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ABSTRACT

In this thesis, I deal with the notions of a condition holding for

some proposition and a proposition being true in a certain number of

possible worlds. These notions are called propositional quantifiers and

numerical modalizers respectively.

In each chapter, I attempt to dispose of a system. A system consists

of: a language; axioms and rules of inference; and an interpretation. To

dispose of a system is to prove its decidability and its consistency and

completeness for the given interpretation. I shall, in passing, make

applications to definability, translatability and other topics.

In Chapter 1, I consider the system 5SQ. Its language is that of 55

with Q as a fresh unary operator. Its axioms and rules of inference are

those for 85 plus the following special axiom-schemes for Q:
(1) QA::>MA

( 2) Q A ::> L (A::> B) V L (A ::> - B)

(3) L (A == B) ::> (Q A ::> Q B)

(4) Q A ::> L Q A.
'Q A' is interpreted as 'A is true in exactly one possible world.' I

dispose of the system by showing that every formula in it is equivalent to

one in normal form.
In Chapter 2 I consider the system 55n (n for numerical modalizer).

Its language is that of 55 but with the unary operators ~ for each non-

negative integer k. Its axioms and rules are those of 85 plus the

following special axiom-schemes for ~:
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(1)

(2)

(3)

(4)

(5)

~ A :::>~ ~ A, 1 < k

Q_ A == ~ Q. (A A B) A Q_ • (A A ~ B).
~ ~=o ~ ~-~

L (A == B) ~ (~ A ~ ~ B)

~A:::>L~A

Qo A == L ,....A, 1 ~ 0, k > 1.

'~A' is interpreted as 'A is true in exactly k possible worlds.' I

dispose of this system by generalising the normal forms of S5Q.

In the chapters 3-5, I consider three systems which result from adding

propositional quantifiers to S5. The first two systems, S5TT+ and S5TT,

contain the usual axioms and rules for quantifiers. The first contains,
in addition, the axiom-scheme

g = (g P) (p A (R) (R ~ L (p ~ R»). The last, S5n-, results from

SSn by restricting the Scheme of Specification, viz., (P) A (p) ~ A (B),

B free for P in A (P), to formulas B of the propositional calculus.

variable P ranges over. For S5n-, we merely require that if P and q

To interpret these systems we must specify which propositions the

are proposi tiona, then (not p) and (p or q) are also proposi tiona. For

S5n+, we also require that each possible world be describable i.e. that

there be a proposition which is true in that world alone. And for S5rr,

we require not that each possible world be describable but that there be

a proposition which is true in just those possible worlds which are

describable.

Again, we dispose of the systems by normal forms. This requires that

we eliminate quantifiers and nested occurrences of L by adding new

symbols to the language. For S5n+, the operators ~ suffice. For S5n,



- iii -

the operators ~ suffice. For S5TT, we also require the constant g and

a fresh unary operator N. For S5TT-, even greater ~tions are required.

In the last two chapters, 6 and 7, I turn to systems which have

essentially the same language as S5n. However, '~ A' is now inter-

preted as 'A is true in exactly k possible worlds accessible from the

given world.' Different conditions on R, the relation of accessibility,

lead to different axioms.

In chapter 6 I consider the conditions of reflexivity, symmetry and

transi tivi ty, and in Chapter 7 the conditions of being a partial,
convergent, total or dense order.

I prove consistency and completeness by the method of maximally

consistent systems. The method can y-ield decidability results, but I

do not go into the matter.

I have, as a rule, not given acknowledgements for well-established
results or terminology. The main references are at the end of each

chapter. Fuller references are in the bibliography.



Chapter 1

TilE 5Y5T!M S5Q

In this chapter I consider a system containing the notion of a

proposition being true in exactly one possible world.

91. The system S5Q
Formation Rules. The wfs of 55Q are defined in the usual way from a

set V of (prop6~tional) variables P1' P2, ••• , the binary operator v, the
unary operators , L and Q, and parentheses (and). Throughout the thesis
I observe some familiar conventions: R and S, with or without numerical

subscripts, and P range over variables; A, B, C, D, E and F, with or without

subscripts, range over wfs; ~, E, M etc. are given standard definitions; each

expression isused autonymously, i.e. as a name of itself; and parentheses are

added to or omitted from wfs in an obvious way. The wf QA is read as 'A is

true in exactly one (possible) world'.

Transformation Rules. The axioms are: all tautologous wfs; G8del's

axiom-schemes for 55. viz., L A ~ A, L (A ~ B) ~ (L A ~ L B) and four special

axiom-schemes for Q, viz.,

1) Q A ::>M A,
2) Q A ~ (L (A ~ B) v L (A::>- B»,
3) L (A == B) ~ (Q A ::>Q B), and

4) Q A ~ L Q A.

The rules of inference are modus ponens (A, A::> BIB) and necessitation
(AIL A).
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Semant~al Rules. Semantics are based throughout the thesis

on Kripke-type structures. A structure is an ordered pair (W,¢), where

W(worlds) is a non-empty set and ¢ is a map from V x Winto tt, f 1(truth-

values). ¢ assigns a truth-value to each variable in each world.

With each structure M= (W,~ is associated a unique relation

~ A betveen vfs and worlds: read as 'A is true in the world w for

the structure M'. It is the smallest relation such that:

(i) ~ Pi iff ~ (Pi' v) = t, i = 1, 2, •••
w

(ii) IA- A iff bot -~ A
w w

A V B iff ~A or M B
v w

L A iff for all V inW ~ A
V

(v) L11F- Q A iff there is exactly one V in Wsuch that
w

~ A.
V

Wenov define the notions of valid! ty, being a model and logical

consequence. The defini tiona are general and do not depend upon any

particular definition of the relation J:! A. A is valid, F= A, if for

all structures M= (W,~) and for all v E W, ~ A. M= (W,~) is a
W K

IIOdel for A. (A. has a IIOdelM) if for somev ~ w, Fv A. A is a logical

consequence of a set of wfs Ll , ~ ~ A, if for all structures M* (W, ~)

and fO:«VE w, L!!. Avhenever ~ B for all wfs B in ~.
A Fw v
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§ 2. Normal Forms
In this section I show that every wf is provably equivalent to a wf

in normal form. (A is (provably) equivalent to B if ~ A = B).

Preliminarz Results:
LeaDa 1. t-- Q A :::> L - Q A.

Proof. By scheme 4, t- Q A=> L Q A. By 55, it follows that t- M Q A=> M
L Q A. But by 55 again, ~ M L Q A =>Q A. 50 by PC (propositional
calculus) , f- M Q A =>Q A. Hence t-...., Q A :::> L ....,Q A.

Leaaa 2. (The Equivalence Theorem). Let D be the resu1t of replacing a
particul.ar occurrence of A in C by B. Then t- L (A = B) => (C = D).

Proof. First deal with the case when A is the wf C. Then use induction
on the length of C. The case when C is of the form QE requires the use
of scheme 3 and 55.

Use of the Equivalence Theorem will often be tacit.

Reduction of Degree. The IIOdaloperators for 55Q are the symbols L and Q.

(Generally, the modal operators for a system are those other than V or ~).
The IIOdal degree d of a wf is the maximum number of times a modal operator
occurs within the scope of modal operators. More precisely, d (P.) = 0,

1.

d(- A) = d At d(A'v B) = max (d(A), d (B», deL A) = d (Q A) = d(A) + 1.
A wf A is non-iterative if d (A) = 0 or d(A) = 1. In this section, we show
that each wf is provably equivalent to a non-iterative wf.

First we require a lemma. Let A (C) be the result of replacing each
occurrence of B in A(B) by C; and let T be the wf (p1 :::> P1) and 1. the wf,_ T.
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Then:

Lemma 3. If X is a modal operator, t- A(XB):: (A (T) A X B) V

(A (J.) A - X B)

Proof. I shall deal vith the case when X is Q. The case when X is L is

similar. By scheme (4) and S5, f- Q B ~ L (Q B == T). By 18lllDa2 (the

Equivalence Theorem), f- L (Q B == T) ~ (A(Q B) :: A(T».

It follows by PC that (i) J- Q B ~ (A(Q B) E A (T». By lemma 1 and

55, t-- QB ~ L (Q B ;:.L). By lemma 2, t- L (Q B =..L) ~ (A(Q B) E AU»).

It follows by PC that (ii) 1-- Q B ~ (A(QB) E A (~».
Hence from (i) and (ii) by PC,

t- A (Q B) e (A(T) A Q B) V (A (.L.) A- Q B)

Wecan now prove:

Theor_ 1. Each wf A is provably equiv~ent to a non-iterative wf C

whose variables are those of A.

Proof: By induction on the modal degree d of A. For d = 0 or d = 1,

let C = A. For d >1, apply 1.... 3 to all wfs X B of maximummodal

degree in A.

Reduction to Normal Form

Wenow show that every non-iterative wf is equivalent to a wf in

normal form. Normal forms are defined as follows: A state-description

(ad) in the variables R1, R2, ••• , Rm' m~O, is a wi B1 A B2 A ••• A BIl

where Bi = Ri or Bi = - Ri for i = 1, 2, ••• , m. (For. = 0, the
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conjunction B1 ~ B2 A ••• ~ Bm is T).

be the distinct state descriptions in the variables R1, R2, ••• , Rm.

Then a model description (md) in the variables R
1
, R2, ••• , Rm is a wf.

n n
(*) C. ~ A. 1 ~. M C. A A. 1 $. Q C., whereJ 1= 1 1 1= 1 1

each ~. and 13. is -- or blank
J. 1

~. is blank
J

(iii) If 8 is blank, then is blank •. i ~i

First we require a lemma to show that Q can be distributed through
disjunction:

Lemma 4.

~ Q (A V B) ;:= (Q A A L (B ~ A» V (Q B A L (A ~ B»

Proof. ~ S5, ~ L (B ~ A) ~ L (A = (A V B».

So by scheme (3), S5 and PC, (i) ~ L (B ~ A) ~ (Q A ;:= Q (A V B».

Similarly, (ii) ,__ L (A ~ B) ~ (Q B = Q (A V B». Now by scheme (2),

,_ Q (A V B) ~ L «A V B) ::> A) V L «A V B) ::> -- A). But by S5,

l- L «A V B) ~ A) ~ L (B ~ A) and I- L( (A V B) ~ -- A) ::> L (A ::> B).

So by PC, (iii) I- Q (A V B) ~ L (B ~ A) V L (A ~ B).

follows by PC from (i), (ii) and (iii).
The lemma now

We can now prove:

Theorem 2. Any non-iterative wf is provably equivalent toJlor a

disjunction of model descriptions in the variables of A.
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Proof. Suppose QB occurs in A. Then QB is non-iterative and so by PC,

B is equivalent toJL or a disjunction of state-descriptions in the variables

of A. In the former case, by schemes (3)and (1) and S5, QB is equivalent to

JL. In the latter case, by (3), repeated applications of lemma 4, and

PC, QB is equivalent to a truth-functional compound of wfs QC. and non-
1.

iterative wfs LD, where C. is a sd in the variables of A. But similarly
1.

by S5, each non-iterative wf LB is equivalent to a truth-functional
compound of wfs MC .• So A is equivalent to a truth-functional compound of

1.

wfs QC., MC. and the variables of A. So by PC, A is equivalent to..1 or a
1. 1.

disjunction of wfs (*) which satisfy (i). If (ii) is not satisfied, then

(*) is equivalent to JL by S5. If (iii) is not satisfied, then (*) is
equivalent toj_ by scheme (1). Hence by PC, A is equivalent to.l or a

disjunction of md's in the variables of A.

Combining theorems 1 and 2 we obtain the main result:

Theorem 3. (Normal Forms). Any wf A is provably equivalent to.1 or a dis-

junction of model-descriptionein the variables of A.

23. S5Q is Characteristic.
We show that S5Q is characteristic, i.e. consistent and complete. For

completeness we require the following lemma:

Lemma 1. Each model-description has a model.

Proof. Let the md be (*) of §2. We define M = (W, ¢) as follows: W is the

smallest set such that
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(a) (C. , 1) e W if O':i. is blank.a

(b) (C. , 2) e W if 0" is blank and S. is ....; and for (Ci' Ti) € W,~ ~ ~

¢ (Ph' (C.TT)) = t if Ph is a conjunct of C.
~'1 ~

= f otherwise,

i = 1, 2, ..., n, h = 1, 2,

MClearly tre. Ti) Cg iff i = g. Now by condition (ii) for (*), (C ., 1) eW•
J

,,*.,1)
l.

So C .• By (a) and (b), (C., TT) eW for some TTiff ~. is blank. So
J ]. ~

J

~ ) 0'1 M C.•'\C., 1 ].
J

By (a) and (b) and condition (iii) for (*), (C., TT) eW
].

for exactly one Ti iff 8. is blank.
].

Hence ~ (*)
'(C.,1)

J
and (*) has a model.

Now we have:

Theorem 1. f- A iff ~ A.

Proof ~ (Consistency). By a straightforward induction on the length of the

proof of A.

~ (Completeness). Assume not - r- A.

Then by PC, not -~ ....A • JL. So by theorem 2.3,(§2, theorem 3), ....A is

provably equivalent to a disjunction of md's. By lemma 1, anyone of these

md's has a model. So by consistency, ....A has a model and A is not valid.

The finite model property and decidability are almost immediate

corollaries of previQus results. We say that a structure M = (W,¢) is of

cardinality c if card (W) = C. Then:
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Corollary 1. Let A be a wf with m variables.
c ~ 2m+1.

~ il- j, D-S C, ,.., c. )~ (

If A has a model)of cardinality
A

Proof. Suppose that A has a model. Then by theorem 2.3 and consistency, A

is equivalent to a disjunction of md's in the m variables of A. But it should
be clear from the construction of lemma 1 that anyone of these md's has a

model of cardinality c ~ 2m. 2 = 2m+1. So by consistency, A has a model of
cardinality c ~ 2m+1.

Corollary 2. S5Q is decidable.

PrOOf. B,y corollary 1 and theorem 1.

Alternatively theorem 2.1 and 2.2 yield a mechanical procedure for determining
whether a wf - A is equivalent to1or a disjunction of md' s. In the former

case, A is provable; in the latter case, not.

§4. Some Further Systems

1. other axiomatizations of S5Q. Fairly simple arguments show that the

schemes (1) - (4)are independent. However, a more compact though less

perspicuous axiomatization may be obtained by replacing schemes (1) and (2)

by QA :::;, (L (A :::;,B) == -- L (A:::;,.....B» and (3) and (4) by L (A == B) :J (Q A :::l

L Q B). Alternatively, (3)and (4)may be replaced by a rule to infer

A ~ QB from A:::;,(L (B:::lp) E- L (B:J-- p», where each occurrence of a

variable in A is within the scope of a modal operator and where P is a

variable which does not occur in A or B.
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2. The systems S5W, S50 and S5M2.

Suppose we have the following clauses for the unary operators W, 0 and M2:

~ WA iff J! A and for all v in W if v -I w thenW t-w
Mnot _ ~ A.
v

~OA
W

Miff there is at most one v in W such that F; A.
v

~ M2A iff there are at least two distinct v's, v1 and v2, in W such that

~ A and ~ A.
v1 v2

Then corresponding characteristic systems require: for 85W the special axioms
(8 ::> A -:> (_ M~' A -:::> "\,' AJ,

WA ~ A, WA:::>L (~~ Jg)i_andL (A ;;B) ~ (WA ::)WB);

for S50

L ....A ~ OA, OA ~ L (A ~ B) V L(A ~ .....B), L (A =- B) ~ (OB ~ OA) and OA :J LOA;
and for 85M2
MA ~ MA, M (A " B) " M (A ".... B)::::>M2 A,

L (A ~ B) ~ (M2 A ~ M2 B) and M2 A ::::>L M2 Ao

The four operators Q, \i, 0 and M2 are interdefinable according to the

following valid equivalences: M W A;; Q A: (Q A V L_ A) ;;0 A;

- 0 A = M2 A; and A " ....M2 A = W A. Completeness for the three systems may

be proved by normal forms as for S5Q or by defining Q in terms of the

appropriate operator X, deducing the definition of X in terms of Q and the

schemes (1) - (4), and then using the completeness of S5Q.
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*5. References.

The original axiomatizations of S5Q, S5W and S50 are in Prior's

Egocentric Logic. The ideas in that paper stimulated me to write this thesis.

S5Q was shown to be complete, independently, by Bull, Kaplan and myself.

Kaplan and I used essentially the same methods, and I have in places, used
his terminology.
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Chapter 2

THE SYST»1 S5n

In the last chapter we considered a system which contained the notion of

a proposition being true in exactly one world. In this chapter we consider

a system which for each non-negative integer K contains the notion of a
I

proposition being true in exactly K worlds.

§1. The System S5n

The wfs are given by a set Vof variables P1' P2, •••,
the binary operator v, the unary operators ~ and L, for each non-negative

Formation Rules.

interger K the unary operator QK' and parentheses. For K > 0, ~ A is read

as 'A is true in exactly K worlds.'

Transformation Rules. The axioms are: all tautologous wfs; G8del's axiom-

schemes for S5; and five special axiom-schemes for ~, viz.,

(1) ~ A ~ - ~A, K > 1,

(2) ~ == ., Q. (A" B) " ~ . (A" .....B),~ = 0 ~ -~
(3) L (A =B)!> (~ A~ ~ B)

(4) ~ A":) L ~ A, and

(5) Qo A = L- At where K, 1 = 0, 1, 2, ••.

The rules of inference are modus ponens and necessitation.

Instead of scheme (5) we could have used L~ A to abbreviate ~ A.

For schemes (1)- (4)we could exclude the case K = ° since this follows

from 55 and scheme (5).
I Fot' K r~ J<
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Scheme (2) states that A is true in exactly K worlds iff for some

i ~ K, A " B is true in exactly i worlds and A " ..... B is true in exactly

(K - i) worlds.
Semantical Rules. A structure M is defined as for S5Q. ~ A is

W
defined in the usual way with the following clause for ~, K ~ 0:

~ ~ A iff there are exactly K v's in W such that ~A.
v

§2. Normal Forms.
We show that each wf has a normal form.
Preliminary Results. We say that T is an orthodox extension of S5 if

(i) it is obtained by adding new unary propositional operators and

axioms to S5, and
(ii) for each such operator X, and wfs A and B, L (A = B) ~ (X A c X B)

and X A c L X A are theorems of T.
Now the proof of the Equivalence Theorem in Chapter 1 used schemes (3)

and (4), but not schemes (1) and (2), of S5Q. So it should be clear that

the Equivalence Theorem holds for any orthodox extension of S5. By schemes

(3) and (4), S5n is an orthodox extension and so:

Lemma 1. (Equivalence Theorem). If D is the result of replacing a

particular occurrence of A in C by B, then IS5 L (A ? B) :")(C = D).
n

Reduction of Degree. Note that the proof of theorem 1.2.1 (Chapter

1, § 2, theorem 1) also uses schemes (3)and (4), but not (1) and (2), of

S5Q. To reduce the degree of a wf we use the equivalence A (XB) =
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€It ('1') " *" B} 'I' (A( T) " x B) v (A ('.L) ,,~ x B) of lemma 1.2.3. Now

a modal operator or variable occurs on the right-hand side of this equi-

valence iff it occurs on the left-hand side. So it should be clear that

for any orthodox extension of S5 each wf A is provably equivalent to a non-

iterative wf B which has the same variables and modal operators as A.

Define the degree of a wf A of S5n (not to be confused with its modal degree)

as the least positive integer I ~ 1 such that for no K > 1 does ~ occur in
A. Then since S5 is an orthodox extension it follows that:n

Theorem 1. Each wf A of S5 is provably equivalent to a non-iterative wf B
n

with the same degree and variables as A.

Reduction to Normal Form. We now show that each non-iterative wf has a

normal form. Normal forms are defined as follows: Let C1, C2, ••• , Cn be

the distinct state-descriptions in the distinct variables R1 R2
m ~ 0, n = 2m. For K > 1, let ~- A abbreviate ,,~-11- Q.A. M_~- -l{ J.= J. -y-

••• , R ,n
is read as

'A is true in the least K worlds.' Then a model-description (of degree 1~ 1)

in the variables R1, R2, ••• , Rm is a wf
n

C. " s, 1 cy. C. whereJ J.= J. J.

(i) each O!iis QK for some K < I or MI, and

(Yj is not Qo•

First we require a lemma to show that ~ can be distributed through

disjunction:
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Lemma 2. For K ~ 0,

Proof. By scheme (2),

QK (A V B) == V. Q_ «A V B) " A) ""---l.- «A V B) " - A).
l.=0 l. "K

But by S5, t- L «(A V B) " A) == A) and

~ L (A ~_ B) ~ L «( A V B) ,,_ A) = B). The result now follows by the

Equivalence Theorem and PC.

Ve now have:

Theorem 2. Any non-iterative wf A of degree 1 is provably equivalent to

or a disjunction of md's of degree 1 in the variables of A.

Proof. By scheme (5), L B is equivalent to Q ..... B.o So by the Equivalence

Theorem we may suppose that L does not occur in A. Now suppose that QK B

occurs in A, ° < K < 1. Then QK B is non-iterative and so by PC, B is

equivalent toJL or a disjunction of sd's in the variables of A. In the

former case, by S5 and schemes (5) and (1), ~ B is equivalent to T if

K = 0 and to L if K > O. In the latter case, by repeated applications of

lemma 2, QK B is equivalent to a truth-functional compound of wfs ~ Ci'

where h ~ K and Ci is a sd in the variables of A, i = 1, 2, •••, n. So by

the Equivalence Theorem and PC, A is equivalent to J. or a disjunction of
wfs.

n 1-1
( .. ) C - " A_ 1 A 0'- h Q_ C - ,J IU= 'b=O l. ~ l.

where each O'ih is blank or -. Now for each i = 1, 2, •••, n, there are three
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possibilities:

(a) for some distinct g and h, ~ig = ~ih = blank;

(b) there is exactly one h such that ~ih = blank;

and (c) for each h, ~ih = ~ ; g, h = 1, 2, ••• , 1 = 1.
In case (a) (..) is equivalent to 1.by scheme (1).

In case (b),c: ('}IihQh Ci is equival ent to ~ Ci by scheme (1), and by
scheme (5) and S5 the whole wf (••) is equivalent toJL if i = j and h = o.

1-1In case (c), ~:o ('}IihQh Ci is equivalent to ~ Cia So by PC, A is equi-
valent to 1. or a disjunction of md' s of degree 1 in the variables of A.

Combining theorems 1 and 2 we obtain the main result:

Theorem 3. Any wf A of degree 1 is provably equivalent to_l_or a disjunction

of md's of degree 1 in the variables of A.

§3. S5n is Characteristic.

As before, we require the following lemma for completeness.

Lemma 1. Each model-description has a model.

Proof. Let the md be (.) of the previous section. We define M = (W, ¢) as

follows: W is the set which contains the pairs

(a) (Ci, TT)e W for TT = 1, 2, ..., K if (Y• = ~1

(b) (C., TT)e V for TT = 1, 2, 1 if (Y • - ~. and for (C. TT) e W,
1

... ,
1
- ,

1

= f otherwise,

i = 1, 2, •••, n, K = 0, 1, ••• , 1, h = 1, 2, ••••

Clearly, ~ C iff i = g.
I(C., TT) g

1

Now by condition (ii) for (.), (C.,1)eW.
J
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So 'm., 1) Cj •
J

~ (a) and (b) and condition (i) for (*), (C., n) e W for exactly K n's iff~

Hence~, 1)
J

(*) and (*) has a model.

We now have:

Theorem 1. t- A iff ,_ A.

Proof. = (Consistency). Straightforward.
~ (Completeness). As for S5Q.

We note the following corollaries:

Corollary 1. Let A be a wf with m variables of degree 1.

model, then A has a model of cardinality C ~ 1.2m•

If A has a

Proof. This should be clear from theorem 3 of § 2, consistency and the

construction of M in lemma 1.

Corollary 2. S5n is decidable.

Proof. As for S5Q.

24. Some theorems on Definability.

A number-theoretic (nt) relation Rx, x2 ••• xn is one defined on the

non-negative integers. A nt relation R is simple if there is a number 1 > 1

such that for all aj > b > 1 if Ra1, a2 ••• an holds, then Ra1••• aj_1 baj+1•••

a holds, j = 1, 2, ••• , n.
n

The least 1 satisfying this condition is called the degree of the relation R.

Thus a simple relation fails to distinguish between numbers greater than

or equal to its degree. An nt relation R is defined by the wf A(R1, ••• ,
MIf for all models M v (W, ¢) and for all w e W, ~ A(B ,••• , B ) iff
w 1 n

R )
n
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M~- K t where K. = Card (fw e W: F= B.1), i = 1, 2, •••, n.-~1···n ~ w ~.

section we show that a nt relation is definable (by a wf) iff it is simple.

In this

First we require a lemma on reducing models. Let M = (W, ¢) and M' =
(W', ¢') be any two structures. We say that W is identifiable with v in Mt w-

A
Vt if W, ~ e W and for all variables P,

¢ (p, w) = ¢ (pt v).

M' is a substructure of M if W' f: W and ¢' is the restriction of ¢ to V x WI.

Let ("1M = { Y:Y ""'M"}. Then M' is a I-reduction of M ~~ 1, if

(i) M' is a substructure of M

(ii) Whenever Card ( [V MP = K < 1, then [~£ W', and

(iii) whenever Card (~JM) ~ 1, then

Card (OtlM n W') ~ 1.

Thus the I-reductions of a structure fail to distinguish between I or more

truth-functionally identical worlds in the structure. We may now show by an

easy induction on the length of A:

Lemma 1. If A is a wf of degree I and M' is a I-reduction of M, then

~: A iff ~ A for all w' in W' and w in W such that w' -mtl.

We now come to the main result:

Theorem 1. If R is a nt relation, then R is definable by a wf of degree I iff

R is a simple relation of degree I or less.
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Proof. ~ Assume that R is defined by the wf A (R1, R2, •••,
x1' x2···, xn

Rn) of degree 1. We show that R is a simple relation of degree 1 or less.
Suppose that aj > b > 1 and Ra1, a2••• an holds. Define a structure
H = (W, ¢) as follows:

W is the set of pairs (Ri, n) for n = 1, 2, •••, ai' i = 1, 2, •••, n;
¢ (Ph' (Ri, n» = t if h = i

= f otherwise.
Then clearly Card (fw e W: ~ Ri1) = ai' i = 1,2, •••, n. So, by

w
definability, ~ A(R1, R2, ••• , Rn> for all win W.

Now let H' = (W', ¢,) be the substructure of M such that

W' = W - r (R ., b + 1), (R., b +
J J

a l-reduction of H. So, by the
2), ••• , {Rj, aj)1. Then clearly H' is

H'lemma, t=;, A (R1, R2, ••• , Rn) for all w'

in W. But clearly,
..;' = ai if i I jCard ([w c W': R })i = b otherwise.

So by definability, Ra1 •••aj_1 baj+1 ••• an and R is simple and of degree

1or less.
• Assume R is simple and of degree 1. We prove by induction on the

number of arguments n of R that R is definable by a wi of degree 1.

Case 1. n = 1. Suppose R~{O, 1, •••, 1-1) = {a1, a2,•••, am}.

Then either Rx holds if x c {a1, a2, •••, am}' where am say is 1-1 since
R is of degree 1, or Rx holds if x c {a1, a2, •••, am} U {K : K ~ l}.

In the first case, R is definable by V:=1 Qai P, and in the second case
by vf=1 Qai..P1 V ~ P1. In both cases the wis are of degree 1.
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Case 2. n > 1. Since R is simple, Rx1 x2 ••• xn holds iff

x1 = k , Rk x2 ••• xn' x1 > 1and Rl x2 ••• xn are simple and of degree 1
or less. So by case 1 and the induction hypothesis these relations are
definable by ~ P1, ~(P2' •••' Pn), Ml P1 and B(P2, •••, Pn) of degree 1 or

less respectively. So Rx1 x2 ••• xn is definable by v!:6 (~ P A ~ (P2,•••

Pn» V M1 P1 A B (P2,•••, Pn), which is of degree 1.

Finally, if B of degree K defines R of degree ~ K < 1, then B V M:t
(jL) defines R and is of degree 1.

We note two corollaries:
Coroll..ary1. ~ P is not equivalent to a wf B of degree K ~ 1, 1 ~ 1.

Proof. Assume otherwise. Then B defines x = 1. So by the theorem x = 1
is a degree K or less, K < 1. But x = 1 is of degree 1 + 1.

Corollary 2. The following nt relations are not definable in S5n: x = y,
x < y, x is even, x is prime, x = y + 1 etc.

Proof. By theorem 1, since none of these relations is simple.
I have not considered modal systeas Whose wfs define non-simple nt

relations.
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§5. Predicate Calculus Analogies.

The operators ~ (~) are analogous to the quantifiers "there are

exactly (at least) k individuals such that". In this section we show

that 85 and a part of quantification theory with these quantifiers aren
intertranslatable.

First we define Fe, the first-order functorial calculus li.th equality:

FormationRules. Wfsare defined in the usual way from sets F. of
1

predicate letters, r;, ~, ... , i = 1, 2, ••• , the symbolfor equality =
the individual variables x1, x2' ••• , the quantifiers (xi)' the truth-

functional connectives V and ....., and parentheses.

Transformation Rules. The axioms consist of specification, dis-

tribution and vacuous quantification for the quantifiers, i.e.

(x) ~ (x) ~ ~ (y), y free for x in ~ (x),

(x) (~-=:J.f:J ::> (x) ~::> (x) 1- and
~ -=:J (x) SI, x not free in ¢.

respectively; and for equality, the axiomx = x and the schemex =
y ::> (~ ::> 1-), where~ is the result of substituting free y for free x in ¢.

The rules are modusponens and generalisation (AI(x) A).

Semantical Rules. A (quantification) structure Q. is an ordered pair

(D, (~i»'whereD is a non-emptyset and (¢i) is a set of maps¢i

fromFi x Di into

{t, f}, i = 1, 2, •••

i __

(Di =<;"; D x ... ~.

With each structure Q, = (D, (¢.» is associated a unique relation
1

I=t ¢ betweenwfs and infinite sequences of elements in D according to
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the following rules:
Q,.

(i) ~ r. x. x. x. iff (Sk '
S J K1 K2••• Kn 1 ...,

(ii) ~ XJt = '1c iff ~ = Sk
S 1 2 1 2

(~ is the _-th term of the sequence S).

(iii) ~ .....¢ iff not - ~ ¢
S S

(i v) tt (¢ V +> iff tf ¢ or ~ I-

(V) ~ (xi) ¢ iff for all sequences t such that t j = Sj for all

j I i, \=f ¢.
Wemay also add the quantifiers (~k x) and (~ x) to Fe with the

following clauses:

..t (:11 x.) ¢ iff there are exactly k t's such that t.
S It l. J

j I i and ~ ¢, and

~ (~ Xi) ¢ iff there are at least k t's such that tj

j I i and ~¢.

= S. for all
J

= s. for all
J

As is well known, (~ x) and (\ x)may be defined in Fe by the

follow:i.ng valid equivalences:

(io x) ~ (x) = T;
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for k > 0, (~ x) ~ (x) E (~Y1) ~Y2) ••• (~Yk)

[ "15, i;'j 5, kN(Yi = Yj) A ~=1 fj (Yi)J;
and for k > °

where Y1' Y2' ••• , Ykare the first k variables which are not free in fi (x).

If the symbol and axioms for equality are omitted from FC, then the

quantifiers (~x) (or (~ x» may be added as primitives with appropriate

axioms. I do not consider this problem.

If we omit all variables except x (= x1) and all predicate letters

except f1, f2, ••• , then we obtain a theory isomorphic with S5n• For let

TAbe the result of replacing Pi by fi x , L by (x}, and ~ by (~ x).

Then we may prove:

Theorem1. A is valid iff TAis valid.

Proof. Clearly, we maysuppose that a quantification structure for TAis an

ordered pair (D, ¢1)• Wemay then set up a one-one correspondence M.. lim
between modal and all such quantification-structures: given M= (V, fi),

let a. = (W, ~, where for all win W,~ (Pi' w) = fi1 (fi'~' i = 1,2, ••••

Thenwe showby an easy induction that for all w in W,

~A iff ev TA.

The theorem nowfollows.

Let the axioms for our quantification theory be TAwhere A is an axiom
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of S5n and let its rules be modusponens and generalisation. Then

Theorem2. A is a theorem iff TAis a theorem.

Proof. By an easy induction on the length of the proof.

From theorems 1 and 2 and the fact that S5n is characteristic, we

obtain

Theorem3. For any wf ~ of our quantification theory, ~ is a theorem iff

~ is valid.

§6. SomeFurther SyStems.

1. Other Axiomatizations of S5n.

As for S5Q, schemes (3) and (4) maybe replaced by L (A :: B) :::>

(~ A :::> L ~ B). The single distribution scheme (2) maybe dropped

in favour of several simpler schemes, e.g.,

~ A ::) {=o ~ (A " B),

~ (A " B) " \:-i (A~"'B) ::> ~ A and

~ (A " B) " ~ A ::)~-i (A " - B), i oS Ie.

2. The SyStemS5n with "leI Ok and '\c as primitive.
Suppose we have the following clauses for the unary operators

~, Okand~, k = 1, 2, ••• :

~ "k A iff ~ A and there are exactly k v's in Wsuch that ~ A

~ OkA iff there are at most k v's in " such that ~ A
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..: MY( A iff there are at least k v's in W such that ~ A.

The corresponsing characteristic S,ystems require: for S5n with Wk the
kspecial axiom-schemes B A Wk A = Vi=1 Wi (A A B) A M Wk_i (A A - B),

L (A E B) ~ (Wk A ~ Wk B) and Wk A ~- M WI A, 1 < k, where IWoAI abbreviates
'L ,... A' ;

for S5n with Ok the schemes Ok A ~ 01 A, k < 1, Ok A = ~ 0. (A A B) A- 1=0 1

where '0 A'o

abbreviates 'L,...A';

and for S5n with K the schemes Mk A ~ Ml At k > 1, K A = ~ M.(A A B)-K - k 1=0 1

A ~-i (A A ,...B), L (A ;;;B) ~ (~ A ~ ~ B) and ~ A ~ L ~ A, where 'M
1

A'

and 'M A' abbreviate 'M A' and 'T' respectively.o

The completeness of the systems may be proved by normal forms as for

S5n with~. On the other hand, since the operators ~, Wk, Ok and ~

are interdefinable, the completeness of one system may be reduced to that of

another by means of appropriate definitions.

The new systems can be re-axiomatized in various ways. E.g., the third

scheme for the Ok-system may be replaced by 0. (A A B) A Ok . (A A ,...B) ~
1 -1.

Ok A, i ~ k, and Ok A ~ 0i (A A B) V 0k_(i+1) (A A,...B), i < k; and the first,
second and fourth schemes for the ~-system may be replaced by the single

scheme

L (A::>B) ~ (~ ~ L l1. A), 1 ~ k,



- 25 -

3. Some Subsystems

It should be clear from the completeness proof for S5n with ~

that in proving a wf of degree 1, ~ 1, we need only use axioms of degree 1

or less. So if we restrict wfs and axioms to those of degree I or less we

obtain a characteristic system whose unary operators are L, Q1' Q2' •••, ~-1·
This raises the following problem:

Suppose K is any set of positive integers. What is a characteristic

system for wfs A such that ~ occurs in A iff k e K? A general yet elegant

solution to this problem would raise formidable combinatorial difficulties.

In case K = f21, the following axiom-schemes suffice:

~ A:::l M At

~ A " ~ (A V B) :::l L (B :::l A),

~ A:::l (L (A:::l B) V L (A:::l~ B) V L(A" B:::l e) v L (A" B ~~ e»,
»)1\ " L (A J-VC)

Q2 (A V B) " Q2 (c VAM A " M B "fife" M D " L (A ~ ~ B) r; L (e :::l ~ D) A

:::l Q (A V e),
2

L (A == B) ~ (Q2 A ':)Q2 B) and
I omit the proof that the system is characteristic.

Systems with Infinitary Operators

Suppose we have the following clause for the unary operator M where cc

is any infinite cardinal:

1l! M A iff there are at least c v's such that L..!i Arw c ~ •

Let e be a set of infinite cardinals. Then if we add M for c e C toc

S5n with ~ we require the following additional schemes:
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M A::lM iii A, 1I < c ,c

M A = l4 (A" B) V M (A" '"'"B),c - c c

M A::lL M A, c € C, ~ € CUr 1, 2, 3, •••}.c c

The proof of completeness assumes that for infinite cardinals c and ~,

c + d = max (c, d). This may be proved using the axiom of choice.

The system with 0 is similar. The systems with W and Q are morec c c
complicated.

§7. References

Kaplan has constructed and proved the completeness of S5n with ~ and

~ independently from this author. See his abstract Multiple Possibility.

Tarski introduces the quantifiers (3k x) and UIk x) in his Introduction to

Logic. He calls them 'numerical quantifiers.' The operators ~ and ~ might,

by analogy, be called 'numerical modalizers'.

Kaplan uses t for ~ and 6k for ~. Mostowski USeS (Q x) for (3 x)c c

where c is an infinite cardinal.
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Chapter 3

THE SYSTEM S.5rr+

The operators ~ cannot be defined in terms of L, but they can be

defined in terms of L and proposi tiona! quantifiers. E.g., Q. A may be

defined as MA A (p) (L (A ~ p) V L (A ~ - p», where P is not free in A.

So in this chapter I consider a system obtained by adding propositional

quantifiers to S5.

§1. The SystemS5n+

Formation Rules. The wfs are given by a set V of propositional

variables Pl' P2' ••• , the binary operator v, the un.a.ry operators - and L,

the quantifiers (Pi) for i = 1, 2, •• , and parentheses.

Transformation Rules. The axioms are: all tautologous wfs; Gl:$del's

axiom-schemesfor 85; specification, distribution and vacuous quantification,

i.e. (P) A (P) ~A (B), where B is any wf free for P in A (p),

(p) (A ~ B) ~ (P) A ::::> (p) B and A ~ (p) A, where P is not free in A,

respectively; and a special axiom (~ P1) (P1 A (P2) (P2 ~ L (P1 ~ P2»)

which we call g.

The rules of inference are modusponens, necessitation and generalisat-

ion (A/(P) A).

Semantical RuJ.es. A structure Mis defined in the usual way. However,

in the definition of ~ A we require a clause for the quantifier (p).
w

Given a structure M= (W, ~ we say that the structure M' = (W', ¢') is a
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MP structure if WI = W and for all R distinct from P and for all w e W,

~ (R,w) = ~I (R,w).
Then

. M M'Fw (p) A iff for all M P structures MI, Fw A.

§2. NormalForms

Wesbal.l show that each wf is provably equivalent to j_ or a disjunction

of model-descriptions as defined in Chapter 2.

Preliminary Results.

Lemma 1. (Equivalence Theorem). Suppose that D is the result of replacing

a particular free occurence of A in C by a free occurrence of B. Then

l-- L (A == B) ::) c == D.

Proof. By induction on the length of C. Use generalisation, distribution

and vacuous quantification for the quantifier case.

Lemma 2. (The Barean FormuJ.a)

I- (P) L A ~ L (p) A.

Proof: By specification, t- (p) A ::)A. By S5, J- M(p) A~ MA.
c,

ByGen, Dis. and Vac. Quant., (i) M(P) A ::) (p) MA is ~ theorem.

Nowby 85, I- (p) LA::) L M(p) L A. But by (L) and S5, \- L M(p) LA::)

L (P) ML A; and by 85, Gen and Dis, t- L (P) ML A~ L (p) A. 80

t-- (p) LA:) L (P) A.

A wi is modally closed if any occurrence of a variable of the wi is
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within the scope of L.

Then:

Lemma 3. (Vacuous Modality). If A is modally closed, then I-- A ::::I L A

Preof. B.y induction on the number of quantifiers and truth-functional

operators which do not occur within the scope of L. Lemma 2 takes care

of the quantifier case.

The Extension S5U±'. We use the following abbreviations:

Q A for M A A (p) (L (A ~ p) V L (A ~~ p»,

where P is the first variable not free in A;

TAB for Q A A L (A ~ B);

(~ R) A (R) for T if k = 0, and for (~ J;) (~R2) ••• (~~)

A ~=1 A (Ri)] if k > 0, where R1, R2, ••• , ~ are the first k distinct

variables not free in A (R);

We define an extension S5n+' of S5n+ by adding the unary operators

~ and the axiom-schemes

~ A ~ (~ R) (T R A), k = 0, 1, 2, ••• t

The semantical clauses for ~ are as in the last chapter.

We show that n+ is characteristic by showing that n+' is characteristic.

(When no ambiguity can arise, we shall often drop the prefix 'S5').

The Derivation of F.e. We show that if a wf of n+' is quantification-

ally valid, then it is a theorem. We say that a wf of n+' is a simple
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instance of a wf ¢ of Fe if for each predicate letter f of n arguments in ¢
there is a wf of n+' B (R1, R2, ••• , Rn) with exactly n distinct free

variables R1, R2, ••• , R and with no quantifier (P.) where x. occurs in ¢,n 1 1

such that A is the result of replacing (x.) in ¢ by (P.), x. = x. by
1 1 1 J

L (P. ;:P.) and f~ ~ ••• ~ by A (PI: ' Pk ,••• , Pk). C is an instance
1 J 12 n 12 n

of ¢ if it is the result of replacing free variables in a simple instance

A of ¢by free wfs. Now

Theorem 1. If ¢ is a valid wf of Fe and C is an instance of ¢, then C is a

theorem of n+'.

Proof. Suppose C is obtained from a simple instance A of ¢as above.

Now if ¢ is valid, then ¢has a proof in F.C by completeness. By the

rewriting of bound variables, we may suppose that if JC. is free in a wf of
1

the proof and x. is not free in ¢ then P. does not occur in A. We may then
1 1

replace each wf of the proof by the simple instance in which B(R1, R2, ••• ,

Rn} replaces f to obtain a proof of A in S5n. The proof is by induction:

all the rules and axioms except the scheme for equality are trivial; for the

latter, use lemma 1. Now if A is provable, C is provable by generalisation

and specification.

In what follows, use of theorem 1, especially for rewriting bound

variables, will often be tacit. Also 1 adopt two conventions: variables

exhibited in a proof are distinct; bound variables exhibited in a proof are

not free in an exhibited wf unless otherwise indicated.

The Derivation of S5n. We now show how to derive S5n within n+'. Note

that by previous definitions, if A is an instance of ¢, then (~kPi}A is an
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instance of (~ xi) ¢ and (\: Pi) A is an instance of 'k xi) ¢.

Lemma 4. The following schemes are theorems of 11+':

( 1 ) ~ A :::> - ~ A, 1 < k,

k(2) Q A == V. Q. (A A B) /\ Q_ • (A /\ ,... B),
~ 1=0 1 ~-1

(3) L (A == B) :::> (~ A ~ ~ B),

(4) ~ A ~ L ~ A and

(5) Q A == L - A, 1, 1 = 0, 1, 2, •••o

Proof.
(1) abbreviates to (~P) (T P A):::>- (~P) (T P A).

But this is an instance of the valid wf:
(~ x) Rxy :::>,... (~x) R x s-

(2) abbreviates to:
(i) <!1ft p) T P A == ~:zo (~ p) TP~ /\ B)/\ ~-i p) T PtA /\ ,... B}

We may prove without difficulty:
(ii) (p) [T P A == T P (A /\B) V T P (A /\,...B)]-
But (ii) ~ (i) is an instance of the valid wf:
(x) [R x y == R x u V R x V] :::> r(~ x) R x y

== ~ (~. x) R x u A (~ . x) R x s ] •1=0 ~ ~-1

(3) follows by lemma 1
(4) follows by lemma 3
(5) B,y P.o. it suffices to show

(~ p) (Q PAL (p ~ A» == M A. Now Q P :::> . M A by P C and the



- 32 -
definition of Q. Since P is not free in A, it follows by F.C. that
(1) (I P) (Q PAL (p ~A» ~ MA.

Write Q' (P) for P A (R) [R ~ L (p ~ R)J.

Then for the converse we first show that (ii)
r- Q' P ~ Q P. By Fe, 1-Q' (p) :::>(R :::> L (P:::> R» and J- Q' (P) :::>

("'"R ~ L (p ~ "'"R». So by PC and Fe, I- Q' (p) ~ (R) rL (P::::>R) V L (p ::::>
- R)J. But by S5, 1- Q' (p) ~ H P and (i1) follows.

Now by (ii) and FC, t- A::::>[Q' P:::>(Q PAL (p ~ A»]. So by

Fe, f- A:::>[ (l' p) Q' P ~ (~p) (Q PAL (P:::>A»]. Butk~ p) Q' P by g.
So (iii) t- M A ~ (l' p) (T P A) by the Barcan Formula Lemma. (5) now
follows from (i) and (iii).

We now obtain:
Theorem 2. If A is a valid wf or a theorem of S5n, then A is a theorem of
TT+' •

Proof. From the fact that S5n is characteristic and lemma 4.

Reduction of Qaantifier-free wfs. By theorem 2 and the normal form
theorem for S5n, we obtain:

Theorem 3. Any quantifier-free wf A of TT+' of degree 1 is equivalent to
or a disjunction of md's of degree 1 in the variables of A.

Elimjnation of Quantifiers. We now show that each wf (l' p) D, where D
is a md, is equivalent to a quantifier-free wi. The proof requires three
lelDaS: the first shows that (:!J: p) can be distributed through certain
conjuncts C of D; the second deals with the case when C is modally closed;
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and the third with the case whene is not modally closed.

Lemma5.(On Incompatible Cases). Suppose there are wfs A., i = 1, 2, •• 0, m
1.

of A such that wheneverP occurs free in A it occurs as part of a free wf

of the form Ai A P or Ai A - P; and suppose that there are wfs Bj ,

j = 1, 2, •••, n, such that wheneverP occurs free in B it occurs as part

of a free wf of the form B. A P or B. A P. Then if for all i and j,
J J

f- A.::) ....B., then I- (3p),q 1\ (3 P) 8 = (3 t=) ( R 1\ e)"
1. J

Proof: 4= ByFe.
~ Let R and S be two distinct variables which do not occur in A

or B; and let e be the wf (R A r:~i) V (S A vj=1 Bj).
provably equivalent to

Then A. A C is
1.

A. A (R A ~ 1 Ai) V Ai A (5 A ~ 1 B.) by PC. But A. A (R A v~ 1 A.) is
1. 1.= J= J 1. 1.= 1.

equivalent to Ai A R by PC, and Ai A (S A ~=1 Bj) is equivalent to _l_
by PC given \-- A. ::)- B. for all j. So Ai A e is equivalent to A. A R.

1. J 1.

A. A - 0 is equivalent to A. A (-R V A~ 1 - A.) A (~S V .....~ 1 B.) by PC.
1 1 1= 1 J= J

But A. A A~ 1 - A. is equivalent to.L by PC, and A. A (- S V V~ 1 B.) is
1 1= 1 1. J= J

equivalent to A. by PC given t- A. ::) .....B. for all j. So A. A ....0 is
1 1. J 1.

equivalent to A. A - R. Similarly, Bj A 0 is equivalent to B. A S and
1 J

B. A - 0 is equivalent to B. A - S.
J J

Write A as A (P), B as B (P). Then ~ A (R) ::> A (e) and

l- B (8) ~ B (0) by the above paragraph and the equivalence theorem. So

by FO, t- G! p) A A (:! P) B ::> (:3: P) (AAB).
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Lemma6. The following schemes are theorems of TT+' :

(1) (~ p) (~(A A p) A Mn (A A - P» == Mm+nA

(~ p) (M (A A P) A M (A A - P» == M Am n m+n(2)

(X p) (~ (A A P) A ~ (A,,- p» == ~+n A,

m, n 2: o.

Proof: ,., (1) Let (i) be the wi 'lu. (A A p) A Mn (A A - p). Now(i)

~ M A is valid. So by theorem 2, J- (i) ~ M A. So by FC, .- ca P)m+n m+n
(L) ~ M A.lI+n

(2) and (3). Similarly.

(1). Intuitively, this is obvious. Suppose A is true in the distinct

worlds R1, R2, ••• , Rm+n. !hen let P be R1 V ••• V Rm. However, the formal

proof is a little messy.

The following is a valid wf of S5n:

A ~ L (Ri E! Rj> A Am~n1T R. A::>[A ~ L (Ri == R.) A~=1 T Ri (A A V~=1
1<i<J,Sm+n lli._ l. '1<:L<J<lI1 J

Ri)] A - [A - L (Si :e S.) A '~:11 T S. (A A 'F._1 R.>]
1-1. 1 J ''1- 1 1- l..::t-<J<lIl+

So by theorem 2 it is a theorem. Let B be its antecedent, C = C (~=1 Ri)

the first con~ct of the consequent and- D = -D (~=1 Ri> the second.

(If m + n = 0, B is T and if II is 0, 0 is T and ~=1 R is-L->.

!hen it follows by Fe that

\- B ::> - (~ S1) ••• (~ S m+1) D, so f- B ~ (iP) [0 (p) A - (:lrs1>.··(:l£ S1I+1>

D (P)]
But ~ (~R1) ••• ca Rm+n>B::> (~P> [(i R1> ••• (~Rm> 0 (P) A - (181) •••

(!8m+1> D (P>].
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By Fe, ~ A = "i=o ....~ (A) is equivalent to (~R) (T R A). So this

last wf is equivalent to Mm+nA ~ (~ p) ~ (A " p). Nowby S5n and

theorem 2,

f- M A ~ (0 (A" p) ~ M (A" ~ p». So by Fe,m+n ~ n

f- Mm+nA ~ (ip) (~ (A " P) " Mn (An"" P».
(2) By S5n, I- ~ (A " p) ~ Mm(A " p)

So (2) follows from (').

(3) By S5n, t-- ....Mm+n+1A ~ [Mm(A " p) " Mn (Af"" p) ~ -- Mm+1(A " p) " --

M 1 (A "P)]. So (3) follows from (1) by F.C.n+

LeIllllB. 7. '!'he following schemes are theorems of T1'+':

(1) A ~ (Ip) « A" p) "Q1 (A" p»,

(2) (iP) «A" p) ,,~ (A" p) "Mn (A" -p» e A" Mm+nA,

(3) (:I p) «A" P) "M (A" p) "M (A" .... p» II! A " M A,m n m+n

(4) (~P) «A" p) ,,0 (A" p) "M (A" --p» E A " Q A,~ n ~+n
and

(5) (i P)«A " p) " M. (A " p) " Qn (A " ....p» == A " M A.m+n

m> 0, n ~ o,

Proof.

(1) First we show that (i) }- Q P ~ Q1 P.

By PCand 85, f- Q P ~ T W. So by FC ,_ Q P ~ (:I R) (T R p). By Fe,
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Q P " T R P provably implies L (R ~ ». MR and L (p::,) R) V L (p ::') .....R) •

But by 55, f- L (R::') P) " L (p ~ ....R) ::')....M R. So by PC and 55,

t- Q P " T R P ::') L (p = R) • It follows by 85 that ~ Q P " T R P " T S P

::')L (R :;;8). So by Fe, ~ Q P ~ .... (:B:2 R) (T R p).

We now prove (1). By (i) and (ii) in the proof of (5) of lemma 4,
\- A ::') [Q I p ~ (A " p) " Q1 P]. By F.C, t- A ::') (Q I P::') L (P::> A», and

by 85 t- L (P ::')A) ~ L (P = A " P). So by the Equivalence Theorem,

t- A ::') [QI P::) (A " p) " Q1 (A "P)]. So by Fe. J- A ::') [(:B: P) Q' P ~

(~p) ((A" P) " Q1 (A "P». But t-- (~ p) Q' P by g and so (1) foll.owe.

We can now prove (2) - (4).

~ By S5n as for l.emma 6.
(2). By (1), l- A ~ (~ p) ((A " p) "Q1 (A" p».

By S5n and theorem 2,

(ii) L M A " Q1 (A " p) ::')M 1 (A " ....p) •r-- m+n m+n-

So by (i), (ii) and Fe,

(iii) l- A " Mm+nA ::') (~ p) «A" P) " Q1 (A " p) " Mm+n-1 (A " .....P»

By (1) of l.emma 5,

(iv) r- MII+n_1 (A " .....p) ::')(~R) (~-1 (A " .....P " R».

By S5n and theorem 2,

So by (iii), (iv), (v), PC and Fe,

~A" M A ~ (~P) «A" p) "Q (A" p».Dl+n --m

But by S5n and theorem 2 again,
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L_ M A ~ (0 (A" p) :::l M (A" .....~).r+ m+n""m n

80 l- A " M A ~ (3: p) «A " p) " ~ (A " p)8+n ...
JII~~

(3) and (4) follow from W as in lemma 6 ..
f\

" Mn (A " .....p».

(2) and (3) follow from (1).

(5) By (2) ._ A " 1-1 A:::l (g p) (p s 0 1 (A " p».
'm+n ""n+

By (4), .-- p " ~+1 (A " p) :::l (~ R) rp " R " Q1 (A " P " R) " ~ (A " P ,,-

R)J.
But by 85n,

and

l- ~ (A " (p " - R» :::l ~ (A " - (- P V R».

The result now follows by Fe.
Note that in the proofs of (1) - (5) we do not apply necessitation to

any wf depending upon g. In other words, (1) - (5) are deduced from g.

We now come to the theorem:

Theorem 4. If D is a model-description of degree 1, then (:Ef P)D is

equivalent to a quantifier-free wf of n+' of degree 21 whose variables are
those of D other than P.

Proof. nLet D be the md C. " A. 1 n. C. as in §2 of Chapter 2.J ~. ~ ~ If P does
not occur in D, then (3P) D is equivalent to D and the proof is trivial.

Let E be the result of replacing P in D by ,."P and ....p by P. Clearly E is

a md, and by .Fe and the Equivalence Theorem, (~) D is equivalent (g p) E.

So we may suppose that P is R sa::! and that R is a conjunct of C .•
m m J
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2m-1 , . t . bNow let D1, D2, •••, Dn" n' = , be the sd s 1n he var~a les

R1, R2t ••• , Rm_1• Then D is equivalent to the wf:

where

D AP=C.,
g J

Y -,.., if Dh A .... P = Cl..' and 8g I Qo'h - v·i

h = 1, 2, ••, n' and i = 1, 2, •••, n.
Now by lemma 6, (~p) (*) is equivalent to (~ p) reD A p) A Ag (Dg AP) A, g

] n' r ]Yg (Dg A ....p) A ~h=1 (~p) .8h (Dh A p) A Yh (Dh A - p)
¥g

The first conjunct of this wf is equivalent to a quantifier-free wf without

P by lemma 7, (2) - (5). The other conjuncts of the wf are equivalent to

quantifier free wfs without P by lemma 6, (1) - (3). So (g p) D is equivalent

to (~p) (*), which is equivalent to a quantifier-free wf without P.
We come now to the main result.

The guantificational degree of a wf is the maximum number of times a

quantifier occurs within the scope of a quantifier. More precisely, ~ (P.) =
l.

0, ~ c, A) = r, (A), ~ (A" B) • max {~(A), & (B» and 0 «:B: P.) A) ,. 0 (A) + 1.
1

Then:

Theorem 5. (Normal Forms) Suppose A is a wf of TT+ of quantificational

degree 0, then A is provably equivalent to.l. or a disjunction of md' s of

degree 20 in the free variables of A.
Proof. B.y induction on the quantificational degree 0 of A. If 0 := 0, then
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use theorem 3. Suppose 0 > O. Then A is a modal compound of variables

and wfs of the form (~ p) B. B,y the induction hypothesis, B is equivalent
I D 0-1to~ or a disjunction D1 V D2 V ••• V g of md's of degree ~ 2 in the

free variables of B. In the former case, (~p) B is equivalent to_j_ •

In the latter case (~ p) B is equivalent to (~ p) D1 V (~ p) D2 V ••• V

(~ p) D. But by theorem 4, each of these disjuncts is equivalent to
p

_l_ or a quantifier free wf of n+' of degree 2.2°-1 = 2° in the free

variables of (~ p) B. So the whole wf A is equivalent to a quantifier-free

wf of degree 2° in the free variables of A. The theorem now follows

by another application of theorem 3.

§3. S5n+ is Characteristic.

Lemma 1. Each model description has a model.

Proof. This is lemma 2.3.1.

Theorem 1. For any wf A of rr+',

1;;. A iff t- A.

Proof. = (Consistency). A straight forward exercise. Eg to verify
(p) A (p) ~ A (B), B free for P in A (p), we show by induction on the

length of the wf A (p) that if M' is the M P structure such that

t!:. ~~ P iff rv B for all W e W and B is free for P in A (p), then ~' A (P)
W

iff ~ A (B). The reader may also verify that the equivalence ~ A _

(3k R) (T R A) is valid.
(Completeness). Any wf A of n+' is equivalent to a wf of n+ by
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the equivalence for ~ and the Equivalence Theorem. We may then use theorem

2.5, lemma 1 and consistency.

If A is a wf of n+, then any proof of A in n+' may be converted into

a proof in n+ by replacing ~ A by (~k R) (T R A). So 1=-, A iff j_ A.
rr+ 'n+

Hence

Theorem 2. For any wf A of n+, ~ A iff L- A.n+ r-

Corollary 1. Suppose A is a wf of n+ with m free variables of quantificat-

ional degree 0. Then if A has a model, A has a model of cardinality
c ~ 20. 2m.

Proof. B.y theorem 5 of §2, consistency and corollary 2.3.1.

Corollary 2. S5n+ is decidable.

Proof. By corollary 1. Alternatively, theorem 2.5 and the preceding

theorems and lemmas of §2 yield a mechanical procedure for determining

whether a wf~ A is equivalent to_l_or a disjunction of md's. In the

former case, A is a theorem; in the latter case, A is not a theorem.

We note two further corollaries of previous results, one on definability

and the other on fragments:

Corollary 3. A nt relation is definable in n+ iff it is simple.

Proof. With an obvious adaption of definitions from theorem 2.4.1, theorem

2.5 and consistency.

Corollary 4. If A is a vf of S5n, then

'S5n A iff 1;;. A.
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Proof. From the fact that S5n is characteristic, that n+' consistent and

theorem 2.2.

Corollary 3 shows that very little arithmetic can be developed within

n+. Corollary 4 shows that n+' is a conservative extension of n+. It

will be strengthened later in section 5.5.

§4. The System S5q+*
The system n+* is the result of replacing specification in n+ by

Restricted Specification, i.e. (p) A (p) ~ A (B), where B is a wf of PC

(the propositional calculus) free for P in A (p). We now show:

Theorem 1. 1- A iff L.....; A
In+ 'n+*

Proof. ~ theorem 3.2, it suffices to prove theorem 3.2 for n+*. This

calls for a modification of §2. I sketch the details.

Lemmas 1, 2 and 3 do not use Specification and so hold for n+*. Theorem 1

holds for n+* as long as C is the result of replacing free variables in a

simple instance A of ¢ by free wfs of PC. So lemma 4 holds as long as A and

B are PC wfs. An analysis of Chapter 2 shows that given lemma 4, theorem 2

and hence theorem 3 still hold. Lemma 5 holds as long as the A. and B.
l. J

are PC wfs. Lemma 6 and 7 hold for PC A and so theorem 3 holds.

Theorem 4 now follows.
I have not been able to find a direct derivation of Specification from

Restricted Specification.
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§5. Predicate and Boolean Analogies.

Let P be the system obtained from Fe by dropping = and all non-
+

monadic predicate letters and adding quantifiers and Specification,

Distribution, Vacuous Quantification and Generalisation for monadic predicate

letters. Thus P is the singularly second-order predicate calculus.+
Identity may be defined in P by (f) (f x ~ f y).

+
We interpret the f's

as ranging over all properties. So the definition of validity in chapter 2.5
may be extended to P in an obvious way.

+

We now introduce two translations T and T':
•Translation T from n+ into P~ --

(i) T (P.) = f. x1, i = 1, 2, •••,~ ~

(ii) T (~ A) = - T (A),
(iii) T «A V B» = (T (A) VT(B»,
(iv) T «P.) A) • (f.) T (A), i = 1,2, •••, and

1 ~

Translation T' from P.into ~

(i) T' (f.x.) = L (R. ~ P.), where the R. are fresh distinct variables
1 J J ~ J

i, j = 1, 2, ••••
(ii) T' (_~) = _ T' (~),

(iii) T' «~ V+» = (T' ~) V T' (+»,
T' «f.)~)

1

T' «x.)~)
J

= (P.) T' (~), i = 1,2, •••,
1

= (R.) (Q R. ~ T' (~», j = 1,
J J

and

(v) 2, ••••

The tvo translations may be used to derive completeness or decidability

results for one system from those for the other. As an example, I prove

the completeness of n+ from the completeness of P •+ First, we require
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three lemmas:

Lemma 1. If 'n+ A, then F= T (A).
+

Proof. ~ an appropriate induction (cf. theorem 2.5.1).
Lemma 2. \;; Q R1 :::> ~ L (R1 ::JA) == T' T A]

Proof. ~ induction on the ~ength of A. This is'straight forward once

we establish that the following are theorems of n+:

(i) Q R ~ lL (R ~_ A) :::_ 1 (R ~ A)] ,

(ii) Q R::J [1 (R::J (B V C» :::(L (R::J B) V L (R ~ C»],

(iii) (R) (Q R ::J1 (R::J A» :::1 A.

(iv) Q R::J ~1 (R ~ (P) A) :::«p) L (R::J A»], R not free in A.

If A is a wf whose free variables are Pk ' Pk '
1 2

..., Pk ' let..c A
n

be the wf Q Pk A Q Pk A ••• A Q Pk • Then
1 2 n

1emma 3. If ~ ¢, then t;;; .r T' (¢) ~ T' (¢).
+

Proof. ~ induction on the length of the proof in ¢ in P. For Specification+
on individual variables the use of.r T' (¢) is essential. The one tricky

case is Specification for predicate letters. For this it suffices to show

that for any wf ¢(~of P+ there is a wf B of n+ whose free variables

are those of T' (¢(x.» but without R. such that:
J J

'= Q R. ::Jr 1 (R. ::JB) ;c T' (¢ (x.»] •rr+ J t., J J

This may be proved by induction on the length of ¢ (x.) or more directly
J

with the help of lemma 2.
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Completeness is now straight forward:

Theorem 1. If e A, then t+ A.

Proof. Assume f;: A. By lemma 1, Jp
+

By the completeness of P+' \p- T (A).
+

i.e. t;:;; Q R1 ~ T' T (A). By lemma 2,

T (A).

By lemma 3, In+..r T' T (A) ::) T'T A

By rr+s

\;; A.

In the same way, we may set up a correspondence between n+ (or P ) and
+

B , the first-order theory of Boolean algebras with atoms.
+ B is the

first-order theory with binary £ as its sole predicate letter~, the usual

axioms for a Boolean algebra and the special axiom (x) ("'" (x = ¢) ~ (3: y)

(q(y) A Y S x», where q (y) is defined by (z) «y S z) :- (y S z» and

where =, i, 1, z etc. are defined in the usual way. For validity, we

interpret S as inclusion in the set of all subsets of a given set.

The relevant translations are:

Translation T from n+ into B+ -

T (P.) : (z c x.), where z is a fresh variable,
l. - l.
~t)

T «A , IH) - T (A),(ii)

(iii) T «A V B» = (T (A) V T (B»,
(Iv) T (1 A) = (z) (q(z) ::) T (A»

T «P.) A) = (x.) T (A);
1. 1.

(v)

Translation T' from B into n+ -
(i) T' (x, ex.) = 1 (P. ~ P.),

1. - J 1. J
(ii) T' c, ~) = .....T' (t;),
(iii) T' « ~ V 1-» = (T' ~) V T' (,l» and

(iv) T' «Xi)~) = (P.) T' (¢).
1.
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26. References

Kaplan bas proved the completeness of n+ (which he calls S5Q)

independently from this author but by similar methods.'ee his abstract

S5 with Quantifiable Propositional Variables. The system P is discussed

in Church's Introduction, pp. 303-4. The system B is discussed in Tarski's

Logic, Semantics, Metamathematics pp. 201-208, especially lemma K, and

p. 334 et seq.
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Chapter 4

THE SYSTEM S.5rr

The system of the last chapter contained the special. axiom g =

(X P1) (P1 A (P2) (P2 ~ L (P1 ~ P2»). In this chapter we consider the

system which results from dropping this axiom.

§1. The System S5Jy

Formation Rules. As for S5rr+

Transformation Rules. The axioms are: all tautologous wfs; GHdel's

axiOlll schemes for S5; and speoification, distribution and vacuous

quantification for the quantifiers.

TIle rules of inference are modusponens, necessitation and

generalisation.

Semantical Rules. Weredefine the notion of a structure. A

structure Mis an ordered triple (W, I, ¢) where Wis a non-empty set,

I is an empty or infinite subset of W, and ¢ is a map from V x Win to

ft, f1such that for any w in I there are an infinite number of v's in

I such that w "'M v i.e. for all variables P, ~ (P_,w) = ¢ (Pj v).

Wethen define MP structure, truth etc. as for S5Tr+.

Why do we need I and the conditiona on I and ¢ in the definition

above? Let us say that a world w of Wis describable if there is a

proposition true in Wand Walone; otherwise w is indescribable. Nowthe

proposi tion g is true iff the aotual world is describable. So Lg is

true iff every world is describable. Nowin S5u we do not assume Lg

i.e. that every world is describable, so we need to allow for a set I
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of indescribable worlds. Nowsuppose A is true in a finite numberof

indescribable worlds w1' v2' ••• , vn' n ~O. ThenA ~ - g is true in

v1' v2' ••• , wnand in no other worlds. Let us assume that for a:n.y two

distinct worlds there is a proposition true in one of thembut false in the

other. Then if n > 1 there are propositions Ri, i = 2, 3, ••• , n, such
n

that Ri is true in v1 but false in vi. But then A " g " ~=2 Ri (or

A " - g if n = 1) is true in w1 and w1alone. So v1 is describable. This

is a contradiction. It follows that if A is true in someundescribable

worlds then it is true in an infinite numberof indescribable worlds, and

this is what the conditions on I and ¢guarantee.

§2. NormalForms.

Weshall showthat each wr is provably equivalent to.l or a dis-

junction of quantifier-free model-descriptions of an appropriate sort.

The argument is complicated somewhatby the absence of the axiomg.

Pre] j nri DAry Results.

Since lemmas1, 2 and 3 of section 3.2 do not use the axiomg, they

also hold for S5n.

The Extension S5rr'.

The extension tT' of rr is obtained by adding the unary operators

~, k = 0, 1••• , and N and the constant g, and the following axiom-schemes

~ E (!k R) (T R A), k = 0,1 •••,

g = (!P1) (P1 "Q P1), and

NA = M (- g " A).
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The new definition of g is equivalent to the old and so should cause no

confusion.

The corresponding semantical clauses are; ~ ~ A iff there are

exactly k v's in W-I such that ~ A,
v

I M g iff w ! W- I
w

~ NA iff there is a v in I such that ~ A.
w v

The Derivation of Fe. Theorem3.2.1 does not use the axiom g and so

holds for n.

The Derivation of S5n. In the proof of lemma3.2.4 we only use the

axiom g for (5) :$ i.e. ~ Qo A ::> L .... A. Nowin the proof that S5n is

characteristic we only use this result to help eliminate L A by Q -Ao
and to rule out the combination A A Qo A. So in place of theorem 3.2.2
we have:

Theorem1. If A is a valid wf (or theorem) of S5n not containing L or

any variable not within the scope of a modal operator, then ~, A.rr
Wealso have:

LeJ111118. 1. The following are theorems of S5n:

( 1) N A a N (A A B) V N (A A ,.,. B)

(2) M (g A A) :: ......Qo A

(3) ~ (g A A) 5 ~ A, k >0.

Proof.

( 1) By S5, I- M(....g AA) E M(....g AA AB) VM(,.,.g AA A......B).

But this abbreviates to (1).
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(2) = A ~ (~ p) (Q PAL (P ~ A» is deduced from g at the end of

the proof of (5) of lemma3.2.4. So b.5TT A" g ~ .....Qo (A). So by the

Barcan formula lemma, fs.5rr M(A A g) :J - Qo A.

~Clearly, ~ Q PAL (p ~ A) ::)<t P :J M(g " A». But

t- Q p:J MP. So f- Q P " L (P ~ A) ::)M(g "A). So by F C,

f- - Qo (A) ::) M (g " A).

(3) By theorem 1, l- Qo (....g " A) ::) (~ (g " A) == ~ A).

By (2) t- .....Qo (- g AA) :J M(g " ....g " A). So by S5, ~ Qo (.....g " A).

Hence f-~ (g " A) == ~ A.

Reduction of Quantifier-free wfs.

First we redefine the notion of a md to allow for the occurrence of

g and N. Suppose C1, C2, ••• , Cn are the distinct state-descriptions in
mthe variables R1, R2, ••• , Rm' m ~ 0, n = 2. Then a model-description

of degree 1> 0 in the variables R1, R2, ••• , Rmis a wf.

(.) ~ g" Cj A Ain1 ~. C. " A~ 1 V. C., where= 1. 1. '"1.= 1. 1.

(i) ct is blank or -, ~i is ~ for somek < 1or M:L and Vi is N or

(ii) If ct is blank, then ~. is not Q , and
J 0

(iii) If ~ is ...., then Vj is N.

Wenowhave:

Theorem2. Any quantifier-free wf A of w' of degree 1isequivalent to

or a disjunction of md's of degree 1in the variables of A.

Proof. Consider the conditiona r-XA::)L XA and f- L (A e B) :J

(XA ~ X B). By the Barcan forllll.ll.alemma, N and ~ satisfy these
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conditions. So by the beginning of section 2.2, A is equivalent to a non-

iterative wf B of degree 1 in the variables of A.
By (1) of lemma1 and 85.

~ N (A V B) == N A V NB and t-.- N.1... By (2) of lemma1, t- L A ==

- N -A A Q - A. By theorem 1, the distribution results in lemma2.2.2o

haJ.d. So B is equivalent to a truth-functional compoundof the variables

of A, g, ~ (g A C), ~ (- g A C), N (g A C) and N (- g A C), where Cis

a sd in the variables. By (3)of lemma1, ~ (g A C) is equivalent to

~ (C). So ~ ( - g A C) is equivalent to T if k = 0 and to ...Lif x > o,

By '5, N (g A C) is equivalent to ...LandN (- g A C) to N (C).

So B is equivalent to.lor a disjunction of wfs (*) which satisfy

condition (i). By (2) of lemma1, f- g A Cj ::::> - Qo Cj• So (.)

satisfies condition (ii). By 85, (.) satisfies condition (iii).

Elimination of Quantifiers. Lemma 3.2.5 (On Incompatible Cases) does

not use the axiom g and so holds for n. Lemmas 3.2.5-6 are replaced by the

following four lemmas.

Lemma 2. The following schemesare theorems:

(1) (gp) [0 (A A p) A Mn (A A - p)] == M A,~ m+n

(!P) [Mm (A A p) A Mn (A A - p)] == M A, andm+n

0)

Proof. As in lemma3.2.6.
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Lemma 3. The following schemes are theorems:
(1) (~p) rN(A ~ p) ~ N (A ~ _ p)l E N A,

_J

(~ p) rN (A ~ p) ~ _ N (A ~ ~ p)l = N A, and
_j

(~p) r_ N (A ~ p) ~ _ N (A ~ - p)l E- N A•
...J

Proof:

~ (1), (2) and (3). B.y (1) of lemma 1.

(1) B.y the definition of g, I- - g ::::>- (E p) rp ~ (R) (L (P::lR)

V L (P::l- R»]. So by Fe and S5, 1-- g::l (p) (P::l (~R) (M (p ~ - R)

~ M (p ~ R»). So l- A r; .... g::::> (g R) (M (A A"'" g ~ R) ~ J.1 (A ~ - g ~ R».
So by the Barcan Formula lemma and definition of N, l- N A ::l(E R) (N(A ~R)

~ N (A ~ - R».
(2) B.y S5, l-M c, g ~ A) ::lM (.... g ~ A ~ T) ~ - M c, g ~ A ~ - T)

So by the definition of N, t- N A ::lN (A ~ T) ~ - N (A ~ - T). So by

F C, t- N A ::l(~p) (N (A ~ p) ~ - N (A ~ - p».

(3) B.y (1) of lemma 1, l-- - NA ::l- N (A ~ p) ~ - N (A ~ - p).

(3) now follows by Fe.

Lemma 4. The following schemes are theorems:

(1) (~p) r g ~(A ~ p) ~ Q (A ~ p) ~ M (A ~ - p)lJ= g ~ A ~ M A,
.. ~ n m+n

(2) (~ p) r g ~ (A ~ p) ~ M (A ~ p) ~ M. m n

(~ p) r g ~ (A ~ p) ~ ~ (A ~ p) ~ ~

(A ~ - p)! E g ~ A A M A,, m+n
(A ~ _ p)l E g ~ A ~ Q A

J ~+n

(4) Gap) r g ~ (A ~p) ~ M (A ~ p) ~ Q (A A .... p)l E g ~ A ~ M A._ m ~ _j m+n

Proof. The corresponding results (1) - (4) of lemma 3.2.7 are deduced
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within S5n from (1) of lemma 3.2.2 which is deduced from g. So we obtain

the above results from right to left. From left to right is trivial from

lemma 2.

Lemma 5. The following schemes are theorems:
(1) (~p) r_ g A (A A p) A N (A A p) A N (A A _ p)l ~_ g A A A N A,

. J

(2) (~p) r_ g A (A A p) A N (A A p) A ~ N (A A,.."P)] ~~ g A A ANA.

Proof: ~ (1) and (2). B.y (1) and (2) of lemma 3.
*= (1) B.y (1) of lemma 3, t- N A ~ (~ p) (N (A A P) A N (A A ~ r».

But the consequent provably implies (I p) (p A N (A A p) A N (A A - p»

V (~p) ~ P AN(A A p) A N (A A- p». But the last disjunct provably

implies (g p) (p A N (A A p) A N (A A - p».

(1) ~ now follows.

(2) B.y S5, l-- g A A A NA :::> ~ g " (A A T) A N (A A T) A ,.."N (A A
~ T). (2) ~ Now follows by Fe.

We can now eliminate the existential prefix from md's.

Theorem 3. If D is a md of degree 1 of n~, then (~ p) D is equivalent to

a quantifier-free wf of TIt of degree 21 whose variables are those of D

other than P.

Proof. Suppose D is (.) as above. If P does not occur in D, then

(~ p) D is equivalent to D. So we may suppose that m > 0 and that P is

R. Now (~ p) D is equivalent to (~ p) D' where D' results from D bym
writing _ P for P, P for _ P. So we may also suppose that P is a

conjunct of C .•
J
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Let D , 2m-1, b ,.l' D2, •••, Dn" n = e the sd s ~n the variables R1,

R2, •••, Rm_1• For i • 1, 2, •••, nt, let i1 (i2) be such that C~1 is

Di 1\ P (Oi2 is Di 1\ "'" p) and suppose that j = h1• First suppose (J is

blank. Then D is equivalent to the wf
(**) B n'

1\ t:. 1 S·'~= ~1
i~h

Now by lemma 1, ~ (C) is equivalent to ~ (g 1\ C) and N (0) is

equivalent to N (...,g 1\ C). So by lemma 3.2.5 (On Incompatible Cases),

(~ p) D is equivalent to

n' r l(~p) B 1\ A;-_1 (3: p) ! B; (D. 1\ p) 1\ S· (D. 1\,... p) , 1\• ~·1 ~ ~2 ~ j
i~h

"r:' 1 (:;r p) ry. (D. 1\ p) 1\ y. (D; 1\..., P)J.
~= ~1 ~ ~2·

We wish to show that each conjunct of this wf is equivalent to a

quantifier-free wf of TI' of degree 21 whose variables are those of (3: p) D.
This holds for (3: p) B by lemma 4. It holds for the second group of

conjuncts by lemma 2, and for the third group of conjuncts by lemma 3.
If (l is ....., the argument is similar. Let B =..., g 1\ O. 1\ Yn (Dh 1\ p) 1\ Yh

J 1 2

(Dh 1\ ..., p), redefine the other conjuncts accordingly and use lemma

5 in place of lemma 4.
We now come to the main result:

Theorem 4. (Normal Forms). Suppose A is a wf of n of quantificational
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degree d. Then A is equivalent to-!.or a disjunction of md's of degree 2d

in the free variables of A.
Proof. From theorems 3 and 2 as in the proof of theorem 3.2.4.

§3. S5n is Characteristic

Lemma 1. Each md has a model.

Proof. Let the md be (.) of the last section. We define M = (W, I, ¢)

as follows:

W consists of
(a) (Ci' TT) for TT = 1, 2, ..., k if Si :::~

(b) (C., TT) for TT :::1, 2, ..., 1, if Si = Z\ , and~

(c) (C., TT) for TT ::: 0, -1, -2, ... if Yi = N·~ ,

I is the set of (C., TT) in W such that TT is not positive;~

and for (Ci' TT) « W,
¢ (Ph' (C., TT) = t if P. is a conjunct of C.

1 ~ ~

= f otherwise,

where i = 1, 2, •••, n, k = 1, 2, ..., 1 and h = 1, 2,••~ •

If ~ is blank let w be (C., 1) and if cr is - let W be (C., 0).
J J

B,y conditions (ii) and (iii) OD (.), w «W. The cODstruction then

ensures that ~ c-),

Theorem 1. For any wf A of TT',

~ A iff I- A.
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Proof. ~ (Consistency). A straightforward exercise. Eg we show

that g = (~ p) (p ~ Q p) as follows. Suppose ~ g, where M = (W, I, ¢).
Then w e W - I. Let M' = (W, I, ¢) be the M P structure such that

«¢' (P, v) = t iff v = w. Then we may easily show that ~' P ~ Q P.
w

So ~ (:>I' p) (p ~ Q p). Now suppose not ~ g. Take any M P structure
w M' w

M' :I (w, I, ¢') such that rw P. Then we may find an M' R structure

M" :I (W, I, ¢") sucn that not -
~' rL (p ~ R) == ..... L(P~ .....R)J. For since weI, there is an infinite

w i,~Is 1.1\. :r """It. ~ '.f (p, .,)=t. Suf du.n. Io.J.t. C04 ~..~ ~ II 11(') /:kJ..t for tVt

set U.' (:R, v) - f. ~.tt ~W of v's Vt. U~ '" ( RI v) ,. t o".d ~ tv\.
tAfv'\4 fi. fUl.Atbif 0{ vfs ""- U j , II (R, V) # f

~(Completeness). From theorem 2.4 consistency and lemma 1.

B.y the Equivalence Theorem, any proof in n' may be converted to a proof

of n by replacing Qk' g and N by their respective definitions. So for any

wf A of n, L- A iff b A. HenceI rt TT

Theorem 2. For any wf A of n,

r.; A iff ~ A.
n n

The following two corollaries are obtained in the usual manner.

COrOllary 1. Suppose A is a wf of n with m free variables of quantification-

al degree d. Then if A has a model, then A has a model M = (W, I, ¢)

such that Card (W - I) _<2d. 2m and Card (I) <)/ •_ 0

Corollary 2. n is decidable.

Let S5ng be the system obtained from S5n by adding the constant g

and replacing axiom scheme (5), viz Qo A == L .....A, by Qo A == L.....(AAg).
Then since (1) to (3) of lemma 1 hold for S5ng, we may easily show:
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Theorem 3. For any wf A of S5ng,

IS5ng A iff l= A.

Combining theorems 1 and 3, we obtain:

Corollary 4. Fbr any wf A of S5ng,

Is5ng A iff I;;A.
Thus S5ng is the quantifier-free fragment of n' just as S5n is the

quantifier-free fragment of n+'.

§4. The System S5n*
The system n* is the result of replacing Specification in n by

Restricted Specification and adding the axiom h = (~ P3) L [P3 = gJ i.e.

(~ P3) L [P3 = (~ P1) (P1 A (P2) (P2 ~ L (P1 ~ P2)))J.

Thus h states that there is a proposition which says that the world is

describable.

We shall show that rr" is deductively equivalent to (has the same

theorems as) n. But first we require:

Lemma 1.

~ (p) A (p) ~ A (B), where B is free for P in A (p) and is a truth-

functional compound of variables and g

Proof. Let B = B (g), let R be a variable not occurring in A (p) or B,

and let C (R) be (p) A (p) ~ A (B(R». We wish to prove 1-::* C (g).
rt

B (R) is a wf of PC. So by Restricted Specification (i) t:. C (R). ~ the
rr

Equivalence Theorem,
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(ii) ~ L (R :;g) ::)(C (R) :;C (g». So by PC from (i) and (ii),

t-- L (R :;g) ::)C(g). So by Fe, l- (~R) L (R := g) ::)C(g). I- C(g)

now follows by the axbm h.

We now come to the theorem:

Theorem 1. b A iff 1-= A.TT TT

Proof. ~ theorem 3.2, it suffices to prove theorem 3.2 for TT'. As in

§3.4, an examination of §2 shows that Specification may be restricted to

truth-functional compounds of variables and g as specified in lemma 1

above. In fact, only the use of the lemma on Incompatible Cases for

theorem 2.3 calls for an application of the above lemma.

It is easy to show that h is a theorem of n+'. For by the axiom g

and Necessitation, ~ L (g :;T); so by the Equivalence Theorem it suffices

to prove b (3' p) L rP :;Tl, which is easy by 55 and Fe. So we may useTT+ . _J

the above theorem to show that n+* is deductively equivalent to TT+.

§5. Strong Completeness.

Let 6 be a set of wfs. We say A is deducible from 6, 6 ~ A, if

there are wfs B1, B2, ••• , Bm in 6 SUCh that ~ B1 A B2 A

In section §3 we showed that TT was complete, i.e. that if l==
A B ::> A.m

A then

~ A. In this section we show that TT' and hence TT are strongly complete,

i.e. that if 6 1== A then 6 I-- A. (In this section, unless otherwise

stated, ~ is relativized to TT' and the wfs are of TTt.)

A set of wfs 6 is a system if whenever 6 f- A then A c 6. 6 is

consistent if not 6 f- J. ; 6 is complete if for all wfs A, 6 I-- A or
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~ ~- A; and 6 is maximally consistent (mc) if ~ is consistent and
complete. The proofs of the next three theorems need no rehearsing:

Theorem 1 (Deduction Theorem). If~, A r- B, then ~ ~ A ~ B.

Theorem 2. (Lindenbaum's Lemma) Every consistent set is contained in a
maximally consistent system.

Theorem 3. If ~ is a mc system, then

(1) - A e ~ iff not A e 6 and

(2) A V B e 6 iff A e 6 or B e 6.

Use of theorems 1 and 3 will often be tacit. We now show that

every mc system has a model. First some definitions. A state-sequence S

is an infinite sequence of wfs A1, A2, ••• such that Ai =
for i = 1, 2, ••• , For n ~ 1, let ~ = A1 A A2 A •••

Pl.. or A. = - P.
]. ].

A A •
n Then S

subsumes a wf C if for some n, ~ = C.

Let 6 be an mc system fixed for the following discussion. With

each wf A we associate a denumerable cardinal ~ (A) as follows:

(a) ~ (A) = K if ~ A e ~,

(b) ~ (A) =1(0 if_ ~ A e 6 for all k = 0, 1,2, ••••

B.y the theoremhood of ~ A ~- ~ A, k < 1, and the consistency of ~,
~ is a well-defined function. It may be extended to state-sequences S
in the following way:
(e) ~ (S) = K if there is an m such that for all n ~ m, ~ (Sn) = K.

(d) ~ (S) =~ otherwise.
o
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We also define a map cr from wfs into rO, 1} as follows:

(a) ~ (A) = ° if N A e ~

(b) ~ (A) = 1 otherwise.

It is extended to state-sequences S in the following way:

(c) ~ (S) = 0 if there is an m such that for all n ~ mJrr (gn) = 0.
(d) c (S) = 1 otherwise.
We now prove:

Lemma 1. Let C be a state-description in the variables P1, P2, •••, Pm.
Then

(1) If ~ (C) = K, then ) ~ (S) = K.
S subsumes C

If 11 (C) =1Y' • then there is an S which subsumes C such that ~ (S) =l{o
o

(3) If c (C) = 0, then there is an S such that S subsumes C and c (S) = 0

(4) If a (C) = 1, then for each S which subsumes C, a (S) = 1.

Proof.

(1) The proof of (1) is easier to see than to state. Suppose that A is

any sd in the variables P1, P2, ••• , Pg, g ~ 1. hFor h > g, let A be the

set of sd's in P1, P2, ••• , Ph which contain A as a conjunct. Then by

repeated applications of the distributive law for ~ (scheme (2) of S5n),
and by theorem 3,
(i) )' 11 (B) = 11 (A)

. BeAh

For n ~ m, let Pn = Card (B c en : ~ (B) ; 0). B,y (i), if ~ (A) I 0
then either 11 (A A P 1) J 0 or 11 (A A - P 1); O. So for n' > n, p , > p •

g+ g+ - n - n
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Suppose there are n1, n2, •••, ~+1 such that n8 < 72)< •••< nk+1 and

< p • Then Pmk+1 > K. So \. \kB 1 > K, contrary
nk+1 LBeC +

to (i). If follows that there is an n such that for all n' ~ n, Pn' = p •
n

Let n be the least suc~ n.o no
Assume DeC and n > n •

- 0
Suppose ~ (D) = O. Then if E c nP,

~ (E) :: 0 by (i). So if S subsumes D, ~ (S) = O. Suppose ~ (D) = I I O.
Now since Pn is, maximum it follows by (i) that there is an E in rP such

o
tnat ~ (E) = 1 and for all F distinct from E in rP, ~ (F) = O. Let S be

n
the sequence such that So:: D and for n > n , ~ (sn) • 1. It should be

o

clear that ~ (S) = I and that for any T distinct from S which subsumes D,
~ (T) :: O.

n
Now S subsumes C iff S subsumes some member of C o. So it follows

by the paragraph above that '\ ~ (S)
S subsumes C

'\
:: i I] (D) • But the last term =

r

Decfo

~ (C) :: k by (i).
(2) It follows by (i) that if ~ (A) =l{ , then either ~ (A "p 1) = "No g+ 0

we may construct a sequence S such that sm = Cor 11 (A " '" P 1) =l( Sog+ 0

and for n > m, 11 (Sn) = l( .
o

(3) Clearly it suffices to show that if a (C) ::0 then cr (C A p) = 0 or

a (C A p) = 0 or cr (C A '" p) :: o.
of lemma 2.1.

But this follows by theorem 3 and (1)

(4) Clearly, it suffices to show that if cr (C) = 1 then cr (C " p) :: 1

and a (C A '" p) = 1. But again, this follows by theorem 3 and (i) of
lemma 2.
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We now hav-e:

Lemma 2. Every maximally consistent systen 6 has a model.

Proof. We define M = (W, I, ¢) as follows:

W consists of

(i) all (S, n) for 0 < n < ~ (S) and

(ii) all (5, n) for n ~ 0 if ~ (S) = 0; let I be the set of all (S, n) in

W such that n is not positiv-e; and for all (S, n) in W, let ¢ (Ph' (S, n» =
t if Ph is a term of S

= f otherwise,
where n is any integer and h any positive integer.

B,y the completeness of 6, there is a state-sequence So = A1, A2, ••• suct.

that A. ( ~, i = 1, 2, •••• Let w be (S , 0) if ~ (5) = 0 and be (S , 1)~ 0 0

if ~ (S) = 1. Then giv-en l-::r M A ==,... Q A V N A, we ma::r easily show
rr 0

that w e W.

Now if C is an sd in the variables P1, P2, •••, Pm' then ~ C iff
'lS,n)

S subsumes C. So for each variable Ph' t=; Ph iff Ph e 6. B,y (1) and (2)

of lemma 1, I : Qk C iff ~ C e 6. And by (3) and (4) of lemma 1,re N C iff N C e A.

Now suppose that a wf A e A. B,y the consistency of 6 and the theorem

on normal forms, A is equivalent to a disjunction of md's. B,y (2) of

theorem 2, one of these md's D c 6. So by the Mabove paragraph, ~ D.
w

of n', I: A.But D provably implies A. So by the consistency

We now have:

Theorem 4. If A 1= A then A L A
LJ , LJ rn' ·
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Proof. Suppose not ~ ~ A. Then by PC and the Deduction Theorem,

6' = 11 l' ( ,...AJ is consistent. So by Theorem 2, ~' is contained in an mc

system ~u. But then by lemma 2, 6.u has a model. So not 6. F:. A.
Familiarly from theorem 4 we obtain

Theorem 5. If the members of 11 and A are wfs of TI, then if 11 ~ A then
11l-:; A.TI

~ similar reasoning we could hav~ proved strong completeness for

n+ and S5n. Alternatively, we could derive the result for TI+ (or n+')

from theorem 5 by considering deductions from Lf (I omit details); the

result for S5n then follows from S5n being the quantifier-free fragment
of n+'.

§ 6. Predicate and Boolean Analogies.

Let P be the system obtained from P+ of section 3.5 by dropping

all individual variables but x
1
•

second-order predicate calculus.

Thus P is the uniform singulary

We now introduce a one-one translation T from n onto P:

T (P.) = f. x1 '
]. l.

(ii) T (,...,A) • _ T (A),

(iii) T «A v B» = (T (A) v T (B» ,
(iv) T (L A) = (x1) T A and

(v) T «Pi)A) = (fi) T (A).
Then a straightforward argument by induction establishes:

Theorem 1. J-:: A iff ~ T (A).TI P
Since each ¢ of P = T A for some A, the decidabi1ity of P follows from



- 63 -

the decidability of n.

Theorem 1 suggests the following semantics for P: identify f. with
J.

Pi; let the structures for P coincide with those for n; and then define

L!: for P so that Ll1 ¢ iff L...!'! T-1 (¢) Giv~n theorem 1 and that TTrw ~ r;w •
is characteristic, it immediately follows that P is also characteristic.

The translation from n into Boolean Algebra is more difficult. Let B

be the first-order theory obtained from B+ of section 3.5 by replacing its

special axiom by (~x) (y) (y £ x E (u) (u £ y ~~= 0 V (~V) (q (v) A

v £ u». B is the elementary theory of separable Boolean Algebras.

The map T' from B into n is the same as the map T' in section 3.5
from B+ into n+. To map TT into B, it suffices to show that for each wf

L A of n there is a wf ¢ of B such that T' ~) is equivalent to LA. To this

end, we now define for each variable R of n the following map SR in TT:

(P.) = L (R ~ P.) ,
J. l.

~ A) = (S) (M SAL (S~~ Ss (A» ,
where S is a variable distinct from R and not free in A.

(iii) SR (A A B) = SR (A) A SR (B),

(iv·) SR (L A) = L .....R V (R) (SR (A»

(v) SR «Pi) A) = (Pi) SR (A).

Because of the simplicity of (ii), we suppose that wfs are written with

A rather than V as a primitive.

We now prove:
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Lemma. 1. J;- L (R ~ A) == ~ (A), as long as R does not occur in A.

Proof. By induction on the length of A.

(1) A = P .•
~ By PC, l-= L (R ~ P.) 5: L (R ~ Pi).TT ~

But ~ (A) = L (R ~. Pi).

(2) A = - B. Wefirst prove

(L) .- L (R ~ - B) == (8) (M SAL (S ~ R) ~ - L (8 ~ B»
~ is straightforward by S5. For~, we see that each wi in the following

list provably implies its successor:

.....L (R ~ - B),

M (R A B), by 85,

M (R A B) A L (R A B ~ R) A L (R A B ~ B), by 85,
(!8) (M 8 A L (8 ~ R) A L (S ~ B» where 8 is distinct from R

0J1~ f\Ao.Uj
and not free in B, by Fe, ..... (8) (M SAL (8 ~ R) ~ .....L (s ~ B», by FO.

A

Hence +- by PC.

Bym, f- L (8 ~ B) !! Ss (B) 80 by the Equivalence Theoremand (i),

~ L (R ~- B) == (8) (M SAL (8 ~ R) ~ .....Ss (B» = ~ (- B).
(3) A = B1 A B2• By S5,

~ L (R ~ B1 A B2) == L (R ~ B1) A L (R ~ B2).
By the I.H.,

f- L (R ~ Bi) == ~ (Bi), i = 1, 2.

So L (R ~ B1 A B2) is equivalent to

~ (B1) A ~ (B2) = ~ (B1 A B2).

(4) A = L B. By 85, f- L (R ~ L B) !! L .....R V L B.
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But by S5, FC and (Restricted) Specification, L B is equivalent to

(R) L (R ~ B), which, by I.H., is equivalent to (R) ~ (B). So

L (C ::::)L B) is equivalent to ~ (L B).

(5) A = (Pi) B. ByFe, f-- (R ::::)(Pi) B) == (Pi) (R:::l B) if Pi is

distinct from C. So by S5,

t-- L (R ~ (P.) B) == L (P.) (R:::lB). But by the Barcan Formula Lemma,~ ~

L (P.) (R ~ B) is equivalent to (P.) L (R ~ B), which, by I.H, is equi-~ ~

For each variabl.e y of B, we nowset up a translation Ty from B into

TT as follows:

(L) T (P.) = Y ex. ,
y ~ - a,

(ii) T (~A) = (z) (z lOA z c Y ~- T (A»,
y - y

where y is not free in A and distinct from z.

(iii) T (A A B) = T (A) A T (B),y y y
(iv) T (L A) = [v = ¢ V (!y) «z) (z c y) AT A)]y v _ y

(v) T «P.) A) = (x.) T (A).y ~ ~ y

An easy induction on the length of A establishes:

Lemma 2. 1- T' T (A) == Sp (A) as l.ong as P. does not occur in A.
TT x. 0 ~~ ~

Wenowobtain the required result:

Theorem1. For each w:r L A of TT there is a w:r ¢ of B such that f-:: L A ==
TT

T' ¢.

Proof. Let B = (Po) T (A), where Po does not occur in A. For T' B =~ Xi ~
(Pi) T' Txo (A) is equivalent to (Pi) Spo (1), by lemma2, which is

~ ~
equivalent to (Po) L (P 0 ~ A), by lemma1, which is equivalent to L A by TT.

~ l.
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As before, we may use the translations T and T' to derive completeness

of decidability results for one system from the corresponding results for
the other system. I omit details.

§7. An Al.ternative Semantics for IT

Call the previous semantics for IT ,emantics.Jthe present semantics
semantics2• A structure2 is a triple (W, I, ~); where W is non-empty,
I S W and ~ is a map from V x W into rt, fJ. There are no restrictions
on I or~. We define ~ by the standard clauses. However, we

redefine the notion of an MP-structure. A structure2 M' = (W', I', ~,) is
an M P-structure, M = (V, I, ~, if there is a map f from W' onto W such

that
(i) for each w in V-I and v in W', f(v) = w iff v = w,
(i1) for each w in I there are at most two v's in I' such that f (v) = w,
and (iii) for all R distinct from P and v in W', ~ (R, v) = ~ (R, f (v».

Thus each quantifier enables a world in I to''aplit''into two.
Ve now show that validity" and validity 2 coincide. Given a

structure, M = (V, I, ~, the structure2 M* = (V·, I·, ~), called the
shriJJkage of M, is the structure such that
(1) V· - I· = V - I,
(ii) I· = I/-M i.e. the set of equivalence classes with respect to - M,
and
(iii) for each variable P

~. (P~w) = ~ (Pj w) for w c V - I, and
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¢. (p, [wJ) = ¢ (P~ w) for w t I.

Clearly, M* is properly defined.

Let g be the map from W onto W* such that for w c W - I, g (w) = W and

for weI, g(w) = [w]. Then:
M M·

lAmma1. For each w in W, \1w A iff ~(w) A.

Proof. By induction on the length of A. The one tricky case is whenA is

of the form (p) B. Here it suffices to note two facts: (1) If H' is an

MP- structure l' then M'· is an M· P-structure 2; and (2) each H· P-structure 2

is isomorphic to a structure2 H'· for someMP-stricture M'.

Since each structure2 is isomorphic to M· for some structure1 M,

lemma1 implies:

Theorem1. 11A iff ~ A.

In terms of semantics2, TT has the finite model property, whereas for

semantics1 we can do no better than corollary 3.1.

It should be clear that any semantics along the lines of semantics2

will do just as well as long as each world in I is allowed to split into

two. Thus we could require that each world in I must split into two; or we

could allow for each world in I to split into any numberof worlds.

FUrther semantics for TT will be developed in the next chapter.

§8. References

Bull has proved completeness for'7t by semantic tableaux in On Modal

Logic with Proposi tiona! Quantifiers. However,his semantics are different

from my ownand he does not prove decidability. The system B is discussed

in Kreisel's and Krivine's Elements of Mathematical Logic, chapter 4, section

6.
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Chapter 5

THE SYST]M S5TT-

In this chapter we consider the system which results from replacing

Specification in TT by Restricted Specification.

§l. The System S5p=

Formation Rules. As for TT.

Transformation Rules. As for TTbut with Specification replaced by

Restricted Specification, viz., (p) A (p) > A (B), where B is a wf of

PC free for P in A(P).

Semantical Rules. We redefine the notion of a structure. A

structure M is an ordered triple (W, P, ¢), where W is a non-empty set,

P (propositions) is a field of subsets of W, i.e. a set of subsets of W

closed under complementation in W and finite union, and 1is a map from

V into P.

Giv.en a structure M _ (W, P, 1), then a structure M' II: (WI, pi, 1')
is an MP-structure if W' • W, P' • P and for all R distinct from P,

¢' (R) • I (R).
M

We then define n A in the usual way.

must now be:

Of course, the first clause
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For conv~nience, I hav~ slightly altered the definition of the

assignment function ¢. It now assigns a proposition, i.e. set of worlds,

to each variable. The set of propositions is giv~n by P. Restricted

Specification merely requires that P be closed under union and complemen-

tation.

§2. S5u= is Characteristic.

By suitably extending the language of n-, we may eliminate all
quantifiers and occurrences of L and thereby prov~ that n- is characteristic

and decidable.

The wor~ng-out is extremely lengthy and I shall merely indicate the

required extension rr-" of n-. n-' is obtained from IT' of the last

chapter by adding the constants e and f, the unary operators E and F and

the axiom-SChemes:

e == (aP) [p ~ L (p ~~ g) A (R) (L(R ~~ g) A L (p ~ R)

~ L (R::::>P»J.

:Y f E- e , (!IP) (p, L (p:;)_ g»

EA == M (A A e)

FA == M (A A f).

e states that there is a true minimal proposition which is true in indes-

cribable worlds only. f states that there is a true proposition, but no
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true minimal proposition, which is true in indescribable worlds only.

It should be clear that n- corresponds to B-, the first-order
theory of Boolean algebra. However, I know of no direct way of trans-
lating n- into B-.

The semantics for n- allow for a slightly odd possibility. There
may be two distinct worlds w and v in W but no proposition p in P such
that w € p and not (v € p). In other words, some worlds may not be
distinguishable. In such a case, a proposition p which satisfies ~
may be a set of indistinguiShable worlds. We may avoid such possibilities
as follows. Let M = (W, P, ¢) be a structure. Then for w, v € W, let
us say w ~ v if for all p in P, w € P iff v I p. We may easily show
that ~ is an equivalence relation. Let M/....., = (W', pi, ¢I), where W' =
W/_, pi = {PI....., : peP} and for all variables P, ¢. (p) = ¢ (P)/_.

In M/_ each world has been identified with a set of indistinguishable
worlds. We may then easily show that M/....., is a structure and that:

Lemma. t!:.r-w A if A.

Hence validity reduces to validity for all structures M/.....,.

§3. The Systems n and n+ Reconsidered.

In terms of n- we can give new semantical accounts of n and rr+.

The System u. I give two new interpretations of n.

1. Let us say that a structure M = (W, P, ~) is separable if there
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is a p in P which is the union of all the atoms in P. (q is an ~ in

p if q is non-empty and for all r in P either q S r or q sr). We say

M satisfies A (A is valid in N) if for all w in M, MI-\' A. Then:

Theorem 1. ~ A ifPA is satisfied by all separable M.

Proof. The result follows from the following equivalences:

(i) l= h::::lA iff A is satisfied by all separable M
(ii) Fh:)A iff t-;- h:)A
(iii)

~
h:)A iff 1-=. ATT

(Lv ) t-;. A iff ~ATT

M
(i) follows from the fact that ~ h iff M is separable, (ii) from the

fact that TT is characteristic, (iii) from the easily proved Deduction

Theorem for n- (where the discharged assumption formula is modally closed),

and (iv) from theorem 4.4.1.
Let us say that M satisfies a system S if M satisfies each theorem

of S. Then M. satisfies TT· iff M satisfies h i.e. iff !vi is separable.

So by (iv),

Theorem 2. N satisfies TT iff 14 is separable.

Theorem 2 has two interesting corollaries.

Corollary 1. n- is not deductively equivalent to TT.

Proof. Let W = r+ u r-, where 1+ is the set of positive integers and r- is

the set of negative integers. Let P consist of the finite subsets of r+
and the complements in W of finite subsets of r+. Then P is a field.

+But I , the union of the atoms in W, is not itself an element of P. So

the structure M = (W, P, ¢), is not separable. Now M satisfies n-, but
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by theorem 2, Mdoes not satisfy TT.

Wesay a structure M = (W, P, ¢) is closed if for all vis 1 there is

a p in P such that P = fw:w C WIe ~ 1 J.- w

Corollary 2. Mis closed iff H is separabl.e.

Proof. Specification in TT may be repl.aced by the l.ess general scheme :

(P) ,..,.L (p ;;;;A) ::> -- L (A == A), P not free in A, which is equivalent

to the scheme (![ P) L (p == 1), P not free in A. But H satisfies this

l.atter scheme iff Mis cl.osed. So by theorem 2, Mis cl.osed iff H is

separable.

2. A function f from V into the power set'f (W), where Wis non-empty,

is called a Bull-evaluation if it satisfies the following conditions:

(a) If l aDd l' are similar (alphabetic variants), then f (A) = t (A')

(b) f (,..,.A) = W - f (A)
(c) f (1 V B) = f (A) U f (B)
(d) f (L 1) = Wif f (1) = W

= 0 otherwise

(e) f «Pi) A (Pi» = the intersection of all sets f (A(B» where B

is free for P. in A (P.).
l. l.

Thus in Bull-evaluations the variabl.es range over wis. Wesa:y ~ A iff
B

f (A) = Wfor all Bull-evaluations f.

We~ establish by an easy induction that if hT A, then I=.:: A.
B

To prove compl.eteness, we need to be able to convert structures Minto

Bull-eval.uations. So gi.ven M= (W, P, ¢), let fMbe a function from

wfa into '9 (W) defined by fM (A) = fw : w c WIe ~ A}. Let us say that
w
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a structure Mis spaced if for each p in P and for each k there is a 1 ~ k

such that ¢ (Pl) = p. Then

LeIlllDa 1. If H is a spaced separable structure, then fH is a Bull-evaluation.

Proof. (e) is the one tricky case.

(A) Suppose v c f «P.) A (P.» i.e.
l. l.

~ (Pi) A (Pi). By theorem 2, M satisfies Specification. So ~ A (B)
v

for each wi B free for P. in A (P.), and v belongs to the required inter-
l. l.

section.

(B) Suppose wi f «Pi) A (Pi». Then for someMPstructure H' = (W, P, ¢'),
not - , :. A (Pi). Let k be the greatest numbersuch that Pk-1 is free in

A (Pi). Then since H is spaced there is an 1 ~ 1 such that ¢. (Pi) = ¢ (Pl).

It follows that not - ~ A (Pl.). So v does not belong to the required

intersection.

Ve nov have:

Theorem3. If IB A, then l- A.

Proof. Suppose not - t-- A. An examination of section 4.3 shows that there

is a separabl.e structure H = (W, P, ¢) with countable P such that for

SOlIe w • W, not-' : A. Let K be the greatest number such that PK-1 is free

in A; let P1' P2, ••• be an enumeration of the elements of P; and let

H' = (W, P, ¢.) where

(i) ¢' (Pj) = ¢ (Pj) for j < k

(ii) ¢' (Pj) = Pi if j is somepower of the i-th prime,

(iii) ¢ (Pj) = ¢ (Pi) otherwise.

LM'Now,clearly, H' is spaced and not -'""'; A. So fill' is a Bull-evaluation by

lema 1 and fM' A = f v: v c WBe ..; AJ I W.
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To sumup: wehave given four different interpretations of TT. The first

(section 4.1) distinguished between describable and indescribable worlds and

gave an ad hoc rule for the quantifier. The second (section 4.7) accounted

for the quantifier in terms of splits. ~e third let the variables range

over all proposi tinns in a separable structure. And the fourth let the

variables range over all wis. The third account is, to my mind, the most

philOSOphically interesting.

TheSystem TT+. Let us say that a structure M = (W, P, f6) is atomistic if

each w in V belongs to an atom in P. Then:

Theorem4. 'TT+ A iff A is satisfied by all atomistic structures.

~orem 5. M satisfies TT+ iff M is atomistic.

ProOfs. Similar to theorems 1 and 2, but with TT+* instead of TT* and g

instead of h.

Theorem5 also has someinteresting corollaries:

Corollary 1. TT+ is not deductively equivalent to "'.

Proof. Let V = J U 1+, where J is the set of rationals r such that 0 ~ r < 1.

Let P consist of the finite unions of intervals fr: a ~ r < b}, where a,

b t W,and the complementsin Wof such finite unions. ThenM= (W,P, f6)

is separable, since 1+, the union of all atoms, = W- fr : 0 ~ r < 1]; but

Mis not atomistic. So the corollary' follows byti1eorem5.

Corol.l.ary2. P is not deductively equivalent to the uniform fragment (i.e.

with one variable x1) of P+.
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Proof. By section ,.5, k A iff Ip+ T A. By theorem 4.6.1, t--n A iff

t-p T A. So the reEtillt follovs by corollary' 1.

The explanation for this curious result is that in p+ we can define

identity by (f) (f x ~ f y) and so prove Tg, but that this is not possible

in P.

§4. Some Further Systems.

1. Kripke's System. This is given at the end of Kripke's A CO!plete-

ness Theoremin Modal.Logic. It is equivalent to the result of adding to

n the axioms N T V Hk T for k = 1, 2, •••• A structure M = (V, I, ~)

satisfies the system iff V is infinite and a wf is a theorem of the

system iff it is satisfied by all structures Mwith infinite W. The system

is not finitely axiomatizable. For suppose 6 were a suitable finite set

of axioms to add to TT. Then {).U f - N T J would be consistent and so have

a finite model M = (V, 0, ~ by corollary 3.3.1.
Kripke's ownremarks on the system seem to be incorrect.

2. Extensions of TT+. For each extension of n+ i.e. system obtained

by adding newaxioms to TT+, we can find a condition on the card:!nalj ty

of W so that A is a theorem of the system iff it is satisfied by all

structures whoseV satisfy the condition. E.g., if the extension is

fM1 T, M2 T, ••• J the condition is that V be infinite. If the extension

is fQ2 T, Q4 T, ••• J the condition is that V contain an even numberof

worlds.

3. ASystemBetweenn and n+. Let us say that a wf A is closed if

each variable of A is either within the scope of L or a quantifier for that
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variable. Nowit follows with the help of normal forms that for TT+,

(i) If A is closed, then f-- I&.:J L 1&..

(i) does not hold for TTsince g ~ L g is not a theorem of TT. However, if

we add g :J L g as an axiom to TTwe obtain the weakest extension of TTwhich

does satisfy (i). Again, this follows with the help of normal forms.

Since g:J L g is equivalent in TTto L g V L ~ g, a wf is a theorem of the

system iff it is satisfied by all structures M= (W, I, ¢) in which either

I or W- I is empty.

By adapting the normal forms for S5TT,we may show that all the systems

considered in this section are decidable.

§5. SomeTheorems on Fragments

In this section we extend our results on quantifier-free fragments of

TT+'•

Let TTILbe the result of adding to TT the unary operators ~ with the

axiom-schemes~ I&.== (~ p) (T PI&.)"~M (I&." tV g), k = 0, 1, 2 ••• Then

Theorem1: For each wf A of S5n, k5n I&.iff lTTrr:' A.

Proof (A). Wemayeasily verify that axiom-schemes (1), (2) and (5) of

SSn are theorems of TT'.! for .all wfs of PCand that schemes (3) and (4) of

S5n are theorems TT'.!.. for all wfs whatsoever. But as is clear from

section 2.2, this is all that is required to derive S5n.

(B)• If a wf A of S5n is a theorem of TT..J',it is valid in TT+'and

so provable in S5n.

Note that scheme (5) of S5n is a theorem of TT..J1 only because of the

strengthened definition of ~ above.
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An extension of "., is the result of adding newaxioms to ".!. An

extension S of "., is a conservative extension of S5n (S,5Q) if for each

wi A of S5n (S5Q) \3ntS5Q) iff t-s A. A system S is contained in a

system T is each theorem of S is a theorem of T. The next theorem

characterizes the extensions of ~!Whichare conservative extensions of

S5n (or S5Q):

Theorem2. An extension S of TT!! is a conservative extension of S5n (S.5Q)

iff S is contained in TT+'.

Proof: ~ From theorem 1 and corollary 3.3.4.

:$ AssumeS is an extension of TT-II not contained in TT+. Then there

is an axiom A of S which is not a theorem of TT+. SO if B is the closure

of A,

(i) Is B, and

(ii) not - h+, B.

By theorem 3.2.4, B is equivalent (in TT+I) to a wi of the form VkcK~T

or a wi of the form VkcK~ T V ~ T, where K is a (possibly empty) set of

integers j such that 1 ~ j < 1. In the first case, B implies ,...~ T

(in 1T+'). In the second case, there is j, 1 ~ j < k , such that j J K,

otherwise '
TT
+' B, contrary to (ii); so B implies - Qj T. In both cases,

there is an i 2:. 1 such that B implies ,...~ T.

Wenowdefine a wi Ai of S.5Qfor each i = 1, 2, ••• • A. =
1

Aij 1 Q1 C. AA~ . 1 Q C., where C1, C2, ••• , Cn are the distinct sd's in= J J=1. 0 J
the variables P1, P2, ••• , Pmand where mis the least integer such that

fA 2:. i. Clearly, Ai implies ~ T and so ,...~ T implies,." Ai·
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Since B implies -A. (in n+'),~

(- L g V - Ai). But t-s Ai ~ L g.

ts B " L g :::> ,." Ai and so rs B :::>

So ts B ::::> - Ai and by (i), Is"" Ai•

But ,."Ai is not a theorem of S.5Q(or S5n), since Ai has a model. So S is

not a conservative extension of S5Q(or S5n).

In the light of theorem 2, it might be thought that no proper

extension of n+' (i.e. one not contained in n+') is a conservative extension

of S5 and that no proper extension of S5n is a conservative extension of

SSQ. However,neither of these results hold. 1"0 fault the first, add

I\c T for any k > 1 to n+'; and to fault the second, add M2A V M2 ,." A

to S5n. Thenby the methods of section 2.4 we may showthat the

resulting systems are conservative extensions of S5 and SSQrespectively.

There are many other applications of our methods. E.g., we may use

them to provethe semantical analogues of Scrogg's results on extensions

of S5.

16. References

The interpretation in which variables range over wfs is Bull's and

is given in OnModalLogic with Propositional Variables.

Tarsld. proved the decidabili ty of B-, presumablyby the elimination

of quantifiers, in 1949. However,as far as I know, the proof has not

been published.
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Chapter 6

THESYSTEMSM ,B AND840n n n

In Chapter 2 we considered S5 with the operators~. In this chapter

we consider some weaker systems with these operators.

§1. The Systems

The system M is defined as follows:n

Formation Rul.es. The wfs are given by the set V of variables, the

binary operator v and the unary operators ....., L, and ~, k = 1,2, ••• , MoA

abbreviates A ::) A and ~ A, k = 0, 1, 2, ••• , abbreviates ~ A " .....~+1 A.

Thus ~, rather than ~, is now primitive. The use of Mnfor an operator

and the name of a system should cause no confusion.

Transformation Rul.es. The axioms are: all tautologous wfs; the

schemes LA::> A and L (A :::> B) :::> (L A ::) L B); and the schemes

(1)

(2)

(3)

~ A ::) ~ A, 1 < k

K A ; ~ M. (A A B) A K . (A" .....B),-K 1=0 1 -K-1

L (A ::) B) ::) (~ A ::) ~ B) , and

(4) M1 A 5 M A, k, 1 = 1, 2, ••••
The system B is obtained from M by adding the axiom-schemen n
(5) A::) L M A.

The system S4° is obtained by addiog the schemes:n

(6) M ~A::)~A, k~ 1; and

(7) Mm(B " 'l:t (B A ~ (A A ~ B») ~ l\.n A, where n = qt(m-1), 1) +

1. (qt (x, y) is the quotient on dividing x by y).
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Wemay define the general notion of a system as follows. A system

S is a set of wfs such that

(i) if tM- A, then A e S, and
n

(ii) if A, A :::)B ! S, then B c S.

Semantical Rules. Weredefine the notion of a structure. A structure M

is an ordered triple (W, R, ¢) where Wis a non-empty set, R is a relation

defined on W, and ¢ is a map from V x Winto ft, fJ. 'wRy' may be read

as 'v is accessible from w.'

With each structure M= (W, R, ¢) we associate a unique relation

~ A. It is the smallest relation such that:

(i) ~ P. iff ¢ (P., w) = t, i = 1, 2, ••••
W a a

(ii) ~ ,..,.A iff not - ~ Aw w
(iii) ~ (A V B) iff 1.l! A or .~ Bw Iw w
(iv) ~ L A iff for all v st wR v, ~ Aw v

(v) t=e Hi A iff there are at least i distinct worlds vl' v2' ••• , Vi

st wR v. and
J

~ A, j = 1, 2, ••• , i, i = 1, 2, ••• •v.
We_define th~ following conditiona on R:

R is reflexive if for all w c W, w R w

R is symmetric if for all w, v C W, w R v = v R w

R is transitive if for all w, v, u c W, w R v and

v R u = w R u,

Wesay A is valid in M= (W, R, ¢), ~ A, if for all w c W, ~ A.
w
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Validity is then defined as follows:

t== A if ,J!A for all structures M(s (W,R, ¢» such that R is
K

reflexive

~ A if J-!A for all structures Msuch that R is reflexive and
n
symmetric

ls4'o A if f.!A for all structures Msuch that R is reflexive and
n

transitive.

§2. Maxi mal , y Consistent Systems

WeShall prove completeness for the systems by means of me systems.

lor future use we Shall state many results in general form.

Let S be a system. Then an S-system or system of S is one which
,

includes S. In conformity with standard notation, we write h A' for

'A t S'. Let A be a set of wis. Then tJ Is-A if there are wfs A1,

A2, ••• , ~ c L1 such that ,_ (A1::) ••• ~ (Am~ A)••• ) • ~ is S-consistent

if not A s j_ • L1 is S-complete if for every wi A either A J- A or

!J f- - A. A is maximally consistent (me) ~ S if ~ is S-consistent and

S-complete.

I remind the reader of the following theorems.

1!J.eorem1. (Deduction Theorem). If IJ. u fAJ t-s B, then Ll rs (A :::> B)•

~eorem 2. (Lindenbaum's Lemma). Every S-consistent set is contained

in an me system in S.

1!J.eorem3. If fl is an mc system in S, then ""A c IJ. iff not A c A and

(A VB) c ~ iff A c ~ or Bell •
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Wenow turn to some modal features of our systems. A system S is

normal if whenever A e S, LAc S. Let S be a consistent normal system.

Then we let W be the set of mc systems in S. By theorem 2, W is non-s s

empty. For i = 1,2,•••, we define the relations Ri as follows:

for w, v ~ W , wR. v if for any w:r A whenever A e v M. A ~ w. Thes J. J.

relations Ri play a crucial role in what follows.

First we note two trivial lemmas:

Lemma 1. wR. v iff fA: ~ M. ~ A c wJ c v.
~ J. -

Proof. Straightforward given the JkIuivalence Theorem, which follows with

the help of axiom-scheme (3).

Lemma2. If wR. v, then wR. v, j < i.
J. J

Proof. By scheme (1).
Use of theorem 3 and lemmas 1 and 2 will often be tacit.

The next result is fundamental:

LeIlDDa. 3. Hi A , w iff there are at least i distinct ordered pairs (Yj, ctj),

at wRa..V. and A ,Y., ct. > 1, j = 1,2, ••• , i.
J J J J-

Proof.

• By induction on i.

Basis i = 1. Assume H1 A c w. Let f. = fA: LAc wJ.
Suppose! U (AJ is not consistent. Then, by PC and the Deduction Theorem,

there are wfs 1.1' ••• , An C ..r. st t-s 1.1~ (1.2 ::> ••• ~ (An :::> - A». So by

the system H, I--;s L 1.1 ::> (L 1.2 ::> ••• :::> (L An ~ L - A).) Hence L - A c w.

So by axiom-scheme (4), -- H1 A c w, contrary to the consistency of w.

So! U fAJ is consistent and by Lindenbaum's Lemma..r U fAJ is contained
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in a mc5-system v. So by lemma 1 and scheme (4), w R1 v;

Inductive Case. Assumethat the lemmaholds for i < k. (The

Induction Hypothesis).

Assume~ A e w. Wedistinguish two cases:

(A) There is a wi B and numbers p, q < k such that p + q > k and

Mp(A " B), Mq(A " -- B) e w. By I H, there are p distinct pairs (Yj' a.
j
>

st wR a.j Vj and (A " B) c Yj, j = 1, 2, ••• , p, and there are q distinct

pairs (~, Sh) st wR Sh un and (A "-B) c~, h = 1,2, ••• , s- Since

B c Yj and .....B e ~h' Yj F Vh for any j or h. 50 there are at least p + q

~ k pairs, viz (Vj, a.j), (~, Sh) which satisfy the condition in the

consequent of the lemma.

(B) There is no wf B and there are no numbers p, q < k as in (A).

By scheme (2) and theorem 3, for each wi B there is an i st ~ (A " B),

I\c-i (A " ,.,. B) c w. So for each wf B, either (a) ~ (A " B) I W or

(b) ~ (A " ,...B) e w. In case (a), ....M(A " - B) c w. For otherwise,

H1 (A",.,. B) c w by scheme (4), Hk-1 (A" B) I w by scheme (1), and so (A)

voa.;Ldbe satisfied after all. Similarly, in case (b), ....M(A " B) I w.

Nowlet.r = fA: ,...1\ ....A I wJo

Nowsuppose r U fA} is inconsistent. !l!b.enthere are wfs .11' ••• , Am11
such :that (i) ~ ct." ... " Am)::>- A. By the paragraph above, either

(a)~L (A::>Ai) for i = 1,2, ••• , m or (b~L (A =>-Ai) for some

i = 1, 2, ••• , m. In case (a), L (A ~ (.11 " ••• " Am» C w. But then by

Mand (i), w is inconsistent; a contradiction. In case (b), by scheme (3)

,...~ A c w since - l\: - Ai S w. But by assumption, \: A c W; again a

contradiction. So.£ U fA} is consistent. So by Lindenbaum's Lemma,
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l~s contained in an mc. S-system v, and by lemma.1 w~ v. Hence by

lelllDa.2, wR1 v, w R2 w, ••• , w ~ v where A c v, and the consequent of the

lemmais satisfied by the pairs (v, ~j)' j = 1,2, ••• , k.
By induction on i.

Basis i = 1. Assumew R tIL V1 and A c V1• Then MAc w. But
~ a,1

~1 ~ 1. So by scheme (1), M1 A c w.

Inductive Step i = k. Assumethere are k distinct pairs (Yj, a.
j
) st

w\j Yj and A e Vj, j = 1, 2, ••• , k. Wedistinguish two cases.

(A) All the 'I .'s are identical.
J

\J A c w and by scheme (1) ~ A

(B) At·least two Yj's are distinc:b. Clearly we may assume "1 = Y2 = ••• =

'n and ~j IY, for j = h + 1, h + 2, ••• , k. So for j = h + 1, h + 2, •••,

k there is a Bj such that Bj e Vj and I'W Bjet 1. Let B = V Bj • Then by

PC, B e Vj for each j and '" B e "1. By the I.H., f\:-h (A " B) c w and

~ (A " - B) C w. So by scheme (2) ~ A c w.

Then clearly there is an ~j ~ k. So

c w.

13. Characteristic Models

Let S be a consistent normal system. In this section, I showhow to

construct a characteristic model for S from Wsand Ri as raw data.
The intuitive interpretation of w R. v is that there are i worlds

l.

¥bich are accessible from w and which have the same truth-value assignments

as v. So if X is an arbitrary non-empty set let us say that a relation R

defined on a non-empty subset N of W x X is sound ifs

(i) for (V, n) eN and (y, mi) = N; (V, n) R (V, ,\), i = 1,2, ••• , k

~w~ v and
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(11) for y, V c Ws and (Y, n) eN; w ~ v ::$ there are k distlnct

~, Mi) in N such that (w, n) R (v, mi), 1 = 1,2, •••, k.
Given R defined on N, we may define a natural structure N = (N, R, ~ bys

letting ~ (Pi' (v, n» = t (f) if Pi C v (Pi J w), (v, n) eN and 1 = 1, 2, •••

!lheorem1. If N is a natural structure defined as above, with R as sound,
s N

then for each (v, n) eN, ::;=s) A iff A c v.lW,n
Proof. By induction on the length of A. The one tricky case is whenA is

of the form ~ B•

...Assume L!s A (= ~ B). Thenby the defilQJ;ion of ~ , there are
l"[W,n) W;Ns ~ (w,,,) "< c..V~J n'\~~,

k pairs (v., m.) in N such that B" j = 1, 2, ••• , k. SupposeuiJ J j,mj)
are the distinct vj 's and that there are ni pairs with first memberui'

1 = 1, 2, •••, 1 <k. Then since R is sound, W R1\i ui' 1 = 1, 2, •••, 1.
So by lemma2.2, for each i = 1, 2,•••, 1 there are ni pairs (ui' j), j + 1, 2,
••• , n.. , such that v R. u.. Clearly,

.I. J l.

(i) there are k such (u.,j)'s in all. Also, for j = 1,2, •••, k,N l.

~ B. So by I.H.,I\Vj, mj)

(1i) B c u. for each i.
l.

from (i) and (ii), by lemma2.3, \: A c w.

4-Assume A (= !\c B) C v. Thenby lemma.2.3, there are k pairs (vj' a.j>

suCh that w R v. and B C vj' j = 1,2,•••, k. As before, let ui be thea.j J

distinct v.' s and n. the numberof pairs with first memberu., i = 1, 2,
J l. l.

...,
1 ~:It. Since R is sound, there is for each i, ni pairs (ui' mj) in Nt j =
1, 2, ••• , n

i
, such that (w,n) R (u.,m.). Clearly,

3. J
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(i) there are k such pairs (ui' mj).

Also, B c u. for each i. So by the I.H.,
l.
N

(ii) F B for each CUi' mj).
(U. ,m.)
l. J

N
Froll (i) and (ii), by the definition of L, L.! M.. BF IV: n) -lc •

14. The System MIl

To prove completeness, we shall use the construction of §3. Let

x = £1, 2, •••,}. Wethen define R on WM x X as follows:
n

for w, v 8 WM and n, m 8 X, (w, n) R (v,m) iff
n

(i)

or (ii)

w = v, n < mand w R 1 ..,- m+ -n

v /. v, n < m and v R ~m-n
Wenov require tvo lemmas:

Le_ 1. R as defined above on WM x X is sound.
n

Proof. (A) Assume (v,n) R (v, mi), i = 1, 2, •••, k.
Clearly we may suppose m1< m2< ••• < '\:. Wedistinguish two cases.

(a) v = v. Then n < m.. So n + k - 1 < '\:. But v Rm V. So by
- l. - M1~

18l1li8.2.2., wi (n+k-1h1-n v, i.e. w ~ v.
(b) v /. v. Then n < m1• So n + k ~ Ilk. But v R~_n V. So by lemma.2.2,

v Rn+k_nV i.e. v ~Y.
(B) Assume w ~ V. ~n either

(a) W= v and (w, n) R (v,m) , m=n, n+1,oo., n+k-1 or

(b) w /.v and (w, n) R (v,m) , m+n~1, ••• , n+k.
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Lemma2. R is reflexive.

Proof. (w,n) R (w,n) if v R 1 w i.e. if wR1 w. But by scheme (4) andn+ -n
H, if A t w, then M1A t v.

Wenowhave:

Theorem1. kr- A iff t- A.
n n

Proof. =0 (Consistency). Straightforward.

+-- Assumenot hi A. So by PC and the Deduction Theorem, r- A} is
n

Hn - consistent. So by Lindenbaum's Lemma,there is an mcMn-system v such

that - A t w. Let NM be the natural structure obtained from WM and R
• n NMn_ n

as defined above. Then by lemma1 and theorem 3.1, not L..::; ) A.rrw,1
So by lemma2, not - t:A.

Clearly, a similar argument proves strong completeness. In subsequent

proofs of completeness, I shall merely prove the appropriate lemmasand

leave the application of theorem 3.1 to the reader.

Call a relation R antiaymmetric if for all x and y in its domain,

x :a y Be R x =0 X = y. NovR, as defined above, is antisymmetric. For

suppose (v, n) R (v,m) and (v,m) R (w,n). Then n ~ mand m~ n; so
M

n = m; and so v = w. Hence F A for all Min which R is reflexive iff

hi A iff l1! for all Min which R is reflexive and antiaymmetric. Thus
Mn F
for Mit makes no difference whether accessibility is antisymmetric or not.

§5. The System Bn.

The construction of NM from WB and Ri is a little tricky.
n n

First,va define by induction the relations Si and sets Di, i = 1, 2, •••

(i) S1 = ¢; D1 = f(v,1): w t WB J ;
n
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(ii) (v,n) Sp+1 (v,m) iff (v,n) t~,

there are exactly 1 m'\; such that (v , m') S (w,n) , m = fl. f andp

either (i) w = v and w~+1+1 Y

or (ii) w I v ~+l Y,
D 1 = the domain of S 1.p+ p+

Put N = U Di, and for x, y e D, let x 5j iff for some i, x 5i y.

Wenowlet R be the smallest reflexive and symmetric relation which

contains S i.e. for x , YeN x "By iff x = y or x sy or y 5.t. Thus we see

that 5 is a tree-relation such that if (w,n) has exactly 1 R-predecessors

with first memberv then (w,n) has k S-successors with first memberv iff

w ~+l Y.

By definition, R is reflexive and symmetric.

To prove soundness, we first prove:

Lemma1. If v R1 v, then v R1 w.

Proof. Suppose A c v. Then by scheme (5), L MAt W. So by scheme (4),

.- M1.....M1A t w. But then by lemma2.1, M1A c v.

Also, w R1 w for each w t WB' since lemma2.2 holds for any system
n

¥bich contains M. Wenowhave:n

Lemma2. R is sound.

Proof. Routine, given lemma1 and the remark above.

Consistency and completeness then follow as for M •n

§6. The System s4a
n

First, we prove consistency. Wemay easily show '-- (6) So it
f"'Wn

remains to show ~ (7). For this we require the following lemma:
JS4C>

Lemma1. Suppose R n is a transitive reflexive relation defined on a
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set Y UZ, that for each y in Y there are exactly 1 y's in Y and at least

k z's in z such that Y R y and y R z, and that for each z in Z there is a

y in Y such that z R y. Then if Y contains at least m~ 1 elements, then

Z contains at least n = (qt (m-1), 1» + 1) k elements.

Proof. First we show that R is symmetric on Y. For suppose that y, Y c Y,

j R Y and not - (y R y). Nowy R Yi' for distinct Yi C Y, i = 1, 2, ••• , 1.

80 for each i, y f. y.. But then by reflexivity and transitivity, y R Y
l.

and Y R y., contrary to assumption.
l.

Next we show that for y. e Y, Z e Z if Y R z, then z R y. For z R y

for somey e Y. So by transitivity, y. R y. So by symmetryon Y, YR y.
So by transitivity again, z R y.

By the first paragraph, R is an equivalence relation on Y. Suppose

Y/.Q,the partition on Y induced by R, has P elements. Then the reader

~ easily convince himself that p ~ n = qt «m-1)1) + 1.

By the second paragraph, if not (y R y), then the sets (z c Z: y R zJ

and {z c Z: y R zJ are disjoint. So there are at least n.k elements in Z.

Wenov showthat b (7) • Suppose ~ C, where C is the ante-s40 w
cedent of (7). Temporarilynwe sa:y v is an A-world if r: A. Then:

(i) there are mB-worlds v which have R to w,
(1i) for each v there are just 1 B-worlds v which have R to v,

(iii) for each v there are k A-worlds u which have R to v, and

(iv) for each u there are 1 B-worlds t which have R to v.

By transi ti vi ty, each v has R to just 1 B-worlds and each world t is

a v. Letting Ybe the set of v's and v's and z be the set of u's, we see

that the assumption of lemma1 is satisfied. So there are n.k A's in Z.
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So by transitivity, 'L-1! M k A.I"ii n.
So we have:

Theorem 1. (Consistency) • If W: A, then SA.
n S40n

For completeness we require the following two lemmas:

Lemma 2. If v R v and v ~ u , then v ~ u,

Proof. Assume v R1 v and v ~ u, Suppose A c u, Then l\: A 8 v; Sp M1~

A I u, But then by schemes (4) and (6), ~ A e u,

Wesay: v ~ v, k = 1,2, ••• , if v ~ v and not - (v ~+1 V); and
w S~o v (or w ~ v) if v ~ v for k = 1,2, ••••

Lemma 3. If v Rmv, v ~ u and u Sl v, then v ~.n U, n = qt «m-1),1) + 1.

Proof. Since u Sl v, there is a B such that B c v, ~ B c u, By lemma 2,

v Rl v. So M1 B e v. If Ml+1 B c v, then since u R1 v, M1 (Ml+1 B) c u,

and so by scheme (6) 1\+1 B c u, So ~ B c v aJ.so.

Nov suppose A e u. Then A A M:t B c u. So l\ (A A M1 B) e v ; So

~ (B " ~ (A " ~ B» c v. So Mm(B " ~ (B " l\ (A A Ml B») I v.
So by scheme (7), K A c v.-"k.n

For v e WS4° , let a. be the cardinal cn v
let v- v iff w R1 v and v R1 v. Wemay nov define Ron N =
v I WS40 n1 = 1,2, ••• , and n2~fJ, J.

n v
For (v, (n1, n2», (v, (m1, m2» eN,

(v, (n1, n2» R (v, (m1, m2» iff

such that w Sc w. For v, v c WS40'n
f(v, (n1, n2»:

(i) v - v and n1 = m1

(ii) not (v- v) and

or

(a) a. is finite and v R(m -1),., + m V or
v 1 ~v 2
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(b) a.v is infinite and for each t such that v .....t, wR 111a.t t.

(v, (n" n2» may be looked upon as the n2-th plir, with first memberv,

in the n1-th "pool" i.e. set of pairs in which each element is related

by R to every other element. The pair (n1, n2) could, of course, have
n1 n2been replaced by the siqJe number 2 .3 •

The next two lemmas show that R has the required properties. Wesay

en1, n2) ~(m1' m2) iff n1 < 111or n1 = m1 and n2 oS m2• Then:

LeIllDa. 4. R is sound.

Proof. (A). Assumew R.. v. (i) w ..... v. Then (by lemma2) a. > k; So-1c v-

(v, (n1, n2» R (v, (n1, m), m = 1,2, •••, k. (ii) not- (w-v) (a)

cr.v finite. Suppose k = P a.v + q, q < a.v• Then (w, (n1, n2» R (v, (111, 112»
for all (m1,m2)~(p+1, q). (b) cr.v infinite. Then (w, (n1, n2» R (v,

(1, m», m= 1, 2, •••, k.
(B) Assume (w, (n1, n2» R (v, (1I1i, 1121», i = 1,2, •••, k•

•Clearly we may suppose that (m1i, m2i)~1I1i+1' m21+1), l. = 1, 2, ••• , k.

(i) v .....v. Then the 111i' s are equal and cr.v ~ 112k ~ k. So by lelllDll2,
vik v. (ii) not-(w- v). (a) a.v finite. Clearly,(1I1k-1). a. (V) + 112k >
K. So w ~ v. (b) a.v infinite. Then by leaaa 2, v ~ v.

I.e.... 5. R is reflexive and transitive.

Proof. (A) By lemma4.2, v .....w and so {w, (m1, m2» R (v, (1I1, 112».
(B) Assume (w, (n1, n

2
» R (v, (111,112» and (v, (m1, 11

2
» R (u, (11,

12». Wedistinguish four main cases:

(a) v - v, v .....u , Then n1 = m1 = 11, and by lemma2, v .....u. So (w, en1, n2):

R {u, (11' 12».
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(b) v- v, not (v - u). (1) au finite. Then v R(11-1) ~v + 12 u. But

v. So by lemma.2, w R(11-1) ~v + 12 u as required. (2) au infinite.

By lemma2, if t - u, then v R t.
m1 at

(c) not (v .....v), v - u, (1) a.v and «u finite. wR(m
1
-1) a.

v
+m2

v. Nov

L1 = m1• So by lemma3, v R(11-1) <lu+12 u. (I!) av finite, au infinite.

By lemma2, if t ....u, then wR u, (3) a. infinite, t1. finite. Since
m-flt v -u

v - u , v Rm2«u u, So wR(11 -1) ~ + 12 u, since 11 = m2and 12 s au.
(4) av and «u infinite. As for (2).

(d) not (v ....v), not (v ....u). (1) ~ infinite. As for (c) (2). (2) a.u
finite. Then v R(11_1) ~ + 12 u, So by lemma.2, wR(11-1) au + 12 u,

-.at not (w .....u), otherwise u R1 w, v R1 v, u R1v, v R1 u and so v,... u,

COnsistency and completeness nowfollow.

17. References. The method of me systems was first used by L. Henkin.

Applications to modal logic have been madeby D.Scott and D.C. Makinson

among others.
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Chapter 7

S(J1E ANTISYMMm'RIC SYS'nMS

In the previous Chapter, it was not required that the relation R

of accessibility be antisymmetric. In this chapter we consider systems

which satisfy this requirement.

§1. The Systems.
We shall use the schemes:

(1) MMkA::::>~A

(2) A " M (......A " ~ A) ::::>~+1 A

(3) M2 (A " ¥~ A) ::::>~+1 A

(4) ",,~A ::::>L M A

(5) L M A ::::>......M2 (A " ......M2 A)

(6) -1\ (A r; ....,MI B) v »: ~ (B " -1\ A)

(7) L eM B ::::>B V A) " A " QA " ......B " M B::::l M2 B,

m = 3, 4, •••, k, 1 = 1, 2, ••••
The systems mentioned on the left are obtained by adding to M then

axiom-schemes on the right:

s4' (1) , (2 ), (3)n
S4.2' (1), (2), 0), (4), (5),n
S4.3' (1) , (2), (3), (4), (6)n
S4.32 (1) , (2), (3), (4), (6) , (7).n

We now come to semantics. A relation R is:

Convergent if for all w and v there is a u such that w R u and v R u;

Total if for all w and v, w R v or v R w; and
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Dense if for all distinct w and v there is a u distinct from w and v

such that w R u and u R v.

W, v and u range, of course, over the domain of R.

We may now define validity:

L- A iff L.!:! A for all structures M (=(W, R, ¢» such that R is'S41 r-
n reflexive, antisymmetric and transitive.

L_ A iff \2!. A for all M such that R is reflexive, antisymmetric,1S421 r
• n transitive and convergent.

~ A iff ~ A for all M such that R is reflexive, anti symmetric ,i4."3~
transitive and total.

f= A iff ~ A for all M such that R is reflexive, antisymmetric,
84.32

n transitive, total and dense.

The superscripts, 0, 1, 2 indicate distinctions for the systems

with ~ Which need not be made for the systems without ~.

§2. The System S41n
If k A, then b A..

n s4 n

Proof. Straightforward, except perhaps for (2) and (3). For (2), suppose

Theorem 1. (Consistency).

~Wrw A" M c, A A J.'lk A). Then ~ A and there is a v such that w R v,

L.!v M_ A. R d 14!rv -K So there are k distinct ui such that v ui an r\i. A, i =
1

••• , k. ~ antisymmetry ui I w. ~ transitivity, w R u. So given

reflexiVity, r: Mk+1 A. The validation of (3) likewise depends upon
anti-symmetry.

1, 2,
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Neither (2) nor (3) are valid for 85n. (Let W = [1, 21, R =
[(1,2), (2,1), (1, 1), (2, 2)}, ¢ (P1, 1) = t, ¢ (P1' 2) = f).

is contained in S5n, this shows that 840 and 841 are distinct.n n

First we require four lemmas for R. defined on WS41 •
~ n

Since S4°
n

Lemma 1. If w R2 w, then w ~o w.
Proof. Assume w R2 w and suppose A e w, We shall show that for all i ~ 2,

Mi A e w. Clearly, M2 A e w. Now suppose ~ A e w. Then A A ~ A e w.

So M2 (A A ~) € w. Hence by (3), ~+1 A e w.
Lemma 2. If w t v , w R1 v and v R1 w, then w R'l( v ;

o
Proof. Assume w t v, w R1 v and v R1 w. Then there is a B such that

B e w and ~ B € v. Suppose A e v. Let

= ~ (A A ,... B) A M C2n "\
( ) C ~ n > O.= A A ~ BAM 2n+1

• We establish by an easy induction that C2n+1 e w and C2n e v. We may also

establish by induction that \1S41 C2n+1::)Mn+1 (A A .... B).

n
For clearly lS4i C2 ~ M1 (A A .... B).

n
Now C2n+1 = ,...(A A - B) A M C2n

= .... (A A ....B) A M «A A ....B) A M C2n_1)
wchih provably implies,...(A A _ B) A M «A A - B) A M Mn (A A - B», by the

I.H. and (2),

which implies ....(A A ....B) A M «A A,...B) A M (A A ....B», by (1),
n

which implies M (A A ....B) by (2).n+1
So by the system Mn' ~ A e w for all k > 1.
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Hence w ~o v ;

Lemma 3. If w R1 v and v ~ u, then w ~ u,

Proof. As for lemma 6.6.2.
We say that w is cyclic to v, in symbols w - v, if either w = v and

w R2 v or w p v, w R1 v and v R1 w. Note that this is not quite the,...of

§6.6. The following lemma states the main properties of _.
Lemma 4.

(i) ....is an equivalence relation on (w e WS41 : w- v for some v1
n

(ii) - is a congruence with respect to Rk on Ws41 i.e. if w1 ~ v and
n

"a ....w1, then "z 11c v and if w ~ v1 and v1 ,...v2, then w 11c "a
(iii) if w ....v, then w ~ov.
Proof. Straightforward with the help of lemmas 1-3.

In order to define the accessibility relation R, we must order the

equivalence classes with regard to -. For this the ~ are of no help.

So let us suppose that '< is a W-ordering of Wa41 (This 1lJB3 be done wi tn-
n

out the axiom of choice: enumerate all wfs in some standard fashion; treat

each mc as a subsequence of the enumeration; and order these subsequences

lexicographically).

The relation R in WS41 x X, X = [1, 2, •••}, is now defined as
n

follows:

for w, v € WS41 and n, m e X,
n

(w, n) R (v, m) iff

either (i) w ....v and

(a) n < m

or (b) n = m and w~ v
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or (ii) not - (w _ v) and

(a) w I v and w R vm
or (b) w = v and m = n.

Lemma 5. R as defined above is sound.
Proof. (A). Assume w Bk v. If w - v, then (w,n) R (v,n+1), for i = 1,2,•••,
k by clause (i) (a) of the definition of R. If not- (w - v), then either
w = v in which case k = 1 and (w, n) R (v, n) or w I v in which case
(w, n) R (v, m), m = 1, 2, •••, k, by clause (ii) (a).

(B). Assume (w, n) R (v, m.), i = 1,2, ••• k.~

If w - v, then w ~ v by (iii) of lemma 4. If not (w _ v), then either
w ~ v and w R v or w = v and m. = n. In the first case, there is an im. ~~
such that mi ~ k, so w Bk v. In the second case k = 1 and w R1 v by the
system M •n
Lemma 6. R is reflexive.
Proof. As for lemma 6.4.2.
Lemma 7. R is antisymmetric.
Proof. Assume (w, n) R (v, m). We distinguish four cases:

(i) (a) w _ v, n < m. Suppose (v, m) R (w, n). Now v _ w by

lemma 4 (i). So m < n by clause (i) (a). A contradiction.
(i) (b) w _ v, m = n and w~v. Suppose (v, m) R (w, n). Now v _ w

and so v~w by clause (i) (b). Hence w = v and (w, m) = (v, n).
(ii) (a) not (w_ v), w I v and w R v. Suppose (v, m) R (w, n).m

Not (v - w) and so v R w by (ii) (a). Hence v _ w after all. A
n

contradiction.

(ii) (b) not (w_ v)~m = n. But then (w, n) = (v, m).



- 98 -
Lemma 8. R is transitive.

Proof: Assume (w, n) R (v, m) and (v, m) R (u, 1). We wish to show that

(w, n) R (u, 1).

U) w .....u. Then w - v and v - u, For, if v = w, then w .....v by lemma

4 (i), and if v I w, then v R1 u and w R1 v by lemma 5, w - u, 'so v R1 w

by lemma 4 (ii), and so w - v , In the same way we show that v _ u, By

(i) (a) and (i) (b), n < m and m ~ 1. If n < m or m < 1, then n < 1 and

(w, n ) R (u, 1) by clause (i) (a). If n = m = 1, then W ~ v ~ u,

So w ~ u and (w, n ) R (u, 1) by clause (i) (b).
(B) not - (w,.." u},

(a) wI u, If v - u , then v Rl'( u by lemma 4 (iii).
o

So by lemma 3, w ~ u and (w, n) R (u, 1) by clause (ii) (a).
Now w R1 v.
If not (v _ u),

then either v = u and m = 1, in whiCh case the theorem is trivial, or v I u,

in which case v R1 u by clause (i) (a), so w ~ u by lemma 3, and so (w, n)
R (u, 1) by clause (ii) (a).

(b) w = u. Then v = w (= u), otherwise w- u, contrary to supposition.

But then n = m = 1 by clause (ii) (b) and so the case is trivial.

We have now proved all the appropriate lemmas and completeness
follows in the usual manner.

The required model for S41 might have been obtained by modifying the
n

model for S4° given that n = 1 or n =lh(. I omit details.
n w w 0



- 99 -

1The System s4.2n
Theorem 1. (Consistency). If ~ 1 A, then

S4.2n
...... A.
~21

n

Proof. Straightforward except perhaps for (4) and (5). The validation of

(4) is known from S4.2. To validate (5), assume ~ L M A and
w M

L1i M2 (A " ,....M2 A). So there are distinct w. such that \..,::.(A" __M A)rv ~ rw. 2'M ~i = 1,2. Clearly if w. R , then either v = w. or ~ "'"A. Now by~ V 1 ~

convergence there is a v such that Wi ~ i = 1,2. So v is distinct from
the w .• But ~M A. So there is a u such that v R u and Fu A. By~

transitivity, w. R u, i = 1, 2. But then w1 = w2• A contradiction.a,

For completeness, we can no longer deal with the usual natural

structure NS4 21 since its accessibility relation R may not be convergent.
• n

However, connected substructures of NS4•21 will have convergent R. So we
n

need the following definitions and results.

Given a structure M = (w, R, ¢) the connected substructure of M generat-

ed by w € W is the structure MW = (vw, RW, ~), where WW is the smallest
wset S such that w € S and if v e S and v R u then u e S, R is R restricted

to WW, and ~ is ¢ restricted to WW.
The following well-known theorem carries over to the present case:

Theorem 2. (On Connected Substructures). If M and MW are defined as
W MWabove and v e W , then t# A iff ~ A.

v v

Proof. As in the standard proof.
In view of theorem 1 we need only show that N(w,1)S4.21

n
has the required
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properties in order to prove completeness. In a transitive connected
substructure all elements are, of course, related to the generating element.

In the following lemmas, I shall write 'x1'•••' xn R y' for 'x1 R y &...
& ~ R y' and 'x R Y1' •••, Yn' for 'x R Y1 &•••& x R Yn'.

Lemma 1. If w R1 v, u, then (~ t) v, u R1 t.
Proof. Assume w R1 v, u and not- (~ t) v, u R t. Then by familiar reason-
ingJl = fA: L A e v} U fB: L B e u} is inconsistent. So there are A1,•••,
Am' B1,···, Bn such that L A1, ••• , L Am C ¥, L B1, •••, L Bn e u and

ts4.21
B = ~1

A1 ~ ••• ~ Am ~~ (B1 ~ ••• ~ Bn)· Put A = A1 ~
A ••• ~ Bn. Then L A e v, L B e u and (i) '54.21

n

••• ~ A andm

A ~ ~ B. Since

w R v and w R u, M L A, M L B € w. So by (4), L MAe u. But by (i), L M A ~
L M - B e w. So L M - B e w. Hence _ M L B e w. A contradiction.
Lemma 2. If w R v , u and (Y t) (v, u R t ~ t = v), then either not (w R2 v )

or v R2 v.
Proof. Assume w R v, u , (V t ) (v, u R t ~ t = v), w R2 v and not (v R2 v ),

Let ~ = fA: L A e v} U fB: L B e uJ. Then, familiarly, for any C e v,
.r t-- C, and so for some A, B, L A e v, L B e u and (i) t- A A B ::> C.
Since not (v R2 v), there is a C such that C, - M2 C e v. So suppose
t-- A A B ~ C, where L A e v and L B e u, By 54, L L M B e u, By lemma 1,
u R1 v : So L M B e~, By (i) and 54, I-- L A ~ (L M B ~ L M C). So
L M C e v. So M L M C e w. But then by (4), L M C e w. Since w R2 v,
M2 (C A - M2 C) e w. So by (5),- L M C e w. A contradiction.

Corollary 1. If w R2 v, then either v R2 v or there is a u I v such that
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v R u.
1

Proof. Put v = u in lemma 2.

We define R on (W 4 21 x X)(w,1) as in §2. Proofs of soundness,
s • n

reflexivity, anti-symmetry and asymmetry are as in §2. So it remains
to prove convergence only.

Lemma 3. R is convergent.

Proof: Assume (w, 1) R (v, m) and (w, 1) R (u, 1). We wish to show
~ (t, k) such that (v, m), (u, 1) R (t, k).

(A). v _ u, Then put (t, k) = (v, m + 1) by clause (i) (a) of the
definition of R.
(B) not (v _ u). B,y lemma 1 there are just the two cases (a) and (b).

(a) ~ r such that r I v, r I u and v, u R r. If v - r, then u R r:
o

so put (t, k) = (r, m + 1). Similarly, if u _ r. So suppose not (v _ r)
and not (u _ r).

(b) (r) {u,

B,y clause (ii) (a), put (t, k) = (r, 1).
v

v R '.:tr = v) (or the case for r = u which is similar).
Then by lemma 2, either not (w R2 v) or v R2 v. In the first case, m = 1

by soundness, so put (t, k) = (v, 1). In the second case, u R v, so
o

put (t, k) = (v, m).
Completeness now follows.

§4. 1The System S4.3
n

To show that scheme (6) is valid, we need the following result:

Lemma 1. If R is a reflexive, transitive and total relation defined on

a set Y with n elements, n > 1, then there is a first-element in Y i.e.

a x in Y such that for all y in Y, x R y.
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Proof. If Y = f Y1~' use reflexivity. If Y = (Y1' Y2}' use the fact that

Y is total and reflexive. Now suppose Y = (Y1' Y2' ••• , Yn+1}' n > 1.

R restricted to (Y1, Y2' ..., Y 11 is reflexive, transitive and total.n+ -
So by IH, there is an element, Y1 say, such that Y 1 Ry i' i = 1, 2, ..., n.

Similarly, for (Y2' ..., Yn+1 }, there is an element, Y2 say, such that

Y2 Ryi' i = 2, • • • t n+1. But Y1 R Y2• So Y1 R Yi, i = 1, 2, •••, n+1.

Theorem 1. (Consistency). If k31 A, then
's4•31

A.• n n
Proof. Straightforward except for (6).

Assume ~ Mk (A " ....Ml B) and Fw Ml (B " ,..,~ A). Then there are

distinct w1' w2, •••, wk and distinct v1' v2' ••• , vl such that w R Wi'

w R v., ~ A" ....Mk A, i = 1,2, •••, k, j = 1,2, •••, 1.
J w.

l.

Since ~ ....Ml B, for each w1 there is a v. such that not
l. J

SinceLli ....¥~ A, for each Vj there is a wi such that not-rv.
then R J as restricted to fw1, •••, wk' v1' •••, vI} fails to satisfy

- (w. R v.).
l. J

(v , R w. ).
J 1.

But

lemma 1.

For completeness we require the following lemma.

Lemma 2. If w ~ v and w ~ u, then either v ~ u or u ~ v ;

Proof. Assume w ~ v, w ~ u , not- v ~ u and not- u ~ v. Then there is

an A and a B such that A e u, ....MI A e v , B e v, and i-- Mk B € u , So

A A .....Mk B e u and B " ""MI A e v. Hence Ml (A " ,....Mk B), Mk (B A .....MI A)
e w, which by (6) is a contradiction.

We define R on (WS4•31 x X) (w,1) as in §2. It is only at this
n

stage that use is made of~ as a total ordering. Given the previous

results, we need only prove that R is total:
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Lemma. 3. R is total.

Proof. Assume (wt 1) R (v, m), (u, 1). We wish to show (v,m) R (u, 1) or

(u, 1) R (v, m).
(A) v - u. If m > l,then (v, m) R (u, 1) by clause (i) (a). Similarly if

1> m. If m = 1, then either v~u or ~v. Suppose v~u. Then (v, m)
R (u, 1) by clause (i) (b). Similarly if u~ v.

(B) not (v - u). (a) w _ v. Then not (w- v). So either (w, 1) = (u, 1)

and the case is trivial or w BI u. But then v BI u and 50 (v, m) R (u, 1)

by clause (ii) (a).

(b) w - u. Similar to (a).
(c) not (w _ v), not (w_ u).

Then w Rm v and w ~ v , But then by lemma 2, either v ~ u or u ~ v; So

if w ~ v, either (v, m) R (u, 1) or (u, 1) R (v, m). If w = v, the case
is trivial.

2The System 54.3n
Theorem 1 (Consistency). If bS4 A, then ~ 2 A•

•3n S4.3
Proof. Straightforward. I leave the proof that~ 2 (7~to the reader.

S4.3nFor completeness we require the following lemma:

Lemma 1. If w S1 w, w S1 v and w ~ v, then there is a u distinct from w

and v such that w R1 u and u R1 v ;

Proof. Assume otherwise. Then since w S1 w, there is an A such that

At Q1 A e w. Since w ~ v and w 51 v, there is a B such that B e v,

and ....B, Q B e w. Now suppose M [M B 1\ .... B 1\ -- A] c w. Then for some t,

w R1 t and M B, ....B, __ A e t. So for some t', t R t' and Bet'. We may
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easily show that v R t' and v I t'. So there is a C such that C e v and

....e e t'. But then M (B A e), M (B A ~ e) e w, and so M2 B e w, contrary

to Q B e w. Hence L (M B ~ B V A) e w. But A, Q A, - B, M B e w. So

by scheme (7), M2 B e w, again contrary to Q B e w.

Let I be the set of rationals r such that 1 < r(2. We define R on
(w 1)N ' where N = {(w, n) : w e WS4 32 & «w ....w & n e I) or (not (w_ w)

• n
& n = 1»} U few, 1)J as follows:

(w, n) R (v, m) iff

either (i) w ....v and

(a) w~ v

or (b) w = v and n ~ m

or (ii) not (w- v) and w R1 v.

Given the above lemma and previous lemmas, we may show that R has the

required properties. I omit details.

§6. References.

For information on the systems S4.2 and S4.3 see Prior's Past, Present

and FUture, chapter 2.
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