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ABSTRACT

In this thesis, I deal with the notions of a condition holding for
some proposition and a proposition being true in a certain number of
possible worlds. These notions are called propositional quantifiers and
numerical modalizers respectively.

In each chapter, I attempt to dispose of a system. A system consists
of: a language; axioms and rules of inference; and an interpretation. To
dispose of a system is to prove its decidability and its consistency and
completeness for the given interpretation. I shall, in passing, make
applications to definability, translatability and other topics.

In Chapter 1, I consider the system S5Q. Its language is that of S5
with Q as a fresh unary operator. Its axioms and rules of inference are
those for S5 plus the following special axiom-schemes for Q:

(1) QA-MaA

(2) QADL(A>B) VL (A>~B)

(3) L(A=B)>(QA>QB)

(4) QADLQA.

'Q A' is interpreted as 'A is true in exactly one possible world.' I
dispose of the system by showing that every formula in it is equivalent to
one in normal form.

In Chapter 2 I consider the system S5n (n for numerical modalizer).
Its language is that of S5 but with the unary operators Qk for each non-
negative integer k. Its axioms and rules are those of S5 plus the

following special axiom-schemes for Qk:
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(D Q A>~Q A, 1<k

(2 Q A=Vi_Q (AAB)AQ ,; (AA~B).

(3) L(A=B)>(Q A>Q B)

(#) Q ADLQ A

(5) QA=L~A,12>0,k>1
'Qk A' is interpreted as 'A is true in exactly k possible worlds.' I
dispose of this system by generalising the normal forms of S5Q.

In the chapters 3-5, I consider three systems which result from adding
propositional quantifiers to S5. The first two systems, S5m7+ and S5m,
contain the usual axioms and rules for quantifiers. The first contains,
in addition, the axiom-scheme

g=(EP) (PA(R) (RODL (P>R))). The last, S5M-, results from
85m by restricting the Scheme of Specification, viz., (P) A (P) o A (B),
B free for P in A (P), to formulas B of the propositional calculus.

To interpret these systems we must specify which propositions the
variable P ranges over., For S5m-, we merely require that if p and q
are propositions, then (not p) and (p or q) are also propositions. For
85T+, we also require that each possible world be describable i.e. that
there be a proposition which is true in that world alone. And for S5mw,
we require not that each possible world be describable but that there be
a proposition which is true in just those possible worlds which are
describable.

Again, we dispose of the systems by normal forms. This requires that
we eliminate quantifiers and nested occurrences of L by adding new

symbols to the language. For S5m+, the operators Qk suffice. For 857,
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the operators Qk suffice. For S5m, we also require the constant g and
a fresh unary operator N. For S5m-, even greater additions are required.
In the last two chapters, 6and 7, I turn to systems which have
essentially the same language as S5n. However, 'Qk A' is now inter-
preted as 'A is true in exactly k possible worlds accessible from the
given world.' Different conditions on R, the relation of accessibility,
lead to different axioms.
In chapter 6 I consider the conditions of reflexivity, symmetry and
transitivity, and in Chapter 7 the conditions of being a partial,
convergent, total or dense order.
I prove consistency and completeness by the method of maximally
consistent systems. The method can yield decidability results, but I
do not go into the matter.
I have, as a rule, not given acknowledgements for well-established
results or terminology. The main references are at the end of each

chapter. Fuller references are in the bibliography.



Chapter 1

THE SYSTEM S5Q

In this chapter I consider a system containing the notion of a

proposition being true in exactly one possible world.

51. The system S5Q

Formation Rules. The wfs of S5Q are defined in the usual way from a

set V of (propé%tional) variables P1, P2"‘°’ the binary operator v, the
unary operators , L and Q, and parentheses (and). Throughout the thesis

I observe some familiar conventions: R and S, with or without numerical
subscripts, and P range over variables; A, B, C, D, E and F, with or without
subscripts, range over wfs; o, =, M etc. are given standard definitions; each
expression isused autonymously, i.e. as a name of itself; and parentheses are
added to or omitted from wfs in an obvious way. The wf QA is read as ‘A is

true in exactly one (possible) world'.

Iransformation Rules. The axioms are: all tautologous wfs; G8del's
axiom-schemes for S5. viz., L A>A, L (A>5B) o (L A>L B) and four special
axiom-schemes for Q, viz.,

1) QA - MA,

2) QA5 (L (A>B)v L (A>~ B)),

3) L(A=B)>(QA>QB), and

4) QAL QA.

The rules of inference are modus ponens (A, A - B/B) and necessitation

(A/L A).
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Semant#‘cal Rules. Semantics are based throughout the thesis
on Kripke-type structures. A structure is an ordered pair (W, @), where
W (worlds) is a non-empty set and # is a map from V x W into {t, f z (truth-
values). @ assigns a truth-value to each variable in each world.
With each structure M = (W, &) is associated a unique relation
h:-:- A between wfs and worlds: read as 'A is true in the world w for
the structure M'. It is the smallest relation such that:

(1) p_—’f P, iff (P, w) = ¢, i=1, 2,...

w
(ii) [.-_"-~ A iff bot -E A
w w

(ii) }% AVBiff Baor B B

w w w

M i M
(iv) '= LA iff for all Vin W =A

w v
(v)

<=

Q A iff there is exactly one V in W such that % A.

We now define the notions of validity, being a model and logical
consequence. The definitions are general and do not depend upon any
particular definition of the relation FH A. A is valid, ’: A, if for

w R

all structures M = (W, @) and for all w g W, A. M= (W, &) is a

<Jk=

model for A (A has a model M) if for some w g W, }:-’f A. A is a logical
w

consequence of a set of wfs A, A h A, if for all structures M = (W, @)

all
and for w g ¥, g A whenever b‘ B for all wfs B in A.
A w w



§ 2. Normal Forms
In this section I show that every wf is provably equivalent to a wf

in normal form. (A is (provably) equivalent to B if §— A = B).

Preliminary Results:

Lemma 1. f—~QADL~QA.

Proof. By scheme 4, I-—QADLQA. By S5, it follows that =~ M Q A DM
L Q A. But by S5 again, }—MLQADQA. So by PC (propositional

calculus), F—M QADQA. Hence —~QA DL~ QA.

Lemma 2. (The Equivalence Theorem). Let D be the result of replacing a

particular occurrence of A in C by B. Then }—L (A = B) o (C = D).

Proof. First deal with the case when A is the wf C. Then use induction
on the length of C. The case when C is of the form QE requires the use
of scheme 3 and S5.

Use of the Equivalence Theorem will often be tacit.

Reduction of Degree. The modal operators for S5Q are the symbols L and Q.
(Generally, the modal operators for a system are those other than V or ~).
The modal degree d of a wf is the maximum number of times a modal operator
occurs within the scope of modal operators. More precisely, d (Pi) =0,
dl~A) = d A, a(A v B) = max (a(A), a (B)), a(L A) = d (Q A) = d(A) + 1.
A wf A is non-iterative if d (A) = O or d(A) = 1. In this section, we show
that each wf is provably equivalent to a non-iterative wf.

First we require a lemma. Let A (C) be the result of replacing each

occurrence of B in A(B) by C; and let T be the wf (P1 -t P1) and _| the wf~T.



Then:

Lemma 3. If X is a modal operator, §—A(XB) = (A (T) AX B) V
(A (L) A~X B)

Proof. I shall deal with the case when X is Q. The case when X is L is
similar. By scheme (4) and S5, F=QBOL (Q B =T). By lemma 2 (the
Equivalence Theorem), f— L (@ B =T) o (A(Q B) = A(T)).

It follows by PC that (i) |=Q B> (A(Q B) =A (T)). By lemma 1 and

S5, P~~Q@B>oL(QB=L). By lemma 2, —L (B =.L) > (A(Q B) = AL
It follows by PC that (ii) |~~~ Q B> (A(Q B) = A (1)).

Hence from (i) and (ii) by PC,
F—A(@QB) = (A(T) AQB) V(A L) A~QB)

We can now prove:

Theorem 1. Each wf A is provably equivalent to a non-iterative wf C

whose variables are those of A.

Proof: By induction on the modal degree d of A. For d =Oor d= 1,

let C = A. For d >1, apply lemma 3 to all wfs X B of maximum modal

degree in A.

Reduction to Normal Form
We now show that every non-iterative wf is equivalent to a wf in
normal form. Normal forms are defined as follows: A state-description

(8d) in the variables R1, RZ' ceey Rm’ m >0, is a wf B1 A B‘2 Acee A Bn

vhere B, = R, or B, =~ R, for i =1, 2, ..., m. (For m = o, the
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. . . m
conjunction B1 A B2 A eee A Bm is T). Let 01, 02,..., Cn’ n=2,

be the distinct state descriptions in the variables R1, R2""’ Rm.

Then a model description (md) in the variables R

" R2,..., Rm is a wf.

* n n

(*) Cj A Aq o M Ci A A4 By Q Ci’ where

(i) each o, and g, is ~ or blank

i i
(ii) o is blank
(iii) If g  is blank, then o is blank.
i
First we require a lemma to show that Q can be distributed through

disjunction:
Lemma 4.

FQUVvB)=(QAAL(BoA)VI(QBAL (AB))

Proof. By S5, )~ L (B5A) oL (A = (A vV B)).

So by scheme (3), S5 and PC, (i) — L (BoA)»> (QA =Q (A vV B)).

Similarly, (ii) f—L (A5 B) 5 (@ B=Q (A v B)). Now by scheme (2),

FFQAVB)SL((AVB)SA) VL ((AV B) 5~ A4). But by S5,

L ((AVB)>A) 5L (BoA)and —L((Av B) 5~ A) 5L (A > B),
So by PC, (iii) = Q (AVB) > L (Bo>A) VL (A5 B). The lemma now
follows by PC from (i), (ii) and (iii).

We can now prove:

Theorem 2. Any non-iterative wf is provably equivalent to_L.or a

disjunction of model descriptions in the variables of A.
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Proof. Suppose QB occurs in A. Then QB is non-iterative and so by PC,

B is equivalent to.J- or a disjunction of state-descriptions in the variables
of A. In the former case, by schemes (3) and (1) and S5, QB is equivalent to
1 . In the latter case, by (3), repeated applications of lemma 4, and

PC, QB is equivalent to a truth-functional compound of wfs QCi and non-
iterative wfs LD, where Ci is a sd in the variables of A. But similarly

by S5, each non-iterative wf LB is equivalent to a truth-functional

compound of wfs MCi. So A is equivalent to a truth-functional compound of
wfs QC,, MC, and the variables of A. So by PC, A is equivalent tol or a
disjunction of wfs (*) which satisfy (i). If (ii) is not satisfied, then
(*) is equivalent to 4 by S5. If (iii) is not satisfied, then (*) is
equivalent to by scheme (1). Hence by PC, A is equivalent to o or a
disjunction of md's in the variables of A.

Combining theorems 1 and 2 we obtain the main result:

Theorem 3. (Normal Forms). Any wf A is provably equivalent tod or a dis-

junction of model-descriptiomsin the variables of A.

§3. S5Q is Characteristic.

We show that S5Q is characteristic, i.e. consistent and complete. For
completeness we require the following lemma:

Lemma 1. Each model-description has a model.

Proof. Let the md be (*) of §2. We define M = (W, #) as follows: W is the

smallest set such that



(a) (C;, 1) ¢ Wif o is blank.

(b) (ci, 2) ¢ Wif o; is blank and g, is ~; and for (ci, n) e W,

' (Ph, (Ciﬁ-rr)) t if Ph is a conjunct of Ci

f otherwise,

i = 1, 2, ccey n‘ h = 1, 2, ese o

M
Clearly ﬁ ) Cg iff i = g. Now by condition (ii) for (*), (Cj, 1) eWe
s T
1

M . .
So ksj"]) Cj’ By (a) and (b), (Ci’ 1) W for some r iff o; is blank. So

% o, M C.. By (a) and (b) and condition (iii) for (*), (C., 1) W
CJ.,1) 1 i i

for exactly one ¢ iff 84 is blank. So ':_—hﬁ N QCi. Hence h—% . (*)
(Cj’1) 3

and (*) has a model.

Now we have:

Theorem 1. |— A iff |jums A,

Proof = (Consistency). By a straightforward induction on the length of the
proof of A.
e (Completeness). Assume not - j— A.
Then by PC, not - f—~ A = 1 . So by theorem 2.3,(§2, theorem 3), ~ A is
provably equivalent to a disjunction of md's. By lemma 1, any one of these
md's has a model. So by consistency, ~ A has a model and A is not valid.
The finite model property and decidability are almost immediate

corollaries of previmus results. We say that a structure M = (W,d) is of

cardinality ¢ if card (W) = C. Then:
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bin it has o meodel
Corollary 1. Let A be a wf with m variables. If A has a model,of cardinality
A

¢ < 2m+1.

Proof. Suppose that A has a model. Then by theorem 2.3 and consistency, A
is equivalent to a disjunction of md's in the m variables of A. But it should
be clear from the construction of lemma 1 that any one of these md's has a

model of cardinality c < Zm. 2 = 2m+1. So by comsistency, A has a model of

cardinality c < 2m+1.

Corollary 2. S5Q is decidable.

Proof. By corollary 1 and theorem 1.

Alternatively theorem 2.1 and 2.2 yield a mechanical procedure for determining
whether a wf ~ A is equivalent to 1 or a disjunction of md's. In the former

case, A is provable; in the latter case, not.

§4. Some Further Systems

1. Other axiomatizations of S5Q. Fairly simple arguments show that the

schemes (1) - (4) are independent. However, a more compact though less
perspicuous axiomatization may be obtained by replacing schemes (1) and (2)
by R o (L (A5B) =~ L (A5~ B)) and (3) and (4) by L (A = B) 5 (Q A 5
L Q B). Alternatively, (3) and (4) may be replaced by a rule to infer

A> QB from Ao (L (BoP) =~ L (B>~ P)), where each occurrence of a
variable in A is within the scope of a modal operator and where P is a

variable which does not occur in A or B.



2. The systems S5W, S50 and SBM2.

Suppose we have the following clauses for the unary operators W, O and MZ:

M .
‘I—WWAlff '.__’f A and for all v in W if v £ w then
1)

not - A.

<I=

M ~ . . : M
OA iff there is at most one v in W such that A.
b= =

'-v M_A iff there are at least two distinct v' s, v, and Vo in W such that

1
M M
= A and '== A.
v v
1 2
Then corresponding characteristic systems require: for SSW the special axioms

WA - A, WAjL(A:a@)andL(A B) o (WA wB)

for S50
L~A>OA, OAL (A5B)VL(A>-~B), L (A=-B)> (0B->OA) and OA - L O A;
asxndforSSM2

MAoS>MA, M(AAB)AM(AA~ B):MEA,

Ao LM, A,

L(ADB):(MzA:MZB)andM .

2

The four operators Q, W, O and M2 are interdefinable according to the

following valid equivalences: M WA = Q A: (QAV L~ A) =0 A;
~0A = M‘2 A; and A A ~ M2 A =W A. Completeness for the three systems may
be proved by normal forms as for S5Q or by defining Q in terms of the

appropriate operator X, deducing the definition of X in terms of Q and the

schemes (1) - (4), and then using the completeness of S5Q.
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§5. References.

The original axiomatizations of S5Q, S5W and S50 are im Prior's

Egocentric logic. The ideas in that paper stimulated me to write this thesis.

S5Q was shown to be complete, independently, by Bull, Kaplan and myself.
Kaplan and I used essentially the same methods, and I have in places, used

his terminology.
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Chapter 2

THE SYSTEM S5n

In the last chapter we considered a system which contained the notion of
a proposition being true in exactly one world. In this chapter we consider
a system which for each non-negative integer K contains the notion of a

!
proposition being true in exactly K worlds.

81. The System S5n

Formation Rules. The wfs are given by a set V of variables P1, P2,...,

the binary operator v, the unary operators ~ and L, for each non-negative
interger K the unary operator QK’ and parentheses. For K > 0O, QK A is read
as 'A is true in exactly K worlds.'

Transformation Rules. The axioms are: all tautologous wfs; GYdel's axiom-

schemes for S5; and five special axiom-schemes for QK’ viz.,
(&P U AD~ QA K>1,
(2) QKAE\}i(oni(AAB)AQK_i(AA~B).
(3) L (A =B)> ( A>Q B)
(4) Q ADLQ A, and
(5) QA =L~A, wherek, 1=0, 1, 2, ...

The rules of inference are modus ponens and necessitation.

Instead of scheme (5) we could have used L ~ A to abbreviate Qo A.
For schemes (1)- (4) we could exclude the case K = O since this follows

from S5 and scheme (5).

' For K read K
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Scheme (2) states that A is true in exactly K worlds iff for some
i <K, A A B is true in exactly i worlds and A A ~ B is true in exactly
(K - i) worlds.

Semantical Rules. A structure M is defined as for S5Q. A is

1
o =ll=

defined in the usual way with the following clause for QK’ K

rgg U A iff there are exactly K v's in W such that tég A.
W v

2. Normal Forms.
We show that each wf has a normal form.

Preliminary Results. We say that T is an orthodox extension of 85 if

(i) it is obtained by adding new unary propositional operators and
axioms to S5, and

(ii) for each such operator X, and wfs A and B, L (A = B) o (X A c X B)
and X Ac L X A are theorems of T.

Now the proof of the Equivalence Theorem in Chapter 1 used schemes (3)
and (4), but not schemes (1) and (2), of S5Q. So it should be clear that
the Equivalence Theorem holds for any orthodox extension of S5. By schemes

(3) and (4), SS5n is an orthodox extension and so:

Lemma 1. (Equivalence Theorem). If D is the result of replacing a

particular occurrence of A in C by B, then }§§ L (A =B) -~ (C =D).
n

Reduction of Degree. Note that the proof of theorem 1.2.1 (Chapter
1, § 2, theorem 1) also uses schemes (3) and (4), but not (1) and (2), of

S5Q. To reduce the degree of a wf we use the equivalence A (XB) =
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P8+ (A(T)IAXB) v (A (L) A~ XB) of lemma 1.2.3. Now
a modal operator or variable occurs on the right-hand side of this equi-
valence iff it occurs on the left-hand side. So it should be clear that

for any orthodox extension of S5 each wf A is provably equivalent to a non-
iterative wf B which has the same variables and modal operators as A.
Define the degree of a wf A of SSn (not to be confused with its modal degree)
as the least positive integer 1 > 1 such that for no K > 1 does QK occur in

A. Then since SEn is an orthodox extension it follows that:

Theorem 1. Each wf A of SBn is provably equivalent to a non-iterative wf B

with the same degree and variables as A.

Reduction to Normal Form. We now show that each non-iterative wf has a

normal form. Normal forms are defined as follows: Let C1, Cz, coey Cn be

the distinct state-descriptions in the distinct variables R1 R2 ceey Rn'
m . K-1 .

m>0,n=2. For K21, let M A abbreviate Ajaq ™ QiA. MA is read as

'A is true in the least K worlds.' Then a model-description (of degree 12> 1)

in the variables R1, R2, cesy Rm is a wf

(*) C, AA?

j i=1 % Ci where

(i) each o; is Q¢ for some K <1 or M;, and

l’
(ii) oy is not Q.
First we require a lemma to show that QK can be distributed through

disjunction:



- 14 -

Lemma 2. For K > O,

L (s5~B 5 q (AvB) =¥, Q AAGQ B

Proof. By scheme (2),

Q (avE) =V ((AvBY AR AQ , ((AVB) A~ AN

But by S5, L (((A v B) A A) =4) and

- L(A>5~B)>L ((( AV B)A~A) =B). The result now follows by the
Equivalence Theorem and PC.

We now have:

Theorem 2. Any non-iterative wf A of degree 1 is provably equivalent to

or a disjunction of md's of degree 1 in the variables of A.

Proof. By scheme (5), L B is equivalent to Qo ~ B. So by the Equivalence
Theorem we may suppose that L does not occur in A. Now suppose that QK B
occurs in A, O < K < 1. Then QK B is non-iterative and so by PC, B is
equivalent tol or a disjunction of sd's in the variables Of.« A. In the
former case, by S5 and schemes (5) and (1), Q’K B is equivalent to T if

K =0 and to.L if K > 0. In the latter case, by repeated applications of
lemma 2, QK B is equivalent to a truth-functional compound of wfs Qn Ci’
where h < K and Ci is a sd in the variables of A, i = 1, 2, ..., n. So by
the Equivalence Theorem and PC, A is equivalent tolor a disjunction of

wfs.

o n 1=
(**) Cj A Ai=1 M=o ®in % Civ

where each %in is blank or ~. Now for each i = 1, 2, ..., n, there are three
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possibilities:

(a) for some distinct g and h, o blank;

g = %p
(b) there is exactly one h such that o, = blank;

811d (C) for each h, ai =~ 5 &, h = 1’ 2’ eaay l = 1e

h
In case (a) (**) is equivalent to J-by scheme (1).
la . .
In case (b),,\hzo o;p @, C; is equivalent to Q C, by scheme (1), and by
scheme (5) and S5 the whole wf (**) is equivalent tod if i = j and h = o.
1=1 . . . .
In case (c), Nno %in Q, C; is equivalent to M, C.. So by PC, A is equi-
valent to.l.or a disjunction of md's of degree 1 in the variables of A.
Combining theorems 1 and 2 we obtain the main result:

Theorem 3. Any wf A of degree 1 is provably equivalent to.l.or a disjunction

of md's of degree 1 in the variables of A.

§3. S5n is Characteristic.

As before, we require the following lemma for completeness.
Lemma 1. Each model-description has a model.
Proof. Let the md be (*) of the previous section. We define M = (W, #) as
follows: W is the set which contains the pairs

(a) (Ci’ ﬁ)e W for 1

1’ 2’ LXK Kif OIi

%

Ml; and for (Ci m e W,

(b) (Ci’ ﬂ)e ' fOI‘ mw = 1, 2’ eoey l if (vi

g (B, (c;y m)

t if Ph is a conjunct of Ci

f otherwise,

i=1, 2, ...,n,K:O, 1’ eney l’ h=1, 2’ ese o

c M :
learly, 'F C_iff i = g. Now by condition (ii) for (*), (C.,1)eW.
Ci’ ) g J
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M
s
° '733.,1) i

By (a) and (b) and condition (i) for (*), (Ci’ n) e W for exactly K n's iff

. M
. 1 . S . * * .
o; is QK ) 853’1) o3 C;. Hence Eﬁ%’1) (*) and (*) has a model

We now have:
Theorem 1. |~ A iff jm A.

Proof. = (Consistency). Straightforward.
e (Completeness)s A4s for S5Q.

We note the following corollaries:
Corollary 1. Let A be a wf with m variables of degree 1l. If A has a
model, then A has a model of cardinality C < 1.2".
Proof. This should be clear from theorem 3 of § 2, consistency and the
construction of M in lemma 1.

Corollary e S5n is decidable.

Proof. As for S5Q.

§4, Some theorems on Definability.

A number-theoretic (nt) relation Rx' Xpeee X is one defined on the

non-negative integers. A nt relation R is simple if there is a number 1 > 1

such that for all aj >b>1if Ra1, 8y see A, holds, then Ra1... aj_1 baj+1...

an hOldS, j = 1' 2’ LI Ne

The least 1 satisfying this condition is called the degree of the relation R.

Thus a simple relation fails to distinguish between numbers greater than

or equal to its degree. An nt relation R is defined by the wf A(R1,..., Rn)

If for all models M » (W, @) and for all w ¢ W, Fég A(B1,..., B ) iff
w n
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=

M
10.. n N w i
section we show that a nt relation is definable (by a wf) iff it is simple.

First we require a lemma on reducing models. Let M = (W, #) and M' =

(W', #') be any two structures. We say that W is identifiable with v in M, w ~n

V, if W, ¥V ¢ W and for all variables P,
g (P, w) =g (P, v).

M' is a substructure of M if W' c W and #' is the restriction of # to V x W'.
Let (W], = { V:¥ @) . Then M' is a loreduction of M 1,> 1, if

(1) M' is a substructure of M

(ii) Whenever Card ( [W ) = K<1, then [\f]M C W', and

(iii) whenever Card ([ﬂlM)‘Z 1, then

cara (Dd, nW') > 1.

Thus the l-reductions of a structure fail to distinguish between 1 or more
truth-functionally identical worlds in the structure. We may now show by an

easy induction on the length of A:

Lemma 1. If A is a wf of degree 1 and M' is a l-reduction of M, then

]
|1M' A iff}%A for all w' in W' and w in W such that w' ~ W.

We now come to the main result:
Theorem 1. If R is a nt relation, then R is definable by a wf of degree 1 iff

R is a simple relation of degree 1 or less.
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Proof. = Assume that R
R ———— x , x ...’ x
1 2 n

Rn) of degree 1. We show that R is a simple relation of degree 1 or less.

is defined by the wi A (R1’ RZ, sy

eos aLn holds. Define a structure

Suppose that aj >b>1 and Ra1, a,

M = (W, &) as follows:
W is the set of pairs (Ri, m for m = 1, 2, eee, a,, 1 =1, 2, eaeey 13

tifh =1

¢ (Phs (Ri’ Tl’))

f otherwise.

Then clearly Card (fw e W: j= R,V =a,1=1 2 s, 0. So, by
w
. . M
definability, E A(R,], R2, ceey Rn) for all w in W.
Now let M' = (W', #') be the substructure of M such that

W' =W - f(Rj, b+ 1), (Rj’ D+ 2)y eeey (Rj’ aj)]. Then clearly M' is

a l-reduction of M. So, by the lemma, |2 A (R, R,, s.s, R ) for all w'
w

in W. But clearly,

M' =aj if i £ j
Card ({w ¢ W': "VRi}) = b otherwise.
So by definability, Rza.,]...a.j_1 'baj+1... a, and R is simple and of degree

1l or less.

* Assume R is simple and of degree l. We prove by induction on the
number of arguments n of R that R is definable by a wf of degree 1l.

Case 1. n = 1. Suppose RJ){O, Ty caey 1-1} = {a1, 81000, am}.
Then either Rx holds if x ¢ {3.1, 85 eeey am}, where a say is 1-1 since

R is of degree 1, or Rx holds if x ¢ {a,], By eeey am} U{K:K>1}.

In the first case, R is definable by v;=1 Qa:1 P, and in the second case

by V?=1 Qai, P,| Y H1 P‘l' In both cases the wfs are of degree l.
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Case 2 n > 1, Since R is simple, RX, X. eee x, holds iff

172

Vl-1 (x1 = KA Rk x

k=0 ...Xn)V(x1>lARlx

2 cee xn) hOldS, where

2
X, = k, Rk Xy eee Xy X, > 1 and R1 X,eee X are simple and of degree 1
or less. So by case 1 and the induction hypothesis these relations are

definable by @, P,, A.k(PZ,..., Pn)’ M, P, and B(PZ’"" Pn) of degree 1 or

. s =
less respectively. So RX, X, eee x, is definable by V}LO (Qk PA Ak (p

1 2 2,.-.

Pn)) v M P, AB (PZ’"" Pn)’ which is of degree 1.

Finally, if B of degree K defines R of degree Ky K < 1, then B V M'.L

(J) defines R and is of degree 1.

We note two corollaries:

Corollary 1. Ql P is not equivalent to a wf B of degree K <1, 1 > 1.

Proof. Assume otherwise. Then B defines x = 1. So by the theorem x = 1

is a degree K or less, K < 1. But x = 1 is of degree 1 + 1.

Corollary 2. The following nt relations are not definable in S5n: x = y,

X<y, Xxis even, x is prime, x = y + 1 etc.

Proof. By theorem 1, since none of these relations is simple.
I have not considered modal systems whose wfs define non-simple nt

relations,.
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85, Predicate Calculus Analogies.

The operators Q‘k (Hk) are analogous to the quantifiers '"'there are
exactly (at least) K individuals such that'". In this section we show
that SSn and a part of quantification theory with these quantifiers are
intertranslatable.

First we define FC, the first-order functorial calculuswith equality:

Formation Rules. Wfs are defined in the usual way from sets Fi of

predicate letters, f::l' sz" esey 1 = 1, 2, ees, the symbol for equality = ,

the individual variables x.,, X., es., the quantifiers (x.), the truth-
1 i

2
functional connectives V and ~, and parentheses.

Transformation Rules. The axioms consist of specification, dis-
tribution and vacuous quantification for the quantifiers, i.e.

(x) g (x) oF (y), vy free for x in & (x),

(x) (Fo#A) > (x) > (x) #£ and

@>o (x) #, x not free in @,
respectively; and for equality, the axiom x = x and the scheme x =
y o (F o #), where # is the result of substituting free y for free x in .

The rules are modus ponens and generalisation (A/(x) A).

Semantical Rules. A (quantification) structure a,ia an ordered pair

(D, (#;)), where D is a non-empty set and (@) is a set of maps

from Fi x DJ' into

i
{t, f}’i=1, 2’ eee (Di=DxDx... B)o

With each structure @ = (D, (¢i)) is associated a unique relation

l-——g"¢ between wfs and infinite sequences of elements in D according to
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the following rules:

() W n n . % 102 (58

S
s J 1 kzg LA N N1

K )
n

e & (fif)

(ii) ‘%x“‘n = x“a iff sk1 = ska

(5, is the K-th term of the sequence S).
(iii) &% ~ @ iff not - ;—%ﬂ
(iv) ;%(fdv,é) iff '%«,,or ,% 4

) % (xi) g iff for all sequences t such that ¢

j#i, \'—e‘¢-

We may also add the quantifiers (3k x) and (&_x) to FC with the

=S, for all
J J

following clauses:

] -
'%’ (q‘ xi) @ iff there are exactly k t's such that tj = S‘_j for all

Jj #4141 and }%mand

3 [} —
% (ﬂk xi) @ iff there are at least k t's such that tj = Sj for all
jA1iand |%'¢.
As is well known, (% x) and (51( x)may be defined in FC by the

following valid equivalences:

(HO X) ¢ (x) = T;
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for k > O, (ﬂk x) & (x) = (Hy,l) aya) eee (@y)

k
[ Mei<i <xnv =39 A by @ (v) ]
and for k > O
(ﬂk x) 4 (x) = (Hk x) g (x) A ~o(ﬂk+1 x) & (x);
where yq1 Y59 eees ¥y are the first k variables which are not free in @ (x).

If the symbol and axioms for equality are omitted from FC, then the

quantifiers (Ek x) (or (EL x)) may be added as primitives with appropriate

axioms. I do not consider this problem.
If we omit all variables except x (= x1) and all predicate letters

except £!, f', ..., then we obtain a theory isomorphic with SSn. For let

2

TA be the result of replacing Pi by fi x, L by (x), and Qk by (HL X)e

Then we may prove:
Theorem 1. A is valid iff TA is valid.

Proof. Clearly, we may suppose that a quantification structure for TA is an
ordered pair (D, ¢1). We may then set up a one-one correspondence M--oélfn
between modal and all such quantification-structures: given M = v, 9,
letﬂb = (W, @), where for all w in W, g, w =0, (£, W, 1=1,2, .cc.

Then we show by an easy induction that for all w in W,

M
fﬁ;lh iff g&; TA.
The theorem now follows.

Let the axioms for our quantification theory be TA where A is an axiom
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of S5n and let its rules be modus ponens and generalisation. Then

Theorem 2. A is a theorem iff TA is a theorem.
Proof. By an easy induction on the length of the proof.

From theorems 1 and 2 and the fact that S5n is characteristic, we

obtain

Theorem 3. For any wf @ of our quantification theory, @ is a theorem iff
@ is valid.

§6. Some Further Systems.

1e Other Axiomatizations of S5n.

As for S5Q, schemes (3) and (4) may be replaced by L (A = B) o
(Qk A>LQ B). The single distribution scheme (2) may be dropped

in favour of several simpler schemes, e.g.,
QkA:)\)::ﬂ')Qi (AAB)'

Q (AAB)AQ . (AAB) 5Q A and

Q AWABYAQ ADQ ; (AA~B), 1<K

2. The System S5n with w’ 2 0’ and gl as primitive.

Suppose we have the following clauses for the unary operators

uk Ok and Hk’k=1’ 2, Y
P

#“ V. A iff’,._)-‘. A and there are exactly k v's in W such that ':% A
v k w
'=M Ok A iff there are at most k v's in W such that ‘-% A

W
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=

M . .
A iff there are at least k v's in W such that .
Tk S

The corresponsing characteristic systems require: for S5n with wk the

k
special axiom-schemes B A WA=V, Wi (AAB) AMW ; (A A~ B),

1 k

L (A=B)> (wk Ao wk B) and wk Ao~ M wl A, 1 < k, where 'WOA' abbreviates

'L~ A';

for S5n with Ok the schemes 0k A~ O:L

Ay k<1, 0 A=vi_ 0 (AAB)A

(A/\~B),L(AEB)3(OkA30kB) and O Ao L O

t ]
< " A, where OOA

O-i
abbreviates 'L ~ A';

and for S5n with Mk the schemes Mk A5 Ml

A,kZl,MkAEVIi(_

oMi(A/\B)
AM (A A~B), L(AEB)D(MRA:MkB) and M, A5 LM A, where 'M, A

and 'Mc; A' abbreviate 'M A' and 'T' respectively.

The completeness of the systems may be proved by normal forms as for
S5n with Qk' On the other hand, since the operators Q’k’ wk, Ok and Mk
are interdefinable, the completeness of one system may be reduced to that of
another by means of appropriate definitions.

The new systems can be re-axiomatized in various ways. E.g., the third

scheme for the O -system may be replaced by 0, (A AB)A 0 _; (AA~B)>o

O 4 i<k, and O A>0, (A A B) VO, _ (i

second and fourth schemes for the Mk-system may be replaced by the single

(A A~B), i<k; and the first,
)

scheme

L(ADB)D(MkDLHlA), 1<k
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3, Some Subsystems

It should be clear from the completeness proof for S5n with Qk
that in proving a wf of degree 1, 1> 1, we need only use axioms of degree 1
or less. So if we restrict wfs and axioms to those of degree 1 or less we

obtain a characteristic system whose unary operators are L, Q1, Qa, sy Q1-1
This raises the following problem:
Suppose K is any set of positive integers. What is a characteristic
system for wfs A such that Qk occurs in A iff k ¢ K? A general yet elegant
solution to this problem would raise formidable combinatorial difficulties.

In case K = {2}, the following axiom-schemes suffice:
Q2 Ao MA,
Q2 A A Q2 (AvB)>oL (B>A4),
QA>@L (A>5B VL (A>5~B)VLAABSC) VL (AAB>~C)),
AL(A>~c)

Dl
(A Vv B) A Q (c v MAAMBAMC AMDAL(Ao~B)AL(C>~D) ,

>Q (AvcC),
2

L (A

B)o(Q,4>Q, B) and

Q2 A>L Q2 A. I omit the proof that the system is characteristic,

Systems with Infinitary Operators

Suppose we have the following clause for the unary operator Mc where ¢

is any infinite cardinal:

M . . M
’-w' Mc A iff there are at least c v's such that hv A

Let C be a set of infinite cardinals. Then if we add Mc for c ¢ C to

S5n with Mk we require the following additional schemes:
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MCADMd A, 4 <c,
M A=M (AAB)Vv M (A A~ B),
[ C C

L (A

i

B) o (M A-SM B),
c (o]

M ASLM A, ceCdeCUl N 2 3 ...}

The proof of completeness assumes that for infinite cardinals c¢ and j,
¢ + d = max (¢, d). This may be proved using the axiom of choice.

The system with Oc is similar. The systems with Wc and Qc are more

complicated.

87. References

Kaplan has constructed and proved the completeness of SS5n with Mk and

Qk independently from this author. See his abstract Multiple Possibility.

Tarski introduces the quantifiers (Ek x) and (!k x) in his Introduction to
logic. He calls them 'numerical quantifiers.' The operators Qk and Mk might,
by analogy, be called 'numerical modalizers'.
k : .
Kaplan uses QF for M_and 5 for Qk' Mostowski uses (Qc x) for (gc x)

where ¢ is an infinite cardinal.
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Chapter 3

THE SYSTEM S5+

The operators Qk cannot be defined in terms of L, but they can be
defined in terms of L and propositional quantifiers. E.g., Q¢ A may be
defined as MA A (P) (L(A>DP) VL (AD ~P)), where P is not free in A.
So in this chapter I consider a system obtained by adding propositional

quantifiers to S5.

§1. The System Som+

Formation Rules. The wfs are given by a set V of propositional

variables P1, PZ’ esey the binary operator v, the unary operators ~ and L,

the quantifiers (Pi) for i = 1, 2,..4y and parentheses.

Transformation Rules. The axioms are: all tautologous wfs; GBdel's

axiom-schemes for 85; specification, distribution and vacuous quantification,
i.e. (P) A (P) DA (B), where B is any wf free for P in A (P),
(P) (ADB)>(P) A> (P) Band A > (P) A, where P is not free in A,
respectively; and a special axiom (¥ P,) (P, A (PZ) (P,> L (P1 o) Pz)))
which we call g.

The rules of inference are modus ponens, necessitation and generalisat-

ion (A/(P) A).

Semantical Rules. A structure M is defined in the usual way. However,

in the definition of h" A we require a clause for the quantifier (P).
w

Given a structure M = (W, @) we say that the structure M' = (W', ¢') is a
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M P structure if W' = W and for all R distinct from P and for all w e W,

¢ (R, W) = ¢' (R, W).
Then

1
(P) A iff for all M P structures M', % A.

o=

§2. Normal Forms

We shall show that each wf is provably equivalent to.l_ or a disjunction

of model-descriptions as defined in Chapter 2.

Preliminary Results.

lemma 1. (Equivalence Theorem). Suppose that D is the result of replacing

a particular free occurence of A in C by a free occurrence of B Then

—1(=8B)>c=0D.

Proof. By induction on the length of C. Use generalisation, distribution

and vacuous quantification for the quantifier case.

Lemma 2. (The Barcan Formula)
=@ LAa>L (P) A.

Proof: By specification, {— (P) ADA. By S5, |— M (P) Ao MA.

By Gen, Dis. and Vac. Quant., (i) M (P) A> (P) M A is ﬂ?ﬁ' theoren.
Now by 85, — (P) LADL M (P) L A. But by (i) and 85, = LM (P) LA D
L (P) ML A; and by S5, Gen and Dis, |— L (P) MLASL (P) A. So

- (®) LA>SL (P) A.

A wf is modally closed if any occurrence of a variable of the wf is
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within the scope of L.
Then:

Lemma 3. (Vacuous Modality). If A is modally closed, then l—— A :;1‘4

Proof. By induction on the number of quantifiers and truth-functional
operators which do not occur within the scope of L. Lemma 2 takes care

of the quantifier case.

The Extension S5n+'. We use the following abbreviations:

QAfor MAA (P) (L(ASP)VL (A~ P)),
where P is the first variable not free in A;
TABTfor QAAL (A>B);

. F Ao LR -
(g, R) A (R) for T if k = 0, and for (7 R) (T R)... (FR) | Q(i%éﬁl = R,)

k .
AAi=q A (Ri)] if k > 0, where R,y Ry, «..y R are the first k distinct

variables not free in A (R);

Cﬂ( R) A for (zk R) AA~ (gk+1 R) A.

We define an extension S5m+' of S5y+ by adding the unary operators

Qk and the axiom-schemes
%A;(!{R)(TRA)’k=O,1’2,o..’

The semantical clauses for Qk are as in the last chapter.
We show that m+ is characteristic by showing that n+' is characteristic.

(When no ambiguity can arise, we shall often drop the prefix 'S5').

The Derivation of F.C. We show that if a wf of m+' is quantification-

ally valid, then it is a theorem. We say that a wf of n+' is a simple



- 30 -
instance of a wf # of FC if for each predicate letter f of n arguments in é
there is a wf of m+' B (R1, RZ’ eeey Rn) with exactly n distinct free
variables R,y R, «..y R and with no quantifier (Pi) where x, occurs in &,
such that A is the result of replacing (xi) in & by (Pi)’ x; = xj by

L (P. =P,) and fx . X eee X by A (Pt s P yeeey Pk ). Cis an instance
1 J 1 "2 n 1 2 n

of # if it is the result of replacing free variables in a simple instance

A of # by free wfs. Now

Theorem 1., If @ is a valid wf of FC and C is an instance of @, then C is a

theorem of m+'e.

Proof. Suppose C is obtained from a simple instance A of Z as above.
Now if @ is valid, then @ has a proof in F.C by completeness. By the
rewriting of bound variables, we may suppose that if X5 is free in a wf of
the proof and x; is not free in @ then Pi does not occur in A. We may then
replace each wf of the proof by the simple instance in which B(R1, R2, ceey
Rn) replaces f to obtain a proof of A in S5n. The proof is by induction:
all the rules and axioms except the scheme for equality are trivial; for the
latter, use lemma 1. Now if A is provable, C is provable by generalisation
and specification.

In what follows, use of theorem 1, especially for rewriting bound
variables, will often be tacit. Also 1 adopt two conventions: variables
exhibited in a proof are distinct; bound variables exhibited in a proof are

not free in an exhibited wf unless otherwise indicated.

The Derivation of S5n. We now show how to derive S5n within n+'. Note

that by previousdefinitions, if A is an instance of @, then (HkPi)A is an
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instance of (Sk xi) # and (q( Pi) A is an instance of g;{ xi) 2.

Lemma 4. The following schemes are theorems of n+':

(1) Q A~ A 1<Kk,
(2) QKAEVli(.:O Q (A/\B)AQk_i (A A ~ B),

(3) L(a

"

B)D(QkADQkB),

(W) QKADLQkA and

in

(5) Qo A LNA’ l’ 1 = o’ 1, 2, see

Proof,
(1) abbreviates to (@ P) (TPA) o~ (Sﬂl P) (T P A).
But this is an instance of the valid wf:
(:!k x) Ry 5 ~ (mlx) Rx y.
(2) abbreviates to:
i) @ P rPa=V_ @B ®AABAG@ P TP(Ar~E
We may prove without difficulty:
(11) ®)[TPA=TP(AAB) ¥VIP (A I\~B)].
But (ii) » (i) is an instance of the valid wf:

(x) rnyszuvav]Dr(q‘x)ny
Ev];=° (miX)quA(al(_iX)ny]’

(3) follows by lemma 1
(4) follows by lemma 3
(5) By P.C. it suffices to show

(3P) (QPAL(PoA)) =MA. Now QP> MADbyP C and the
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definition of Q. Since P is not free in A, it follows by F.C. that

(1) (EP) QPAL(PHoA)) DMA.

Write Q' (P) for P A (R) I-RDL (PDR):]

Then for the converse we first show that (ii)

— Q' Po5QP. ByFC,~Q' (P) >(R>L (PoR)) and Q' (P) o
(M\RSL(P>~R)). Soby PCand FC, - Q' (P) > (R) [L (PoR) VL (P>
~R)]. But by S5, |~ Q' (P) o M P and (ii) follows.

Now by (ii) and FC, — Ao [Q' Po(Q PA L (P> A))]. So by
FC, - AS[(FP)Q P> (IP) (QPAL (P>A))]. ButHT P) Q' P by g.
So (iii) I M A S (I P) (T P A) by the Barcan Formula Lemma. (5) now
follows from (i) and (iii).

We how obtain:
Theorem 2. If A is a valid wf or a theorem of S5n, then A is a theorem of

m'.
Proof. From the fact that S5n is characteristic and lemma 4.

Reduction of Quantifier-free wfs. By theorem 2 and the normal form

theorem for S5n, we obtain:

Theorem 3. Any quantifier-free wf A of np+' of degree 1 is equivalent to

or a disjunction of md's of degree 1 in the variables of A.

Elimination of Quantifiers. We now show that each wf (& P) D, where D

is a md, is equivalent to a quantifier-free wf. The proof requires three
lemmas: the first shows that (¥ P) can be distributed through certain

conjuncts C of D; the second deals with the case when C is modally closed;
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and the third with the case when C is not modally closed.

Lemma 2.(On Incompatible Cases). Suppose there are wfs Ai’ i=1, 2, eeoy m
of A such that whenever P occurs free in A it occurs as part of a free wf

of the form Ai APor Ai A ~ P; and suppose that there are wfs Bj’
J=1, 2, ¢eee, n, such that whenever P occurs free in B it occurs as part

of a free wf of the form By A P or BjXP. Then if for all i and j,

— A; D~ By, then F(3P)AA(AP)B =(a3rP)(AAB).

Proof: & By FC.

= Let R and S be two distinct variables which do not occur in A

n

or B; and let C be the wf (RA VPA.) V (S A V2 . B.).
i=1i =173

Then Ai A Cis
provably equivalent to

m .
A A (RA v"i‘=1 A) VA A(SA v’;ﬂ Bj) by BC. But A, A (RA V] | A) is

equivalent to A; A R by EC, and A, A (5 A v§=1 B,) is equivalent to L
by PC given |— A; D~ By for all j. So A; A C is equivalent to A; A R.

m
~ 3 ~ ~ ~ V ~ R N S
A; A~ C is equivalent to A; A (~RV A =1 Ai) A(~S VJ=1 BJ) by PC

m -~ . . ~ v n .
But A, A A;_, ~ A, is equivalent toLl by PC, and A, A (~ 8 Vi B, is

equivalent to Ai by PC given )— Ai D~ B:i for all j. So Ai A~Cis

equivalent to Ai A ~ R, Similarly, B, A C is equivalent to Bj A S and

J
Bj A ~ C is equivalent to Bj A~S8S.

Write A as A (P), B as B (P). Then |— A (R) oA (C) and

— B (8) > B (C) by the above paragraph and the equivalence theorem. So
by FC, }— (2 P) AA (I P) B> (T P) (A AB).
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Lemma 6. The following schemes are theorems of m+':

(1) (@ p) (Qm(A AP) A M (AA~P)) = Mo, A

(2 (T p) (Mm(A AP)A M (AA~P)) = Mon®

(3 (@P) (Q (AAP)AQ (Ap~P) =Q A,

m, n > 0.

Proof: = (1) Let (i) be the wf Q, (AAP)A M, (AA~P). Now (i)
DM . Ais valid. So by theorem 2, — (1) o M ., A Soby FC, |— (I P)

(i) o M., A

(2) and (3). Similarly.

(1). Intuitively, this is obvious. Suppose A is true in the distinct
worlds R1, RZ’ cesy Rm+n. Then let P be R1 V eee V Rm' However, the formal
proof is a little messy.

The following is a valid wf of S5n:

= m
~L (R, =R.) A “‘*nTR,A:[ ~ LR, SR)AA . TR (AAVD
1<i<j< men i J A’-=1 L 4_4<3_~gn 1 J Al—’l i i=1

R)| A~ ~ LGS =s)AN 2 anA VR
i] [4§<j_gn*1 i J AJ.=1 b 3 i=1 l]

So by theorem 2 it is a theorem. Let B be its antecedent, C = C (V;.'.l_1 Ri)
the first conjunct of the consequent and ~D = ~ D (V;l.l:‘| Ri) the second.
(If m+n=0 Bis Tand #f mis O, C is T and V;_, R is.L).

Then it follows by FC that

B>~ (T Si)eee (S ,) D, 80 }— B > (2P) [c (P) A~ (85 )...(8 S 1)
D (P) ]

But |— (ERp)eee (TR, ) B> EP) [(ER) ooe (ER) C (P) A~ (T S))...
@s_,) D (@]
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By FG, M_A = /\];;: ~Q; (A) is equivalent to (§_R) (TR A). So this
last wf is equivalent to M..AD (T P) Q, (A A P)e Now by S5n and

theorenm 2,

-4, A>@Q (AAPYSM (AA~P)). SobyFC,
f—ummgg (TP) Q,(AAP)AM (A ~P).

(2) By S5n, f—Qm (AAP)DM (AAP)

So (2) follows from (%).

(3) BysSsn, f=~M _ADM (AAP)AM (Ap~P) >~M . (AAP)A~

Mo (AAP)). So (3) follows from (1) by F.C.

lemma 7. The following schemes are theorems of n+':
() AS@EP) ((AAP)AQ, (AAP)),

(2) (T p) ((AAP)Aqm(AAP)Aun (A A~P)) SAAM A,

(3) (I P) ((AAP) AM (AAP) AM (AA~P)) =AA Moo A,

n

(%) (T p) (AAPYAQ, (AAP) AM, (A A~DP)) =EAAQ, A,
and

(5) (ﬂP)((A/\P)AM‘ (A AP) AQn(AA~P)) SAAM A

m>O0, n>0.

Proof.
(1) First we show that (i) |~Q P>Q, P.

By PC and 85, —QP>TPP. SobyPC }~Q P> (¥R) (TR P). By FC,
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QPATR P provably implies L (R>P), MRand L (P>R) VL (P> ~R).
But by §5, — L (R>P) AL (P>~R) 5o~ MR. So by PC and S5,
QPATRP-SL (P=R). It follows by S5 that —QPATRPATSP

SL (R =8). So by FC, }-—QP:~(zzn) (TR P).

We now prove (1). By (i) and (ii) in the proof of (5) of lemma 4,
F—-A5Q' P>(AAP)AQ Pl. ByF.C, AD>@Q P5L (P>5A)), and
by 85 b—L(P5A)SL(P=AAP). Soby the Equivalence Theoren,
-A>@R Po(AAP) AQ, (A AP)]. So by Fc, f—A> [(TP)Q P>
(TP) (WAP)AQ (AAP)). But |— (ZP)Q P by gand so (1) follows.

We can now prove (2) - (4).

= By S5n as for lemma 6.
()« By (D,—A>(@P) ((AAP)AQ, (AAP).

By S5n and theorem 2,

(i1) =M AAQ WAROM (AA~P).

+n-1
So by (i), (ii) and FC,

(iii)l-—AAHmnA:(ﬂP) (WAP)AQ, (AAP) AN (AA~P))

m+n-1
By (1) of lemma 5,

(iv) b Mpen-1 (AA~P)>(ER) (Q_, (AA~PAR).

By S50 and theorem 2,

() bQ WARP AQ, (AA~PAR 5Q (AA(PVR).
8o by (iii), (iv), (v), PC and FC,

|—AAnm+nA:(zp) (WAP)AQ (AAP).

But by S5n and theorem 2 again,
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l__MmmA:(Qm (AAP) DM (a A ~P).

So f—AAM A>S(TP) (AAP)AQ (AAP)AM (AA~P)).

vt
(3) and (4) follow from Qz)ias in lemma 6.. .

(2) and (3) follow from (1).

(5) By (2) f=anaM, A (@P)(PIQ . (AAP)).
By (W), =P AQ,, WAAP) > @R PARAQ (AAPARIAQ (AAPA~
R)].
But by Sb5n,
Faam, A5 RAQ (AAPA~RISPVRIAM (AA(~PVR))]
and

'—-Qn(AA(PA~R))3Qn(AA~(~PVR)).

The result now follows by FC.

Note that in the proofs of (1) - (5) we do not apply necessitation to
. any wf depending upon g. In other words, (1) - (5) are deduced from g.

We now come to the theorem:
Theorem 4, If D is a model-description of degree 1, then (¥ P)D is
equivalent to a quantifier-free wf of m+' of degree 21 whose variables are
those of D other than P.

Proof. Let D be the md Cj A A: a Ci as in §2 of Chapter 2. If P does

=1
not occur in D, then (JP) D is equivalent to D and the proof is trivial.

Let E be the result of replacing P in D by ~ P and ~P by P. Clearly E is
a md, and by FC and the Equivalence Theorem, (%P) D is equivalent (¥ P) E.

So we may suppose that P is Rh say and that Rm is a conjunct of Cj’
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Now let D1, D2, eoey Dn" n' = 2m-1’ be the sd's in the variables

R1, R2, eeey R _o Then D is equivalent to the wf:

m-1

]
(*) (DgAP)ABg (DgAP)AYg (Dg/\~P)/\/%21 e, (DhAP)AXh (DnA“‘P)’
g

where

Y, =0o; if b A~P=C, andgg;éqo,
h = 1’ 2’ eey n' and i = 1, 2' eoey Ne
Now by lemma 6, (& P) (*) is equivalent to (3 P) r(Dg A P) A Rg (Dé AP) A

Vg (D8 A~P)] A AE? (z P) !-Bn (D, AP) Ay, (D A~P)] .
8

The first conjunct of this wf is equivalent to a quantifier-free wf without
P by lemma 7, (2) - (5). The other conjuncts of the wf are equivalent to
quantifier free wfs without P by lemma 6, (1) - (3). So (4 P) D is equivalent
to (7 P) (*), which is equivalent to a quantifier-free wf without P.

We come now to the main result.

The quantificational degree of a wf is the maximum number of times a

quantifier occurs within the scope of a quantifier. More precisely, 3 (Pi) =
0y 3 (~4) =3 (4), 5 (A wB) = max (3(A), d (B)) and 3 ((& P.)A) =3 (&) +
Then:

Theorem 5. (Normal Forms) Suppose A is a wf of m+ of quantificational

degree 3, then A is provably equivalent to.l- or a disjunction of md's of
degree 2a in the free variables of A,

Proof. By induction on the quantificational degree 3 of A. If 3 = 0, then
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use theorem 3. Suppose d > O. Then A is a modal compound of variables

and wfs of the form (¥ P) B. By the induction hypothesis, B is equivalent
tod or a disjunction D, VD,V .eoV D8 of md's of degree < 227 in the
free variables of B. In the former case, (I P) B is equivalent to.l_ .

In the latter case (¥ P) B is equivalent to (& P) D, v (z P) D,V eer V

(€ P) Dp. But by theorem 4, each of these disjuncts is equivalent to

_l_ or a quantifier free wf of m+! of degree 2.23-1 = 2a in the free
variables of (3 P) B. So the whole wf A is equivalent to a quantifier-free

wf of degree 28 in the free variables of A. The theorem now follows

by another application of theorem 3.

§3., SSn+ is Characteristic.

Lemma 1. Each model description has a model.
Proof. This is lemma 2.3.1.

Theorem 1. For any wf A of m+',

[-":, A Sff e A,

Proof. = (Consistency). A straight forward exercise. Eg to verify
(P) A (P) > A (B), B free for P in A (P), we show by induction on the

length of the wf A (P) that if M' is the M P structure such that

M! M
};—p iff )-; B for all w ¢ W and B is free for P in A (P), then ’-:3' A (P)

iff ‘_g A (B). The reader may also verify that the equivalence Q‘k A =
(EL R) (T R A) is valid.

(Completeness). Any wf A of m+' is equivalent to a wf of n+ by
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the equivalencefor Q and the Equivalence Theorem. We may then use theorem
2.5, lemma 1 and consistency.

If A is a wf of n+, then any proof of A in n+' may be converted into
a proof in m+ by replacing Q A by (gk R) (T RA). So k;:, A iff t:- A.
Hence

Theorem 2. For any wf A of n+, };-‘_ A iff ’:: A.

Corollary 1. Suppose A is a wf of m+ with m free variables of quantificat-
ional degree 3. Then if A has a model, A has a model of cardinality

c < 23. Zm.

Proof. By theorem 5 of §2, consistency and corollary 2.3%.1.

Corollary 2. S5nm+ is decidable.
Proof. By corollary 1. Alternatively, theorem 2.5 and the preceding
theorems and lemmas of §2 yield a mechanical procedure for determining
whether a wf ~ A is equivalent to.l_or a disjunction of md's. In the
former case, A is a theorem; in the latter case, A is not a theorem.

We note two further corollaries of previous results, one on definability
and the other on fragments:
Corollary 3. A nt relation is definable in n+ iff it is simple.
Proof. With an obvious adaption of definitions from theorem 2.4.1, theorem

2.5 and consistency.

Corollary 4. If A is a wf of S5n, then

g5 A iff "“T' A,
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Proof. From the fact that S5n is characteristic, that n+' consistent and
theorem 2.2.

Corollary 3 shows that very little afitnmetic can be developed within
m+e Corollary 4 shows that n+' is a conservative extension of m+. It

will be strengthened later in section 5.5.

84, The System SSp+*

The system m+* is the result of replacing specification in r+ by
Restricted Specification, i.e. (P) A (P) o A (B), where B is a wf of PC

(the propositional calculus) free for P in A (P). We now show:

Theorem 1. ]-n—+ A iff lFA

Proof. By theorem 3.2, it suffices to prove theorem 3.2 for n+*. This
calls for a modification of §2. I sketch the details.
Lemmas 1, 2 and 3 do not use Specification and so hold for n+*.  Theorem 1
holds for n+* as long as C is the result of replacing free variables in a
simple instance A of @ by free wfs of PC. So lemma 4 holds as long as A and
B are PC wfs. An analysis of Chapter 2 shows that given lemma 4, theorem 2
and hence theorem 3 still hold. Lemma 5 holds as long as the Ai and Bj
are PC wfs. Lemma 6 and 7 hold for PC A and so theorem 3 holds.
Theorem 4 now follows.

I have not been able to find a direct derivation of Specification from

Restricted Specification.
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§5. Predicate and Boolean Analogies.

Let P+ be the system obtained from FC by dropping = and all non-
monadic predicate letters and adding quantifiers and Specification,
Distribution, Vacuous Quantification and Generalisation for monadic predicate
letters. Thus P+ is the singularly second-order predicate calculus.
Identity may be defined in P_ by (f) (f x> f y). We interpret the f's
as ranging over all properties. So the definition of validity in chapter 2.5
may be extended to P+ in an obvious way.

We now introduce two translations T and T':

Translation T from nm+ into P} -

(1) T () = £, x

g B=12 eeey

(i1) T (~ A) =~ T (4),

(iii) T ((A v B)) = (T (A) vI(B)),

(iv) T ((Pi) A) = (fi) T (A), i = 1, 2, eeey and

(v) T (L A) = (x1) T (A);

Translation T' from B,into mrhwe-

(i) T (fixj) =L (Rj D P,), where the Rj are fresh distinct variables
iy 3= 1 2y aee o

(ii) T (~g) =~ T (&),

{ii) T ((F v L) = (T @) v I' (L),

(v) T (£) #)
(v) 1 ((xj) 2)

(Pi) T (¢). is= 1, 2’ eosy and

(Rj) (Q Rj DT' (¢))g j = 1, 2, eoe o
The two translations may be used to derive completeness or decidability
results for one system from those for the other. As an example, I prove

the completeness of m+ from the completeness of P+. First, we require
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three lemmas:

Lemma 1. If |== A, then T (A).
o 1 e

Proof. By an appropriate induction (cf. theorem 2.5.1).

Lemma 2. | QR13rL(R13A)ET'TA]

Proof. By induction on the length of A. This is straight forward once

we establish that the following are theorems of rr+:
(i) QRo/L (Bo~A)=~1L (R:A)] .

(i) QBR5[L®R>(BVC) =@ R>B) VL (R:c)):].

(iii) (R) (QRoL (R 4A)) =1L A.

(iv) QB> L (R (P) A) = ((®) L (R A))], Rnot free in 4.

If A is a wf whose free variables are Pk s P
1k2
A eee A Q Pk « Then

n

[ ) .I-’ Pk ’ let-fA
n

be the wf Q Pk1 A Q Pk2

Lemma 3., If E g, then |— [ 00 ()2 T ).

Proof. By induction on the length of the proof in # in P+. For Specification
on individual variables the use of L () is essential. The one tricky
case is Specification for predicate letters. For this it suffices to show
that for any wf ¢ ({? of P_ there is a wf B of n+ whose free variables

are those of T! (¢(xj)) but without Rj such that:

-
mer sl L@ sm =1 @ )],

-

This may be proved by induction on the length of ¢ (xj) or more directly

with the help of lemma 2.
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Completeness is now straight forward:

Theorem 1. 1If E: A, then h A.

Proof. Assum . .
r00 sume E-T-:A Bylemma1,]§—T(A)
+
By the completeness of P+, ‘I’: T (4). By lemma 3, );‘ET' P (a) 2D T'T A

i.e.}n—+QR13T-T(A). By lemma 2, );QR13L(R13A). By 1+,

|; A.

In the same way, we may set up a correspondence between 1+ (or P+) and
B+, the first-order theory of Boolean algebras with atoms. B is the
first-order theory with binary C as its sole predicate letteré, 1;he usual
axioms for a Boolean algebra and the special axiom (x) (~ (x = &) 5 (T y)
(a(y) A y £ x)), wnere q (y) is defined by (z) ((y c 2) =~ (y c 2)) and
where =, #, 1, z etc. are defined in the usual way. For validity, we
interpret c as inclusion in the set of all subsets of a given set.

The relevant translations are:

Translation T from n+ into B M

i) T (Pi) = (z ¢ xi), where z is a fresh variable,
(ii) T (én—‘;ea-)) ~ T (4),

(iii) T ((A v B)) = (T (4) v T (B)),

(iv) T (L A) = (2) (q(z) o T (4))

(v) T ((p) A) = (x) T (4);

Translation T' from B into m+ -

1) o (x; ¢ xj) =L (P; o Pj),

Gi) T (v g)  =~T (),

(Hi1) T' ((FVvA) = (T @) v T (£)) and

(iv) T ((x1) @) = (p;) T(@).
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86. References

Kaplan has proved the completeness of n+ (which he calls S5Q)
independently from this author but by similar methods.See his abstract

S5 with Quantifiable Propositional Variables. The system P is discussed

in Church's Introduction, pp. 303-4. The system B is discussed in Tarski's

Logic, Semantics, Metamathematics pp. 201-208, especially lemma K, and

p. 334 et seq.



- 46 -

Chapter 4

THE SYSTEM S5n

The system of the last chapter contained the special axiom g =
(z P,) (P1 A (P2) (P213 L (P1ZD PZ)))‘ In this chapter we consider the

system which results from dropping this axiom.

$§1. The System S5¢y

Formation Rules. As for S5m+

Transformation Rules. The axioms are: all tautologous wfs; GBdel's

axiom schemes for S5; and specification, distribution and vacuous
quantification for the quantifiers.

T™e rules of inference are modus ponens, necessitation and

generalisation.

Semantical Rules. We redefine the notion of a structure. A

structure M is an ordered triple (W, I, @) where W is a non-empty set,
I is an empty or infinite subset of W, and # is a map from V x W into
{t, fg such that for any w in I there are an infinite number of v's in
I such that w ~, v i.e. for all variables P, g (Pyw) = ¢ (Py V).

We then define M P structure, truth etc. as for S5m+.

Why do we need I and the conditions on I and @ in the definition
above? Let us say that a world w of W is describable if there is a

proposition true in W and W alone; otherwise w is indescribable. Now the

proposition g is true iff the actual world is describable. So Lg is
true iff every world is describable. Now in S5w we do not assume Lg

i.e. that every world is describable, so we need to allow for a set I
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of indescribable worlds. Now suppose A is true in a finite number of

indescribable worlds LD w2

Wis Woy eeey W and in no other worlds. Let us assume that for any two

v eees Wy n”>0. Then A A~ g is true in

distinct worlds there is a proposition true in one of them but false in the
other. Then if n > 1 there are propositions Ri’ i=2, 3, eeey, n, such
that R, is true in w, but false in w,. But then A A g A A;l:a R, (or
AA~gifn=1) is true in w, and w, alone. So v, is describable. This
is a contradiction. It follows that if A is true in some undescribable
worlds then it is true in an infinite number of indescribable worlds, and

this is what the conditions on I and # guarantee.

82, Normal Forms.

We shall show that each wf is provably equivalent to_L or a dis-
junction of quantifier-free model-descriptions of an appropriate sort.

The argument is complicated somewhat by the absence of the axiom g.

Preliminary Results.
Since lemmas 1, 2 and 3 of section 3.2 do not use the axiom g, they

also hold for S5rm.

The Extension S57'.

The extension w' of w is obtained by adding the unary operators
Qk, k = O, lees, and N and the constant g, and the following axiom-schemes
Q = (ask R) (TRA), k =0, 1eee,
g=(@p) (P, AQP), and

NA =M (~gAA).



- 48 -

The new definition of g is equivalent to the o0ld and so should cause no
confusion,

The corresponding semantical clauses are; }-_:% Qk A iff there are
exactly k v's in W-I such that % A,

— giff weW -1

d= <=

NA iff there is a v in I such that ;_T’f A.
v

The Derivation of FC. Theorem 3.2.1 does not use the axiom g and so

holds for rre

The Derivation of S$5n. In the proof of lemma 3.2.4 we only use the

axiom g for (5) = i.e. }— Q, ADL~A. Nowin the proof that S5n is
characteristic we only use this result to help eliminate L A by Q, ~ A
and to rule out the combination A A Qo A. So in place of theorem 3.2.2

we have:

Theorem 1. If A is a valid wf (or theorem) of S5n not containing L or
any variable not within the scope of a modal operator, then }?, A.
We also have:
lemma 1. The following are theorems of S5m:
() NA=N(AAB) VN (AA~B)
(2) M(gAA) =~Q A
(3) Q (gAA) =Q A, k20,
Proof.
(1) By S5, =M (~gAA) SM(~gAAAB) VM (~gAAA~B).

But this abbreviates to (1).
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(2) =A>5(@P) (QPAL(PDA)) is deduced from g at the end of
the proof of (5) of lemma 3.2.4. So b&n AAg>D~Q, (A). So by the
Barcan formula lemma, '—s; M(AAg) D~ Qo A.

&Clearly, —QPAL(PoA) > WP>M(gAA)). But
—QPoMP. 80 —QPAL(POA)OM(gAA). SobyFC,
F~q, ) > Mg an.

(3) By theorem 1, }—Qo (~gAA)D (Qk (g A A) EQ‘kA).
By (2) b—~Q, (~gAA) DM (gA~gAA). Soby S5 |—Q (~gAA.

Hence }-— Q’k (g A A) Q A

Reduction of Quantifier-free wfs.

First we redefine the notion of a md to allow for the occurrence of
g and N. Suppose G,], Ca, eeey C n 8re the distinct state-descriptions in

the variables R1, R2, vee) Rm’ m >0,n-= 2", Then a model-description

of degree 1 > O in the variables Rys By eeey R is a wfe
'Y n n
()aschAAi___,] By C; A Aj_q Yy Gy where
(i) o is blank or ~, Biisqkforsomek<lorM1aninisNor
~ N,

(ii) If ¢ is blank, then Bj is not Q_, and

(iii) If @ is ~, then Yj is N.

We now have:
Theorem 2. Any quantifier-free wf A of ' of degree 1 isequivalent to
or a disjunction of md's of degree 1 in the variables of A.
Proof. Consider the conditions }-— XASDLXAand —L(A=B)>

(X A>XB). By the Barcan formila lemma, N and Q_ satisfy these
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conditions. 8o by the beginning of section 2.2, A is equivalent to a non-
iterative wf B of degree 1 in the variables of A.

By (1) of lemma 1 and S5,

f~N (AVB) =NAVNB and ]-—~N.L. By (2) of lemma 1,F— L A
~N~AA Qo ~ A. By theorem 1, the distribution results in lemma 2.2.2
hold. So B is equivalent to a truth-functional compound of the variables
of A, g, Q (8AC), Q (~gAC), N (g AC) and N (~ g A C), where C is
a sd in the variables. By (3) of lemma 1, L (g A C) is equivalent to
Q (). SoQ (~gAC) is equivalent to T if k = O and toLif k > 0.
By 85, N (g A C) is equivalent to‘Land N (~gAC)toN (C).

So B is equivalent to ..Lor a disjunction of wfs (*) which satisfy

condition (i)e By (2) of lemma 1, }— g A C;2~Q,C So (*)

j.

satisfies condition (ii). By S5, (*) satisfies condition (iii).

Elimination of Quantifiers. Lemma 3.2.5 (On Incompatible Cases) does

not use the axiom g and so holds for m. Lemmas 3.2.5-6 are replaced by the

following four lemmas.

Lemma 2. The following schemes are theorems:

(1) (¥p) [Q, (A A P) AM (AA~ P)] =M A,

(2 () M AAP)AM (AA~P)] =M A, and

(3) (@) R, (AAP) AQ, (AAN~P)] =Q A

Proof. As in lemma 3.2.6.
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Lemma 3. The following schemes are theorems:
(1) (HP)rN(AAP)AN(AA~P)_!5NA,
(2) (!WP)rN(A/\P)/\~N(AA~P)];NA, and

(3) (3 P) r~N(AAP)A~N(A/\~P)}E~NA.

Proof:
= (1), (2) and (3). By (1) of lemma 1.

(1) By the definition of g, f—~go~ (EP) [P A (R) (L (PS5 R)
VL(P3~R))]. So by FCand 85, f~~go (P) (P> (FR) (M (PA~R)
AM(PAR). So f—Aa~gos(ZR) M (AA~gAR AMMAA~EAR).
So by the Barcan Formula lemma and definition of N, |— N A 5 (E R) (N(A AR)
AN (AA~R)).

(2) Bys5, M (~gAASM(gAAATIA ~M(~gAAA~T)
So by the definition of N, = NAS N (AAT) A~ N (AA~T). Soby
F C, ]-—NA:(SP) (N(AAP)A~N (A A~P)).

(3) By (1) of lemma 1, —~NAS~N (AAP) A~N (AA~P).

(3) now follows by FC.
Lemma 4. The following schemes are theorems:

(1) @) e AAAPIAQ (AAPIAM (AA~P)|=gnhnt &

r 7.
(2) (g Pp) WSA(A/\P)AMm(A/\P)AMn (A/\~P):=g/\AAMm+nA,

(3 (HP)rsA(A/\P)/\Qm(AAP)/\Qn(A/\~ P)]ES/\A/\Qm_mA

(4) (BP)r_gA(AAP)AMm (A/\P)/\Qn(A/\~P)}_3AA/\Mm+nA.

Proof. The corresponding results (1) - (4) of lemma 3.2.7 are deduced
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within S5¢ from (1) of lemma 3.2.2 which is deduced from g. So we obtain
the above results from right to left. From left to right is trivial from

lemma 2.

Lemma 5. The following schemes are theorems:

(1) @P)[~gn AARPANAARIAN AA~P) ] =ngrdnNA
(2 @R gAAAPIANGAARD A~NUA~D)|z~nEgrArNA

Proof: = (1) and (2). By (1) and (2) of lemma 3.
<& (1) By (1) of lemma 3, — NAS (I P) (N(AAP)AN(AA~P)).

But the consequent provably implies (I P) (P AN (AAP)AN(AA~P))
V(ZP) (~PANAAP)ANC( A~ P)). But the last disjunct provably
implies (3 P) (P AN (AAP) AN (A A~P).
(1) € now follows.

(2) By s5, =~ g AAANAD~gA(AAT)AN((AATI A~N(AA
~T). (2) € Now follows by FC.

We can now eliminate the existential prefix from md's.,

Theorem 2. If D is a md of degree 1 of n¥, then (% P) D is equivalent to
a quantifier-free wf of ' of degree 21 whose variables are those of D

other than P,

Proof. Suppose D is (*) as above. If P does not occur in D, then

(7 P) D is equivalent to D. So we may suppose that m > O and that P is
R . Now (2 P) D is equivalent to (X P) D' where D' results from D by
writing ~ P for P, P for ~ P. So we may also suppose that P is a

conjunct of Cj'
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m-1

Let D1, Dyy eeey Do m' =27, be the sd's in the variables R,,
. . . .
R2, esey Rm-1. FOI‘ 1l = 1’ 2, eo ey n 9 let 11 (12) be Such that 061 18

D, AP (Ci2 is D, A ~ P) and suppose that j = h,. First suppose 5 is

1
blank. Then D is equivalent to the wf

- n' n'
(**) B A nj_4 311 (D; AP) A Biz (D; A~P) A A, Y, (D; AP)A
iZn
yia (Di A ~ P), where B is g A Cj A Bn1 (Dh AP)A gnz (Dh A~ P).

Now by lemma 1, Q (C) is equivalent to Q. (g A C) and N (C) is
equivalent to N (~ g A C). So by lemma 3.2.5 (On Incompatible Cases),

(¥ P) D is equivalent to

n! r 7
(I P) Ba - (3 P) 5.-911 (D; A P) A Biz (D; A~ P)_i A
i#n

' @p)y. (D, AP)
fiar vi, @p AR Ay g

(D; A~ p)].

We wish to show that each conjunct of this wf is equivalent to a
quantifier-free wf of r;' of degree 21 whose variables are those of (¥ P) D.
This holds for (¥ P) B by lemma 4. It holds for the second group of

conjuncts by lemma 2, and for the third group of conjuncts by lemma 3.

If 4 is ~, the argument is similar. Let B=~g AC. Ay, (D AP) Ay
J n1 h n2

(Dn A ~ P), redefine the other conjuncts accordingly and use lemma
5 in place of lemma L.
We now come to the main result:

Theorem 4. (Normal Forms). Suppose A is a wf of 7 of quantificational
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degree d. Then A is equivalent to-l—or a disjunction of md's of degree Zd
in the free variables of A.

Proof. From theorems 3 and 2 as in the proof of theorem 3.2.4,

§3, 857 is Characteristic

Lemma 1. Each md has a model,
Proof. Let the md be (*) of the last section. We define M = (W, I, &)
as follows:

W consists of

(a) (ci’ n) for n

1’ 2’ cesey kif Bi =Qk

(b) (Ci, ﬂ) fOI‘ m= 1’ 2’ seey l, if Bi = % FY and

(c) (Ci, TT) fOI‘ v O, -1’ -2’ eeoe if ‘Yi = N;

I is the set of (Ci. 1) in W such that w is not positive;

and for (Ci, n) e W,

# (P, (C;y m) =t if P, is a conjunct of C,

= f otherwise,
where 1 = 1, 2, eeey N, k=1, 2, caay L and h = 1, 25000 »
If 4 is blank let w be (ca., 1) and if o4 is ~ let W be (cj, 0).
By conditions (ii) and (iii) on (*), w ¢ W. The construction then

ensures that % (*).

Theorem 1. For any wf A of ¢!,

L='Aiff '— A.
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Proof. = (Consistency). A straightforward exercise. Eg we show

M

that g = (3 P) (P A Q P) as follows. Suppose ':: g, where M = (W, I, &).
W

Then w ¢ W - I. Let M' = (W, I, &) be the M P structure such that

1
£g* (P, v) = t iff v = w. Then we may easily show that ‘-_! PAQP.
W
So ‘=M (7 P) (P A QP). Now suppose not ‘—_Ni g. Take any M P structure
w w
M'
M' = (w, I, #') such that h P, Then we may find an M' R structure

Mt* = (W, I, #'') such that not -

‘.ﬂ' rL (PoR) =~ L(P>5~R)|. For since w ¢ I, there is an infinite

S VS L T ouchthat ¢/(Rv)et. Bubthen mt con defuie 37 s0Mat fr an
set U T vl number of vis i U, $Y(R,v) =t aad for an
o'xﬁmﬁi numberof v's «a U, ¢ (R, v =f

& (Completeness). From theorem 2.4 consistency and lemma 1.
By the Equivalence Theorem, any proof in n' may be converted to a proof

of nn by replacing Qk’ g and N by their respective definitions. So for any
wf A of q, h A iff '7 A. Hence

Theorem 2. For any wf A of n,

hAiff |...A.

m
The following two corollaries are obtained in the usual manner.

Corollary 1. Suppose A is a wf of ¢ with m free variables of quantification-
al degree d. Then if A has a model, then A has a model M = (W, I, #&)

such that Card (W - 1) < 2% 2” and Card (1) <W_.

Corollary 2. n is decidable.
Let S5ng be the system obtained from S5n by adding the constant g
and replacing axiom scheme (5), viz Q A=L~A, by Qo A =L~ (Ang).

Then since (1) to (3) of lemma 1 hold for SSng, we may easily show:
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Theorem 3. For any wf A of Sbng,

|§5n—gA iff ‘=A.

Combining theorems 1 and 3, we obtain:

Corollary L. For any wf A of S5ng,
'_S5ng ALff | A

Thus SS5ng is the quantifier-free fragment of n' just as S5n is the

quantifier-free fragment of m+'.

84, The System S5¢*

The system pn* is the result of replacing Specification in = by

Restricted Specification and adding the axiom h = (F P3) L [PB = g} i.e.

(z P,) L [P3 =(@P) (P, A () (P, 5L (P, > Pz)))l
Thus h states that there is a proposition which says that the world is
describable.

We shall show that n* is deductively equivalent to (has the same

theorems as) n. But first we require:

Lemma 1.
}ﬂ-—. (P) A (P) > A (B), where B is free for P in A (P) and is a trutn-
functional compound of variables and g
Proof. Let B = B (g), let R be a variable not occurring in A (P) or B,
and let C (R) be (P) A (P) 5 A (B(R)). We wish to prove f-? c (g).
B (R) is a wf of PC. So by Restricted Specification (i) t;; C (R). By the

Equivalence Theorem,
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g) > (C (R) =C (g)). So by PC from (i) and (ii),

(i1) |;1—. L (R

L (R=g)>Clg) Soby F¢, — (7 R) L (R =g) > C(g). |— c(g)

]

now follows by the axbm h.

We now come to the theorem:
Theorem 1. A iff A.
Ineorem 1. |3 e

Proof. By theorem 3.2, it suffices to prove theorem 3.2 for n*. As in
§3.4, an examination of §2 shows that Specification may be restricted to
truth-functional compounds of variables and g as specified in lemma 1
above. In fact, only the use of the lemma on Incompatible Cases for
theorem 2.3 calls for an application of the above lemma,

It is easy to show that h is a theorem of m+*. For by the axiom g

T); so by the Equivalence Theorem it suffices

i

and Necessitation, t;:: L (g
to prove t;:: (T P) L rP = Tj, which is easy by S5 and FC. So we may use
. |

the above theorem to show that q+* is deductively equivalent to rr+.

82, Strogg Completeness.

Let A be a set of wfs. We say A is deducible from j, A"' A, if

there are wfs B1, 32

In section §3 we showed that n was complete, i.e. that if }:: A then

9 eecey Bm inABuch that ’_B1ABzA ese ABmDA.

f—- A. In this section we show that w' and hence n are strongly complete,
i.e. that if A |=A then p |~ A. (In this section, unless otherwise
stated, |— is relativized to n' and the wfs are of r'.)

A set of wfs p is a system if whenever A }-A then A ¢ A A is

consistent if not o f— L ; A is complete if for all wfs A, p J— A or
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A }—-~,A; and A is maximally consistent (mc) if A is consistent and

complete. The proofs of the next three theorems need no rehearsing:

Theorem 1 (Deduction Theorem). If a, A.F—-B, then o b~ A o B.

Theorem 2. (Lindenbaum's Lemma) Every consistent set is contained in a
maximally consistent system.

Theorem 3. If p is a mc system, then
(1) ~A¢piff not A ¢ p and
(2) AVBgpiffAegporBegap.

Use of theorems 1 and 3 will often be tacit. We now show that

every mc system has a model. First some definitions. A state-sequence S

is an infinite sequence of wfs A1. A such that Ai = Pi or Ai =~ P,

2, LX N i

for i =1, 2, ..., Forn>1, let S = A  AA Aeee AA. Then s

1 2
subsumes a wf C if for some n, s® = C.
Let A be an mc system fixed for the following discussion. With

each wf A we associate a denumerable cardinal 1) (A) as follows:
(a) T](A)=KikaAeA,

(b) 1\(A)=No if~Q Aea forall k=0, 1, 2, «os .

By the theoremhood of Qk A >~ Ql A, k <1, and the consistency of 4,
T is a well-defined function. It may be extended to state-sequences S
in the following way:

() M (S) = K if there is an m such that for all n > m, 1 (s%) = k.

(@) 1 (s) =yo otherwise.
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We also define a map 5 from wfs into {0, 1} as follows:

(a) fad (A)

(b) 5 (A) = 1 otherwise.

Oif NA ¢ &

It is extended to state-sequences S in the following way:
(c) o (S) = 0 if there is an m such that for all n > m,s (S°) = O.
(d) ¢ (8) = 1 otherwise.
We now prove:
Lemma 1. Let C be a state-description in the variables P1, P2, oo Pm.
Then
(1) If 1(C) = K, then Y 1 (S) - K.
S subsumes C

2) e =Y o then there is an § which subsumes C such that 1 (s) =l
(o]

(3) If 5 (C) = O, then there is an S such that S subsumes C and 5 (S) = O

(4) If ¢ (C) = 1, then for each S which subsumes C, 5 (8) = 1.

(1) The proof of (1) is easier to see than to state. Suppose that A is
any &d in the variables P,y Py «eoy By £ 2 1. For h g, let A® be the
set of sd's in P1, P2, eoay Ph which contain A as a conjunct. Then by
repeated applications of the distributive law for Qk (scheme (2) of S5n),
and by theorem 3,

) Y 1@ =@
" BeAl
Forn >m, let p = Card (B¢ c® : 1 (B) £ 0). By (i), if M (A) £ 0

then either T (AAP ) AOor N (A A~ Pg+1) #0. So for n' >n, Py 2 Py

g+1
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Suppose there are Dy Do eeey My g such that ng < n, < eee < D and
T(B)
n

> K, contrar
k+1 ’ J

P, <p < ..<0p . Then p > K. Soy
! B4 mk+1 “BeC

to (i). If follows that there is an n such that for all n' > n, Py = Py

Let n, be the least such n.

Assume D ¢ Cno and n > n . Suppose T (D) = O. Then if E ¢ D,
N(E) =0by (i). So if S subsumes D, 7 (S) = O. Suppose T (D) =1 £ o.
Now since p =~ is @ maximum it follows by (i) that there is an E in D® such
that T (E) =°1 and for all F distinct from E in D%, N (F) = 0. Let S be
the sequence such that Sno =D and for n > n, (s") = 1. It should be
clear that 7 (S) = 1 and that for any T distinct from S which subsumes D,
M (T) = o.

n
Now S subsumes C iff S subsumes some member of C °. So it follows

by the paragraph above that v M (S) = T T (D) . But the last term =
S subsumes C 'DeCr1 °

M) =k by (i).

(2) It follows by (i) tnat if 1 (A) =W _, then either T (A A P =No
or T (A A~ Pg+1) =N o So we may construct a sequence S such that st =c
and for n > m, T (%) =N o
(3) Clearly it suffices to show that if ¢ (C) = O then ¢ (C A P) = O or
6 (CAP)=0or 5 (CA~P)=0. But this follows by theorem 3 and (1)
of lemma 2.1.

(4) Clearly, it suffices to show that if ¢ (C) = 1 then 5 (C A P) = 1

and ¢ (C A~ P) = 1.  But again, this follows by theorem 3 and (i) of

lemma 2.
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We now have:
Lemma 2. BEvery maximally consistent systen A has a model.
Proof. We define M = (W, I, #) as follows:
W consists of
(i) a11 (s, ) for 0 < 7 < M (8) and
(ii) a1l (S, n) for n < 0 if ¢ (S) = O; 1let I be the set of all (S, ) in
W such that 1 is not positive; and for all (S, n) in W, let & (Ph’ (s, n)) =
t if Pn is a term of S
= f otherwise,
where 11 is any integer and h any positive integer.
By the completeness of p, there is a state-sequence S° = A1, AZ’ ese SUCL
that A, ¢ 4, i =1, 2, «o. . Let wbe (so, 0) if ¢ (S) = O and be (so, 1)

if ¢ (S) = 1. Then given ’f;? MA=~ Qo AV N A, we may easily show

M
Now if C is an sd in the variables P, P,y «eey B, then }F C iff
S,n
S subsumes C. So for each variable Pp» *Jg P iff P ¢ A By (1) and (2)
w h h

of lemma 1, ‘,___’: Q Ciff Q C ¢ A And by (3) and (k) of lemma 1,

FﬂNCiffNCeA.

W
Now suppose that a wf A ¢ A. By the consistency of A and the theorem
on normal forms, A is equivalent to a disjunction of md's. By (2) of

theorem 2, one of these md's D ¢ A. So by the above paragraph, tgg D.
W
But D provably implies A. So by the consistency of n', F%% A.

We now have:

Theorem k. If A #== A, then A f:;, A.
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Proof. Suppose not A h;r‘A. Then by PC and the Deduction Theorem,

A' = A U { ~ A} is consistent. So by Theorem 2, A' is contained in an mc
u u

system A« But then by lemma 2, A has a model. So not At:-_A,

Familiarly from theorem 4 we obtain
Theorem 5. If the members of A and A are wfs of 7, then if A ‘= A then
Afj; A.

By similar reasoning we could have proved strong completeness for
m+ and S5n. Alternatively, we could derive the result for m+ (or m+')
from theorem 5 by considering deductions from Lg (I omit details); the
result for S5n then follows from S5n being the quantifier-free fragment

of ',

§ 6. Predicate and Boolean Analogies.

Let P be the system obtained from P+ of section 3.5 by dropping
all individual variables but X Thus P is the uniform singulary
second-order predicate calculus.

We now introduce a one-one translation T from 1 onto P:
1T (Pi) = £, x4
(ii) T ( A) =~ T (4),

(iii) T ((Av B)) = (T (A) v T (B)) ,
(iv) T (L A) = (x)) TAand
(v) T ((PIA) = (£;) T (A).

Then a straightforward argument by induction establishes:

Theorem 1. ]—n- A iff }—p T (A).

Since each @ of P = T A for some A, the decidability of P follows from
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the decidability of m.
Theorem 1 suggests the following semantics for P: identify fi with

Pi; let the structures for P coincide with those for y; and then define

M M . M -1 .
l=w for P so that '=w g iff "-w "' (#). Given theorem 1 and that n

is characteristic, it immediately follows that P is also characteristic.
The translation from i into Boolean Algebra is more difficult. Let B
be the first-order theory obtained from B+ of section 3.5 by replacing its
special axiom by (F x) (y) (ycx= () (wcyow=0v (@V) (g (V) A
Vcu)). B is the elementary theory of separable Boolean Algebras.
The map T' from B into 1w is the same as the map T' in section 3.5
from B+ into n+. To map ¢ into B, it suffices to show that for each wf
L A of 11 there is a wf @ of B such that T' (&) is equivalent to LA. To this

end, we now define for each variable R of n the following map SR in ¢

(i) s, ®) =L (RoP),

(ii) Sp (~A) = (S) MSAL(s :>~s‘3 1)) ,

where S is a variable distinct from R and not free in A.
(iii) S (A AB) = Sp (A) A Sp (B),

(iv) Sp (LA)=L~RvV (R) (sR (1))

(v) sy ((2;) &) = (B,) Sy (A).

Because of the simplicity of (ii), we suppose that wfs are written with
A rather than V as a primitive.

We now prove:
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Lemma 1. l;r-— L (R>A) =5, (A), as long as R does not occur in A.

Proof. By induction on the length of A.
() A=P. ByR, |~ L®>P)=L(ROSE).
But SR (A) =L (R> Pi)'
(2) A =~ B. We first prove
1) —L(®>5~B) =(8) (MSAL(S>D>R)O>D~L (S>B))
= is straightforward by 85. Foré® , we see that each wf in the following
list provably implies its successor:
~L (R>~B),
M (R A B), by S5,
M(RAB)AL(RABDOR)ALC(RABDB), by 85,
(TS) (MSAL(S>R) AL (S>B)) where S is distinct from R
and furall
and not free in B, by FC, ~ (5) (MSAL(SDR)>~L(s>5B)), by FC.
Hence @ by PC.
By IH, f-— L (S 5 B) =S, {B) So by the Equivalence Theorem and (i),
L (R >~ B)
(3) A =B, AB,. ByS5,

1 2
I-—L(R:B1AB2) = L(R:B1)AL(R3B2).

(s) MSAL(SoR) D~ 8 (B)) = Sp (~ B).

By the I.H.,
fL(R>5B) =5, (B),1=1,2

So L(R>B, A Ba) is equivalent to

1
8 (B1) A Sg (BZ) = 8p (131 A BZ).

(4 A=LB. ByS5 —mL(R-LB)=L~RVLB,
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But by S5, FC and (Restricted) Specification, L B is equivalent to
(R) L (R o B), which, by I.H., is equivalent to (R) Sq (B)e So

L (C DL B) is equivalent to Sg (L B).

m

(5) A=(p) B. ByFc, |— (R> () B) (P,) (R>B) if P, is
distinct from C. So by S5,

FLr@®> (P;) B) =L (P,) (R>B). But by the Barcan Formula Lemma,
L (Pi) (R © B) is equivalent to (Pi) L (R » B), which, by I.H, is equi-
valent to (Pi) Sq (B) = Sq ((Pi) B).

For each variable y of B, we now set up a translation Ty from B into
mw a8 follows:
(1) T (P) =y cx;,
(ii) Ty (~A) =(2) (z £AO0A zSyD~Ty (A)),
where y is not free in A and distinct from z.
(ii1) T_ (A AB) =T_ (A) AT_ (B
) v ( ) v (A) A . (B),

(iv) 'l‘y (LA =[y=8V @@y ((2) (zcy) A CI?y A)]
(v) Ty () M) = (x;) Ty .
An easy induction on the length of A establishes:

Lemma 2. |— T' T_ (A) =S, (A) as long as P, does not occur in A.
—_—— w x5 Pi i
We now obtain the required result:

Theorem 1. For each wf L A of m there is a wf @ of B such that ’—nLAE
T' &,

Proof. let B = (Pi) Tx (A) , where Pi does not occur in A. For T' B =
i
(p;) T T, (A) is equivalent to (B) Sp (A), by lemma 2, which is
i i
equivalent to (Pi) L (Pi S A), by lemma 1, which is equivalent to L A by .
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As before, we may use the translations T and T' to derive completeness
of decidability results for one system from the corresponding results for

the other system. I omit details.

§7. An Alternative Semantics for g

Call the previous semantics for gemantics, )the present semantics
sema.nticsa. A structure2 is a triple (W, I, @); where W is non-empty,
IcWand g is a map from V x W into {t, f}. There are no restrictions
on I or g. We define %} by the standard clauses. However, we
redefine the notion of an MP-structure. A x-:t:ruc'!;ure2 M' = (W', I', &) is
an M P-structure, M = (W, I, @), if there is a map f from W' onto W such
that
(1) for each w in W-I and v in W', f(v) = w iff v = w,

(ii) for each w in I there are at most two v's in I' such that £ (v) = w,
and (iii) for all R distinct from P and vin W', g (R, v) = & (R, £ (v)).
Thus each quantifier enables a world in I to''split" into two.
We now show that validity,’and validity2 coincide. Given a

structure, M = (W, I, @), the structure, M* = (W*, I*, #*), called the

2
shrinkage of M, is the structure such that

(1) w* -1*=-Ww-1,

(i1) 1* = 1/ y 1eee the set of equivalence classes with respect to ~ M,
and

(iii) for each variable P

ge (P”w)=¢(P’w) for w ¢ W - I, and
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g* (P, [w]) = ¢ (P_’ w) for w ¢ I.

Clearly, M* is properly defined.

Let g be the map from W onto W* such that for w ¢ W - I, g (w) = W and
for w ¢ I, g{w) = [w]e Then:

t §
lemma 1. For each w in W, \—3 A iff ,;-"!:w) A.
1

Proof. By induction on the length of A. The one tricky case is when A is
of the form (P) B. Here it suffices to note two facts: (1) If M' is an
MP - structure1, then M'* is an M* P-structure,; and (2) each M* P-structure2
is isomorphic to a si:ruci:v.re2 M'* for some M P-stricture M'.

Since each si:ructure2 is isomorphic to M* for some si:ruci:ure1 M,
lemma 1 implies:
Theorem 1. \1=A iff 2? A.

In terms of semantics., m has the finite model property, whereas for

2
semantics1 we can do no better than corollary 3.1.

It should be clear that any semantics along the lines of semantic52
will do just as well as long as each world in I is allowed to split into
two. Thus we could require that each world in I must split into two; or we
could allow for each world in I to split into any number of worlds.

Further semantics for 1 will be developed in the next chapter.

88. References

Bull has proved completeness forT{ by semantic tableaux in On Modal

Logic with Propositional Quantifiers. However, his semantics are different

from my own and he does not prove decidability. The system B is discussed
in Kreisel's and Krivine's Elements of Mathematical Logic, chapter L, section
6.
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Chapter

THE SYSTEM S5nm-

In this chapter we consider the system which results from replacing

Specification in ¢ by Restricted Specification.

§1. The System Som-

Formation Rules. As for n.

Transformation Rules. As for i but with Specification replaced by

Restricted Specification, viz., (P) A (P) > A (B), where B is a wf of

PC free for P in A(P).

Semantical Rules. We redefine the notion of a structure. A

structure M is an ordered triple (W, P, #), where W is a non-empty set,
P (propositions) is a field of subsets of W, i.e. a set of subsets of W
closed under complementation in W and finite union, and & is a map from
V into P.

Given a structure M = (W, P, @), then a structure M' = (W', P!, g#')
is an MP-structure if W' = W, P' = P and for all R distinct from P,
#'(R) = ¢ (R).

M
We then define h A in the usual way. Of course, the first clause

must now be:

(i) ’=MPi iff we ¢(Pi), i=x1,2y000 o
w
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For convenience, I have slightly altered the definition of the
assignment function fZ. It now assigns a proposition, i.e. set of worlds,
to each variable. The set of propositions is given by P. Restricted
Specification merely requires that P be closed under union and complemen-

tation.,

8§2. S5mq- is Characteristic.

By suitably extending the language of 11—, we may eliminate all
quantifiers and occurrences of L and thereby prove that - is characteristic
and decidable.

The working-out is extremely lengthy and I shall merely indicate the
required extension ' of . 7! is obtained from 1! of the last
chapter by adding the constants e and f, the unary operators E and F and
the axiom-schemes:

e

(@)@XL(p3~yA<m(MR3~@AL<p3m

5L (R>P)].
fz=~eA (@) (PAL (Po~g))
EA =M (AAe)

FA

nm

M (A A f).

e states that there is a true minimal proposition which is true in indes-~

cribable worlds only. f states that there is a true proposition, but no
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true minimal proposition, which is true in indescribable worlds only.

It should be clear that - corresponds to B-, the first-order
theory of Boolean algebra. However, I know of no direct way of trans-
lating m~ into B-.

The semantics for o allow for a slightly odd possibility. There
may be two distinct worlds w and v in W but no proposition p in P such
that w ¢ p and not (v ¢ p). In other words, some worlds may not be
distinguishable. In such a case, a proposition p which satisfies QP
may be a set of indistinguishable worlds. We may avoid such possibilities
as follows. Let M = (W, P, #) be a structure. Then for Wy V ¢ W, let
Us say W~y v if for all pin P, w ¢ p iff v ¢ p. We may easily show
that ~y is an equivalence relation. Let M/V = (W', P', &'), where W' =
W/~, P = {P/~ S P} and for all variables P, &' (P) = & (P)/~.

In M/~ each world has been identified with a set of indistinguishable

worlds., We may then easily show that M/ is a structure and that:

e

Lemma.

%

W

Hence validity reduces to validity for all structures M/ .

~

83.  The Systems ; and m+ Reconsidered.

In terms of - we can give new semantical accounts of nm and m+.

The System gq. T give two new interpretations of .

1. Let us say that a structure M = (W, P, w) is separable if there
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is a p in P which is the union of all the atoms in P. (q is an atom in
P if q is non-empty and for all r in P either qC r or q C T). We say

M
M satisfies A (A is valid in M) if for all w in M, rﬂﬁ A. Then:

Theorem 1. 5 A iffA is satisfied by all separable M.

Proof. The result follows from the following equivalences:

(i) ]= h - A iff A is satisfied by all separable M
. . 0= A

(ii) F h o> A iff ,-;_ >

n iff A

(iii) I-?_ - Ai l_'n‘

(iv) '—;. A iff }—HA A

M
(1) follows from the fact that }%E h iff M is separable, (ii) from the

fact that y is characteristic, (iii) from the easily proved Deduction
Theorem for y- (where the discharged assumption formula is modally closed),
and (iv) from theorem 4.lk.1.

Let us say that M satisfies a system S if M satisfies each theorem
of S. Then V satisfies n* iff M satisfies h i.e. iff M is separable.
So by (iv),
Theorem 2. M satisfies n iff M is separable.

Theorem 2 has two interesting corollaries.
Corollary 1. - is not deductively equivalent to n.
2522{. Let W=Itu 1~, where I+ is the set of positive integers and I” is
the set of negative integers. Let P consist of the finite subsets of It
and the complements in W of finite subsets of . Then P is a field.

+
But I, the union of the atoms in W, is not itself an element of P. So

the structure M = (W, P, #), is not separable. Now M satisfies 1, but
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by theorem 2, M does not satisfy 7.
We say a structure M = (W, P, @) is closed if for all wfs A there is

& pin P such that p = {w:iw ¢ W & }én}.
) v

Corollary 2. M is closed iff M is separable.
Proof. Specification in ™ may be replaced by the less general scheme :

(P) ~L (P=A)>5~L (A =A), P not free in A, which is equivalent
to the scheme (¥ P) L (P =A), P not free in A. But M satisfies this
latter scheme iff M is closede. So by theorem 2, M is closed iff M is
separable,

2+ A function f from V into the power set?(w), where W is non-empty,

is called a Bull-evaluation if it satisfies the following conditions:

(a) If A and A' are similar (alphabetic variants), then £ (A) = £ (A')
(b) £ (~A) =W-1f (A)

(¢) £(AVB)=f (L) UT (B

(@) £(LA) =Wif £ (A) =W

= O otherwise
(e) £ ((P;) A (P,)) = the intersection of all sets f (A(B)) where B
is free for P, in A (Pi)°

Thus in Bull-evaluations the variables range over wis. We say '=B= A iff
f (A) = W for all Bull-evaluations f.

We may establish by an easy induction that if |= A, then ':? A.
To prove completeness, we need to be able to convert structures M into
Bull-evaluations. So given M = (W, P, #), let fM be a function from

. M
wfs into '? (W) defined by £, (A) = {w : v ¢ W& 'r‘;A}. Let us say that
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8 structure M is spaced if for each p in P and for each k there is a 1 >k
such that ¢ (Pl) = p. Then

Lemma 1. If M is a spaced separable structure, then fy is a Bull-evaluation.
Proof. (e) is the ome tricky case.

(A) Buppose w ¢ £ ((Pi) A (Pi)) ie.ee

M
% (P,) A (P,). By theorem 2, M satisfies Specification. So '_—E A (B)

v i i w
for each wf B free for P; in A (Pi) , and w belongs to the required inter-
section,
(B) Suppose w £ f ((p;) A (P;)). Then for some MP structure M' = (W, P, #'),
not - '—M' A (P.). Let k be the greatest number such that P,_, is free in

v 1 -

A (Pi). Then since M is spaced there is an 1 > 1 such that ¢' (P,) = ¢ (Pl)'

It follows that not - = A (Pl). So w does not belong to the required

£

intersection.

We now have:

Theorem 3. If ‘-g A, then |—-A’
Proof. Suppose not - |—— A. An examination of section 4.3 shows that there

is a separable structure M = (W, P, @) with countable P such that for

some w ¢ W, not-g A. Let K be the greatest number such that PK-'] is free
W

in A; let p;y P,y eeo be an enumeration of the elements of P; and let

H' - (w’ P’ ¢.) Where

1) ¢ (Pj) =g (PJ.) for j <k
(i1) g (Pj) = p; if j is some power of the i-th prime,
(ii1) ¢ (Pj) = # (P;) otherwise.
Now, clearly, M' is spaced and not -l-—:"g. So fy, is a Bull-evaluation by

lemma 1 and £, A = { w: we W& FoA} £ W,
w
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To sum up: we have given four different interpretations of 1. The first
(section 4.1) distinguished between describable and indescribable worlds and
gave an ad hoc rule for the quantifier. The second (section 4.7) accounted
for the quantifier in terms of splits. The third let the variables range
over all propositinns in a separable structure. And the fourth let the
variables range over all wfs. The third account is, to my mind, the most

philosophically interesting.

The System T+. Let us say that a structure M = (W, P, @) is atomistic if

each w in W belongs to an atom in P. Then:

Theorem 4., }?*_ A iff A is satisfied by all atomistic structures.
Theorem 5. M satisfies T+ iff M is atomistic.

Proofs. Similar to theorems 1 and 2, but with T+* instead of T and g
instead of h.

Theorem 5 also has some interesting corollaries:
Corollary 1. T+ is not deductively equivalent to ™.

Proof. Let W = J U I', where J is the set of rationals r such that O <r <.
Let P consist of the finite unions of intervals {r: a < r < b}, where a,

b ¢ W, and the complements in W of such finite unions. Then M = (W, P, @)
is separable, since I+, the union of all atoms, = W - {r : 0 <r < 1}; but

M is not atomistic. So the corollary follows by theorem 5.

Corollary 2. P is not deductively equivalent to the uniform fragment (i.e.

with one variable x,l) of P+,
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Proof. By section 3.5, h A iffj5= T A. By theorem 4.6.1, }= A iff

,-; T A. So the resilt follows by corollary 1.
The explanation for this curious result is that in P+ we can define
identity by (f) (f x o f y) and so prove Tg, but that this is not poasible

in P,

§4. B8ome Further Systems.

1. Kripke's System. This is given at the end of Kripke's A Complete-

ness Theorem in Modal Logic. It is equivalent to the result of adding to

T the axioms N T Vv Mk T for k = 1, 2, eeee A structure M = (W, I, ¢)
satisfies the system iff W is infinite and a wf is a theorem of the
system iff it is satisfied by all structures M with infinite W. The system
is not finitely axiomatizable. For suppose A were a suitable finite set
of axioms to add to e Then A U { ~N T } would be consistent and so have
a finite model M = (W, 0, #) by corollary 3.3.1.

Kripke's own remarks on the system seem to be incorrect.

2. Extensions of M+, For each extension of m+ i.e. system obtained

by adding new axioms to T+, we can find a condition on the cardinality
of W so that A is a theorem of the system iff it is satisfied by all
structures whose W satisfy the condition. E.g., if the extension is

{M1 Ty M, T, ..} the condition is that W be infinite. If the extension

2
is {Q, T, Q, T, ...} the condition is that W contain an even number of
worlds.

3« A System Between T and TM+. Let us say that a wf A is closed if

each variable of A is either within the scope of L or a quantifier for that
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variable. Now it follows with the help of normal forms that for m+,

(i) If A is closed, then f— A S L A,
(i) does not hold for T since g o L g is not a theorem of 1. However, if
we add g D L g as an axiom to ™ we obtain the weakest extension of T which
does satisfy (i). Again, this follows with the help of normal forms.
Since g5 L g is equivalent in mto L g VL ~ g, a wf is a theorem of the
system iff it is satisfied by all structures M = (W, I, 2) in which either
IJorW-1Iis empty.

By adapting the normal forms for S57, we may show that all the systems

considered in this section are decidable.

o _Some Theorems on Fr nts
In this section we extend our results on quantifier-free fragments of
™'
Let mik be the result of adding to T the unary operators Q’k with the
axiom-schemes Qk A= (q( PP(PPAVA~M(AA~E), k=0,1, 2 eee Then

Theorem 1: For each wf A of S5n, 5— A iff ]-"T_ A.

Proof (A). We may easily verify that axiom-schemes (1), (2) and (5) of
85n are theorems of - for all wis of PC and that schemes (3) and (4) of
S5n are theorems ™ for all wfs whatsoever. But as is clear from
section 2.2, this is all that is required to derive S5n.
(B)e If a wf A of S5n is a theorem of M-, it is valid in m™+' and
80 provable in S5n.
Note that scheme (5) of S5n is a theorem of T-!' only because of the

strengthened definition of Q’k above.
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An extension of ™' is the result of adding new axioms to ™. An

extension S of ™' is a conservative extension of S5n (S85Q) if for each

wl A of S5n (SRQ) k_fn%SBQ) iff }—s- A. A system S is contained in a
system T is each theorem of S is a theorem of T. The next theorem

characterizes the extensions of T! which are conservative extensions of
S5n (or SR):
Theorem 2. An extension S of - is a conservative extension of S5a (S5Q)

iff S is contained in m+'.

Proof: € From theorem 1 and corollary 3.3.kt.
= Assume S is an extension of m-" not contained in m+. Then there

is an axiom A of S which is not a theorem of m+. So if B is the closure

of A,
(1) 'E—B, and
(i1i) not -’-—ﬂ+, B.

By theorem 3.2.4, B is equivalent (in m™+') to a wf of the form v, eKQkT

or a wf of the form chx QT \ M T, where K is a (possibly empty) set of
integers j such that 1 < j < 1. In the first case, B implies ~ Ql T

(in m+'). In the second case, there is j, 1 < j <k, such that j €K,
otherwise |;:, B, contrary to (ii); so B implies ~ Qj T. In both cases,
there is an i > 1 such that B implies ~Qi T.

We now define a wf Ai of S5Q for each i = 1, 2, eee » Ai =

i n
Kj=1 Q4 C5 A A

i j=ie QO Cj, where C‘l‘ CZ' coey Cn are the distinct sd's in

the variables P,], PZ’ eeey Pm and where m is the least integer such that

2" >i. Clearly, A, implies Q, T and so ~Q; T implies ~A,.
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Since B implies ~ A; (in ™), "EB ALg>~A; and so'—EBD
(~LgV~a). But b5 A oLe. So f-Bo~A and by (1), fg~A,.
But ~ Ai is not a theorem of S5Q (or S5n), since Ai has a model. So S is
not a conservative extension of S5Q (or S5n).

In the light of theorem 2, it might be thought that no proper
extension of m+' (i.e. one not contained in m™+') is a conservative extension
of 85 and that no proper extension of 85n is a conservative extension of
8. However, neither of these results hold. To fault the first, add
M T for any k > 1 to ™'; and to fault the second, add Mz AY M,~A
to 85n. Then by the methods of section 2.4 we may show that the
resulting systems are conservative extensions of 85 and 85Q respectively.

There are many other applications of our methods. E.g., we may use
them to provethe semantical analogues of Scrogg's results on extensions

of 85.

86, References

The interpretation in which variables range over wfs is Bull's and

is given in On Modal Logic with Propositional Variables.

Tarski proved the decidability of B-, presumably by the elimination
of quantifiers, in 1949, However, as far as I know, the proof has not

been published.
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Chapter 6

o
THE SYSTEMS Mn’ Bn AND Shh

In Chapter 2 we considered S5 with the operators Qk' In this chapter

we consider some weaker systems with these operators.

{1. The Systems

The system Mn is defined as follows:

Formation Rules. The wfs are given by the set V of variables, the

binary operator v and the unary operators ~, L, and Hk, k = 1,2, eee, Mo A
abbreviates A 5 A and Qk A, k=0, 1, 2, eee, abbreviates Mk AA~ Mk+1 A.
Thus Hk’ rather than Qk' is now primitive. The use of Mn for an operator
and the name of a system should cause no confusion.

Transformation Rules. The axioms are: all tautologous wfs; the

schemes LA >A and L (ADB) o5 (L A>LB); and the schemes
(1) M ASM A, 1<k
() M A=V M (AAB)AM . (AA~B),
(3) LA>B)> (M ADM_B), and
(M) MyA=MA Kk, 1=1,2 eea s
The system Bn is obtained from Mn by adding the axiom-scheme
(5) A>LMA.
The system Slfg is obtained by adding the schemes:
(6) MM _ASM A, k> 1; and
(7) M (BAQ (BAM (AAM B)) oK A where n=qt{(m-1), 1) +

1« (qt (x, y) is the quotient on dividing x by y).
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We may define the general notion of a system as follows. A system
8 is a set of wfs such that

(1) if jz— A, then A ¢ S, and

(ii) 4if A,nA > B ¢S, then B ¢ S.

Semantical Rules. We redefine the notion of a structure. A structure M

is an ordered triple (W, R, @) where W is a non-empty set, R is a relation
defined on W, and ¢ is a map from V x W into {t, f}. 'wRv' may be read
as 'v is accessible from w.'

With each structure M = (W, R, @) we associate a unique relation
"5 A. It is the smallest relation such that:

(i) Pi iff ¢ (Pi’ W) = t’ i = 1, 2, sew o

(ii) ~ A iff not - A

A or ’_-—_3-

(iv) )= L A iff for all v st wR v,
w

tTr:! tTr;-{
= <[k

(iii) }—f (A V B) iff

A

=
<z w

(v)

«Il=

Mi A iff there are at least i distinct worlds v1, v2, eoay vi

stvaj and

|=‘v‘ Ay 3= 2y ceerdy L=1,2, eun s
We pedefine thg following conditions on R:
R is reflexive if for all w ¢ W, wR w
Risgmtric if forall w, v ¢e W wWRV=3VRW
R is transitive if for all w, v, u ¢ ¥, w R v and
VRu=wRu

Ve say A is yalid in M = (W, B, #), |22 A, if for all w ¢ Wy 2 A.
w



-8 -

Validity is then defined as follows:
. M
f-‘: A if =4 for all structures M (= (W, R, #)) such that R is

reflexive

F? Aif '—M A for all structures M such that R is reflexive and
n

symmetric

|§Eo A if '-ﬁ A for all structures M such that R is reflexive and
n

transitive.

2e i Consistent Systems
We shall prove completeness for the systems by means of mc systems.
For future use we shall state many results in general form.

Iet S be a systems Then an S-system or system of S is one which

t
includes S. In conformity with standard notation, we write |z A' for
‘A ¢S's Let A be a set of wis. Then A '—S—A if there are wfs A1,

Azg ceony AM [ A SUCh that ,_ (A,] D eee D (A-m D A)oo.)o A is S‘comistent

if not A =S L . A is S-complete if for every wf A either A — A or

A f—~A. A is maximally consistent (me) in S if A is s-consistent and

8-complete.

I remind the reader of the following theorems.
Theorem 1. (Deduction Theorem). If Av {A} |-§ B, then A '—s- (A > B).
Theorem 2. (Lindenbaum's Iemma). Every S-consistent set is contained
in an mc system in S.

Theorem 3. IfA is an mc system in S, then~A¢A iff not A ¢ A and
WVB e A irtace D ors ¢ 4.
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We now turn to some modal features of our systems. A system S is
normal if whenever A ¢ S, L A ¢ S. Let S be a consistent normal system.
Then we let ws be the set of mc systems in S. By theorem 2, ws is non-
empty. For i = 1,2,.e., we define the relations Ri as follows:

for w, v ews, wRivif for any wf A whenever A ¢ v MiA ¢ Wwe The
relations Ri play a crucial role in what follows.

First we note two trivial lemmas:

Lemna 1. w R, v iff {A: ~M, ~A ¢ W} C V.

Proof. Straightforward given the Bquivalence Theorem, which follows with

the help of axiom-scheme (3).
Lemma 2. Iwai v, t;henw.‘x!:j v, j <i.

Proof. By scheme (1).
Use of theorem 3 and lemmas 1 and 2 will often be tacit.
The next result is fundamental:
Lemma 3. M; A ¢ wiff there are at least i distinct ordered pairs (Vj, aj),

st wRajVj and A gvj, aj21’ J =1 2y eeey 1o

Proot.
= By induction on i.
Basis i = 1. Assume M, A ew. let [ = fA: L4 ¢ vl
Buppose.f U {A} is not consistent. Then, by PC and the Deduction Theorem,
there are wfs Ajs eeer A e ,Est '—§A1 =) (Az O eee D (An D~ A4)). So by
the system M, '—S-LA,l - (L A, D eee D (L AnDL~A).) Hence L ~ A ¢ w.
80 by axiom-scheme (4), ~ M,l A ¢ W, contrary to the consistency of w.

SOI U {A} is consistent and by Lindenbaum's Lemma .f U {A} is contained
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in a mc S-system v. So by lemma 1 and scheme (4), w R, v.

Inductive Case. Assume that the lemms holds for i < k. (The

Induction Hypothesis).

Assune Hk A ¢ wo VWe distinguish two cases:

(A) There is a wf B and numbers p, q < k such that p + ¢ > k and
Mp (A A B), Mq (AA~B) ¢we By IH, there are p distinct pairs (VJ., c,j)
st wRa,‘_j Vj and (A A B) er, j=1,2, eeey p, and there are q distinct
rairs (.uh’ Bh) st wR B, u and (AA~B) ¢ w,h =12, ceu, q. Since
B evj and ~ B ¢ W, VJ. ;!Vh for any j or he So there are at least p + q
> k pairs, viz (VJ., aj), (uh, Bh) which satisfy the condition in the
consequent of the lemma.

(B) There is no wf B and there are no numbers p, q < k as in (A).
By scheme (2) and theorem 3, for each wf B there is an i st M, (A A B),
My AA~B) ew. Sofor each wf B, either (a) M_ (A A B) ¢ w or
(b) Hk (AA~B) e we In case (a), ~M (A A~B) ¢ we For otherwise,
M, (A A~ B) ¢ w by scheme (4), M4 (A A B) ¢ w by scheme (1), and so (A)
would be satisfied after all. Similarly, in case (b), ~ M (A A B) ¢ w.

Now 1et_f= {A: ~M¥~A e vl
Now suppose .[’ U {A} is inconsistent. Then there are wfs A1, coey Am ¢l‘
such that (i) '—s (AA eee A Am) >~ A, By the paragraph above, either
(‘)I':,L (A>A) fori=1, 2, eee, mor (bL (AD~A,) for some
i=1,2, eee, mec Incase (a), L (AD (A,l AeedA Am)) ¢ w. But then by
M and (i), w is inconsistent; a contradiction. In case (b), by scheme (3)
~HkA e w since~Hk~Ai ¢ Wo But by assumption, HkA ¢ W; again a

contradiction. So _[' U fA} is consistent. So by Lindenbsum's Lemma,
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-EJ&;LB contained in an mc. S-system v, and by lemma 1 w Rk v. Hence by
lemma 2, w R1 v, w RZ Wy eceey W Rk v where A ¢ v, and the consequent of the
lemma is satisfied by the pairs (v, aj), J=1 2y eeey Ke

By induction on i.

Basis i = 1. AssumewR%V,' and A e V,. ThenMa A ¢ wo But
1

&4 2 1« 80 by scheme (1), MiAew

Inductive Step i = k. Assume there are k distinct pairs (Vj, o j) st

wRa Vj and A ¢ VJ., J =1, 2, eeey ke We distinguish two cases.
A
(A) A1l the Vj's are identical. Then clearly there is an g j2ke So

HajAgwandbyscheme (1)MkA¢w.

(B) At least two Vj's are distinct. Clearly we may assume V1 = \’2 = see =
vnandvj%v1f°rj=h+1,h+2,..c,ko SOfOrj=h+1,h+2, esey
k there is a B, such that B, ¢ V, and ~B, ¢ V,. I.etB:VBJ.. Then by

J

Pc,lexcv:j for each j and ~ B ¢ V,o By the I.H., M , (AAB) ¢ wand

Hh(AA»-vB) ¢ w. So by scheme (2) M Aew.

§2. Characteristic Models

Let S be a consistent normal system. 1In this section, I show how to
constructA a characteristic model for S from ws and R:I. as raw data.

The intuitive interpretation of w Ri v is that there are i worlds
which are accessible from w and which have the same truth-value assignments
a8 ve S0 if X is an arbitrary non-empty set let us say that a relation R
defined on a non-empty subset N of WoxXis sound if

(1) for (W, n) ¢ N and (V, mi) = N; (W, n) R (V, "1)’ 1=1 2, eeey k

%wkkva.nd
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(i1) forW, V ¢ W_ and (W, n) ¢ N; w R v = there are k distinct
v, m ) in N such that (w, n) R (v, m), i =1, 2, eeey ke
Given R defined on N, we may define a natural structure N_ = (N, R, &) by

letting & (P;, (w, n)) = t (£) if P, ¢ w (P, W), (v, n) ¢Nandi =1, 2, ...

Theorem 1. If N is a natural structure defined as above, with R as sound,

then for each (w, n) ¢ N, f ) A iff A ¢ we

Proof. By induction on the length of A. The one tricky case is when A is

of the form MkB.

N
= Assume 5 A (= Hk B). Then by the definjtion of P— , there are
W,n) OI\A(MI:'\) (V‘,m P

kpairs(v,m):.nNsuchthat ) AJ =112y ey ke Supposeui

,m
are the distinct vJ s and that there are n, pairs with first member u
i-= 1, 2, ey 1 Sk. Then since R is Bou.nd, wRﬁ uig i-= 1' 2’ soey l.
80 by lemma 2.2, for each i = 1, 2,00, 1 there are n, pairs (ui, 3y 3+ 1, 2,
seey D, such that w Rj u . Clearly,

(1) there are k such (u;,3)'s in all. Also, for j = 1, 2, «ee, k,
Ns

}f: , Be Soby L.,
Y3 "

(ii) B ¢ u, for each i.
From (i) and (ii), by lemma 2.3, M A e wv.

£&=Assume A (= Mk B) ¢ we Then by lemma 2.3, there are k pairs (vj, a,j)
such that .

wRaj vJ and B ¢ vj,

distinct vj's and n. the number of pairs with first member u, 1i=1, 2, eeey

J = 1,2, eee, ke A8 before, let u; be the

1l < k. Since R is sound, there is for each i, n, pairs (ui, mj) in N, j =

1’ 2’ o000y ni’ Such that (w, n) R (ui, mj). cleu]-y,
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(i) there are k such pairs (ui, mj).
Also, B ¢ u, for each i. So by the I.H.,

N
(ii) '(=§ o B for each (ui, mj).
i’ ]

N
8

From (i) and (ii), by the definition of \= , J= B
w, n) Mk *

§4. The System Mn
To prove completeness, we shall use the construction of §3. Let
X =101, 2, eeey}s We then define R on WM x X as follows:

n
for w, v ¢ Wy and n, m ¢ X, (w, n) R (v, m) iff
n

Y

or (ii) w# v, n<mand wR _ W

(1) w=v,n<cmandwR ,

We now require two lemmas:

lemma 1. R as defined above on wM x X is sound.

n
Proof. (A) Assume (w,n) R (v, mi), i=1, 2, eeoey Ke
Clearly we may suppose m

<W, < ees <M. We distinguish two cases.

1 2

() w=v. T™enng¢m. Son+k-1<m. But wR V. So by
n+1-n
lemma 2.2., w R (n+k-1)+1-n V. i.e. wR V.

(b) w£ve Then n < m. Son+k<m. But mek_n V. So by lemma 2.2,
w R Vie.w Rkv.

n+k-n
(B) Assume w Rk V. Then either

(a) ﬁ V and (w, n) R (V,m), m=n’ n+1,o°.’ n+k"1 Or

(b) w # v and (w, n) R (v,m), m+ n+1,0ee, n+Ke
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Lemma 2. R is reflexive.
Proof. (w,n) R (w,n) if w R .1 ¥ ieee if wR, w. But by scheme (4) and
M, if A ¢ w, thenM,lAgw.

We now have:

Theorem 1. |~ A iff b A.
n n

Proof. = (Consistency). Straightforward.
& Assume not l"ﬁ A, So by PC and the Deduction Theorem, f~ A} is
n
Hn - consistent. So by Lindenbaum's Lemms, there is an mc Mn—system w such

that ~ A ¢ w. Let NM be the natural structure obtainederom WM and R

as defined above. ’m!;n by lemma 1 and theorem 3.1, not h%: 1) A.n
8o by lemma 2, not —E A.

Clearly, a similar argument proves strong completeness. In subsequent
proofs of completeness, I shall merely prove the appropriate lemmas and
leave the application of theorem 3.1 to the reader.

Call a relation R antisymmetric if for all x and y in its domain,

XRy &R x=x = yo NowR, as defined above, is antisymmetric. For

suppose (w, n) R (v,m) and (v,m) R (w,n). Then n <m and m < n; so0

n =m; and so v = we Hence }:=M A for a1l M in which R is reflexive iff

"ﬁ A iff FM for all M in which R is reflexive and antisymmetric. Thus
n

for M it makes no difference whether accessibility is antisymmetric or not.

52. The System Bn.

The construction of NM from WB and Ri is a little tricky.
n n

First,we define by induction the relations Si and sets D,, i = 1, 2, eee

(i) Si :g; Di = {(W,1): w gﬁB } H
n
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(ii) (w,n) Sp+1 (v,m) iff (w.n) [ 4 DP’
there are exactly 1 n'%s such that (v, m') Sp (w,n), m = 2%, 3k and
elther (i) w=v and w R ¥

ror (i) w# v andyR, . V,

Dp+1 = the domain of Sp+1.
Put N =17 D:i.’ and for x, y e D, let x Sy iff for some i, x Si Yo

We now let R be the smallest reflexive and symmetric relation which
contains S i.e. for x, y eNnyiffx =yorx5yor ysx_. Thus we see
that S is a tree-relation such that if (w,n) has exactly 1 R-predecessors
with first member v then ‘(w,n) has k S-successors with first member v iff
v l.tk+1 v.

By definition, R is reflexive and symmetric.

To prove soundness, we first prove:
Lemma 1. If wR1 v, then vR,l We
Proof. Suppose A ¢ w. Then by scheme (5), L MA ¢ W. So by scheme (4),
~M1~M1 A ¢ we But then by lemma 2.1, M1 A e Ve

Also, w R‘I w for each w ¢ VBn, since lemma 2.2 holds for any system
which contains M. We now have:
lemma 2. R is sound.
Proof. Routine, given lemma 1 and the remark above.

Consistency and completeness then follow as for Mn.

§6. The System slf

First, we prove consistency. We may easily show p—=— (6) So it
SEo,

remains to show | (7). For this we require the following lemma:

SO
Lemma 1. Suppose R % js a transitive reflexive relation defined on a
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set Y U Z, that for each y in Y there are exactly 1 y's in Y and at least

k z's in z such that y R y and y R z, and that for each z in Z there is a

Y in Y such that z R y. Then if Y contains at least m > 1 elements, then

% contains at least n = (qt (m-1), 1)) + 1) k elements.

Proof. First we show that R is symmetric on Y. For suppose that ¥, y ¢ Y,
YRyand not - (yRy). NowyR g0 for distinct vy € Y, i =1, 2, eeey 1.
8o for each i, y # ;o But then by reflexivity and transitivity, YRY

and y R y;» contrary to assumption.

Next we show that foriéY, zeZ2if yRz, thenzRy. For zR y
for some y ¢ Y. So by transitivity, ¥y R y. So by symmetry on Y, y R ¥y.
8o by transitivity again, z R ¥.

By the first paragraph, R is an equivalence relation on Y. Suppose
I/R, the partition on Y induced by R, has p elements. Then the reader
may easily convince himself that p > n = qt ((m-1)1) + 1.

By the second paragraph, if not (y R y), then the sets {z ¢ Z: ¥y R z}
and {z ¢ 2: y R z} are disjoint. So there are at least n.k elements in Z.

We now show that ‘Sﬁ (7). Suppose ]=—% C, where C is the ante-
cedent of (7). Temporarilynwe say w is an A-world if % A. Then:

(i) there are m B-worlds w which have R to w,

(ii) for each w there are just 1 B-worlds v which have R to w,

(iii) for each v there are k A-worlds u which have R to v, and

(iv) for each u there are 1 B-worlds t which have R to v.

By transitivity, each v has R to just 1 B-worlds and each world t is
a v. Letting Y be the set of w's and v's and z be the set of u's, we see

that the assumption of lemma 1 is satisfied. So there are n.k A's in Z.
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So we have:

Theorem 1.(Consistency). If h?’ A, then ,L—— A.
n o
S4°,
For completeness we require the following two lemmas:

IoemaZ.Iwavandkau, theanku.
M‘_.AssumewR,]vandkau. Suppose A ¢ u. TheanAgv. SPM‘IMR
A ¢ u. But then by schemes (4) and (6),MkA ¢ Ue

We say: wSk v, k= 1,2,00e, if wR_v and not - (w Rk+1 V); and
wsw—ov(orw%v) iwakvfork=1,2,....
Lemma 3, Iwamv,kauanduslv, theank.nu,nzqt ((m=-1),1) + 1,
Proof. «Sinceu.'sl v, there is a B such thathv,Qchu. By lemma 2,
VRl Ve SoMlB e Ve If M1+1B ¢ v, then s:i.nceu.R1 v, M‘l (M:'_+1 B) ¢ u,
and so by scheme (6) M1+1Bgu. SleBevalso.

Now suppose A ¢ u. Then A A M, B ¢ u. SoMk(A/\MlB)gv. So
Q (BAM (AAM B)) eve SoM (BAQ (BAM (AAMN B))) ew.
8o by scheme (7),Mk.nAgw.
Forwgws4: y let a, be the cardinal ¢ such that wsc w. For w, vgws,*:,

let w~ v iff w R, v and VR, w. We may now define R on N = {(w, (n,‘, na)):

¥eWg0 n =1, 2 ..., andn,<a le
n
For (ws (n1' nZ))s (Vs (m19 mz)) e N,
(w, (n,, n,)) R (v, (m;y m,)) iff
(1) w~ v and n, =m, or
(ii) not (w ~ v) and

(a) @, is finite and w R V or

(m1-1) a, +m,



- 91 -

(v) a, is infinite and for each t such that v~ t, w R m, &, te
(w, (n,, n2)) may be looked upon as the nz-th pair, with first member w,
in the n1—th "pool" i.e. set of pairs in which each element is related

by R to every other element. The pair (n1, na) could, of course, have

n, n
been replaced by the sinde number 2 1.3 2.

The next two lemmas show that R has the required properties. We say
(n1, na) -qS(m,l, mz) iff oy <m, or n; = m; and n, < m,. Then:
Lemma 4, R is sound.
Broof. (A). Assume wR_v. (i) w~ v. Then (by lemma 2) @, > k. So
(w, (n1, n2)) R (v, (n,], m), m =1, 2, eee; ke (ii) not- (w~ v) (a)
@, finite. Suppose k = p G, + 9 q <Qe Then (w, (n1, nz)) R (v, (m1, mz))
for all (m,], m,) = (p+1, q)o (b) @ infinite. Then (w, (n;, n)) R (v,
(1, m)), m= 1, 2, ..., ke
(B) Assume (w, (n;, n,)) R (v, (mp;, m,;))y 1 =1, 2, «e0, ke
Clearly we may suppose that (m1i, mai_) ‘Smﬁn, Moy 1) L=1, 2, eeey ke

(1) w~v. Then the m  's are equal and @ > m, > k. So by lemma 2,

1
v Rk Ve (ii) not-(w~ v). (a) a, finite. Clearly, ‘(m1k-1). a (V) + m, >
Ke So w Rk ve (b) a, infinite. Then by lemma 2, w Dk Ve
lemma 5. R is reflexive and transitive.
Proof. (A) By lemma 4.2, w~ w and so0 (w, (m;, m,)) R (w, (m,, m,)).

(B) Assume (w, (n,l, n2)) R (v, (m1, ma)) and (v, (m1, mz)) R (u, (11,
1,)). We distinguish four main cases:

(a) w~v, v~u, Then n, =m, =1,, and by lemma 2, w~u. So (w, (n1, na):

R (u, (11, 12)).
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(®) w~v, not (v~u). (1) a, finite. Then VR _4y . , 1 Ue But
17 Gy A

wWR, v. So by lemma 2, w R(11_1) a, + 1, u as required. (2) @, infinite.

By lemma 2, if t ~ u, then w R t.
B Gy

(c) not (w~v), v~u. (1) a, and @ finite. w R(m1_1) o, ve Now

° (2) av finita, au infinite.

L, =m,. So by lemma 3, wR - u
1 1 (11 'l)a,u+ll.2

By lemma 2, if t ~ u, then w Rm1at u. (3) @, infinite, @ finite. Since

(11 -1) &, + 12 u, since 11 = m, and Zl.2 5(;“.

Y~u, meza.uu. SowR

(4) o, and a, infinite. As for (2).
(d) not (w~ v), not (v~u). (1) a, infinite. As for (c¢) (2). (2) a,

finite. Then v R e So by lemma 2, wR

Ue
(1 De, +1, (1~ a, +1,
But not (w ~ u), otherwise uR1 W, wR,I v, u R1v, vR1 u and 80 Vv ~ u,

Consistency and completeness now follow.

iz. References. The method of mc systems was first used by L. Henkin.

Applications to modal logic have been made by D.Scott and D.C. Makinson

among others.
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Chapter 7
SOME ANTISYMMETRIC SYSTEMS
In the previous chapter, it was not required that the relation R
of accessibility be antisymmetric. In this chapter we consider systems

which satisfy this requirement.

81. The Systems.

We shall use the schemes:

1) MM _ASM A
(2) AAM(~AAMkA):Mk+1A
(3) M, (AANAkA)DMI{+1A

(4) WA SLMA
(5) LMAS~M, (AA~NM, 4A)
(6) ~M (AA~M B)V~M (BA~M A)
(7) LMBoBVA)AAAQA~BAMBOUN, B,
m=3, by eoey ky 1 =1, 2, eee o
The systems mentioned on the left are obtained by adding to Mn the

axiom-schemes on the right:

su;l (1), (@), (3)

s4.2! (1), @), (3), (&), (5,
s4.3! (1), (@), G3), &), (6)
sh.32 (1), @), (3), W), 6), ().

n

We now come to semantics. A relation R is:
Convergent if for all w and v there is a u such that w R u and v R u;

Total if for all w and v, w R v or v R w; and
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Dense if for all distinct w and v there is a u distinct from w and v
such that w Ru and u R v,
W, v and u range, of course, over the domain of R.

We may now define validity:

. M
| A iff # A for all structures M (=(W, R, #)) such that R is
sk}
reflexive, antisymmetric and transitive.

A ff M . . .
9 1 ’= A for all M such that R is reflexive, antisymmetric,

transitive and convergent.

. M
E‘+=3' A iff ’— A for all M such that R is reflexive, antisymmetric,

transitive and total.

. M
# > A iff F A for all M such that R is reflexive, antisymmetric,
transitive, total and dense.

The superscripts, O, 1, 2 indicate distinctions for the systems

with Mk which need not be made for the systems without Mk'

§2. The System st

Theorem 1. (Consistency). If %ET A, then H A. .
n

Slvn

Proof. Straightforward, except perhaps for (2) and (3). For (2), suppose

M
AAMN (~AA M, A). Tnen E A and there is a v such that w R v,

1

. M
- M.k A, So there are k distinct uy such that v R u, and '=u A, i=1, 2,
i

eeey ks By antisymmetry u, # w. By transitivity, w R u. So given
M
reflexivity, r—w M, A. Tne validation of (3) likewise depends upon

anti-symmetry.



- 95 -
Neither (2) nor (3) are valid for S5n. (Let W= {1, 2}, R =
£, 2), (2,1, (1, M, @, 2)}, # (P, 1) =t, F (P, 2) = £). Since su;
is contained in S5n, this shows that SL&; and Sh:l are distinct.

First we require four lemmas for Ri defined on wSh1 .
n

Lemma 1. If w R2 w, then w R'?(o Ve

Proof. Assume w R, w and suppose A ¢ W, We shall show that for all i > 2,
Mi A ¢ wo Clearly, 1"12 A ¢ w. Now suppose Mk A ¢ we Then A A Mk A ¢ w.
So M, (4 A Mk) ¢ Ww. Hence by (3), M 44 e v

Lemma 2. If w £ v, wR1vandvR1 w, tneanN;v.

Proof. Assume w £ v, w R, v and v R w. Then there is a B such that

Begwand~ B¢ v.e Suppose A ¢ v. Let

C°=A/\~B
n > 0.
02n+2 =(AA~B)AMCZn+1 - -

We establish by an easy induction that C2n+1 e W and CZn e V. We may also

establish by induction that }-—1- Coppq D Mopq (A A~ B
sk
n

For clearly ]57;1- c2 S M1 (A A~ B).
n

Now C ~((AA~B AMC

2n+1

2n
=~ (AA~B)AM((AA~B) AMC, )

wehih provably implies ~ (AA~B) AM ((AA~B)AMM (AA~B)), by tne
I.H. and (1),

which implies ~ (A A~ B) AM ((AA~B) AM (AA~B)), by (1),

which implies Mn+1 (A A ~ B) by (2).

So by the system Mn’ Mk A ¢ w for all k > 1.



- 9% -

Hence w B,N, V.
o

Lemma 3, Iwa,lvandkau, theanku.
Proof. As for lemma 6.6.2.

We say that w is cyclic to v, in symbols w ~ v, if either w = v and

wWR, voruw £vyw R, vandvR w Note that this is not quite the ~ of
§6.6. The following lemma states the main properties of ~.
Lemma L,
(i) ~ is an equivalence relation on {we Wsm : w~ Vv for some v}
(ii) ~ is a congruence with respect to R_on 3541 i.e, if w, R v and
w2~w1, then w2 Rkv and iwak v, and v,I ~v2, then w Rkv2
(iii) if w ~ v, then w R}( v.
Proof. Straightforward witl?l the help of lemmas 1-3.

In order to define the accessibility relation R, we must order the
equivalence classes with regard to ~. For this the EH{ are of no help.
So let us suppose that < is a -ordering of "’341 (This may be done with-
out the axiom of choice: enumerate all wfs in some I;’(:andard fashion; treat
each mc as a subsequence of the enumeration; and order these subsequences
lexicographically).

The relation R in W, 1 x X, X = {1, 2, vee}, i5 now defined as
follows: !

for w, v ¢ wS‘+:1 and n, m ¢ X,
(w, n) R (v, m) iff
either (i) w ~ v and

(a) n<m

or (b)n =mand w<v



- 97 -

or (ii) not - (w ~ v) and
(a) w£v and w Rm v

or (b) w=v and m = n.

Lemma 5, R as defined above is sound.
Proof. (A). Assume w R v. If w~v, then (w,n) R (v,n+1), for i = 1,2,...,
k by clause (i) (a) of the definition of R. If not- (w ~ v), then either
W = v in which case k = 1 and (w, n) R (v, n) or w £ v in which case
(wy n) R(v, m), m=1, 2, eee, k, by clause (ii) (a).
(B). Assume (w, n) R (v, mi), i=1,2, eo. ke
If w~ v, then w R v by (iii) of lemma 4. If not (w~ v), then either
wAvandw Rm‘ Vorwz=v and m. = n. In the first case, there is an i
such that m, E;k, SO W Rk v, In the second case k = 1 and w R1 v by the

system Mn'

Lemma 6. R is reflexive.

Proof. As for lemma 6.4.2.

Lemma 7. R is antisymmetric.

|

Proof. Assume (w, n) R (v, m). We distinguish four cases:
(i) (a) w~ v, n <m. Suppose (v, m) R (w, n). Now v ~ w by
lemma 4 (i). So m < n by clause (i) (a). A contradiction.
(i) (®b) w~v, m=n and W x{v. Suppose (v, m) R (w, n). Now v ~ w
and so v =Qw by clause (i) (b). Hence w = v and (w, m) = (v, n).
(ii) (a) not (W~ v), w £ v and w R v. Suppose (vy m) R (w, n).
Not (v ~ w) and so v R wby (ii) (a). Hence v ~ w after all. A

contradiction.

(ii) (b) not (w ~ v),m = n. But then (w, n) = (v, m).
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]

8. R is transitive.

Proof: Assume (w, n) R (v, m) and (v, m) R (u, 1). We wish to show that

(v, n) R (u, 1).
(A) w~u. Then w~ v and v~u. For, if v = w, then w ~ v by lemma
b (i), and if v £ w, tnean1uandwR1vbylemma5, w~u,-sovR1w
by lemma 4 (ii), and so w ~ v. . In the same vay we show that v ~ u. By
(i) (a) and (i) (b), n <mandm<1. If n <morm< 1, thenn < 1 and
(w, n) R (u, 1) by clause (i) (a). Ifn=m= 1, then w< vé u.
So wéu and (w, n) R (u, 1) by clause (i) (b).
(B) not - (w~ u).
(a) wfZu. Ifv~u, thenv RN u by lemma 4 (iii). Now w R, v.
80 by lemma 3, w Rl u and (w, n) R (u, ;) by clause (ii) (a). If not (v ~ u),
then either v = u and m = 1, in which case the theorem is trivial, or v £ u,
in which case v R, u by clause (i) (a), so w Rl u by lemma 3, and so (w, n)
R (u, 1) by clause (ii) (a).
(b) w=1u. Then v = w (= u), otherwise w ~ u, contrary to supposition.
But then n = m = 1 by clause (ii) (b) and so the case is trivial.
We have now proved all the appropriate lemmas and completeness
follows in the usual manner.

The required model for Sh; might have been obtained by modifying the

model for S’+: given that q = 1 orq =N°. I omit details.
w
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83, The System Sk. 2;;

Theorem 1. (Consistency). If A, then '—— A.
o Sk.2 sh.2”

1

n n

Proof. Straightforward except perhaps for (4) and (5). The validation of
(4) is known from Sk.2. To validate (5), assume \%ﬁ LM A and

'% M, (A A~ M, A). So there are distinct w, such that ‘:I: (A A~ N, A),
i=1,2. Clearly if LA Rv' then either v = w, or % ~ A. ' Now by

convergence there is a v such that W, Rv, i=1,2. 8o v is distinct from

M M
the w.. B i
e w, ut h M A. So there is a u such that v R u and f'f A. By

transitivity, w, Ru, i =1, 2. But then W, = Wye A contradiction.

Por completeness, we can no longer deal with the usual natural
structure Nsh.21 since its accessibility relation R may not be convergent.
However, conneczed substructures of Nsh.21 will have convergent R. So we
need the following definitions and resultg.

Given a structure M = (w, R, #) the connected substructure of M generat-

ed by w ¢ W is the structure M = (Vw, Rw, ﬁw). where W' is the smallest

set S such that w ¢ S and if v ¢ S and v R u then u ¢ S, R" is R restricted

to WW

, and #¥ is @ restricted to W".
The following well-known theorem carries over to the present case:
Theorem 2. (On Connected Substructures). If M and M" are defined as
above and v ¢ w"’, then th A iff ',ﬂ A.

v v

Proof. As in the standard proof.

In view of theorem 1 we need only show that Néz:;% has the required
n
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properties in order to prove completeness. In a transitive connected
substructure all elements are, of course, related to the generating element.

In the following lemmas, I shall write 'x1,..., X, R y' for 'x1 Ry &...

& X, Ry' and 'x R Yqr eees yn' for 'x R Y4 &...& x R yn'.

Lemma 1. If w R, v, u, then (¥ t) v, uR, t.
Proof. Assume w R, v, u and not- (T t) v, u Rt. Then by familiar reason-
ingJ: = {A: L Ag v} U {B: L B ¢ u} is inconsistent. So there are A1,...,

Am’ B1,o.o, Bn such tnat L A,]’-oo, L Am e v’ L B,‘, LN L Bn (-4 u and

o o Aj A eee AA D~ (B1 A eee A Bn). Put A = A1 A ees A A and

B=B A...AB. TenLAcv,LBcuand (i) i1 Ao>~B. since
n

wRvand wRu, MLA, MLB¢w. Soby (4), LM A ¢ u. But by (i), L M A o

LM~ Begwe SoLM~Bgw. Hence~ ML B w. A contradiction.

Lemma 2. If w R v, u and (\f't) (vy uRt=t=yv), then either not (w R, v)

or v R2 V.

Proof. Assume w R v, u, (¥'t) (v, uRt =t =v), wR, vandnot (vR,v).

Let _E = (At LA¢v}U{B:LBguj. Then, familiarly, for any C ¢ v,

_[: f~ C, and so for some A, B, LA ¢v, LBecuand (i) fJ~AABsC.

Since not (v R, v), there is a C such that C, ~ M, C ¢ V. So suppose

J-AAB>SC, where LAg¢vand LBgu. By St LLM B¢ u. By lemma 1,

uR v. SoLMBeW, By (i) and Sk, —LA-D(ILMB>SLMC). So

LMCev. SoMLMCg¢ w. But then by (L), LMC ¢ w. Since wR, v,

M, (CA~M,C)ew. Soby (5), ~LMC ¢w. Acontradiction.

Corollary 1. If w R, v, then either v R, v or there is a u £ v such that
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vR u,
1

Proof. Put v = u in lemma 2.

)

We define R on (Wsh N X)(w’1 as in §2. Proofs of soundness,
*“n

reflexivity, anti-symmetry and asymmetry are as in §2. So it remains

to prove convergence only.

Lemma 3. R is convergent.
Proof: Assume (w, 1) R (v, m) and (w, 1) R (u, 1). We wish to show
% (t, k) such that (v, m), (u, 1) R (t, k).
(A). v~u. Then put (t, k) = (v, m + 1) by clause (i) (a) of the
definition of R.
(B) not (v~ u). By lemma 1 there are just the two cases (a) and (b).

(a) Irsuchthat r £ v, rfuandv,uRr. If v~ r, then u R r:
so put (t, k) = (r, m + 1). Similarly, if u~ r. So suppose not (v ~ r?
and not (u ~ r). By clause (ii) (a), put (t, k) = (r, 1).

() (r) (u, v R ;%r: v) (or the case for r = u which is similar).
Then by lemma 2, either not (w R2 v) or v R2 v. In the first case, m = 1
by soundness, so put (t, k) = (v, 1). In the second case, u R . v, S0

put (t, k) = (v, m).

Completeness now follows.

84, The System 54.31

To show that scheme (6) is valid, we need the following result:
Lemma 1. If R is a reflexive, transitive and total relation defined on
a set Y with n elements, n > 1, then there is a first-element in Y i.e.

a x in Y such that for all y in ¥, x R y.



- 102 -

Proof. If Y = { ¥43» use reflexivity. If Y = [y,l, yz}, use the fact that

1, n > 1.

Y is total and reflexive. Now suppose Y = [y,l, Yor eeer Yy q]

R restricted to {y1, Yor ooy yn+1} is reflexive, transitive and total.
So by IH, there is an element, Y, say, such that Y4 Ryi, i=1 2y aeey N
Similarly, for {yz, seey yn+1], there is an element, Y5 say, such that
yz Ryi’ i = 2’ csoy n+1. B‘xt y1 R y2. SO y1 R yi’ i = 1’ 2’ eesy n+1o

Theorem 1. (Consistency). If k-l;—1 A, then A.
— ~3n sh.3]

Proof. Straightforward except for (6).
M M
Assume ‘=‘; M (AA~M B) and '=w M, (B A ~M A). Then there are
distinct Wiy Wos eeey W and distinct Vs Vo eeey Vg such that w R L
M . .
WRVJ., hw AA~MkA,l=1’ 2, ooy k’J=1, 2, soey 1.
i
Since }w_M ~ Ml B, for each w

i
Sincefgg ~¥_ A, for each v, there is a w, such that not- (Vj R w.). Bat
v

, there is a v, such that not - (wi R vj).
then R J as restricted to {w,',..., Wies Ty esey vl} fails to satisfy
lemnma 1.

For completeness we require the following lemma.
Lemma 2. Iwakvandleu, then eithervPiuoruRkv.
Proof. Assume w Rk v, W Rl u, not- v Rl u and not- u Rk v. Then there is
anAandaBsucntnatAgu,~MlAsv, Bev, a.nd~MkBeu. So
AA~M Beuand BA~M Acv. Hence M, (AA~M B)y M (BA~M, A)
e W, which by (6) is a contradiction.

We define R on (WSL}J; x X) (w,1) as in §2. It is only at this
stage that use is made of.% as a total ordering. Given the previous

results, we need only prove that R is total:
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Lemma 3. R is total.

Proof. Assume (w, 1) R (v, m), (u, 1). We wish to show (v,m) R (u, 1) or
(uy 1) R (v, m).
() v~u. If m>1,then (v, m) R (u, 1) by clause (i) (a). Similarly if
1>m. If m =1, then either v4§ u or usgv. Suppose vau. Then (v, m)
R (u, 1) by clause (i) (b). Similarly if ueg v.
(B) not (v ~u). (a) w~ v. Tnen not (w~ v). So either (w, 1) = (u, 1)
and the case is trivial or w R1 u. But then v R1 u and so (v, m) R (u, 1)
by clause (ii) (a).

(b) w~ u. Similar to (a).

(c) not (w~ v), not (w~ u).
Then w Rm vand w R, V. But then by lemma 2, either vR uor uR v. So
if w £ v, eitner (v, m) R (u, 1) or (u, 1) R (v, m). If w = v, the case

is trivial.

85+ The System 84.22

Theorem 1 (Consistency). If A, then *:- A.
sh.30 sk, 32
Proof. Straightforward. I leave the proof tnat}=== 5 (73 to the reader.
sh.3
n

For completeness we require the following lemmal
Lemma 1. If w S1 W, W S1 v and w £ v, then there is a u distinct from w

and v such that w R, u and u R1 Ve

1
Proof. Assume otherwise. Then since w S1 w, there is an A such that

Ay QA ecw. Sincew#Z vandw S, v, there is a B such that B ¢ v,

and ~ B, Q B ¢ w. Now suppose M [M BA~BA~ A] ¢ W Then for some t,

w R1 tand M B, ~ B, ~ A ¢ t. So for some t', t Rt' and B ¢ t'. We may
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easily show that v R t' and v £ t'. So there is a C such that C ¢ v and
~Cget's But thenM (BAC), M(BA~C) ¢ w, and so M, B ¢ w, contrary
toQBegw. Hnce L(MBoBVA) ¢gw. But A, QA, ~B, MB ¢ w. So

by scheme (7), M, B ¢ w, again contrary to Q B ¢ w.

Let I be the set of rationals r such that 1 < r{2. We define R on
N(Wv1) where N = {(w, n) : w ¢ Wsh.32 & ((W~w&n ¢ I)or (not (w~ w)
&n = 1))} U {(w, 1)} as follows: ?

(w, n) R (v, m) iff
either (i) w ~ v and

(a) w4i; v
or (b) w=v andn<m
or (ii) not (w~ v) and w R, v.

Given the above lemma and previous lemmas, we may show that R has the

required properties. I omit details.

§6. References.

For information on the systems S4.2 and Si.3 see Prior's Past, Present

and Future, chapter 2.



- 105 -

BIBLIOGRAPHY

Bull, R.A. A note on the modal calculi S4.2 and S4.3. ZML Vol. 10
(1964), pp. 53-55 (263).
On Modal Logic with Propositional Variables. Forthcoming in J.S.L.
On Possible Worlds in Propositional Calculi. Theoria Vol. 3% (1968)
Part 3.

Church, A. Introduction to Mathematical logic Vol. I. Princeton,
Princeton University Press, 1956.

Dummett, M.A.E. and Lemmon, E.J. Modal logics between S4 and S5. 2ZML
Vol. 3 (1959), pp. 250-26k.

Henkin, L. The completeness of the first-order functional calculus.
J.s.L. Vol. 1‘{' (19“‘9)' pp. 159-166.

Hughesésg.E. and Cresswell, M.J. An Introduction to Modal Logic, Methuen,
1968,

Kaplan, D. Review of Kripke [1963a]. J.S.L. Vol. 31, pp. 120-122 (105).
Multiple Possibility, Abstract for J.S.L. To be published.
85 with QuaMifiable Propositional Variables. Abstract for J.S.Le

To be published.

Kreisel, G. and Krivine, J.L. Elements of Mathematical Logic. North-
Holland 1967.

Kripke, S.A. A completeness theorem in modal logic. J.S.L. Vol. 24 (1959),
rr. 1-14 (117).
Semantical analysis of model logic I, normal propositional calculi.

ZML Vol 9 (1963), pp. 67-96.

Semantical analysis of modal logic II, non-normal model propositional
calculi. The Theory of Models (ed. J.W. Addison, L. Henkin, A. Tarski)
Amsterdam, North Holland Publishing CO., 1965, pp. 206-220.

Lemmon, E.J. and Scott, Do Draft of the first chapter of Intensional
Logic. Unpublished.

Makinson, D.C. On some completeness theorems in modal logic. ZML Vol. 12
(1966)’ Pp‘ 379‘3840

Prior, A.N. Modality and quantification in S5. J.8.L. Vol. 21 (1956) ’
Pp. 60-62,
Past, present and future. Oxford University Press, 1967.
Egocentric Logic. Nous Vol. II, No. 3 (1968), pp. 191-207.
Worlds, Times and Selves. To be published.



- 106 -

Scroggs, S.J. Extensions of the Lewis system S5. J.S.L. Vol. 16 (1951),
ppo 112’1200

Tarski, A. Introduction to logic. Oxford University Press 1941.
Logic, Semantics and Metamathematics, Oxford University Press 1956.




