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ABSTRACT

This thesis offers several contributions to the homotopy
theory of mapping spaces. These contributions fall naturally
into two groups. Accordingly the thesis is divided into two
parts:

Part I Spaces of continuous maps;
Part II : Spaces of differentiable maps. .
Pz.rt 1 is mainly devoted to a study of the (path-) components

in a given space of continuous m~ps. We show that a rich variety
of homotopy types is possible thereby extending earlier
fragmentary results of G.W.Whitehead, Eu and Koh in the same
direction. As a new type of result we produce lots of examples of
components wl~ichhave the same homotoPi type for non trivial
reasons. In certain favourable cases, e.g. in a space of maps of
a sphere into itself, we solve completely the homotopy problem
for the set of components. The study of the components in a space
of continuous maps is closely related to the study of certain
evaluation flbrations. For these evaluation flbrations we obtain
strong results on the fibre homotopy type. The methods to obtain
the results mentioned above involve Whitehead products and in
particular a fUndamental theorem of G.W.Whitehead, which describes
the boundary operator in the homotopy sequence of an evaluation
fibration in terms of such products. In the tinal chapter of
Part I, Chapter 4, we prove a variation of a theorem of Federer
and, independently, Thom on the qualitative structure of the
homotopy groups of a mapping space.

In Part II we study the homotopy properties of a space of

differentiable eltbeddings or k-mersions from a compact smooth
manifold into either an infinite dimensional smooth manifold or
a closed expanding system of finite dimensional smooth m~nifolds
of increasing dimension. Such a study is naturally motivated
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by the work of Eells, Elworthy and ~iukherjea according to
which many Infinite dimensional smooth manifolds are homotopy
direct limits of closed expanuing systems of finite dimensional
smooth submanifolds of increasing dimension. Briefly stated,
we sho'llthat a space of embeddings or k-mersions with infinite
dimensional target, or the appropriate induced limit space over
an expanding system of finite dimensional manifolds in the target
has the same homotopy type as the naturally associated space of
continuous maps. Using these results we prove that the functors
we get in the target, when we fix the domain in a space of
embeddings or k-mersions, "ccn.aut e" with the homotopy direct
limits given by the results of Eells, Elworthy and Mukherjea.
As an application of these limit theorems we classify the k-mersions
from a compact smooth manifold into a smooth (infinite dimensional)
pseudo Fredholm manifold in the spirit of the Smale-Hirsch theory
for immersions in finite dimensions. The class of pseudo
Freilllolmmanifolds contains e.g. the class of separable Hilbert
manifolds. We obtain hereby a strict analogue to a theorem 1n
finite dtmens iona due to S.D.Feit and independently Gromov.
As an application of our results for spaces of embeddings we
construct models for the classify Lng space of a diffeomorphism
group. Plelimillary to all the limit arguments in Part II we study
in Chapter 6 the limit space of a closed expanding sY6te~ of
manifolds or ANR's. We sho'Nthat such a limit space usually is
not metrlzable, in particular it 15 not an ANR. It has however
the homotopy type of an ANR. This result is crucial, since we
in many places want to apply a fundamental theorem of J.H.C.
'Nhit ehead, according to which a weak homotopy equivalence between
ANR's is a homotopy e~uivalence.
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I N'fl<OLUC'l'l ON

In this thesis we shall treat certain aspects of the homotopy
theory of mapping spaces. We shall treat both spaces of continuous
maps and spaces of differeutiable maps. Since the methods and the
r-e su'Lts for the two cases are of a quite different nature, the
thesis is ndturally divided into two parts.

Before we enter into a description of the two parts separately
let us discuss a little why there should be any interest atdll in
the topology, in particular the homotopy theory, of mapping spaces.

From an ~arly stage of topology mapping spaces have received
attention. 'rhe atudy of path spaces and loop spaces has occupied
many topologists: already around 19.30 path spaces entered into the
study of' geodesics on k iemann lan manifolds in a significant way,
notably through the work of hl.~orse in America and Lusternlk and
Schnirelmann in Russia; spectral sequences (Leray, Serre) were
lnvented f'or their study; Bott studied the double loop space of
the stable unitary group in his original proof of the periodicity
theorem; every F.-space is homotopy equivalent to the loop space
of its classifying space etc. Turning to more general mapping
space a we can mention that the study of' the space of homo topy
equ ivuLe nce s on a sphere is important e.g. in the study of spherical
fjbrations under fibre homotopy equivalence. Alone the same lines
knowledge about the structure of' certain homeomorphism groups
(diffeomorphism groups) find applications in questions concerning
reduction of the structural e:..l'OUpin certain locally trivial
fibrations (diff'erentiable fibrations). Many other examples could
have been mentioned.

In the 1950's it was formally recognized that mappin£ spaces
often have the stz-uc t ure of infinite aimensional manifolds and that
the.}:are the pro:per ae t t iru, for variational pr-ob lems , Aiorse t11eory
all infinite dimensional manifolus. This developoent was mainly
due to Eells, S..;impson,Palais and Smale in America and Al'ber, Fet

vand Svarc in Russia. tiee-e s g , the surveys of Eells (22 j and



Al'ber [3J.
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Along with the successes in variational theory the
fruitful interaction between the stuU;)'of v3riational problems
and the study of the topology'of mapping spaces, Which as already
indicated had existed for a long time, was further stimulated.
To mention an example of the use of topological results in
variational theory let us take the theorem of Gromoll and Meyer
[36J, which states that if the space of circles (the free loop
space) on a complete Riemannian manifold M has unbounded Betti
numbers then M admits. infinitely many geometrical distinct closed
geodesics. Using the Serre spectral sequence this condition on
the space of circles has been verified in many cases by P.Klein [s4l
On the other hand methods from var·iational theory have given strone
results on the topoLogy 01' mapp ing spaces, in particular if the
target Is a manifold which admits a Riemannian metric with negative
sectional curvature. ::leee.g. Eells and Sampson [27J and Al'ber[3l

The discovery that mapping- spaces often have the structure of
infinite dimensional manifolds led quite naturally to an abstract
study of these manifolds. In this study it has turned out that
for infinite dimensional manifolds the whole topological structure,
homeomorphism type or in the differentiable case even diffeomorphism
t:lpe, is completely determined.by the homotopy type. See e sg, the
contributions to the Nice congress by Anderson [4], Eells and
Elworthy [26], Kuiper [59J and Palais [76].

There 1s therefore plenty of motivation to study the homo topv
theory of mapping spaces and we can then safely turn to a
description of the content of this thesis.

Part I consists of Chapters 1 - 4. Chapter 1 is of a
preliminary character; we introduce the basic terminology, recall
a fundamental theoreIDof G.W.mliteheaa (Theorem 1.3.1) and
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state some facts about certain 'ilhitenead products in spheres.
The b~ck~r9und for Part I can be set as follows. Let K and X

be sufficiently nice conne ct.ed topological spaces, e.g. ANR's or
CW-complcxes, with K locally compact. A homotopy of maps from K
tnt o X can then be descrited as a path in the space of continuous

maps G(K,X) from K .into X, equipped with the compact-open topology •.
We are therefore immedi~tel;'lled to study the (path-)components
in a mapping space.

If K and X have base points the number. of components in
G(K,X) is given by the set of based homotopy classes of based
maps 7t(K,X). For K = srn, the m-sphere, this simply is the m'th
hon.o topy group ?tIlI (X) of X, anl~the structure of thi s group is
well-known in m8.ny cases. If we e.g. take X
infinite cyclic so that G(Sn,Sn) in this case has a countable
number of components. It is now a typical problem in topology

to divide such a collection of spaces into homotopy types. The
main results in Part I will be concerned w1th problems of this

\

nature. If aE~(K,x) is a homotopy class, let Ga(K,X) denote
the component in G(K,X) containing the maps in a. In particular
Go(K,X) denotes the component containing the constant maps, and
if K = X = sn, G~ (Sn,Sn) denotes the component containing the

n

identity map. Here I.n is the standard notation for the generator
of ~(Sn) represented by the identity map on Sn. We shall then

e s g, prove
rrheorem (3.3.1)
let a.,{3 E'h(Sn).

Consider the mapping spaces G(Sn,Sn) for n ~ I and

homotopy equivalent if and only if a. = t (3.

n odd.
deg a is even and to Gt. (Sn,Sn) if deg a. is odd.

n
Furthermore,
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Go(Sn,Sn) and GI, (sn,sn) are homotopy equivalent if and only if

n
n = 1,3,7.

This theorem has a certain amount of history. In 1946
2 2 2 2G.W.Whitehead [91J showed that Go(S ,S ) and Gt. (8 ,8 ) are not

2
homotopy equivalent. This might have been some sort of a
surprise at the time, since components in spaces of based maps

do have the same hbmotopy type (Theorem 1.2.2). Also in 1946
S.T.Hu (47J showed that ~1(Ga(S2,s~» • Z2.ldeg~' the cyclic group
of order 2·ldegul, thus in particular proving the theorem for
n = 2. After some work of a slightly different nature of Wada (89J
in the 1950's, S.S.Koh [55] proved in 1960 the result in the
theorem for n = 2,4,6,8,lO,1?,14. toh also proved that

if deg 0.- 'deeP is odd and n f= 1,3,7. The above theorem thus
greatly extends these results and gives, in fact, the complete
solution to the 11omotoPJ problem for the components in G(Sn,Sn).

In the results of Whitehead, Hu and Koh the emphasis was to
show that components have different homotopy type. In our

theorem we see that it can happen that two comp«ents Gu(K,X) and
Gp(K,X) have the same homotopy type for non-trivial reasons.
Trivial reasons being that K is a suspension and either a = + ~

(Theorem 1.2.1) or X is an H-space with a homotopy unit
(Corollary 2.3.2). We believe therefore that this is the main

contribution of our theorem.
The component G~(K,X) is closely linked to the Hurewicz

fibration p : G (K,X) ~ X, also denoted (0 (K,X), p ,X), defineda. a. . a. a.
by evaluation at the base point of K. Since the fibration has
more structure th~n the component we can expect to prove stronger
theorems about the former which might be helpful in the study of
the latter. In Chapter 2 VIe study therefore these fibrations,
called evaluation flbrations, in some detail. We touch upon
the questions: 1) When do they have sections?, 2) When are they



decomDosable? 3) ~hen are two evaluation flbrations fibre
homotopy equf valent? and finally 4) When are two evaluation
flbrations strongly fibre homotopy equivalent? Let us give
cX[.J.ITlvlesof our theorems, often stated in a slightly less general
form than in the text. Observe that (Go(K,X), po,X) trivially
has a section.

Theorem (2.1.1 and 2.3.1). Suppose m ~ n ~ 1 and let
a E ~m(Sn). Then the following statements are equivalent:

1) (G~(Srn,Sn), Pa, Sn) and (Go(Srn,Sn), Po' Sn) are fibre
homotopy equivalent.

2) (Ga(Sffi,Sn),Pa, Sn) has a section.
3) 'rhe Whitehead product I«. ~ )= o.n

Let Fo(Sm .s") denote the fibrefo!" the evaluation fibration
(Go(Sffi,Sn),Po' Sn). Fo(Sm, Sn) is then just the space of

bn aed maps homotopic to the constant map.

Theorem (2.2.3). Let 1 ~ k < nand 1 < In and suppose that the
set of'Whitehead products [1Cn(Sn), ?Ck+m(Sn)]t:o.

Then (Go(Sm,Sn), Po' Sn) is not decomposable, i.e.
Go(Sm,SD) does not have tr..esame homotopy type as s" x Fo(SID,Sn).
In particular (Go(Srn,Sn), Po' SIl) is not fibre hOlf,otopicallytrivial.

The condition [?Cn(Sn), 1Ck+m(Sn)] * 0 is satisfied so often
that it could ver'Ywell be that (Go(Sm,Sn), po,Sn) only is
decomposable for n = 1,3,7. So far, I have however been
unable to prove this.

T}leorem (2.3.3)

11'[a'~nJ t ~[~,Ln] then (Gu(Sm,Sn), Pa, sn) and

(G~l (s'", Sn), Pj3,Sn) are fibre homotopy equivalent.
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Here the aut hor- knows of no exan.p l e where
[a.dn] * !: [f3"'n] and (Ga.(Sn',Sn),Pa' Sn) and (Gf3(Sm,Sn),pp,Sn)
still ar-e fibre horno t opy e qu I vulent.

If we introduce the notion of strong fibre homotopy
equivalence (Lefinition 2.4.2) we have however

Theorem (2.4.3) 'rhen
we have

(Gu.(di',sn),Pu' s'') and (G(-3(Sm,Sll), Pj3' sn) are
strongly fibre homotopy equivalent if and only if [a., "nJ =[13, t, J.n

Pr-om ~lll these theorems it is appar-ent tha.t the Whi tehead
rro(.luct[(1., "n] is a ver~' strorig char-act.er-Ls t tc class for the
flbr~tion (G~(Sm,Sn), Pa,sn).

In Chapter .3 we study then the homotopy problem for the
components in a space of maps between spheres. ~'!e nee d he re
the results from Chap ter- 2 as ·r:ell as a fundamental result of
G.W.Whitehead (Theorem 1.3.1), which describes the boundary
operator in the homotopy seq_uence for the evaluation fibration

\

(a (sIn,X),p ,x) in tern.s of'Whitehead products.a. a. As an
applic5tionwe obtain the complete solution of the hOI1otopy
problem for the components in the mapping spaces O(Sn,Sn) 6tated
earlier in this introduction. Likewise we give the complete
solution to the homotopy problem for the components in the

( n+l n)mapping spaces G S ,S (Theorem .3.3.2). As a particularly
interesting thing it turns out that the countable number of
components in G(S3,S2) all have the same homotopy type. This
will follow from the following characterization of the homotopy

(In Sn)type of' the component Go S, among all the components in
a(SlTl,Hn).
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Theorem (3.2.1) Suppose m ~ n ~ 1 and let a. E7Jn(Sn). Then
the follov;ing statement s are equivalent:

1)

2)

G (t)m,Sn)and G (Srn,sn) are homotopy e quf vaLe nt ,a. 0
The :.'hitehe ad product [a., L nJ = O.

In the final chapter of Part I, Chapter 4, we consider a
different type of problem. We investigate here the qualitative
structure of the"homotopy groups of a mapping space from a finite•
CW-cofJplex K into a space X. We shall prove the following
varia tion of a theor-em of Federer [32] and independently Thorn [87J.

Theorem (4.2.2) Let K be a finite CW-complex of dimension ~m
and let X be an arbitrary topological space. Suppose that all
the homotopy groups of X in dimension i with 1 in the interval
i ~ i ~ i -m for 10 ~ 2 belong to a given Serre class a ofo 0

abelian groups.
Then all the homotopy groups of G(K,x:) in dimension to

belong to a.

Federer and Thom do not need K to be a finite but only
something like a finite dimensional CW-complex. On the other
hand Federer needs X to be simple and both Federer and Thom
need the tnteeral cohomology groups of K to belong to tZ.
The formulation of our theorem is also slightly more general
than theirs, and the proof we give is completely elementary.

Thornproves his version of the theorem using aPostnikov
~econ~osition of X. Federer gives his version as an application
of the construction of a certain spectral sequence.

Our method of proof is closest to that of Federer. We use
a filtration of K to construct a tower of Hurewicz flbrations
in which we can identlf'y the fibres with certain iterated loop
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spaces of the target. With this tower at our disposal the

proof of the theorem is immediate.
Finally, in Chapter 4, §3 we give an example of a mapping

Epace for which the fundamental group is infinitely generated
although all the homotopy groups of the target are finitely
eenerated.

We turn now tO,a description of Part II, which consists
of Chapters 5 - 8.

The original motivation behind Part II was to extend the
classification theorem for k-mersions from a compact smooth
munif'old M into a finite dimensional smooth manifold X, due to
S.D. Feit and independently GI'omov, to infinite dimensional X.
Later many other sources of motivation transpired but it is still
fairly descriptive to consider Part II from the point of view of
this theorem. Let us therefore briefly recall the theorem of
Feit and Gromov.

Let M be a compact smooth manifold with boundary (which
might be empty), and let X be a finite dimensional metrizable
smooth manifold without boundary. Let also 2 , r ~ ~ and 0 < k.
Denote by Cr(M,X;k) the space of k-mersions of class Cr from M into
X. Recall, that a k-mersion is a differentiable map of rank ~k
evervwher-e, Denote by Hom(TM,TXjk) the space of bundle maps

from the tangent bundle of M into the tangent bundle of X of
rank ~k on each fibre. Equip Cr(M,X;k) with the er-topolOgy

and Hom (TM,TXjk) with the compact-open topology.

Theorem Suppose that k < dim X. Then the differential map
d: Cr(hi,X;k) -+ Hom(TM,TX;k)

is a homotopy equivalence.

This is, as already mentioned, a theorem of S.D.Feit [33J
and independently Gromov [37J. It generalizes the Smale-Hirsch
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theory for immersions. See the survey by Smale [83] for the
early history of the immersion theorem snd the introduction

to t he paper of Feit for references to the later developments.
An account of the work of Gromov can be found in the papers of
POena1'4 [78] and Haefliger C39].

Usually the statement in the theorem is just that d is
a '{leakhomotopy equivalence, but sinee M is compact both the

•mapp Lng spaces are /Jffi's and hence a weak homotopy equivalence
is autom3tically a homotopy eq_uiv3.lenceby a fund:J.mentaltheorem
of J.H.C.Whitehead. The theorem with weak homotopy equivalence
is also true for M an open manifold without the restriction on k.

/\.1though the main trouble in proving the theorem in finite
djrnensions lies on the domain, the local compactness of the tar~et
is used in the essential step. Hence the finite dimensional proof
does not immediately generalize to inf'inite dimensional targets.
Since Muhherjea ([69j or [70]) has shown that many infinite
dimens ional manifolds up to homo topy type ar-ethe direct limits

'"of closed expanding systems of finite dimensional 8ubmanifolds,
it is natural to try to use a limit argument to extend the theorem
of Fe it and Gromov from finite to infinite dimensional targets.
To carry this pro~ram through and in particular to investigate
how ma,ping spaces like Cr(M,X;k) and Hom(TM,TXik) behave
w.r.t. homotopy direct limits in the target is just what Part II
is all about.

Let us now describe the content of Part II in a little more
detail. Chapter 5 contains the basic definitions, some
preliminary material on ANn's and a discu!:'slon"ofthe manifold
structure on a space of maps. We state the f'undamental theorem
of J .H.C.Wh1tehead (Theorem 5.2.4) already mentioned above, and
we give in Theorem 5.3.2 a slight extension of a theorem of Palais,
according to whLch the homotopy type of a space of differentiable
maps does not depend on the degree of dlfferentiabl1i ty.
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As an introduct ion to all OUI' 1Imit ar-guments in later
chapters ·NC study in Clwpter 6 the limit space of a CES (closed
c xpund lng system). Basically a CBS is just a sequence of
inclusions of topological spaces

x c X 1 C ••• c Xn C ••• ,no 110+

such that Xn is a closed subspace of Xn+l for each n ~ no. The
limit space for such a system, denoted by loc' is defined as the
union

U Xn
n~o

with the we ak topology (direct limit topology) w.r.t. the subspaces

x ==-00

03If R denotes the toPolof~ical vector space of finitely
non-zero real se quences ("n) n ~ 1 topologi zed with the finite
topology (U;e we ak topology w. r.t. the system of finite dimensional
subspaces), then we can state the main theorem in Chapter 6 as
follmV's.

Theorem (6.2.5) Let Xno C Xno+1 c ••• c Xn c •• •

CES of finite dimensional topological manifolds of increasing

be a

dimension, such that Xn is a locally flat submanifold of Xn+l
for each n ;;lI n •o

Then !~is a topological manifold modelled on ~.

Notice here, that we always assume manifolds are Hausdorff
spaces. The statement in Theorem 6.2.5. includes therefore
that X~is a Hausdorff space.
paracompact (Remark 6.2.7).

Usually X will, in fact, be
-00

00Since R is not metrizable, X is not metrizable, in particular
- C')

it is not an ANR for the class of metrlzable spaces.
Theorem 6.2.5 should therefore be compared with
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Theorem (Corollary 6.3.4)
be a CES of lJm' s•

Then X has the homotopy type of an ANR.
~

It is only the results in §3 of Chapter 6, and mainly
Corollary 6.3.4, which will be used in Chapters 7 and 8.
Corollary 6.3.4 shows, that we I,\"illget no trouble from limit
spaces of ;Jm'sNh~n we ·:..ant to ap~ly the theorem of J.H.C. White-
head (Theorem 5.2.3). Trot;,blemight have been expected after
the result in Theorem 6.2.5.

~\'e shall now uescrlbe the material in Chapters 7 and B.

Again let 1': be a compact smoo th manifold with boundary, but
now let X be a finite or infinite dimensional metrizab1e smooth
manifold, which adnd t s smooth partltitions of unity. X shall
be without boundary. For 0 ~ r ,,00 let er (M.x) denote the space
of differentiable maps of class Cr. For 2 < r ~ 00 and 0 " k
1et~r(M,X) denote either the space of k-mersions Cr(M,Xjk) or

r I'the space of embedding's Emb (M,X) of class C. Equip all these
SlHlceswith the Cr-topolO~:Y. obser-ve that Cr(M,X;O) = Cr(M,X)
and that the space of continuous maps in this context is denoted

As before Jlom(TM,TX:k) denotes the space of bundle
,maps of r-ank ~k on each fibre equipped wi th the compact-open
topology •

Suppose from nO\,on that X is infinite dimensional and
that it ads.Lt s a Oltration of finite din!enl:)ionalsmooth
submanlfolas of increasing dimension

c.•• c x cn ...,
each a closed submanifold in the next, such that the natural
map ~ -+ X is a homotopy equlvalence. Shortly, we say that X
is a smooth IIDL (homotopy direct limit) of the smooth CES

c ••• c Xc... • We get then the followingn
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naturally induced CES's

•• • c •••

c ••• c •••

and Hom(TM,TX ;k) C Ho;r.(TM,TAn l;k) c ••• C Hom(TM,TXn;k) C •••
no 0+

Let Cr(M,X) , ~r(M,X) and Hom(TA:,TX;k) denote the limit
-00 -00 - 00

spaces ~or these systems.

The major part o~ Chapter 7 and Chapter 8, ~2 can be

surr~arized in this

Theorem All the maps in the following commutative diagram

of naturally induced caps are homotopy equivalences. To each

map we have attached the number of the appropriate theorem in

the text

8.2.3 • 1r(M,X)

1
Cr(M,X)

l'
CO(M,X)

7.2.21 8.2.2

7.4.2 5.3.2 (Palais)

8.2.1

On our way to establish the results indicated in this

diagram we obtain many results of independent interest. We

mention in particular Theorem 7.2.1, which generalizes the

classical immersion and embeddLn.: theorems of Whitney to

statements about the connectivities of the inclusion maps

In Chapter 7, §5

ne use our results Oil spaces or ell:be<1dings to construct models

for the classifying space of the diffeomorphism £roup o~ M.

In Chapter 8, §3 we study the be hav Lcur- of the bundle map

rune tor- Iiom(Ti,:, • ; k ) w.r.t. direct limits.

X is a smooth IlDL of the smooth CEG c··•
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of finite dimensional manifo10~ of increasing dimension, but
suppose now also, that

1) u
n~no

is dense in X .

2) Ir x E Xn(x) then the union of tangent spaces
U T Xx nn~n(x)

is dense in the tanrent space TxX of X at x E X.

A CES Xn c Xn +1 c ••• C Xn c ••• with these properties
o • 0

is called a finite dimensional presentation of X. If X admits
a finite dimensional presentation, we say that X Is a pseudo
Fredholm manifold. In Example 8.1.6 we indicate that a lot of
in1'inite dimensional smooth mani..folds,e.g. all separable Eilbert
man t f'oLde , are pseudo Pr-e dt.o lm rnanIf'oLu.s ,

Theorem (8.3.1)

be a fj nite dimensional presentation of the smooth p seudo
Fredl~olm manifold X. Then tilenatural map

Hom (TM,TXjk)oo -+ Hom(TM,l'Xjk)

is a. horno t.opy equivalence.

Using Thcorem.8.2.3 and Theorem 8.3.1 the following theorem
is an easy consequence of'the theorem or Fe 1t and Gromov.

Theorem (8.4.1) Let Mm be a compact smooth manifold and let X
be a smooth pseudo Pr-edho.Immanifold. Let also 0 ~ k ~ m and

Then the differential map

is It homotopy equlvalencell

One coul d now ask why we should try to extend the theorem
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of Pei t .md or-cmovto infinite uim(.nsional targets as above.

Well, first of all it is one of the ou t etar.ding t.he or-ema in

diffclential topology ~nd us ~uch it deserves attention in its

ov{ n 1'1 gh t • Second'Ly , iI'~ ini te dimensional manifolds arise

quite naturally in the tarGet bJ iteration of mapping spaces.

Su~\pose e sg , that X is a finite dimensional smooth manifold and
2let Lr (M,X) be the separable Hilbert manifold of Sobolev maps

I r > diffi21j,;. i~1 [ ] \\ in or-der- to tet the man ...0 d structure, see Eells 22 .(

Then we could naturally form L~(t.i,L; (r.;,x) ik), "hich is

homotopy equivalent to CS(M,Cr(J,;,X); k}; Thirdly, the bare

question of the existence of' the theorem with infinite

dimensicn:tl target proved useful to us in stimu1atinz us to

develop a limit tecnrit que for mapping spaces, which hopefully

cun have other appLfcut ions.

Finally, we mention that Part II to a lar£e extent is
based on OUI' papers [40 J, [41 J and [42].



PART I

SPACES OF CONTINUOUS MAPS
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Chapter 1

Preliminaries to Part 1.-

In this ch~pter we introduce the basic terminology used
in Part I and construct certain maps relating various components
in 3 mapping space. Finnlly, we state f'orlater refer-ence a

fundo.mental theorem of'G.W.\Vhitehead and recall certain facts
about 17hitehead pz-oduct s in spheres.

§l Basic Definitions,
In Part I K and X shall always denote sufficiently nice

topological spaces. Unless otherwise said we will for
simplicit;y stick to ANH's (Absolute Neighbourhood Retracts) or
C~\,l-complexes, K and X shall be connected and i~ addition K is
3.ssumed to be locally compact. All spaces shall be e~uipped
with u base pOint, indiscriminately denoted ., although it might
not come into play. Often K = SA and X = SB are assumed to be
(r-educed) suspensions of ANR' s (CW-complexes) A and B. Points
in a suspension will be denoted by their coordinates, like
(a,t ]e SA.

~(K,X) shall denote the set of based homotopy classes of
based maps from K into X. As usual we say that X is simple
w.r.t. K (m-simple, if K = Srnis the m-sphere), if the
fundamental [roup ?tl(X) acts trivially on ?t(K,X}. It is
well-known that simply connected spaces and It-spaces are simple
w. r.t. any space. Spaces '.vith this property are just called
simple. We remark that spheres are simple. If ~ e ~(K,X) Is
a homotopy class, fa.:K .....X shall cienote a representative for~.

F(K,X) shall denote the mapping space of based maps from K
into X. G(K,X) denotes the mapping space of free maps, no
restriction on base points, from K into X. Both F(K,X) and
G(l(,X) are equipped with the cOlnpact-open topology.

The path-components in F(K,X) are exactly the based homotopy
----------_ .. _ .. _----
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classes of based maps, and the path-components in G(K,X)
are the free homotopy classes of free maps. Path-components

will from now on just be called components. If a. E ':It(K,X) is
an arbitrary homotopy class Fa.(K,X) and Go.(K ,X) shall cienote
the component in respectively F(K,X) and G('K,X) which contains
the maps in a.. Notice that we also get all the components in
G(K,X) listed that '-'ay s i nce any free map ls freely homotopic
to a based map.

1t ls i'/ell-knoVinthat eva Lua t ton at the base po i nt of }C

ce r i nes a Hur-ew i cz f'ibr'ationp: G(K,X) -+ X, i.e. p has the
absolute covering homotopy property. oee ~.g.Hu «(48 1,

Tneorem 13.1, p , 83). Observe that F(K,X) is the f'lbre of p ..

Now let a. E ':It(K,X). It is then clear that the restriction
of p to Ga.(K,X) def i nes a Hurewlcz f'lbratlon Po.:% (X,X) -+ X,

tilso denoted (Go.(K,X), Pa.,X). Let Fa.(K,X) denote the fibre
of Pa.. Fa. (K,X) consists then of the based maps which are
f'reel~rhomotopic to a map in a.. It is clear that Fa.(K,X)
contains F tK,X) but normally F (K,X) will contain several of

~ a.
the components F{3(K,X) for {3 E ':It (K,X). Only if X 1s simple

w.r.t. X, e.g. a s~here, we have F (K,X) = F (K,X).a. a
The IIurewicz fibration (Go.(K,X), Pa.,X) will be called the

evaluation fibration defined by a. e':lt(K,X).
The homotopy class in ?elK,X) contain1ng the constant map

"'ill be denoted 0, and for obvious r-easons, an;y'{:a"i if' K = SA
is a suspension, 0 will be called the neutral element.
Accordingly Fo(K,X) and Go{K,X) will be called the neutral cOIDnonent
in respectively F(K,X) and G{K,X), and (Go(K,X) ,po,X) will be
called the neutral evaluation fibration.

F1nally, so:X -+ Go(K,X) shall denote the canonical section
for Po' i.e. so(-y)(x) = y for every x e K and every 'YE X. As

vie shall see later on the existence of a section 1s a very
speciul property tor the fibration (Go(K,X),po'X).
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. j2 Evaluation flbrations defined by a space of mappines with
a suspension 8S domain.

In this section we assume that K • SA is a. suspension.
Then ~(K,X)has u natural group ~t~lcture defined by tne
s t anctar-d forrr.ulasinvolving the suspension parameter. USlng
tne suspension parameter in an analogeous 7ay we shall define
two map s r-e lat t nr:.the var ioue evaluation flbrations defined
by K and X.

For a., p E ~(K, X) let Ga:(K, X) J(XG ,,(K,X)

denote the ribre product of the evaluation f1brations defined by
a. and (3. ~e shall then define a map

+ : G (X,X) x GQtK,X) ~ G alK,X)a. X ~ a.+~

such that the i'ollowing diagram is commutat1 ve

x

uenote the image under + and define ! + g by the standard formula

[

f([U'2t)
(f + g)((a,t]) =

g\[a,2t-1J)

a e A, 0 ~ t ~!

a e A, ~ ~ t ~ 1

This forillulamakes sense since f(*) = g(*).
For a. e ~ (K,X) we define a map
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-: G (K,X)~ G (K,X)a. -a.
such that the following diagram lS commutative

If t: E Go.(K~X) define (-1') E G.a{K,X) by the standard formula

~a E A Vt E [0,1] (-t)([a,tJ) = f([a,l - tJ)
It is clear that -: Ga.(K,X) ~ G_a.(K,~) 1s a bundle

hcmcomorptu.sm wi th - :G-«<K,X) ..,. Ga.tK,X) as inverse.
We get therefore in particular

Theorem 1.2.1

a. E ?l(K,X).

Suppose that K = SA is a suspension and let
Then Ga.(K,X) and G_a.(K,X) are homeoIT'orphic.

,Et'inally in this f';ectionwe shall l;ive an example of how the
oper.it Lcns + and - will be brought into use.

The following theorem ls a slight genera11zation of a retiult
Que to G.W.Wt.itehead. ((91], p. 464)

'~neorern1.2.2 Suppose that K = SA is a suspension. Then
Fa.(K,X) and F0 (K,X) have the same homotopy t:ipet"or any a. E 'Jt lK,X).

Proof Let! :"K ~ X be a representative tor a.E ?t(K,X) and define
0..

maps
q>: Fo(K,X) ~ Fo.(K,X) and t: F (K,X) ~ F (K,X)

(1 0

by the foruml us

vt E Fo(K,X)

Vg EF'a.lK,X)

cp(f) = to. + t
1jf(g) = (-fa.) + g

Using standard formulas in homotopy theory it is easy to
prove tnat cP is a homotopy equivalence with inverse 'Ir. See
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either ([91], p. 464) or Chapter 2, §3 ror similar proofs.

§3 A fundamental theorem of G.W.Vlliiteheadand some facts about
~bitehead products in spheres.

For the sake of future reference we state first a fundamental
theorem of G.W.\Vhitehead [91] (with a correction by J.H.C.Whitehead

This theorem of G.W.Whitehead will be of fundamental
importance to us in Chapter 2, §4 and in most of Chapter 3.

Theorem 1.3,1 Let m > 1 and let ~ E ~(x) be a given homotopy
class with f~ as representative. For any i > 1 we have then a
commutative diagram

d
••• ~ ~i+l(X,.) a l ~1(F~(Sm,X),f~) ~~(Gu(Sm,X),fu) ~

~ ~lHa
?tm+i(X,.),

• • •

where du is the boundary operator in the exact homotopy sequence
for the evaluation fibration defined by u, Hu is the Hurewicz
isomorphism and -Pu is ~bitehead product with ~, i.e.
pu(~) = -[u,~] for every ~ E~i+l(X,.),

Normally X will be m-simple, such that Fu(Sm,X) = Fa.(Sm,X).
In this case all spaces involved in Theorem 1.3.1 will be connected
and we do not need to specify base points in the homotopy groups.

In order to give concrete applications of some of our results
in later chapters we need to know certain facts about Whitehead

products in spheres. We collect the facts we need here.
First we recall the definition of certain standard elements in

homotopy groups of spheres. ~n E ?tn(Sn) for n > 1 is the element
represented by the identity map on Sn. T]nE ~n+l (Sn) for
n > 2, 'linE ?tn+3(Sn) for n > 4 and on E ~n+7(Sn) for n > 8
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denote the elements represented by suspensions of the lfopt
maps 83 _. 82, S7 -+ 54 and S15 -+ S8 resp~ctlvely. We remark,

. ntnat ~n generates ~n+1(S ).
What we need is facts about the WIlitehead products

[~n'Ln] for an = Ln'~n and On'

Theorem 1.~.2. Cons1c1er the
1) n even. [Ln,Ln] has
2) n odd. 2·[l.n,l.n]=

only if n = 1,3,7.

Whitehead products [Ln,Ln] for n ) 1.
infinite order 1n ~2n_l(Sn).
O. Furthermore, [l.n'l.n]=0 if and

The result in Theorem 1.3.2 for n even and the fact that
2.(1. ,1. ] = 0 for n odd is cue to G.V/.'llhitehead[92] ,n n

strengthening results of Freudenthal. It is part of the so-called
delicate suspension theorem. That [I. , C. ] = 0 it and oilly ifn n
n = 1,),7 is a consequence of Adam's solution of the Hopf invariant
1 problem [2].

Compiling results of Hilton [45], Hilton and J.H.C.Whitehead
[46J and Mahowald (63J we fet

l'heorern1.3,3 The Whitehead product [11n, LnJ = 0 if and only if
n = 2,6 or n = 3 mod 4.

The following theorem is a compilation of results of
Mahm;-ald [63 J and Kristensen and Madsen [57 J.
Theorem 1. 3.4. Co~sider the Whitehead products [on'''n]for n ~ 8.

1) [On,LnJ = 0 for n = 11 and n l! 15 mod 16
2) (On,Ln] :f 0 for n :t: 11,27 and n ...15 mod 16.

It is presumably still an open question whether[o27' 1.27J= 0

,or =+= o.
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Several other results on \Vhitehead products [~, Ln1 for
certain a. E?t (s") and a more detailed list of known resultsn m
on these products can be found in Kristensen and Madsen (57].
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Chapter 2

Evaluation fibrations.

In this chapter we study evaluation fibratlons. We touch

upon the questions: 1) ';;hen do they have sections?, 2) When is

a neutral evaluation fibration decompoaabf es , 3) When are two

evaluation fibrations fibre homotopy equivalent?, and finally,

4) ',Vhenare two evaluation fibrations strongly fibre homotopy

egui valent?

For the case of spheres it will emerge that the Whitehead

product [~, LnJ is a very strong characteristic class (in some

Hense) for the evaluation flbl'ation defined by o, E?C", (Sn).

§l SeetionA in evaluation flbratlons.

'ne recall first the deflnl tlon of generalized Whitehead

products.

Let SA and UB be suspensions and let Y be an arbi trury space.

Let CA and CB denote the (reduced) cones on A and B and define

then the join AIilB of A and B by AoIrB = CA.x B u A )C CB. Define

in the obvious way a map W: A*B -+ ~A v SB from the join A*B into

the wedge SA v SB. 'II is usually called the vVhitehead map.

Since we are working wi th hIm's (CW-complexes), it is well-known

that the mapping cone Cw for W is homotopy equivalent to SA ~ SB.
See e.g. (6] and (81] for this fact.

Suppose now that we are given homotopy classes ~ E ~(SA,y)

and (3 E~SB,y) represented by respectively f~: SA -+ Y and

t {3 : SB -t y. Consider then the composite map

W l' v fA •
A*n ~ SA v SB C1 tJ~ Y V Y -+ Y,

where v is the folding map. The homotopy class of this map

depends only on a. and 13 and is denoted by [0, {3].

(ex. {3 ] e ,(A*B, Y) is called the reneral i zed iVhl tehead nroduct

of a. and {3.
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Denote by ~X e ~(X,X) the homotopy class represented by
the identity map of X. Then we have

'l'heorem2.1.1. Suppose that K = SA and X = SE are suspensions
and let a.E~l~ .x) • Then the following statements are equtvalent:

1) The evaluation fibration (Ga.(K,:<),Pa.,X) has a section.
2) The generalized Whitehead product [a,~] E ~(A.B,X)is

zero.
Proof We observe first thatthe generalized Whitehead product
[c , Li) is zero if and only if there exists a map Fa.:K)( X ... X such
that the following diagram is commutative

Since Fa.(.,x) is homotopic to fa.for any x E X (one gets a
homotopy by moving x along a path to the wedge point) it ~ollows
easily that such a map Fa. defines a section sa.:X'" Ga.(K,X) and
conversely, when sa.and Fa. are related by the formula

Vye K V x eX: Sa.()()(Y)= Fa.(-Y'X)
This proves the theorem.

Let us finish this section with just one application.
Let n ~ 1. Since the ',·lhiteheadproduct [c.n,l.n] = 0 if

and only if n = 1,3,7 we Eet immediately

Corollary 2.1.2 The evaluation fibration
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~2 The structure of Cl neutral evaluat ion fibration.

Let Ii' ~ E Et B be a Serre fibration (p has the covering
s

homotopy property w.r.t. polyhedra) with section s. Following
James [51] Viewill say that this fibration is decomposable if E

and B )(F have the same homotopy type. Observe that this is the
case, of course, when the fibration is fibre l1omotopically trivial.

In this section we shall investigate the class of neutral
evalu.ation fibratlons ·Il.r-.t.the notion of decomposability.

First we mention

'l'heorem2.2.1 Suppose that X is ~n H-space with a strict unit
element. Then the neutral eVC4luation fibration (Go(K,X),po'X)
is fibre homotopically trivial, in particular decomposable, for
any K.

Proof buppose that the base point. E X is a unit element for the
H:ultiplicut1on on X. For any x E X let Lx be left multiplication
·,,·ith x , Define then a map e over X,

e
X • Fo(K,X) ~ Go(K,X)

prOj\ I Po

x

by the formula
VXEX

It is clear, that 0 is the iaentity map on the fibre over
'" EX, in particular a homo topy equivalence on that fibre. lIence
e is a f'ibrehomotopy equivalence by a fundamental theorem of
Do1d ( [14] , Theorem 6.3). This proves the theorem.

The main object of this section is to shov that the neutral
evaluation fibration

~o(Sm,x) ~'Go(Sm,X)
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very seldom is decomposable.
Observe here, that if X is simple, then' Go(Sm,X) and

x x F (Sm,x) have the sarr.ehomotopy groups.o This follOR s
easily, since the section So splits the homotopy sequence for
the fibration. We need (m+l)-simplicity of X to get the
statement for ~, see Eilenberg [28].

The results in this section I'e.lyheavily on the following
•

theor-em of Federer «(32], §ll, 1" 356).

Theorem 2.2.2 Let p ~ 1, q ~ 1 and m ) 1 and suppose that the set
of Whitehead pI'oducts [~p(X), ~q+m (X)] + o.

Then the set of Whitehead products

Using this theorem we can easily prove.

Theorem 2.2.3 Let 1 < k < nand 1 < m and suppose that the set
of ~bitehead products [~n\sn), ~+m(Sn)] f 0 •.

Then the neutral evaluation fibration (Go(Sm,Sn),po,Sn) is
not decomposable.
Proof By Federer's theorem the set of Whitehead products
[~n(Go(Sm,Sn», ~(Go(Sm,Sn»] * o.

On the other hand the set 'of VTnitehead products
(~(Sn~ F~(Sm,Sn», ~(Snx Fo(Sm,Sn»] = O.

,This is so, since ~(Sn) = 0 and since all Whitehead
products in Fo(Sm,Sn) vanish, Fo(Sm,Sn) being an H-space.

Go(Sm,Sn) and Sn x Fo(Sm,Sn) must therefore have different
homotopy type and the theorem is proved.

V:e give' now Borne applications of Theorem 2.2.3. Before
the first one observe that for l' m < n Go (Sm,Sn) = G(Sm ,Sn).
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Corollary 2.2.4 Let 1 ~m < n , 'rnen the neutral evaluation
fibration (Go(Sm,Sn), po,Sn) is decomposable if and only if
n = 3,7.

For n = 3,7 the fibration is even fibre homotoplcally trivial.
Proof For n = 3,7 sn is an H-3pace with a strict unit and
hence (Go(Sm,Sn), po,Sn) is fibre hornotopically trivial by
Theorem 2.2.1.

For n * 3,7 {Ln' LnJ * 0 and hence the set of'iVhitehead
Products (?t(Sn) 1t (Sn) J * 0 Thereforen '(n-m)+ID .'
(Go(Sm,SIl), Po' ~n) is not decomposable for n * 3,7 by Theorem

2.2.3.

Corollary 2.2.5 Consider the neutral evaluation f'ibrations
(Go (Sn,Sn), po,Sn) for 1~ n ,

1) For n = 1,3,7 (Go(Sn,Sn) ,po,Sn) is fibre homotopically
trivial.

2) For n > 8, n * 11,27 and n * 15 mod 16
(Go(Sn,Sn), Po' s") is not decomposable.
Proof 1) Follows from Theorem 2.2.1.

For n ;.8 let 0 E?t 7(Sn) be the element represented byn n+
suspensions of the Eopf map S15 -+ S8. Then it is known, see

Theorem 1.3.4, that [L, a J * 0 for n * 11, 27 and n * 15 mod 16.n n
IIence for these values of n, we get that [?tn(Sn),'7+n(Sn)] 4= o.
2) follows now immediately from Theorem 2.2.3.

Let us briefly make some remarks on the fIbration
(Go(Sn,Sn), po,Sn) for n "8. For n = 1,3,7 it is fibre

homotopically trivial. For n = 4,5 it is not decomposable.
'l'hiscan be shown using the Whitehead product (tn' Tln] , where 17 n
is the generator of ?tn+l(Sn) • For n = 2,6 the author does not
know whether it is oecomposable or not.

Using Theorem 2.3.3 and all known information on Whitehead
products we' cun prove that (GO(SID, Sn), Po' Sn) is not
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decomposable in many special cases. \7e shall abstain from this
since it Is unlikely that we can get the complete solution to the
followinz problen: using this me thcd,

Problem Let 1 ~ n ~ m.
decomposable.

It is a temptin~ conjecture to suggest that (Go(Sffi,Sn),po,Sn)
is decomposable If,and only if n = 1,3,7, but I have no evidence
except for the results above.

Finall:{ in this section we touch upon the notion of brace
products introduced by James in e.g. (50]

recall the definition. Let F ~ E ~ B
s

and. [51] • First we
be a Serre fibration

with tiection s. Choose base points in F,E and B such that they 3re
.preserved by the maps i,p and s ,

with P .. 1 and q ;. 1 be given.
Now let a. E~ (B) and 13 E 11 (F)

P q
Form the Whitehead product

[s.(o.), 1.«(3)] E?tp+Q._l(E). Since p.([s.(o.), 1.(13)]) = 0

(p.s. = 0) and since 1. is a rr.onomorphism(the section s induces
a splitting of the homotopy sequence of the fibration) there
exists a unique element la, 131 E .~ (F) such thatp+C}-l
i...Oa,{3}) = [s",(a), 1.(f3)]

1a. ,r:H iis called the brace nroduct of a and (3.

For a space X with base point • E X and for m > 1 consider
Fo(Sm,X) and Go(Sm,X) with the constant map with value'" E X as
base point. Furthermore, let

II : '7ti (1' (sm ,X») _'?ti (A)o +m

denote the Ilurewf cz Laomorph t sm ,
EXamination of Federer's proof «(32], §ll, p.356) shows

that we can restate his theorem (11heorem 2.2.2) as follows:

Theorem Let a. E '7tp(X) and t3 E?tq(Fo(SID,X» and suppose
that the 'Nhiteheadproduct [a.,R(S)] • O. Then the brace
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product {a;(3} ,. o.

Since we know of no counter-example we pose the following
Question Is a formula like

true?

§3 Fibre homotopy equivalence of evaluation f'ibrations.
In this section we study evaluation flbrations defined by

spaces K and X under the notion of fibre homotopy equivalence.
First we give a criterion for an arbitrary evaluation

fibration to be fibre homotopy equivalent to the neutral
evaluation fibration.

'fheorem 2.3,1 Suppose that K = SA is a suspension and let
Then the following statements are equivalent:a E ?t(K,X).

1) (Ga(K,X), Pa'X) and (Go(K,X), po'x) are fibre
homotopy equivalent.

2) (Ga(K,X),Pa,X) has a section.
In case X = SB is also a suspension we can add

3) The generalized ~~itehead product [a,~X] E 1':. (A*B ,X)

1s zero.
Proof The equivalence of 1) and 2) is a slight generalization
of'a theorem of G.W.TI~itehead ([91], p.464).

1) ~2) is trivial since (Go(l:,X),po'X) has a section.
Now we prove 2) ~ 1). Suppose therefore that

sa : X ~ Ga(K,X) is a section for Pa and define maps

and
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by the forIJulas:

V r e Go(K,X)
\I g E G (K,X)a

~(f) = f + sa(po(f»
W(g) = g • (-sa(Pa(g»)

It is obvious that cp and '"are maps over X.
clear that

"'~(f) = (r + Sa.(po(f») + (-Sa.(po(f»)
and

~1f( g) = (g + (-sa.(Pa(g)) + sa.(Pa(g»·

It is also

A fibre homotopy H of ,~ to the identity with parameter
t' (0 ~ t' .;r) can then be defined by

4t 1+3t'
f( [a, ]) if 0 ~ t ~--

1+3t' 4

1+3t'
sa(po(f»([a,4t -(l+3t')]) if 4H(f,t')([a,t]) =

for every f E Go(K,X) and every [a,t] E K = SA.
A fibr·e homotopy of ~V to the identity can be defined by

a similar formula.
<p is therefore a fibre homotopy equivalence with inverse \jr.

This proves that 2) ~ 1) •
In CtiseX = SB is also a suspension we know already that

2) 1s equivalent to 3) by Theorem 2.1.1. Hence the theorem is
proved.

Corollary 2.3.2 Suppose that K = SA is a suspension and that
X 1s an H-space with a homotopy unit.
f'ibre homotopy equivalent to (Go(K,X), Po ,X) for any a E 1t(K,X).
Proof Let J..L : X " X ...X be the multiplication on X and suppose
that the base point ....E X 1s a homotopy unit f'or IJ.. Let
f a.: K ....X be a representa tive for a. In particular fa(.) = *,
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Define ~;t : X -+ G (l~,:\) bv t ie formulu

a. a.
V Y e Y.. V X EX: s ~( x ) ( y) = IJ.( f a.er ) ,x) •

s ince s~ (x ) for fixed x ls homo t opf c to fa. (one gets a

homo topy by moving x aLong a path to ... E X), it is clear that

st m~ps into G (K,X).
a. a.

Observe now that p st (x) = lJ.(f l~),x) =a. a. a
Hence pst is I!OIIIOtopic to IX.a a

(G ([,X),p ,X) Is a Hurewicz flbr'atlon, the covering homotopy
Cl a

property will pr-oduce a genuine section s :X -+ G (K,X) for Pa•a. a.

Using now that

LIenee the corollary follows froIn Theorem 2.3.1.

For' the comparison of two arbi trary evaluation fibrations we

TJ1(~Orem2.3.3 Su~pose that K = SA ond X = SB are suspensions

und let a,~ E ~(K,X). Suppose also that at least one of the

r;eneralized Wh1t ehen d :>roducts (0.+ {3, 'x J and [a.- 13, "x] is zero.

'l'hen (Ga.(K,X),Po.'X) and (Gf:j(K,X),p",X) are fibre homotopy

equivalent.

Proof Suppose first that (Cl + 13 , LX] = o. By Theorem 2.1.1

fo r P a:+- ".Vie can therefore find a section s t:t: X -+ G A(K,X)
Cl* ... a+ ...

Dei'ine then maps over X, cp : Ga.(X,x) -+ G,,(K,X) and

* : G{3(K,X) -+ Ga{K,X), by the formulas:

V

V
l' e G (K,X)a.
s e G{3(K,X)

<pef) = (-1') + sa.+{3(pa.(1'»

= s 0.+ ,,(p {3(g) + (-g)

Using formulas analogeous with those in the proof of

1'heorem 2.3.1 it is easy to prove that Ij.t!p and cplj.t are fibre

homotopic to the respective identity maps. Thus <p is a :fibre

homotopy equf vuLence with inverse V.

The proof for the case [a. -~, t. xJ = 0 1s similar.

the theorem is proved.O

'fheorem 2.3.3 clearly invi t.es the question whether the

Hence

vanishinG of either [a..I3, "x] or [0.·13, ~] is a necessary condition

for the :flbrations def'ined by a. and f:\ to be :fibre homotopy
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I knov of' no count.e rc-e xamp Le s to such a statement and have

in fi!ct quite d lot of evidence for the'following

Conjec-ture Then

CGuc~m,Sn)'Pa,Sn)

equIvaLe nt if and

,1 ,. G (s'" s") ,-,n)anU. \ p Q , L..l , P (3 , IJ are

onl~' if [o., I.n ] = :!: [ (3, I.n] •

f'lbre homotopy

~ f),tronE: fibre homotoDY egul vslence of evalua tion f1bratlons.

Let 1 ~ n ~ m. In this section we shall stu~y the set

s t r-ong fibr'c homotopy eqJ.i vale nee. We will show that the stronb

fibre homotopy equiv:ilence class of (Gll,(slTI,Sn),pa.,Sn) 1s

completely determfned by the V.'~itehead product Ic , .. J ,n
I!~irst however, Ii couple of' definitions.

Lefini tion 2 .l! .1 A fibration (E,p,B) with basic fibre F 1s

a Hurewicz fibration p : E -+ B to£ether with a homotopy

equivalence i: F -+ p-l(*-) of F into the fibre over the base point

* e B fixed within u given homotopy class.

'.":esh<'l.ll consider the evaluation fibration

(Ga.Up,Cn), pa.,sn) as a fibration with basic fibre Fo(Srn,Sn) and

homotopv equivalence ia.: Fo{Srn,Sn) -+ Fa.(SIH,Sn) given as follows:

'l'ake a r-ep r-e serit at I ve fa. : Sm -+ Sn ror a. and put

ia.Cf) = fa. + f

for f E Fo(SID,Sn).

The homotopy class of ia. is independent of the choice of

fa' since F (SID,Sn) i6 connected.

Definition 2,4.2 Let (E1,Pl,B) for 1 = 1,2 be flbrations

with ba.sic fibre F. A strone fibre homotopy equivalence is a

fibr'e homotopy equIvalence
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,
such that the following condition is satisfied:

If 12' °0 n-21(*) F .~ -+ denotes an ar'bltrary homotopy inverse
to i2, then i2° q>. 0 11 If:i homotopic to IF' the id.entit~·map on P.

If such a q> exists, we will say that (El ,PI ,E) and
(~2'P2,B) ore strongl:,'fibre homotop;,: equivale.l.:t ..

The purpose of this beetion 1s to prove
Theorem 2.4.3 Let m ~ n ~ I and let ~,~ E ~m\sn). Then
(Ga.{Sm,Sn),pa.,Sn)and (G13{SID,Sn),Pfi,Sn)are strongly fibre
homotopy e~uivalent if and only if [a.,Ln] = [B,Ln]·

Before we can prove this theorem we need to make some
r-emar-ks on the classifica.tion of flbrations (E,p,B) with basic
fibre b'.

According to Dold ([15], Satz 16.8) there exists a

classifying space B(F) and a universal Hurew1cz fibration
E(F) -+B(F) with basic fibre F. This universal fibration has

the property that for an arbitrary space X there is a bijective
correspondence between the strong fibre homotopy equivalence
classes of flbrations with basic fibre F over X and the set of
bused. homotopy classes of based maps ?\.(X,B(F).

Now let ca.:sn -+ B(Fo(SID,Sn» be the classifying map for the
fibration (Ga.(SIri,Sn),Pal Sn) with basic fibre Fo(Sm,Sn), and
let [ca.]E '1tn(B(Fo(SUl,Sn») denote its homotopy class.

Lemma 2.4.lt If 0 denotes the boundary operator in the homotopy
sequence for the universal fibration with basic fibre Fo{Sm,Sn)
and H is the obvious Hurewicz isomorphism, then the following
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Proof' Consider the m3p between flbrations

FO(Sm,Sn)

1 i
E(Fo(Sm,Sn»

1 p

B(Fo(Sm,Sn»,

which classifies (G~(Sm,Sn), p~,Sn).
Since the classification is up to strong fibre homotopy

~ ill nequivalence, ca is homotopic to the identi ty map of ffOCS ,8 ).
Passing to homotopy sequences we get therefore a commutative

where 0a denotes the boundary operator in the evaluation
fibration defined by CL , d , composed with (i >;l,i.e.o ={i ).06.a. a. a. a. a.

By the theorem of G"~;.~l'litehead(stated here as Theorem 1.3.1)
we know that H06a.(~n) = -[o.,Ln]. On the other hand it is clear
that (Ca}o::(Ln) = [ca.]. Since the diagram is oomn.ut attve we get
then the formula we want.

. m n nProof of Theorem 2.4.3 Suppose first that (G (S ,S ),p ,S ) and
a. a.

(G~(Slli,8n),p~,8n)are strongly f~bre homotopy equivalent. By the
classification theorem the classifYing maps ca.and c~ for these
fibrations must then be ho~otopic, i.e. (ca.]= [c~ Jin
1tn(B(Fo{Sm,Sn»)). Hence [a., Ion]= (~,Ln] by Lemma 1.4.4.

Suppose next that Ic , L n] = (f3, I.nJ • This lmplie s that
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[CL - ~1,Ion]= 0 and hence (Gu-i3 (SID .s"), pa._13,Sn)has a section
by Theorem 2.1.1. Choose then such a section
so.._(3:Sn .....Ga._~1(SIr: .s'') and define

~ : G~(Sm,Sn) ~ G~(Sm,Sn)
by -cheformula

V 1: E Go,(Sm,Sn) : ~(f) = (-sa._I3(Pa.(f»)+ f
Just as in the proof of Theorem 2.3.3 we can snow that,

is a fibre homotopy equivalence.
',~,'e have now to make a good choice of a homotopy inverse

i~ to il3in order to make it easy to prove that 1~ 0 ~ 0 ia.
is hOD,otOPJ equivalent to the identity map on Fo(Sru,-Sn).

Suppose therefore that fa.and tl3are the representatives
for respectively a. and B which are used in the uefinitions of
1a. and 1!3 •
formula

Define then i~

v g e Fl3tSm,Sn) : i~ (g) = «-f'a,) + Sa._pJfa.») + g

Since F_(3(Sm,Sn) is connected, it is clear that i~ is
homotopic to i"(3 : F~1(Sm,Sn) ~ FolSm,Sn) defined by the formula

Vg E Fj3 (Sm , Sn) : i'~ (g) = (- 1'(3) +g

Looking back at the proof for Theorem 1.2.2 we see that
i "13' and hence also i~, is a homotopy inverse to i(3.

Let now h e Fo(Sm,Sn)be an arbitrary element. Then we have:
1(3'0 q>0 io,(h)
= i~ Oq>lfo,+ h)
= i~ ((-s A(P (f))) + (f + h )

I-' a.-I-' a. d a.= «-f) + s (p (f ») + «-8 Cp (t ») + (f +h»a. 0.- fj a. a. a.13 a. a. a.

Using appropriate formulas we can prove f'rom this expression
that 1'(30 <po ia.1Shomotopic to the identity map of Fo(Sm,Sn).

This shows that f is a'stronL fibre homotopy equivalence and
hence the proof ls finished.
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Ch;_tpter3

Homotopy ecuivalence of components
in spaces of _mups bet..-;eensnheres.

This chapter will be devoted to obtaining concrete
inform3tion on the homotopy types of the compol~nts in certain
spaces of maps bet~een spheres. In §1 we determine the order
of the homotopy groups '7tn_1 (Ga.(S~ Sn) )for n even and a.E
In §2 we chclracterize completely the homotopy type of the

I<.:-r:.)'7t "J •n~ .

neutral component among ull the components in a space of maps
between spheres. Finally, in 93 we divide the set of
components in the mapping spaces G(Sn,Sn) and G(Sn+lfSn)

into homotopy types, thereby solving completely the funjamental
problem behind Part I of the thesis in these specific cases.

The results in this chapter will extend considerably earlier
results of Hu [47] and Koh [55]. Like Hu and Koh we shall use
extensively the theorem of G.W.Whitehead (Theorem 1.3.1), but,
in particular to fet the results on homotopy equivulence of
certain components, ne have to rely on our constructions of
certain fibre homotopy equivalences between evaluation
fibrations in Chapter 2, §3.

Th~ purpose of thh, section 1s to pr-ove

Theorem 3.1.1 Suppose that n > 2 is even and let a.e~(Sn).
Put Go. = Go. (Sn,Sn) and denote by dega. the degree of a..

1) a.= o. ?tn_l(Go) is an infinite group.

2) _g, f O. ?tn_l(Ga.)is a finite group and its order
satisfies the formula
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order. ('Xn_l (Go. ) ) = Id~ga.1 • order (T. leG ».n- Ln

Pr'oof From '.rhE:orem 1.3.1 we [et the exac t sequence

If a. = 0 then P is the zero map and hence. a.
•

'1f l(G) ==?er) l(f~n), whLch is an in.finite Cro~'-f:"by Serre [82 ln- a. ,_n-
t.>nppose the n tl:a t a. ~ O•

-r- 'ut A -_,.. i.... I S·n),) and ,
.t' ~ a. to' a. V"n~ '\n
Observe nolV thut

and that PI. (Ion) ;;; -[I.n'''n] has infinite order by the delicate
n

suspension theorem (!heorec 1.3.2). Therefore A and A are
u. I.n

both subgroups of r~nk 1 in ?e2n_l(Sn) and Aa. is a subgroup of

A. with 9,uotient group A :: Z I I By a result of• I.n/~ - dega.·n ~~a.

Gerr'e [82],?e" l(Sn):: Z e H, where II is a finite group.,-n-
It 1s

therefore clear th3.t the q_uotients

sre finite groups.

Cons t deI' then the exact se quenee of t'jni te groups

which ts Lsomor-phf c to on exact se quenee

-+0

Prom this sequence .....se conclude immediately that
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If more detailed information on the homotopy groups and

the rna]? Pa. involved in the proof' above is available, then one

can of course compute the exact structure of 1t n-l (Go.) • This

was first done by Hu [47]'for n = 2 and later for n = 4,6,8,10,12,

14 by Koh [55].

Theorem 3.1.1 is the best one can hope to prove in general

\'11t.h the present k1;loV'lledgeon homotopy groups or spheres.

EX3!!1nle 3.1.2 (::Iu [47 J or Koh [55])

Then

Here Zk clenotes the cyclic group of order k.
Vie put Zo = Z, the integers.

For k = 0

Example 3.1.3 (Koh [55]). Then

~~(Ga.(Q4,S,4)) ~ Z ffi Z
"'.I u - 24' Ideg oJ W 12

Example 3.1.4 (Koh [55]). Then

§2 Char8cterization of the homotopy t;rpe of the neutral component.

In this section vie solve completely the problem when an

3rbitrary component in a space of maps between spheres Is homotopy

equivalent to the neutral component. 'Phe solution Is expressed

in terms of the vanishing of' the V.,'hitehead product [a., "nJ, where

a. E 1t (Sn) is the l1omotopy class defining the component in question.
In

'rhe following theorem contains this result and summarizes also

the main bulk of results involving the neutral evaluation
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fibration we have obtained in Chapter 2.

Theorem 3.2.1 Suppose that m ~ n > 1 and le t a. E 1tm(Sn) •

Then the following statements are equivalent:

1) Go.(Sm,Sn) and Go(Sm,Sn) are homotopy e qutvc l errt ,

2) (G (Srn Sn) n sn) has a section.
a. ' '.0.'

3) (Go.(Sm,sn) ,po.,Sn) and (Go(Sm,Sn) ,PO,SIl) are fibre

hoootopy e~uiv~lent.

4) (Ga.(Srn,Sn), Pa.' Sn) and (GO(SDI ,sn) ,po,Sn) ar-e strongly

fibre homotopy e~uivalent.

5) The 'llh1tehead product [a., I. n] = O.

Proof The theorem is trivial for n = 1. We can therefore

assume m ~ n ~ 2.

We prove the theorem in the following steps 1) :=)5) =,::)4) ~

3) ~2) ~3) ~l).

5)==>4) follows from Theorem 2.4.3 •. 4)==)3) is trivial.

3)~2) ~3) is a special case of Theorem 2.3.1. 3)=:>1) is

trivial. We have therefore only to show that 1) ·=}5).

Assume. for that purpose that Go.(Sm,Sn) and Go(Sm,Sn) are

homotopy equivalent and consider the following exact sequence

obtained from Theorem 1.3.1:

If m ~ n + 1 or m = n odd '7tn+m-l (Sn) is a finite group

(Serre [82]), and hence it is obvious from this sequence that

'7tn_l(Go. (Sm,sn» and '7tn_l(Go(SID,Sn» ~ '1tn+m_l(Sn) canno t be

isomorphic unless [o.,Ln] = o.
If m = n is even it follows fro III Theorem 3.1.1 that

'1tn_l (Go(Sn,Sn» is an infinite group and that 1tn_l (Go.(Sn,Sn»

Ls a finite group fora. ~ o. Therefore 1t 1s clear that 0. = 0

and hence, in particular, [o.,l.n] = o.
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Therefore 1) =:::}5) ana. the theorem is proved.

The homotopy groups of ~~e neutral component are easy
to calculate since the neutral evaluation fibration has a section.

We get then

Corollary 3.2,2 l-et ID -- n ;> 1 and let a.e~m (s") •

that [a. ,t.] = O. Thenn

Suppose

for any i ;;.1.

Proof 'rhe homotopy sequence for the neutral evaluation
fibration splits. Hence

?t i(Ga.(Sm,Sn» Ii: 'Jti(GOCSm,Sn»

§3 The division into homo tony types of the compopents in th~
manping spaces G(Sn,Sn) and G(Sn+l,Sn).

'ne are now ready to prove one of the main results in Part I.
The problem behind the followir~ theorem was in fact the starting
point for Part I. As already mentioned in the introduction the
theorem extends considerably the results obtained by Koh ( [55 ],

Theorem 3.18).

Theorem 3.3.1 Consider the mapping spaces G(Sn ,sn) for n ;;.1
and let a., f3 e ?t (Sn) •n

1) n even. The components Ga.(Sn,Sn) and G{3(Sn,Sn) are
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homotopy eguivalent if'and only if' a. = ± ~.

2) n odd.
if'degc:x.1s even and to G" (Sn,Sn) if'deg a. is odd.

n
Furthermore,

Go(Sn,Sn) and G" (Sn,Sn) are homotopy equivalent if'and only if
n

n = 1,3,7.

Proof For n even the result follows immediately 1'ro.1U
Theorems 1.2.1, 3.1:1 and 3.2.1.

Suppose then that n ls odd. As stated in Theorem 1.3.1
it is known that 20 ["n' "n] =: 0 and that (Ln, "n] :: 0 if and

only if n = 1,3,7. Therefore [a, "n] :;deg a." [Ion'Ln] = 0 if
deea. is even and [a. +"n'''n] = (deg a. + l)o["n' Ion] ::; 0 if deg a.

is odd. The result for n odd is theref'ore an easy consequence
of Theorems 2.3.3 and 3.2.1.

As mentioned ln Chapter 1, §3 quite a lot Is known about
vanishing or non-vanishing of Whitehead products (On'''nlfor
a.n E ~m(Sn). By Theorem 3.2.1 we get a statement about a
component in G(Sm,sn) for each such result.

Since we· are able to give the complete solution to the
homotopy problem for the components in the mapping spaces
G(Sn+l,Sn) we state in particular

Theorem 3.3.2 Consider the mapping spaces G(Sn+l,Sn) for n;;l:1.
1) n =: 1. G(S2,Sl) is homotopy equivalent to SI.
2) n = 2. G(S3,S2) has a countable number of components all

of which are homotopy equivulent.
3) n» 3. G(Sn+l,Sn) has two components.

have the Bame homotopy type if and only if n
Proof n = 1 Let m > 1. Since ~(Sl) = 0
F(Sm,Sl) hUB only one component. Now

These components
= 6 or n E 3 mod 4.
G(Sm,Sl) and
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'rhe fibre of the

evaluation fibration p: G(SID,sl) ~ sl is therefore contractible
and hence p is a homotopy equtvaLence ,

n = 2 ~3{S2) ~ Z. Thus G{S3,S2) has indeed a countable
nurr.bcrof components. Since an !:.l.l'bitrary element a. E"') (82) has
the form a. = I 'T'l2it follows from Theorem 1.3.3 that
[a, "2] = 1·["2'L2f = O. Hence Go.(83,82) is homotopy equivalent
to Go(S3,82) by Theorem 3.2.1.

n ~ 3 Since ~n+l(Sn) ; Z2 G(8n+l,Sn) has two components,

namely Go(Sn+l,8n) and 0." (8n+l,8n). Hence the result :follows
n

immediately from Theorems 1.3.3 and 3.2.1.

Rem3rk 3.3.3 One mi~~t believe that G(S3,S2) and G(S3,S3) are
homotopy equivalent, so that this would explain n = 2 in
Theorem 3.3.2. This is in :fact not true, since the Hop:!'
fibration S3 ~ S2 induces a fibration G(S3,S3) ~ G(83,S2) with
fibre G(S3,Sl), which is homotopy equivalent to sI. It is
therefore somewhat surprising that all the components in G(S3,s2)
have the same homotopy type.

The groups ~ leG (Sn,Sn» have been com~uted by Koh [55] forn- a.
small n and we have already stated some of Koh's result in §2 of
this chapter. We finish with some computations of the groups
~ (G (8n+1 Sn»n-l a. ' •

Example 3.3.4 Plugging ini'ormation on homotopy groups into the
exact sequence

obtained from Theorem 1.3.1 on cets easily
n = Lt ~ (Go(85, S4» ::Z2 ED22
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n :.::5 h h
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0
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Ch:J.pter4

3S domain.

In this chapter we take a brief look on the qualitative
structure of the homotopy groups of'a mapping ~:p<l~t;: wi th IJ. fi r;..i te
CW-complex as domain. The main purpose of the chapter will be
to give a simple and. elementary proof or a version ef a tllec;..'"'em

due independently to Federer (32] and Thom (87].
It 1s worthwhile mentioning that Federer' gets his version

of the theorem as a corollary to the construction of a spectral
sequence. This spectral sequence has later been slIghtly
generalized by M.Dyer and used by him in many concrete comput at ions
of homotopy groups of special mapping spaces, [19 J, [20] and (213.

§1 Towers of restriction fibrations.
This sect ion contains the construct ion of a t'1nite tower of

flbrations naturally associated with a given space of maps r.aving
a finite CW-complex as domain.

The construction is made possible by

and suppose
Let A be a locally compact, connected ANR(CW-complex)

that K = AU cp DA.for A.~ 1 is A with a A.-cell DA.
A.-Icp: S -.A. Let X be an arbitrary connectedattached by

topological space.
Then the restriction map

p : G(K,X) -. G(A,X)
is a IIurewicz fibration over its image.

Furthermore, the fibre of p 1s homotopy equivalent to
F(ff ,X), the space of A.-loops on X.
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Proof It 1s well-knoi'm that K itself is a locally compaet ,

connec t.ed !:..n~. See e.g. Du (~9J, Theorem 1.2, p. 178). The
proof that p 1s G. Hur-ewicz f'lbrat10n can be found in Hu

( UtB], Theorem 13.1, 1'.83).

Por- the identification of the fibre SUppC13e that f e G(A,X)

is in the Ima i:e of p. The fibre over l' consists then of all

po~;sible extensLor.s of l' over the >..-cell nA.. Hence it 1s

clear that the 1'1br-e over f can be Lderrt ified. w1th the f iLi.i.'':;;

over f ° q> in the restriction fibration

p : G(D \ X) _. G( S >..-1,X) •

Since

over D >...
has an extension over K, f 0q> has an extension

Therefore f 0", is homotopic to CL constant map, I s e ,

f 0 q> e Go(S >-1 ,X) • Along the same lines it is clear that the
- ( )....1image of p is exactly Go S ,X).
- >.. A..-lSince p : G(D ,X) -+ Go(S ,X) is a Hurewt cz fibration all

fibres have the same homotopy type. See e.g. Spanier ([84],

CorollD~J 13, Chapter 2, Section 8, p.10l). It is however

~lear that the fibre of p over the constant map S}.-l_. • E X

can be identified with the fibre in the evaluation fibration

a(s \X) -+ x.

Altogether we have then proved that the fibre of p over

f E G(A,X) is homotopy equivalent to F(S \X).

This proves the lew~a.

Nowlet K be a connected, finite CW-complexof dimension

.. m ,

~c can then choose a filtration of K, say

with the following properties:

1) Ko = * consists of a Single a-cell, which we choose as
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base point in K.

2) For 1 lit 1 , r

3) K = Kr

Then let X be an arbitrary connected topological spJce.
Using Lemma4.1.1 we then get a tower of flbrations (over- their

images) as followu:

F(S>r,X) -+ G(Kr,X)

l 1F(.r-l,X) -+ G(K X)~ r-l,

1•·•
1

We have indicated the homotopy type of the fibres, and we

remark that G(Kr,X) = G(K,X) and that G(Ko'X) = x.
Since 'Xi (F(SA.,X) .r) .::'Xi+A.(X,+) for any base :point

f e F(S A,X), it is clear that vie quite easily can get qualitative

results on the homotopy groups of G(K,X) out of .this tower.

§2 Homotop;{ modulo a SeI'I'e class of abelian groups,

~·:eprove in this section our version of the theorem of

!!"ed.erer and Thorn.

a shall denote an arb! trary Serre class of abelian groups,

as e.£. the class of finitely generated abelian groups, the class

of finite abelian gz-cup s or even the class containing only the
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trivial group.

Observe that if a space is not connected there will be more

than one homotopy group of that space in each dimension, namely

one for each component.

':le shall pr-ove our theorem using the tower in §1 and the

follo'lling

Let F .....E
n n
-+ 13be a fibration and let U. be a Sen'c

class of abelian groups. Let also i ~ 2.
Suppose that all the homotopy groups of Band F in dimension

i belong to Cl. Then all the homotopy groups of' E in dimension

i will belong to a.
Proof 'l'he Lemma follows immediately from the exact homotopy

sequence of the fibration and the definition of a Serre class.

We can then prove

Theorem 4.2.2 Let K be a connected, finite C'N-complexof

dimension ~ m and let X be an arbitrary connected, topological

space. Let a be a given ser-re class of abelian groups and

suppose that all the homotopy groups of X in dimensions i wIth

1 in the interval io < 1 < io + m for 10 ~ 2 belong to a.
Then all the ho.uo topy groups of G(K,X) in dimension io

belong to a.
Proof Using the isomorphisms 'It i (F(S \ X), f) a ",+ >..(X,.) and

the assumptions in the theorem it follows immediately that all

the fibres in the tower- eonstructed in §1 have their homotopy

troups in dimension 10 in the Serre class O. By an obvious

finite induction using Lemma4.2.1 we get then the result in

the theorem.
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!~Salready mentioned Theorem 4.2.2 1s actually a variation

of a theorem of Federer ([32], p.353) and independently Thom

([87J, Theol'ems 1 and 4). In some sense the theorem of Federer

and 'I'hon is stronger than the one presented here, since they do

not need K to be a finite but only ~owething like (;\ !:"'jn:!te

dimensional C\\'-complex. On the other hand Peder-er- needs X tc

be simple and both Federer and Thom have restri et rcns en the
•

homoLogy of K, which ar-e not satisfied in general for an

ar-bLtr-ar-y Serre class, not even when K is Cl. r'LnLt.e Ct\'~-~'::;i'~,'~:~):"

The formulation of our theorem is also slig.l-).tly more f.eneral

than theirs-

The method we used in the proof' ziven here iE" closest to

that used by Federer.

Pinally, in thls sect i on we gi vc an example to show tha t

''le cannot relax the .condI t i ons on the homotopy groups of the

target in Theorem 4.2.2.

]:..xuill!)le 4.2.3 Let 10, n and ill be integers satisfying io ;. 2,

n > m ~ 2 anu 10 + ID = n.

Phe n 1\:i (Sn) = 0 for io ~ 1 " 10 + m - 1 but 1\:1 +m(SIl) :a Z.
o

Let f E F(Slli,Sn) be an arbitrary map.

From the homotopy sequence for the evaluation. fibration

p(Sr;',sn) ....G(sl!l,sn) ....Sn

and the Hur'cVlicz isomorphism it follows easily that

'It! (G(Sm,Sn),f)
o

=: Z



--48-

It' we take a to be the Serre class consisting only of

the t r-t vI aL eroup we see therefore that the conclusion in

Tlh:;orem 4.2.2 f'c.ils for the rl~aI'pinf sp.rce O(SIn,Sn).

§3 'i'he f11ncLuilent-<.11rroun of a ::18.r1pi n,."" Rn DceE __ An ~~am.ple.

The object of this section is to show by ;}11 exarapIe tnat the

f'undament.aL group or a mapping space need not to be finitely

gU1erJted aLt hcugh :ill the hcmc t.opy i_.l'OUJ.:l;;l O~' tlL2: target are

fini tely generated. 'rId s will explain why no statement 'lIas

made about the fundamental group in §2.

io'il'st »e need a purely group theo i-e t t c result. I am
indeb ted to Gustav Lehrer for construct in[£ a .:;roup II with the

followinc pr-operty ,

ProDos5tion 4.3.1 TheI'e exists a Sroup Ht whLch is finitely

Generated but contains an clement ho e H foI' -:;hlch the

centralizer CH(Ho) is not finitely generated.

Eecall that CliCho) = {he Elhho = hor:}

Constrnction of P.

Lf!t II be the group i-:.i ven b,/

Genera torr; A doubI.e infinite se quence of '.,lements

••• , h_2' h_1, ho' h1, h2, ••• dna un element h.

1,2 = 1, [ hn,hm ]= 1 and-n
,;"n ~-n hJ..!. n n -in 1l+1ii

[h ,1l.J 11 h -1 . -1= 11 IIn ,I. n Iii n In
denotes here the con.r.ut ator

~lnce 11 = hn ho h-n, H is obviously t:.:ener~ted by tne t'NOn

elements h ..ind h , hence in part icul az- fini tel:,' Cener~lted.-0
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(:il'r:;ct product

In notf'lni tely [cner3tccL

Proof It is cleur that all words h 'be Long to
ffik

By induction en the length of a word it. is easy to ShOll

1Ll them.

·rne s t a t eraerrt in the &:;f:ertioll follows thenimmcdiate1y.

'1.'h13 :fjnif,hes the construction of a iI'OUP H vtit!L t.ne

.prOl)Cl'ties an Pr-opo af t ton 4 •.3.1.

:i'a.KC no\'{ the group H constructed above and let X = K(H,l) be
the corresponding Eilenbcr£;-~;acLane space. By definition X is

then connected, 'Xl (X) == H and 'Xi (X) = 0 :for i ;;.2. Let
1ho : S -+ X be the car r-epr-e cerrtLng the element llo E Hand

cona Ldcr- the component, G rho ](81 ,X) in the space of maps from sI

j nto X defined by the homotopy class (ho] of ho•

Proof Consider the evaluation r i.br-at ion
- (1) 1 PF(h J S ,X ~G(h ](5 ,X) ~X

o 0

and t.hefollowing port of its homotopy sequence
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No.v

,~ 1( (X,=)
2

Hence p. 'JC1(G[h /sl,X),ho) -- 'X1(X,*) it:, a mcnomcz-ph i cm,

• 0

It is very easy to see that an element a. E"l (X~ *) is In the

rmage of Pot if and only if there exi st s a map Sl )( S1 -to X such

tha t SI ,. {.1 -+ X r-epr-e serrt s a. and 1"'1 )( SI -+ X represents rho J.
On the other hand such a map exists if and only it the Whi tehead

product of a. and (ho J is Lhe iclenti ty element. Since a
\I,'h1t.ebe ad produc t of' element s in a f'l.lndume ntal gr-oup co ine ides

With the cor-i-e spondang commut at or- product we conclude" that (1 is In

the ama;..e of p. if and only if a. rho Ja. -1 [ho] -1 = 1 or

equivalently that a. E CH(ho).
Hence '1t1(G[h ](Sl,X) == CH(ho).o
Altogether we have therefore shown

Proposition 4.3.~. There exists a connected topological space X

r:'1th 1 in~tely generated homotopy gr-oupe such that at least one

component in the mapping space G(Sl,XJ has infinitely [;enerated

f undamerrt a'l group.

Notice however
Pronositiun 4.3.3 Suppose that ~(X) is abelian and that

1t 1 (X) and ""'l(X) are finitely generated.

Then all the compone nt s of a(Sl,X) ha ve fini tely generated

fUnuamental group.
Pr'oot This folluws Lmmedia Lel~' from the homoiopy sequence of the
evaluation fibration

FtS1,X) -+ G(Sl ,X) -+ X,
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Since a subgroup of' a finitely gene r-eted abelian group is
itself finitely generated.

'I'he spa ce X we have constructed in Proposition 1../- ... 3.2 1s

not particularly nice. POI' thlS reason and also s1n-.:.e t.he free

loop space of u manifold as r nt er-es t i ng In the st.udy of closed

geodesics, we ~ould l1ke to ask the

Quest ion Does there exist a corrpac t manifold X for which

.a(Sl,x) has a component '.71th infini t(:llygenera ted fundG.mental
. group?



PART II
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Chapter 5

Preliminaries to Part II.

This chapter is purely' expository. §1 contains the

definitions of the mapping spaces with which we shall be

concerned in Part II. In ~2 we collect certain facts about

AIm's, including the s t at ement of a fundamental theorem of,

J .H.C.',Vhitehend (Theorem 5.2.4). In §3 we discuss the existence

of' partitions of un1ty on Banach spaces and the existence of

.r.3.nifold s t ruct.ur-es on mapp 1ng spaces. We indi~ate also the
proof of a slight extension of a theorexa of Palais, which states

that the homotopy type of' a space or dif'ferentiable maps is
independent of the degree of differentiability (Theorem 5.3.2).

§1 Basic definItions.

In most of' Part II Limshall denote an m-dimensional compact

smooth manifold with boundary (which might be emp ty ) J and X

shall denote a paracornpact (equivalent metrlzable) smooth manifold

wi thout boundary mode l.Led on a Banach space of finite or infinl te

dimension.

For 0.;; r __oo,cr (M ,X) shall denote the space of'

differentiable maps of' class c" from 1.1 into X. Weequip

Cr(M,X) with the er-topology. Notice that for r = 0 COCM,X)
is just the space of continuous maps with the familiar compact-

open topology.

Nowlet, 1 ~ r .;;00 and let 0 __k ,

denote 'the' subspace of er (i\: ,X) containing the k-mer-s Iona of IJ into

X of class Cr. Recall 'that f E er (J~:,X) is a k-mer-aaon if 1t has

rank ;. .Ie everywhere. For k big er(M,A;k) will then, of course,

oe empty , Observe that rcr k = 0 Cr(I,;,X;O) = Cr(M,X) and that

for k = dim M we get the space of immersions Immr(M,x) of M into

X of clasH Cr.
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Ll.kew1se for 1 E; r ~ 00 Vie shall denote by Embr(J.1 ,X) the

subspace of ~r(M,X) containing the embeddings of M into X o~
I'class C •

Since M is compact both Cr(l,.,Xjk) und l!;mbr(M,x) are open

subspaces of CrU!,X).

Chapters 7' and 8 will be occupied with a study o~ the

spaces cr(I,:,X), Cr{M,X;k) and Embr(M,~~). In Chapter 8 we

shall relate Cr(lJ,X;k) to a space of bundle maps Hom(Tk,TX;k),

'wh f ch we now proceed to define.

Let TM and TX denote the total space in the tangent bundle

of respectively M and X. Tangent spaces will be denoted

respectively by TpM f'or p e 1.~and TxX f'or x e X. Let again

o .; k , Then Hom (Ti.~,TX;k) shall denote the space of continuous

maps of TM into 'i'X, which maps each fibre of' TM into a fibre of

'l'X by a linear map of' rank) k , Weequip HOIL (TM,'fX;k):litlL

the compact-open topoIogy ,

Let It' and E denote Banach spaces wi th .£1' f'ini te dimensional

and let 0 .;; k , Then L{F,~;k) shall denote the space of linear

maps of F into E of' rank ~k. Observe that L(F,E;k) is an open

subset of 'the Bana ch space L(F, E) of linear maps.

We·shall now define certain locally tivial smooth flbrations,

nar.lely

1) ~' : L(F,'f.Xjk) ~ X
wt tn t'lbre L(F,TxX;k) over x e X.

2) 'It": B ( TiA,TX;k) ~ M " X

with fibre L('fpl,l,'l'xX;k) over (p,x) e M x X.

and :r'inally

3) 'It: B(TIvi,'fX;k) ~ M

with fibre L(TpM,TX;k) over P E M.
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The definitions are simple. If V denotes disjoint union,

then
L(F,TXik) = V L(F,TXX;k)

xeX
and

B(T~,TX;k) = V L(T M,T Xik)(p,X)E~~X p x

?t' and ?t" are tne obvious maps. 1t 1s the composition of

1tu and the project~on M )(X ....M.
The standard techni~ue in tne category or smooth vector

bundles for construct1ng new vector bundles out of old ones by
applying a functor to each fibre can be applied to equip 1t' with
the structure of a locally trivial smooth fibration. This
construction will work, since L(F,·;k) 1s a t~unctor' on
Lsomor-ph Lsms , and that is all that is needed. See Lang (61].

It is well-known that ?t" has a natural structure as a
locally trivial smooth fibration. See e.g. Abraham and Robbin [lJ.

~'inally, since a composition of locally trivial !'lbratlons
over a locally contractible space is again a locally trivial
f.ibration (see e-e. Palais [75], (fheorem 14.12), 1t follows
th~t 1t 1s a locally trivial smooth ribration.

t!ow let r o(x) denote the space of continuous sections of 1t

equipped with the compact-open topology. It is then well-known,
and obvious, that Hom (,rN.,'l'X;k) can be ldeutifled with rO(1().

This uescrlption of Hom (TM,TXjk) Vlillbe 'y'eryuserur to us in
Chapter 8.

§2 :,~iscellaneousresults op AXR ts,
For us an ANR (Absolute Neighbourhood Retract) shall always

be in the class of'metrizable spaces. ~e recall that a metrizable
space X is an ANR if it has the following property: For allY

metrizable space Y in which X is en.be dded as a closed subspace

-'------- -----------------------
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there exists an open net ghbour-hood U of X in Y and a

r-et r-ac t ion r: U ~ X. In the class of metrizable spaces X 18

an Arm if and only if it is an A!~E (Absolute Neigr.bourhood

EXtensor), i.e.: Any con~inuous map f:A ~ X frum a closed

t:;ubspace A of' a met r-azabLe space Y. has a cont inuous extension

F:U ~ X to an open neLgnbour-nood U of A in Y.

The ba sLc racts about. ANR' s can be found in Borsuk ( 8 J and

nu [49]. !.Jm. I s ar~ particularly nice spaces to wor-k 'Iii t.n in the

houio t.opy theory of mapping spaces since they have the same

fUndamental proper~ies as CW-coiliplexes and since they are

naturally p re se r-ved under mapping space constructions tTheorem

5.2.1 below). A lot or racts about AIffi's or particular

interest in ~he homotopy ~heory or infinite dimensional manirolds

(mapping spaces) have been collected by Palais [74]. We

c.ent ton ill particulaI' ([74J, Theeren: 5), whd ch states that an

arbl tr[i.ry met r-Lzub Le topological mani.fold modelled on a LCTVS

(locally cOn"leXtopological vector space) is an ANR.. Usually

tne LCTVS's we shall meet will be either Bannch spaces or

Fr§chet'spaces (complete metrizab1e LCTVS's). Palais's paper

[74J will be mu' n.arn l'efel'ence for unproved statements about

AMR's in the :rollo'lvlng.

',Ie shall, 1n fact, o"nly need just two results '::hlch eanno t

be round in [74J. We list these results as Theorems 5.2.1 and

?heurem 5.2,1 1t
Let F -+ E -+ f, be a locally trivial f ibratien.

SLlppose tnat B 1s cou.p act metrizable and that F is an AtlR. Let

r o(7t) denot e the space vf continuous sections or ?t equipped with

the COlltJ:luct-opentopoloe,y.

Then Eis mt:tr1zable, and re (?t) is an ANR.

If 7t 1s trivial, then E ; B x F and rO(?t) ; CO(B,F). In this

case Theorem 5.2.1 is well-known. See e.g. Hu ([49J, Chp. VI,------_.__ ._ .._- .
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§2, e~pe~ially Theorem 2.4). The proof of the slightly more

genel'~~.l case 1s not difficult and is left to the reader.

For separable AIm t s and countable CW-complexes the following

theorem can oe found in Milnor [65J and Palais [74J. I am

iuclebted to Profef-:·sor Eells for pointing out to me that

separability (countabllity) is not needed in the th~orem.

Theorem 5.2.2 It is equivalent for a topological space x
1:;0 have the homotopy type of El. CW-complex and of an ANR.

Proof .Assumt::f~rst, that X is an A.NR. Then by an ex.tension
of Hanne r ' 5 result in the separable case PalaLi proves ((741
~heorem 14), that X is dominated by a sim~licia1 complex. By

a theorem of l,:ilnor ([65], Theorem 2) X has thererore the

homotopy type of a CW-complex.

Next assume that X 1s a CW-coI:lplex. l'hen by the tneor-em

of Milnor ment rone d above X h8S the homotopy type 01:' a simplicial

complex with the n.et r-i c topology. But a simplicial complex

with thc metric topology is an ANR, see }tu ([49], ~nt::orem 11.3,
p.l06).

This proves the theorem.

Wewant now to recall a f'undamerrt eI theor-em of

J .F.C.\\.bitehead. First rre make however- the following almost

st andar-d

Definition 5.2.3 Let X 8.nd Y be nOIl-:t::mpty topological spaces,

and Le l r:x -+ Y be a continuous map ,

integer.

we call f' a Q-eguivc;lence if the induced map between path-

Let also q ~ 0 be an

components f",: 'Jt 0 (x) -+ ?Co(Y) t s onto.
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Por- q ~ 1 we call f' a g-euuivalence rr t:*: ?t (x) ....?t (Y)o 0

is a bijection, and if for any base po Lrrt x E X the induced

W..lp f:,,: ?ti(X,x) .... '7t1(Y,f(X») is an epimorphism :tor 0 -- i --Cl

anu 0 D~nomorphism for 0 ~ i ~q-l.

Fj.nall~r, '.'Ie call t: a weak homotopy eCJ.uivalence if it is

a q.-e(::u.ivalence for all q ~ O •

•In Lat.e r=cnap t er-s we shall f'req-l.~ently use the fOllowIng

theorem uf J.E.C.Whitehcad [93].

Theorem 5.2.4 Suppose that X and Yare topological spaces

with the noroo t cpy type of' ANR' s ,

Tnen a cont In-''lOUS map f: X .... Y is a homotopy equivalence if'

.ind only if it is a weak home copy equi vale nee.

§3 Structures on mappine spaces,

For simplicity uf' exposition we shall throughouL Part II

a esume that the Banach sp ace s we use as models for the smooth

man Lr'o Lds )( are e' -smoot.h. By de:finitj.on a Banach space E is

said to be COO-smooth(or Goo -paraco:r.pact) if any open coveru ng

of E admits a subordinated smooth partition of unity.

It is known "Ghat e.g. the folloy.ring Banach spaces are

Coo-sr.;ooth: Finite d1menslonal Ban!1t!h spaces, the infinlt~

dimensional sep2rable Hilbert space (Eells, see Lang [61]), LP_
s.pace s for :p an even integt!r (Kur-zwe IL, see e s g , Sundaresan [SSJ),

the rspa ce c of real sequences conve r-ging to 0 (Kuiper, see honie
o

and Frampton [7J) • On the other hand LP -spaces for p an odd

rnt eger- admi t s only pa.rtitions of unity of class Cp-l• It is

still unknown whethen a non-separable Hilbert space 1s COO-smooth.*)

Recently Wells [90] has shown that they 0.0 admit partitions of

.) Latest: H.Torunczyk has shown that it is, January 1972.



-58-

unity of l.!lassCl. .Forfurther information on the problem
concerning existence of differentiable partitions of unity
on Banach spaces see Eells [22J and Bonic and Frampton [7 J.

If X is a metrizable smooth manifold modelled on a
00 ;

C -smooth Banach space then it is clear that X itself admits
smooth partitions of unity. This implies that X admits a
smooth spray and therefore also an associated exponential map •
See Lang [61J. •Hence ....·le can use the general construction
principle for manifold structures on spaces of maps formulated
by Eells ([22J, §6) to prove t.hefollowing

'I'heorem7.3.1 Let f:' be a compact smooth manifold, and let X

and Y be metrizable smooth manifolds modelled on ~-smooth
Banach spaces

1) For 0 ~ r <= Cr(M,X) can be given the structure of a

smooth metrizable manifold.
2} cf'(M,X) can be given the structure of a metrizable

manifold modelled on Frechet spaces.
3) Cr(M,X) is an ANR for all 0 ~ r ~ 00 (consequence of 1)

and 2».
4) A smooth map f: X -+ Y induces a map f.:Cr(M,X) -+ Cr(M,Y)

by composition ot'maps for each 0 ~ r ~ 00. For 0 ~ r < 00

f. is smooth and i'or r =00 it Is continuous.
5) If t': X -+ Y is a smooth embedding, then f.:Cr(M,X) -+

Cr(J.r,Y)is an embedding, smooth for 0 ~ r <00 and continuous for
r = 00 •

Since Cr(M,X;k) and Embr(~:,X) for 1 ~ r (;00 are open
subspaces of Cr(M,X) these spaces will also be metrizable
manifolds, in particular NUt's.

The only essential use we shall make of Theorem 5.3.1 is to
ensure 'thatCr(M,x:) is a rnetrizable manifold (ANR). To
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achieve this it is not necessary that X admits smooth partitions
of'unity. Eliasson [29J showed that when X is a metrizable
smooth mc;:.nifoldW11.icha dn.t ts a spray, then all iterated mapping
spaces,· like CS(M,c.;r(lt!,X»,admit a manifold st r-ucbur-e , This
is non-trivial, since Cr(~,X) does not admit smooth partitions
of unity even if X does, but as Eliasson shows Cr(M,X) does
admit a spray if X does. Next Krikorian [56J showed that for
o __ r <ooCr(M,X) has the structure of a metrlzable smooth
manifold for any metrizable smooth manifold X. This was reproved
by Fenot [77] who in addition proved that CO(M,X) is a smooth
manifold even if M and X are just topological manifolds. Both
Kril:orian and Fenot used a method due to Doua dy [17]. It seems
.not to be clear that one can Eet the manifold·structure on
cllO(i: ,X) without any conditions on X. Finally, we should mention
that Geors-hegan[35] using a completely different method has
produced a Hilber~ manifold structure on CO(M,X) if'M and X
are just polyhedra.

Since one can prove that Cr(M,X) is an AN.R under much mor-e

general conditions tnan in Theorem 5.3.1 many of the results
in Chapters 7 ana 8 can be sli~ltly improved. We shall abstain
from this here but mention that it is done to a certain extent
in our papers [40], [41] and [42].

Finally, we shall indicate the proof of'~he following
slightly generalized result of Palais t [75], Theorem 13.14).

l'heorem 5.3.2 Let :,:be a compact smooth manifold, and let X
be a metrizable smooth manifold modelled on a Coo-smooth Banach
space. Let also 1 ~r < 00 •

·rhen the natural map

Cr(~:,X)....CO(M,X)
is a homotopy equivalence.
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Proof 1he following proof 1s essentially just the argument
given by Palais in [75].

Without loss of generality we can identify X with a

closed smooth 6ubmanifold of a Banach space E. The proof of
this fact is an almost 'class1cal'application of smooth
parti tions of unity and has been carried thl·ough in all details
by Penot [77]. Since any Banach space admits a spray it
follows that X has a tubular n~ighbourhood in E (the proof. in
Lang (61] work without changes). There exists therefore an
open neighbourhood U of X in E and a smooth strong deformation
retraction 'l': U -+ X. From the t'undamenta1theorem of Pa1ais
«(74], Theorem 16) 1t follOWS now easily that the inclusion
map Cr(M,U) -+ Co(~,U) is a homotopy equivalence. Obvious use
of the smooth strong deformation retraction ~ finishes then
the proof'.

-'--------- ----
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Chapter 6

Expanding systems

In this chapter we study the topology of the limit
space of an expanding system, in particular of a closed
expanding system. a1 contains the necessary definitions
and some examples of closed expanding systems are given.
~2 contains the main result in this chapter, namely
Theorem 6.2.5, which states, that a limit space for a
closed expanding system of finite dimensional manifolds
of unbounded dimension is a manifold modelled on R~
ROO is here the topological vector space of finitely non-zero
real sequences topologized with the finite topology. Since
ROO is not metrizable such limit spaces cannot be metrizable,
in particular they are not ANR's. This could have caused
us serious trouble in changing weak homotopy equivalences
into homotopy equivalences. However trouble does not arise
since in ~3 we show that the limit space of a closed
expanding system of ANR's has the homotopy type of an ANR
(Corollary 6.3.4).

It is only the results in §3 which will be needed in
later chapters.
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§1 Derinitions and examnles.

First we recall the definition of a (closed) embedding.
Let X and Y be topological spaces. A continuous map f:X -+ y

is called an embe<iding, if l' is a homeomorphism of X onto reX)
consioered with the subspace topology in Y. If furthermore
reX) is clused in Y then we call r a closed embedding. For X
and Y smooth manifolds we have, of course, smooth counterparts
to these notions.

Next we define the main objects for our investigations.

Definition 6.1.1 An exnanding system of topological spaces
(x,!.,no)=1 Xn,fn,n+l1nffl is a system·of topological spaces

o

X ana en.oe ddLnga f n 1: X -+ X 1 indexed over the integersn n, + n n+'
n ~ n •o

If all the embeddings fn,n+l are closed embeddings, tnen
we ca.ll (X,!.,no) a £.losed expanding system.

If all the topologica~ spaces Xn are smooth manifolds,
and all t.heembeddings fn,n+l are smooth embeddings, then we
call (X,!,no) a smooth expanding system.

In the obvious way we could also have defined op~n expanding
!:jystems. We have not included any material on such systems here,
since we basically shall be concerned with closed expanding

The interested reader can find a few results on open
expandi ug toystems in our paper [L~O].

'l'heterms in Defini tion 6.1.1 will occur so often in the

following that w~ will abbreviate expanding system and closed
expanding system to ES and CES r-e spect fvely.

If (X,!,no) is an arbitrary ES then we define its limit Sl1C\ce
~ as tne darect,limit of the system {xn,f'n,n+l1 n ,..110' i.e.

------_ .._-_ ..
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As usual the direct limit X~ is the identification space
00

obtained from the disjoint union V
n=no

of the spaces Xn by

identifying xn e Xn with f 1 (xn) e X 1.n,n+ n+ If

f : X ~ X denotes the composition of the inclusion of Xnn,oo n "'""tlo

into fJ
n=no

then the topology on X~ can be described as the largest (finest)

Xn followe~ by the projection of this space onto ~,

topology making all the maps f continuous.n,oo

The whole system is shown ln the following diagram..
'"Xn

x
-00

fn,n+l

We remark that a subset of X is open or closed ln the direct
"'""tlo

limlt topology on X if and only lf all the preimages of the set
"'""tlo

in the spaces Xn are open respectively closed.

For n < m we put for convenience f = f 1 et ••• 0 f 1-n,m m-,m n,n+
Let also f be the identity map on Xn•n,n

Let us record the following

Lemma 6.1.2 Let (!,f,no) be an ES.

1) The map f ls an embedding for all n ~ no.n,oo

2) If (~,f,no) ls a CES, then all the maps fn,~ are closed

embeddings.
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f is clearly a continuous injective map.n,oo In order to

finish the proof of 1) it will therefore be sufficient to prove

that f is also an open map onto its image.n,oo For that purpose
let Un be an open set in Xn• Since f 1 is an embedding theren,n+
exists an open set Un+l in Xn+1, such that fn,n+l(Un) =
fn,n+l (Xn) n Un+l•• Go on and choose sets {Un+kJ101 such that
U k is open in X , and such thatn+ n+K

for all k ;;;.O.
00

Now Uoo = U
k=O

= f (X) n u ,n,- n 00
This shows, that f (Un) is open inn,oo

f (x).n,o") . n As already remarked this finishes the proof of 1).
2) is even easier and is left to the reader.

When we are just dealing with the topology of the limit space

~,for an ES (!,f,no) the embeddings fn,n+l will not come into
play. By Lemma 6.1.2 we can then identify Xn with f (X) andn,oo n

think of the system as a system of inclusion maps

c ••• eX c··.eX,n -00

where X =
co

has the weak topology w.r.t. the subspaces

Xn·

The no in the definition of an ES (X,f,no) is of course not

important. What matters is the limit space x~, and it is clear

that if we take the same spaces Xn and embeddings fn,n+l but only

from mo;;;'no and upwards, then (X, f ,mo) gives the same 11m1t space
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'.'Veshall often use the following straightforward but

important

Lemma 6.1.3

g:M -+ Xoobe a continuous map such that g(A1) is a compact subset of

x •
-00

Then there exi~ts an n ~ no and a continuous map gn: M -+ Xn

such that the following diagram commutes

fn,oo

Proof Observe that X = u f (X)
-00 n,o\ n •nmo

Assume, that g( M) is not contained in any of the subspaces

fn (X) of X •
,00 n -00

Toecan then find an infinite subspace

S = {xnkJ k=l of X , such that Xn E (!\ fn (Xn» n geM)
-00 k 00 k'oo k

for all 1 < k (; 00·

Since an arbitrary subset of S by construction has at most a

finite number Qf points in common with any f (Xn), it is a closedn,eo
subspace. It is here we need the spaces Xn to be Tl-spaces. S is

therefore a closed discrete subspace of geM). But since geM) is

comp~ct, it c~nnot contain any infinite closed discrete subspace.

This shows that there exists an n such that geM) c fn,oo(Xn).

Since f is an embedding of X into X by Lemma 6.1.2, theren~ n ~

exists therefore a unique continuous map gn : M -+ Xn such that

g = fog •n,oo n This proves the lemma.
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Finally, in this section we give some examples of closed

expanding systems.

Examule 6.1.4 (~N-complexes). By definition any CW-complex X is

the limit space of the CES (X,f,a), where Xn is the n-skeleton of X

and f : X ~ X . is the obvious inclusion.n,n+l n n+l

Example 6.1.5 (Symmetric products).

Let X be a connected topological space with base point.

For each n ;It 2 the symmetric group on n objects, Sn'acts

in the obvious way on the n-fold product X ~•..~ X. The orbit

space for this action is called the n-fold symmetric product of X

and is denoted by Spn(X). Observe, that each point in Spn(X) has

a representative of the form (xl,•••,xn) e X )t ••• )( X.

For each n ;It 2 we get a closed embedding f l:spn(X) ~n,n+
spn+l(X) by viewing Spn(X) as the set of points in spn+l(X) having

a representative with the base point in X as the last coordinate.

The spaces Spn(x) and the embeddings fn,n+l form aCES

(2E(X),f,2). The limit space for this CES is called the infinite

symmetric product of X and is denoted by SJP'(X), i.e.

spOO (X) = ~0Cl (X) = lW Spn(X) •
n

SP lX) has been studied in great detail by Dold and Thom in

b.6J, where the following nice theorem is proved

Suppose now that X is a closed smooth manifold. Then

Spn(X) will be a manifold with certain singularities, but only
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when X is 2-dimensional Spn(X) will actually be a smooth manifold.
As an example Spn(S2) = Cpn, complex projective n-space. See the
discussion in Dupont and Lusztlg (18].

For each closedsurface X we get therefore a smooth CES

Example 6.1.6 (Classifying spaces).
Let G be a compact topological group. We can then for each

n ~ I form the G-space

the n-fold join of G with the usual join topology. Let
BGn = EGnlG denote the orbit space.

There are natural closed embeddings fn,n+l : BGn ~ BGn+l,

such that we get aCES (BG,f,I).
is denoted by BG, i.e.

The limit space for this CES

In Milnor's original construction of a classifying space for
an arbitrary topological group G, (64], EG =00

U EGn, and
~l

hence also BG = EGoo/G' has a different topology. Since we have
assumed that G is compact, it is still true that the BG constructed
here is a classifying space for G.

For a concrete group G we can often find a smooth CES such
that the limit space is a classifying space for G. If we e.g.
take G = O(k), the orthogonal group in Euclidian k-space, then
the Grassnlann manifolds of k-planes in n-space for n > k form such
a smooth CES for O(k).

Example 6.1.7 (Homogeneous spaces).
Let E denote the separable Hilbert space and let {eil

i)l
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be an orthonormal basis for E.
The subspace of E spanned by the vectors el, •••,en is then

a model for Euclidian n-space Rn. We get, of course, a smooth
CES

1,- 2 nR_ R c ••• cR c •••

This CES induces in the obvious way a lot of other smooth CES's.

Spheres (S,f,l):
Sl 2 ncS c ••• cS c •••

The limit space S ,usually denoted by SOO, is contractible.~

Projective spaces (RP,f,l):

RP) c RP2 RPnc •••cc •••

The limit space RP , usually denoted by ~, is an Eilenberg-
--00

MacLane space K(Z2,1).

Stiefel manifolds (Vk, e. k):

Vk(k) c Vk(k + 1) c •••c Vk(n) c •••,

where Vk(n) is the space of orthonormal k-frames in Rn.
The limit space (Yk)oo'usually denoted by Vk(oo), is

contractible.

Gr~ssmann manifolds (Gk, L, k):
Gk(k) c Gk(k + 1) c •••c Gk(n) c •••,

where Gk(n) is the Grassmann manifold of k-planes in Rn.
The limit space (Gk)oo'usually denoted by Gk (00), is a

classifying space for O(k).

In Chapter 8, §1 we will give more examples of smooth CES's.
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~2 TopolofW of the limit space for an expanding system.
The main purpose of this section will be to prove that the

limit space for a CES of finite dimensional manifolds of
unbounded dimension can be given the structure of a manifold

.modelled on Roo.

First we state however some general topological facts about
a liIr.lt space.

•Since the topology on the limit space X for an ES (X,f,n )
~ -- 0

is a quotient topology, we cannot expect too much of it. For
a general ES we have however the following result. Recall,
that a topological space is a Linde18r space if every open
covering of it contains a countable sub-covering.

Theorem 6.2.1 Let (x,t,no) be an ES of topological spaces.
1) If all the spaces Xn are Tl-spaces, then!oo is a

Tl-space.
2) If all the spaces Xn are locally compact Hausdorff

spaces, then Koo is a Hausdorff space.
3) If all the spaces Xn are Linde18f spaces, then!oo

is a LindelBf space.

Proof We leave the proof of 1) and 3) to the reader and
concentrate on the proof of 2). As remarked in §1 we can
assume that the ES under consideration has the form

c x ,
-00

Now let x,y E X = u
-00

n fino
with x ~ y be given. We

have to find disjoint open neighbourhoods of these pOints in Xoo-
Pick nl.. no such that x,y E X~. Since Xn is locally compact

1

and Hausdorff we can find open neighbourhoods U and Vn1 n1
of respectively x and y in Xn ' such that the closures

1
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U and V in X are compact and disjoint.
nl nl ~ Since Un and

1

Vn are also compact and disjoint subsets of the Hausdor~f
1

space X 1 they can be separated by open sets in X 1.nl+ nl+

Using the local compactness o~ Xnl+l it is then easy to find

open sets Un +1 and Vn +1 in Xn +1 which extends Un and Vn11111
and have disjoint compact closures U and V 1• nl+l n1+
This indicates how we can construct expanding sequences
{Un} and {VnJn>nl' where Un and Vn are disjoint open

n>~

neighbourhoods of x and y in Xn for each n ~ nl• Then
U =
00

u U and V =n~n n 00
1

UVn will be the required disjoint
n)nl

open neighbourhoods o~ respectively x and y in X •
-00

We are particularly interested in the Llnde18~ property,
since it is known that a regular Linde18f space is paracompact.
For a connected, locally compact space the converse statement
Is also true. See Kelley [53]. We remark that paracompact
includes the Hausdorff axiom in this paper.

In general the Hausdorff property is not carried on to the
limit in aCES. We have however th1s

Theol'em 6.2.2 Let (K,f,no) be a CES of topological spaces.
1) If all the spaces Xn are normal, then X is normal.

-00

2) If all the spaces X are regular Lindel~f spaces, thenn
X is a regular Linde18f space.
"'"'00

Proof Assume for a moment that 1) Is proved. Then 2) follows
in this way. Each Xn Is a regular Linde18f space, hence
paracompact, in particular normal. By 1) !oois therefore
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also normCll, in particular regular. That X is Linde18f-eo

follows from Theorem 6.2.1.
We turn then to the proof of 1). By Theorem 6.2.1 we

get i~med1ately that ~ is a Tl-space. It will therefore
be sufficient to prove that Urysohn's lemma holds in ~.
For that purpose, let A and B be closed, non-empty, disjoint
subsets of~. We have to find a continuous function
h: X ~ [0,1], sbch that hlA ~ 0 and hlB ::1. To do this we

--CC'

proceed as follows:
rrecan again assume that the CES has the form

with X~ :: u X •n)n n
o

Choose then a sufficiently high ~;;. no such that both A n X
J. nl

and B n X are non-empty.nl Using the normality of X we cann1

no.vfind a continuous function hnl: X~ ~ [0,1J,
h IA n X E 0 and h IBn X :: 1. Considern1 n1 n1 Dl
subset

such that
then the closed

in X'l.nl+
immediately that there exists a continuous function

Using Tietze's extension theorem it follows now

h~+l [0,1], such that and

hn +11B n X 1 = 1, and such that hn 1 IX = h •1 nl+ 1+ nl - nl
This indictiteshow we can construct a family Ihnln~

of continuous fUnctions hn : Xn~ [0,1], such that
hn+l Ixn:: hn and such that hnlA n Xn -= 0 and hnlB n Xn == 1.

But then we get an induced continuous map h ::h : X ~ [0,1],
ea -00

whtch by construction will satisfy the conditions hlA E 0 and
hlB:: 1.

As already r-ersarked this finishes the proof of Theorem 6.2.2.
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We shall now begin our study of the limit space of aCES
of finite dimensional manifolds of unbounded dimension. We
want to equip the limit space with the structure of a topological
manifold modelled on a LCTVS (locally convex topological vector
space) • The first difficulty we run into is then that a direct
limit of TVS's not always is a TVS.
investigate this problem a little.

Recall that a Frechet space is a complete metrizable LCTVS.

We have therefore to

Let then En eEl c ••-. c E c ••• be an increasing sequenceo no+ n
of Frechet spaces En' such that En is a subspace of En+l in
the sense of TVS's for all n ~ no. Put Eoo= U En.

n~no
Then E has a natural real vector space structure, and it is

00

known that it can be given the structure of a Hausdorff LCTVS
by taking as neighbourhoods of 0 convex sets which intersect
each En in an open neighbourhood of 0 e En. With this LCTVS
structure E is a so-called LF-space.

00
See e.g. Treves [88]

for the result just mentioned. The topology in this locally
convex structure on E is usually different from the direct

00

limit topology (the weak topology) w.r.t. the topological
spaces En. We have however this result.

Lemma 6.2.3 Let E c En le. •• c En c ••• be an increasingno 0+
sequence of finite dimensional vector spaces with their canonical
Hausdorff TVS structures. The inclusions are inclusions as
linear subspaces.

Then the locally convex topology and the direct limit
topology on E =

00
w.r.t. the subspaces coincides.

In particular E will therefore be a LCTVS in the direct
00

limit topology w.r.t. the subspaces En.
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Proof The locally convex topology is always smaller than the
direct limit topology, so it is in the proof of the converse
statement that we need the vector spaces En to be finite
dimensional. To prove that an open set in the direct limit
topology is also open in the locally convex topology, it will
be sufficient to prove the following: If U C E is an arbitrary

00

subset of E , such that U n En is open in E for each n > n ,
00 • n 0

and x E U is an arbitrary point in U, then there exists a convex
neighbourhood K of x in Eoo' such that K n En is open in En for
each n > no and x EKe U. This statement is on the other hand
easily proved using the local compactness of the finite
dimensional vector spaces En. One merely starts in the space
En(x) with the lowest index n = n(x) such that x E En and then
build a K with the required properties step by step.

If E is an arbitrary vector space, the fini te topology
on E is the direct limit topology on E w.r.t. the dd r-e cted set
of finite dimensional subspaces ot E considered with their unique
Hausdorff TVS topologies. A aubaet U c E is ther-eror-e open
(closed) in the finite topology if and only if U n F is open
(closed) in F for every finite dimensional subspace F of E.
When the subspaces E of E are finite dimensional as in Lemman 00

6.2.3, it is obvious, that the finite topology on E coincides
00

with the direct limit topology w.r.t. the eubspaces En and
thus also with the locally convex topology. Under the
assumptions in Lemma 6.2.3 E will therefore be a LCTVS in the

00

finite topology. In general it is known that a vector space E
is a TVS in its finite topology if and only if E is at most
countable dimensional. See Palais [74] and the reference there
to a paper by Kakutan! and Klee [52J. There is however a
slight mistake in Palais's argument for his Lemma 6.10 (The
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convex neighbourhood N(xO,!eil) is not necessarily contained
in U).
6.2.3.

This rather trivial mistake Is corrected by our Lemma

We have a canonical countable dimensional LCTVS in its
00finite topology, denoted by R • Roo i s the vector space of

real sequences (xn)n)l' such that xn ~ 0 tor at moet a finite
number of indexes •

•If E is an arbitrary countable dimensional TVS in its finite
00topology, then it is isomorphic to R as topological vector

00spaces, since it is obviously isomorphic to R as vector spaces
and since the topologies cause no trouble in this case, because
we have the finite topology on both spacee.

The following lemma is then easily proved.

Lemma 6.2.4 Let EnoC Eno+1 c ••• C En C ••• be an increasing
sequence of finite dimensional vector spaces with their canonical
Hausdorff TVS structures. The inclusions are inclusions as
linear subspaces. Assume also that the dimension of the vector
spaces En is unbounded.

Then Eoo = U En is a LCTVS in the direct limit topology
n)no

w.r.t. the subspaces En' Furthermore E is isomorphic to Roo
00

as topological vector spaces.

We recall now a few definitions from the theory of
topological manifolds. Let E be a TVS and let F and G be closed
linear subspaces of E which splits E into E = F x G. A subset
X of a topological manifold Y modelled on E is then called a
topological submanifold of Y modelled on F, if for each x E X
there exists a coordinate chart (u,6) on Y centred at x
(8(x) = 0) such that 6(U) = E and 8(U n X) = F.
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If X and Yare topological manifolds modelled on the TVS's
F and E respectively, then an embedding f:X ~ Y is called a
locally flat embedding, if f(X) is a topological submanitold of Y
modelled on F. Observe that a smooth embedding is always locally
flat in finite dimensions.

We can now state and prove the main theorem we have been
working towards.

Theorem 6.2.5 Let (~,f,no) be aCES ot finite dimensional
topological manifolds Xn' where all the maps fn,n+l are locally
flat embeddings. Assume also that the dimension of the
manifolds Xn is unbounded.

Then ~ is a topological manifold modelled on~.

Proof Let En be a finite dimensional model for Xn• We can
assume that En is a linear subspace of En+1 for each n ~ no'
such that we have an increasing sequence En C En +lc ••• cEn c •• 0

o 0
as in Lemma 6.2.4. By this lemma we know already that
E ~ U E with the direct limit topology w.r.t. the subspaces
00 n~n n

o

En is isomorphic to ~ as topological vector spaces. Since we
know from Theorem 6.2.1 2) that X is Hausdorff, it will

-00

therefore be sufficient to prove the following assertion in order
to finish the proof of the theorem.

Assert ion Each point of ! 00 has an open neighbourhood
homeomorphic to an open subset of E •

00

In order to prove this assertion we proceed as follows:
We can assume that the CES has the form

••• C x cn ••• c x
-00

and each Xn a topological submanifold of Xn+1.
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Now let x E X be an arbitrary pOint in X ,and let n(x)~ ,~

be the smallest index n = n(x) such that x E Xn• Choose
a coordinate chart (Un(x),6n(x» on Xn(x) centred at x such
that 6n(X) (Un(x» = En(x). By El th~oreOll or Lacher «(60],

Theorem 2.2) there exists a coordinate chart
(Un(X)+l' 6n(x)+1) on Xn(X)+l centred at XII such th.&t

6n(x)+1(Un(X)+1) = En(x)+l' Un(x) = Xn(x) n Un(X)+l and
6n(x) = 6n(x)+lrun(x). It is obvious that we can continue this

extension procedure ending up with charts (Un,en) on Xn
centred at x for all n ..n(x), such tl'J8t 6n (Un) = En and such

Put then
U Un and define

n>n(x)
6 IUn=6n foralln .. n(x).

U =
00

6 : U ...
co

E by the requirements
co

By definition of the topologies
on X and E it follows now, immediately that 6: U ...E

-00 co co co

is a homeomorphism from the open ne ighbourhood U of x E X ontoco -co

E •
00

This proves the assertion and hence the theorem.

By Theorem 6.2.5 we can create lots of examples of
manifolds mOdelled on~.

Example 6.2.6 From the smooth CES's mentioned in Example 6.1.7
we get the following manifolds modelled on ~:

The infinite dimensional
sphere • •• • •• •• • Er

projective space • • • • • • WO

Stiefel manifold • •• ••• Vk (00)

Grassmann manifold ••• • •• Gk(oo)

All these examples certainly suggest than one should study
00the properties of infinite dimensional manifolds modelled on R •
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For a large class of Fr~chet spaces (perhaps all) it is

known, Henderson [43], that the topological type of a manifold
mOdelled on such a Frechet ~ace is completely determined by
the homotopy type. Hence it is natural to ask the following

Question Are two manifolds modelled on ~ homeomorphic if tl~y
have the same homotopy type?

Since S~ and·Vk(oo) are contractible we could in partl~~lar
ask the

Question Are ~ and Vk(oo) homeomorphic to rr:'?

Up to now it seems that topologists studying 1nf'inite
dimensional manifolds have only dealt with metrizable spaces.
In view of the following remark the problem posed above will
break this tradition.

Remark 6.2.7 A topological manifold modelled on ~ can never
be metrizable since ~ itself is not metrizable.

The manifolds X modelled on ~ obtained from Theorem 6.2.5
-00

are therefore never metrizable but nearly always paracompact
by Theorem 6.2.2. Recall, that a regular Linde18r space is
paracompact and that these conditions actually are equivalent
for locally compact, connected spaces.

Finally, 1n this section we make the

Remark 6.2.8 In a recent paper Henderson and West [44] have
obtained a theorem like our Theorem 6.2.5. They work however
with metrizable topologies 1n the following sense:

Let Xl C X2 c ••• C Xn C ••• be a sequence of metric spaces
such that all inclusions are isometries. In our terminology
a metric expanding system. Let xmetric denote the directco
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limit of this sequence in the
lsometries. xmetrlc is then

00

category of metric spaces and
just the union u Xn with

n~l
the unique metric topology, such that all inclusions

X c xmetric are Isometries. Call xmetrlc the metric directn 00 00

limit of'the sequence. Let Xweak denote the usua I direct
00

limit of the sequence. The identIty map (as sets)

xweak ~ xmetric ·is clearly continuous.
00

When dealing with
manifolds it is usually a homoto~y equivalence.

If';f denotes the metrizable LCTVS of finitely non-zero
2

real sequences (Xn) n~l with its standard pre-Hilt,ert at ructur-e,

then the result of Henderson and West can be formulated as

follows:

Theorem 1 2 nIf Ai c)4 c ••• c M c... is a sequenoe of
metrizable manifolds (dim(Mn)=n) without boundary, each
bicollared in the next, then the manifolds may be metrized, so
that it is a metric expanding system, whose metric direct limit
is anJ~-manifold of the same homotopy type as the usual direct
limit.

As Henderson and West remark, it is not all choices of
metrics making the sequence a metric expanding system, which
eive the metric direct limit the structure of an'~-manifold.
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§3 Homotopy theory of closed expandlrm systems.

1'IOstof the material in this section is by now well-known.
The main results will be Theore~s 6.3.2 and 6.3.3. It'rom these
theorems we get easily Corollary 6.3.4, which will be used
frequently in the following chapters. Proofs of 'I'heorems 6.3.2

and 6.3.3 and of many other nice results in homotopy theory can
be found in the paper of T. tom D1.eck [13] and in T. Br5cker

•
and T. tom Dieck [9]. Since these sources were not available
when we wrote our paper [40] we included in t.ha.t paper alme.at

all the details in the proofs of Theorems 6.3.2 and 6.3.3. For
convenience of the reader we repeat here the exposition given
in [40]. This exposition owes much to T. tom Diec.k: anYfUJ.y ..

Definition C,3,1 Let (X,f,no) and (X, "no) be expanding
systems of topological spaces. A map between expanding B~8tems
h: (X,f,no) ~ (Y,g,no) Is a system of continuous mapa

X ~ Y making the following diagram commutativen n

. ... ....Xn fn,U+l
_...;.;;..o .........-=-~) X l~n+ • ••

Y l~n+ •••

~~en composition of maps is defined in the obvious way,
it is clear that we get a category consisting of ES's starting
at n=no as objects and the maps in Definition 6.3.1 as

morphisms.
Call a map h: (X,,t,no)~ (Y,g,no) for a homotopy eguivalence

between ESts, if each hn is a homotopy equivalence in the usual
sense.
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continuous limit map
h X -+ Y-cc -00 -OQ

Theorem 6.3.2 Let (X,!,no) and (1,g,no) be CES's of topological
spaces, such that all the embeddings f 1 and gn 1 aren,n+ ,n+
cof1brations.

Then a homotopy e~uivalence between ES's h:(!,!,no) ~
(Y,g,no) induces ,an or-ddnar-yhoao topy equivalence h 00: Koo ~ 1..."Qs

Theorem 6.3.3 Let (!,!,no) be a CES of topological spaces,
such that all the embeddings fn,n+1 arecot'ibrations.
also that all the spaces Xn have the homotopy type or 8

CW-complex.

Suppose

Then X has the homotopy type of a OW-complex.
-00

Before entering into the proofs of these theorems we
mention the following important

Corollary 6.3.4 Let (!,!,no) be a CES of ANR's.
has the homotopy type of an ANR.

Then ~

Notice that homotopy type is the most we can hope for by
Remark 6.2.7.

Corollary 6.3.4 is an easy consequence of Theorem 5.2.2,
Theorem 6.3.3 and the following lemma, which can be found in
Palais ([74J, Theorem 7).

Lemma 6.3.5 Let A and X be ANR's and let f: A -+X be a closed
embedding. Then f is a cofibrat1on.

We begin now the proofs of Theorems 6.3.2 and 6.3.3. For
that purpose we introduce the iterated mapping cYlinde~
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We denote this with
z(x,r,no) and define it as the quotient space of the disjoint
union V (Xn x (n,n+l]) modulo the relat10ns

n>no

(xn,n+l) ",(fn,n+l (xn) ,n+l) for all xn e Xn and all n > no'

Z(!,f,no) :

.-- --- - - - - - - - - - - - - - - ---__,---I

r3~

The projections Xn x [n,n+l]'" Xn induce a canonical
projection

p{!,!.,no) : Z(!,!,no) ... !oo

Taking into account the following lemma, Theorems 6.3.2
and 6.3.3 will be immediate consequences of the corresponding
theorems in the appendix in Milnor (66].
nearly all details here.

We give however

Lemma 6,3,6 Let (x,t,no) be a CES of topological spaces, such
that all the maps fn,n+l are cofibrations.

Then the canonical projection p(X,f,no) is a homotopy
equivalence.

Proof As usual we can assume that the CES has the form
Xc., •
-00

•,. c

x =-00

with

Z(!,!,no) can then be 1dentified with a subspac6
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of X ~ [no,~[,and the canonical projection p(X,!,no) is just
the composite map

[n ,o:;(o
proj. ) X

-00

Since the proJection trivially is a homotopy equivalence
it will be sufficient to prove that Z(X,f,n ) is a strong

- - 0

deformation retract of Xoo ~ [no'oo[. To prove this we use a
theorem of Puppe ([80], Satz 4, p.87) to construct a strong
deformation retraction

for all n ~ no.

As observed by Puppe, the existence ot: such a strong
deformation retraction follows just from the fact that the
inclusion Xn -+ Xn+l is a cofibration. Using these strong
deformation retractions it is easy to construct a strong
deformation retraction of XooK [ no'OD[ onto Z(!,f,no).
See the picture of Z(!,f,no) above.

This proves the lemma.

Now let (~,!,no) and (X,g,no) be ES's of topological
spaces and let h = 1 hJ ~n and ~ = {:pJ n;;.n be systems of

o 0

continuous maps hn: Xn ....Yn and homotopies 'n: Xn )([ 0,1 ]-+Yn+l,

such that (q>n)o= gn,n+1 0 hn and (q>n)l= hn+1·-~h,n+1 tor all
n~ n • 'o The following diagram is thus homotopy commutative with
the homotopies ~n as the homotopies in the squares

Xn fn n+1 ~ X 1 -+....... •____ ct __

n+ • ••

hn 1
~

1 hn+l

... ... Yn Y ....
gn,n+l n+l • • •
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To the systems of maps hand! we associate a map

for all x E X and all n ~ no'n n·
With these assumptions we have

Lemma 6.3.7 If'all the maps hn are homotopy equivalencesj then
the map Zen,!) is a homotopy equivalence.
Proof The proof' is analogous to the proof of Hiltsatz 7~ p~314
in [79]. Puppe proves here the corresponding fact for the
ordinary mapping cylinder.

Proof of Theorem 6.3.2 Define the homotopy ~n as the constant
homotopy (~n)t = gn,n+l 0 hn = hn+l 0 fn,n+l for all te [0,1].

Then we have the commutative diagram

ZC~'l,no)
p(!,l,no)

X-00

Z(!l,q> ) ! 1 !loo
Z(!,g,no) Y

p(!,!{,no)
-00

Lemma 6.3.6 an Lemma 6.3.7 f'inishes now the proof'.

Proof of Theorem 6.3.3 It is easy to construct a commutative
dIagram

------------ >-- -~

1 1
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where each Kn is a CW-complex, each in,n+l is an inclusion
of Kn as a subcomplex of K 1 and each h is a homotopyn+ n

equivalence.
Let cp = 1<PnIn)n be the system of homotopies in the squares.

- 0

Consider then the diagram

p(K,i,n )
- - 0

All the maps in this diagram are homotopy equivalences
by Lemma 6.3.6 and Lemma 6.3.7. Therefore X 1s hon.o topy-00

equivalent to K , which by construction is a CW-complex.
--co

Hence
Theorem 6.3.3 is proved.
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Chapter 7
Limit spaces of k-mersions and embeddings.

In this chapter we shall study the spaces of k-mersions
Cr(M,X;k) and the space or embeddings Embr(M,X) from a compact
smooth manifold M into a metrizable smooth manifold X modelled
on a COO-smooth Banach space. Here 2 < r < 00 and 0 < k ,

First we consider the inclusion maps

In §2 we study the connectivity properties of these maps.
For X rinite dimensional we obtain results, which generalize
the classical theorems or Whitney on existence and isotopy of
immersions and embeddings (Theorem 7.2.1). For X infinite
dimensional we show that these maps are homotopy equivalences
(Theorem 7.2.2). To prove such theorems we need a parametrized
version of Thom's transversality theorem, which we state in §1.

Next let (A,f,no) be a smooth CES or finite dimensional
manirolds of increasing dimension and consider the following
diagram of naturally induced maps

The main purpose of this chapter is to show that all the
maps in this diagram are homotopy equivalences. For e this is
proved in a slightly mor-e general setting in §3. The other
maps are treated in §4.

Finally, in §5, we apply the results we have obtained on
·spaces of embeddings to construct models or classifying spaces

------------------------------_.-
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for diffeomorphism groups.

The results on spaces of k-mersions will be needed in
Chapter 8.

§1 A transversality theorem.
In §2 we shall need a corollary to a parametrized version

of Thorn's transversal1ty theor~m. Before stating the theorem
we will have to explain some terminolo&7.

Let Q,M and X be finite dimensional smooth manifolds.
JS(M,X) the space of s-jets of maps from M into

f E Cr (Q )( M,X) and 0 < s .; r we define the partial
f after M as the map

Denote by
x. For
s-jet of

which maps (q,x) E Q " M into the usual s-jet of fq : M'" X

at X E M, i.e. j:(f)(q,x) = jS(fq)(X).

In the following when we talk about approximations of maps
in Cr(Q )(M,X) we will always mean approximations w.r.t. a
metric defining the er-topology on er(Q x M,X).

The transversality theorem we need reads now as follows

Theorem 7.1.1 Let Q, M and X be finite dimensional smooth
manifolds, and let A C Q and K C M be closed subsets. Let also
W C JS(M,X) be a smooth Bubmanifold with closed image and suppose
that r > max {di~(Q ~ M) - cOdim(W),s}.

Then any map f E Cr(Q x M,X) such that j:(f) is
transversal to W on A x K can be arbitrarily close approximated
with a map g e er{Q x M,X) such that glA K K = flA x K and
such that j:(g) is transversal to W on all of Q x M.

If we put Q equal to a point in this theorem we get of
course the classical Thom transversality theorem. The proof
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of the version with a parameter space Q stated here can be
modelled on the proof of the special case given in e.g.
Morlet [67]. The theorem is also a consequence of the
general t r-ansver-sa H ty theorem of Abraham (see e.g. Abraham
and Robbin [1]). As usual the restriction on the degree of
differentiability r is caused by the application of Sard's
theorem.

The theorem hos this useful

Corollary 7.1.2 Let Qi ,Mm and Xn be finite dimensional
smooth manifolds and let A c Q and K c M be closed subsets.
ouppose also that 2 IE; r ~ 00, 0 __ k < min! m,n} and
o ~ i ~ n - 2k + (m-k) (n-jc) •

Then any map f E Cr(Q x M,X) such that fq has rank
;;.k on K for q E A can be arbitrarily close approximated
with a map g E Cr(Q x M,X) such that glA x K = flA x K and
such that g has rank ;;.k on M for all Cl E Q.

Cl .
Proof Let W(p) c Jl(M,X) be the subset of I-jets of

rank p. W(p) is then a submanifold with closed image or
1cOdimension c(p) = (m-p)(n-p) in J (M,X). Observe now that

a map gE Cr(Q x M,X) will satisfy the condition rank
(gq) ~ k on 14 for all q E Q if and only if j!(g) avoids
W = w(O) U ••• U W(k-l). If c(p) - (i+n) ;;.1 for all
o E; p ~ k-l then it is clear that j;(g) will avoid W if
and only if j;(g) is transversal to W(p) for 0' p' k - 1.

Since k' min {m,n J it follows from the formula c(p) = (m-p)(n-p)
that c(p) ~ c(k-l) for all 0' p 'k-l and therefore that

c(p) - (i+m) ~ c(k-l) - (i+m) = (m-k+l)(n-k+l) -(i+m).
Therefore c(p) - (l+m) ) 1 for all 0 'p' k - 1 if and
only if i ~ n - 2k + (m-k) (n-k)• Remark also that r ~ 2 is
the degree of differentiability we need in this case in order
to apply Theorem 7.1.1 since (i+m) - c(p) '-1 for
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o ~ p ~ k - 1.

With these observations at our disposal the corollary is
an immediate consequence of Theorem 7.1.1.

§2 Homotopy properties of the inclusion maps of Cr(M,X:k)
and Ernbr(M.X) into Cr(M,X).

The purpose of this section is to prove theorems about
theconnectivities of the inclusion maps mentioned in the
headline. Recall Lefinition 5.2.3 for the notion of q-equiva1enc~

For any integers n,m and k we put q(n,m,k) =
= n - 2k + (m-k)(n-k).

Theorem 7.2.1 Let Mm and Xn be finite dimensional smooth
manifolds with M' compact, and let k and r be integers
satisfying

1) If
o < k " min 1m,n} and 2 " r , ee s

r .o < q(n,m,k) then C (M,X;k) + ~ and the
inclusion map

is a q(n,m,k)-eguiva1ence.
2) If 0 ~ n - 2m - 1 then Embr(M,X) + 1 and the

inclusion map

is an (n-2m-l)-equivalence.

Theorem 7.2.2 Let Mm be a compact smooth manifold and let
X be a metrizable smooth manifold modelled on an infinite
dimensional C»-smooth Banach space, E. Let also k and r
be integers satisfying 0' k ~ ID and 2 ~ r' 00 •

Then Cr(M,X;k) and Ernbr(M,X) are both non-empty
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and the following inclusion maps are homotopy equivalences:

1) Cr(M,Xjk) ~ Cr(M,X)
2) Embr (M,X) -+ c" (M,X) •

A path in Cr(M,X) is also called a regular homotopy.
If we put k = m in Theorem 7.2.1 1) it follows therefore
that any differentiable map is regular homotopic to an
immersion when n - 2m ~ 0, and that any two immersions which

•
are regular homotopic are regular homotopic through
immersions when n - 2m - 1.;;.O. Similar results hold by
Theorem 7.2.1. 2) for embeddings when n - 2m - 1;;. 0 and
n - 2m - 2 ;;t 0 respectively. These· are of course the classical
resu.ltsof Whitney • Theorem 7.2.1 can therefore be seen as a
generalization of Whitney's results.

Remark 7.2.3 For r = ~ the result in Theorem 7.2.1. 2) follows
also from a stronger theorem of Dax U2], which takes into
account connectedness properties of M and X in the spirit
of Haefliger [38 J.
Proof of Theorem 7.2.1 Let Qi be a compact smooth manifold
with the compact submanifold Ac Qi and the base point
go E A c Qi.

1) It is well-known (and follows in tact immediately
from Corollary 7.1.2) that Cr(M,Xjk) ~ t when q(n,m,k) ~ o.

Suppose now that 0 ~ i ~ q(n,m,k) and let·
t: E Cr(M,X;k) be an arbitrary k-mersion.o
homotopy c13ss of a map

Consider then the

with the associated map
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We can assume w.l.o.g. that t is of class Cr.
Since f(A) c Cr(M,X;k) ~q = f(q) has of course rank ~ k

on M for all q E A. By Corollary 7.1.2 ~ can then be
approximated arbitrarily close in the rC -topology with a map

" Qi x Mm -+ Xn such that glA x M t lA )( Ir1 and such thatg : =
~q has rank ~k M for all i Using a tubularon q E Q •

neighbourhood for X in a Banach space E we can therefore
also homotope t "into a map "g as above by connecting
them linearly in the tubular neighbourhood and then projecting
onto X. This homotopy will now induce a homotopy of f

with a map g: Qi -+ Cr(M,X;k) which is constant equal to
flA over A. f represents therefore relatively the zero
class.

Consider now the induced map

~ (Cr(M,Xjk) ,fo) -+ '?ti(Cr(M,X) ,fo)·

If we put Qi = si and A = qo in the analysis above,
we conclude that this map is epi
we put Qi+l = Di+l and A = Si

for 0 ~ i ~q(n,m,k). If
it follows from the analogous

analysis with dim Q = i + 1 that this map is mono for
i + 1 ~q(n,m,k) • This is, however, exactly what we had to
prove.

2) It is again well-known that Embr(M,X). ~ when
n - 2m - 1;;.o.

Suppose now that 0 ~ i ~ n - 2m - 1 and let
fo E Embr(M,X) be an arbitary embedding. Consider then the
homo t.opy class of a map

f: (Qi,A,qo) -+(Cr(M,X), Embr(M,X),fo)
with the associated map

#0 i m n
;[ : Q x M -+X,

which we again w.l.o.g. can assume to be of class Cr.
Since 0 ~ i ~ n - 2m - 1 ~ n - 2m we can as in the proof

----------- --------------------- -------
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of 1) homotope f into a map g: Qi ~ Immr(M,X) fixing
everything on A. We observe now that Embr(M,X) in this
case is equal to the space of 1-1 immersions, since M is
compact.
q E Qi

It is easy to see that g(q) = gq is 1-1 for all
if and only if the map defined by the diagram

i AQ x 1M x 1.. i i m m
Q x Mm )( Mm '.'I.~ Q )( Q X M )( Ii --,

-----. ----_._---- .._.- .._..._-_.-..-_._-....._.._--------_j
lQ )(Twist x 1~ __~~ ~_M~~ Qi x Mm x·Qi x Mm

This last
condit ion is a transversali ty condition when i + 2m ~ n - 1
or equivalently i ~ n - 2m - 1. A transversality argument
will therefore allow an arbitrary close approximation of Ag

with a map ~ such that ~ I A x M = g I A x M and such that
hq is 1-1 for all q E Qi provided of course 0 ~ i ~ n - 2m - 1.
Proceeding as in the proof of 1) we can therefore homotope g

into a map h: Qi ~ Embr(M,X) such that the homotopy :is

constant equal to g I A = f I A on A.
therefore relatively the zero class.

The proof of 2) is now finished in analogy with the proof

f represents

of 1).

Proof of Theorem 7.2.2 A chart on X provides a diffeomorphism

E. Let
from an open set U C X into the model Banach space

E = F Ea Rn be a splitting of E into a Banach space
F and a copy of euclldian n-space Rn with n;' 2m + 1.
Choose now an arb1trary embedding f2 : Mm ~ Rn and an
arb1trary differentiable map f1 : Jf1 -+ F. Then
t =0-1 0 (f1)( f2) : M-+ X is an embedding. Therefore
Embr (M,X) ~, and hence also Cr(M,X;k) i ,.

Let now again Qi be a compact smooth manifold with the
____ -'compact_submanifold A C Qi and the base point qn E A C Qi.
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1) Let fo E Cr(M,X;k) be an arbitrary k-mersion and
consider for any i) 0 the homotopy class of a map

with the associated map
b... i m
I • Q ,,)d -+ X.

We can again assume w.l.o.g. that t is of class Cr.
We want to change t bY a homotopy constant on A x )d

to obtain a map which is a k-mersion for each fixed q E Q.
We do that in a sequence of steps, in each step only making
changes on a piece of the domain mapped into a chart on the
target and keeping fixed what has been obtained after the
previous steps. To make this precise we choose open coverings
of Q by charts, say {vi1 and {Ui} with i = 1, •••,.l, such
that Vi C Vi cUi. Similarly, we choose for each i = 1,•••,1
open coverings of M by charts, say {V~ land lU~l with

i:r i
j = 1, ••• , ni for fixed i, such that VjCVjCUj• r'urthermore

"" iall these coverings shall be chosen, such that f(Ui x Uj)

is contained in a chart on X.
1Consider new Ul ~ Ul•

"I 1a chart on X t Ul x Ul
a map

Since t maps this subset into
corresponds by a diffeomorphism to

-+
nE = FeR,

where we choose n sufficiently large in the splitting
E = Fin Rn f E'<P o. By the technique behind Corollary 7.1.2
we c~n alter the component into Rn of this map and thereby
construct a homotopy (with support in Ul ~ Ui) from f to
a map

such that the homotopy is constant on A J( 111 and such that
(~l) 1 -rl q has rank )k on Vl for each q EAu VI.
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Consider then ~i on
as before we can change ~i
a map

By the same method
1x U2 and thereby obtain

such that~; 1s homotopic to ~ithrough a homotopy constant

- l'on A x M U VI x Vl. and such that (~1) has rank ~k on2 q

- ::rvi U V2 f'oreach q EAU VI.

We construct now by induction a sequence or maps

such that the map ~i ror each i = 1, ••• ,1 is homotopicni
to ~ through a homotopy constant on A le M and such that

(r!i)q
ni -ihas rank ~k on )4 = u Vj ror each q E A UV1 U • • •j=1

Since
1 _

Q = U Vi
i=1

the map

will induce a map g: Q ~ Cr(M,Xjk) homotopic to f' by a
homotopy constant on A. This shows that f relatively
represents the zero class.

Proceeding now as in the proof of Theorem 7.2.1. 1) we
conclude that the induced map

is a bijection for all i ~ o.
arbitrarily the map

Since ro was chosen
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is therefore a weak homotopy equivalence, and hence a homotopy
equivalence, since the spaces involved are ANR's. This
completes the proof of .1).

2) The proof of 2) is carried through in a manner similar
to that of Theorem 7.2.1. 2) by reducing transversality
questions to finite dimensional known ones as above.

§3 Induqed limit spaces of continuous maps

With reasonable conditions on the spaces involved we show
in this section that a continuous mapping space functor CO(M,-)
up to homotopy type commutes with direct limits.

Let (!,f,no) be an ES of topological spaces, and let M
be an arbitrary topological space. We get then a system
starting at n = no

.......CO(M,Xn)
(f )n,n+l .) CO(M X ), n+l -+ ••• ,

where (fn,n+l). is defined by composition of maps.

This system is called an induced system and is denoted
by (Co(M'!)'f.,no~.

The maps (f 1). are clearly continuous embeddings.l1,n+

Hence (Co(M,!),f., no) is an ES, and if (!,!,no) is aCES
also aCES.

Utilizing the universal property of a direct limit we get
an induced continuous map e : CO(M,X) -+ CO(M,X ) as shown in

- 00 -co

the following diagram,

----------- ._---_._ - .
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··•
1

CO(M,Xn) ------

~~

(fn,n+~)* ~CO(M,X)~--------------~

A+l.~° .C (l.i ,xn+l)----~1 (fn+l,oo).
·••

The purpose of this section is t'bprove

Theorem 7.3.1 Let M be a compact metrizable space and let
(:<,f,n) be a CES of ANR's.
- - 0

Then e Is a homotopy equivalence.

Since all spaces involved have the homotopy type of ANR's
(l'heorem5.2.1 and Corollary 6.3.4), Theorem 7.3.1 will follow
immediately from the theorem of J.H.C.Whitehead (Theorem 5.2.4)
and the following

Lemma 1.3.2 Let M be a compact topological space and let
(!,f,no) be a CES of Tl-spaces.

Then e is a weak homotopy equivalence.
Proof Let Q be an arbitrary compact space. It will be
sufficient to prove the assertions A and B below. A will
prove that the induced map e. in homotopy is surjective in all
dimensions. B will prove that e. is injective In all dimensions.

~ For each continuous map h: Q ~ CO(M,~) there exists
an n and a continuous map h : Q ~ CO(M,X ), such thatn n

B ':1' h :Q -+ CO(M,X ) is a continuous map, such that- n n
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h = (fn ).0 h is homotopic to a constant map in CO(M,~), then
,0<. n ~.

there exists a k;' 0, 'such that hn+k = (fn,n+k).o hn
is homotopic to a constant map in CO(M,X k).n+

First we prove A. Let Ev : CO(M,~) x M ~ ~ denote the
evaluation map and define ~: Q x M ~ ~ by ~ = Ev ° Ch x 1M).
Then ~ is continudus if and only if h is continuous. Since
Q x M is compact ~ can be factored continuously through Xn
for some n by Lemma 6.1.3. This factorization provides us in
the obvious way with the required map hn: Q ~ CO(M,Xn).

Next we prove B. From the hypothesis in B it follows by
arguments similar to those under A that there exists a k) 0, a
map and a homotopy H : Q x (0,1]~ CO(M,X k)'n+

such that (fn+k,oo). (H(q,O» = h(q) and (fn+k,e<).(H(q,l» =

(fn+k,~).(C). for all q E Q. But then it follows that

h - (t ) ° h is homotopic to the constant mapn+k - n,n+k. n

Q ~ CO(M,X k) with value c under the homotopy H.n+
This proves Lemma 7.3.2.

Remark 7.3.3 It is easy to prove that e is a bijection. It
seems unlikely that e is actually a homeomorphism.
has however no proper counter-example.

The author
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~4 Induced limit spaces of k-mersions and embeddings

In this section we show that all naturally induced limit
spaces of k-mersions and embeddings have the same homotopy type
·as an associated space of continuous maps.

Let },imbe a compact smooth manifold and let (X,!,no)
be a smooth CES. We get then for each 1 ~ r < ~ and each
o < k < m a system starting at n ;:no'

where (fn,n+1>. is defined by composition of maps.

This system is called an induced system and is denoted by
(Cr(M,X;k),f.,no)' From Theorem 5.3.1 it follows that

Notice that some of the lower spaces in an induced system
might be empty. If the dimension of the manifolds Xn is bounded
it can even happen that all the spaces are empty.

Likewise for 1 < r < ~ we get an induced CES.

starting at n = no.
This induced system is denoted by (Embr (:.;,X),1:. ,no)' Again

it can happen that some, maybe al'l, the spaces in this system
are empty.

The following theorem is the main result in this section

Theorem 7,4.1 Let Mm be a compact smooth manifold and let
(X,t,no) be a smooth CES of finite dimensional manifolds of
increasing dimension. Suppose also that 0 < k " m and 2 < r " 00 •

--------_._._ .._..--_ ...__ .__ ._-
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Then the following limits of inclusion maps are homotopy
equivalence s:

l}

2)

Proof Since the homotopy functor commutes with the direct
limit functor it follows immediately from Theorem 7.2.1 that
both the maps are weak homotopy equivalences. From Corollary
6.3.4 we know that all the spaces involved have the homotopy
type of ANR's. But then the maps are homotopy equivalences by
the theorem of J.H.C.~bitehead.

This finishes the proof.

The next theorem connects the limit spaces in Theorem 7.4.1
with a space of continuous maps.

Theorem 7.4.2 Let M be a compact smooth manifold and let
(K,f,no) be a .smooth CES of finite dimensional manifolds.

Then the following maps are homotopy equivalences:
I} The limit of natural maps

Cr(M,X}~ ~ CO(M,X)~

for each 1 ~ r ~ ~.
2} The map 8 given by the universal property of direct

limits

Proof Since the expanding systems involved are closed
expanding systems of ANN's 1) follows immediately from Theorem
5.3.2, Theorem 6.3.2 and Lemma 6.3.5.

2) is just a special case of Theorem 7.3.1.
Hence we have proved Theorem 7.4.2.



-99-

To sum up briefly:
For each compact smooth manifold Mm, eech smooth CES

(K,f,no) of finite dimensional manifolds of increasing dimension,
each 0 "k .;;m and each 2 ~ r ~ 00 we have shown that all the
maps in the following diagram are homotopy equivalences

Corollary 7.4.3 mLet M be a compact smooth manifold and let
(!,f,no) be a smooth CES of finite dimensional manifolds of
increasing dimension. Let also 0 ~ k < m and 2 .;;r .;;00.

Then all the limit spaces Cr(M,X;k)~ and Embr(M,! )~
CO(M,X ).

-,,0
have the same homotopy type as

§5 Classifying spaces for diffeomorphism groups

In this section we shall apply Theorem 7.2.2 and Corollary
7.4.3 to construct models for the classifying space of a
diffeomorphism group.

Let M be a compact smooth manifold with boundary and let X
be a metrizable smooth manifold without boundary modelled on a
C~-smooth Banach space. Let also 2 ~ r .;;00. Denote by

Diffr(M) the space of diffeomorphisms of M equipped with the
Cr-topolOgy.

It is well-known that Diffr(M) is a topological group under
composition of maps. It is also well-known that composition of
maps
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r) rdefines a principal action of Diff (M on Emb (M,X), i.e.

Diffr(M) -+ Embr(M,X)
1

Embr(M,X)/ Diffr(M)

is a principal Diffr(M)-bundle.

See e sg, PalaU; [72 J or Lima [62 J and in particular
Cerf ([10] or the appendix in [11]) and Novikov [71] for the
method of proof of this statement. For a general survey of
mapping space fibrations see Eells [23J.

If X is infinite dimensional we know by Theorem 7.2.2

in connection with Theorem 5.3.2 that Embr(M,X) is homotopy
equivalent to CO(M,X). Hence Embr(M,X) is contractible if X
is contractible.

By the general theory for principal bundles we get therefore
the following result. Notation as above.

Theorem 7.5.1 Suppose that X is an infinite dimensional
contractible manifold. Then

Diffr(M) -+ Embr(M,X)

1 \
Embr(M,X)/ r

Diff (M)

is a universal principal Diffr(M)-bundle.

For X the separable Hilbert space Theorem 7.5.1 was known
to Eells [23]. I am indebted to Professor Eells for pOinting
out the application of my results on spaces of embeddlngs to the
construction of models for classifying spaces for diffeomorphism
groupa ,
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Now let (x,~,no) be a smooth CES of finite dimensional
manifolds of increasing dimension. Since the diagram

Embr(M,Xn)

1 (fn,n+ll •.

Embr(M,X 1)n+

(f ) 11 1n,n+1 ,.. 1
commutes, we get an induced action *)

x Diff'r(M) -+ Embr(M,X)
-00

One can again show that this action is principal, so that
we get a principal Di~~r(M)-bundle.

By Corollary 7.4.3 we know that Embr(M,X) is homotopy
-00

" 0 r"equivalent to C (M,X). Hence Emb (M,X) will be contractible,
'CxI - 00

if X ls contractible.
-00

With not~tion as above we get therefore

Theor·em 7.5.2 Suppose that (!,!,no) is a smooth CES of finite
dimensional manifolds of increasing dimension, such"that X

Co

ls contractible. Then

Dif'fr(M) - Embr(~lX)
'- CC"

1s a universal principle Diffr(M)-bundle.

Theorem 7.5.1 and Theorem 7.5.2 give us a lot of models for
the classifying space B(Diffr(N) of' Diffr(M). Classlf'ying
spaces for diffeomorphisDI groups are obviously interesting.
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Example 7.5.3 nTake M = S •

Let E .l> B be a smooth locally trivial fibration with fibre
sn. This fibration will then have Dlffoo (Sn) as structural group.
Hence p is up to smooth equivalence classified by a continuous
map

'f : B ....B(DiffOO (Sn).

Since O(n+l) C Diff~(Sn) there exists a fibration of
classifying spaces

BO(n+l)

'A smooth fibration with Sn as fibre is therefore a spherical
f'ibration (O(n+l) as structural group) ,ifand only if there
exists a lifting of f

~lBO(n+l)

B
f

This situation was studied by Novikov in (71] , where he
showed that there exist smooth fitrations with fibre Sn in
many dimensions n > 7 which are not equivalent to spherical
fibrations.

Recently Antonelli, Burghelea and Kahn [5] has shown that
there exists smooth fibrations with fibre Sn for any n ;;.5 which
are not equIvalent to spherical flbrations.
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Chapter 8

Homotopy direct limits.

This final chapter contains our version of the classification
theorem for k-mersioDs of a compact smooth manifold M into an
infinite dimensional smooth manifold X (Theorem 8.4.1). The

•method of proof is to take the corresponding theorem in finite
dimensions and then apply a limit argument. For such a limit
argument to work we need to have good filtrations of X through
finite dimensional submanifolds.

For many infinite dimensional smooth manifolds X it is
possible to find an expanding system Xl C X2 c ••• c Xn c •••

of finite dimensional smooth submanifolds of X such that the
natural map x -+ X

-00
is a homotopy equivalence. When such a

property holds we say that X is a smooth homotopy direct
limit of the expanding system Xl C X2 c ••• c Xn c ••••

MUkherjea showed in ([69] or (70J) that every smooth separable
Fredholm manifold with a COO-smooth model admits such filtrations.
We recall this in Example 8.1.6. The filtrations of a Fredholm
manifold satisfy also various other properties.

Based on the properties of the filtrations of a Fredholm
manifold we define a class of infinite dimensional manifolds
(Definition 8.1.7), which we call pseudo Fredholm manifolds.
The relation between these manifolds and the Fredholm manifolds
is not clear. Since pseudo Fredholm manifolds are just what we
need, Definition 8.1.7 seems therefore justified.

After having defined (smooth) homotopy direct limits
properly in §l, we show in §2 that the mapping space functors
CO(M,·), Cr(M,·), Cr(M,·ik) and Embr(M,·) 'commute' with such
limits. In §3 we show that the bundle map functor Hom (TM, ·;k.)
'commutes' with the special smooth homotopy direct limits
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defining a pseudo Fredholm manifold.
'w\'iththe results in §2 and §3 at our disposal it is easy to

prove Theorem 8.4.1, which classiries the k-mersions from a compact
smooth manifold into a smooth pseudo Fredholm manifold.

§1 Definitions ana examples.

First we define the notion homotopy direct limit. The
definition is split into two cases

Definition 8.1.1 (continuous case)
topological spaces, let X be a topological space and let
(g,no) = {gnln ~ n be a system of continuous maps gn: Xn ~ X.

o
Then X is called a homotopy direct limit of (!,!,no) w.r.t.

(tr,no)' if
1) The following diagram commutes

•
•

fn,n+l

•
•
•

2) The induced continuouB map
••

is a homotopy equivalence •

._----------- -------_._--_._-- _.-----'--'



-105-

Definition 8.1.1 (smooth case)
a smooth manifold and (g,no) =

If (!,!,no) is a smooth ES, X is
(gn1n ~ n is a system of smooth

o
maps gn: Xn ~ X, then we call X a smooth homotopy direct limit
of (X,f,no) w.r.t. (g,no)' provided the conditions 1) and
2) above are still satisfied.

In the following we will abbreviate homotopy direct limit
to HDL. Notice that our definition of an HDL is slightly more
general than the definition in Milnor ([66], appendix).

We proceed now to give some examples of HDL's.

Example 8.1.2 Let X be a topological space with the homotopy
type of a CW-complex K, and let g:K ~ X be a homotopy equivalence.

Let Kn denote the n-skeleton of K and let fn,n+l K .... Kn n+l
be the obvious inclusion. Let also gn : Kn ....X denote the
restriction of g to Kn.

Then X is an HDL of the CES (K,!,O) w.r.t. the system of
continuous maps (g,O), since of course g = g.

00

A theorem of Palais creates a lot of non-trivial examples as
folloV1S:

EXample 8.1.3 Let. E be a LCTVS, and El C E2 c ••• C En C •••

be an increasing sequence of finite dimensional linear subspaces
of E whose union U En is dense in E.n;;'l

If X is.a subset of E put Xn = X n En. Let also

tn,n+l : Xn ....Xn+l and gn: Xn ....X be the obvious inclusions.

Assume now that X is an open subset of E. Then a
theorem of Palais ( [74], corollary to Theorem 17) can be restated
·as follows:
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.If E is metrizable or. more generally. if X is paracompact,
then X 1s an HDL of the CES (!,-!.L~Jw,r.t. the system of
~ontinuous maps (£J~'

For E a Banach space we get, of course, smooth HDL.

Next we produce a few concrete smooth HDL's •

Exan:ple 8,1,4 •This example uses the notation in Example 6.1.7.
Let E denote the separable Hilbert space and let

{eili~l be an orthonormal basis for E.

As in Example 6.1.7 we have the CES
of Euc11d1an subspaces of E.

Now let SeE), peE), Vk(E) and Gk(E) denote respectively

1 2 nR eRe ••• eRe •••

the unit sphere, the projective space, the Stiefel manifold of

orthonormal k-frames and t re Grassmann manifold of k-planes in E.

All these spaces have natural topologies: Vk(E) can be identified
with ISO(Rk,E), the space of linear isometries of Rk into E
equipped with the norm topology; Gk(E) can be identified with a
space of projection operators on E with the norm topology.

Spheres SCE) is a smooth HDL of (S,f,l) w.r.t. the system (g,l)
of natural embeddings g • Sn ....S(E).n •

This is trivial, since both S~ and SeE) are contractible.
For the contractibility of SeE) see e .g.Hu ( [49], Theorem
15.2, p.Gl).

Projective spaces P(E) is a smooth HDL of (BE,f,l) w.r.t. the
s'yf:>tem(g,l) of natural embeddings gn:RPn ....P(E).

This can be seen as follows: Taking limits we get a fibre
map
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1

Z2 .... Z2

1 1
sro .... S(E)

t 4,
. RJ10 peE)

Using the 5-lemma on the induced map between homotopy
sequences we conclude easily that ~ ....peE) is a weak homotopy

•equivalence, and therefore a homotopy equivalence by the theorem
of J .H.C.'Nhitehead, since both spaces have at least the homotopy
type of ANR's.

Stiefel manifolds Vk(E) is a smooth HDL of (Vk,!,k) w.r.t. the
system (g,k) of natural embeddings gn: Vk(Rn) ....Vk(E).

This can be proved e.g. as follows: Let Mono(Rk,Rn) and
k k .MonoCn ,E) denote the space of monomorphisms of R into respectively

Rn and E equipped with the norm topology. Using the sequence
of finite dimensional subspaces L(Rk,Rk) c •••c L(Rk,Rn) c •••
in the Banach space L(Rk,E) it follows immediately from the
theorem of Palais (Example 8.1.2) that the natural map

Is a homotopy equivalence. By the standard orthogonalizatlon
procedure it is clear that Mono(Rk,Rn) (Mono(Rk,E» has Vk(Rn)
(Vk(E» as deformation retract. Recall, that Vk(Rn) (Vk(E»
can be identified with the space of linear isometries
IEO(Rk,Rn) (Iso(Rk,E». Using Theorem 6.3.2 it follows then
easily that Vk(~) ....Vk(E) is a homotopy equivalence.

Grassmann manifolds Gk(E) is a smooth HDL of (~k,!,k) w.r.t.
the system (g,k) of natural embeddings gn: Gk(Rn) -+ Gk(E).

This follows easily, since both Gk(~) and Gk(E) are
clasSifying spaces for Gl(k) and since the universal bundle over

--~----.--------..--'--'. --- .. ,.~- --
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Spaces or operators produce also many examples or HDL's.
We mention only the rollowing rundamental

Example 8.1.5 Let E be an inrlnite dimensional Banach space
with a flag, i.e. with a sequence or direct sum decompositions
E = E e En (n ~ 1r such that dim En = .n, E eEl andn n n+
En+l c En.

Let Glc(E) denote the space of invertible operators on E
of the form I + u, where I is the identity operator and u is

"-a compact operator.
The spaces Gl(n) = Gl(E) of invertible operators and then

natural inclusions Gl(n) c Gl(n+l) form a CES, denoted by
The limit space is denoted by Gl(oo) = su. •

00

Gl(n) C Glc(E).Observe that we have natural inclusions
The following theorem was proved by Palais [73] and ~varc (86]

for a wide class of Banach spaces and by Elworthy [30] and
Geba [34] in general:

~(E) is an HDL of (q£,!.,l)w.r.t. the natural inclusions

Glen) C Glc(§l, i.e. the natural map G1(oo) ~ Gic(E) is a homotopy
equivalence.

The following example will be the most important so far as
we are concerned.

Exampl~ 8Lhl See Eells ([24], §8) for a more detailed account
of the material in this example.

Let X be a separable smooth Fredholm manifold modelled on
a COO-smooth Banach space E with a Schauder basis.
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By a theorem of Elworthy ([30J or [31J) any infinite
dimensional separable smooth manifold X modelled on a COO-smooth
Banach space E, for which the structural group of the tangent
bundle can be reduced from Gl(E) to Glc(E), admits an integrable
reduction. An integrable reduction to Glc(E) is however by
uefinltion exactly a Fredholm structure.

Coupled with a theorem of Ku.iper [58J on the contractibility.
of Gl(E) for E a Hilbert s?ace, this theorem of Elworthy shows
e.g. that every smooth separable Hilbert manifold admits a
Fredholm structure.

·With X as above, a theorem of Mukherjea ([69] or (70J) can
be stated as follows. See also Eells and Elworthy [25j.

Theorem There exists a smooth CES (~,f,l), such that each Xn
is a compact submanifold of X of dimension nj say with inclusion
g : X ~ X, and each fn n n,n+l is an inclusion of Xn as a

submanifold of X 1.. n+
Furthermore, this system can be chosen, such that the

following properties are satisfied:
1) u

~l
Xn is dense in X.

2) If x eX then the union of tangent spacesn(x)
U T X is dense in the tangent space TxX of X at x E X.~n(x) x n

3) X is a smooth HDL of (!,f,l) w.r.t. the system of smooth
embeddings (g,l), i.e. the natural map x -+ X-- is a homotopy
equlvalence.

This finishes Example 8.1.6.

Based on Example 8.1.6 we make the
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Definition 8.1.7 Let X be an infinite dimensional separable
smooth manifold modelled on a COO-smooth Banach sIBce E with a

Schauder basis. We shall call X a smooth pseudo Fredholm
mani.fold if there exists a smooth CES X c X c ~X cn 1 ••_ •••o no+ n

of finite dimensional submanifolds of X of increasing dimension,
denoted by (x,no)' such that

1) u X Is dense in X.nn;;'no
2) If x E Xn(x)· then U T X· is dense in T X.~n(x) x n x
3) The natural map X~~ X Is a homotopy equivalence.

A·CES (K,no) with the properties in Definition 8.1.6 will
be called a finite dimensional presentation of X.

Let X be a separable smooth manIfold modelled on
ex>a C -smooth Banach space with a Schauder basis. We say that

OJ{ admits an almost Fredholm structure if the structural group
of the tangent bundle of X can be reduced from GL(E) to Gl (E).c
If a specific reduction has been chosen X is called an almost
Pre dholm ..!!ill.!lifold~

In the literature on G-structures the prefixes pseudo and
almost are used indiscriminately. The reader Is therefore
warned that the definition of a pseudo Fredholm manifold given
here Is different from that of an almost Fredholm manifold.

By the theorem of Elworthy quoted in Example 8.1.6 any
almost Fredholm structure is integrable, i.e. the underlying
almost structure of a Fredholm structure. Hence there Is no
special theory for almost Fredholm structures and there should
therefore not arise any confusion from our use of terminology.
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Problems
1) Does any smooth pseudo Fredholm manifold admit a

Fredholm structure?

In the corresponding theory with differentiability of
class er for 1 ~'r < ~ we have also the converse problem:

2) Is any Fredholm manifold of class er a pseudo Fredholm
manifold of class·er?

If the model for a paracompact manifold of class el belongs
to a certain collection of sequence spaces, e sg,L2p - spaces
for p a natural number, then Moulis [68] has shown that any
er_structure on the manifold has a compatible smooth structure.
In such cases 2) can therefore be answered in the affirmative.

§2 Induced homotopy direct limits.

In this section we show that the mapping space functors
eO(~:,.), er(M,.), er(M,';k) and Embr(M,.) 'commute' with
appropriate (smooth) HDL's.

First we treat the continuous case.
Let (~,!,no) be an ES of topological spaces and suppose that

the topological space X is an HDL of (X,f,no) w.r.t. the system
of continuous maps (g,no). Then we get .an induced diagram
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•
•
•

° ~ (gn).C (M,Xn)--------------~---

~.oo

(f) .~ CO(M,_X)--------~n,n+l • ~

•
•

In this diagram CO(lA,X)
. -00

system (Co(M,X),r~,no), fO- -... n, eo

is the limit space of the induced
is the inclusion of CO(M,X ) inton

the limit space and &* .. is the limit map for the induced system
of continuous maps (g.,no) = 1 (gn)*l~n •

°
We have now

Theorem 8.2.1 Let (!,f,no) be a CES of ANRts, and let M be
compact metrizable. Furthermore, let X be an ANR, which is

an HDL of (X,f,n ) w.r.t. the system of continuous maps (g,n ).- - ° 0

Then CO(M,X) is an HDL of the induced CES (Co(M,!),t.,no)
w.r.t. the induced system of continuous maps (g.,no).

Proof We have to show that

is a homotopy equivalence.
For that purpose let e: CO(M,!)oo-+ CO(M,XJ be the map

studied in Chapter 7, §3 and let (&O().: CO{M'!oo)--+Co(M,X) be
the map induced by the homotopy equivalence
clear that we get a commutative diagram

0" : X -+ X •
.1:1.00 -00

It is



-113-

It 'iseasy to prove that (Sa). is a homotopy equivalence.
Since we know that e is a homotopy equivalence by Theorem 7.3.1,
it follows immediately that g.~ is a homotopy equivalence.
Theorem 8.2.1 is proved.

Hence

Next we turn to the differentiable case.
Dealing with a smooth HLL we get, of course, a diagram

similar to the one preceedlng Theorem 8.2.1 ror each 0 < r < ~.
We have then

Theorem 8.2.2 Let (x,!,no) be a smooth CES, and let X be a
smooth manifold which is a smooth HDL or (!,f,no) w.r.t •.the
system (g,no) of smooth maps. Assume furthermore, that all the

00manifolds are metrizable and modelled on C -smooth Banach spaces.
Then for every compact smooth manifold M and all

o .;; r ".o,Cr(M,X) is an HDL of the induced CES (Cr(M,!),!_.,no)
w.r.t. the induced system of continuous maps (g.,no).

Proof Consider the following diagram

fr " .n+1,00'"

Cr(M,Xn+1) CO(M,X 1)n+
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We have labelled the induced maps and the maps into the
induced limit spaces with rand 0 respectively just to ','
distinguish between them.

The horizontal maps are the obvious inclusions. By the
theorem of'Palais (Theorem 5.3.2) they are homotopy equivalences.

Both the induced systems (Co(M,X),f~,no) and (Cr(M,X),~,no)
are CES's of ANR's, by Theorem 5.2.1 and Theorem 5.3.1 respectively.
Hence it follows f'rom Theorem 6.3.2 in eonnection with Lemma 6.3.5
that the limit map

is a homotopy equivalence.
Consider then f'inally this commutative diagram

The right vertical map is again just the obvious inclusion
map. It is a homotopy equivalence by the theorem of'Palaia.
The lef't vertical map is the limit map above which we have juat
proved to be a homotopy equivalence. . 0E. is a homotopy

00 '

equivalence by Theorem 8.2.1. Altogether it f'ollows then
i di t 1 th t r i' h tilmme a e y a S.oo s a omo opy equ va ence.
exactly what we should prove.

This is however

Finally, we state our result for the mapping space functors
Cr(M,·, k) and Embr(M,.).
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Theorem 8.2.3 Let (X,f,no) be a smooth CES of finite
dimensional manifolds of increasing dimension and let X be
a metrizable smooth manifold modelled on an infinite dimensional
00C -smooth Banach space. Suppose also that X is a smooth

HDL of (~,f,no) ••r.t. the system of smooth embeddings (g,no).
Finally, let Mm be an arbitrary compact smooth manifold and let
o ~ k < m and 2 " r " 00 •

•
Then Cr(M,Xjk) and Embr(M,X) are HDL's of the corresponding

induced CES's. (Cr(M,~jk), f.,no) and (Embr(M,X),!.,no) ••r.t.
the systems of continuous embeddings (g.,no).

Proof Consider the following commutative diagrams of natural
maps:

The vertical maps are homotopy equivalences by Theorem 7.2.2
and Theorem 7.4.1. The bottom horizontal map is a homotopy
equivalence by Theorem 8.2.2. Then ~ must be a homotopy
equivalence. This is exactly what we should prove.
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§3 Bundle maps into the tangent bundle of a pseudo Fredholm
manifold •.

The object of this section is to prove Theorem 8.3.1 stated
below. For the basic notation the reader is referred to Chapter 5,
§1. Pseudo Fredholm manifolds were defined in Definition 8.1.6.

Theorem 8.3.1 Let X be a smooth pseudo Fredholm manifold
and let (X,no) be a finite dimensional presentation of X. Let

malso M be a compact smooth manifold and let 0 < k < m and
2 < r < 00.

Then the naturally induced closed embeddings
Hom(TM,TXnik) ....Hom(TM,TXn+lik) form a CES with limit space
Hom(TM,TX;k)oo' and the naturally induced map

Hom(TM,TX;k)oo ---...:) Hom(TM,TXjk)

is a homotopy equivalence.

The proof of Theorem 8.3.1 will be given in a sequence of
Lemmas , The fibrations?t ,'7t' and ?til which will occur in most
of these lemmas are defined in Chapter 5, §1. We shall freely
use the following convention: ~~enever we 'underbar a symbol
a natural expanding sy st.em Is involved and whenever we put an 00

on a symbol a limit has been taken.

Lemma 8.3.2 Let E c ••• c E . c... be an increasingno n
sequence of finite dimensional linear sl.lbspacesin a Banach space
E, and suppose that En is dense in E. Let alsoF be a

finite dimensional vector space and let 0 < k < dim F.
Then the natural map
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is a homotopy equivalence.

Proof Since F is finite dimensional it is clear that

L(F,E ) c ••• C L(F,En) C •••no
.is an expanding system off1nite dimensional linear subspaces in

1)

the Banach spaceL(F,E), such that U L(F,E ) is dense in
nffl n

oL(F,E).
•

2) L(F,En;k) = L(F,Eik) n L(F,En)

3) L(F,Eik) is an open set in the Banach space L(F,E).

With these observations in mind the lemma is a direct
consequence of the corollary to Theorem 17 in Palais [74J (stated
here as Example 8.1.3).

Lemma 8.3.3 Let X be a smooth pseudo Fredholm manifold and
let (x,no) be a finite dimensional presentation of X.· Let also
F be a finite dimensional vector space and let 0 ~ k ~ dim F.

Then the natural map
L(F,T!ik)~ ~ L(F,TXik)

is a homotopy equivalence.

Proof Let x e Xn(x) and put En = TX for each n ~ n(x)x n

By assu~ption 2) in Definition 8.1.7 U En
n;m(x)

is then dense in E.
Tak1ng limits we get the following commutative diagram

L(F,Eik). J 00

L(F,T2f;k)oo

?f.' 1-00
X
--co

-+

L(F,Eik)
!L(F,TX;k)

1 7t

X~
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It is easy to prove that~' is a Serre fibration. The~

map between ribres and the base map are homotopy equlvalences
respectively by Lemma 8.3.2 and by assumption. Using the 5-lemma
on the induced map between the homotopy sequences or the two
ribrations it rollows now iffimediatelythat the map

L(F,TX;k)
- 00

L(F,TX;k)
•is a weak homotopy equivalence and thererore a homotopy

equivalence since the spaces involved have at"least the homotopy
type or ANR's.

This proves Lemma 8.3.3.

From now on our assumptions will be as stated in Theorem 8.3.1.
We shall consider the induced limit space

B(T){,~;k)GO = lJm B(TM,TX jk)n n
and the rollowing con~utatlve diagram.
diagram ror each p E M by taking limits

We will get such a

Lemma 8.3.4 In this diagram ~ is a locally trivial fibration,~ .

and the natural map
B(TM,T!ik)oo -+ B(TM,TX;k)

is a fibre homotopy equivalence.
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Proof Almost by definition?t factors as follows~

B(TM,T!jk)
?til

_-oo ~) M )« X
-00

proj.
---~M

It is rather easy to ~xtend a local trivialization of the
smooth fibration?t "n B(Tll,TX jk) ...M )(X over a coordinaten n

-chart V • Un on M x Xn with Un compact and contractible in Xn

to a local triviali~ation of ?t~+l over a chart V x U 1 onn+
1" x X 1 with U . 1 compact and contractible in X 1.n+ n+ . n+

Just use that the normal bundle for X in X 1 is trivial overn n+
Un. Taking limits of such local trivializations we get local

triviallzations of ~tc:a .
Since a composition of locally trivial fibrations over a

locally contractible sPace is again a locally trivial fibration
it Is clear that ~ Is a locally trivial fibration.

-00

For the second part of the lemma we remark that the m~p in
question restricts to a homotopy equivalence on each fibre by
Lemma 8.3.3 Hence the theorem of Lold ([14], Theorem 6.3)
shows that it is a fibre homotopy equivalence.

This proves Lemma 8.3.4.

The next lemma will prove Theorem 8.3.1, since we know from
Chapter 5, $1 that lIon;(tf;w,TXn;k)and Hom(TM,TXik) 'can be
identified with the spaces of sections rO(~n) and rO('7t)

respectively.

Ler:w:a 8.3. 5 Assumptions as in Theorem 8.3.1. Consider the
induced CBS

with ;Limit space

naturally induced map

. ''"-.-~...-' ...•----.-..•---.--.- -
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This map is a homotopy equivalence.

Proof The map in question is one o~ the maps in the following
commutative diagram of naturally induced maps

Proceeding exactly as in the proo~ of Lemma 7.3.2 it is
•

easy to show that

is a weak homotopy equivalence. Since the map

B(TM,TX;k)~ ~ B(TM,TXik)

is a fibre homotopy equivalence by Lemma 8.3.4, it is easy
to prove that the induced map

rO(?!.:) ~ rO(?!.:)
""'be)

is a homotopy equivalence •.
Altogether the map

is therefore a weak homotopy equivalence. Since the spaces
involved have the homotopy type of ~~'s the map will there~ore
be a homotopy equivalence by the theorem of J.H.C.Whitehead.

This proves Lemma 8.3.5 and hence as already mentioned
also Theorem 8.3.1.

£4 Classification of the k-mersions from a compact manifold into
a pseudo r'rec1holmmanifold.

Theorem 8.4.1 below is the strict analogue to a theorem of
o.D.Feit 63] but with infinite dimensional target. On the'other
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hand Feit's theorem is the end product of work initiated by
Smale and Thom in the late 1950's and followed by work of
Hirsch, Palais, Haefliger, Poenaru and Phillips (for the
submersion case). See the introduction to (33] for references
to this development. The theorem of Feit has also independently
been discovered by Gromov [37]. Gromov gets his result as an
application of a very general theorem, which has many other

•
applications in differential topology. For an account of the
work of Gromov see Haefllger [39] or"Poenaru (78].

Theorem 8.4.1 mLet M be a compact smooth manifold and let X
be a smooth pseudo F'redholm manifold. Let also 0 ~ k ~ m and
2 .;; r .;;00. Then the differential map induces a homotopy
equivalence

Proof
d; Cr(M,X;k) ~ Hom(TM,TX;k)

Let (X,n ) be a finite dimensional presentation of X- 0
and consider the induced commutative diagram

Hom(TM,TX;k)
d

In this diagram the vertical maps are homotopy equivalences
by Theorem 8.2.3 and Theorem 8.3.1. d is the limit of the

OCI

differential maps

which only involves finite dimensional manifolds. Since the
dimension of Xn tends to infinity these maps are homotopy

equivalences ( = weak homotopy equivalences since the spaces are
ANR's) from a certain stage by the theorem of'Feit [33]. Hence
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d is the limit map of a homotopy equivalence between CES's of
00

Al~R's and is therefore itself a homotopy equivalence by Theorem

Since the three other maps in the diagram are homotopy
equivalences, d must itself be a homotopy equivalence.

This proves Theorem 8.4.1 •

Remark 8.4.2 •Although it looks as though we have a theorem for
each 0 < k < m, it should be stressed that the dependence on k
is rather artificial, since all spaces Cr{~,X;k) are homotopy
equivalent to Cr{M,X) by Theorem 7.2.2.

Problem Classify the in~ersions Immr{X,y) from say a smooth
separable Hilbert manifold X into an infinite dimensional,
metrizable smooth manifold Y 1n the spirit of Theorem 8.4.1.

The first problem here is to find a 'good' topology on the
space In~r{X,y). As soon as X is not locally compact, the
rC -topology is probably too small.

Problem Suppose that ·x is a smooth separable Hilbert manifold
and that Y is a compact smooth manifold. Classify the submersions
Subr(X,y) from X into Y in the spirit ot Theorem 8.4.1.

This problem has interest in the study of foliations on
Hilbert manifolds.
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