enable the detection of an erroneous

state to eventually guarantee that every node has the updated code. As a result, we

tested both BestEffort-Repair and Consistent-Repair by adding them to Varuna [95],

one of the latest code dissemination protocols, on three different network topologies

under four different scenarios. In the first scenario, the network was complete where

all nodes could communicate with each other. In the second scenario, the network

topology was formed by placing a faulty node at one end of the network in such

a way that it has only one neighbour, with the network remaining connected and
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multi-hop (see Figure 4.24).

Nodes 1, 2, 3, 4, 
5, 6, 7 and 8 are 
randomly placed 

F 
10 

Room1  

Room3  

Room2  

Room4  

Figure 4.24: Second scenario: Topology where a faulty node has only one neighbour.

In the third scenario, the topology was formed by randomly deploying the nodes

such that the network is connected and multi-hop. In these three scenarios, only

one node is used as a faulty node with a corrupted version number or corrupted

neighbourhood table, since Varuna’s state consists of a neighbourhood table and a

variable holding the version number. Finally, in the fourth scenario, the network

topology that is used is the same as that used in scenario three, but with two faulty

nodes: one with the version number corrupted and the other with the neighbourhood

table corrupted.

Indriya Testbed Scenarios

As mentioned above, in Indriya testbed more than 100 nodes have been deployed

across three floors (Figure 4.23). However, during our experiments only 100 of them

were available.

In the first testbed scenario, we varied the number of faulty nodes to 1, 4 and 7.

All faulty nodes were selected from the third floor. Also, we varied the number of

faulty nodes depending on the probability. Thus, in the second scenario, of 24 nodes

88



4. Repair: Making Code Dissemination Protocols Fault-tolerant

7 9 11 13 15 17 19 21 23 25 27 29 

0 

10 

20 

30 

40 

50 

60 

Number of corrupted nodes 

N
u

m
 o

f 
n

o
d

e
s 

w
h

ic
h

 c
h

an
ge

d
 s

ta
te

s 

Min 

Max 

Avg 
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(b) Scenario 2: Number of nodes executing BestEffort-
Repair for 5 corrupted nodes per square area

Figure 4.25: Maximum, minimum and average number of nodes executing
BestEffort-Repair

from the third floor, nodes become faulty with probability 0.5. In the third scenario,

nodes from the entire network (about 100 nodes) become faulty with probability

0.25. In all scenarios, the base station was selected from the first floor.

89



4. Repair: Making Code Dissemination Protocols Fault-tolerant

4.5.2.3 Testbed Results

In our experiments, we measured (i) the number of transmitted Repair packets and

(ii) the latency required to correct the error. The first metric is to show the relation

between the number of faulty nodes and the message overhead induced to correct

the faulty nodes.

Small Testbed Results

For each scenario, we ran BestEffort-Repair and Consistent-Repair 20 times and

computed the average of the Repair packets and latency.

We first present the results of Best-Effort Repair and then the results of Consistent-

Repair.

Best-Effort Repair

As expected, in all of our experiments, adding BestEffort-Repair to Varuna ulti-

mately corrected the errors. The results obtained for scenarios 1 . . . 4 are shown in

Tables 4.3, 4.4, 4.5, and 4.6 respectively. In all cases, the average number of Repair

packets and the latency are reasonably low. For example, focusing on Table 4.3, the

minimum number of Repair packets is proportional to the size of the neighbourhood

of the faulty node. This is as expected since most nodes are expected to send Rep

packets due to the network being complete. The difference between minimum and

maximum values is due to the loss characteristics of the wireless medium. This prop-

erty of wireless medium can be seen from the Table 4.6, where the highest latency

among all experiments was 218218 milliseconds (218.218 seconds) and the largest

number of packet transmissions was 82, whereas the smallest latency and number

of packets were 14134 milliseconds and 15, respectively. In that particular case,

Prob packets sent by a node that detected the error was not received by a receiver.

Therefore, the node had to retransmit Prob packets and the number of Prob packet
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retransmissions was 29 and the time taken for that was about 155000 (155 seconds)

milliseconds.

Scenario 1 Version corrupted Table corrupted

Min Max Avg Min Max Avg

Number of packets 8 23 12.6 7 14 12.4

Time(millisec) 6962 17544 8070 6011 14449 8791

Table 4.3: Scenario 1, BestEffort-Repair: Complete network

Scenario 2 Version corrupted Table corrupted

Min Max Avg Min Max Avg

Number of packets 10 39 19 9 39 18

Time(millisec) 5497 111142 31518 4719 83760 15013

Table 4.4: Scenario 2, BestEffort-Repair: Faulty node at one end of the network

Scenario 3 Version corrupted Table corrupted

Min Max Avg Min Max Avg

Number of packets 16 45 24 10 26 24

Time(millisec) 15745 124786 50472 10705 144214 37097

Table 4.5: Scenario 3, BestEffort-Repair: Connected Random graph, 1 fault
Scenario 4. Version and table corrupted

Min Max Avg

Number of packets 15 82 27

Time(millisec) 14134 218218 59231

Table 4.6: Scenario 4, BestEffort-Repair: Connected Random graph, two faults

Consistent-Repair

As expected, in all of our experiments, adding Consistent-Repair to Varuna ulti-

mately corrected the errors. The results obtained for scenarios 1 . . . 4 are shown

in Tables 4.7, 4.8, 4.9, and 4.10 respectively. In all cases, the average number of
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Repair packets and the latency are reasonably low. For example, focusing on Ta-

ble 4.7, the minimum number of Repair packets is proportional to the size of the

neighbourhood of the faulty node (as in the case for BestEffort-Repair). This is as

expected since most nodes are expected to send Rep packets due to the network

being complete. The difference between minimum and maximum values is due to

the loss characteristics of the wireless.

Scenario 1 Version corrupted Table corrupted

Min Max Avg Min Max Avg

Number of packets 12 29 16.2 14 30 16.3

Time(millisec) 30137 30385 30351 30372 30383 30375

Table 4.7: Scenario 1, Consistent-Repair: Complete network

Scenario 2 Version corrupted Table corrupted

Min Max Avg Min Max Avg

Number of packets 13 24 15.6 11 36 16.5

Time(millisec) 30179 60937 31467 30183 112728 37304

Table 4.8: Scenario 2, Consistent-Repair: Faulty node at one end of the network

Scenario 3 Version corrupted Table corrupted

Min Max Avg Min Max Avg

Number of packets 9 32 16.2 9 28 15.5

Time(millisec) 30336 30429 30374 30100 30391 30288

Table 4.9: Scenario 3, Consistent-Repair: Connected Random graph, 1 fault

Scenario 4. Version and table corrupted

Min Max Avg

Number of packets 12 42 28

Time(millisec) 30545 61003 43498

Table 4.10: Scenario 4, Consistent-Repair: Connected Random graph, two faults

Indriya Testbed Results

On Indriya we have run the Consistent-Repair algorithm as this algorithm minimizes

the number of erroneous downloads compared to BestEffort-Repair by making better
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update decisions. As expected, in all experiments Consistent-Repair corrected faulty

nodes.

Latency Figures 4.26(a) and 4.26(b) show the time taken to correct all faulty nodes

in the network. As can be observed from Figure 4.26(a), the times to correct net-

works with 1, 4 and 7 faulty nodes are the same and equal to about 300 seconds.

They have the same latency because, as described in 4.4.2.2, the Consistent-Repair

algorithm waits until constant time to make decisions, in this case 300 seconds. That

means that 300 seconds was enough to correct faulty nodes. While in Figure 4.26(b),

as the number of faulty nodes is larger, 300 seconds was not enough to correct all

faulty nodes and thus might go to second round (another 300 seconds). The experi-

ments show that the time to wait to make decisions depends on the number of faulty

nodes, which confirms the simulation results.

Number of packets Figures 4.27(a) and 4.27(b) show the number of Repair

packets transmitted to correct faulty nodes. These figures support the conclusion

obtained from the simulation results that the number of transmitted packets to

correct faulty nodes varies linearly with the number of faulty nodes.

Number of nodes Figures 4.28(a) and 4.28(b) show the number of executing the

Consistent-Repair algorithm. As can be seen from both figures, like in the results

obtained from simulations, the number of nodes involved in correcting faulty nodes

increases linearly with the number of faulty nodes.

The last two figures confirm the results shown in Figures 4.26(a) and 4.26(b)

that the algorithm is local and can work in networks of bigger size.

4.6 Conclusion

In this chapter, we have addressed the problem of data dissemination in the pres-

ence of transient faults that corrupt the state of the data dissemination program.
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(b) Scenario 2 and 3: 24 nodes and 100 nodes are faulty with
probability 0.5 and 0.25, respectively

Figure 4.26: Completion time

We have proposed two protocols, namely BestEffort-Repair and Consistent-Repair.

The proposed protocols when added to a fault-intolerant dissemination protocol,

make it a non-masking fault-tolerant protocol. The protocols are generic corrector

protocols, i.e., the protocols are not based on a specific protocol implementation,

rather they are based on the protocol specification. In general, BestEffort-Repair
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(b) Scenario 2 and 3: 24 nodes and 100 nodes are faulty with
probability 0.5 and 0.25, respectively

Figure 4.27: Number of transmitted Repair packets to correct faulty nodes

and Consistent-Repair could be integrated to protocols where all nodes in the net-

work at the end should have a common value. So, they could be integrated not only

to data dissemination protocols where the sink disseminates data to all other nodes,

but also to protocols like [46, 83, 113] where the node broadcasts its information or

sensor observations to all other sensor nodes for system state synchronization and
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Figure 4.28: Number of nodes involved in correcting faulty nodes

fault tolerant and security issues.

In the area of WSN, the same technique can be applied, for example, to the

class of TDMA MAC protocols to correct conflicting slots. Specifically, the MAC

protocol can be specified in terms of safety and liveness (like we have specified the

dissemination protocol in this chapter). And then, a generic corrector component
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can be developed that will cause the protocol to correct itself irrespective of the

implementation. That is, whenever a generic corrector component detects that there

are two nodes that have conflicting slots, it will force them to repair themselves

irrespective of which TDMA MAC protocol they use.
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CHAPTER 5

Triva: An Adaptive Code Dissemination Protocol for WSNs

5.1 Introduction

Any code dissemination protocol needs to satisfy some important properties: (i)

energy efficiency : wireless communication has a high energy cost, and primarily

defines the system lifetime. Where laptops or mobile phones can be recharged,

sensor networks die due to energy exhaustion. Thus, an effective code dissemination

protocol must send as few packets as possible, while ensuring that all target nodes

receive the code update. (ii) dissemination latency : while the new code is being

propagated, the network may be in an erroneous, useless state, since interacting

nodes may have different code versions running, possibly running different missions.

In this case, transition time is wasted time, leading to a waste in energy. Therefore,

an effective code dissemination protocol must also propagate new code quickly [79].

The code dissemination protocol typically consists of two components, namely

(i) a code maintenance part and (ii) a code download part. The code maintenance
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enables nodes to determine if they need to download new code or not, whereas the

code download part enables relevant nodes to download the code.

To achieve the first goal, viz. energy efficiency, protocols control energy expen-

diture in various ways, especially during code maintenance. For example, energy

efficiency is achieved by either reducing the number of messages being sent [79] (us-

ing some form of “polite gossip”) or using some well-defined duty-cycling [70] or

by integrating the version inconsistency detection during payload communication,

thereby avoiding special packet transmission [95]. On the other hand, one way of

reducing the code dissemination latency is to periodically perform a “polite gossip”,

i.e., periodically perform a code maintenance (to determine whether any node needs

code updating). Therefore, there seems to be a tradeoff between dissemination la-

tency and energy efficiency: specifically, to reduce latency, version inconsistency

needs to be detected fast, requiring periodic transmission of code information. On

the other hand, to reduce energy consumption, inconsistencies need only be detected

“when needed”, i.e., when nodes communicate.

The Trickle [79] (see Section 2.1.1.1) is an algorithm that achieves low dissemi-

nation latency through periodic advertisement of the new code. However, there is a

steady expenditure of energy, even when the network is in a steady state (i.e., when

no node needs updating). This is due to the proactive step to detect inconsistencies.

On the other hand, in Varuna [95] (see Section 2.1.1.3), inconsistencies are detected

during application message communication. In this case, no additional energy is

spent in the steady state.

After all, these two algorithms have drawbacks which will be detailed in the next

two sections.
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Figure 5.1: Illustration for the Trickle problem.

5.1.1 Drawbacks of Trickle

Other than constant energy consumption in the steady phase, as noted in [95], Trickle

algorithm has another problem that nodes could communicate with each other even

though they have different codes. As a result, the sink could receive an incorrect

report such as a false alarm. This problem could happen if the advertisement interval

τ is larger than the code download period. For example (see Figure 5.1), let two

nodes n1 and n2 be neighbours of each other. After first exchange of ADV packets

both nodes will agree on the consistency. Assume that n1 updates its code after its

first ADV transmission, and in that period n2 goes disconnected for reasons such

as transient failures and therefore has not updated. Now, all message exchanges

between n1 and n2 will be inconsistent until their next ADV transmission.

5.1.2 Drawbacks of Varuna

WSN applications can be classified according to their data delivery model as either

continuous (periodic), event-driven, observer-initiated or hybrid [109]. For event-

based WSNs, messages are sent only when a given event is detected, over a time

period [11, 116]. In applications like forest fire detection and flood detection, when
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a node detects a fire or a flood, it must immediately send an alarm to the sink for

a certain time.

However, if events of interest are far between, i.e., the occurrences of the events

are rare, then any code dissemination protocol that are based on regular data com-

munication, e.g., Varuna, can suffer from high dissemination latency. If data packets

are sent rarely, like in such event-based sensor networks, nodes further away from

the sink will update their code very late, depending on how frequently data packet

is sent.

Moreover, in Varuna, due to code incompatibilities most of the application data

will be discarded by intermediate nodes during convergecast. This reduces the yield

of the network. Figure 5.2(a) illustrates these drawbacks of Varuna. For the sake of

simplicity, consider a multi-hop network in which nodes located in the same region

labeled with X have the same number of hops away from the sink. The nodes

in neighbouring regions have one hop distance. Assume that the triangular node

located in the corner is sink, the rectangular nodes in the region A are updated

nodes and the circular nodes in other regions are not updated. According to Varuna

protocol, nodes in regions B,C,D and E communicate and accept each others data

because they have the same version code. However, since the nodes in region A

have a bigger version number than the nodes in other regions, the nodes in region A

should not communicate with other nodes. They will not forward messages received

from the nodes in B and will discard them. They detect inconsistency and let the

nodes in region B update their code. For example, assume that a node Ne in region

E has detected a fire and wants to send an alarm message to the sink immediately.

It sends to a node Nd in D, which accepts and forwards it further to a node Nc

in C. Nc forwards to a node Nb. When data is forwarded from Nb to a node Na

in region A, Na will cancel it because the node Nb has lower version than Na. In

other words, the data originated at Ne will be waste after flowing through the entire
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Figure 5.2: Varuna in action.

network. Similarly, many packets that have been sent since the time when a new

code was injected from the nodes in B, C, D and E will be discarded. Therefore,

when events are rare, leading to bursts of data packets, Varuna not only wastes

resources such as energy and bandwidth, but also increases dissemination latency

and delivery latency. Figure 5.2(b) shows the network after communication of nodes

in region B with the nodes in region A.

Further, in WSNs, link quality can fluctuate [13], causing asymmetric links to

exist in the network, and this can be due to several reasons. For example, the net-

work can transmit low-power signals, thus creating links that are often asymmetric.

The link quality depends strongly on hardware inaccuracy and environmental fac-

tors [13]. In [82], the authors observed that transceiver frequency mismatch can also

be a reason for asymmetric links. Further, the duration of these asymmetric links

may be very small (i.e., transient) or very long (i.e., permanent) [91]. Asymmetric

links create several major problems in wireless sensor networks [110]. For exam-

ple, protocols that assume bidirectional links may not work or may not be efficient

in networks with asymmetric links. Specifically, Varuna will not work efficiently if

asymmetric links exist in the network.
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Overall, Trickle spends constant energy, even in steady state due to communi-

cation for code maintenance, while Varuna, which addresses the shortcomings of

Trickle, does not perform well in presence of asymmetric links or if the network

application is event-based.

Thus, there is a need for a code dissemination protocol that performs well in

event-based WSNs and that tolerates asymmetric links. Such a protocol needs to

have the following properties: (i) low dissemination latency as Trickle, and (ii) does

not incur steady energy expenditure during steady state, as Varuna. To achieve

this, in this chapter we propose a new protocol, called Triva, which is an adap-

tive code update maintenance protocol that leverages the properties of Trickle and

Varuna. Specifically, when dissemination is needed, Triva behaves like Trickle, but

when dissemination is not needed (maintenance is needed), it behaves like Varuna.

Our results show that Triva outperforms both protocols in general. Further, Triva

outperforms both Trickle and Varuna in presence of asymmetric links. We also show

that Triva handles bursty traffic much better than Varuna.

5.1.3 Chapter Structure

This chapter is structured as follows: We present Triva, an adaptive algorithm for

event-based WSNs in Section 5.2. We explain our experimental setup in Section 5.3,

and discuss our results in Section 5.4. Finally, we conclude the chapter in Sec-

tion 5.5.

5.2 Triva Algorithm

In this section, we explain our proposed algorithm, Triva, and subsequently give a

formal description of its working.

Triva is a code maintenance algorithm, as part of a code dissemination proto-
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col intended specifically for event-based wireless sensor networks. It works in such

a way so as to enable nodes to update their code quickly, very much like Trickle.

However, unlike Trickle, it does not consume much energy in steady state due to

communication. Specifically, it consumes little energy, like Varuna, when there is

no new code in the network. Further, when there unidirectional links exist in the

network, Varuna’s energy efficiency, due to message overhead, drops drastically as

redundant message transmissions are necessary. Triva tries to address the unidirec-

tional link problem by making use of other neighbours, circumventing the problem

when a relevant neighbour cannot be reached.

Informally, our protocol leverages the working of both Trickle and Varuna to

achieve efficient dissemination and works in the following way: When a node n1

updates its code, it tries to quickly disseminate the code to its neighbours. n1

broadcasts advertisement messages at a random time in given period, as in Trickle.

If, during these transmissions, a neighbouring node n2 requests the new code, n1

sends the new code to n2. However, unlike in Trickle, if n1 receives an advertisement

message with the same version number from n2, it saves n2’s ID in its neighbourhood

table. After broadcasting advertisement messages for some time, the node stops

broadcasting and acts like in Varuna in the steady phase to save energy. In Triva,

there is no concern with selecting an upper bound value τh (see Section 2.1.1.1) as

in Trickle, because in Triva a node sends advertisement messages only for a short

period after the node has updated its code.

Specifically, we extend Trickle with some Varuna-like variables, such as neigh-

bourhood table to reduce the broadcasting of advertisement messages. We call the

resulting algorithm Trickle′. Then, in steady state, Triva behaves as Varuna, while

in the dissemination phase, it behaves like Trickle. Further, we extend the working

of Varuna to handle asymmetric links, through HELP packets (see Figure 5.3). We

call the extended version Varuna′.
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Figure 5.3: The state machine for Triva, which is a combination of Trickle′ and
Varuna, where Trickle′ is obtained by adding a Neighbourhood table and variable
count(τh) to Trickle.

5.2.1 Formal protocol description

Figure 5.3 illustrates the state machine of our protocol, which we now detail.

• Trickle′ state:

When a node n1 enters this state, it sets counter, which is a Trickle

variable, to 0, and sets τ to τl. In this state, n1 sends an advertisement

message periodically at a random time between [τ/2, τ ], if it has not

heard k advertisement messages about the same version number, i.e., if

counter< k, otherwise, it doubles τ up to τh.

– If node n1’s τ becomes τh, count(τh) is incremented by one.

– If a node n1 receives an advertisement message from a node n2, n1 com-

pares the received version number with its own. If the version number

of n2 is bigger, then n1 requests the code after a randomly chosen time

between [0, R] seconds, then downloads the code, and updates from n2.
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If the version number of n2 is smaller, then n1 broadcasts advertisement

messages. If the version numbers are equal and if n2 does not exist in

its neighbourhood table, n1 adds n2 in its table, then doubles τ up to τ ′h

and increments counter by one.

– If a node n1 receives a request message from n2, n1 sends the new code

to n2.

– If a node n1 updates its code from n2, it first clears its neighbourhood

table and then adds n2 in its table. It sets counter to 0, sets count(τh)

to 0 and sets τ to τl.

– If, during τ time, n1 does not send any advertisement message, it doubles

τ up to τh. If τ is already equal to τh, it increments count(τh) by one and

sets counter to 0.

– If count(τh) > q, n1 sets counter to 0, count(τh) to 0 and goes to Varuna ′

state.

• Varuna′:

– If a node n1 updates its code from a node n2, it clears its neighbourhood

table and adds n2 in its table, and then it goes to Trickle′ state.

– If a node n3 receives an advertisement message destined to n2 from a

node n1, and if n2 is in the neighbourhood table of n3 and if n1’s version

number is equal to n3’s version number, then n3 sends a HELP packet

(see Figure 5.3), which includes the ID of n2, to n1 with a probability P

after random time between [0, 1] second.

– If a node n1 receives a HELP packet that is destined to itself, then n1 ex-

tracts the node ID n2 from the packet and adds it into its neighbourhood

table if n2 does not exist in the table (see Figure 5.4).
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– Otherwise, Varuna′ behaves as original Varuna.

• Download state:

– After sending a new code, a node returns to the previous state.

– After downloading a new code, a node goes to the Trickle′ state.

5.2.2 Fast dissemination

In Triva, every node tries to quickly disseminate its code whenever it receives a new

code. It does so by broadcasting advertisement packet periodically between [τ/2,τ ].

Since a node broadcasts only a limited number of advertisement packets, τ can

be a small number. Therefore, the amount of energy spent sending advertisement

messages is bounded, unlike in Trickle. However, it is important to note that as in

Triva a node advertises periodically only limited amount of time after it updates,

some neighbours may not receive the advertisement messages because of reasons

such as transient link/node failures. In this case, the node may not get the update

quickly, but updates only after it sends an application message to an updated node.

Nevertheless, Triva’s performance will still be better than Varuna, as only some

nodes will have transient link/node failures.

5.2.3 Constant energy consumption

In Triva, a node eventually fills its neighbourhood table with the IDs of all of its

neighbours, which means that all of its neighbouring nodes have received the new

code. Therefore, like in Varuna, in this steady phase, there is no advertisement

message transmission, thereby limiting the energy expenditure due to advertisement

broadcasts.
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5.2.4 The impact of asymmetric links on Varuna and Trickle

Trickle will not be affected by the presence of asymmetric links as, in Trickle, nodes

independently send advertisement packets periodically.

In the case of Varuna, using the example in Figure 5.4, n1 will send advertisement

packets i times periodically until it gets a response from n2. n1 does this every time

it receives any data packet from n2. Therefore, in Varuna, a node transmits i ADV

packets periodically, whenever it gets a data packet and there is no uplink. Thus,

if the nodes in the network send packets periodically every T time, then each node

transmits O(A ∗ i) advertisement packets even when there is no new version in the

network. Here, A is the number of unidirectional links (downlinks) between a node

and its neighbours. Therefore, Varuna keeps sending ADV packets even though the

version numbers are consistent.

n1 n2 

n3 

ADV 

n4 
n5 

n6 

n2 

n7 

… 

n7 

n1 

n4 

… 
n8 

n4 

… 

n8 

Packet 

Figure 5.4: Triva: n3 is addressing the asymmetric link between n1 and n2. There
exists only one link between n1 and n2: the link from n2 to n1
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5.2.5 Addressing asymmetric/unidirectional links

Unlike Varuna, in Triva, a node tries to help two of its neighbouring nodes that may

have an asymmetric link between them. It does so by informing them about their

code consistency if the node’s code is consistent with those two nodes. Figure 5.4

depicts the Triva process of addressing the unidirectional links between n1 and n2:

Node n1, after receiving any packet from n2, checks if n2 exists in its neighbourhood

table. If not, then n1 sends an advertisement message to n2. However, n2 will not

respond as it cannot hear packets from n1 (due to asymmetric link). If n3 and n4

can overhear messages between the nodes n1 and n2, then they can help n1 receive

information about n2’s version number, as long as their codes are consistent with

both n1’s and n2’s code. They do it by sending a HELP packet, which contains

the ID of n2, to n1. However, as there may be several nodes that can hear both n1

and n2, to minimize the number of redundant HELP packets, they send the HELP

packet with a probability P .

In addressing the asymmetric link problem, we assume that the two nodes which

have asymmetric links between them share a common neighbour. If there is no

such a node, then Triva will not send HELP packets, thereby making no message

overhead.

5.3 Experimental Setup

To evaluate Triva we perform simulation experiments. Further, to confirm the sim-

ulation results we perform real-world testbed experiments on two different testbeds.

We have run Triva on Indriya [36] and TWIST [43] testbeds which have been

deployed at the National University of Singapore and Technische Universität Berlin,

respectively. In Indriya there are about 100 nodes and in TWIST there are about

90 nodes. In both, the nodes are placed over three floors. Both testbeds have
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TelosB motes with C2420 radio, 8 MHz CPU, 10 KB RAM and 48 KB of program

memory. On Indriya, each experiment took 20-25 minutes. In total, we have run

about 520 experiments. So, all experiments run on Indriya took about 170 hours.

The experiments were conducted at different times of the day and on different days

of the week. Whereas, the experiments in TWIST were run at random days of a

month depending on the availability of testbed. We have run 5 experiments. Each

experiment of them took slightly more than 24 hours. So, all experiments run on

TWIST took about 120 hours. In both, Indriya and TWIST, in all experiments, the

transmission power was set to default value 31 and the used channel was 26. In our

experiments, we assume that nodes are not duty cycled. For each experiment the

transmitted packets and latency were logged into a different file through USB for

analysis purposes.

Our implementation of Triva takes 989 bytes in memory, which includes two

tables, each of size 20 entries of 2 bytes, and other algorithm related variables.

For the simulations we used TOSSIM [78] simulator on a 20x20 grid network.

In WSNs, the grid topology is usually used to monitor (cover) a given area with

the minimum number of nodes [24, 118]. For example, the grid topology has been

used in intrusion detection and target tracking applications [11, 38]. However, we

do not assume any specific network topology. Because, as Triva is based on Trickle

and Varuna, and as these algorithms do not depend on the network topology, Triva

is also independent of network topology. (See Section 5.4.3 where the experiments

are run on two different testbeds with different 3D network topologies). The only

implicit assumption, as in Trickle and Varuna, is that the node in the network should

have at least one bidirectional path between itself and the sink to be able to detect

inconsistency and download the new code. Without this assumption it is impossible

for a node to download the new code. Further, as Triva algorithm is local, i.e., nodes

exchange messages with neighbours only, the algorithm is scalable and can run on
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different sized networks.

Triva, as Varuna and Trickle, by itself tolerates node crashes and message losses

as long as the network is connected. However, crashes and message losses may add

extra performance burden. For example, the latency will increase in a case when an

outdated node requests the new code from an updated node and then the updated

node crashes. In this case, the outdated node will not download the new code,

however, after some time it will detect inconsistency when exchanging messages

with another node. So, this will increase the latency.

We used a network topology generator tool given on tinyos.net to construct the

network. We set the distance between neighbouring nodes to 10 feet. By appropri-

ately choosing the power decay value for the reference distance, we constructed the

network such that a node has a communication radius of around 30 feet. Each node

is given a noise model from the “casino-lab” noise trace file, which is real noise trace

taken in the Casino Lab of Colorado School of Mines. The file itself can be found in

Tossim/noise folder. TOSSIM takes a noise trace as input to generate a model that

can capture bursts of interference and other correlated phenomena to improve the

quality of the RF simulation [2].

q 15 τ ′h 20 sec TMOODY 60 sec DIS RAND 2 sec

τl 1 sec k 2 τv 8 sec ADV RAND 2 sec

τh 60 sec b 1, 30, 60 R 1 sec P 0.1-0.5

Table 5.1: Parameters for the experiments

The parameter values used in our experiments are given in Table 5.1, while all

other parameter values used in Triva are the same as in Trickle and Varuna.

The value of τ ′h can be set to the value of τh. However, since Triva runs Trickle

for a short period, we keep the value of τ ′h small. τh is the parameter used in Tickle.

As discussed in Section 2.1.1.1, if we increase this value, the latency will decrease,

however, the number of transmitted ADV packets will be smaller. The value of q
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can be set according to how fast a node’s neighbourhood table can be filled with its

neighbouring nodes’ IDs. If the value of q is set to a large value then, Triva could

transmit unnecessary packets. The experiments show that the table can be filled

with almost all (≥ 90%) neighbouring nodes’ IDs when q is between 15 to 20. The

parameter τv is τ used in Varuna. Setting the probability P to a proper value is

important as unnecessary packets could be transmitted. P can be set according to

the density of the network. If the network is dense, P can be set to a small value.

If the network is sparse, then P can be set to larger values. In our experiments, we

varied the value of P between 0.1 and 0.5.

According to real world deployments such as [98, 97, 112, 73], the traffic in WSNs

varies. For example, in [98], nodes sense sample their sensor and send their readings

to the sink every 70 seconds, while in [73] every 10 minutes. In [97], nodes send every

4 hours, while in [112], nodes send every 5 minutes. Therefore, in our experiments

we varied traffic and evaluated three scenarios:

1. Periodic traffic : Each node periodically sends data packet, with the period

randomly selected between [0 . . . 1] minute.

2. Event-based traffic : Each node sends only one packet at a randomly selected

time between [λ, λ+1] minute, where λ is the time the event occurred. Events

occur every λ minutes.

3. Event-based bursty traffic [122] : Each node sends b packets, one packet per

second, after a randomly selected time between [λ, λ + 1] minute, where λ is

the time the event occurred. Events occur every λ minutes.

To evaluate the performance of the three protocols on networks with different

link symmetry, we simulated them on a network (i) with symmetric links and (ii)

with asymmetric links.
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In our experiments, all nodes boot randomly in the first minute and a packet

with a new version is injected into the top-left node (the sink) after 2 minutes. We

also assume that Triva is in the Varuna′ state (see Figure 5.3) at the beginning of

execution of the experiments.

5.4 Simulation and Testbed Results

In this section, we show the simulation and testbed results of Triva, Varuna and

Trickle in terms of different metrics.

5.4.1 Metrics

In our simulations, we used the following metrics: (i) the number of advertisement

(and HELP relevant for Triva) packets transmitted, as the number of transmissions

is directly related to energy consumption in the steady state [95, 79], (ii) the num-

ber of discarded application packets (relevant for Varuna) from the time when the

new version is injected, as this metric captures the amount of resources wasted as

bandwidth and energy, and (iii) completion time (dissemination latency), which is

another important criteria in code dissemination, to enable the network to work

efficiently. We counted the number of ADV packets by logging transmitted ADV

packets into a file in simulations and by sending the same packets to USB port in

testbed experiments.

Note that, in general, radios can operate in four modes of operation: Transmit,

Receive, Idle and Sleep. Among these, in most cases, the Transmit operation con-

sumes more energy than other operations. The Receive and Idle mode operations

may also consume considerable amount of energy, and they consume almost equal

energy [99]. Therefore, although the first metric, the number of advertisement pack-

ets, does not define the total energy cost and may not have a significant fraction
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of total energy cost when the radio is always turned on (duty cycle is 100%), con-

siderable amount of energy can still be conserved due to less packet transmissions.

As mentioned earlier, in the experiments, we assume that nodes are always on. As

most of the time Triva behaves like Varuna (in the steady state), if the nodes are

duty cycled, then the same amount of energy could be saved, however, in this case,

the latency will be higher [95].

5.4.2 Simulation Results

Number of Advertisement Packets Figures 5.5 and 5.6 show the number of

advertisement packets transmitted during 15 hours. Figure 5.5 shows the number

of advertisement packets where a node periodically sends one data packet, with

the period randomly chosen between [0 . . . 1] minute in the network with symmet-

ric links. As can be observed, the number of advertisement packets Trickle sends

increases linearly with time, even when there is no new code in the network, while

the amount of transmitted advertisement messages in Varuna decreases eventually.

Varuna decreases its number of transmissions eventually, because according to the

Varuna protocol, in Varuna, a node keeps sending advertisement packets until all

its neighbouring nodes’ IDs are stored in its neighbouring table. And, as the links

in the network were not perfectly symmetric, Varuna kept sending advertisement

packets (see Section 5.2.4 for the impact of asymmetric links on Varuna). As it can

be observed from Figure 5.5, in Triva, the transmission of advertisement and HELP

packets stops after some time and never transmitted again (unlike Varuna), as long

as there is no new code in the network. The reason for why Triva stopped sending

advertisement and HELP packets is that all nodes in the network have stored most

of their neighbours’ IDs when the nodes were in the Trickle state and have stored

the remaining nodes’ IDs, i.e., the IDs of nodes that had asymmetric links in be-

tween, with the help of HELP packets (see Section 5.2.5 for how Triva addresses
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the problem of asymmetric links). In the network with symmetric links, Triva sends

advertisement and HELP packets 10 times less than Trickle and 3 times less than

Varuna.

Figure 5.6 shows the number of advertisement packets transmitted in the network

with high asymmetric links. Here, we can also see that Triva transmits advertisement

packets 10 times less than Trickle and 7 times less than Varuna.
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Figure 5.5: Scenario 1 - Periodic Traffic, Symmetric Links: Data packets gen-
erated randomly every 0 . . . 1 minute for periodic traffic

In Figure 5.7, Triva and Varuna are compared in terms of the number of adver-

tisement packets sent, when each node in the network sends 30 packets back-to-back

at 1 packet/second, with λ = 5 minutes. In this figure, because of the reasons as

mentioned above, Triva again stops transmitting advertisement packets after some

time and performs better than Varuna.

Overall, the figures 5.5, 5.6 and 5.7 show that Triva outperforms Trickle and

Varuna in terms of number of transmitted packets, thereby energy consumption.

Number of Discarded Application Packets Figures 5.8 and 5.9 show the
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Figure 5.6: Scenario 1 - Periodic Traffic, Asymmetric Links: Data packets
generated randomly every 0 . . . 1 minute for periodic traffic.
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Figure 5.7: Scenario 2 - Bursty Traffic: 30 packets are sent at 1 packet/second,
λ = 5 minutes for bursty traffic.

number of discarded application data packets after the time when a packet with a

new version is injected, i.e., after 2 minutes. Figure 5.8 shows the values obtained
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Figure 5.8: Scenario 3 - Event-Based Traffic: (λ, λ+1) minutes, λ represents
x-axis, Data packets: One data packet is sent for every event.

from the network in which a node periodically sends only one, i.e, b=1, data packet

at randomly selected time between [λ, λ + 1] minutes. In both Triva and Varuna,

values are relatively high when λ=0, as the randomly selected time by a node could

be very small such as 150 ms, which forces nodes to send more data packets in a

small amount of time.

In Figure 5.9, a node sends b=60 packets back-to-back every 1 second. The

number of data packets discarded by Varuna remains constant, with increasing idle

time. On the other hand, the number of dropped packets in Triva is very low, due

to the fact that the nodes quickly obtain the updated code.

Overall, when the number of discarded data packets is low, it says that the

energy and bandwidth are not wasted and also it captures the fact that all nodes

have the same code version, i.e., code dissemination has completed quickly.

Code Dissemination Latency Figure 5.10 shows the time taken from the point

when a packet with new version is injected to the point when the last node in a
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Figure 5.9: Scenario 4: Event-Based Bursty Traffic: (λ, λ+1) minutes, λ repre-
sents x-axis, Data packets: 60 packets are sent at 1 packet/second.
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network receives that packet, i.e., the code dissemination latency. We investigated

the latency under two scenarios: (i) periodic traffic and ii) bursty traffic. Triva and

Trickle have very low dissemination latency (for both scenarios), whereas Varuna

has increasing latency with increasing idle time.

5.4.3 Testbed Results

Now to confirm the results obtained from the simulations, we present the results

obtained from the Indriya and TWIST testbeds. We have run the protocols on

Indriya to check the dissemination latency, number of discarded packets, and on

TWIST to check the number of advertisement packets. The used parameters are

same as in simulation experiments except that in testbed experiments a new code

was injected after 4 minutes.

Code Dissemination Latency Figures 5.11 and 5.12 show the code dissemination

latency under two scenarios: (i) periodic traffic and ii) bursty traffic. As the results

obtained from simulations, the latency of Varuna increases linearly as a function of

event period, while Triva shows constant latency independent of event period.

Number of Discarded Application Packets Likewise, Figures 5.13 and 5.14

show the number of discarded packets of Triva and Varuna under two scenarios: (i)

periodic traffic and ii) bursty traffic. As can be observed, Varuna transmits redun-

dant packets proportional to traffic. On the other hand, the number of discarded

packets in Triva is negligible.

The above results confirm that Triva outperforms Varuna and works best in

event-based WSN applications or in applications where data collection is done with

large periodicity.

Number of Advertisement Packets To compare the number advertisement pack-

ets (and HELP packets relevant for Triva), we have run each of the algorithms on

TWIST for 24 hours. As we have mentioned above, the number of HELP packets
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Figure 5.11: Scenario 3 - Event-Based Traffic: (λ, λ+1) minutes, λ represents
x-axis, Data packets: One data packet is sent for every event.
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Figure 5.12: Scenario 4: Event-Based Bursty Traffic: (λ, λ+1) minutes, λ rep-
resents x-axis, Data packets: 20 packets are sent at 1 packet/second for every event.

transmitted depends on P . So, we varied the value of P to different values 0.1, 0.2

and 0.3. Section 5.4.4 discusses about the relation between P and the number of
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Figure 5.13: Number of discarded data packets, Event-Based Bursty Traf-
fic: (λ, λ+1) minutes, λ represents x-axis, One data packet is sent for every event.
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Figure 5.14: Scenario 4: Number of discarded data packets, Event-Based
Bursty Traffic: (λ, λ+1) minutes, λ represents x-axis, 20 packets are sent at 1
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neighbours, i.e., the network density.
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Figure 5.15: Scenario 1 - Periodic Traffic: Data packets generated randomly every
0 . . . 1 minute for periodic traffic. Different values for P (0.1, 0.2 and 0.3) are used
in Triva

Figure 5.15 shows the number of advertisement packets transmitted by Triva,

Trickle and Varuna. As expected, the number advertisement packets transmitted

by Trickle increases linearly with time. Varuna has the largest number of packets

during 24 hours, however, as can be observed, the function decreases eventually and

after about 34 hours it could be less than that of Trickle. While Triva with P = 0.1

and P = 0.2 has the smallest number of packets after 24 hours. The impact of P

on the number of transmitted HELP packets will be discussed in the next section.

Overall, these results, as in the simulation results, show that Triva outperforms

Trickle and Varuna in terms of number of transmitted packets, thereby energy con-

servation.
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5.4.4 What should the value of P be?

In Triva, as mentioned in Section 5.2.5, sending HELP packets depends on the

probability P . And this value affects the message overhead of Triva. If P is set to

1, all nodes in the neighbourhood that are ready to send the HELP packet will send

it. However, this may cause not only a lot of message overhead, but also collisions

which wastes resources such as energy [70]. Conversely, if P is set to a very small

value, then nodes might not send HELP packets and the asymmetric link problem

may not be solved for a time until one of the nodes sends a HELP packet. Thus,

there is a tradeoff between the message overhead and latency.

For simplistic assumptions, like a circular communication range and uniformly

distributed networks, the value of P could be approximated as following. Let k be

the number of neighbours of a node. Let n1 and n2 be neighbours of each other.

Then, if the coverage area of a node is Πr2, then the intersection of coverage areas of

n1 and n2 is 2Πr2/3−r2
√

3/2 (see Figure 5.16 for illustration). As there are k nodes

in Πr2, there are around k/3 nodes in 2Πr2/3 − r2
√

3/2. Therefore, if there exists

an asymmetric link between n1 and n2, the neighbours of both should set their P

to a number between 1 and 3/q, i.e., 1 ≥ P ≥ 3/k. For example, if the number of

neighbours of a node is k ≤ 3, then P should be set to 1; if k = 30, then P ≥ 0.1.

One way to relax the above assumptions is to have nodes to broadcast their

neighbours’ IDs so that each node could identify the number of common nodes (the

intersection area) for each pair of its neighbours. And according to that number,

nodes could define their P . However, it needs extra number of packet transmissions

and memory to store the number of common nodes for each pair of neighbours.

Moreover, this way will not work well for time-varying topologies where nodes may

crash, join or disjoin the network.

To find P for time-varying topologies, nodes should exchange messages periodi-

cally or when there is a change in their neighbourhood. In WSNs, such a technique
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Figure 5.16: Computing an approximate value of P . The area of the shaded region
is equal to 2Πr2/3− r2
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is usually used for different objectives. For example, in [70], this technique is used

to select a single sender in a neighbourhood at a time. So, to find the value of P for

time-varying topologies, like the above method, first, nodes should broadcast their

neighbours’ IDs to find the initial value of P , and then whenever a node detects

any change in its neighbourhood, the node informs its neighbours about the change

so that its neighbours could update their P accordingly. However, as mentioned

above, this is costly and may not be practical, especially for resource constrained

wireless sensor nodes. Also, while trying to reduce message overhead, this method,

conversely, may increase it.

A simpler and more practical solution could be, instead of computing the value

of P according to topology changes, to set P to a constant value and apply a basic

suppression method, as in Trickle [79], to reduce the number of redundant HELP

packet transmissions. That is, if node n1 hears node n2 transmitting a HELP packet

to node n3, then there is no need for n1 to transmit a HELP packet to n3. Otherwise,

if n1 does not hear any HELP packet, then n1 sends a HELP packet to n3 with

probability P . This solution will greatly reduce the message overhead, even when

the network is dense and P = 1, as most of the neighbours will suppress their
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transmissions. But then the question is how many redundant HELP packets will

be sent if P = 1? The answer is only few. According to the simulation results

reported in [79], if we apply the above suppression method, in a 1-hop network

of sizes 8, 64 and 256, then the number of transmissions is 2, 3 and 4 with 0%

packet loss rate, and 4, 7 and 10 with 60% packet loss rate, respectively. This is

because, based on the simple geometric observation, there could be at most 5 nodes

that may not be connected with each other if the communication radius of nodes

is same [121]. Therefore, the network topology will not affect much. To reduce the

message overhead further, we can set P to a smaller constant value such as 0.5,

which might slightly increase the time to solve the asymmetric problem.

In general, for any network topology, setting P to a small value bigger than

0, P > 0, will still lead to a better performance as it overcomes the problem of

asymmetric links. However, it may take more time to solve the problem. Setting

P = 1 may generate lots of additional traffic as long as there exist asymmetric links;

however, when all nodes solve the asymmetric link problem, Triva does not send

HELP/ADV packets anymore. We think that this is reasonable if the number of

asymmetric links is large and they are permanent, though more transmission energy

may be used (see Figure 5.17).

We use the casino lab noise trace to make the network more realistic. However,

the casino lab file has a high SiNR (Signal-to-Noise Ratio). The impact of a low

SiNR, such as heavy-meyer trace file has to be determined. Figure 5.18 shows the

impact of a signal with high SiNR 5.18(a) and low SiNR 5.18(b). As can be observed,

the number of transmitted packets with low SiNR is more than that of with high

SiNR.
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Figure 5.18: The impact of P and SiNR

5.5 Conclusion

In this chapter, we have proposed an algorithm that can be used to maintain code

updates in a wireless sensor networks. Code update maintenance algorithms are

necessary as not all nodes may update to a new code during code dissemination

phase due to reasons such as transient link failures. The existing algorithms of this

kind are efficient in terms of different metrics such as latency and energy. However,

they have drawbacks as well.
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The algorithms, namely Trickle and Varuna, have drawbacks in terms of energy

and latency, respectively. In the presence of asymmetric links the latter does not

consume constant energy as expected. The proposed code maintenance algorithm

in this chapter, called Triva, tries to address the drawbacks of the algorithms by

leveraging the properties of both. It adapts both Trickle and Varuna to achieve

energy efficiency and low dissemination latency in event-based sensor networks and

in the presence of asymmetric links. The results of performed simulation and real-

world testbed experiments show that Triva outperforms both Trickle and Varuna (i)

in periodic traffic, (ii) event-based traffic, (iii) bursty traffic, and (iv) in networks

with asymmetric links.

To address the asymmetric link problem, which Varuna does not solve, Triva uses

additional packets called HELP. However, HELP packets are sent only when there

exist asymmetric links in the network, thereby reducing the message overhead. The

experiment results showed that by solving the asymmetric link problem Triva stops

sending ADV packets when there is no new code in the network, which is desirable

especially when updates occur rarely.

All in all, although Triva, like Trickle and Varuna, may not work with dissem-

ination protocols that have protocol specific mechanisms such as sender selector in

MNP, the mentioned algorithms are orthogonal to many code dissemination algo-

rithms and thus can be integrated to any of them to maintain code updates. There-

fore, Triva is an algorithm that could be integrated to any compatible dissemination

protocols to save more energy.
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CHAPTER 6

Data Aggregation Scheduling with Two Sinks

6.1 Introduction

Traditionally, WSNs have been deployed with a single sink [6]. However, there

are several reasons that limit the usefulness of a single sink, for example (i) the

emergence of more sophisticated applications [90] and (ii) fault tolerance issues [76,

113, 103]. Two scenarios are hereby provided:

Application scenarios: WSNs are increasingly being used to control several

actuators embedded in the environment [5]. In these situations, the application

requires that data sensed from multiple sources is delivered to multiple sinks (i.e., the

actuators). As a matter of example, a decentralized building automation system [34]

can provide functionality such as heating, ventilation, and air conditioning along

with fire alert. The actuator nodes embedded in the environment may include,

inter-alia, air conditioning units, water sprinklers and fire alarms. Sensor nodes

(e.g., for temperature and humidity) are deployed to support the functionality of
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the actuators. Often, to meet the application requirements, the sensor nodes need

to report to multiple sinks. For example, the same temperature sensor may report

to multiple air conditioners. Several such applications have appeared recently [90].

Fault tolerance: Typically, WSNs, once deployed, are left unattended for ex-

tended periods of time. During this time, the network can experience a range of

faulty scenarios: (i) any sensor node may fail due to energy exhaustion, (ii) links

may fail due to interference or (iii) the sink may fail to communicate due to some

reasons such as link failures, node and sink failures. For example, in [97], the authors

observe that 4 of the correctly working 7 nodes had communication failure with the

sink over time, furthermore, they observe sink outage due to power failure. In a

deployment [98], a crash of the database running on the sink node resulted in the

complete loss of data for two weeks. Likewise, in a deployment [112], two weeks of

data were lost due to a sink outage. In [107], authors observed a sink outage due to

harsh weather. In such situations, as mentioned, the loss of the sink results in the

loss of the network. One way to increase the reliability of such WSNs is to deploy

with more than one sink.

In wireless sensor networks, TDMA-based protocols are often used to (i) avoid

message collisions and (ii) guarantee timeliness properties. TDMA MAC protocols

work by breaking the timeline into slots and assigning those slots to nodes. Each

node then can only transmit in a slot it has been assigned. However, most TDMA-

based MAC protocols have been developed with a single sink assumption. In a WSN

with multiple sinks, such slot assignment will result in a very high latency for one

of the sink.

Thus, this implies that there is a need for TDMA-based MAC protocols specif-

ically for WSNs with multiple sinks. There is a dearth of work in this area. As

discussed in Chapter 2, some works on routing in multi-sink scenario have been

developed [108, 90]. Data aggregation scheduling algorithms have been presented
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in [59, 21]. However, in the works, the data aggregation scheduling is done from many

nodes to one sink, whereas this chapter considers the data aggregation scheduling

from many nodes to many sinks.

One way to solve the data aggregation scheduling problem is to first develop a

backbone that connects sinks and then allocate slots to nodes that connect to the

backbone. The problem of developing the backbone, i.e., connecting the sinks is

directly related to the problem of developing a Steiner tree [42]. In this case, we

are interested in developing a minimum Steiner tree, which is known to be NP-

complete [58]. To address the computational complexity of this problem, there are

different ways of going about it. One of them is to look at specific instances of the

problem that can lead to a polynomial-time solution to the problem. In this case, we

focus on the problem with 2 sinks, since the minimum Steiner tree can be computed

in polynomial-time, as the minimum Steiner tree is the shortest path between the

sinks. However, our proposed algorithm for 2 sinks also works for WSNs with more

than 2 sinks, but in sub-optimal ways (see Section 6.4.4). And as a future work (see

Chapter 7), we will address the more general problem of n sinks.

In this chapter, we first formalise the problem of Data Aggregation Scheduling

(DAS) in a WSN. Then we prove a number of impossibility results, as well as show a

lower bound for solving a variant of DAS called weak DAS. Further, we propose two

algorithms, called Balancing Tree Formation (BTF) and Energy-Efficient Collision

Free (EECF), which taken together, solves weak DAS and results in a schedule that

matches the predicted lower bound. Through simulations, we show that our method-

ology enables a modular design of DAS algorithms, whereby different properties can

be enforced. Finally, we perform real-world testbed experiments on Indriya [36] to

support the results obtained from the simulation results.

This chapter is structured as follows: We present the problem formulation in

Section 6.2. In Section 6.3, we present our theoretical contributions of this chap-

130



6. Data Aggregation Scheduling with Two Sinks

ter. In Section 6.4, we describe a balancing tree and data aggregation convergecast

scheduling algorithm. Section 6.5 explains our experimental setup and Section 6.6

discusses the results of the experiments. In Section 6.7 we survey existing balancing

tree algorithms and, finally, in Section 6.8 we conclude the chapter.

6.2 Problem Formulation

We present the following definitions that we will use in this chapter.

Definition 13 (Schedule) A schedule S : V → 2N is a function that maps a node

to a set of time slots.

When scheduling, for a node n to be able to send its data to a sink, n should

have at least one neighbour m that sends after node n.

Definition 14 (DAS-label) Given a network G = (V,E), a sink ∆, a schedule

S and a path γ = n ·m. . .∆, we say that n is DAS-labeled under S on γ for ∆ if

∃t ∈ S (n) · ∃t′ ∈ S (m) : t′ > t.

We call the node m on γ the ∆-parent of n and γ the DAS-path for n. The

number of DAS-paths shows the resilience of the schedule for node failures.

Definition 15 (Strong and Weak schedule) Given a network G = (V,E), a

sink ∆ ∈ V and a schedule S, S is said to be a strong DAS schedule for ∆ for

a node n ∈ V iff ∀ path γi = n · mi . . .∆, n is DAS-labeled under S on γi for ∆.

S is a weak DAS schedule for ∆ for n if ∃ path γ = n · mi . . .∆ such that n is

DAS-labeled under S on γ for ∆.

A schedule S is strong DAS (resp. weak DAS) for G iff ∀n ∈ V , S is strong

DAS schedule (resp. weak DAS schedule) for ∆ for n.
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We will only say a strong or weak schedule whenever ∆ is obvious from the

context. A strong schedule, in essence, is resilient to problems that occur in the

network such as radio links not working or node crashes during deployment. On the

other hand, a weak schedule is not resilient and, any problem happening, will entail

that a message from node n to m will be lost.

It has been shown in [53] that it is impossible to develop strong schedules.

Given a network with 2 sinks ∆1,∆2, we wish to develop a weak schedule for

∆1 and ∆2. There are several possibilities to achieve this. In general, to develop

a weak schedule, several works have adopted the approach whereby a tree is first

constructed, rooted at the sink, and then slots assigned along the branches to satisfy

the data aggregation constraints. A trivial solution is to construct two trees, each

rooted at a sink, and then to assign slots to nodes along the trees. This means that

nodes can have two slots, i.e., meaning that nodes may have to do two transmissions

for the same message. Thus, we seek to reduce the number of slots for nodes to

transmit in.

6.2.1 DAS Scheduling

We model our problem as follows:

We capture slots assignment with a set of decision variables.

tSn =

 1 t ∈ S(n)

0 otherwise

A set value assignment to these variables represent a possible schedule. The

number of slots used, which equates to the number of transmission by nodes, has to

be reduced for extending the lifetime of the network. The number of slots used is

given by:
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numSlotsS =
∑

t∈T,n∈V
tSn (6.1)

We also capture the number of nodes with multiple slots as follows:

fSn =

 1 |S(n)| > 1

0 otherwise

However, such a schedule may not assign a slot to a given node, so we need to

rule out some schedules with a constraint:

∀n ∈ V · ∃t : tSn = 1

The above constraint means that all nodes in the network will be assigned at

least one slot. We also rule out schedules S that assign the same slot to two nodes

that are in the two-hop neighbourhood, i.e,

∀m,n ∈ V : tSm = 1 ∧ tSn = 1⇒ ¬2HopN(m,n)

This can be done by using information about two-hop neighbourhood, and it can be

obtained by exchanging messages with neighbours.

Finally, we require to generate weak DAS schedules S, i.e.,

∀m ∈ V · ∃n ∈ V, (m · n . . .∆1) : tSm = 1⇒ ∃τ > t : τSn = 1

∀m ∈ V · ∃n ∈ V, (m · n . . .∆2) : tSm = 1⇒ ∃τ > t : τSn = 1

Thus, to generate an energy-efficient collision-free weak DAS schedule for both

∆1 and ∆2, there are different possibilities. For example, one may seek to minimise

numSlots to reduce the number of slots during which nodes transmit. Another pos-

sibility is to reduce the number of times any node can transmit, in some sort of load
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balancing. Thus, we solve the following problem, which we call the EECF-2-DAS

problem (for energy-efficient collision-free 2-sinks DAS).:

EECF-2-DAS problem: Obtain an S such that

minimise
∑
∀t
∑
∀n∈V f

S
n subject to

1. ∀n ∈ V · ∃t : tSn 6= 0

2. ∀m ∈ V · ∃n ∈ V, (m · n . . .∆1) : tSm = 1⇒ ∃τ > t : τSn = 1

3. ∀m ∈ V · ∃n ∈ V, (m · n . . .∆2) : tSm = 1⇒ ∃τ > t : τSn = 1

4. ∀m,n ∈ V : tSm = 1 ∧ tSn = 1⇒ ¬2HopN(m,n)

The EECF-2-DAS problem consists of two subproblems: (i) The first three con-

ditions amount to what we call the weak DAS problem and (ii) the fourth condition

ensures that any weak DAS schedule is collision-free. Collision freedom is guaranteed

by ensuring that no two nodes in a 2-hop neighbourhood share the same slot.

6.3 Theoretical Contributions

In this section, we investigate how small can the number of nodes with multiple slots

be, to generate an energy efficient collision-free weak schedule in a network with 2

sinks.
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6.3.1 All Nodes Have Multiple Slots (
∑
∀n∈V fS

n = |V |)

A trivial solution to this is as follows: generate two trees, each rooted at a different

sink. For sink ∆1, starting with slot |V |, assign, in decreasing order, slots to nodes

in using BFS. The process is repeated with the other tree rooted at ∆2. This sets

an upper bound for collision-free weak schedules for wireless sensor networks.

6.3.2 Every Node Has a Single Slot (
∑
∀n∈V fS

n = 0)

In this section, we seek a lower bound on the number of nodes that can have multiple

slots assigned to them. As a starting point, we endeavour to determine whether all

nodes can have only 1 slot.

Intuition For all nodes to have only one slot, either they have to be directly con-

nected to both sinks or they have to send their values to a node n that is directly

connected to both sinks. If there is such n, then it means that there exists a path

between two sinks of length 2 hops. If there is no path of length 2, then there should

be another node m that should forward n’s value. As m has also a value to send via

node n, node n should have at least 2 slots. This means that if the shortest path

between two sinks is bigger than 2, then there must be at least one node with more

than 1 slot. This is captured in Theorem 4.

Theorem 4 (Impossibility of 1 slot) Given a network G = (V,E) with 2 sinks

∆1,∆2, where the shortest distance between ∆1,∆2 is bigger than 2, then there exists

no weak DAS schedule S for ∆1,∆2 such that
∑
∀n∈V f

S
n = 0

Proof. We assume there is such a weak DAS S and then show a contradiction.

Assumptions: We assume a network G with 2 sinks ∆1,∆2 such that the

distance between ∆1 and ∆2 is bigger than 2. We also assume part of the network

is as follows: Focusing on the sink ∆1, there is a set H1 of nodes in its first hop.

There is also a set H2 of nodes in its second hop. We also denote by n1
h, the node in
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H1 with the largest slot number. We also assume, for some set of nodes H ′2 ⊆ H2,

that all nodes in H ′2 have n1
h as a ∆1-parent.

Since the schedule is weak DAS, then ∀n ∈ H2 · ∃m ∈ H1 : S(m) > S(n)1. Also,

because the schedule is weak DAS, no node in H ′2 can be a ∆2-parent for n1
h. Thus,

there ∃η ∈ H2, η 6∈ H ′2 such that η is a ∆2-parent for n1
h and, given that S is a weak

DAS schedule, then S(η) > S(n1
h).

Now, since η ∈ H2, ∃m′ ∈ H1,m
′ 6= n1

h such that m′ is a ∆1-parent for η and,

given that S is a weak DAS schedule, then S(m′) > S(η). Since we assumed that n1
h

has the largest slot in H1, it implies that ∀m ∈ H2 : S(n1
h) > S(m). This also means

that S(η) < S(n1
h), which contradicts the previous conclusion that S(η) > S(n1

h).

Hence, no such S exists.

�

Here, we prove that there exists no algorithm that can generate a weak DAS

schedule for both ∆1 and ∆2 with all nodes being assigned a single slot. Theorem 4

captures a lower bound for developing a weak DAS schedule for two sinks, in that it

means that it is mandatory for some nodes to have at least two slots to solve weak

DAS for two sinks.

6.3.3 Towards Minimizing
∑
∀n∈V fS

n

Having established a condition that there should be a certain number of nodes that

require at least two slots, an important question is: how are these nodes with 2 slots

chosen from the network?

One way of building a network that solves the weak DAS problem is to assign 2

slots to the nodes on the path that connects ∆1 and ∆2 and assign 1 slot to all other

nodes like shown in Figure 6.1. The values s + i in the figure are the time slots of

the nodes. The arrows in the figure shows the direction of packets send at time slot

1Since S(n) returns a set, we abuse the notation here for mathematical comparison.
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S S+1 S+2 S+3 S+4 

S+5 S+6 S+7 S+8 S+9 

Figure 6.1: An example of network that solves weak DAS. Arrows show to which
sink is used the slot. s is an integer that shows the slot of the node.

s+ i. In the figure, all nodes send their values to one of the nodes on the path. In

turn, the nodes on the path use 2 slots to send their aggregated values to two sinks,

one slot for each sink. Thus, the minimum number of nodes with at least two slots

that can connect two sinks is captured in the following result (Corollary 1):

Corollary 1 Given a network G = (V,A) with two sinks ∆1 and ∆2, then there

exists a weak DAS S for G,
∑
∀n∈V f

S
n = l − 1, where l is the length of the shortest

path between ∆1 and ∆2.

Since we know that it is possible to obtain a weak DAS schedule S that assigns

two or more slots to at most l− 1 nodes, the objective is to determine the minimum

number of such nodes with at least 2 slots. How many nodes on the shortest path

can have only 1 slot? This is captured in the following result (Theorem 5):

Theorem 5 Given a network G = (V,A) with two sinks ∆1 and ∆2, a path P =

∆1 · n1 · n2 . . . nl−1 ·∆2 that is a shortest path between ∆1 and ∆2 of length l with

l− 1 nodes and a schedule that DAS-labels all nodes n1 . . . nl−1 on P and P r for ∆2

and ∆1 respectively, where P r is the reverse of path P . Then, there exists no weak

DAS schedule S such that
∑
∀n∈V f

S
n ≤ l − 3.

Proof.
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Assumptions: We assume that there exists a weak DAS S such that
∑
∀n∈V f

S
n ≤

l − 3 under S, and show a contradiction. We denote the set of slots assigned to

any node ni ∈ {n1, . . . , nl−1} by (x1
i , x

2
i , . . . x

ni
i ). Assume that there are two nodes

ni, nj ∈ {n1, . . . , nl−1} that has one slot only and, since, under S, they are assigned

more than one slot, it means that x1
i = x2

i = . . . = xni
i and x1

j = x2
j = . . . = x

nj

j .

Since S DAS-labels ni on P for ∆2, it means that xj > xi. However, since

S DAS-labels nj on P r for ∆1, it means that xi > xj , which is a contradiction.

Hence, there exists no weak DAS S such that
∑
∀n∈V f

S
n ≤ l − 3

�

From the proof of Theorem 5, it can observed that the impossibility occurs when

comparing two nodes with a single slot (i.e., nodes with 2 slots of the same value).

However, if this asymmetry is broken, then it is possible to have a weak DAS schedule

S such that
∑
∀n∈V f

S
n = l − 2, which is the smallest number of nodes that need to

have at least two slots to solve weak DAS for 2 sinks. There is one node, usually a

neighbouring node of a sink along the shortest path that may be assigned one slot

under such a weak DAS.

6.4 Algorithms

Based on the results developed in Section 6.3, we develop a 3-stage weak DAS

algorithm. The first phase computes a shortest path between the two designated

sinks. Every node on the shortest path is considered a virtual sink. The second phase

consists of each virtual sink constructing a tree that satisfies some property, e.g.,

balanced tree. This phase is explained in section 6.4.2.1. The final phase consists

in assigning slots to nodes in the network in such a way to satisfy a given property,

e.g., minimum latency. This phase will be explained in 6.4.3.

In this work, we will focus on the following properties: (i) we develop a balanced
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D1 

D2 

v1 

v2 

v3 
v4 

Figure 6.2: Shortest path between two sinks

tree algorithm such that nodes at a given level spend similar amount of energy

and (ii) sibling nodes are allocated contiguous slots so that a parent node does not

require switching its radio on and off to capture the data of its children, thus saving

energy [7, 102, 56].

In the algorithms, we assume that there is no packet loss and no node failures.

As mentioned in Chapter 7, we plan to work on addressing these problems in the

future. We also assume that data packets are assumed to have the same size, and

aggregation of two or more incoming packets at a node results in a single outgoing

packet. Further, we do not make any assumptions about the network topology.

6.4.1 Phase 1: Computing the Shortest Path Between the two

Sinks

As our results show that a shortest path between the two sinks ∆1 and ∆2 is required

to minimise the number of nodes with more than a single slot, we first form a shortest

path P = ∆1 · v1 . . . vl ·∆2 between ∆1 and ∆2. We can obtain such a shortest path

with a simple distributed shortest path algorithm using Request and Reply packets,

and using hop number as a cost.
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After forming P , all nodes on P will take the role of virtual sink and set their

variables, called vsink to 1, and hop to 0. An example of P of length 5 with virtual

sinks v1, v2, v3 and v4 is illustrated in Figure 6.2.

6.4.2 Phase 2: Developing a Tree Structure

Once a shortest path has been obtained from the first phase, there now exists a set of

“virtual sinks” in the network, which we denote by V S. The virtual sinks are nodes

that lie along the shortest path. In this phase each of these virtual sinks builds their

own tree structure, which can be geared or optimised for a given property. In this

chapter, we propose a balanced tree algorithm (Section 6.4.2.1), as such a structure

enables a balancing of load for nodes at a given level. We also explain another DAS

algorithm [120], which is cluster-based, against which we compare our results.

The first two phases of our algorithm is somewhat similar to the algorithm pro-

posed in [52], where authors propose an algorithm that forms Greedy Incremental

Tree(GIT)-like tree to perform energy efficient in-network data aggregation. Their

algorithm consists of first forming a shortest path between the first source node to a

sink and then connecting all other source nodes to the path in a greedy fashion using

hop number as a cost. The idea behind building GIT-like tree is that it improves

path sharing, i.e., it allows data aggregation earlier to reduce data transmissions.

However, their algorithm differs from ours in that their algorithm does not balance

the number of children while our algorithm does. The next section explains our

balancing algorithm.

6.4.2.1 Balanced tree formation

In this section, we detail the balanced tree formation algorithm that we adopt (see

Figures 6.4, 6.5). When developing the balanced tree, we focus on two main param-

eters, in the order described: (i) a node chooses a parent based on its (hop) distance
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p2 

p1 

n 

vi vj 

(a) Parent with smaller hop distance

p2 p1 

n 

vi vj 

(b) Parent with smaller number of children

Figure 6.3: Parent selection

from its virtual sink ancestor, in the sense that the node will choose to join a tree

where it is closer to a virtual sink, and (ii) if there are competing trees, then a node

will join the tree that will make the overall tree structure balanced among the nodes

with the same hop distance.

A node can be in one of four states: ALONE, TEMP, JOINED and BALANCE.

Initially, all virtual sinks are in the JOINED state, and all other nodes are in the

ALONE state. A node goes to the TEMP state when it finds a potential parent

with a smaller hop distance. A node goes to the BALANCE state when it finds a

potential parent with a smaller number of children. In the TEMP or BALANCE

state, a node waits for some time to get a response from the potential parent.

A node n will change its parent from p1 to p2 only if

• p2 has a smaller hop distance (from a virtual sink) than that of p1. Fig-

ure 6.3(a) illustrates this case.

• If both p1 and p2 are equidistant to a virtual sink, then n switches parent if

p2 has a smaller number of children. Figure 6.3(b) illustrates this case.

The first case makes the node have the shortest distance to a virtual sink, and

the second case tries to balance the number of children of nodes with the same hop
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distances.

Informally, the algorithm starts with the virtual sinks broadcasting (i.e., adver-

tising) JOIN packets periodically. When a node n1 receives a JOIN packet from a

node n2, it compares its parent hop with the hop of n2. If the hop of n2 is smaller,

then n1 requests n2 to be its parent by sending REQ packet, and sets n2 as its

parent if n1 receives an ACCEPT packet from n2 (states ALONE and TEMP of

Figure 6.4, state JOINED lines 12-14 of Figure 6.5). If the hop numbers are equal

and the number of children of n2 is at least two smaller than the number of children

of its current parent, then n1 requests n2 to be its parent by sending a REQ BAL

packet (state JOINED lines 15-17 of Figure 6.5). If n1 receives a BAL ACCEPT

packet from n2, it notifies its current parent, by sending a DISCON packet, stating

that it will connect to another parent. It then sets n2 as its parent. Whenever n2

sends ACCEPT or BAL ACCEPT to n1, it adds n1 to its children set. Whenever a

node receives a DISCON packet from a node n, it removes n from its children set.

When a node stops receiving any packet except JOIN, it goes to the SCHEDULE

state.

Correctness of Balanced Tree Algorithm of Figures 6.4, 6.5

In BTF, as mentioned in the previous section, when selecting a parent, the

highest priority is given to a node that has the shortest distance to a virtual sink.

If there are more than one potential parent, a priority is given to a node with the

smallest number of children in order to balance them. In this section, we show that

BTF algorithm correctly achieves this goal.

Lemma 4 (Invariant of BTF) Given a network G = (V,A) with two sinks ∆1,∆2,

then the following is an invariant for the BTF algorithm in Figures 6.4, 6.5:

∀m ∈ V \ V S :

1.(m.parent 6= ⊥ ⇒ m.hop 6=∞)
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Process i

Variables of i
state ∈{ALONE, TEMP, JOINED, BALANCE, SCHEDULE}; Init: ALONE
hop, j ∈ N; Init: j := 0; hop :=∞
parent: 2-tuple 〈id, numchild〉; Init: ⊥
children : {id : id ∈ N} ; Init: ∅
JOIN,ACCEPT,REQ,REQ BAL,BAL ACCEPT,BAL DENY,DISCON :
Packet types

Constants of i
threshJ
% After forming a shortest path between ∆1 and ∆2, every node on the shortest
path enters the JOINED state and starts to broadcast a JOIN packet.

state=ALONE
1 upon rcv〈JOIN, n, n hop, n numchild〉
2 if (n hop+1 < hop)
3 state:=TEMP
4 send(REQ,n)

state=TEMP
1 upon rcv〈ACCEPT, n, i, n hop, n numchild〉
2 parent.id:=n
3 parent.numchild:=n numchild
4 hop:=n hop+ 1
5 state:=JOINED

state=BALANCE
1 upon rcv〈BAL ACCEPT, n, i, n hop, n numchild〉
2 send(DISCON, i, parent.id)
3 parent.id:=n
4 parent.numchild:=n numchild
5 hop:=n hop+1
6 state:=JOINED

7 upon rcv〈BAL DENY, n, i〉
8 state:=JOINED

Figure 6.4: Balanced tree formation algorithm-partA

2. ∧ (m.hop ≤ m.hop′)

3.∧[(m.parent′ 6= m.parent)⇒ ((m.hop < m.hop′)∨((m.hop = m.hop′)∧(m.parent.numchild <
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state=JOINED
1 while(j < threshJ)
2 bCast(JOIN, i, hop, |children|)
3 j := j + 1
4 if(j = threshJ)
5 state:=SCHEDULE % See Fig. 6.8, 6.9
6 endif

7 upon rcv〈JOIN, n, n hop, n numchild〉
8 if(parent.id = n)
9 parent.numchild:=n numchild
10 hop := n.hop+ 1
11 endif
12 if (n hop+1 < hop)
13 state:=TEMP
14 send(REQ, i, n)
15 elseif(n hop+1=hop ∧ parent.numchild-n numchild≥2)
16 state:=BALANCE
17 send(REQ BAL, i, n, parent)
18 endif

19 upon rcv〈REQ,n, i〉
20 send(ACCEPT, i, n, hop, |children|)
21 children:=children ∪{n}
22 j := 0

23 upon rcv〈REQ BAL, n, i, n parent〉
24 if(n parent.numchild− |children| ≥2)
25 children:=children ∪{n}
26 send(BAL ACCEPT, i, n, hop, |children|)
27 else
28 send(BAL DENY, i, n)
29 endif
30 j := 0

31 upon rcv〈DISCON,n, i〉
32 children:=children\{n}
33 j := 0

Figure 6.5: Balanced tree formation algorithm-partB
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m.parent.numchild′)))]

Proof. To prove that the above is an invariant, we show that it is satisfied in the

initial state of the program and subsequent action preserves the invariant.

The invariant is trivially satisfied in the initial state where parent = ⊥ and

hop =∞. In state ALONE, the invariant is not violated as no state change occurs.

In state TEMP, the value of hop decreases since a node m receives the 〈ACCEPT 〉

from a node n only if n has a smaller hop (line 2 state ALONE, and line 12 state

JOINED), which preserves the invariant. In state TEMP, the value of the parent

changes too as either m gets a new parent with a smaller hop (line 12 state JOINED)

or gets a parent for the first time (line 2 state ALONE), which preserves the invariant.

In state BALANCE, when node m receives a 〈BAL ACCEPT 〉 message, m changes

parent due to m having a possible new parent with fewer children (state JOINED

line 15). In state JOINED, when node m receives a 〈JOIN〉 packet, it updates its

state based on that of its parent’s, which preserves the invariant. �

The BTF algorithm, depending on the network topology, may not always balance

the number of children of nodes at the same hop distance. However, the BTF

algorithm guarantees that if a node n, with a parent p, has several potential parents

pi, i > 1, then the number of children of p cannot be more than the number of

children of pi + 1. In [84], it has been shown that, in a network where nodes are

evenly distributed, the number of children per node is slightly bigger than one and

tends to 1 as the hop number increases. And the average number of children per

node in a 2D network is Nchild =
2h+ 1

2h− 1
. The output of our balancing algorithm

shows the same results: all nodes except the virtual sinks have 1 child in average.

6.4.2.2 Cluster-Based DAS Scheduling [120]

To maximise the benefit from the spatial advantage when allocating slots, the au-

thors of [120] build an aggregation tree based on the concept of Connected Dominat-
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ing Set (CDS). The DAS algorithm adopts the CDS construction algorithm proposed

in [114] which, in turn, is based on a Maximal Independent Set, with a little modi-

fication. Instead of using the original root of the dominating set, they use the sink

as the root of the dominating set. For proof of correctness, or otherwise, of the

algorithm, we refer the reader to [120].

6.4.3 Phase 3: Slot Allocation for DAS Scheduling

Once the virtual sinks are obtained (phase 1) and each one has its own tree structure

(phase 2), every node will identify its children, parent and hop. Also, a node will

determine whether it is a virtual sink through the variable vsink. If vsink = 1, then

the node is a virtual sink.

6.4.3.1 Enery-Efficient Collision Free (EECF) DAS Algorithm for Bal-

anced Tree

In this section, we propose a DAS algorithm that leverages the balanced tree ob-

tained (see Section 6.4.2.1). To make the DAS energy-efficient, we seek to assign

contiguous slots to children so that a parent does not need to continuously sleep

and wake-up to collect data as this leads to unnecessary energy usage [7, 102, 56].

Further, since the tree is balanced (at a given level), then nodes at that level spend

comparable amount of energy.

We propose a weak DAS algorithm that works in a greedy fashion (see Fig-

ures 6.8, 6.9). In the algorithm, every node maintains variablesmaxslot andminslot.

These variables are used to tell neighboring nodes that its children are assigned to

the slots starting from maxslot down to minslot+ 1. This allows every node’s chil-

dren to have contiguous time slots. The algorithm uses a special packet called SLOT

which includes 9 variables necessary for scheduling.

Informally, the scheduling algorithm starts by assigning a time slot to the virtual
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sink v1 that is a neighbor of, without loss of generality, ∆1. As we have proved, there

should exist at least l − 2 nodes with at least two slots. Thus, all nodes except v1

will be assigned two different slots. The time slot that will be assigned to v1 is |V |.

If another virtual sink vi, i 6= 1 receives a SLOT packet from vi−1, it sets its first

slot to 1 less than the first slot of vi and second slot to 1 more than the second

slot of vi, and then broadcasts a SLOT packet. The maxslots of virtual sinks are

assigned to 2 less than their first slots (it is 2 less because the next smaller slot is

reserved for the next virtual sink), and the minslots to the differences of maxslots

and their number of children (lines 2-7 of Figure 6.8). If a node n1 receives a SLOT

packet from its parent, n1 sets its slot to the difference of sender’s maxslot and rank

of n1, and then broadcasts a SLOT packet (lines 8-14 of Figure 6.8). We assume

that nodes know their ranks before we run the scheduling algorithm. A node can

learn its rank in two ways: 1) the parent node may compute and send the rank to

its children or 2) the parent node broadcasts IDs of its children and then children

computes their ranks themselves.

D1 

D2 

v1 

v2 

v3 
v4 

v1.slot=18 
v1.maxslot=16 
v1.minslot=15 

v2.slot1=17 
v2.slot2=19 
v2.maxslot=15 
v2.minslot=13 

slot=15 

slot=14 

slot=16 

ID=10 

ID=7 

Figure 6.6: Scheduling example

Example. For the sake of clarity, consider the example in Figure 6.6, where the

number of nodes |V |=18 and the number virtual sinks |V S|=4. According to the

algorithm, the only slot of v1 will be 18, i.e., v1.slot=18. The first and second slots
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n1 

s = 7 
h = 6 

s = 8 
h = 6 

n2 s = 7 
h <= 5 s = 9 

h = 5 

(a)

n1 

s = 7 
h = 6 

s = 8 
h = 6 

n2 

s = 7 
h >= 5 

s = 9 
h = 5 

p1 s = 10 
h = 5 

(b)

n1 

s = 7 
h = 6 

s = 8 
h = 6 

s = 7 
h = 6 

s = 9 
h = 5 n2 

s = 10 
h = 5 

ch 

(c)

Figure 6.7: Scheduling cases. s: slot number, h: hop number. A line between nodes
show the existence of communication link between them

of v2, v3 and v4 will be {17, 19}, {16, 20} and {15, 21} respectively, e.g., v2.slot1=17

and v2.slot2=19. The maxslot of v1 will be 2 less than its slot, that is 16. And, as

v1 has only one child, the minslot will be 16− 1 = 15. While the maxslot of v2 will

be 17− 2 = 15 and minslot will be 15− 2 = 13. The children of v2 with IDs 10 and

7 will take their slots from the range (maxslot, minslot+1), i.e., (15, 14), according

to their ranks. In this case, the slot of node with ID=10 will take slot 15, and the

node with ID=7 will take slot 14.

If a node detects a slot conflict, depending on the priority, which is basically the

hop distance, slot and rank in that order, the node decides whether to change the

slots of its children. And this makes the scheduling collision-free. A node n1 tells

its children to change their slots if

• n1 finds a neighboring node n2 that share the same slot with its child and

n2 has a smaller or equal hop distance to n1’s hop distance (lines 20-30 of

Figure 6.8, 6.9). Figure 6.7(a) illustrates this case.
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• n1 finds a neighboring node n2 that share the same slot with its child and n2’s

parent slot is bigger than n1’s slot (lines 37-43 of Figure 6.9). Figure 6.7(b)

illustrates this case.

• one of n1’s child ch tells to change because ch share the same slot with a child

of n2 that has bigger slot than n1’s slot. The variable otherslot is used for this

purpose (lines 16-19, 31-35 of Figure 6.8, 6.9). Figure 6.7(c) illustrates this

case.

After all the nodes are assigned their slots, all nodes’ slot values are sent to ∆1

where it computes the minimum of the slots, and broadcasts that value to the nodes.

The nodes after receiving the minimum value can compute their slots by taking the

difference of its slot and the minimum value, and adding 1.

Correctness of EECF

Lemma 5 (Invariant of EECF) Given a network G = (V,A), with a set of vir-

tual sinks V S ⊂ V that link 2 sinks ∆1,∆2, then the following is an invariant of

EECF-DAS:

∀m ∈ V ::

I0 m.slot 6=∞∧m.slot2 6=∞⇒ m.vsink

I1 : ∧ m.slot 6=∞∧m.slot2 =∞⇒ ¬m.vsink

I2 : ∧ m.slot < m.slot′ ⇒ m.slot < m.parent.slot

I3 : ∧ (m.slot 6= m.slot′)⇒ (∃n ∈ 2HopN(m) ·m.slot′ = n.slot′)∨ (∃y · y.parent =

m.parent : y.slot′ = n.slot′)

Proof. I0, I1 follow trivially from the program (statements 2-7). I2 is satisfied by

statements on lines 8− 13 (which ensures that m.slot < m.parent.slot) and 20− 40,

in case of slot collisions. I3 is handled through any case from statements 20− 40 to

resolve slot collisions. �
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Process i

Variables of i
slot, slot2,maxslot,minslot, otherslot, parentslot, s, x ∈ N;
Init:slot, slot2,maxslot,minslot, otherslot, parentslot:=∞; s, x := 0
vsink ∈ {0, 1} %vsink=1 if i is a virtual sink
rank(id): a function that returns the number of greater or equal values to id in children of id’s
parent.
P : 9-tuple 〈id, hop, slot, slot2,maxslot,minslot, otherslot, parentslot, vsink〉
SLOT : Packet type
Constants of i
threshS

% When the neigbouring virtual sink of ∆1 enters the SCHEDULE state, it sets its slot, slot2 :=
|V | and starts broadcast(SLOT, threshS)

Import from BTF % Import the variables of BTF (Fig 6.4, 6.5)
state=SCHEDULE
1 upon rcv〈SLOT, α : P 〉
% If the src and i are virtuals sinks and i has not assigned a slot yet,
% set states accordingly
2 if(slot = ⊥ ∧ vsink = 1 ∧ α.vsink = 1)
3 slot := α.slot− 1
4 slot2 := α.slot2 + 1
5 maxslot := slot− 2
6 minslot := maxslot− |children|
7 broadcast(SLOT, threshS)

% If the src is the parent of i and src’s maxslot has been changed,
% set states accordingly
8 elseif(parent.id = α.id)
9 parentslot := α.slot
10 if(slot 6= α.maxslot− rank(i))
11 slot := α.maxslot− rank(i)
12 maxslot := slot− 1
13 minslot := maxslot− |children|
14 broadcast(SLOT, threshS)
% If the src is a potential parent
15 elseif(α.hop = hop− 1)

% If i has the same slot as a child of src and src’s slot is larger than
% i’s parent slot, or they are equal and src’s id is larger than i’s parent id,
% then notify i’s parent about this (See lines 31-35 of Fig 6.9)
16 if((α.slot>parentslot∨(parentslot=α.slot∧α.id≥parent.id))
17 ∧(α.maxslot≥slot∧slot>α.minslot))
18 otherslot := α.minslot
19 broadcast(SLOT, threshS)

% If one of i’s children shares the same slot with the potential parent,
% set states of i accordingly
20 elseif(maxslot ≥ α.slot ∧ α.slot > minslot)
21 maxslot := α.slot− 1
22 minslot := maxslot− |children|
23 broadcast(SLOT, threshS)
24 endif

Figure 6.8: Data aggregation scheduling algorithm-partA
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% If i’s and src’s hops are equal and one of i’s child shares the same slot
% with the src, set states of i accordingly
25 elseif(α.hop = hop)
26 if(maxslot ≥ α.slot ∧ α.slot > minslot)
27 maxslot := α.slot− 1
28 minslot := maxslot− |children|
29 broadcast(SLOT, threshS)
30 endif

% If the src is a child of i and has detected a collision, then set states
% of i accordingly (See lines 16-19 of Fig. 6.8)
31 elseif(α.id ∈ children)
32 if(α.otherslot < maxslot)
33 maxslot := α.otherslot
34 minslot := maxslot− |children|
35 broadcast(SLOT, threshS)
36 endif

% If the hops of src and i’s children are equal and a child of i shares the
% same slot with the src and i’s slot is smaller than src’s parent slot or,
% if the slots are equal, i’s id is smaller than src’s parent id,
% then set states of i accordingly
37 elseif(α.hop = hop+ 1)
38 if((α.parentslot>slot∨(α.parentslot=slot∧α.id>i))∧
39 (α.slot ≤ maxslot ∧ α.slot > minslot))
40 maxslot := α.slot− 1
41 minslot := maxslot− |children|
42 broadcast(SLOT, threshS)
43 endif
44 endif

broadcast(SLOT, x)
1 s := 0
2 while(s < x)
3 bCast(SLOT, α : P )
4 s := s+ 1

Figure 6.9: Data aggregation scheduling algorithm-partB
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Theorem 6 Given a network G = (V,A) with 2 sinks ∆1,∆2, then (BTF ; EECF-

DAS) solves the EECF-DAS problem with a schedule S s.t.
∑

n∈V f
S
n = l − 2, where

l is the length of the shortest path between ∆1 and ∆2.

Proof. Follows directly from Lemmas 4 and 5. �

Our data aggregation convergecast scheduling algorithm solves the collision prob-

lem, but it does not address the node failure problem. However, when a node has

potential parents, it is easy to tolerate if the node’s parent fails. Since our schedul-

ing algorithm does not allow a child n, to have a time slot that is later than any

potential parent’s time slot, n can be connected to any of its potential parent, with-

out changing its slot. But, this might disrupt the contiguousness property of the

algorithm. Moreover, this does not work when the parent node (failed node) is one

of the nodes on the shortest path. As we will mention in Chapter 7, we are planning

to work on the node failure problem in the future.

6.4.3.2 Slot Assignment for Cluster-Based DAS

In this section, we present the slot assignment algorithm that is based on the clusters

formed [120] (see Section 6.4.2.2).

After forming a data aggregation tree, every node computes its competitor set, a

set of nodes that collide with the node. The general idea of this scheduling algorithm

is as follows: Initially, all leaf nodes are in the READY state and non-leaf nodes are

in the NOT-READY state. A node in READY state assigns a slot only if all nodes

that are in READY state and with larger IDs in its competitor set have already

assigned their slot. The node takes the smallest available slot in its competitor set.

If all children of a node have completed assigning their slot, the node goes to the

READY state. A node after assigning its slot broadcasts to notify the nodes in its

competitor set about the change. When the sink receives notifications from all of

its children, the scheduling algorithm stops.
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(a) Sinks are connected to the shortest path
between s1 and s2
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(b) Sinks are connected with each other with
the smallest number of nodes

Figure 6.10: Example: (a) Backbone formed by our algorithm and (b) Backbone
with smaller number of nodes. Letters and numbers are slots. Slots labeled with ai
and bi are used to send data toward the path between s1 and s2.

6.4.4 Data Aggregation Convergecast Scheduling in WSN with more

than 2 sinks

Now, the question is can our algorithm be applied to networks with more than 2

sinks? The answer is yes, with a bit of modification. However, this will not give an

optimal solution to the problem given in Section 6.2.1. Consider the network with

4 sinks given in Figure 6.10. The nodes labeled with numbers and letters are the

nodes with two slots, where numbers and letters are slot numbers. Assume that

our algorithm connects s1 and s2 with a shortest path p as shown in Figure 6.10(a).

As our algorithm connects all other nodes with shortest paths to p, sinks s3 and

s4 are also connected to p with shortest paths, say p2 and p3. Now, if we assign

two slots to the nodes on paths p, p2 and p3, as shown in Figure 6.10(a), and a

single slot to each of the other nodes, it is clear that data aggregation convergecast

scheduling could be done. In this case, the number of nodes with more than 1 slot

will be 11. However, as can be seen from Figure 6.10(b), there exists a solution
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where the number of nodes with more than 1 slot is 9. Note that, the number of

nodes that have more than 1 slot is equal to one less than the number of nodes in the

formed tree (backbone) that connects four sinks. Therefore, as mentioned earlier,

the solution for the problem is relevant to the minimal Steiner tree problem, which

has been shown to be NP-complete [58].

6.5 Experimental Setup

In this section, we present the simulation and testbed setup used to evaluate the

working and performance of EECF-DAS.

6.5.1 Simulation Setup

We perform TOSSIM [78] simulations to evaluate our EECF-DAS algorithm. We

evaluated it on networks of sizes 400, 600, 800 and 1000 nodes. We constructed

the networks such that a node has a communication radius of 10m, 15m and 20m,

for two nodes in the communication range were given a link gain of -65 dBm [2].

Each node is given a noise model from the “casino-lab” noise trace file, which is

taken in the Casino Lab of Colorado School of Mines. The nodes were uniformly

randomly distributed on a 100m×100m surface. We varied the distance between two

sinks: i) two sinks were deployed at two diagonally opposite corners, ii) two sinks

were deployed such that the distance between them is 4 hops and iii) the distance

between them is 6 hops.

To compare the performance of EECF-DAS with the cluster-based DAS (CDAS)

protocol proposed in [120], we also simulated EECF-DAS and CDAS (see Sec-

tion 6.4.2.2) in Java. We used Java because in [120], the authors have not clearly

stated how a node communicates with a node in its competitor set, and they sim-

ulated CDAS using C++. We chose CDAS because it is claimed to be one of the
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algorithms with the lowest latency. However, as CDAS was intended for a network

with only one sink, we adapted it to make it work in a network with two sinks.

For comparison purposes, we adapted CDAS into two different ways: i) we ran

DAS twice, one for each sink, and called this adapted algorithm 2DAS, and ii) we

first run a shortest path algorithm to form a shortest path (as in EECF) between

the two sinks and, instead of assigning ∆1 as the root of the dominating tree, as

in [114], we assigned each virtual sink (a node on the shortest path) as a root of

a dominating tree and called this adapted algorithm SP-DAS. SP-DAS shows that

our proposed approach is modular. We ran each case ten times and computed the

average.

6.5.2 Testbed Setup

We have run the EECF-DAS algorithm on Indriya testbed (see Section 4.5.2.1 for

characteristics of Indriya). We select the node with ID = 1 as sink 1 and ID = 46

as sink 2. To increase the diameter (largest hop number) of the network, we set the

transmission power to 7. The number of hops between sink 1 and sink 2 is 5.

The constant values used in the algorithm are given in Table 6.1. The values are

used to send corresponding packets more than once as there could be packet losses,

though it does not solve the packet losses problem completely. The values could

affect the total number of transmitted packets to complete the scheduling.

Constant name Value

threshJ 15

threshS 10

Table 6.1: Parameter values used in experiments.

In simulations and testbed experiments, we compare the latency, which is equal

to the largest slot of the nodes in the network, and the number of time slots at which

each node should be awake to transmit and receive packets.
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6.6 Simulation and Testbed Results

In this section, we present the results obtained from the simulation and testbed

experiments.

6.6.1 Simulation Results

The latency and message overhead of EECF

Figure 6.11 shows the latency and the number of packets transmitted to complete the

scheduling when simulated with TOSSIM. In Figure 6.11(a), the average latency is

shown. We can see that the latency is low relative to the number of nodes in the net-

work, although EECF considers contiguousness of slots. Also we see that the latency

is directly related to the neighborhood size/network density. Figure 6.11(b) shows

the average number of packet transmissions per node to complete the scheduling.

From the figure we see that it increases linearly as the neighborhood size/network

density increases. This shows that our algorithm is linear and can work with net-

works of bigger size.
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Figure 6.11: The average latency and number of packet transmissions with different
network sizes and transmission ranges (EECF)
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Figure 6.12: Comparison of number of children of EECF, SP-DAS and 2DAS (400
nodes, transmission range=10m)

Comparing EECF, SP-DAS and 2DAS

Figures 6.12 and 6.13 show the latency and the number of children obtained from the

three algorithms run on a network where two sinks were placed at opposite corners

of the network.

Number of children (sinks are at opposite corners of the network) Fig-

ure 6.12 shows the number of children of networks constructed by EECF, SP-DAS

and 2DAS. As can be observed, 2DAS has more nodes that have large number of

children, which implies that nodes in 2DAS should be awake more time slots than

EECF and SP-DAS. The figure also shows that our balancing algorithm decreases

the number of nodes that have large number of children.

Latency (sinks are at opposite sides of the network) Figure 6.13 shows the

number of slots required for data aggregation convergecast in one round in networks

of different sizes and transmission ranges. From the figure we can see that, in some

cases, EECF and SP-DAS aggregate 2 times faster than 2DAS.

From the figures 6.12 and 6.13 we can conclude that the algorithms that use the

shortest path as a backbone (EECF and SP-DAS) show better results in terms of
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latency and balance in number of children.
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Figure 6.13: Comparison of latencies (in slots) of EECF, SP-DAS and 2DAS with
different network sizes and transmission ranges.

Slot distribution (sinks are at opposite sides of the network) Figure 6.14

shows the transmission and reception time slots of the 15 nodes of EECF, SP-DAS

and 2DAS that have maximum number of slots in a network of 400 nodes with a

transmission range equal to 15m. The filled slots indicate the transmission slots

and empty ones indicate reception slots. From the figure we can see that the nodes

scheduled by EECF have contiguous reception slots, while reception slots of SP-DAS

and 2DAS are usually separated. It can also be observed that the nodes scheduled

with EECF needs to switch from the sleep to the active mode at most 3 times. While

in 2DAS and SP-DAS the number of switches could be large and can alternate every

slot. From the figure we see that in 2DAS and SP-DAS the maximum number of

switches is 20 and 13 respectively.

From the figure we can infer that by balancing trees and assigning contiguous

slots to children we can increase the sleeping time of nodes and reduce the number

of sleep-active transitions, thereby reducing the energy consumption of nodes.

It can be observed from Figure 6.14(a) that, as both of the algorithms use a
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Figure 6.14: Distribution of slots of 15 nodes that have maximum number of slots
of EECF, SP-DAS and 2DAS (400 nodes, transmission range = 15m)
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shortest path in their aggregation tree, the number of nodes with 2 transmission

slots are equal. However, in the figure, there are 9 nodes in EECF and only 7 nodes

in SP-DAS with 2 transmission slots. It is because in SP-DAS there could be nodes

that have more children than that of the nodes on the shortest path.

Latency (sinks are 4 and 6 hops away) Figures 6.15(a) and 6.15(b) show the

latency obtained from EECF, SP-DAS and 2DAS run on networks where two sinks

were placed such that the distance between them is 4 and 6 hops. From these

two figures and from Figure 6.13 we can notice that as the distance between two

sinks decrease, the latency obtained from EECF increases. However, the latencies

obtained from SP-DAS and 2DAS remain almost same. This is because 2DAS and

SP-DAS use CDS (Section 6.4.2.2) to build the structure, which depends on the

locations of nodes. Therefore, SP-DAS is more efficient in terms of latency than

EECF if the distance between sinks is small.
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Figure 6.15: Comparison of EECF, SP-DAS and 2DAS (transmission range=15m)

Slot distribution (sinks are 4 and 6 hops away) Figure 6.16 shows the trans-

mission and reception time slots of the 15 nodes of EECF, SP-DAS and 2DAS that

have maximum number of slots in a network of 400 nodes with a transmission range

equal to 15m where the distance between two sinks is 4 hops and 6 hops. From the

figure we see that slots in EECF are contiguous and the number of nodes that have
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large number of receive slots (children) is around the number of hops between two

sinks. This corroborates the fact that EECF reduces energy cost by reducing the

number of sleep-active transitions and the number of nodes with large number of

slots independent of the distance between two sinks.

6.6.2 Testbed Results

We have run EECF-DAS on Indriya about 100 times to check (i) the number of

children per node and (ii) the latency (number of slots needed per round).

Number of children Figure 6.17 shows the the number of children obtained from

EECF algorithm. As can be observed, most nodes (about 90%) have 0,1 or 2 chil-

dren. And the remaining nodes, including virtual sinks, have between 3 and 7

children. The values show that by balancing the number of children we can de-

crease the number of nodes that have large number of children, which in turn means

that most of the nodes wake up for only short period of time. The obtained result

supports the results obtained from simulation experiments.

Latency and Slot distribution Figure 6.18 shows the transmission and reception

time slots of the 15 nodes of EECF. The filled slots indicate the transmission slots

and empty slots indicate reception slots. As in simulation results, EECF assigned

contiguous slots to nodes, which reduces the number of sleep-active transitions,

thereby reduces the energy cost.

Table 6.2 shows the number of slots required for data aggregation convergecast

in one round. For 100 nodes of Indriya testbed, EECF assigns about 36 time slots

in average.

One point to note from the figures is that, there are a few nodes that are not on

the shortest path and whose number of children is about the same as of the nodes

on the shortest path. This is because the Indriya testbed has 3D topology and the

nodes are not perfectly uniformly located. Thus, as discussed in Section 6.4.2.1,
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Figure 6.16: Distribution of slots of 15 nodes that have maximum number of slots
of EECF, SP-DAS and 2DAS (400 nodes, transmission range = 15m)

BTF may not guarantee the balance of children depending on the network topology.
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Latency (Slots)

AVG 36.6

STD 6.0

Table 6.2: Average latency: the average number of slots used to convergecast in one
round.
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6.7 Related Work

In this section, as the algorithms related to data aggregation convergecast scheduling

were presented in Section 2.2, we survey balancing tree algorithms only.

In [48], authors propose a distributed algorithm, similar to ours, with a goal

to maximize the network lifetime. The idea is to balance the number of children

according to a function of three variables: number of children, number of neighbors

and the hop distance in that order. So, a node chooses a parent first with fewer

children, then fewer neighbors, and finally, with the shortest distance. Different

from our algorithm in that our algorithm first chooses a node with the smallest hop

distance as a parent. Hence, in this algorithm nodes could choose a parent with a

longer distance.

In [25], authors propose an Adjustable Convergecast Tree (ACT) algorithm that

builds load-balancing tree which is based on shortest path tree. ACT is designed for

convergecast without data aggregation. Therefore, in the algorithm, when balancing,

each node should know the number of all descendant nodes. As we assume a data

aggregation technique while convergecasting, this algorithm is not suitable for our

algorithm. Further, in [101], authors show that ACT will not balance trees in some

cases and propose an Efficient Balancing Tree algorithm (ECT). Their algorithm is

based on the theorem given in [84] that states that the average number of children of

node tends to 1 as the hop number of node increases. However, in their algorithm,

they only balance nodes that have more than 1 child and have potential parents

with 0 children. This algorithm does not work correctly when potential parents

have more than 0 children. For example, if a node’s parent has 5 children and its

potential parent has 2 children, the node does not connect to the potential parent

to make the number of children 4 and 3, respectively. Hence, the algorithm does

not balance in this case.

164



6. Data Aggregation Scheduling with Two Sinks

In [44], authors propose Load-Balanced Data Aggregation Tree(LBDAT), an al-

gorithm that is based on Maximal Independent Set (MIS) and Connected MIS under

probabilistic network model which assumes lossy links. However, their algorithm is

centralized.

6.8 Conclusion

In this chapter, we have addressed the problem of data aggregation scheduling (DAS)

in WSNs with two sinks. There are a few works that address DAS problem in WSNs

with multiple sinks. However, all of them consider many-to-one communication. To

the best of our knowledge, this is the first work that deal with the DAS problem in

WSNs with more than one sink that use many-to-many communication.

Before presenting our algorithm, we have formalized the DAS problem. Then,

we have showed that it is impossible to have a schedule in which all nodes have

only one slot. Consequently, there should be some nodes in the network that have

more than one slot. We have also proved that the nodes that have multiple slots

should form a path that connects the sinks. As a result, to have a schedule that

have minimum number of nodes with multiple slots, only the nodes on the shortest

path between two sinks should have multiple slots.

Based on the theoretical results as mentioned above, we have proposed a data

aggregation scheduling algorithm. Our algorithm is based on first forming a shortest

path between two sinks, building balanced tree rooted at each node on the shortest

path and then allocating time slots to nodes such that every node’s data is aggre-

gated towards two sinks. Further, the scheduling algorithm assigns slots to nodes

such that every node’s children have contiguous slots. This method makes the con-

vergecast more energy efficient and the energy consumption load more balanced as

the energy consumption is directly related to the number of message transmissions
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and receptions, and to the active time of a node.

We have performed simulation and real-world testbed experiments to evaluate

the performance of our algorithm. The experimental results show that our bal-

anced tree formation algorithm and scheduling algorithm work correctly and make

a schedule with low latency compared to an algorithm that have been developed for

a WSN with a single sink. Moreover, our algorithm assigns contiguous slots to chil-

dren so as to reduce the number of sleep-active transitions. Reducing the number

of sleep-awake transitions reduces energy cost.

The results also show that our approach is modular in the sense that different

structures could be formed to have different properties. For example, rather than

balancing the number of children among parents and building balanced trees rooted

at each node on the shortest path, we could build minimum spanning trees, linear

trees or other type of structure to have other properties. For example, if we build

linear trees, then delay could be high, however, all nodes will receive and transmit

at most once which conserves energy.
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CHAPTER 7

Conclusion and Future Work

Improvements in WSN technology have made WSN applications possible in different

fields. However, due to stringent constraints of sensor nodes, developing protocols

for WSN applications may not be easy. Sensor nodes are limited in memory, com-

putation power and energy, and prone to failures. Therefore, protocols designed

for WSNs should consider these characteristics of sensor nodes. Furthermore, the

characteristics of wireless links and the environment where the network is deployed

should be taken into account.

Many protocols have been developed to address the challenges brought by WSNs.

However, there still exist problems that should be addressed. For example, there

exist several data dissemination protocols, however, these protocols do not consider

transient faults that can corrupt values stored in the memory and packets. If the

protocols heavily depend on such values, then the corruption of these values may

negatively impact on the protocols. Another area that we should work on is WSNs

that contain more than one sink. A sink may stop communicating with nodes for
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some time due to reasons such as link failures and energy deficiency. In a WSN with

a single sink, the outage of the sink results in the loss of the network. Hence, for

WSNs to be more reliable, we should deploy at least two sinks, and data generated

by nodes should be collected (convergecast) by all/many of the sinks. To reduce the

number of collisions, many convergecast scheduling protocols have been proposed.

However, the convergecast scheduling is done from many nodes to one sink.

Therefore, in this thesis, we have presented protocols that address the problems

mentioned above. In particular, we have developed two algorithms that make data

dissemination protocols tolerant to transient data faults that may corrupt values

stored in the memory and messages. The algorithms are local which means that

they are energy efficient and scalable, and thus can be used by integrating to a

dissemination protocol without incurring big overhead in networks of different sizes.

We have also developed a code update maintenance algorithm that is efficient in

terms of latency and energy. The algorithm reduces energy consumption by mini-

mizing the number of transmitted packets. These improvements are most prominent

in networks with permanent and high number of asymmetric links. And finally, we

have designed a data aggregation convergecast scheduling protocol that collects data

from many nodes to two sinks. The proposed data aggregation algorithm reduces

the energy cost by reducing the number of sleep-active transitions, minimizing the

number of nodes that have multiple slots, and by balancing the number of slots.

The remaining part of this chapter summarizes the contributions we made in this

thesis and presents future directions.

7.1 Summary of Contributions

The main contributions presented in this thesis are as follows:

• We formalised the concept of code dissemination in WSN, and provide three
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refined specifications, viz.: strong, consistent and best effort code dissemina-

tion. Also we showed that (i) there is no deterministic algorithm that solve

strong code dissemination in the presence of transient faults, and (ii) there is

no deterministic 1-local algorithm that solve strong code dissemination in the

presence of a stronger class of transient faults, called detectable faults.

• We presented two novel f -local algorithms called (i) BestEffort-Repair and (ii)

Consistent-Repair that, when added to any fault-intolerant code dissemination

protocol, solve (i) BestEffort code dissemination and (ii) Consistent code dis-

semination, and we proved the correctness of both protocols. Moreover, we

ran real-world experiments and simulations to show their correctness and per-

formance, especially the locality property of the protocols. Further, a case

study where the two protocols were added to an existing code dissemination

algorithm, called Varuna, was presented. The results of case study showed

that both BestEffort-Repair and Consistent-Repair induce small overhead on

Varuna in the presence of detectable transient faults. While Varuna alone

in the presence of a transient fault resulted in all the nodes downloading the

wrong code.

• We presented an energy efficient and fast code update maintenance algo-

rithm called Triva. We conducted real-world experiments and simulations,

and showed the performance of Triva over algorithms of this kind. The exper-

iments showed that Triva is more energy efficient, faster and has considerable

advantage when the network is event-based and when asymmetric links exist

in the network.

• Finally, we presented an efficient data aggregation convergecast scheduling al-

gorithm, which is, to the best of our knowledge, the first specifically designed

for WSNs that have more than one sink. In particular, we designed a schedul-
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ing algorithm for WSNs with two sinks. We showed its correctness. Before

scheduling the transmission and reception slots of nodes, the algorithm first

connects two sinks by a shortest path and builds trees rooted at each node

on the path. The scheduling is done in a way such that children of a node

have contiguous transmission slots. We performed simulation and real-world

experiments and showed the efficiency of the algorithm.

7.2 Future Work

We believe the following research questions could take the research done in this

thesis further:

• BestEffort-Repair and Consistent-Repair tolerate transient data faults in code

dissemination; future research may include developing a dissemination proto-

col that tolerate Byzantine faults, where sensors and networks may behave in

unexpected ways, without using cryptographic functions.

• We have presented an efficient data aggregation convergecast scheduling algo-

rithm for WSNs with two sinks. However, WSN applications with more than

two sinks exist. Therefore, it is very interesting for us to see an efficient solu-

tion for the data aggregation convergecast scheduling problem for WSNs with

three or more sinks.

• In our data aggregation convergecast scheduling algorithm, we have addressed

the collision problem, however, we have not addressed the node failure and

packet loss problem. So, one of the future works could be developing a node

failure tolerant data aggregation converegast scheduling protocol for WSNs with

multiple sinks. As in WSNs the energy consumption is important, addressing

this problem as local as possible, i.e., using as small neighbours as possible, is

desired.
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