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Summary 

This thesis addresses three main topics related to the practical problems of modelling the spread 

of nuclear material after an accidental release. 

The first topic deals with the issue of how qualitative information (expert jUdgement) 

about the development of the emission of contamination after an accident can be coded as a 

Dynamic Linear Model (DLM). An illustration is given of the subsequent adaptation of the 

expert judgement in response to the incoming data. Moreover, the height of the release at 

the source can be a key parameter in the subsequent dispersal. We addressed uncertainty on 

the release height using the Multi-Process Models framework. That is we included several 

models in our analysis, each with a different release height. The Bayesian methodology uses 

probabilities representing their relative likelihood to weight these and updates the probabilities 

in the light of monitoring data. A brief illustration of testing the updating algorithm on 

simulated contamination readings is provided. 

The second topic concerns the demands of computational efficiency. We show how the 

Bayesian propagation algorithms on a dynamic junction tree of cliques of variables (representing 

a high dimensional Gaussian process), as provided by Smith et al. (1995), can be generalised 

to incorporate the case when data may destroy neat dependencies (i.e. when observations are 

taken under more than one clique). Here we introduce two classes of new operators: exact and 

non-exact (approximations) which act on this high dimensional Gaussian process, modifying 

its junction tree by another tree which allows quicker probability propagation. We also develop 

fast algorithms which can be defined by approximating Gaussian systems by cutting edges on 

junctions. The appropriateness ofthe approximations is based on the Kulback-Leibler/Hellinger 

distances. 

Some of these new operators and algorithms have been implemented and coded. Preliminary 

tests on these algorithms were carried out using arbitrary data, and the system proved to be 

highly efficient in terms of P.C. user time. 

The third topic concentrates on generalisations from a Gaussian process. It proposes, as 

a good approximation, an adaptation of the Dynamic Generalised Linear Models (DGLMs) of 

West, Harrison, and Migon (1985) for updating algorithms on a dynamic junction tree. The 

Hellinger distance is used to check the accuracy of the dynamic approximation. 

The analysis of these topics involves a review and extension of some useful theory and results 

on Bayesian forecasting and dynamic models, graphical modelling, and information divergence. 

x 



Chapter 1 

Introd uction 

This introduction gives a brief background to the original application which has moti­

vated the research, presents the aims of the thesis, and then provides an outline of the 

whole work. 

1.1 Background 

In the event of an accidental release of radioactive pollutants or chemical gases, coun­

tries will be concerned about the danger of environmental contamination, and in this 

respect interest centres on the prediction of the distribution of the radioactive emissions 

reaching these countries and the identification of regions where contamination is most 

likely to exceed certain prescribed levels. 

Nuclear accidents such as those that happened at Three Mile Island and Chernobyl 

have focused attention on the need for the development of emergency response systems 

which are able to support decisions on countermeasures. This view has led the Com-
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mission of the European Communities (CEC) to establish a number of projects to build 

Decision Support Systems (DSSs) and methodologies for use in the event of a future 

accident. One of these is the RODOS project. 

RODOS is a Real-time On-line DecisiOn Support system for nuclear emergencies in Eu­

rope, being jointly developed by some European institutions with support of the CEC. 

It is designed as an integrated software environment, which allows the implementation 

of software (external programs) developed by the contractors. 

RODOS comprises three subsystems (see Ehrhardt et al., 1993). 

(i) The analysis subsystem (ASY). The main task of this component is to provide 

continually updated forecasts of the spread of any contamination. The ASY con­

sists of an atmospheric dispersion model such as Rimpuff model-will be discussed 

later- which is the prediction model; it predicts concentration of contamination 

both at present and in the future. The predictions are based on different sources 

of information: 

• An estimate of the source term. This comprises the mass, and the height of 

the release, and is most likely to be expert judgement. 

• Meteorological data. 

• Geographical data from a Geographical Information System (GIS). 

The output of the ASY is in a form of a grid of concentrations with an associ­

ated uncertainty distribution. The grid becomes one of the inputs to the next 

subsystem, the CSY. 

(ii) The countermeasures subsystem (CSY). The main task of CSY is to identify pos-
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sible countermeasures (sheltering and evacuation for the local population; food 

bans; etc.) and to quantify the benefits and drawbacks of various countermeasure 

combinations. The CSY then outputs a list of all possible countermeasures for 

input to the next subsystem, the ESY. 

(iii) The evaluation subsystem (ESY). The main task ofESY is to evaluate the different 

countermeasures strategies. Figure 1.1 below shows the structure of RODOS. 

Source data 
~ 

ASY Meteorological data 
Monitoring data 
Terrain Data 

~ 

~ 
Countermeasl.U'es 

CSY Population densities 
Resources 
Transport networks 

~ 

~ 

Attribute tree 
ESY Preference weights 

~ 

Atmospheric 
Dupe"aI 

Model 

Predicted ,r grid with 

Evacuation 
Sheltering 

concentration 
uncertainty 

All possib 
,r counterm 

Ie 
easures 

Evaluation 
.ystem 

Shortlist of countermeasure 

" strategies 

Figure 1.1: Model Structure of RODOS 

In this thesis we will only be concerned with ASY, and it will be discussed and inter-

preted within a Bayesian framework. 
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All the sources of information mentioned in ASY above are not considered to be 

one hundred per cent accurate. There are several uncertainties associated with them. 

For instance, RODOS contains an algorithm which describes the dispersal of radia­

tion in the atmosphere. Such algorithms can only ever be approximations of what is 

happening, and other methods must be incorporated to control them effectively. Also, 

uncertainty may arise from the lack of knowledge of source term characteristics (the re­

lease characteristics) and the surface characteristics that affect the pollutant behaviour; 

etc. 

Within the framework of RODOS, Smith & French (1993) investigated the feasibil­

ity of managing the uncertainties relating to the key variables which are important for 

decision making in the short term, and of assimilating data as they became available 

using Bayesian methodology. The Bayesian methodology can tackle a number of issues 

of interest, for example: data assimilation, expert judgement, model uncertainty, etc. 

The authors designed the ASY module based upon the RIMPUFF model with Bayesian 

updating in the light of monitoring data in order to address the following questions: 

• What is the likely spread of contamination ? 

• How can the prediction be updated in the light of monitoring data? 

• What are the uncertainties in the prediction ? 

The authors have been able to combine the Dynamic Linear Model (DLM) methodology 

with the RIMPUFF model to address all three questions. 

RIMPUFF is the Rlso-Mesoscale-PUFF developed at the Ris0 Research Institute, 

Denmark (see Thykier-Neilsen & Mikkelsen, 1991), and is the atmospheric dispersal 
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model used within RODOS. RIMPUFF approximates the continuous release of air­

borne substances (such as radiation) by a discrete series of puffs. Puffs may contain 

different masses reflecting the uneven pattern release from the source. Different pa­

rameters can be associated with each puff, enabling characteristics of the windfield or 

local information gathered for monitoring data to be incorporated. The concentration 

distribution in each individual puff is assumed to be Gaussian, and puffs grow in size 

over time. 

A further feature of the RIMPUFF model is pentification. When a puff reaches a cer­

tain diameter, it is approximated by five smaller child puffs. Certain percentages of 

the mass of the parent are distributed amongst its children. These percentages can be 

adjusted in the light of observational data. The adjustment is controlled by incorpo­

rating a Bayesian probability distribution over the model. As new data arrive (ground 

and air contamination readings), the puff mass estimates will be revised. 

It was shown by Smith et al. (1995) that the relevant uncertainties could be mod­

elled by describing the evolution of puffs and puff fragments within the system by a 

high dimensional Gaussian process. This process exhibites many conditional indepen­

dences that can be utilised to speed up the revision of the probability distributions of 

the quantities of interest, in this case puff and puff fragments masses, in the light of 

incoming data. Smith et al. express the variables of interest and their conditional in­

dependence structure in a dynamic junction tree over cliques which develop over time, 

where cliques represent collections of puffs which effect each other, and each clique be­

comes a single node in a junction or clique tree. The authors gave an exact algorithm 

for the quick absorption of information on the junction tree cliques when information 
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sets arrive on one clique at a time. 

1.2 Aims 

The basic issues of this research are as follows: 

Firstly, to model the qualitative information of the experts of how they believe the 

emission of contamination will develop over time. 

Secondly, to build a probabilistic expert system which is able to: 

• generalise current exact Bayesian propagation algorithms on dynamic junction 

trees of cliques as described in Smith et al. (1995) to even faster algorithms 

(computational efficiency) . 

• modify these exact algorithms (to approximation algorithms) when the condi­

tional independence structures of the junction trees may be destroyed. 

Thirdly, to generalise these linear updating algorithms to allow dispersal concentra­

tion readings to be a non-Gaussian process. The Dynamic Generalised Linear Model 

(DGLM) of West, Harrison and Migon (1985) will be modified to give closed form 

updating solutions which can be used on dynamic junction trees for a variety of non­

Gaussian processes. 

1.3 Outline of the Thesis 

Chapter (2) introduces review material on the theory of the Dynamic Linear Models, 

presenting the basic concepts that will be necessary for the development of Chapters 

(3), (6) and (8). 

6 



In Chapter (3) we introduce the traditional dispersal models in general, with par­

ticular emphasis on puff models. A statistical model which embeds physical models to 

handle uncertainties from different sources is defined and described. 

Chapters (4) and (5) provide a necessary background for the development of the new 

material presented in Chapters (7) and (8). Chapter (4) looks at some graph-theoretical 

results on graphical modelling; Chapter (5) is devoted to information divergence, where 

definitions and properties of some separation measures are given. 

Chapter (6) deals with describing the source emission process by considering several 

scenarios of expert judgement about the development of the release. An illustration of 

adaptation with simulated data is given for different emission profile shapes. Also in 

this chapter we discussed uncertainty management of key parameters of the emission 

process namely the release height. 

Chapter (7) introduces two classes of new operators (exact and non- exact) which 

act on a high dimensional Gaussian process transforming its junction tree to another 

tree which accommodates data induced dependences (conditional independences im­

plicit in the clique structure before the data arrived are no longer necessarily valid af­

ter the data are observed). Also we proposed a new approximation scheme using edge 

deletion (neglecting weak dependences) in order to achieve computational efficiency. 

In Chapter (8) we adapt the updating algorithms of Dynamic Generalised Linear 

Models (DGLMs) to updating algorithms on dynamic junction trees. The appropriate­

ness of the dynamic approximation is based on the Hellinger metric. 

Finally, Chapter (9) consists of conclusions and discussion. Some further issues are 

suggested as possible topics for future research. 
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Chapter 2 

Dynamic Linear Models: A Brief 

Review 

2.1 Introduction 

The Dynamic Linear Model (DLM) offers many facilities which will be used through­

out this thesis. These include the use of expert judgement to start up the system; the 

construction of complex models from simple components using the superposition prin­

ciple; the intervention analysis; simple sequential updating recursions; and Dynamic 

Generalised Linear Models (DGLM). 

In this chapter we briefly review the main concepts from the DLM, Harrison & 

Stevens (1976) and West & Harrison (1989) that will be necessary for the discussion of 

some of the basic ideas in the following chapters. 
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2.2 Bayesian Forecasting and Dynamic Models 

In the control literature, linear dynamic systems are used by control engineers to moni­

tor and control the state of a system or a process as it changes over time. To determine 

whether a system is operating satisfactorily, it is necessary to know the behaviour of 

the system at any time. For example, in the case of a nuclear accident, the state of the 

system may be the position of the plume of the contaminated material. The state of the 

system is random because physical systems are usually subject to random disturbances 

and the observations taken on the system are often noisy observations. 

Making inference about the state of the system from noisy measurements and con­

sequently deriving the predictive distributions of future observations is an important 

problem. Explicitly, the problem can be expressed in a general dynamic form as 

(2.1) 

(2.2) 

where the first equation relates the observations lit with the state 8t of the system, 

and the second relates the state variables at time t and those at time t - 1. In the first 

equation, called the observational equation, the quantity lit reflects observational error. 

The second equation, called the state equation, assumes that the state at time t cannot 

be determined exactly by the state at time t - 1 because of the effect of many unknown 

factors summarised in the random error "'t. 

This state space representation of the problem is based on the so-called Markov 

property, which implies the independence of the future of a process from its past, given 

the present state. In this case the state of the system summarises all the information 
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from the past that is needed in order to predict the future. 

The objective of the analysis is to make inference about 8 tH, k ~ 0 given the set 

of observations Yl,' .. , Yt-l. Originally Kalman (1960) derived a recursive algorithm 

to estimate the state of the system using the properties of orthogonal projection on 

linear spaces. Mehra (1979) summarised the key aspects of this approach to forecast­

ing (known as the filtering approach) with particular emphasis on the original work 

done by Kalman. The idea of using the state-space engineering representation and 

the principle of recursive updating of information in statistics did not appear until the 

early to mid 1970's. Harrison & Stevens (1976) adopted a stat~space representation 

in the context of Bayesian inference to describe the Dynamic Linear Model (DLM). 

An intrinsic difference between Harrison & Stevens's approach and that of Kalman 

was that Kalman expressed his recurrence relationships in terms of moments, whereas 

Harrison & Stevens used the same updating equations to describe the evolution of a 

fully probabilistic Gaussian process. 

Bayesian methods are often useful in forecasting problems where there is little or no 

useful historical information available at the time the initial forecast is required. In this 

situation the early forecasts must be based on subjective assessment and experienced 

judgement. As the time series information becomes available, we then use Bayes the­

orem to combine our prior information with the observed data through the likelihood 

function - the joint probability of the data under the stated model assumptions- to 

give the posterior distribution or information. This prior to posterior process can be 

expressed as 

posterior oc (prior x observed likelihood) 

10 



An example of this process is the forecasting of contaminated material which has a short 

life after a nuclear accident. An experienced judgement is needed at the beginning of 

the emission process. This is a process based on using Bayes theorem for updating a 

degree of belief expressed by a probability distribution in the light of new information. 

Bayesian forecasting uses Bayesian inference to study systems through dynamic models. 

2.3 The Univariate DLM 

2.3.1 Definition 

Following the notation and terminology of West & Harrison (1989), the standard normal 

DLM is described as follows. 

Let yt, t = 1,2, ... represent a time series of scalar observations. At time t we have the 

following defining equations 

(2.3) 

(2.4) 

where the quantity 8t is an nrdimensional state parameter vector evolving through time 

according to the evolution or system equation (2.4). In the application we have in mind, 

the dimension of 8t will have the novel feature that it will depend on t as a function of 

the parameter of the model. Gt is the known nt x nt system matrix of the model defining 

the systematic component of the evolution and Wt is a stochastic term which describes 

random changes in the state vector, and which provides an increase in uncertainty 

over the time interval as 8t - 1 changes to 8t • Conditional on the past information Dt - 1 

available prior to time t, it is typically assumed that (WtIDt-I) '" N[O, Wt] where Wt 
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is a known covariance matrix which provides the measure of increased uncertainty or 

loss of information. The structure of this matrix is defined using discount factors as 

discussed in Section (2.4). The state vector relates to the observation at time t via 

equation (2.3), systematically through the known, nt-dimensional regression vector F t 

and stochastically via the observational noise term Vt. Typically (VtIDt-d '" N[O, Yt] 

with Yt known apart from a constant or a scalar precision parameter which may be 

estimated (Harrison & West 1986, 1987). The mean response at t is Itt = F;8t , which 

is simply the expected value of yt in equation (2.3) and defines the level of the series 

at time t. Finally, the sequences {vt} and {wt} are usually assumed uncorrelated and 

mutually uncorrelated. The univariate DLM can then be characterised by a quadruple 

which is known at time t. This quadruple, together with the initial information (80 IDo) '" 

N[mo, Co], where mo is the prior expectation for 80 and Co is its covariance matrix, 

define the DLM, assuming the initial distributions for the state to be independent of 

Vt and Wt. 

2.3.2 Model Updating 

Suppose that at each time t an observation yt = Yt is made such that Dt = {Yt, Dt-t}. 

Then, with {F,G, V, Wh known for all t the, DLM can be updated as follows. 

1. At time t - 1 we have a posterior distribution for the state vector given as 

for some mean mt-l and covariance matrix Ct- 1• 
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2. Using equation (2.4), prior distribution on the state vector for time t, (8t IDt -d 

will be normally distributed with defining moments 

Gtmt-t 

GtGt-tGT + Wt 

3. At this stage we forecast the expected new observation according to equation 

(2.4). The one-step ahead forecast distribution for (YtIDt-.) will be normally 

distributed with defining moments 

E[YtIDt-tl - it 

Var[YtIDt - 1] Qt 

Frat 

FrRtFt + \.'t. 

4. When the new observation Yt = Yt is taken, the state vector is updated according 

to Bayes' rule, and from the joint normal distribution of Yt, 8t we obtain the 

posterior distribution at time t for 8 t 

where 

mt = at + At(Yt - It) 

Gt = Rt - AtQtAr· 

with At = RtFtQt1 known as the Kalman filter or adaptive coefficient. 

This closed form of updating can be used simply for obtaining the k-step ahead dis­

tribution of a future observation Yt+k, k ~ 1. For this we have to make inferences 

about the future parameters 8t+k. These distributions are summarised in the following 

subsection. 
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2.3.3 Forecast Distributions 

Definition 

The forecast function ft (k) is defined for all integers k ~ 0 and for any current time t 

as 

where 

is the mean response function at time t + k. 

For k strictly greater than 0, the forecast function is defined as 

The form of the forecast function in k plays a major role in defining DLMs. It is 

considered as a guide to the appropriateness of a particular model in any application. 

The following theorem provides the full forecast distributions for the series Yt and the 

state vector 8t . Examples of this will be given in Chapter (6). 

Theorem 2.1. For each time t and k ~ 1, the k-step ahead distributions for 8t+k and 

Yt+k, given Dt are given by 

(a) State distribution: (8t+kIDt) fV N[at(k), Rt(k)], 

(b) Forecast distribution: (Yt+kIDt) fV N[Jt(k), Qt(k)], 

with moments recursively defined by 
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and 

where 

Ot(k) Gt+kOt(k - 1), 

Rt(k) Gt+kRt(k - I)G;+k + Wt+k, 

with starting values Ot(O) = mt and Rt(O) = Ct. In the special case that the system 

matrix G t is constant Gt = G for all t, then for k ~ 0, 

so that 

ft(k) = F;+kGkmt. 

Proof. See West & Harrsion (1989), p.ll5. 

If both Ft and Gt are constants, then the DLM is known as time series DLM or TSDLM. 

The forecast function of the TSDLM has the form 

2.4 The Discounting Concept 

In implementing a DLM, the setting of the evolution error variance Wt is often not easy. 

This difficulty has been overcome by introducing the concept of discounting which was 

developed by Brown (1962) using only one discount factor for the global time series 

model. Harrison (1965) and Ameen & Harrison (1984) have used different discount 

factors for different components in the DLM. The idea is based on the fact that Wt 
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models a decay of information between observations. Recalling that 

when there is no system error, then Rt = GtCt-1G;' This means that Wt introduces 

uncertainty so that the quantity GtCt-1Gr can be considered as a discounted Rt with 

a discount factor 8,0 < 8 < 1. Thus Rt = GtCttGT so that Wt = GtCt_1Gr(1s6). 

In particular, in the case of a steady model with F t = Gt = 1, we have 

Rt = ¥ so that Wt = Ct_t{8-1 - 1). 

2.5 Dynamic Estimation of Variance 

So far we have assumed that the observation variance lit is known. But in most ap­

plications this is not the case. Several approaches to learning on line about lit have 

been suggested (see, for example, Ameen & Harrison, 1985). A tractable fully Bayesian 

learning mechanism when the variance is constant is available. 

In the context of our application, a conjugate prior to posterior analysis with an 

unknown variance is possible in a limited sense if we use the following parametrisation of 

the distribution of a noisy observation Yi and a vector qt of masses of contamination. 

This is an obvious modification of the algorithms of De Groot (1971) and West & 

Harrison (1989). 

Observation 

(2.5) 

where we assume that the observational variance known up to a scalar multiple, with 
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Vt an unknown parameter whilst, lit and the constant regression vector F are assumed 

to be known. It is obvious that the larger the value of Vt, the larger the conditional 

variance of yt. In more complex models, lit will be a function of various characteristics 

of the distribution of qt" 

State Information 

Assume that 

(2.6) 

(2.7) 

Updating Equations 

where 

(2.8) 

(2.9) 

with Rt, lit, F, at defined as before and 

The parameters of Vt are updated using the equations 

1 
(2.10) at - at-l + 2 

f3t 
1 2 

f3t-l + 2ft (2.11) 
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h Yt-FTmt 
were ft = F1' Fl· 

(Vt+ Rt)l 2 

Note that this distribution is modified in the light of the normalised residual associated 

with Yt. The expectation E[VtIDt]' in particular, is given by (Qf~1) which, by repeated 

substitution in (2.10) and (2.11) gives 

Setting Qo = 1 and letting f30 ---+ 0 (a vague prior distribution on Vt initially) we obtain 

which is the naive estimate of (VtIDt) based on normalised residuals. 

2.6 Model Specification and Design 

As discussed above, a TSDLM can be described by a quadruple {F, G, \It, Wtl with the 

constant pair {F, G} known. The form of the forecast function It (k) as a function of 

the step ahead index k plays an important role in determining this pair. Based on his 

experience, the expert may have a certain idea about the expected behaviour of the 

series. This idea may be expressed as a form of forecast function of the model. The 

pair {F,G} can then be deduced to match this form. The following are some examples 

of some basic forecast functions which may represent the expert's view of the expected 

developments of the series. First we state the following results which follow directly 

from West & Harrison (1989). 
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Theorem 2.2. If a TSDLM has a 2-dimensional state space, the state space can 

be linearly transformed so that its forecast function can be written as 

where TnT = (mtl' mt2), and F and G having one of the following forms 

i) F = (: ). G = (:' :,) 

il) F = (:). G = (: :) 

iii) F = ( 1 ), G = ). ( cosw sin w ) 

o -sinw cosw 

where AI, ).2, ). and ware real. The forecast functions associated with these are respec-

tively 

iii) ft(k) = [mtl cos(kw) + mt2sin(kw)]).k 

An alternative expression for the forecast function (iii) above is 

where rl = mll + m12' r is the amplitude of the periodic component mtl cos(kw) + 

mt2sin(kw), and ¢t = arctan(-mt2/mtl) is the phase of the periodic component. 
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Example 1. This is an example of a damped growth model where the forecast func­

tion rises from zero to a maximum height at time k* and then goes down exponentially. 

Here the forecast function has the form 

with FT = (1, O),fflt = (mtl' mt2) and G as in (ii) above (a 2 x 2 Jordan block matrix 

with A diagonals) where 0 < A < 1. 

Notice that the prior values of the initial state vector 80 can be chosen so as to put 

mt2 = O. 

Example 2. In this case the forecast function rises to an asymptotic value. It has the 

form 

/t(k) = Atmn + mt2 

with FT = (1,1) and G as in (i) above where 0 < Al < 1, A2 = 1. 

Usually we set mOl = -m02 so that this gives a (non-negative) expected exponential 

rise from an initial value of zero to an asymptote mt2. 

2.7 The Superposition Principle 

The superposition principle (West & Harrison, 1989, p.182) is a powerful statement 

from the model design point of view. It states that a linear combination of DLMs 

is itself a DLM. This principle is dependent on additivity properties associated with 

linear models in general. Moreover, it is important to notice that the statement of this 

principle would assume that the observational error terms, as well as the system error 

terms, are jointly normally distributed. 
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Consider the h time series Yit for integer h > 1 generated by the DLM {Fi,Gi, Vi, Wilt 

with state vectors Bit of dimensions ni for i = 1, ... , h. Assume that for all distinct i 

and j (1 ::; i,j ::; h) the series Vit and Wit are mutually independent of the series Vit 

and Wjt. Then the series 
h 

Yt = EYit 
i=1 

follows a DLM {F,G, V, Wh with a state vector given by 

of dimension n = n1 + ... + nh such that 

Gt blockdiag{Glt, ... ,Ght}, 

Wt - block diag{Wlt , ... , Wht} 

Proof. See West & Harrison (1989), p.184. 

This principle is very useful since it provides a way of building up complex models 

for simple components. For instance a superposition of the models in examples (1) and 

(2) above has a regression vector 

FT = (1,1,1,0) 

and a system matrix 

o 1 0 0 
G= 

o 0 A 1 

o 0 0 A 
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In Chapter (6) we will discuss a range of these models to use in different cases. 

2.8 Dynamic Generalised Linear Models (DGLM) 

To generalise the concept of the DLM to non-normal distribution on the observed 

series and the state vector, West, Harrison & Migon (1985) proposed the Dynamic 

Generalised Linear Models (DGLM) which are essentially a dynamic and Bayesian 

version of the Generalised Linear Models (GLM) in Neider & Wedderburn (1972). In 

their generalisation, West, Harrison and Migon made no distributional assumptions 

about the n- dimensional state vector 8t apart from the first two moments, whilst the 

observables {Yi} were assumed to have a full distribution specification. Explicitly, the 

authors assumed that observations come from exponential family distribution -although 

their algorithm holds in general - with a density 

(2.12) 

where "It and Vt > 0 are respectively the natural parameter and the scale parameter 

of the distribution, b(Yt! Vt), and a(.,,) are known functions. Here we assume that Vt or 

equivalently l't-1 = <Pt is a known precision parameter for all t. The system equation is 

as 

Wt '" [0, Wtl (2.13) 

where Gt , is an n X n known system matrix, Wt is a zero mean uncorrelated sequence, 

with Wt uncorrelated with 8t - 1, and Wt is a known covariance matrix for all t. 
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Define At = FT8t as the linear score where F t is a known n x 1 regression vector as 

defined in the standard DLM, and the link function g(.) as 

(2.14) 

where g(.) is a known, continuous and monotonic function mapping 17t to the real line. 

Then the observation model is defined by (2.12) and (2.14) while the system equation 

is defined by (2.13). Here we note that the standard DLM defined by (2.3) and (2.4) 

is a special case for which the distribution in (2.12) is N[At, Vt], the distributions of 8t 

and Wt are normal, and g(.) is the identity mapping. 

West, Harrison and Migon (1985) reformulates the standard sequential procedure for 

the DLM and extended it to the non-normal case. In their analysis, the authors drop 

the normality assumption of the state vector. Similarly, the distribution of the error in 

the system equation is now only partially specified in terms of its first two moments. 

An alternative interpretation of their approach assumes that the random quantities 

{8 t } defined in the system equation (2.13) are Gaussian and treats the whole process 

as approximate (see Smith, 1992 and Chapter 8). Under either interpretation the model 

updating is the same. 

2.8.1 The DGLM updating 

Suppose that 

and the evolution of the model is defined by assuming that 

(8t IDt-d '" [at, Rt] 
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where at = Gtmt-l and Rt = GtGt_1GT + Wt. A full system of recursions is 

summarised in the following steps: 

i) Under (2.14), At and 6 have a joint prior distribution which is partially specified in 

terms of the first two moments so that 

ii) In order to obtain the one-step ahead forecast distribution we need the distribution 

of ("7tIDt-t). But this distribution is only partially specified since the full distribu-

tion form of At = g("7t) is not necessarily known. Therefore further assumptions 

about the prior distribution of At are needed. A conjugate prior for At is supposed 

to have the form 

(2.15) 

for some defining parameters O:t, Pt and a normalising constant c(O:t, Pt). The 

defining parameters are chosen such that 

The one-step ahead forecast distribution can now be obtained via 

From (2.12) and (2.15) we have 
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iii) Observing Yt = Yt. find the posterior for ""t in the conjugate form 

Denote the posterior mean and variance for At = g(""t) by 

Ii E[g(77t)lDt] 

q; Var[g(llt)IDt] 

iv) Using the joint posterior distribution for At and 9 we can obtain the posterior 

moments for (9t IDt) as 

p(At, 9t lDt ) oc p(At.9tIDt-t}p(YtIAt) 

oc [P(9t I At. Dt-1)p(At!Dt-t}]p(YtIAt) 

oc p(9tIAt. Dt-1)[P(AtIDt-t}p(YtIAt)] 

oc p(9tIAt. Dt-l}P(AtIDt}. 

Here 9t is conditionally independent of Yt given At and Dt - 1 • The posterior dis-

tribution of 9t is 

(2.17) 

The second probability density in the integrand can be obtained from step (iii) 

above. The first probability density is not always fully specified. but we only need 

its first two moments in order to obtain the first two moments for the posterior 

distribution of (9t IDt). The first two moments for (9t IAt. Dt-d can be estimated 

from standard Bayesian techniques. A detailed discussion of the Linear Bayesian 

Estimation (LBE) of moments of (9t IAt. Dt- 1) is given in West & Harrison (1989). 

p.561. The LBE of the conditional mean E[9t IAt. Dt- 1] is given by 

E = at + RtFt{At - It)/qt. 

25 



for all At. The estimate of the variance is given by 

for all At. Now from (2.17) we have 

E[E{8tIAt, Dt-dlDtl 

Var[E{8tIAt, Dt-dlDtl + E[Var{8tIAt, Dt-dlDtl 

and these can be estimated by substituting the LBE estimates as follows: 

mt E[E] 

and 

Ct - E[V] + Var[E] 

This step completes the updating procedure. 

Other approaches which accommodate general forms of observational distributions are 

MCMC methods, one example of which is the Gibbs sampler. These can be used to 

obtain the desired posterior distributions in non-algebraic form to any degree of accu-

racy. Such methods were introduced by Hastings (1970) and Metropolis et al. (1953) 

and have since been developed vigorously in a number of Bayesian applications (see 

Gelfand & Smith, 1990, Tanner & Wong, 1987 and West, 1992). Their greatest advan-

tage is their relatively straightforward implementation which is attained at the cost of 
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computational efficiency. Typically these methods, though accurate, are relatively slow 

and so are not currently applicable to the real time problem we have in mind here. 

2.9 Multi-Process Models 

In many cases, the modeller has in mind not just a single model, but several models 

corresponding to different possible scenarios which might explain a time series, and 

not just a single model. Harrison & Stevens (1976) introduced the multi-process model 

methodology for discriminating between rival DLMs M(i) (i = 1,2, ... , m) and con­

sidering them for the series simultaneously. The authors distinguished two classes of 

multi-process models, Class I and Class II, that are different in structure. In this thesis 

we are only concerned with Class I, where the class of alternative models is constant in 

time. A brief discussion of this class follows (see also West & Harrison, 1989, p.439). 

Let the process {¥i}, (t = 1,2, ... ) follow a DLM Mt(a), where a are uncertain defining 

parameters of the model (e.g. discount factors, elements of a constant system matrix 

G, ... etc.). The precise value 0 = 00 is uncertain. Let the finite discrete set A= 

{Ol, ... ,am} denote the parameter space. Define 

i) The probability that the process follows the model M(i) given D t - 1 as 

(i= 1, ... ,m) 

ii) Z as a vector of quantities of interest, for example the state vector 8t , a future 

observation ¥i+k, k > 0, ... etc. 

Then 
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1. The posterior probability of M(i) is updated via 

where p(Ytlai, Dt-t} is the predictive density for Yt assuming the model M(i). 

2. The marginal posterior densities are 

m 

p(ZIDt) = Ep(Zlai, Dt)p~i) 
i=l 

which are discrete probability mixtures of the standard T or normal distributions. 

For example, in our application the emission process of the contaminated material 

after an accident can be modelled as a DLM which will lead to estimates of source 

term profile and predictions of the contamination spread. However, the model does not 

consider the uncertainty of the release height. One solution to this problem is to run a 

multi-process model which lets the mixing value a be the height. Each model in this 

set will be given a prior probability representing expert judgement on the likely height. 

These probabilities will then be updated in the light of monitoring data. By this means 

the data will give weights to most likely models. Details are given in Chapter (6). 

Class I models provide a quick and often reliable model, especially if, as is often the 

case in their forecasting situations, the models are different in character, e.g. if they 

relate to different physical theories associated with different dispersal models. Details 

are provided in Chapter (6). 
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Chapter 3 

A Bayesian Forecasting of 

Atmospheric Dispersion 

3.1 Introduction 

In the case of environmental disasters of different types (e.g. nuclear or chemical acci­

dents) appropriate countermeasures must be taken to mitigate the consequences to the 

population and environment. A quick and accurate prediction of the dispersion of the 

contaminated material is crucial 

Conventional atmospheric dispersion models (physical models) are widely used for fore­

casting toxic contamination and obtaining results in real-time with varying degrees of 

accuracy. These models are deterministic, and one of the most significant problems 

associated with their use in prediction is the large degree of uncertainty inherent in 

their predictions. 

Atmospheric dispersion is a stochastic phenomenon and, in general, the concentra-
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tion observed at a given time and location downwind of a source cannot be predicted 

with precision (Chatwin, 1982). Concentration is a random quantity which should be 

described statistically or in a probabilistic framework rather than deterministically. 

Of primary importance is the need to define and reduce the uncertainty associated with 

predictions. The main sources of uncertainty are: 

1. Uncertainties or errors in model input data such as meteorological data; source 

data; topographical data (surface characteristics, hills, coast lines, etc.). Source 

information, including the grid reference of the release point, and height of the 

release, also represents a source of uncertainty (see Eckman et al. 1992). 

2. Errors in the field concentration measurements and incomplete knowledge of the 

expert judgmental data. 

3. The uncertainty arising from the poorness of the physical model. 

4. Uncertainty may be due to natural (stochastic) variability, (Fox, 1984). 

These uncertainties may lead to a destabilisation of the decision process when envi­

ronmental survey results disagree with the model predictions. Because of this, the 

uncertainty element must be studied as an integral part of any comprehensive model 

performance evaluation. Evaluation and identification of the range of model uncer­

tainties provide a deep insight into model capabilities and increase our confidence in 

decision- making based on models (Rao & Hosker, 1993). 

Several different but complementary approaches to defining and reducing uncer­

tainties have been investigated. Until recently, none of the operational systems has 

handled uncertainty explicitly and most of the approaches are merely academic (see 
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Govaerts 1993); so the assessment of uncertainties and their communication to the 

decision- maker remains an important challenge. 

Recently, and within the framework of building a decision support system to improve 

emergency management of any future accidental release of radioactivity, Smith & 

French (1993) addressed this problem and considered an atmospheric system design 

for the following purposes: 

i) The assessment of uncertainties and their communication to the decision-maker in 

an operationally flexible system. 

ii) The implementation of a data assimilation procedure to update predictions through 

the use of Bayesian methodology which: 

1. Combines information from different sources. 

2. Gives a probabilistic measures of uncertainty associated with the combina­

tion of information. 

This chapter is concerned with describing a Bayesian statistical model (see Smith & 

French, 1993) which embeds the dispersal model in a description of the uncertainties 

mentioned above. This both allows the assimilation of data to update current forecasts 

and also expresses an appropriate degree of uncertainty associated with any forecasts 

or estimates. The statistical model is carried out within a Bayesian Paradigm (see Box 

& Taio, 1973; French, 1986; Smith, 1988 and West & Harrison, 1989). 
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3.2 Atmospheric Dispersion Models 

This section gives a brief idea about the dispersion models used in modelling atmo­

spheric transport by wind currents (advection) and turbulent diffusion. The task of 

the atmospheric dispersion module is to calculate space- and time- dependent air and 

ground concentrations of radionuclides. 

Deterministic mathematical models are widely used in atmospheric studies. Differ­

ential equations are usually employed to describe the atmospheric dispersion process, 

and the system is summarised in terms of the solution of the differential equations. Sev­

eral dispersion models have been developed which are basically classified as Lagrangian 

and Eulerian models. 

Lagrangian models of atmospheric dispersion processes are usually numerical, and 

are trajectory models which simulate the release as a sequence of particles following the 

history of material in time and space (see ApSimon et al. 1989). It was soon recognised 

that these models had several limitations. For example, experience suggested that they 

cannot provide accurate results quickly enough because they are dependent on detailed 

information about source term, atmospheric parameters and terrain data. Generally 

this information cannot be used in real-time because complex numerical models also 

require considerable computational time and capabilities. All these factors make these 

models unreliable in real-time. 

Eulerian models describe a plume as a diffusion/advection equation. They are 

used to calculate finite difference solutions of this equation. These solutions can take 

account of time-dependent wind fields and realistic vertical profiles of the wind velocity 
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and the diffusion (see Pasler-Sauer, 1985). Again basing a statistical analysis directly 

on these equations looks unpromising (see Smith & French, 1993). However, under 

certain conditions it is sometimes possible to obtain analytic steady state solutions. 

The Gaussian plume model is one solution that arises on assuming desirable physical 

features such as stationarity, a constant wind vector and homogeneous terrain. It 

applies an analytical solution of the steady state diffusion advection equation. (For 

details of Gaussian plume models see Pasler-Sauer, 1985). 

Unfortunately, because these solutions are suitable only for a "stable" environment (Le. 

constant wind/terrain), they are not expected to perform well in turbulent flows over 

complex terrain. Furthermore, their use in the early phase of the release is obviously 

suspect since any sense of steady state will not yet have been reached. 

3.3 Puff Models 

The puff models have been proposed by many authors (e.g. Mikkelsen et al., 1984) 

to overcome the shortcomings of a standard plume model which are revealed in its 

inappropriateness in handling non-stationary, non-homogeneous flow and turbulence 

situations. 

The basic principle for a computational puff model for prediction of atmospheric disper­

sion is the simulation of the continuous emission from the source by a proper distribution 

of discrete sequence of small puffs of different sizes. These are released at regular time 

intervals and then diffuse and disperse independently. Figure 3.1 shows the plume as 

represented by means of a puff model in which the circles represent individual puffs. 

Each individual puff represents an ellipsoidal spatial concentration distribution which is 
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i=l 

Source D 

Figure 3.1: The plume as represented by puffs 

often hypothesised to be Gaussian- usually truncated around an outer ellipse to describe 

the bounded nature of the puff better. The puff model has the following properties. 

1. The model can handle the non-stationary flow associated with source emissions 

because different masses under puffs can reflect the often uneven pattern of an 

accidental release. 

2. The local meteorological parameters and the resulting dispersion parameters as­

sociated with each puff dispersal can be made different, thus reflecting the char­

acteristics of the wind field at the location of that puff. 

3. Various tracer experiments (e.g. Pasler-Sauer, 1985) have suggested that puff 

models work well in practice in the short term. 
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Because of these properties, a Bayesian model based on generalisation of the puff model 

has been adopted both to combine the puff model with expert judgements and monitor­

ing data, and to provide an evaluation of the uncertainty associated with the forecasts. 

3.4 A Statistical Forecasting Model based on RIMPUFF 

Model 

3.4.1 General Characteristics of RIMPUFF 

The Rlso-Mesoscale PUFF-Model (RIMPUFF) is a Gaussian puff dispersion model 

developed at Riso in Denmark (see Mikkelsen et al., 1984 and Thykier-Nielsen & 

Mikkelsen, 1991). It is a fast operational computer code suitable for real-time sim­

ulation of hazards from radioactivity released to the atmosphere. It has recently been 

adopted for inclusion into many decision support systems including RODOS. 

RIMPUFF consists of an algorithm that models a continuous release by a series of 

consecutively released puffs. At each time step the model advects and diffuses the 

individual puffs in accordance with local meteorological parameter values. The rela­

tionship between the movement and expansion of a puff and the local input parameters 

is extremely complex and non-linear. Concurrently, the model also monitors the re­

sulting concentrations in selected grid points. The local meteorological parameters are 

organised in subprograms which can be readily changed or modified according to the 

needs and opportunities in the actual model situations. 

The puff model is structured such that it handles multiple simultaneous sources 

and its monitoring grid can contain several hundreds of puffs. The puffs are generated 
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with specific release rates in the specified grid. The individual puffs are advected by 

the wind field. RIMPUFF calculates the locations of puffs on the specified grid by 

computing their movements during finite time steps, using an interpolated wind field 

which is based on data from the wind measurement stations. 

To compute the growth of the puffs, it is necessary to have simultaneous specifica­

tions of the turbulence and/or the atmospheric stability. Once the advection and size 

of all puffs have been calculated, updated grid concentrations are obtained at each grid 

point summing up all the contributions from the puffs in the grid. 

3.4.2 Stochastic Modification of the RIMPUFF 

Smith & French (1993) have made use of the RIMPUFF model. The dispersion of 

time-dependent atmospheric plume is described by a sequence of directly released puffs 

whose superposition pattern approximates the concentration distribution of a contin­

uous plume. The puffs are indexed such that puff i is released at time t = i. As­

sume that the mass under puff i is Q(i). i.e. Q(i) is an uncertain quantity which 

represents the total number of contaminated particles under the ith puff. We define 

Qt = (Q(l), ... , Q(t))T which approximates the release profile of the source term. Stan­

dard priors are used on the shape of the time profile (the time series) of the release. 

Such priors can model any uncertainty about the mass released and its duration. This 

gives a prior mean. Also we can encode "smoothness" in the release profile through the 

covariances between the Q (i) 'so 

The spatial concentration of contamination from the ith puff at time t and location 

S = (st, S2, S3) where (S., S2) define the horizontal direction of the grid point and 
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83 the vertical is given by the product Ft(i, s)Q(i). The stochastic multiplier Ft(i, s) 

determines how that emission is distributed over space and time. It is a proportion 

of the total contaminated particles under the ith puff at site s and time t. Typically 

Ft(i, s) is a complicated deterministic function of parameters, themselves calculated 

from uncertain meteorological inputs. For example, one of the simplest of such dispersal 

models is a Gaussian puff (see Pasler-Sauer, 1985), which sets 

(3.1) 

where (u(I), u(2)) is a wind velocity vector possibly depending on t, and h is the 

height of the emission. The radial growth of puffs during dispersion as a result of 

"internal turbulence" is described by the parameters (O't(1),O't(2)) and O't(3) which 

denote puff sizes in horizontal and vertical directions respectively. These last param-

eters relating to the diffusion are in part functions of meteorological data such as low 

frequency fluctuations in wind direction. The parameters of Ft (i, s) are calculated in 

rather complicated ways to take account of heterogeneity in the system. The function 

Ft(i, s) is often truncated and set to zero for s lying outside a contour with parameters 

(O't(1) = 0';(I),O't(2) = 0';(2), O't(3) = 0';(3)) (say). This explains why only a certain 

small number of puffs lie over a site s at any time. 

Initially the stochastic multipliers Ft(i, s) are assumed to be known, and we only con-

sider uncertainty on the masses. However in Chapter (6) we will address uncertainty 

on certain parameters of Ft(i, s) such as the release height of the emission. The ini-

tial introduction of uncertainty handling through distributions on masses under puffs 

brings the following advantages: 

37 



• Relating an observation to puffs. 

Instantaneous concentrations at monitoring sites are linear functions of Qt. Let 

Y{t, s) denote an observation taken under some overlapping puffs at time t at 

location s. Here Y (t, s) represents the total number of contaminated particles 

at (t, s). Now Y(t, s), the concentration of contamination, is simply the sum of 

concentrations of all puffs where the ith puff contributes a proportion Ft (i, 8) of 

its total mass Q(i). Thus Y(t, 8) will be a linear function of the combinations of 

masses Q(i)s. 

In practice, because puffs are typically bounded, it is found that for many disper-

sion models and scenarios that arise, only a few number of puffs will contribute 

to contamination at a given detector site at time t. This number of related puffs 

will be determined by the physical dispersion model. In terms of our formulation, 

it is implied that all but a few of the multipliers Ft (i,8) will be non-zero at a 

fixed point (t,8) 

• It is possible to use analogues of Bayesian DLM algorithms to assimilate a time 

series of monitoring data whose states are the uncertain masses. 

In our application Y(t, s) will be a noisy function of the true contamination O(t, s) 

at site 8 at time t originating from Q(l), ... , Q(t). In practice the dispersal of the 

contaminated material is patchy (see Smith & French, 1993), and this needs to be 

modelled stochastically as 

t 

O(t, s) = E Ft{i, s)Q(i) + f{t, 8) 
i=1 

For simplicity we assume that f(t, s) are each Gaussian with mean zero and vari-
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ance U(t, a), and £(t, sd, £(t, S2) are independent for sites SI, S2. As a simple process 

(Y(t,s)l9(t,s)) is defined to have a Gaussian distribution with mean 9(t,s) and a fixed 

variance V(t, s) where V(t, s) is assumed known and represents the "observation and 

modelling" error. Assume that Y(t, s) is independent of all other variables in the system 

given 9(t, s) then 

Y(t,s)19(t,s)) '" N[9(t,s), V(t,s)] (3.2) 

The methods can be generalised to assimilate non-normal data (see Chapter 8). 

The general observation process where Y(t, s) is a vector of observations taken at time 

t at a selection of sites s is discussed later in Subsection 3.6.1.1. 

Now, conditioning on everything else other than masses, the model provides elegant 

algorithms to: update distributions of the source term in time; predict contamination 

over space and time; and hence to obtain predictive distributions of data and also to 

admit data assimilation. 

However, in practice many of the variables coditioned on will be unknown. For 

example, we may be uncertain about a parameter like the release height and we know 

that this parameter has a significant effect on the multipliers. 

To solve this problem we run mixed models (see Harrison and Stevens, 1976). That is 

we parallel process several models in a mixture, each with a different release height and 

update their associated probabilities according to Bayes' rule (for detailed discussion, 

see Chapter 6). 
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3.4.3 Modelling Uncertainties about Meteorological Input and the 

Dispersion Model 

When the dispersal model is inadequate and its meteorological inputs are inaccurate 

then the statistical model described above cannot be expected to work well in practice. 

Fortunately, however, a splitting feature called pentification which is coded within the 

deterministic models of RIMPUFF can be adapted to manage, indirectly, much of the 

uncertainty indicated above. 

Within the deterministic code when a puff reaches a certain diameter, the puff splits 

horizontally into five smaller puffs with associated multipliers also having Gaussian 

shapes in such a way that the centroid of the spread of the contamination of the five new 

puffs is the same as that of the puff that splits. To match the original Gaussian shape 

of the multiplier to the shape of the mixture of the five Gaussian shapes associated 

with the new puffs, the second moment of the concentration taken over by the new 

puffs is chosen to match the second moment of the original puff. The total mass of the 

contaminant associated with the five new puff masses is chosen to equal the original puff 

mass. In this way the total contamination contributed by the original puff is conserved. 

Figure 3.2 shows the splitting scheme : one central and four siblings approximate the 

original single Gaussian puff. Each of the four siblings carries 23.53 per cent of the 

total amount of mass. The fifth puff is assigned to the remaining 5.8 per cent while, 

still being located at the origin. Using this pentification concept, it is possible to 

build a dynamic linear model which may adapt in a simple way to monitoring data 

and demonstrate the working of such a model. The idea is to let the state variables 

be the masses of contaminant in each puff keeping all other elements in this splitting 
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Original Puff 

New Puffs 

Figure 3.2: Puff pentification 

algorithm deterministic. In the statistical model we allow for the possibility that reality 

may be better modelled by a different percentage split, i.e. that one or more puffs may 

receive more than their expected share of the contaminant, and that correspondingly 

others may receive less. As monitoring data are assimilated, the model may learn that 

such an asymmetric pentification would be more appropriate, and it will adjust the 

masses of contaminant in each puff accordingly. One effect of this is to shift the overall 

plume somewhat to take account of such things as misspecification of the wind field 

and dispersion model. 

Explicitly the sibling vector of the children of the i th puff/ puff fragment Q (i) 

(Q( i, 1), ... , Q( i, 5)) can be expressed as 

Q (i) = OtQ (i) + w ( i) (3.3) 

where 

(0.235,0.235,0.235,0.235,0.0.58) 
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and 

w(i) = (w(i,1), ... ,w(i,5)) 

is a system error chosen to conserve mass i.e. Ej=l w(i,j) = 0 with Var[w(i,j)] = W. 

One simple example sets w{i) '" N[O, W*], where W* is a covariance matrix of shape 

1 1 1 1 1 -4 -4 -4 -4 

1 1 1 1 1 -4 -4 -4 -4 

W*= 1 1 1 1 1 W (3.4) -4 -4 -4 -4: 

1 1 1 1 1 -4 -4 -4 -4 

1 1 1 1 1 -4 -4 -4: -4 

Now equations (3.2), (3.3) and (3.4) specify a simple linear stochastic system. This 

system is rich enough to exhibit sensible learning procedures for a variety of plausible 

scenarios. Also it faithfully mirrors in its structure a dispersal model that a physicist 

understands. It requires as prior inputs only: 

i) The first two moments of the mass under each puff on emission. 

ii) A measurement error variance. 

iii) A variance parameter to define the stochastic pentification. 

3.5 Model Adaptation 

As a simple illustration of how the model adapts, consider the trajectory of puff emis-

sion as depicted in Figure 3.3. For simplicity, assume that there are only horizontal 

movements of the plume, that source emissions are independent, and that covariances 
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Figure 3.3: Plume trajectory and pentification 

on the pentification are set as in (3.4). Consider the case where we observe contam­

ination at a site predicted only to be contaminated by the fragment labelled (1, 5). 

Then it easily shown from the related equations defining the statistical model and the 

pentification covariance that the joint Gaussian distribution of (Q(I), Q(I), Y) has a 

mean vector (q(l), o:q(l), la5q(1)) where 

Q (l) = (Q(l, 1), ... , Q(l, 5)), q(l) is the prior mean of the mass under the first puff, 

0: = (all a2, a3, <1'4, 0'5) = (0.235,0.235,0.235,0.235,0.058) 

and I = Ft (" s) with Ft (., s) as defined in (3.1). The covariance matrix of (Q(l), Q(l), Y) 

is given in a block matrix form as 

S o:T S la5S 

o:TS C c 

la5S c T d 
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where S is the prior variance of the mass Q(l) and C = {Cij } where 

1~i=j~5 

if-j 

where W is the variance of the system error in the first pentification. 

c = f(C15 , ••• , C55f where Cij is defined above, and d = PC55 + V, with V the 

observational variance of Y conditional on Q(l, 5). 

Now, using the usual normal theory, it is easy to derive the revised distribution of 

q(l) given Y, which is a multivariate normal with mean vector qt(1) and covariance 

matrix Qt(1) where 

(3.5) 

and qt(1) = (it(I, 1), ... ,qt(1,5))T where for 1 ~ j ~ 5 

(3.6) 

where 

et(5) = 7 -a5q(1) (3.7) 

(1') f[aj a5S - 1/4W] J' -J. 5 
a ,) = J2[a~S + W + V/ J2]' f 

(3.8) 

a(1,5)= 7- [1- a~s+%':v/J2l (3.9) 

where 

ajq(l) is the expected contamination under puff (I,j) before observing y. 

et(5) is the difference between the naive estimate of q(l, 5) using y and its prior expected 

value. 

a(l,j) is the usual adaptive coefficient ofQ(l,j) to y/f. 

From the previous equations we notice the following. 
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1. The adaptation of the fragment (1, 5) associated with the observation y pulls the 

mean towards the naive estimate y I I. 

2. The larger the uncertainty in the source (8) and the uncertainty in the pentifica-

tion (W) relative to the observational error variance V, the greater the adaptation 

towards the naive data based estimate. 

3. The adaptation of beliefs associated with sibling fragments is interesting. Adap-

tation of the mean towards or away from the naive estimate yl I of q(1, 5) will 

depend on whether the ratio 81W is large or small. Thus we adjust towards 

the naive estimate if the source uncertainty is large (assuming this has been mis-

estimated) and away from the naive estimate if the source reading is accurate. 

In the later case, if more contamination than expected has been observed under 

puff (1, 5), then less must exist under puffs (1, j), 1 ~ j ~ 4. This illustrates the 

critical role of the settings of prior variances on the subsequent management of 

uncertainty. 

To adjust beliefs about the source emission quantity Q(1), notice that, given y, this 

has a Gaussian distribution with mean (It(l) and variance Qt(1) where for la5 #- 0 

and 

1 [ VIP + W 1 
a(1) = la5 1 - a~8 + W + VI J2 . 

Very plausibly, remote sites where the value of P is very small will give readings which 

adapt the estimate of Q(1) very little. 
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3.6 A Dynamic Fragmenting Puff Model 

Although we have argued that the above statistical model might be appropriate from 

a theoretical standpoint, there is a practical requirement that we have to meet. The 

covariance matrices within the model can become very large in dimension, and compu­

tational efficiency thus declines dramatically. Fortunately, this fragmenting puff model 

can be restructured as a dynamic junction tree, (see Chapter 7). In fact Smith et 

aI., (1995) address this problem. They have shown how the Bayesian propagation 

algorithms (Lauritzen & Speigelhalter, 1988) can be modified when the trees evolve 

dynamically. Their methodology is defined and illustrated within a stochastic version 

of a fragmenting puff model. In this section we describe briefly their methodology, 

starting with a notation and some distributional assumptions which we will follow in 

later chapters. 

3.6.1 Model Description 

With reference to the puff splitting scheme of section (3.4), fragments arising directly 

from another puff or puff fragments will be called children of a parent puff/ puff frag­

ment. In RIMPUFF each parent puff has five children and is said to be pentificate. 

Let m(t, I) = m(t, It, ... , Ik) be the puff fragment which is the ILh child of the ILt:l 

child, ... , of the lih child of the puff released at time t. In RIMPUFF 1 5 Ii 5 5, lSi 5 

k. The index k relates to the number of fragmentations that have taken place before 

fragment m(t, I) appears. Let: 

Ir denote the set of all puffs/puff fragments appearing on or before time T. 

Q(I) denote the true mass under m(t, I) 
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q(l) denote the vector of true masses under the set of the children of m(t, I). 

Q(I) = (Q(I), q(I))T 

3.6.1.1 The Observation Process 

Let QT be the vector of masses of all puffs and puff fragments emitted on or before 

time T. Let Y(t, s) denote a vector of observations taken at time t at a selection of 

sites s. Assume that Y(t, s)18(t, s) is independent of all other variables in the system. 

Here 8(t, s) can be interpreted as a random vector relating to the actual mass at time 

t on site s unconfounded with the observational errors in Y(t, s). As a simple process, 

Y(t, s)18(t, s) is defined as having a Gaussian distribution with mean 8(t, s) and a 

fixed covariance matrix V. As explained in Section (3.4), an important feature of puff 

models is that at all points (t, s) of the observation grid, 8(t, s) can be written as 

8(t, s) = F(t, s)Qt + €(t, s). 

The matrix F(t, s) is a very complicated but known function of (t, s) which defines the 

density of contamination contributed at sites s by each puff or puff fragment at time 

t. Each row of this matrix corresponds to the weightings used in a dispersal model at 

a site which is a component of the vector of sites. Notice that F(t, s) has non-zero 

components only on fragments that still exist and have not fragmented further. In 

practice it is found that only a few puff fragments will be observed at a site at any 

given time, which implies that for most (t, s) many components of each row of F(t, s) 

will be zeros (see Subsection 3.2.4). As before the error process €(t, s) will be Gaussian 

with zero mean and fixed covariance matrix U. In the particular case of observations 

at source s = 0, where 8(t, 0) is a scalar we set 8(t,0) = Q(t) and hence €(t, 0) = O. 
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To specify the joint distribution of QT' at any time T we need to specify the following 

processes: 

3.6.1.2 The Fragmentation Process 

This process assumes that a vector of mass fragments (children) q(l) of a parent m(t, I) 

is independent of all masses Qt given the mass Q(I). Using Dawid's (1979), notation 

this can be written as 

q(l) il {Qt \ Q(I)}IQ(I). 

Thus, the masses inherited by fragments depend only on the mass of the parent unfrag­

mented puff and no other puff. Thus, to specify the joint distribution of puff fragments 

it is only necessary to specify the conditional distribution of q(l) IQ(I) for each puff/puff 

fragment m(t, I). 

To model the dispersal of a gas, these conditional distributions are usually chosen 

to conserve mass. For example in the RIMPUFF model we set 

E[q(I)IQ(I)] = oQ(I), where a = (01, ... , (5)T, Ef=l 0i = 1, 0i > 0, 

and 

Var[q(I)IQ(I)] = W*, where ITW*l = 0 and 1 denotes a vector of ones. 

Obviously if q(I)IQ(I) is chosen to be conditionally Gaussian, then these equations 

uniquely define its distribution. 
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3.6.1.3 The Emission Process 

The emission process is modelled as a Dynamic Linear Model (DLM) with state space 

(Q(t),1/J t )T where 1/Jt is a vector of dummy variables. Explicitly 

( 

Q(t) - J.l(t) ) I ( Q(t - 1) - J.l(t - 1) ) '" N [a ( Q(t - 1) - J.l(t - 1) ) ,w] 
1/Jt tPt-l tPt-l 

where a and Ware fixed square matrices and J.l(t) is a trend term which is a function 

of time t. This is just a standard state space model on the univariate process {Q (t), t = 

1,2, ... , }. Special cases ofthese models (e.g. set tP(t) as null when the process becomes 

I-dimensional, Q(t)IQ(t-l) '" N[Q(t-l)+J.l(t) -J.l(t-1), W]) are discussed in Chapter 

(6). 

49 



Chapter 4 

An Introduction to Graphical 

Models 

4.1 Introduction 

Graphical models as statistical models embodying a collection of marginal and con­

ditional independencies which may be summarised by means of a graph are quickly 

becoming an integral part of modern statistics. The graphical representation of a sta­

tistical model can help in many ways: the graph provides an effective means for the 

elicitation and simplification of a problem; it depicts the dependency structure posited 

in the model; and it may be transformed into a structure that can be used for efficient 

calculations of various quantities of interest, as we shall see in Chapter (7). 

Graphical methods were used in the early 1980's for the analysis of statistical prob­

lems where no decision variables or utilities are explicitly represented. In a series of 

papers by Darroch et al. (1980), Wermuth and Lauritzen (1983), Lauritzen et al. 
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(1984), Kliveri et al. (1984) and Lauritzen and Wermuth (1987), the authors addressed 

the problem of how graphs such as influence diagrams can help in understanding the 

conditional independence properties that a given factorisation of a probability density 

implies. 

Another issue of great importance is how graphs can be used to perform efficient 

probability calculations in high dimensional problems (computational efficiency). This 

issue is discussed in a number of papers by Kim and Pearl (1983), Pearl (1986), Lau­

ritzen and Spiegelhalter (1988) and Spiegel halter et al. (1993). 

This chapter deals with some graph-theoretical results and offer a background amount 

of graphs such as influence diagrams and junction trees, which is necessary for the 

further development of the thesis. 

4.2 Notation and Terminology 

This section introduces some graph-theoretical terms which will be used frequently in 

the thesis. Here I use the terminology given by Whittaker (1990). 

A network or groph is a pair G = (V, E) that consists of a finite set of vertices 

V = 1,2, ... , v and a set of edges (arcs) E ~ V x V of ordered pairs of distinct vertices. 

An edge from vertex i (parent) to vertex j (child) is a directed edge (arrow) denoted by 

i -+ j if (i,j) E E and (j, i) f/. E. If both (i,j) and (j, i) are E E, then the edge between 

i and j is undirected (line). If the graph has only undirected edges, it is an undirected 

graph, and if all edges are directed, the graph is said to be a directed graph. 

A path of length m 2 0 from i to j is an ordered sequence (i = iI, i2 , ••• , im = j) of 

distinct vertices ill i2 , ••• , im such that (ii, il+d is in E for each 1= 1,2, ... , m. If there 
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is a path from ito j, we say that i leads to j and write i 1---7 j. 

The descendants de( i) of i are the vertices j such that i f---7 j. The vertices i that lead 

to j are the ancestors of j denoted by an(j). 

A subset C ~ V is said to be a (i,j) separator if all paths from ito j intersect C. The 

su bset C is said to separate A from B if it is an (i, j) separator for every i E A, j E B. 

For A ~ V, the set of parents of A denoted by Pa(A) is the set of all these vertices in 

V, but not in A, that have a child in A. 

An m-cycle is a path of length m with the exception that the end points are equal; that 

is i = j. A graph is acyclic if it has no cycles. 

A directed acyclic graph (DAG) is a directed graph without cycles. 

Figure 4.1 illustrates some graph-theoretical terms. 

directed graph undirected graph 

Figure 4.1: An illustration of some graph-theoretical terms 

Note that Xs -t X4, X3 f+ Xs, the set of parents of Xs is {X2, X6, X7} and X2 has children 
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4.3 Influence Diagrams 

An influence diagram (ID) is a schematic representation of conditional independence 

relationships which is used for deducing new independencies from those employed in 

the construction of the diagram. Influence diagrams were first developed in the mid 

1970's by Miller et al. (1976). Howard & Matheson (1981) extended the theory to 

decision analysis. Olmsted (1983) and Shachter (1986, 1988) gave a procedure for 

evaluating a decision problem using an influence diagram. In this section we present 

a brief introduction on how to use influence diagrams as a modelling framework that 

underpins a probability distribution in order to learn about and efficiently calculate 

various quantities of interest. We begin by defining a chance influence diagram. 

4.3.1 Chance Influence Diagrams 

In graph-theoretical terms a chance influence diagram or influence diagram (ID) is a 

directed graph G = (V, E) where V is a set of nodes represented by circles and called 

chance nodes, and E is the set of directed edges or arrows joining these nodes. Chance 

nodes label random variables/uncertain quantities relevant to the problem being mod­

elled, and directed edges represent probabilistic dependencies. A chance node which 

labels a random variable Xl must be a parent of a chance node which labels a random 

variable X 2 if and only if the distribution of the random variable X 2 is calculated con­

ditional on the value of the random variable Xl, and on the assumption that Xl and 

X2 are not independent. The generalisation to higher dimensions is given below. 
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Let X = (Xl! ... ' Xm) be an ordered set of m random variables with a joint 

probability function 
m 

p(z) = p(x.) II p(xrlxI! ... ' xr-d (4.1) 
r=2 

Suppose P(XrIXI, ... ,xr-d is a function ofxr and the parent set P(r) ~ {XI! ... ,xr-d 

only. This will imply that given P(r), Xr is independent of R(r) where 

R(r) = {Xl, ... , Xr-d \ P(r) 

is the set of random variables listed before Xr which do not appear explicitly in the 

conditional probability function p(xrlxl. ... xr-d. Using Dawid's (1979) notation this 

can be written as 

Xr il R(r)IP(r) r=2, ... ,m (4.2) 

Then the graph of an influence diagram over Xl' ... ' Xm is any directed graph with 

nodes representing random variables Xl, .. . ,Xm satisfying the property (4.2). 

Influence diagrams are clearly acyclic because only nodes of lower index can be 

connected to nodes of higher index. The graph of an influence diagram together with 

the c.L statements in (4.2) is called an influence diagram. 

As a simple illustration, suppose X = {Xl' ... ' Xs}. Then from (4.1) 

8 

p(z) = p(Xl) II p(xrIXl! ... , xr-t}. 
r=2 

Suppose the parents are: P(2) = {Xd, P(3) = {Xl! X 2 }, P(4) = {X3}, P(5) 

{X3, X 4 }, P(6) = {</>} ( the empty set), P(7) = {X5 , X 6 }, P(8) = {Xd. 

The influence diagram I of this example is given in Figure 4.2 
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Figure 4.2: An ID I 

4.3.2 The Clique Marginal Representation 

The clique marginal representation is one of many ways of specifying a joint probability 

distribution( see, for example, Lauritzen & Spiegelhalter, 1988 and Smith, 1988). We 

start by identifying the cliques of an influence diagram G and p(z) by looking at the 

small sets of variables called precliques ( see Smith, 1995a) of the form 

C(r) = {Xr' P(r)} (P(1) = 4», 1 ~ r ~ m. (4.3) 

Then we delete from this collection any preclique C(r) for which there exists a C(k) (k > 

r) such that 

C(r) ~ C(k). 

The remaining sets of variables after such deletions are called the cliques of p( z) and 

G. This set of cliques will be denoted by C = {C(1), ... , C(n)}, 1 ~ n ~ m - l. 

After identifying the cliques, we can determine p{z) in terms of the joint probability 

functions pdz), .. . ,Pn(z) over the cliques {C(1), ... ,C(n)}. A sufficient condition for 

this is that p(z E P(r)) > 0 for each z E P(r), 2 ~ r ~ m whenever P(r) =1= 4>. Then 
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(4.1) can be expressed as: 

(4.4) 

where p(z E P(r)) = 1 if P(r) = </>, the empty set. 

Since by definition p(z : z E 6(r)) (and hence also p(z : z E P(r)) can be obtained 

from a p(z : z E C(k)) where C(k) is a clique of p(z) such that 6(r) ~ C(k), 2 < 

r $ m, then (4.4) can be simplified to 

(4.5) 

where Pk(Z) is as defined above and qk(Z) = p(z : z E P(r)) for a 6(r) remaining in 

the clique set, such that 6(r) = C(k), 1 $ k $ n. A set of parents P(r) associated with 

a clique C(k) is called a preseparator and is denoted by 8(k),2 $ k $ n. The clique 

representation (4.5) of p(z) has many computational advantages as we shall see below. 

As a simple illustration of how we express p(z) as in (4.5), consider the influence 

diagram of Figure 4.2 where we identify the cliques and the preseparators as 

Precliques 

6(1) = (Xl) 

6(2) = (XI, X 2) 

6(3) = (XI, X2, X3) 

6(4) = (X3, X 4 ) 

6(5) = (X3, X 4 , Xs) 

6(6) = (X6) 

6(7) = (XS,X6,X7) 

6(8) = (X7' X 8 ) 

Cliques 

C(3) = (Xs, X6 , X7) 

C(4) = (X7' Xs) 
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Preseparators 

8(3) = (Xs) 

8(4) = (X7) 



from its list of preseparators by deleting any duplicated sets. 

4.3.3 Decomposable Influence Diagrams 

An ID G is called decomposable if the set P(X) of direct predecessors of X is completely 

connected (i.e. each node in P(X) is connected by an edge to another node), this being 

true for all X in G. Figure 4.3 illustrates two graphs: graph G is decomposable and 

graph H is not, since the parent nodes a and b are not joined. Decomposable influence 

decomposable ID G non-decomposable ID H 

Figure 4.3: Graphs of decomposable and non-decomposable IDs 

diagrams have several properties which make them useful to study. One property is 

that their structure helps in propagating probabilities as the joint distribution of the 

system can be stored as margins of cliques (see Section 5 below). 

The cliques of a decomposable influence diagram can be ordered (see Tarjan & 

Yannakaskis, 1984 for a simple technique for ordering nodes called the maximum cardi­

nality search MCS) so that the cliques satisfy the so called running intersection property 

(RIP) (Beeri et aI., 1981, 1983; Lauritzen et al, 1984 and Tarjan & Yannakakis, 1984) 
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which states that: there exists an ordering C[l], ... , C[n] of the cliques C(l), ... , C(n) 

such that for all 2 ~ i ~ n 

for some bi, 1 ~ bi ~ i - 1. 

This means that the intersection of the i th clique with all the preceding ones is a subset 

of one of the preceding cliques. For example, the cliques of the undirected graph in Fig-

ure 4.4 C(l) = {Xt,X2,X3,X4},C(2) = {X3,X4,X5,X6},C(3) = {X6,Xr},C(4) = 

{X3 , X 6, Xs} are satisfying the (RIP), since 

8(2) = C(2) n C(l) 

8(3) = C(3) n (C(l) U C(2)) 

8(4) C(4) n (C(I) U C(2) U C(3)) 

where b2 = 1, b3 = 2, b4 = 2. 

{X3,X4 } ~ C(l) 

{X6 } ~ C(2) 

{X3,X6 } ~ C(2) 

4.4 J unction Tree, Junction Forest and Probability Prop­

agation 

The clique representation (4.5) of the p(z) can be used efficiently to propagate in­

formation through the system, working indirectly with the margins Pk(Z) and qk(Z), 

successively updating them rather than updating the whole joint probability function 

p(z) directly. This can be done by passing "simple messages" along the edges of a new 

graph called a junction tree constructed from the influence diagram of p(z). 

However, in the applications cited above, distributions will not always remain de­

composable. Because of this we need to define a new graph called junction graph 
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Figure 4.4: An undirected graph with cliques satisfying the RIP 

which is an influence diagram on vectors of variables in the original influence diagram 

of the process. We then show that the definition of a junction tree is just a special 

case of the (undirected version of) a junction graph. The use of junction graphs will 

become apparent later in this thesis. A formal definition of a junction graph follows. 

Definition 

A junction graph g of any density satisfying (4.5) is a directed graph with n nodes 

labelling the n cliques C(l), ... , C(n). There is an edge to node C(i) from node C(j), i > 

j if and only if 

i) SCi) n C(j) #= 4> 

ii) there exists no j' < j such that 

S(i) n CU') 2 S(i) n CU). 
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A minimal junction graph {I is a junction graph which has no other junction graph {I' 

as a proper subgraph. 

In general a joint probability function will have several junction graphs and minimal 

junction graphs over a chosen ordering of its cliques. An influence diagram J and its 

junction graph are shown in Figure 4.5. The undirected versions of junction graphs 

Figure 4.5: An ID J and its junction graph 

are called junction trees when the separator of any clique is contained in exactly one 

previously listed clique or separator. The undirected version of the junction graph of 

Figure 4.5 is in fact a junction tree. 

In the case where p( z) is decomposable, a collection of disconnected junction trees will 

be called a junction forest. 

60 



4.4.1 The Propagation of Information on Junction Trees 

Let C = {C(I), ... , C(n)} denote the set of cliques of the joint probability function 

p(z). Suppose we learn the values of some or all of the variables lying in some arbitrary 

clique C(I) E C, and we want to compute the conditional distribution of all variables in 

the system given a subset of variables in C(I). Smith (1995a) described a propagation 

algorithm paralleling that given in Lauritzen & Spiegelhalter (1988). 

Now, it is clear that we can obtain the new probability function p*(z(I)) of the variables 

z(l) in C(I) from p(z(l)) its original probability function using Bayes' rule. 

Smith (1995a) shows how to update probabilities over the variables in the other cliques 

given the values of some of the variables in C(I). The updating is possible using the 

junction tree of the system. For detailed discussions, see the above references. 

4.5 Graphical Representation of the Fragmenting 

Puff Models 

In Chapter (3) we described fragmenting puff models and some distributional assump­

tions concerning models for the instantaneous, emission readings and for the fragment­

ing process were discussed. 

In this section we show a graphical representation of the conditional probability break­

down of puffs and puff fragments. 
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4.5.1 Clique Representation of Puff Distributions 

Following Smith et al. 's (1995) notation, let X T denote a vector of state random vari-

abIes of interest (vector of mass emissions and their fragments in our context) existing 

on or before time T. In the model defined in Chapter (3) it is easy to check that because 

of the conditional independencies in the system, the joint density PT(:.!) of X T can be 

written as 

T 

PT(:.!) = p(Q(l), ,p(1)) II p(Q(t), ,p(t)IQ(t - 1), ,pet - 1)) IIp(Q(I)lQ(I)) (4.6) 
t=2 

where Q(t), ,p(t) , Q(I), Q(I) and h are as defined in Chapter (3). The density can 

be expressed in a suitable form, namely the clique marginal representation form of 

equation (4.5), for an efficient propagation of probabilities (see Smith et al., 1995). 

Let 

C*(t) = {Q(t), ,pet), Q(t + 1), ,pet + I)}, l::;t::;T-1 (4.7) 

C(I) = {q(I)} = {Q(I), Q(I, It}, ... , Q(I, 15)}, I E IT (4.8) 

where C*(t), C(I) are cliques. 

Applying equation (4.5), PT(:.!) can be written as 

(4.9) 

where p(C*(t)) and p(C(I)) denote respectively the joint densities of the variables in 

the cliques C*(t) and C(l), Set) = {Q(t), ,pet)} and rT(I) is the number of offsprings 

of Q(l) produced before or at time T. Using this simplified representation, the joint 

density PT(:.!) can be stored as a moderate number of joint densities of low dimension 

instead of a single density of a high dimension. 
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4.5.2 A Junction Tree of the Fragmentation Process 

The structure of the joint density ]JT(z) can be represented by a dynamic influence 

diagram (see, for example, Queen, 1991; 1993 and Smith et al., 1995). The nodes of 

the ID are the random variables (or vectors) defined on the cliques. For example the ID 

given in Figure 4.6 represents the conditional probability breakdown of puff and puff 

fragments in the early stages of an accidental release. 

A source has emitted 4 puffs at time T. The first puff has pentificated, the 2nd and 

5th fragments have then pentificated, and further fragmentation has occurred on the 

2nd offspring of the 2nd fragment. The second puff has also pentificated and its 2nd 

puff also splits into 5. The 3rd and 4th puffs have yet to fragment. 

Here we note that it is easy to check that the ID of Figure 4.6 is decomposable (all 

parents of a given child are connected) with its cliques having the running intersection 

property (RIP) of Section (6), that is at any time T, the cliques can be ordered as 

C[I], ... , C[9] such that 

C[i] n [U~~~C[j]] = Sri] ~ C[bi] 2 ~ i ~ 9. 

for some bi, 1 ~ bi ~ i-I. Also we note the following: 

(i) If C[i] = C*(t) then C[bjJ = C*(t - 1) and Sri] = Q(t). 

(ii) If C[iJ = C(l), if I = t then C[bjJ = C*(t) and Sri] = {Q(t)}, if 1= (t, 11' ... ' Ik) 

then C[bj] = C(t, Ill ... ' Ik-t} and Sri] = {Q(l)}. 

Since the ID is decomposable, we can form a junction tree whose nodes are the 

cliques of ]JT(z). Figure 4.6 shows an ID of the example of the early emission and its 

63 



junction tree. 

A typical clique C[i] of this junction tree will have a probability defined conditionally 

in terms of a particular separator S[i] of the junction tree. That separator will take 

one of the following forms: 

(a) If C[i] = C*(t) it will take the form S(t) of equation (4.7). 

(b) If C[i] = C(l) it will take the form Q(l). 

4.5.3 Relating Observations to Cliques 

As we indicated in Sections (3.4) and (3.5), measurements will be taken as a single 

observation Y(t, 0) at the source mass (reading on chimney stack) at time t with error 

or as a vector of linear combination of mass fragments with error at different sites. 

In practice, when true contamination O(t, s) is regressed on qi! only a small number 

of the stochastic multipliers Ft(i, s)'s are non-zeros. These regression coefficients are 

usually on fragments (children) of the same parent (Le. the observation lies under a 

single clique). This happens when the wind field is not turbulent, and the terrain is not 

too heterogeneous. In this case the observation can be expressed as a linear function 

of the combination of masses Q(i)s exist at time t in the same clique C. 

Y(t, s) = E Ft(i, s)Q(i) + l(t, s) 
Q(i)EC 

where l(t, s) is an independent error term. However, in some cases, the rate of pen-

tification is too great and the windfield is turbulent, so that the non-zero regression 

coefficients are on children of several cliques (i.e. the observation will be "divided" 

between several cliques). The number of these cliques is determined by the dispersal 
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(physical) model and the observation under these cliques is related to the masses under 

fragments such that 

Y(t,8) = L [ L Fj(i,8)Qj(i)] + £(t, 8) 
jeJ Q(i)ECJ 

where 1 ~ i ~ t and J is the index set of cliques under which the observation is taken. 

In Chapter (7) we consider the propagation of information as in the types above. An ex-

act algorithm for quick absorption of information on such junction trees which evolve 

dynamically and some approximation schemes for efficient propagation, will be dis-

cussed. (See further Smith et al., 1995 and Gargoum and Smith, 1994a.) 
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Q1221 

Q1222 

Figure 4.6: An ID of early emissions and its junction tree 
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Chapter 5 

Some Useful Results on 

Information Divergence 

5.1 Introduction 

In several applications in statistics and graphical models we need to measure the in­

formation contained in one random variable about the value of another. It is also of 

fundamental importance to examine the proximity of one density function to its ap­

proximation(see, for example, Kjaerulf 1992 and Gargoum et al., 1995). There is a 

choice of methods of calculating the "distance" between two densities and for mea­

suring the strength of an edge connecting two variables in a conditional independence 

graph, but two measures are particularly important in parametric set up because they 

can be written in an algebraic form for most common families of distributions. These 

are the Kullback-Leibler (K-L) measure of separation and the Hellinger distance. In 

this chapter we discuss several interesting properties and results, both old and new, 
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associated with these mea.sures and which are needed in later chapters of this thesis. 

(see, for example, Devroye, 1987). 

5.2 Distances between Densities 

Let (X, A) be a mea.surable space, with P and P a.s two probability mea.sures on (X, A) 

(P may represent a Bayesian probability model and P is an approximation for P on 

a O'-field A); and let p, p be the densities of P and P with respect to J.t ( a positive 

0' - finite mea.sure dominating P and p). Several separation mea.sures can be used 

to mea.sure the distance between P and P. For example we may define the variation 

distance between the two probability measures a.s 

dv(P; p) = sup IP(A) - P(A)I 
Ae.A 

where A denotes an arbitrary mea.surable set for which the probability under P or P 

is defined. The relation between the variation and the L1-distances (see, for example, 

Reiss, 1989) is given by 

dv(p,p) = 1/2 f Ip - pi (5.1) 

It should be noted that 0 ~ dv ~ 1. 

The interpretation of the L1 criterion in terms of the difference between probabilities 

makes it unique. It is ea.sily interpreted: when we report, for example, that L1 error 

is 0.010, then we know that all probabilities of all sets are off by at most 0.005. From 

the relation (5.1), when dv is 0.005, then we know that for any set A, the probability 

assigned to it by p differs at most by 0.005 from the probability assigned to it by p. 

In this chapter we shall also introduce further distances and show their relation to 
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the variation distance. For example the distance between p and fJ can be measured in 

terms of the entropy related quantity, the Kullback-Leibler(K-L) divergence which 

is defined as 

or in terms of the Hellinger distance which is defined by 

In this chapter, we will explore some of the most important properties of the Kullback-

Leibler divergence and the Hellinger distance in more detail. 

5.3 The Kullback-Leibler Divergence 

Definition 

The Kullba.ck-Leibler divergence between two densities p and fJ for the random 

variable (or vector) X is 

(5.2) 

where the expectation is taken with respect to the density p. The Kullback-Leibler is, 

perhaps, the most well-known separation measure; however it is not symmetric, i.e. in 

general dK(PjP) =f. dK(pjp). Sometimes it is appropriate to use the notation dK(p;pIX) 

or dK (px , px) to indicate the random variable (vector) for which the divergence is 

taken. 

5.4 The Kullback-Leibler between Gaussian Distributions 

(i) The univariate case. Suppose that the random variable X is normally distributed 
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under both It and h where under It : X '" N[PI, VI] and under h : X '" 

log It -logh - -![logVl + Vl-l(x -l1d2 -logV2 + V2-
I(x -112)2] 

-! log ~ - !R(x) 

where R(x) = VI-lex -l1d2 - V2-
I (x2 - 2112 X + 11~). So 

and 

Letting VI = V2 + ~ 

Since the second term in (5.3) is always positive 

~ {<~ if~>O 
log(1 + V) 

2 a > Vi" if ~ < 0 

Notice in particular that if (~) ~ 0 then 

(5.3) 

(5.4) 

(ii) The multivariate case. More generally, if the k- variate vector X is normally 

distributed under It and h where under It : X '" N[I'l' ~I] and under h : X '" 

where E = !(El + E2) (see, for example, Kullback, 1968). 
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5.4.1 Properties of the Kullback-Leibler Divergence 

In this section we discuss briefly some of the most important properties of the Kullback­

Leibler divergence. A comprehensive account of the properties and proofs are given in 

Kullback (1968)j Whittaker (1990) and Kjaerulf (1992). 

1. dK(ltj h) ~ 0, with equality if and only if It = h. 

This property follows directly from Jensen's inequality, 

2. If X and Yare independent random variables under both !t and 12, then 

This property still exists even if X and Yare not independent but in terms of a 

conditional information divergence as follows. Suppose that (Xl, Yt} has a joint 

density / mass function It, and that (X 2, Y2 ) is absolutely continuous with respect 

to It and has a joint density/mass function h. Denote by 

Since 

Then 

dK(It(XI, YI)j 12 (X2' Y2)) = dK(1t (xt}j h(x2)) + EXl [dK(!t(yt!Xt)j h(Y2Ix2))] 

(5.6) 
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where 

and 

dK (Jdx t};h(X2)) - E(Xl ,Yd [log Jdxt} -logh(x2)] 

EXl Oog Jdxt} - log h(X2)] 

In particular, if (Xj, Yj) j = 1,2 are independent, equation (5.6) simplifies to 

which can be generalised easily. 

Note from (5.6) that, under the Kullback-Leibler divergence, the marginal dis­

tributions of two random variables are always closer together than their joint 

distributions with other variables. Thus, because the the second term in (5.6) is 

always positive, then 

(5.8) 

3. The Kullback-Leibler divergence can be calculated locally. 

Let pv be a probability function for a junction tree T = (C, S) where C is a set of 

cliques and S is a set of separators with a corresponding graph G = (V, E). Let 

Co E C be the clique containing the variables {X, Y} and let pv be the probability 

function for T after cutting the edge joining X and Y. Then 

For proof of this property see Kjaerulf (1992). 
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4. The Kullback-Leibler divergence is additive over a series of approximations. 

Suppose that a sequential cutting of edges is made on a junction tree 10 with 

a density function/mass function Po. Let Ii and Pi(i = 1, ... , m) be respectively 

the junction tree and the density function after cutting the ith edge. Then the 

Kullback-Leibler divergence between Po and Pm is equivalent to the sum of the 

divergences between Pi-l and Pi for all i = 1, ... m. For example, to achieve com­

putational efficiency (see Chapter 7) we need to cut a separator from a clique C 

containing S in the junction tree I = (C, S)- with a probability density/mass 

function p- which will be transformed to T* = (C*, S*) with a density/mass 

function p. This will be done frequently during the evolution of the emission 

and fragmentation processes. According to the additivity property, the overall 

Kullback-Leibler divergence between P and p is equal to the sum of the individual 

Kullback-Leibler divergences. 

5.5 The Hellinger Distance 

Definition 

The Hellinger distance between the two densities P and p is defined as 

dH(p,p) = [! J(p1/ 2 - pl/2)2dpP/2 

[1 - [(p, p)]1/2 

where I(p, p) = J p1/2pl/2dp is the affinity between P and p. Also known as the Bha­

hacharyya coefficient, it measures the closeness of the distributions. As easily seen, 

I(p, p) has the following properties (see Matusita, 1976): 
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(i) 0 ~ [(p, p) ~ 1 with equality of 1 if and only if p = p 

(ii) [(p, p) is symmetric on distributions. 

5.6 The Hellinger Distance between Gaussian Distribu-

tions 

(i) The univariate case. The Hellinger distance between two univariate normal den-

sities It and h with respective means and variances (1-'1, Vd; (1-'2, V2) can be 

calculated from 

(ii) The multivariate case. Let It and 12 be two multivariate densities with respective 

means 1'1 and 1'2 and covariances matrices El and E2, respectively, then 

where 

E HEI +E2) 

S (#II - #l2fE-l (#ll - 1'2) 

Note that S depends on the distributional dimension unless #II = #12. The effect of 

this and the invariance property of the Hellinger distance are discussed in Section 

(5.7). 

Now 

dk(lt; h) 1- [ 

1- exp{ -H~s + 2 log IEI- log IEll -log IE2 1)} 

1- exp{ -lR(Jli h)} 
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where 

and 

T = 2 log lEI-log IEll-log IE21 

Note that 

In Chapter (7) we will approximate a normal density function f of a random vector X = 

(X(l), ... , X(p)) where X(j) has a mean vector I-'U), 15 j 5 p and covariance matrix 

E(j, k) = Cov(X(j) , X(k)), 1 5 j, k 5 p by the normal density j of a random vector 

with the same I-'U) and E(j,j), 15 j 5 p but with all covariances block E(j, k),j =1= k 

set to O. 

The following result shows the connection between the variation distance and 

Hellinger distance (see, for example, Devroye, 1987 and Smith, 1995b). 

For any two densities p and fJ 

Proof. 

Here we will omit the arguments (p, fJ) 

2dv - lip-pi 

_ I Ipl/2 - pl/2I1pl/2 + pl/21 

> I (pl/2 - pl/2)2 

2dh 
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Also, by Cauchy-Schwartz inequality 

4d~ = [J Ip - fil]2 < f(p1/2 - fil/2)2 f(pl/2 + fil/2)2 

- 2d'iI(2 + 2 f pl/2fil/2) 

- 24(4 - 2d'iI) 

44(2 - d'iI) 

which implies that 4 5 4(2 - d'iI). i.e dv 5 dH.j2 - d~ 5 v'2dH. 

For any two densities, the Hellinger distance is topologically equivalent to the variation 

distance. Small values in dv are equivalent to small values in dH, so if an approximation 

is good with respect to dH, it will also be good with respect to dv ( see, for example, 

Smith 1995b). 

A bound for the Hellinger distance (and thus for the variation distance) can be con­

structed by using the Kullback-Leibler divergence. We have 

(5.9) 

For the proof of this result see Reiss (1989). 

As an example, the three distances dK, dH, dv = v'2dH between the standard 

normal density and the densities N[O,O'2] where 0 5 0'2 5 2.5 are plotted in Figure 

5.1. 

5.7 Prerequisite Results for Hellinger Distances 

In this section we outline some useful results needed for the discussion of the algebraic 

forms of some Hellinger distances between certain distributions. 
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Figure 5.1: A plot of distances between N[O, 1] and N[O, (12] 

1. First we notice from the definition of dH(J; g) that if we denote 

R(J;g) = -41og[1- d1-(J;g)] (5.10) 

and 
k 

Ii = IT Jlj) i = 1, 2. 
j=l 

Then 
k 

R(Jl; h) = L R(Jl(j); fJj)) (5.11) 
j=l 

which implies that the distance between two densities of random vectors each 

comprising independent components can be calculated easily from the distance 

between their component densities. 

2. Hellinger distances can sometimes be calculated explicitly between two densities 

which come from different families. For instance, let f be a, normal density with 

mean fL and va.ria.nce V and 9 be a Gamma density G(O', f3) with the same mean 

and variance i.e. 0' = fL2fV and f3 = f..lfV, then (see, for exa..mpJe, Smith, 1995b) 
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or 

R(fjg) = log(1r/2) - a (log a + 210g2 - 1) + 4 log r(1/4(o + 1)) - 210gr(o) 

Here we note that dH(fj g) depends only on the parameter a 

3. Again from the definition of dH(f; g) it can be shown that dH is invariant to the 

representation of a probability density. This means that for i = 1,2, if the random 

vector Xi has density Ii and the vector Yi has density gi where Yi = e(Xi) and 

e can be inverted, then 

(5.12) 

Of course, if there is a "natural scale" to a problem - for example as introduced by 

a utility function- then this invariance which is shared by the variation distance 

and the K-L separation is something of a liability, since it constrains how approx­

imations between variables which take small values are judged compared with 

approximations between variables which take large values. However, in our appli­

cation this is not a severe problem because the metric is only used to determine 

whether it is safe to approximate, so inappropriately large values of separation 

only have the consequence of delaying an approximation unnecessarily. 

We note that the family of appropriate utilities is bounded and often only takes 

the value 0 or 1 (see Chapter 7), i.e. expected utilities are probabilities on sets. 

So the variation distance and (by topological equivalence) the Hellinger distance 

give a natural upper bound discrepancy. Also we note that in our application, 

because of the physics of the process, the approximation using the Hellinger dis­

tance seems to be best when the values of the contamination are large and hence 
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provides good approximations to the expected utility function because of the form 

of the utility functions used here (see Chapter 7). This therefore tends to make 

the decision to approximate a conservative one. 

4. In dealing with graphical models, we may need to break down a large joint density 

into smaller components using conditional independence relationships in order to 

make probability manipulation more manageable (see, for example, Lauritzen & 

Speigelhalter, 1988; Lauritzen, 1992; Speigelhalter et al., 1993; Smith et al., 1995 

and Gargoum et al., 1995). To achieve computational efficiency in these models, 

it is often necessary to approximate the joint density by substituting either a 

marginal density by an approximation and keeping the conditional density on the 

rest of the variables fixed or approximating a conditional density whilst holding 

the margins on the rest fixed. The following results are very useful for obtaining 

Hellinger distances on these approximations 

Let 

/(x, y) - /x(x)/Ylx(Ylx) 

g(x,y) 

and 

Then, by definition 

When /YIX and gYIX are equal, h(x) = 1, then 

1(/, g) = l(/x,gx) 
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which implies that the Hellinger distance between I and 9 is the same as that 

between the margins. 

When Ix = gx then 

l(f, g) = E[h(X)] 

which gives d'k(f, g) in terms of the average conditional square distance. 

5.8 Posterior Hellinger Distance and Approximate Bayesian 

analysis 

Let Y be an observation like Poisson counts of a Bayesian model and X represent the 

states or parameters of this model so that IYlx and gYIX can be thought of as likelihoods 

of X given Y. In many cases it is convenient to approximate a Bayesian analysis by 

substituting a likelihood which is close (see, for example, West & Harrison, 1989 and 

Gargoum & Smith, 1995) where interest lies in the distance between the posterior 

densities of X, IxlY and gxlY. Here we would not expect to obtain a general result which 

said that the distance between IxlY and gxlY would always be less than the distance 

between IYlx and gYlx. However results exist which show that the expectation of the 

Hellinger distance between posterior densities is smaller than the distances between 

likelihoods (see Smith, 1995b). We must then arise: How close are posterior densities 

with common prior and different likelihoods ? This topic will be discussed in Chapter 

(8). 
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Chapter 6 

Bayesian Dynamic Models for 

Emission Profiles 

6.1 Introduction 

In this chapter we outline how qualitative information about the shape of the devel­

opment of the emission of contamination after an accident can be coded as a Dynamic 

Linear Model (DLM). Expert judgement about the profile of future emissions is ex­

tremely informative and can be accommodated into Bayesian uncertainty management 

in puff models (see Gargoum & Smith, 1994b). Some examples, using simulated data 

(model generated data), are given to illustrate how the model's prediction of the emis­

sion profile changes as stack monitoring readings are taken. 
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6.1.1 Background 

In Chapter (3) we stated that the true source emissions {Q(I), Q(2), ... }, where Q(i) 

denotes the mass of contamination under the ith emitted puff, can be modelled as a 

DLM with state parameters 9t = (Q(t) - I'(t), .,pt)T where .,pt is a vector of dummy 

variables whose interpretation will be given later and I'(t) is the mean of Q(t) given 

the past. Explicitly, 

( 

Q(t) - I'(t) ) I ( Q(t - 1) - I'(t - 1) ) '" N [a ( Q(t - 1) - I'(t - 1) ) , w] 
.,pt 1Pt-l .,pt-l 

where a and Ware fixed square matrices. 

The discussion in this chapter will focus on the prior specification and su bsequent 

estima.tion of the source emissions FT 9 t + I'(t) = Q(t). The structure of the forecast 

function and hence the prescription of a, mo = E[90], the initial prior mean, and 

I'(t), t = 1,2, ... gives critical prior inputs for designing a DLM consistent with 

an expert's view concerning the future development of the shape of the emission of 

contamina.tion after an accident. 

In a few scenarios an expert may have good knowledge of the trend term J..L(t), but 

typically this will not be the case and therefore this term is often set to zero. On the 

other hand it will often be the case that quite good prior information about the shape 

of the emission -for example that a release will rise to a peak and then decline to an 

asymptote- will be available. The problem in examples like the one given above is that 

the height of the peak, the time it will be reached and the asymptotic value to which 

the release will converge are all a priori very uncertain. However these quantities can 

usually be elicited with appropriate confidence bounds. 
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In Section (2) we outline how qualitative information about the shape of the de­

velopment of emissions can be coded as a DLM. In Section (3) we describe how prior 

information about features of this process can be written in terms of prior means and 

variances of its states. In fact most shapes that arise in this context can be represented 

by the superposition of one or two canonical 2-dimensional state evolutions. In Section 

(4) we give an example of how such a profile adapts its estimates to incoming data and 

in Section (5) we discuss how we manage uncertainty on some key parameters ( such 

as release height) in the dispersal models. 

6.2 Examples of the Forecast Functions of the Emission 

Process 

The forecast function of a DLM as a function of the step ahead index k, is determined 

by the powers of the system matrix. Here we focus on some basic forecast functions 

which provide the expert's view of the expected development of the series of emissions. 

Based on theorem (2.2) of Chapter (2), we consider some scenarios of the forecast 

functions of the emission process. 

Case 1. Here we set tPt as null where the process becomes I-dimensional with 9 = 

(Q(t) -p(t)), F = 1, G = A, IAI < 1 80 that 

Yt Q(t) - p(t) + Vt, Vt '" N[O, V] 

Q(t) p(t) + A(Q(t - 1) -p(t - 1)) + Wt, Wt '" N[O, W] 

or alternatively 

Q(t)IQ(t - 1) '" N[P(t) + A(Q(t - 1) - p(t - 1)), W]. 
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If V is small compared with W, this assumes that source readings Y(t, 0), t = 1,2, ... 

are extremely accurate, and observing Y(l, 0), Y(2, 0), ... , then {Q(1),Q(2), ... } are 

approximately independent. The forecast function is 

h(k) = E[Q(t + k) - JL(t + k)IDtl 

which implies that the future emissions Q(t + k), k = 1,2, ... have expectation 

E[Q(t + k)IDt] = JL(t + k) + Ak(E[Q(t)] - JL(t)). 

The values of A clearly determine the values of the forecast function. 

Case 2. The same as case 1 with 0 ~ A ~ 1, and JL(t) = 0, t = 1,2, ... 

When the shape of the emission profile is very vague, it is useful to model this case 

by setting A = 1 which is a steady model (Harrison & Stevens, 1976). For this model the 

forecast future emission at any time t is ft{k) = E[Q(t+k)IDtl = E[Q(t)IDt] = mt, k = 

1, 2, ... i.e. constant. If past source emissions have been measured very accurately under 

this model, then, ft(k) = Yt where Yt is the last reading of the source emission. In 

general with an appropriate prior distribution on Q(l), mt is an exponentially weighted 

moving average of the past observations, with an adaptive coefficient which decreases 

as the observation variance increases. 

Case 3. Here we consider the 2-dimensional process so that the canonical model has 

the form 

where 0 < A < 1 and JL(t) = 0, t = 1,2, .... 

With state vector Ot = (Q(t) tPt(1))T and E[OtlDtl = fflt = (mt,l! mt,2)T 
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This case is particularly useful for modelling a release which is expected monotonically 

to rise to an asymptotic value and then drift like a random walk. Here the forecast 

function has the form, ft(k) = E[Q(t + k)IDtl = Akmt,l + mt,2, where usually we set 

mO,l = -mO,2, thus giving an expected exponential rise in emission to an asymptote. 

Figure 6.1 illustrates the expected profile for the case when A = 1/2 and mt,2 = 1. 

lr--------=~======~ 

0.9 

0.6 
f t(k) 

0.4 

2 

k 

6 8 10 

Figure 6.1: Forecast function h(k) = 1 - (O.5)k 

Case 4. Here the canonical model has the form 

where 0 < A < 1, and J.l(t) = O. 

With state vector 8 = (Q(t), tPt(I))T and evolution error Wt = (Wtt,Wt2)T so that 

Yi Q(t) + Vt 

Q(t) AQ(t - 1) + tPt-dl) +Wtl 

tPt(l) AtPt-d1) + Wt2 
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With mt = (mt,l, mt,2) T, the forecast function is 

This gives another very useful emission profile. The expert expects that the emission 

will rise from zero to a maximum height at time k* (say) and then it decays expo­

nentially. Typically we would set mO,1 = 0, modelling the initial release as zero. The 

profile when A = 0.90 and mt,2 = 1 is given in Figure 6.2. 

k 

Figure 6.2: Forecast function ft(k) = (kjO.90)(0.90)k 

Now, based on the superposition principle (see Chapter 2), we give some examples 

of building up complex models for simple components. In fact we find that for most 

emission shapes that might occur, it is sufficient to consider at most 4-state component 

models. 

Example 1. This expected emission profile is particularly common. Starting from 

zero it is expected that emissions will rise to a maximum height and then reduce to a 

leakage. This leakage is assumed to drift like a random walk. Figure 6.3 illustrates this 
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case with 

F (1 1 O?, 

1 0 0 

G = o A 1 

o 0 A 

where mt,2 = -mt,l! mt,l = 1, mt,3 = 1 and A = 0.70. 

2 

1.5 

ft (k) 1 

0.5 

0 
0 5 10 15 20 25 30 

k 

Figure 6.3: Forecast function ft(k) = 1 - (0.7)k + k(0.7)k-1 

Example 2. In this example it may be expected that emission will start from zero, 

taking a form of a sine/cosine wave, and then dampen to a steady level. Hence the 

form of the forecast function is determined by the frequency of the periodic component 

w that defines the number of time intervals over which the harmonic completes a full 

cycle. Note that the frequency is modified by the multiplicative term Ak determined 
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by A. where 0 < A < 1. Figure 6.4 illustrates this case with 

F (1 1 of, 

1 o o 

G o A cosw A sin W 

o -A sin W A cosw 

where r~ = m~,2+m~,3' r is the amplitude ofthe oscillation and <Pt = arctan ( -mt,2/mt,3) 

is the phase. In the diagram, mt,l = 1, mt,3 = -mt,t, mt,2 = 0, A = 0.70 and W = rr /2. 

1.4 
1.2 

1 

ft(k)0.8 
0.6 

2 

k 

6 8 10 

Figure 6.4: Forecast function ft(k) = 1 - (O.7)k cos(krr /2) 

6.3 Prior Information Settings 

Most of the time expert judgements do not relate directly to the states but to various 

features of the distribution of the forecast profile of the emission. However the expert's 

implicit beliefs about states can be deduced from his or her estimates of those features 

and associated uncertainty related to them. These deductions are often easy to make 

and will be illustrated using Example 1. 
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Specifying the posterior for 8t - 1 as 

where 

mt-l,l 

mt-l = mt-l,2 

mt-l,3 

and 

Ct-l{ll) Ct-l(12) Ct-l (13) 

Ct- 1 = Ct-l (12) Ct_l(22) Ct-t(23) 

Ct-l (13) Ct-l (23) Ct-l (33) 

Write the evolution matrix as 

Wt(ll) W t (12) W t (13) 

Wt = Wt (12) Wt(22) Wt (23) 

Wt (13) Wt(23) Wt (33) 

The sequential analysis has the following steps. 

where 

mt-l,1 

at = 'xmt-l,2 + mt-l,3 

'xmt-l,3 

Rt(11) Rt (12) Rt (13) 

Rt = Rt (12) Rt (22) Rt (23) 

Rt (13) Rt (23) Rt (33) 
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with 

Rt{ll) = Ct-t{l1) + Wt(11) 

Rt(22) = A{ACt_l (22) + Ct-l (23)) + ACt-l (23) + Ct-t(33) + Wt(22) 

Rt(33) = A2Ct_l (33) + Wt(33) 

Rt(12) = ACt-t(12) + Ct_l(13) + Wt(12) 

Rt(13) = ACt-t(13) + Wt(13) 

Rt(23) = A 2Ct_l (23) + ).Ct-l (33) + Wt (23) 

2. The one-step forecast distribution is (¥tIDt-d '" N(Jt, Qt], 

where 

It = mt-l,l + ).mt-l,2 + mt-l,3 

3. The adaptive vector is given by 

At! Rt{ll) + Rt(12)/Qt 

At = An = Rt(12) + Rt(22)/Qt 

At3 Rt(13) + Rt(23)/Qt 

4. The posterior moments are 

mt,l Ct{l1) Ct(12) ct(13) 

mt= mt,2 Ct = ct(12) Ct(22) ct(23) 

mt,3 Ct(13) Ct(23) Ct(33) 

with 

mt - at + Atet 

Ct Rt - AtA;Qt 

where et = ¥t - It. 

90 



We now need to specify the prior mean vector and the covariance matrix of 80 as 

mO,1 

mO= mO,2 

eo(ll) co(12) co(13) 

Co = co(12) co(22) co(23) 

co(13) co(23) co(33) 

respectively, the covariance matrix Wand A. Experience dictates that we set W = 

diag(Wu, 0, 0). 

It is clear that mO,I, co(ll) + W ll are respectively the mean and variance of the 

asymptote of emission for large t. It is known that at time zero there was no emission 

that is 

90 ,1 + 90 ,2 = 0 

which implies mO,2 = -mO,I, eo(22) = co(ll) , co(12) = -co(ll) and co(13) = -co(23). 

6.4 Example of Adaptation of the Estimates to Incoming 

Data 

Using simulated data (model generated data on Example 1 above)- the data are given 

in Section A.I of Appendix A- Figures 6.5 and 6.6 of the Appendix illustrate how the 

model predictions of the emission profile change as stack monitoring readings are taken. 

Although the observational variance here is relatively high, reflecting the fact that the 

stack measurements are not that precise, it can be seen that the model quickly and 

realistically adjusts its forecasts to take account of the lower than predicted observed 

emission masses. 

The upper frame in the graph of Figure 6.5 shows the forecast emission after 4 obser-
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vations were taken forecasting the next 12 and the lower frame illustrates the forecast 

after 8 observations forecasting the next 8. Figure 6.6 shows the retrospective values 

of the concentration after 16 observations were taken. 

6.5 Uncertainty of Release Height 

As we discussed above, the DLM can be combined with a puff model to estimate 

the source term profile and predict the contamination spread as long as we believe the 

model. To allow for modelling error, we can inflate the diagonal of the evolution matrix 

Wt. However, there are omissions from the model which must be dealt with directly, 

such as uncertainty of release height or of wind direction. 

The height of releaBe at source is a key parameter in the subsequent dispersal of 

contamination (e.g. the higher the release goes, the faster it spreads). When setting the 

initial parameters of the model, it is difficult to estimate the height of the release and 

this will obviously effect the consequences. One solution to this problem is to reduce the 

risk of setting an erroneous height value by running mixed models. That is, we include 

several models in our analysis, each with a different release height (see Chapter 2, 

Section 6). The Bayesian methodology assigns probabilities to each model representing 

its relative likelihood and updates these probabilities in the light of monitoring data. 

This has the effect that the data gives most weight to the most likely model, and thus 

models which consistently perform badly can be discarded. 
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6.5.1 The Bayesian Updating Algorithm 

Suppose that we have m dispersal models M(h;), (i = 1, ... , m) where the dispersal 

algorithms were the same but whose parameters were different (e.g. the initial height 

parameter h of source emissions). Suppose that one of the models (as yet uncertain to 

us ) is assumed to be true. Let 

where L:~l 1ri = 1 and 1ri > 0, 1 ~ i ~ m. 

The hi and the 1ri are chosen to give approximates in the prior of the release height. 

Then the probability of an event A (e.g. A might be an observation of contamination 

at site s lies in the interval [a, b]) is given by 

m 

p(A) = L 1ripi(A) 
i=l 

where Pi(A) is the probability attributed to the event A by the model M(h,}. 

Note that if 8(t, s) is the density of contamination at site s and time t then 

m 

E[9(t, s)] = L 1riEi[9(t, s)] 
i=l 

where Ei[9(t, s)] is the expected contamination under model M<h,} at site s and time 

t. 

6.5.2 Updating Model Probabilities in the Light of Observations 

The Bayesian algorithm allows the updating of 1r = (1rl' ... , 1rm) in a simple man-

ner, following the principles of parallel processing of multi-process models, Class I, as 

introduced by Harrison & Stevens (1976) and described in Section (2.9) of Chapter (2). 
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Suppose an event B = {Y = y} has a density value under model M(h;) of pi(Y). 

Then 
m 

p(A n B) = E 1I"iPi(A n B) 
i=1 

where P is the probability of the combined model and Pi the probability coming from 

M(h;). So 
m 

p(AIY = y)p(y) = E 1I"iPi(AIY = Y)Pi(Y) 
i=1 

where p(y) = p(B) = E~l 1I"iPi(Y)· 

So we have that, given Y = y, our updated probability p*(A) = p(AIY = y) for an 

arbitrary event A is given by 

m 

p*(A) = E 1I";pi(A) 
i=1 

Implementation 

Figure 6.7 of Section A.2, Appendix A shows the Bayesian updating of the dispersal 

of contamination based on running the sequential learning with the RIMPUFF atmo-

spheric dispersion model used on a real site (Lundtofte Nordl) under real atmospheric 

conditions but with simulated observational data. The expected dispersal is measured 

in the unit of radioactivity, Becquerel (Bq), where 1 Bq = 1 atomic disintegration. A 

detailed documentation of the simulated observations used is given in French & Smith 

(1992). 

Assuming that .A = {hI = 200m, h2 = 400m, h3 = 600m} are taken as representing the 

a priori plausible range of height values and their initial probabilities are assigned as 

1 
11"; = 3" (i = 1,2,3) 
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Figure 6.7 shows the posterior probabilities for the three heights, each with its corre­

sponding expected dispersal together with the marginal expected dispersal. The models 

are clearly rather different: Model 3 with height = 600m has a higher posterior prob­

ability at the time of interest compared with models (1) and (2). Note that if one of 

the models has a very high posterior probability at the time of interest, then it can be 

adopted alone for inference. Otherwise, the full unconditional mixture will be used for 

this purpose. 

This direct approach is well known in the statistics literature, since for sufficient 

many grid points it can produce results as accurate as we like. In the control literature, 

similar approaches have been used under the heading of parallel processing and Gaus­

sian sums (e.g. Anderson & Moore, 1979, Chapter 10; Alspach & Sorenson, 1972). 

More refined techniques of numerical approximation are suggested by many authors. 

Efficient, quadrature- based techniques of numerical integration, which are specifically 

designed to provide good numerical approximations to posterior functions of interest 

based on grids of reasonably small numbers of points, are described in Pole & West 

(1988). 

In a Bayesian framework, Draper (1995) has offered an important contribution to­

wards model uncertainty by averaging over competing models rather than just one 

model. He points out several weaknesses in the conventional approach to model un­

certainty, which is dominated by the use of a single model. His approach has much in 

common with the multi-process models of Harrison & Stevens (1976) (see also Chatfield 

1995). 

Mixture modelling has been the focus of much research in recent years as the use of 
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mixture distributions has been explored. The Bayesian approach to mixture estimation, 

which relies on MCMC methods, is even more recent (see Tanner & Wong 1987, and 

Gelfand & Smith, 1990). Diebolt & Robert (1994) and Escobar & West (1994) proposed 

Gibbs implementation of mixture estimation. 

In the last decade, progress has been made in developing suitable approximation 

techniques in dealing with the computational problems which arise with Bayesian meth­

ods. (See Smith & Roberts, 1992; Smith, 1991; Mengersen & Robert, 1993 and Shaw, 

1987, 1988) for excellent overviews and detailed references. 

Since our methods need to be almost instantaneous, we have not used the numerical 

methodologies. Instead we have adopted the basic direct approach of mixture modelling 

using multi-process Class I as introduced by Harrison & Stevens (1976). But again, 

these are all useful techniques for verifying the approximation techniques that we are 

developing. 

6.6 Conclusion 

Expert judgement about the profile offuture emissions is extremely informative and can 

be simply accommodated into Bayesian uncertainty management in puff models. Even 

when the parameters of the profile are extremely uncertain a priori, the systems quickly 

and automatically fit to their empirically justified values. Bayesian software is currently 

available and can be justified by providing this extra facility with no significant increase 

in associated running times. 

To improve the model effectiveness and manage uncertainty about key parameters 

such as source height and wind direction, it is necessary to include several models in our 
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analysis to reflect potential errors in these parameters. Hence, the model as described 

above estimates and provides distributions for source term and release height at the 

source. 

These techniques are now being coded into RODOS during the next three years. 

Expert judgement will be incorporated to set forecast functions appropriate to different 

accident scenarios. Each scenario will be given a prior probability and the marginal 

forecast distributions will be updated as outlined in Section (6). 

The key point of interest here is how expert judgement of a qualitative nature can be 

incorporated into the software using slightly non-standard DLM methodology. Before 

the feasibility of these techniques was demonstrated, practitioners believed that such 

coding would be impossible. 
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6.7 Appendix A 

A.1 

Tables of simulated data (model generated data on Example 1) together 

with the prior setting table assuming readings are taken 

every quarter of an hour 

Model generated data on Example 1: 

i) Taking 4 observations: forecasting the next 12. 

Time 1 2 3 4 

Observation 0.75 1.2 1.6 1.8 

ii) Taking 8 observations: forecasting the next 8. 

Time 1 2 3 4 5 6 7 8 

Observation 0.75 1.2 1.6 1.8 1.8 1.7 1.6 1.5 

iii) Taking 16 observations. 

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Observation 0.75 1.2 1.6 1.8 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.98 0.95 0.93 

Prior setting: 

NAMES MEAN S.E DISCOUNT 

S.E: dof 0.01 2.00 0.99 

LEVEL 1.00 0.01 0.99 

REAL 11 -1.0 0.01 0.49 

REAL 12 1.00 0.01 0.49 
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Figure 6.5: Forecast emission from simulated noisy stack readings using example (1) 
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Chapter 7 

New Operators for Efficient 

Probability Propagation 

7.1 Introduction 

In Chapter (4), the structure of the joint density PT(:r:), where X is the vector of mass 

emissions and their fragments existing on or before time T, was described by a junction 

tree of cliques. An exact algorithm for the quick absorption of information on such 

junction trees, which evolve dynamically, has been provided by Smith et al. (1995). 

The algorithm is simple and flexible in calculating the joint density of quantities of 

interest when noisy observations are only taken of functions of masses under the same 

clique of masses. 

Unfortunately, conditional independences can be quickly destroyed if masses are 

updated in the light of the observation lying under several cliques where the number 

of cliques is determined by the physical model (see Subsection 4.5.3 of Chapter 4 for 
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relating an observation to several cliques). In practice, there are many scenarios when 

such situations arise. When this happens, the junction tree formally changes, the 

associated cliques of variables are enlarged, and the local computations become less 

efficient each time such an observation arrives. A possible solution to this problem 

is to combine the dynamic evolution with an approximation whose junction tree has 

cliques which have a limited number of component puff fragments. Kjaerulf (1992) 

considers an analogous approximation for use with discrete time series. In this chapter 

we generalise the work of Smith et al. (1995) on Gaussian networks by developing new 

approximation schemes which are based upon the Kullback-Leibler divergence measure 

/ the Hellinger distance between the true and approximating distribution in Gaussian 

processes. Initial simulations have shown that the algorithm is fast enough to provide 

forecasts within the requirements of the RODOS decision support system. 

This chapter proceeds as follows. In Section (2) we present some notation and 

background results. In Section (3) we discuss two new operators which act on a high 

dimensional Gaussian process, approximating its junction tree by another which allows 

quicker probability propagation. As these operators are not exact, expressions for the 

Kullhack-Leibler divergence and the Hellinger distance between the true and approxi­

mating processes are derived. The operators would not be used unless this divergence 

measure is small. In Sections (4) and (5) we define exact operators which modify a 

junction tree to accommodate a new observation vector. In Section (6) we discuss 

a coarse approximation method which effectively ignores a posteriori, the covariances 

being induced by observations under different cliques. 
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7.2 Some Notation and Background Results 

Following the notation and terminology of Chapter (4), let p(z) denote a Gaussian 

density over a random vector X. Let X (i) denote a sub-random vector of X, 1 ~ i ~ n, 

and let X'(i) and xr(i) denote sub-random vectors of X(i), 2 ~ i ~ n. Denote the 

collection of com ponent random variables in X (i), X 8 (i) and xr (i), by C (i), S (i), and 

R(i) respectively where C(i) = R(i)uS(i), R(i)nS(i) = </>. As explained in Chapter (4), 

C (i) is called a clique, S (i) a separator of C (i) and R( i) a remainder of C (i), 1 ~ i ~ n, 

where S(i) may be the empty set </>. 

Let pj(z(i)) denote the density of X(i), 1 ~ i ~ n, and qj(z'(i)) denote the density 

of X'(i), 2 ~ i ~ n where we set qj(z'(i)) to 1 if S(i) is empty. The density p(z) is said 

to be decomposable on (C(l), ... , C(n)) if it is possible to find cliques C(i), 1 ~ i ~ n, 

and separators S(i) ~ C(i), 2 ~ i ~ n, such that 

(i) 

(7.1) 

(ii) the cliques C(l), ... ,C(n) have the running intersection property i.e. 

C(i) n [U~:~C(j)] = S(i) ~ C(bi) 2 ~ i ~ n. 

where C(bi) is any clique listed before C(i) i.e. 1 ~ bi < i. Henceforth let bi denote the 

least index with the property above. 

In many applications it is possible to write p(z) in a decomposable form where 

the dimension of C( i) is small for each i, 1 ~ i ~ n. When this is the case, it is much 

more efficient to propagate information through the system working indirectly with the 
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margins pi(z(i)) and qi(zS(i)), 1 ~ i ~ n, successively updating these, than to update 

the whole joint density p(z) directly (see, for example, Lauritzen and Spiegelhalter, 

1988 and Jensen, 1988). 

In this chapter we assume that just before new information is accommodated into 

the system, p(z) is decomposable and is stored in terms of a junction forest 7, over 

a set of cliques C = {C(l), ... ,C(n)} and a set of separators S = {S(2), ... , S(n)}. It 

is convenient to label the edges of the sub-trees of the forest by the separators S(i), 

which are not null, 2 ~ i ~ n. The structure of the joint probability density p(z) can be 

conveniently represented by the triple (7, C, S), together with the marginal densities 

on the cliques C. Because S(i) ~ C(bi ), 1 ~ i ~ n, the clique margins over S can be 

calculated from those over C and so, in turn, can p(z). 

7.2.1 Specifying the Evolution of a Decomposable Gaussian Structure 

In the past, most interest in the study of probabilistic networks has centred around 

problems where the junction tree (or at least the variables in that tree) are fixed. 

However there are a whole class of spatial-temporal processes on which the efficient 

probability propagation algorithms developed for static networks can be used. One 

example, developed in our application, has as its variables puffs of contaminated gas 

which are continually emitted from a chimney stack. In such examples, new variables 

are being continually added so that, at any time in the process, the joint density of all 

variables up to that time satisfy equation (7.1) 

To specify such a process in terms of its junction graph it is necessary to explain how 

cliques of variables and their distributions now relate to cliques of variables and their 
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distributions in the immediate past. This motivates the following formal definitions. 

Call a Gaussian process (X t,X2, ••• ) dynamic decomposable hereafter (d.d.) if the 

following three conditions hold: 

(i) For all stages t = 1,2,... the density Pt(Zt) of X t is decomposable with cliques 

Ct = (Ct (I), ... , Ct(nt)) and separators St = (8t(2), ... , 8t(nt)). Here we denote 

by T t and St a junction forest and a set of separators of Pt(Zt), respectively. 

(ii) (a) nt+l = nt + 1 t = 1,2, .. . 

(b) Ct+l(i) = Ct(i) t = 1,2, ... 1 ~ i ~ nt. 

(e) T t is the sub-forest of Tt+1 on the nodes Ct 

(iii) If I't(i), Et(i) denote respectively the mean vector and covariance matrix of the 

clique Ct(i), 1 ~ i ~ nt, t = 1,2 .... 

Then 

(a) I't+1(i) = I't(i) 

(b) Et+l(i) = Et(i) 

A d.d. process is usually specified inductively. The inputs required are: 

(i) A prior specification of mean, covariance matrix pairs (I'I (i) , EI (i)) of each clique 

of variables C 1 (i) , 1 ~ i ~ nl, in C 1. This is sufficient to specify the joint density 

p.(zt}, using equation (7.1). 

(ii) The specification of Pt+l (Zt+l \ ztlzt), which is obviously Gaussian, has a condi­

tional mean and a covariance matrix denoted by (1'?+1 (nt+l) , E?+1 ( nt+1)) (say). 
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This pair is sufficient completely to specify the joint distribution of variables in 

CH.(nHd given the variables in Ct. Again using equation (7.1), we can then ob­

tain Pt+l (Zt+l) in terms of its clique margins by calculating U'H.(nH.) , Et+.(nt+d), 

using the usual formulae, from I'~+l (nH.), E~+l (nt+d and the mean and the c<r 

variance matrix of X t (see, for example, Mardia et al., 1979). 

In fact, from the decomposability of (7, C, S), 

and since by definition, Pt+l (Zt+l) is decomposable, then, 

with 

By (ii) of the definition of d.d. we have that Ct+l (b(nt+d) E Ct. It follows that to calcu­

late (I'Hd nt+l), Et+l (nt+l)) we need only (I'~+l (nt+l), E~+l (nH.)) and (I't (b( nt+d), 

Et(b(nHt})), the latter pair being provided from a clique mean and covariance pair 

that has already been calculated. The explicit formulae for constructing PHdZt+.) 

from Pt(Zt) in this way are given in for example Smith et al. (1995). 

In the class of problems we consider here, either because an approximation scheme 

is used or because the process evolves, one Gaussian probability model p(z) maps to 

another Gaussian probability model p*(z). Following the representation formulated in 

Section (2), we therefore need to specify: 

(a) the map (7, C, S) ----? (7*, C*, S*) 
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relating the original forest, clique set and separator set triple to a new forest, 

clique set and separator set triple. 

(b) the pair (I'i , En of C*(i*) E C* ={C*(1), ... , C*(n*)} as a function of (I'i , Ei), 

1 ~ i ~ n for each i*, 1 ~ i* ~ n*. 

Forad.d. process on (X 1,X2 , ... ) a relevant density over a random vectorXt+l needs 

to be calculated from the random vector X t of variables alone at time t, X t being a 

su~vector of Xt+l' Then (T, C, S) associated with Pt(Zt) evolves to (T*, C*, S*), the 

clique structure of Pt+l (zt+ d· 

From the notation above we have thatC* = C U{Ct+l(nt+l)} and S* = S U{St+l(nt+l)}. 

The forest T* is obtained from T by adding a new node labelled Ct+t{nt+l) connected 

by an edge labelled by St+.(nt+d to Ct+1(b(nt+l)), provided St+l(nt+l) is not null. 

We obtain the clique means and covariances of C* in the way described above. This is 

our first example of the specification of the evolution of a process using (a) and (b). 

7.2.2 The Exact Updating (The ADJUST Operator) 

Smith et al. (1995) provide an algorithm based on one by Dawid (1992) for the quick 

absorption of information on cliques of a junction forest when information vector Y 

arrives with direct relevance to only one arbitrary clique C(1) E C of that forest. Thus, 

in the nota.tion defined a.bove, Y is assumed to have the property that Y is independent 

of Xt+l \ z(1) given X(1) = z(1). This algorithm keeps (T*, C*, S*) = (T, C, S). It 

then chooses an ordering of those cliques C(l) = C*(1) in the sub-tree T(1) of T 

which contains C(1) satisfying the running intersection property and beginning with 

C(1), the clique about which Y is informative. This is always possible (see Lauritzen 
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and Spiegelehalter, 1988). It then updates the mean and the covariance matrix, 1'(1) 

and E(l) to ,,*(1) and E*(l) respectively in the light of Y, using Bayes' rule. All 

distributions outside C(l) are left unchanged. The distribution of variables in C(l) is 

updated as follows. 

Let the vector X(i) of variables in C(i), 2 ~ i ~ n have a joint normal distribution 

specified by the mean vector 

and covariance matrix 

where the vector X 8 (i) of the variables in its separator S(i) has mean and covariance 

matrix "1 (i) , Ell (i) respectively. We now proceed inductively. 

Suppose all the means and covariance matrices in the cliques C(l), ... ,C(i - 1) 

E C(l) have already been updated, 2 ~ i :c:; n. In particular this will mean that, 

in this pass, the mean and covariance matrix of the vector XS(i) of the variables in 

S( i) C C(bi)' 1 :c:; bi :c:; i - 1 have been updated from ("1 (i) , Ell (i)) to ("Hi) , Eil (i)). 

We can now define the ADJUST operator Adj(C(i), S(i)) as a function of (,,(i) , E(i)) 

and ("i (i) , Ei 1 (i)) which maps 

where 

109 



E;1 (i) 

E;2(i) 

A(i)Ei1(i) 

E22 (i) - A(i)[Ell(i) - Eidi)]AT(i) 

with A(i) = E21 (i)E./(i). Proceeding in this way, we eventually update all the means 

and variances of the cliques in C(I). With the original comment we can assert that if 

an observation Y is taken and Y is independent of X t+! \ X(I), then all the mean 

vectors and covariance matrices of p(z) can be updated successively to the clique means 

and covariance matrices of p(zly). 

Typically an observation vector Y is partitioned into k sub-vectors (Y(l), ... , Y(k)) 

such that Y(j) is independent of X t+! given X(i)(I), where X(j)(l) is the vector of 

components of a clique C(j)(I) E Ct+1, 1 ~ j ~ k. The ADJUST operator is then used 

successively on Y(I), ... , Y(k) to find p(zly). 

A special case of the use of this operator in conjunction with a d.d. Gaussian process 

(X 1, X 2,... ) is given in Smith et al. (1995). 

7.3 Approximating to a More Efficient Clique Structure 

If an observation vector Y has a distribution which depends on variables contained in 

several cliques, the cliques and the corresponding tree structure of p(zly) are usually 

different to those of p(z). Typically cliques become larger and hence the propagation al­

gorithms like the one ou tlined above become slower. Many observations of this type can 

make some cliques extremely la.rge and exact algorithms then become very unwieldy. 

Fortunately, it is common for many of the partial correla.tions between components of 

X after conditioning on Y to be very close to zero. Efficiency can then be preserved, 
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by approximating a probability distribution associated with the true complicated tree 

structure by a close probability distribution with an associated simpler tree structure. 

In this section we present some approximation schemes defined through two new opera­

tors, namely the CUT operator and the TEAR operator. These approximation schemes 

would be activated only when it is known that the Kullback-Leibler divergence / the 

Hellinger distance between the true and the approximating distribution is sufficiently 

small. Before discussing these schemes, some consideration of how and why certain 

thresholds for distributional approximations in our particular application is provided. 

In the context of our application, decisions are made on whether or not to 

• evacuate a population to avoid relatively high short-term exposures by protect­

ing the population against the inhalation of radioactive material and external 

exposure from radioactive material in the air and on the grounds; 

• administer stable (non-radioactive) iodine tablets to prevent iodine from concen­

tration in the thyroid gland; 

• shelter a population to provide short-term protection from external irradiation 

from radioactive material in the air and on the ground, and from inhalation of 

radioactive material. 

Any of these actions will have benefits (radiation dose averted, reassurance, etc.) but 

also harm (risks, disruption, anxiety, cost, etc.). Action is taken when the benefits 

outweigh the disadvantages. Henceforth we shall discuss the component of the utility 

U associated with harms. 

Decisions are based on whether contamination in a region is "dangerously large", 

111 



where a dangerously large value is determined to be greater than C (say). This upper 

value of radiation dose (called Emergency Reference Level) for the introduction of 

particular countermeasures is technically defined in handbooks and varies from country 

to country. 

To define the application utility function, let A be the set of actions or acts (e.g. 

evacuation or non-evacuation) and denote a typical member of this set (that is an 

action) by a. The uncertainty of the problem concerns the uncertain quantity (state of 

the world) (J (contamination). The set of possible states of the world or the possible 

values of fJ is labelled 5, the probability distribution of fJ is denoted by P( fJ), and U (a, fJ) 

is the utility function that associates a utility with each pair (a, fJ). 

Given these inputs, one must make a decision which amounts to selecting an act a from 

the set A that has the highest expected utility of all acts or of all members of A. The 

expected utility of any act a is denoted by U(a) and can be calculated as 

U(a) = E[U(a)] = J U(a, O)p(O)dO 

where the integration is over the set 5. An act a* is optimal if 

E[U(a*)] 2 E[U(a)] for all a E A 

In terms of the notation presented above, the zero-one utility function is defined as 

{

I if contamination > C 
U(a, fJ) = 

o otherwise 

Taking expectation with respect to this distribution, the expected utility is 

U(a) = p[contamination > Cia] 
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Thus, the optimal act a* is the act such that 

U(a*) ~ U(a) for all aEA 

is 

p[contamination > Cla*] ~ p[contamination > Cia] for all aE A 

Now, if we replace the density p by p, a question that arises is how we set a threshold 

value a for the Hellinger distance/K-L which ensures that probabilities like those above 

are sufficiently accurate. In a sense, the setting of such a threshold is highly dependent 

on the model being used and its environment. Upper bounds can be obtained from the 

relationship between Hellinger distances and variation distances given in Section (5.6). 

However these upper bounds are very coarse and tend to make the model unnecessarily 

reluctant to offer approximations. 

In this application technicians in Leeds have run many analyses based on different 

models and data sets and using: 

i) the (slow) exact propagation algorithm. 

ii) the quick approximation algorithm based on different thresholds of Hellinger dis-

tances. 

In terms of the types of probabilities we need, it was apparent that a value of a = 0.01 

ensured that differences between predictions (errors) using the two algorithms are off 

by at most 10 per cent of the predictions obtained by using the exact algorithm. 
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7.S.1 Approximation by Using Edge Deletion (The CUT Operator) 

In this section we discuss the CUT operator which separates the original distribution 

with a connected junction tree into a collection of independent distributions having 

an associated set of disconnected junction trees. More specifically, this removes an 

edge from a junction tree by making the variables in a separator S and those in its 

complement R in a clique C independent. 

The removal of a single edge may speed up the propagation of information and 

imply an enormous reduction of complexity of inference. This is because data Y, 

accommodated using the ADJUST operator, need only to be propagated through parts 

of a junction graph which are connected to the cliques immediately influenced by that 

information (see Kjaerulf, 1992 and the Adjust updating equations given above). 

The CUT operator CUT(S; C) will "cut" the separator S from a clique C containing 

S in the triple (7, C, S). It acts as follows. 

Let Cut(S;C) : (7, C, S) -t (7*, C*, S*), where 

1. 7* is obtained by deleting an edge labelled by S ~ C. When 7 is a tree, then, 

7* = (7., 7 2) where 71 (containing C) and 72 are the two disconnected su~ 

trees of T. 

2. C* = {C \{C}} u {R} where R = C \ S. 

3. The means and variances of cliques in C* \ {R} are copied from their counterparts 

in C. The mean and covariance matrix of R can be read directly from the mean 

and covariance matrix of C in C. These are given respectively by the mean vector 

of components in R as given in C and the covariance matrix of R found in the 
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covariance matrix of C as a block in that matrix a880ciated with components R 

in C. 

As an approximation we need the Kullback-Leibler divergence associated with the cut. 

This is often very easy to calculate. 

Suppose that the underlying joint probability density function p( a:) over the random 

vector X = (X(I), ... , X(n)f can be expressed as in (7.1). 

Let C(i*) = R(i*) U S(i*) be the clique for which the separator S(i*) is cut and let 

R(i*) be the remainder after cutting S(i*) so that R(i*) n S(i*) = </>. 

Consider the situation when for all cliques C(i), 1 :s i 1= i* :s n, either C(i) n C(i*) ~ 

R(i*) or C(i) n C(i*) ~ S(i*). This condition will hold for all models developed in 

Smith et al. (1995), for example, and will be automatic if C(i*) contains exactly two 

variables. 

Suppose we approximate p(a:) by peal), where p(a:) is the density obtained after 

the cutting in which the variables in R(i*) and S(i*) are independent. Then in peal), 

: :. iioo is replaced by q( a:r (i*)). Because of the condition above, all other clique mar-

gins will be the same. So, in particular from equation (7.1) we have that 

p( a: ) p( a: ( i*) ) 
peal) q(z8(i*))q(zr(i*)) 

Because this ratio only involves variables in the vector X(i*), the Kullback-Leibler 

divergence in the Gaussian case is (see Section 8.1 of Appendix B) 

IZ(iO)EC(iO) Oog p(z( i*)) - log q( ZB (i*) )q(zr (i*) )]p( z( i*) )dz( i*) 

-! log [det$~~~tVr ] 

where V is the covariance matrix of (X'(i*),xr(i*)) and VB, vr are respectively the 
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covariance matrices of X"(i*) and xr(i*). The Hellinger distance in this case can be 

obtained using the formulae of Section (5.6). 

7.3.2 The Steady Model and CUT Operator 

An example of using the CUT operator at the source 

Here we illustrate how to set the K-L divergence for the CUT operator in the case 

when we have steady emission and only single readings at a given source. Consider 

the univariate process {Q(t),t = 1,2, ... } where as stated in Chapter (3) the puffs 

are indexed such that puff i is released at time t = i where Q(i) denotes the mass of 

contamination under the ith emitted puff. As explained in Chapters (3) and (6), the 

steady emission process is modelled as 

Yt Q(t) + lit, lit '" N[O, V] 

Q(t) Q(t - 1) + Wt, Wt'" N[O, W] 

From Section B.1 of Appendix B we have 

1 [ 2 1= Inj(Q(t),Q(t - l)IYl , ... , l't-l) = -"2 log 1- corr (Q(t),Q(t - l)IYl , ... , l't-d 

where 

Corr2(Q(t), Q(t-1)IYl , ... , l't-d = Cov
2
(Q(t - 1), Q(t - 1) + WtIYl, ... , l't-l) 

Var(Q(t)lY1, ••• , l't-dVar(Q(t - 1) + WtlYt. ... , Yt-d 

Let C = Var(Q(t - 1)IY1, ..• , l't-l) 

Then 

C
2 (W)-l Corr2(Q(t), Q(t - I)1Yl, ... , l't-d = C(C + W) = 1 + C 
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So we "cut" Q(t) from Q(t - 1) after observing ¥i-I if the information divergence 

is small. 

I -! 10g[I- corr2(Q(t),Q(t - I)I Yl, ... , ¥i-I) 

-! 10g[I- (1 + ~)-l] 

! 10g[CWW] 

= ![log(C + W) -log(W)] 

Notice that this is increasing in C and takes the value 0 when C = o. 

In the long run, it is easy to check (see West & Harrison, 1989, pSI) that 

where 5 = (W/V). So in the limit 

10g(C + W) = log !W[(I + 45-1)1/2 + 1] 

log W + log ![I + (1 + 45-1)1/2] 

Thus 

Notice that when I is small which corresponds to the case when 5-1 is small and when 

this is the case then, (1 + 45-1)1/2 ~ (1 + 25-1) which implies that 

Typical values of S-1 = (V/W) and the corresponding I are illustrated in the following 

table: 

5-1 50 10 1 0.5 0.2 0.1 0.01 

I 1.01 0.65 0.24 0.16 0.08 0.04 0.0049 
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Notice that small values of I are associated with accurate source term readings (i.e. 

when the observation variance V is very small). 

Implementation 

The CUT operator was implemented in the RODOS computer code using the Lundtofte 

Nordl data set (see Section 6.5) and the results reported here were based on running 

the sequential learning with this data. Observational data were collected from several 

sites in the plume at time steps t = 7200 sees, t = 8400 sees and t = 9600 sees after the 

accident via detector points (see Table 7.1 of Section B.2, Appendix B). These obser­

vations were used in Bayesian updating of the expected instantaneous contamination 

by two models: model 1 where no cuts between the cliques were allowed (the Hellinger 

distance = 0), and model 2 where cuts are allowed (the Hellinger distance = 0.01). The 

input parameters were as follows: 

• prior variance of mass = 1.0e+6 

• the "system" error in the pentification variance (the symmetry of pentification 

variance) = 0.15 

• stack observation variance = loGe-l0 

Here we are assuming a steady emission of mass from the source whose associated vari­

ance was large relative to the variance of the instantaneous readings remote from the 

site. The accuracy by which the Normal-Cut model calculates the expected concentra­

tion has been tested by comparison with the exact Normal model. 

Table 7.2 of Section B.2, Appendix B shows comparisons of the expected concen­

trations in Becquerels (1 Becquerel (1 Bq) = 1 atomic disintegration per seeond) at 
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different time steps using the two models. For instance at detector point number 34 at 

time step t = 7200 sees, the expected concentration using model 1 (without cuts) was 

8.319278e-02, and using model 2 (with cuts) it was 8.319239e-02 with difference = 3.9e-

07. In fact, as indicated in the table, the maximum absolute deviation of predictions 

is less than 0.005 at all the detector points. 

Section B.3 of Appendix B includes 3- dimensional plots which show the difference 

between the forecasts of mean levels of contamination at three different time steps for 

the following cases: 

1. by using the deterministic model, i.e. no updating in the light of instantaneous 

concentration observations (using the RIMPUFF model with only a priori data); 

2. by using the Normal model; 

3. by using the Normal-Cut model (the approximation) 

Here it can be seen that the forecasts of the concentration using the Normal model are 

very similar to those of the Normal-Cut model with significantly less computational 

times of the complete run (i.e. all three time steps) in the later case. It should also be 

noted that because of the setting of the ratio of the relative uncertainty between the 

mass of contamination and the symmetry of pentification, the data suggest that the 

overall release was rather greater than initially input to RIMPUFF. The effect of this 

can be seen in the difference between the forecasts using the contamination readings 

(in the Normal and Normal-Cut models) and not (in the deterministic model). This 

can be noted in the dramatic increase in the predicted levels of contamination. 

The main point to emphasise here is that the approximating model is extremely 
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useful in obtaining systems with disconnected junction trees to achieve efficiency. In 

this example the clique update used with RIMPUFF without approximation took longer 

in user time compared with the clique update with approximation. In case of large 

data sets the approximation is even more favourable. 

7.3.3 Approximation by Splitting the Cliques (The TEAR Operator) 

When data arrives about more than one clique at a time, these cliques may be joined 

together (see Section 7.4 below) and an efficient exact absorption ofinformation can be 

achieved as long as the cliques are small. However, when the clique sizes become large, 

exact algorithms for propagation become inefficient and an approximation which returns 

the clique structure and junction trees to their original forms together with its associate 

K-L/Hellinger distances is needed. The TEAR operator, TEAR(C; C*(1), ... , C*(q»), 

is designed to address this problem by breaking up a large clique into smaller and 

more manageable fragments. It approximates a clique C by replacing it by a set of 

sub-cliques C*(1), ... , C*(q) where C = {C*(1) U ... U C*(q)} and C*(i) n C*(j) ~ 

5, 1 ~ i =1= j < q, where 5 is the separator of C in the original junction forest T. 

TEAR(C; C*(1), ... , C*(q) acts as follows: 

1. Define (T,C,S) -t (T*,C*,S*) where 

(a) C* = {C \G} U {C*(1), ... , C*(q)}. 

(b) The separator 5 associated with C is replaced by 8*(1), ... , S*(q), where 

S*(i) = S n G*(i) become the separators of C*(i), 1 ~ i ~ q in T*. All 

other separators S E S are unchanged. 
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( c) The graph T* is obtained from T by removing from T the edge labelled S 

and adding the edges labelled 8*(1), ... , 8*(q) from the grandparent node 

C(O) to the nodes C*(1), ... ,C*(q). 

2. Specify (I'i, En for cliques other than C* (1), ... , C* (q) directly from their corre-

sponding cliques in C. Each (I'i, En associated with the vector of variables X* (i) 

of C* (i) can be obtained directly from the mean vector and covariance matrix of 

the random vector X of variables associated with C, since C*{i) C C, 1 ~ i ~ q. 

Then, using the same argument as for the CUT operator, it is easily checked that the 

divergence dK (p( z); P( z» can be written in terms of the variance-covariance matrix of 

the original clique C in C. Explicitly the Kullback-Leibler divergence is 

dK(p(Z); p(z» = IZEcOogp(z) - 'LJ logp(z*(i»]p(z)dz 

where p(z) denotes a Gaussian density over a random vector X such that C represents 

the collection of com ponent random variables of X and p( z* ( i» denotes a Gaussian 

density over a random vector X*(i) associated with C*(i), 1 ~ i ~ q, represents the 

collection of component random variables of X*(i). 

Here, V is the covariance matrix of X and Vi is the covariance matrix of X*(i), 1 < 

i ~ q. 

EXAMPLE 

To show how to implement the TEAR operator using the Hellinger distance, con-

sider the simple case where we approximate a clique C, which consists of only two 

components, by replacing it by two sub-cliques C*(1) and C*(2), each consists of one 

component. 
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Let X = (X(I),X(2)) be a vector of measurements whose components make up 

the clique C with a bivariate normal density p(~) with mean IJ and covariance ma­

trix VI = Pl 1 . Let X*(i) = X(i), (i = 1,2) are independent su~vectors(variables) of 

measurements whose components make up the su~cliques C*(i). Under the approxi­

mation, the density of X will be a bivariate normal p(~) with the same mean I' and 

variance-covariance matrix of the form 

-1 (varX(I) 
V2 = P2 = 

o 

For simplicity, and because of the scale invariance of dH(p; p) we can, without loss of 

generality, assume that if X(I), X(2) have the same variances then these can be set to 

unity. 

Suppose that 

VI = (: :) ~ PI = (1 - p2)-1 (~p -:), 

V2=(: ~)~P2=(:~) 
Then 

This gives 

IPII (1 _ p2)-1 

IP2 1 = 1 
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From Chapter (5), we have 

Thus 

\PIIIP21 (1 - p2) 
(1/4)2I P l + P212 - (1/4)2(4 _ p2)2 

So 

• A _ [ (1 - p2) ]1/4 
[(p,p) - (1/4)2(4 _ p2)2 

and 

d'k(PiP) = 1- [(PiP) 

Clearly, whenever the correlation p between two new cliques is close to zero, 80 is 

dk(PiP) and the original clique of two variables can then be torn apart. 

In general we approximate a normal density f of a vector X = (X(1), ... ,X(p)) 

where X(j) has a mean vector ",U), 1 ~ j ~ P and covariance matrix E = {EU, k)} = 

Cov(X(j), X(k)), 1 ~ j, k, ~ P by the normal density j of a random vector with the 

same ",U) and t = {E(j,j)},1 ~ j ~ P but with all covariances block E(j,k),j -# k 

set to zero. 

Let D(j, k) = IE(j, k)l, 1 ~ j, k ~ p, D denote the P x P matrix {D(j, k)} and D* = 

{D*(j, k)} where 

D*( ° 0) J,J 

D*(j,k) 
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Then from Subsection (5.6) we have 

p 

R(J; j) = 2 log ID*I - log IDI - L log D(j, j) 
i=l 

and 

2' 1· 
dH(J; f) = 1- exp{ -4R (J; In 

whenever this quantity is small, we tear the original clique of the p random vectors 

7.4 The Exact Absorption of Information on Cliques of 

Cousins (The JOIN Operator) 

When an observation is taken which is informative about variables in more than one 

clique, the conditional independences implicit in the clique structure before the data 

arrived are no longer necessarily valid after the data has been observed. This will lead 

to the change of the structure of the junction trees, and the system needs to be adapted 

80 that the ADJUST operator defined above is still valid. 

In this section we show how to adapt the system using the JOIN operator for an 

exact absorption of information on cliques of "cousins" and illustrate the corresponding 

change of the clique structure and junction trees with a simple example. 

Let C(l), ... , C(q) represent a subset of the cliques containing "cousins" which are 

descendants of the same grandparent C(O) in a certain junction forest C. 

The JOIN operator JOIN(C(l), ... , C(q)) can be used to obtain a new junction forest 

by combining q cliques C(l), ... , C(q) into a merged clique C in order to retain valid 

dependences (e.g. after data observation) and revising the forest accordingly. The 

JOIN operator acts as follows: 
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1. Set (7, C, S) -+ (7*, C*, S*) where 

a) The set of cliques C(I), ... , C(q) in C are replaced by the single clique C = 

{C(I)LJ, .. . ,LJC(q)}. 

Explicitly C* = {C \{C(I), ... ,C(q)}}LJC 

b) All the separators in S* are the same as in S except that the separator of C 

from C(O) namely S = {S(I)LJ, ... , LJS(q)} , which has a q-dimensional vector 

of means and q x q variance-covariance matrix, will replace the individual 

separators S(i), (1 ~ i ~ q). 

Explicitly S* = {S \{S(I), ... , S(q)}} LJ S. 

c) The graph T* is obtained from T by removing from T the edges labelled 

S(I), ... , S(q) and then adding an edge labelled C from the node C(O) to a 

new node labelled C. 

d) The grandparent clique C(O) will remain as it was. 

Notice that the separator is now a q-dimensional one, but the analogous updates 

of the dynamic tree algorithm "ADJUST operator" are valid for updating C(O). 

2. Given an observation Y, it is now necessary only to specify the pair (I'e, Ee), 

the posterior mean vector and the covariance matrix of the variables in C E C·, 

since for those cliques in C n C· we demand that they have the same means and 

covariance matrices in C* as in C 

In our application each clique C(i), (i = 1, ... , q) consists of 6 components (a parent 
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Q(i) and five children) so that 

C(i) = q(i) = (Q(i), Qil' ... ' Qi5), (i = 1,2, ... , q). 

Now using the expression for the siblings vector of the ith puff (see Chapter 3) 

(Qil, ... ,Qi5) = aQ(i) +w(i) 

where aT = (0'1, ... , as) represents the proportions of the distribution of the mass of 

a puff Q(i) to its children. 

i.e. 

So that 

Qij=O'jQ(i)+Wij (i=1, ... ,q; j=1, ... ,5). 

O'~VarQ(i) + VarWij 

O'jVarQ(i) + zero term. 

Then the posterior covariance matrix of C can be written in terms of the separators. 

Explicitly the posterior distribution of C is normal with mean Pc and covariance matrix 

where Emm is the variance-covariance matrix of variables in C(m) and 

where 

q,T aTCov(Q(m),Q(n)) = aTCov(S(m),S(n)) 

B aaTCov(Q(m), Q(n)) aaTCov(S(m), S(n)) 
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EXAMPLE 

Joining two cliques: 

As a simple illustration, consider using the JOIN operator with q = 2 where a puff 

C(O) (grandparent) pentificates to 5 children, 2 of them (auntR) pentificate to 5 chil-

dren each to give diques C(l) = Q(l) = (Q(1),Qll, ... ,Q15) and C(2) = Q (2) 

(Q(2), Q21,"" Q25) (see Figure 7.1) 

A grandparent 

Aunts S(I) 

Cliques of 
cusions 

C(l) C(2) 

Figure 7.1 : Tip of a decomposable graph 

When an observation is taken under the two cliques C(l) and C(2), we can obtain a. 

new clique by joining them thus we obtain a. clique tree tip as in Figure 7.2 

The covariance between the 6-dirnensional vector Q (l) and the 6-dimensional vector 
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Q (2) is 

where 

Ell = 

Figure 7.2: Tip of a clique tree 

Cov(Q(l), Q(2)) 
( 

Var Q (l) Cov(Q (l}, Q (2)) ) 

VarQ (2} 

\ TarQ(l) Cov(Q(l),Qll) ... Cov(Q(1),Q15} 

VarQll 

Note that all the elements in Ell (E22) can be written in terms of t.he variance of the 

12 



parent Q(l)(Q(2)) using the equation 

where 

Cov(Q(l), Qlj) 

a· 3 

aJVarQ(l) + Var(wlj) 

Cov(Q(l), ajQ(l) + Wlj) 

ajVarQ(l) + zero term 

alajVarQ(l) + zero terms j = 2, ... ,5 

Similarly we can write the elements of l:22 in terms of the variance of the parent Q(2) 

using the equation 

Now the elements of the block matrix 

Cov(Q(1),Q(2» Cov(Q(1),Q21) 

COV(Qll, Q(2» COV(Qll, Q21) 

_ (COV(S~)'S(2)) : ) 
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can be written in terms of the covariance of the separators 8(1),8(2) where Cov(Q(1), Q(2») = 

Cov(S(1),8(2». 

Thus 

and 

(jJT = (Cov(Q(l), Q21), ... , Cov(Q(l), Q2S)) 

- (Cov(Q(l), aIQ(2) + W2J), ••• , Cov(Q(1), asQ(2) + W2S» 

= (a ICov(Q(1), Q(2», ... , a sCov(Q(1) , Q(2») 

a T Cov(Q(1), Q(2)) 

B = aCov(S(1), 8(2»aT 

IT a = (0.235, 0.235, 0.235, 0.235, 0.058) and the system errors Wi; are very small, then 

the posterior covariance matrix EO for the variables of the merged clique C can be writ-

ten in terms of the covariances of the separators Cov(S(i), 8(i» = Cov(Q(i), Q(i», (i = 

1,2) as 

be = ( GVarQ(l) GC:ov(~(I),(J(2)) ) 
GVarQ(2) 

where 

1 0.235 0.235 0.235 0.235 0.058 

(0.235)2 (0.235)2 (0.235)2 (0.235)2 0.014 

(0.235)2 (0.235)2 (0.235)2 0.014 
G= 

(0.235)2 (0.235)2 0.014 

(0.235)2 0.014 

(0.058)2 
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7.5 The OBLINK Operator 

In this section we discuss the exact absorption of information into disconnected cliques 

(i.e when observations are taken under cliques which belong to disconnected sub-trees) 

by suggesting the OBLINK operator. 

The operator OBLINK (ByjC(I), ... ,C(q)) introduces a dummy clique By con­

sisting of a set of variables, not all contained in one clique, on which a data vector 

depends. It has as its argument the set By and a minimal set of cliques C(I), ... , C(q) 

containing variables in By. 

OBLINK (ByjC(I), ... ,C(q)) acts as follows: 

1. It acts on the junction graph, by replacing, by a graph ,* and on the cliques 

set C by replacing it by C* where C* = C UBy. The graph ,* joins By to a clique 

C E C by an edge iff C is one of (C(I), ... ,C(q)). These new edges are labelled 

by separators S(i) = C(i) n By, 1 ~ i ~ q. 

2. It acts on means and covariances on cliques by : 

(i) transferring means and covariances of C E {C n C*} -t C*j 

(ii) calculating means in By from S(i) ~ C(i), C(i) E C and obtaining covari­

ances in By either: 

(a) directly from C(i) (if two variables Xl, X 2 are in C(i) n By) . 

(b) by setting the covariance terms to zero if the cliques C(I), ... , C(q) are 

disconnected in , or equivalently if ,* is a forest. 
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Notice that, as defined above, T* is not a forest in general; so to employ the ADJUST 

operator of Section (7.2), T* must be approximated by a forest by slIccessive use of the 

"Cut" and "Tear" operations. 

As a simple illustration, suppose that a tip of a clique tree has been cut in several 

places as shown in Figure 7.3 

C(l) C(2) 

.. 
I S{2) I 
• • 

• 

. 
I S(3) I 

Figure 7.3: An illustration of the OBLINK operator 

Let Y be an observation taken under the cliques C(1),C(2),C(3). Denote a new clique 

B to be the collection of all masses or variables on which the observation Y depends. 

Assume these variabJes are S(l), S(2), S(3) where S(i) are variabJes jJ) clique C(i), 1 $ 

i $ 3. Clearly the separator of C(i) from B is just SCi). 

The main point here is to note that if C(l) , . .. , C(q) in the clique tree(s) of the 

problem are originally disconnected, then there is an exact update on the new tree 

created by connecting B to C (1), ... , C (q) using separators S (1), ... , S ( q) to label 
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newly created edges (These are depicted by dotted lines in Figure 7.3). In this update 

we use B as the root clique ordering all edges away from it. 

7.6 The DivObs Operator 

As explained above, if observations are taken under descendants of different sources, 

then the induced dependencies will be complex. Here we discuss an alternative quick 

but coarser approximation method which effectively ignores a posteriori, the covariances 

induced by observations under different cliques, if the K-L divergence between joint 

distributions is not too large. 

Let Y be an observation which is taken under the cliques C(1), ... , C(q). Suppose 

that Y and X are related via the conditional distribution YIX f'V N(j.t, V] where J.l = 

IT X = Er=1 Ej~1 !ijXij and V is a scalar variance, where X = (X(1), ... , X(q))T 

is a parameter vector with components X(i) = (XiI, ... , Xin;)T E C(i), 1 ~ i ~ q and 

The operator DivObs (Y j YI , ... , Yq) replaces (divides) the observation Y into an ap-

proximately equivalent vector of dummy observations YI , ... , Yq , which would give 

approximately the same posterior distribution on the parameter vector X. 

Let I'(i) and E(i) represent the mean and the covariance matrix of X(i), 1 ~ i ~ q. 

Then set 
q 

Yi = Y - L If.z(i*). 
i·# 

We make the approximation assumption that YiIX, 1 ~ i ~ q are normally distributed 
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with means 
q 

I-'i = I-' - E IT- "'( i*) 
i*,ti 

and variances 
q 

V; = V + E IT-E(i*)li* 
i*#i 

Now, assuming that X(i), 1 ~ i ~ q are mutually independent a priori, the approx-

imation then substitutes the vector Y = (Y1, ••• , Yq) of dummy observations for the 

original observed random variable, choosing Y 80 that the posterior mean vectors and 

covariance matrices of X(i)lY and X(i)lY agree, 1 ~ i ~ q (but not necessarily the 

posterior covariances between X(i), 1 ~ i ~ q). 

The Kullback-Leibler divergence associated with the approximation is 

In f (ill=l X( i) IY) = i [t. log (detE' (ii)) - log det(E') 1 

(see Section B.l of Appendix B), where 

E* Cov(XIY) - {E*(ij)} 1 ~ i,j ~ q 

E* (ii) - Var(X(i)IY) - E( i) _ E(i)/i{f E(i) 
O'y 

E*(ij) Cov(X(i), X(j)IY) - -E(i)/JIE(j) 
ii=j 0'2 

Y 

and uf = L~=l ITE(i)/i + V. 

Implementation 

The DivObs operator was implemented in the RODOS computer code using the Lundtofte 

Nordl data supplied within the RIMPUFF code. The K-L divergence value associated 

with this approximation was 0.01. Observations were collected from different sites (dif-

ferent detector points) in the plume at each time step between 1200 and 9600 seconds. 
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RIMPUFF was tested by varying two of the input parameters, namely the height and 

the strength of the release. The observations were taken by running RIMPUFF with 

a height of 0.6 km and a source strength of 1.Oe+7. Many tests were carried out with 

variations on these input parameters. Section B.4 of Appendix B shows one of these 

tests. 

The essential characteristic of the system that has been tested was that the DivObs 

operator which gives an approximation was being tested against the full matrix update 

(i.e we approximate a density p of a random vector (say) X = (X(l), ... , X(p)) where 

X(i) has mean I'(i), 1 ~ i ~ p and covariances E(i,j) = Cov(X(i), XU)), 1 ~ i,j ::; p 

by the density p of a random vector with the same mean and E(i, i), 1 ~ i ~ p but with 

all covarince block E( i, j), i =F j are zeros). 

Results 

At each detector point where observations were taken, a graph of the predicted con­

centration over time at that particular point was produced. Each graph shows plots 

of the DivObs update and the full matrix update where we can see that in all the 

cases the DivObs operator matches the full matrix update very closely. However the 

approximate predictions are lower than they should be because the observations are 

much higher than expected a priori, and because the approximate model ignores some 

dependencies, it does not adjust as quickly as it should in the light of the mismatch. 
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7.7 Appendix B 

B.1 Basic results on information divergence 

Definition. Suppose that X I and X 2 are two random vectors with a joint density func-

tion fx
l
x2 and marginal densities fXI and fx

2
, respectively, then the information 

in one random vector about the other (the information proper) is defined by 

where dK is the Kullback-Leibler information divergence. 

This measures the divergence between the joint density of (X 11 X 2) and the "in-

dependent" density given by the product of the marginal densities of X I and X 2. 

The divergence against independence 

suppose that 

where fi is the marginal density of Xi, i = 1,2. Then the information against 

independence (information divergence) is given by 

1 detV 
[nf(X I li X2) = --2 log d V; d v: 

et 11 et 22 

where V is the variance covariance matrix of X I U X 2 and \'i is the variance covariance 

matrix of Xi, i = 1,2. 

The divergence against conditional independence 

Suppose that 
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Then the divergence against conditional independence (conditional information mea-

sure) is given by 

1 detV2u311 
Inf(X 2 il X 31Xd = --2 log d V. d v: 

et 2211 et 3311 

where V2U311 is the variance-covariance matrix of X 2 U X 31X 1. 

When X 2 = Xi and X 3 = Xi are one dimensional, the conditional information sim-

plifies to 

The divergence between standard bivariate Normal distributions with differing correla-

tion coefficients 

Suppose that under f X IX2 the correlation between Xl and X 2 is p while under 

the product of its marginals: gX1 X2 = fXJX2' Then 

For proofs of these results see Whittaker (1990). 
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B.2 Tables of detector points and comparison of concentraton forecasts 

Table 7.1: Positions of detector points on a grid 

1 8 16 

2 9 17 

3 10 18 27 41 

4 11 19 28 42 

5 12 20 29 43 55 69 

6 13 21 30 44 56 70 83 96 109 123 

7 14 22 31 45 57 71 84 97 110 124 

15 23 32 46 58 72 85 98 111 125 

24 33 47 59 73 86 99 112 126 

25 34 48 60 74 87 100 113 127 

26 35 49 61 75 88 101 114 128 

36 50 62 76 89 102 115 129 

37 51 63 77 90 103 116 130 

38 52 64 78 91 104 117 131 

39 53 65 79 92 105 118 132 

40 54 66 80 93 106 119 133 

67 81 94 107 120 134 

68 82 95 108 121 135 

A dot indicates no detection point. 
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Table 7 2' Comparisons of concentration forecasts using two models .. 
t-7200sees t - 8400 sees t - 9600 sees 

Point Normal I Normal-cut Normal Normal-cut Normal I Normal-cut 

34 8.319278e-02 8.31923ge-02 8.308697e-02 8.308696e-02 8.321272e-02 8.321271e-02 
35 1.88974ge-02 1.889613e-02 1.887943e-02 1.887943e-02 1.890700e-02 1. 890699e-02 
36 1.756954e-03 1.736629e-03 1.849823e-03 1.849528e-03 1.833936e-03 1.833876e-03 
37 2.545246e-04 2.496480e-04 2.684541e-04 2.666556e-04 2.650214e-04 2.631713e-04 
38 2.068095e-05 1.200508e-05 1.867422e-05 1.061398e-05 4.596202e-05 4.493275e-05 
39 1. 762685e-05 1.723211e-05 7. 161732e-06 4.070558e-06 7.931329e-06 4.604057e-06 
48 3.592030e-0l 3.590053e-Ol 3.596814e-Ol 3.596786e-01 3.600480e-0 1 3.600474e-Ol 
49 9.929284e-02 9.890854e-02 1.009579e-Ol 1.009415e-Ol 1.007603e-01 1.007498e-01 
50 8.166903e-02 8.033992e-02 8.849554e-02 8.822625e-02 8.726874e-02 8.711474e-02 
51 2.008350e-02 1.968763e-02 2.026915e-02 1.983933e-02 2.008777e-02 1. 963160e-02 
52 7.260875e-03 7.098353e-03 2.974480e-03 1.707038e-03 3.289420e-03 1.925197e-03 
54 8.651568e-05 8.457825e-05 3.704380e-05 2.195070e-05 3.892836e-05 2.259752e-05 
60 2.920820e-0l 2.911242e-Ol 2.962689e-Ol 2.962525e-Ol 2.958360e-Ol 2.958359e-Ol 
61 1.498958e-Ol 1.480570e-Ol 1. 569295e-0 1 1.565033e-Ol 1.556118e-Ol 1.551866e-01 
62 1.029113e-Ol 1.008580e-01 9.1768696002 8.640490e-02 9. 193601e-02 8.619222e-02 
63 7.301547e-02 7.142982e-02 4.364576e-02 4.364576e-02 4.563762e-02 4.563013e-02 
65 3.558554e-02 3.4 78864e-02 1.64657ge-02 1.030907e-02 1.689781e-02 9.459005e-03 
66 1.14345ge-03 1. 117854e-03 4.834370e-03 4.816080e-03 2.436222e-03 6.569522e-04 
74 3.674485e-02 3.656198e-02 3.748341e-02 3.748341e-02 3.738343e-02 3.737574e-02 
75 1.054851e-01 1.035432e-Ol 1.098397e-01 1.085846e-01 1. 086536e-0 1 1.073369e-Ol 
77 2 .302454e-0 1 2.253201e-Ol 1.627306e-01 1.626334e-0 1 1.377701e-Ol 1.375596e-Ol 
86 3.834858e-04 3.834228e-04 3.832872e-04 3.832863e-04 3.838144e-04 3.838142e-04 
88 5.834661e-02 5.721184e-02 6. 19580ge-02 6.150037e-02 6. 116239e-02 6.069001e-02 
89 6.383308e-02 6.242843e-02 3. 394453e-02 3.334260e-02 3.549034e-02 3.537487e-02 
90 1.496550e-01 1.463213e-Ol 7.817259e-02 7 .37 4822e-02 7.764670e-02 7.653873e-02 
91 1.425462e-Ol 1.393567e-Ol 9.533554e-02 9.193875e-02 8. 121030e-02 8.089660e-02 
93 9. 135805e-03 8.931479e-03 6.675320e-02 6.576584e-02 5.265130e-02 4.968873e-02 
94 6.774712e-05 6.623195e-05 1.057525e-01 1.0 15328e-0 1 9.526104e-02 9.128656e-02 
100 3.012261e-05 2.956600e-05 3.074256e-05 3.073506e-05 3.031339e-05 3.031186e-05 
105 3.764815e-02 3.680614e-02 1.188004e-01 1. 157924e-01 7.986379e-02 7.670377e-02 
106 3.367801e-03 3.292480e-03 9.553026e-02 9.232928e-02 8.107294e-02 7.967312e-02 
107 2.52813ge-05 2.471597e-05 4. 178783e-02 4.012068e-02 9.005766e-02 8.900801e-02 
114 7.392442e-05 7.227122e-05 3.000512e-05 2.705996e-05 3.323003e-05 2.929516e-05 
116 8.855480e-03 8.657440e-03 3.067673e-03 2.536665e-03 4.189586e-03 3.350490e-03 
117 3.296382e-03 3.222661e-03 2.826642e-02 2.774505e-02 3.338833e-03 3.319885e-03 
118 1. 184547e-03 1. 158054e-03 4.105739e-02 3.963541e-02 3.381222e-02 3.030637e-02 
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B.l A comparison of expected concentrations in Becquerels (Bq) at time 
intervals after the first emission in cross 2-D spatial grid 

(a horizontal scale of 0 - 10 Kilometers) 

4.50000e-Ol 

Deterministic 
Model 

Normal 
Model 

4. 50000e-0 1 

4.50000e-Ol 

Normal-Cut 
Model 

0 

Time: 7200 second 
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Expected 
concentration (Bq) 
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B.4 
Graphs of predicted concentration in Becquerels (Bq) 
using the DivObs update and the Full matrix update 
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Chapter 8 

Dynamic Generalized Linear 

J unction Trees 

8.1 Introduction 

The Bayesian propagation algorithms on fixed junction trees as described in Dawid 

(1992) were modified in Smith et al. (1995) and more generally in Gargoum and Smith 

(1994a) for Gaussian processes where the junction trees evolved with time. As described 

in Chapter (3), the methodology was defined and illustrated within a stochastic version 

of a fragmenting puff model which was used to predict the diffusion and dispersal of 

a contaminated gas from a source. In Chapter (7), new approximation schemes were 

proposed to obtain systems with smaller clique sizes and disconnected junction trees. 

In this chapter we address the issue of the non-Gaussianity of the prOCeAA. Now the 

propagation algorithm of Dawid (1992) is quite general and does not require proCeAAeS 

to be Gaussian. The problem is then however to find quick methods for calculating 
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the marginal distributions needed in the propagation. This is of course always possible 

using intensive numerical techniques, for example, the Gibbs sampler (see Geman and 

Geman, 1984). However this may take a long time. An alternative approximation 

methodology is to accommodate non-Gaussian distributions on observations using a 

slight generalisation of the class of Dynamic Generalised Linear Models (DGLMs) of 

West et al. (1985) and Smith (1992). The advantages of this method are: 

1. It is very quick and updating is achieved in a closed form. 

2. Approximate dynamic models can easily be specified and then to interact just as 

in their original time series setting (see West et al., 1985). 

In Section (2) we provide general background information and basic results. Section 

(3) describes dynamic generalised linear models on junction trees. In Section (4) we 

discuss the closeness of dynamic approximation using the Hellinger metric. An example 

is provided in Section (5) and a conclusion follows in Section (6). 

8.2 Background 

As is now discussed in a several papers (see Lauritzen & Speigelhalter 1988; Speigel-

halter et al., 1993 and Dawidj 1992), if a joint density can be written in the form (8.1) 

given below, then quick and efficient methods of probability propagation in probabilis-

tic expert systems or high dimensional Bayesian statistical models are possible. As 

described in Chapter (4), a density pea:) > 0 is said to be decomposable if it can be 

written in the algebraic form 

(8.1) 
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Here z(i) is a vector of measurements whose components make up a clique C(i) (say), 

z"(i) is a subvector of both z(i) and some other vector of measurements z(j), and 

its components make up a separator S(i) between cliques C(i) and C(j). Here Pi just 

denotes the density of the random vector X (i) and qi the density of the random vector 

Fast propagation algorithms are available for problems with decomposable densities 

where the cardinality of any clique is small. These algorithms are usually based on 

junction trees. 

All Markov processes have junction trees whose nodes all lie on a single line. But 

a wide range of other more complicated dependence structures can be represented in 

terms of a junction tree (see, for example, Lauritzen & Speigelhalter, 1988; Goldstein, 

1993; and Smith et al., 1995) 

The type of learning we consider in this chapter is as follows. 

Suppose we observe YI! Y2 , ••• , YT and assume: 

(i) Given X, YI , ... , YT are all independent of each other i.e. liT=I }fIX. 

(ii) The density or mass function of }fIX for 1 ~ t ~ T is an explicit function of X 

only through the function 1]t(X), and 1'Jt(X) is itself a function only of variables 

lying in a single clique C(t) = C(it) (say), Le., Yt li XI1'Jt(Xi,). 

This situation arises very often. For example in a Dynamic Linear Model (Harrison 

& Stevens, 1976) conditional on the values of states, YI , •.. , YT are independent, and 

furthermore Yt only depends on current states which lie in the same clique. In the 

spatia-temporal process described in this thesis, an observation is taken at time t whose 
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expectation is linear in states, the linear combination depending upon the site at which 

the observation is taken. 

We now ask two questions: How in general should we update p(z) in the light of 

an observation Y using the probability density breakdown given in equation (8.1), and 

how do we obtain the predictive distribution of the next observation ? Note that the 

answer to the first question is sufficient to answer the second question for a sequence of 

observations YI, ... , YT because the procedure is just iterated. For this reason we will 

henceforth suppress the time index t. 

When Y is assumed to come from an exponential family with parameter .,,(z) which is 

linear in z and YI.,,(z) is normal, then the propagation procedure can be written down 

explicitly as follows (see Lauritzen, 1992 and Smith et al., 1995). 

(a) Label by C(1) the clique that receives the new information and containing all 

components explicitly in .,,(z). 

(b) Pick an ordering of the cliques C(l), ... , C(n) starting from C(l) which satisfies 

the running intersection property such that C(i) is connected by an edge of the 

junction tree to one of C(l), ... ,C(i -1), 2 ~ i ~ n. 

An algorithm which constructs such an ordering is given in Tarjan & Yannakakis (1984). 

Suppose the vector of variables in C(i) is X(i) = (Xl(i)"",Xri(i»T and that 

ri 
.,,(X(i)) = L /jXj(i) = FT X(i) (8.2) 

j=l 

where F = (It, ... , /ri) T is a known regression vector. 

When we generate this procedure later it will be useful to introduce some redundant 
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notation at this point, so 

1. Set '7 = ,X = FT X(1) where X(1) '" N[p(1), E(1)). 

2. Calculate from the joint normal prior distribution of ,X and and X (1) the normal 

distribution of X(1)1,X with mean and covariance matrix given by 

3. Observing Y = y, use Bayes' rule to calculate the distribution of '7IY. 

4. From this obtain the Gaussian distribution of 'xly with mean m and variance V. 

5. From steps 2 and 4 above calculate the distribution of p(X(1)IY = y) as Gaussian 

with mean 1'*(1) and variance E*(l) given by 

1'*(1) (1) E(l) F(m - FT JL(1)) 
JL + FTE(1)F 

E*(1) = 
(1- v ) 

E(l) - E(1)FFTE(1) FTE(l)F 
FTE(1)F 

6. Having obtained the Gaussian marginal for the vector of random variables in C (1), 

we now simply order the cliques (C(l), ... ,C(n)) to update the distribution of 

their components sequentially through this list. It is obvious (see Smith et al., 

1995 and Chapter 7) that given Y = y, each clique has a joint Gaussian margin, 

if the mean vector and covariance matrix of X(i) which are given by 
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respectively are updated to (p* (i), E*( i)) given y using the formulae of Section 

(7.2). 

This is possible because the mean vector pi (i) and covariance matrix Ei 1 (i) are associ­

ated with the subvector of X(i) whose distribution has already been updated because 

it lies in a previously listed clique. For more details of this algorithm see Lauritzen 

(1992) and Smith et al. (1995). 

In this way we can update all marginal densities on C(I), ... ,C(n) and hence the 

whole distribution p(:z:). We are then ready to receive the next observation where the 

procedure is repeated. 

Now unfortunately, outside the purely discrete or Gaussian systems like the one 

described above, there are only a very few distributions for which an algorithm like the 

one above works exactly and for which the vector X continues to lie in a recognised 

family of distributions (see Laurtizen 1992 for some exceptions). To side-step these 

problems Thomas et al. (1992) uses a numerical integration method to update the 

clique margins. This method, which can calculate numerical distributions to arbitrary 

degrees of accuracy, has much to recommend it. However it tends to be slow, and 

because the solutions cannot be given in algebraic form it is often difficult to understand 

why the distributions turn out the way they do. 

In this chapter we suggest a different route. This uses the updating techniques 

of Dynamic Generalized Linear Models (DGLMs) of West et al. (1985) and West 

& Harrison (1989). We treat their algorithm as if it were a dynamic approximation 

technique of a full Bayesian analysis as developed in Smith (1992). 
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8.3 Dynamic Generalised Linear Models on Junction Trees 

Suppose a random variable." belongs to some parametrised family of densities \II which 

is closed under sampling of an observation Y whose distribution conditional on ." lies 

in a family T. For simplicity of exposition West & Harrison (1989) choose to restrict T 

to be the exponential family although this condition is not strictly necessary for their 

algorithm to work. Now assume 

(8.3) 

where 9 is a known, continuous and monotonic function and ~ is a linear function 

of the normally distributed uncertain state vector X as in equation (8.2). Because 

the distribution of ~ is Gaussian, it is unlikely that the density of." = g-l(~) will 

lie in \II. However, provided that the function 9 is chosen appropriately and \II is two 

dimensional, it will often be possible to find a density p(.,,) E \II which is very close to 

the transformed Gaussian density p(.,,) of .". And conversely it should be possible to 

find a transformed Gaussian density q(.,,) which is close to any density q(.,,) E \II that 

might arise in our analysis. Appropriate definitions of closeness will be discussed in the 

next section. 

To ensure not only that recurrence equations can be written in a closed form, but 

also that the states of the process retain relationships between each other which are 

straightforward to explain, we usually choose simple functions 9 and elementary ways 

of approximating p(.,,) by p(.,,), for example by equating moments. 

Assume that a good simple approximation of this type is available. We can now 

make a straightforward modification to the procedure defined in Section (2). First 
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replace step 1 by 1-

1-. Find the density p( '1) which approximates to the density p( '1) under the link 

function relationship '1 = g-l(~) defined above. 

We keep step 2 and also 3 identical, noting that, because \11 is closed under sampling to 

Y, the posterior density associated with '1,p('1ly) E \11. We now again use our approxi­

mation, replacing step 4 by 4*. 

4-. Find a density p('1ly) which approximates p('1ly) and for which 9('1) is Gaussian 

with mean m and variance V. 

We now retain the propagation steps 5 and 6 to obtain the approximate updating 

equations of the full density p(z) expressed as a function of its clique marginals. 

A few examples of the updating equations derived from following the sequences of steps 

1*, 2, 3, and 4-. when 9 is a linear link function, are given below and summarised in 

Table 8.1. 

8.3.1 Some Illustrative Examples 

The PoissoD Model 

Let (Y, I 'It (z, ( 1 » '" Poisson ('It (z, (1» where X t (1) is the state vector of the random 

variables in a clique C(I) which receives the new information Y, and let the prior for 

X,(l)lx> 

The linear function of the state vector ~t = F[X,(l) '" N[J.&o,O'~)]. 
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Now, omitting the arguments, the adaptive procedure briefly comprises the follow-

ing steps. 

1. Approximating At by T/t· 

Approximate the distribution of At which is a univariate Gaussian N[po, O'~ by 

a variable T/t with a Gamma[ao, ,ao] distribution where we identify means and 

1£2 
variances so that ao = 9-, f30 = ~. (To (To 

2. From the joint normal prior distribution of At and X t (1) 

(
At ) [( 1-'0 ) ( O'~ Ft

E
t{l) ) 1 

X t{l) ID
t
-

1 

'" N #'t{l) , Et{l)F
t 

Et{l) 

Calculate the normal distribution of Xt{l)IAt with mean and covariance matrix 

given by 

#,~(1) 

3. Updating T/t. 

Observing Yi use Bayes' rule to calculate the distribution of T/tlYt for YiIT/t '" 

Poisson [ T/t] 

where al = ao + Yt and ,al = ,ao + 1. 

4. Updating At 

Approximate the Gamma distribution in the previous step by a normal distribu-
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tion with the same mean and variance to obtain ,xtlYt '" N(j.&}, un, where 

JJI = ~ (1 - A)JJo + AYt 

rrl 
wherf' A = ~+ . uo (10 

5. Updating (or X,( 1) 

From stt'pt' 2 and 4 above calculate the distribution of (Xt(l)IYt) as Gaussian 

with mean and variancf' 

... , (1) = II. (1) + E (1) F,(l£l-F; 1J.(1» 

.- .-, t F; };,(l)F, 

6. Havin~ obtaint'd thf' Gaussian marginal for the vector of random variables in the 

diquf' C(l). we ordf'r the cliques C(l), ... ,C(n) to update the distribution of 

their compont'nts St'quf'ntially. 

The Lognormal Model 

Let logY,I'1t(z,(l))"" ."_Pog",(z,(l)), V), so that Y,1f1t(zt(l)) is lognormally distributed 

with median '1t(z,( 1) • whf'rt> X ,(I) is the state vector of random variables in a clique 

C(l) and let the prior for X,(I) be 

X,(l)lDt _ 1 '" N[",(l),Et (l)) 

and 

Now, omittinR the afRtlmt'ntH. thE' principal updating steps are summarised as follows. 
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1. Approximating'\t by fit· 

Approximate the distribution of log fit = '\t which is a univariate Gaussian N[€o, T6] 

by a variable '1t with a distribution Logn[po, u5] with mean and variance as 

2. As in the Poisson model. 

3. Updating fit· 

Observing Yt = Yt, find the posterior distribution of 10g'1t with a normal prior 

with mean €o and variance TG for log Ytlflt 'V N(1og fit, V), so that log fitlY, = Yt is 

Gaussian with moments 

EPog '1t IYt] (1 - A)€o + A 10gYt 

Varpog fltlYt] AV 

- (1- A)T6 

which implies that fltlYt '" Logn(pl' un with mean and variance as 

4. Updating '\t. 

Approximate the posterior distribution in the previous step which is Logn(pt, un 
by a normal distribution with the same mean and variance to obtain the posterior 
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a e .. T bl 81 S omel us ra lye examples on t to I 

Distributions Distribution Posterior mean JL1 Posterior variance O'~ 

of 1], ~ of YI'1 of ~ of ~ 

Normal N (J'o, O'~) Normal ('1, V) (1 - A)J'o + Ay AV = (1 - A)O'~ 

~='1 
u2 

A=~ 
Uo+ 

~ '" N (J'o, O'~) Poisson Po(1]) (1 - A)JLO + Ay AJL1 

2 

1] '" G(no,.Bo) A - Uo 
- (ug +1-'0) 

#2 
no= ~,.Bo= ~ 

Uo Uo 

~ = log 1] '" N (~o, rJ) Lognormal ('1, V) (I-A) A 
JLo Y (eAV 

- l)JL~ 

1] '" Logn(J'o,0'6) log YI'1 '" N (log '1, V) A - log(J'~+0'3~-logJ'3 
- log(J'hu~)-logJ'hv 

J'o = e(eo+ t.,-g) 

O'~ = (e.,-g - l)JL~ 

distribution of ~t as Gaussian with moments 

1'1 
e(1-A)eo+AlogYt+l/2(1-A).,-g A (I-A) 

Yt JLo 

5. As 5 in the Poisson model 

6. As 6 in the Poisson model 

A summary of these examples is given in Table 8.1 . For more detailed discussion, see 

Gargoum & Smith (1995). Notice that the obvious difference from the Gaussian case 

is that now the posterior variance of ~Iy is a function of y. The point we make here 

is that the updating on the junction tree is just as quick and simple as the Gaussian 

because it is algebraic and approximate, so that Gaussianity over states is preserved. 
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Thus a very slight change to code allows the quick processing of data which is not 

Gaussian. 

Of course the validity of the updating algorithm depends critically on how well the 

true posterior density of zlY is approximated by the Gaussian one calculated by our 

algorithm. This topic is the subject of the next section. 

8.4 The Closeness of Dynamic Approximations 

Here, we choose the Hellinger metric to check the appropriateness of the dynamic ap­

proximation. Recall from Chapter (5) that the Hellinger distance between two densities 

is defined by 

(8.4) 

Also we defined 

1(/; g) = 1- d'h(/jg) (8.5) 

In fact tPH (/ j g) can be calculated in closed form for most densities in a standard family. 

It is also sometimes possible explicitly to write down the Hellinger distance between 

two densities from different families. For example, when f is a normal density with 

mean II- and variance V and 9 is a Gamma density G(o, (J) with the same mean and 

variance, then I(/j g) is obtained as in Section (5.7) of Chapter (5). 

We note the property listed below also hold true both for the variation metric and the 

popular Kullback-Leibler separation measure. 

Suppose that P and p are joint densities on X = (XI, X 2 ) which have different 

margins PI and PIon Xl but whose conditional densities of X 21X 1 agree. Then, 
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directly from {8.4} we have that 

{8.6} 

Now, within our context we approximate only the distribution of A, as information 

about the states is channelled through A. It follows from {8.6} that the closeness of the 

joint density over states depends only on the closeness of our approximation of the one 

dimensional normal posterior density of A to the true posterior density of A. 

As an example consider the case when Po(:J!) is a Gaussian prior density on X. Let ft 

and 12 denote the posterior densities on :J! given the true normalised Gamma likelihood 

il associated with a Poisson observation Y or a normalised Gaussian approximation i2 

of the DGLM, respectively. Then, by definition, omitting the arguments, 

So 

pi. 
fi=-J' pli 

Jltl/2 ~ where B = I 2 I' and A = pl2. 
ill' I 

i = 1,2 

1-~ 

Notice that if il and i2 are very close, then both A and B will be close to 1 and 

consequently dH will be close to zero. Appendix C gives the details of how to derive an 

upper bound for d2(ft, h), i.e. an upper bound on B and a lower bound on A; which 

can be used in the particular case when 11 and 12 are as above. 
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8.5 Conclusion 

This analogue of dynamic generalized linear models, when used on junction trees, gives 

a Quick computational approach for dealing with non-normal data which is easy to un­

derstand, gives a closed form updating algorithm and provides an approximation whose 

validity can be checked numerically, for example by using the Hellinger distance met­

ric. In an iterative system where Quick calculation is essential and easy interpretation 

is paramount, it is our opinion that the methods described in this chapter provide a 

practical methodology for Quick Bayesian inference in complex dynamical systems. 
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8.6 Appendix C 

Let f 1, f 2 , P, A, and B defined as before. 

Write 

Then 

So 

f l/2f l/2 _ (fl/2 fl/2) 01/2 + f 
1 2 P - 2 - 1 (.1 PIP· 

B-1 = J(v'2i~/2p)((v2)-I(f~/2 - l~/2)) 
J f 1P 

IB _ 11 < J(J2l~/2p)(J2)-lll~/2 - l~/21) 
- Jl IP 

which, by Cauchy-Schwartz inequality applied to the expressions in the upper integral, 

< (JU1p2)1/2 (f 1/2(i/2 - i/2)2) 1/2 - d (l l) 
- (J flP) 2 1 - T H 11 2 

M( / 1'1''2)1/2 (2:'»)1/2 -
where T = V 2 (111') ~ 1 = T 

where M = Sup P and II = J liP· 

Thus 

To derive a bound on A, first note that 

So 

IAI = 1 + I J(l2 -l')pl. 
J liP 
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Then 

which, by Cauchy-Schwartz inequality, 

< (1/2 /(I~/2 _1~/2)2r/2 [2 /(I~~/2 + f~/2p2r/2 

dH(fl' 12) [2 / (1~/2 + f~/2)2p2] 1/2 

where, in particular 

So 

/ (1~/2 + 1~/2)2p2 = / flp2 + / f2p2 + 2 / f~/21~/2p2 

< 2M2[1 + / f~/2f~/2] 

= 4M2[1 - 1/2dk(f1, f 2)] 

A < 1+11) [2J(f~/2+f~/2)2p2r/2dH(f.,f2) 

< 1 + ~[1 - 1/2tJ2H(£}, f 2)]1/2dH(f) , £2) 

< 1 + f 2dH(f1 , (2) 

Thus, provided that M/l1 is bounded above, the likelihoods with close Hellinger dis-

tances give rise to posterior densities also with close Helinger distances. 

Now notice that, for y > 0 

Thus 
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So 

It follows from the above that 

i.e. 

1- A-I/2B < 1- [1-1/21'2dH(fI ,f2)][1- 1'dH(f},f2 )] 

< dH(I}, 12)1'(1 + 1/21') 

where T = J¥f where II = J lIP and M = Sup p. 

Thus posterior densities will be close in Hellinger distance if £1 and 12 are close. This 

gives an upper bound for dH(h, h) which is suitable for our purposes. 
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Chapter 9 

Discussion and Further Research 

9.1 Introduction 

This research was originally motivated by the practical problems involved in modelling 

and updating the dispersal and deposition of contaminated material emitted after a 

nuclear accident. The main objectives were to: model and code the expert judgement 

about the emission profile as a DLM; combine an existing propagation methodology 

for dynamical junction trees with approximation algorithms when data may destroy 

neat dependencies; and accommodate non - Gaussian distributions on contamination 

readings using DGLMs. 

In this application. the learning and updating algorithm associated with the mod­

elling procE'tV! is a component within an integrated decision support system for guiding 

countermeasurt"S in tht' first 24 hours after the accidental release. So output must be 

informativp about the expedience of short-term decisions that might be taken. 
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9.2 Review of Chapters (3) and (4) 

In Chapters (3) we revealed the inadequacy of existing deterministic models of disper­

sal. We then showed how the continuous release of gas can be described as a series of 

puffs of contaminated ma.<!8 emitted sequentially at discrete times and then dispersed 

and diffused (puff models). We also described a stochastic version of these puff dis­

persal models. This version made it possible to incorporate and adjust to uncertain 

information about contamination readings at different sites. We then proceeded to 

show that all relevant uncertainties could be modelled by describing the evolution of 

puffs and puffs fragments within the system by a high dimensional Gaussian process 

exhibiting many conditional independences. These conditional independences can be 

utilised to speed up the revision of the probability distribution of the puff and puff frag­

ment masses. Finally, we discussed how the stochastic puff model could incorporate 

complex processes defining source emission and fragmentation. 

In Chapter (4), we discussed some graph-theoretical concepts and results on influ­

ence diagrams and junction trees which are necessary to describe a clique representation 

of these fragmentation processes. This representation is suitable for an efficient propa­

gation of evidence as it arrives. 

9.3 Review of Chapter (6) 

One of the most important pieces of information that will be needed to inform very 

early decision-making immediately after an accident is how experts (plant designers and 

nuclear safety engineers) believe source emissions of contamination will develop over 
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time. To address this issue it is important, first to code as much expert judgement as 

possible about the possible types and profiles of release; and, secondly, to modify these 

expert judgements - which are often very uncertain - in the light of any observations 

which do become available. 

In Chapter (6) we have considered different scenarios of how experts might believe 

the shape of the emission will develop. One scenario is when there is very little expert 

judgement about the development of the release of mass at time t, qt. Let us assume 

that an expert judges that the leakage gives an initial expected mass 1'(1), but is very 

uncertain about this with large variance 0'2(1). Suppose he or she is also uncertain 

about how the shape of the release profile will develop apart from the belief that the 

leakage will be relatively continuous. This case is modelled by a random walk such that 

qtlqt-l '" N[qt-l' Z]. 

In another scenario the expert may believe that the emissions will rise from zero to an 

uncertain height h and then decline to an asymptotic leakage a which then drifts as a 

random walk. By giving means and variances of h and a, we have been able to build a 

probabilistic model which adapts its estimate of the emissions qt and also its estimate 

of the height h, in the light of any incoming data. 

Figures 6.5 and 6.6 of Appendix A illustrate how the model predictions of the 

emission profile change as monitoring data (model-generated data) are taken. Also in 

Chapter (6) we dealt specifically with the uncertainty of the release height h, where we 

run mixed models at different release heights (200m, 400m, 600m) with certain prior 

probabilities and then update these probabilities (i.e. update the distributions on the 

release height). 
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Figure 6.8 of Appendix A shows posteriors for expected dispersals associated with 

the three source release heights together with the marginal expected dispersal. 

The facility for accommodating any time series model for estimating the source emis­

sions is now available under Leeds-Warwick software. 

9.4 Review of Chapters (7) and (8) 

In recent years, many practical and efficient expert systems (see, for example, Lauritzen 

&, Speigelhalter, 1988; Dawid, 1992 and Speigelhalter et aI., 1993) have been built and 

used in a complex environment on the basis of probability algebra. These systems are 

based on graphical representation provided that the following conditions hold: 

(i) The expert system has a fixed number of variables in it. 

(ii) The joint probability distribution is of a particular form ( decomposable form )­

that is, the joint density can be expressed as a product of marginal densities over 

sets of variables C(1), ... , C(n) (cliques of moderate sizes) divided by probabilities 

on subsets of cliques. 

(iii) The distributional form of all the random variables in the system is assumed to 

be either discrete or Gaussian. 

A description of the algorithms for calculating these probabilities is given in the refer-

ences above. 

Unfortunately, in many practical cases one or more of the conditions (i)-(iii) are 

violated. Firstly, learning is dynamic and happens sequentially over time, and variables 

which are of direct interest at one point of time subsequently lose their relevance. For 
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example, in the dispersal models changing atmospheric conditions can make one set of 

variables irrelevant and other previously un modelled features critical to forecasts. 

Secondly, condition (ii) can often be violated, especially when data are collected which 

depend on variables in several cliques. 

Thirdly, condition (iii) is a very restrictive one for use in a general statistical model. 

Accordingly, the system will be extended to a system with variables which develop 

dynamically and with the following additional features: 

(a) The system will need to process very large numbers of variables at anyone time. 

(b) Data can destroy neat dependences. 

(e) The distributional form of all random variables in the system can be generalised 

to a non-Gaussian. 

In the context of our application, we adopted dynamic influence diagrams (and their 

corresponding junction trees) (see Smith et al., 1995) to describe the dispersal process. 

Because these diagrams are defined on a sequence of random variables, there are high 

demands on computational efficiency. Typically the system will need to process a very 

large number of variables at anyone time. 

In Chapter (7) we addressed this problem by approximating the process to obtain 

a system with disconnected junction trees through a faster algorithm which deletes 

"irrelevant" cliques using edge deletion (CUT operator). This approximation algorithm 

is based on a divergence measure between the true and the approximating distributions 

(i.e. before and after the cut). 

Also in Chapter (7) we addressed the issue of condition (ii) above. We dealt with the 
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situation in which an observation is taken under more than one clique. (When this 

happens, the conditional independences of the clique structure will be destroyed; see b 

above). We thus developed approximation algorithms for the Guassian process based 

on the Kulback-Liebler / Hellinger distances. Explicitly we proposed two classes of 

operators to deal with this case: 

• exact operators (e.g. JOIN operator); here we use this operator to join cliques 

under which the observation is taken to retain valid dependences after data ob­

servation) ; 

• non-exact operators, (e.g. DivObs operator); using this operator, an observation 

has to be "divided" between several cliques, so approximations are necessary 

which are based on measures of divergence such as the Kullback-Leibler divergence 

measure. 

Initial simulations have shown that these algorithms are fast enough to provide fore­

casts within the requirements of the RODOS decision support system. Section B.3 of 

Appendix B of Chapter 7 shows plots of the expected concentrations using the nor­

mal and the normal-cut models. The forecasts of the concentrations using the two 

models are very close with significantly less computational time using the normal-cut 

model. Section B.4 shows the results of the implementation of the DivObs operator. 

At all detector points the DivObs update (approximation) matches the true update 

very closely. 

The problem of the particular distributional forms (Gaussian or discrete) of the 

exact algorithms was addressed in Chapter (8). Approximate decomposable structures 
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were found, and suitable metrics over distributions were used to ensure that the prob-

ability distributions required for making decisions are at least approximately correct 

both a priori and a posteriori. We proposed to accommodate non-Gaussian distribu-

tions on contamination readings using a slight generalisation of the dynamic generalised 

linear models of West et al. (1985), thus giving closed form solutions to updating. Some 

illustrative examples of accommodating non-Gaussian models (Poisson, Lognormal, ... ) 

have been provided. For example, in the Poisson case we write 

A = L Ft (i,8)Q(i) 
Q(i)EC 

where Q(i), Ft(i, 8) and C are defined as before. 

Let A'" N[po, O'~], YIA'" Poisson(17) where 17 '" Gamma[ao, ,80] 

Then 

where 

1'1 (1 - A)/Jo + Ay 

0'2 
1 = A/J1 

0'2 
A 0 -

(O'~ + 1'0) 

In this case it is easy to calculate p(Cly) = p(C)pJ~» as an update on mean and vari-

ance. Now we propagate as in the normal case. 

Note that the appropriateness of the updating algorithm depends on how well the true 

posterior density is approximated by the Gaussian one. Here we used the Hellinger 

metric to check this dynamic approximation. An upper bound on the Hellinger dis-
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tance of the true posterior density and its approximation is provided in Appendix C of 

Chapter 8. 

An alternative formal method to deal with accommodating non-Gaussian readings is 

to calculate exact margins numerically using Metropolis algorithms (see, for example, 

Gilks et al., 1993). This approach is satisfactory as long as the cliques and their 

separators are small, ensuring that the process does not take a long time. Moreover, 

such methods could be useful for validating our approximation of accommodating non­

Gaussian distributions described in Chapter (8). 

Although the basic motivation of this research was to overcome the practical prob­

lems of modelling the diffusion of a gas from a source in a complex stochastic windfield, 

the contributions in the thesis are of more general relevance and can be extended to 

include other applications of the diffusion and dispersal of a process from a source 

where we may have different junction tree and clique components, but where the al­

gorithms for coding the qualitative information, the speeding up of the calculations of 

the relevant joint distributions, and the generalisation from Gaussian processes are not 

significantly modified. 

Finally, there are other topics and unsolved problems that are not described in this 

thesis. Of great importance is the issue of extending the system beyond the analysis of 

dispersal to incorporate the modelling of uncertainty concerning the deposition of waste 

where the clouds lose a proportion of their mass in response, for example, to rain fall. 

This issue gives rise to two particular important topics for future research: 

the prediction of how the contaminated material will spread out over the ground ; and 

the relationship between the spatial process of depositions and the stochastic process 
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and dispersal models. 
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