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ABSTRACT

This thesis offers several contributions to the homotopy
theory of mapping spaces. These contributions fall naturally
into two groups. Accordingly the thesis is divided into two
parts: |

Part I ¢ Spaces of continuous maps;

Part II : Speces of differentiable maps.

Part I is mainly devoted ;o a study of the ipath-) components
in a given space of continuous mups. We show that a rich varlety
of homotopy types is possible thereby extending earlier
fragmentary results of G.W.Whitehead, Hu and Koh in the same
direction. As a new type of result we produce lots of examples of
components which have the same homotopy type for noh trivial
reasons. In certain favourable cases, e.g. in a space of maps of
a sphere into itself, we solve completely the homotopy problem
for the set of components. The study of the components in a space
of continuous maps 1s closely related to the study of certain
evaluation fibrations. For these evaluation fibrations we obtain
strong results on the fibre homotopy type. The methods to obtain
the results mentioned above involve Whitehead products and in.
particular a fundamental theorem of G.W.Whitehead, which describes
the boundary operator in the homotopy seguence of an evaluation
fibration in terms of such products. In the final chapter of
Part I, Chapter 4, we prove a variation of a theqrem of Federer
and, independently, Thom on the qualitative structure of the
homotopy groups of a mapping space.

In Part II we study the homotopy properties of a space aof
differentiable exbeddings or k-mersions from a compact smooth
manifold into either an infinite dimensional smooth manifold or

a closed expanding system of finite dimensional smooth manifolds

of increasing dimension. Such a study is naturally motivated
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by the work of Eells, Elworthy and Mukherjea according to
which many infinite dimensional smooth manifolds are homotopy
direct limits of closed expanuing systems of finite dimensional
smooth submanifolds of Increasing dimension. Briefly stated,
we show that a space of embeddings or k-mersions with infinite
dimensional target, or the appropriate induced limit space over
an expanding syster of finite dimensional manifolds in the target
has the same homotopy type as the naturally assoclated space of
continuous maps. Using these results we prove that the functors
we get in the target, when we fix the domaih in a space of
embeddings or k-mersions, "commute" with the homotopy direct
limits given by the results of Eells, Elworthy and Mukherjea.
As an application of these limit theorems we classify the k-mersions
from a compact smooth manifold into a smooth (infinite dimensional)
pseudo Fredholm manifold in the spirit of the Smale-Hirsch theory
for immersions in finite dimensions. The class of pseudo
Fredholm manifolds contains e.g. the class of separable Hilbert
manifolds. We obtain hereby a strict analogue to a theorem in
finiie dimensions due to S.D.Feit and independently Gromov.
As an application of our results for spaces of embeddings we
construct models for the classifying space of a diffeomorphism
EI'OUD o Preliminary to all the limit arguments in Part II we study
in Chapter 6 the limit space of a closed expanding system of
manifolds or ANR's. We show that such a limit space usually is

not metrizable, in particular it is not an ANR. It has however‘
the homotopy type of an ANR. This result is crucial, since we
in many places want to apply a fundamental theorem of J.H.C.
¥hitehead, according to which a weak homotopy equivalence between

ANR's is a homotopy eguivalence.
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INTROLUCTION

In this thesis we shall treat certain aspects of the Lomotopy
theory of mapping spaces, We shall treat both spaces of continuous
maps and spaces of differentisble maps. Since the methods snd the
results for the two cases are of a quite different nature, the
. thesis is naturally divided into two parts.

Before we'enter into a description of the two parts separately
let us discuss a l%ttle why there should be any interest atall in
the topology, in particular the homotopy theory, of mapping spaces.:

From an early stage of topology mapping spaces have received
attention. The study of path spaces and loop spaces has occupled
many topologists: already around 1930 path spaces entered into the
study of geodesics on Kiemannian manifolds in a significant way,
notably through the work of M.Morse in America and Lusternik and
Schnirelmann in Russia; spectral seguences (Leray, Serre) were
invented for thelir study; Bott studied the double loop space of
the stable unitary group in his original proof of the periodicity
theorem; every H-space is homotopy equivalent to the loop space
of its classifying space etc. Turning to more general mapping
spaces we cian mention that the study of the space of Lomotopy
equivalences on a sphere is important e.g. in the study of spherical
fibrations unuer fibre homotopy eguivalence. Along the same lines
knowledge about the structure of certain homeomorphlism groups
(diffeomorphism groups) find applications in guestions concerning |
reduction of the structural group in certain locally trivial
fibrations (differentiable fibrations). Many other examples could
have been mentioned.

In the 1950's it was formally recognized that mapping spaces
often have the structure of infinite dimensional manifolds and that
they are the proper settin, for variational probvlens, Morse theory
on infinite dimensional manifolds. This development was mainly
due to Eells, Sampson, Palais and Smgle in America and Al'ber, Fet

v .
and Svarc in Russia., bee -e.Z. the surveys of Eells (22 j and
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Al'ver [3]. Along with the successes in variational theory the
fruitful interaction between the study of variational problems
and the study of the topology of mapping spaces, which as already
indicated had existed for a long time, was further stimulated.
To mention an example of the use of topological results in
variational theory let us take the theorem of Gromoll and Meyer
[36], which states that if the space of circles (the free loop
space) on a complqte Riemannian manifold M has unbounded Betti
numbers then M admits infinitely many geometrical distinct closed
geodesics. Using the Serre spectral segquence this condition on
the space of circles has been verified in many cases by P.Klein [54)
On the other hand methods from variational theory have given strong
results on the topology of mupping spaces, in particular if the
target is a manifold which admits a Riemannian metric with negative
sectional curvature. See e.g. Eells and Sampson [27) and Al'ver[3}

The discovery that mapping spaces often have the structure of
infinite dimensional manifolds led gquite naturally to an abstract
study of these manifolds. In this study it has turned out that .
for infinite dimensional manifolds the whole topological structure,
homeomorphism type or in the differentiable case even diffeomorphism
type, 1is combletely determined by the homotopy type. See e.g. the
contributions to the Nice congress by Anderson (4], Eells and
Elworthy [26], Kuiper [59] and Palais [76].

There 1is therefore plenty of motivation to study the homotopy
theory of mapping spaces and we can then safely turn to a

description of the content of this thesis.

Part 1 consists of Chapters 1 - 4. Chapter 1 is of a
preliminary character; we introduce the basic terminology, recall

a fundamental theorew of G.W.Vhiteheaa (Theorem 1.3.1) and
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state some facts about certain Whitehead products in spheres.

The buckground for Part 1 can be set as follows. Let K and X

be sufficiently nice connected topological spaces, e.g. ANR's or

CW-complexes, with K locally compacte. A homotopy of maps from K
into X can then be descrited as a path in the space of continuous

maps G(K,X) from K into X, equipped with the compact-open topology.

We are therefore i@mediately led to study the (path-)components

in a mapping space.

If X and X have base points the number of components in
G(K,X) is given by the set of based homotopy classes of based
maps =(K,X). For K % s™, the m-sphere, this simply is the m'th
honotopy group mh(x) of X, and the structure of this group is
well-known in many cases,. If we e.g. take X = Sn, ﬂn(Sn) is
infinite cyelic so that G(Sn,Sn) in this case has a countable

number of components. It is now a typical problem in topology
to divide such a collection of spaces into homotopy types. The
main results in Part I will be concerned with problems of this
nature. If aex(K,X) is a homotopy class, let GQ(K,X) denote

the component in G(K,X) containing the maps in a. In particular
GO(K,X) denotes the component containing the constant maps, and

ifK=X=Sn,GL

(sP,s™) denotes the component containing the
n , _

. identity map. Here ‘n is the standard notation for the generator

of xn(Sn) represented by the identity map on S®. We shall then

€.g. prove

Theorem (3.3.1) Consider the mapping spaces G(Sn,Sn) for n # 1 and

let «,B em (s7).

n_even, The components Ga(Sn,Sn) and GB(Sn,Sn) are
homotopy equivalent if and only ifa= % g,

n odd. G, (s®,5™) is homotype equivalent to Go(sn,Sn) if

deg o 18 even and to G, (Sn,Sn) if deg o is odd. Furthermore,
. n
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Go(Sn,Sn) and G (s™,8™) are homotopy equivalent if and only if
n
n=1,3,7.

This theorem has a certain amount of history. In 1946
G.W.Whitehead [91 ] showed that GO(SZ,SQ) and G, (82,82) are not
homotopy equivalent. This might have been somezsort of a

surprise at the time, since components in spaces of based maps

do have the same hbmotopy type (Theorem 1.2.2). Also in 1946
S.T.Hu [47] showed that xl(Ga(Sz,s?)) ) zz-ldegd’ the cyelic group
of order 2+|cdegual, thus in particular proving the theorem for
n = 2. After some work of a slightly different nature of Wada [89]
in the 1950's, S.S.Koh [55] proved in 1960 the result in the
theorem for n = 2,4,6,8,10,12,14, Y.oh also proved that
Ga(Sn, S™) and GB(SD,SD) have different homotopy type for n odd

if deg a- degPls odd and n ¢ 1,3,7. The above theorem thus
greatly extends these results and gives, in fact, the complete
solution to the homotopy problem for the components in G(Sn,Sn).

In the results of Wnitehead, Hu and Koh the emphasis was to

show that components have different homotopy type. In our
theorem we see that it can happen that two compaents G (K,X) and
GF(K,X) have the same homotopy type fer non-trivial reasons.
Trivial reasons being that K is a suspension and eithera = * 8
" (Theorem 1.2.1) or X is an H-space with a homotopy unit
(Corollary 2.3.2). We belileve therefore that this is the main
contribution'of our theorem.,

The component Gy (K,X) is closely linked to the Hurewicz
fibration p  : Gd(K,X) -+ X, also denoted (Gd(K,X), RQ,X), defined
by evaluation at the base point of K. Since the fibration has
more structure than the component we can expect to prove stronger
theorems about the former which might be helpful in the study of
the latﬁer. In Chapter 2 we study therefore these fibrations,
called evaluation fibrations, in some detail. We touch upon

tberquestions : 1) When do they have sections?, 2) ‘“hen are they



decomposable? 3) When are two evaluation fibrations fibre
homotopy equivalent? and finally 4) When are two evaluation
fibrations strongly fibre homotopy equivalent? Let us give
éxamples of our theorems, often stated in a slightly less general
form than in the text. Observe that (GO(K,X), po,X) trivially

has a section.

Theorem (2.1.1 and 2.3.1). Suppose m > n 2 1 and let
a € xm(sn). Trhen the following statements are equivalent:
1) (qq(sm,sn), Pys S7) and (o {s",s™), D,s S') are fibre
homotopy equivalent.
~ m . n , N .
2) (64(87,87), pys S) has a section.

3) The Whitehead product[a,. ]= 0.

Let Fo(Sm,Sn) cenote the fibre for the evaluation fibration
(Go(sm,Sn), D> s™). FO(Sm, s™) 1s then just the space of

brsed maps homotopic to the constant map.

Theorem (2.2.3). Let 1 € k < n and 1 € m and suppose that the
gset of Whitehead products [xn(sn), xk+m(sn)]# 0.

Then (Go(sm,sn), Py s™) 1s not decomposable, i.e.
Go(Sm,Sn) does not have the same homotopy type as s™ x Fo(Sm,Sn).

In particular (GO(Sm,Sn), Py» s™) 1s not fibre homotopically trivial,

The condition [xn(sn), xk+m(Sn)] £ 0 1s satisfied so often
that it could very well be that (GO(Sm,Sn), po,Sn) only is
decomposable for n = 1,3,7. So far, I have however been
unable to prove this.

Theorem (2.3.3) Let m2 n 2 1 and let a,Bexm(Sn).
Cep M N n
lf.ta,bn] + *[Byv ] then (G (s7,87), p,, 8") and

(G“ Sm,Sn), pB,Sn) are fibre homotopy eqguivalent.
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llere the author knows of no exarple where
R <N o m .n n
[ayLn] £ [Bytn] and (Ga(b »57) Py» ® ) and (GB(S »S ):Pﬁos )
still are fibre homotopy eyuivalent.
If we introduce the notion of strong fibre homotopy

equivalence (lLefinition 2.4.2) we have hLowever

Theoren (2.4.3) Let m > n » 1 and let aex (8"). Then
we have
(Gu(smtsn)’ Pao Sn) and (GB(sm9Sn)v Pﬁo Sn) are

strongly fibre homotopy equivalent if and only ifﬁl.bn] =[5, Ln]'

From 211 these theorems it 1is appzrent that the Whitehead
prouuct[a,bn] is a very strong characteristic class for the

fibration (G, (8",87), pg,s").

In Chapter 3 we study then the homotopy problem for the
components in a space of maps between spheres. ’e need here
the results from Chapter 2 as well as a fundamental result of
G.W.Whitehead (Theorem 1.3.1), which describes the boundary
operator in the homotopy secuence for the evaluation fibration
(Ga(Sm,X),pu,X) in terns of Whitehead pro@ucts. As an
application we obtain the complete solution of the howotopy
problem for the components in the mapping spaces G(Sn,Sn) stated
earlier in this introduction. Likewise we give the complete
solution to the homotopy problem for the components in the
rapping spaces G(Sn+l,8n) (Theorem 3.3.2). 4As a particularly
interesting thing it turns out that the countable number of
components in G(Sj,sz) all have the same homotopy type. This
will follow from the following characterization of the homotopy
type of the component Go(Sm,Sn) among all the components in

G(Sm’sn) .
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Theorem (3.2.1) Suppose m > n > 1 and let ¢ evh(Sn). Then
the following statements are equivalent:
1) Ga(sm,sn) and GO(Sm,Sn) are homotopy eguivalent.

2)  The ‘hitehead product [a,i,] = 0.

In the final chapter of Part I, Chapter L4, we consider a
different type of problem. e investigate here the qualitative
structure of the'hopotopy groups of a mapping space from a finite
CW-conplex K into a space X. We shall prove the following

variation of a theorem of Federer [32] and independently Thom [87].

Theorem (L.2.2) Let K be a finite CW-complex of dimension <m
and iet X be an srbitrary topological space. Suppose that all
the homotopy groups of X 1n dimension 1 with i in the interval
io <1< 1o+m for io 2 2 belong to a given Serre class a or
abellan groups.

Then all the homotopy groups of G(X,X) in dimension i,

belong to a

Federer and Thom do not need K to be a finite but only
something like a finite dimensional CW-complex, On the other
hand Federer needs X to be simple and both Federer and Thom
neced the integral cohomology groups of K to belong to CZ.

The formulation of our'theorem is also slightly more general
than theirs; and the proof we give is completely elementary.
Thom proves his version of the theorem using a Postnikov
uecomposition of X. Federer gives his version as an application
of the construction of a certain spectral sequence.

Our method of probf is closest to that of Federer. We use
a filtration of K to construct a tower of Hurewicz fibrations

in vhich we can identify the fibres with certain iterated loop
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spaces of the target. With this tower at our disposal the
proof of the theorem is immediate.
Finally, in Chapter L4, §3 we give an example of a mapping
¢pace for which the fundamental group is infinitely generated
although all the homotopy groups of the target are finitely

generated.

We turn now to, a description of Part II, which consists
of Chapters 5 - 8. ,‘

The original motivation behind‘Part JI was to extend the
classification theorem for k-mersions from a compact smooth
minifold M 1into a finite dimensional smooth manifold X, due to
S.D. Feit and independently Gromov, to infinite dimensional X.
Later many other sources of motivation transpired but it is still
fairly descriptive to consider Part 1I from the point of view of
this theorem.  Let us therefore briefly recall the theorem of
Feit and Gromov.

Let I be a compact smooth manifold with boundary (which
might be empty), and let X be a finite dimensionai metrizable
smooth manifold without boundary. Let also 2 § P € » and 0 < k.
Denote by CP(M,X;k) the space of k-mersions of class cT from M into
X. Recall, that a k-mersion is a differentiable map of rank . 3k

everywhere, Lenote by Hom(TM;TX;k) the space of bundle maps
from the tangent bundle of M 1into the tangent bundle of X of
rank 3k on each fibre., Equip CT(M,X;k) with the C'=topology

‘and Hom (TM,TX;k) with the compact-open topology.

Theoren Suppose that k < dim X, Then the differential map
d: c¥(¥,X;k) - Hom(TM,TX;k)

is a homotopy equivalence.

This is, as already mentioned, & theorem of S.L.Feit [33]
and independently Gromov {37]. It generalizes the Smale-Hirsch



theory for immersions. See the survey by Smale [83] for the

early history of the immersion theorem and the introduction
to t he paper of Felt for references to the later developments.
An account of the work of Gromov can be found in the papers of
Poénary [78] and Haefliger [39 1.

Usually the statement in the theorem is just that 4 1is
a weak homotopy equivalence, but since kK 1is compact both the
mappning spaces are AlR's and hence a weak homotopy equivalence
is automatically a homotopy eguivalence by a fundamental theorem
of J.H.C.Whitehead. The theorem with weak homotopy eguivalence
is also true for M an open manifold without the restriction on k.

Although the main trouble in proving the theorem in finite
dimensions lies on the domain, the local compactness of the tar:et
is used in the essential step. Hence the finite dimensional proof
coes not immediately generalize to infinite dimensional targets.
Since Mukherjea ( [69] or [70]) has shown that many infinite
dimensional manifolds up to homotopy type are the direct limits
of closed expanding systems of finite dimensional submanifolds,
it is natural to try to use a limit argument to extend the theorem
of Feit and Gromov from finite to infinite dimensional targets.

To carry this program through and in particular to investigate
how manping spaces like Cr(M,X;k) and Hom(TM,TX;k) behave
w.r.t. homotopy direct limits in the target is just what Part II
is all about.

Let us now describe the content of Part II in a little more
detail. Chapter 5 contains the 5asic definitions, some
preliminary material on ANR's and a discussion of the manifold
structure on a space of maps. e state the fundamental theorem
of J.H.C.Whitehead (Theorem 5.2.4) already mentioned above, and
we give in Theorem 5.3.2 a slight extension of a theorem of Palais,
according to which the homotopy type of a space of differentiable

neps does not depend on the degree of differentiability.
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As an introduction to all our limit arguments in later
chapters we study in Chapter 6 the limit space of a CHES (closed
expanding system). Basieally a Cs8 is just a sequence of
inclusions of topological spaces

X C X C..'CX Cooo,
n, no+l n
- ~ v
such that Xn is a closed subspace of el for each n >n,. The
limit space for such a system, denoted by g“, is defined as the

union
nPno n
with the weak topology (direct limit topology) w.r.t. the subspaces
X .

n -

I1f R” denotes the topological vector space of finitely

non-zero real sequences (x-n)n 51 topologized with the finite
topology (the weak topology w.r.t. the system of finite dimensional

subspaces), then we can state the main theorem in Chapter 6 as

follows,

Theorem (6.2.5) Let Xno c Xno+1 C vee € X Cose be a

CES of finite dimensional topological manifolds of increasing
dimension, such that Xn is a locally flat submanifold of Xn+l

for each n # n,.

Then X ,, is a topological manifold modelled on K.

Notice here, that we always assume manifolds are Hausdorff
spaces, The statement in Theorem 6.2.5. includes therefore
that X ,,1s a Hausdorff space. Usually 5u’w111, in fact, be
paracompact (Remark 6.2.7).

Since R” is not metrizable, X ,1s not metrizable, in particular
it 1s not an ANR for the class of metrizable spaces,

Theorem 6.2.5 should therefore be compared with
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Theorem (Corollary 6.3.4) Let Xno c Xno+l Ceve X C oo
be a CiS of ANR's.

Then gwpas the homotopy type of an ANR.

It is only the résults in §3 of Chapter 6, and mainly
Corollary 6.3.4, which will be used in Chapters 7 and 8.
Corollary 6.3.4 shows, that we will get no trouble from limit
spaces of AllR's when we want to apply the theorem of J.H.C. White-
head (Theorem 5.2.3). Trouble might have been expected after
the result in Theorem 6.2.5.

we shali now uescribe the material in Chapters 7 and 8.
Again let M ©be a compact smooth manifold with boundary, but
now let X be a finite or infinite dimensional metrizable smooth
manifold, which admits smooth partititions of unity. X shall
be without boundary. For 0 < r geo let c¥(M,X) denote the space
of differentiable maps of class ct. For 2 ¢ rgeeand 0 ¢ k

let‘jm(M,X) denote either the space of k-mersions Cr(M,X;k) or
the space of embeddings ExbY (M,X) of class ct. Equip all these
spaces with the cP-topology. Observe that ct(m,x;0) = cF(M,X)
and that the space of continuous maps in this context is denoted
by C°(M,X). As before Hom(TM,TX:k) denotes the space of bundle
. maps of rank 3k on each fibre equipped with the compact-open
topolosy.

Suppose from now on that { is infinite dimensional and
that it adaits a fijltration of finite dimensional smooth
submanifolds of increasing dimension

x C... an C...’

c X
n, no+1

each a closed submanifold in the next, such that the natural

map X

= X is a homotopy equivalence. Shortly, we say that X

is a smooth IDL (homotopy direct limit) of the smooth CES

PO ¢ Ceee C Xn, Ceee s We get then the following
n n

o o+1
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naturally induced CES's

T N
C (ln,Xno) C C (Ib,xno"‘l) C o0 C C (h.,Xn) C eee

3r(r,z,xno) c3’r(m,xno+1) C oo c:}’r(r.’.-,xn) C vee

and Hom(Ti\-l,TXno;k) c Ho:r.(Tl\i,TXno+1;k) C vee C Hom(TM,TXn;k) C eee

Let CT(M,X)_, ¥7(M,X)_ and lom(TN,TX;k), denote the limit
spaces for these systems.
The majorvparé of Chapter 7 and Chapter 8, §2 can be
summarized in this
Theorem All the maps in the following commutative diagram
of naturally induced maps are homotopy equivalences., To each

map we have attached the number of the appropriate theorem in

the text
Frlnx), =222 FTMX)
7.4.1 l . \[ 7.2.2
.2.2
CT(M,X)_ > ¢c"(,X)
7.4.2 l ' l 5.3.2 (Palais)
cO(M,X) > cO(n,X%
8.2.1

On our way to establish the results indicated in this
diagram we obtain many results of ihdependent interest. We
mention in particular Theorem 7.2.1, which generalizes the
classical immersion and embeddin; theorems of Whitney to
statements about the connectivities of the inclusion maps
c(u,%3k) » cF(M,X) and EwdT(K,X) - C'(M,X). In Chapter 7, §5
vve use our results 0.1 spaces of emwbeddings to construct models
for the classifying space of the diffeomorphism group of M.

In Chapter 8, §3 we study the behaviour of the bundle map
functor liom(Tii, ®*; k) w.r.t. direct limits. Suppose again thut

X 1s a smooth HDL of the smooth CES Xno - Xno+1 C oo chl Cose
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of finite dimensional manifolus of increusing dimension, tut
suppose now also, that

1) v X is dense in X.

n

2) It x € Xn(x) then the union of tangent spaces

Txxn is dense in the tan;ent space Txx of X at x € X.
n>n(x) :
A CES Xno c Xno+1 Ceee C Xn C +«es with these properties

is called a finité dimensional presentation of X. If X admits
a finite dimensional presentation, we say that X is a pseudo

Fredholm manifold. In Example 8.1.6 we indicate that a lot of
infinite dimensional smcoth manifolds, e.g. all separable Eilbert

manifolds, are pseudo Fredhiolm manifolas.

Theorem (&.3.1) Let X, X, 4

C ..‘CX C L J
o o n

be a finite dimensional presentation of the smooth pseudo

Fredholm manifold X. Then the natural map
Hom (TM,T&;k.)°° - Hom(TM,TX;k)
is a honiotopy equivalence.

Using Theorem 8.2.3 and Theorem S8.3.1 the following theorem

is an eas)y conszequence of the theorem of Feit and Gromov.

Theorem (8.4.1) Let ™ ve a compact smooth manifold and let X
be a smooth pseudo Fredholm manifold. Let also 0 £ kK € m and
25 r €oo,

Then the differential map
d: CT(i,X;k) » Hom(TH,TX;k)

1s a homotopy equivalence,

One could now ask why we should try to cxtend the thecrenm
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of Feit .nd Gromov to infinite dimcnsional targets as above.
Well, first of all it is one of the outstancing theorems in
differential topology and as such 1t deserves attention in its
own right. Secondly, infinite dimensional manifolds arise
guite naturally in the target by iteréﬁion of mapping spaces.
Su pose e.g. that X 1s a finite dimensional smooth manifold and
let Li (M,X) be the separable Hilbert manifold of Sobolev maps

2
Then we could maturally form Lg(m,Lﬁ (1,X);k), which is

(r > in ofder to get the manifold structure, see Eells[22])

homotopy eguivalent to CS(M,Cr(M,X); X). Thirdly, the bare
question of the existence of the theorem with infinite
dimensicnal target proved useful to us in stimulating us to
develop a limit technijue for mapping spaces, which hopefully
Acun have other applications,

Finally, we nmention that Part II to a large extent is
based on our papers [40],[41] and [42].



) PART 1

SPACES OF CONTINUOUS MAPS
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Chapter 1

~Preliminaypies te Part I.

In this chapter we introduce the basic terminology used
in Part I and construct certain maps relating various components
in a mapping space. Finally, we state for later reference a
fundamental thebrem of G.W.Whitehead and recall ceftain facts

about '""hitehead products in spheres.

§1 Basic Definitions,

In Part I K and X shall always denote sufficiently nice
topological spaces. Unless otherwise said we will for

simplicity stick to ANR's (Absolute Neighbourhood Retracts) or
CW-complexes, K and X shall be connected and ip addition K is
assumed to be locally compact. All spaces shall be eguipped
with o base point, indiscriminately denoted *, although it might
not come into play. Often X = SA and X = SB are assumed to be
(reduced) suspensions of ANR's (CV-complexes) A and B. Points
in a suspension will be denoted by their coordinates, like
[a,t Je sA.

x(¥,X) shall denote the set of based homotopy classes of
based maps ffom K into X. As usual we say that X is simple
w.r.t. K (m-simple, if K = S™ is the m-sphere), if the
fundamental group xl(x) acts trivially on %x(K,X). It is
well-tnown that simply connected spaces and H-spaces are simple
w.r.t. any space, Spaces with this property are just called
simple. We remark that spheres are simple. If a € x(K,X) 1is
a homotopy class, fa:K -+ X shall denote a representative for q.

F(K,X) shall denote the mapping space of based maps from K
into X. G(K,X) denotes the mapping space of free maps, no ‘
restriction on base points, from K into X. Both F(K,X) and
G(X,X) are equipped with the compact-open topology. |

The path-componcnts in F(K,X) are exactly the based homotopy
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classes of based maps, and the path-components in G(X,X)
are the free homotopy classes of free maps. Path-components
will from now on just be called components. Ifa € x(K;X)‘is
an arbitrary homotopy class FA(K,X) and GG(K,X) shall denote
the component in respectively F(K,X) and G(K,%) which contains
the maps in a. Notice that we also get all the components in
G(X,X) listed that vay since any free map is freely homotopic
to a based map. .
1t 1s well-known that evaluation at the base point of X
defines a Hurewicz fibration p: G(X,X) » X, i.e. p has the
zbsolute covering homotopy property. See e.g. Hu ([ us ],
Tneoren 13.1, p. 83). Observe that F(X,X) is the fibre of p.
Now let o € x(X,X). It is then clear that the restriction
of p 1o Ga(K,X) defines a Hurewicz fibration p,: ¢ (X,X) - X,
ulso denoted (G (K,X), py,X). Let F&(K,X) denote the fibre
of Dgy° F&(K,x) consists then of the based maps which are
freely homotopic to a map in a . It is clear that f&(K;X)
contains ESQK,X) but normally f;(K,X) will contaln several of
the components FB(K,X) for B € x (KyX). Only if X 1is simple
w.r.t. X, e.g. a sohere, we have El(K,X) = a(K’X)'
The Hurewicz fibration (G, (X,X), RQ’X) will be called the

evaluation fibration defined by a ex(XK,X).

The homotopy class in ®(¥X,X) containing the constant map
»ill be denoted 0, and for obvious reasons, anyvay if K = SA

is a suspension, 0 will be called the neutral element.

Accordingly FO(K,X) and GO(K,X) will be called the neutral component
in respectively F(X,X) and G(X,X), and (GO(K,X),pO,X) will be

called the neutral evaluation fibration.

Finally, SO:X - GO(K,X) shall denote the canonical section
for p,, i.e. so(y)(x) = y for every x € K and every ye X. As
we shall sce later on the existence of a section is a very

speciul property for the fibration (GO(K,X),pO,X).
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" 32 Evaluation fibrations defiped by a space of mappings with

g suspension as comsin.

In this section we assume that K = SA 1s & suspension. .
Then x(X,X) has a natural group structure defined by the
standard fornulas involving the suspension parameter. Using
tne suspension parameter in an analogceous vay we shall define
tvo maups relating the various evaluation fibrations defined
by X and X. |

For a,p & x(K,X) let Gu(K,X) 'xxGB(K,X)

denote the tribre product of the evaluation fibrations defined by

a and B. “e shall then define a map
+ 2 Ga(x,X) xxes(x,x) - Ga+‘3kK,X)

such that the tollowing diagram is commutative

0.(X,X) x _ G (K,X)

z///’ X \\\\\“
G, (K,X) Gai(x"‘) G (K, X)

pa a+B pB

Ir (£,g8) € Ga(x,x) xXGB(K,.‘Z) let (£ + g) € GG+B(K,X)

cenote the image under + and define £ + g by the standard formula

£([a,2t]) aeih, 0 gt <3

(£ + g)([a,yt]) =
s([a,2t-1]) ach $<stgl

This formula makes sense since f£(*) = g(*).

For a € = (X,X) we define a map




-18-

-1 @ (K,X) - G_a(K,X)

suel: that the following diagram i1s commutative

G (K, X) = 3 Ga(KX)

14

Ifr £ ¢ GQ(K;X) define (-f) € G_,(K,X) by the standard formulsa

vaeaA Vte [0,1) : (-£)(la,t]) = £(la,1 - t])
It is clear that -: GG(K,X) - G;G(K,X) is a bundle
homeomorphism with =:064(K,X) ~» G,(X,X) as inverse.
We get therefore in particular

Theorem 1.2.1 Suppose that K = SA is a suspension and let

a e M{K,X). Then Ga(K,X) and G_G(K,X) are homeororphic.

¥inally in this section we shall give an example of how the
oper.tions + and - will be brought into use.
The following theorem 1s a slight generalization of a result

due to G.W.Whitehead ([91], p. ubu)

'‘"neorem 1.2.2 Suppose that K = SA is a suspension. Then

Fa(K,X) and FO(K,X) have the same homotopy type for any o € x (K,X).
Proof Let fa,: K - X be a representative for ae n(K,X) and deftine
maps

P FO(K,X) —»FQ(K,X) and ¥ FG(K,X) —’FO(K,X)

by the formulas

f +f
(-fa) + g

Ve € F_(K,X) : o(f)
Ve € P (K,X) : ¥(g)

Using standard formrulas in homotopy theory it is easy to

prove that @ is a homotopy eguivalence with inverse V, See
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either ([91], p. 464) or Chapter 2, §3 for similar proofs.

§3 A fundasmental theorem of G.W,Whitehead and some facts about
Yhitehead products in spheres. | |

For the sake of future reference we state first a fundamental

theorem of G.W.Whitehead [91] (with a correction by J.H.C.Whitehead
{94]). This theorem of G.W.Whitehead will be of fundamental

importance to us in Chapter 2, §i4 and in most of Chapter 3,

Theorem 1.3,1 Let m » 1 and let a € xm(x) be a given homotopy

class with £  as representative. For any 1 > 1 we have then a

commutative diagram

d
e ) L xi(ia(sm,x),fa) -% (6 (8™,X),r) » ...

Pa =| Hy

xm+1(x9*)!

where éa is the boundary operator in the exact homotopy sequence
for the evaluation fibration defined by a, Ha is the Hurewicz
isomorphism and -pa is Whitehead product with a, i.e.

pa(B) = -[a,B] for every B E'i+l(x")'

Normally X will be m-simple, such that i"a(sm,x) = Fa(s‘“,x)'.
In this case all spaces involved in Theorem 1l.3.1 will be connected
and we do not need to specify base points in the homotopy groups.'
In order to give concrete applications of some of our results

in later chapters we need to know certain facts about Whitehead

products in spheres. We collect the facts we need here.
First we recall the definition of certain standard elements in
homotopy groups of spheres. L€ Wn(Sn) for n?» 1 is the element

n
represented by the identity map on SR, n, € xn+1(Sn) for

n ' n
n*2,v e xn+3(s ) for n> L and o € xn+7(s ) forn3> 8
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denote the elements represented by suspensions of the Hopf
maps 52 - 82, 87 - Su and 815 -+ 88 respectively. We remark,
. L n
that L generates Kn+1(8 ).
What we need i1s facts abcut the Wnitehead products

[an’ I,n] for q‘n = Ln’nn and ono

Theorem 1.3.2. Consider the Whitehead products [un,un] for n > 1.
' n
1) n even. [u ,t ] has infipite order in =®,,_,(S").
2) n odd. 2'[Ln,bn] = 0, Furthermore, [Ln,bn]= 0 if and

only if n = 1,3,7.

The result in Theorem 1.3.2 for n even and the fact that
2¢{v_,1 ] = 0 for n odd is cue to G.W.%¥hiteheaa [92] ,
strengthening results of Freudenthal. Itris part of the so-called
delicate suspension theorem. That [tn.tn] = 0 if and only if
n=1,3,7 is a consequence of Adam's solution of the Hopf invariant
1 probvlenm [2 ].

Coupiling results of Hilton [45], Hilton and J.H.C.Whitehead

[46] ana Manowald [63] we get

Theorem 1.,3,3 The Whitehead product [nn,bn] = 0 if and only if

n= 2,6 or n = 3 mod L.

The following theorem is a compilation of results of
Mahowald [63] and Kristensen and Madsen [57].
Theorem 1.3.4. Consider the Whitehead procducts [on.tn] for n > 8.
1) [opst,] = 0 for n =11 and n = 15 nod 16 '
2) [on,tn] $4 0 forn# 11,27 and n ¥ 15 mod 16.

It is presumably still an open question whether[027, L27]= 0
or ¥ 0,
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Several other results on Whitehead products [, ] for
certain a, € ﬂh(Sn) and a more detailed list of known results

on these products cun be found in Kristensen and Madsen [57].
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Chapter 2

Evaluation fibrations,

In this chapter we study evaluation fibrations. We touch
upon the guestions: 1) “hen do they have sections?, 2) VWhen is
a neutral evaluation fibration decomposable?, 3) When are two
evaluation fibrations fibre homotopy equivalent?, and finally,
4) Then are two evéluation fibrations strongly fibre homotopy
eguivalent?

For the case of spheres it will emerge that the Whitehead

product [a,tn] is a very strong characteristic class (in some

scnee) for the evaluation fibration defined by a €x (s™).

§1 Sections in evaluation fibrations,

e recall first the definition of generalized Whitehead

products.

L:t SA and UB be suspensions and let Y be an arbitrary space.
Let CA and CB denote the (reduced) cones on A and B and define
then the join A*B of A and B by A¥B = CAx B U A x CB, Lefine
in the obvious way a map W: A*B - SA v 8B from the Join A*B into
the wedge SA v SB, W 1s usually called the Whitehead map.
Since we are working with Alik's (CW-complexes), it is well-known

that the mapping cone CW for W is homotopy eguivalent to SA % SB.

See €Jfe (6] ana [81] for this rfact.

Suppose now that we are given homotopy classes a € %(SA,Y)
and B €%(SB,Y) represented by respectively £.: SA =Y and

fﬂ : SB Y. Consider then the composite map

A*D _‘3', SA v SB MY vY :Y,
where v-is the foldlng map. The homotopy class of this map
depends only on o and f and is denoted by (q BJ.
(s B] € M A*B,Y) is called the generalized Whitehead product

of a and B.
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Lenote by uy € x(X,X) the homotopy class represented by

the identity map of X. Then we have

Theorem 2,1,1. Suppose that K = SA and X = SB are suspensions

and let a ex(X,X). Then the following statements are equivalent:
1) The evaluation fibration (Gq(KsX), pasX) has a secticn.
2) The generalized Whitehead product [a,i,] € =%(A*B,X) is

Zero. '

Proof We observe first that the generalized Whitehead product

[a,tx] is zero if and only if there exists a map F_:Kx X - X such

that the following diagram is commutative

K x x\
Kv X ———3 X vX—>X
fd v lx v

Since Fa("X) is homotopic to £, for any X € X (one gets a
homotopy by moving x along a path to the wedge point) it follows
easlly that such a map Fa defines a section Sq 3 X = Ga(K,X) and
conversely, when 84 and Fa are related by the formula

Vy € x Vxex : s, (x)(y) = Fa(y»x)

This proves the theorem.

Let us finish this section with just one application.
Let n > 1. Since the Whitehead product [v ,u ] = 0 if

and only if n = 1,3,7 we get immediately

Corollary 2,1,2 The evaluation fibration

(G'.n(sn,Sn)oP;na S™) has a sectlon if and only if n = 1,3,7.
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§2 The structure of a neutral evaluation fibration.

Let ¥ 3 E & B ve a Serre fibration (p has the covering
&

homotopy property w.r.t. polyhedra) with section s. Following
James [51] we will say that this fibration is decomposable if E
and B X F have the same homotopy type. Observe that this 1s the
case, of course, vhen the fibration is fibre homotopically trivial.
In this section we shall investigate the class of neutral
evaluaﬁion fibrations w.r.t. the notion of decomposability.

First we mention

Theorem 2.2,1 Suppose that X is an H-space with a strict unit

element. Then the neutral evdluation fibration (GO(K,X),po,X)

is fibre hLomotopically trivial, in particular decomposable, for

any K.

Proof Suppose that the base point * € X is a unit element for the
imultiplication on X. For any x € X let Lx be left multiplication

with x. Défine then a map 0 over X, .

0
X x FO(K,X) *'GO(K,X)

o\ / -
X

by the formula
Vxex Ve er (k%) : 0 (x,f) =1, °f.

It is clear, that © is the identity map on the fibre over
* € X, in particular a homotopy equivalehce on that fibre. Hence
6 1is a fibre homotcpy equivalence by a fundamental theorem of

Dold ( [14] , Theorem 6.3). This proves the theorem.

The main object of this section is to shaw that the neutral

evaluation fibration
P

i o
Fo(s%x) =2 6 (s™x) &= x
’ o
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very celdom is decomposable.

Observe here, that if X is simple, then’Go(Sm,X) and
X x Fo(sm,x) have the same homotopy groups. This follows

easily, since the section s_ splits the homotopy sequence for

o)
the fibration. We need (m+l)-simplicity of X to get the
statement for =, see Eilenberg [28].

The results in this section rely heavily on the following

theorem of Federer ([32], §11, p 356).

Theorem 2,2.2 Letp > 1, g2 1 and m » 1 and suppose that the set
of Whitehead products [xp(x), LT (x)] # o.

Then the set of Whitehead products

[wP(G (s® .X)). % (a, (s®™,x))] # o.

Using this theorem we can easily prove.

Theorem 2,2.3 Let 1 <k < n and 1 € m and suppose that the set
- n '
of Whitehead products [, (8™), ®,0(s™] ¢ 0.
"Then the neutral evaluation fibration (Go(Sm,Sn),po,Sn) is

" not decomposable,

Proof By Federer's theorem fhe set of Whitehead products
[x,(c (s™8M), = (o (s%,8™))] ¢ o.

On the other hand the set ‘of Whitehead prbducts
(x,(s%x F(s",87)), = (s™x F (s",87)] = o,

. This 1is so, since nk(Sn) = 0 and since all Whitehead
products in F (S ,8®) vanish, F (S ,87) being an H-space.

G, (s ,Sn) and S% x F (Sm S®) must therefore have different

homotopy type and the theorem is proved.'

We give now some applications of Theorem 2.2.3. Eefore

~the first one observe that for 1< m <n Go(Sm,Sn) = G(Sm,sn).
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Corollary 2 . ‘Let 1 sm < n. Then the neutral evaluation
fibration (Go(Sm,Sn), po,Sn) is decomposable if and only if
n= 3,7

For n = 3,7 the fibration is even fibre homotopically triviel.
Proof For n = 3,7 s? §s an H-space with a strict unit and
hence (Go(Sm,Sn), po,Sn) is fibre homdtopically trivial by
Theorem 2.2.1.

For n % 3,7 {Ln,bn] $# 0 and hence the set of Whitehead

products [ﬂh(Sn), (s™ 1] ¢ 0. Therefore

M n-m) +1
(Go(Sm,Sn), D, Sn) is not decomposable for n # 3,7 by Theorem

Ce2e3e
Corollary 2.,2.5 Consider the neutral evaluation fibrations

(Go(Sn,Sn), po,Sn) for 1 < n.

1) For n = 1,3,7 (Go(Sn,Sn),po,Sn) is fibre hoff.otopically
trivial. - |

2) Forn 28, n# 11,27 and n ¥ 15 mod 16
(Go(sn,sn), S™) 1s not decomposable.
Proof 1) Follows from Theorem 2.2.1.

For n 28 let on € 7tn+7(sn) be the element represented by
suspensions of the Hopf map 815-"88. Then it is known, see.
Theorenm 1.3.&,. that [nn, onJ £ 0 forn+ 11, 27 and n ¥ 15 mod 16.
llence for these values of n,.we get that [ﬂh(sn),ﬂ7+n(8n)] £ 0.
2) follows now immediately from Theorem 2,.2,3.

Let us briefly make some remarks on the fibration
(Go(Sn,Sn), po,Sn) forn <8. Forn=1,3,7 it is fibre
homotopically trivial. Forn = 4,5 1t 1s not decomposable.
This can be shown using the Whitehead product [%ﬂ nrx]’ where 7 n
is the generator of'xn+l(Sn). For n = 2,6 the author does not
know whether it is cecomposable or not.
Using Theorem 2.3.3 and all known information on Whitehead

products we' cun prove that (G (s™, s™), I s") is not
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decomposable in many special cases. Ve shall ebstain from this
cince it 1s unlikely that we can get the complete solution to the

following probler using this method.

' n n
Problem Let 1 s n < nm, TLetermine vwhen (Go(Sm,S ) Dyr S ) is
decomposable.,
It is a tempting conjecture to suggest that (Go(sm,sn),po,sn)
is decomposable if,and only if n = 1,3,7, but I have no evidence

except for the résults above,

Finally in this section we touch upon the notion of brace
products introduced by Jumes in e.g. [50] and [51] . First we

recall the definition. Let F 3 E B B be a Serre fibration
v _

with section s, Chcose base points in F,E and B such that they are

~preserved by the maps i,p and s. Now let a Eﬂb(B) and.BfEﬂa(F)

with p2 1 and g 2 1 be given, Form the Whitehead product
[8,(a), §,(P)] emb+q_l(E). Since p,(ls,(a), 1 ,(B)]) =0
(p,5, = 0) and since 1, is a ronomorphism (the section s induces
a splitting of the homotopy sequence.of the fibration) there
exists a unique element {a, B} Axp+q_l(F) such that
1,({a,B8}) = [s,(a), 1,(8)]

ia,B}iis called the brace product of & and B,

For a space X with base point * € X and for m > 1 consider
FA(sm,x) and GO(Sm,X) with the constant map with value * € X as
base point, Furthermore, let
(<)

- m
m: ﬂi(EO(S X)) - ™ em

denote the lurewicz isomerphisi. '
Examination of Federer's proof ([32], §11, p.356) shows

that we can restate his theorem (Theorem 2.2.2) as follows:

Iheoren  Let a € x,(X) «nd B ex (F (5",X)) and suppose

that the Whitehead product [a,H(B)] ¢ 0. Then the brace
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product {asB} 4 0.

Since we know of no counter-example we pose the following

Question Is a formula like
H(la,B}) = [a,H(B)]

true?

§3 Fibre homotopy equivalence of evaluation fibrations.

In this section we Study'evaluation fibrations defined by
spaces K and X under the notion of fibre homotopy equivalence.
First we give a criterion for an arbitrary evaluation

fibration to be fibre homotopy eguivalent to the neutral

evaluation fibration.,

Theorem 2,3,1 Suppose that K = SA is a suspension and iet
a € =%x(X,X). Then the following statements are equivalent:

1) (Ga(x,x), pa,x)_and (GO(K,X), po,X) are fibre
homotopy equivalent.

2) (Gd(K,X),pa,X) has a section.
In case X = SB 1s also a.suspensién we can add

3) The generalized Whitehead product [a,i,] € = (A*B,X)
is zero. |
Proof The equivalence of 1) and 2) is a slight generalization
of & theorem of G.W.Whitehead ([91], p.L4éL).

1) =>2) is trivial since (GO(K,X),pO,X) has a section.

Now we prove 2)=>1). Suppose therefore that

8y ¢ X * Gy(K,X) 1s a section for p, and define maps

9

LLd

G, (KyX) —— G (K,X)

and

<

GG(K,X)‘—-——a G (K,X)
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by the foruulas:
Vrfe G (K,X) : o(f)
Vege GG(K,X) : y(g)

It is obvious that ¢ and ¢ are maps over X, It is also

£+ s (py(£))
g + (-s_(p_(g)))

clear that

¥o(£) = (£ + sy(p (£))) + (-8, (p (1))

and
*¥(g)

(8 + (-85(a(€)))) + so(pgle)).

A fibre homotopy H of ¥9 to the identity with parameter
t'(0 € t' € 1) can then be defined by

1+43t!
£([a, ]) 1f 0 <t <
1+3t" L
1+3t! l+t'
n(e,t')([a,t]) = S (P (f))([avut -(1+43t') ]) if A re <t <
l+t!
gt g1l

s,(po(£))([a,2-2t]) 1f

for every f ¢ GO(K,X) and every [a,t] € K = SA.

AL fibre homotopy of ¢y to the identity can be defined by
a similar forumula,

] is.therefore a fibre homotopy equivalence with inverse .
This proves that 2) =91).

In case X = 8B is also a suspension we know already that

2) 1s equivalent to 3) by Theorem 2.1.1. Hence the theorem is

proved.
Corollary 2,3,2 Suppose that K = SA 1s a suspension and that

X ic an H-space with a homotopy unit. Then (Ga(x,x), pQ,X) is
fibre homotopy equivalent to (GO(K,K), po,x) for any o € ®X,X).
Proof Letp : X x X =X be the multiplication on X and suppose
that the base point * € X is a homotopy unit for . Let

o K »X be a representative fora. In particular fo(») = *.
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Define sa ¢ X —»GGﬁK,K) by tire formula
Vy ek Vxex: so(x)(v) = wf (5),%).
Since s& (x) for fixed x is homotopic to f, (one gets a

homotopy by moving x along a path to * e€X), it is clear that

sa maps into GQ(K,X). Observe now that pasé (x) = u(fa(*),x) =
p (*,x). llence pasé is homotopic to 1ly.  Using now that
(Ga(h,X),pa,X) is a Hurewicz fibration, the covering homotopy
property will produce a genuine section s :X A»GG(K,X) for p,.

ilence the corollary follows from Theorem 2.3.1.

For the comparison of two arbitrary evaluation fibrations we

have

Theorem 2.3,3 Suppose that K = SA and X = SB are suspensions

and let o,B € ®(K,X). Suppose also that at least one of the
ceneralized Whitehead nroducts [a+B,cx] and [a—B,Lx] is zero.
Then (GG(K,X),pa,X) and (GB(K’X)’pB’X) are fibre homotopy
equivalent,

Proof Suppose first that [a+B, Lx] = 0. By Theorem 2.1.1
we can tberefore find a section Scd-B: X —oGMﬁ(K,)() for pcr*B'

Lefine then msps over X ¢ @ Ga(K,x) -»GB(K,X) and

(=f) + s

¥oe GB(K,X) -—’GO‘(K,X),by the formules:
V fe ¢ (K,%) : o(f) G+B(pa(f))
V & eG (K1) : We) = sa+ﬁ(pﬁ(g)) + (-g)

Using formulas analogeous with those in the proof of
Theorem 2.3.1 it 1s ezsy to prove that VYo aﬁd oy are fibre
homotopie to the respective identity maps. Thus ¢ is a fibre
homctopy equivalence with inverse V.

The proof for the case (a -B, t X]= 0 i1s similer. Hence

the theorem is proved.n

Theorem 2.3.3 clearly invites the question whether the
vanishing of either [G+B,LX] or [Q‘ﬁ,Ex] is a necessary condition

for the fibrations defined by a and B to be fibre homotopy
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etuivalent,
I know of no counter-exsmnles to such a statement and have
in fact quite a lot of evidence for the following

Conjecture Let 1 ¢ n g m and let g,8 € xm(sn). Then

(G, (s",8™),p ,8") ana (GB(Sm,Sn),pB,Sn) are fibre homotopy

equivalent if and only if [a,bn] = i[B,Ln].

§4 Strong fibre homotopy equivalence of evaluation fibrations.

Let 1 € n € m, In this section we shall study the set
of evaluation fibrations (Ga(sm,sn),pa,sn) for a Gﬂh(sn) Wel'st.
strong fibre homotopy eqguivalence. We will show that the strong
Tibre homotopy eguivilence class of (Ga(Sm,Sn),pa,Sn) is
completely determined by the Whitehead product [G,tn].

First however, a couple of definitions.

Lefinition 2,4,1 A fibration (E,p,B) with basic fibre F is

a Hurewicz fibration p : E @ B together with a homotopy
equivalence i: F -»p'l(*) of F into the fibre over the base point

#» € 3 fixed within o given homotopy class.

'e shall consider the evaluation fibration
(Ga(sm,sn ’ pa,sn) as a fibration with basic fibre FO(Sm,Sn) and
homotopy eguivalence i, * FO(Sm,Sn) - Fa(sm’sn) given as follows:
Take a representative fa : s¥ o gf for o and put
i(f) =f, +°¢
for f € FO(Sm,sn).
The homotopy class of ia is independent of the choice of

f

1 -
o+ Since F (SQ,“n) is connected.

Definition 2,4,2 Let (Ei’pi’B) for 1 = 1,2 be fibrations
with basic fibre F. A strong fibre homotopv equivalence is a

fibre homotopy equivalence



¥ |
8 ——— &,
: //
Py -J/ P,
B >

such that the following ccondition is satisfied:

'
If i2

to i,, then ié° ¢ ° iy 1is homotcpic to 1y, the identity map on F.

: Pgl (*) - F denotes an arbitrary hcomctcpy inverse

If such a ¢ exists, we will say that (El’Pl’B) and

GasDnsb) are strongly fibre homotopy eguivalent.
2'%2 2 Fp

The purpose of this section is to prove
Thecrem 2.2.5 Let m>n 3 1 and let a,f € wmﬁsn). Then
(Ga(Sm,Sn),Ra,Sn) and (GB(sm,sn),pB,sn)»are strongly fibre

homotopy eguivalent if and only if [a,tn] = [ﬁ.bn].

Before we can prove this theorem we need to make some
remarks on the classification of fibrations (E,p,B) with basic
fibre F.

According to Dold ([15], Satz 16.8) there exists a
classifying space B(F) and a universal Hurewicz fibrdtioh

E(F) - B(®) with basic fibre F. This universal fibration has
the property that for an arbitrary space X there is a bijective
correspondence between the strong fibre homotopy equivalence
classes of fibrations with basic fibre F over X and the set of
based homotbpy classes of based maps A(X,B(F)).

Now let ca:Sn -+ B(FO(Sm,Sn)) be the classifying map for the
fibration (G, (s",8"), p,» S8") with basic fibre P (s",s"), and

let [ca] € ﬂn(B(Fo(Sm,Sn))) cenote its homotopy class.

Lemma 2.4,y If & denotes the boundary operator in the homotopy
seqguence for the universal fibration with basic fibre Fo(Sm,Sn)

and H is the obvious Hurewicz isomorphism, then the following
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e s(fe D == [ ayi ]

Proof Consider the map between fibrations

-
C
Fo(sm,sn) —L&—  F_(s",8")
id.l ~ l i
m n CG m n
Ga(s $S) —————) E(FO(S yS))
P . Jr
c .
s -_— B(F (s",8™)),

which classifies (Go(S®,5"), pg,s7).
Since the classification is up to strong fitre homotopy
equivalence, C, is homotopic to the identity map of Fo(sm,sn).

Passing to hcmotopy seéuences we get therefore a commutative

diayram
<11y é m
e ACw & »x oo (F(s™,8™)) - ...
\{‘
n
(ca)* | 1 'Kn-un--l(s )
A% H
o R
cor T RA(B(FL(8T,8M))) 2 ® ) (B (s7,87)) ~ ... >

where 6a denotes the boundary operator in the evaluation

fibration defined by &,9 , composed with (ia):l,i.e.oa =(ia)*°§£
By the theorem of G.%V.Whitehead (stated here as Theorem 1.3.1)

we know that H°Oa(tn) = -[a,tn]. On the other hand it is clear

that (ca)*(tn) = [qm]. Since the diagram is comnutative we get

then the formula we want,

Proof of Theorem 2.4,3 Suppose first that (Ga(Sm,Sn),pa,Sn) and
(GB(Sw,Sn),pB,Sn) are strongly fibre homotopy equivalent. By the

classification theorem the classifying maps ca and cB for these
fibrations must then be howotopic, i.e. [ca] = [cB Jin
‘nn(B(Fo(Sm,Sn))). Hence [a,tn] = [ﬁ,tn] by Lemma 1.4.4.

Suppose next that [a,¢ ] =B, ], This tmplies that
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[a - ﬁ,tn] = 0 and hence (Ga_B(sm,sn), Pa-B’Sn) has a section
by Theorem 2.1.1. Choose then such & section

. JL oD .
sa-B:Sn - Ga_B(b‘,S ) and define

? 1 Gy (s™,8") ~ og(s”,s")

by the formula

Ve (s™sh) ¢+ o(f) = (-s,_g(py(£))) + ¢

cust as in the proof of Theorem 2.3.3 we can show that ¢
is a fibre homotopy equivalence,

Wwe have now to make a good choice of a homotopy inverse
ié to 1g in order to make it easy to prove that ié °Q ° 1@
is homotopy equivalent to the identity map on Fo(Sm;Sn).

Suppose theref&re that fa and fB are the representatives
for respectively a and B which are used in the definitions of
i, and i, . Define then ié : FB(Sm,Sn) - F_(s",8") by the
forimula

Vg e Fgs"s") : 1) (8) = ((-£,) + s _Jpoff))) + &
Since F_g(S",8") is connected, 1t is clear that il 1is
homotopic to 1'b : FB(Sm,Sn) - Fo(Sm,Sn) defined by the formula
Ve e Fy(s™,s%) 1 1% (e) = (-£;) +8
Looking back at the proof for Theorem l1l.2.2 we see that
i"., and hence also ié, is a homotopy inverse to iB.

B

Let now h € Fo(Sm,Sn)be an arbitrary element. Then we have:
1g'° 9 ° 1 (h)

11 °q(f + h)

ié ((-SG_B(Pa(ﬂz)) + (ﬁl + h))

((-fa) +8 _ L§p0‘(f"l))') + ((-sa_ﬁ(p 0ffck))) + (f‘a+h))

Using appropriate formulas we can prove from this expression
that'ikso el is homotopic to the identity map of Fo(sm,sn).
This shows that @ is a strong fibre hLomotopy equivalence and

hence the proof is finished.
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Chupter 3

Homotopv ecuivalence of components
in spaces of pups between svheres,

This chapter will be devoted to obtaining concrete
information on the homotopy types of the componrents in certain
spaces of maps betwteen spheres. In §1 we determine the order
of the homotopy groups xn_l(Gd(Sﬁ'Sn))fornnevcn and a € xS
In §2 we characterize completely the homotopy iype of the
neutral component among all the components in a space of maps
betwecen spheres. Finally, in §3 we divide the set of

components in the mapping spaces G(s%,s™) and G(Sn*l,sn)
into homotopy‘types, thereby solving completely the fundamental
problem behind Part I of the thesis in these specific cases.

The results in this chapter will extend considerably earlier
results of Hu [47] and Koh [55]. Like Hu and Koh we shall use
extensively the theorem of G.W.Whitehead (Theorem 1.3.1l), but,
in particular to get the results on homotopy equivalence of
certain components, we have to rely on our constructions of

certain fibre homotopy equivalernces between evaluation

fibrations in Chapter 2, §3.

§1 The order of xn_liGaLSnlsn)) for n_even and_a §_xn(8nl.

The purpose of this section is to prove

Theorem 3.,1.,1 Suppose that n # 2 is even and let a eah(sn).

Put G, = Gy (s™,8™) and denote by dega the degree of a,
1) a =0, xn_l(Go) is an infinite group.
2) a3 . xn-l(Gd) is a finite group and its orde:

satisfies the formula



order, (%, _1(G)) = loegal + order (tn“l(GLn)).

Froof Trom Theorem l.3.1 we get the exact sequence

p_-
W11 -
"p(ST) 8 mpn g (87) = xy 1 (Gg) =+ 0

If o = 0 then Py is the zero map and hence

~y ~n - o s . -
xh_l(ua) =3 “En-l(” Y, which is an infinite grouvp by Serre fg2 ]

suppose then that a ¥ 0.

T b = ( f ey 5 = 7o il y

Fut A, = P (x (S )) and b ptn\xn(b ){

Cbserve now that

p (v ) = -[a,tn] - deg a[%}cn] = deg “'psn(‘n)

and that P (bn) —[bn,bn] has infinite order by the delicate
n

suspension theorem (Theorem 1.3.2). Therefore Aa and A ,  are
: n

both subgroups of renk 1 in xzn_l(sn) and A is a subgroup of

A, with guotient group AL 'By‘a result of

z Z "
n n/“ o ldegal

4%

a
serre [82],%x, .(s") 22 @ H, where H 1s a finite growp. It is

therefore clear that the guotients

x, (87
~ 2n-1 ~

In-l(Ga) = / Aq end %, n .

n

are finite groups.
Consicder then the exact seguence of finite groups
.A.
e n n
0+ "nAg = ®p (8 Yag % on-1(8 )/A‘ e
n

which is ilcomorphic to an exact seguence

” n
0= “lgegal ~ xn—l(Ga) - xn—l("tn) =0

From this seguence we conclude immediately that

order(xn_l(sa)) = |deg d* order(xn_l(th)).
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If more detailed information on the homofopy groups and
the mup Py involved in the proof zbove is available, then one
can of course compute the exact structure of X n-l(Ga)' This
was first done by Hu [47]) for n = 2 2nd later for n = 4,6,8,10,12,
14 by Koh [55].

Theorem 3.1.1 is the best one can hope to prove in general

with the présent kpowledge on homotopy groups of spheres.

Example 3,1,2 (fm [47] or kon [55]) 1Let o 61&(82).

Then
2 &2 ~
x (G (s%,8%)) = Zz-ldegal

Here Zk denotes the cyclic group of order k. For k = 0
we put Z_ = Z, the integers. '
Example 3.1, (Koh [55]). Let o,eru('b‘“). Then

by o
75(6,(8%87) % 2o 1acg ol @ 212

Example 3.1.4 (koh [55]). Let ae 1(6(86). Then

% o(64(5%,59) % 2)40. 4

§2 Charccterization of the homotopy tipe of the neutral component,

In this section we solve completely the problem when an
Varbitrary component in a space of maps between spheres is homotopy
equivalent to the neutral component, The solution 1s expressed
in terms of the vanishing of the VWhitehead product[a,tn], where
a € xm(sn) is the homotopy class defining the component in gquestion,

The following theorem contains this result and summarizes also

the main bulk of results involving the neutral evaluation
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fibration we have obtzined in Chapter 2.

Theorem 3,2.1 Suppose that m > n > 1 and let ae;xm(sn).

Then the following statements are eguivalent:

1) Ga(Sm,Sn) and Go(Sm,Sn) are homotopy equivalent.

2) (Ga(Sm,Sn),pa,Sn) has a section,

3) (Ga(sm,sn ,pa,Sn) and (Go(Sm,Sn),po,Sn) are fibre
homotopy equivalent. 4

4y (e (s",s™), p » 8") and (¢ (s™,8™),p,,8") are strongly
fibre homotopy eguivalent.

5) The "hitehead product [a,v ] = 0.

Proof The theorem is trivial for n = 1. we can thersfore
assume m» n > Z.

Wie prove the theorem in the following steps 1)=35) =L4)=H
3)=>2) =3) =1). ‘

5) =>4) follows from Theorem 2.L4.3. . L4)=—)3) is trivial.
3)=>2) =»3) is a special case of Theorem 2.3.1. 3)=>1) is
trivial. We have therefore only to shbﬁ that l)::#S).

Assume for that purpose that ql(Sm,Sn) and GO(Sm,Sn) are
homotopy equivalent and consider the following exact sequence

obtained from Theorem l1l.3.1:
x_(s™) pglx (s™) = (¢ (s™,s™)) » 0
n n+m-1 -1V ’ ¢

n
Ifm» n+1orm=nodd ‘xn+m_1(s ) is a finite group

(serre [82]), and hence it is obvious from this sequence that
n .n n '
”n-l(Q@(Sé’Sn)) and “n-l(Go(S »87)) & xn+m_l(8 ) cannot be
isomorphic unless [a,un] = 0.
If m = n is even it follows from Theorem 3.l.1 that

N Ln ' n .n
xn_l(Go(b »$)) is an infinite group and that‘xn_l(qa(s »S™))
15 a finite group fora % 0. Therefore it is clear that & = 0

and hencé, in particular, [G.bn] = 0.
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Therefore 1)=>5) ané the theorem is proved.

The homotcpy groups of the neutral component are easy
to calculate since the neutral evaluation fibration has a section.

Ve get then

Corollarv 3,2,2 letm 2n 31 and leta exm{sn) . Suppose

that [o ,¢ ] = 0. Then

x i(c)lm(s*“,sn)) = xi(sn)ea x

i+m(sn)

for any 1 » 1.
DProof The homotopy seguence for the neutral evaluation
fibration splits. = Hence

x (6 (s",8T) = % (a (s",8))

mn

n

x,(s") @ x, (P (s",57))

(s™.

n

n
%3 (8) O %yim

83 The division into homotopy types of the components in the

mapping spaces  G(sS?,s™) anng(Sn*l.Sn).

e are now ready to prove one of the main resultskin Part I,
The problem behind the following theorem was in fact the starting
point fof Part I. As already mentioned in the introduction the
theorem extends considerably the results obtained by Koh ( [55 ),

Theorem 3.18).

Theorem 1 Consider the mapping spaces G(Sn,Sn) forn 31
and let a, P € 1h(sn).

1) n_even. The compornents G“(Sn,sn) and GB(Sn,Sn) are
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homotopy equivalent if and only if a= % B,
2) n oda. G,(s"8") is homotopy equivalent to Go(Sn,Sn)

if dega 1s evenand to G (s®,s™) 1if deg o is odd. Furthermore,
| n

Go(Sn,Sn) and G, (sP,s™) are homotopy equivalent if and only if
n
n=1,3,7.

Proof For n even the result follows immediately from
Theorems 1.2.1, 3.1.1 and 3.2.1.

Suppose then that n 1s odd. As stated in Theorem 1.3.1
it is known that 2-[v,t ] = 0 and that [vypv ] = 0 1f and

only if n = 1,3,7. Therefore [a,+ ] = cego (v, 1= o0 if

dega 1s even and [a +Ln,Ln] = (deg a + 1)-[Ln,an] = 0 if deg o

is odd. The result for n o0dd is therefore an easy conseguence

of Theorems 2.3.3 and 3.2.1.

As mentioned in Chapter 1, §3 quite a lot is known about
vanishing or non-vanishing of Whitehead products [an,un] for
a € xm(sn). By Theorem 3.2.1 we get a statement about a
component in G(S™,S") for each such result.

Since we are able to give the complete sclution to the
homotopy problem for the components in the mapping spaces

G(Sn+1,sn) we state in particular

Theorem 3,3,2 Consider the mapping spaces G(Sn+1,sn) for n> 1.

1) n=1. 6(s2,s1) is homotopy equivalent to So.
2) = 2, G(SB,Sz) has a countable number of components all

of which are homotopy egquivalent.

3) n>3. G
have the same homotopy type if and only if n = 6 or n 3 mod L.

(Sn+l,sn) has two components. These components

Proof n=1 Lletm>1. Since xm(Sl) =0 G(Sm,Sl) and

F(Sm,Sl) haus only one component. Now
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=, (F(s®,s1)) = xi+m(sl) = 0 for each i > 1. The fibre of the

1

evaluation fibration p: G(Sm,sl) -+ S© is therefore contractible

and hehce p is a homotopy equivalence.

n =2 IB(SZ) 2 Z, Thus G(SB,S2) has indeed a countable
nurber of components. Since an arbitrary element a 613(32) has
the form a = 4 *n,, it follows from Theorem 1l.3.3 that

2
[G,tzl =,['[ﬂ2,t2] = 0. Hence GG(SB,SZ) is homotopy equivalent
to G_(5”,5%) by Theorem 3.2.1.
n23 Since Kn+1(sn) 4 Z, G(Sn*l,Sn) has two components,

namely Go(Sn+1,Sn) and Gy, (Sn+1,Sn), Hence the result follcws
n

immediately from Theorems 1l.3.3 and 3.2.1.

Remark One might believe that 6(53’32) and G(SB,SB) are
homotopy equivalent, so that this would explain n = 2 in
Theorem 3.3.2. This is in fact not true, since the Hopf
fibration S5 - S2 induces a fibration G(S°,87) - G(s2,8%) with

fibre G(SB,SI), which is homotopy equivalent to Sl. It is

therefore somewhat surprising that all the components in G(SB,S2)

have the same homotopy type.

The groups xn_i(Ga(Sn,Sn)) have been computed by Koh [55] for
small n and we have already stated some of Xoh's result in §2 of
this chapter. Ve finish with some computations of the groups

x4 (g (s™1,s™).

Example 3,3,4 Plugging information on homotopy groups into the

exact sequence

P
x(8™) 8wy (8T 4 m (G (87,8) 2o

obtained from Theorem l.3.1 on rets easily

n =1l xj(eo(s5,s“)) =12, @2,
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Chapter 4

Kanping spaces with a finite CW-complex

as _domain.

In this chapter we take a brief look on the gualitative
structure of the ﬁomotopy groups of a mapping space with @ finite
CW-complex as domain. The main purpose of the chapter will be
to give a simple and elementary proof of a version ¢f a thecren
due independently to Federer [32] and Thom [87].

It is worthwhile mentioning that Federer gets his version
of the theorem as a corollary to the construction of a spectral
seguence., This spectral seguence has later been slightly
generalized by M.Lyer and used by him in maﬁy conerete computations

of homotopy groups of special maprping spaces, (191, [z0] ana (21] .

§1 Towers of restriction fibrations.

This section contains the construction of a finite tower of
fibrations naturally assocliated with a given space of maps having
a finite CW-complex us domain.

The construction is made possible by

Lemma 4.,1.1 Let A be a locally compact, connected ANR(CW-complex)

and suppose that K = AUg ﬁk for A2 1 is A with a A-cell I}

1 -+ A, Let X be an arbitrary connected

attached by ¢: sh-
topological space.,
Then the restriction map
p ¢ G(KyX) = G(A,X)
is a Hurewicz fibration over its image.

Furtherrmore, the fibre of p is homotopy equivalent to

F(ékyx), the space of A -=loops on X.
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Preef It 1s well-known that K itself 1s a locally compact,
connzeted ANR.  See e.g. Hu ([49], Theorem 1.2, p. 178). The
proof that ©p 1is a Hurewicz fibration can be found in Hu
(48], Theorem 13.1, p.53).

For the identification of the fibre suppcse that £ € G(4,X)
i1s in the ima:.e of p. The fibre over f conoists then of all
possible extensions of £ over the A-cell DR. Hence it 1is
clear that the fibre over f can be identifiec witlh the fiure
over £ °¢ in the restriction fibration

7 : G(DMX) - a(s™1,x).

Since f has an extension over K, f °9 has an extension

over DK. Therefore £ °¢ is homotopic to a constant map, i.e.

“”l,x). Along the same lines it is clear that the

Al

f °9 € GO(S

image of p is exactly GO(S »X) e

Since p : G(DX}X)‘* GO(SA"I,X) is a Hurewiez fibtration all
fibres have the same homotopy type. Sce e.g. Spanier ([84],
Corollary 13, Chapter 2, Section 8§, p.101). It is however
clear that the fibre of p over the constant map Sx'l-’ * e X
can be ldentified with the fibre in the evaluation fibration
a(sNx) - x.

Altogether we have then proved that the fibre of p over
f e G(A,X) is homotopy eaquivalent to F(S)}X).

This proves the lemma,

Now let K ©be a connected, finite CW-complex of dimension

<M.
We can then choose a filtration of K, say

*:KO CKl C ese CKI'=K

with the following properties:

1) Ko = * consists of a single 0-cell, which we choose as
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base point in K.

2) PForlsics<ryop
Ay
Ki = hi_lU P iu

with 1 < Ai < m.

3) KI' = K

Then let X ©De an arbitrary connected topological epace,

Using Lemma 4.1l.1 we then get a tower of fibrations (over their

images) as follows:

F(S)¥,X) -+ G(Kr,x)

l

A
Ap-1
F(s ,x)zq G(Kr_l,X)

C——votf—

A
F(S *,X) = G(Kl,x)

l

G(KO,X)

Ve have indicated the homotopy type of the fibres, and we
remark that G(Kr,x) = G(K,X) and that G(KO,X) = X.

Since xi(F(SX,X),f) = ﬂﬁ+x(x,*) for any base point
by eIF(SA}X)l it 1s clear that we quite easily can get qualitative

results on the homotopy groups of G(K,X) out of this tower.

§2 Homotopy modulo a Serre class of abelian groups.

e prove in this section our version of the theorem of

Federer and Thom.
chhall denote an arbitrary Serre class of abelian groups,
48 e.g. the class of finitely generated abelian groups, the class

of finite abelian groups or even the class containing only the
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trivial group.

Observe that if a space is not connected there will te more
than one homotopy group of that space in each dimension, namely
cne for each component.

Ve shall prove our theorem using the tower in §1 and the
following
Lemma L,2,1 Let F —-E 2, 3 be a fibration and let abe a Serre

class of abelian groups. Let also 1 2 2.
Suppose that all the homotopy groups of B and F in dimension
i belong toC?. Then all the homotopy groups of E in dimension
i will belong to 0.
Proof The lemma follows immediately from the exuact homotopy

sequence of the fibration and the definition of a Serre class.

We cah then prove

Theorem 4.2.2 Let K be a connected, finite CW-complex of

dimension < m and let X be an arbitrary connected, topological
space. LetCZtm a gliven Serre class of abellan groups and
suppose that all the homotopy groups of X in dimensions 1 with
i in the interval io €1 < io + m for io # 2 belong to a.

Then all the homotopy groups of G(K,X) in dimension io
belong tof?.
Proof Using the isomorphisms ’Ki(F(Sk,X), £) & x, AX»*) and
the assumptions in the theorem it follows immediately that all
the fibres in the tower constructeé in §1 have thelr homotopy
¢roups in dimension io in the Serre classcz. By an obvious
| finite induction using Lemma L4.2.1 we get then the result in

the theorem.
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4s already mentioned Theorem 4.2.2 is actually a variation
of a theorem of Federer ([32], p.353) and independently Them
([67], Thecrems 1 and 4). In some sense the theorem of Federer
and Thom is stronger than the one presented here, since they do
not need K to be a finite.but only something like a Sinite
dimeneional CW-complex. On the other hand Federer needs ¥ to
be simple and bot@ Federer ané Thom have restricticrs cn the
homology of K, which are not satisfied in general for an
arbitrar;y Serre class, not even when K is a tinite (W- soutslan,
The formulation of our theorem is also siightly more ;eneral

than theirg-

isest to

P

The method we used in the proof siven here is el

that used by rederer.

Finally, in thils section we give an example to show that
wve cannot relax the conditions on the homotopy groups of the

target in Theorem 4.2.2.

xamnle 4,2,3 Let 10, n and m be integers satisfying io 2 2,
n>m32> 2 ana 10 + It = n.
ny o _ _ LB o
Then xi(S ) = 0 for i, €41< 1) +m -1 but x10+m(b ) 2 Z.

let £ € F(Sm,Sn) be an arbitrary map.

From the homotopy sequence for the evaluation fibration

F(s™,s") = a(s",s") » g®

and the liurewicz isomorphism it follows easily that

n, (a(s®,s™),r)
o

zx (F(s",8"),r)
O

E7‘;10+m(sn’$)

Z

m
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It we taketz to be the Serre class consisting only of
the trivial group we see therefore that the conclusion in

- : S .n
Theorem L.2.2 feils for the rmapping space G(S,S ).

§3 The fundamental rroun of g marpins snace, An _examnle,

The object of this sectlion is to show by on exagple that the
fundamental group of a m2pping space need not 1o he finitely
gcneratéd although &1l the hemctopy .voups of ths target sare
finitely generated. This will explain why no statement was
made about the fundamental group in §2.

#irst we need a purely group thecretic-resnlt. I am
indebted to Gustav Lehrer for constructing a group I with the

foilowing property.

Proposition L,3.1 There exists a group H, which is finitely

generated but contains an clement ho € I for shich the
centralizer CH(Ho) is not finitely generaled.

Recal‘l that C;;(h,) = {h e Hlhh, = h I}

Conatruction of H

Let I be the group given by
Generators : A double Infinite secuence of =lements

h., oo an¢ an element N.

seey }1_2, h._1’ IA‘LO, hl, 2

2

Relatlons: by =1, [hyhy J= 1 and
:nh H-n =
1n I+

o=l =1 T -
[hn’th = hnhm“n Lo denotes here the counutator

of }'-n and L.mo

Since hn = h? ho H’n, H is obviously generated by the two

eiements ho and H, hence in particular finitely cener:uted.
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Ascertion CH(hO) is isomorphic to the double infinite

cirect product

e X Zplh g) X Zo(to) w Zp(hy) x el

where Zz(hn) denotes the cyelic group of order 2 generated by hn.

In particular C (ho) is not finitely cenesrated.

Hu
Prcoof It is cleur that all worés h h cse N telopg to
2reot my - m, m,
By induction ca Lthe length of @ word it is essy to show

thaot Cﬁ(ho) cennot contain words with ¢ non-trivial nowsr of
in then.
The statement in the ascertion fellows then iumediately.
This finishes the construstion of a group H with the

propecrties in Proposition 4.2.1.

Taxe now the group H constructed above anc let X = K(H,1) be
the corresponding Eilenberg-iacLane space. By definition X is
then connected, xl(X) g H and xi(x) = 0 for 1 > 2, Let
ho : Sl—o X be the map reprecenting the element ho € H eand
consicder the component G[ho](sl,X)kin the space ¢f mups from 3

. into X defined by the homotopy class [ho] of hge

Assertion ,‘Kl(G[ho](Sl,X)) T Cl[(ho) .

Proof Consider the evaluation fibration

- 1 1l P
F (87,X) > G (87,X) 55X
[n,] (n,]
and the following pert of its homotopy scquence

Kl(F[ho}‘Sl’X) ’ho)—’ xl(G[hO](sl’x) ’ho)"’ xl(X,*)
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Now Il(ﬁ[ho](sl’x)’ho)

¥ x (Fp, ](sl,X) »n_)
o)

i

™, (X *)
21

Hence'p* : x. {C (Sl,X),ho) - xl(x;*) is & monumerphism.

1" n ]

R o

It is very easy to see that an element o Eﬂi(x,*) is in the
image of p, if and only if there exists a map Sl x Si - X such
that st {*] - X represents c and {*} x sl . x represents [ho].
Un the other hand such a map exists if and only if the Whitehead
product of a and'[ho] is the identity element. Since a
Whitehead product of elements in a fundamental group coincides
with the coriesponding comumutator product we conclude, that a is In
the i1maze of p, if and only if a [ho]a-l[ho] =l o1 er
equivalently that a € CH(ho).

Hence xl(G[ho](Sl,X)) = Cy(h,).

Altogether we have therefore shown

Proposition L4.3.2. There exists a connected topological space X
wifh tinitely generated homotopy groups such that at least one
component in the mapping space G(Sl,X) has infinitely generated
fundamental group. |
Notice however
Pronosition 4.3, Suppcse that ﬂi(X) is abelian and that
~xl(X) and 1i(X) are finitely generated.
Then all the components of G(Sl,X) have finitely generated
fundamental group. |
2rooff This follows immediately from the homolopy sequence of the
evaluation fibration

F(Sl,X) - G(Sl,){) =X,
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since a gubgroup of a finitely generated abelian group is

tself finitely generated.

Ihe space X we have constructed in Procosition 11.3.2 is
not particularly nice,. For this reason and also since the Tree
loop space of u manifold 1s interesting in thsz study of closed

L]
reodesics, we vould like to ask the

Guestion Does there exist a compact manifold X for which

.G(Sl,x) has a component with infinitely generated fundamental

- group?



PART 11

SPACES OF DIFFERENTIABLE MAPS
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Chapter 5

Preliminaries to FPart II,V

This chapter is purely expository. 81 ccntains the

definitions of the mapping spaces with which we shall be

concerned in Part II. In %2 we collect certain facts about
AllR's, including the statement of a fundamental thecrem of .
J.H.C.Vhitehead (Tﬁeorem 5.2.4). In §3 we discuss the existence
of partitions of unity on Baniach spaces and the existence cf
manifold structures'on mapping spaces. YWe indicate also the
proof of a slight extension of a theorem of Palais, which states
that the homotopy type of a space of differentliatle maps is
independent of the degree of differentiability (Thecrem 5.3.2).

1 Basic definitions,

In most of Part‘II L™ shall denote an m-dimensional compact
smooth manifold with boundary (which might be empty), and X
shall denote a paracompact (equivalent metrizable) smooth manifold
without boundary modelled on a Banach space of finite or infinite

dimension.

For 0 €T < w,Cr(M,X) shall denote the space of
differentiable maps of class C¥ from i into X. We equip
cf(1,%) with the c¥-topology. Notice that for r = 0 C°(M,X)
is Jjust the space of continuous maps with the familiar compact-

open topology.
Now let-1 < T € wand let 0 € k. Then CT(},X;:k) shall

denote the subspace of Cr(M,x) containing the k-mersions of M into
X of class CT. Recall that T e cr(m,x) is a k-mersion if it has
rank » Kk everywhere, For k big c¥(x,%;k) will then, of course,
be empty. Observe that for k = 0 CT(k,X;0) = ¢¥(M,X) and that
for k = daim M we get the space of immersions Imm®(M,X) of ¥ into

X of class Cr.
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Likewise for 1 € r € o We shall denote by EmbP(M,X) the
subspace of CP(M,X) containing the embeddings of M into X of
cla#s ct.

Since k is compact both Cr(k,X;k) und Embr(M,X) are open
subspaces of CP(M,X).

" Chapters 7 and 8 will be océupied with a study of the
| spaces CY(1,X), CT(M,X;k) and xb®(if,X). In Chapter 8 we
shall relate Cr(M,X;k) to a space Qf bundle maps Hom(Tk,TX;k),
‘which we now proceed to»define. |

Let TM and TX denote the total space in the tangent bundle
of respectivel& M and X. Tangent spaceé will be denoted
respectively by TDM for p e M and TxX for x € X. Let again
0 € k. Then Hom (Ti,TX;k) shall denote the space of continuous
maps of TM into X, which maps each fibre of TM into a fibre of
IX by a linear mab of rank 2 k. We equip Hom (TM,TX;k) with
the éompact-open topology.

Let ¥ and E denote Banach spaces with F finite dimensional
and let 0 < k. Then L(F,E;k) shall denote the space of linear
maps of I into E of rank 2k. Observe that L(F,E;k) 1s an open
subset of the Banich space L(F,E) of linear maps.

Awe.shail now define certainllocally Tivial smooth fibrations,
nanely |
| 1) x' : L(F,TX;k) - X
with fibre L(F,TXX;k) over x € X.

2) x "':B(THM,TX;k) - N x X
with fibre L(TpM,Txx;k) over (p,x) e K x X.
and f'inally

3) x: B(DH,TX;k) - M
with fibre L(TPM,TX;k) over p € M.
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The definitions are simple. If V derotes disjoint union,

then

L(F,TX;k) = V L(F,Txx;k)
xeX

and

B(Td,Ti;k) = V L{T_M,T _X;k)
T (eex)ewx BX

%' and ®'' are tne obvious maps. X 1s the composition of
x" and the projectdion M x X = I,

The standard technigue in the category of smooth vector
bundles for constructing new vector bundles out of old ones by
applying a functor to each fibre can be applied to egquip x' with
the structure of a locally trivial smooth fibration. This
construction will work, since L(F,°*;k) is a 'functor' on
lsomorphisms, and that is all that is needed. See Lang [61].

It is well=known that %" has a natural structure as a
locally trivial smooth fibration. See e.g. Abraham and Robbin [1].

Finally, since a composition of locally trivial fibrations
over a locally contractible spsce is again a locally trivial
fibration (see e.g. Palais [75], Theorem 14.12), it follows
that x 1s a locally trivial smooth fibration.

fow letI‘o(x) denote the space of continuous sections of x
equipped with the compact-open topology. 1t is then wéll-known,
and obvious, that Hom (TM,TX;k) can be identified with r°(x).

This description of Hom (T¥,TX;k) will be very useful to us in

Chapter 8.

§2 Miscellaneous result= on AINR's.

For us an.ANR (Absolute Ne;ghbourhood Retract) shall always
be in the class of metrizable spaces., We recall that a metrizable
space X is an ANR if it has the following property: For any

metrizable space Y in which X is enbedded as a closed subspace
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there exists an open neighbourhood_U of X in Y and a
. retraction r: U - X, In the class of metrizable spaces X i1s
an ANR if and only if it is an ANZ (Absolute Neighbourhood
Extencor), i.e.: aAny continuous map £:A = X from a closed
subspace A of a metrizable space Y has a continuous extension
F:U X to an open neighbourhood U of A in Y.
The busic facts about ANR's can be found in Borsuk[ 8] and
Hu [u9]. fXNR's arée particularly nice spaces to work with in the
- homotopy theory of mapping spaces since they have the same
fundamental properties as CW-complexes and since they are
naturally preserved under mapping space constructions {(Theorenm
5¢2.1 below). A lot of facts about AllR's of particular
interest in the homotopy theory of infinite dimensional manifolds
(mapping spaces) have been collected by Palais [7h4]. We
.mention in particular ([74], Theorem 5), which states that an
arbitrary metrizuble topological manifold modelled on a LCTVS
(locally convex topolugical vector space) is an ANR( Usually
the LCTVS's we shall meet will be either Banach spaces'or. .
Fréchét'spaces (complete metrizable LCTVS's). = Palais's paper
(74 ] will be our nain reference for unproved statements about
ANR's in the rollowing.
‘ie shall, in fact, only need just twou results which cannot
be tound in {74 ]. -We list these results as Theorems 5.2.1 and

5.2.2

Thevrem 5,2,1 Let F - E ﬁya be a locally trivial fibrétion.
Suppose that B 1s coupact metrizable and that F is an ANR, Let
T °(®) denote the space of continuous sections of x equipped with
the coupact-open topology.

Then E is metrizable, and I'°(x) ic an ANR,

If x is trivial, then E = B x F and I'%x) = c°(8,F). In this

case Theorem 5.2.1 is well-known. See e.g. Hu ([49], Chp. VI,

B
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§2, especially Theorem 2..4). The proof of the slightly more
gener:l case is not difficult and is left to the reader.
For separable ANR's and countable CW-complexes the following
theorem can ve found in Milnor [65]) and Palais [74]. I am
incebted to Professor Eells for pointing out to me that

separability (countability) 1s not needed in the theorem.

Theorem 5.2.2 It is equivalent for a topological space X

to have the homotopy type of a Ci-complex and of an ANR,

Prooff Assume first, that X is an ANk. Then by an extension
of Hanrer's result in the separable case Palaiis proves ( [74]
Theorem 14), that X is dominated by a simplicial complex. By
a theorem of Lilnor ([65], Theorem 2) X has thererore the
homotopy type of a CW-complex. |

Next assume that X is a CiW-complex, Then by the theorem
of Milnor meutiuned above X hss the homotopy type ot a simplicial
complex with the metric topology. But a simplicial complex
with the metric topology is an ANR, see Hu ([49], Tneorem 11.3,
ne 106).

This proves the theoren.

We want now to rceall a fundamental theorcm of
Jd.H.C.Whitehead, Pirst we muke lhowever the following almost

standard

Definition R.2.3 Let X and Y be non-empty topological spaces,

ot

and lel £:X Y be a continuous map. Let also g # 0 be an

integer.

We call f a Q-equivslence if the induced map between path-

components f,: 'KO(X) - ‘KO(Y) is onto.
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Por g2 1 we call £ a g-evulvalence if f*: xo(x)-» xO(Y)

is a bijection, and if for any base point x € X the induced
nup L% Ki(X,x) 4'x1(Y,f(x)) is an epimorphism tor 0 € 1 € g
ana a nonomorphism for 0 € 1 € g-1.

Finally, we call £ a weak homotopy equivalence if it is

2 ge-ecuivelence for all q 2 0.

In later chipters we shall frequently use the following

theorcm of J.H.C.Whitehcad [93].

Theorem 5.2.4 Suppose that X and Y are toupological spaces

witl: the homotopy type of ANR's.
Then 2 continuous w=z2p f: X - Y is a homotopy equivalence if

and only if it is a weak homotopy equivalence.

§3 Structures on mapping spaces, -
For simplicity of exposition we shall throughoul Part II

assume that the Bansch spaces we use as models for the smooth

manirelds X are C°-smooth. By definition a Banach space E 1s
said to be C®-smooth (or ¢° -paracoxpact) if any open covering

of E admits a subordinated smooth partition of unity.

It is known that e.g. the following Banach spaces are
C®~smooth: Finite dimensional Banach spaces, the infinite
dimensional separable lilkert space (Eells, see Lang [er1]), LP-
spaces for p an even integer (Kurzwell, sece e.é. Sundaresan [85]),
the space cg pf real sequences conyerging to 0 (Kuiper, see bLbonic
and Frampton [7]). On the other hand Lp-spaces for p an odd
integer admits only partitions of unity of class Cp'l. It is

st11l unknown whether a non-separable Hilbert space 1is C®-smooth. *)

Rcecently Wells [90] has shown that they co admit partitvions of

%) Latest: H.Toruhczyk has shown that it is, January 1972.
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unity of class Cl. For further information on the problemn
concerning existence of differentiable partitions of unity
on Banach spaces see Zells [22] and Boniec and Franmpton (7]

If X is a metrizable smooth manifold modelled on a
c®-smooth Banach space thén it is clear that X itself admits
snooth partitions of unity. This implies that X admits a
smooth spray and therefore also an assoclated exponential map .
See Lang [61]. lence we can use the general construction
principle_for manifold structures on spaces of maps formulated

by Eells ([22], §6) to prove the following

Theorem H,3.1 Let I be a compact smooth manifold, and let X

and Y be metrizable smooth manifolds modelled on C*-smooth

Banach spaces

1) For 0 € T < cT(M,x%) caﬁ be given the structure of a
smooth metrizable manifold.

2) C®(H,X) can be given the structure of a metrizable
manifold modelled on Fréchet spaces.

3) ¢F(M,X) is an ANR for all 0 € r € e (conseguence of 1)
and 2)). | N

L) A smooth map f£: X = Y induces a map f*:Cr(M,X) - cT(%,Y)
by composition of maps for each 0 €pr €0, For 0 S$p <o
f, 1s smooth and for r =« it is continuous.

5) If £: X » Y is a smooth embedding, then f*:Cr(M,X) -

CP(M,Y) is an embedding, smooth for 0 € r <« and continuous for

T =ooo

Since CY(M,X;k) and EmbT(¥,X) for 1 < r € « are open
subspaces of Cr(M,X) these spaces will also be metrilzable
manifolds, in particular Alik's.

The only essential use we shall make of Theorem 5.3.1 is to

ensure that CT(i,X) is a metrizable manifold (ANR). To
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achieve this it is not necessary that X admits smooth partitions
of unity. Eliasson [29] showed that when X is a metrizable
smooth manifold which admits a spray, then all iterated mapping
spaces, like C®(M,cT(1,X)), admit a manifold structure. This
is non-trivial, since Cr(m,X) does not admit smooth partitions
of unity even if X does, but as kEliasson shows Cr(M,X) does
adnit a spray if X does. Next Krikorian [56] showed that for
o<r <ascr(M,X) h;s the structure of a métrizable smooth
manifold for any metrizable smooth manifold X. This was reproved
by Penot [77] who in addition proved that C°(M,X) is a smooth |
manifold even if M and X are Just topological manifolds. Both
Krikorian and Penot used a method due to Douady [17]. It seems
.not to Ee clear that one can get the manifold structure on
c*(ii,X) without any éonditioné on X. Finally, we should mention
that Geoghegan [35] ﬁsing a completely different method has
produced a Hilbert manifold structure on CO(M,X) if M and X
are just polyhecdra. | |

Since one can prove that Cr(M,X) is an ANR under much more
general conditibns than in Theorem 5.3.1 many of the results
in Chapters 7 and 8 can be slightly improved. We shall abstain
from this here but mention that it is done to a certain extent
in our papers [40], [41] snd [42]. |

Finally, we shall indicate the proof of the following
slightly generalized result of Palais {[75], Theorem 13.1L).

‘heorem 5.3.2 Let i be a compact smooth manifold, and let X

be a metrizable smooth manifold modelled on a C®smooth Banach

space, Let also 1 €r€ o.
Then the natural map
cT(¥,%x) » c°(M,X)

is a homotopy equivalence.
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Proof ‘The following proof 1is esseﬁtially just the argument
given by Palais in’ [751.

Without loss of generality we can identify X with a
closed smooth submanifold of a Banach space E. The proof of
this fact is an almost 'classical' application of smooth
.partitions of unity and has been carried through in all detailé
by Penot [77]. Since any Banach space admits a spray it
follows that X had a tubular neighbourhood in E (the proofs in
Lang [61] work without changes). There exists therefore an
open neighbourhood U of X in E and a smooth strong deformation
retraction ¥t U @ X. From the fundamental-theorem of Palais
([7&], Theorem 16) 1t'follows now easily that the inclusion
map Cr(M,U) "CO(M,U) is a homotopy equivalence. Obvious use
of fhe smooth strong deformation retraction x finishes then

the proof,

e e
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Chapter 6

Expanding systems

In this chapter we study the topology of the limit
space of an expanding system, in particular of a closed
expanding system. %1 contains the necessary definitions
and some examples of closed éxpanding systems are given.
32 contains the main result in this chapter, namely
Theorem 6.2.5, which states, that a 1limit space for a
closed expanding system of finite dimensional manifolds
of unbounded dimension is a manifold modelled on R%Y
R®™ is here the topological vector space of finitely non-zero
real sequences topologized with the finite topology. Since
R® is not metrizable such 1limit spaces cannot be metrizable,
in particular they are not ANR's. This could have caused
us serious trouble in changing weak homotopy equivalences
into homotopy equivalences. However trouble does not arise
since in 33 we show that the limit space of a closed |
expanding system of ANR's has the homotopy type of an ANR
(Corollary 6.3.4).

It is only the results in §3 which will be needed in

later chapters.
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81 Definitions and examples.

First we recall the definltion of a (closed) embedding.
Let X and Y be topological spaces. A_continuous map £:X - Y
is called an gmbedding, if f is a homeomorphism of X onto f£(X)

considered with the subspace topology in Y. If furthermore

£(X) 1is closed in Y then we cull f a closed erbedding. For X
and Y smooth manifolds we have, of course, smooth counterparts

to these notions.

Next we define the main objects for our investigations.

Definition 6.1.1 An expanding system of topological spaces

(l,g,no) ={ xn’fn,n+1;n>no is a system of topological spaces

Y anc : H i .,
X, and enbeddings fn,n+1 Xh _'xn+l . indexed over the integers
n » n,.

If all the embeddings f are closed embeddings, then

n,n+l
we call (&,g,no) a closed expanding system.

If all the topologica. spaces Xn are smooth manifolds,

and all the embeddings f are smooth embeddings, then we

n,n+l

call (g,g,no; a smooth expanding system.

In the obvious way we could also have defined open expanding
systems. We have not included any material on such systems here,
;1nce we basically shall be concerned with closed expanding
cysteus. The interested reader can find a few results on open
expanding systems in our paper (40 ].

The terms in Definition 6.1.1 will occur so often in the
following that we will abbreviate expanding system and closed
cxpanding system to ES and CES respectively.

Ir (z,g,no) is an arbitrary ES then we define its limit snace

X as tne direct limit of the system zxn’fn,n+1; n»a i

X, = lﬁp i xn’fn:n+1}n>n°'

B U
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As usual the direct 1limit ;m is the identification space

oo
obtained from the disjoint union V X

n=no

n of the spaces Xn by

ldentifying x, € X with fn,n+1 (xn) € X ., If

r ¢ X_ =+ X denotes the composition of the inclusion of X
n’OO n oo n

into ¥ Xn followed by the projection of this space onto ;x,

n=no

then the topology on X _ can be described as the largest (finest)
topology making all the maps fn o continuous.
4

The whole system 1is shown in the following diagram

¥
Xn
f

n’OO

1<

fn,n+l ! oo

fn+1 g 00

n+l

We remark that a subset of gw is open or closed in the direct
limit topology on Km-if and only if all the preimages of the set

in the spaces Xn are open respectively closed.

For n < m we put for convenience f =7 0esesof

n,m m-1l,m n,n+l"°

Let also fn n

be the 1dentity map on Xn.

Let us record the following

Lemma 6,1,2 Let (X,f,n ) be an ES.

1) The map £ . isan embedding for all n > n_.

’

2) 1f (&,g,no) is a CES, then all the maps £ _ are closed
’

embeddings.
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Proof £ 1s clearly a continuous injective map. In order to
14

finish the proof of 1) it will therefore be sufficient to prove

that fn - is also an open map onto its image. For that purpose
’

let Un be an open set in Xn. Since fn,n+1 is an embedding there
exists an open set U, in X ., such that fn,n+1(Un) =

fn,n+1(xn) n Un+1', Go on and choose sets iUn+k}k;1 such that

Un+k is open in Xn+k and such that

=f k) nU for all k » 0.

fn+k,n+k+1 (Un+k) n+k,n+k+l(xn+ n+k+1l

(o o]

Now U_ = by (Un+k) will be open in X_, and clearly

k';’O n+k,oo
fn,“(Un) = fn’_’(xn) n U . This shows, that fnm(un) is open in

fn<>(xn)' As already remarked this finishes the proof of 1).
07

2) is even easier and is left to the reader.

“hen we are just dealing with the topology of the limit space

X _for an ES (g,g,no) the embeddings f ;7 Will not come into

Ny N+

play. By Lemma 6.1.2 we can then identify X, with £ 0Q(Xn) and
b4

think of the system as a system of inclusion maps

n o0

X CX CoooACX Co.oc_x_,
o n°+1 n

where X = U Xn has the weak topology w.r.t. the subspaces

The n in the definition of an ES (L,g,no) is of course not
important. What matters is the limit space zaf and it is clear

that if we take the same spaces Xn and embeddings f but only

n,n+l

from m > n  and upwards, then (&,;,mo) glves the same limit space

as (&riono) o



We shall often use the following straightforward but

important -

Lemma 6.,1.3 Let (&,Q,no) be an ES of T,-spaces, and let

g:M » X_be a continuous map such that g(}) is a compact subset of
X .
=00

Then there exists an n > n, and a continuous map g, M- Xn

such that the following diagram commutes

Proof Observe that X U fn’chn).
nan

Assume, that g(M) is not contained in any of the subspaces

f (X.) of X . Ve can then find an infinite subspace
Nyeco n e

S = {xnk

for all 1 € k € we

of X , such that x
- 00 n

® € BN £, 0%, 0) n s(¥)

k
Since an arbitrary subset of S by construction has at most a
finite number of points in common with any fnﬁ”(xn), it is a closed
subspace. It is here we need the spaces Xn to be Tl-spaces. S is
therefore a closed discrete subspace of g(M). But since g(M) is
compuct, it cunnot contain any infinite closed discrete subspace,
This shows that there exists an n such that g(M) c fn,m(xn)'
Since S is an embedding of X into X by Lemma 6.1.2, there
exists therefore a unique continuous map g s M- Xn such that

g=7~ ° g This proves the lemma.
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Finally, in this section we give some examples of closed
expanding systems.

Example 6.1.4 (CW-complexes). By definition any CW-complex X is

the limit space of the CES (X,f£,0), where X 1s the n-skeleton of X

and fn,n+1 : Xn - Xn+i is the obvious inclusion.

Example 6,1.5 (Symmetric products).

Let X ©be a connected topological space with base point.
For each n 2 2 the symmetric group on n objects, Sn,acts
in the obvious way on the n-fold product X x+-+x X, The orbit

space for this action is called the n-fold symmetric product of X

and is denoted by SPn(X). Observe, that each point in SP®(X) has
a representative of the form (xl,...,xn) € X x ««- x X,

For each n 2 2 we get a closed embedding fn’n+1:SPn(x) -+
SPn+1(X) by viewing SP™(X) as the set of points in SPn+1(X) having

a representative with the base point in X as the last coordinate.

The spaces SPn(X) and the embeddings f form a CES

n,n+l

(sP(X),£52)« The 1imit space for this CES is ealled the infinite

symmetric product of X and is denoted by SP°(X), i.e.

SF”(X) = 8B (X)

lim SPR(X).
n

SPotX) has been studied in great detail by Dold and Thom in
b£>L where the following nice theorem is proved
x (SP¥(X)) = H,y(X;2).
Suppose now that X is a closed smooth manifold. Then

SP®(X) will be a manifold with certain singularities, but only
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when X is 2-dimensional SP™(X) will actually be a smooth manifold.
As an example SPn(SZ) = CP™, complex projective n-space. See the
discussion in Dupont and Lusztig [18].

For each closedsurface X we get therefore a smooth CES

(sB(X),£,2).

Example 6.1.6 (Classifying spaces).

Let G be a compact topological group. We can then for each

n > 1 form the G-space
EGn = G #*+°%(G,

the n-fold join of G with the usual join topology. Let
BGn = EGn/G denote the orbit space.

There are natural clcsed embeddings fn,n+1.: BGn -+ BG

n+l’
such that we get a CES (BG,f£,1). The limit space for this CES

is denoted by BG, i.e.

BG = BG = I%m BGn

In Milnor's original construction of a classifying space for

an arbitrary topological group G, [64], EG_ = U EG_, and
nzl

hence also BG = EGa/G, has a different topology. Since we have
assumed that G is compact, it is still true that the BG constructed
here is a classifying space for G.

For a concrete group G we can often find a smooth CES such
thet the 1imit space is a classifying space for G. If we e.g.
take G = 0(k), the orthogonal group in Euclidian k-space, then

the Grassmann manifolds of k-planes in n-space for n 2 k form such

a smooth CES for O(k).

Example 6,1.7 (Homogeneous spaces).

Let E denote the separable Hilbert space and let {ei}
iz1




be an orthonormal basis for E.
The subspace of E spanned by the vectors €1recesey is then
a model for Euclidian n-space Rn. We get, of course, a smooth

CES

1

rl- RrZ

n
C eee CRTC oes

This CES induces in the obvious way a lot of other smooth CES's.

Spheres (S,f,1):

2

stecs?c...cs?ec...

The 1imit space » usually denoted by S”, 1s contractible.

S

-0
Projective spaces (RP,f,1):
2

RﬂcMcL”cW%.”

The 1limit space RP_, usually denoted by RP”, is an Eilenberg-
liacLane space K(Zz,l).

Stiefel manifolds (Kk, £, k):

Vk(k) c Vk(k +1)C .. vk(n) C eeey

where Vk(n) is the space of orthonormal k-frames in R".
The 1limit space (Xk)m, usually denoted by Vk(w), is

contractible,

Grussmann manifolds (gk, £, k):

Gk(k) c Gk(k +1)c eeec Gk(n) C esey

where Gk(n) is the Grassmann manifold of k-planes in RT,
The 1limit space (gkl”, usually denoted by Gk&n), is a

classifying space for O(k).

In Chapter 8, §4 we will give more examples of smooth CES's.
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32 Topology of the limit space for an expanding system.

The main purpose of this section will be to prove that the
limit space for a CES of finite dimensional manifolds of

unbounded dimension can be given the structure of a manifold

"modelled on R*%.

First we state however some general topological facts about
a limit space.

Since the topology on the limit space X for an ES (g,g,no)
is a quotient topology, we cannot expect too much of 1it. For
a general ES we have however the following result. Recall,
that a topological space is a LindelBf space if every open

covering of it contains a countable sub-covering.

Theorem 6.2.1 Let (g,;,no) be an ES of topological spaces.

1) If all the spaces X are T;-spaces, then X, is a
Tl-space.

2) If all the spaces Xn are locally compact Hausdorff
spaces, then gaais a Hausdorff space.

3) If all the spaces X are Lindel8f spaces, then X
is a Lindel8f space.

Proof We leave the proof of 1) and 3) to the reader and
concentrate on the proof of 2). As remarked in §4 we can

assume that the ES under consideration has the form

n

X C X C oo CX C oo C_.X_o
o no+1 n 0o

Now let x,y € X = U X_ with x $ y be given. We
- 0o nmo n

have to find disjoint open neighbourhoods of these points in X..

Pick n,» n_ such that x,y € X_ . Since X is locally compact
1 o] n, n,

and Hausdorff we can find open nelghbourhoods Un and Vn
1 1

of respectively x and y in Xn s such that the closures
1
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U and V. in X_ are compact and disjoint. Since U. and

Vh are also compact and disjoint subsets of the Hausdorff
1

space X they can be separated by open sets in X

nl+1 n1+1

Using the local compactness of Xn +1 it is then easy to find

3
open sets Unl+l and Vn1+l in Xn1+1 which extends Unl and an
and have disaoigt compact closures Unl+l and an+1 ip an+l.

This indicates how we can construct expanding sequences
iUn} and
p2ny

nelghbourhoods of x and y in Xn for each n > nqe. Then

ivn}n>nl’ where U and V are disjoint open

U = U y.,.andV = v 'V will be the required disjoint
oo n oo n
n>n1 n>nl

open neighbourhoods of respectively x and y in §‘£

We are particularly interested in the Lindel¥f property,
since it is known that a regular Lindel¥f space 1s paracompact.
For a connected, locally compact space the converse statement
is aleo true. See Kelley [53]. We remark that paracompact
includes the Hausdorff axiom in this paper.

In general the Hausdorff property is not carried on to the

1imit in a CES. We have however this

Theorem 6.2.2 Let (g,i,no) be a CES of topological spaces.
1) If all the spaces Xn are normal, then zw is normzal.

2) If all the spaces Xn are regular Lindeld8f spaces, then

is a regular LindelBf space.

X
=00
Proof Assume for a moment that 1) is proved. Then 2) follows

in this way. Each X, is a regular Lindel8f space, hence

paracompact, in particular normsl. By 1) X 1is therefore
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also normael, in particulsr regulsar. That X_ 1s Lindel8f

follows from Theorem €.2.1.

Ve turn then to the proof of 1). By Theorem 6.2.1 we
get immediately that X, is a Tl-space. It will therefore
be sufficient to prove that Urysohn's lemma holds in Koo
For that purpose, let A and B be closed, non-empty, disjoint
subsets of X . Wie have to find a continuous function
h: X = [0,1], stich that h|A = 0 ana h|B = 1. To do this we
proceed as follows:

e can again assume that the CES has the form

X C X C eoee CX C oo e CX With X = v X .
n, no+1 n o ) n>no n
Choose then a sufficiently high ql> n_ such that both A n Xn

° 1

and B n Xn are non-empty. Using the normality of Xn we can
1 _ 1

now find a continuous function h ¢ X_ - (0,1], such that
1

h
h |AnX_ =0andh |[BnX_ = 1. Consider then the closed
n i n By
subset
X. u(AnX ) u(B nXx )
nl. nl+l nl+1
in Xn +1° Using Tietze's extension theorem it follows now
1
impediately that there exists a continuous function
hnl+1 : xnl+1-+ [0,1], such that hnl+1|A “an+1 = 0 and
h |IB nX £ 1, and such that h Ix =h_,
n1+1 nl+1 n1+1 ny ny

This indicates how we can construct a family {hn}n:nl

of continuous functions h, X - [0,1], such that

ho Ixn = h_and such that hnlAn X =0 and hnIB nX = 1.

But then we get an induced continuous map h = h°° : &m - [0,1],

which by construction will satisfy the conditions h|A = 0 and

As already remarked this finishes the proof of Theorem 6.2.2.
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We shall now begin our study of the limit space of a CES
of finite dimensional manifolds of unbounded dimension. We
want to equip the limit space with the structure of a topological
manifold modelled on a LCTVS (locally convex topological vector
space). The rirst-difficulty we run into is then that a direct
limit of TVS's not always is a TVS. We have therefore to
investigate this probiem a little.

Recall that e Fréchet space 1s a complete metrizable LCTVS.

Let then Eno c Eno+1 C see C En c.... be an increasing sequence

of Fréchet spaces En’ such that En is a subspace of En+1 in

the sense of TVS's for all n » n_. Put E = v E_.
O () n
n)no

Then Eo° has a natural real vector space structure, and it is
known that it can be given the structure of a Hausdorff LCTIVS
by taking as neighbourhoods of 0 convex sets which intersect
each En in an open neighbourhood of 0 € En’ | With this LCTVS
structure E 1s a so-called LF-space. See e.g. Treves [88]
for the result just mentioned. The topology in this locally
convex structure on Ew is usually different from the direct
limit topology (the weak topology) w.r.t. the topological

spaces En' We have however this result.

Lemna 6.2.3 Let Enoc En°+l C eese C En C <. be an increasing
sequence of finite dimensional vector spaces with their canonical
Hausdorff TVS structures. The inclusions are inclusions as
linear subspaces.

Then the locally convex topology and the direct limit

topology on Qw = U En w.r.t. the subspaces En coincides.

n>no

In particular Ew will therefore be a LCTVS in the direct

limit topology w.r.t. the subspaces En‘
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Proof The locally convex topology 1s always smaller than the
direct limit topology, so it is in the proof of the converse
statement that we need the vector spaces En to be finite
dimensional. To prove that an open set in the direct limit
topology is also open in the locally convex topology, it will

be sufficient to prove the following: If UC E 1is an arbitrary
subset of E , such that un En is open in En for each n » n,,
and x € U 1s an ;rbitrary point in U, then there exists a convex
neighbourhood K of x in E_, such that K N En is open in En for
each n 2 n, and x € Kc U. This statement is on the other hand
easily proved using the local compactness of the finite
dimensional vector spaces En‘ One merely starts in the space

En(x) with the lowest index n = n(x) such that x e En and then

build a K with the required properties step by step.

If E is an arbitrary vector space, the finite topology

on E is the direct 1limit topology on E w.r.t. the directed set
of finite dimensional subspaces of E considered with their unique
Hausdorff TVS topologles. A subset Uc E is therefore open
(closed) in the finite topology if and only if Un F is open
(closed) in F for every finite dimensional subspace F of E.

When the subspaces En of Q” are finite dimensionai as in Lemma
6.2.3, it is obvious, that the finite topology on E_ coincides
with the direct 1limit topology w.r.t. the.subspaces En and

thus also with the locally convex topology. Under the
assunptions in Lemma 6.2.3 Q» will therefore be a LCTVS in the
finite topology. In general it is known that a vector space E
is a TVS in its finite topology if and only if E is at most
countable dimensional. See Palais [7&] and the refereﬁce there
to a paper by Kakutani and Klee [52]. There is however a

slight mistake in Palais's argument for his Lemma 6.10 (The

et et .
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convex neighbourhood N(xo,iei}) is not necessarily contained
in U). This rather trivial mistake is corrected by our Lemma
6.2.3.

We have a canonical countable dimensional LCTVS in its
finite topology, denoted by R”. R” 1s the vector space of
real sequences (x ) 5, such that x + 0 for at most a finite
number of indexes.

If E is an d}bitrary countable dimensional TVS in its finite
topology, then it is isomorphic to R” as topological vector
spaces, since it is obviously isomorphic to R* as vector spaces
and since the topologies cause no trouble in this case, because
we have the finite topology on both spaces.

The following lemma is then easily proved.

Lemma 6.2.4 Let Enoc Eno+l C eee ©€E C ... be an increasing
sequence of finite dimensional vector spaces with their canonical

Hausdorff TVS structures. The inclusions are incluslons as
linear subspaces. Assume also that the dimension of the vector

spaces En is unbounded.

Then Ew = U E_1s a LCTVS in the direct limit topology

n2n
w.r.t. the subspaces En‘ Furthermore E_ is isomorphic to R”

as topological vector spaces.

We recall now a few definitions from the theory of
topological manifolds. Let E be a TVS and let F and @ be closed
linear subspaces of E which splits E into E = F x G, A subset
X of a topological manifold Y modelled on E is then called a
topological submanifold of Y modelled on F, if for each x € X
there exists a coordinate chart (U,®) on Y centred at x

(6(x) = 0) such that 6(U) = E and 6(U n X) = F.
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If X and Y are topological manifolds modelled on the TVS's
F and E respectively, then an embedding f:X - Y is called a
locally flat embedding, if £(X) 1s.a topological submanifold of Y
modelled on F. Observe that a smooth embedding is always locally
flat in finite dimensions.

We can now state and prove the main theorem we have been

working towards.

Theorem 6,2.5 Let (Z,;,no) be a CES of finite dimensional

topological manifolds Xn, where all the maps £ are locally

] ‘ ' oy n+l
flat embeddings. Assume also that the dimension of the
manifolds Xn is unbounded.

Then Ep is a topological manifold modelled on R°.

Proof Let En be a finite dimensional model for an We can
assume that En is a linear subspace of En+1 for each n » n,»

such that we have an increasing sequence E c En 1C e CE_ Ceeo
ot n

By

as in Lemma 6.2.4. By this lemma we know already that

E,= V En with the direct limit topology w.r.t. the subspaces

b
nno

E, 1s isomorphic to K° as topological vector spaces. Since we
know from Theorem 6.2.1 2) that X is Hausdorff, it will
therefore be sufficient to prove the following assertion in order

to finish the proof of the theoren.

Assertion Each point of zw”has an open neighbourhood

homeomorphic to an open subset of &”.

In order to prove this assertion we proceed as follows:

We can assume that the CES has the form

X c X lc eee C X C 00 C X_w With)_(, = U x
Do Bt n .~ % mn

and each Xn a topological submanifold of Xn+1.
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Now let x € X be an arbitrary point in X , and let n(x)
be the smallest index n = n(x) such that x X, Choose
a coordinate chart (Un(x)’en(x)) on xn(x) centred at x such
- e * g
that ?n(x)(un(x)) = E (x)+ BY & theorem of Lacher ([60],
Theorem 2.2) there exists a coordinate chart

(Un(x)+l’ en(x)+l) on xn(x)+1 centred at x, such thst

en(x)+l(Un(x)+1) = En(x)+l’ Un(x) = Xn(x) n Un(x)+l and

O (x) - en(x)+1run(x). It is obvious that we can contimue this

extension procedure ending up with charts‘(Un,en) on Xn

centred at x for all n » n(x), such that en(un) = E_ and such

that (Un+l’en+1) restricts to (Un,en). Put then

Qw = V) Un and define e :U - E by the requirements
n>n(x) * e

] IUn =6 foralln> n(x). By definition of the topologies
on X and E_ it follows now. immediately that ©6: U - E

00 o0 00 o0
is a homeomorphism from the open neighbourhood q” of x € X  onto
E .
o0

This proves the assertion and hence the theoremn.

By Theorem 6.2.5 we can create lots of examples of

manifolds modelled on K .

Example 6.2,6 From the smooth CES's mentioned in Example 6.1.7

we get the following manifolds modelled on K°:
The infinite dimensional

sphere cee  eee .;}_ s®
projective space cee oo RF”
Stiefel manifold cee oo Vi (w)
Grassmann manifold eee oo MC)

All these examples certainly suggest than one should study
the properties of infinite dimensional manifolds modelled on R .
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For a large class of Fréchet spaces (perhaps all) it is
known, Henderson (43], that the topological type of a manifold

modelled on such a Fréchet space is completely determined by

the homotopy type. Hence 1t 1is natural to ask the following

guestidn Are two manifolds modelled on F° homeomorphic if they

have the same homotopy type?

Since S~ and'V, () are contractible we could in particular

ask the

Question Are S” and Vk(w) homeomorphic to I®?

Up to now it seems that topologists studying infinite
dimensional manifolds have only dealt with metrizable spaces.
In view of the following remark the problem posed above will

break this tradition.

Remark 6.2,7 A topological manifold modelled on K° can never
bbe metrizable since K itself is not metrizable.

The manifolds X _ modelled on K~ obtained from Theorem 6.2.5
are therefore never metrizable but nearly always paracompact
by Theorem 6.2.2. Recall, that a regular Lindeldf space is
paracompact and that these conditions actually are equivalent

for locally compact, connected spaces.

Finally, in this section we make the

Remark 6.,2.8 In a recent paper Henderson and West [4L4] have

obtained a theorem like our Theorem 6.2.5. They work however

with metrizable topologles in the following sense:

Let xl c x2 C ees C xnc s+ be a sequence of metric spaces

such that all inclusions are 1isometries. In our terminology

metric

a metric expanding system. Let X denote the direct
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limit of this seguence in the category of metric spaces and

isometries. xietric is then just the union v Xn with

n3l

the unique metric topology, such that all inclusions

Xn c Xﬁftric are isometries. Call %ietric the metric direct

-

limit of the sequence. Let X:fak dernote the ususl direct

limit of the sequence. The identity map (as sets)

Xweak - X:ftric ‘is clearly continuous. When dealing with

manifolds it is usually a homotopy egquivalence.

It If denotes the metrizable LCTVS of finitely non-zero
2

real sequences (xn) with its standard pre-Hiltert structure,

nzl

then the result of Henderson and West can be foraulated as
follows:

Theorem It Ml c M2 C eeec MPB Cese 1is a sequence of
metrizable manifolds (dim(k™)=n) without boundary, each
bicollared in the next, then the manifolds may be metrized, so
that 1t is a metric expanding system, whose metric direct limit
is an.lg-manifold of the same homotopy type as the usual direct

limit.

As Henderson and West remark, it is not all choices of

metrics making the sequence a metric expanding system, which

give the metric direct limit the structure of an,fg-manifold.
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83 Homotopy theory of closed expanding systems.

Most of the material in this sectlion is by now well-known.
Tre main results will be Theorenms £.3.2 and 6.3.3. From these
theorems we get easily Corollary 6.3.4, which will be used

frequently in the followlng chapters. Proofs of Theorems 6.%.2

-and 6.3.3 and of many other nice results in homotopy theory can

be found in the paper of T. tom Dieck [13] and in T. Brécker

and T. tom Dieck [9]. Since these sources were not available
when we wrote our paper [uo] we included in that paper almost
all the details in the proofs of Theorems 6.3.2 and 6.3.3. For
convenience of the reader we repeat here the exposition gilven

in [Lo]. This exposition owes much to T. tom Dieck anyway.

Lefinition €£,3,1 Let (&,_{,no) and (Y, g,n,) be expanding
systems of topologlical spaces. A map between expanding systeums

h: (&,g,no) ~;(z,g,no) is a system of continuous maps

hn : Xn - Yn making the following diagram commutative

g
-._ELﬂil__, e
ese = Xn xn+I*
hn 1 1 Bpe1
...-’Yn . —> Yn+1‘-’ * 90
gn,n+1

Whenlcomposition of maps is defined in the‘obvious way,
it is clear that we get a category consisting of ES's starting
at n=n  as objects and the maps in Definition 6.3.1 as
morphisms.
Call a map h: (X,£,n,) = (¥,g,n,) for a homotopy eguivalence

between ES's, if each hn is a homotopy equivalence in the usual

_sense.,

A map h: (g,g,no) - (g,g,no) induces in the usual way a
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continuous limit map

HED S

Theorem 6.3.2 Let (X,f,n ) and (X,g,no) be CES's of topological

spaces, such that all the embeddings fn,n+1 and gn,n+1 are

cofibrations.

Then a homotopy equivalence between ES's g:(g,g,no) -~
(x,g,no) induces ,an ordinary homotopy egquivalence h : X, ™ X,

—m'

Theorem 6.3.3 Let (g,g,no) be a CES of topological spaces,
such that all the embeddings fn,n+l are cofibrations. Suppose
also that all the spaces Xn have the homotopy type of a
CW-complex.

Then gw has the homotopy type of a CW-complex.

Before entering into the proofs of these theorems we

mention the following important

Corollary 6,3.4 Let (g,g,no) be a CES of ANR's. Then X
has the homotopy type of an ANR.

Notice that homotopy type is the most we can hope for by

Remark 6.2.7.
Corollary t.3.4 is an easy consequence of Theorem 5.2.2,

Theorem 6.3.3 and the following lemma, which can be found in
Palais ([74], Theorem 7).

Lemma 6.3.5 Let A and X be ANR's and let f: A ® X be a closed

embedding. Then £ is a cofibration.

We begin now the proofs of Theorems 6.3.2 and 6.3.3. For

that purpose we introduce the iterated mapping cylinder
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(or telescope) of an ES (&,;,no). ‘We denote this with

Z(K:ano) and define it as the quotient space of the disjoint

union V

(x, x [n,n+1]) modulo the relations
n>n°

(xn,n+l) ~(fn,n+1(xn)’n+l) for all x € X, and all n> ng.

Z(l{.’zo no) .

.......... I: T [ //./ ST
* I~ "{ o
S B
T2 —, 1/4, ‘ Lo
"""" R N Ln +3
r AR Yot
1~a '/',3 R ' o
A e |
,/'. . n + )
D ‘3')/ v $,
n, n_+1 n°+2 n°+3 no+u

The projections X X [n,n+1] - X, induce a canonical

projection
P(K'_r;vno) : Z(Z_,_f_,no) -+ ')'('oo

Taking into account the following lemma, Theorems 6.3.2
and 6.3.3 will be immediate consequences of the correspocnding

theorems in the appendix in Milnor [66]. We give however

nearly all details here.

Lemma 6,3.6
that all the maps f

Let (g,g,no) be a CES of topological spaces, such

n,n+l are cofibrations.

Then the canonical projection p(z,g,no) is a homotopy
equivalence.

As usual we can assume that the CES has the form

Proof

Xnoc Xn +l C eee & XnC see C KooCooo With

Xoo= U X . Z(X,f,n.) can then be identified with a subspace
?n n - (o]
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of X = [no,w[,and the canonical projection p(g,g,no) is just

the composite map

roJje.
Z(g,:,no)cozmx [no,cx‘,[ __’L_ﬂ__> }—(-oo

Since the projection trivially is a homotopy equivalence
it will be sufficient to prove that z(gc_,_f_,no) is a strong
deformation restract of gm,x [no,m[. To prove this we use a
theorem of Puppe ( [80 ), Satz 4, p.87) to construct a strong

deformaticn retraction

v, X x [ n ,n+l ]~ X, * [no,n+ll UX 4 x{ n+ll

for all n» no.

As observed by Puppe, the existence of such a strong
deformation retraction follows just from the fact that the
inclusion xn-o Xn+1 is a cofibration. Using these strong
deformation retractions it i1s easy to construct a strong
ceformation retraction of X x [ n_,e[ onto z(X,f,n.).

See the picture of Z(&,;,AO) above.

This proves the lemma.

Now let (ﬁ,g,no) and (l,g,no) be ES's of topological

spaces and let h={h} o and ¢ =lg} , ~ be systems of
o o

continuous maps hn: xn-+ Yn and homotopies ?nt Xn.x {o0,2 ]*Yﬁ+1,

such that (cpn)o = g °h and (cpn)1 = nn+1°*rh,n+1 for all

n,n+l

nz n . .  The following dlagram is thus homotopy commutative with

(o)
the homotopies ¢, as the homotoplies in the squares
f
n,n+l S -
...-‘ xn xn+1 LN N )
hn l @ l hn+l
‘-’ Y ;' d L N )
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To the systems of maps h and ¢ we associate a map

Z(k,2 ) @ Z(XLon ) ~ Z(Y,gn))

defined by

2(0,2) (x sm+t) = (h (x_),n+2t) 0<tg 3

(‘Pn(xn,Zt-l). n+1) % Sst<1

for all x € X and all n 2 n,.

With these assumptions we have

Lemma 6,3,7 If all the maps hn are homotopy eguivalences,; then
the map Z(h,?) is a homotopy equivalence.
Procf The proof is analegous to the proof of Hilfsatz 7, p.31l

in [79]. Puppe proves here the corresponding fact for the

ordinary mapping cylinder.

Proof of Theorem 6,3,2 Define the homotopytpn as the constant

- o [
homotopy (¢n)t - gn,n+1 ‘ hn = hn+1 rn,n+1 for all te [0,1].

Then we have the commutative diagram

X,L,
Z(X,Lsn,) PEE%) X,
Z2(n0) | | n_
2(¥,g8s1n,) D §
&% p(¥,&n,) °°

Lemma 6.3.6 an Lemma 6.3.7 finishes now the proof.

Proof of Theorem 6.3.3 It is easy to construct a commutative

diagram

o by
n n_+1 n_ +2
(o] (o} (o]
h h h
n, l n,+l l n°+2 l

i
o no,no+l (o} n°+1,n°+2 o)
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where each Kn is a CW-complex, each in,n+1 is an inclusion

of Kn as a subcomplex of Kn+1 and each hn is a homotopy

equivalence.
Let 9 = iq)n ;n>n be the system of homotopies in the sguares.
o

Consider then the diagram

P(&v.f.:no)
2(X,fon: > &
oc
2(n,9) |
Z(K,i,n) > K
= P(K:l:no) g

All the maps in this diagram are homotopy equivaiecnces
by Lemma 6.3.6 and Lemma 6.3.7. Therefore &m is homotopy

equivalent to gm, which by construction is a CW-complex. Hence

Theorem 6.3.3 is proved.
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Chapter 7

Limit spaces of k-mersions and embeddings.

In this chapter we shall study the spaces of k-mersions
Cr(M,X;k) and the space of embeddings Embr(M,X) from a compact
smooth manifold M into a metrizable smooth manifold X modelled
on a C-smooth Banach space. Here 2 € r € o and 0 € k.

First we consider the inclusion maps

cF(u,X;k)
T~ cT(i,X)
Embr(M,X)/

In §2 we study the connectivity properties of these maps.
For X finite dimensional we obtain results, which generalize
the classical theorems of Whitney on existence and isotopy of
immersions and embeddings (Theorem 7.2.1). For X infinite
dimensional we show that these maps are homotopy equivalences
(Theorem 7.2.2). To prove such theorems we need a parametrized
version of Thom's transversality theorem, which we state in &1.

Next let (X,f,n ) be a smooth CES of finite dimensional
manifolds of increasing dimension and consider the following

diagram of naturally induced maps

&T\\\\\\*
Emb’ (M,_}g)w/

The main purpose of this chapter is to show that all the

cF(M,X;k)
r (o] 6 (o]
CT(M,X) _ — C(M,X) - C°(M,X.)

maps in this dliagram are homotopy equivalences. For 6 this 1is
proved in a slightly more general setting in §3. The other
maps are treated in §L.

Finally, in §5, we apply the results we have obtained on

“epaces of embediéings to construct models of classifying spaces
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for diffeomorphism groups.

The results on spaces of k-mersions will be needed in

Chapter 8.

84 A _transversality theorem

In §2 we shall need a corollary to a parametrized version
of Thom's transversality theorem. Before stating the theorem

we will have to explain some terminology.

Let Q,¥ and X ©bYe finite dimensional smooth manifolds.
Lenote by JS(M,X) the space of s-jets of maps from M into
X. TFor fe€ c¥(Q x ¥,X) and 0 € s € r we define the partial

s-jet of £ after M as the map
Jg(E) + @ x M =+ I5(M,X),
which maps (q,x) € @ x M into the usual s-jet of rq : M- X
at x € M, i.e. Jp(£)(aix) = 3°(£ ) (x).
In the following when we talk about approximations of maps

in CP(Q x M,X) we will always mean approximations ﬁ.r.t. a

metric defining the CF-topology on cT(q x M,X).

The transversality theorem we need reads now as follows

Theorem 7.1.1 Let Q, M and X be finite dimensional smooth

manifolds, and let A € Q and K € M be closed subsets. Let also
wc JS(M,X) be a smooth submanifold with closed image and suppose
that r > max l{dim(Q x ¥) - codim(W),s}.

Then any map f € c’(Q x M,X) such that j;(f) is
transversal to W on A x K can be arbitrarily close approximated
with a map g € CT(Q x M,X) such that g|A x K = £|A x K and

such that j;(g) is transversal to W on all of Q x M.

If we put Q equal to a point in this theorem we get of

course the classical Thom transversality theorem. The proof
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of the version with a parameter space Q stated here can be
modelled on the proof of the specilal case given in e.g.
NMorlet [67]. The theorem 1s also a consequence of the
general transversality theorem of Abraham (see e.g. Abraham
and Robtin [1]).~ As usual the restriction on the degree of
differentiability »r 1s caused by the application of Sard's

theorenm,

The theorem has this useful

Corollar 1.2 Let Qi,um and X® be finite dimensional
smooth manifolds and let AcC Q@ and Kc M be closed subsets,
Suppose also that 2 € r<ow, 0< k< min {m,n} and
0<1isn-2k + (mk)(n-k).

Then any map f € Cr(Q X M,X) such that fq has rank
> k-on K for q € A can be arbitrarily close approximated
with a map ge CF(Q x M,X) such that g|A x K = £]A x K and
such that gq has rank 2k on M for all g € Q.

Proof Let W(p-) c Jl(M,X) be the subset of l-jets of
rank p. W(p) is then a submanifold with closed image of
codimension c(p) = (m-p)(n—é) in Jl(M,X). Observe now that
amap gE€ Cr(Q x M,X) will satisfy the condition rank
(gq) > k on M for all q €Q if and only if ji(g) avoids
W=WO0) Ueeo U W(k=1). If c(p) - (i+n) > 1 for all
0 p< k-1 then it is clear that jy(g) will avoid W 1if
and only if J;(g) is transversal to W(p) for 0€ p< k -1,
Since k< minim,n} it follows from the formula e¢(p) = (m-p)(n-p)
that c(p) > c(k-1) for all 0 < p € k-1 and therefore that '

c(p) - (1+m) > c(k-1) = (i+m) = (m-k+1)(n-k+1) -(i+m).
Therefore c(p) - (i+m) > 1 for all 0 €£p<€ k - 1 if and
only if 1< n - 2k + (m-k)(n-k). Remark also that r> 2 1is
the degree of differentiability we need in this case in order

to apply Theorém 7.1.1 since (i+m) - c(p) € -1 for




With these observations at our disposal the corollary is

an immediate consequence of Theorem 7.l.l.

§2 Homoto roperties of the inclusion maps of CT(M,X:k

and Emb¥(M,X) _into CT(M,X).

The purpose of this section is to prove theorems about
the connectivities of the inclusion maps mentioned in the
headline. Recall Lefinition 5.2.3 for the notion of g-equivalence
For any integers n,m and k we put q(n,m,k) =

= n - 2k + (m=-k)(n-k).

Theorem 7.2.1 Let ¥™ and X® be finite dimensional smooth
manifolds with M  compact, and let k and r bYe integers
satisfying 0 € k € min {m,n} and 2 < P < coe

1) If 0 < q(n,m,k) then CT(M,X;k) $ # and the
inclusion map

cT(M,X;k) - CT(M,X)

is a q(n,m,k)-equivalence.
2) If 0<n-2m ~1 then: Embr(M,X) + 4 and the
inclusion map

Emb (¥,X) =» CT(M,X)

is an (n-2m-1)-equivalence.

Theorem 7.2,2 Let Vo be a compact smooth manifold and let
X %be a metriiable smooth manifold modelled on an infinite
dimensional C°-smooth Banach space, E. Let also k and r
be integers satisfying 0< k<€ m and 2< r<<ow.

Then Cr(M,X;k) and Embr(M,X) are both non-empty
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and the following inclusion maps are homotopy equivalences:
1) cfu,x;kx) - cF(x,Xx)
2)  Emb"(M,X) - cT(¥,X).

A path in Cr(M,X) is also called a regular homotopy.
If we put k = m in Theorem 7.2.1 1) it follows therefore
that any differentiasble map 1s regular homotopic to an
immersion when n - 2m 2> 0, and that any two immersions which
are regular homotopic are regﬁlar homotopic through
immersions when n - 2m - 1 2 0. Similar results hold by
Theorem 7.2.1l. 2) for embeddings when n - 2m - 12 0 and
n-2m-2 20 respectively. These are of course the classical
resultsof Whitney. Theorem 7.2.1 can therefore be seen as a

generalization of Whitney's results.

Remark 7.2.3 For r =« the result in Theorem 7.2.1l. 2) follows
also from a stronger theorem of Dax [12 ], which takes into
account.connectedpess properties of M and X in the spirit
of Haefliger [38 1.
Proof of Theorem 7,2,1 Let Qi be a compact smooth manifold
with the compact submanifold AC Qi and the base point
Qo € Ac Qi.

1) It is well-known (and follows in fact immediately
from Corollary 7.1.2) that CT(M,X;k) + # when q(n,m,k) » 0.

Suppose now that 0 € i € g(n,m,k) and let.

focz CP(M,X;k) be an arbitrary k-mersion. Consider then the

homotopy class of a map
i r r
£ (qQ, Aoqo)" (C (Mox)o C (M,X;k)!fo)
with the associated map

¢ . g x - xB,
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We can assume W.l.0.g. that ? is of class Cr.

Since f(A) ¢ cT(M,X;k) %q = £(q) has of course rank » k
on M for all q € A. By Corollary 7.l.2 ? can then be
approximated arbitrarily close in the Cr-topology with a map
g Ql x ¥® - X® such that BlA x M = # |A x M and such that
@q has rank 3k on M for all q € Qi. Using a tubular
neighbourhood for X 1in a Banach space E we can therefore
also homotope $ *into a map § as above by connecting
them linearly in the tubular nelghbourhood and then projecting
onto X. This homotopy will now induce a homotopy of bl
with a map g: Qi 4-CP(M,X;k)_ which is constant equal to
f|A over A. £ represents therefore relatively the zero
class. |

-Consider now the induced map

=, (CT(M,%3K),2,) ~ 7, (CT(,X),2,) -

i

If we put ’Qi =8 and A =g in the analysis above,

0
we conclude that this map is epi for 0 <1i < q(n,m,k). If
we put Q1+1 = Di+l_ and A = Si it follows from the analogous
analysis with dim Q = 1 + 1 that this map is mono for
i +1 <gqg(n,mk). This is, however, exactly what we had to
prove. |

2) It is again well-known that Emb®(M,X) + £ when
ne-2m-13 0.

Suppose now that 0< i< n-2m -1 and let
f,€ Embr(M,x) be an arbitary embedding. Consider then the

homotOpyvclass of a map

£ (ql,a,qy) - (CT(M,X), EndT(4,X),E,)
with the assoclated map

& : ol x ¥ SR,
which we again w.l.0.g. can assume to be of class Cr.

Since 0 €1 <n-2m -1 €n-2m we can as in the proof
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of 1) homotope f 1into a map g : Qi - Imm®(¥,X) fixing
everything on A. We observe now that Emb®(M,X) in this
case 1s equal to the space of 1-1 immersions, since M is
compact. It is easy to see that g(é) = ﬁq is 1-1 for all
q € Qi if and only if the map defined by the diagram

Qi x Mm X Mm AQ - 1M i lM» Qi X Qi X Mm x M

. e e e

1. x Twist x 1
Q MAQimex'_Qime 'éx@exnxxn

7

maps Qi x (Mm x K° \ AM) into X% x x® \ AX; This last
condition is a transversality condition when i + 2m < n -1

or equivalently 1 € n - 2m - 1. A transversality argument

will therefore allow an arbitrary close approximation of é

with a map h such that % | Ax ¥ =g | A x ¥ and such that
fi, 1s 1-1 for all q < Q! provided of course 0< i <n - 2m - 1.
Proceeding as in the proof of 1) we can therefore homotope g
into a map h : Qi'* Embr(M,X) such that the homotopy is
constant equal to g | A=f | Aon A. f represents

therefore relatively the zero class.

The proof of 2) is now finished in analogy with the proof

of 1).

Proof of Theorem 7.2.2 A chart on X provides a diffeomorphism
6 : U2 E from an open set U € X 1into the model Banach space
k. Let E-= FO® R® be a splitting of E into a Banach space

F and a copy of euclidian n-space R® with n? 2m + 1.

Choose now an arbitrary embedding f2 : K0 Rn and an
arbitrary differentiable map fl : WP F. Then

£=0"1o (fy x f2) : M= X 1is an embedding. Therefore

Emb’ (M,X) ¢ # and hence also ct(M,x;x) 4 4.

. Let now again Qi be a compact smooth manifold with the

— . compact submanifold A C Qir and the base point q, € AcC Qi.
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1) Let £, € Cr(M,X;k) be an arbitrary k-mersion and

consider for any 1 2 0 the homotopy class of a map

i
£ :(Q7,4,q,) ~ (CT(4,X),CT(M,X;k), 1)
with the assoclated map
£ sl x ™o x.

We can again assume w.l.0.g. that ® is of class Cr.

We want to change o by aAhomotopy constant on A x M
to obtain a map which is'a k-mersion for each fixed .q € Q.
We do that in a sequence of steps, in each step only making
changes on a plece of the domain mapped into a chart on the
target and keeping fixed what has been obtained after the
previous steps. To make this precise we choose open coverings
of Q by charts, say {VI} and iUil with 1 =1, ...,£, such
that V, ¢ ¥, c U,. Similarly, we choose for each i = 1,004
open coverings of M by charts, say iv§ land {U;} with
3 =1, .., n, for fixed 1, such that V;‘:;EC.U§° Purthermore
all these coverings shall be chosen, such that ?(Ui x U?)

is contained in a chart on X.

Consider now Ul x Ui. Since ¢ maps this subset into
a chart on X ?lU1 X Ui corresponds by a diffeomorphism to
a map ‘
1 n
leUl - E=F@® R,

where we choose n sufficiently large in the splitting

E = F@®R® of E. By the technique behind Corollary 7.1.2
we can alter the component into R® of this map and thereby
construct a homotopy (with support in Ul x Ui) from £ to

& map

1

flraxk-X,
such that the homotopy is constant on A x M and such that

(?i)q has rank 2k on V} for each ¢ € AU Vi.
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Consider then ?i on U1 x Ué. By the same method
as before we can change %i insige Ul x Ué and thereby obtain

a map
P raxk-x,

%1 ?1 .
such that 5 is homotopic to 1 through a homotopy constant

on A x MU Vi x Vi. and such that (?é)q has rank 3k on
A ) -
V1 U V2 for each g€ AV Vl.
We construct now by induction a sequence of maps
?’ ?i’ ?l, esey f}l » f%, .o.,fﬁ g 000y fﬁ »
1 2 4
such that the map ?; for each 1 = 1,...,4 1s homotopic
i
to ? through a homotopy constant on A x K and such that
1 "oy =
(2 ) has rank »k onM=U V- foreach g€ Au TV, u ..,
ni’a j=1 3 1
LtVi. ,
Since Q= U V, the map
i=1 i

=?1:QXM"’X
g n,

will induce a map g : Q -» CT(M,X;k) homotopic to f by a
homotopy constant on A. This shows that f relatively

represents the zero class.

Proceeding now as in the proof of Theorem 7.2.1l. 1) we

conclude that the induced map

xg (CT(M,X3%),£,) = =, (CT(M,X),£,)

is a bijection for all 1 2 0. Since fo was chosen

arbitrarily the map

cT(m,X;x) = cT(u,X)
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is therefore a weak homotopy eguivalence, and hence a homotopy
equivalence, since the spaces involved are ANR's. This
completes the proof of 1).

2) The proof of 2) is carried through in a manner similar
to that 6f Theorem 7.2.1l. 2) by reducing transversality

‘questions to finite dimensional known ones as above.

83 Ipduged 1imit spaces of continuous maps

With reasonable conditions on the spaces involved we show
in this section that a continuous mapping space functor CO(M,')
ﬁp to homotopy type commutes with direct limits.

Let (L,g,no) be an ES of topological spaces, and let M
be an arbitrary topological space. ~We get then a system

starting at n = n,

) = ooy

| (f )
cen o cO(m,X_) D04l ey CO(M,X,,

where (f ), 1s defined by composition of maps.

n,n+l

This system 1s called an Iinduced system and is denoted

by (c°(M,5),:*.no).

The maps (f are clearly continuous embeddings.

n,n+1)*

‘Hence (C°(X,X),f,» n ) is an ES, and if (X,£,n)) 1s a CES

also a CES. | |
Utilizing the universal property of a direct limit we get

~an induced continuous map 6 : CO(M,LXQ* c°(M,§“) as shown in

the following diagranm,
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n+l (£ )*

n+1,°°

LY

The purpose of this section is to prove

Theorem 7.3.1 Let M be a compact metrizable space and let

(X,£,n ) be a CES of ANR's.

Then 06 is a homotopy equivalence.

Since all spaces involved have the homotopy type of ANR's

(Theorem 5.2.1 and Corollary 6.3.4), Theorem 7.3.1 will follow
immediately from the theorem of J.H.C.Whitehead (Theorem 5.2.4)

‘and the following

Lemma 7.3,2 Let M Dbe a compact topological space and let
(L,g,no) be a CES of T,-spaces.

Then © is a weak homotopy equivalence.
Proof Let Q be an arbitrary compact space. It will dbe
sufficient to prove the assertions A and B below. A will
prove that the induced map 6, in homotopy is surjective in all

dimensions. B will prove that 6, 1s injective in all dimensions.

A For each continuous map h : Q - CO(M,gw) there exists
an n and a continuous map h : Q- CO(M,Xn), such that

h=(f ), °h.

Nyo0

B Jdf hn:Q - CO(M,Xn) is a continuous map, such that
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h = (fn’m)*° hn is homotopic to a constant map in CO(M,Kw), then

. - -]
there exists a k > 0, such that h_ ., = (fn,n+k)* h

is homotopic to a constant map in CO(M,Xn+k).

First we prove A. Let Ev : CO(M,X_ ) x M -+ X denote the
evaluation map and define H : @ x ¥ - X by fi=Ev° (hx 1)
Then § 1is continudus if and only if h 1is continuous. Since
Q x M is compact fi can be factored continuously through Xn
for some n by Lemma 6.1.3. This factorization provides us in
the obvious way with the required map h : Q - C°(M,Xn).

Next we prove B. From the hypothesis in B it follows by
arguments similar to those under A that there exists a k » 0, a

map ¢ € CO(M’Xn+k) and a homotopy H : @ x [0,1] = c°(M,x_ .),

n+k
such that (£, ), (H(q,0)) = h(q) and (f,,, ).(H(q,1)) =

(f )o(c) for all q € Q. But then it follows that

n+k 200

h = (f

nek )o °© h ~1is homotopic to the constant map

n,n+k

Q - CO(M’Xn+k) with value ¢ under the homotopy H.

This proves Lemma 7.3.2.

Remark 7.3.3 It is easy to prove that 6 is a bijection. It

seems unlikely that 6 is actually & homeomorphism. The author

has however no proper counter-exanmple.
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R4 Induced 1imit spaces of k-mersions and embeddings

'In this section we show that all naturally induced limit
spaces of k-mersions and embeddings have the same homotopy type

-as an associated space of continuous maps.

Let ¥ be a compact smooth manifold and let (&,g,no)
be a smooth CES. We get then for each 1 € r € « and each

0 £k €£nma system starting at n = n_.

o
r (fn,n+l)* P
eoe = CT(MX k) > C (M,Xn+1;k) 2 ey
where (fn,n+l)* is defined by composition of maps.

This system is called an induced system and is denoted by
(Cr(M,K;k),g*,no). From Theorem 5.3.1 it follows that

r .
(c (M,g,k),;,,no) is a CES.
Notice that some of the lower spaces in an induced system
might be empty. If the dimension of the manifolds X, 1s bounded

it can even happen that all the spaces are empty.

Likewise for 1 € r € o we get an induced CES.

(f )
s e —’Embr(M,Xn) n,n+l * » Embr(M’xn+l) 2 see

starting at n = n,-.

This induced system is denoted by (Embr(M,g),g*,no). Again
it can happen that some, maybe all, the spaces in this systenm

are empty.

The following theorem is the main result in this section

Theorem 7.4.1 Let M™ be a compact smooth manifold and let

(&,i,no) be a smooth CES of finite dimensional manifolds of

increasing dimension. Suppose also that 0 € k <mand 2 <r € o .
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Then the following limits of inclusion maps are homotopy

equivalences:
1) ¢T(M,X;k)_ »  CT(M,X)_
2) Emd (X))~ cT(M,X)_.

Proof Since the homotopy functor commutes with the direct
limit functor 1t follows immediately from Theorem 7.2.1 that
both the maps are weak homotopy equivalences. From Corollary
6.3.4 we know that all the spaces involved have the homotopy
type of ANR's. But then the maps are homotopy equivalences by
the theorem of J.H.C.Whitehead.,

This finishes the proof.

The next theorem connects the limit spaces in Theorem 7.4.1

with a space of continuous maps.

Theorem 7.4.2 Lét, M be a compact smooth manifold and let

(&,g,no) be a smooth CES of finite dimensional manifolds.
Then the following maps are homotopy equivalences:
1) The limit of natural maps
0
cr(m,x)_ = CO(m,X)

for each 1 € r € oo.

2) The map 6 given by the universal property of direct

limits :
(o}
0 : cO(1,X), = CO(M,X,)
Proof Since the expanding systems involved are closed

expanding systems of ANR's 1) follows immediately from Theorem

5.3.2, Theorem 6.3.2 and Lemma 6.3.5.
2) is just a special case of Theorem 7.3.1.

Hence we have proved Theorem 7.4.2.
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To sum up briefly: »

For each compact smooth manifold Mm, each smooth CES
(g,;,no) of finite dimensional manifolds of increasing dimension,
each 0 € k < m and each 2 € r <  wWe have shown that all the
maps in the following diagram are homotopy equivalences

¢’ (M, X;5k)

>,cr(n,z)w - C°(M,L)w3 c®(M,X,)

T
Emb (Mn}.(.)w
Corollar olie Let M be a compact smooth manifold and let
(g,g,no) be a smooth CES of finite dimensional manifolds of
increasing dimension. Let also 0 s k < m and 2 € r € we
Then all the 1limit spaces CP(M,X;k)°° and Embr(m,g )°°

have the same homotopy type as CO(M,£w).

&5 Classifying spaces fopr diffeomorphism groups

In this section we shall apply Theorem 7.2.2 and Corollary
7.4.3 to construct models for the classifying space of a

diffeomorphism group.

Let M be a compact smooth manifold with boundary and let X
be a metrizable smooth manifold without boundary modelled on a
C”-smooth Banach space. Let also 2 € I € . Denote by
Diffr(M) fhe space of diffeomorphisms of M equipped with the
Cr-topology. ‘ _

It is well-known that Diffr(M) is a topological group under
compositioﬁ of maps. It is also well-known that composition of
maps

EmbT(M,X) x Difff(M) - Emb’ (M,X)
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defines a principal action of Difff(M) on Embr(M,X), i.e.

piref () ~ EmbT(M,X)

Eob” (N,X) / pypeT(y)

is a principal Diff¥()-bundle.

See e.g. Palais [72] or Lima [62] and in particular
Cerf ([10] or the appendix in [11]) and Novikov [71] for the
method of proof of this statement. For a generel survey of

mapping space fibrations see Eells [23].

If X 1s infinite dimensional we know by Theorem 7.2.2
in connection with Theorem 5.3.2 that EmbT(¥,X) is homotopy
equivalent to C°(M,X). Hence Emb" (M,X) 1is contractible ir X

is contractible.

By the general theory for principal bundles we get therefore

the following result. Notation as above.

Iheorem 7.5.1 Suppose that X 1s an infinite dimensional

contractible manifold. Then

pieef (M) - EmbT(N,X)

! \

r
Emb (M’X)/Diff?(m)

is a universal principal Diff’(M)-bundle.

For X the separable Hilbert space Theorem 7.5.1 was known
to Eells [23]. I am indebted to Professor Eells for pointing
out the application of my results on spaces of embeddings to the

construction of models for classifying spaces for diffeomorphism

groups,




Now let (X,f,n ) be a smooth CES of finite dimensional

manifolds of increasing dimension. Since the dliagram

EmbP(M,Xn) x pifef (k) - Eub” (M,X )
(fn,n+l)*x 1 . (fn'n+l)*'
mmﬂmmmi) X xuﬁmm) - Emb"(M,X_ ;)

commutes, we get an induced action *)
Enb"(M,X)  x Diff (¥) - Emb(M,X)
o0 on

One can again show that this action is principal, so that
we get a princirpal vireT (M) -bundle.

By Corollary 7.4.3 we know that Embr(M,z)°° is homotopy
equivalent to C°(M,§n). ience Embr(M,gc_)o° will be contractible,
ifr 5; is contractible.

With notation as above we get therefore

Theorem 7.5.2 ~Suppose that (X,f,n ) 1s a smooth CES of finite

dimensional manifolds of increasing dimension, such that X
N o0

is contractible. Then

piret (M) —  EmbT(N,X)_

r ]
Emb” (M,X)
° /Liee% (k)

is a universal principle Diff¥(M)-bundle.

Theorem 7.5.1 and Theorem 7.5.2 give us & lot of models for
the classifying space B(Diff'(M)) of Diff’(M). Classifying

spaces for diffeomorphism groups are obviously interesting.

‘? It s ot Obvious Yyt the map (s tontinuous




Example 7.5, Take N = Sn.

Let E B B be a smooth locally trivial fibration with fibre
st, This fibration will then have Diff“’(Sn) as structural group.
Hence p 1is up to smooth equivalence classified by a continuous

map

"f : B ~» B(Diff™ (sM)).

Since 0(n+l) ¢ Diff“(sn) there exists a fibration of

classifying spaces

Diff“’(sn)/ o(mel) BO(n+1)

!

B(Diff (sM))

‘A emooth fibration with S® as fibre is therefore a spherical
fibration (0(n+l) as structural group) if and only if there
exists a 1lifting of |

| .y BO(n+1)

B - > B(Difrfre(s™))
£

This situation was studied by Novikov in [71] , where he

n

gshowed that there exist smooth fibratidns with fibre S in

many dimensions n > 7 which are not equivalent to spherical
fibrations.

Recently Antonelli, Burghelea and Kahn [5] has shown that
there exists smooth fibrations with fibre s® for any n » 5 which

are not equivalent to spherical fibrations.
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Chapter 8

Homotopx direct limits,

This final chapter contains our version of the classification
theorem for k-mersions of a compact smooth manifold M into an
infinite dimensional smooth manifold X (Theorem 8.4.1). The
method of proof is'to take the corresponding theorem in finite
dimensions and then apply a limit argument. For such a 1limit
argument to work we need to have good filtrations of X through
finite dimensional submanifolds.

For many infinite dimensional smooth manifolds X it is
possibie to find an expanding system Xl - X2 C eee C Xn C oo
of finite dimensional smooth submanifolds of X such that the
natural map g’;4 X 4s a homotopy equivslence. When such a
property holds we say that X 1s a smooth homotopy direct
limit of the expanding system Xl c X2 C see C Xn C eee
Mukherjea showed in ([69] or [70]) that every smooth separable
Fredholm manifold with a CP-smooth model admits such filtrations.

"We recall this in Example 8.1.6. The filtrations of a Fredholm

manifold satisfy also various other prbperties.

Based on the properties of the filtrations of a Fredholm
manifold we define a class of infinite dimensional manifolds
(Pefinition 8.1.7), which we call pseudo Fredholm manifolds.
The relation between these manifolds and the Fredholm manifolds
is not clear. Since pseudo Fredholm manifolds are just what we
need, Definition 8.1.7 seems therefore justified.

After having defined (smooth) homotopy direct limits
properly in §l, we show in §2 that the mapping space functors
cO(m, ), cF(x,), cT(M,*;k) and EmbT(M,*) ‘commute' with such
limits. In 43 we show that the bundle map functor Hom (TM,};k)

'commutes' with the special smooth homotopy direct limits
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defining a pseudo Fredholm manifold.
With the results in §2 and §3 at our disposal it is easy to

prove Theorem 8.4.1, which classifies the k-mersions from a compact

smooth manifold into a smooth pseudo Fredholm manifold.

§1 Definitions and examples.

L)

First we define the notion homotopy direct limit. The

definition is split into two cases

Definition 8.1.1 (continuous case) Let (&,g,no) be an ES of
topological spaces, let X be a topological space and let

(g,no) = !gnln > n, be a system of continuous maps g.: X - X.

Then X is called a homotopy direct 1imit of (X,f,n ) w.r.t.
(gono) y if
1) The following diagram commutes

X

n,n+l //////z
+ :

n&n’
€n+l
1

n

¢ e P e M — .

2) The induced continuous map

. t Ko~ X

is a homotopy equivalence.




«105=

Pefinition 8.1.1 (smooth case) If (gtg,no) is @ smooth ES, X is

a smooth manifold and (g,no) = fgnfn > n, is a system of smooth

maps g, @ Xn-4 X, then we call X a smooth homotopy direct limit
of (&,g,no) Weloto (g,no), provided the conditions 1) and

2) above are still satisfied.

In the following we will abbreviate homotopy direct limit
to HDL. Notice that our definition of an HDL is slightly more
general than the definition in Milnor ([66], appendix).

We proceed now to give some examples of HLL's.

Example 6.1.2 Let X be a topological space with the homotopy

type of a CW-complex K, and let g:K * X be a homotopy equivalence.

Let Kn denote the n—skeletog of K and let f : Kn - Kn+1

n,n+l
be the obvious inclusion. Let also g, : Kn -+ X denote the

restriction of g to Kn.
Then X 1is an HDL of the CES (X,f,0) w.r.t. the system of

continuous maps (g,0), since of course E,= &

A theorem of Palals creates a lot of non-trivial examples as

follows:
Exzmple 8,1,3 Let E be a LCTVS, and El c E2 C eee C En C eee

be an increasing sequence of finite dimensional linear subspaces

of E whose union U E is dense in E,
n»1 B

If X 1is a subget of E put Xn =X 0N En' Let also

[3 . -
fn,n+1 : Xn-+ Xn+1 and g, ¢ Xn X Dbe the obvious inclusions.

Assume now that X is an open subset of E. Then a
theorem of Palais ( [74 |, corollary to Theorem 17) can be restated

-as follows:
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AL E 1s metrizable or, more generally, if X 1s paracompsct,
thep X is an HDL of the CES (X,f,1) w.r.t. the system

continuous maps (g,1).

For E a Banach space we get, of course, smooth HDL.

Next we produce a few concrete smooth HDL's.

Example 8,1.4 This example uses the notation in Exampie 6ele7e
Let E denote the separable Hilbert space and let

{e131>l be an orthonormasl basis for E.

As in Example 6.1.7 we have the CES RY ¢ R ¢ vo. cR% c ...

of Euclidian subspaces of E.

Now let S(E), P(E), Vk(E) and Gk(E) denote respectively.
the unit sphere, the projective space, the Stiefel manifold of
orthonormal k-frames and t he Grassmann manifold of k-planes in E.
All these spaces have natural topologiles: Vk(E) can be identified
with Iso(Rk,E), the space of linear isometries of R into E
equipped with the norm topology; Gk(E) can be identified with a

space of projection operators on E with the norm topology.

Spheres S(E) is a smooth HIL of (S,f,1) w.r.t. the system (g,1)
of natural embeddings g, ¢ s » S(E).

This is trivial, since both S® and S(E) are contractible.
For the contractibility of S(E) see e.g. Hu ( [49 ], Theorem |

15.2, p.6l1),

Projective spaces P(E) 1s a smooth HDL of (RP,f,1) w.r.t. the

system (g,l) of natural embeddings gn:RPn-4 P(E).

This can be seen as follows: Taking 1limits we get a fibre

map
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1l
Z2 - 22
! l
s> - S(E)
l )
- RP® - - P(E)

Using the 5-lemma on the induced map between homotopy
sequences we conclude easily that RP® - P(E) is a weak homotopy
equivalence, and tﬁerefore a homotopy equivalence by the theorem

of J.H.C."hitehead, since both spaces have at least the homotopy

type of ANR's.

Stiefel manifolds Vk(E) is a smooth HIL of (\_rk,g,k) wW.r.t. the

system (g,k) of natural embeddings g, * Vk(Rn) - Vk(E).

This can be proved e.g. as follows: Let Mono(Rk,Rn) and
Mono(Rk,E) denote the space of monomorphisms of Rk into respectively

n and E equipped with the norm topology. Using the sequence

R
k _k k .n

of finite dimensional subspaces L(R ,R ) € ... € L(R,R") <€ ...

in the Banach space L(Rk,E) it follows immediately from the

theorem of Palais (Example 8.1.2) that the natural map

1ip  Yono(R®,R") - Mono(R%,E)
3 .

is a homotopy equivalence. By the standard orthogonalization

procedure it is clear that Mono(Rk,Rn) (Mono(Rk,E)) has Vk(Rn)

(Vk(E)) as deformation retract. Recall, that Vk(Rn) (Vk(E))

can be identified with the space of linear isometries

Izo(R%,R®) (Iso(RK,E)). Using Theorem 6.3.2 it follows then

easily that V, (=) = V, (E) 1is a homotopy equivalence.
Grassmann manifolds Gk(E) is a smooth HDL of (gk,g,k) Welote
the system (g,k) of natural embeddings g, Gk(Rn) - Gk(E).

This follows easily, since both Gk(m) and Gk(E) are

classifying spaces for GL(k) and since the universal bundle over

e t———
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Gk(E) pulls back to that over Gk(oo) via the map G (=) - ¢, (E).

Spaces of operators produce also many examples of HDL's.,

We mention only the following fundamental

Lxample 8,1,5 Let E ©Ye an infinite dimensional Banach space

with a flag, i.e. with a sequence of direct sum decompositions
n . -
E=E ®E (n21) such that dimEj = n, E,CE,,, and
En+1 < gP,
Let Glc(E) denote the space of invertible operators on E

of the form I + u, where I 1is the identity operator and u 1is
a comﬁhct operator.

The spaces GZ(n) = Gl(En) of invertible operators and the
natural inclusions G4(n) < G&(n+1) form a CES, denoted by
(¢f,£,1). The limit space is denoted by Gl(w) = gL .

Observe that we have natural inclusions G&(n) < Glc(E).

The following theorem was proved by Palais [73] ena Svare (86]

for a wide class of Banach spaces and by Elworthy (30] and

Geba [34] in general:

ol (E) is an HDL of (G£,f,1) w,r,t, the natural inclusions

Gf(n) ¢ GL (E), i.e. the natural map G&(ew) - Glc(E) is a homotopy
L &4

equivalence.

The following example will be the most important so far as

we are concerned.

Example 8,1,6 See Eells ([24], §8) for a more detalled account

of the material in this example.
Let X be a separable smooth Fredholm manifold modelled on

a C*™-smooth Banach space E with a Schauder basis.




-109-

Remark By a theorem of Elworthy ([30] or [31]) any infinite
dimensional separable smooth manifold X modelled on a C*-smooth
Banach space E, for which the structural group of the tangent
bundle can be reduced from GZ(E) to Glc(E), admits an integrable
reduction. Ah integrable reduction to GZC(E) is however by
cgefinition exactly a Fredholm structure.

. Coupled with a theorem of Kuiper [58]_on the contractibility
of Gi(k) for E a Hilbert space, this theorem of Elworthy shows
e.%. that every smooth separable Hilbtert manifold admits a

Fredholm structure.,

"With X as above, a theorem of Mukherjea ([69] or [70]) can

be stated as follows . See also Eells and Elworthy [25].

-~ Theorem There exists a smooth CES (X,f,1), such that each X,
is a compact submanifold of X of dimension n, say with inclusion

g’ Xn-* X, and each f i1s an inclusion of Xn as a

n,n+l
submanifold'of xn+1'

Furthermore, thls system can be chosen, such that the
following properties are satisfied:

1) u X_ 1is dense in X.
n1 B

2) If x E.Xn(x) then the union of tangent spaces

U TxXn is dense in the tangent space TXX of X at xe X.
n>n(x)

3) X is a smooth HDL of (X,f,1) w.r.t. the system of smooth
embeddings (g,1), i.e. the natural map X_- X 1s a homotopy

equivalence.

This finishes Example 8.1.6.

Based on Example 8.1l.6 we make the
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Definition 8.1.7 Let X be an infinite dimensional sepsarable
smooth manifold modelled on a C-smooth Banach sppce E with a

Schauder basis. We shall call X a smooth pseudo Fredholm

manifold if there exists a smooth CES Xno C Xno+1 c ...<:Xn C oo

of finite dimensional éubmanifolds of X of increasing dimension,

denoted by (z,no), such that

1) vooxX, is dense in X.

=
nno

2) IfrxeX . then. U  T._X. is dense in T X.
n(x) n(x) X B X

3) The natural map X _~ X is a homotopy equivalence.

A-CES (X,n ) with the properties in Definition 8.1.6 will

be called a finite dimensional presentation of X,

Remark 8.1.8 Let X ©be a separable smooth manifold modelled on

a C -smooth Banach space with a Schauder basis. We say that

X admits an glmost Fredholm structure if the structural group

of the tangent bundle of X can be reduced from GL(E) to Glc(E).

If a specific reduction has been chosen X is called an almost

Fredholm manifold,

In the literature on G-structures the prefixes pseudo and
almost are used indiscriminately. The reader is therefore
warned that the definition of a pseudo Fredholm manifold given
here is different from that of an almost Fredholm manifold.

- By the theorem of Elworthy quoted in Example 8.1.6 any
almost Fredholm structure is integrable, i.e. the underlying
almost structure of a Fredholm structure. Hence there is no
special theory for almost Fredholm stfuctures and there should

therefore not arise any confusion from our use of terminoclogy.



-111-

Problenms

1) Does any smooth pseudo Fredholm manifold admit a

Fredholm structure?

In the corresponding theory with differentiability of
class C¥ for 1 €T < w we have also the converse problem:
2)  Is any Fredholm manifold of class C* a pseudo Fredholm

manifold of class'Cr?

If the model for a paracompaét manifold of class Cl belongs
to a certaih collectiqn of sequence spaces, e.g..lzp - gpaces
for p a natural number, then Moulils [68] has shown that any
Cr-structure on the manifold has a compatible smooth structure.

In such cases 2) can therefore be answered in the affirmative.

§2 Induced homotopy direct limits,

In this section we show that the mapping space functors
co(x,*), cF(m,), cF(M,*;k) and Emb¥(M,+) 'commute' with

appropriate (smooth) HDL's.

First we treat the continuous case,
Let (g,g,no) be an ES of topological spaces and suppose that
the topological space X 1is an HDL of (K,g,ﬁo) w.r.t. the system

of continuous maps (g,no). Then we get .an induced diagram
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J (g.)
(o] n'%x
c (M,Xn)
fo
,OO
: )24
(£, n41) s » CO(M,X) - = 2 cO(M,%)
o
A 4 fh,l’”
co(MX_5)
+1
. (gn+1)'

' In this diagram c°(u,g<_)°° is the 1imit space of the inducead
o i )
system (C (M,g),g*,no), fn’°° is the inclusion of C°(M,Xn) into

the 1imit space and g,, 1s the 1imit map for the induced system

of continuogs maps (E*’no) = {(Sn).3n>no-

We have now
Theorem 8.2.1 Let (X,f,n ) be a CES of ANR's, and let M be
compact metrizable. Furthermore, let X be an ANR, which 1is

an HDL of (&,g,no) w.r.t. the system of continuous maps (g,no).
Then C°(M,X) 1s an HDL of the induced CES (C°(M,X),£,,n,)

w.r.t. the induced system of continuous maps (5*’no)°

Proof We have to show that
. ~° o
- c (M,g)“;» c (M,X)

is a homotopy equivalence. _

For that purpose let © : C°(M,g)¢;* CO(M'Ka) be the map
studied in Chapter 7, §3 and let (gw)* : c°(m,’gc_°°)-»c°(m,x) be
the map induced by the homotopy equivalence g“;: za;v X. It is

clear that we get a commutative diagram
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Es
c(u,X) =z c(M,X)
"‘oo 4 ’

N /(ga,),,

Co(M,X_)

It is easy to prove that (gu), is a homotopy equivalence.
Since we know that 6 1s a homotopy equivalence by Theorem 7.3.1,
it follows immediately that Eweo is a homotopy equivalence. Hence

Theorem 8.2.1 is proved.

Next we turn to the differentiable case,.
Dealing with a smooth HLL we get, of course, a diagram
similer to the dne preceeding Theorem 8.2.1 for each 0 < T € co.

Ve have then

Theorem 8.2.2 Let (X,f,n ) be a smooth CES, and let X be a

smooth manifold which is a smooth HDL of (X,f,n ) W.r.t. the

system (g,no) of smooth maps. Assume furthermore, that all the

manifolds are metrizable and modelled-on C“Lsmoﬁth Banach spaces.
Then for every compact smooth manifold M and all

0 <71 %%0,C"(M,X) is an HDL of the induced CES (Cr(M,g),g*,no)

"W.ret. the induced system of continuous maps (g*,no).

Proof Consider the following diagram

cT(M,x) ‘ > cO(M,x )
4 :./ G,
cr(m,gl’ (fn,n+l)f (fn,n+‘1)2 CO(M,X)M
fI' . (o]
Nn+l,e0 i) J' n+l,eo
cr(M,xn+l) > CO(M’Xn+l) |
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We have labelled the induced maps and the maps into the
induced limit spaces with rr and o respectively just to-

distinguish between them.
The horizontal maps are the obvious inclusions. By the
theorem of Palais (Theorem 5;3.2) they are homotopy equivalences.

Both the induced systems.(CO(M,g),gg,no) and (Cr(M,g),gf,no)

" are CES's of ANR's, by Theorem 5.2.1 and Theorem 5.3.1 respectively.

 Hence it follows from Theorem 6.3.2 in connection with Lemma 6.3.5

that the limit msap

CeT () —— cO(mx)

" i1s a homotopy equivalence.

Consider then finally this commutative dlagram
o
c’(u,x),,—=—> cF(1,x)

c®(M,X) ,~—5— C°(¥,X)

The right vertical map is agaih just the obvioﬁs'inclusion
map.' It is a homotopy equivalence by the theorem of Palais.
The left vertical map is the~limit map above which we have}jusf
proved to be a homotopy equivalenée. ' ggw is a homo;opy 
equivalence by Theorem 8.2.1., Altogether it follows then

immediately that gfw is'a homotopy equivalencd. - This is however

exactly whét we should prove.

Finally,'we state our result for the mapping space functors

c(M,+, k) and EmbT(¥,*).
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. Theorem 8.2.3 Let (X,f,n ) be a smooth CES of finite
dimensional manifolds of increasing dimension and let X bdDe

& metrizable smooth manifold modelled on an infinite dimensional
- ¢®-smooth Banach space. Suppose also that X 1s a smooth

HDL of (g,g,nc) w.r.t. the system of smooth embeddings (g,n,).

Finally, let ¥™ be an arbitrary compact smooth manifold and let

0O Xk €m and 2 ST < oo,

Then CT(M,X;k) and Embr(M,X) are HDL's of the corresponding
r v
induced CES's. (Cr(M,g;k), gt,no) and (Emb (M,L),g‘,no) W.r.t.

the systems of continuous embeddings (g‘,no).

Proof Consider the following commutative diagrams of natural

maps:
cT(M,X;k) - s CT(M,X;k)
L iy
and ‘ _
£, |
Emb"(M,X)_ x > Emb’ (M,X)
™ (M,X) A > T (M,X)

The vertical maps are homotopy equivalences by Theorem 7.2.2
and Theorem 7.4.1. The bottom horizontal map is a homotopy
equivalence by Theorem 8.2.2. Then g, must be a homotopy

equivalence. This 1s exactly what we should prove.
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§3 Bundle maps into the tangent bundle of a pseudo Fredholm

manifold.’

The object of this section is to prove Theorem 8.3.1 stated
below. For the basic notation the reader is referred to Chapter 5,

§1. Pseudo Fredholm manifolds were defined in Definition 8.1.6.

‘Theorem 8.3.1 Let X be a smooth pseudo Fredholm manifold

and let (&,no) be a finite dimeﬁsional presentation of X. Let
also K* be a compact smooth manifold and let 0 <€ k€ m and
2 S S oo
Then the naturally induced closed embeddings
k) form a CES with limit space

Hom(TM,TXn;k) - Hom(TM,TXn+l;

Hom(T#,TX;k),, and the naturally induced map

Hom(T¥,TX;k)_ ———> Hom(TM,TX;k)

is a homotopy equivalence.

The proof of Theorem 8.3.1 will be given in a sequence of
lemmas. The fibrations %,%x' and %" which will occur in most
of fhese lcmmaé aré defined in Chapter 5, §1. We shall freely
use the following conventlon: Whenever we underbar a symbol
a natural expanding system is involved and whenever we put an o

on a symbol a limit has been taken.

Lemma 8.3.2 Let En. C eee C En. Cees be an increasing
o

sequence of finite dimensional linear subspaces in a Banach space

E, and suppose that U En is dense in E. Let also 'F be a
n?n
(o)

finite dimenéional vector space and let 0 < k < dim F.

Then the natural map

L(F,E;k) —> L(F,E;k)
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is a hombtopy egquivalence.

Proof Since F 1s finite dimensional it is clear that

1) L(F,Eno) C ees CZL(F,En) C oeee

"1s an expanding system of finite dimensional linear subspaces in

the Banach space 'L(F,E), such that U L(F,En) is dense in
n’n
L(F,E). °

2) L(F,En;k).= L(F,E;k).rlL(F,En)

3) L(F,E;k)is an open set in the Banach space L(F,E).

With these observations in mind the lemma is a direct

consequence of the corollary to Theorem 17 in Palais [74] (stated

here as Example 8.1.3).

Lemma 8.3,3 Let "X be a smooth pseudo Fredholm manifold and
let (K,no) be a finite dimensional presentation of X. Let also

F be a finite dimensional vector space and let 0 <k ¢ dim F,

Then the natural map
 L(F,TX;k)_ - L(F,TX;k)

is a homotopy equivalence.
Proof Let x exn(x) and put E =T X for each n > n(x)

and E = T _X. By assumption 2) in Definition 8.1.7 U E
X n>n(x)

is then dense in E.

Taking limits we get the following commutative diagram
L(F,E;k) - L(F,E;k)

L(F,Té;k)m I L(F,TX;k)

L3 l 1 =
w .
X
’ oo

- X
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It is easy to prove that 5; is a Serre fibration. The
map between fibres and the base map are homotopy equivalences
respectively by Lemma 8.3.2 and by assumption. Using the 5-lemna
on the induced map between the homotoPy seQuences of the two

fivrations it follows now immediately that the map

L(F,TX;k)_ - L(F,TX;k)

is a weak homotopy eqguivalence and therefore a homotopy
equivalence since the spaces involved have at 'least the homotopy
type of ANR's. |

This proves Lemma 8.3.3.
From now on our assumptions ﬁill be as stated in Theorem 8.3.1.
‘We shall consider the induced limit space

B(THM,TX;k)_ = l%m B(TM,TXn;k)

and the following commutative dlagram. We will get such a

diagram for each p € M by taking limits

L(TpM,TL;kl» - ’ L(TPI,TX;k)
B(TM,T&;klv —> ~ B(TM,TX;k)
\Ti;\\\\\, e///////;/"

M

Lenma 8.3,4 In this diagram x_ is a locally trivial fibration,

and the natural map

B(TM,TX;k) _ —  B(TM,TX;k)

lis a fibre homotopy equivalence.

et
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, Proof Almost by definition X factors as follows

o 5; _ proj.
B(T¥,TX;k) —> M x X ———> M

It is rather easy to extend a local trivialization of the

smooth fibration‘xn" : B(TM,TXn;k) -+ M xX_ over a coordinate

chart V x Un on M x Xn with ﬁh compact and contractible in Xn

’ . 1)
to a loecal triviglization of xn+1 over g chart V x Un+1 on

M x xn with Un# compact and contractible in Xn+1.

+1 1

Just use that the normal bundle for Xn in xn+l is trivial over

ﬁg. Taking limits of such local trivializations we get local

trivializations of =’ .

Since a composition of locally trivial fibrations over a
locally contractible space 1is again a locally trivial fibration
it i1s clear that LI is a locally trivial fibration.

For the second part of the lemma we remark that the map in
gquestion restricts to a homotopy equivalence on each fibre by
Lemma 8.3.3 Henée the theorem of Lold ([14], Theorem 6.3)
_shows that it is a fibre homotopy equivalence.

This proves Lemma 8.3.4.

The next lemma will prove Theorem 8.3.1, since we know from
Chapter 5, §1 that Hoﬁ(Tm,Txn;k) and Hom(TM,TX;k)'can be
identified with the spaces of sections ro(Kn) and I'°(x)

respectively.

Lemna 8.3.,5 Assumptions as in Theorem 8.3.1. Consider the

induced CES

I‘o(xn ) € ves C Po(xn) C ... with 1limit space TO(EL” and the
o .

naturally induced map

ro(z), = I(x).

e e . - e ,. —- [
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This map is a homotopy eguivalence.

Proof The map in question is one of the maps in the following

commutative diagram of naturally induced maps

r °(x) — T °(xn)

~

(o}
r(z)
Proceeding exactly as in the proof of Lemma 7.3.2 it is

easy to show that
0 o) '
r’x), - T(z)
is a weak homotopy eguivalence. Since the map

B(TM,T_X_;k)w - B(TM,TX;k)

is a fibre howotopy eguivalence by Lemma 8.3.4, it is easy
to prove that the induced map
o o
ro(g ) - T (x)
is a homotopy equivalence.

Altogether the map

I‘°(L)“ - I°%x)

is therefore a weak homotopy equivalence. Since the spaces

involved have the homotopy type of ANR's the map will therefore

be a homotopy equivalence by the theorem of J.H.C.Whitehead.

This proves Lemma 8.3.5 and hence as already mentioned

also Theopem 8.3.1.

84 Classification of the k-mersions from a compact manifold into

a pseudo Fredholm manifold.

Theorem 8.4.1 below is the strict analogue to a theorem of

S.D.Feit [33] but with infinite dimensional target. On the other
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hand Feit's theorem is the end product of work initiated by

Smale and Thom in the late 1950's and followed by work of |
Hirsch, Palais, Haefliger, Poenaru and Phillips (for the
submersion case). See the introduction to [33] for references
to this development. The theorem of Feit has also independently
been discovered by Gromov [37]. Gromov gets his result as an
application of a very general theorem, which has many other
applications in differential topology. For an account of the

work of Gromov see Haefliger [39] or Poenaru [78].

Theorem 8.4,1 Let ™ be a compact smooth manifold and let X

be a smooth pseudo Fredholm manifold. Let also 0 € k € m and
2 €r < o, Then the differential map induces a homotopy
equivalence
a: cF(,X;k) - Hom(TH,TX;k)
Proof Let (g,no) be a finite dimensional presentation of X

and consider the induced commutative diagram

a
Cr(M’EikLo 2 > Hom(TM,TX;k)_
cF(M,X;k) > Hom(TM,TX;k)
a .

In this diagram the vertical maps are homotopy equivalences
by Theorem 8.2.3 and Theorem 8.3.1. d°° is the limit of the
differential maps

r .
d,: C(M,X 5 ) = Hom(TM,TXn;k)
which only involves finite dimgnsional manifolds. S;nce the

dimension of Xn tends to infinity these maps are homotopy

equivalences ( = weak homotopy eqguivalences since'the spaces are

ANR's) from a certain stage by the theorem of Feit [33]. Hence



-122~

d°o is the limit map of a homotopy equivalence between CES's of
ANR's and is therefore itself a homotopy equivalence by Theorem

6.302-

Since the three other maps in the diagram are homotopy

equivalences, d must itself be a homotopy equivalence.

This proves Theorem 6.4.1. ‘ i

Remark 8.4.2 Altﬁough it looks as though we have a theorem for

each 0 € k € m, it should be stressed that the dependence on k
is rather artificial, since all spaces CT(X,X;k) are homotopy
equivalent to CT(M,X) by Theorem 7.2.2.

Problem Classify the immersions Immr(X,Y) from say a smooth
separable Hilbert manifold X into an infinite dimensional,

metrizable smooth manifold Y in the spirit of Theorem 8.4.1. §

The first problem here is to find a 'good' topology on the
space Immr(X,Y). As soon as X 1is not locally compact, the

c’-topology is probably too snall., ' ;

Problem Suppose that X 1s a smooth separable Hilbert manifold

and that Y is a compact smooth manifold. Classify the submersions

Sub®(X,Y) from X into Y in the spirit of Theorem 8.4.1.

This problem has interest in the study of foliations on i

:
|
j
H
!
#

Hilbert manifolds.
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