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RIGIDITY OF HYPERBOLIC SETS ON SURFACES

A. A. PINTO and D. A. RAND

Abstract

Given a hyperbolic invariant set of a diffeomorphism on a surface, it is proved that, if the
holonomies are sufficiently smooth, then the diffeomorphism on the hyperbolic invariant set is
rigid in the sense that it is C1+ conjugate to a hyperbolic affine model.

1. Introduction

In dynamics, rigidity occurs when simple topological and analytical conditions on
the model system imply that there is no flexibility and so there is a unique smooth
realisation. One can paraphrase this by saying that the moduli space for such
systems is a singleton. For example, a famous result of this type due to Arnol’d,
Herman and Yoccoz [1, 9, 24] is that a sufficiently smooth diffeomorphism of the
circle with an irrational rotation number which satisfies the usual Diophantine
condition is C1+ conjugate to a rigid rotation. The rigidity depends upon both
the analytical hypothesis concerning the smoothness and the topological condition
given by the rotation number, and if either are relaxed, then it fails.

The analytical part of the rigidity hypotheses for hyperbolic surface dynamics will
be a condition on the smoothness of the holonomy maps along stable and unstable
manifolds. Given a diffeomorphism f on a surface with a hyperbolic invariant set
Λ (with local product structure and with a dense orbit on Λ), we show that if
the holonomies are sufficiently smooth, then the diffeomorphism f is rigid, that
is, there is conjugacy on Λ between f and a hyperbolic affine model which has a
C1+ extension to the surface. A corollary of our result is that if f is Cr and the
holonomies of f are Cr with r − 1 greater than the Hausdorff dimension along the
stable and unstable leaves intersected with Λ, then f is rigid. We allow both the case
where Λ = M (so that f is Anosov and M ∼= T

2 [6, 16]) and the case where Λ
is a proper subset (for example a horseshoe, or an attractor with 1-dimensional
unstable manifolds such as the Plykin attractor).

Before stating our results we recall some previous rigidity results for surface
dynamics. These are about Anosov diffeomorphisms of the torus. In this case
the hyperbolic affine model is a hyperbolic toral automorphism. In general, the
topological conjugacy between such a system and the corresponding hyperbolic
affine model is only Hölder continuous and need not be any smoother. This is the
case if there is a periodic orbit of f whose eigenvalues differ from those of the
hyperbolic affine model.
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For Anosov diffeomorphisms f of the torus, there are the following results, all of
which have the form that if a Ck f has Cr foliations, then f is Cs-rigid, that is, f
is Cs-conjugate to the corresponding hyperbolic affine model.

(1) Area-preserving Anosov diffeomorphisms f with r = ∞ are C∞-rigid (Avez
[2]).

(2) Ck area-preserving Anosov diffeomorphisms f with r = 1 + o(t| log t|) are
Ck−3-rigid (Hurder and Katok [10]).

(3) C1 area-preserving Anosov diffeomorphisms f with r � 2 are Cr-rigid
(Flaminio and Katok [7]).

(4) Ck Anosov diffeomorphisms f (k � 2) with r � 1 + Lipschitz are Ck-rigid
(Ghys [8]).

For the Anosov case, our main result has the following corollary. If f is a Cr

Anosov diffeomorphism (r > 2) and the holonomies of f are C1+zygmund, then f is
Cr-rigid.

1.1. Main theorem

Throughout this paper we consider a Cr diffeomorphism f , with r > 1, of a
compact surface M which has a topologically transitive hyperbolic invariant subset
Λ with local product structure and with one-dimensional local stable and unstable
leaves (see the definitions of stable and unstable leaves and local product structure
in Subsections 2.3 and 2.5 and [23]).

To state our rigidity result, we have to introduce the notion of a hyperbolic affine
model and the definition of C1,α classes of smooth regularities for homeomorphisms
on the real line.

Definition 1. A hyperbolic affine model for f on Λ is an atlas A with the
following properties.

(i) The union of the domains U of the charts i : U −→ R
2 of A (which are open

in M) cover Λ.
(ii) Any two charts i : U −→R

2 and j : V −→R
2 in A have overlap maps j◦i−1 :

i(U ∩ V ) −→ R
2 with affine extensions to R

2 (see Figure 1).
(iii) f is affine with respect to the charts in A.
(iv) Λ is a basic hyperbolic set.
(v) The images of the stable and unstable local leaves under the charts in A are

contained in horizontal and vertical lines.
(vi) The basic holonomies have affine extensions to the stable and unstable leaves

with respect to the charts in A.

See the definition of basic holonomies in Subsection 2.9.

Definition 2. Let θ : I ⊂R−→J ⊂R be a homeomorphism. If 0 < α < 1, then
θ is said to be C1,α if it is differentiable and for all points x, y ∈ I,

|θ′(y) − θ′(x)| � χ(|y − x|), (1.1)

where the positive function χ(t) is o(tα), that is, limt→0 χ(t)/tα = 0.
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Figure 1. Overlap map for two charts in the affine structure for the affine model of f ;
the local representation of f in such charts is affine.

The map θ : I −→ J is said to be C1,1 if, for all points x, y ∈ I,∣∣∣∣log θ′(x) + log θ′(y) − 2 log θ′
(

x + y

2

)∣∣∣∣ � χ(|y − x|), (1.2)

where the positive function χ(t) is o(t), that is, limt→0 χ(t)/t = 0. The functions χ
are called the modulus of continuity of θ.

In particular, a C1+β diffeomorphism is C1,α if 0< α < β, and a C2+γ

diffeomorphism is C1,1 if γ > 0.
We note that the regularity C1,1 (also denoted by C1+zygmund) of a diffeomor-

phism θ used in this paper is stronger than the regularity C1+Zygmund (see [15,
22]).

The importance of these C1,α smoothness classes for a homeomorphism θ : I −→
J follows from the fact that if 0 < α < 1, then the map θ will distort ratios of
lengths of short intervals in an interval K ⊂ I by an amount that is o(|I|α), and
if α = 1, then the map θ will distort the cross-ratios of quadruples of points in an
interval K ⊂ I by an amount that is o(|I|) (see the definition in Section 6). In fact,
it is just these distortion properties that we will use in the proofs of our results.

In Subsection 2.10, we introduce the definition of a complete system of
holonomies, and we explain how the definition of a C1,α homeomorphism leads
to the notion of a C1,α complete system of holonomies. One example of a complete
system of holonomies is to take all basic holonomies. However, in general, a complete
system of holonomies can be taken to be much smaller, and for many systems such
as Anosov systems, one can take a single holonomy. On the other hand, for Smale
horseshoes, a complete system of holonomies is countably infinite.
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Theorem 1 (hyperbolic rigidity). Let HDs and HDu be, respectively, the
Hausdorff dimension of the intersection with Λ of the stable and unstable leaves
of f . If f is Cr with r − 1 > max{HDs,HDu}, and there is a complete system
of holonomies for f in which the stable holonomies are C1,HDs

and the unstable
holonomies are C1,HDu

, then the map f on Λ is C1+γ conjugate to a hyperbolic
affine model for some γ > 0.

In Subsection 2.5, we give the definition of a C1+γ conjugacy. In assuming that
f is Cr with r − 1 > max{HDs,HDu} in the previous theorem, we actually only
use the fact that f is C1,HDι

along ι-leaves for ι ∈ {s, u}.
If f is an Anosov diffeomorphism, then the hyperbolic affine model always exists

and up to affine conjugacy is unique in its topological conjugacy class [6, 7, 14, 16].
In fact, the affine model is, up to affine conjugacy, an Anosov automorphism. We
use Theorem 1 to prove the following corollary, which extends the result mentioned
above of Ghys [8].

Corollary 1 (Anosov rigidity). If f is a Cr Anosov diffeomorphism of a surface
with r > 2, and there is a complete system of holonomies for f in which the stable
and unstable holonomies are C1,1, then f is Cr-conjugate to an affine model.

If Λ �= M , then, up to affine conjugacy, the set of hyperbolic affine models for f is
either finite-dimensional or empty. In the case of the well known Smale horseshoes
f , as presented in Figure 5, the set of affine models form a two-dimensional set
homeomorphic to R

+ × R
+. In the case of hyperbolic attractors f with HDs < 1,

in Ferreira and the authors [4] showed that there are no affine models for f , and so
the stable holonomies can never be smoother than C1,HDs

.

2. C1,HD complete set of holonomies

In this section, we present some basic facts on hyperbolic dynamics that we
include for clarity of exposition. We also introduce the definition of a C1,HD

complete set of holonomies in Subsection 2.10.

2.1. Interval notation

We also use the notation of interval arithmetic for some inequalities where the
following hold.

(i) If I and J are intervals, then I +J , I.J and I/J have the obvious meanings
as intervals.

(ii) If I = {x}, then we often denote I by x.
(iii) I ± ε denotes the interval consisting of those x such that |x − y| < ε for all

y ∈ I.

Thus φ(n) ∈ 1±O(νn) means that there exists a constant c > 0 depending only
on explicitly mentioned quantities such that, for all n � 0, 1−cνn < φ(n) < 1+cνn.

2.2. Stable and unstable superscripts

Throughout the paper we will use the following notation. We use ι to denote an
element of the set {s, u} of the stable and unstable superscripts and ι′ to denote the
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element of {s, u} that is not ι. In the main discussion we will often refer to objects
which are qualified by ι, such as, for example, an ι-leaf. This is a leaf which is a
leaf of the stable lamination if ι = s, or a leaf of the unstable lamination if ι = u.
In general, the meaning should be quite clear.

We define the map fι = f if ι = u or fι = f−1 if ι = s.

2.3. Leaf segments

Let d be a fixed Riemannian metric on M . For ε > 0 and ι ∈ {s, u}, if x ∈ Λ
then we denote the local ι-leaves through x by

W ι(x, ε) =
{
y ∈ M : d

(
f−n

ι x, f−n
ι y

)
� ε, for all n � 0

}
.

By the stable manifold theorem [23], these sets are, respectively, contained in the
stable and unstable immersed manifolds

W ι(x) =
⋃
n�0

fn
ι

(
W ι

(
f−n

ι x, ε
))

,

which are the image of a Cr immersion λι
x : R −→ M . A full ι-leaf segment I is

defined as a subset of W ι(x) of the form λι
x(I1), where I1 is an open subinterval

in R. An ι-leaf segment is the intersection with Λ of a full ι-leaf segment. The
endpoints of such a full ι-leaf segment are the points λι

x(u) and λι
x(v), where u and

v are the endpoints of I1. The endpoints of such an ι-leaf segment I are the points
of the minimal full ι-leaf segment containing I. A map u : I −→ R is an ι-leaf chart
of an ι-leaf segment I if has an extension û : Î −→ R to a full ι-leaf segment Î with
the following properties: I ⊂ Î and û is a homeomorphism onto its image.

2.4. Topological and smooth conjugacies

Let f : M −→M be a Cr diffeomorphism with a hyperbolic basic set Λ. More
unusually, we also want to highlight the Cr structure on M in which f is a
diffeomorphism. By a Cr structure on M , we mean a maximal set of charts with
open domains in M such that the union of their domains cover M , and whenever U
is an open subset contained in the domains of any two of these charts i and j, then
the overlap map j ◦ i−1 : i(U) −→ j(U) is Cr. We note that by compactness of M ,
given such a Cr structure on M , there is an atlas consisting of a finite set of these
charts which cover M and for which the overlap maps are uniformly bounded in the
Cr norm. We denote by Cf the Cr structure on M in which f is a diffeomorphism.
Usually one is not concerned with this as, given two such structures, there is a
homeomorphism of M sending one onto the other, and thus, from this point of
view, all such structures can be identified. For our discussion it will be important
to maintain the identity of the different smooth structures on M .

Let f and g be Cr diffeomorphisms with hyperbolic invariant sets Λf and Λg,
respectively. We say that a map h : Λf −→ Λg is a topological conjugacy between
f and g if there is a homeomorphism h : Λf −→ Λg with the following properties.

(i) g ◦ h(x) = h ◦ f(x) for every x ∈ Λf .
(ii) The pull-back of the ι-leaf segments of g by h are ι-leaf segments of f .

Similarly, we say that a topological conjugacy h : Λf −→Λg is a Cs conjugacy,
with 1 < s � r, if h has a Cs diffeomorphic extension to an open neighbourhood of
Λf in the surface M with respect to the Cr structures Cf and Cg on M .
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Figure 2. A rectangle.

2.5. Rectangles

Since Λ is a hyperbolic invariant set of a diffeomorphism f :M −→M , for 0 <
ε < ε0 there is δ = δ(ε) > 0 such that, for all points w, z ∈ Λ with d(w, z) < δ,
Wu(w, ε) and W s(z, ε) intersect in a unique point that we denote by [w, z]. Since
we assume that the hyperbolic set has a local product structure, we have [w, z] ∈ Λ.
Furthermore, the following properties are satisfied: (i) [w, z] varies continuously with
w, z ∈ Λ, (ii) the bracket map is continuous on a δ-uniform neighbourhood of the
diagonal in Λ×Λ, and (iii) whenever both sides are defined, f([z, w]) = [f(z), f(w)].
Note that the bracket map does not really depend on δ provided that it is sufficiently
small.

We emphasise that it is a standing hypothesis that all the hyperbolic sets
considered here have such a local product structure.

A rectangle R is a subset of Λ which is (i) closed under the bracket (that is,
x, y ∈ R ⇒ [x, y] ∈ R), and (ii) proper (that is, is the closure of its interior in Λ).
This definition imposes that a rectangle always has to be proper, which is more
restrictive than the usual one which only insists on the closure condition.

If �s and �u are, respectively, stable and unstable leaf segments intersecting in a
single point, then we denote by [�s, �u] the set consisting of all points of the form
[w, z] with w ∈ �s and z ∈ �u. We note that if the stable and unstable leaf segments �
and �′ are closed, then the set [�, �′] is a rectangle. Conversely, in this 2-dimensional
situation, any rectangle R has a product structure in the following sense. For each
x ∈ R, there are closed stable and unstable leaf segments of Λ, �s(x,R) ⊂ W s(x) and
�u(x,R) ⊂ W u(x) such that R = [�s(x,R), �u(x,R)]. The leaf segments �s(x,R) and
�u(x,R) are called stable and unstable spanning leaf segments for R (see Figure 2).
For ι ∈ {s, u}, we denote by ∂�ι(x,R) the set consisting of the endpoints of �ι(x,R),
and we denote by int �ι(x,R) the set �ι(x,R)\∂�ι(x,R). The interior of R is given
by int R = [int �s(x,R), int �u(x,R)], and the boundary of R is given by ∂R =
[∂�s(x,R), �u(x,R)] ∪ [�s(x,R), ∂�u(x,R)].

2.6. Markov partitions

A Markov partition of f is a collection R = {R1, . . . , Rk} of rectangles such that
the following hold.
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(i) Λ ⊂
⋃k

i=1 Ri.
(ii) Ri ∩ Rj = ∂Ri ∩ ∂Rj for all i and j.
(iii) If x ∈ int Ri and fx ∈ int Rj , then

(a) f(�s(x,Ri)) ⊂ �s(fx,Rj) and f−1(�u(fx,Rj)) ⊂ �u(x,Ri);
(b) f(�u(x,Ri)) ∩ Rj = �u(fx,Rj) and f−1(�s(fx,Rj)) ∩ Ri = �s(x,Ri).

Condition (b) means that f(Ri) goes across Rj just once. In fact, it follows from
condition (a) provided that the rectangles Rj are chosen to be sufficiently small [13].
The rectangles which make up the Markov partition are called Markov rectangles.

2.7. Leaf n-cylinders and leaf n-gaps

For ι = s or u, an ι-leaf primary cylinder of a Markov rectangle R is a spanning
ι-leaf segment of R. For n � 1, an ι-leaf n-cylinder of R is an ι-leaf segment I such
that the following hold.

(i) fn
ι I is an ι-leaf primary cylinder of a Markov rectangle M .

(ii) fn
ι (�ι′(x,R)) ⊂ M for every x ∈ I.

For n � 2, an ι-leaf n-gap G of R is a pair {x, y} of distinct points x and y in a
Markov rectangle R such that the following hold.

(i) There is an embedding i : �ι(x,R)−→R in the topological lamination
structure {x, y} = i−1(J) for some non-trivial closed interval J in R.

(ii) n is the smallest integer such that both of the leaves fn−1
ι �ι′(x,R) and

fn−1
ι �ι′(y,R) are contained in ι′-rectangles.

We note that an ι-leaf segment I of a Markov rectangle R can be simultaneously
an n1-cylinder, (n1 + 1)-cylinder, . . ., n2-cylinder of R if fn1(I), fn1+1(I), . . . ,
fn2(I) are all ι-spanning leaf segments. Furthermore, if I is an ι-leaf segment
contained in the common boundary of two Markov rectangles Ri and Rj , then
I can be an n1-cylinder of Ri and an n2-cylinder of Rj with n1 distinct from n2. If
G = {x, y} is an ι-gap of R contained in the interior of R, then there is a unique
n such that G is an n-gap. However, if G = {x, y} is contained in the common
boundary of two Markov rectangles Ri and Rj , then G can be an n1-gap of Ri and
an n2-gap of Rj with n1 distinct from n2. Since the number of Markov rectangles
R1, . . . , Rk is finite, there is C � 1 such that, in all the above cases for cylinders
and gaps, we have |n2 − n1| � C.

We say that a leaf segment K is the ith mother of an n-cylinder or an n-gap J
of R if J ⊂ K and K is a leaf (n − i)-cylinder of R.

By the properties of a Markov partition, for every n � 1 and every j � 1, a leaf n-
cylinder K of a Markov rectangle R is equal to the union of all leaf (n+j)-cylinders
and of all leaf (n + i)-gaps of R contained in K with i ∈ {1, . . . , j}.

2.8. Metric on Λ

We say that a rectangle R is an (ns, nu)-rectangle if there is x ∈ R such that, for
ι = s and u, the spanning leaf segments �ι(x,R) are either an ι-leaf nι-cylinder or
the union of two such cylinders with a common endpoint.

The reason for allowing the possibility of the spanning leaf segments being inside
two touching cylinders is to allow us to regard geometrically very small rectangles
intersecting a common boundary of two Markov rectangles as being small in the
sense of having ns and nu large.
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Figure 3. Basic stable holonomy from I to J .

If x, y ∈ Λ and x �= y, then dΛ(x, y) = 2−n, where n is the biggest integer such
that both x and y are contained in an (ns, nu)-rectangle with ns � n and nu � n.
Similarly, if I and J are ι-leaf segments, then dΛ(I, J) = 2−nι′ , where nι = 1 and nι′

is the biggest integer such that both I and J are contained in an (ns, nu)-rectangle.

2.9. Basic holonomies

Suppose that x and y are two points inside any rectangle R of Λ. Let I and J
be two stable leaf segments containing x and y respectively and inside R. Then we
define h : I −→ J by h(w) = [w, y]. See Figure 3. Such maps are called the basic
stable holonomies. They generate the pseudo-group of all stable holonomies. We
define the basic unstable holonomies similarly.

2.10. C1,HDι

complete system of holonomies

We are going to prove that if the holonomies are sufficiently smooth, then the
system is essentially affine. Rather than considering all holonomies, it is enough to
consider a complete set in the following sense.

Suppose that Ri and Rj are Markov rectangles, and x∈Ri and y ∈Rj . If ι = s
or u, then we say that x and y are ι-holonomically related if (i) there is an ι′-
leaf segment �ι′(x, y) such that ∂�ι′(x, y) = {x, y}, and (ii) there are two distinct
spanning ι′-leaf segments �ι′(x,Ri) and �ι′(y,Rj) such that their union contains
�ι′(x, y).

For every Markov rectangle Ri ∈R, let xi be a chosen point in Ri. Let
Iι = {Ii = �ι(xi, Ri) : Ri ∈R}. A complete system of ι-holonomies Hι = {hα} with
respect to Iι consists of a minimal set of basic holonomies with the following
property. If x∈ Ii is holonomically related to y ∈ Ij , where Ii, Ij ∈ Iι, then for
some α, either hα or h−1

α is the holonomy from a neighbourhood of x in Ii to Ij

which sends x to y. We call Iι the domain of the complete system of ι-holonomies
Hι. For each ι-leaf segment Ii ∈Iι, let Îi be a full ι-leaf segment such that Ii = Îi∩Λ,
and let ui : Îi −→ R be a Cr ι-leaf chart of the submanifold structure of Îi given by
the stable manifold theorem. (For instance, we can consider the chart ui ∈ Aι(ρ)
as defined in Subsection 3.3.)

Definition 3. A complete system of holonomies Hι is C1,HDι

if, for every
holonomy hα : I −→ J in Hι with I ⊂ Ii and J ⊂ Ij , the map uj ◦ hα ◦ u−1

i and
its inverse have a C1,HDι

diffeomorphic extension to R such that the modulus of
continuity does not depend upon hα ∈ Hι.
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Figure 4. Complete set of holonomies H = {h1, h2, h3, h
−1
1 , h−1

2 , h−1
3 } for the Anosov

map g : R2 \ (Z�v ×Z�w) −→ R2 \ (Z�v ×Z�w) defined by g(x, y) = (x + y, y) and with
Markov partition M = {A, B}.

For many systems such as Anosov diffeomorphisms and codimension 1 attractors
or repellors, there are only a finite number of holonomies in a complete system (see
Figure 4), In this case the uniformity hypothesis is redundant. However, for a Smale
horseshoe, this is not the case (see Figure 5).

3. HR-structures with C1,HDι

distortion

An HR-structure associates an affine structure to each stable and unstable leaf
segment in such a way that these vary Hölder continuously with the leaf and are
invariant under f . (The abbreviation HR stands for Hölder ratios.)

3.1. Hölder ratios

An affine structure on a stable or unstable leaf is equivalent to a ratio function
r(I : J) which can be thought of as prescribing the ratio of the size of two leaf
segments I and J in the same stable or unstable leaf. A ratio function r(I : J) is
positive and continuous in the endpoints of I and J . Moreover,

r(I : J) = r(J : I)−1 and r(I1 ∪ I2 : K) = r(I1 : K) + r(I2 : K), (3.1)

provided that I1 and I2 intersect in at most one of their endpoints.

Definition 4. We say that r is an ι-ratio function if (i) for all ι-leaf segments
K, r(I : J) (I, J ⊂K) defines a ratio function on K, (ii) r is invariant under f , that
is, r(I : J)= r(fI : fJ) for all ι-leaf segments, and (iii) for every basic ι-holonomy
map h : I −→ J between the leaf segment I and the leaf segment J defined with
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h1

h3 h2

Figure 5. The cardinality of the complete set of holonomies H = {h1, h2, h3, . . .}
is not finite.

respect to a rectangle R, and for every ι-leaf segment I0 ⊂ I and every ι-leaf
segment or gap I1 ⊂ I, ∣∣∣∣log

r(hI0 : hI1)
r(I0 : I1)

∣∣∣∣ � O((dΛ(I, J))ε), (3.2)

where ε ∈ (0, 1) depends upon r and the constant of proportionality also depends
upon R, but not on the segments considered.

Definition 5. An HR-structure is a pair (rs, ru) consisting of a stable and an
unstable ratio function.

3.2. Lamination atlas A(r)

Given an ι-ratio function r, we define the embeddings e : I −→ R by

e(x) = r(�(ξ, x), �(ξ,R)), (3.3)

where ξ is an endpoint of the ι-leaf segment I, δ(�(ξ, x))= {ξ, x}, and R is a Markov
rectangle containing ξ (see Figure 6). For this definition it is not necessary that
R contains I. We denote the set of all these embeddings e by A(r). Combining
Proposition 2.5 and Proposition 3.5 of [20], we get the following result.

Proposition 1. Let h : I −→J be a basic holonomy between ι-leaf segments in
a rectangle R. There is 0 < η < 1 such that the holonomy h is C1+η with respect
to the charts in A(rι). Furthermore, there is 0 < β < 1 with the property that for
all charts i : I −→R and j : J −→R in A(rι), there is an affine map a : R−→R such
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�(ξ, R)

�(ξ, x)
R

Figure 6. Definition of the embedding e : I −→ R.

that j ◦ h ◦ i−1 has a C1+η diffeomorphic extension h̃ and

||h̃ − a||C1+η �O ((dΛ(I, J))β),

where η and β depend upon rι and the constant of proportionality also depends
upon R.

3.3. Lamination atlas Aι(ρ)

Let ρ be a C1+ Riemannian metric in the manifold containing Λ. The ι-lamination
atlas Aι(ρ) determined by ρ is the set of all maps e : I −→ R, where I = Λ ∩ Î,
with Î a full ι-leaf segment, such that e extends to an isometry between the induced
Riemannian metric on Î and the Euclidean metric on the reals. We call the maps
e ∈ Aι(ρ) the ι-lamination charts. If I is an ι-leaf segment (or a full ι-leaf segment),
then by |I|ρ we mean the length in the Riemannian metric ρ of the minimal full
ι-leaf containing I.

3.4. Realisable ratio functions

By hyperbolicity of f in Λ, there are 0 < ν < 1 and C > 0 such that, for all ι-leaf
segments I and all m � 0, we get

|fm
ι′ I|ρ � Cνm|I|ρ. (3.4)

(Recall that fι = f if ι = u and fι = f−1 if ι = s.) For every ι-leaf segment I, let
us denote |I|ρ by |I|. Using the mean value theorem and the fact that fι is Cr with
r > 1, for all short leaf segments K and all leaf segments I and J contained in K,
the ι-realised ratio function rι

f given by

rι
f (I : J) = lim

n→∞

|fn
ι′ I|

|fn
ι′J |

=
|fm

ι′ I|
|fm

ι′ J |

∞∏
n=m

( |fn+1
ι′ I|

|fn+1
ι′ J |

|fn
ι′J |

|fn
ι′ I|

)

∈ |fm
ι′ I|

|fm
ι′ J |

∞∏
n=m

(1 ±O(νn|K|α))

⊂ |fm
ι′ I|

|fm
ι′ J | (1 ±O(νm|K|α)) (3.5)
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is well defined, where α = min{1, r − 1}. This construction gives the HR-structure
on Λ determined by f . Combining Proposition 3.5 and Proposition 3.7 of [20], we
get the following result.

Proposition 2. The diffeomorphism f determines a unique HR-structure on Λ
given by (rs

f , ru
f ) with the following property. For every ι-leaf segment I, if e1 : I −→

R ∈ A(rι
f ) and e2 : I −→ R ∈ Aι(ρ), then e2 ◦ e−1

1 has a Cr extension to R. If

g is a Cs diffeomorphism on Λ̂ which is C1+ conjugated to f , then it determines
the same HR-structure as f, that is, rι

f (x, y, z) = rι
g(ψx, ψy, ψz), where ψ : Λ −→ Λ̂

is the C1+ conjugacy between f and g. Conversely, if f and g are topologically
conjugate by ψ : Λ −→ Λ̂ and they determine the same HR-structure (that is,
rι
f (x, y, z) = rι

g(ψx, ψy, ψz)), then f and g are C1+ conjugated.

3.5. C1,HDι

distortion

Consider an ι-ratio function rι and let h : K −→K ′ be an ι-basic holonomy. We
will consider two distinct cases, (i) (presence of gaps) when the ι-leaf segments have
gaps, and (ii) (absence of gaps) when the ι-leaf segments do not have gaps.

Case (i) (presence of gaps): The ratio distortion of h in I ⊂ K with respect to a
ratio function rι is defined by

rd(h, I) = sup
I0,I1

log
rι(hI0 : hI1)
rι(I0 : I1)

,

where the supremum is over all pairs I0, I1 ⊂ I such that I0 is a leaf n-cylinder and
I1 is either a leaf n-cylinder or a leaf n-gap which has a unique common endpoint
with I0 and n � 1.

Case (ii) (absence of gaps): Suppose that J0, J1 and J2 are distinct leaf
n-cylinders such that J0 and J1 have a common endpoint, and J1 and J2 also
have a common endpoint. Let J be the union of J0, J1 and J2. Then the Poincaré
length with respect to a ratio function rι is defined by

Prι (J1 : J) = log
(

1 + rι(J1 : J0)
rι(J2 : J)

)
.

The cross-ratio distortion of h in I ⊂ K with respect to a ratio function rι is defined
by

crd(h, I) = sup
J0,J1,J2

Prι (hJ1 : hJ) − Prι (J1 : J),

where the supremum is taken over all such triples J0, J1, J2 with the property that
J ⊂ I.

We observe that if rd(h, I) = 0, then h is affine on I, and if crd(h, I) = 0, then h
is Möbius with respect to the atlas A(rι) determined by rι. Here, for simplicity of
exposition, we give a slightly different definition of cross-ratio distortion from the
usual one (see [15]); however, this is equivalent for our purposes.

Definition 6. The ratio function rι has C1,α distortion with respect to a
complete system of holonomies Hι if there is a modulus of continuity χ with the
following properties.
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(i) limt→0 χ(t)/tα = 0, that is, χ(t) is o(tα).
(ii) For every h : K −→ K ′ contained in Hι and for every ι-leaf segment I ⊂ K,

let ξ be an endpoint of K and let R be a Markov rectangle containing ξ.
(a) If α < 1, then the ι-leaf segments have gaps and |rd(h, I)|�

χ(rι(I, �(ξ,R))).
(b) If α = 1, then the ι-leaf segments do not have gaps and |crd(h, I)| �

χ(rι(I, �(ξ,R))).

The following lemma gives the essential link between a C1,α complete system of
holonomies Hι and C1,α distortion of rι with respect to Hι.

Lemma 1. Suppose that 0< α, α′ � 1. Let (rs
f , ru

f ) be the HR-structure
determined by f on Λ. If r− 1> max{α, α′} and there is a complete system of
holonomies Hι for f in which the stable holonomies are C1,α and the unstable
holonomies are C1,α′

, then rs
f has C1,α distortion and ru

f has C1,α′
distortion with

respect to Hι.

Proof. For simplicity of notation, we will denote |J |ρ by |J | for every ι-leaf
segment. Let h : K −→ K ′ be a C1,α holonomy in the ι-complete set of holonomies.
Let ξ be an endpoint of K and let R be a Markov rectangle containing ξ. We will
prove separately the cases where (i) 0 < α < 1, and (ii) α = 1 For simplicity of
notation, we will denote rι

f by r. Let I ⊂ K be an ι-leaf segment. Using inequalities
(3.2) and (3.5), we obtain

|hI| < O (r(I, �(ξ,R))) and |I| < O (r(I, �(ξ,R))). (3.6)

Case (i): Let I0, I1 be disjoint ι-leaf segments contained in I ⊂ K such that I0

is a leaf n-cylinder and I1 is either a leaf n-cylinder or a leaf n-gap which has a
common endpoint with I0. From inequalities (3.5) and (3.6), we get

r(hI0 : hI1)
r(I0 : I1)

∈ |hI0|
|hI1|

|I1|
|I0|

(1 ±O ((r(I, �(ξ,R)))β)), (3.7)

where β = min{1, r − 1}. Since h is C1,α, using the mean value theorem we get

|hI0|
|hI1|

|I1|
|I0|

∈ (1 ± o((r(I, �(ξ,R)))α)). (3.8)

Noting that α < β and putting (3.7) together with (3.8), we obtain

r(hI0 : hI1)
r(I0 : I1)

∈ (1 ± o ((r(I, �(ξ,R)))α)).

Therefore, for every ι-leaf segment I ⊂ K, we have |rd(h, I)| � o(r(I, �(ξ,R))α).

Case (ii): Let J0, J1 and J2 be leaf n-cylinders contained in an ι-leaf segment
I ⊂ K such that J0 and J1 have a common endpoint, and J1 and J2 also have a
common endpoint. Let J be the union of J0, J1 and J2. Let

Pρ(J1 ⊂ J) = log
(

1 +
|J1|ρ|J |ρ
|J0|ρ|J2|ρ

)
. (3.9)

Since fι is Cr with r > 2, from Lemma 3 (see Appendix A), (3.4) and (3.6) we get

Pρ

(
f−(n+1)

ι J1 : f−(n+1)
ι J

)
− Pρ

(
f−n

ι J1 : f−n
ι J

)
∈ ± o(νn|J |ρ)
⊂ ± o(νnrι(J, �(ξ,R))).
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Therefore,
Prι (J1 : J) = lim

n→∞
Pρ

(
f−n

ι J1 : f−n
ι J

)
= Pρ

(
f−m

ι J1 : f−m
ι J

)

+
∞∑

n=m

(
Pρ

(
f−(n+1)

ι J1 : f−(n+1)
ι J

)
− Pρ(f−n

ι J1 : f−n
ι J)

)

⊂ Pρ

(
f−m

ι J1 : f−m
ι J

)
± o(νmrι(J, �(ξ,R))).

Thus, since h is C1,1, and from Lemma 3, we get
Pr(hJ1 : hJ) − Prι (J1 : J) = lim

n→∞

(
Pρ(f−n

ι hJ1 : f−n
ι hJ) − Pρ(f−n

ι J1 : f−n
ι J)

)
∈ Pρ(hJ1 : hJ) − Pρ(J1 : J) ± o(r(J, �(ξ,R)))
⊂ ± o(r(J, �(ξ,R))).

Therefore, for every ι-leaf segment I ⊂ K, we have

|crd(h, I)| � o(r(I, �(ξ,R))).

4. Fundamental rigidity lemma

Let (rs, ru) be the HR-structure determined by f on Λ. Let HDs and HDu be,
respectively, the Hausdorff dimensions of the stable and unstable leaves intersected
with the hyperbolic invariant set Λ.

Theorem 2 (fundamental rigidity lemma). If the ι-ratio function rι has C1,HDι

distortion, then all basic holonomies are affine with respect to the atlas A(rι), that
is, they leave rι invariant.

To prove Theorem 2, we have to introduce Markov maps on train-tracks, and we
have to use Gibbs states to analyse the properties of the Hausdorff measures on the
train-tracks.

4.1. Train-tracks

Roughly speaking, train-tracks are the optimal leaf-quotient spaces on which the
stable and unstable Markov maps induced by the action of f on leaf segments are
local homeomorphisms.

For each Markov rectangle R, let tιR be the set of ι′-segments of R. Thus by
the local product structure one can identify tιR with any spanning ι-leaf segment
�ι(x,R) of R.

We form the space Bι by taking the disjoint union
⊔

R∈R tιR (union over all
Markov rectangles R of the Markov partition R) and identifying two points I ∈ tιR
and J ∈ tιR′ if either (i) the ι′-leaf segments I and J are ι′-boundaries of Markov
rectangles and their intersection contains at least a point which is not an endpoint
of I or J , or (ii) there is a sequence I = I1, . . . , In = J such that all Ii, Ii+1 are both
identified in the sense of (i). This space is called the ι-train-track and is denoted
by Bι.

Let πι :
⊔

R∈R R −→ Bι be the natural projection sending x ∈ R to the point in
Bι represented by �ι′(x,R). A topologically regular point I in Bι is a point with
a unique preimage under πι (that is, the preimage of I is not a union of distinct
ι′-boundaries of Markov rectangles). If a point has more than one preimage by πι,
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B

A

A

B

v

w

πι

Figure 7. (Unstable) train-track for an Anosov diffeomorphism. (The rectangles A
and B are the Markov rectangles and the vertical arrows show paths along unstable
manifolds from A to A and from B to A. The train-track is represented by the pair
of circles, and the curves below it show the smooth paths through the junction of the
two circles which arise from the smooth paths between the rectangles A and B along
unstable manifolds. Note that there is no smooth path from B to B even though in
this representation of the train-track it looks as though there ought to be. This is
because there is no unstable manifold running directly from the rectangle B to itself.)

then we call it a junction. Since there are only a finite number of ι′-boundaries of
Markov rectangles, there are only finitely many junctions (see Figure 7).

We say that IT is a train-track segment if there is an ι-leaf segment I, not
intersecting ι-boundaries of Markov rectangles, such that πι|I is an injection and
πι(I) = IT. Furthermore, the chart i : I −→ R in A(rι) determines a train-track
chart iT : IT −→R for IT given by iT = i ◦ π−1

ι . We denote by B(rι) the set of
all train-track charts for all train-track segments determined by A(rι). Given any
train-track charts iT : IT −→R and jT : JT −→R in B(rι), the overlap map jT ◦
i−1
T : iT(IT ∩JT)−→ jT(IT ∩ JT) is equal to jT ◦ i−1

T = j ◦ h ◦ i−1, where i= iT ◦
πι : I −→R and j = jT ◦ πι : J −→R are charts in A(rι), and

h : i−1(iT(IT ∩ JT)) −→ j−1(jT(IT ∩ JT))

is a basic ι-holonomy. By Proposition 1, there is η > 0 such that, for all train-track
charts iT and jT in B(rι), the overlap maps jT ◦ i−1

T = j ◦ h ◦ i−1 have C1+η

diffeomorphic extensions with a uniform bound for their C1+η norm. Hence B(rι)
is a C1+η atlas for the train-track segments in Bι.

4.2. Markov maps

The Markov map mι :Bι −→Bι is the mapping induced by the action of f
on leaf segments, that is, it is defined as follows. If I ∈Bι, mιI is the ι′-leaf
segment containing the fι-image of the ι′-leaf segment I. This map is a local
homeomorphism because fι sends a short ι-leaf segment homeomorphically onto
a short ι-leaf segment. Since f on Λ along leaves has affine extensions with respect
to the charts in A(rι) and the basic ι-bolonomies have C1+η extensions, we get that
the Markov maps mι also have C1+η extensions with respect to the charts in B(rι)
for some η > 0.
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An n-cylinder of mι is the projection under πι of an ι-leaf n-cylinder, and an
n-gap of mι is the projection under πι of an ι-leaf n-gap. Let us denote by |I|i
the length of the smallest interval containing the image under i ∈ B(rι) of a train-
track segment I of mι. By hyperbolicity of f in Λ, the train-track atlas B(rι) has
bounded geometry, that is, there is C > 1 such that if I is an n-cylinder and J
is an n-cylinder or an n-gap with a common endpoint with I such that I ∪ J is a
train-track segment, then C−1 < |I|i/|J |i < C for all charts i∈B(rι) whose domains
contain I ∪ J . In particular, there are 0< ν < 1 and C > 0 such that

|I|i < Cνn (4.1)

for all n-cylinders or n-gaps I of mι and for all charts i ∈ B(rι) whose domains
contain I.

We use the following proposition in the proof of the fundamental rigidity lemma.
It can be deduced from standard results about Gibbs states such as those in [3],
and it also follows from the results proved in [19].

Proposition 3. There is a unique mι-invariant probability measure µ on Bι

such that, if δ is the Hausdorff dimension of Bι, then there is C � 1 such that

C−1 � µ(I)
|I|δi

� C

for all n-cylinders I, for all n � 1, and for all train-track charts i ∈ B(rι). It follows
from this that the Hausdorff δ-measure Hδ is finite and positive on Bι, and µ is
absolutely continuous (equivalent) with respect to Hδ.

Proof of Theorem 2. We shall prove Theorem 2 for the stable holonomies. The
unstable result is proved in the same way by replacing f by f−1.

Let h : I −→ I ′ be a basic stable holonomy in the rectangle R, where I and I ′ are
stable spanning leaves of R and R has the property that every spanning stable and
unstable leaf segment of R is either contained inside a single primary cylinder or
inside the union of two touching primary cylinders. We shall prove that since there
is a complete set of holonomies with C1,HDs

distortion, h has an affine extension
with respect to the charts in A(rs).

For every n � 1, the rectangle fnR is equal to
⋃m(n)

j=0 Mn
j , where the rectangles

Mn
j = [Jn

j , Un
j ] have the following properties (see Figure 8).

(i) For j equal to 0 and m(n), we have the following.
(a) fnI = Jn

0 and fnI ′ = Jn
m(n).

(b) If Jn
j is contained in a single Markov rectangle, then Un

j is an unstable
spanning leaf of this Markov rectangle intersected with fnR.

(c) If Jn
j is not contained in a Markov rectangle, then Un

j is the biggest
possible unstable leaf segment in fnR contained in the union of the
unstable boundaries of Markov rectangles and intersecting Jn

j .
(ii) For j = 1, . . . , m(n) − 1, one of the following holds.

(a) Jn
j is a stable spanning leaf segment of Mn

j contained in a leaf segment
of the domain Iι of the complete system of holonomies Hι, and Un

j is
an unstable spanning leaf segment of the Markov rectangle containing
Jn

j .
(b) Jn

j is a stable leaf segment not contained in a single Markov rectangle,
and Un

j is the biggest possible unstable leaf segment contained in the
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Figure 8. The rectangles R and fnR.

union of the unstable boundaries of Markov rectangles and intersecting
Jn

j .
(iii) Mn

j intersects Mn
j+1 only along a common stable boundary, and Mn

i ∩Mn
j =

∅ if |j − i| � 1.

Let Θa
n be the set of j ∈ {1, . . . , m(n) − 1} such that Jn

j and Jn
j+1 are contained

in the domain Iι, and let Θb
n be equal to {0, . . . , m(n)− 1} \Θa

n. Since the number
of Markov rectangles is finite, the cardinality of the set Θb

n is uniformly bounded
independently of n.

Set In
j = f−nJn

j . Then we can decompose h as the composition hn,m−1◦. . .◦hn,0,
where hn,j is the basic holonomy between Ij and Ij+1 defined by R. Now consider
the holonomies gn,j = fn◦hn,j ◦f−n : Jn

j −→ Jn
j+1 and observe that since f is affine

in the HR structure, rd(hn,j , I
n
j ) = rd(gn,j , J

n
j ) and crd(hn,j , I

n
j ) = crd(gn,j , J

n
j ).

Furthermore, if j ∈ Θa
n, then gn,j belongs to the complete system of holonomies.

Let us first consider the case where HDs < 1. By hypotheses, for every j ∈ Θa
n we

have ∑
j∈Θa

n

∣∣rd(
gn,j , J

n
j

)∣∣ �
∑

j∈Θa
n

χ
(
r
(
Jn

j , �
(
xn

j , Rn
j

)))
,

where xn
j is an endpoint of Jn

j , Rn
j is a Markov rectangle containing xn

j , and the
positive function χ is independent of h and χ(t) = o (tHDs

). From inequality (3.2),
for every j ∈ Θb

n we get
∑

j∈Θb
n

∣∣rd(
hn,j , I

n
j

)∣∣ �
∑

j∈Θb
n

O
(
dΛ

(
In
j , In

j+1

)α)
.
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Therefore,

|rd(h, I)| �
m−1∑
j=0

∣∣rd(
hn,j , I

n
j

)∣∣

�
∑

j∈Θb
n

∣∣rd(
hn,j , I

n
j

)∣∣ +
∑

j∈Θa
n

∣∣rd(
gn,j , J

n
j

)∣∣

�
∑

j∈Θb
n

O
(
dΛ

(
In
j , In

j+1

)α)
+

∑
j∈Θa

n

χ
(
r
(
Jn

j , �
(
xn

j , Rn
j

)))
.

Now, we note that
r
(
Jn

j , �
(
xn

j , Rn
j

))
� O(|Kn

j |),
where Kn

j = πs(Jn
j ) is the projection of Jn

j into the train-track Bs under πs, and
the size |Kn

j | of Kn
j is measured in any chart of the bounded atlas B(rs) of Bs.

Therefore,

|rd(h, I)| �
∑

j∈Θb
n

O
(
dΛ

(
In
j , In

j+1

)α)
+

∑
j∈Θa

n

χ̂
(∣∣Kn

j

∣∣), (4.2)

where χ̂ is a positive function independent of h, and χ̂(t)= o
(
tHDs)

. In the case
where HDs = 1, a similar argument gives

|crdh,I | �
∑

j∈Θb
n

O
(
dΛ

(
In
j , In

j+1

)α)
+

∑
j∈Θa

n

C1χ̂
(∣∣Kn

j

∣∣), (4.3)

where χ̂ is a positive function independent of h and χ̂(t) = o(t). We now show
that the right-hand sides of (4.2) and (4.3) tend to zero as n tends to infinity and
thus that the left-hand sides are zero. For every j ∈ Θb

n, the distance dΛ(In
j , In

j+1)
converges to zero when n tends to infinity, and since the cardinal of Θb

n is uniformly
bounded independently of n, we get∑

j∈Θb
n

O
(
dΛ

(
In
j , In

j+1

)α)
→ 0 (4.4)

when n tends to infinity. Now we are going to prove that
∑

j∈Θa
n

χ(|Kn
j |) also

converges to zero when n tends to infinity. Since R has the property that every
spanning stable leaf segment of R is either contained inside a single primary cylinder
or inside the union of two touching primary cylinders, we obtain that the train-track
segments Kn

j can only intersect in endpoints, and moreover each of them is either
contained in an n-cylinder or two adjacent n-cylinders of the Markov map ms on
Bs. Hence, using (4.1), there is a continuous positive function η with η(0) = 0 such
that ∑

j∈Θa
n

χ
(∣∣Kn

j

∣∣) � η(νn)
∑

n−cyls

|Cn|HDs
, (4.5)

where the sum on the right-hand side is over all n-cylinders. By Proposition 3, there
is an mι-invariant probability measure µ and a positive constant C1 such that∑

n−cyls

|Cn|HDs � C1

∑
n−cyls

µ(Cn) � C1. (4.6)

Putting together (4.5) and (4.6), we get∑
j∈Θa

n

χ
(∣∣Kn

j

∣∣) → 0 (4.7)
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when n tends to infinity. If HDs < 1, applying (4.4) and (4.7) to (4.2), we get
rd(h, I)= 0. Therefore, h is affine on I, which completes the proof for this case.
If HDs = 1, applying (4.4) and (4.7) to (4.3), we get crd(h, I)= 0. Therefore, h is
Möbius on I and extends to a Möbius homeomorphism of the global leaf, where the
affine structures of the global leaves are determined by the invariance of the affine
structures under iteration by f . Since a Möbius homeomorphism of R is an affine
map, the holonomy maps h are affine.

5. Existence of affine models

Lemma 2 (existence of affine models). If rs has C1,HDs
distortion and ru has

C1,HDu
distortion, then there is a hyperbolic affine model for g on Λ̂ which is

topological conjugated to f on Λ and is such that the HR-structures are the same,
(that is, rι(x, y, z) = rι

g(ψx, ψy, ψz) for ι∈{s, u}, where ψ : Λ−→ Λ̂ is the conjugacy
between f and g).

In Lemma 2, (rs, ru) is any HR-structure and not necessarily the HR structure
determined by f .

Proof of Lemma 2. Let {R1, . . . , Rk} be a Markov partition for f . For every
Markov rectangle Rm, we take a rectangle Mm ⊃Rm which contains a small
neigbourhood of Rm with respect to the distance dΛ. We construct an orthogonal
chart im : Mm −→ R

2 as follows. Choose an x ∈ Mm and let es : �s(x,Mm) −→ R

be in A(rs) and eu : �u(x,Mm) −→ R be in A(ru). The orthogonal chart im on Mm

is now given by im(z) = (es([z, x]), eu([x, z])) ∈ R
2.

Let φm,n : im (Mm ∩ Mn) −→ ik (Mm ∩ Mn) be the map defined by φm,n(x) =
im ◦ i−1

n (x). By Theorem 2, the stable and unstable holonomies have affine
extensions with respect to the charts in A(rs) and A(ru). Hence there is a unique
affine extension Φm,n : R

2 −→ R
2 of φm,n. This extension sends vertical lines into

vertical lines and horizontal lines into horizontal lines.
Let us denote by Sm the rectangle in R

2 whose boundary contains the image
under im of the boundary of Rm. For every pair of Markov rectangles Rm and
Rn which intersect in a partial side Im,n = Rm ∩ Rn, let Jm,n and Jn,m be the
smallest line segments containing the sets im(Im,n) and in(Im,n) respectively. We
call Jm,n and Jn,m partial sides. Hence Jm,n = Φ(Jn,m). Let R̃ =

⊔k
m=1 Sm/{Φm,n}

be the disjoint union of the squares, Sm where we identify two points x∈ Jm,n and
y ∈ Jn,m if Φn,m(x)= y. Hence R̃ is a topological surface, possibly with boundary.
By taking appropriate extensions Em of the rectangles Sm and using the maps
Φm,n to determine the identifications along the boundaries, we get a surface R̂ =⊔k

m=1 Em/{Φm,n} without boundary. The surface R̂ has a natural affine atlas that
we now describe. If a point z is contained in the interior of Em, then we take a small
open neighbourhood Uz of z contained in Em and we define a chart uz : Uz −→ R

2

as being the inclusion of Uz ∩Em into R
2. Otherwise z is contained in a boundary

of two, three or four sets Em1 , . . . , Emk
, which we order such that the Jmi ,mi+1 are

partial sides. In this case, for a small open neighbourhood Uz of z, we define the
chart uz : Uz −→ R

2 as follows.
(i) uz| (Uz ∩ Emk

) is the inclusion of Uz ∩ Emk
into R

2.
(ii) uz| (Uz ∩ Ej) = Φmk−1,mk

◦ . . . ◦ Φmj ,mj+1 for j ∈ {1, . . . , k − 1}.
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Since the maps Φm1,m2 , . . . ,Φmk−1,mk
and Φmk ,m1 are affine, we deduce that the

set of all these charts form an affine atlas S on M̂ .
Let ψ : Λ −→ Λ̂ be the natural embedding of Λ into M̂ , and let G : Λ̂−→ Λ̂ be the

map G = ψ ◦ f ◦ψ−1 conjugate to f . For every x ∈ Λ̂, we take charts u : U −→ R
2

and v : V −→ R in the affine atlas S such that x ∈ U and f̂x ∈ V . Since G along
leaves and also the holonomies have affine extensions with respect to the charts in
A(rs) and A(ru), the map v ◦ f̂ ◦u−1 has a unique affine extension gx to R

2. These
affine extensions determine a unique affine extension g of G to an open set of M̂ .

The maps gx send horizontal lines into horizontal lines and vertical lines into
vertical lines. Furthermore, ggn x ◦ . . . ◦ gx contracts horizontal lines exponentially
fast and expands vertical lines exponentially fast with respect to any fixed finite set
of charts in S covering M̂ . Hence g is hyperbolic on Λ̂ and the image under these
charts of the stable and unstable leaves are contained in horizontal and vertical
lines respectively.

Since the holonomies have affine extensions with respect to the charts in A(rs)
and A(ru), they also have affine extensions along leaves with respect to the charts in
this affine atlas. By construction of the affine model for g on Λ̂, we get rι(x, y, z) =
rι
g(ψx, ψy, ψz) for ι ∈ {s, u}.

6. Proof of the hyperbolic and Anosov rigidity

Here we show how to use the fundamental rigidity lemma and the existence of
affine models (Lemma 2) to prove Theorem 1 and Corollary 1.

Proof of Theorem 1. By Proposition 2, f determines on Λ an HR-structure
(rs, ru). Let ι ∈ {s, u}. By Lemma 1, rι has C1,HDι

distortion. By Theorem 2,
all the ι-basic holonomies are affine with respect to the atlas A(rι). Hence, by
Lemma 2, there is a diffeomorphism g with a hyperbolic invariant set Λ̂ and a
hyperbolic affine model for g on Λ̂ such that there is a conjugacy between f and g
such that rι

f (x, y, z) = rι
g(ψx, ψy, ψz) for ι ∈ {s, u}. By Proposition 2, we get f is

C1+ conjugated to g.

Before proving Corollary 1, we state a proposition due to Journé [12] that we
will use in the proof.

Proposition 4. If f is a continuous function in an open set V ⊂ R
2 which is

Cr along the leaves of two transverse foliations with uniformly smooth leaves, then
f is Cr.

We note that Corollary 1 also follows from the fact that the holonomies and f
are affine with respect to the atlases A(rs) and A(ru) (see the proof of Theorem 1)
and [8, Corollary 3.3].

Proof of Corollary 1. If f : M−→M is a Cr surface Anosov diffeomorphism,
then Λ = M . By [6, 7, 14, 16], there is a unique hyperbolic toral automorphism f̂ :
M̂−→M̂ topologically conjugate to f . By Theorem 1, there is a C1+ conjugacy ψ :
M−→M̂ between f and f̂ . By Proposition 2, we have rι

f (x, y, z) = rι
f̂
(ψx, ψy, ψz)

for ι ∈ {s, u}. By a somewhat standard blow-down–blow-up argument, we get ψ is
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Cr along stable and unstable leaves (see [15, 22]). Hence, by Proposition 4, ψ is
Cr.
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Appendix A. Proof of Lemma 3

In this appendix we prove Lemma 3, which is used in the proof of Lemma 1.
For a complete discussion on the relations between smoothness of diffeomor-

phisms and cross-ratio distortions, see [15, 22].
Let θ : J −→K be either a holonomy h or fι, and let J and K be ι-leaf segments.

Let I0, I1, I2 ⊂ J be leaf n-cylinders such that I0 is adjacent to I1, and I1 is adjacent
to I2 and I = I0∪I1∪I2. Let Aι(ρ) be an ι-lamination atlas induced by a Riemannian
metric ρ on the surface, and let |I ′| = |I ′|ρ for every ι-leaf segment I ′. We define
B(I0, I1, I2) and Bθ(I0, I1, I2) as follows. Let

B(I0, I1, I2) =
|I1||I|
|I0||I2|

Bθ(I0, I1, I2) =
|θI1||θI|
|θI0||θI2|

.

We define the cross-ratio distortion crdθ,ρ(I0, I1, I2) of θ with respect to Aι(ρ) by

crdθ,ρ(I0, I1, I2) = log(1 + Bθ(I0, I1, I2)) − log(1 + B(I0, I1, I2)).

We note that for ε > 0, a C2+ε diffeomorphism θ is a C1,1 diffeomorphism (see
[15]).

Lemma 3. Let θ : J ⊂ R −→ K ⊂ R be a C1,1 diffeomorphism with respect to
the atlas A(ρ). Then

crdθ,ρ(I0, I1, I2) � o(|I|)

for all n � 1 and for all n-cylinders I0, I1, I2 ∈ J such that I0 is adjacent to I1, I1

is adjacent to I2, and I = I0 ∪ I1 ∪ I2.

Proof. By [15, theorem, p. 294], we get

|Bθ(I0, I1, I2) − B(I0, I1, I2)| � o(|I|B(I0, I1, I2)). (A.1)

Therefore,

|crdθ,ρ(I0, I1, I2)| =
∣∣∣∣log

(
1 +

Bθ(I0, I1, I2) − B(I0, I1, I2)
1 + B(I0, I1, I2)

)∣∣∣∣
� o

(
|I|B(I0, I1, I2)
1 + B(I0, I1, I2)

)
� o (|I|).
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