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Abstract

In our work we propose new Exact Algorithms for simulation of diffusions with

discontinuous drift and new methodology for simulating Brownian motion jointly

with its local time. In the second part of the thesis we introduce Metropolis-

adjusted Langevin algorithm which uses local geometry and we prove geometric

ergodicity in case of benchmark distributions with light tails.
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Chapter 1

Introduction

The thesis is a result of my work on two independent projects. Both of them

aim at formulating efficient algorithms for sampling from probability distributions.

However the distributions in each case are defined on significantly different spaces

and the sampling requires applying conceptually distinct techniques.

In the first project we focus on simulation of diffusions. To avoid confusion let

us explain straight away that by diffusion we mean solution to a specific class of

stochastic differential equations. Diffusions that we concentrate on are stochastic

processes with random variables indexed by t in some interval [0, T ] and t is often

referred to as time. The realisations of the process are continuous functions on

[0, T ] referred to as paths. Here we are interested in producing paths accord-

ing to diffusion measure and/or sampling from finite-dimensional distributions of

diffusions.

The second project is about sampling from low-dimensional distributions whose

support is usually Rd with densities known up to a multiplicative constant. We fo-

cus on Metropolis-adjusted Langevin algorithms which use geometry of the density

to construct proposals.
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We decided to discuss the projects as two separate parts of the thesis because

the character of simulation and methodology applied are quite different. In the

first part we deal with infinite dimensional objects and the algorithms allow for

exact simulation, i.e. involving only computer representation errors but not sam-

pling from approximate distributions. While the other one aims at sampling from

well chosen ’similar’ distributions to the target one. This method produces results

which quality depends on computational resources allocated. While the other one

from the beginning produces exact results and more computational resources allow

to produce realisations on longer time intervals and allow to refine the obtained

structure.The main ideas used to address mentioned simulation problems are dif-

ferent. Namely in one of them the geometry of density function is used to find

good proposals for Metroplis-Hastings algorithm which produces a Markov chain

whose limiting distribution is our target one. While in the other problem smartly

constructed auxiliary random variables together with special bridge simulations

involving local time process allow to perform rejection sampling which would not

otherwise be possible due to the necessity to use information about whole diffusion

paths. The last but not the least important difference is that in one simulation

we get independent realisations while in the other not. We discuss both cases in

detail in the respective following parts of the thesis. We would like to stress that

our interest lies in the theoretic analysis of simulation methodology.

Our motivation to do research on simulation methods for diffusions is two-fold.

Nowadays diffusions are a basic tool to model random processes developing in time.

They have been proved useful in a very broad spectrum of disciplines, starting

from physics and finance through engineering, meteorology, geology, neuroscience,

microbiology and many other. Diffusions satisfying the following SDE

dX
t

= ↵(X
t

)dt+ dB
t

, t 2 [0, T ], X
t

= x

with discontinuous drift function ↵ depending on X
t

may be used to describe
2



processes whose dynamics change radically when X
t

hits certain levels. This can

be encountered for example in geology when we model flow through different

media. Diffusions with discontinuous drift arise also as limiting distributions in

queueing theory. Possibility to sample diffusions is important in construction of

MLE estimators and in more general context of inference for diffusions.

There has been high demand in applied science community for efficient methods

for simulating diffusions for decades. However most known methods use variety

of discretisation/approximation schemes, like Euler or Shoyi-Ozaki schemes, sur-

vey of methods can be found e.g. in [KP92]. The quality of iterative traditional

schemes deteriorates when simulation needs to be carried for long time intervals.

The approximation errors are usually amplified with time. Our second motivation

is the very innovative idea behind Exact Algorithms which is interesting in its own

right.

Interest in the same problem as ours can be found in the following articles [ÉM13b],

[EM13a]. However their approach to solving the problem is different than sug-

gested in the thesis.

We would like to list here our main contributions to addressing aforementioned

simulation problems

• construction of three algorithms: Alg.1, Alg.2 and Alg.3 will allow for exact

simulation of diffusions with discontinuous drift and ensure the quality of

simulation does not deteriorate with the increase of the length of the interval

[0, T ]

• the algorithms allow for simulation of both conditional and unconditional

diffusions where, by conditional, we mean the ones whose paths are hitting
3



prescribed value at prescribed time

• Alg.3 addresses the simulation problem in the harder case of ’negative jump’

at discontinuity in the drift function

• the structure of the sampled paths can be refined ’offline’ which is important

for inference for diffusions

• methodology for simulation of various bridges involving Brownian motion and

its local time

• we derive MALA algorithms with state-dependent scaling

• we prove geometric ergodicity for benchmark light-tailed distributions.
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Part I

Exact Algorithms for simulation

of diffusions with discontinuous

drift
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Chapter 2

Preliminaries

2.1 Introduction to Exact Algorithms

As we have already mentioned in Chapter 1, the problem of simulation of diffusions

has been of great interest to many sectors of industry and business where data

modelling is necessary, like finance for example. We are especially interested in

Exact Algorithms because of their innovative approach to simulation of solutions of

SDEs. Classical methods for simulation of diffusions include approximation errors

and quality of simulation deteriorates over long time intervals which is not the case

for Exact Algorithms.

The breakthrough article where the first Exact Algorithm was introduced was

[BR05]. However it has since been improved and we discuss here the version of

EA1 as in [BPR06]. In [BPR08] a general framework for Exact Algorithms can

be found. We concentrate here on EA1 though. Let us present now the set of

assumptions for the algorithm EA1.

7



Set of conditions for EA1

Assumption 1. There exists nonexplosive weak solution to SDE in (2.1)

Assumption 2. The Girsanov theorem may be applied and the local martin-

gale is a true martingale.

Assumption 3. ↵ is a differentiable function.

Assumption 4. Function exp{A(u)� (u�x)

2

2T

} is integrable.

Assumption 5. Function (↵2

(u) + ↵0
(u)) is bounded below

Exact Algorithms are applicable to a limited class of multi-dimensional diffusions

but to a very wide class of one-dimensional processes. The restrictive Assumption

5 has been lifted from EA3, partially already from EA2. However Assumption 3 is

still in effect. Our work concentrates on removing this Assumption so that the new

algorithm will be applicable to diffusions with piecewise continuous drift functions.

As our developments in simulation of diffusions apply only to one-dimensional

diffusions we assume from now on that described diffusions are one-dimensional

processes. Let us discuss construction of Exact Algorithm 1 here. The aim is to

simulate trajectories of the diffusion X which is a solution of

dX
t

= ↵(X
t

)dt+ dB
t

, t 2 [0, T ], X
t

= x (2.1)

where B is Brownian motion defined on the underlying probability space (⌦,F , P ).

Diffusions with non-unitary diffusion coefficient need to be first transformed to 2.1

by Lamperti transformation.

Remark 1. SDEs under discussion admit unique strong solutions as it is sufficient

that the drift function is bounded and Borel measurable while diffusion coefficient

is unitary. It follows from Theorem 1 in [Ver81].
8



First we introduce the notation and describe the underlying framework for EA1.

We denote the space of one-dimensional continuous functions on [0, T ] by C :=

C([0, T ],R) and refer to its elements as trajectories or paths. We set ⌦ = C

and define X
t

(!) ⌘ !(t) for ! 2 ⌦ and t 2 [0, T ]. X is used for both a

coordinate mapping and diffusion but we believe it is clear from the context which

one is under discussion. The �-algebra on C is defined as the cylinder �-algebra

C := �(X
t

; t 2 [0, T ]). Next we set F0

t

⌘ �({X
s

; s  t}) for t 2 [0, T ].

(Bx

t

, t 2 [0, T ]) is Brownian motion started at x and W the law of Bx. Further let

F
t

be W-augmentation of F0

t

. We denote by Q the law of diffusion X on (C, C).

Next having performing rejection sampling in mind we find the Radon-Nikodym

derivative of Q with respect to W using Girsanov transformation.

dQ
dW = exp

n

Z

T

0

↵(X
t

)dX
t

� 1

2

Z

T

0

↵2

(X
t

)dt
o

. (2.2)

Then by introducing an auxiliary function A : R ! R, A(u) :=

R

u

0

↵(y)dy and

applying Itô’s lemma to the Brownian motion starting at x and function A we find

that

dQ
dW = exp

n

A(X
T

)� A(x)� 1

2

Z

T

0

(↵2

(X
t

) + ↵0
(X

t

))dt
o

Note that Assumption 3 is needed to apply Itô’s lemma. The next step in EA1 is

to consider biased Brownian motion ˆB starting at x and satisfying ˆB
T

⇠ h where

h(u) / exp{A(u)� (u�x)

2

2T

}. Note that this requires Assumption 4 to be satisfied.

Measure induced on (C, C) by ˆW is denoted by Z. We now recall the Proposition

1 from [BPR06].

Proposition 1. Let M = {M
t

; 0  t  T}, N = {N
t

; 0  t  T} be two

stochastic processes on (C, C) with corresponding probability measures M,N. As-

sume that f
M

, f
N

are the densities of the ending points M
T

and N
T

respectively

with identical support R. If it is true that (M |M
T

= ⇢)
d

= (N |N
T

= ⇢), for all
9



⇢ 2 R, then:

dM
dN =

f
M

f
N

(X
T

). (2.3)

Hence

dW
dZ =

'
x,T

(X
T

)

h(X
T

)

(2.4)

where '
x,T

(u) is density of normal distribution with mean x and variance T . It

follows that

dQ
dZ =

dQ
dW

dW
dZ / exp

n

� 1

2

Z

T

0

(↵2

(X
t

) + ↵0
(X

t

))dt
o

.

Under Assumption 5 we can find k = inf

u2R
↵

2

(u)+↵

0
(u)

2

and define

�(u) :=
↵2

(u) + ↵0
(u)

2

� k, u 2 R.

Thus

dQ
dZ / exp

�

�
Z

T

0

�(X
t

)dt
 

 1; Z� a.s. (2.5)

The next step involves rejection sampling using dQ/dZ. We note from (2.5) that

the Radon-Nikodym derivative is bounded and it is achieved by choosing biased

Brownian motion instead of Brownian motion as a candidate process. However,

it is not possible to perform rejection sampling if it involves revealing the whole

path. Theorem 1 from [BPR06] allows to circumvent this difficulty. We state a

simpler version of this Theorem in Lemma 2.1.

Lemma 2.1. If � is bounded above by M and  is a marked Poisson process

with intensity 1 on [0, T ] ⇥ [0,M ] and N is the number of points of  found in

the hypograph of �(!), then

P (N = 0|!) = exp

�

�
Z

T

0

�(X
t

)dt
 

.

10



We note that by the above Lemma it holds that

dQ
dZ / P (N = 0|!)

and it is sufficient to reveal ! at finite number of times to decide whether the

marks lie below or above �(X). In the case when all of them lie above the

so-called ’skeleton’ is accepted. By the skeleton we mean a sample from the

finite dimensional distribution of Brownian bridge together with the initial and end

points of the bridge. We denote the realization of  by ((⌧
1

, 
1

), · · · , (⌧
k

, 
k

))

with k 2 Z+.

If we are interested in the realization of diffusion at some other time instances in

[0, T ] than (0, ⌧
1

, · · · , ⌧
k

, T ) then they can be obtained by simulating Brownian

bridges at the times of interest. Note that the path has already been accepted and

is generated according to Z. Thus, if we want to reveal more values of X later

on, we need to produce a sample according to Wiener measure W conditioned on

the skeleton. To sum up EA1 has the following structure

Exact Algorithm 1 (EA1)

INPUT:

↵(u) : R ! R drift function

{0 = t0, t1, · · · , tn, tn+1

= T} time instances of interest

X
0

= x initial point

I 1. Define
11



(a) A : R ! R, A(u) :=
R

u

0

↵(y)dy

(b) k = inf

u2R
↵

2

(u)+↵

0
(u)

2

(c) � : R ! R, �(u) := ↵

2

(u)+↵

0
(u)

2

� k

2. Find the upper bound M of �.

II Generate realisation of X at T and at random times in (0, T ):

1. Sample X
T

⇠ h(u) / exp{A(u)� (u�x)

2

2T

}

2. Sample an auxiliary planar Poisson process  

(i) Sample k ⇠ Poiss(TM)

(ii) Sample U
1

, · · · , U
k

i.i.d., U
1

⇠ Uni((0, T )⇥ (0,M))

(iii) Sort {u
1

, · · · , u
k

} in increasing order of their first coordinate

⌧ to get ((⌧
1

, 
1

), · · · , (⌧
k

, 
k

))

3. Use  to perform rejection sampling:

(a) Sample (X
⌧

1

, · · · , X
⌧

k

) from the Brownian bridge measure

Wx,x

T

0,T

(b) Compute �(X
⌧

i

) for i 2 {1, · · · , k}

(c) If �(X
⌧

i

) <  
⌧

i

for each i 2 {1, · · · , k} then proceed to III.

Otherwise return to II.1

III Generate realisation of X at (t1, · · · , tn) conditioned on values of X at

(0, ⌧
1

, · · · , ⌧
k

, T ):

(a) Sort in increasing order the set {0, ⌧
1

, · · · , ⌧
k

, t1, · · · , tn, T} to get

(0, t
1

, · · · , t
k+n

, T )

12



(b) Repeat n times

(i) Pick i 2 {1, · · · , k + n} such that X
t

i

has not been sampled

yet

(ii) Find t
L

:= max{0,t
1

,··· ,t
k+n

,T}{tj such that X
t

j

has been already

revealed and t
j

< t
i

}

(iii) Find t
U

:= min{0,t
1

,··· ,t
k+n

,T}{tj such that X
t

j

has been already

revealed and t
j

> t
i

}

(iv) Sample X
t

i

from the Brownian bridge measure Wx

L

,x

U

t

L

,t

U

OUTPUT: (x, x
t

1

, · · · , x
t

k+n

, x
T

) and (0, t
1

, · · · , t
k+n

, T )

2.2 Notes on local time

Informally speaking one-dimensional diffusions can be looked at from two angles.

’Standard perspective’ is to investigate how values of a diffusion are changing

over infinitesimal time interval. In fact, diffusions can be characterised by their

infinitesimal mean and variance. The second ’local time perspective’ is to look at

a diffusion through a stochastic process associated with it called local time. Here

the focus is on the amount of time when the values of the diffusion belong to

some infinitesimal interval. It appears that using connection between these two

approaches is crucial for simulating diffusions with discontinuous drift.

Here we discuss local times with a view of their application to our algorithms. We

answer the question why exactly we need to resort to local time process in Chapter

4. Let (B
t

)

t�0

be Brownian motion with (⌦,F ,P) the underlying probability space.
13



There exist several equivalent definitions of Brownian local time. We present three

of them as we find them the most useful in the context discussed; for more details

see e.g. [RW00], [RY99], [Kar91], [MP10].

Definition 2.2. Let L be a stochastic process such that for all t � 0 and x 2 R

L(t, x) := lim

"!0

1

2"

Z

t

0

(x�",x+")

(B
s

)ds

where (B
t

)

t�0

is one-dimensional Brownian motion. Then L is a Brownian local

time.

Definition 2.3. Let B be Brownian motion and r a real number. Then an

increasing continuous process Lr satisfying

|B
t

� r| = |B
0

� r|+
Z

t

0

sgn(B
s

� r)dB
s

+ Lr

t

,

where sgn(x) = 1 for x > 0, sgn(x) = �1 for x  0, is called the Brownian local

time at r.

Definition 2.4. Let {Lr

t

} with t 2 R�0

and r 2 R be a process with the following

properties

1. The mapping (t, r) 7! Lr

t

is jointly continuous

2. The occupation density formula holds, i.e.
Z

t

0

f(B
s

)ds =

Z 1

�1
f(r)Lr

t

dr

for all t � 0 and bounded measurable functions f

then the process (Lr

t

)

t�0, r2R is called Brownian local time.

Last definition is valid together with Trotter’s theorem which states that a stochas-

tic process defined in Definition 2.4 actually exists. There is corresponding to

Definition 2.3 definition of local time for continuous semimartingales. In Theorem

2.5 we combine Tanaka formula and result of M. Yor on continuity.
14



Theorem 2.5. Let X be a continuous semimartingale. Then there exists for each

r 2 R an increasing continuous process Lr satisfying

|X
t

� r| = |X
0

� r|+
Z

t

0

sgn(X
s

� r)dX
s

+ Lr

t

,

where sgn(x) = 1 for x > 0, sgn(x) = �1 for x  0. Furthermore there exists

a version of {Lr

t

: r 2 R, t 2 (0,1)} such that it is jointly continuous in t and

righ-continuous with left limits in r. We call it the local time of X.

Application of the following theorem due to H.F. Trotter and P.A. Meyer is crucial

for our simulations

Theorem 2.6. Let f : R ! R be a difference of two convex functions with a

second derivative measure f 00 and X is a continuous semimartingale. Then we

have a.s.

f(X
t

) = f(X
0

) +

Z

t

0

f 0
+

(X
s

) + f�(Xs

)

2

dX
s

+

1

2

Z 1

�1
Lr

t

f 00
(dr).

Furthermore for any bounded measurable f it holds that

Z

t

0

f(X
x

)d[X]

s

=

Z 1

�1
Lr

t

f(r)dr.

Proofs of the above Theorems can be found e.g. in [RW00]. We followed presen-

tation of theory on local times therein.

We use multiple times in the following Chapter formulas for joint density of Brow-

nian motion and its local time (see e.g. [BS02]):

P
x

(B
s

2 db, Lr

s

= 0) =

1p
2⇡s

e�
(b�x)

2

2s db� 1p
2⇡s

e�
(|b�r|+|r�x|)2

2s db (2.6)

and for l > 0 we have

P
x

(B
s

2 db, Lr

s

2 dl) =
1

s
p
2⇡s

(l + |b� r|+ |r � x|)e�
(l+|b�r|+|r�x|)2

2s dbdl (2.7)
15



We define functions fx,r,const

s

: R ! R
+

and fx,r

s

: R ⇥ (0,1) ! R
+

for each

s 2 (0, T ] satisfying

P
x

(B
s

2 db, Lr

s

= 0) = fx,r,const

s

(b) db

P
x

(B
s

2 db, Lr

s

2 dl) = fx,r

s

(b, l) dbdl.

Both of these functions are probability densities with respect to Lebesgue mea-

sure, in one and two dimensions respectively. Similarly we define other probability

densities in Chapter 3 including conditional ones. Where needed we use additional

intuitive sub- and superscripts.

Remark 1. An important property of Brownian motion and its local time that

allows us for various bridges simulations is that Brownian motion jointly with its

local time constitute a Markov additive process. (See e.g. [RY99] Chapter X.) It

allows us to write that

L(B
t

, Lr

t

(B)) = L(B
s

, Lr

s

(B)) ⇤ L(B
t�s

, Lr

t�s

(B)) for s < t.

16



Chapter 3

Bridge simulations

In the algorithms defined in Chapter 4 we exploit heavily properties of Brownian

motion. In particular we use regular conditional probabilities with conditioning on

events involving local time. We suggest several sampling methods from distri-

butions which will be crucial for algorithms Alg.1, Alg.2 and Alg.3. We recall a

standard result about Brownian bridges.

3.1 Brownian bridge simulation: Bx ⇠ BBx,b1,b3
s1,s2,s3

Let 0  s
1

< s
2

< s
3

 T . Bx can be looked at as a random variable on

C([0, T ]) and it applies also to Bx given �(Bx

s

1

, Bx

s

3

). The process Bx conditioned

on A := {Bx

s

1

= b
1

, Bx

s

3

= b
3

} is called a Brownian bridge satisfying A and we

denote its measure on C([0, T ]) by BBx,b

1

,b

3

s

1

,s

2

,s

3

.

In this and all following bridge simulations if s
1

= 0 then we consider only b
1

= x

as all the paths of Bx start at x.

17



Fig. 1 Unveiled information about Brownian bridge (defining conditions).

This and future diagrams illustrate information included in conditioning and also

indicate realisation of which variable(s) we are especially interested in.

Density of Bx

s

2

given A can be easily obtained by using Bayes’ Theorem, the

Markov property and time-homogeneity of B

P (Bx

s

2

2 db
2

|Bx

s

1

= b
1

, Bx

s

3

= b
3

)

=

fx

s

2

(b
2

|Bx

s

1

= b
1

)fx

s

3

(b
3

|Bx

s

1

= b
1

, Bx

s

2

= b
2

)

fx

s

3

(b
3

|Bx

s

1

= b
1

)

db
2

=

fx

s

2

(b
2

|Bx

s

1

= b
1

)fx

s

3

(b
3

|Bx

s

2

= b
2

)

fx

s

3

(b
3

|Bx

s

1

= b
1

)

db
2

=

�(b
2

; b
1

, s
2

� s
1

)�(b
3

; b
2

, s
3

� s
2

)

�(b
3

; b
1

, s
3

� s
1

)

db
2

= �
⇣

b
2

;

(s
3

� s
2

)b
1

+ (s
2

� s
1

)b
3

s
3

� s
1

,
(s

2

� s
1

)(s
3

� s
2

)

s
3

� s
1

⌘

db
2

where �(u;m, �2

) is density of normal distribution N(m, �2

). Thus sampling from

Brownian bridge measure is very easy.
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Brownian bridge simulation:

INPUT:

s
1

, s
2

, s
3

, b
1

, b
3

1. Sample U ⇠ N
�

(s

3

�s

2

)b

1

+(s

2

�s

1

)b

3

s

3

�s

1

, (s2�s

1

)(s

3

�s

2

)

s

3

�s

1

�

2. Set b
2

= u

OUTPUT:

b
2

3.2 Brownian bridge simulation conditioned that it does

not cross fixed level r

Let 0  s
1

< s
2

< s
3

 T . Here we are interested in simulation of B
x

at s
2

conditioned on A := {Bx

s

1

= b
1

, Lr

s

1

= l
1

= Lr

s

2

= Lr

s

3

, Bx

s

3

= b
3

}. We are only

interested in the case when the Brownian motion does not hit level y = l
1

. Here

Bessel bridge process can be used to perform simulations.
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Fig. 2 Unveiled information about Brownian bridge conditioned that it does not

hit fixed level r (defining conditions).

3.3 “Completing the right end of joint (Bx

, L

r)-bridge”

simulation: Lr

s2
induced by BBx,b1,l1,b2

s1,s2

Let 0  s
1

< s
2

 T . Local time process is defined and discussed in Sec-

tion 2.2. Here we are particularly interested in the regular conditional proba-

bility of local time at time s
2

given values of B
s

1

, Lr

s

1

, B
s

2

. By “completing

the right end of joint (Bx, Lr

)-bridge” simulation we mean sampling Lr

s

2

given

A := {Bx

s

1

= b
1

, Lr

s

1

= l
1

, Bx

s

2

= b
2

}. The measure induced by Bx conditioned on

A on C([0, T ]) is denoted by BBx,b

1

,l

1

,b

2

s

1

,s

2

.
20



Fig. 3 Unveiled information about incomplete joint (Bx, Lr

)-bridge (defining con-

ditions).

This simulation is an integral part of Alg.1 and Alg.2 of Chapter 4. Using formulas

(2.6) and (2.7) and Remark 1 we obtain

For l
2

> l
!

P (Lr

s

2

2 dl
2

|Bx

s

1

= b
1

, Lr

s

1

= l
1

, Bx

s

2

= b
2

)

=

fx,r

s

2

(b
2

, l
2

|Bx

s

1

= b
1

, Lr

s

1

= l
1

)

fx,r

s

2

(b
2

|Bx

s

1

= b
1

, Lr

s

1

= l
1

)

dl
2

=

f b

1

,r

s

2

�s

1

(b
2

, l
2

� l
1

)

�(b
2

; b
1

, s
2

� s
1

)

dl
2

=

1

s
2

� s
1

((l
2

� l
1

) + |b
2

� r|+ |r � b
1

|)e
(b

2

�b

1

)

2�((l

2

�l

1

)+|b
2

�r|+|r�b

1

|)2
2(s

2

�s

1

) dl
2
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Substituting l := (l
2

� l
1

) + |b
2

� r|+ |r � b
1

| we obtain

=

l

s
2

� s
1

e
� l

2

2(s

2

�s

1

) e
(b

2

�b

1

)

2

2(s

2

�s

1

) dl

Let h(u) := u

s

2

�s

1

e
� u

2

2(s

2

�s

1

) for u � 0 and note that h is the density of Rayleigh

distribution with the scale parameter s
2

� s
1

. Then l has density proportional

to the density of Rayleigh distribution with the parameter (s
2

� s
1

) truncated to

(|b
2

� r|+ |r � b
1

|,1) since l
2

2 (l
1

,1).

Here we have the formula for the probability that the local time does not increase

on [s
1

, s
2

].

P (Lr

s

2

= l
1

|Bx

s

1

= b
1

, Lr

s

1

= l
1

, Bx

s

2

= b
2

)

=

f b

1

,r,const

s

2

�s

1

(b
2

)

�(b
2

; b
1

, s
2

� s
1

)

= 1� e
2((b

2

�r)(r�b

1

)�|b
2

�r||r�b

1

|)
2(s

2

�s

1

)

Finally we arrive at

“Completing the right end of joint (Bx

, L

r)-bridge” simulation:

INPUT:

s
1

, s
2

, b
1

, l
1

, b
2

1. If (b
2

� r)(r � b
1

)� |b
2

� r||r � b
1

| = 0 proceed to 2.

Otherwise

Sample U ⇠ U(0, 1)

If u  1� e
2((b

2

�r)(r�b

1

)�|b
2

�r||r�b

1

|)
2(s

2

�s

1

) set l
2

= l
1

and finish here

Otherwise proceed to 2.
22



2. Sample U / [Rayleigh(s
2

� s
1

) truncated to (|b
2

� r|+ |r � b
1

|,1)]

Set l
2

= u+ l
1

� |b
2

� r|� |r � b
1

|

OUTPUT:

l
2

3.4 Simulation of “L

r

component of joint (Bx

, L

r)-bridge”:

Lr

s2
induced by BBx,b1,l1,b2,b3,l3

s1,s2,s3

Let 0  s
1

< s
2

< s
3

 T . Here we are interested in the local time at the

level r at time s
2

given values of Bx

s

1

, Lr

s

1

, Bx

s

2

, Bx

s

3

, Lr

s

3

. Note that the value of

B
x

at s
2

has been already “revealed”. We show how to simulate Lr

s

2

of Bx given

A := {Bx

s

1

= b
1

, Lr

s

1

= l
1

, Bx

s

2

= b
2

, Bx

s

3

= b
3

, Lr

s

3

= l
3

}. Here if l
1

= l
3

we only

consider A such that Brownian motion does not hit level y = l
1

. The measure

induced by Bx conditioned on A on C([0, T ]) is denoted by BBx,b

1

,l

1

,b

2

,b

3

,l

3

s

1

,s

2

,s

3

.
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Fig. 4 Unveiled information about “Lr component of joint (Bx, Lr

)-bridge” (defin-

ing conditions).

“Lr component of joint (Bx, Lr

)-bridge” simulation constitutes an inherent part

of Alg.2 of Chapter 4.

First note that if l
1

= l
3

then l
1

= l
2

= l
3

a.s. Thus we now consider l
1

6= l
3

and

here we have three distinctive cases: l
1

= l
2

6= l
3

, l
1

6= l
2

= l
3

and l
2

2 (l
1

, l
3

).

We consider the first one only if
b

1

r b

2

r

= 1 or
b

1

�r b

2

�r

= 1 and similarly

we consider the second one only if
b

2

r b

3

r

= 1 or
b

2

�r b

3

�r

= 1. Let

A
1

:= fx,r,const

s

2

(b
2

|Bx

s

1

= b
1

, Lr

s

1

= l
1

)fx,r

s

3

(b
3

, l
3

|Bx

s

1

= b
1

, Lr

s

1

= l
1

, Bx

s

2

= b
2

, Lr

s

2

= l
1

)

= fx,r,const

s

2

(b
2

|Bx

s

1

= b
1

, Lr

s

1

= l
1

)fx,r

s

3

(b
3

, l
3

|Bx

s

2

= b
2

, Lr

s

2

= l
1

)

= f b

1

,r,const

s

2

�s

1

(b
2

)f b

2

,r

s

3

�s

2

(b
3

, l
3

� l
1

)

A
2

:= fx,r

s

2

(b
2

, l
3

|Bx

s

1

= b
1

, Lr

s

1

= l
1

)fx,r,const

s

3

(b
3

|Bx

s

1

= b
1

, Lr

s

1

= l
1

, Bx

s

2

= b
2

, Lr

s

2

= l
3

)

= f b

1

,r

s

2

�s

1

(b
2

, l
3

� l
1

)f b

2

,r,const

s

3

�s

2

(b
3

)

A
3

(l
2

) := fx,r

s

2

(b
2

, l
2

|Bx

s

1

= b
1

, Lr

s

1

= l
1

)fx,r

s

3

(b
3

, l
3

|Bx

s

1

= b
1

, Lr

s

1

= l
1

, Bx

s

2

= b
2

, Lr

s

2

= l
2

)

= f b

1

,r

s

2

�s

1

(b
2

, l
2

� l
1

)f b

2

,r

s

3

�s

2

(b
3

, l
3

� l
2

).

Observe that

A
4

:=

Z

l

2

2(l
1

,l

3

)

A
3

(l
2

)dl
2

=

Z

l

2

2(l
1

,l

3

)

f b

1

,r

s

2

�s

1

(b
2

, l
2

� l
1

)f b

2

,r

s

3

�s

2

(b
3

, l
3

� l
2

)dl
2

=

Z

l

2

2(l
1

,l

3

)

1

(s
2

� s
1

)

p

2⇡(s
2

� s
1

)

(l
2

� l
1

+ |b
2

� r|+ |r � b
1

|)e�
(l

2

�l

1

+|b
2

�r|+|r�b

1

|)2
2(s

2

�s

1

)

⇥ 1

(s
3

� s
2

)

p

2⇡(s
3

� s
2

)

(l
3

� l
2

+ |b
3

� r|+ |r � b
2

|)e�
(l

3

�l

2

+|b
3

�r|+|r�b

2

|)2
2(s

3

�s

2

) dl
2

= k
1

[�(t
1

e�
t

2

1

2 � t
2

e�
t

2

2

2

) + k
2

(�(t
2

)� �(t
1

))]
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where

↵ := �l
1

+ |b
2

� r|+ |r � b
1

|

� := l
3

+ |b
3

� r|+ |r � b
2

|

k
1

:= (2⇡)�1

(s
2

� s
1

)

� 3

2

(s
3

� s
2

)

� 3

2 e
(↵+�)

2

2(s

3

�s

1

)

µ :=

�(s
2

� s
1

)� ↵(s
3

� s
2

)

(s
3

� s
1

)

�2

:=

(s
2

� s
1

)(s
3

� s
2

)

(s
3

� s
1

)

k
2

:= �� + (� � ↵� 2µ) +
1

�
(↵� � µ2

+ µ(� � ↵))

t
1

:=

l
1

� µ

�

t
2

:=

l
2

� µ

�

�� cumulative distribution function of normal distribution

Then

P (Lr

s

2

= l
1

|Bx

s

1

= b
1

, Lr

s

1

= l
1

, Bx

s

2

= b
2

, Bx

s

3

= b
3

, Lr

s

3

= l
3

)

=

A
1

A
1

+ A
2

+ A
4

P (Lr

s

2

= l
3

|Bx

s

1

= b
1

, Lr

s

1

= l
1

, Bx

s

2

= b
2

, Bx

s

3

= b
3

, Lr

s

3

= l
3

)

=

A
2

A
1

+ A
2

+ A
4

P (Lr

s

2

2 dl
2

|Bx

s

1

= b
1

, Lr

s

1

= l
1

, Bx

s

2

= b
2

, Bx

s

3

= b
3

, Lr

s

3

= l
3

)

=

A
3

A
1

+ A
2

+ A
4

dl
2

.

The above computations allow us to formulate the following procedure
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Simulation of “Lr component of joint (Bx

, L

r)-bridge”

INPUT:

s
1

, s
2

, s
3

, b
1

, l
1

, b
2

, b
3

, l
3

If l
1

= l
3

then

If
b

1

<r b

2

<r b

3

<r

= 1 or
b

1

>r b

2

>r b

3

>r

= 1 then set l
2

= l
1

and finish here

Otherwise print “error” and finish here

Otherwise (when l
1

6= l
3

)

1. If
b

1

�r b

2

r

= 1 or
b

1

r b

2

�r

= 1 then set A
1

= 0

Otherwise compute A
1

and A
4

If
b

2

�r b

3

r

= 1 or
b

2

r b

3

�r

= 1 then set A
2

= 0

Otherwise compute A
2

2. If A
1

= 0 and A
2

= 0 proceed to (3.)

Otherwise

Sample U
1

⇠ U(0, 1)

If u
1

 A

1

A

1

+A

2

+A

4

set l
2

= l
1

and finish here

If A

1

A

1

+A

2

+A

4

< u
1

 A

1

+A

2

A

1

+A

2

+A

4

set l
2

= l
3

and finish here

Otherwise proceed to (3.)
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3. Sample (e.g. by using rejection sampling) U
2

with density

h(u
2

) /
(l

1

,l

3

)

(u
2

)f b

1

,r

s

2

�s

1

(b
2

, u
2

� l
1

)f b

2

,r

s

3

�s

2

(b
3

, l
3

� u
2

)

Set l
2

= u
2

OUTPUT:

l
2

3.5 (Bx

, L

r)-bridge simulation: (Bx

s2
, Lr

s2
) ⇠ BBx,b1,l1,b3,l3

s1,s3

Consider times 0  s
1

< s
2

< s
3

 T . What we mean here by (Bx

s

, Lr

s

)-bridge

simulation is sampling from joint distribution of Bx

s

2

- Brownian motion started at x

and its local time at level r, Lr

s

2

, conditioned on A := {Bx

s

1

= b
1

, Lr

s

1

= l
1

, Bx

s

3

=

b
3

, Lr

s

3

= l
3

}. The measure induced by Bx conditioned on A on C([0, T ]) is de-

noted by BBx,b

1

,l

1

,b

3

,l

3

s

1

,s

3

.

The procedure for sampling (Bx, Lr

)-bridges is crucial for the algorithms Alg.2 and

Alg.3 and also allows to refine skeletons (Bx

i

, Lr

i

)

i2I , obtained from Alg.1, Alg.2

and Alg.3 after the path has been accepted as we see in Chapter 4.
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Fig. 5 Unveiled information about “(Bx

s

2

, Lr

s

2

) ⇠ BBx,b

1

,l

1

,b

3

,l

3

s

1

,s

3

” (defining condi-

tions).

First we consider the situation where l
1

6= l
3

. Similarly to Section 3.4 we need to

consider here three cases and we introduce some notation.

1. l
1

= l
2

but l
1

6= l
3

. Let A
1

(b
2

) such that

A
1

(b
2

)db
2

:=P (Bx

s

2

2 db
2

, Lr

s

2

= l
1

|Bx

s

1

= b
1

, Lr

s

1

= l
1

, Bx

s

3

= b
3

, Lr

s

3

= l
3

)

p
1

:=

Z 1

�1
A

1

(b
2

)db
2

= P (Lr

s

2

= l
1

|Bx

s

1

= b
1

, Lr

s

1

= l
1

, Bx

s

3

= b
3

, Lr

s

3

= l
3

)

2. l
2

= l
3

but l
1

6= l
3

. Let A
1

(b
2

) such that

A
2

(b
2

)db
2

:=P (Bx

s

2

2 db
2

, Lr

s

2

= l
3

|Bx

s

1

= b
1

, Lr

s

1

= l
1

, Bx

s

3

= b
3

, Lr

s

3

= l
3

)

p
2

:=

Z 1

�1
A

2

(b
2

)db
2

= P (Lr

s

2

= l
3

|Bx

s

1

= b
1

, Lr

s

1

= l
1

, Bx

s

3

= b
3

, Lr

s

3

= l
3

)

3. l
2

2 (l
1

, l
3

) and l
1

6= l
3

. Note that local time is an increasing process.

A
3

(b
2

, l
2

)db
2

dl
2

:=P (Bx

s

2

2 db
2

, Lr

s

2

2 dl
2

|Bx

s

1

= b
1

, Lr

s

1

= l
1

, Bx

s

3

= b
3

, Lr

s

3

= l
3

)

p
3

:=

Z

R

Z

(l

1

,l

3

)

A
3

(b
2

, l
2

)dl
2

db
2

= P (Lr

s

2

2 (l
1

, l
3

)|Bx

s

1

= b
1

, Lr

s

1

= l
1

, Bx

s

3

= b
3

, Lr

s

3

= l
3

).
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Observe that p
1

+p
2

+p
3

= 1. Three cases and mixed probability distribution arise

as a result of the fact that local time distribution has a point mass. We introduce

p
1

, p
2

and p
3

so that we can use it to split simulation into two steps. First we

determine the case and then conditioned on the case we sample the value of Bx

s

2

(or in case (3.) of both: Bx

s

2

and Lr

s

2

). Observe that

A
1

=

fx,r,const

s

2

(b
2

|Bx

s

1

= b
1

, Lr

s

1

= l
1

)fx,r

s

3

(b
3

, l
3

|Bx

s

1

= b
1

, Lr

s

1

= l
1

, Bx

s

2

= b
2

, Lr

s

2

= l
1

)

fx,r

s

3

(b
3

, l
3

|Bx

s

1

= b
1

, Lr

s

1

= l
1

)

=

f b

1

,r,const

s

2

�s

1

(b
2

)f b

2

,r

s

3

�s

2

(b
3

, l
3

� l
1

)

f b

1

,r

s

3

�s

1

(b
3

, l
3

� l
1

)

p
1

=

R1
�1 f b

1

,r,const

s

2

�s

1

(b
2

)f b

2

,r

s

3

�s

2

(b
3

, l
3

� l
1

)

f b

1

,r

s

3

�s

1

(b
3

, l
3

� l
1

)

A
2

=

fx,r

s

2

(b
2

, l
3

|Bx

s

1

= b
1

, Lr

s

1

= l
1

)fx,r,const

s

3

(b
3

|Bx

s

1

= b
1

, Lr

s

1

= l
1

, Bx

s

2

= b
2

, Lr

s

2

= l
3

)

fx,r

s

3

(b
3

, l
3

|Bx

s

1

= b
1

, Lr

s

1

= l
1

)

=

f b

1

,r

s

2

�s

1

(b
2

, l
3

� l
1

)f b

2

,r,const

s

3

�s

2

(b
3

)

f b

1

,r

s

3

�s

1

(b
3

, l
3

� l
1

)

p
2

=

R1
�1 f b

1

,r

s

2

�s

1

(b
2

, l
3

� l
1

)f b

2

,r,const

s

3

�s

2

(b
3

)

f b

1

,r

s

3

�s

1

(b
3

, l
3

� l
1

)

A
3

=P (Bx

s

2

2 db
2

, Lr

s

2

2 dl
2

|Bx

s

1

= b
1

, Lr

s

1

= l
1

, Bx

s

3

= b
3

, Lr

s

3

= l
3

)

=

fx,r

s

2

(b
2

, l
2

|Bx

s

1

= b
1

, Lr

s

1

= l
1

)fx,r

s

3

(b
3

, l
3

|Bx

s

1

= b
1

, Lr

s

1

= l
1

, Bx

s

2

= b
2

, Lr

s

2

= l
2

)

fx,r

s

3

(b
3

, l
3

|Bx

s

1

= b
1

, Lr

s

1

= l
1

)

=

f b

1

,r

s

2

�s

1

(b
2

, l
2

� l
1

)f b

2

,r

s

3

�s

2

(b
3

, l
3

� l
2

)

f b

1

,r

s

3

�s

1

(b
3

, l
3

� l
1

)

db
2

dl
2

=

1

(s

2

�s

1

)

p
2⇡(s

2

�s

1

)

(l
2

� l
1

+ |b
2

� r|+ |r � b
1

|)e�
(l

2

�l

1

+|b
2

�r|+|r�b

1

|)2
2(s

2

�s

1

)

f b

1

,r

s

3

�s

1

(b
3

, l
3

� l
1

)

⇥ 1

(s
3

� s
2

)

p

2⇡(s
3

� s
2

)

(l
3

� l
2

+ |b
3

� r|+ |r � b
2

|)e�
(l

3

�l

2

+|b
3

�r|+|r�b

2

|)2
2(s

3

�s

2

)

(3.1)

Note in (3.1) the symmetry in b
2

about b
2

= r. Assume that b
2

> r then by
29



substituting

u := l
2

� l
1

+ |b
2

� r|+ |r � b
1

|

v := l
3

� l
2

+ |b
3

� r|+ |r � b
2

|

we further have

A
3

= c
uv

ue
� u

2

2(s

2

�s

1

) ve
� v

2

2(s

3

�s

2

)dudv

where c�1

uv

= 4⇡(s
2

� s
1

)(s
3

� s
2

)

p

(s
2

� s
1

)(s
3

� s
2

)f b

1

,r

s

3

�s

1

(b
3

, l
3

� l
1

). It is

important to note that the distribution of (Bx

s

2

, Lr

s

2

|Bx

s

1

= b
1

, Lr

s

1

= l
1

, Bx

s

3

=

b
3

, Lr

s

3

= l
3

) is a.s. equal to 0 outside R⇥ [l
1

, l
3

]. Under the linear transformation

(b
2

, l
2

) ! (u, v) the region R
1

:= [r,1) ⇥ [l
1

, l
3

] is mapped to the region R
2

bounded by the following lines:

v = u+ (l
1

� l
3

� |r � b
1

|+ |b
3

� r|)

v = u� (l
1

� l
3

� |r � b
1

|+ |b
3

� r|)

v = �u+ (l
3

� l
1

+ |r � b
1

|+ |b
3

� r|).
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If l
1

= l
3

Use procedure from Section 3.2

Hence the procedure to sample Bx

s

2

and Lr

s

2

conditioned on {Bx

s

1

= b
1

, Lr

s

1

=

l
1

, Bx

s

3

= b
3

, Lr

s

3

= l
3

} is as follows:

(Bx

, L

r)-bridge simulation

INPUT:

s
1

, s
2

, s
3

, b
1

, l
1

, b
3

, l
3

If l
1

6= l
3

1. Sample Z
1

⇠ U(0, 1)

2. Compute p
1

. If z
1

> p
1

proceed to (3.) otherwise

Set l
2

= l
1

Sample Z
2

⇠ h(u) / A
1

(u)

Set b
2

= z
2

and finish here

3. Compute p
2

. If z
1

> p
1

+ p
2

proceed to (4.) otherwise

Set l
2

= l
3

Sample Z
2

⇠ h(u) / A
2

(u)

Set b
2

= z
2

and finish here

4. Sample (U, V ) ⇠ h(u, v) / ue
� u

2

2(s

2

�s

1

) ve
� v

2

2(s

3

�s

2

) on R
2
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Set l
2

=

u�v+l

3

+l

1

�|r�b

1

|+|b
3

�r|
2

Sample Z ⇠ Ber(0.5)

If Z = 1 then set b
2

= r + u+v�l

3

+l

1

�|r�b

1

|�|b
3

�r|
2

otherwise set b
2

= r � u+v�l

3

+l

1

�|r�b

1

|�|b
3

�r|
2

.

If l
1

= l
3

then

If
b

1

<r b

2

<r b

3

<r

= 1 or
b

1

>r b

2

>r b

3

>r

= 1 then

Set l
2

= l
1

Sample b
2

as in Section 3.2 and finish here

Otherwise print “error” and finish here

OUTPUT:

b
2

, l
2
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Chapter 4

Algorithms

In Section 2.1 we described the derivation of EA1 and here we discuss how we can

modify this algorithm to become applicable for diffusions with discontinuous drift.

Again we are looking at the solutions of one-dimensional SDEs of the form

dX
t

= ↵(X
t

)dt+ dB
t

, t 2 [0, T ], X
t

= x. (4.1)

where B denotes one-dimensional Brownian motion. Let us start working with the

assumptions of EA1 with temporarily omitting the assumption on differentiability

of the drift function ↵. We use the same notation as in Section 2.1.

Set of conditions for Alg.1, Alg.2 and Alg.3 - To be continued

Assumption 1. There exists non-explosive weak solution to (4.1)

Assumption 2. The Girsanov theorem may be applied and the local martin-

gale is a true martingale.

Assumption 3. To be modified.

Assumption 4. Function exp{A(u)� (u�x)

2

2T

} is integrable.

Assumption 5. Function (↵2

(u) + ↵0
(u))

u/2D is bounded below
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Set D is defined in Assumption 3.1. Recall that we denote by W the measure

induced by Brownian motion started at x on (C, C) and by Q the measure induced

by the diffusion X. Under Assumption 2 we may apply Girsanov transformation

to obtain the Radon-Nikodym derivative of Q with respect to W.

dQ
dW = exp

n

Z

T

0

↵(X
t

)dX
t

� 1

2

Z

T

0

↵2

(X
t

)dt
o

Define function A : R ! R in the same way as for EA1, namely A(u) :=

R

u

0

↵(y)dy. Here is the point where we would like to proceed by applying Itô’s

lemma but it is not possible as ↵ is not differentiable. Let us introduce the fol-

lowing assumption instead.

Assumption 3.1. Let r
1

< r
2

< · · · < r
n

be real numbers, and define D =

{r
1

, r
2

, · · · , r
n

}. Assume that the drift function ↵ : R ! R is continuous on

R \D and ↵0 exists and is continuous on R \D, and the limits

↵0
(r

k

±) := lim

x!r

k

±
↵0
(x)

exist and are finite.

We begin referring to local time process here and more details can be found in

Section 2.2. Referring to Problem 6.24 in [Kar91] (pp. 215) we note that the

following Remark 2 results from the Assumption 3.1 and Theorem 2.6.

Remark 2. Under the Assumption 3.1 A is the difference of two convex functions

and

A(B
t

) = A(x) +

Z

t

0

↵(B
s

)dB
s

+

1

2

Z

t

0

↵0
(B

s

)ds+

+

1

2

n

X

k=1

Lr

k

t

[↵(r
k

+)� ↵(r
k

�)], a.s. t 2 [0, T ]
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By Remark 2 we obtain that

dQ
dW = exp{A(X

T

)� A(x)� 1

2

Z

T

0

(↵0
(X

t

) + ↵2

(X
t

))dt

� 1

2

n

X

k=1

Lr

k

T

(X)[↵(r
k

+)� ↵(r
k

�)]} a.s. (4.2)

Occurrence of local time at multiple levels in formula (4.2) constitutes a great

challenge and it is not known how to deal with it. The algorithms that we present

address the problem in case the drift function ↵ has one point of discontinuity.

We denote this point by r. Then the Radon-Nikodym derivative of Q with respect

to W is equal to

dQ
dW = exp{A(X

T

)� A(x)� 1

2

Z

T

0

(↵0
(X

t

) + ↵2

(X
t

))dt

� 1

2

Lr

T

(X)[↵(r+)� ↵(r�)]} a.s. (4.3)

Now the big question is how to use the knowledge of (4.3) for simulation purpose.

We suggest three different answers in the following Sections and we call the new

algorithms Alg.1, Alg.2 and Alg.3.

4.1 Alg.1

As we discussed in previous sections EA1 is based on rejection sampling performed

in special way. Let us discuss now what are the issues about adapting the ideas of

EA1 directly. There are three main questions:

• Shall we sample candidate paths from biased Brownian motion or there exists

better candidate process?

• Is the Radon-Nikodym derivative of diffusion measure with respect to chosen

measure bounded? As it is required to perform rejection sampling.
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• Can we construct an auxiliary event whose probability is equal to the accep-

tance probability of a path and it requires only finite information about a

path?

Let’s see what happens when we choose biased Brownian motion to be our candi-

date process. Applying (2.4) and (4.3) we arrive at

dQ
dZ =

dQ
dW

dW
dZ / exp

n

� 1

2

Z

T

0

(↵2

(X
t

) + ↵0
(X

t

))dt

� 1

2

Lr

T

(X)[↵(r+)� ↵(r�)]

o

.

Observe that Assumption 5 assures that exp

n

� 1

2

R

T

0

(↵2

(X
t

) + ↵0
(X

t

))dt
o

is

bounded. What about

exp

n

� 1

2

Lr

T

(X)[↵(r+)� ↵(r�)]

o

then?

Recall that local time is a non-negative process. Thus under the following assump-

tion

Assumption 3.2. ↵(r+)� ↵(r�) � 0.

we obtain

dQ
dZ / exp

�

�
Z

T

0

�(B
t

)dt� 1

2

Lr

T

(X)[↵(r+)� ↵(r�)]

 

 1; Z� a.s.

and it is great news as we have established boundedness of Radon-Nikodym deriva-

tive now which is essential for the rejection sampling. In EA1 rejection sampling

is performed retrospectively, i.e. first auxiliary decision (acceptance or rejection)

variable is sampled and then values of the candidate process at necessary time

points. Here we also need values of B at some random times but jointly with the

value of local time at level r at time T . Two different methods can be introduced

to achieve it which lead to construction of Alg.1 and Alg.2. Let us concentrate now
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on Alg.1. We propose to split the rejection sampling into two steps. In the first

one, which we refer to as Step 1 we perform rejection sampling with acceptance

probability p
1

as follows

p
1

(X) / exp{�
Z

T

0

�(X
t

)dt}.

If the path was not rejected then in Step 2 we again use rejection sampling with

the acceptance probability p
2

p
2

(X) / exp{�Lr

T

(X)

↵(r+)� ↵(r�)

2

}.

where Lr

T

(X) is sampled conditioned on the revealed values of X

in Step 1.

Let us now put together what we discussed above and present the algorithm Alg.1.

It requires Assumptions 1, 2, 3.1, 3.2, 4 and 5. The following algorithm returns

samples from finite-dimensional distribution of the diffusion X together with its

local times.

Alg.1

INPUT:

↵(u) : R ! R drift function

{0 = t0, t1, · · · , tn, tn+1

= T} time instances of interest

X
0

= x initial point

I 1. Define

(a) A : R ! R, A(u) :=
R

u

0

↵(y)dy
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(b) k = inf

u2R
↵

2

(u)+↵

0
(u)

2

(c) � : R ! R, �(u) := ↵

2

(u)+↵

0
(u)

2

� k

2. Find the upper bound M of �.

II Generate realisation of X at T and at random times in (0, T ):

1. Sample X
T

⇠ h(u) / exp{A(u)� (u�x)

2

2T

}

2. Sample an auxiliary planar Poisson process  with intensity 1

(i) Sample k ⇠ Poiss(TM)

(ii) Sample U
1

, · · · , U
k

i.i.d., U
1

⇠ Uni((0, T )⇥ (0,M))

(iii) Sort {u
1

, · · · , u
k

} in increasing order of their first coordinate

⌧ to get ((⌧
1

, 
1

), · · · , (⌧
k

, 
k

))

3. Use  to perform first rejection sampling:

(a) Sample (X
⌧

1

, · · · , X
⌧

k

) from the Brownian bridge measure

Wx,x

T

0,T

(b) Compute �(X
⌧

i

) for i 2 {1, · · · , k}

(c) If �(X
⌧

i

) <  
⌧

i

for each i 2 {1, · · · , k} then proceed to III.

Otherwise return to II.1

III Generate realisation of X at (t1, · · · , tn) conditioned on values of X at

(0, ⌧
1

, · · · , ⌧
k

, T ):

(a) Sort in increasing order the set {0, ⌧
1

, · · · , ⌧
k

, t1, · · · , tn, T} to get

(0, t
1

, · · · , t
k+n

, T )

(b) Repeat n times
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(i) Pick i 2 {1, · · · , k + n} such that X
t

i

has not been sampled

yet

(ii) Find t
L

:= max{0,t
1

,··· ,t
k+n

,T}{tj such that X
t

j

has been already

revealed and t
j

< t
i

}

(iii) Find t
U

:= min{0,t
1

,··· ,t
k+n

,T}{tj such that X
t

j

has been already

revealed and t
j

> t
i

}

(iv) Sample X
t

i

from the Brownian bridge measure BBx

L

,x

U

t

L

,t

U

[See

Section 3.1]

IV Generate realisation of Lr

(X) at (0, t
1

, · · · , t
k+n

, T ) conditioned on

(x,X
t

1

, · · · , X
t

k+n

, X
T

)

Set Lr

(X)

0

= 0

For i 2 (t
1

, · · · , t
k+n

, T ) perform recursively

Sample l ⇠ BBx,b

t

1�1

,l

t

1�1

,b

t

i

t

i�1

,t

i

[See Section 3.3]

Set Lr

(X)

t

i

= Lr

(X)

t

i�1

+ l

V Perform rejection sampling using Lr

T

with acceptance probability p
2

If the path is accepted return

((0, x, 0), (t
1

, X
t

1

, Lr

(X)

t

1

), · · · , (t
k+n

, X
t

k+n

, Lr

(X)

t

k+n

), (T,X
T

, Lr

(X)

T

)

Otherwise start again at II.1

OUTPUT:

((0, x, 0), (t
1

, X
t

1

, Lr

(X)

t

1

), · · · , (t
k+n

, X
t

k+n

, Lr

(X)

t

k+n

), (T,X
T

, Lr

(X)

T

)

39



4.2 Alg.2

Alg.2 requires the same assumptions as Alg.1. However it involves different order

of simulations and possibility to sample from joint local time and Brownian motion

bridges.

Alg.2

INPUT:

↵(u) : R ! R drift function

{0 = t0, t1, · · · , tn, tn+1

= T} time instances of interest

X
0

= x initial point

I 1. Define

(a) A : R ! R, A(u) :=
R

u

0

↵(y)dy

(b) k = inf

u2R
↵

2

(u)+↵

0
(u)

2

(c) � : R ! R, �(u) := ↵

2

(u)+↵

0
(u)

2

� k

2. Find the upper bound M of �.

II Generate realisation of X at T :

1. Sample X
T

⇠ h(u) / exp{A(u)� (u�x)

2

2T

}

III Generate realisation of Lr

(!) at T conditioned on B
0

= 0, Lr

0

= 0 and

X
T

= x
T

IV Sample an auxiliary planar Poisson process  with intensity 1
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(i) Sample k ⇠ Poiss(TM)

(ii) Sample U
1

, · · · , U
k

i.i.d., U
1

⇠ Uni((0, T )⇥ (0,M))

(iii) Sort {u
1

, · · · , u
k

} in increasing order of their first coordinate ⌧ to

get ((⌧
1

, 
1

), · · · , (⌧
k

, 
k

))

V Generate Bx jointly with Lr conditioned on values at 0 and T :

(a) Sort in increasing order the set {0, ⌧
1

, · · · , ⌧
k

, t1, · · · , tn, T} to get

(0, t
1

, · · · , t
k+n

, T )

(b) Repeat k + n times

(i) Pick i 2 {1, · · · , k + n} such that X
t

i

has not been sampled

yet

(ii) Find t
L

:= max{0,t
1

,··· ,t
k+n

,T}{tj such that X
t

j

has been already

revealed and t
j

< t
i

}

(iii) Find t
U

:= min{0,t
1

,··· ,t
k+n

,T}{tj such that X
t

j

has been already

revealed and t
j

> t
i

}

(iv) Sample (X
t

i

, Lr

t

i

) using the joint Brownian bridge and local

time BBx,b

L

,l

L

,b

U

,l

U

t

L

,t

U

[See Section 3.5]

VI Use  to perform first rejection sampling:

(a) Compute �(X
⌧

i

) for i 2 {1, · · · , k}

(b) If �(X
⌧

i

) <  
⌧

i

for each i 2 {1, · · · , k} then proceed to VII.

Otherwise return to II.1

VII Perform rejection sampling using Lr

T

with acceptance probability p
2
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If the path is accepted return

((0, x, 0), (t
1

, X
t

1

, Lr

(X)

t

1

), · · · , (t
k+n

, X
t

k+n

, Lr

(X)

t

k+n

), (T,X
T

, Lr

(X)

T

)

Otherwise start again at II.1

OUTPUT:

((0, x, 0), (t
1

, X
t

1

, Lr

(X)

t

1

), · · · , (t
k+n

, X
t

k+n

, Lr

(X)

t

k+n

), (T,X
T

, Lr

(X)

T

)

4.3 Alg.3

In Alg.3 we suggest to use another candidate process. Motivation behind this

choice is to find a measure such that the Radon-Nikodym derivative of diffusion

measure with respect to new measure will not include explicitly any terms con-

taining Lr

X

. Otherwise, as we saw in Alg.1 and Alg.2, the usage of the algorithms

can become restricted to the case when ↵(r+) > ↵(r�) (Assumption 3.2). We

define measure S on C([0, T ]) with paths starting a.s. at x satisfying

dS
dW / {Lr

T

(X)>0}
g(X

T

, Lr

T

(X))

f(X
T

, Lr

T

(X)

+ {Lr

T

(X)=0}
g
0

(X
T

)

f
0

(X
T

)
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where functions f : R⇥ (0,1) ! R
+

, f
0

: R ! R
+

, g : R⇥ (0,1) ! R
+

and

g
0

: R ! R
+

such that

P (Bx

T

2 dz, Lr

T

(Bx

) 2 dy) = f(z, y) dzdy for y > 0

P (Bx

T

2 dz, Lr

T

(Bx

= 0)) = f
0

(z) dz

g(z, y) := c
g

f(z, y)eA(z)�y

↵(r+)�↵(r�)

2 for y > 0

= c
g

(s
p
2⇡s)�1

(y + |z � r|+ |r � x|)e�
(y+|z�r|+|r�x|)2

2s eA(z)�y

↵(r+)�↵(r�)

2

g
0

(z) := c
g

f
0

(z)eA(z)

= c
g

(

p
2⇡s

�1

)eA(z)

(e�
(z�x)

2

2s � e�
(|z�r|+|r�x|)2

2s

)

where c
g

such that
Z

R

Z

(0,1)

g(z, y)dydz +
Z

R
g
0

(z)dz = 1

Let us now show that measure S is very useful as a candidate measure for rejection

sampling. We compute appropriate Radon-Nikodym derivative

dQ
dS =

dQ
dW

dW
dS / eA(X

T

)�A(x)� 1

2

R
T

0

(↵

0
(X

t

)+↵

2

(X

t

))dt� 1

2

L

r

T

(X)[↵(r+)�↵(r�)]

⇥
⇣

{Lr

T

(X)>0}
c
g

f(X
T

, Lr

T

(X))eA(X

T

)�L

r

T

(X)

↵(r+)�↵(r�)

2

f(X
T

, Lr

T

(X)

+ {Lr

T

(X)=0}cg
f
0

(X
T

)eA(X

T

)

f
0

(X
T

)

⌘�1

/ c�1

g

e�A(x)� 1

2

R
T

0

(↵

0
(X

t

)+↵

2

(X

t

))dt a.s. (4.4)

From the construction of measure S we see that if processes generated by measures

S and W attain the same values X
T

, Lr

T

(X) then they have the same distributions

conditioned on X
T

, Lr

T

(X). Furthermore the law of X
T

, Lr

T

(X) of measure S is

given by functions g and g
0

. It relates to a similar construction in EA1 using h as

the density of biased Brownian motion at time T . Local time at time T and level

r has a probability point mass at 0 thus the joint distribution of X
T

, Lr

T

(X) is of

unusual form. Functions g and g
0

are case specific as they include A(X
T

) term

and ↵. It is important to notice that the term e�y

↵(r+)�↵(r�)

2 is dominated in the
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tails by e�
(y+|z�r|+|r�x|)2

2s . Sampling from g and g
0

can be performed by rejection

sampling with appropriate case specific candidate distribution on R⇥ (0,1).

We arrive at an algorithm which covers both cases: of positive and of negative

value of ↵(r
+

)� ↵(r�) and requires only the set of assumptions as on page 34.

Alg.3

INPUT:

↵(u) : R ! R drift function

{0 = t0, t1, · · · , tn, tn+1

= T} time instances of interest

X
0

= x initial point

I 1. Define

(a) A : R ! R, A(u) :=
R

u

0

↵(y)dy

(b) k = inf

u2R
↵

2

(u)+↵

0
(u)

2

(c) � : R ! R, �(u) := ↵

2

(u)+↵

0
(u)

2

� k

2. Find the upper bound M of �.

II Generate realisation of X and Lr

(X) at T :

Sample X
T

, Lr

T

such that

P (X
T

2 dz, Lr

T

2 dy) = g(z, y)dzdy for y > 0

and

P (X
T

2 dz, Lr

T

= 0) = g
0

(z)dz
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III Sample an auxiliary planar Poisson process  with intensity 1

(i) Sample k ⇠ Poiss(TM)

(ii) Sample U
1

, · · · , U
k

i.i.d., U
1

⇠ Uni((0, T )⇥ (0,M))

(iii) Sort {u
1

, · · · , u
k

} in increasing order of their first coordinate ⌧ to

get ((⌧
1

, 
1

), · · · , (⌧
k

, 
k

))

IV Generate X jointly with Lr

(X) conditioned on values at 0 and T :

(a) Sort in increasing order the set {0, ⌧
1

, · · · , ⌧
k

, t1, · · · , tn, T} to get

(0, t
1

, · · · , t
k+n

, T )

(b) Repeat k + n times

(i) Pick i 2 {1, · · · , k + n} such that X
t

i

has not been sampled

yet

(ii) Find t
L

:= max{0,t
1

,··· ,t
k+n

,T}{tj such that X
t

j

has been already

revealed and t
j

< t
i

}

(iii) Find t
U

:= min{0,t
1

,··· ,t
k+n

,T}{tj such that X
t

j

has been already

revealed and t
j

> t
i

}

(iv) Sample (X
t

i

, Lr

t

i

) using the joint Brownian and local time

bridge measure BBx,b

L

,l

L

,b

U

,l

U

t

L

,t

U

[See Section 3.5]

V Use  to perform rejection sampling:

(a) Compute �(X
⌧

i

) for i 2 {1, · · · , k}

(b) If �(X
⌧

i

) <  
⌧

i

for each i 2 {1, · · · , k} then return

((0, x, 0), (t
1

, X
t

1

, Lr

t

1

(X)), · · · , (t
k+n

, X
t

k+n

, Lr

t

k+n

(X)), (T,X
T

, Lr

T

(X))

Otherwise start again at II.
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OUTPUT:

((0, x, 0), (t
1

, X
t

1

, Lr

t

1

(X)), · · · , (t
k+n

, X
t

k+n

, Lr

t

k+n

(X)), (T,X
T

, Lr

T

(X))

Alg.3 shares with Alg.1 and Alg.2 a property that additional values of X and

Lr

(X) can be easily obtained after returning output as above. It requires only

simulation as in Section 3.5. On the other hand Alg.3 is more widely applicable.

However if Assumption 3.2 is satisfied it is easier to sample using Alg.1 or Alg.2.
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Part II

Curvature Metropolis-adjusted

Langevin algorithms
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Chapter 5

Introduction

Metropolis-Hastings algorithms have been hugely successful in exploring posterior

distributions for Bayesian analysis (see, e.g. [RC04]). Most of the commonly

implemented methods such as the random walk Metropolis algorithm and the

Langevin-diffusion motivated MALA algorithm, are simple to implement and use

constant proposal distribution variance. Moreover, the only user-determined al-

gorithm parameter, the proposal variance, is a well-studied problem (see [RR01]

and references therein) and is now routinely calibrated within adaptive MCMC

strategies (see e.g. [RR09, HST01, RR07]).

While the strategy of constant proposal variance is simple and often effective, it is

common that proposal variances appropriate for some parts of the state space are

not suitable for other parts of the space, and it is natural in this case to consider

alternatives in which the proposal variance is allowed to vary with the state. Within

the context of Langevin algorithms and Hamiltonian MCMC, Mark Girolami and

Ben Calderhead in [GC11] introduced an elegant, flexible and powerful framework

for this problem by introducing a metric on the parameter space through which

state-dependent scaling can be naturally defined.

Our work here is inspired by [GC11], and offers theoretical results to underpin
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the state-dependent approach. Our algorithm will be similar to, though will dif-

fer from the Manifold MALA algorithm introduced in [GC11]. While Manifold

MALA requires the construction of a metric tensor on the state space, for instance

constructed from the Fisher’s Information matrix for the experiment and model

inducing the posterior distribution, our method is somewhat direct. We do not

construct a metric, instead we consider the state-dependent scaling problem di-

rectly. This has the advantage of being (at least in principle) a more generally

applicable approach.

We shall term our method Curvature MALA, and the main contribution to our work

will be results that demonstrate the geometric ergodicity for Curvature MALA for

light tailed distributions in one dimension. Our calculations concentrate on the

case where target densities can be written in the form exp{�|x|�} at least up to

proportionality and for x in the tails of the distribution.

The proofs of our results, even in these simple cases, are quite involved. However

we do believe they are highly constructive, giving a clear qualitative picture of the

behaviour of the algorithm which can readily be transported to other examples

according to their target distribution tail behaviour.
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Chapter 6

Rationale and development

We take a step back and start with a discussion of generic ways to improve and

speed up Metropolis-Hastings based MCMC algorithms. Our Curvature MALA

algorithm will arise as a natural improvement of the MALA algorithm by considering

a non-constant local Euler discretization of the underlying Langevin diffusion. In

what follows, let ⇡ be the target distribution on a general state space X and write

P and Q for Markov transition kernels on X . We refer to [RR04] for introduction

to Markov chains and general state space MCMC algorithms.

The Metropolis-Hastings algorithm [Has70] is an extremely general tool that given

any irreducible Markov transition kernel Q with transition densities q(x, y) con-

structs a reversible and ergodic Markov chain P with stationary distribution ⇡ by

thinning the dynamics of Q with the accept-reject ratio of the form

↵(x, y) = min{1, ⇡(y)q(y, x)
⇡(x)q(x, y)

}. (6.1)

Since this happens under very mild conditions (see e.g. [Tie98]), the algorithm is

a victim of its own generality in the sense that poor choice of the proposal kernel

Q results in slow convergence and the optimal choice of tractable Q is not known.

Guidance of how to optimize the choice of Q is available only within very specific
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classes of kernels.

The first fundamental example is the choice of variance for the Gaussian random

walk Metropolis proposals on X = Rd, i.e. for the case

Q(x, ·) = N(x,⌃). (6.2)

The efficiency of the algorithm depends on ⌃ and has been studied formally via

diffusion limits in high dimensions in [RGG97, RR01]. Advice from these results is

routinely used within adaptive MCMC algorithms [RR09, HST01, RR07].

The next natural question is whether one can also improve on the mean of the

normal proposal e.g. by biasing the algorithm towards a region of higher stationary

density. This idea has been formally addressed in [RT96a] and then [ST99a,

ST99b], by employing Langevin dynamics, i.e. continuous time diffusion process

of the form

dX
t

=

1

2

r log(⇡(X
t

))dt+ dB
t

(6.3)

designed to have ⇡ as stationary measure (see also [RDF78] for related work in

the applied context). An Euler discretization of (6.3) with step h is then used as

a Metropolis-Hastings proposal resulting in

Q(x, ·) = N
⇣

x+

h

2

r log ⇡(x), h
⌘

, (6.4)

and the algorithm is termed MALA (Metropolis adjusted Langevin algorithm). The

optimal choice of h has been considered in [RR98, RR01], again by analysing the

performance of the algorithm as the dimension of the state space X grows to

infinity. An adaptive MALA algorithm utilizing these results has been proposed in

[Atc06] and [MR11].

Here we employ a different rationale behind choosing h, one that allows for the

discretization to be state-dependent and does not rest on high dimensional limits.
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In particular, since the MALA proposal (6.4) moves towards the high probability

region by following r log ⇡(x), the first observation is that if r log ⇡(x) is not

stable around x, it should not be ’trusted’ and h should be chosen small. To

measure the stability of r log ⇡(x) we compute the Hessian of log ⇡(x). If the

absolute value of an eigenvalue of H(log ⇡(x)) is large, r log ⇡(x) will change

rapidly when moving along the respective eigenvector and the direction should

be penalised appropriately in h. We thus make use of eigenvectors and absolute

values of the eigenvalues of H(log ⇡(x)) to construct h as a transformation to be

applied to r log ⇡(x), rather than a number. To this end write first the eigenvalue

decomposition

H(log ⇡(x)) = V ⇤V T , (6.5)

where ⇤ is the diagonal matrix of eigenvalues. Now let ⇤abs be the diagonal matrix

of absolute values of eigenvalues and define the state dependent matrix h as

h(x) := V ⇤�1

absV
T . (6.6)

This curvature based local discretization h(x) results in the new proposal

Q(x, ·) = N
⇣

x+

h(x)

2

r log ⇡(x), h(x)
⌘

. (6.7)

It can be viewed as discretization with step size 1 of

dX
t

=

�2

(X
t

)

2

r log ⇡(X
t

)dt+ �(X
t

)dB
t

, (6.8)

where �2

(x) := h(x) given by (6.6) and where we use the convention �(x)�0
(x) =

�2

(x). The diffusion (6.8) does not preserve ⇡ as its stationary distribution,

however this can be fixed by introducing a slight correction. Under mild regularity

conditions (see [Ken78], [XSL+13]) any choice of �(·) in

dX
t

=

⇣�2

(X
t

)

2

r log ⇡(X
t

) + c(X
t

)

⌘

dt+ �(X
t

)dB
t

, (6.9)
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where the correction term

c(x)
i

:=

1

2

X

j

@

@x
j

(�2

(x))
ij

, (6.10)

yields a diffusion with stationary distribution ⇡. Thus instead of discretising (6.8)

with stepsize 1, one can discretise the corrected diffusion (6.10) with arbitrary

stepsize h arriving at proposals

Q(x, ·) = N
⇣

x+ hµ(x), h�2

(x)
⌘

, where (6.11)

µ(x) :=

�2

(x)

2

r log ⇡(x) + c(x), (6.12)

and �2

(x) = h(x) defined as before by (6.6). This yields the Curvature MALA

algorithm (CMALA), which dynamics for fixed discretization step h is given by

Algorithm 1 (Curvature MALA).

Given X
n

= x,

1. Compute �2

(x) from (6.5) and (6.6) and µ(x) from (6.12),

2. Draw Y
n

⇠ Q(x, ·) of (6.11),

3. Put X
n+1

= Y
n

or X
n+1

= X
n

according to the Metropolis-Hasting accept-

reject ratio.

In fact, as it happens for the benchmark family of target distributions with tail

behaviour / exp{�|x|�}, the correction term c(x) defined in (6.10) is often neg-

ligible, at least in the tails, compared to the main term �

2

(X

t

)

2

r log ⇡(X
t

), called

the net drift [Ken78]. Furthermore under the assumption that c(x) is negligible

significant implementation speed-ups can be achieved by dropping the c(x) term

which motivates the simplified Net Curvature MALA (netCMALA) whose proposal

process follows the discretisation of the initial diffusion (6.8), i.e. where (6.11)
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and (6.12) are replaced by

Qnet(x, ·) = N
⇣

x+ hµnet(x), h�
2

(x)
⌘

, where (6.13)

µnet(x) :=

�2

(x)

2

r log ⇡(x), (6.14)

Algorithm 2 (Net Curvature MALA). Given X
n

= x,

1. Compute �2

(x) from (6.5) and (6.6) and µnet(x) from (6.14)

2. Draw Y
n

⇠ Qnet(x, ·) of (6.13),

3. Put X
n+1

= Y
n

or X
n+1

= X
n

according to the Metropolis-Hasting accept-

reject ratio.

We shall prove geometric convergence of CMALA and netCMALA under some

regularity conditions and for h small enough. It is rarely known how small is small

enough, but the problem can be alleviated by making h random. In other words

h is sampled from some fixed probability measure ⌫ on (0,1). It is of practical

importance to chose ⌫ such that ⌫((0, ✏)) > 0 for all ✏ > 0. Then there is always

positive probability that h will be sufficiently small. As we see in Chapter 7 this

change does not weaken the results.

Another technical burden is that (net)CMALA is not defined if one or more of the

eigenvalues of ⇤ are 0. We interpret that in this case the variance of the pro-

posal goes to infinity and the proposed move is always rejected and the algorithm

gets stuck in one state. To overcome this difficulty and let the algorithm explore

again entire density function we suggest to add a standard random walk Metropo-

lis (RWM) move whenever it happens. Thus finally we arrive at the Randomized

(Net) Curvature MALA which amounts to the following steps:
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Algorithm 3 (R(net)CMALA). Let p 2 (0, 1) be fixed and suppose ⌫ is a

probability measure on (0,1).

Given X
n

= x,

1. Draw U ⇠ Bernoulli(p),

2. If U = 1 and 0 is not an eigenvalue of ⇤,

• draw h ⇠ ⌫,

• find X
n+1

using the (net)CMALA kernel with discretization h.

3. If U = 1 and 0 is an eigenvalue of ⇤,

• set X
n+1

= x.

4. If U = 0,

• find X
n+1

using the RWM kernel with proposal distribution Q(x, ·) =

N(x, I).

If ⌫ is a continuous probability distribution then one needs to check measurability

of the resulting transition operator to ensure it is well-defined (see e.g. [Num04]).

If ⌫ is discrete these conditions are always met. In the rest of the paper we assume

the kernel is well-defined.

As we have already mentioned, what makes the defined algorithms special is the

choice of a state-dependent scaling. Exploration of the target density depends on

the direction and size of moves of algorithms. Gradient of log(⇡(x)) indicates

the direction of a fastest ascend of the target density function at point x. When

the rate of change of gradient is slow, what occurs for the tail behaviour we are

interested in, it is important to direct the moves towards regions of high density

and make big moves. If we have a look at (6.6), the new eigenvalues, where

each of them is the inverse of the absolute value of an eigenvalue of Hessian of
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log(⇡(x)), are used to balance the rate of change of the gradient and they promote

big moves when the density is relatively flat. In R(net)CMALA we suggest to use

RWM move when any of the eigenvalues is equal to zero. R(net)CMALA could

be further modified in a way that we choose to perform such step in case that any

of the eigenvalues is in some fixed small interval around zero. It would allow us to

avoid proposals with too big variance. Addition of an RWM move can also help

in case of multimodality as discussed algorithms not only benefit from using local

geometry but unfortunately also suffer from it. The proposal distribution is tai-

lored to local geometry of target density and it does not address global structure.

Locally optimal moves often do not favour visits to multiple modes. In the regions

where target density gets steeper and the change of gradient is fast the choice of

scaling as described encourages smaller moves. It allows for better control of the

algorithm to stay in the region of high density. Our intuition is that the suggested

algorithms will not perform very well in case of multimodality, heterogeneity and

with heavy tails.

Connection to Manifold MALA of [GC11]

The diffusion (6.9) with stationary distribution ⇡ may appear very flexible and

powerful as a tool for designing Metropolis-Hastings proposals, however sensible

choice of non-constant �(x) is nonobvious (see [ST99a, ST99b, RS02] for related

work in this direction). Within the context of Bayesian posterior computation,

[GC11] introduced a general framework where �(x) results from a metric tensor

defining a Riemannian manifold on the parameter space. The choice of the metric

tensor in [GC11] is again not unique and can be problematic due to positive defi-

niteness requirement. The performance of the algorithm will also depend heavily

on this choice.
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Although the rationale we develop here for Curvature MALA does not result from

considering a metric on probability distributions, and the algorithm is constructed

more directly, there are strong ties with the algorithms suggested in [GC11]. Under

the assumptions (R1), (R2), (R3) of following Chapter 7 the Curvature MALA is

equivalent to the Manifold MALA with the metric tensor taken as the observed

Fisher information matrix plus the negative Hessian of the log-prior. Note that

the algorithms in [GC11] are considered in a Bayesian setting and they aim to

sample from a posterior distribution of parameter ✓ 2 ⇥ which corresponds to

our x 2 X. Furthermore recall that the observed Fisher information matrix is

the negative of the Hessian matrix of the log-likelihood. The above statement

can be further compared with third paragraph on 129 of citegirolami2011riemann,

Similarly, under assumptions (R1), (R2*), (R3) the Net Curvature MALA becomes

the Simplified Manifold MALA defined on page 130 between equations (10) and

(11). We would like to underline that our work is one of the first attempts to

provide convergence analysis of methods related to [GC11] where lots of fruitful

ideas where presented with illustrative examples. In the following Chapter 7 we

discuss results on geometric ergodicity of (R)(net)CMALA.
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Chapter 7

Results for Curvature MALA

and its modifications.

We are interested here in properties of the algorithms introduced in Chapter 6. In

particular, we investigate under what conditions the algorithms are geometrically

ergodic. We understand geometric ergodicity as defined in [RR04].

Definition 7.1. A Markov chain with stationary distribution ⇡(·) is geometrically

ergodic if

||P n

(x, ·)� ⇡(·)||
TV

 M(x)⇢n n = 1, 2, 3, . . . (7.1)

for some ⇢ < 1, where M(x) < 1 for ⇡ � a.e. x 2 X.

Recall that the total variation distance is defined for every two probability measures

µ and ⌫ on the same probability space as ||µ � ⌫||
TV

:= sup

B2B |µ(B) � ⌫(B)|.

Further, we say that a
p
n-central limit theorem holds for square-integrable with

respect to ⇡ function f and (X
n

)

n�0

if there exists �
f

2 [0,1) such that
S

np
n

d�! N(0, �2

f

) as n ! 1, where S
n

:=

P

n�1

i=0

¯f(X
i

) and ¯f is the centered

version of f , namely ¯f = f �
R

X

f(x)⇡(dx).
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Geometric ergodicity is of crucial importance in the context of MCMC algorithms

because for reversible Markov chains this property implies a central limit theorem

for functions that are square-integrable with respect to ⇡.

It is highly desirable for the computations to be asymptotically validated by a CLT

and asymptotic confidence intervals rather than by a law of large numbers or merely

by convergence in total variation. A CLT for Markov chains is guaranteed under

varied conditions, see [J+04],[RR04] for reviews. Curvature MALA is reversible

thus the following result proved in [RR97] applies

Theorem 7.2. If a Markov chain (X
n

)

n�0

with stationary distribution ⇡ is ge-

ometrically ergodic and reversible, then a
p
n�CLT holds for (X

n

)

n�0

and f

whenever ⇡(f 2

) < 1.

In fact there is even stronger result in [RR08], using variance bounding chains,

which implies that if a reversible Markov chain is not geometrically ergodic then

for some L2 functions CLT does not hold.

Now we proceed to discussion on earlier defined algorithms applied to target distri-

bution ⇡ defined on R. Proposals in CMALA and netCMALA then follow normal

distributions Q
C

(x, ·) = N(µC

x

, �2

x

) and Q
net

(x, ·) = N(µnet

x

, �2

x

) respectively with

parameters

µC

x

= x+ h
h

1

2

�2

(x)
⇡0
(x)

⇡(x)
+ �(x)�0

(x)
i

,

µnet

x

= x+ h
1

2

�2

(x)
⇡0
(x)

⇡(x)
,

�2

x

= h�2

(x),

where �(x) =

�

�

�

@2

@x2

log ⇡(x)
�

�

�

� 1

2

=

�

�

�

⇡00
(x)⇡(x)� (⇡0

(x))2

⇡2

(x)

�

�

�

� 1

2

.

In particular, we investigate the convergence rate in total variation norm of the al-

gorithms applied to a benchmark family of distributions ⇡ with ⇡(x) / exp{�|x|�}
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in the tails. More precisely, we allow for different �’s in the left and right tail, i.e.

for some M > 0, k
+

> 0 and k� > 0 we assume

(R0)
⇡(x) = k

+

exp{�|x|�+} for all x > M ,

⇡(x) = k� exp{�|x|��} for all x < �M .

Then for sufficiently large x the parameters of the proposal distribution become

µC

x

= x[1� h

2|�
x

� 1|(1 +
�
x

� 2

�
x

|x|��

x

)], (7.2)

µnet

x

= x[1� h

2|�
x

� 1| ] (7.3)

�2

x

= h
|x|2��

x

|�
x

� 1|�
x

, (7.4)

where �
x

is equal to �
+

or �� respectively to the sign of x. Let l(x) := @

2

@x

2

log ⇡(x)

and � denotes Lebesgue measure. In order to implement the algorithms of Section

2 we need some regularity conditions:

(R1) ⇡(x) > 0 for all x 2 R

(R2) ⇡ 2 C3

(R3) l(x) 6= 0 for all x 2 R

In some cases, which are specified in the following theorems, (R2) and (R3) can

be replaced by the following weaker assumptions

(R2*) ⇡ 2 C2

(R3*) l(x) 6= 0 for x 2 RrD where D is a bounded subset of R with �(D) = 0

Now we present our key results on convergence of (net)CMALA. Proofs of all

Theorems are deferred until next Chapter.
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Theorem 7.3.

(a) Suppose (R0), (R1), (R2*) and (R3) hold. If also the following conditions are

satisfied

(C1.1) �
+

> 1 and �� > 1

(C2.1) h > 0 is sufficiently small

then netCMALA is well-defined and geometrically ergodic.

(b) If all conditions in (a) are satisfied and in addition (R2) holds then also CMALA

is well-defined and geometrically ergodic.

Theorem 7.4.

(a) Suppose (R0), (R1), (R2*) and (R3) hold. If also the following condition is

satisfied

(C1.2) �
+

6= ��, min{�
+

, ��} 2 (0, 1)

then netCMALA is well-defined but not geometrically ergodic.

(b) If all conditions in (a) are satisfied and in addition (R2) holds then also CMALA

is well-defined but not geometrically ergodic.

The difficulty in applying Theorem 7.3 is that it assumes strong regularity condi-

tions on ⇡ and the knowledge of how small h needs to be. These requirements

can be alleviated by using R(net)CMALA, as demonstrated in Theorem 7.5 below.

Theorem 7.5.

(a) Suppose (R0), (R1), (R2*) and (R3*) hold. If also the following conditions

are satisfied

(C1.1) �
+

> 1 and �� > 1
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(C2.2) ⌫ is discrete and satisfies ⌫((0, ")) > 0 for all " > 0

then RnetCMALA is well-defined and geometrically ergodic.

(b) If all conditions in (a) are satisfied and in addition (R2) holds then also

RCMALA is well-defined and geometrically ergodic.

One could hope that lack of geometric ergodicity, as established in Theorem 7.4,

could be addressed by randomizing h. However this is not the case. More precisely,

we prove the following Theorem 7.6.

Theorem 7.6.

(a) Suppose (R0), (R1), (R2*) and (R3*) hold. If also the following conditions

hold

(C1.2) �
+

6= ��, min{�
+

, ��} 2 (0, 1)

(C2.3) ⌫ is a discrete probability measure

then RnetCMALA is well-defined but not geometrically ergodic.

(b) If all conditions in (a) are satisfied and in addition (R2) holds then also

RCMALA is well-defined but not geometrically ergodic.

In case of distributions with symmetric heavy tails net(CMALA) in general is not

geometrically ergodic. However for h in some small interval it is geometrically

ergodic. It is interesting from theoretical point of view but we believe it is not of

practical importance.

Proposition 7.7.

(a) Suppose (R0),(R1), (R2*) and (R3) hold. If the following condition hold

(C1.3) � 2 (0, 1)
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then netCMALA is well-defined and there exists ⌘ 2 (2, 4) such that if

(C2.4) h 2 (⌘|� � 1|, 4|� � 1|)

then netCMALA is geometrically ergodic and if

(C2.5) h 2 (0, ⌘|� � 1|) [ (4|� � 1|,1)

then netCMALA is not geometrically ergodic.

(b) If (R2*) is replaced by (R2), the statement in part (a) is true also for CMALA.
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Chapter 8

Proofs

Before we start presentation of the proofs of the results of Chapter 7 we give a brief

overview of the concepts that are important for the proofs. Then we concentrate

on proving geometric ergodicity, as defined in Definition 7.1, of (net)CMALA for

a benchmark family of distributions with light tails (Theorem 7.3) and a special

case within a family of symmetrically heavy-tailed distributions (Proposition 7.7).

Next we show lack of geometric ergodicity in case of heavy-tailed distributions

(Theorem 7.4 and Proposition 7.7). Then we proceed to the proof of Theorem

7.5 for algorithms with randomized h. Throughout all proofs we assume without

loss of generality that �� � �
+

.

Here we briefly describe those concepts which are used in the proof of geometric

ergodicity. For further details, see e.g. [MT93] or [RR04]. Our primary interest

lies in probability density function ⇡ defined on (R,B(R)). We call R a state space

and denote it by X. We refer to its elements as states and denote them usually

by x’s or y’s. The algorithms constructed in the previous chapters give rise to

Markov chains on X. We use standard notation for transition probability kernel

with subscripts indicating the algorithm in consideration. Namely, P
CMALA

(x,A)

with x 2 X and A ⇢ X denotes probability of moving from state x to set A in
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one move of CMALA algorithm. Further recall that a set C 2 B(X) is called a

small set if there exist a positive integer n
0

, " > 0 and a probability measure ⌫(·)

on X such that the following minorisation condition holds: P n

0

(x,A) � "⌫(A)

for x 2 C and A 2 B(X). We say that a Markov chain satisfies a drift condition

if there exist constants 0 < � < 1 and b < 1, a measurable set C and a function

V : X ! [1,1], such that
Z

X

P (x, dy)V (y)  �V (x) + b
C

(x), x 2 X. (8.1)

The following Theorem 8.1 of Meyn and Tweedie [MT93] is widely exploited in

proofs of geometric ergodicity of Markov chains; we use the version as in [RR04].

Theorem 8.1. Consider a �-irreducible, aperiodic Markov chain with stationary

distribution ⇡(·). Suppose the minorisation condition is satisfied for some C ⇢ X

and " > 0 and probability measure ⌫(·). Suppose further that the drift condition is

satisfied for some constants 0 < � < 1 and b < 1, and a function V : X ! [1,1]

with V (x) < 1 for at least one (and hence for ⇡-a.e.) x 2 X. Then the chain is

geometrically ergodic.

Next we describe a link between the spectral gap of Markov operator and its rate

of convergence which we will use later to show that the results also hold with

randomized h. Consider a Hilbert space L2

(⇡) of functions f : R ! C whose

L
2

(⇡) norm, induced by the following inner product, is finite; hf, gi :=
R

R f g d⇡

where g denotes the complex conjugate of g. We say that �
P

is an L2

(⇡)-spectrum

of a Markov operator P if it contains all � 2 C for which the inverse of (�I � P )

does not exist as a bounded linear operator on L2

(⇡). Note that every reversible

Markov chain possesses a real spectrum. Let P restricted to 1? be denoted by

P |1? . Define �gap
P

:= 1� sup{|�| : � 2 �
P |1?} and �

P

:= 1� sup{� : � 2 �
P |1?}.

Recall that transition kernel P of �-irreducible, aperiodic Markov chain admits an

L2

(⇡)-spectral gap if a spectrum of P |1? is bounded away from the unit circle.
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Then �gap
P

> 0 is called the spectral gap of P . Furthermore, note that

Proposition 8.2 (Proposition 1.2 of [KM09]). A reversible,  -irreducible and

aperiodic Markov chain (X
n

)

n2N is geometrically ergodic if and only if P admits

a spectral gap in L2

(⇡).

Now let k
P

(A) denote the rate of probability flow from a set A to Ac, normalized

by the product of ⇡(A) and ⇡(Ac

).

k
P

(A) :=

R

A

⇡(dx)P (x,AC

)

⇡(A)⇡(Ac

)

.

Suppose k
P

:= inf

A2B(R): 0<⇡(A)<1

k
P

(A) which is an analogue of Cheeger’s isoperi-

metric constant. Then the Theorem 2.1 of [LS88] gives the following bounds

k2

P

8

 �
P

 k
P

. (8.2)

Now we proceed to the proofs of our main results.

Proof of Theorem 7.3. Suppose that suitable regularity conditions R0, R1,

R2(R2⇤) and R3 hold. We begin with discussion on the acceptance probability

↵(x, y), defined in (6.1), in (net)CMALA under assumption that x and y are

sufficiently far in the tails. In particular, we assume that ⇡(x) = k
+

exp{�|x|�+}

and

⇡(y) = k
+

exp{�|y|�+} or ⇡(y) = k� exp{�|y|��}.

Let then �
y

= �
+

or �
y

= �� respectively, similarly for k
y

. Saying more intuitively,

x is in the right tail while y is either also in the right one or it is in the left tail.

Similar computations for ↵(x, y) to the following ones can be performed when

x < �M as in (R0). We use superscripts C and net to refer to CMALA and

netCMALA respectively.
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In order to aggregate variables in a useful manner for the remainder of the proof

we introduce variables a, a
y

, b, c and d satisfying

µnet

x

= (1� a)x, a =
h

2|�
+

� 1| ,

µnet

y

= (1� a
y

)y, a
y

=

h

2|�
y

� 1| ,

µC

x

= (1� b)x, b = a(1 +
�
+

� 2

�
+

|x|��

+

) (8.3)

µC

y

= (1� c)y, c = a
y

(1 +

�
y

� 2

�
y

|y|��

y

)

y = (1� d)x.

Then

↵C

(x, y) = min

(

1,
k
y

e�|y|�y 1p
2⇡�

y

e
�

(x�µ

C

y

)

2

2�

2

y

k
+

e�|x|�+ 1p
2⇡�

x

e
� (y�µ

C

x

)

2

2�

2

x

)

= min

⇢

1,
k
y

k
+

|x|
�

y

��

+

2 |1� d|
�

y

2

�1

(|�
y

� 1|�
y

)

1

2

(|�
+

� 1|�
+

)

� 1

2

⇥ e
|x|�+ ·(1+�

+

(b�d)2

4a )�|x|�y |1�d|�y (1+�

y

(1�(1�c)(1�d))2

4a
y

|1�d|2 )

�

. (8.4)

We deal separately with the cases where �
y

= �
+

and �
y

= ��. If �
y

= �
+

,
which in particular occurs when y > M and when �� = �

+

and y is in either of
the tails, then (8.4) reduces to

↵

C(x, y) = min
�

1,
k

y

k+

�

�1� d
�

�

�+
2 �1

e

|x|�+ ·[1�|1�d|�++
�+
4a [(b�d)2�(c+d�cd)2|1�d|�+�2]]

 

. (8.5)

Let g : (Rr {0})⇥ R2 ⇥ (Rr {1}) ! R be defined as follows

g(a, b, c, d) = 1� |1� d|�+

+

�
+

4a
[(b� d)2 � (c+ d� cd)2|1� d|�+

�2

].

Further, we write (8.5) as

↵C

(x, y) = min

�

1,
k
y

k
+

�

�

1� d
�

�

�

+

2

�1

e|x|
�

+

g(a,b,c,d)
 

. (8.6)

Note that a is constant throughout whole exposition here. So far we have consid-
ered ↵(x, y) where we treated x and y as fixed. All new variables in (8.3) were
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determined by this pair of x and y. However now we allow for x to change and we
treat y as function of x given by the bottom equation in (8.3). Thus let for now
d (d 6= 1) be constant. We treat other new variables in (8.3) as functions of x
and y (so also implicitly of x). We will investigate now changes in these variables
when x goes to 1. Then remembering that here �

y

= �
+

b = a(1 +
�+ � 2

�+
|x|��+)

x!1����! a and c = ay(1 +
�

y

� 2

�

y

|y|��y )
x!1����! a. (8.7)

Suppose a 6= 1. Motivated by (8.7) we set d = a. Then lim

x!1
µ

C

x

�y

x

= 0.
Further it suggests to consider smooth f : (R r {1}) ! R satisfying f(a) =

g(a, a, a, a) for a 2 Rr {0, 1}, and compute its derivatives. Observe that

f(a) = 1� |1� a|�+ � �+

4
a(2� a)2|1� a|�+�2

f

0(a) = sgn(1� a)
�+

4
a|1� a|�+�3 [ (1 + �+)a

2 + (1� 4�+)a+ 4�+ � 4]

f(0) = 0 (8.8)

f

0(0) = 0

f

00(0) = �+(�+ � 1).

Under assumption that �
y

= �
+

, we also note that

↵net

(x, y) = min

�

1,
k
y

k
+

�

�

1� d
�

�

�

+

2

�1

e|x|
�

+

g(a,a,a,d)
 

.

Crude intuition behind the two following Lemmas is that when current state x is

further and further in the tail then mean of proposal distribution µ
x

is relatively

closer and closer to (1 � a)x and the region with high proposal density, again

relatively, stays small around µ
x

. Furthermore proposals falling into this region are

always accepted. Now we change the framework. We allow x and y to change

independently and we treat a
y

, b, c and d, as functions of a, x and y. All relations

in (8.3) still hold.

Lemma 8.3. Suppose the assumptions of Theorem 7.3 hold. Then there exists

" > 0 such that for all sufficiently large x

inf

y2A
x

↵C

(x, y) = 1 and inf

y2A
x

↵net

(x, y) = 1

where A
x

= [(1� a� "

2

)x, (1� a+ "

2

)x].
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Proof. Referring to (8.8) f(0) = f 0
(0) = 0 and f 00

(0) > 0 thus there exists

0 < � < 1 such that f(a) > 0 for all a 2 (0, �). For all sufficiently small h > 0

we have 0 < a < � < 1 and hence f(a) > 0. Recall that g(a, a, a, a) = f(a)

provided a 6= 1 and a 6= 0. Since g is continuous on its domain there exists

0 < " < 1 such that neither 0 nor 1 is in [a � ", a + "] and for (a, b, c, d) in

[a � ", a + "]4 it holds that g(a, b, c, d) � f(a)
2

> 0. Note that we can choose

h small enough so that, for sufficiently large x, a is arbitrarily close to zero and

(1� a� "

2

)x > M
+

. Furthermore, if y 2 A
x

= [(1� a� "

2

)x, (1� a+ "

2

)x] then

d 2 [a� "

2

, a+ "

2

] and, for sufficiently large x, c = a(1+ �

+

�2

�

+

|y|��

+

) 2 [a�", a+"]

and b = a(1 + �

+

�2

�

+

|x|��

+

) 2 [a � ", a + "]. Hence (a, b, c, d) 2 [a � ", a + "]4,

(a, a, a, d) 2 [a�", a+"]4 and so g(a, b, c, d) � f(a)
2

> 0 and g(a, a, a, d) � f(a)
2

>

0. We arrive at

inf

y2A
x

↵C

(x, y) = inf

y2A
x

min

�

1,
k
y

k
+

�

�

1� d
�

�

�

+

2

�1

e|x|
�

+

g(a,b,c,d)
 

� min

�

1, inf

d2[a�",a+"]

�

�

1� d
�

�

�

+

2

�1

e|x|
�

+

f(a)
2

 

= 1

inf

y2A
x

↵net

(x, y) = inf

y2A
x

min

�

1,
k
y

k
+

�

�

1� d
�

�

�

+

2

�1

e|x|
�

+

g(a,a,a,d)
 

= 1.

Lemma 8.4. Let A
x

be constructed as in the Proof of Lemma 8.3. Then

lim

x!1 Q
C

(x,A
x

) = 1 and lim

x!1 Q
net

(x,A
x

) = 1.

Proof. We choose " as in the Proof of Lemma 8.3. Consider an arbitrary p 2

(0.5, 1). Denote by ��1 the quantile function of N(0, 1). Since lim
x!1

µ

C

x

x

= 1�a

and lim

x!1
�

x

x

= 0, then for sufficiently large x we have µC

x

+ �
x

�

�1

(p) 2 A
x

and µC

x

� �
x

�

�1

(p) 2 A
x

. Thus Q
C

(x,A
x

) � 2p� 1 and this finishes the proof

since p was chosen arbitrarily. Analogous computations apply for Q
net

.

We now use Lemmas 8.3 and 8.4 to check the assumptions of Theorem 8.1 with

V (x) chosen to be |x| + 1 to confirm geometric ergodicity of CMALA and netC-

MALA. We present computations only for CMALA as they apply equally to both.
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Suppose set A
x

is chosen as in the Proof of Lemma 8.3. We have

Z

R
P (x, y)|y|dy =

Z

A

x

q(x, y)↵(x, y)|y|dy
| {z }

=:J

acc,A

x

+

Z

A

c

x

q(x, y)↵(x, y)|y|dy
| {z }

=:J

acc,A

c

x

+

Z

R
q(x, y)(1� ↵(x, y))|x|dy

| {z }

=:J

rej,R

As shown below, Lemmas 8.3 and 8.4 imply upper bounds for J
acc,A

x

, J
acc,A

c

x

and

J
rej,R for sufficiently large x. Note that for arbitrary �

1

> 0 for sufficiently large x

we have Q(x,Ac

x

) < �
1

. Let � denote the density function of N(0, 1).

J
acc,A

x

 sup

y2A
x

|y|
Z

A

x

q(x, y)↵(x, y)dy

 (1� a+
"

2

)x

J
acc,A

c

x


Z

A

c

x

q(x, y)|y|dy


Z

A

c

x

q(x, y)ydy � 2�
x

Z

(�1,�µ

x

�

x

)

�(z)zdz

Z

A

c

x

q(x, y)ydy = µ
x

Z

A

c

x

q(x, y)dy +

Z

A

c

x

q(x, y)(y � µ
x

)dy

 µ
x

�
1

+

Z

R
q(x, y)|y � µ

x

|dy =

µ
x

�
1

+ �
x

r

2

⇡
.

Note that

lim

x!1

µ
x

�
x

= lim

x!1
x
⇥

1� h

2|�
+

� 1|(1 +
�
+

� 2

�
+

|x|��

+

)

⇤

⇣ h

|�
+

� 1|
|x|2��

+

�
+

⌘� 1

2

= 1.

Thus for every �
2

> 0 for sufficiently large x it holds that J
acc,A

c

x

 µ
x

�
1

+
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�
x

(

q

2

⇡

+ �
2

). We arrive at

J
rej,R = x[1�

Z

R
q(x, y)↵(x, y)dy]

 x[1�
Z

A

x

q(x, y)↵(x, y)dy]

= x[1�
Z

A

x

q(x, y)dy] = x

Z

A

c

x

q(x, y)dy  x�
1

.

Hence
Z

R
P (x, y)|y|dy  x

h

1� a+
"

2

+ (2� b)�
1

+

�
x

x

�

r

2

⇡
+ �

2

�

i

.

Set � = 1 � a + "

2

and note that � 2 (0, 1). Recall that �
1

> 0 and �
2

> 0 can

be chosen arbitrarily small and lim

x!1 b = a, and lim

x!1
�

x

x

= 0. Hence for

sufficienly large x we have (2� b)�
1

< 1��

3

and �

x

x

(

q

2

⇡

+ �
2

) < 1��

3

. Then

Z

R
P (x, y)|y|dy  2 + �

3

x. (8.9)

So far we have considered large positive x but all the above steps translate easily for

x’s in the other tail. For negative x, sufficiently far from the origin, we obtain (8.9)

with some �� 2 (0, 1) and x replaced by |x|. Recall that we chosen V (x) = |x|+1.

Set � =

3

4

+

max(�,��)

4

. Then for x outside sufficiently large interval containing the

origin
R

R P (x, y)V (y)dy  �V (x).

It is sufficient now to show that
R

R P (x, dy)V (y), as a function of x, is bounded

on compact sets. For arbitrary x we have
Z

R
P (x, y)V (y)dy =

Z

R
q(x, y)↵(x, y)(|y|+ 1)dy

+(|x|+ 1)

Z

R
q(x, y)(1� ↵(x, y))dy


Z

R
q(x, y)|y|dy + |x|+ 2


r

2

⇡
�
x

e
� µ

2

x

2�

2

x

+ µ
x

(1� 2�(�µ
x

�
x

)) + |x|+ 2 (8.10)
72



Since ⇡ 2 C3, ⇡(x) 6= 0, l(x) 6= 0 for all x 2 R, µ
x

and �
x

are well-defined for all

x 2 R and continuous in x. Furthermore the upper bound in (8.10) is continuous

in x and hence bounded on compact sets. This finishes the proof of Theorem 7.3.

Proof of Proposition 7.7 - special case with (C2.4) satisfied

The proof follows the same steps as used in the proof of Theorem 7.3. However

in case of symmetric tails we need to replace Lemma 8.3 by following Lemma 8.5

and in further computations use absolute values where necessary.

Lemma 8.5. Suppose the assumptions of Proposition 7.7 except (C2.5) hold.

Then there exists " > 0 such that for all sufficiently large x

inf

y2A
x

↵C

(x, y) = 1 and inf

y2A
x

↵net

(x, y) = 1

where A
x

= [(1� a� "

2

)x, (1� a+ "

2

)x].

Proof. It is sufficient to show that there exists ⌘ 2 (2, 4) such that if h 2

(⌘|� � 1|, 4|� � 1|) then f(a) > 0, the rest of the proof remains as in the proof

of Lemma 8.3. Consider f 0
(a) as in (8.8). Observe that (1 + �) > 0 and the

equation (1 + �)a2 + (1 � 4�)a + 4� � 4 = 0 has two roots a
1

=

4��1�
p
17�8�

2(�+1)

and a
2

=

4��1+

p
17�8�

2(�+1)

such that a
1

< 0 and 1 < a
2

< 2. Thus f 0
(a) > 0 for

a 2 (1, a
2

) and f 0
(a) < 0 when a 2 (0, 1) [ (a

2

,1). Since f(0) = f(2) = 0,

f(1+) = �1 and f 0
(2) = �� < 0, there exists ⌘ 2 (2, 4) such that f(a) > 0 for

all a 2 (

⌘

2

, 2) and f(a) < 0 for a 2 (0, 1)[(1, ⌘
2

)[(2,1). h 2 (⌘|��1|, 4|��1|)

implies that f(a) 2 (

⌘

2

, 2).

Now we proceed to show lack of geometric ergodicity of (net)CMALA for bench-

mark family of distributions with heavy tails, namely as in Theorem 7.4 and Propo-

sition 7.7. In the proofs we apply the following Theorem 8.6.

Theorem 8.6. [Theorem 5.1 of [RT96b]] Suppose that a Markov chain � is

�-irreducible with invariant measure ⇡ not concentrated at a single point, such
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that P (x, {x}) is a measurable function, with ess sup P(x, {x}) = 1, where the

essential supremum is taken with respect to the measure ⇡. Then the Markov

chain � is not geometrically ergodic.

Proof of Theorem 7.4. Note that the Markov chain of (net)CMALA is �-

irreducible and q(net)C(x, y) is continuous in x and y and so P
(net)C

(x, {x}) is a

measurable function. It is sufficient now to show that P
(net)C

(x, {x}c) converges

to zero when x goes to infinity and the result will follow by Theorem 8.6.

Lemma 8.7. Suppose the assumptions of Theorem 7.4 hold. Then there exists

" > 0 such that for sufficiently large x, if y 2 A
x

:= [(1� a� "

2

)x, (1� a+ "

2

)x]

then

lim

x!1
sup

y2A
x

↵C

(x, y) = 0, lim

x!1
sup

y2A
x

↵net

(x, y) = 0,

lim

x!1
Q

C

(x,A
x

) = 1, lim

x!1
Q

net

(x,A
x

) = 1.

Proof. Suppose a 2 (0, 1), then 0 < lim

x!1
µ

(net)C

x

x

< 1. Furthermore, for

arbitrary " > 0 such that 0, 1 /2 [1 � a � "

2

, 1 � a + "

2

] and sufficiently large x

we have that inf A
x

> M
+

. Thus if h 2 (0, 2|�
+

� 1|) then f(a) < 0 by similar

computations as in the proof of Lemma 8.5. Then follow the steps of the proofs

of Lemmas 8.3 and 8.4.

Suppose now that a > 1, which implies that µ
x

is negative, and " > 0 such that

0,�1 /2 [1�a� "

2

, 1�a+ "

2

]. Then for sufficiently large x we have supA
x

< M�.

Thus consider ↵(x, y)C as in (8.4) with �
y

= ��. But now, there exist l
2

, l
3

, l
4

> 0

such that

L
1

:= sup

y2A
x

|x|
����

+

2  x��

L
2

:= sup

y2A
x

k�
k
+

|1� d|
��
2

�1

(|�� � 1|��)
1

2

(|�
+

� 1|�
+

)

� 1

2  l
2
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L
3

:= sup

y2A
x

e|x|
�

+ ·(1+�

+

(b�d)2

4a )  el3x
�

+

L
4

:= sup

y2A
x

e
�|x|�� ·|1�d|�� (1+

��(1�(1�c)(1�d))2

4a�|1�d|2 )  e�l

4

x

��

and since �
+

< �� thus lim

x!1 sup

y2A
x

↵(x, y)  lim

x!1(L
1

L
2

L
3

L
4

) = 0.

Similarly for netCMALA.

To that end let � > 0. Then by Lemma 8.7, for sufficiently large x, sup
y2A

x

↵(x, y) 
�

2

and Q(x,Ac

x

)  �

2

. This further implies

P (x, {x}c)  sup

y2A
x

↵(x, y)

Z

A

x

q(x, y)dy +

Z

A

c

x

q(x, y)dy  �

which finishes the proof.

Proof of Proposition 7.7 - special case with (C2.5) satisfied

In Lemma 8.5 it was established that f(a) < 0 for a 2 (0, 1) [ (1, ⌘
2

) [ (2,1).

This combined with similar steps as in the proof of Lemma 8.3 gives the result.

Proof of Theorem 7.5. We concentrate only on RCMALA as the proof for netC-

MALA follows similar steps. This proof splits into two parts. First one considers

⌫ = �
h

with h > 0 and the second one other appropriate measures ⌫.

(i) RCMALA with fixed h

In each transition step of RCMALA there is positive probability that the chain will

move according to RWM’s transition kernel. In this paragraph we only discuss the

required properties of random walk Metropolis. First note that every compact set

C with �(C) > 0 is small for P . It follows from the fact that the proposal density

of RWM q(x, y) is continuous in x and y and positive and so is ⇡(x). Thus by

Lemma 1.2 of [MT+96] all compact sets (with �(C) > 0) are small for P . Now

we prove that for V (x) = |x| + 1 it holds that lim sup

x!±1 PV  V (x). We
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focus on x ! 1 but similar computations apply to x ! �1. Define

K
a,b

=

Z

b

a

q(x, y)↵(x, y)(y � x)dy, Kabs

a,b

=

Z

b

a

q(x, y)↵(x, y)(|y|� |x|)dy.

Then PV = V (x)+Kabs

�1,1 and we find upper bounds for Kabs

a,b

. Noting symmetries

in q and ||y| � |x|| and that for sufficiently large x ⇡(y)

⇡(x)

> 1 when y 2 (0.5x, x)

and ⇡(y)

⇡(x)

< 1 when y 2 (x, 1.5x) we obtain that Kabs

0.5x,1.5x

< 0. Furthermore

Kabs

1.5x,1 
Z 1

1.5x

q(x, y)(y � x)dy =

1p
2⇡

e�0.125x

2

x!1�! 0.

Since |y|� |x| < 0 for y 2 (0, 0.5x), it follows that Kabs

0,0.5x

< 0. Observe that

0  �K�1,0


Z

0

�1
q(x, y)(x� y)dy =

1p
2⇡

e�
x

2

2

x!1�! 0

lim sup

x!1
Kabs

�1,0

= lim sup

x!1
[�K�1,0

� 2x

Z

0

�1
q(x, y)↵(x, y)dy]  0.

Hence lim sup

x!1 PV  V (x). Now we show that PV (x) is bounded on compact

sets C. Further we obtain that

sup

x2C
PV  2 + sup

x2C
|x|+ sup

x2C
(

r

2

⇡
e�

x

2

2

+ x(1� 2�(�x))) < 1.

This completes computations for RWM and now we focus on RCMALA and use

appropriate subscripts whenever we refer to CMALA and RWM kernels. Now P

denotes the transition kernel of RCMALA and let kernel ˜P be defined as follows.

Suppose A 2 B(R) and x 2 R then

˜P (x,A) :=
l(x) 6=0

(x)P
CMALA

(x,A) +
l(x)=0

(x)
x2A(x).

where l(x) := @

2

@x

2

log ⇡(x). Thus P (x,A) = p ˜P (x,A) + (1 � p) P
RWM

(x,A).

Since �(D) = 0, recall that D = {x : l(x) = 0}, thus ⇡(dx)P (x, dy) =

⇡(dy)P (y, dx). In the main part of the proof we show that the assumptions

of Theorem 8.1, which guarantee geometric ergodicity, are satisfied. First note

that since P
RWM

(x,B) > 0 for all x 2 R and B 2 B(R) thus also P (x,B) > 0
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and P 2

(x,B) > 0 which implies that the chain is ⇡-irreducible and aperiodic.

Further every compact set C with �(C) > 0 is small for P . It follows from

the fact that all compact sets (with �(C) > 0) are small for P
RWM

, i.e. for

an arbitrary compact set C there exists a probability measure � and " > 0

such that P
RWM

(x,A) � "�(A) for all A 2 B(R) and x 2 C. But then also

P (x,A) � "̂�(A) with "̂ := (1� p)".

Next we discuss the drift condition (8.1) with V (x) = |x| + 1. Consider A
x

as

constructed in the proof of Lemma 8.3 and suppose that x is large enough so

that A
x

\ D = ;, where D is the set of zeros of l(x). Then the proof that

there exists ˜� 2 (0, 1) such that ˜PV  ˜�V (x) for sufficiently large x follows

the same steps as in case of CMALA. Further since we have already proved that

lim sup

x!1 P
RWM

V  V (x) thus for some � 2 (0, 1) PV  �V (x) for all large

x.

Now it is left to prove that PV (x) is bounded on closed intervals. We showed it

already for P
RWM

V (x) so now we consider ˜PV (x). Let C be a sufficiently large

closed interval then

sup

x2C
˜PV  supC + 1 + sup

x2C
V (x) + sup

x2C\Dc

Z

R

q(x, y)↵(x, y)V (y)dy

| {z }

=:N2[0,1]

Further we obtain that

N  sup

x2C
V (x) + sup

x2C\Dc

(

1

⇡(x)

Z

R

q(y, x)⇡(y)V (y)dy)

Since ⇡ is continuous and positive, is also bounded away from zero on compact

sets. Thus it is sufficient to show that
Z

R
⇡(y)V (y)dy < 1 and sup

x2C\Dc

,y2R
q(y, x) < 1.

Note that ⇡ 2 C and V 2 C so
R

C

⇡(y)V (y)dy < 1. Also
R

C

c

⇡(y)V (y)dy < 1

provided that for all y 2 Cc it holds that ⇡(y) / e|y|�± . Now we consider
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sup

x2C\Dc

,y2R q(y, x). Note that lim

y±1(µ
y

⌥ �
y

) = ±1. Let E be an in-

terval such that for all y 2 Ec either µ
y

� �
y

> supC or µ
y

+ �
y

< inf C.

Then sup

x2C,y2Ec

q(y, x)  1. By assumption that ⇡ 2 C3 we obtain that

| @

2

@y

2

(log ⇡(y))| is continuous and thus bounded on compact sets. Hence

sup

x2C\Dc

,y2E
q(y, x)) =

1p
2⇡

sup

x2C\Dc

,y2E
(

1

�
y

e
� (x�µ

y

)

2

�

2

y

)

 1p
2⇡

sup

y2E

�

�

�

@2

@y2
(log ⇡(y))

�

�

�

< 1.

Applying Theorem 8.1, we conclude that if h > 0 is constant and sufficiently small

and ⇡ satisfies the assumptions of Theorem 7.5 then RCMALA is geometrically

ergodic.

(ii) RCMALA with randomized h.

Next we use a link between the spectral gap of Markov operator and its rate of

convergence to show that the result also holds with randomized h.

Throughout the remainder of the proof all quantities refer to RCMALA with ran-

domized h. Assumption (C2.2) implies that there exists a countable set H := {h
i

:

i 2 I} of points h
i

2 (0,1) such that ⌫({h
i

}) > 0. Further there exists a strictly

decreasing sequence (h
n

)

n2N in H with lim

n!1 h
n

= 0. Note that whenever we

refer to RCMALA with fixed constant h we use a corresponding subscript. First

observe that RCMALA transition kernel P is reversible,

⇡(dx)
X

i2I

[P
h

i

(x, dy)⌫({h
i

})] = ⇡(dy)
X

i2I

[P
h

i

(y, dx)⌫({h
i

})]

and so is P 2. Similarly to the case of constant h, P
RWM

(x,B) > 0 for all x 2 R
and B 2 B(R) implies P (x,B) > 0 and P 2

(x,B) > 0. Hence both chains are
⇡-irreducible and aperiodic. Note that above proof for RCMALA with constant
h (part (i)) combined with Definition 7.1 of geometric convergence implies that
transition kernel P 2

h

gives rise for sufficiently small positive h to a geometrically
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ergodic chain. Theorem 8.2 implies that �gap
P

2

h

n

> 0 for all sufficiently large n. Since
�
P

2

h

n

� �gap
P

2

h

n

, therefore by (8.2) we obtain that k
P

2

h

n

> 0 for large n. Thus

k

P

2 = inf
0<⇡(A)<1

k

P

2(A) = inf
0<⇡(A)<1

R

A

⇡(dx)P 2(x,AC)

⇡(A)⇡(Ac)

= inf
0<⇡(A)<1

R

A

⇡(dx)
P

i2I

P

j2I

[
R

R P

hi(x, dy)Phj (y,A
C)⌫({h

i

})⌫({h
j

})]
⇡(A)⇡(Ac)

� inf
0<⇡(A)<1

R

A

⇡(dx)
P

i2I

R

R P

hi(x, dy)Phi(y,A
C)(⌫({h

i

}))2

⇡(A)⇡(Ac)

�
X

i2I

[ inf
0<⇡(A)<1

k

P

2
hi
(A)(⌫({h

i

}))2] �
X

i2I

[k
P

2
hi
(⌫({h

i

}))2] > 0.

Applying (8.2), obtain that �
P

2 > 0. Note that by Spectral Mapping Theorem

(see, e.g. [Con90], [Yos95]) (�
P

)

2

= �
P

2 . Thus �
P

2 2 [0, 1] and �gap
P

2

= �
P

2 > 0

which further implies that �gap
P

> 0. Finally by Theorem 8.2 we conclude that

RCMALA under assumptions of Theorem 7.5 is geometrically ergodic.
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