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Abstract

In the march towards exascale, supercomputer architectures are undergoing a

significant change. Limited by power consumption and heat dissipation, future

supercomputers are likely to be built around a lower-power many-core model.

This shift in supercomputer designwill require sweeping code changes in order

to take advantage of the highly-parallel architectures. Evolving or rewriting

legacy applications to performwell on thesemachines is a significant challenge.

Mini-applications, small computer programs that represent the perfor-

mance characteristics of some larger application, can be used to investigate new

programming models and improve the performance of the legacy application

by proxy. These applications, being both easy tomodify and representative, are

essential for establishing a path to move legacy applications into the exascale

era.

The focus of the work presented in this thesis is the design, develop-

ment and employment of a newmini-application, CleverLeaf, for shock hydro-

dynamics with block-structured adaptive mesh refinement (AMR). We report

on the development of CleverLeaf, and show how the fresh start provided by a

mini-application can be used to develop an application that is flexible, accurate,

and easy to employ in the investigation of exascale architectures.
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We also detail the development of the first reported resident parallel

block-structured AMR library for Graphics Processing Units (GPUs). Extend-

ing the SAMRAI library using the CUDA programming model, we develop

datatypes that store data only in GPU memory, as well the necessary opera-

tors for moving and interpolating data on an adaptive mesh. We show that

executing AMR simulations on a GPU is up to 4.8⇥ faster than a CPU, and

demonstrate scalability on over 4,000 nodes using a combination of CUDA and

MPI.

Finally, we show how mini-applications can be employed to improve

the performance of production applications on existing parallel architectures

by selecting the optimal application configuration. Using CleverLeaf, we iden-

tify themost appropriate configurations on three contemporary supercomputer

architectures. Selecting the best parameters for our application can reduce run-

time by up to 82% and reduce memory usage by up to 32%.
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CHAPTER 1

Introduction

Computational simulation is an essential tool in modern scientific research, al-

lowing the validation of theories that may be too dangerous, impractical or

expensive to validate via experiment. The results of these simulations are in-

credibly valuable, and scientific simulations push scientific discovery in fields

as diverse as astrophysics, engineering and medicine. This impact drives the

desire for results to be produced as fast as possible. Additionally, many sci-

entific domains rely on time-sensitive results; if a simulation of tomorrow’s

weather takes two days to run, it won’t be particularly useful! To deliver re-

sults quickly, researchers turn to supercomputers; these machines are typically

at least one order of magnitude faster than desktop computers. Researchers in

the field of High-Performance Computing (HPC) are interested in maximising

the performance and efficiency of these machines through hardware develop-

ment, algorithmic research, and the optimisation of existing codes.

Since their inception, the performance of supercomputers has grown al-

most exponentially. These performance improvements mean that results are
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delivered faster, and gives supercomputers a new capability to solve problems

that were previously intractable due to runtime or memory constraints. The

key metric for assessing supercomputer performance is Floating Point Oper-

ations per Second (FLOPs), the number of a specific type of operation that a

computer is able to perform per-second. Floating-point operations are mathe-

matical operations involving decimal numbers, so FLOPs measures arithmetic

throughput, and is relevant in determining the performance of a scientific ap-

plication. In terms of FLOPs, the fastest supercomputer today is over 200,000

times faster than the fastest computer in 1994 [156]. Modern supercomputers

are typically constructed from a huge number of commodity components con-

nected using a high-speed interconnect. Scientific applications execute using a

collection of parallel tasks that communicate in order to share data; each task

processes a small part of the simulation data.

Although clusters of commodity processors and high-speed intercon-

nects make successful supercomputers, in 2008 Los Alamos National Labora-

tory (LANL) bought the Roadrunner machine from IBM. Not only was this ma-

chine the first to achieve a sustained performance of over one Peta (1015) Float-

ing Point Operations per Second (PFLOPs), it was the first accelerated com-

puting platform, with each node containing one conventional AMD processor

and an IBM-designed Cell accelerator. The use of accelerators wasmotivated in

part by the increasing cost of running conventional architectures; accelerators

are designed to deliver more FLOPs per Watt than a standard processor. At

the time, the Roadrunner architecture was revolutionary, but now accelerated

supercomputers appear everywhere from University campuses to the largest

supercomputer centres in the world. In June 2014, half of the ten fastest super-

computers in the world relied on a range of accelerators to achieve over 30 Tera

(1012) Floating Point Operations per Second (TFLOPs) of computational perfor-

mance [156]. One feature common to all accelerators is the large number of low

power cores that they provide. This era of many-core computing is set to con-

tinue aswe approach the nextmilestone in supercomputing: a sustainedperfor-

2



1. Introduction

Single CPU

CPU

Memory

CPU

Memory

CPU

CPU CPU

Memory

Accelerator

CPU CPU

Memory

Memory

Accelerator

CPU CPU

Memory Smaller, Faster Memory

Many-Core CPU

Larger, Slower Memory

Multiple CPUs

Heterogeneous Accelerator Unified Memory
Programmer Managed 
Non-Uniform Memory

Current and Future Node Architectures (2010-2020)

Traditional Node Architectures (1990-2010)

Figure 1.1: Traditional, current, and future supercomputer node architectures.

mance of over one Exa (1018) Floating Point Operations per Second (EFLOPs).

Figure 1.1 highlights the changes in supercomputer node architecture, from the

single- and multi-core cluster architectures of the 90s, to the more complex cur-

rent and future architectures. A key feature of many accelerated architectures

is the separation of memory into distinct regions, and managing the transfer of

data between the different memory spaces is an important consideration.

The applications used for scientific delivery are often at least 15 years

old, with some applications still being used over 20 years after they were first

developed [11, 53, 137]. To solve new, pivotal problems, computational scien-

tists and code developerswill expendmost effort adding new scientific features

to an application without necessarily considering code portability and mainte-

nance. This focus on scientific features has created a huge suite of legacy codes;

those that are written in older programming languages and without modern

software engineering principles [138, 149]. It is essential that these codes are
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updated and ported to the new many-core architectures predicted to be at the

core of HPC for the next 10 years. However, due to their monolithic nature,

ensuring these applications can run on next generation supercomputers is a

considerable challenge. Mini-applications, small computer programs that rep-

resent the legacy application, can be employed to help ease this porting effort.

The research presented in this thesis represents over three years of inves-

tigations conductedwith theAtomicWeapons Establishment (AWE), one of the

largest supercomputing sites in the UK. These investigations focus on evaluat-

ing, understanding, and improving the performance of a range of applications

on existing and future computing architectures. As we approach the exascale

era, applications must adapt in order to continue to deliver timely and useful

scientific results. This work details the development of a mini-application de-

signed to investigate some of these evolutionary and revolutionary approaches

to preparing applications for future supercomputers. The investigations are

validated on some of the largest supercomputers available in the world today

including those in the United Kingdom, and at Lawrence Livermore National

Laboratory (LLNL) and Oak Ridge National Laboratory (ORNL) in the United

States of America. The principle domain of the mini-application developed in

this work is shock hydrodynamics, a type of simulation at the core of many

applications used at AWE and other large supercomputing sites such as LANL

and LLNL.

1.1 Motivations

In the 50 years since the introduction of Seymour Cray’s CDC 1604 in 1964,

supercomputers have followed a steady trend of increasing application per-

formance. These improvements were provided by Moore’s law, the predic-

tion by Gordon Moore that the transistor density of a chip would double ev-

ery 18 months [112]. With each new generation of hardware, these transistors

were used to improve the performance of the chip, facilitating increased clock
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speeds and additional low-level parallelism increasing the speed at which ap-

plications would run. This period of significant performance improvement

every generation was known as the “free lunch”, and application developers

could rely on each new supercomputer allowing them to solve larger problems

faster [152, 153]. However, the reliability of these performance improvements

meant that research into application performance and efficient algorithms was

unnecessary to increase scientific delivery, and application developers focused

on scientific features.

In 2001, issues concerning heat dissipation andpower consumptionmeant

that clock speeds began to stall and hardwaremanufacturers instead focused on

increasing the number of processor cores on a single chip [113]. The free lunch

was over, and in some cases clock speeds even decreased in order to accommo-

date the extra hardware required to manage the increased number of processor

cores. These newmulti-core chipswidened the gap between the theoretical and

achieved performance, with typical applications performing at only a tenth of

any supercomputer’s peak FLOPs [88]. At the system, rather than the processor

scale, concerns about power consumption have led hardware manufacturers to

propose vastly different architectures to reach exascale levels of performance.

With one Megawatt of power costing around one million US dollars a year, re-

ducing the power consumption of supercomputers has a huge impact on the

total cost of ownership.

The significant shift in supercomputer designwill require sweeping code

changes andmeans that an application that is both easy tomodify yet represen-

tative is essential for discovering a path to move existing legacy applications

into the exascale era. Performance engineering is a branch of computer science

that encompasses the tools and techniques used to measure, analyse, and opti-

mise the performance of applications running on anything from an embedded

chip to the largest supercomputer. A recent branch of performance engineering

research aims to usemini-applications, small computer programs that represent

some larger application, to improve the performance of the larger application
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by proxy. Tools and techniques are applied to the mini-application to identify

optimisation opportunities. Once these optimisations are implemented and

verified in the mini-application, they can be transferred to the larger appli-

cation with the hope of seeing similar improvements in performance. In this

role, mini-applications can be seen to supplant earlier benchmarking method-

ologies where either small, micro-benchmarks or large application benchmarks

were used. Micro-benchmarks lack the representativeness of a larger applica-

tion, but if the application is too large the work required to measure, analyse,

and optimise its performance becomes significant. To date, all three classes of

benchmarks have been used to successfully optimise code performance in both

academic and industrial settings.

The subject of this thesis is the use of mini-applications to improve ap-

plication performance and evaluate future hardware. We focus on optimising

and porting a code with Adaptive Mesh Refinement (AMR), where the accu-

racy of the simulation is dynamically increased where it is most necessary. For

example, when simulating the earth during ameteor impact, the location of the

impact is themost important feature. Focusing computational resources on this

region of the simulated domain can save both time andmemory, but adds com-

plexity to the application due to themanagement of the dynamicworkload. It is

the dynamic nature of AMR simulations that make them particularly challeng-

ing to port to accelerator-based architectures. Performing these investigations

with a mini-application removes unnecessary code complexity stemming from

the features required in a production code, and allows us to focus on challenges

specific to adaptive execution on a highly-parallel architecture.

The context of this investigation into application performance and fu-

ture hardware is CleverLeaf, a hydrodynamics mini-application with an AMR

capability. The class of applications represented by CleverLeaf form a signifi-

cant proportion of theworkload at AWE, one of the largest supercomputer sites

in the UK. Similar codes also occupy large portions of total execution time at

LANL and LLNL. Our investigation is driven by the desire to reduce appli-
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cation runtime through the tuning of software parameters, appropriate hard-

ware choices, algorithm optimisation, and machine configurations. When the

improvements we identify using a mini-application can be applied to real ap-

plications, the reductions in time to solution provide a measurable reduction

in the cost associated with day-to-day operations at AWE. The research pre-

sented in this thesis is thus of interest to computer scientists, domain experts,

and management.

1.2 Contributions

This thesis makes the following specific contributions to knowledge in the field

of performance engineering:

• We present an investigation into the role of mini-applications in prepar-

ing existing production applications for future high-performance com-

puting architectures. This study describes the development and use of

two mini-applications at the University of Warwick and AWE. One of

these applications, CloverLeaf, has been released as part of the Mantevo

suite [73, 106]. We extended our study with a discussion of how a cen-

tralised repository of applications, such as Mantevo, provides valuable

infrastructure andguidance for a large collection ofmini-applications. We

illustrate the use of mini-applications in exascale application preparation

with a number of examples. This study provides application developers

with an overview of available mini-applications and a range of ways to

use them to steer application development.

• We develop the first reported shock hydrodynamics mini-application

with adaptive mesh refinement: CleverLeaf. Applications using AMR

can be characterised by their complex control logic, and developing a

mini-application with this same control flow allows us to easily inves-

tigate possible strategies for running AMR applications on future archi-
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tectures. We show that the simulation is physically accurate, as well as ac-

curate in terms of how it captures the key performance characteristics of

another AMR benchmark application. CleverLeaf has also been released

under an open-source licence as part of the Mantevo suite.

• Wedevelop the first reported residentGPU-basedblock-structured adap-

tive mesh refinement library. Specifically, we develop a set of extensions

for the SAMRAI library, and use them to extend CleverLeaf so that it

can execute with all data stored exclusively on Graphics Processing Unit

(GPU)s. These changes involve the development of classes to manage

data storage in GPU memory and novel algorithms that implement the

necessary adaptivemesh refinement operations in a data-parallel fashion.

The AMR-specific code we have developed to run on GPUs forms part of

a larger library, and as such can be applied to any other block-structured

AMR code that uses a Cartesian geometry.

• We present an investigation into applying mini-applications to influence

and predict future application performance. Using CleverLeaf, we ex-

pose and experiment with a range of application parameters and iden-

tify the most appropriate for three contemporary supercomputer archi-

tectures. These values can be used in production codes, and where this

opportunity is not available, we are able to inform code developers about

themost effective codedevelopment path for their application. This study

shows the way that mini-applications can be used to influence current

production applications. The optimal parameter values we identify can

be applied immediately for improvements in both application runtime

and memory consumption.
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1.3 Thesis Overview

This chapter addresses the fundamental motivation for the research presented

in this thesis and describes the key contributions of this research. The remain-

der of this thesis is structured as follows:

Chapter 2 presents the terms, theory, hardware and software essential to the

fields of high performance computing and performance engineering. The chal-

lenges addressed by this research largely arise from the complex combination

of programming models and hardware described in this chapter. This presen-

tation includes a thorough review of the future hardware and programming

models at the core of this thesis.

Chapter 3 describes the use of computers to simulate physical systems. We

focus on computational shock hydrodynamics, the simulation of fluids under

intense pressure and temperature conditions. Weprovide an overviewof Berger’s

adaptive mesh refinement technique, which is used to reduce the resources re-

quired to reach an accurate solution. This includes a thorough review of related

literature, and a detailed description of the mathematical techniques used to

solve Euler’s equations on an adaptive mesh.

Chapter 4 provides a comprehensive introduction to mini-applications, and

their use in exploring possible solutions for exascale code development. Mini-

applications can be used to explore new hardware, programming languages,

and programming models. They can also be used to explore application per-

formance on current supercomputers. Our research applies mini-applications

in both these contexts, and this chapter presents additional examples of the suc-

cessful use of mini-applications.

Chapter 5 presents the development of the first hydrodynamicsmini-application

with an AMR capability. This case-study outlines the physics represented by

9
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the application and the integration scheme used to advance the simulation us-

ing AMR. We describe the implementation of this scheme in CleverLeaf, and

present results that verify both the accuracy and representativeness of ourmini-

application.

Chapter 6 extends CleverLeaf to execute on contemporary GPU architec-

tures. This requires modification of the data-structures and algorithms at the

core of both the AMR routines and the hydrodynamics scheme, and highlights

the flexibility and utility ofmini-applications in investigating new architectures

and programming models. We evaluate the accuracy and performance of our

GPU-based application on over 4,000 nodes of the largest GPU-accelerated su-

percomputer in the world.

Chapter 7 demonstrates how mini-applications can be used to improve the

performance of applications on existing architectures through the selection of

optimal runtime parameters for a given architecture. With a series of bench-

marking experiments we identify hardware-appropriate values for core appli-

cation parameters. Using these parameters, we identify the increase in job

throughput and decrease in data usage that can be obtained through careful

parameter selection.

Chapter 8 concludes the thesis with a discussion of the implications of the

research presented to application developers, facilities staff, and organisation

management. We also identify and address the limitations of our research and

discuss possible directions for future work.

10



CHAPTER 2

Parallel Programming and High-Performance Computing

Since the 1960s, supercomputers have been used to solve some of the largest

computational problems in the world. At least an order of magnitude faster

than a desktop computer, these machines are used to tackle problems includ-

ing cryptography, scientific simulations, and data analysis. Thanks to the dou-

bling of transistor density every 18 months predicted by Intel’s Gordon Moore

in 1965, the performance of applications was able to growwithout explicit pro-

grammer intervention, through the increase in parallelism of the chip [112]. The

extra transistors were used to add multiple instructions units, increase instruc-

tion level parallelism, and add caches to reduce delays due to fetching data;

all features which improved application performance. At the start of the mil-

lennium, hardware limitations meant that the ever increasing transistor counts

couldn’t be used to increase the performance of a single processor core much

further. To put the transistors to good use, engineers began creating multi-core

CPUs, where each Central Processing Unit (CPU) contained multiple process-

ing cores that could run simultaneously. Parallel computers are those in which

11
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multiple parts of a program are executed simultaneously, and in the case of

multi-core CPUs, each core will execute one part of the program. Program-

ming these multiple cores is difficult without the support of some underlying

programming model.

Parallel computing is inherent in all modern supercomputer design, and

future architectures are likely to require the application to expose more paral-

lelism. Many different types of parallelism are supported at a hardware level,

including: instruction-level parallelism, where multiple instructions are exe-

cuted every clock cycle; data-level parallelism, where each instruction can oper-

ate on a different of data item; and task-level parallelism, where many threads,

processes, or programs can execute independently. The levels of parallelism

can be viewed as a hierarchy that must be exploited at all stages in order to

achieve maximum performance.

Parallel programming is a complex combination of theory, hardware and

software. In this chapter we present a detailed description of the hierarchy

of parallelism exhibited by supercomputers, along with the laws that govern

them. We also provide an overview of past supercomputer architectures and

present trends exhibited by current platforms that provide a context for the

research presented in this thesis. We describe the programming models that

support each level of parallelism, with four of these models used in the ap-

plications discussed throughout this thesis. Finally, we consider performance

analysis and engineering, detailing the use of benchmark applications in mea-

suring and improving computer performance.

2.1 Parallel Computers

Parallel computers are those that can executemultiple parts of a program simul-

taneously. This parallel execution can come in three forms: (i) instruction-level,

(ii) data-level, and (iii) task-level. Each form moves successively further from

low-level detail towards a more global view of the entire parallel machine. Par-

12
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allelism at every level is supported by a number of technologies: programming

languages, programmingmodels, and compilers; that help the application pro-

grammer use this parallelism.

Instruction-level parallelism is themost technical of the three forms, and

involves multiple instruction units and multiple independent instructions be-

ing executed simultaneously. Parallelism at the instruction level is enabled in

the processor, andmodern processors can use a number of techniques to extract

parallelism at the instruction level. Pipelining partially overlaps the execution

of multiple instructions, separating the different phases so that one instruction

is always in some part of the fetch-decode-execute cycle. Branch prediction and

speculative execution are two more advanced techniques that involve begin-

ning to compute instructions before the required data is available to determine

whether the instruction is necessary. For example, one part of an if-then-else

statement may be executed before the condition has been fully evaluated. If

the correct branch is executed then this technique avoids the stall that would

be introduced whilst waiting for the condition to be evaluated.

Whilst instruction level parallelism is responsible for much of the per-

formance provided by modern processors, the parallel programming models

considered most frequently in this thesis are task- and data-level parallelism.

We define data-level parallelism at a node level, where multiple data-items are

manipulated simultaneously by a single processor, provides a higher level of

parallelism that is amenable to programmer control. First available in early

vector-processing machines, vectorisation allows multiple data items to be ma-

nipulated in parallel, provided they are all manipulated with the same instruc-

tions.

We define task-level parallelism as communication between a number

of co-ordinating tasks that are executing simultaneously. This communication

can be explicit, where the programmermustmanually tell the tasks to exchange

data, or implicit, where the system uses knowledge of dependencies within the

program to exchange data without prompting.

13
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Task-level parallelism can also existwithin a typical supercomputer node,

where each executing thread forms a parallel task. Whilst concurrent tasks ex-

ecuting within a node can communicate using shared memory, tasks executing

on different nodes must communicate by sending data across the network.

2.1.1 Flynn's Taxonomy of Parallel Processors

To classify the possible types of parallel computer, Flynn proposed a taxonomy

based on the method of instruction and data dispatch of the processor [51]. He

described four classes of processor, each having either single or multiple data

and instruction units (see Figure 2.1). Single instruction, single data processors

(SISD) are the most simple and were common in early computers.

Vector processors (like the Cray–1) or processors with vector instruction

sets (for example Intel’s Advanced Vector Extensions) apply the same instruc-

tion to multiple pieces of data simultaneously and are considered examples of

the single instruction, multiple data class of processor. This gives rise to the

initialism SIMD, which is commonly used to describe vector-parallel comput-

ing. The third category: multiple-instruction, single-data processors (MISD)

are considered redundant due to the complexity of manipulating single data

values in parallel. Examples of MISD processors exist in fault-tolerant comput-

ingwhere the same calculation is performed in parallel and the result combined

to reduce the chances of an incorrect outcome.

The final category: multiple-instruction,multiple-data (MIMD); is an ab-

stract representation of a distributed computing architecture such as a modern

cluster. Each processor has its own local memory and the capability to execute

instructions independently of any other processor. Another term for describ-

ing this kind of execution class is single-program multiple-data (SPMD) [40],

and it is a ubiquitous description for contemporary distributed scientific ap-

plications, where multiple instances of the same program are launched with

each processing some portion of the application domain. Extending this no-

tion are those scientific applications that use a multiple-programmultiple-data

14
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(MPMD) design. These heterogenous applications use multiple programs to

compute different parts of the simulation, often combining results from the dif-

ferent programs to calculate some final result [157].

2.1.2 Abstract Models of Parallel Computation

Having a general abstract model of parallel computation allows us to discuss

different parallelmachineswithoutworrying about their specific hardware con-

figurations. This provides an architecture independent description of the ma-

chine which can be used to analyse or model application behaviour.

One of the first models of parallel computationwas the Parallel Random

Access Machine (PRAM) model [52]. The PRAM model extends the concept

of a conventional random-access memory machine to include a set of process-

ing units. Each processing unit has its own local memory, and is connected to

other processing units via a shared global memory. This simple model over-

looks many hardware features of common architectures such as non-uniform

memory access times, and contention on shared resources. Additionally, the

reality of providing a large, shared global memory is prohibitively expensive

at the scale required in contemporary computer systems.

The Bulk Synchronous Parallel (BSP) model is a successor to PRAM, and

is more complex and inherently more representative of typical parallel pro-

grams [158]. As a model, BSP represents computation as a series of global

super-steps executed by p processors. The pattern of each super-step is highly

structured, and consists of: parallel computation, taking w operations; com-

munication of h units of data between processes, which consumes h ⇥ g time

on a network of bandwidth g�1; and finally a global synchronisation barrier

with a constant time l. In practice, barrier-type communications scale with the

number of processes atO(log p). Figure 2.2 shows the general pattern for a BSP

program.

The BSP model can be used to predict the total execution time of an al-
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gorithm with S super-steps using the formula:

W +H ⇥ g + S ⇥ l (2.1)

where

W = ⌃S

s=1ws

(2.2)

and

H = ⌃S

s=1hs

(2.3)

Whilst the utility of the BSPmodel for predicting execution timehas been

succeeded by later, more accurate, approaches such as LogP [39] and LogGP [4],

as a general model for describing the behaviour of a typical parallel applica-

tion, BSP is useful. Most of the applications discussed in this thesis follow this

model. Additionally, software packages exist that provide primitives for de-

veloping BSP-based applications. The BSPLib package has been under active

development for over 10 years [74]. A recent package, MulticoreBSP, aims to
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bring the BSP model to modern multi-core processors, showing the BSP model

can still be used more than 24 years after it was initially proposed [166].

2.2 Laws of Parallel Programming

The study of parallel programming often lies at the intersection between the

practical and the experimental. Each of the programmingmodels and support-

ing technologies described here is governed by a set of laws that succinctly and

completely describe the limitations of parallel programming.

2.2.1 Amdahl's Law

Amdahl’s law, published in 1967, provides a series of equations that govern the

maximum speedup that can be achieved by a parallel programwhen compared

to its serial runtime [6]. Speedup is defined as the ratio between the serial and

parallel runtimes of a program. For N processors:

Speedup(N) =
t
s

t
p

(2.4)

where t
s

is the execution time of the program on a single processor and t
p

is

the execution time of the program on N processors. Another measure derived

from the speedup is the parallel efficiency:

Efficiency(N) =
Speedup(N)

N
(2.5)

A parallel program can be divided into two parts, one part in which the work

is parallel, and one in which the work is sequential. It is because of this that

Amdahl’s law can state the maximum speedup of a parallel program will be

determined by the runtime of the sequential part of the program:

Speedup(N)  { 1

f
s

+ fp

N

} (2.6)
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where N is the number of processors, and f
s

+ f
p

= 1 are the sequential and

parallel fractions of the program. As N tends to infinity, it is clear that the

speedup will remain limited by the sequential fraction of the program.

2.2.2 Gustafson's Law

The speedups bounded by Amdahl’s law can often be exceeded as users in-

crease the amount ofwork in proportion to the number of processors. Gustafson

recognised this, and in his 1988 paper Reevaluating Amdahl’s Law he describes

several cases where a speedup larger than Amdahl’s proposed maximum was

observed [66]. Executing an application in this fashion, known asweak-scaling,

means that each processor has a fixed local problem size, rather than sharing

part of a fixed global problem. As more processors are used, larger and larger

problems can be solved. Gustafson argued that this mode of execution is typ-

ical for many users and programs, where the size of problem is scaled to use

all available computing resources. This reasoning leads to the scaled speedup

equation:

Scaled speedup(N) =
s+ p⇥N

s+ p
(2.7)

Gustafson observed that the serial runtime of the program s will contain start-

up routines and serial bottlenecks which can make it a fixed cost that does not

grow with problem size. When considering scaled speedup, if the input size

is increased such that the parallel work p is larger than s then we will have

good parallel scalability. For a serial processor to execute this work it would

take time equal to s+ p⇥N . Figure 2.3 shows the difference between the fixed

and scaled speedup. Scaled speedup provides a theoretical basis for analysing

weak-scaled codes, which allow scientists to increase the size of the problems

they solve by adding more hardware. The ever increasing number of cores in

modern supercomputers are perfectly suited for solving huge problems using

this kind of configuration.
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Figure 2.3: Gustafson’s Law for fixed- and scale-size problems. Scale-size prob-
lems often exhibit performance that exceeds the constraints of Amdahl’s law.

2.3 Parallel Computing Hardware

Parallel computing hardware can be organised into three eras prior to today:

(i) mainframe systems, (ii) parallel vector machines, and (iii) the distributed-

memory machines. Each era defines a common hardware model, and with this

hardwaremodel comes one or more programmingmodels that allow program-

mers and applications to make efficient use of the available hardware. The dis-

tinct hardware and programmingmodelsmake transition between each era dif-

ficult, and the shift from the distributed-memory hardware model to the more

complexmany-core model of the exascale era will contain a range of challenges

from both a hardware and software perspective.

2.3.1 Mainframes

The first era of supercomputers was that of the mainframe. Mainframes are

general purpose computers designed for scientific computing. Examples of

these include early IBM systems such as the IBM 701, and the first Seymour

Cray-designed system, the CDC 1604. The CDC 6600 is considered the first

real supercomputer, and provided full separation between IO and computa-

tion. Mainframeswere serial computers, and often programmedusing intimate

knowledge of the target system and programming languages that would seem

arcane to modern computer scientists.

20



2. Parallel Programming and High-Performance Computing

2.3.2 Vector Machines

Vector computers are in the SIMD model of Flynn’s taxonomy, and execute

the same instruction on multiple data items simultaneously, giving them im-

proved performance when compared to mainframe machines. The first vector

machine developed by Seymour Cray after he left CDC, the Cray 1, is one of

the most famous vector machines and one of the most successful supercom-

puters. Programming in the vector era often meant writing custom software

to take full advantage of the vector processors, but some compilers were able

to perform sophisticated code transformations to automatically vectorise code

where appropriate. The main problem with vector machines was executing se-

rial portions of code. Since the speed of a vector processor was only realised

when processing multiple items simultaneously, serial portions of the program

(where only one data item could be processed at a time) suffered from signif-

icant slowdowns. This serial bottleneck is neatly encapsulated by Amdahl’s

Law, and occurs at both the processor and system level on modern multi-core

architectures.

2.3.3 Distributed-Memory Machines

The 1990s saw the rise of cluster computing, using cache-based reduced in-

struction set processors. Clusters are high-performance computers comprised

of commodity components and fast interconnects, and allowed a much wider

range of users to have access to the power of High-Performance Computing

(HPC) platforms. Task-parallel programming models such as Message Pass-

ing Interface (MPI) evolved to allow programmers to use these machines effec-

tively [111].

The development of these systems was driven by the fact that desktop

computer components were becoming a commodity, and the size of shared-

memory systems such as vector computers and mainframes was reaching a

cost scalability limit. Fast ethernet interconnects and the free Linux operating
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system helped allow anyone to build a supercomputer, known as a Beowulf

cluster. The distributed computing era has been the dominant hardware model

since the 90s. This has led to the development of robust programming models,

languages and all their accompanying infrastructure.

2.3.4 Many-CoreMachines and the Future of Supercom-

puters

Performance improvements in the first three eras of supercomputingwere driven

by the relentless increases predicted by Moore [112]. This period of significant

performance improvement every generation was known as the “free lunch”,

and application developers could rely on each new supercomputer allowing

them to solve larger problems faster [152, 153]. However, the reliability of these

performance increases meant that research into application performance and

efficient algorithms was sacrificed. This focus on scientific discovery rather

than application maintenance means that codes have stood still as machines

have advanced, making the switch from the distributed-memory era to future

many-core architectures harder than previous leaps.

In 2001, heat dissipation and power consumption issuesmeant that CPU

clock speeds began to stall and hardware manufacturers instead focused on in-

creasing the number of processor cores on a single chip [113]. The free lunch

was over, and in some cases clock speeds have decreased in order to accommo-

date the extra hardware required to manage an increased number of processor

cores. These new multi-core chips widened the gap between theoretical and

achieved performance, with typical applications performing at only a tenth of

any supercomputers peak Floating Point Operations per Second (FLOPs) [88].

At the system, rather than the processor scale, concerns about power consump-

tion have led hardware manufacturers to propose vastly different architectures

to provide the necessary performance. Many-core architectures are the natural

extension of the architectural trends introduced by multi-core processors, and

22



2. Parallel Programming and High-Performance Computing

consist of processors with even more cores, running at even lower frequencies.

It is now common to see an accelerator attached to a typical multi-core

processor. These devices are specialised for fast floating point performance and

have their own memory space. In 2005, Fung et al. realised that the video-

focused hardware of a consumer Graphics Processing Unit (GPU) could be har-

nessed for scientific applications through the use of complex shader program-

ming languages [54]. In 2006, NVIDIA released their CUDA programming

model and provided an easy-to-use method for programming GPUs. These

new general-purpose GPUs (GPGPUs) offered huge improvements in compu-

tational performance over a traditional chip provided the application suited the

new architecture.

Accelerated Processing Units (APUs) from AMD consist of a CPU and a

Graphics Processing Unit (GPU) on a single chip, meaning that different hard-

ware resources can be used to perform the computations for which they are

most suitable. In 2012, Intel released the Xeon Phi, a co-processor with around

60 processor cores. These cores have more in common with a typical multi-

core CPU than GPUs and can be programmed without any special program-

ming language, but as with other accelerators aim to provide more FLOPs us-

ing many slower cores. The most customised form of accelerator is a Field-

Programmable Gate Array (FPGA). These devices are produced by a variety

of manufacturers, and provide high-performance at an extremely low power

budget since the hardware is configured by the programmer to implement the

required algorithm.

Machines such as IBM’s Blue Gene series are customised for supercom-

puting. With a typical system containing many thousands of cores, each of

which has four hardware threads, a parallel job running on a Blue Gene/Q

may use up to one million concurrent threads. The nodes are connected with a

custom torus network designed to minimise the time parallel tasks will spend

communicating.

At the system level, current supercomputers exhibit a trend towards a
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mixture of custom and commodity parts. Cray’s XC30 supercomputer exempli-

fies this middle ground between a commodity cluster and a bespoke machine

such a Blue Gene. The XC30 uses commodity processing components, such as

Intel processors andNVIDIAGPUs, but houses them in custompackaging, and

connects each node using a custom interconnect for increased performance.

2.4 Parallel ProgrammingModels and Languages

Writing applications for parallel computers is a complex discipline, since the

details of the communicating processes will be left to the application devel-

oper. The software infrastructure surrounding high-performance computing

and parallel programming has grown considerable since earlymainframes, and

the incremental development used for scientific applications means that the

programming languages used have not changed for many years.

The most common languages for writing scientific applications remain

C, C++ and Fortran. Themathematical slant of Fortranmeans it is popular with

domain scientists, but the object-oriented nature of C++ often allows computer

scientists to write more flexible and maintainable code. Newer languages and

programming models have been developed to support the more complex par-

allelism present in contemporary parallel architectures.

The mapping between the three levels of parallelism to the correspond-

ing layers of the hardware/software hierarchy is shown in Figure 2.4. In this

section we focus on the software side of the hierarchy and discuss the program-

ming models and languages that can be used at each level.

2.4.1 Message-Passing

The highest level of the parallel programming hierarchy, message-passing, al-

lows processes to communicate through the sending and receiving ofmessages.

First used during the era of distributed memory machines, message-passing

provides a way for processes to share data when they no longer have access
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Figure 2.4: Mapping between hardware, software, and the levels of parallelism
in a supercomputer.

to the same shared memory. This paradigm is typically used through a soft-

ware library, with the canonical standard being the Message Passing Interface

(MPI) standard. MPI provides an explicit style of data transfer, where processes

must actively call send and receive functions in order to communicate. Other

approaches to message-passing rely on a more implicit style of data transfer.

One such approach, languages implementing the Partitioned Global Address

Space (PGAS) model, transfers data behind the scenes based on knowledge in-

ferred from the application code [136]. One example of a PGAS language is

co-array Fortran, where the implicit data transfers are supported by extensions

to the Fortran language [33]. Accessing memory on another node is given spe-

cial syntax, and the compiler and runtime can use this knowledge to transfer

data without the involvement of the programmer.

The ubiquitous nature of the message-passing model and its familiar-

ity to scientific application developers means that HPC programs are almost

always written using this paradigm, and it is often used to handle both inter-

and intra-node parallelism. This means that the same code could be used from

the start of the distributed-memory era (where single-core processorswere con-

nected) right through to the end of that era and the present day (where nodes

typically contain one or more multi-core processors).

25



2. Parallel Programming and High-Performance Computing

Serial Work

Parallel Work

Parallel Work

Parallel Work

Parallel Work

Fo
rk Serial WorkJo
in

Figure 2.5: The fork-join model used for thread level parallelism in OpenMP.

2.4.2 Multi-Threading

The second level of the parallel programming hierarchy, the multi-threading

level, is howmultiple tasks execute concurrentlywithin a supercomputer node.

As seen in Figure 2.4, this level of the model maps to the cores of a processor

and task-based programmingmodels. Task-based parallelism is most often im-

plemented using the fork-joinmodel (see Figure 2.5). Serial sections ofwork are

executed by one master thread. When a region of parallel work is encountered,

multiple threads are created and each will be responsible for some portion of

the parallel work. At the end of the parallel region there will be a synchroni-

sation before the master thread continues to execute the next serial part of the

code.

Themostwidely used task-basedprogrammingmodel inHPC isOpenMP [121].

The OpenMP standard defines a number of compiler directives that can be in-

serted into code and used as instructions to the compiler about which parts

of the code should be executed in parallel. OpenMP offers two main forms of

multi-threading: loop-based, and task-based. The loop-based style implements

the fork-join model with a specific emphasis on executing the body of a loop

in parallel. This kind of parallelism is often found in HPC applications, where

arrays representing a physical domain are processed one element at a time in

an iterative manner. The task-basedmodel allows a programmer to create mul-
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tiple task threads that process data concurrently.

Whilst OpenMP is the most popular threading model for HPC codes,

other programmingmodels and libraries exist that implement themulti-threading

model. Technologies such as Intel’s Cilk Plus, and Threading Building Blocks

provide primitives that allow a programmer to write code that will be exe-

cuted using multiple threads [82, 83]. At a lower level, the library

is the standard way of writing threaded POSIX software [114]. Whilst not as

frequently used in scientific computing, using the library allows the

programmer to write much more explicit multi-threaded code. This avoids the

thread-management overhead that is often present in the higher-level program-

ming models.

Aswell as beingused to program typicalmulti-core processors, themulti-

threading approach can be used to program massively parallel accelerators

such asGPUs. TheOpenACCApplicationProgram Interface is similar toOpenMP

and allows the application programmer to mark code for parallel execution on

a GPU through the use of compiler directives [120]. OpenCL and CUDA are

programmingmodels that rely on device-specific code being launched through

calls to a programming library on the host CPU [119, 155]. Both these models

use the single instruction, multiple thread (SIMT) approach to parallelism, and

when a device kernel is launched, each thread runs one instance of the kernel

and will operate on a separate data item.

2.4.3 Vectorisation

The lowest level of the parallel-programminghierarchyusually exposed to users,

vectorisation, allows multiple data items to be processed in parallel. This level

of parallelism can be accessed in fourways: using an auto-vectorising compiler,

using directives to provide hints to the compiler, using intrinsic language func-

tions to write high-level vector code, or writing code in assembly language and

using explicit vector instructions.

Using an auto-vectorising compiler is the easiest method of accessing
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(a) A simple loop amenable to vectorisation.

(b) The vector instructions generated for the loop body.

Figure 2.6: Vector instructions generated for a simple loop. Each vector opera-
tion (with suffix ) operates on two double-precision operands.

this kind of parallelism, however, it relies wholly on the compiler being able to

recognise code that can be vectorised. A typical target for auto-vectorisation is

a for loop. Figure 2.6 shows how a simple for loop can be converted into vector

instructions by the compiler. Each instruction operates on twodouble-precision

operands, and hence halves the number of iterations required in the loop. If it is

to be vectorised, a loop must have known bounds and independent iterations.

Since compilers are expected to produce correct code, if they cannot verify that

these conditions are true then they will abandon any attempt to vectorise the

loop. This can be frustrating for programmers, who may know that a loop can

be safely vectorised but have no way to communicate this to the compiler. In

this case, compiler directives can be used to advise the compiler that code is

safe to vectorise.

Language intrinsics alleviate this problem by allowing programmers to

use functions that will compile to one or more vector instructions in the as-

sembly language of the target architecture. Intel provides a number of intrinsic

functions for its AdvancedVector Extensions (AVX) instruction set. These func-

tions can be mixed in with C or C++ code and provide a way to more explicitly

control vectorisation without resorting to writing code in assembly language.

Writing code in assembly language allows the programmer to be absolutely ex-

plicit about which instructions are executed, but there is no access to any of the
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modern development tools that programmers take for granted. As such, this

approach may be appropriate for small and performance critical portions of an

application, but is difficult to apply across a whole application.

2.5 Performance Analysis and Engineering

Performance analysis is an important aspect of high-performance computing.

Programming supercomputers is hard, and applications rarely obtain a fraction

of maximum machine performance when first written. Additionally, the rapid

development of HPC hardware means that the foundations on which the ap-

plications are running are constantly changing. An application that performs

well on current hardware may suffer from any number of issues when moved

to a new system, perhaps with a new processor or interconnect design. Per-

formance analysis involves measuring the application performance through a

number of metrics. The simplest measure is total runtime, but more granular

measures such as number of MPI messages sent or bytes written to disk can

also be useful. Performance engineering uses the knowledge gained during

performance analysis to improve an application, most often by reducing run-

time. Reasoning about, and improving, the performance of applications is a

complex discipline with a multitude of approaches. Despite the simplicity of

abstract models such as BSP and LogP, constructing a model that accurately

represents a given application is an involved process that requires an under-

standing of both the application being modelled and the modelling technique

being used. It is in part due to this difficulty that other forms of performance

analysis are being used on the path to exascale. The formal models often fail

to capture subtleties of complex modern supercomputer architectures, and the

more direct approach of performance analysis via measurement provides ac-

tual performance data. In the context of this thesis, we consider performance

analysis by means of benchmarking; using a representative program of some

sort to measure, and then reason about, system and application performance.
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Figure 2.7: The representativeness and simplicity of the three classes of bench-
mark.

2.5.1 Benchmarks

Benchmarking is the act of measuring some aspect of a system. A benchmark

is a small program designed to stress one particular part of a supercomputer.

The output of a benchmark is a set of metrics, typically including runtime, that

can be used to infer things about the performance of the hardware being mea-

sured. In high-performance computing, more complicated application bench-

marks are often used. Production supercomputing applications are large, com-

plex, and often commercially sensitive. A benchmark provides a way to mea-

sure aspects of a prospective systemwithout needing to release sensitive source

code. Despite being smaller than production applications, the degree towhich a

benchmark represents a production application oftenmeans it will still be large.

Figure 2.7 shows the range of benchmark categories and their corresponding

simplicity and representativeness.
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Micro-Benchmarks

A micro-benchmark is designed to time specific machine components. The

most famous benchmark is LINPACK [115], and more specifically, the portable

High-Performance Linpack (HPL) implementation [48, 134]. A simple linear

algebra program first used in the 1970s, the LINPACK benchmark has become

responsible for determining which machine is classified as the fastest in the

world. Performing dense matrix-matrix operations is a good test of floating

point performance, and the output of the LINPACK benchmark is the number

of floating point operations performed per second on the system being bench-

marked. Other low-level numerical benchmarks include Livermore Loops, a

collection of small loops designed to characterise the kind of operations per-

formedbykey applications at Lawrence LivermoreNational Laboratory (LLNL) [109],

and the HPC Challenge benchmark suite [101], a set of seven tests to measure

numerical, memory, and network performance.

Another example of a micro-benchmark, SkaMPI, is used to examine

the performance of the machine interconnect using the MPI library [140]. The

benchmark can be configured to perform multiple repeated communications,

with each transfer being timed. The output of the benchmark is a set of timings,

typically grouped by message size. This data allows an engineer to examine

network performance in the machine being benchmarked. Alternative bench-

marks for measuring network performance include MPPTest [63] and the Intel

MPI Benchmarking Utility [84].

Other machine components such as memory can also be benchmarked.

The STREAM benchmark measures memory bandwidth by executing a variety

of read and write operations [107]. These operations are arguably more im-

portant that the famous FLOPs metric, since many modern codes are memory-

rather than compute-bound, i.e. they are limited by how fast they can fetch

data rather than how fast the data can be processed.

The problem with benchmarks like SkaMPI and LINPACK is that they

very rarely mimic the behaviour found in real applications. Rather than in-
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tensive sections using a small subset of the architectural capability, production

applications contain a unique mix of memory access, computation, and com-

munication. Whilst benchmarks that are cut-down (either in terms of code base

or problem size) versions of production codes can be useful, the complexity in-

herent in a production application can make it difficult to reason about its be-

haviour and attribute different performance aspects to architectural capability.

In the early 90s, the correlation between HPL and real application performance

was good, but the regular memory access patterns exhibited by the dense lin-

ear algebra kernels no longer correlate with the more irregular pattern seen in

production applications.

The recently proposed High-Performance Conjugate Gradient (HPCG)

benchmark aims to provide a more realistic mix of computation, memory ac-

cess, and communication that resembles production applications [47]. Unlike

the regular memory access pattern of HPL, HPCG contains a mix of more com-

plex communication and computation patterns that reward investment in col-

lective communication operations and the performance of the local memory

system. Both these characteristics have been shown to affect the performance

of real applications. The legacy of HPL, and its use as tool for ranking the

fastest supercomputers in the world, looks set to maintain some influence on

the HPC design space, but HPCG now provides an alternative ranking system

that should more accurately reflect FLOPs achieved by real applications.

Application Benchmarks

The benchmarks discussed so far are small in both number of lines of code,

and the scope of which parts of a machine they are designed to stress. Typ-

ical scientific codes are large, and problems of interest can have runtimes of

months. To make performance analysis via benchmarking feasible, application

benchmarks must be smaller, and problem runtimes must be in the range of

hours, rather than days or weeks. Application benchmarks aim to replicate the

behaviour of a large parallel code butwith fewer lines of code and less complex-
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ity. Examples of application benchmarks include the NAS Parallel Benchmark

Suite [12, 13], the ASC benchmarks [96], and codes such as Shamrock and Hy-

dra from the United Kingdom Atomic Weapons Establishment [41, 70].

Application benchmarks fall short of being small enough to enable the

rapid investigations necessary for future programming models and architec-

tures. Hence in this thesis we consider mini-applications, a class of benchmark

that is carefully designed to allow easy experimentation with programming

languages, programming models and machine architectures.

2.5.2 Mini-Applications

Mini-applications are small, self-contained programs that embody the key per-

formance characteristics of some key application [73]. They are a potential so-

lution to the challenges raised in understanding and improving the movement

of production codes to future platforms. Mini-apps rely on two key observa-

tions made by Heroux et al. in [73]. First, that most production applications

spend the majority of their execution time in a small percentage of the total

lines of code, and second, that much of the remaining code will be composed

of sections thatwhilemathematically different, will exhibit similar performance

characteristics.

Using these two observations, it becomes easier to write a small appli-

cation that accurately represents the most expensive portion of the application,

and combines the rest of the performance-similar sections. Mini-apps are key

tools for investigating new programming languages [87, 95] and testing new

machines and architectures [15]. They can also be used as drivers for co-design,

where software developers and hardware designers work together as super-

computers approach the exascale milestone [16, 49].

One of the first mini-apps, miniMD, is representative of the LAMMPS

production code [73]. LAMMPS is a production application for simulating

molecular dynamics that contains over 100,000 lines of code [137]. Rather than

trying to provide all the complex functionality of LAMMPS, miniMD instead

33



2. Parallel Programming and High-Performance Computing

focuses on a single algorithm that contains the core computational behaviour

of the LAMMPS code. Focusing on a few loops that contain the majority of the

computational core of the application means that the 3,000 lines of code that

comprise miniMD can be easily used as a proxy for LAMMPS in performance

engineering investigations.

Apart from the complexity of each level of the benchmark hierarchy, one

major difference is the amount of coverage provided by each category. Pro-

duction applications will contain a mixture of behaviours that stress the com-

ponents of a supercomputer in different ways. For example, some portions

of the application may stress the memory hierarchy with a series of random

access requests, while other portions may be computationally intensive and

perform calculations repeatedly with the same few data items. Different archi-

tectural characteristics can also influence the performance of different applica-

tion classes. For example, a BSP-type program that proceeds by way of blocks

of computational work with barrier-like communications at regular intervals

will be sensitive to network latency. An application that can overlap commu-

nications and computation will be less sensitive to network performance, since

the program can perform useful work while waiting for data to be transmitted

across the network.

These specific behaviours can be covered by micro-benchmarks. The

LINPACKbenchmark introducedpreviouslywould correspondwell to the com-

putationally intensive application region described above. However, whilst a

micro-benchmark may capture one specific behaviour well, it is the combina-

tion of these behaviours and their fractions that gives each production applica-

tion a unique computational profile. Larger application benchmarks will cover

multiple behaviours but the cost of this is increased complexity. With mini-

applications, the goal is to develop a minimal set of these behaviours, so that

not only the behaviours themselves are accurately captured, but also the rela-

tionship between them and the specific interplay between this combination of

behaviours and a given hardware platform.
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2.6 Summary

In this chapter we have considered the history of supercomputing and pre-

sented current trends in hardware and software. Whilst the impact of these

trends on future hardware are yet to be verified, it is clear that we are approach-

ing an age of complex new system design that will rely on new programming

languages and models. We present a description of the most pertinent mod-

els and languages, and in particular we show how these models map to dif-

ferent layers of hardware. The laws in Section 2.2 provide a theoretical basis

for evaluating application performance on supercomputers. Combined with

benchmarks, programs designed to stress one particular aspect of a computer

system, we can measure and reason about the performance of a given applica-

tion class on a certain architecture.

Typical MPI-based applications have mapped well to the distributed

multi-core architectures of the cluster era, but as clock speeds fall and paral-

lelism increases, applications must adapt to take advantage of all the process-

ing power offered by new, complex architectures. Shifting between the eras of

supercomputing has been, and will remain, challenging due to the changing

programming models, languages, and hardware, coupled with the complexity

of production codes. Performance engineering, and specifically, performance

engineering via mini-applications can offer a possible solution to exploring fu-

ture hardware and software, and providing a path to move production codes

into the many-core era of HPC.
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Computational Physics and Adaptive Mesh Refinement

Tackling the world’s most challenging scientific problems has been the respon-

sibility of supercomputers since their inception. The complex mathematical

equations that describe our physical environment are almost impossible to solve

using a pen and paper. Instead wemust turn to the thousands of numerical op-

erations per-second that can be performed by computer. To solve these equa-

tions computationally, they must be discretised. The equations are turned into

approximations and solved at a number of points in time and space (see Fig-

ure 3.1). The collection of cells and nodes formed by the spatial discretisation

is known as the mesh. Increasing the resolution, the number of points used

to represent some region (for example, the number of points used to represent

one square millimetre of space), provides a more accurate solution but requires

more resources. It is this drive towards increased resolution that requires faster

and faster supercomputers.

Solving equations at an increased resolution is more expensive both in

terms of computational time and memory used. Adaptive Mesh Refinement
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Domain
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Figure 3.1: An examplemesh used to discretise the spatial domain in a scientific
simulation.

(AMR) is a computational technique where the resolution of the simulation is

only increased in areas where it is most necessary. For example, when simulat-

ing a tsunami travelling across the ocean the location of the wave is the most

important feature in the solution. What’s happening in the rest of the ocean is

much less interesting, and the impact of the wave is either negligible or easily

approximated. An adaptive simulation would only simulate the area contain-

ing the wave at a high resolution, saving both time and memory.

In this chapter, we present an overview of the mathematical equations

solved by the applications discussed in this thesis. Our applications are all from

the domain of hydrodynamics, the study of liquids and gases in motion. There

are a range of equations that can be used to represent hydrodynamic systems,

and we present a detailed description of the Euler’s equations; those that are

used in the applications of interest to us. These equations can be solved in

a number of ways, and we present two possible hydrodynamic schemes that

can be used to solve these equations. We also motivate the use of AMR with a

number of example problems, before providing a detailed description of how

partial differential equations (used to represent the hydrodynamics systems of

interest) can be solved on an adaptive mesh.

37



3. Computational Physics and Adaptive Mesh Refinement

3.1 Computational Hydrodynamics

Hydrodynamics is the study of liquids and gases in motion. Computational

hydrodynamics involves simulating this motion using computers. This broad

field is applied to great effect in a wide range of scientific domains, includ-

ing astrophysics, climate modelling, and explosion simulations. The motion of

the liquid being studied can be described using a number of formulae, rang-

ing from Schrödinger’s equations that describe the quantum mechanical inter-

action of particles, to partial differential equations that describe the fluid at a

statistical level.

Each formula describes the motion of the fluid at a different level of de-

tails. Schrödinger’s equations are the most closely connected with simulating

the physical world since theymodel the interaction of particles. Other formulae

that describe themotion of fluids includeNewton’s law, the Liouville equation,

the Boltzmann equation, and the Navier-Stokes equations. The formula can be

solved in a variety of ways. Schrödinger’s equation, the Boltzmann equation

and the Navier-Stokes equation can be solved directly, Newton’s law is typi-

cally solved usingmolecular dynamics, and the Liouville equation usingMonte

Carlo methods.

The formulae chosen and the solution method typically depend on the

scale of interest and the density of the fluid. Oran and Boris present a study

of the validity of each of these representations [123]. For fluids with low den-

sity, Direct Simulation Monte Carlo is used, but with higher density fluids and

larger length scales, the Navier-Stokes equations provide a better description

of the system. The mean-free path—the average distance a particle can travel

between collisions—of the system of interest can be used to determine the most

appropriate equation.

The primary domain of this thesis is shock hydrodynamics, where gases

move under extreme pressures and temperatures. Defined as hydrodynamic

flow driven by strong shocks, these kinds of flows occur at hypersonic speeds
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with materials moving faster than sound. Pressure waves cannot escape the

hypersonic material flow, and build up, forming shock waves and creating dis-

continuities in all fields quantities (pressure, energy and density).

These hypersonic flows typically start in one of three ways: (i) from an

initial pressure discontinuity, (ii) from a large jump in velocity (such as a fast

body impacting a stationery body), or (iii) from a rapid increase in internal en-

ergy. Examples of the first case can be seen in the test problems described later

in this chapter. The flowswe consider can best be described using Euler’s equa-

tions (a form of the more general Navier-Stokes equations), described in detail

in the next section.

3.1.1 Euler's Equations

Euler’s equations are a set of three partial differential equations, correspond-

ing to the Navier-Stokes equations with no vorticity (rotational forces), no heat

conduction, and no viscous stress [8]. The equations describe the conservation

of mass, energy and momentum in a system:

@⇢

@t
+r · (⇢u) = 0 (3.1)

@⇢u
@t

+r · (u⌦ ⇢u) +rp = 0 (3.2)

@E

@t
+r · (u(E + p)) = 0 (3.3)

Here, ⇢ is the material density, p is the pressure, E is the total internal energy,

and u is the velocity. This system of equations is closed with a fourth equation,

the equation of state, that relates the pressure and energy of the material. The

simplest state equation is the ideal gas equation:

p = (� � 1)⇢e (3.4)

where � is the ratio of specific heats (the ratio of the heat capacity at constant

pressure to the heat capacity at constant volume), and e = E/⇢ is the specific
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time

Figure 3.2: The difference between the Lagrangian and Eulerian hydrodynam-
ics schemes. Note the lack of the remap to the original grid in the Lagrangian
scheme.

internal energy (energy per unit mass).

Choosing a suitable set of equations for representing the motion of the

fluid is only the first step in solving a computational hydrodynamics problem.

Euler’s equations can be solved using one of many hydrodynamics schemes.

The two most common approaches are the Lagrangian and Eulerian schemes.

Webriefly describe both, anddiscusswhy ahybrid Lagrangian-Eulerianmethod

is used in CleverLeaf.

The Lagrangian and Eulerian schemes differ most in their frame of ref-

erence. In a Lagrangian method, one can think of the simulation mesh as being

embedded in the fluid flow. Themesh nodes movewith the fluid, providing an

accurate representation of some features (such as interfaces between multiple

materials) as mesh nodes gather near areas of interest. In an Eulerian method,

the simulation mesh is fixed, and rather than the mesh nodes moving with the

fluid, the fluid flows through the cells. Figure 3.2 shows the difference between

these two schemes pictorially.

The main benefit of using an Eulerian hydrodynamics scheme, particu-

larly in shock hydrodynamics, is that the simulation is numerically robust. In
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the Lagrangian case, since the mesh nodes move with the fluid flow the mesh

can become tangled, with mesh cells turning inside out. This is a numerical

impossibility that will cause the simulation to fail but can be avoided with a

fixed Eulerian mesh. However, the key weakness of an Eulerian scheme is that

the mesh, and hence the simulation resolution, is fixed. A Lagrangian scheme

will naturally refine around features in the solution due to themovement of the

nodes. By applying AMR to the Eulerian method we can partially mitigate this

weakness.

At the implementation level, an Eulerian method can use a much sim-

pler mesh, and data layout is known implicitly. The structured mesh can easily

be represented by an n-dimensional array, providing fast, regular data access

patterns. The computational stencil required to update each point is fixed al-

lowing for further optimisations to be applied. A Lagrangian application lacks

this mesh structure, and often requires array indirection when accessing mesh

data. Nodes, edges, and cells may be stored as lists with connectivity between

elements being defined explicitly. Our CleverLeaf mini-application is designed

to be representative of Eulerian shock hydrodynamics codes using a hybrid

Lagrangian-Eulerian scheme, and hence we use this method.

3.1.2 Lagrangian-Eulerian Scheme

We solve the Euler equations on a staggered-grid using a predictor-corrector

method that is second-order accurate in both space and time. This Lagrangian-

Eulerian method is good for simulations involving strong shocks, and is used

in many production hydrodynamics codes including CTH and BBC [108, 151].

Despite the Lagrangian step used in the first half of the algorithm, this method

is considered Eulerian since mesh nodes remain stationary. In this section, we

present a description of the computational grid, and an overview of the numer-

ical algorithm. Details specific to adding AMR to this scheme are reserved for

Chapter 5.
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⇢, p, e

u

Figure 3.3: Cell variable positions in the Lagrangian-Eulerian scheme. The ve-
locity vectors (u) are defined at the cell vertices, and the scalar fields: pressure
(p), specific internal energy (e), and density (⇢) are defined at the cell centers.

Grid Description

The equations are solved on a staggered grid, where each computational cell

has the form shown in Figure 3.3. The velocity vector, u is defined at the cell

vertices. Each scalar field: pressure p, energy e, and density ⇢; is defined at the

cell centres.

Timestep Control

The timestep control uses the Courant-Friedrich-Lewy (CFL) condition; the

maximum sound speed is an upper bound for�t, and the timestep is thus lim-

ited to the time it would take for the the fastest sound wave to cross a cell [37].

Since �t is calculated using the current data a multiplicative safety factor is

used to ensure that the timestep remains within the stable limit for the whole

timestep. Two additional tests are applied to the timestep: the first to ensure

that no two vertices can cross as the mesh deforms; and the second to ensure

that a cell cannot deform to the point that its volume will become negative. In-

tuitively, the chosen timestep ensures that a cell cannot turn “inside-out” due

to the motion of the vertices during the Lagrangian step.
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Lagrangian Step

TheLagrangian step is performedusing a secondorder predictor-corrector scheme,

where the solution is advanced by half the �t to provide an estimate of the

mid-step energy and density. These values are used to evaluate the equation

of state to produce a half-step pressure (called the predictor). The gradient of

these pressures is then used to calculate the acceleration and a half-step velocity

on each node (the acceleration step). The start of step grid is now advanced by

this half-step velocity for the full timestep; this is the corrector. The advantage

of the predictor-corrector method is that all mesh variables finish at the same

time level, unlike a leapfrog method, where cell and node centred variables are

always half a step apart [26].

Advective Remap

Remapping the Lagrangian solution back to the Eulerian grid is accomplished

with two one-dimensional sweeps (in the x and y dimensions), where the trans-

port of mass, internal energy, and momentum across cell boundaries is calcu-

lated. Splitting the advection into separate x and y sweeps allows Van Leer’s

monotonic 1D method to be used [159]. Because the grid is not actually de-

formed, edge-centred velocity values are used to approximate the volume of

material swept through a face, and these volumes are used to transport mass

and energy back into the cell.

The momentum advection is used to remap nodal velocities from their

Lagrangian position back to the Eulerian mesh. This takes place on the stag-

gered grid, since node-centred velocity values are updated. Momentum is ad-

vected and then converted back to velocity to ensure conservation of momen-

tum. This advection scheme conserves mass, internal energy and momentum

but kinetic energy is not conserved due to the staggering of mass and velocity

in a cell.
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Algorithm 3.1 Lagrangian-Eulerian hydrodynamics scheme.
while t < t

end

do
Evaluate equation of state
Calculate stable �t
 
Lagrangian step
Predictor
Evaluate equation of state at t = n+ 1

2
Acceleration
Corrector
Calculate fluxes

Advection step
Cell-centred advection
Momentum advection in x
Momentum advection in y
Cell-centred advection
Momentum advection in x
Momentum advection in y

end while

3.1.3 Test Problems

To verify the accuracy of a computational physics application, test problems

with analytic solutions are often used [9, 29, 53, 91, 165]. A problem having

an analytic solution means that when the initial conditions are substituted into

the equations of interest, Euler’s equations in this case, the resulting system of

equations can be solved exactly and does not need to be approximated. Given

some exact solution, we can solve the same problem in our application and

check that the results are the same as the analytic solution, or at least converge

towards it as the resolution of the simulation increases.

In this thesis, weuse three test problems: Sod’s shock tube problem [147],

Woodward and Colella’s interacting blastwaves problem [165], and the Sedov

blastwave problem [144]. All three problems are single-material problems con-

taining multiple regions of ideal gas with � = 1.4. Both Sod’s shock tube prob-

lem and the Taylor-Sedov blastwave problem have analytical (exact) solutions.

TheWoodward-Colella interacting blastwaves problem can be solved to mesh-

convergence, meaning that once a certain resolution is reached the numerical
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⇢l = 1, pl = 1 ⇢r = 0.125, pr = 0.1

1

0.5

Figure 3.4: Initial conditions for Sod’s shock tube problem.

answer will no longer change. A problem of this type is useful for evaluat-

ing how quickly the results produced by an application converge towards the

correct answer as the resolution of the simulation is increased.

Sod's Shock Tube

The shock tube problem described by Sod provides a good test of a code’s abil-

ity to capture contact discontinuities, shocks, and the rarefaction profile [147].

Consisting of two regions of fluid of different initial densities and pressures, the

fluids are initially at rest, with the initial conditions being specified as follows

(see also Figure 3.4):

⇢
l

= 1 (3.5)

⇢
r

= 0.125 (3.6)

p
l

= 1 (3.7)

p
r

= 0.1 (3.8)

The interface is at the point x = 0.5 and � is 1.4 throughout the problem. At

time t > 0 the two regions begin to interact, with a shock wave forming and

travelling towards the right-hand boundary of the domain.

Woodward-Colella Interacting Blastwaves

Despite not having an analytic solution, Woodward and Colella’s interacting

blastwaves problem can be easily solved to convergence [165]. The interact-

ing blastwaves problem consists of a two reflecting walls separated by distance

unity. The density ⇢ = 1.0 throughout the problem, and three regions of ideal
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1
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pl = 1000 pr = 100pm = 0.001, ⇢ = 1

Figure 3.5: Initial conditions for the Woodward-Colella interacting blastwaves
problem.

gas with different initial pressures are used to create the strong shocks (see Fig-

ure 3.5). The initial pressures in the left, middle and right regions of the domain

are:

p
l

= 1000 (3.9)

p
m

= 0.001 (3.10)

p
r

= 100 (3.11)

The left region makes up the leftmost tenth of the volume; the right region, the

rightmost tenth. The ratio of specific heats � = 1.4.

Sedov Blastwave

The Sedov blastwave problem involves the self-similar evolution of a cylin-

drical blastwave from an initial point source of energy [144]. For an Eulerian

hydrodynamics application, the particular challenge in simulating the Sedov

problem comes from the circular shape of the shockwave, something which an

Eulerian mesh can only approximate. We simulate a quarter of the problem,

with the initial energy deposited in a single cell at the origin. The specific inter-

nal energy of the cell is set such that the total energy deposited is 0.25. Using a

resolution of �x = 0.01 means that the specific internal energy e of the cell is

set to 2500. All other cells are given energy e = 0. Density ⇢ is unity throughout

the domain. These initial conditions are shown diagrammatically in Figure 3.6.

The shock wave should reach radius r = 1.0 at time t = 1.0, and hence we run

our simulation to this physical time.
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e = 2500,
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Figure 3.6: Initial conditions for Sedov’s blastwave problem.

3.2 Adaptive Mesh Refinement

Adaptive mesh refinement (AMR) is a computational technique used to in-

crease the accuracy of a simulation in the areas of a problem where it is most

effective. Applyingmore computational resources to select parts of the domain

means both application runtime and memory usage can be reduced. Devel-

oped by Berger et al. [21, 23], block-structured AMR has been successfully ap-

plied to domains including cosmology, astrophysics, and shock hydrodynam-

ics [28, 53, 139]. For simplicity, throughout this thesis we use the terms adaptive

mesh refinement and AMR to refer to the block-structured method unless ex-

plicitly stated.

Quirk illustrates the benefits of AMR with the example of a detonation

rate stick [139]. The area of interest (the detonation front) is only 0.02mmwide,

but thewhole stick is 100mm long and 100mm in diameter. If the entire domain

was simulated at the resolution necessary to resolve the detonation front, over

one billion mesh cells would be required. Applying AMR to this problem re-

duces the total number of cells to around 100 thousand, allowing huge savings

in simulation time and memory use. Other domains in which these disparate

scales are observed include astrophysics (stars in galaxies), military applica-

tions (small projectiles impacting much larger structures), and laser fusion ex-

periments. Using AMR can improve runtime and decrease memory usage by

reducing the amount of cells necessary to solve a problem with the required
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accuracy. In all the domains mentioned, interesting scientific problems can be

intractable without AMR because of the scale of the calculations required. Im-

proving the performance of AMRwill allowmore of these important problems

to be solved without increasing resource usage.

Themethod proposed by Berger provides a flexible way of solving a sys-

temof equations on a sequence of nested, logically rectangular grids, alongwith

a procedure for managing and updating these grids as areas of interest move

through the problem space. As in Berger et al. [21, 23], we provide a formal no-

tation for these grids. The coarsest grid is the base grid, specified at the start of

the computation and denotedG0. It may be composed of several possibly over-

lapping patches. This base grid remains fixed throughout the simulation. Each

component patch is denoted G0,j , and thus G0 is the union of its components

G0,j :

G0 = [
j

G0,j (3.12)

During the simulation, refined sub-grids of patches will be created in response

to features in the solution. Sub-grids are not placed in the coarse grid, but on top

of it. Each sub-grid is defined independently and has its own solution vector,

and can be advanced almost independently of all other grids. These indepen-

dent grids provide a natural method of domain decomposition allowing for

easy parallelisation of the algorithm.

Fine sub-grids can contain finer sub-grids within their boundaries. Sub-

grids are recursively generated to provide the necessary level of refinement,

creating a hierarchy of grid levels. The coarse grid G0 is at level 0 in the hier-

archy. Sub-grids of G0 are part of G1 and are described as level 1 refinements.

Refined grids within G1 are at level 2. A nested sequence of sub-grids may be

created to cover a portion of the domain. Figure 3.7 shows an example hierar-

chy containing three grid levels.

Themesh spacing, or resolution, h
l

for each grid level l is normally spec-

ified in advance, where each h
l

is an integer multiple of h
l�1. The relationship
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(a) Simple adaptive mesh. Each
grid patch has a thick outline.

G0

G1

G2

(b) Full hierarchy of three grid lev-
els for the simple mesh.

Figure 3.7: Example adaptive mesh and the corresponding grid hierarchy.

between the mesh spacing at each level is typically specified as the refinement

ratio:

r
l

=
h
l�1

h
l

(3.13)

Grids at different levels of the hierarchy must be properly nested. A fine grid

must start and end at the corner of a cell in the next coarser grid, and theremust

be at least one level l � 1 cell separating a grid cell at level l from a cell at level

l� 2 in any direction unless the cell is at the physical boundary of the domain.

The proper nesting requirement does not require a fine grid to be contained in

only one coarse grid, so one fine grid may be nested in two or more coarser

grids.

Refinement of the grid is arranged around a hierarchy of levels. Fig-

ure 3.7b shows an example adaptive hierarchy containing three levels. Each

level is a collection of cells at the same resolution i.e. each cell has the same

physical size. Levels are often described by their relation to the current level

being considered. Levels with a higher resolution are described as finer, and

levels with a lower resolution are described as coarser. The coarsest level of

refinement, level 0, will always cover the whole problem domain. The resolu-

tions of the levels are related by the refinement ratio, which defines the factor

of increase in resolution between two levels. For a given refinement ratio r and

level n, there will be rn cells in each dimension for every single cell on level 0.
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In Figure 4.3b the refinement ratio is {2, 2}, hence on level 2 there are 4 cells

in each dimension for every level 0 cell. A pair of refinement ratios is used to

describe the possibility for different ratios in each of the problem dimensions.

3.2.1 Berger's Integration Algorithm

First, an initial hierarchy must be created. To create the patch hierarchy, cells

of interest on the coarsest level are tagged. The tagged cells are then clustered

into a large rectangular region, which may also contain untagged cells. This

large region is repeatedly split along its largest dimension until the percentage

of tagged cells (the efficiency) reaches a certain threshold. This collection of

patches will then form the new finer level. This procedure is repeated until the

maximum number of levels is reached.

Each patch can be advanced through the integration step independently

of any other, and the timestep provides an implicit synchronisation point for the

levels. The equations are solved in exactly the sameway on every patch as they

would be solved in a simulation without AMR, regardless of the refinement

level and physical position of the patch within the problem domain.

To parallelise the algorithm, the fact that each patch can be advanced

independently is used, and patches are shared between MPI processes. Each

patch will require some halo data which exists in additional cells around the

patch edge. The halo data provides boundary conditions for the system of par-

tial differential equations. Halo data for each patch can be filled in one of three

ways: (i) with the physical boundary conditions, (ii) with the data from a neigh-

bouring patch on the same level, or (iii)with the data fromaneighbouring patch

on the next coarsest level. When data is transferred between levels itmust be in-

terpolated to correctly fill the increased number of smaller cells on the fine level.

At the end of the integration step, the more accurate fine solution is transferred

to the coarser levels in the hierarchy.

Areas of interest in problems are rarely static, so the hierarchy must

evolve throughout the simulation to ensure that the interesting areas of the
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problem remain covered with the finest resolution cells. To adapt the grid, a re-

gridding procedure is used. Regridding begins by tagging cells for refinement,

and clustering these tagged cells into a large, rectangular region. This region is

then split along its largest dimension until the required efficiency threshold of

tagged cells is reached. Unlike the initialisation of the hierarchy, the regridding

procedure is applied from the finest level down to the second coarsest. This

ensures that the new fine level is always fully nested within the next coarser

level. Once the new patches have been created, the solution can be transferred

over from the old hierarchy. In cases where a given cell continues to exist at the

same resolution, data can be copied directly from the previous hierarchy. In ar-

eas newly covered by the fine mesh, data is interpolated from the next coarser

level. The simulation continues in this fashion, advancing and regridding until

the desired end time is reached. Algorithm 3.2 summarises the AMR integra-

tion algorithm.

Algorithm 3.2 AMR integration algorithm.
while t < t

end

do
Calculate stable �t
for l = 0 to l

max

do
Set boundary conditions for l
Integrate l

end for
for l = l

max

to 1 do
Coarsen l to l � 1

end for
if Regrid then
for l = l

max

� 1 to 0 do
Regrid l

end for
end if

end while

3.2.2 AlternativeAdaptiveMeshRefinementApproaches

The block-structuredAMR technique presented by Berger is only one of a num-

ber of approaches for managing the solution of partial differential equations of

an adaptive mesh. Cell-based AMR takes a much more fine-grained approach
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Block Structured AMR Cell-Based AMR Tile-Based AMR

Figure 3.8: Mesh configurations for block-structured, cell-based, and tile-based
AMR.

to adapting the mesh, with individual cells being split into finer cells. This

means that meta-data can bemanaged using a tree, which provides muchmore

explicit connectivity between a cell and its neighbours and children. Whilst this

reduces some of the meta-data management complexity, it does mean that data

will no longer be stored contiguously in memory. Additionally, a cell-based

AMR approach will require a modified integration algorithm to deal with dis-

joint nodes at level boundaries. Applications using cell-based AMR include

RAGE and CLAMR [61, 116].

The other approach for supporting AMR is a combination of the block-

structured and cell-based approaches. By using tiles, which can either be seen as

fixed-size patches or regular clusters of refined cells, the meta-data associated

with each tile can be known explicitly, since all possible tiles are known in ad-

vance. Tiled AMR can be stored using a tree structure, as in PARAMESH [103],

or it can be used as a constraint on a more general patch-based library, with the

additional assumptions that are valid being used to increase application perfor-

mance. Applications using the tiled approach include the Arches code, based

on the Uintah framework [81, 100], and FLASH [53].

Figure 3.8 highlights the different mesh configurations that might be

generated in each of the three schemes. The units of work (patches, cells, or

tiles) are outlined. While a cell-based scheme allows the fewest total number of

cells, the patch-based and tile-based schemes provide more regular patterns of

computation that can be more efficient.

As well as more complex numerics, AMR adds a number of compu-
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tational challenges to an application. Additional housekeeping code, associ-

ated with managing an adaptive mesh must be added, and can become a large

proportion of simulation runtime. The nature of an AMR simulation revolves

around themanagement of dynamic computation anddata structures thatmust

be mapped to hardware. On current architectures, fast serial cores mean that

this dynamic behaviour does not cause problems. However, on future archi-

tectures like graphics processing units, managing this data (and possibly trans-

ferring it between memory spaces) could add complexity to the code and add

overhead to the simulation.

Each AMR approach outlined above has different implications for how

it will map to future hardware. The patch-based approach we use in this thesis

is amenable to GPUs, with patches forming large, contiguous chunks of work.

The tile-based approach has these same benefits, with the additional advantage

of all units of work being a regular size. These regular sized units of work can

be easier to load balance. The cell-based AMR approach is the most dynamic,

and possibly the most difficult to map to future hardware, since the compu-

tational stencil used on each cell is entirely dependent on its neighbours. In-

vestigating these issues and determining how to map a dynamic application to

complex future architectures is an essential research area as High-Performance

Computing (HPC) approaches the exascale era.

3.2.3 Adaptive Mesh Refinement Libraries

Supporting adaptive mesh refinement in an application requires managing a

large amount of dynamic, complex, and distributed data. Abstraction in the

software is often used to provide flexible implementations of key components

such as a patch. This means that AMR functionality is well suited to being en-

capsulated in a purpose-built library. Many existing libraries provide the con-

cepts necessary to construct a structuredAMRapplication, includingChombo [35]

from Lawrence Berkeley National Laboratory, SAMRAI [164] from Lawrence

Livermore National Laboratory, and PARAMESH [103] from NASA Goddard
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and Drexel University.

Extending an application to support AMR adds additional housekeep-

ing code, associated with managing an adaptive mesh. This metadata and

bookkeeping overhead can become a large proportion of simulation runtime.

Reducing the cost of storing and managing the metadata required to advance

a simulation on an adaptive mesh is an active area of research, and there are

a number of possible techniques used to help ensure that the required algo-

rithms and data structures are scalable [65, 99, 100]. For example, the metadata

about the location of patches in the hierarchy can be distributed, saving space

but adding complexity [64]. Using a library means that users and application

developers are no longer responsible for writing this complex code, and can

instead focus on scientific and domain-specific concerns.

The components found in the AMR hierarchy provide a convenient pro-

gram design template, allowing concepts to be encapsulated inside classes,

such that most of the program code can act on these objects with some level

of abstraction. Development of AMR libraries focuses on both scalable im-

plementations of the core AMR algorithms: regridding, synchronisation, and

boundary conditions; as well as on the usability of the package from a user

perspective. Here we present an overview of current AMR libraries.

TheAMRsoftware released byBerger contains all the numerical routines

needed to implement AMR for hyperbolic conservation laws in two- or three-

dimensions [19]. However, this Fortran package is not designed to provide an

object-oriented view of AMR concepts, and as such, can make it more difficult

to integrate with existing applications, or to ensure that new applications are

written in such a way as to be extensible and easy to maintain.

The AMRCLAW library is a general framework for simulating wave

propagation algorithms on an adaptivemesh, and used formodelling tsunamis

and other ocean phenomena as part of the GEOCLAWsoftware [20, 22, 32]. The

AMR implementation follows Berger’s original formulation but with some spe-

cific modifications for the simulation of wave propagation.
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The BoxLib library from the Center for Computational Science and En-

gineering and Lawrence Berkeley National Laboratory (LBNL) was the first of

these more component-based libraries [38]. BoxLib provides abstractions for a

programmer to use when creating an application: a global index space, rectan-

gular regions of the index space, data defined on the regions of the index space.

Each of these abstractions is a class, so also provides a set of operations that pro-

vide an intuitive way to work with the data. Based in part on the work of the

BoxLib developers, Chombo is another C++ AMR framework from LBNL. De-

signed around supporting parallel AMR calculations at a range of scales, the

Chombo framework has been used for both domain-specific scientific simula-

tions, as well as research into scalable AMR techniques [34, 160]. The Berkeley

libraries have provided a well designed set of abstractions for AMR that are

used by many other libraries.

The AMROC package is a generic block-structured AMR package writ-

ten in C++ [44, 45]. AMROC’s design focuses on the definition of routines that

will advance the simulation on a single patch. These routines are primarily

the numerical integrator, the physical boundary settings, and the initial condi-

tions. The AMROC package adds an additional constraint by not distributing

refined patches to a processor other than that which owns the coarse region of

the domain. This constraint means that most of the AMR algorithm can be per-

formed locally, avoiding the complex communications required when patches

are distributed. However, the problemwith this approach is that it may lead to

load imbalance. Nevertheless, the AMROC package has been used to perform

detonation simulations in parallel on up to 48 processors [43].

The PARAMESH package, from Drexel university and the NASA God-

dard Space Flight Center, contains a set of Fortran subroutines designed to

allow a developer to extend an existing serial application with AMR capabil-

ity [103]. Rather than allowing arbitrary patches, PARAMESH uses a fixed sub-

grid approach, where grids can be toggled on and off, dependent on whether

or not they contain an area of interest. Each sub grid is identical in logical struc-
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ture to its parent, so a grid containing 6⇥4 cells would be refined into four 6⇥4

sub-grids, where the spatial resolution is twice as fine.

The Structured Adaptive Mesh Refinement Application Infrastructure

(SAMRAI) package from Lawrence Livermore National Laboratory is a collec-

tion of AMR abstractions, with design roots in the work of the Berkeley devel-

opers [78]. Like Chombo, SAMRAI is used both as a framework for algorith-

mic research in AMR and for large scientific simulations. The US Department

of Energy’s Exascale program, and the close working relationship that the Uni-

versity of Warwick has with members of Lawrence Livermore National Lab-

oratory meant we selected the SAMRAI package when designing CleverLeaf.

The SAMRAI library is described fully in Chapter 5.

Adaptive mesh refinement can also be supported using dynamic run-

time systems, such as Charm++ and Uintah [100, 125]. Charm++ organises

computation around the concept of migratable objects, which are created by

dividing the problem space up into chunks of work. The objects are assigned

to processors, and relationships created between the objects allow for commu-

nication of boundary conditions. In an AMR application, the concept of mi-

gratable objects maps neatly to patches. Uintah uses a task-graph approach to

describe computational tasks and data communication. A scheduler can then

assign tasks to processors based dynamically, allowing for a high-degree of par-

allelism. As with Charm++, using tasks to represent patches allows the devel-

opment of AMR applications within Uintah. Other dynamic runtime systems

include Overture and GrACE [68].

3.3 Summary

In this chapter we have described the partial differential equations used to rep-

resent the motions of fluids, and shown how they are solved computationally.

Understanding hydrodynamics is essential in a range of industrial and research

contexts such as astrophysics, defence, and the oil and gas industries. The dis-
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cretisation of the equations influences the accuracy of the solution, but a high-

resolution calculation requires more computational resources. AMR is a tech-

nique used to only increase the resolution of a computational simulation in ar-

eas where it will be most effective. Combined with the observation that most

scientific domains exhibit this locality, where important problem features such

as shock waves are confined to a small portion of the domain, we are able to

reduce the number of resources required while maintaining solution accuracy.

Wediscuss Euler’s equations, one formof equations describing fluidmo-

tion, and present an outline of the solution scheme used in the two hydrody-

namicsmini-applications described in this thesis. SupportingAMR in an appli-

cation requires managing a large amount of dynamic, complex, and distributed

data and software-level abstraction can provide flexible implementations of key

components such as a patch. We consider examples from the literature of avail-

able AMR libraries, and discuss the AMR library we chose to use for the work

presented in this thesis.

WhilstAMRhas the potential to deliver results faster, it requires complex

communication andmanagement to ensure that the simulation is advanced cor-

rectly. This complexity can harm application performance, and understanding

and improving this performance on current and future architectures is an issue

at the core of this thesis.
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CHAPTER 4

Performance Engineering with Mini-Applications

The United States of America’s Department of Energy has maintained that ex-

ascale computing power (1018 Floating Point Operations per Second) will be

ready to use in the next decade [5, 89]. Whilst vendor technology roadmaps and

research and development strategies are tightly protected by non-disclosure

agreements, it is accepted that the first exascale systems will look dramatically

different to traditional supercomputer architectures [89]. Some predictions for

an exascale architecture feature accelerator-type devices with slower process-

ing cores and vastly increased opportunities for executingmany instructions in

parallel. Multi-level memory hierarchies may be used, offering complex tiers

of memory performance on-node. The network infrastructure will be fast and

may be connecting millions of cores across the full system. With this huge core

count comes a reduction in themean time between failures: even if the expected

failure rate of a single processor core is low, when there are over one million

cores in the system, the failure rate of the machine could become a significant

issue [146].
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One example of a machine similar in style to the predicted exascale ar-

chitecture is Sequoia, an IBM Blue Gene/Q at Lawrence Livermore National

Laboratory. However, it still lacks some of the more novel features such as

low-powered accelerator-type processing cores and a complex memory hierar-

chy. Investigating these kinds of systems now is essential in preparing for the

complexities future supercomputers will introduce.

In this chapter we discuss the problems faced when porting production

codes to future architectures, with a particular focus on the exascale machines

predicted to arrive in the next five years. We introduce mini-applications—

small, self-contained programs that represent the performance characteristics

of a production application—as a possible solution to this problem. The value

of mini-applications is fully realised when they are carefully applied to con-

sider specific questions; this requires guidance and some high-level organisa-

tion. We describe the Mantevo project, a collection of mini-applications from a

wide-range of scientific domains, one provider of this required direction. Two

of the mini-applications in the Mantevo suite were developed at the Univer-

sity of Warwick and the Atomic Weapons Establishment (AWE) as part of this

thesis, and we use these as examples of how mini-applications can be used to

solve the problems of moving production codes to future architectures.

4.1 Production Applications and Future Archi-

tectures

Production applications are full-featured software packages, used on a daily

basis in research and industry to further scientific discovery. These applica-

tions are large, both in terms of the number of lines of source code they con-

tain and the size of the scientific output they produce. The next few hardware

generations of supercomputers predicted to arrive in the exascale era will look

dramatically different to today’s clusters, with much higher levels of on-node

parallelism, slower (butmore power-efficient) processing cores, complexmulti-
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level memory hierarchies, and fast network fabrics. Porting legacy applica-

tions to these architectures will not simply be a case of recompiling existing

source code. Instead, extensive modification and optimisation of the applica-

tion code will be required. This modification may require different program-

ming libraries or languages (as evidenced by CUDA, OpenACC, or OpenMP)

or it may involve modifications at an algorithmic level which fundamentally

change how a given application produces its scientific output. This porting

problem affects old applications most seriously, as newer programming mod-

els can providemore flexibility in allowing the same application code to be used

on multiple architectures.

Regardless of the scale of the changes that will be required, any changes

to a production application are difficult to implement. The primary program-

ming difficulty is the number of lines of source code, but this kind of obstacle is

often far smaller than the extensive validation and verification required when

a production application is changed. Organisations rely on these applications;

any changes must not adversely affect their scientific output.

Since high-performance computing applications are focused on scien-

tific discovery, application developers will prioritise adding scientific features

to an application, often at the expense of the maintainability and performance

of the code. These applications have a large number of lines of source code

and will often rely on other software libraries, creating complex dependencies

between various applications. The size of production applications means that

they take a long time to compile, and produce large executable files. We need

an effective and appropriate path to move these codes towards exascale.

4.2 Mini-Applications

In Chapter 2 we saw thewide range of benchmarks that already exist and could

potentially be used to move production codes towards exascale. The pitfall to

using a benchmark for making difficult decisions regarding the development
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Problem: Solution:
Area Production code Mini-Application

External interactions Commercially sensitive Open-source

New languages and programming
models. Simulations. Compiler tuning.
Node and network scalability studies.

>100,000 LOC <10,000 LOC
Library dependencies Standalone code
Large executable Small executable
Long runtimes Short runtimes
Large input files Self-contained test problems

Table 4.1: The solutions mini-applications provide to the problem of porting
production codes.

of a production application is that benchmarks are too small to capture the key

aspects of the performance of a particular application. The range of interact-

ing computational behaviours that a production code contains means a single

benchmark will not be representative of the application as a whole. Bench-

marks are often less representative of the actual numerical algorithms found in

an application, even if their performance characteristics are representative. By

containing so few lines of code, there is little chance for a benchmark to contain

anywhere near the complexity of an application that is dictated by the science

it performs.

Consider the LINPACK benchmark [115]: whilst a stalwart of the High-

Performance Computing (HPC) benchmark roster, it bears little resemblance to

real applications. LINPACK, which solves a dense linear system of equations,

runs at up to 90% of a supercomputer’s peak theoretical Floating Point Oper-

ations per Second (FLOPs). In practice, a production application may achieve

as little as 1% of the peak theoretical FLOPs available, and studies report be-

tween 5% and 10% of peak [88]. This is not necessarily a result of poor pro-

gramming, as many codes must contain complex control code or lots of mem-

ory access; both of which reduce the number of floating point operations that

are performed in a given time period.

Mini-applications provide the functionality of a benchmark with more

resemblance to real applications. A mini-application is a small application that

models a key performance aspect of a parent production application. Like a

low-level benchmark, a mini-application is small and simple. Much of the
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scientifically-relevant code found in a production application can be removed,

and what is left are small computational kernels that are equivalent in loop

structure, data access patterns, and communication requirements. Whilst the

easiest observedmetric from amini-application is still the total wall-clock time,

a mini-application can also provide a breakdown of runtime performance, en-

abling an engineer to attribute performance to different machine components.

Mini-applications are small, but only small enough to capture the key

performance characteristics of an application. This means that they remain

representative, but with far fewer lines of code. LAMMPS is a production ap-

plication for simulating molecular dynamics that contains over 100,000 lines

of code [137]. LAMMPS has a mini-application, miniMD, that contains less

than 3,000 lines of code [73]. Being small means that investigating program-

ming and portability issues on future architectures becomes viable. Most mini-

applications can be rewritten in a few weeks. Performing the same study with

a production application would take years, and would then require years of

verification and validation.

To the extent that theymimic the uniquemix of computational behaviours

found in production codes, mini-applications are representative. Rather than

being intensive benchmarks that only stress a small subset of hardware com-

ponents, mini-applications aim to emulate the mix of memory access, compu-

tation, and communication found in a key production code. However, not all

behaviours will be captured by the mini-application, instead, the most expen-

sive or most frequently exercised portions of the parent application will be

captured. Mini-applications bridge the gap between micro-benchmarks and

production applications and make it easier to reason about the behaviour of a

production code and attribute aspects of its performance to different hardware

components.

Being small, mini-applications are perfect for investigating newprogram-

ming languages and models. Karlin et al. used the LULESH mini-application

to investigate four emerging programming models [87]. Whilst the original
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LULESH application was written in C++, it was ported to all four program-

ming models with each new version taking approximately eight weeks to com-

plete [86]. Two of the programming models are C++-based frameworks, but

one is a new parallel programming language and the final framework is de-

veloped in Scala (a Java-based programming language not often used in HPC).

Being able to investigate a wide range of languages is a huge benefit when con-

sidering how future supercomputers will be programmed.

By their nature, production applications are often commercially sensi-

tive, and often fall under other restrictions such as export-control, inflexible

licences, or other regulations. Mini-apps provide an easy way for the devel-

opers of these applications to interact with researchers in academia. They can

also be shared with the vendors of various components in the supercomputer

toolchain. For example, in [77], the authors identify several potential code op-

timisations that were not performed by a range of compilers. The LCALS suite

which they use to perform this analysis is available under an open-source li-

cence, so compiler vendors can be provided with a reproducer that they can

use to fix this problem. Mini-applications can also be shared with hardware

vendors at an early stage, and it is then conceivable that a machine could be

designed with a particular application in mind. This approach borrows much

from the co-design ideas most often seen in the embedded systems commu-

nity [69].

The representativeness of mini-applications offers a major advantage in

actually improving production applications. By being both similar in code de-

sign and performance characteristics, any lessons learned by using the mini-

application will be much easier to apply to the production application. This

provides a much more pragmatic advantage for mini-apps, since most organi-

sations are understandably concerned with the fiscal return from this research.

Applying optimisations learned frommini-applications back to production ap-

plications can yield significant performance gains with little effort. Simple op-

timisations opportunities can be hidden by the complexity of the production
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application’s source code. These opportunities become easy to identify using

themini-application, and since it will share key code structurewith the produc-

tion application, it becomes easier to re-apply these optimisations where they

will make a real difference.

Mini-applications are not the only approach for moving codes to exas-

cale systems. One approach that has worked in the past is to wait until the new

machine has arrived and then gradually begin the porting effort for existing

codes. One of the first accelerated supercomputers was Los Alamos National

Laboratory (LANL)’s Roadrunner, an IBMmachine that used a combination of

AMD Opteron Processors and IBM’s Cell Broadband Engine accelerator chips.

Porting applications to Roadrunner could be done in one of three ways: (i) us-

ing only the AMD processors and ignoring the Cell processors, (ii) offloading

key application hotspots to the Cell for acceleration, or (iii) porting the entire

application to the Cell processors and only using the AMDOpteron processors

for communication, I/O and visualisation. The third approach was used to

port the Sweep3D benchmark, achieving a performance improvement of up to

4⇥ [14, 135].

Whilst in the case of Roadrunner, waiting for the new machine to begin

porting worked, it relies on the new architecture being somewhat similar to the

older to be applied successfully. The fact that applications could continue to run

unmodified on Roadrunner’s AMD Opteron processors meant that there was

no delay in using the machine, even if its full performance was not initially re-

alised. With architectures becomingmore complex, increasing clock speeds and

extra nodes no longer provide the same performance improvements they once

did. With the dramatic changes in both node and system architecture required

to deliver exascale performance in an acceptable power budget, it is unlikely

that a slow, evolutionary approach will be the optimal one.

Another way to approach the exascale problem is to write new codes.

This may be the ideal solution, as each new application can be written to take

best advantage of the new exascale system that it is likely to be running on.
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Application Domain

miniFE Implicit unstructured finite element.
HPCCG Sparse iterative linear solvers.

Epetra Kernels Benchmark Matrix-vector kernels.
miniGhost Explicit structured partial differential equations.

miniSMAC2D Implicit structured partial differential equations.
miniMD Molecular dynamics.
CoMD Molecular dynamics.

MiniXyce Circuit simulation.
CloverLeaf Explicit structured hydrodynamics.
CleverLeaf Explicit structured hydrodynamics with AMR.

Table 4.2: The 10 mini-apps included in the Mantevo Suite version 2.

However, the time it takes to develop, then validate and verify a new scien-

tific applicationmeans this approachwill require significant investment of both

time and resources. If mistakes are made during the design and development

stages they may be impossible to correct, and even in the best case are likely to

be costly.

Mini-applications can act as a compromise between these two extremes.

When a mini-application is developed to represent a key production applica-

tion, then any incremental improvements made to the mini-application should

be easier to transfer back into the parent application. Additionally,mini-applications

can be treated as brand new codes, and used to explore new programming lan-

guages, models, and libraries, all while performing the same fundamental sci-

ence as the parent application.

4.3 Mantevo: Mini-Applications in Practice

Sandia National Laboratories’s Mantevo Suite [106] is a collection of mini-apps

that target a wide range of scientific domains (see Table 4.2). An early report

published in 2009 pioneered the concept of mini-apps [73], and since then they

have been applied to study: performance at both the node- and network-level,

programming languages and programming models, program simulation, and

compiler tuning. This research has attracted recognition from the wider scien-

tific community and won an R&D 100 award in July 2013 [2].
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The domains covered by the Mantevo Suite include explicit and implicit

solution of partial differential equations, molecular dynamics (MD), hydrody-

namics, and circuit simulations. The use of multiple applications in each do-

main is important because different production codes may solve the same fun-

damental problem with different numerical methods. Since a mini-application

must be representative of a production application to be useful, it is most effec-

tive to have one mini-application represent one production application.

Two of the applications from the award-winning Mantevo suite have

been developed, either in whole or in part, at the University of Warwick and

AWE as part of this PhD thesis. These applications: CloverLeaf andCleverLeaf;

are described in detail in the next section. We also describe TeaLeaf, a third

mini-application developed during the course of this thesis. In the remainder

of this section we present a brief overview of the successful use of three other

Mantevo mini-applications to further the progress towards production codes

on exascale architectures.

One of the first apps in theMantevo suite, miniMD has been extensively

studied and applied in a wide range of experiments. Two papers by Penny-

cook et al. used miniMD to investigate performance improvements specific to

molecular dynamics in two programming models. The first uses Intel’s Ad-

vanced Vector Extensions to target the wide vector units of Intel CPUs, achiev-

ing a five-fold performance improvement over the original version of the ap-

plication [128]. The second uses the OpenCL framework to develop perfor-

mance portable kernels; the same code can be run on a range of devices includ-

ing CPUs, GPUs and other accelerators [126]. Using a single source code they

achieve a performance within 50% of an optimised native version specialised

for the particular device.

Approximating an unstructured finite-element application, miniFE has

been used to investigate the performance of this algorithm on accelerator de-

vices including an Intel Xeon Phi and an AMD Trinity Accelerated Processing

Unit (APU) (which combines an Central Processing Unit (CPU) and a Graphics
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Processing Unit (GPU) on a single chip). In [16], the authors describe using

miniFE to perform a detailed investigation into the matrix assembly phase of

the algorithm on an NVIDIA GPU. This phase of the algorithm contains many

floating point operations, but is actually bound by memory bandwidth. By al-

tering the CUDA kernel the matrix assembly phase could be tuned to become

bound by the number of floating point operations that can be performed. These

optimisations were also applied to the CPU version of the code, showing how

mini-applications can continually evolve to reflect the state of the art imple-

mentation of a particular algorithm.

Continuing the investigation of new programming models, the HPCCG

mini-application is used to asses a hybrid programming model with CPU and

GPU nodes [73]. The model uses conventional MPI to exchange data between

distributed nodes, and then work on a node is divided into resource manage-

ment and computation. Units ofwork are dispatched to stateless computational

functions, a flexible approach that enables portability between future architec-

tures.

4.4 Mini-ApplicationDevelopment andDeploy-

ment

CloverLeaf, TeaLeaf, and CleverLeaf are threemini-applications that have been

developed in conjunction with this PhD thesis. These applications attempt to

represent typical codes used to solve explicit hydrodynamics and heat diffu-

sion, both of which are areas of interest to AWE. The applications have been

used primarily to study issues surrounding performance and programmability

of contemporary and future architectures, both at the node- and network-level.

CloverLeaf is a structured-grid hydrodynamics application that solves

Euler’s equations in two dimensions. These equations can be used to represent

anything from the implosions critical for research into nuclear fusion, move-

ment of gases in an engine, water in the ocean, meteor impacts, or the fiery
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gases found at the heart of every star in the universe. CloverLeaf provides a

lightweight proxy for identifying how we can run these kinds of simulations

more efficiently on current and future machines.

TeaLeaf solves the heat conduction equation on an Eulerian grid. These

equations are solved as a linear system, and TeaLeaf is designed to test the

wide range of linear-solver libraries available today. The transfer of energy via

conduction is essential in many engineering domains, but beyond any specific

domain, the use of linear-solver libraries to solve linear systems representing

partial differential equations can be found in many scientific simulations.

CleverLeaf is a structured-grid hydrodynamicsmini-application that ex-

tends CloverLeaf with Adaptive Mesh Refinement (AMR) using the SAMRAI

toolkit from Lawrence Livermore National Laboratory [98]. The primary goal

of CleverLeaf is to evaluate the application of AMR to the Lagrangian-Eulerian

hydrodynamics scheme used by CloverLeaf, and as a proxy to investigate the

performance of AMR for structured Lagrangian-Eulerian hydrodynamics at

scale.

4.4.1 CloverLeaf

CloverLeaf is written in Fortran 90, and contains approximately four thousand

lines of code. The research carried out with CloverLeaf has focused on address-

ing two key components of future supercomputer architectures: on-node pro-

gramming and performance, and network scalability.

Further detail on the hydrodynamics scheme employed by CloverLeaf

is reserved for Chapter 3. Here we present a brief description of the design

of CloverLeaf to provide context to the following discussion on scalability and

portability. CloverLeaf consists of a small main loop that advances the simu-

lation in time, calling the kernel-driver pairs to perform the necessary steps of

the Eulerian hydrodynamics scheme. Visualisation and summary routines are

also included as useful debugging tools when investigating new optimisations

and programming languages.
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KernelsControl Code

clover.f90

CALL 
ideal_gas_driver

FORTRAN

CUDA

C

CALL ideal_gas_kernel

CALL ideal_gas_kernel_c

CALL ideal_gas_kernel_cuda

Figure 4.1: Kernel-driver design used in CloverLeaf. Different kernel imple-
mentations can be selected at runtime by the driver code.

The kernel-driver idiom (see Figure 4.1) is at the heart of CloverLeaf and

all the mini-applications we have developed. The driver code is called by the

main loop of the application and has access tomesh information and simulation

data. This data is stored in derived types that allow for a meaningful grouping

of data. To isolate the kernel from the rest of the application code, each routine

is written in a functional style: all the necessary data is passed as arguments to

the kernel routine, which is responsible for updating the necessary values. By

ensuring that each kernel has a well defined input and output, we can modify

the underlying implementation without worrying about impacting the rest of

the simulation code. Kernels can be selected at runtime and different imple-

mentations used within a single execution of the application.

The simple kernel-driver design has allowed rapid implementation of

over 10 different versions of CloverLeaf, including: Fortran 90, C, OpenMP,

OpenACC, OpenCL and CUDA. The OpenCL version was developed during

the period of thesis registration, and contributions have also been made to the

Fortran and OpenMP versions of the application. When a new implementation

is written each underlying kernel call will be modified. In the case of OpenCL

and CUDA, these modifications may be extensive, containing additional data

management and control code necessary for interacting with the attached ac-
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celerator device. However, by isolating all this to a kernel function, the control

routine need not worry about how each kernel operation is performed, as long

as the correct memory locations contain the correct values after the kernel call.

Performance and Productivity

To study on-node programming andperformanceweuse theCloverLeaf imple-

mentations that employ programming models targeting attached accelerator

devices. This work, presented in [71], considers each implementation from two

different angles: performance, and productivity. We first measure the runtime

of a typical simulation using each programming model. We also consider the

productivity of each programming model, by measuring the additional code

required to port CloverLeaf to any given model. Whilst measuring the amount

of code added does not capture all aspects of developing a new version of an

application, it does highlight the dramatic difference in work for each of the

three programming models we investigated.

The three programmingmodelswe investigatedwere: OpenACC,CUDA

and OpenCL. The OpenACC programming model provides an ease of pro-

grammability through the use of directives and portability by allowing a single

source code to be run on both CPUs and accelerators [120]. The disadvantage of

OpenACC is that the programmermust surrender some control to the compiler,

and may find themselves with less flexibility in terms of how they implement

particular code regions.

The OpenCL programmingmodel is more explicit, and uses library calls

to launch device-specific code [155]. The flexibility of OpenCL comes from the

powerful library of host functions that allow a programmer to determine, at

runtime, the kinds of OpenCL devices available to the program. The kernels

can then be compiled when the program is run, allowing them to be optimised

for some particular piece of hardware. The disadvantages of OpenCL are the

same as with any community-driven effort where members have conflicting

concerns. Each member of the OpenCL group will want to ensure that the
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standard enables their hardware or implementation to perform the best, but

oftentimes this may be at the expense of useful functionality that could readily

be provided by other vendors.

CUDA uses the same explicit design as OpenCL, with device-specific

code being launched using library functions [119]. While less flexible than

OpenCL, the advantage of CUDA is that equivalent programs normally per-

form much better on the same hardware, although this hardware can only be

NVIDIA GPUs. The disadvantage of CUDA is the vendor lock-in that it en-

forces. Whilst CUDA compilers for x86 are available from other vendors, the

fundamental target of CUDA remains NVIDIA GPUs [118]. Despite this, due

to its status as the most well-established GPU programming model, CUDA is

often the first choice when writing a GPU-based application.

Each of these three GPU-based implementations of CloverLeaf took only

a few months to develop. The OpenACC implementation used directives to

mark code for execution on the device and to handle data movement. We en-

sure that all data is allocated and stored in the GPU memory at all times, and

is only transferred to the CPU memory when required for MPI data exchange

or for simulation output.

The OpenCL model distinguishes between a host CPU and an attached

accelerator device such as a GPU. The host CPU runs code written in C or C++

that makes function calls to the OpenCL library in order to control, communi-

cate with, and initiate tasks on one or more attached devices, or on the CPU

itself. The target device or CPU runs functions written in a subset of C, which

can be compiled at runtime, or loaded from a cached binary if one exists for the

target platform.

The OpenCL implementation extends CloverLeaf’s kernel driver archi-

tecture with a management class written in C++. This class controls interac-

tion between the Fortran code and the new OpenCL kernels. In particular, it

allows the kernel objects and OpenCL buffers to be accessed from the kernel

implementations as necessary. At runtime, the Fortran driver routine calls the
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OpenCL kernels function and begins executing host-side code. This code sets

up the corresponding OpenCL device kernel and schedules it for execution on

the device. As with the OpenACC version of the application, all data is allo-

cated and stored on the device. Data is only copied back to the CPU memory

for MPI communications and simulation output.

TheCUDA implementation of CloverLeaf is almost identical in design to

the OpenCL implementation, and uses a global class to coordinate data transfer

and computation on the GPU, with helper functions to handle interoperability

between the CUDA and Fortran code.

These implementations enable in-depth analysis of the performance of

each programmingmodel for the target domain: explicit hydrodynamics. Run-

ning a small test problem, the overallwall-clock times for theOpenACC,OpenCL

andCUDAversionswere 2.057s, 2.558s, and 2.780s respectively. TheOpenACC

implementationwas therefore 1.24× faster overall than theOpenCLversion and

1.35× faster than CUDA version1. These results have been superseded by later

work [72, 105], and hence the focus here should be on the performance of an

initial GPU port, rather than a highly-tuned final implementation.

In terms of programmerproductivity, OpenACCproved superior to both

OpenCL and CUDA, requiring the addition of only 184 OpenACC pragmas as

opposed to thousands of additional lines of code. CloverLeaf provided an es-

sential platform to investigate these issues of both performance andprogramma-

bility. Using these results, it becomes clear that in terms of development effort,

the directive-based approach of OpenACC requires far less code modification.

In a mini-application this isn’t such a problem, but as we have discussed, in a

production application, this would be significant.

Scalability

Mini-applications also prove useful for investigating application performance

at scale. When run in parallel, the advantages relating to the size of mini-
1Full results of this study are presented in Appendix A.
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Figure 4.2: CloverLeaf weak-scaling on HECToR and Titan.

applications become emphasised. The short runtimes mean many experiments

can be carried out, and the applications can be easily modified to try and im-

prove scalability. Using CloverLeaf, we evaluated three possible programming

model combinations for running onmultiple nodes: MPI, MPI with OpenACC,

andMPI with CUDA. Using the supercomputers Titan and HECToR, two large

Cray systems at Oak Ridge National Laboratory and Edinburgh Parallel Com-

puting Centre, respectively, CloverLeaf was run on over 50,000 CPU cores.

The two systems provide two unique configurations: HECToR is a typi-

cal supercomputer with a CPU-based architecture, while Titan is a hybrid sys-

tem where each node contains one CPU and one GPU. The experiments allow

us to investigate which of these two architectures is most appropriate for large-

scale explicit hydrodynamics runs2. On both architectures, CloverLeaf is highly

scalable with the overall runtime increasing by only 4.2% on HECToR and by

up to 27.2% on Titan as the problem is run at the largest scale. The GPU-based

architecture of Titan is considerably faster than that of HECToR. CloverLeaf is

over twice as fast at all node counts when running on Titan.

In addition to evaluating programming models, we also evaluated ap-

plication configuration. Typically, each process in a job is mapped onto con-

secutive processor cores within a node. CloverLeaf distributes work in two

dimensions, mapping naturally onto the two-dimensional Eulerian mesh on
2Full results of these experiments are presented in Appendix A, and we present only the perti-

nent details here.
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(a) Original rank ordering strategy. (b) Improved rank ordering strat-
egy.

Figure 4.3: MPI rank re-ordering strategy used to improve performance by re-
ducing off-node communication. Thick lines are node boundaries; shaded cells
highlight the processes on a single node.

which the problem is solved. However, regions of the domain are assigned con-

secutively to processes, and this mapping does not reflect the two-dimensional

communication pattern where each rank communicates with its four nearest

neighbours. When more than one node is used, half of all the communications

will need to travel across the network. By redistributing the processes intelli-

gently and matching the communication pattern in CloverLeaf, we can reduce

these off-node communications.

This reconfiguration provides a performance improvement of 4.1% on

over one thousand nodes, and highlights the range of experiments that can be

performed with a mini-application. Optimisations such as this revised map-

ping configuration can be easily applied to production applications on current

architectures, providing immediate performance improvements.

By evaluating both programming models and performance optimisa-

tions at this scale we are able to identify possible approaches for running pro-

duction codes on future architectures. As with the programming model study,

we have seen that all approaches are scalable (largely due to the nature of the

explicit hydrodynamics scheme, described in detail in Chapter 3), but that per-

forming the computation on the highly-parallel GPUs halves the runtime of the

experiment. Whilst experiments to evaluate the scalability of the existing pro-

gramming model could have been performed with a production application,
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and the newmapping configuration could have been tested, there would be no

easy way to evaluate any alternative programming models. Additionally, the

complex physics solved in a production application greatly increases the run-

time of even a simple test problem. With supercomputer time charged by the

core-hour, long running experiments using thousands of cores use a significant

amount of any budgeted time.

4.4.2 TeaLeaf

TeaLeaf solves the heat conduction equation on an Eulerian grid, and is de-

signed to test the wide range of linear-solver libraries available today. It also

provides a built-in iterative Jacobi scheme, that can be run on any architec-

ture. This scheme has been ported to GPUs using OpenACC. In this section,

we present the first details of the TeaLeaf mini-application, including a brief

design overview and some plans for possible performance investigations.

To remove any library dependencies, one algorithm to solve the heat

conduction equation is provided. This is a Jacobi scheme that solves the heat

conduction equation using a second-order central-difference in space, and a

forward-difference in time. The scheme is implemented using a matrix-free

method. The simple loops required by this scheme can easily be ported to

GPUs using OpenACC directives. Each loop was annotated such that Ope-

nACC would generate the required device code in order to run the loops on

GPU. This extension also integrates with the CloverLeaf OpenACC implemen-

tation. Using directives, we can inform the compiler that the required

arrays will already be in the device memory and avoid any expensive copy op-

erations.

In addition to the Jacobi method, TeaLeaf can also use one of three dif-

ferent linear solver libraries: HYPRE, PETSc, or Trilinos. Each of these libraries

provides a software components that can be used to solve a linear system, in

parallel, on modern supercomputer architectures. In the case of HYPRE and

PETSc, these components understand the notion of a structured grid, and hence
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can easily be used by adapting the existing Jacobi version of the application.

The Trilinos library provides parallel vector and matrix objects, and a large col-

lection of solver classes that operate on these vectors and matrices. This means

that we must construct the correct vector representation for our system, and

then retrieve values after the system has been solved. Each library is imple-

mented in a separate software module and can be selected at runtime.

Whilst library dependencies are one of the problems with production

codes, the TeaLeaf mini-application provides a flexible framework for testing

linear-solver libraries. The systemof equations results in a structured tri-diagonal

matrix that is easy to construct and pass to any library for solution. The heat-

conduction kernels are isolated from the rest of the source code; while this sep-

aration would be unlikely to exist in a production application, it is essential in

allowing new solver libraries to be added and tested rapidly.

4.4.3 CleverLeaf

Whilst the hydrodynamics scheme implemented by CleverLeaf is identical to

that of CloverLeaf (and we have two mini-applications that can solve the same

problem in a similar fashion), the added complexity of AMR is adequate justifi-

cation for a newmini-application. AMR adds an additional level of algorithmic

overhead to the application since not onlymust the simulation be advanced, but

the patch hierarchy must be managed, maintained and updated as well.

This management overhead introduces a complex interplay between the

proportion of runtime spent performing meaningful scientific work, and that

spent maintaining the hierarchy and related metadata necessary for an AMR

simulation. Typically, minimising time spent doing computational work will

reduce the overall time to solution but increase themanagement overhead. The

opposite is true if more computation is performed. The key to the effective use

of AMR is finding the sweet spot where both simulation andmanagement time

are minimised. These issues can be investigated using production AMR codes,

but to be able to fully explore the parameter space that controls AMR perfor-
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mance, a small mini-application is both easier to understand and to modify.

The complexity of AMR is often abstracted into a library. These libraries

offer the same basic features and abstractions, so choosing the best library for

a given application is difficult. A small application like CleverLeaf provides

the perfect vehicle for exploring the range of AMR libraries available, since the

small application footprint can be ported to each library model in much the

same way as the CloverLeaf mini-application was ported to various program-

ming models.

The CleverLeaf mini-application provides the context for the rest of this

thesis, and is discussed and applied in the remainder of this text. In Chapter 5

we describe in detail the design and implementation of CleverLeaf, provid-

ing insight into the mini-application development process. In Chapter 6, we

use CleverLeaf to investigate how block structured AMR applications might

be written for future architectures, and in Chapter 7 we show how, using Clev-

erLeaf, we are able to identify key performance-impacting AMR parameters

that can improve application performance.

4.5 Summary

Whilst mini-applications are by no means the only approach for moving pro-

duction codes to future architectures, they are one of the most attractive. By

providing a lightweight representation of a production application, they offer

developers a chance to analyse the performance of the application on current

systems, and make projections about how the application might perform on

future systems. Additionally, the nature of mini-applications makes them easy

to port to new programming languages or programming models in a matter of

weeks. This is essential for evaluating the possible approaches for program-

ming complex exascale machines.

In this chapter we presented a description of the problems production

applications face when moving to future supercomputer architectures. Ensur-
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ing that mini-applications meet some high-level objective is essential in ensur-

ing their unique strengths are used. The Mantevo project provides some of this

organisation for a collection of 10 mini-apps. These applications have already

been used to improve the performance of production codes on existing architec-

tures, and through instruction-level simulation are being used to evaluate the

performance of mini-applications on models of proposed future architectures.

We present the three mini-applications, CloverLeaf, TeaLeaf, and Clev-

erLeaf; developed as part of this thesis, and show how CloverLeaf provides ex-

amples of mini-applications solving the problems that production applications

face. Using CloverLeaf to investigate programming models that target acceler-

ators, we show that OpenACC is both high-performance and low-effort, pro-

viding a performance improvement of 1.24⇥ over the next fastest GPU-based

code, with the addition of only 184 pragmas. Additionally, this code comes

in the form of compiler directives, meaning that the source modifications are

invisible when compiled in an environment where accelerators aren’t present.

We also consider the problems production applications will face as they move

towards the scales required by exascale-class architectures. Running on up to

16,384 nodes of Titan (over 100 thousand MPI ranks) we show that the explicit

hydrodynamics scheme represented by CloverLeaf is scalable on both CPUs

and GPUs. However, with a simple modification of the machine configuration

we are able to improve performance by an additional 4%. This kind of optimi-

sation can be applied independently of the application being run, meaning it

can be used to benefit production applications immediately.
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CHAPTER 5

CleverLeaf: An Adaptive Mesh Refinement

Mini-Application

Block-structured Adaptive Mesh Refinement (AMR) is a technique used to in-

crease simulation accuracy and reduce resource usage by dynamically increas-

ing mesh resolution in the areas in which it will be most effective. Developed

by Berger et al. [21, 23], AMR has been successfully applied to domains includ-

ing cosmology, astrophysics, and shock hydrodynamics [28, 53, 139]. These ar-

eas all contain disparate physical scales that make using a fine mesh resolution

throughout the problem domain unattractive.

In this chapter we introduce CleverLeaf, a mini-application that solves

Euler’s equations using a second-order accurate Lagrangian-Eulerian method

on an adaptive mesh. Motivated by the desire to investigate factors that will

affect the performance ofAMR codes as the high-performance computing disci-

pline approaches exascale, CleverLeaf uses the uniformhydrodynamics scheme

found in CloverLeaf, and extends it using the SAMRAI library to support adap-

tive meshes. We describe the algorithms used by CleverLeaf, and document
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how they are implemented in a small, easy to modify mini-application. Using

three test problems, we verify the accuracy of CleverLeaf. Finally, we use the

analysis framework to show that CleverLeaf can be considered repre-

sentative of production AMR applications.

5.1 Related Work

CleverLeaf is the first block-structuredAMRmini-applicationusing aLagrangian-

Eulerian hydrodynamics scheme. Whilst numerous production codes use Berger’s

AMRapproach and a Lagrangian-Eulerian hydrodynamics scheme to solve Eu-

ler’s equations and simulate a vast range of physical phenomena [42, 75, 151],

we are not aware of any other mini-applications using this approach. In this

section, we present a brief summary of related code development efforts, and

highlight the novelty of our work.

Whilst no other block-structured AMR mini-applications yet exist, we

can break related work into two main areas. The first area is the collection of

production-quality applications that use block-structured AMR to solve shock

hydrodynamics problems. The second area encompasses othermini-applications,

either those using some other form of AMR, or those that solve the same hy-

drodynamics equations as CleverLeaf.

Due to the opportunity for large savings in both application runtime and

memory usage, AMR is an essential technique in many scientific domains. The

kind of shock hydrodynamics that CleverLeaf simulates often occurswithin the

field of astrophysics, additionally, the dramatic changes in length scales that

are required to simulate regions of the universe mean that this is the perfect

domain in which to employ AMR. As such, many astrophysics codes solve

similar problems to CleverLeaf.

FLASH is a large community-driven code from theUniversity ofChicago

that uses the Chombo and PARAMESH packages to provide AMR, and con-

tains a range of physics packages including a hydrodynamics capability [53].
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Enzo is another block-structured AMR code for modelling astrophysical fluid

flows [29]. The AMR implementation in Enzo is built-in to the code, and not

providedby an external library. RAMSES, fromCommissariat á l’ÉnergieAtom-

ique (CEA) in France is another astrophysics code that uses its own AMR im-

plementation [154], relying on a tree data structure to represent the patch hier-

archy, where each patch is a fixed-size group of cells, much like the tile-based

approach seen in PARAMESH. The NIRVANA code again uses a custom AMR

implementation with fixed-size blocks of four cells in each coordinate direc-

tion [167]. The final astrophysics code we will consider is GAMER [143]. De-

veloped at National Taiwan University, GAMER uses a tile-based AMR ap-

proach and also supports the offloading of computation to a Graphics Pro-

cessing Unit (GPU). All these codes solve Euler’s equations, augmented with

the necessary equations representing the magnetic fields found in the universe;

collectively, these equations are known as the Magnetohydrodynamics (MHD)

equations.

Applications developed to study high-energy and density physics also

contain similar algorithms to CleverLeaf. These codes include the ALE-AMR

project from Lawrence Livermore National Laboratory (LLNL), and the Sham-

rock benchmark from Atomic Weapons Establishment (AWE). The ALE-AMR

code uses a Lagrangian hydrodynamic scheme and an adaptive mesh. Like

CleverLeaf, it uses the SAMRAI library [9, 90]. Shamrock is an Eulerian hydro-

dynamics application with AMR, similar to CleverLeaf. Developed at AWE,

the Shamrock benchmark has been previously used to investigate AMR appli-

cation performance on a range of CPU-based architectures [70].

The CLAMR application is the first code from the second area of related

workwewill consider. Developed at LosAlamosNational Laboratory (LANL),

CLAMR is a cell-based AMR application that solves the shallow-water equa-

tions. The key difference between CLAMR and CleverLeaf is the AMR formu-

lation that is used. In CLAMR, the structure of the mesh is stored as an oct-tree,

with each cell splitting into four children when it is refined. The cells become
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nodes in the tree, with edges representing the parent-child relationships [116].

MiniAMR is a 3D stencil calculation mini-application with AMR devel-

oped at Sandia National Laboratories (SNL) and released as part of the Man-

tevo project [106]. The mesh refinement is driven by simple objects moving

through the mesh instead of a physics calculation, but can be used to mimic the

behaviour of real AMR codes.  Themesh refinement phase is capable of several

levels of refinement where blocks are refined or coarsened as needed and the

blocks are load balanced between MPI ranks.

Other hydrodynamics mini-applications exist, such as PENNANT from

LANLandLULESH fromLLNL, althoughneither application supportsAMR [1,

50]. Both these applications are fully Lagrangian approach to solve Euler’s

equations so lack an advection step. Whilst these applications exhibit similar

ideas to CleverLeaf and the other mini-applications mentioned in this section,

without AMR they fail to capture the specific hydrodynamics algorithm, data

layout, and code-specific details of the production codes we aim to represent.

To the best of our knowledge, CLAMR and miniAMR are the only two

other AMR mini-applications that exist, and neither contains the same hydro-

dynamics algorithms and range of features of CleverLeaf. Additionally, neither

code is designed to allow the use of a production-quality AMR library package,

an important part of CleverLeaf when considering how production codes may

be improved and moved to future High-Performance Computing (HPC) archi-

tectures.

5.2 Design and Development

In this section, we describe how algorithms to solve Euler’s equations on an

adaptive mesh are implemented in our mini-application. CleverLeaf uses a

number of SAMRAI objects alongwith 23 custom classes that provide the neces-

sary organisation to advance the solutionwith the Lagrangian-Eulerian scheme

(see Chapter 3). To advance the local simulation state on each patch CleverLeaf
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uses Fortran kernels taken directly from the CloverLeaf mini-application.

The CleverLeaf code architecture is typical of other mini-applications.

The fresh start provided when writing a new application means that current

software best practices can be used, resulting in a simulation code that is mod-

ular, maintainable, and easier to modify. We take cues from the approach put

forth in the SAMRAI library and use a range of object-oriented design patterns.

These software development approaches are almost universally used in enter-

prise software (when it is written in an object-oriented language), and by apply-

ing these design patterns in a scientific code we are able to leverage the benefits

these well documented patterns provide.

Design patterns originated in the field of architecture, providing a set of

flexible solutions to common architectural problems [3]. In computer science,

object-oriented design patterns provide solutions to common software prob-

lems. Rather than recommending construction techniques, an object-oriented

designpattern provides instructions onhow software objects can be created and

composed to address the problemwith the most flexibility andmaintainability.

Themain pattern used by CleverLeaf is the Strategy design pattern [161].

This pattern encapsulates functionality behind a common interface, allowing a

different implementation of the interface to be selected at runtime. This reduces

coupling between simulation components, and in Chapter 6 we will see how

this pattern allowsCleverLeaf to be extended to run on thousands ofGPUswith

minimal impact to the code. Figure 5.1 shows how the SAMRAI andCleverLeaf

objects are combined.

5.2.1 SAMRAI

The SAMRAI library is a toolbox of classes for the development of block-structured

AMR applications. Developed at the Centre for Applied Scientific Computing

at Lawrence Livermore National Laboratory, SAMRAI has been used success-

fully in modelling application domains including debris generation at laser fa-

cilities [90], cardiac simulation [62], and helicopter wake dynamics [145]. Con-
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Figure 5.1: The object-oriented design used in CleverLeaf.

cepts fundamental to AMR are encapsulated in a collection of C++ objects,

grouped by functionality into a range of packages. In this section we describe

the threemost important packages used byCleverLeaf. The design of the SAM-

RAI library is documented in detail elsewhere [10, 78, 79].

Patch Hierachy

The most important concept that an AMR application must represent is that

of a patch. The patch is the fundamental unit of work in an AMR simulation,

and having a flexible and extensible representation of a patch makes it much

easier to write simulation code. Auxiliary structures that support the patches

are levels and a hierarchy. In SAMRAI, these concepts are grouped in the

package.

The class is a container for data defined over a box representing

some region of the problem domain. This class is responsible for allocating and

deallocating data as the simulation evolves. A holds an array of

these objects and is used to represent a single level of the hierarchy. Patches

will be distributed between processors, so when iterating over the patches in

a patch level, only the local patches will be processed. The final class, the

, maintains an array of patch levels and is responsible for cre-

ating and removing levels as required while the application runs.
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Figure 5.2: Relationship between the , and classes.

Data on the patch hierarchy is described by classes in the

package. This class provides the interface that SAMRAI uses to interact with

user-defined data during AMR operations. Providing an interface (rather than

forcing the user to use pre-defined data types) means that SAMRAI can be used

to augment existing applications. This interface has been used to develop appli-

cations that use their own data structures in conjunction with SAMRAI’s mesh

management and communication routines [9]. In Chapter 6 we show how this

interface can be used to develop a GPU-based AMR library.

A object represents data on a region of the problem domain

defined by the associatedpatch. It also implements an interface necessary for all

communication routines. To decouple the data representation for the commu-

nicationmethods described below, two routinesmust be provided:

and . Both methods are passed a contiguous buffer of memory

and a region of space described by a box. The methods must then either pack

or unpack the data between the buffer and the region of the object

corresponding to the provided box. As the simulation evolves, these objects

will be created and destroyed. The object stores an array of pointers to

the necessary classes.
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As an example, we describe the class detailed in Figure 5.2.

This class provides a representation for cell-centred data on a patch. The

that the data is allocated over is extended to include the ghost region. The

data (of arbitrary dimension) is stored as a one-dimensional array in memory,

with the leading dimension of the data being stored contiguously. This column-

major data layout matches that of Fortran, so when Fortran numerical kernels

are used the data can be treated as a multi-dimensional array without any data

re-ordering. The class also implements the methods, providing rou-

tines that will pack and unpack a region of cell-centred data.

Due to the transient nature of patches, and the data that exists on them,

SAMRAI uses the interface to represent a named quantity, such as

pressure, that can be allocated on the adaptive mesh. While a object

only persists for as long as the patch exists, the corresponding variable is typi-

cally static and exists throughout the simulation. A variable provides a way to

interact with the same field anywhere on the adaptive mesh hierarchy, regard-

less of the current patch configuration.

Communication

Communication of boundary values between patches is handled by objects

from the package. When a patch touches a physical boundary, the prob-

lem boundary conditions can be applied, regardless of the level on which the

patch resides. When a patch has internal boundaries, they must be filled with

data transferred from another patch. Transferring data between processors to

correctly fill the patch boundaries requires knowledge of how each patch is spa-

tially related to others in the problem. SAMRAI does not maintain this meta-

data globally, and uses two concepts to improve communication performance:

algorithms and schedules [164]. These concepts split each communication into

a persistent what phase, and a transient where phase.

A communication algorithm encapsulates the what of a boundary up-

date. Variables are registered with communication algorithms depending on
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when they need to be exchanged. The algorithms typically persist throughout

an application run, and specify exactly which simulation variable data needs

to exchanged in any given communication.

A communication schedule encapsulates the where of the boundary up-

date. Since where the data must be sent will change as patches in the hierar-

chymove, communication schedules must be recreated each time the hierarchy

changes. The metadata containing patch locations is distributed, so this step

can be more costly than the alternative algorithms used when global metadata

is stored by each process. However, by ensuring that this step is only performed

when required, the performance impact is minimised.

When transferring data between levels, the source data must be interpo-

lated to correctly fill a different number of cells on the target patch. Data being

transferred from a coarse to a fine level will be refined, and data transferred

from a fine to a coarse level will be coarsened. In SAMRAI, this interpolation is

described by two interfaces: and ; that pro-

vide the necessary methods for coarsening or refining data. SAMRAI provides

a number of common coarsen and refine operators, and custom operators can

be created by implementing the appropriate operator interface. Each variable

and communication algorithm can select the correct operators to use, allowing

different fields to be communicated and interpolated using a different formula.

Algorithms

SAMRAI does provide a number of algorithm classes that manage the solution

of a set of partial differential equations on an adaptive mesh. These include the

class, that manages hierarchy construction, ad-

vancement and synchronisation as described in Berger’s algorithm. This class

uses the strategy design pattern [161], and expects another class to provide the

necessary routines for advancing a single level of the patch hierarchy. The

class provides the routines needed to integrate

a system of hyperbolic conservation laws using Berger’s algorithm. None of
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the provided algorithm classes are suitable for the solution of Euler’s equations

using the Lagrangian-Eulerian method found in CloverLeaf, hence, we wrote

our own classes to coordinate the SAMRAI objects and advance the simulation.

5.2.2 CleverLeaf

The hydrodynamics scheme implemented in CleverLeaf can be broken into two

parts, the Lagrangian step and the advective remap. The equations are solved

on a staggered grid. Each vertex stores a velocity vector, and each cell stores

a pressure, energy, and density value as a scalar. Intermediate flux variables

are stored on cell edges. The two parts of the algorithm proceed as follows:

first, a Lagrangian step is used to advance the simulation variables in time.

This distorts the Eulerian grid, since in the Lagrangian frame of reference, the

vertices move with the fluid flow. Second, an advective step is used to remap

the vertices to their original positions, restoring the original grid. In order to

do this, material is moved through the cell edges based on the direction of the

flow.

Each part can be further separated into a number of simple kernels that

implement the required numerical methods to correctly advance the simula-

tion. Developing, maintaining, and testing these kernels requires expertise

from both domain scientists and computer scientists. Integrating the function-

ality of each kernel into a monolithic simulation code that will be maintainable

and extensible is difficult. The alternative, using a flexible code architecture,

can alleviate some of these difficulties, and is particularly effective when de-

veloping a mini-application.

Lagrangian-Eulerian Scheme

Solving Euler’s equations using a Lagrangian-Eulerian scheme on an adaptive

mesh requires far more management in order to ensure the accuracy of the re-

sults and the correct progression of the simulation.

As with the uniform simulation, each variable is first set using its initial
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conditions on the coarse grid. The cells in level 0 are then evaluated and tagged

in order to create the first refined grid. After the new refined grid has been cre-

ated, the initial conditions are applied to the newly created patches. Applying

the initial conditions to each level ensures that the problem is accurately ini-

tialised. For example, complex shapes can be more accurately represented at

higher levels of refinement and if the initial conditions were interpolated from

the coarse level, much of this detail would be lost. New levels are created and

initialised until the maximum number of levels is reached.

Whilst Berger uses an error estimation based on local truncation error

to flag cells [23], we take the approach of Quirk, and instead use a heuristic

function to determine which cells to flag [139]. Cells are flagged using three

different criteria, which capture the strong shock phenomena of interest. These

are: (i) the density gradient (r⇢), (ii) the energy gradient (rE), and (iii) the ar-

tificial viscosity (q). The second-derivative of the density and energy gradients

is evaluated for each cell, and if the gradient is above the user-specified thresh-

old the cell is flagged for refinement. Testing the curvature of the density and

energy fields will also capture material discontinuities, convergent flow, and

divergent flow. The artificial viscosity is a term added to the equations to ac-

count for the discontinuity in the solution at a shock. A shock is a discontinuity

that would introduce errors into the numerical solution, and when a shock is

detected the artificial viscosity (q) is used to smear the shock over a few cells

and remove the discontinuity. By checking the absolute value of the viscosity,

shocks can be identified and the cell flagged for refinement.

Once the adaptive hierarchy has been initialised, the simulation can be

advanced through time. As with the uniform simulation, the first step in the

simulation is calculating the stable timestep. Since the cells on each level are of

a different size, we calculate a minimum timestep for each level, before calcu-

lating the global minimum timestep. Whilst Berger’s original AMR algorithm

allows for the possibility of advancing finer levels through multiple smaller

timesteps before advancing the coarse level through a single larger step, we
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do not use such a technique here. Temporal refinement adds additional com-

plexity when interpolating coarse values to finer levels that is unnecessary in a

mini-application. Additionally, the time spent in computing the coarse levels

of the hierarchy is dwarfed by the time spent computing the finest level, hence

taking fewer coarse timesteps has minimal impact on simulation runtime.

Once the stable timestep has been calculated, we advance each kernel on

all levels of the simulation, ensuring that the data in every level is advanced to

the same simulated time. As in the uniform case, the kernel calls are interleaved

with boundary cell updates.

The standard AMR algorithm proposed by Berger et al. uses a single

boundary update phase [21, 23]. The Lagrangian-Eulerian scheme used by

CleverLeaf requiresmultiple boundaryupdates. Frequent, small halo exchanges

occur throughout the timestep; we advance each kernel andupdate each bound-

ary for each level in turn to ensure simulation accuracy. Halo data for each

patch can be filled in one of three ways: (i) with the physical boundary con-

ditions, (ii) with the data from a neighbouring patch on the same level, or (iii)

with the data from a neighbouring patch on the next coarsest level. When data

is transferred between levels it must be interpolated, and all quantities are in-

terpolated using conservative operators, based on the gradient of the variable

being transferred.

Once the simulation has been advanced through a timestep, the fine so-

lution is synchronised onto the coarser levels of the hierarchy. Only the field

variables: velocity, density, and energy; need to be synchronised. Velocity val-

ues are copied (injected) directly onto the node beneath. If a node exists on a

fine level with no corresponding coarse node, then the value is ignored. The

density values are interpolated using a volume-weighted coarsen, and the en-

ergy values are interpolated using a mass-weighted coarsen. Using these two

operators ensure that the simulation is conservative.

At the end of each timestep the regridding procedure can be applied.

This need not happen every step, and the frequency is controlled by the user.
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The regridding step occurs in a similar fashion to the initialisation of the adap-

tive hierarchy, but is applied from the second finest to the coarsest level. Start-

ing with the second finest level, the cells on the level are tagged, and the tagged

cells are then divided into a set of patches forming the new finer level. Data is

copied into this new level from the old solution, or interpolated from the coarse

level if no fine solution previously existed. During regridding, a buffer is added

around tagged cells. One crucial requirementwhen applyingAMR to problems

with strong shocks is that a strong shockwave is not allowed to travel over the

boundary between two levels [21]. By adding a buffer equal to the number of

steps until the next regridding operation, we can ensure that a shockwave will

not cross a level boundary. After the regridding operation the simulation steps

are repeated until the desired end time is reached.

Application Design

In designing CleverLeaf, we have taken cues from the object-oriented archi-

tecture of SAMRAI and the kernel-driver paradigm of CloverLeaf to develop

a flexible framework for solving Euler’s equations on an adaptive mesh using

a Lagrangian-Eulerian method. In Chapter 4 we have already identified fea-

tures essential for mini-applications that this design must provide. We avoid

commercially licensed software and commercially sensitive code components

to ensure that CleverLeaf can be released under an open-source licence. The to-

tal number of lines of code should be low, ideally less that 10 thousand. Build-

ing on a well-designed software architecture can help by eliminating repetition

in the code base and neatly encapsulating common features.

Ideally, a mini-application would be standalone, without any library de-

pendencies. However, the complex nature of managing an AMR simulation

means that rather than go through the error-prone process of reimplementing

an AMR framework, we rely on the SAMRAI library. The library is mature,

well-supported, and used in a number of production applications. Hence, use

of the SAMRAI library by CleverLeaf is a way to ensure rapid development
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and minimise coding errors.

The final two key aspects of a mini-application are less related to code

development, and instead focus more on runtime. To allow us to perform the

necessary experiments with new programming languages, programmingmod-

els, and architectures, it’s desirable to have self-contained test problems with

short runtimes. We implement a simple problem generator that allows us to

initialise arbitrary regions of gases at the start of the simulation. Whilst this

generator lacks the features required in a production application, it neverthe-

less provides the necessary flexibility for setting up the range of test and bench-

mark problems used throughout this thesis.

A flexible code architecture can harm application performance. Whilst

the fastest possible implementation of an algorithm might be implemented in

a single large file, this monolithic code would be difficult to understand and

modify. Conversely, over-engineering software to the point of hiding even the

most simple task behind toomany layers of abstraction can add significant run-

time overhead. A mini-application is designed to investigate application per-

formance (which suggests an optimal implementation would be best), yet it

will also be used for investigating new programming models and languages.

Performing these investigations will require code modifications, hence a flexi-

ble code base is desirable. Production applications, as well as being large, often

lean towards more monolithic designs; this is one of the reasons they are un-

suitable for investigating new programming languages and models.

Berger’s algorithm describes the integrator used to advance the simu-

lation on a patch as a black box. The physics performed by the integrator is

irrelevant, as long as it advances the simulation to the correct time. We follow

this pattern and decouple the hydrodynamics kernels from the rest of the AMR

algorithm entirely. Not only does this make it easy to swap in new kernels writ-

ten in a different programming language, it alsomeanswe can add entirely new

physics capability without changing the majority of the control code in Clever-

Leaf. Conversely, isolating the physics code means that the AMR library could
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be replacedwithout reimplementing the hydrodynamics kernels. However, the

tight integration between the application control code and the SAMRAI library

means replacing the SAMRAI objects with a different library would be more

difficult than replacing the hydrodynamics kernels.

The patch hierarchy provides a convenient set of objects that separate

simulation concerns. At the highest level, a single object is responsible for ad-

vancing the entire hierarchy. This involves performing each step of the AMR

control algorithm, but delegating the concrete implementation of the integra-

tion steps to other objects. This integrator object will initialise the hierarchy,

advance the simulation, and perform regridding and co-ordinate the collection

of runtime statistics.

The level integrator object is used by the integrator to advance the sim-

ulation on a single level of the patch hierarchy. The required hydrodynamics

driver routines are called for each patch in the level, with each hydrodynamics

step being interleaved with the necessary boundary updates. The driver for

each hydrodynamics kernel is provided by another object. This is where we

isolate the numerical integration as described in Berger’s original formulation.

Each driver routine uses the appropriate Fortran kernel (taken from Clover-

Leaf) to advance the simulation.

This design provides three levels of re-use: the integrator, level integra-

tor, and patch integrator. Other codes using a Lagrangian-Eulerian algorithm

will be able to use the integrator class, and any algorithm using the same halo

exchange points as CleverLeaf will be able to use the level integrator without

modification. Finally, the kernel-driver model used by the patch integrator

means we can re-use hydrodynamics kernels from other codes. This will be a

key factor when using the CleverLeaf mini-application to improve production

codes, since it provides a point for the kernels of the parent code to be inserted

and investigated in the context of a SAMRAI-based AMR application.

Solving Euler’s equations using the Lagrangian-Eulerian scheme on an

adaptive grid requires somemodified components that are not provided by the
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SAMRAI library. These three components are the volume-weighted coarsening

operator, the mass-weighted coarsen operator, and the tagging routines. SAM-

RAI provides a number of common coarsen and refine operators for interpo-

lating data between different mesh resolutions, and for most variables, Clever-

Leaf uses the built-in operators to conservatively coarsen and refine data. The

custom operators we have developed are required for coarsening energy and

density.

The interface defines the methods that a C++ class

must implement in order to be used for coarsening an arbitrary variable. The

most important method, , is passed a coarse and fine patch, an area to

be filled, and the ratio between the two patches. The method must then fill the

coarse patch with a coarsened version of the data on the fine patch.

Two classes are created that implement the interface.

One to perform the volume-weighted coarsen, and one to perform the mass-

weighted coarsen. In each class, the method fills the coarse patch us-

ing the correct formula. These classes are also used to establish an ordering

between the two operators. The mass-weighted coarsen requires the coarse

cell density data so the volume-weighted coarsen must be applied first. This is

ensured by assigning a priority to each class.

The three tagging criteria described in the previous section are imple-

mented in the class. The method is passed a patch and must fill

the array of tags to indicate whether or not the cell has been tagged for refine-

ment. Aswith the hydrodynamics kernels, the SAMRAI data is retrieved

and passed to a separate Fortran kernel for each tagging routine. Each kernel

modifies the same array of tags, and the final tag array is used by SAMRAI

during regridding to determine where new patches are created.

The parameters used for AMR components can have a large affect on ap-

plication runtime. CleverLeaf readily exposes a range of AMR parameters for

conducting experiments into their impact on performance. We describe these

parameters in detail in Chapter 7.
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CleverLeaf contains 5,777 lines of code (LOC), including 1,837 LOC of

Fortran kernels that are sharedwithCloverLeaf. CleverLeaf also relies on SAM-

RAI,which is approximately 200 thousandLOC. TheCloverLeafmini-application

(which solves Euler’s equationswithout the adaptive grid) has 4,405 LOC.When

considering lines of code solely attributed to the application, CleverLeaf and

CloverLeaf are a similar size. However, CleverLeaf does rely on thousands of

lines of library code. We can classify CleverLeaf as both a mini-application,

since it contains a representation of a key algorithm, and also a mini-driver,

since it drives a performance impacting library.

5.3 Validation and Verification

To validate CleverLeaf, we ensure that the hydrodynamics scheme has been im-

plemented correctly by comparing our numerical solution to analytic or mesh-

converged solutions for three test problems. To verify CleverLeaf, we ensure

that its computational behaviour matches that of a benchmark application we

wish to approximate. Whilst the primary goal of CleverLeaf is to explore new

libraries and programming languages for explicit hydrodynamics with AMR,

it is important that our mini-application is representative of some larger appli-

cation. This provides the necessary context for integrating the results of our

investigations into future production codes.

5.3.1 Validation

The hydrodynamics scheme and associated AMR interpolation operators in

CleverLeaf have been validatedusing the three test problemsdescribed inChap-

ter 3: Sod’s shock tube problem, the Woodward-Colella interacting blastwaves

problem, and the Sedov blastwave problem.

For all problems we use four levels of refinement, and a ratio of two

in the dimension of interest. As in [23], the regridding procedure is applied

every four timesteps in all problems. These parameters allow us to test both the
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(a) AMR mesh and density at t = 0.

(b) AMR mesh and density at time t = 0.2.

Figure 5.3: AMR meshes and density at the initial and final times of the Sod
problem.

numerical accuracy of the simulation as well as the suitability of the heuristic

refinement criteria contained in CleverLeaf.

Sod's Shock Tube

CleverLeaf was run with 250 zones in the x dimension at the coarsest level,

corresponding to a �x of 0.004, with a fixed timestep �t = 0.004. The area of

interest in the Sod problem, the shock wave, only travels in the x-dimension

hence we use a refinement ratio of {2,1} (the resolution remains constant in the

y-dimension). The �x at the finest level is thus 0.0000625. Figure 5.3 shows

the density of the domain at times t = 0 and t = 0.2, and Figure 5.4 shows

the profiles of density, velocity and internal energy. The solution contains a

small error at the contact discontinuity (the discontinuity between physical do-

mains) and in the rarefaction (the expanding material behind the shock), how-

ever across the rest of the domain the solution is almost exact, and no oscilla-

tions are present. These small errors at the discontinuity are to be expected,

due to the numerical noise associated with modelling a discontinuity using a

second-order method [59, 60]. The loss of energy visible in the third part of Fig-

ure 5.4 is due to the lack of conservation of kinetic energy during the advection

step of CleverLeaf’s hydrodynamic algorithm. The results of this lack of con-

servation are most visible when running the Sedov test problem, and hence are

discussed later in this section.
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Figure 5.4: Plot of density, velocity, and energy at t = 0.2 for the CPU-based
solution of Sod’s shock tube problem.
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(a) AMR mesh and density at t = 0.

(b) AMR mesh and density at time t = 0.38.

Figure 5.5: AMR meshes and density at the initial and final times of the
Woodward-Colella problem.

Woodward-Colella Interacting Blastwaves

We ran the Woodward-Colella problem with a coarse resolution of 100 cells

and up to 5 levels of refinement. We also ran the problem with a resolution of

32,000 cells in order to obtain a highly accurate solution with which to calcu-

late fractional errors for each of the resolutions. The blastwaves only travel in

the x-dimension, hence we use a refinement ratio of {2, 1}. Figure 5.6 contains

plots of the density, energy, and velocity of the system at time t = 0.038 for

both the converged, and the one-, two-, and four-level solutions. As the max-

imum number of levels is increased, the AMR solution converges towards the

reference values for all three field quantities.

Sedov Blastwave

The Sedov problem ranwith 100 cells in each dimension. Since the shockmoves

radially outward from the origin, we refine in both the x- and y-dimensions us-

ing a refinement ratio of {2,2}. The nature of the Sedov problem means that

at time t = 1 the radius of the blastwave should be at radius r = 1. Fig-

ure 5.7 shows the initial and final density and mesh, and from the results in

Figure 5.8 we can see that the shockwave does not reach the correct location

in the simulation domain. The results produced by CleverLeaf in this case are

incorrect. The erroneous blast wave position is caused by the lack of conser-

vation of kinetic energy. Since the advection step of the Lagrangian-Eulerian

scheme used in CleverLeaf only conserves mass, internal energy and momen-
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Figure 5.6: Plot of density, velocity, and energy at t = 0.038 for the CPU-based
solution of Woodward-Colella interacting blastwaves problem.
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(a) AMRmesh and density at t = 0. (b) AMR mesh and density at time
t = 1.0.

Figure 5.7: AMR meshes and density at the initial and final times of the Sedov
problem.
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Figure 5.8: Plot of density at t = 1 for the CPU-based solution of Sedov’s blast
wave problem.
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tum (but not kinetic energy). Production codes typically contain a fixup step

where kinetic energy that has been lost during advection is added back to the

field variables [31, 42, 151].

This step is not computationally intensive, but involves complex cod-

ing that has been deliberately avoided in both CloverLeaf and CleverLeaf. Al-

though the lack of the fixup means that the results of the simulations can be

physically incorrect, themain computational portions of the code: the Lagrangian

step and the advective remap; are representative of a larger class of hydrody-

namics codes.

Other aspects of a production-ready hydrodynamics code that have been

avoided in ourmini-applications include support for simulationswithmultiple

discrete materials and more complex equations of state. Different equations of

state will have varying performance so introduce an imbalance in the compu-

tational work required for each cell, depending on the equation of state being

used.

The impact of the addition of multi-material support is entirely depen-

dent on which portion of the code one is considering. Much of the hydrody-

namics can remain unchanged, navigating but not updating the multi-material

data-structures. If the data structures are well designed, then computational

performance may be unaffected. The cell-centred advection step will be af-

fected the most. During this step, the multi-material data structure must be

updated as materials move between cells. The number of possible scenarios

for cell state (pure cell becomes mixed, a mixed cell because pure, a mixed cell

gains/loses components) increases the complexity of the code by adding differ-

ent control branches. This additional logic will likely harm performance, par-

ticularly on emerging parallel architectures like GPUs. Performance of the cell-

centred advection kernel is linked to the number of materials in a cell, so will

introduce an imbalance in computational work. Finally, during the exchange

of boundary cells, message sizes and pack/unpack times will vary depending

on the proportion of mixed cells, and their properties, in the boundary region.
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The results of this test problem highlight an interesting and important

weakness in mini-application development. The aspects of a parent code that

remain unimplemented in a mini-application can have an impact on the accu-

racy of the results produced and possibly on the computational behaviour of

the application. Just because a mini-application has been developed by a pro-

grammer familiar with the parent code does not mean it will be inherently rep-

resentative. In the following section, we show that despite the lack of a kinetic

energy fixup, multi-material support, or a complex equation of state function,

CleverLeaf remains representative of a larger hydrodynamics code with AMR.

5.3.2 Verification

Ensuring that a mini-application and its parent application exhibit the same

computational characteristics is hard. Most often mini-application developers

rely on the fact that they also developed the parent application to provide some

amount of similarity. Thus the design ofmini-applications is ad-hoc and driven

by implicit assumptions made by the application developer about how they

think the parent application influences the system. It is often not clear that the

mini-application actually captures the characteristics that are important for the

performance of its parent, especially since it often performs a subset of oper-

ations. Whilst a mini-application might look the same as its parent, and even

solve an identical problem, there is no guarantee that the reduction in com-

plexity that is inevitable in a mini-application will have the same demands on

hardware resources.

The framework uses comparative performance analysis in or-

der to validate mini-applications and ensure that some guarantee can be made

about the hardware characteristics that it represents [97]. focuses on

single node, multi-core performance characteristics to determine which hard-

ware events are responsible for the change in parallel efficiency of an applica-

tion, and thendeduceswhich of these events are covered by themini-application.

These observations enable developers to understandwhich characteristics they
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can expect to test with a particularmini-application on a particular architecture.

An understanding ofwhich performance-critical characteristics are not covered

can then be used to drive future mini-application development.

We present our study in the context of Shamrock, a 2-dimensional, La-

grangian hydrodynamics application using AMR, developed at the UKAtomic

Weapons Establishment (AWE). Shamrock is an industry-strength benchmark

supporting a range of architectures [70]. It is a key benchmark in evaluating fu-

tureHPC technologies atAWE, yet at almost 100 thousandLines ofCode (LOC),

investigating future programmingmodels is difficult and the benchmark is less

flexible than amini-application. As such, a representativemini-application like

CleverLeaf will enable such investigations to be conducted rapidly, and the re-

sults applied effectively based on the knowledge that the performance of both

CleverLeaf and Shamrock are affected by the same hardware characteristics.

For this verification, we focus on single node performance, rather than cross-

node communication characteristics since CleverLeaf uses a different commu-

nication library. Whilst this may alter the representativeness of highly parallel

runs, it is important to note that a key driver for the development of CleverLeaf

is to provide a framework in which to evaluate the SAMRAI library.

Methodology

At a high level, collects a range of PAPI counters [27] that measure per-

formance metrics from both the mini-application and some parent application

and analyses the data to identify resource utilisation bottlenecks common be-

tween these two applications. Specifically, performs the following three

tasks: (i) collects performance metrics, (ii) correlates each performance metric

to performance loss, and (iii) validates the mini-application by identifyingmet-

rics that are strongly correlated with performance loss for the parent applica-

tion, and then comparing correlations for these metrics between the parent and

the mini-application.

Collection of performancemetrics uses a lightweight library that is linked
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Counter Description

PAPI_L2_ICM L2 instruction cache misses
PAPI_L3_ICA L3 instruction cache accesses
PAPI_L3_ICR L3 instruction cache reads

L2_LINES_IN:ANY Counts the number of lines allocated in the L2 cache
PAPI_L2_DCM L2 data cache misses
PAPI_L3_DCA L3 data cache accesses
PAPI_L2_TCM L2 total cache misses
PAPI_L3_DCR L3 data cache reads
PAPI_L2_STM L2 store misses
PAPI_L3_DCW L3 data cache writes
PAPI_L3_TCW L3 total cache writes
PAPI_L3_TCM L3 total cache misses

BR_MISP_RETIRED:ALL_BRANCHES Counts all mispredicted retired calls
L2_LINES_OUT:DEMAND_CLEAN L2 clean line evicted by a demand

perf::NODE-PREFETCHES Node prefetch accesses
perf::DTLB-LOAD-MISSES Data TLB load misses

perf::DTLB-STORES Data TLB store accesses
PAPI_L1_ICM L1 instruction cache misses
PAPI_DP_OPS Double precision floating point operations executed

perf::LLC-STORES LLC store accesses
PARTIAL_RAT_STALLS:FLAGS_MERGE_UOP Number of flags-mergemicro-operations in flight in each

cycle
PAPI_TLB_DM Data TLB misses
PAPI_STL_ICY Cycles with no instruction issue
PAPI_L1_TCM L1 total cache misses

L1D_PEND_MISS:OCCURRENCES Occurrences of L1D_PEND_MISS going active
perf::LLC-STORE-MISSES LLC store misses

PAPI_L1_LDM L1 load misses
PAPI_L2_DCR L2 data cache reads

BR_MISP_EXEC:NONTAKEN_COND All macro conditional non-taken branch instructions
PAPI_FP_INS Floating point instructions executed
PAPI_FP_OPS Floating point operations executed
PAPI_BR_TKN Conditional branch instructions taken
PAPI_L1_DCM L1 data cache misses
PAPI_L2_DCA L2 data cache accesses
PAPI_BR_PRC Conditional branch instructions predicted
PAPI_BR_UCN Unconditional branch instructions executed
PAPI_BR_CN Conditional branch instructions executed
PAPI_SR_INS Store instructions executed
PAPI_BR_INS Total branch instructions executed
PAPI_BR_NTK Conditional branch instructions not taken
PAPI_BR_MSP Conditional branch instructions mispredicted

RS_EVENTS:EMPTY_CYCLES Cycles the RS is empty for this thread
PAPI_TOT_INS Total instructions executed
PAPI_LD_INS Load instructions executed
PAPI_TLB_IM Instruction TLB misses
PAPI_L1_STM L1 store misses
PAPI_L2_DCW L2 data cache writes
PAPI_TOT_CYC Total cycles

L2_L1D_WB_RQSTS:HIT_E Non-rejected writebacks from L1 to L2 cache lines
OTHER_ASSISTS:ITLB_MISS_RETIRED Counts the number of retired instructions thatmissed the

instruction TLB when the instruction was fetched
RESOURCE_STALLS2:ALL_FL_EMPTY Cycles stalled due to free list empty

PAPI_L2_DCH L2 data cache hit
RESOURCE_STALLS:ANY Cycles stalled due to any resource related reason

Table 5.1: Description for the PAPI counters used during the analysis of Sham-
rock and CleverLeaf.
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Figure 5.9: Correlation between performance counter and efficiency loss calcu-
lated by .

into the application. Values for each available PAPI counter (detailed in Ta-

ble 5.1) are collected in regions deemed by the application developers to be

analagous between the parent and mini-application. In the case of Clever-

Leaf and Shamrock, these are the hydrodynamics kernels, as well as the AMR-

specific routines such as flagging areas of interest. Each counter value is stored

in an HDF5 file along with information about the parallel configuration used

and the region the counter was collected in.

Application performance typically changes depending on the number

of parallel tasks (OpenMP threads or MPI ranks) used during a given run. A

given number of parallel tasks is called a configuration, and calculates

the correlation between each collected counter and the parallel efficiency loss

of a given configuration using, ⇢, Spearman’s rank correlation coefficient [148].

This provides a nonparametric measure of the dependence between the two

variables. The two sets of variables X and Y are assigned ranks x
i

and y
i

(for

each i in X and Y ) based on the ordering of their numeric values. Then:

⇢ = 1� 6⌃d2
i

n(n2 � 1)
(5.1)

where d
i

= x
i

� y
i

is the difference in rank between the two variables and
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n is the number of configurations. Analysis is performed by inspection, with

the per-counter correlations being plotted for both applications. In the case of

, eachX is a set of values for a single performance counter, and Y is the

set of efficiency losses for each configuration, where the efficiency loss of each

configuration c is defined as:

(1� Efficiency(c))⇥ 100% (5.2)

where Efficiency is defined as in Chapter 2. Figure 5.9 shows this calculation

pictorially. The aim is to identify performance counters that are strongly corre-

lated with a change in performance. If the correlation for a given performance

counter event is negative, then there is a negative correlation and as the number

of parallel workers increases, the occurrence of this event decreases while the

efficiency loss increases, or vice versa. For events such as cache hits or number

of instructions per cycle, a negative correlation indicates inefficiency in resource

utilisation. A positive correlation indicates that, as the number of workers in-

creases, the occurrence of this event increases along with the efficiency loss, or

vice versa. For events such as number of cache misses, a positive correlation

indicates contention for resources due to increase in the number of workers.

Experimental Setup

To collect performancemetrics for analysis, the following experimental setup is

used. Both applications use the Sod problem from earlier in this chapterwith 16

different parallel configurations; from 1 to 16 MPI ranks, with each rank bound

to a single CPU core. We collect values for 45 available PAPI counters for each

configuration and then use the framework to calculate the correlation

between each performance counter and the loss in parallel efficiency of each

configuration. then compares the events that are strongly correlated

with efficiency loss between the mini-application and the benchmark.
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Figure 5.10: Performance characteristics of Shamrock covered by CleverLeaf.
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Analysis

Figure 5.10 contains all events that have a correlation with efficiency loss (for

Shamrock) of greater than 0.7. Looking at these events, we see that for the ma-

jority of events strongly correlated with efficiency loss, the difference between

Shamrock and CleverLeaf is small, and hence we say that these performance

events are well covered by CleverLeaf. Each hardware counter can be linked

to a particular hardware resource to allow a more intuitive understanding of

the results. The link between counters and hardware resources is determined

by inspection, and the hardware resource attributed to each counter is shown

at the bottom of Figure 5.10. This classification of counters allows us to state

that most of the L2 and L3 behaviour of AMR and hydrodynamics algorithms

of interest to AWE that are present in Shamrock are covered by CleverLeaf.

The results in Figure 5.11 focus on events that have a strong correlation

with efficiency loss (greater than 0.7) in Shamrock, yet have a weak correlation

in CleverLeaf. These events are ones that we consider poorly covered. The

first counter, , simply measures the total number of Central Pro-

cessing Unit (CPU) cycles performed by each application. Since Shamrock is

more complicated than CleverLeaf and will perform more cycles, we can ex-

pect these values to differ significantly without loss of representativeness. The

other memory-related counters that show a large difference in correlation are

related to stalls. We predict that the data layout and array sizes in Shamrock

cause a different frequency and count of such stalls when compared to Clever-

Leaf, thus having a different impact on parallel efficiency.

These results allow us to state that the majority of performance charac-

teristics, particularly those related to the cache behaviour, of Shamrock are cov-

ered by CleverLeaf. Overall, the scaling behaviour of the performance events

that pertain to shared resources (L2, L3) with respect to their corresponding

performance loss match between these two applications. Additionally, the per-

formance characteristics that we deem to be poorly covered may not have a

critical impact on application performance.
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Figure 5.11: Performance characteristics not well covered by CleverLeaf.
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By grouping the performance counters by the hardware resources that

they are measuring and focusing on the mean correlation with efficiency loss,

we can gain a more intuitive understanding of the hardware coverage of Clev-

erLeaf. Each counter is grouped based on the hardware resources it is deter-

mined to be related to. This grouping is performed by manual inspection, and

implemented within the framework (see Table 5.2). Figure 5.12 con-

tains plots mean correlation with efficiency loss for each group. We can see that

the correlation between cache behaviour and efficiency loss is similar between

the two applications. Two of the hardware resource groups not well covered

are the CPU events, which we have already discussed as will be different, and

performance counters attributed to the HIT group. This group contains events

relating to attemptedmemory accesses that result in some kind of cache hit. The

difference in these counts will be affected by the data stored and the memory

layout. Since this layout and data size differ between CleverLeaf and Sham-

rock, these results reinforce the notion that these differences are caused by a

change in data layout, not in computational performance.

5.4 Summary

The complex nature of simulations using AMRmakes them an ideal candidate

for representation via mini-applications. With the adaptive mesh refinement

algorithms encapsulated in library code, we can perform performance studies

easily and investigate new programming languages and models

In this chapterwehavedescribedCleverLeaf, the first open-source block-

structured adaptive mesh refinement mini-application. In particular we de-

scribe the algorithms and simulation code that allow us to use CleverLeaf to

study adaptive mesh refinement at large scale and on emerging parallel archi-

tectures. We have validate themathematical accuracy of CleverLeaf using three

test problems, thus ensuring that the physics performed by CleverLeaf is cor-

rect and a true reflection of the hydrodynamics algorithms used in production
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Counter Hardware Resource Groups

L2_STORE_LOCK_RQSTS:HIT_E L2, INS
HW_PRE_REQ:L1D_MISS L1, MISS, PREFETCH

perf::CACHE-MISSES L1, L2, L3, LLC
L1D_BLOCKS:BANK_CONFLICT L1, STALL

perf::LLC-PREFETCHES L3, LLC, PREFETCH
perf::PERF_COUNT_HW_CACHE_MISSES L1, L2, L3, LLC, MISS

RS_EVENTS:EMPTY_CYCLES RS, STALL
L2_LINES_IN:ANY L1, L2, PREFETCH

LD_BLOCKS_PARTIAL:ADDRESS_ALIAS LSU, STALL
perf::LLC-LOADS L3, LLC

LD_BLOCKS:DATA_UNKNOWN LSU, STALL
PERF_COUNT_HW_CACHE_LL:READ L3, LLC

LAST_LEVEL_CACHE_MISSES:e=0 L3, LLC, MISS
perf::LLC-LOAD-MISSES L3, LLC, MISS

RESOURCE_STALLS:ANY STALL
PAPI_TOT_CYC CPU

perf::TASK-CLOCK CPU
PAPI_DP_OPS FPU
PAPI_FP_OPS FPU

perf::PERF_COUNT_HW_CACHE_REFERENCES L1, L2, L3, LLC
perf::CACHE-REFERENCES L1, L2, L3, LLC

PARTIAL_RAT_STALLS:FLAGS_MERGE_UOP REGISTER, STALL
INT_MISC:RAT_STALL_CYCLES REGISTER, INS, STALL

perf::LLC-STORES L3, LLC
PAPI_STL_ICY INS, STALL

LAST_LEVEL_CACHE_REFERENCES:e=0 L3, LLC
LLC_MISSES:e=0 L3, LLC, MISS

LLC_REFERENCES:e=0 L3, LLC
IDQ:EMPTY INS

BR_MISP_RETIRED:ALL_BRANCHES BPU
BR_MISP_EXEC:NONTAKEN_COND BPU

BACLEARS:ANY BPU
LSU_COMMIT_STCX L2

LSU_LARX_FINISHED L2
L2_STORE_LINE MEM

L2_STORE_LINE_SLICE MEM
L2_TRANS:L1D_WB L1

PAPI_L1_STM L2
PERF_COUNT_HW_CACHE_MISSES L1, L2, L3, LLC, MISS

DATA_WRITE_MISS L1, L2, L3, LLC, MISS
DATA_READ_MISS L1, L2, L3, LLC, MISS

data_write L1, MEM
DATA_READ L1, MEM

DATA_READ_OR_WRITE MEM
DATA_PAGE_WALK TLB

DATA_CACHE_LINES_WRITTEN_BACK L1, L2, LLC, DATA
LONG_DATA_PAGE_WALK TLB, DATA
LONG_CODE_PAGE_WALK TLB, INS

PERF_COUNT_HW_CACHE_L1D:READ L1, DATA
PERF::CACHE-MISSES L1, L2, LLC, MISS

PAPI_L1_DCM L1, DATA
perf::PERF_COUNT_HW_CACHE_BPU BPU

SNP_HITM_BUNIT BPU
PIPELINE_FLUSHES BPU, PIPELINE

L2_DATA_WRITE_MISS_MEM_FILL MEM, MISS

Table 5.2: Groups assigned to PAPI counters by .
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HIT

LSU

RS
MISSINSFPU

TLB

STALL

BPU

PREFETCH

BR

L1
NODE LLC L2

DATA

CPU

L3

REGISTER0 1

Shamrock CleverLeaf

Figure 5.12: Mean correlation with efficiency loss grouped by hardware re-
source.

codes. The small errors observed fall well within expected tolerances and allow

us to assert that the adaptive mesh refinement algorithms have been correctly

applied to advance the simulation. Finally, we have verified that CleverLeaf is

representative of some of the key behaviours in Shamrock, a production-quality

benchmark application.
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CHAPTER 6

Scalable AMR on Graphics Processing Units

Massively parallel accelerator architectures like an attached Graphics Process-

ing Unit (GPU) often provide order of magnitude improvements in application

performance [7, 124, 162]. With tremendousmemory bandwidth and the ability

to operate on hundreds of data items in parallel, these architectures provide the

perfect platform for many High-Performance Computing (HPC) applications

providing they are ported correctly. These many-core architectures are the nat-

ural extension of the architectural trends introduced by multi-core processors,

and consist of processors with even more cores running at lower frequencies.

It is now common to see an accelerator attached to a multi-core processor.

An algorithm with structured data and little dynamic change through-

out its execution might be ported to an accelerator with little effort, provided it

exhibits sufficient parallelism. As an example, theOpenACCversion of Clover-

Leaf discussed in Chapter 4 took little over 12 weeks to port to GPUs. More

complex algorithms such as the parallel sweep along a hyperplane described by

Lamport (and used in many scientific applications) are much harder to modify,
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even though they operate on structured data [92, 127]. In anAdaptiveMesh Re-

finement (AMR) application like CleverLeaf, the algorithm is sufficiently paral-

lel, but the hierarchy of patches adapts throughout the simulation as the areas of

interest move. Despite the potential for large savings in computation time and

memory usage with maintained accuracy, AMR requires dedicating a portion

of application runtime to managing the mesh hierarchy; this requires complex

data management and communication.

Most AMR applications run exclusively on the Central Processing Unit

(CPU), and those that do use GPUs often copy the necessary data between

GPU and CPU memory at the beginning and end of every GPU-based rou-

tine  [110, 142, 162]. In this chapter, we present the first resident implementation

of block-structured AMR on GPUs. Building on the SAMRAI framework  [98],

we create classes thatmanage the life cycle of AMRpatcheswhere data is stored

exclusively on the GPU. All routines that manage the patch hierarchy continue

to be handled by SAMRAI on the CPU, but all AMR-specific routines that oper-

ate on patch data, such as the coarsening and refining of data between adjacent

levels in the hierarchy, execute on the GPU.

Using the object-oriented interface of SAMRAI we develop a set of rou-

tines and data structures that allow patch-based data to reside on and be ma-

nipulated by the GPU. We use these extensions to write a GPU-based version

of CleverLeaf that performs over 4⇥ faster than the CPU-based implementa-

tion on a single node, and has been scaled to over 4 thousand GPUs using a

combination ofMPI and CUDA. In this chapter, we describe the design and im-

plementation of our GPU-based AMR library extensions, including the classes

used to manage patch data, the routines used for transferring data between

GPUs on different nodes, and the data parallel operators developed to coarsen

and refine mesh data. We also validate the accuracy of our implementation on

three test problems, and present performance studies using up to 4,096NVIDIA

K20x GPUs.
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6.1 Related Work

Many computational physics codes have been ported to GPUs since the release

of CUDA in 2007 [7, 23, 58, 76, 102, 141], and although Berger’s adaptive mesh

refinement algorithm was presented in 1984, there is little work where AMR

codes have been ported to GPUs. One explanation for the lack of GPU-based

AMR codes is the large amount of data management required when updating

the adaptive hierarchy, and the fact that the naïve method for porting codes to

GPUs involves repeatedly copying simulation data to and from the GPU across

the slow Peripheral Component Interconnect (PCI) bus.

An early paper by Wang et al. describes an implementation of a com-

pressible flow solver with AMR on GPUs [162]. At the beginning and end of

the Runge-Kutta kernel used to advance the solution, the required data must

be copied between the CPU and the GPU. This basic implementation achieves

an order-of-magnitude speedup over a single CPU core, although with today’s

supercomputer nodes having at least 16 processor cores, this number is not suf-

ficient for the application to perform faster at the node level.

In [30] the authors briefly describe an AMR algorithm based on a forest-

of-octrees for seismic wave propagation on GPUs. The implementation doesn’t

appear to be fully resident. Although the text lacks sufficient details about the

GPU-based implementation, the results presented include timings for transfer-

ring the mesh and initial data to the GPU from the CPUmemory. Nevertheless,

the parallel performance of the code is scalable on up to 256 GPUs.

Schive et al. introduce GAMER, an astrophysical simulation code with

both AMR and GPU support [143]. Both the Eulerian hydrodynamics and self-

gravity phases of the application are solved on the GPU, but the necessary data

is stored in the CPU memory, and must be transferred to the GPU memory

before the computational kernel is launched. The data transfer is performed

concurrently with other computation, so the impact is minimised, and the au-

thors note that data transfer time typically only takes 30% of the application
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runtime.

The Uintah framework from the University of Utah is an AMR frame-

work that supports GPUs [81, 110]. The focus in Uintah is on heterogeneous

platforms, and aswith GAMER, solution datamust be copied between the CPU

and GPU memory as required by the numerical kernels. These data transfers

are overlapped with other work, but nevertheless, this is not a fully resident

framework.

Shamrock, an Eulerian hydrodynamics benchmark with AMR devel-

oped at theAtomicWeaponsEstablishment (AWE), supports execution onGPUs

via OpenCL [70]. Only a small fraction of the necessary methods are ported to

the GPU, and data is again copied between the CPU and GPU memory at the

beginning and end of the four routines that are ported. As is to be expected, the

performance of the GPU-based routineswas better than the CPU-based equiva-

lentswhendata transfer timewas excluded. Using a simple performancemodel

and the application of Amdahl’s law, the authors predict an order of magnitude

speed up if 95% of the application is ported to the GPU and data transfer only

occurs at the start and end of the simulation.

The CLAMR application, developed at Los Alamos National Labora-

tory (LANL), is a cell-based AMR code that solves the shallow-water equa-

tions [116]. Implemented in OpenCL, the code is fully resident. Initial con-

ditions are set on the CPU and then copied to the GPU memory at that start of

the simulation, but data is not copied back to the CPU during the simulation

timestep. The cell-based scheme is different to the block-structured approach

described by Berger and used in our work.

The most promising application is presented in [142], which describes a

resident implementation of patch-basedAMRapplication for solving the shallow-

water equations. The authors take a similar approach to our library and ensure

all computationally expensive parts of the AMR library are executed on the

GPU, and they demonstrate performance improvements of up to 3.4⇥ com-

pared to a uniform GPU-based implementation of the same algorithm. Despite
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the similarities to our work, the application domain is different, and there is not

the focus on large-scale parallel performance analysis.

To the best of our knowledge we have developed the only fully resident

GPU-based shock hydrodynamics code with AMR. Furthermore, by develop-

ing the necessary code as part of the SAMRAI library, we provide a collection

of components that can be re-used in other block-structured AMR applications.

6.2 Design and Development

In this section we describe our GPU-based extensions to the SAMRAI library

that allow AMR simulations to execute using accelerator-based node architec-

tures. To test the library in the context of a real application, we extend the

CleverLeaf mini-application, and perform a performance analysis on over four

thousand GPUs. Development of our library, and the extensions to CleverLeaf,

are made easier by adherence to the design patterns present in SAMRAI. We

highlight the essential object-oriented abstractions that allow our GPU-based

library to be fully compatible with existing SAMRAI code.

6.2.1 Programming Models

The design of the GPU-based extensions to SAMRAI are constrained by the

design of heterogenous accelerator nodes. It is now common to see an acceler-

ator attached to at typical multi-core processor. These devices are specialised

for fast floating point performance and have their own memory. Currently, the

CPU and GPU communicate by transferring data across the PCI bus. This link

between the two memory spaces is much slower than access to main memory,

so a key design point is avoiding unnecessary transfer of data over this inter-

face.

Figure 6.1a shows the general design of a heterogeneous node, and Fig-

ure 6.1b is a simplified schematic of a node from Titan, a large GPU-based su-

percomputer at Oak Ridge National Laboratory. In both cases, the GPU and
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Memory
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CPU CPU

Memory

Heterogeneous Accelerator Node

(a) General heterogeneous node ar-
chitecture.

AMD Opteron DDR3

NVIDIA Kepler K20x GDDR
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"Gemini"

Interconnect

Cray XK7 Node

(b) Cray XK7 node architecture.

Figure 6.1: Accelerator-based heterogeneous architectures.

CPU have distinct memory spaces. Additionally, in Titan’s Cray XK7 archi-

tecture, the network controller is connected to the CPU. When data must be

transferred from the GPU across the network, it must first be copied to the CPU

memory.

Programming for GPUs has typically required the use of a program-

ming model such as CUDA or OpenCL [119, 155]. More recent developments

in directive-based approaches like OpenACC and OpenMP 4 provide another

way to execute code on an attached accelerator [120, 122]. For this work, we use

NVIDIA’s CUDA programming model, as it is the most mature and feature-

rich model for programming NVIDIA hardware. GPU functions are written as

kernelswhich are executed simultaneously in a single-instruction-multiple-data

(SIMD) fashion on the device.

A CUDA-capable GPU is a collection of stream multiprocessors (SMs),

consisting of a number of stream processors (SPs) that share an instruction

cache. TheCUDAprogrammingmodel revolves around the concept of threads,

blocks, and grids that execute on these hardware units. A thread executes on

a single SP, and blocks are groups of threads that are mapped to SMs and will
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execute concurrently. A grid is a collection of thread blocks, typically depen-

dent on the size of the data being manipulated. The grid can be either one-

or two-dimensional, and defines the total index space for the threads. These

grids are used to map threads onto portions of the application domain. When

a device kernel is launched, each thread runs one instance of the kernel. The

co-ordinates of a thread can be accessed inside the kernel, allowing each thread

to determine which elements of global data to process.

OpenCL uses a similar programming model to CUDA, with GPU func-

tions beingwritten as kernels that will be executed in parallel on a given device.

The use of CUDA in our work is an implementation detail, and the techniques

we apply would map equally well to OpenCL. The OpenACC and OpenMP

programming models rely on source code annotation to mark regions of code

for execution on the GPU. These annotations are designed to be flexible and

portable between different architectures, and hence tend to discourage explicit

control of important parameters such as the number of threads launched. They

also hide the low level control required to explicitly manage memory, a feature

that is essential in our library.

6.2.2 Extending SAMRAI with CudaPatchData

The SAMRAI library uses object-oriented design patterns to allow for easy in-

teraction with user-supplied code [78]. Each of the basic structural units of

the AMR hierarchy: patches, patch levels, and the patch hierarchy itself; are

provided as fundamental software constructs by SAMRAI. The class is

a container for all the data living in a particular mesh region, and provides a

way to access andmanipulate this data. All the data on a patch are handled us-

ing objects, each of which represents some simulation quantity on

the mesh. The interface uses the Strategy design pattern [161], and

defines a set of operations that a class must provide in order to be interoper-

able with SAMRAI’s data management and communication routines. We use

this interface to develop a library capable of storing patch-based data in GPU
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PatchData

- Box d_box
- Box d_ghost_box
- IntVector d_ghosts
- double d_timestamp

+ getBox() : Box
+ getGhostBox () : Box
+ getGhostCellWidth() : IntVector

+ setTime(timestamp : double) : void
+ getTime() : double

+ copy(src : PatchData) : void
+ copy2(dst : PatchData) : void
+ copy(src : PatchData, overlap : BoxOverlap) : void
+ copy2(dst : PatchData, overlap : BoxOverlap) : void

+ canEstimateStreamSizeFromBox() : void
+ getDataStreamSize(overlap : BoxOverlap) : void
+ packStream(stream : MessageStream, overlap : BoxOverlap) : void
+ unpackStream(stream : MessageStream, overlap : BoxOverlap) : void

+ getFromRestart(restart_db : Database) : void
+ putToRestart(restart_db : Database) : void

+ getDim() : Dimension

Figure 6.2: The SAMRAI PatchData interface.

memorywhilst still using SAMRAI formeshmanagement, communication and

visualisation.

SAMRAI's PatchData Interface

The interface is used to define the operations a class needs to sup-

port to allow SAMRAI to gather data from the patch in order to transfer it to

other patches in the hierarchy. Figure 6.2 documents the full inter-

face. During a simulation, objects store an array of pointers to the nec-

essary objects. The functions that the routines perform

include copying data from one object to another, packing the data

corresponding to a given region of the patch into amessage buffer, and unpack-

ing data from a message buffer into a given patch region. These methods are

the key points of the interface that we implement.

The ability of this interface to allowapplications to use their owndatatypes
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whilst still accessing the full capability of SAMRAI to manage a simulation on

an adaptivemesh has been used to its full potential in a number of applications.

For example, in [163], Wijesinghe et al. present a hybrid hydrodynamics code

that uses a combination of continuum methods and Direct Simulation Monte

Carlo to perform simulations at a range of scales. This implementation relies

on a custom datatype, but the AMR capability of the SAMRAI library.

By allowing an application to fully control data management, SAMRAI

is easy to use in an existing application. In the case of our GPU-based exten-

sions, the abstraction provided by the interface let us store simula-

tion data in the GPUmemory at all times and only copy data across the PCI bus

when necessary.

CudaPatchData Library

The library we have developed contains two packages, modelled after those in

themain SAMRAIdistribution. The first, , contains three different

implementations for managing data in GPU memory. The second, , pro-

vides a collection of coarsen and refine routines that are essential when copy-

ing data between patches at different levels of the hierarchy. We describe both

packages in the remainder of this section.

The three different implementations we have developed are

collectively called , and the three implementations exist since

they are specialised for the three data centrings required for the hydrodynam-

ics scheme used in CleverLeaf. The common data store for each class is the

object. This class is responsible for allocating a contiguous ar-

ray of data in GPU memory, corresponding to a given box size. This class also

contains data-parallel routines to copy data, pack a region of the array into a

buffer, and unpack a buffer into a region of the array. Each data-centring passes

a slightly different to the object it owns, allowing the nec-

essary data to be stored. The three centrings required for CleverLeaf are: cell-

centred, node-centred, and side-centred. Figure 6.3 shows the design and data
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CudaArrayData

double* d_cuda_buffer;

CudaCellData

CudaArrayData* d_array_data;

CudaNodeData

CudaArrayData* d_array_data;

CudaSideData

CudaArrayData* d_array_data;

PatchData

Figure 6.3: The SAMRAI CudaPatchData datatypes.

stored by each class.

During an AMR simulation, boundary conditions can be filled in one

of three ways: (i) using the physical boundary conditions; (ii) with data from a

neighbouring patch on the same level; or (iii) with data from a patch on the next

coarser level. Filling the boundary cells with the physical boundary conditions

is handled by the application, and requires no additional features to be added

to our library. When data must be transferred between two patches at the same

level of refinement, a copy routine is used. If the two patches involved in the

copy operation are located on different nodes the required data must be trans-

ferred using MPI. Supporting MPI is essential for any modern scientific code,

and by including the necessary routines in our library we can run on multiple

GPUs.

The data-parallel copy and packing operators are designed as follows.

Each operationwill receive a as one of its parameters. This box contains the

region of the patch that needs to be operated on (whether data is being copied,

packed, or unpacked). In all cases, the size of this box controls the number of

CUDA threads that will be launched. Each thread will then be responsible for

copying, packing, or unpacking one array element.

In the case of the pack and unpack methods, we provide CUDA kernels
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double* cuda_stream;

packStream()

(3,3)

(4,4)

CudaArrayData

double* d_cuda_buffer;

CudaCellData

CudaArrayData* d_array_data;

T2T0 T3T1

Figure 6.4: Data-parallel buffer packing for MPI operations.

to pack data from the required region into a contiguous buffer in GPU mem-

ory. This buffer is then copied to the host memory and passed to SAMRAI,

which handles the MPI communications. To unpack received data, the buffer

is copied into the GPU memory and then unpacked in parallel using another

CUDA kernel. Once the data has been transferred, a new object is

created locally and the copy operators described previously can be used to fill

the boundary cells on the receiving processor. We launch one CUDA thread

per element to be packed into the buffer, ensuring the maximum amount of

parallelism is exposed. As an example, Figure 6.4 shows how the overlapping

region is copied into the contiguous buffer in parallel.

The operators described by the interface are sufficient for

transferring data between objects at the same level of refinement. However,

to transfer data between objects at different refinement levels, we must use a

refinement operator (if data is moving to a higher refinement level) or a coarsen

operator (if data ismoving to a lower refinement level). In SAMRAI, these oper-

ations are handled by two interfaces: and ,

that provide the necessary methods for coarsening or refining data. To allow

the classes to be used in an AMR simulation, we must provide

operators to coarsen and refine data between different levels of the hierarchy.

Weprovide four data-parallel operators for coarsening and refiningdata.

As with the copy, pack, and unpack routines, each method executes using mul-

tiple CUDA threads in a highly parallel fashion. These are, to the best of our
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knowledge, the first data-parallel implementations for each of these operators.

As an illustrative example, we consider linear interpolation for node-centred

data. The code listing for our data-parallel algorithm is shown in Figure 6.5. In a

typical implementation, data dependencies exist between temporary variables

in different loop iterations and the algorithm is not immediately amenable to

the data-parallel programmingmodel of a GPU. Through substitutions and op-

eration re-ordering, we remove these dependencies and develop an algorithm

that is fully data-parallel (see Figure 6.6). When this kernel is launched to re-

fine some region of data, one CUDA thread can be used per fine node, offering

massive parallelism. We also provide conservative linear refine operators for

the cell- and side-centred data, as well as a node-centred injection operator.

Following the same general design as SAMRAI, we have partitioned our

library into two packages. The first, , contains all the data types described

so far, the second contains the operators used to coarsen and refine data

on a Cartesian grid. Together, the and packages provide all the nec-

essary components for a block-structured AMR simulation to be solved on a

GPU. All that the user code must provide is a black-box integrator that can

advance the simulation on a single patch.

6.2.3 Adding CudaPatchData to CleverLeaf

CleverLeaf uses a single class to control the integration of the numerical so-

lution over patches. This class functions as a black box, and the remaining

routines written to advance the simulation on the mesh hierarchy can remain

unchanged even when a different patch integrator is used. The similarity in

the interfaces between the CPU-based classes and their GPU-based

counterparts meant that wewere able to easily modify the existing code to sup-

port GPU-based execution.

Todevelop theGPU-based version ofCleverLeaf, we created a newpatch

integrator class that contains the code specific to advancing the solution on a

single patch on a GPU. All references to the CPU-based objects pro-

124



6. Scalable AMR on Graphics Processing Units

(a) Host C++ code for launching the data-parallel linear refine kernel.

(b) Data-parallel CUDA linear refine kernel for node-centred data.

Figure 6.5: Host and device code for data-parallel node-centred linear refine.
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Figure 6.6: Original Fortran linear refine code for node-centred data.

vided by SAMRAIwere replacedwith references to theGPU-based

objects we have developed. As in Chapter 5, we advance the simulation by

passing a pointer to the data from these objects to CUDA kernels functions

(rather than the existing numerical methods written in Fortran). Figure Fig-

ure 6.7 shows how the two patch integrator classes are driven by the top level

algorithm.

Control of data communication andmeshmanagement continues to pro-

vided by the and

classes through SAMRAI’s objects. Observing and implementing the

interface meant that no additional changes were needed to allow CleverLeaf to

run on GPUs.

Within the class we require three routines (in addition to the

hydrodynamics kernels) to allow data-parallel execution on GPU hardware.

These routines are used to flag cells for refinement and to coarsen data between

two levels in two specific ways: mass-weighted, and volume-weighted.

Evaluating the tagging heuristic at each mesh cell is trivially parallel.

Since the heuristic does not update any mesh data, and since each point can
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CleverLeaf

LagrangianEulerianIntegrator

LagrangianEulerianLevel
Integrator

Cleverleaf

main Create and compose simulation objects

Manage adaptive hierarchy and advance 
simulation

Advance simulation on a single level

Advance simulation on a single patch 
using appropriate physics kernelsCudaleaf

Figure 6.7: Flexible CPU and GPU implementation in CleverLeaf.

be calculated independently of any other, developing a data-parallel tagging

routine just meant launching enough CUDA threads to evaluate each point in

the patch. However, once cells had been flagged for refinement, we had to

transfer them to the host memory to allow SAMRAI to construct the updated

mesh hierarchy.

To transfer the data, we compress the array of tags (stored as integers)

to an array of bits, where a 1 represents a flag, and 0 represents no flag. This

compression minimises the amount of data that must be transferred, and is

particularly important when a patch is large. Additionally, we store a tagged

variable for each patch. If no cells in a patch are flagged for refinement then we

don’t copy data, since creating the appropriate data (an array filled with 0s) in

host memory is trivial.

Volume- and mass-weighted coarsen operations are essential in hydro-

dynamics simulations using AMR because they ensure that the quantities be-

ing simulated are conserved. To the best of our knowledge, we present the

first implementation of these data-parallel operators. Each coarsen operator

follows the same general pattern, with one CUDA thread being launched for

every coarse value that needs to be filled. This thread then reads the relevant

fine values andperforms the necessarymathematical operations to calculate the

coarse value. Figure 6.8 shows this operation for the volume-weighted coarsen
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Figure 6.8: Data-parallel volume-weighted coarsen operator.

schematically, and the algorithm we use is presented in Figure 6.9.

Combining the classes and the routines described in this

section allows CleverLeaf to simulate Euler’s equations natively in GPU mem-

ory. Simulation data is stored in global memory at all times, and the relevant

regions of data are copied to the host memory in three situations: regridding,

boundary updates, and synchronisation. In the following sectionswe study the

accuracy and performance of our GPU-based AMR mini-application.

6.3 Validation and Verification

In this section we present a detailed study of the accuracy and performance of

the GPU-based implementation of CleverLeaf. Despite the main role of mini-

applications being to investigate issues surrounding application performance,

we also present an accuracy study to reassure the reader that our GPU-based

library functions correctly and is ready to be used in any block-structuredAMR

application.
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Figure 6.9: Code listing for the data-parallel volume-weighted coarsen kernel.

6.3.1 Validation

To verify the accuracy of the results produced by the GPU-based version of

CleverLeaf, we perform a comparison between the results produced by the

CPU version and those produced by the GPU version. Throughout the devel-

opment of the GPU-based version of CleverLeaf, we compared each array to

the corresponding array from a calculation run on the CPU. By ensuring that

these numbers were the same (within machine accuracy) we can be confident

that the codes produced the same results without needing to run additional

validation tests such as the Sod or Woodward-Colella problems.

6.3.2 Verification

The validation approach used in Chapter 5 to compare CleverLeaf and Sham-

rock is no longer applicable since we are running on a different architecture.

Correlating the computational behaviour of the CUDA version of CleverLeaf
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(a) Fortran equation of state kernel.

(b) CUDA equation of state kernel.

Figure 6.10: Code listings for the original Fortran and data-parallel CUDA
equation of state kernels.

and the CPU-based Shamrock benchmark would not be a useful result. Us-

ing two different architectures means that even if we ignore the fundamental

performance gap, the performance counters present on each architecture will

not match. This prevents us from using the framework to perform any

analysis. Whilst the question of correlating performance across architectures

remains open, we address the issue of verifying the GPU-based version of Clev-

erLeaf using three observations.

First, having already verified the CPU-based version of CleverLeaf with

the Shamrock benchmark, we are confident that the fundamental algorithms

expressed in CleverLeaf capture the key computational behaviours of Sham-

rock. The GPU-based version of CleverLeaf contains these same algorithms,

expressed identically in most cases. Hence, we are confident that the perfor-

mance characteristics of CleverLeaf executing on a GPUwouldmatch the char-

acteristics of Shamrock if such a comparison could be performed.
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Second, when an algorithm is modified to perform better on the highly-

parallel architecture of the GPU, we ensure that the output of the algorithm

doesn’t change. This is evident in the validation results, where we observe the

same solutions for both of the two test problems. The changes made to make

an algorithm data-parallel and more suitable for the GPU would also need to

be made in Shamrock. Hence, if the algorithmic changes were to alter the per-

formance characteristics of the application, both applications should change in

the same way and CleverLeaf would remain representative of the Shamrock

benchmark.

Figure 6.10 contains the original and data-parallel versions of the equa-

tion of state kernel from CleverLeaf. The only modifications are the slight syn-

tax changes (for CUDA) and the use of an if statement, rather than a for loop.

This is because one instance of the kernel will be launched for each cell, corre-

sponding to one kernel launch per loop iteration. As a second example, con-

sider the code in Figure 6.11. This is the algorithm used to interpolate node-

centred coarse data to the next finer level. In the original code, unnecessary de-

pendencies exist between iterations of the outer loops. By collapsing the loops

we remove these dependencies, but still perform identical operations, ensuring

the output of the algorithm is the same.

Finally, it is important to revisit the goals of mini-applications: they are

key tools for investigating new programming languages [87, 95] and testing

new machines and architectures [15]. Ensuring the representativeness of mini-

applications whilst also rapidly prototyping versions of the application in new

programming languages (and new architectures) is a balancing act. Given the

uncertainty surrounding future parallel architectures, we are confident that de-

velopment of novel versions ismore important that being hampered by produc-

ing an application with identical computational behaviour in all cases.
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(a) Origan Fortran linear refine kernel.

(b) Data-parallel CUDA linear refine kernel.

Figure 6.11: Code listings for the original and data-parallel linear refine kernels.
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IPA Titan

Processor Intel Xeon E5-2670 AMD Opteron 6274
Clock 2.6 GHz 2.2 GHz

Accelerator NVIDIA Tesla K20x NVIDIA Tesla K20x
PCI gen 2 3
Nodes 8 18,688

CPUs/node 2⇥ 8 cores 1⇥ 16 cores
GPUs/node 2 1

CPU RAM/node 128 Gb 32 Gb
GPU RAM/node 6 Gb 6 Gb

Interconnect Mellanox FDR Infiniband Cray Gemini
Compiler Intel 13.1.163 Intel 13.1.3.192

MPI MVAPICH 1.9 Cray MPT
CUDA Version 5.5 5.5

Table 6.1: IPA and Titan: hardware and software configurations.

6.4 Performance

To assess the performance and scalability of our implementation we performed

a series of experiments using two different architectures: the IPA testbed ma-

chine at Lawrence Livermore National Laboratory and the Titan supercom-

puter at Oak Ridge National Laboratory. The hardware and software config-

uration of each platform is detailed in Table 6.1. The experiments use a range

of problem sizes and node counts, and are designed to test both single-GPU

performance and parallel scalability. Full results for each study are presented

in Appendix A.

Our first study compares a singleNVIDIAKepler K20xGPU to one node

(16 cores) of dual-socket Intel Xeon E5–2670 CPU. We use the Sod problem de-

scribed in Chapter 3 and run 1 thousand timesteps at a range of coarse reso-

lutions from 3 thousand to over 6 million zones, using 3 levels of refinement

and a refinement ratio of 2. Figure 6.12 contains the results of this experiment.

At small problem sizes the GPU and CPU performance are similar, however,

at large problem sizes, we see a performance improvement of over 2.6⇥. This

performance improvement at larger problem sizes is typical of the throughput-

oriented GPU architecture [56].

The second performance experiment investigates the scalability of our

code as the number of GPUs is increased from 2 to 16 (1 to 8 nodes). We also
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Figure 6.12: Wall-clock time for increasing problem size on a single GPU vs.
dual-socket CPUs.

include equivalent results for the CPU-based code. The experiment is a strong-

scaling study, where the problem size remains constant as the number of GPUs

(or nodes) is increased. We use the 6.4 million zone Sod problem and run for 1

thousand timesteps. The results of this experiment are detailed in Figure 6.13,

and for all node counts, the performance of the GPU-based code is better than

the GPU-based code. For a single node, with two GPUs compared against two

CPUs (16 cores), the GPUs are 4.87⇥ faster. At eight nodes (16 GPUs vs. 128

cores) the GPU-based code is still 1.92⇥ faster. We attribute this reduction in

performance to the data transfer required during the boundary exchanges and

the regridding phase beginning to dominate the simulation runtime; a conse-

quence of running our experiment as a strong-scaling study that echoes the

predictions of Amdahl’s law [6].

Our third experiment investigates the performance of our code at large

scale, running on over four thousand GPUs on the Titan system at Oak Ridge

National Laboratory. This experiment is a weak-scaling study, where the prob-

lem size is increased as the number of GPUs is increased. In theory, this means

that each GPU will have a constant amount of work, and any costs associated

with using an increasing number of nodes will be highlighted. We use a modi-

fied version of the triple point shock interaction problem presented in [55]. A

rectangular domain is split into three regions, and as the simulation progresses
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Figure 6.13: Wall-clock time for strong-scaling runs on up to 8 GPUs.

(a) ⇢ and finest level patches at t = 0. (b) ⇢ and finest level patches at t = 2.5.

Figure 6.14: Initial and final density and patch configuration for the triple-point
shock interaction problem.

from its initial state a strong shock travels from left to right. This shock gener-

ates a large amount of vorticity and creates a complex area of interest, creating

a large number of patches that are shown as black lines in Figure 6.14.

We run at seven different node counts, from 1 to 4,096; we use effective

(finest-level) resolutions from 2 million to over 8 billion cells with 3 levels of

refinement and a refinement ratio of 2. Weak scaling an AMR problem can be

difficult since keeping the computational work per-GPU the same is hard. In

this experiment we increase only the coarse resolution and always run to the

same physical end time regardless of the number of timesteps required. Fig-

ure 6.15 presents our results, normalised as average grind times per-cell for

each node count. Each component of simulation runtime gradually increases

as more nodes are added, however, we are able to run the problem on over four

thousand nodes. It is also interesting to note that the majority of the simulation

runtime is spent in the communications of the application (includingMPI trans-
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Figure 6.15: Weak-scaling performance analysis on Titan.

fer, local data transfer, and transfer between host and device memory). The

AMR-specific runtime components, regridding and synchronisation, comprise

only a fraction of the overall runtime. Specifically, at 4,096 nodes 44% of the

runtime is spent advancing the simulation, although the majority of this time is

spent transferring data between patches both locally and globally. Calculating

the timestep, which contains the only global reduction operation consumes 6%

of the runtime. Synchronising fine data to the coarser levels takes an average

of 3% of the runtime. In contrast, on a single node 59% of the runtime is spent

advancing the simulation, with only 1% of time spent synchronising levels, and

less than 1% calculating the global timestep.

6.5 Summary

In this chapter, we describe the GPU-based implementation of CleverLeaf, the

first open-source block-structured adaptive mesh refinement mini-application

that will run residently on GPUs. In particular, we describe the algorithms,

data structures and simulation code we have developed that allow us to fully

utilise the highly parallel architecture of a GPU. The common data structures

and algorithms are contained within a reusable software module, and can be

incorporated into any code using SAMRAI with a Cartesian geometry. The
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data structures we have developed store simulation data in the GPU memory

at all times, and the necessary coarsen and refine algorithms have been written

that allow simulation data to be coarsened and refined in parallel between two

patches in GPU memory.

Wevalidate themathematical accuracy of theGPU-based version ofClev-

erLeaf by comparing the results to the CPU-based version of the code. The re-

sults are identical to machine precision and allow us to assert that the adaptive

mesh refinement algorithms have been correctly applied to advance the simu-

lation. Whilst we cannot directly compare CleverLeaf and Shamrock for GPU

architectures, we present a reasoned argument as to the continued representa-

tiveness of our mini-application.

Finally, we present a performance analysis of CleverLeaf. The applica-

tion is up to 4.87⇥ faster than the CPU-based code, and we have demonstrated

scalable performance on up to 4,096 GPUs on the Titan system at Oak Ridge

National Laboratory.
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CHAPTER 7

Improving AMR Parameter Selection on Contemporary

Compute Platforms

The dynamic nature of Adaptive Mesh Refinement (AMR) can be controlled

and constrained through a number of parameters provided at simulation run-

time. Selecting appropriate parameter values for the mesh creation and inte-

gration algorithms is critical in determining the runtime of applications using

AMR. The ratio by which the mesh is refined, the total number of levels of

refinement, and the frequency with which the refined area is moved in order

to cover the areas of interest in the problem can all be parameterised and con-

trolled. Changing these parameters can affect both simulation runtime and so-

lution accuracy, and can also have a large impact on resource usage.

As an example of this, consider the frequency with which the refined

area is moved. Moving the refined area ensures that areas of interest in the

problem are accurately tracked. However, this step requires a large amount of

data movement and communication, making it a costly procedure. By mov-

ing the refined area less often the communication and data movement costs are
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reduced. However, this requires a larger area to be refined each step, increas-

ing the computational cost. These tradeoffs are typically only understood in-

tuitively, and parameter settings often use default values, even across multiple

generations of different supercomputer architectures.

In this chapter we use CleverLeaf to investigate the impact of three dif-

ferent parameters: regridding frequency, maximum level number, and refine-

ment ratio; on simulation runtime. Identifying the most effective application

settings and the most appropriate parameter assignment for a given supercom-

puter architecture provides a means of improving the performance and pro-

ductivity of production AMR codes. Additionally, we can use this research to

develop a pathway for the software development of future codes.

We conduct a range of experiments on three of the AMR configuration

parameters exposed by CleverLeaf, and analyse the results to determine which

parameter values offer the best performance on each of the three architectures:

an InfiniBand cluster, an IBM Blue Gene/Q, and a Cray XC30. Using data col-

lected from CleverLeaf we then infer the impact of optimal parameter selection

on production applications. In particular, we show how job throughput can

be improved by up to 82% and application memory usage and data generation

can be reduced by up to 32% through the use of appropriate parameter settings.

7.1 Application Parameters

The parameters that controlAMRproblems have a large degree of freedom, and

a small change to the configuration of an application can have a large impact on

the runtime of the simulation. To fully understand the impact of each param-

eter in the context of both a particular problem and machine architecture, we

must perform a large number of runs to search some portion of the parameter

space. Performing these experiments with a production AMR application can

be both difficult and expensive. The complex physics takes a large amount of

runtime, and sometimes the desired parameter might not be modifiable with-
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Hierarchy Parameters Description

Minimum patch size Constraint on minimum patch size.
Maximum patch size Constraint on maximum patch size.

Number of levels Maximum number of levels in AMR hierarchy.
Refinement ratio Increase in resolution between levels.
Patch efficiency Desired ratio of flagged to unflagged cells in a patch.

Combine efficiency Desired ratio of flagged to unflagged cells if joining two ex-
isting patches.

Regridding frequency Number of steps between each regridding operation.

Physics Parameters Description

Physics weighting Factor by which to increase the physics cost using redun-
dant work.

Viscosity threshold Used to tag cells based on the artificial viscosity value.
Energy threshold Used to tag cells based on the energy gradient.
Density threshold Used to tag cells based on the density gradient.

Table 7.1: Parameters exposed by CleverLeaf.

out extensive modifications to the application. By developing CleverLeaf as a

lightweight proxy of the physics and management code found in a production

AMR application, we have a platform for experiments that is easy to under-

stand and modify.

Through a combination of configurable parameters in SAMRAI objects

and CleverLeaf, we have a comprehensive set of runtime options that can be

modified. These modifications can be observed and the runtime of the pro-

gram measured, providing useful feedback in the path to improving produc-

tion AMR codes.

CleverLeaf exposes two different types of parameters, which we call the

hierarchy parameters and the physics parameters. The hierarchy parameters

include the number of levels and the refinement ratio used between each level.

The physics parameters include the values used during the heuristic tagging

function, as well as the cost of the physics kernels. Making the physics cost

of the application tuneable means that it can be used to more accurately rep-

resent a target production application, and more accurately mimic the balance

between the time spent advancing the simulation, and the time spent manag-

ing components of the AMR algorithm. The full list of parameters is presented
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in Table 7.1.

The physics parameters exposed by CleverLeaf are all specific to its hy-

drodynamics scheme. The physics weighting is a multiplier that will increase

the time spent performing computational work. This alters the ratio of com-

munication to computation, so that we can tune the balance to more accurate

represent a production workload. The three threshold parameters are used to

control which cells are tagged for refinement during execution. The values will

affect the accuracy of the simulation, since they define the areas that will be

simulated at a higher resolution. The number of cells that are refined will also

affect the runtime of the simulation, since as the cell count increases so does the

amount of work.

The hierarchy parameters exposed by CleverLeaf belong to the SAMRAI

library. The minimum andmaximum patch size constraints provide a hard up-

per and lower bound on the size of every patch, even if satisfying these con-

straints means breaking others. The number of levels, refinement ratio, and the

regridding frequency all have a more complex interaction with simulation ac-

curacy and performance. Altering the number of levels or the refinement ratio

will change both simulation runtime and accuracy. Changing the regridding

frequency should not affect simulation accuracy, but will affect simulation run-

time due to the changing cell count. In Section 7.4.2 we investigate the impact

of three of these parameters on application performance.

7.2 Related Work

The parameters exposed by AMR provide users and developers with many op-

tions for improving application performance. Colella et al. identify two general

areas of work for improving AMR performance: first, algorithmic improve-

ments that aim to reduce the complexity of particular parts of the AMR man-

agement routines; and second, configuration improvements that aim to reduce

runtime through parameter selection [34]. The improvements we present in
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this chapter belong to the second area.

Gunney et al. present a parallel clustering algorithm that is up to 40⇥

faster than a simple parallelisation of the standard Berger-Rigoutsos clustering

algorithm [24, 65]. Allowing each possible patch to be evaluated as a parallel

task, and assigning each task an owner to manage the evaluation of the patch,

means that the clustering work can be shared between processors. At small

scale, the difference between clustering algorithms is negligible, but the simple

parallel Berger-Rigoutsos algorithm will always be limited by the serialisation

caused by having one root processor evaluate every patch.

Other clustering approaches also demonstrate improved scalability (over

Berger-Rigoutsos), but do so at the cost of additional constraints on patch sizes

and locations. Luitjens and Berzins present five parallel regridding algorithms,

two of which constrain the generated patches [99]. Their approach uses a set

of predefined patches (tiles) that can be enabled if they contain a tagged cell.

Since all possible patches are predefined, they are more likely to contain un-

tagged cells. Their local Berger-Rigoutsos approach uses an instance of the

Berger-Rigoutsos algorithm on each patch. This means that new fine patches

cannot span the boundary of two coarser patches, and hence increase the total

number of patches. By avoiding global communications, both these algorithms

have improved scalability. This work shows the holistic approach required to

tune AMR performance, since improving the regridding algorithm creates less

favourable patch configurations.

Configuration improvements can typically be made at run-time, and in-

clude user-supplied patch and level constraints, refinement ratios, and load bal-

ancing parameters. Load balancing determines which processor a patch gets

assigned to, and load balancers typically focus on sharing the computational

load generated by each patch. However, considering the communication cost

of patch placement can improve application scalability. In previous work, we

have used performance modelling techniques to determine, at run-time, the

cost of placing a patch on a particular processor [17]. Considering communica-
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tion cost during load balancing provided runtime improvements of up to 29%

compared to a standard, bin-packing approach.

Lan et al. use a dynamic load balancing technique with a two-phase ap-

proach, first transferring patches from overloaded to underloaded processors,

and then splitting patches to further fine-tune the load balancing [93]. With this

technique they are able to reduce application runtime by up to 47%. Again, we

see that modifications to one part of the AMR configuration impact other ar-

eas. Patches must be split in order to balance the load; this means that more,

smaller, patches must be used, which increases communication overheads.

At present, there is a lack of literature that investigates the fundamen-

tal parameters that control AMR performance. When AMR is used, it is typ-

ically applied as an enabling technique for a given numerical simulation; any

parameter studies focus on physical parameters such as initial conditions or

refinement criterion, rather than the basic parameters that control the AMR al-

gorithm [36, 80, 117]. Additionally, such studies are not concerned with appli-

cation performance. In [80], Hummels and Bryan do vary the maximum level

number to reach a desired mesh resolution, however, no performance results

are presented. The three parameters we have investigated have a large impact

on performance, and for two of the parameters, the optimal values were con-

siderably different to the established default configuration.

7.3 Experimental Setup

Throughout our experiments we use a simple two-dimensional problem that is

a modified version of Sod’s shock tube problem [147]. A vertical strip of ideal

gas with density ⇢ = 1 and pressure p = 1 is centred in an ambient region of

ideal gas with ⇢ = 0.125 and p = 0.1. At time t > 0 the strip of high-density gas

expands into the ambient region, forming the shock wave seen in Figure 7.1a.

The propagation of the shock wave provides three important solution features

that theAMR tagging routineswill capture: the contact discontinuity, the shock
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Figure 7.1: AMR provides increased accuracy by increasing the resolution
around areas of interest.

front, and the rarefaction. The simulation is advanced to time t = 2.5.

The execution time of anAMR-enabled simulationdepends on both prob-

lem size and a number of configuration parameters including the number of

AMR levels, the minimum and maximum patch sizes, the refinement criteria,

and the frequency of regridding. In order to reduce the impact of all these fac-

tors, we use a carefully constructed problem for each core count to approximate

a weak-scaling configuration.

When running an AMR simulation, we ensure that the resolution of the

finest level is equal to the resolution of the uniform calculation, where a uniform

calculation is one without mesh refinement. In order to weak-scale a uniform

problem, the global number of cells is increased. However, with an AMR prob-

lem, increasing the global number of cells (at the coarsest level) will result in a

smaller portion of the problem being refined and the amount of computational

work decreasing as more processors are added.

To approximate weak-scaling behaviour with an AMR problem, we use

replication scaling. Replication scaling creates a larger problem by taking a

configuration for a fixed number of processors and making identical copies of
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the problem for each additional set of processors. This approach was first used

by Van Straalen et al. in their work on scalability optimisations for the Chombo

framework [160]. Figure 7.2 shows the basic problem configuration used for:

(a) a 16-core run on one node, and (b) a 256-core run on 16 nodes. The difference

in coarse patch configuration is due to the tree-based load balancing algorithm

provided by SAMRAI.

We use a uniform resolution of 8002 cells per-processor, and four levels

of refinement with a refinement ratio of two. This means that the resolution of

level 0 is 1002 per processor. It is important to note here that not all of the 10

thousand coarse cells on each processor will be refined, so the total number of

cells assigned to each processor when using AMRwill be less than the uniform

case. Other factors that will affect the total number of cells in the problem in-

clude patch size constraints, flagging criteria, and load balancing parameters.

To flag cells for refinement, we used the following criteria:

r⇢ > 0.001 (7.1)

rE > 0.001 (7.2)

q > 0.1 (7.3)

Cells inwhich at least one of the criterion is true are flagged for refinement. The

minimum patch size constraint was set to 502, and the default load balancing

parameters were used. As in [23], regridding is performed every four steps.

Our experiments were conducted on three machines, selected due to

their differing characteristics: Cab, Vulcan, andARCHER. Lawrence Livermore

National Laboratory’s Cab supercomputer is composed of 1,296 dual socket

nodes based on 8-core Sandy Bridge processors. Nodes are connected via QDR

InfiniBand in a fat-tree topology. Vulcan is an IBMBlueGene/Qalso installed at

Lawrence Livermore National Laboratory. Vulcan has 24,576 nodes each con-

taining a 16-core PowerPC processor. The nodes are connected using a five-

dimensional torus. ARCHER is a Cray XC30 supercomputer containing 3,008
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Cab Vulcan ARCHER

Processor Intel Xeon E-5 2670 PowerPC A2 Intel Xeon E-5 2697
Clock 2.6 GHz 1.6 GHz 2.7 GHz
Nodes 1,296 24,576 3,008

CPUs/node 2⇥8 (16) cores 16 cores 2⇥12 (24) cores
RAM/node 32 GB 16 GB 64 GB
Interconnect InfiniBand Fat-Tree 5D Proprietary Torus Cray Aries

Compiler Intel 13.1.1.163 IBM XL 12.1 Intel 13.1.3.192
MPI MVAPICH2 1.7 IBMMPI Cray MPT

Table 7.2: Cab, Vulcan, and ARCHER: hardware and software configurations.

(a) 16 cores. (b) 256 cores.

Figure 7.2: Initial conditions and coarse patch configuration for the replication-
scaled Sod problem.

compute nodes, managed by the Engineering and Physical Sciences Research

Council at the University of Edinburgh. Each node contains two 12-core Ivy

Bridge processors. The ARCHER nodes are connected via Cray’s Aries inter-

connect in a dragonfly topology. Further details on hardware and software con-

figuration of the three machines can be found in Table 7.2. When running our

experiments one MPI task is allocated to each processor core for all architec-

tures. On Vulcan, each MPI task also uses four OpenMP threads in order to

take full advantage of the four floating point units in each PowerPC core.

7.4 Performance Analysis

To investigate the impact of AMR parameters on application performance we

conduct two sets of experiments. First, we conduct a performance analysis

of CleverLeaf using a default set of parameters. We compare these perfor-

mance results to those obtained running an identical simulation in CloverLeaf.
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Figure 7.3: AMR ( ) and uniform ( ) replication scaling on Cab, Vulcan,
and ARCHER.

These results highlight the differences in performance that can be expected

when switching from a uniform to an adaptive application. The second set

of experiments varies the value of three parameters in turn: regridding fre-

quency, number of levels, and refinement ratio. Analysing the results of these

experiments allows us to compare the impact of each parameter on simulation

runtime, as well as identify the appropriate parameter values for the three ex-

perimental platforms we use.

7.4.1 Scalability

In this section we compare the initial scaling performance of CleverLeaf to

CloverLeaf (the uniform mini-application described in Chapter 4) on our three

test platforms. We ran the replication-scaledproblemon a range of core counts—

from 16 to 6,144—on each of the three architectures.

Figure 7.3 shows that, in general, across all three architectures the per-

formance of CleverLeaf (AMR) is better than that of CloverLeaf (uniform). In

particular, kernel runtime is reduced by up to a factor of eight1. This is due to

the capability of AMR to reduce the total number of cells in the problem, whilst

still maintaining the desired mesh resolution in areas of interest.

In the uniform calculation, the total number of cells is 10million per-core.
1Full results are presented in Tables A.7a, A.7b and A.7c.
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In the AMR calculation, the initial total number of cells is 720,000 per-core. Due

to the mesh evolving throughout the problem, this cell count grows to a max-

imum of 1,350,400 at step 503. The average total cell count (for one node) is

1,158,730, so each processor is responsible for an average of 72,792 cells. The

difference in cell count, assuming the problem is well balanced, highlights the

strength of AMR in reducing computational work; the total number of cells

in the adaptive mesh is an order of magnitude lower than that of the uniform

mesh.

The reduced number of cells in the AMR problem also provides a re-

duction in memory usage, with the memory high watermark (measured using

WMTrace [131]) reduced by 20% from 123MB to 99MB when running on 16

cores. Whilst the 90% decrease in cell count would suggest that more memory

should be saved, CleverLeaf has additional overhead such as the C++ objects

used tomanage the adaptive hierarchy. Each patch requires its own set of ghost

cells to store boundary values; this also increases memory usage.

For three core counts (1,024, 2,048, and 4,096) on the Blue Gene/Q, Clev-

erLeaf performsworse thanCloverLeaf. Despite good initial performance, where

theAMRcalculation is almost as fast as the uniform calculation on amuch faster

Intel-based cluster, the weak scaling performance is not maintained. On 1,024

processor cores the runtime of the two programs is almost identical, and on

2,048 and 4,096 cores, the performance of CleverLeaf is up to 1.4⇥ slower than

CloverLeaf.

The trend common to all three architectures is the significant reduction in

computation time: 91% on Cab, 87% on Vulcan, and 87% on ARCHER. With

the replication-scaled problem, the kernel time remains similar regardless of

core count. As is typical, the cost of boundary communication increases with

the number of cores. In CleverLeaf, the cost of boundary communications also

contains any busy waiting caused by a load imbalance between the processors.

Across all architectures, regridding is a significant cost as the scale of the

application is increased. At 4,096 processor cores, regridding takes 41% and
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73% of the total runtime on Cab and Vulcan respectively. This large regridding

cost is the cause of the poor scalability exhibited when running CleverLeaf on

the Blue Gene/Q architecture. At 6,144 processor cores, regridding takes 51%

of the total runtime on ARCHER.

The cost of the synchronisation step of the AMR algorithm, where the

more accurate fine solution is mapped to the coarse levels is insignificant on

all architectures, even as the scale of the application runs is increased. Even

though this synchronisation procedure is performed every timestep, it takes as

little as 1.2% of the total simulation runtime.

The other costs captured in Tables A.7a, A.7b andA.7c represent the time

taken for application initialisation, program logic, and—in CleverLeaf—object

management. CloverLeaf uses only scalar values and two-dimensional arrays,

minimising the time spent outside of actual simulation code. Each processor

is assigned one chunk of the simulation mesh which is created once and exists

throughout the simulation. In contrast, CleverLeaf uses objects that are

created and destroyed throughout the simulation, resulting in more manage-

ment time.

Whilst the time spent updating boundaries in CleverLeaf is small, it is in

most cases an order of magnitude more than the time spent updating bound-

aries in CloverLeaf. This is a tradeoff that must be made when using AMR,

since the additional datamovement and coordination requiredwill createmore

communication. Figures 7.4 and 7.5 show the message size histogram, and

communication pattern for the 16-core run of both CleverLeaf and CloverLeaf.

These results confirm the complicated communication requirements of AMR,

which we believe cause the increased communication overhead that we ob-

serve. CleverLeaf sends over two million messages, with sizes ranging from

4B to 8MB. CloverLeaf exhibits a much more regular communication pattern,

both in terms of message size and sender-receiver pairs. Over 800 thousand

messages are sent, though only two sizes are used: 8 kB and 16 kB. Despite

using the same hydrodynamics scheme and solving the same problem, the dif-
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Figure 7.4: Message size histogram comparison for a 16-core run.
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Figure 7.5: Communication pattern comparison for a 16-core run.

ference in communication pattern highlights how two applications can appear

and perform differently at the machine level.

The set of experiments using our mini-applications in this section high-

light the benefits ofAMR, chiefly the reduced cell count. This improves runtime

by reducing the computational workload and memory requirement of the sim-

ulation. The results presented here also show the cost of the extra management

work that an AMR application requires: regridding, synchronisation, and the

increased cost of boundary communications. This management cost is strongly

linked to parameter values, so it can be controlled and often reduced. For ex-

ample, reducing the regridding frequencymeans that the regridding operations

will be performed less often and will make up a lower proportion of the total

runtime. However, a decreased regridding frequency requires larger patches,
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meaning an increase in boundary communication, synchronisation, and com-

putation time. Finding the best set of parameters is key for achieving optimal

application performance; using CleverLeaf, it is this question that we address

next.

7.4.2 Parameter Evaluation

In this section we use CleverLeaf to investigate the impact of three parame-

ters on application runtime on three contemporary compute platforms. The

parameters: regridding frequency, number of levels, and refinement ratio, all

affect runtime by changing the complexity of management work required to

advance the AMR algorithm. As in Section 7.4.1, we use the replication-scaled

Sod problem, with a finest resolution of 8002 cells per-processor. Since chang-

ing the regridding frequency and refinement ratio can effect the results of the

simulation, we impose some additional constraints: the timestep is fixed and

the simulation is run for 926 steps to finish at time t = 2.5. In each set of experi-

ments, we vary only one parameter. The others are assigned the default values

used in the previous section.

Regridding Frequency

As we observed in Section 7.4, the regridding operation—when applied every

four timesteps—represents a large portion of the simulation runtime. On Vul-

can the cost of regridding at 4,096 processor cores was 73% of the total runtime.

By decreasing the frequency at which the regridding procedure is applied, this

cost can be reduced. However, a reduction in regridding frequency requires a

larger portion of the problem domain to be refined, increasing the cost of other

areas of the application.

The hydrodynamics applications that CleverLeaf represents are used to

model the movement of gases under extreme pressures and temperatures. In

these conditions, shock waves form, and must be accurately modelled by the

hydrodynamics scheme used. In mathematical terms, the shockwave repre-
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sents a discontinuity in the continuous function describing the value of a quan-

tity at various points in the mesh. Since a discontinuity in the discretised equa-

tions would have an infinite gradient, the shock must be smeared, such that it

has a very large, but not infinite gradient. The AMR-specific impact of this con-

dition is the constraint that a strong shock wave must not be allowed to pass

through a level boundary. When this happens, errors are introduced into the

numerical solution [21].

The rate at which the shock moves through the problem domain is con-

trolled by the timestep and the CFL condition and hence a shock cannot pass

through more than one cell in a timestep [37]. To stop a shock passing through

a level boundary we must add an extra layer of cells around any cells flagged

for refinement corresponding to the length of time until the next regridding op-

eration. For example, in the previous section, each group of flagged cells had

an additional four-cell layer added, since the regridding operation was applied

every four steps.

Wehypothesise that the extra border cellsmight increase simulation run-

time in three ways. The additional cells increase the amount of the domain that

is refined, thus increasing time spent in the computational kernels of the ap-

plication. Refining a larger proportion of the domain also means that a larger

amount of halo data will need to be communicated, increasing the time spent

updating boundaries. Finally, a larger proportion of the domain being refined

means that more data must be synchronised between levels every timestep.

When adjusting the regridding frequency, finding a balance between the

reduced regridding cost and the increased computation and communication

cost is essential in finding an optimal runtime configuration. We ran a range of

experiments, varying both regridding frequency and processor core count. As

in the previous section, the processor core counts range from 16 to 6,144. The

regridding frequencies used ranged from 1 to 20. Both the refinement ratio and

number of levels remain unchanged.

Figure 7.6 highlights the affect of regridding frequency on runtime. The
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Figure 7.6: Regridding time and optimal frequency for each platform.

colour and contours of the plot show the percentage of time spent in regrid-

ding for a given frequency and core count. The points show the frequency that

provided the minimum runtime at each core count.

We will examine the results first in terms of the percentage time spent

regridding. On Cab, the time spent in regridding for the fastest runs is between

9% and 24%. On Vulcan, the regridding time increases to between 24% and

37% for the fastest runs. On ARCHER, the regridding time is between 11%

and 26%. At increased core counts on Vulcan and ARCHER, the optimal re-

gridding frequency begins to decrease. The link between percentage time spent

regridding and the optimal regridding frequency suggests that frequency can

be modified at higher core counts to provide better runtime.

Despite a regridding frequency of every nine steps being optimal for all

core counts less than 1,024 on Vulcan and 3,072 on ARCHER, a decrease in fre-

quency is necessary on higher core counts to maintain a reasonable percentage

runtime spent regridding. Vulcan spends 38.2% of the application runtime in

regridding at 1,024 cores at a frequency of every nine steps. At 4,096 cores the

optimal frequency decreases to every 16 steps, but the portion of runtime spent

regridding remains similar at 37.9%. ARCHER spends 26.47% of the applica-

tion runtime in regridding at 3,072 cores at a frequency of every nine steps. At

6,144 cores the optimal frequency decrease to every 11 steps, but the percent-

age of runtime spent regridding remains similar: 29.12%. As is to be expected,

there is a clear link between percentage of runtime spent regridding and the
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optimal regridding frequency; CleverLeaf allows us to investigate this trade

off with ease on our three contrasting architectures.

The regridding phase of the AMR algorithm requires a large amount

of communication, so the cost of regridding increases proportionally as more

cores are used. On Cab, the increase is from just over 18% to over 43% on

4,096 cores when using a regridding frequency of four. A lower regridding

frequency thus improves application scalability. Regridding frequency can af-

fect the time spent in the numerical kernels, since the larger patches required

by the lower regridding frequencies mean more cells must be calculated. The

time to fill boundaries also increases as the larger patches mean that more data

must be transferred between processors in order to correctly fill any boundary

cells. Finally, the synchronisation cost also increases as regridding frequency

decreases, again as a result of an increased amount of data that must be trans-

ferred. All these runtime increases seem to directly relate to the amount of the

problem domain that is refined. If this can be minimised, then runtime can be

improved.

Number of Levels

The impact on runtime caused by the maximum number of levels used can-

not be observed from the results already collected in Section 7.4.1. However,

we suppose that the main cost of using additional levels will be the increased

complexity in the structure of the patch hierarchy. This will increase the cost of

regridding, as well as increasing the time spent performing boundary updates

and synchronising the solution to the coarser levels.

Reducing the number of levels will remove the complexity introduced

with a high maximum level count. However, with fewer levels, the resolution

of the coarsest level will need to be increased to ensure that the finest level

remains at an appropriately accurate resolution, thiswill increase the time spent

in computational kernels.

To observe the impact of maximum level number on simulation runtime
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Figure 7.7: Impact of maxmimum level number on runtime.

we ran a range of experiments using our mini-application in which we varied

both processor core count and maximum level number. As in previous experi-

ments, the core counts range from 16 to 6,144. The maximum level ranges from

two to six. The default values of four and two are used for the regridding fre-

quency and refinement ratio. In order to maintain a finest level resolution of

8002, we must vary the resolution of the coarsest level. The coarse resolutions

used in each case are: 4002, 2002, 102, 502, and 252.

Looking at the runtimes presented in Figure 7.7 we can see that the level

count does affect runtime in the waywe predicted. Runtimes on all core counts

begin to increase when more than five levels of AMR are used. On Cab and

ARCHER, the increase in runtime due to the number of levels is only evident

when six levels of refinement are used. On all three architectures, the best run-

times are recorded using either three or four levels of refinement.

Tables A.9a, A.9b and A.9c contain detailed timings for the 256-node ex-

periments on Cab, Vulcan and ARCHER. We can see the impact of an increase

in level count on application runtime. Considering the trends in this data, we

can see that using either too few or too many levels can harm application per-

155



7. Improving AMR Parameter Selection on Contemporary Compute Platforms

formance. With two levels of refinement, the large increase in coarse patch

resolution means that there is too much computational work. Using three lev-

els of refinement halves the amount of time spent doing computational work,

but also reduces the boundary communication time. Adding levels adds com-

plexity, and hence the synchronisation and regridding times also increase. The

most significant increase in regridding time is 144% on Cab.

Increasing the number of levels used decreases the amount time spent

in the physics kernels. When using more and more levels, the low resolution

of the coarse levels means that a smaller portion of the domain can be refined,

and less cells need processing.

Refinement Ratio

The refinement ratio works in concert with the number of levels. Increasing the

refinement ratio means that the resolution of the problem can increase more

rapidly, reaching the desired resolution with fewer levels. Alternatively, the

same number of levels can be used, and the resolution of the finest level can be

increased. If the number of levels is kept constant, then the resolution of the

coarse level can be reduced, and the total number of cells in the problem will

decrease.

Provided that the number of levels and the finest level resolution are

kept constant, we hypothesise that an increased refinement ratio could affect

simulation runtime in two key ways. Firstly, the increased refinement ratio

will increase the time taken to refine and coarsen data between levels. This

will show up as an increase in the boundary update time and the synchronisa-

tion time. Secondly, the reduction in total cell count provided by an increased

refinement ratio should cause a significant decrease in runtime.

To observe the impact of the refinement ratio on simulation runtime we

ran a range of experiments in which we varied the number of nodes and the

refinement ratio. As in all previous experiments the number of nodes ranges

from 1 to 256, and the refinement ratio ranges from two to six. As in our default
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Figure 7.8: Impact of refinement ratio on runtime.

configuration, the regridding frequency used is four, and the maximum level

number is four. By only changing one parameter we are able to better isolate

the costs of the varied refinement ratios. We maintain a finest level resolution

of approximately 8002 by varying the coarse resolution. For example, when

using a refinement ratio of five, the coarse resolution per-core will be 62, and

the finest level resolution 7502.

The runtimes presented in Figure 7.8 show the impact of refinement ra-

tio on simulation runtime for all three platforms. As predicted, the decreased

cell count provides a decrease in simulation runtime. In particular, on all three

platforms a ratio of 3 provides the best performance. Increasing the refinement

ratio from 2 to 3 but keeping the other parameters constant provides an im-

provement in runtime of up to 1.73⇥.

The decrease in total cell count is most easily observed by considering

the time spent in the physics kernels. On Cab, ARCHER, and Vulcan the lowest

kernel times are found at refinement ratios of 3 and 4, suggesting these ratios

offer the lowest total cell counts. The reduction in kernel time when moving

from a refinement ratio of 2 to 3 is up to 30%. The time to exchange boundaries
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on these two architectures begins to increase at refinement ratios of 5 and 6, sug-

gesting that needing to interpolate more data from the coarse level is increasing

runtime.

Despite our hypothesis, refinement ratio only has a small impact on syn-

chronisation time, and additionally, synchronisation is only a small portion of

simulation runtime. On Vulcan, the increase in synchronisation time is only

noticeable with a refinement ratio of 6; this is not seen on Cab and ARCHER.

We hypothesise that the faster CPUs in Cab andARCHER, and the small cost of

synchronising data (typically less than 1% of runtime) mean that any increase

in synchronisation cost caused by refinement ratio is dwarfed by other factors.

On Vulcan, the increase in synchronisation time from a ratio of 3 to 6 is 35%,

however, this still represents only 2.5% of the total simulation runtime. Given

the low impact of synchronisation cost on runtime, the biggest impact caused

by changing the refinement ratio is reducing the total number of cells in the

problem, where reductions in kernel time of up to 30% contribute to overall

runtime improvements of up to 1.73⇥.

The experiments in Sections 7.4.2 to 7.4.2 show that parameter values

have a significant impact on simulation. Often this impact is an improvement,

however, badparameter value selection can be incredibly harmful to simulation

runtime. With a better value selected, all three parameters are able to improve

the runtime of our test problem. Compared to the default configuration, the

optimal regridding frequency provides a runtime reduction of up to 45%, the

optimal number of levels provides a runtime reduction of up to 1%, and the

optimal refinement ratio provides a reduction of up to 31%. Conversely, with

inappropriate values selected, we see increases in runtime of up to 186%. En-

forcing a better set of default values for these parameters and ensuring they are

exposed for modification at runtime is essential for achieving optimal applica-

tion performance; CleverLeaf provides a new tool for performing this analysis.
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Platform
Parameter Cab Vulcan ARCHER

Regrid 9 16 11
Levels 4 3 4
Ratio 3 3 3

(a) Optimal parameter values.

Platform (% improvement)
Parameter Cab Vulcan ARCHER

Regrid 22.67 45.27 27.59
Levels 0 0.96 0
Ratio 31.24 24.21 25.58

(b) Achieved improvement.

Table 7.3: Optimal parameter values and achieved improvements over the de-
fault configuration, derived from our CleverLeaf mini-app study.

7.5 Parameter Selection for Production Appli-

cations

In this section we present an analysis of the most effective parameter values for

each of our three experimental platforms, along with showing how improved

parameter selection via mini-applications can be used to influence future ap-

plication design and use. We perform a detailed analysis of the most effective

values for the three parameters we examined in Section 7.4.2, highlighting the

link between value selection and architecture characteristics. To show how im-

proved parameter value selection can influence real-world applicationswe con-

sider two important constraints in production use: simulation timesteps com-

pleted and memory used. Using the more effective values we have identified

allows up to 33 more production-sized jobs to be completed per-month, a re-

duction of up to 32% inmemory usage, and a 45% improvement in application

runtime.

7.5.1 Optimal Parameter Configuration

Table 7.3a presents the optimal value for each parameter and each architec-

ture, based on the results obtained in Section 7.4.2. The values chosen provide

the best runtime at the largest scale on each architecture. The most significant

change from the default configuration is the decreased regridding frequency.

On all three platforms, the optimal regridding frequency is over double that

of the default configuration. The best regridding frequency is strongly tied to
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the number of nodes being used, and as seen in Section 7.4.2, the regridding

frequency typically needs to decrease as the scale of the runs increases. The

largest change necessary to find the optimal frequency is on Vulcan, where the

slow cores of the Blue Gene/Q architecture mean that the algorithms in the

regridding step have a big impact on performance.

The default configuration of four levels of refinement remains optimal

at 256 nodes on both Cab and ARCHER. On Vulcan, the optimal number of

levels to use is three; we attribute this to the reduced cost of regridding when

the adaptive hierarchy only contains three levels. For all three architectures, a

refinement ratio of three provides the best runtime. Using a higher refinement

ratio reduces the total number of cells in the problem, reducing the time spent

performing numerical calculations and thus reducing runtime.

Table 7.3b shows the improvement in runtime that each value provides

over the default configuration of four levels, a refinement ratio of two, and

a regridding frequency of every four steps. Selecting a better regridding fre-

quency can improve runtime up to 45%, and on Vulcan, using three levels of

refinement improves runtime by 1%. Using the optimal refinement ratio can

provide runtime improvements of up to 31%.

Based on our experiments, we conclude that regridding frequency and

refinement ratio are the two most important parameters for ensuring scalable

AMR performance. Our recommendation for future application development

would be to select a larger default regridding frequency and to ensure that this

parameter can easily be varied at run time. Refinement ratio can have a large

impact on simulation accuracy aswell as runtime, hence, our advice is to ensure

that in all code development refinement ratio is left as a variable rather than a

constant, allowing for easy extension of the code as desired by users.

7.5.2 Increasing Job Throughput

Mini-application runs typically last for minutes; the longest experiment in Sec-

tion 7.4 takes just 15! In production, runs can last for days or weeks as thou-
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Figure 7.9: Predicted improvement in timesteps/month with optimal parame-
ter selection, compared to the default configuration.

sands of timesteps are simulated on hundreds of processor cores. To frame the

results fromCleverLeaf in a way that is applicable to real-world application us-

age, we consider the number of timesteps that can be simulated in one month

of wall clock time. We then examine the influence of the improved parame-

ter values on this derived metric, showing the impact that a small percentage

in performance improvement provides large real-world gains in terms of job

throughput.

A real world problemmight take 18 hours to complete 10 thousand sim-

ulation timesteps [130]. Scaling the results obtained in the previous sections

in line with this more realistic runtime, we let the default configuration per-

form at a rate of 10,000 timesteps per 18 hours on each architecture (or 400,000

timesteps per month). Figure 7.9 presents the improvements in timesteps per

month that each of the three parameter values provides compared to the default

configuration. By keeping the baseline timesteps per month for each architec-

ture the samewe can easily identify which of the parameter changes is themost

effective on each architecture.

The most significant improvement in throughput is on Vulcan when

the regridding frequency is optimised: an 82% improvement from 400,000 to

730,974 timesteps per month. This improvement in runtime would allow an
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additional 33 simulations to be completed per month. On all architectures an

improved regridding frequency provides a large improvement in throughput.

On Cab, 38% more timesteps per month are completed, and on ARCHER 29%

more timesteps can be completed. This corresponds to an additional 15 and 11

jobs per month respectively.

In our experiments we found the optimal number of levels on Cab and

ARCHER to be four, the same as the default configuration, hence there is no

improvement in throughput. When running on Vulcan, the optimal number

of levels was three. This offers a small improvement in timesteps per month,

meaning an additional 5,000 timesteps can be completed every 30 days. Over

the course of a year, this would allow an additional six simulations to be com-

pleted.

Improving the refinement ratio provides the most significant gain in

throughput onARCHER.Over 45%more timesteps can be simulatedpermonth,

corresponding to an additional 18 jobs per month. On Cab and Vulcan, the

optimal refinement ratio provides a 34% and 31% increase in job throughput

respectively, allowing an additional 13 and 12 jobs to be completed per month.

Themost effective configuration change is improving the regridding fre-

quency on Vulcan, allowing over 330,000 more timesteps to be simulated per

month. With this 82% improvement in timesteps per month, we could com-

plete 33 more simulations. On Cab and ARCHER the gains are more modest,

but using the most effective configuration changes on these architectures still

allows us to complete 15 and 18more jobs permonth respectively. In the context

of a mini-application like CleverLeaf, the impact of configuration changes may

seem somewhat abstract. However, using the results in this section we have

shown that with small changes to parameter values we can increase real-world

throughput of a typical production problem by up to 82%.
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7.5.3 Reducing Data Use

Current trends in supercomputer design point towards decreasing amounts of

memory per core; the design of the IBM Blue Gene/Q, with only 1GB mem-

ory per core exemplifies this. Typical clusters like Cab and ARCHER have up

to 4GB per core. AMR can provide significant memory savings by reducing

the number of cells required to perform any calculation. This allows simula-

tions to be run using fewer hardware resources than a uniform application.

The reduction in data also affects the amount of information generated during

a simulation. Leadership-class simulations place significant demands on the

I/O system of architectures as they will be writing thousands of gigabytes of

data in the form of visualisation files and other data output [94]. Using AMR

can reduce the amount of data generated at the same rate it reduces thememory

consumed by the application at runtime without affecting solution accuracy.

The key factor that determines the memory used and data generated by

an application is the number of cells in the simulation. The AMR parameters

with the greatest affect on cell count are the maximum level number and the

refinement ratio. However, the values that give the maximum reduction in cell

count may not reduce the runtime of the simulation; this is especially true in

the case of number of levels used. On the Blue Gene/Q, using six levels of re-

finement to achieve the same finest level resolution as the default configuration

caused a 1.5⇥ increase in runtime compared to the default configuration.

We extend the range of experiments that we have run using CleverLeaf

to allow us to consider the tradeoff in runtime that must be made in order to

achieve an upper-bound on memory usage. As a mini-application, the amount

of memory used by CleverLeaf is smaller than a production application, and

hence we consider number of cells rather than MB of memory consumed.

Running our replication-scaled problem on 256 nodes using the default

configuration results in a total cell count of over 296million, and runtimes of ap-

proximately 130 s, 800 s, and 150 s respectively on Cab, Vulcan, and ARCHER.

Figure 7.10 shows the tradeoffs that can be made between simulation runtime
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Figure 7.10: Relative data usage and runtime compared to the default configu-
ration.

and total cell count by varying the three parameters on each architecture.

On all three architectures, varying the refinement ratio provides the largest

savings in both runtime and total cell count. Using a refinement ratio of three

(which was found to be optimal in terms of runtime in Section 7.4.2) provides

a reduction in cell count of 32% compared to the default configuration. This

also corresponds to a reduction in runtime of 26%, 30% and 35% on Cab, Vul-

can and ARCHER respectively. Even though refinement ratio provides the best

improvements in runtime andmemory usage, it is important to note that of the

three parameters we have examined, it is the most likely to affect simulation

accuracy. It is thus necessary to use domain expertise to determine when the

tradeoff between accuracy and memory and runtime saving ought to be made.

Varying the regridding frequency shows an interesting pattern on all

three architectures. As we saw in Section 7.4.2, choosing a better regridding

frequency will reduce the application runtime. However, when the regridding

operation is applied less often, more cells are needed to ensure areas of inter-

est remain inside refined areas of the mesh. When regridding every timestep,

the lowest total number of cells is reached; a reduction of 3% from the default

parameter set. This decrease in total cell count is accompanied by an increase

of over 100% in simulation runtime on all three architectures. The maximum
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decrease in runtime that can be achieved by varying only the regridding fre-

quency is 30%, but in every case the total cell count increases. This leads us to

suggest that regridding frequency is the best parameter to change in order to

reduce runtime without affecting simulation accuracy, particularly at scale.

Varying the number of levels used offers minimal benefit in terms of

either data usage or simulation runtime. In fact, using only two levels increases

cell count by 172% and increases simulation runtime by up to 53%. Using

either five or six levels of refinement does offer a small reduction in total cell

count (6.5% and 7.2%) but causes an increase in runtime of up to 44%. These

results suggest that varying only the number of levels used cannot provide the

improvements we are looking for. However, because of the tightly coupled

relationship between refinement ratio and number of levels necessary to reach

a given resolution, varying both these parameters may be of some use.

When looking to reduce both simulation runtime and total cell count,

changing the refinement ratio is the most effective parameter to investigate,

providing reductions of up to 32% and 35% in cell count and runtime. These

gains have the potential to affect simulation accuracy, so must be varied with

caution. Selecting a more optimal regridding frequency can reduce simula-

tion runtime, but will increase total cell count; the best regridding frequency

in terms of runtime increases cell count by 5%. Altering the number of levels

used offers minimal improvements in terms of either cell count or runtime.

7.6 Summary

In this chapter, we used CleverLeaf to perform a detailed analysis of the perfor-

mance of the default AMR parameter configuration on three architectures: an

InfiniBand cluster, a Cray XC30, and an IBM Blue Gene/Q. The detailed anal-

ysis presented also includes a comparison of the runtime, memory usage and

communication pattern of CleverLeaf with a uniform hydrodynamics applica-

tion. The AMR application achieves a performance improvement of up to 75%
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in runtime, and a 20% reduction in memory consumption.

The impact of three of the parameters exposed by CleverLeaf was evalu-

ated on all three experimental platforms. These experiments identify the opti-

mal regridding frequency, maximum level number, and refinement ratio to use

on each architecture. The experimental results demonstrate that identifying

the optimal value for each parameter and architecture can improve application

performance by up to 45% over the default AMR parameter configuration.

We applied the results of the parameter configuration experiments to

examine the impact of optimal parameter on production application scenarios.

Selecting an optimal parameter configuration can improve throughput of a typ-

ical production workload by up to 82%, corresponding to an additional 33 jobs

completed per month. The impact of parameter configuration on memory con-

sumptionwas also quantified, andwe have shown savings of up to 32% in total

problem cell count. This reduction in cell count not only affects runtime mem-

ory consumption, but also the overall data needs of the application, including

any visualisation and restart data that may be written to disk during a run.

Performing the experiments in this chapter with a production AMR ap-

plication would be both difficult and expensive. As noted, the time taken to

run a production simulation can be in the order of days. The experiments in

this chapter were enabled by the use of a mini-application—CleverLeaf—and

show how mini-applications could be used to improve the performance of ap-

plications on current architectures.
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CHAPTER 8

Conclusions and Future Work

The work presented in this thesis details a methodology for the development

and use of mini-applications in improving application performance and inves-

tigating future architectures. This process requires the development of a rep-

resentative mini-application, relying on both the advice of domain experts as

well as a subjective evaluation of the correlation between the mini-application

and some parent application. Once the mini-application has been developed,

it can then be applied in two ways: (i) to investigate application and architec-

ture configuration through experimentation, and (ii) to investigate new parallel

architectures and programming models through code porting. We apply this

methodology to the domain of shock hydrodynamics with block-structured

AdaptiveMeshRefinement (AMR) and successfully demonstrate improvements

in two areas: application parameters selection, and execution on Graphics Pro-

cessing Units (GPUs). This development path can be applied by any High-

Performance Computing (HPC) site as they prepare their current suite of ap-

plications for future supercomputer architectures.
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In this chapter, we present the impact of this research and discuss the

implications of results of this thesis to developers and users of scientific and en-

gineering applications, as well as facilities staff and higher-level management.

We describe the applicability of our techniques to additional mini-applications,

production codes, and future architectures. We also discuss the key limitations

of our work.

8.1 Research Impact Highlights

The work conducted during this thesis has impacted both AWE and the wider

scientific community. In particular, the following key outcomes highlight the

specific impact of each chapter.

• The “leaf” mini-applications discussed in Chapter 4 were the first UK

contribution to the award-winning Mantevo suite.

• CleverLeaf is the first reported shock hydrodynamics mini-application

with AMR. It was used byAWE to study the feasibility of using the SAM-

RAI library, and now forms the basis for a new AMR-enabled applica-

tion being developed at AWE.

• The GPU-based extensions to the SAMRAI library have been shown to

scale to over 4,000 GPUs on the Titan system, and are now being used by

the SAMRAI developers at Lawrence Livermore National Laboratory

to investigate ways in which they might enhance the library and begin

moving their own applications to GPUs.

• The improvements in performance highlighted in Chapter 7 were the re-

sult of varying some parameters that are unavailable in Shamrock, AWE’s

benchmark AMR code. As such, the parameters that have been identi-

fied are driving code development, enabling these improvements to be

realised in larger applications.
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8.2 Discussion and Implications

Chapter 4 introduces the concept of mini-applications and highlights how they

can be used to prepare key parent applications for future high-performance

computing architectures. We present results that show how different program-

ming models allow performance improvements of over 2⇥ by allowing the ap-

plication to execute on accelerator architectures. We also present results where

the performance improvements are achieved through amore code-independent

means: improving the layout of the parallel processes in a CloverLeaf run (by

taking application communication patterns into account) can result in a per-

formance increase of over four percent. The two sets of results exemplify two

ways in which mini-applications can be applied to improve the performance

of key applications. The large performance improvement and minimal invest-

ment, particularly in the first experiment, shows how essential it is to ensure

that the application is run in an optimal configuration. Taken together, the re-

sults from Chapters 5, 6 and 7 show how a representative mini-application can

be developed and then used to influence both current code performance and

future code development.

In order for the results derived using mini-applications to be applicable

to a key code, the mini-application must be carefully designed to be represen-

tative of the parent application. In Chapter 5 we develop CleverLeaf, the first

block-structured AMR mini-application for shock hydrodynamics codes. The

validation and verification results imply that developing a small, representa-

tive mini-application is possible.

The first way that mini-applications can be used to improve the perfor-

mance of a parent application is through identifying optimal machine config-

urations or application parameters, and it is this path we use in Chapter 7 to

study the optimal choice of a set of AMR parameter values on three contem-

porary supercomputer architectures. Using the correct parameter values for a

given architecture offers performance improvements of up to 45%. Applying
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these improvements to a typical production workload shows that job through-

put (per month) could be increased by up to 82%.

Exascale systems are likely to rely on accelerator devices, or in the ab-

sence of these, hierarchical memory systems with varied access times. The sec-

ond way we can use a mini-application to improve parent application perfor-

mance is by investigating future architectures. In Chapter 6, we present results

from a version of CleverLeaf developed to run onNVIDIAGPUs. With a reduc-

tion in runtime of over four times when compared to the CPU-based code, and

a clear demonstration of scalability when running on over 4,000 nodes of Titan,

these results imply that accelerator architectures must be seriously considered

for future code development.

When considering other aspects of large HPC applications, software de-

velopment can be as important as performance engineering. The development

details of CleverLeaf presented in Chapter 5 and the Graphics Processing Unit

(GPU)-based version of CleverLeaf presented in Chapter 6 highlight the impor-

tance of using sound design principles, such as object-oriented design patterns,

when developing scientific software. With future supercomputer architectures

likely to change significantly in the next ten years, abstracting hardware-specific

aspects of an application into a library will be key for ensuring maintainable

software development.

8.3 Limitations

The primary limitation of this thesis is the focus or our techniques on a sin-

gle mini-application: CleverLeaf. However, the development of the first block-

structuredAMRhydrodynamics application is a significant contribution of this

work, and the purpose of later chapters is to demonstrate howamini-application

can be used in practice. Although a single application may at first appear to be

a strong constraint, the use of singlemini-application is less so since the applica-

tion is designed from first principles to be representative of a larger application
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(or even a class of applications). As demonstrated in Chapter 5, CleverLeaf

is in fact representative of a larger benchmark application, Shamrock. Opti-

misations investigated through the hydrodynamics kernels of CloverLeaf (the

uniform mini-application) that have been applied to Shamrock improved the

performance of the momentum advection kernel up to 5⇥ [57]. We use this

performance result and the correlation between CleverLeaf and Shamrock to

infer that the optimisations and techniques used to improve the performance

of CleverLeaf would also work in the context of a larger application. Although

focused, this thesis acts as a case study for using mini-applications to improve

the performance of larger codes.

A secondpotential limitation is our use of theCUDAprogrammingmodel

inChapter 6 for developing a scalable, GPU-basedAMRapplication. TheCUDA

programming language and runtime environment are proprietary technologies

owned by NVIDIA. As such, the CUDA programming model can only be used

to write applications that will run on NVIDIA’s GPUs. This focus on NVIDIA

hardware means we only examine one possible future architecture in this the-

sis. However, despite not being officially supported, some research projects

enhance the portability of the CUDA programming model by allowing CUDA

code to run on other hardware.

The MCUDA translation framework uses source code translation and a

custom runtime system to allowCUDAkernels to execute onmulti-coreCPUs [150].

The Swanproject is a source-to-source translator thatwill take an existingCUDA

application and translate it to an equivalent OpenCL program [67]. The Ocelot

project is a dynamic compilation framework that provides a way to execute

NVIDIA’s PTX virtual instructions on a range of platforms; currently, NVIDIA

GPUs, AMD GPUs and x86 CPUs are supported [46]. The PGI CUDA C/C++

for x86 compiler (CUDA-x86) processes CUDA C as a native parallel program-

ming language for multi-core x86 processors [118]. CUDA-x86 will inline de-

vice kernel functions, translate CUDA C’s chevron syntax to parallel loops, that

execute using multiple cores and vector instructions. Results presented by PGI
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show that the performance of CUDA-x86 are comparable with other program-

ming models such as OpenMP.

Each of these projects provides a simple way to execute CUDA code on

a range of architectures, expanding the generality of our techniques. However,

due to the object-oriented design of SAMRAI, the CUDA-specific code we have

developed is isolated behind a select few methods. Writing equivalent ver-

sions of our classes in other programming models is feasible, and would have

a reduced development cost since the high-level design of the classes and the

thread-parallel nature of the algorithms would be similar.

A final limitation is our focus on time-to-solution as the primary metric

for evaluating application performance. There are a range of other metrics that

can be used to evaluate application performance, both in terms of application

performance but also application accuracy. In Chapter 7, we briefly consid-

ered additional hardware metrics such as memory consumption and network

traffic, but these are not our primary means of measuring application perfor-

mance. From an application accuracy perspective, the complex nature of AMR

means that changing application parameters that affect simulation runtime can

also impact simulation accuracy. Quantifying the change in accuracy due to

changes in parameter values presents a huge search space. Later in this chapter

wepresent some initialworkwhere the link between accuracy andperformance

is investigated.

8.4 Future Work

The work presented in this thesis can be applied and extended in a number of

ways. Specifically, we discuss the utility of mini-applications in investigating

simulation accuracy in addition to performance; we consider the applicability

of our work to production codes; and we discuss the possible ways the work

could be extended to future parallel architectures.
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8.4.1 Investigating Simulation Accuracy

Each of the three configuration improvements presented in Chapter 7 focuses

on improving application performance by reducing runtime or memory con-

sumption. However, changing mesh parameters can have an impact on solu-

tion accuracy, something that is important in the scientific domains in which

AMR is typically employed. By developing techniques with which we can

measure the affect of changing parameter values on simulation accuracy, we

can begin to optimise parameter selection along two dimensions: accuracy and

performance.

To investigate these issues we propose the use of a test problem with an

analytical solution, such as Sod’s shock tube problem [147]. Calculating some

error metric for each parameter value, we can measure the correlation between

accuracy and performance for each parameter.

Table 8.1 shows the affect that changing the refinement ratio, regrid-

ding frequency, and number of levels has on simulation accuracy and runtime

for the Sod problem. Average error is calculated using three different metrics:

L1-norm, L2-norm, and L1-norm:
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where Y
i

and f(x
i

) are the analytic and numerical solutions at the point i, and

N is the number of grid points. Normalising usingN allows us to compare the

different resolutions of the AMR configurations.

The intuitive interpretation that accuracy and performance can be de-

coupled for certain parameters suggested in Chapter 7 is reinforced. Optimis-

ing runtime via a reduced regridding frequency does not have a negative im-

pact on accuracy. Increasing the refinement ratio decreases error but rapidly
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Parameter Runtime L1-error L2-error L1-error
Regridding Frequency

1 1.863 �3.102⇥ 10�3 8.295⇥ 10�4 1.570⇥ 10�1

2 1.012 �3.084⇥ 10�3 8.230⇥ 10�4 1.571⇥ 10�1

4 0.651 �3.081⇥ 10�3 8.135⇥ 10�4 1.570⇥ 10�1

8 0.522 �3.084⇥ 10�3 8.138⇥ 10�4 1.577⇥ 10�1

Refinement Ratio
2 0.662 �3.081⇥ 10�3 8.135⇥ 10�4 1.570⇥ 10�1

3 2.227 �3.272⇥ 10�3 6.625⇥ 10�4 1.608⇥ 10�1

4 5.654 �1.808⇥ 10�3 2.986⇥ 10�4 1.609⇥ 10�1

5 15.282 �9.461⇥ 10�4 1.273⇥ 10�4 1.608⇥ 10�1

Maximum Level
1 0.187 �3.815⇥ 10�3 1.364⇥ 10�3 7.193⇥ 10�2

2 0.195 �3.072⇥ 10�3 8.413⇥ 10�4 1.003⇥ 10�1

3 0.652 �3.081⇥ 10�3 8.135⇥ 10�4 1.570⇥ 10�1

4 2.242 �3.174⇥ 10�3 6.790⇥ 10�4 1.607⇥ 10�1

Table 8.1: Error norms and runtimes for various simulation configurations.

increases runtime due to the large increase in cell count. Adjusting the num-

ber of levels of refinement has the largest impact on runtime, but just adding

one level of refinement provides a large decrease in L2 error. Using a mini-

application we can extend the process from Chapter 7 and begin to investigate

multi-dimensional optimisation of both simulation accuracy and performance.

8.4.2 Application to Production Codes

The use of a mini-application is underpinned by a desire to learn more about

how production applications might be used, improved or even re-written for

future supercomputer architectures. As such, it is critical that the techniques

presented in this thesis can be applied to full-scale production applications.

The nature of this work, involving large, complex, and commercially sensitive

production applications is beyond the scope of this thesis.

In Chapter 5 we showed a correspondence between the performance of

CleverLeaf and Shamrock. This verification illustrates that CleverLeaf accu-

rately represents the computational characteristics seen in Shamrock, and thus

the improvements we investigate and implement using CleverLeaf in Chap-
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ters 6 and 7 are likely to result in similar improvements for a larger application

such as Shamrock. Optimisations investigated through the hydrodynamics ker-

nels of CloverLeaf (which has the same hydrodynamics scheme as CleverLeaf,

but no AMR) that have been applied to Shamrock improved the performance

of the momentum advection kernel up to 5⇥ [57]. Whilst this only resulted

in a small improvement in the overall runtime of the application, incorporat-

ing more optimised kernels in Shamrock should provide similar performance

improvements.

Due to the commercially sensitive nature of the codes, the improvements

proposed in this thesis would need to be implemented through collaboration

with the Atomic Weapons Establishment (AWE). A number of open-source

AMR codes exist however which could provide a more accessible context for

applying our techniques to production codes. Specifically, the FLASH appli-

cation from the University of Chicago is a large astrophysics application with

AMR that has some similarity to the class of codes represented byCleverLeaf [53].

FLASH uses the PARAMESH and Chombo libraries for AMR functionality;

both of these libraries encapsulate common AMR concepts, so it is feasible we

could extend it using an approach similar to that described in Chapter 5. An-

other open-source production AMR application, IBAMR, uses the SAMRAI li-

brary [62] so could benefit from our research more directly. However, this ap-

plication simulates fluid-structure interactions using an immersed boundary

method; a domain distinctly different from the shock hydrodynamics codes

that CleverLeaf is designed to represent.

8.4.3 Extension of GPU Implementation

The GPU-based extensions to SAMRAI developed in Chapter 6 are fully inter-

operable with the interface that allows SAMRAI to manage user-

defined datatypes. As such, these extensions are ready to be used in additional

codes. Whilst CleverLeaf, the first fully resident GPU-based AMR hydrody-

namics mini-application, is a good case study in using accelerators for AMR,
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other applications will have unique performance characteristics that may ex-

pose areas in our design in need of optimisation.

Whilst porting an application can be time-consuming, we have identi-

fied three small benchmark applications that could be used to further inves-

tigate the performance of our GPU-based library extensions. In addition to

a fully-featured software library for developing AMR applications, the SAM-

RAI source code also contains three example applications. These examples are

small, yet fully functional, containing representative physics and production-

quality features like visualisation output and flexible initial condition support.

Each application solves a different physical simulation: convection-diffusion,

Euler’s equations, and linear advection. An interesting test would be the Euler

application, since whilst CleverLeaf also solves these equations, it uses a dif-

ferent hydrodynamics scheme and a different overall code design. The Euler

application included in the SAMRAI distribution uses Riemann solvers, rather

than the explicit Lagrangian-Eulerian approach we use.

Each of these applications is available under an open-source licence, eas-

ing the porting process. The recent interest in GPU-based supercomputing

means that interaction with the SAMRAI development team should be mu-

tually beneficial and would result in a comprehensive suite of applications to

verify our resident approach to GPU-based AMR.

8.4.4 Additional Parallel Architectures

GPUs have been a key simulation architecture for over three years. At the time

of writing (June 2014) the Titan supercomputer, using over 18 thousand GPUs,

is the second fastest computer in the world. The fastest computer, Tianhe–2 at

the National Super Computer Center in Guangzhou, China, uses 48 thousand

Intel Xeon Phi co-processors to deliver over 50 Tera (1012) Floating Point Op-

erations per Second (TFLOPs) peak theoretical performance. The Xeon Phi is a

highly-parallel architecture based around a large number of slower (compared

to a traditional Central Processing Unit (CPU)) cores.
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This many-core architecture is in some ways similar to a GPU: since the

cores are slower, more parallelismmust be exposed to harness the full power of

the device. However, a key advantage overGPUs is that a special programming

model is not required. Rather than device kernels written in a superset of C or

C++, Intel’s Xeon Phi co-processors use regular C, C++ or Fortran code that is

compiled specifically for the device. Each of the cores in the Xeon Phi has four

hardware threads, and to achieve optimal performance most of these hardware

threads must be used when executing an application. This means that many

application threads must be used, either by launching multiple MPI processes

or using a programming model that enables threading.

One advantage of the Xeon Phi architecture is that existing code can be

re-compiled without modification to run on the new hardware. If this path is

taken however, there is no guarantee that the achievedperformancewill be any-

where near optimal [85]. Any Xeon Phi-specific version of CleverLeaf would

need to be carefully tuned to make the best use of the slower processing cores

and the multiple hardware threads.

To obtain a baseline measurement of the performance of CleverLeaf on

a Xeon Phi, we recompiled the standard CPU-based code and accompanying

libraries. Using the Sodproblem fromChapters 5 and 6, in Figure 8.1wepresent

a comparison of the performance of the Intel Xeon Phi and an Intel CPU for a

range of problem sizes. On the Xeon Phi we use the following configurations

of MPI tasks and OpenMP threads: 1⇥120, 2⇥60, 4⇥30, 8⇥15 and 30⇥4. Using

a total of 120 threads on the Xeon Phi means we are using two threads per core,

where each core supports up to four hardware threads. On the CPUwe use two

MPI taskswith eightOpenMP threads (2⇥8). This configuration corresponds to

oneMPI task for eachNUMA region, and oneOpenMP thread for each physical

core.

In most cases the performance of the CPU-based code, when recompiled

for Xeon Phi, does not match the performance obtained from an Intel CPU run-

ning at 2.6 GHz. However, for two different threading configurations at the
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Figure 8.1: Performance of CleverLeaf on an Intel Xeon Phi and an Intel CPU.

two largest problem sizes, the performance of the Xeon Phi is better than the

CPU. When running with 60 MPI tasks and 2 OpenMP threads per task, the

Xeon Phi is over 30% faster for the largest problem. The fact the code could

be run unmodified on this new architecture is an important point to consider

when evaluating a future architecture for legacy codes.
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APPENDIX A

Experimental Results

This appendix contains extended numerical results for the experiments con-

ducted throughout the course of this dissertation. Each section contains results

specific to the corresponding chapter.

A.1 Performance EngineeringwithMini-Applications

The results in this section contain timings for the experiments into program-

ming models, scalability and configuration improvements conducted with the

CloverLeaf mini-application and discussed in Chapter 4.

Table A.1 contains performance analysis results for the three different GPU-

based implementations of CloverLeaf. These results are broken down by ker-

nel, highlighting the difference in timings for the most computationally expen-

sive kernels. Table A.2 contains weak scaling results for CloverLeaf running

on HECToR. Finally, Table A.3 details the runtime improvements seen when

applying the rank re-ordering operation.
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Runtime (s)
Kernel OpenACC OpenCL CUDA

0.426 0.382 0.309
0.769 0.773 0.715
0.112 0.189 0.167
0.241 0.220 0.272
0.390 0.320 0.693
0.128 0.160 0.155

Other 0.402 0.344 0.277

Total 2.059 2.558 2.780

Table A.1: Runtime for CloverLeaf kernels using three GPU-based program-
ming models.

Runtime (s)
Nodes Titan (OpenACC) Titan (CUDA) HECToR (CPU)

1 29.780 15.160 60.296
2 30.070 15.600 60.736
4 30.420 15.890 60.713
8 29.550 16.355 61.101
16 30.870 16.666 60.987
32 29.859 16.781 61.329
64 31.032 16.790 61.077
128 29.320 16.915 61.442
256 30.987 16.838 61.342
512 29.997 16.969 61.780

1,024 31.091 17.0136 62.005
2,048 30.135 17.299 62.826
4,096 32.199 17.596 -
8,192 35.010 17.709 -
16,384 34.767 19.279 -

Table A.2: Weak-scaling runtimes for CloverLeaf on Titan and HECToR.

Nodes Performance
improvement

8 0.37 %
16 0.10 %
32 0.31 %
64 0.35 %
128 0.47 %
256 1.70 %
512 0.96 %

1,024 4.10 %

Table A.3: Performance improvements (% decrease in runtime) for rank-
reordering on HECToR.
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Runtime (s)
Resolution GPU CPU

125 14.57 10.62
250 21.05 12.53
500 24.08 11.24

1,000 24.97 13.4
2,000 24.12 16.27
4,000 27.54 23.6
8,000 35.13 37.99

16,000 48.03 72.12
32,000 68.19 129.52
64,000 107.77 242.77

128,000 188.23 474.22
256,000 348.55 940.48

Table A.4: CPU vs. GPU runtime for increasing problem size.

Runtime (s)
Nodes GPU CPU

1 192.73 10.62
2 122.71 12.53
4 70.64 11.24
8 67.18 13.4

Table A.5: Strong scaling results for the CPU- and GPU-based versions of Clev-
erLeaf.

A.2 ScalableAMRonGraphics ProcessingUnits

This section contains performance timings for the various experiments con-

ducted using the GPU-based version of CleverLeaf as part of Chapter 6.

Table A.4 contains timings comparing the CPU- and GPU-based versions of

CleverLeaf as problem size is increased. Table A.5 describes performance re-

sults for small-scale runs of CleverLeaf on up to 8 nodes, and Table A.6 contains

grind times (in µs/cell) for runs on up to 4,096 GPUs on Titan.

Grind Time (µs/cell)
Nodes Hydrodynamics Synchronisation Regridding Total

1 6.3 · 10�7 1.43 · 10�8 6.94 · 10�10 7.19 · 10�7

4 7.91 · 10�7 3.27 · 10�8 1.23 · 10�9 9.24 · 10�7

16 1.14 · 10�6 7.67 · 10�8 3.43 · 10�9 1.34 · 10�6

64 1.34 · 10�6 1.01 · 10�7 7.02 · 10�9 1.62 · 10�6

256 1.52 · 10�6 1.33 · 10�7 1.13 · 10�8 1.91 · 10�6

1,024 1.86 · 10�6 1.27 · 10�7 8.73 · 10�9 2.37 · 10�6

4,096 2.69 · 10�6 1.25 · 10�7 9.06 · 10�9 3.67 · 10�6

Table A.6: Grind times for replication scaled runs on Titan.
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A.3 ImprovingAMRParameter Selection onCon-

temporary Compute Platforms

The results in this section contain detailed timings for the various components

of the AMR algorithm, obtained during experiments conducted for Chapter 7.

Table A.7 contains detailed results of the runtime breakdown for replication

scaling. Tables A.8, A.9, and A.10 contain results of the runtime breakdown

for varying the regridding frequency, maximum number of levels, and the re-

finement ratio. The results in Table A.11 show the relative impact of different

parameter configurations on runtime and data usage.
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Experimental Results

Frequency Kernels Boundaries Synchronisation Regridding Other Total

2 31.776 30.886 3.497 106.433 6.558 179.149
4 31.670 32.025 3.595 56.794 7.792 131.875
6 32.031 32.611 3.753 40.025 6.945 115.365
8 32.685 32.356 3.880 27.519 7.505 103.945

10 34.241 32.965 4.229 23.302 7.272 102.010
12 38.861 35.059 4.666 19.635 6.733 104.954
14 43.643 40.008 5.204 18.180 8.483 115.517
16 48.485 40.405 5.689 16.484 6.493 117.556
18 53.164 44.366 6.251 16.567 6.958 127.307
20 57.795 48.184 6.770 15.755 8.965 137.469

(a) 4,096 core run on Cab.

Frequency Kernels Boundaries Synchronisation Regridding Other Total

2 93.592 143.263 13.925 1461.296 22.516 1734.592
4 93.744 143.262 14.155 732.678 22.585 1006.423
6 94.915 144.945 14.440 494.919 22.695 771.914
8 96.509 146.841 14.423 341.335 22.754 621.863

10 100.290 151.980 15.125 312.832 24.034 604.260
12 111.932 154.971 16.427 265.701 23.874 572.905
14 124.111 159.153 17.905 233.843 23.985 558.997
16 136.168 162.483 18.871 209.087 24.122 550.730
18 147.659 169.469 20.414 194.333 24.537 556.411
20 158.924 175.592 21.343 183.188 25.608 564.656

(b) 4,096 core run on Vulcan.

Frequency Kernels Boundaries Synchronisation Regridding Other Total

2 28.988 39.410 3.862 176.906 3.758 252.922
4 29.399 35.954 3.933 84.466 3.316 157.069
6 29.736 37.453 4.129 56.938 4.109 132.364
8 30.359 37.154 4.340 43.703 3.429 118.986

10 31.815 39.593 4.626 35.877 3.181 115.092
12 36.146 42.048 5.047 30.411 3.160 116.811
14 40.656 46.455 5.529 28.411 3.517 124.567
16 45.383 50.017 6.011 23.786 3.662 128.858
18 49.894 51.367 6.934 23.597 3.346 135.139
20 54.486 55.094 7.320 21.723 3.649 142.272

(c) 6,144 core run on ARCHER.

Table A.8: Runtime breakdown for varying regridding frequency.
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Experimental Results

Levels Kernels Boundaries Synchronisation Regridding Other Total

2 94.690 75.288 2.645 33.445 17.534 223.602
3 42.305 36.783 3.475 49.242 8.185 139.990
4 31.766 30.614 3.517 53.476 7.000 126.373
5 29.847 32.174 3.889 60.165 9.106 135.180
6 29.258 113.917 3.827 81.632 27.699 256.333

(a) 4,096 core run on Cab.

Levels Kernels Boundaries Synchronisation Regridding Other Total

2 238.693 223.702 6.522 899.780 47.997 1416.694
3 116.528 149.109 11.006 692.314 27.058 996.016
4 93.709 143.400 13.573 731.282 23.719 1005.684
5 88.826 160.685 17.280 910.920 16.202 1193.914
6 88.338 188.825 18.052 1192.732 10.410 1498.357

(b) 4,096 core run on Vulcan.

Levels Kernels Boundaries Synchronisation Regridding Other Total

2 91.097 96.089 2.963 41.809 13.845 245.803
3 38.715 42.015 3.672 68.558 4.474 157.433
4 29.379 35.835 3.938 83.774 3.322 156.247
5 26.571 40.971 3.857 98.302 3.049 172.749
6 26.424 46.984 4.076 120.417 3.213 201.115

(c) 6,144 core run on ARCHER.

Table A.9: Runtime breakdown for varying maximum level number.
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Experimental Results

Ratio Kernels Boundaries Synchronisation Regridding Other Total

2 31.390 41.967 3.944 71.669 8.476 157.445
3 23.302 27.265 1.806 33.891 4.424 90.687
4 23.220 27.116 1.397 40.448 4.474 96.655
5 28.428 30.246 1.304 40.723 4.555 105.256
6 28.173 28.566 1.090 38.088 4.661 100.579

(a) 4,096 core run on Cab.

Ratio Kernels Boundaries Synchronisation Regridding Other Total

2 188.304 208.618 23.666 763.499 25.448 1209.534
3 130.002 160.502 14.751 446.829 10.622 762.705
4 131.972 165.054 14.650 911.519 13.013 1236.208
5 145.932 160.477 12.907 599.150 11.417 929.883
6 143.731 179.958 15.236 672.710 16.744 1028.379

(b) 4,096 core run on Vulcan.

Ratio Kernels Boundaries Synchronisation Regridding Other Total

2 28.142 51.715 5.587 90.600 5.420 181.464
3 20.269 36.353 2.651 54.603 3.010 116.887
4 20.275 36.558 2.469 83.596 2.935 145.833
5 24.336 40.639 1.981 76.903 12.813 156.672
6 23.509 40.399 1.672 87.458 3.449 156.487

(c) 6,144 core run on ARCHER.

Table A.10: Runtime breakdown for varying refinement ratio.
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Experimental Results

Cab Archer Vulcan
Frequency Time Memory Time Memory Time Memory

1 2.1⇥ 0.97⇥ 2.74⇥ 0.97⇥ 2.86⇥ 0.97⇥
2 1.4⇥ 0.98⇥ 1.52⇥ 0.98⇥ 1.62⇥ 0.98⇥
3 1.1⇥ 0.99⇥ 1.18⇥ 0.99⇥ 1.21⇥ 0.99⇥
4 1⇥ 1⇥ 1⇥ 1⇥ 1⇥ 1⇥
5 0.9⇥ 1.01⇥ 0.91⇥ 1.01⇥ 0.88⇥ 1.01⇥
6 0.9⇥ 1.02⇥ 0.84⇥ 1.02⇥ 0.8⇥ 1.02⇥
7 0.8⇥ 1.03⇥ 0.76⇥ 1.03⇥ 0.71⇥ 1.03⇥
8 0.8⇥ 1.04⇥ 0.75⇥ 1.04⇥ 0.67⇥ 1.04⇥
9 0.8⇥ 1.06⇥ 0.72⇥ 1.06⇥ 0.64⇥ 1.06⇥
10 0.8⇥ 1.09⇥ 0.71⇥ 1.09⇥ 0.66⇥ 1.09⇥
11 0.9⇥ 1.16⇥ 0.72⇥ 1.16⇥ 0.65⇥ 1.16⇥
12 0.8⇥ 1.23⇥ 0.73⇥ 1.23⇥ 0.65⇥ 1.23⇥
13 0.8⇥ 1.29⇥ 0.8⇥ 1.29⇥ 0.64⇥ 1.29⇥
14 0.9⇥ 1.36⇥ 0.69⇥ 1.36⇥ 0.65⇥ 1.36⇥
15 0.9⇥ 1.42⇥ 0.72⇥ 1.42⇥ 0.65⇥ 1.42⇥
16 0.9⇥ 1.49⇥ 0.77⇥ 1.49⇥ 0.65⇥ 1.49⇥
17 0.9⇥ 1.56⇥ 0.76⇥ 1.56⇥ 0.66⇥ 1.56⇥
18 1⇥ 1.62⇥ 0.79⇥ 1.62⇥ 0.67⇥ 1.62⇥
19 1⇥ 1.69⇥ 0.83⇥ 1.69⇥ 0.67⇥ 1.69⇥
20 1⇥ 1.75⇥ 0.85⇥ 1.75⇥ 0.68⇥ 1.75⇥

(a) Regridding frequency.

Cab Archer Vulcan
Levels Time Memory Time Memory Time Memory

2 1.74⇥ 2.73⇥ 1.53⇥ 2.73⇥ 1.53⇥ 2.73⇥
3 1.05⇥ 1.32⇥ 0.92⇥ 1.32⇥ 1.02⇥ 1.32⇥
4 1⇥ 1⇥ 0.96⇥ 1⇥ 1⇥ 1⇥
5 1.04⇥ 0.93⇥ 1.04⇥ 0.93⇥ 1.17⇥ 0.93⇥
6 1.17⇥ 0.93⇥ 1.19⇥ 0.93⇥ 1.44⇥ 0.93⇥

(b) Maximum level number.

Cab Archer Vulcan
Ratio Time Memory Time Memory Time Memory

2 1⇥ 1⇥ 0.96⇥ 1⇥ 1.1⇥ 1⇥
3 0.73⇥ 0.68⇥ 0.64⇥ 0.68⇥ 0.69⇥ 0.68⇥
4 0.75⇥ 0.7⇥ 0.82⇥ 0.7⇥ 1.11⇥ 0.7⇥
5 0.81⇥ 0.78⇥ 0.8⇥ 0.78⇥ 0.84⇥ 0.78⇥
6 0.79⇥ 0.77⇥ 0.85⇥ 0.77⇥ 0.93⇥ 0.77⇥

(c) Refinement ratio.

Table A.11: Relative impact of parameters on runtime and memory when com-
pared to the default parameter configuraiton.
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