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Abstract

Intrinsically disordered proteins (IDPs) are functional proteins which lack a unique

and stable tertiary structure. IDPs such as n16N are involved in biomineralisation,

the process by which organisms produce mineral materials, such as shells. Here,

the role that accelerated simulation can play in the study of IDPs is examined and

furthered. The coarse-grained models PLUM and PRIME20 are implemented and

refined based on existing single-chain n16N simulations. In conjunction with the

replica exchange molecular dynamics technique, the models are used to simulate

systems of 1, 2, 3 and 6 chains of n16N, and a mutant form n16NN. The modi-

fied PLUM model is in striking agreement with existing hypotheses regarding the

structure of n16N, when simulations are run in multiplicity. The PRIME20 model

has di�culty producing plausible backbone structure in every system size, though it

does fulfil some expectations regarding residue interaction specificity. New hypothe-

ses are o↵ered on bulk n16N and n16NN aggregation based on the presented data.

Future directions for development of accelerated simulation techniques for IDPs are

suggested.
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Chapter 1

Introduction

This thesis looks at the use of molecular dynamics with coarse-grained models to

simulate intrinsically disordered proteins involved in biomineralisation. The goal

is to aid the e↵ort to understand biomineralisation proteins and to advance the

role of simulation in the study of disordered proteins. This introduction serves to

amalgamate the background knowledge which makes the motivation for the project

clear.

Building up from a background of protein order and disorder in sec. 1.1 and

sec. 1.2 respectively, an introduction and current work in relevant areas of biomin-

eralisation research are given in sec. 1.5, where the central protein of this project,

n16N, is also introduced. Sec. 1.3 surveys the experimental research methods used to

understand protein disorder and proteins in biomineralisation systems, while sec. 1.4

presents the theory behind applying computer simulation to the problem of protein

function. Chapter 2 will subsequently provide an in-depth look at how it is hoped

molecular dynamics can be accelerated in its sampling of complex protein systems,

through coarse-graining and other methods, concluding the introductory content of

the thesis.

1.1 Protein structure

Proteins are biological polymers consisting of combinations of 20 di↵erent amino

acid residues. Depending on the amino acid sequence, proteins have the capacity to

take on a vast number of three-dimensional structures and functions.

Protein structure is classified in four levels. The primary structure of a

protein is the linear sequence of amino acids from which it is made, and can be

given as a simple sequence of letters, each denoting an amino acid. An amino acid
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chain will have a free amine group on one end and a free carboxyl group on the

other; these are the N- and C- termini respectively, and the primary structure is

specified from the N-terminus to the C-terminus.

Figure 1.1: Wikimedia user Dcrjsr, available under the Creative Commons
Attribution 3.0 Unported license.

The backbone atoms of a central amino acid residue is shown, with two neighbours
labelled (-1) and (+1) partially shown. Each residue except glycine also has a
side-chain, denoted C�. The dihedral angles �,  and ! which determine the
secondary structure are labelled.

Regardless of the primary structure, the chain of amino acids has a repeating

backbone as shown in fig. 1.1. The backbone’s flexibility is due to its dihedral angles

� and  , while ! is inflexible. Steric considerations and backbone interactions pre-

sculpt the free energy landscape, creating limited favoured possibilities for � and

 [Hoang et al., 2004; Ho et al., 2003]. The specific properties of a residue are

due to the chemistry of its unique side-chain group, bonded to the central carbon.

The pre-sculpting and side-chain interactions together typically yield one or more

local native conformations for the chain, and these motifs are known as secondary

structure.

Motifs involve a regularly repeating structure, through values of � and  

which repeat for some number of residues along the chain. The most common motifs

are �-sheets and ↵-helices. �-sheets are formed from elongated strands of the chain

running in parallel or anti-parallel, laterally joined by hydrogen bonds. The ↵-helix

is a coiled conformation in which each NH backbone group is hydrogen bonded to the

CO group of the amino acid four residues prior (denoted i+4! i). Di↵erent amino

acid residues have varying propensities towards the possible secondary structural
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forms, and table 1.1 shows this for the two most common cases.

The allowed values of � and  can be visualised on a 2D plot known as

a Ramachandran plot, and fig. 1.2 illustrates this. Accumulating su�cient (�, )

coordinates from a meaningful dataset such as the residues in a portion of a protein

can lead to a probability density function, which can be plotted as a heat map

Ramachandran plot, to better characterise the secondary structure.

The exclusionary zones seen on a Ramachandran plot can be classified by the

steric clashes which lead to them. Ramachandran laid out his suggested classification

[Ramachandran et al., 1963], but fig. 1.3 presents an updated view.

Tertiary structure describes the geometric shape of the protein; how the

secondary structural motifs and disordered regions fold together. This is largely de-

termined by the intra-protein interactions between side-chains. Finally, quaternary

structure describes the geometry of multiple folded chains together.

Beyond the covalent bonds, the most important interactions are backbone-

to-backbone hydrogen bonding for determination of secondary structure, and side-

chain and solvent hydrogen bonding, hydrophobic side-chain interactions, ionic side-

chain interactions, and disulfide bridges between cysteine groups for determination

of tertiary and quaternary structure.

1.1.1 Dependence on ambient conditions

Solvent, ionic strength, other molecules, interfaces, pressure and temperature are

some of the ambient factors which impact the structure a protein adopts.

Favoured protein conformations tend to minimise disruption of the water

matrix [Fernández, 2013]. Coulombic interactions are screened by the water by a

factor of about 80 [Berg et al., 2002, page 11], while free ions strongly screen Coulomb

interactions. Water’s ability to hydrogen bond creates competition between solute-

solute and solute-solvent hydrogen bonding. Conversely, hydrophobic residues get

buried inside the protein core to avoid water.

Proteins are extremely temperature-sensitive and denature at excessive tem-

peratures. Denaturation is the permanent loss of the native state, often accom-

panied by aggregation and a loss of solubility. This typically occurs within a few

tens of degrees Celsius of the organism’s temperature of adaptation (many exam-

ples in [Somero, 1995]); organisms containing proteins that can retain structure

at temperatures of 90-100�C are those which have a need to survive such con-

ditions [Somero, 1995]. The evolutionary cause of this may be the requirement

of rapid, reversible changes to protein conformation for most proteins [Creighton,

1984, page 507]. Extremely minor protein sequence changes increasing internal hy-
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Figure 1.2: [Hollingsworth and Karplus, 2010] adapted from [Ramachandran and
Sasisekharan, 1968].

A Ramachandran plot showing both example data and outlines of commonly
accepted regions. The data is comprised of 63,149 residues from crystal structures
and each point indicates the (�, ) values representing the secondary structure of a
single residue.
The outlines are divided into core allowed regions (solid lines) and allowed regions
(dashed lines). Several forms of secondary structure have their location indicated;
these are ↵-helix (↵), 310-helix (3), ⇡-helix (⇡), left-handed ↵-helix (↵l), 2.27 ribbon
(2), polyproline-II (II), collagen (C), parallel �-sheet ("") and anti-parallel �-sheet
("#).
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Figure 1.3: A steric map, in which steric clashes leading to forbidden regions are
shown in (�, ) phase space and labelled according to the clashing pair of atoms
[Ho et al., 2003]. Dashed blue lines and blue labels denote clashes. Favourable
dipole-dipole backbone interactions are also plotted, with red dashed lines and red
labels. Areas of the map are white if forbidden, and otherwise coloured according to
the legend below. The atom labels match the illustration in fig. 1.1.

Boundaries

- - - Attractive dipole-dipole interactions
- - - Steric clashes

Accessible regions

⌅⌅⌅ Sterically permitted
⌅⌅⌅ Single steric clash (outlier region)
⌅⌅⌅ Left- and right-handed ↵-helix regions
⌅⌅⌅ �-strand region
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drophobicity and stabilising specific secondary structural motifs result in significant

temperature fortification [Imanaka et al., 1986; Matthews, 1993].

1.2 Protein disorder

Normal proteins are thought to have strongly funneled energy landscapes, leading

them to folded native states with an energetically favourable fixed structure on

every level [Wolynes et al., 1995; Baker, 2000]. The classical structure-function

paradigm of proteins emerged from the proposition that protein denaturation is

purely a conformational change [Wu, 1931], and states that 3D protein structure

determines its function, therefore, all functional proteins require a fixed native state.

The cataloguing of thousands of functional native protein structures during the rest

of the 20th century [Berman et al., 2000] concreted the notion of 3D structure being

a prerequisite of function.

Evidence of configurational adaptability [Karush, 1950; Bennett and Steitz,

1978] and functional disordered regions (numerous examples cited in [Plaxco and

Gro�, 1997]) also crept in during the second half of the 20th century, though it

took until the turn of the millennium for papers to appear formally arguing for

function in natively disordered proteins [Wright and Dyson, 1999; Uversky et al.,

2000; Dunker et al., 2001; Tompa, 2002], and casting doubt on the universality of

the structure-function paradigm.

IDPs (intrinsically disordered proteins) are defined by their inability to fold

into a unique and stable tertiary structure, and this term is preferable to the early

term IUPs (intrinsically unstructured proteins) which falsely suggests a complete

lack of structure [Dunker et al., 2013].

1.2.1 Determinants of protein disorder

The disorder-promoting amino acid residues are roughly agreed-upon as being A,

G, P, R, Q, S, E and K [Williams et al., 2001; Campen et al., 2008; Dunker et al.,

2001]. Table 1.1 includes a ranking of amino acid disorder propensity. Amino acids

over-represented in IDPs are polar, charged and not hydrophobic [Rani et al., 2014].

The “sequence complexity” of proteins [Romero et al., 2001] is defined using

Shannon’s information entropy [Shannon, 1948] as

S = �
NX

i=1

f

i

(log2 fi) (1.1)

in which N is the number of types of amino acids, i.e. 20, and f

i

is the fraction of
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Amino acid Abbreviations ↵-helix �-sheet Disorder

Alanine Ala, A 1.29 0.90 0.060
Arginine Arg, R 0.96 0.99 0.180

Asparagine Asn, N 0.90 0.76 0.007
Aspartic Acid Asp, D 1.04 0.72 0.192

Cysteine Cys, C 1.11 0.74 0.020
Glutamine Gln, Q 1.27 0.80 0.318

Glutamic Acid Glu, E 1.44 0.75 0.736

Glycine Gly, G 0.56 0.56 0.166

Histidine His, H 1.22 1.08 0.303

Isoleucine Ile, I 0.97 1.45 -0.486
Leucine Leu, L 1.30 1.02 -0.326
Lysine Lys, K 1.23 0.77 0.586

Methionine Met, M 1.47 0.97 -0.397
Phenylalanine Phe, F 1.07 1.32 -0.697
Proline Pro, P 0.52 0.64 0.987

Serine Ser, S 0.82 0.95 0.341

Threonine Thr, T 0.82 1.21 0.059
Tryptophan Trp, W 0.99 1.14 -0.884
Tyrosine Tyr, Y 0.72 1.25 -0.510
Valine Val, V 0.91 1.49 -0.121

Table 1.1: Relative frequencies of residues in common secondary structure motifs
[Creighton, 1992] [Berg et al., 2002, page 67] and disorder propensity according to the
TOP-IDP scale [Campen et al., 2008], in which higher values are more disordered.
This is one of many scales on which residue disorder propensity has been ranked
[Galzitskaya et al., 2006; Oldfield et al., 2005; Vihinen et al., 1994; Garbuzynskiy
et al., 2004]. The highest values are highlighted.

amino acid type i which appears in a window of the chain of length L. There is

strong correlation between protein disorder and low sequence complexity [Romero

et al., 2001; Rani et al., 2014].

Bioinformatic disorder predicting algorithms have been developed [He et al.,

2009], with meta-predictors recently approaching 90% accuracy [Monastyrskyy et al.,

2014]. Such tools allow us to project that 15-45% of proteins in eukaryotes contain

disordered regions at least 30 residues in length [Tompa, 2012].

1.2.2 Functions of IDPs

Functions of IDPs have been grouped into four broad categories [Dunker et al.,

2002]: entropic chains, molecular recognition, protein modification, and molecular

assembly.
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Entropic chains have functions dependent directly on their disorder: entropic

springs exhibit an entropic force according to Hooke’s law, the equilibrium position

corresponding to a maximum of entropy; entropic spacers flexibly link functional

subunits of large proteins; and entropic clocks are commonly found in ion channels

and take some characteristic time of random exploration to find and bind to a

target, opening or closing the channel. IDPs are perfect candidates for molecular

recognition of multiple heterogeneous targets with low a�nity, useful for signalling

purposes. Intrinsic disorder has been shown to play an important role in some post-

translational protein modifications [Gao and Xu, 2012], both by protease cleavage

or chemical additions.

The last category is molecular assembly, which is crucially relevant to ex-

tracellular biomineralisation, described in Sec. 1.5. Complex frameworks composed

of protein subunits may benefit greatly from disorder in their subunits for multi-

ple reasons. Complexes may often be assembled in multiple stages, making great

use of conformational flexibility of the subunits to overcome steric barriers to for-

mation. Unfolding and refolding requires relatively weak binding interactions, yet

stable attachment will be guaranteed in a macromolecule by the large number of

these interactions. An IDP may exhibit selectivity of the chemical environment in

which it folds, and the environment can even a↵ect the properties of the complex

framework arising from a given IDP [Namba, 2001].

1.3 Experimental techniques

Several methods have been used to determine and characterise intrinsic disorder and

study biomineralisation systems.

1.3.1 Intrinsic disorder

X-ray crystallography is a highly favoured technique for structural characterisation

of crystalline matter, and can be used to study proteins. However, disorder leads to

missing residues in structures determined by x-ray crystallography, providing a hint

at disorder but no means to characterise it in any detail [Dunker et al., 2001]. NMR

has played a key role in IDP structure and dynamics studies [Showalter, 2007].

Several other techniques have played smaller roles. Small-angle X-ray scatter-

ing has the capacity for “automated and rapid characterisation of protein solutions

in terms of low-resolution models, quaternary structure and oligomeric composition”

[Mertens and Svergun, 2010] and has been advocated [Sibille and Bernado, 2012]
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and used [Sterckx et al., 2014; Wells et al., 2008; Zhang et al., 2013] as a complement

to NMR for IDPs.

Other techniques of interest include circular dichroism (CD), fluorescence

spectroscopy and hydrodynamic techniques.

NMR spectroscopy

Atomic nuclei with odd numbers of protons and/or neutrons have a nuclear spin

(I) which causes them to interact with applied magnetic fields. When a magnetic

field of strength B0 is applied, the most salient (spin-12) cases of 1H and 13C will

orient themselves in one of two ways; aligned with or opposed to the field. The

di↵erence in energy between these two states is given by

�E = �~B0 (1.2)

where � is the magnetogyric ratio, a property of an isotope. Nuclei in the magnetic

field will naturally precess with an angular frequency known as the Larmor frequency

given by

! = ��B0 . (1.3)

A radio wave with a matching frequency will be partially absorbed and excite

some of the nuclei to the high-energy state. A short pulse of some µs covering a band

of frequencies will excite nuclei with a matching band of excitation frequencies. The

nuclei will immediately begin to relax back to equilibrium excitation levels given by

the Boltzmann distribution:

N

�

N

↵

= exp
��E

kT

(1.4)

where N

�

is the number of nuclei in the high energy state, and N

↵

the low energy

state. During relaxation, the non-equilibrium magnetisation precessing about the

external magnetic field can induce an electromotive force known as the free induction

decay (FID). The FID is received as a signal, and Fourier transformed to provide

information on the frequencies which were excited.

All nuclei of the same isotope will have similar resonance frequencies, but

variations in the electron density of the environment of each nucleus will lead to small

deviations known as the chemical shift. Thus, NMR can distinguish between 13C

atoms occurring in di↵erent chemical environments, and deduce molecular structures

[Williams and Fleming, 1995].

9



NMR has been used to study the protein folding process and unfolded pro-

teins [Dyson and Wright, 2004, 2002; Brockwell et al., 2000] and development of

NMR techniques for IDPs is a fertile field [Bertini et al., 2011; Jensen et al., 2013;

Ota et al., 2013; Konrat, 2014; Felli and Pierattelli, 2014]. In particular, there is

a need for software to generating and validating IDP conformation ensembles from

NMR data to catch up [Showalter, 2007], perhaps involving a dual NMR-simulation

approach [Ball et al., 2013].

No NMR or SAXS studies of n16N in solution have been found in the literature, but

such studies could provide interesting insights into n16N’s ensemble of structures

and the macromolecular complex it forms.

1.3.2 Biomineralisation systems

In vitro recreation of aspects or the whole of an organic biomineralisation environ-

ment, using experimental tools to investigate what occurs, is a very common research

strategy for n16N [Seto et al., 2014; Amos et al., 2011; Keene et al., 2010a,b; Metzler

et al., 2010; Delak et al., 2007] and in general. The findings on n16N discussed in

section 1.6 come from this category of study.

In these studies, n16N is allowed to aggregate in solution or on a substrate.

Studies may proceed by observing n16N aggregation, studying aggregates, intro-

ducing Ca2+ and altering its concentration, observing the response to pH changes,

observing calcium carbonate crystal growth, introducing silk fibroin gel, or in other

ways. A wide range of experimental techniques can be used to inspect the system.

Table 1.2 summarises the methods used by studies conducted so far.
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1.4 Molecular dynamics for proteins

While these experiments provide a great deal of insight into n16N’s abilities, it is

very di�cult to learn anything about what is happening at the atomistic scale,

or even at the level of individual peptides, from real-world experiments. Simula-

tions create a bridge between experiment and theory, in which hypotheses can be

tested, altered, disproved, or corroborated, and a fuller picture of the behaviour of

a biomineralisation system can be reached.

1.4.1 Approaches to molecular simulation

Molecular simulation comes in two key methods; these are Monte Carlo and molecu-

lar dynamics. The popular Metropolis algorithm for Monte Carlo [Metropolis et al.,

1953] is a method of stepwise exploration of a system’s configurational space without

regarding the dynamics of the system. Instead, a move set is defined which describes

the ways the system’s configuration in the current step can be altered to produce

the configuration in the next step. Moves are accepted with a probability given by

P = min(1, exp (���V
nm

)) (1.5)

in which � = 1/k
B

T and �V
nm

= V(r
n

)� V(r
m

) is the di↵erence in configurational

energy between the current configuration, r
m

and the next, r
n

. When a move is

rejected, the current configuration is carried forward to the next step unaltered. It

can be shown [Tildesley, 1993] that this generates states with the canonical probabil-

ity distribution. In such a scheme, the thermodynamic average of a configurational

property A(r) can be estimated as the straightforward average over the sampled

states

hAi
NV T

=

P
states

A(r)

N

states

(1.6)

where r is the set of 3N positions describing the system [Tildesley, 1993]. Thus, the

statics of a molecular system can be characterised through the Monte Carlo method.

Molecular dynamics is an alternative to Monte Carlo that uses a model system which

could be identical to one used in Monte Carlo, and advances the system’s positions

and momenta in discretised time-steps �t through Newton’s equations of motion.

Unlike in Monte Carlo, this requires calculation of the force f

i

on particle i of mass
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m

i

due to the potential V:

f

i

= m

i

r̈

i

= �rV(r
i

) . (1.7)

Several algorithms exist to increment from the positions of the current time-

step r(t) to the new positions r(t+ �t), the dominant one being the velocity Verlet

algorithm [Swope et al., 1982]. This is a modification of the older Verlet algorithm

[Verlet, 1967] derived from Taylor expanding r(t). In this formulation, positions and

velocities are advanced together as follows

r(t+ �t) = r(t) + �tv(t) +
1

2
�t

2
a(t) , (1.8a)

v(t+ �t) = v(t) +
1

2
�t(a(t) + a(t+ �t)) . (1.8b)

with velocity v(t) and acceleration a(t). a(t+ �t) must be evaluated between these

two expressions.

1.4.2 Statistical ensembles

The Newtonian equations of motion conserve the total energy E of the system. In

the simplest case, the simulation will also be time-independent in N , the system’s

particle count, and V , the system’s volume. The set of microstates that are sampled

in a system where this set of variables are independent is designated the constant-

NVE or microcanonical ensemble. The microcanonical ensemble is defined by its

probability density [Allen and Tildesley, 1987]

⇢

NV E

(r,p) / �(H (r,p)� E) (1.9)

in which the Dirac delta function �(x) is equal to 0 for x 6= 0, with an integral of 1

over the real number line. E is total energy which defines the ensemble, while the

Hamiltonian H (r,p) provides the total energy of microstate r.

However, ensembles with varying E and specified thermodynamic (average)

temperature T more closely resemble experimental and biological systems [Wang

and McCammon, 2012, page 18]. The constant-NV T ensemble is known as the

canonical ensemble and is defined by its probability density [Allen and Tildesley,

1987]

⇢

NV T

(r,p) / exp

✓
�H (r,p)

kBT

◆
. (1.10)

We think of such a system as being composed of the experimental system
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coupled to a large heat bath at the specified temperature T . For our outputted statis-

tics to be of the canonical ensemble instead of the constant-NV E ensemble, some

alteration of the equations of motion will be necessary; a temperature-preserving

modification will be called a thermostat. Multiple thermostats which reproduce

canonical statistics are available [Hünenberger, 2005] and two popular methods are

stochastic dynamics and stochastic coupling.

The stochastic dynamics algorithm relies upon addition of terms from the

Langevin equation to the force calculation in equation (1.7)

f

i

= �rV(r
i

)�m

i

�

i

v

i

(t) + ⌘

i

(t) . (1.11)

⌘

i

(t) is a stochastic force uncorrelated with the velocities v
i

(t0) and systematic force

�rV(r
i

) at previous times t0 < t, obeying

• h⌘
i

(t)i = 0, and

• h⌘
ai

(t)⌘
bj

(t0)i = 2m
i

�

i

kBT �ij�ab�(t0 � t)

in which subscript a and b index Cartesian axes. �

i

are damping constants, but

the damping term can also be interpreted as a frictional term by setting ⇣
i

= �

i

m

i

,

in which ⇣
i

would be considered friction constants. However, in the absence of an

external force, the velocity autocorrelation function is proportional to exp(��
i

t).

It can be shown that a trajectory generated by integrating the Langevin

equation of motion produces a trajectory sampling from the canonical distribution

[Hünenberger, 2005].

The stochastic coupling method is also known eponymously as the Andersen

thermostat [Andersen, 1980]. Atoms are selected to have their velocity reassigned

from the Maxwell-Boltzmann distribution corresponding to the selected temperature

T , as if collisions were occurring with a heat bath at temperature T [Frenkel and

Smit, 2002, page 142]. The selection process utilises a coupling strength parameter

in the form of frequency of collisions, ⌫. Selections are carried out such that the

probability of a time interval ⌧ between two successive collisions is

P (⌧ ; ⌫) = ⌫ exp(�⌫⌧) . (1.12)

It can be shown [Andersen, 1980] that this scheme leads to a canonical dis-

tribution of microstates.

In the canonical ensemble, the constant-volume specific heat capacity is given
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by the fluctuations in total energy E according to

h�E2i
NV T

= kBT
2
C

V

, (1.13)

C

V

=
�
�E

�T

�
V

being the specific heat capacity [Allen and Tildesley, 1987]. The form

of the heat capacity curve reveals the temperature of phase transitions in the system.

1.5 Biomineralisation

Biomineralisation is the term given to the formation of minerals in controlled en-

vironments by living organisms. Organisms display an ability to form nanostruc-

tured hard tissues through processes which are not well understood, but have a vast

range of potential applications. A biomineral, the product of biomineralisation, is

composed of mineral matter and organic matter. Until the early 1980s, the term

calcification was used rather than biomineralisation, reflecting the fact that calcium

carbonate is the most common mineral type.

Biomineralisation can be divided into biologically induced and biologically

controlled mineralisation [Lowenstam, 1981; Mann, 1983]. In biologically induced

mineralisation, the organism has little control over the type of mineral formation,

although the organism exerts control over the chemical environment and nucleation

event. Biominerals formed in this way have the hallmarks of inorganic minerals,

such as poorly defined external morphology and heterogeneity of water content,

composition and structure [Weiner and Dove, 2003].

Biologically controlled mineralisation denotes far finer control over the min-

eralisation process and the properties of the created biomineral. The mineralisation

can occur intracellularly, involving nucleation in the cell, usually followed by ex-

cretion; intercellularly, in which the mineralisation site is isolated between cells; or

extracellularly, in which a macromolecular complex is produced outside of cells and

regulates the formation of the biomineral [Weiner and Dove, 2003].

Extracellular biomineralisation is a very common biomineralisation approach,

used amongst many other examples to form shells of molluscs, cephalopod statoliths

[Bettencourt and Guerra, 2000] and bones and teeth [He et al., 2003]. The macro-

molecule complex is comprised of proteins, polysaccharides or glycoproteins [Lowen-

stam and Weiner, 1989], with high levels of disorder in their native states; indeed,

biomineralisation proteins have been called the most disordered functional class in

the protein world [Kalmar et al., 2012]. Determining the functions of the matrix

proteins is the bottleneck in understanding extracellular biomineralisation [Weiner

and Dove, 2003].
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The nacre layer of mollusc shells is a well-studied biomineral [Belcher et al.,

1996; Thompson et al., 2000; Levi et al., 1998; Samata et al., 1999] made of cal-

cium carbonate, through extracellular mineralisation. Fig. 1.4 shows a model of

the macromolecular framework in which nacre is created. The involved components

include chitin, an extremely abundant natural polymer which exists with a rigid

crystalline structure. The polymorphs ↵ and � are held together by intermolecular

hydrogen bonding of chains in parallel or anti-parallel formations respectively [Kim

et al., 1996].

Calcium carbonate is a polymorphic substance, able to exist in multiple

crystal structures, the most stable three of which, in descending order, are calcite,

aragonite and vaterite. Nacre exists as aragonite [Lowenstam and Weiner, 1989],

indicating that the macromolecular environment has the capability of polymorph

selectivity.

Indeed, the polymorph stabilisation achieved by the macromolecular com-

ponents has been reproduced in vitro. A chitin-silk assembly similar to fig. 1.4

was prepared using acidic macromolecules from either an aragonite or calcite layer.

These assemblages induced aragonite or calcite formation respectively [Falini et al.,

1996].

A large number of proteins are involved in nacre biomineralisation and sev-

eral have been identified and studied. Recent examples include “calcite blocker”

proteins AP7 and AP24 (aragonitic proteins numbered by molecular weight in kDa)

[Michenfelder et al., 2003; Wustman et al., 2004; Kim et al., 2004b]; the acidic,

aspartate-rich matrix protein Pif, directly involved in creating aragonite platelets in

nacre [Suzuki et al., 2009; Kröger, 2009]; and the mineralisation-amplifying protein

PFMG1 [Perovic et al., 2013]. There has been an explosion in the number of mol-

lusc shell proteins identified since 2008 [Marin et al., 2013], with expected functions

including creating a gel or colloidal region for crystallisation, compartmentalisation

of the environment to template future microstructure, selective promotion of crystal

nucleation and growth, and crystal growth inhibition [Marin et al., 2013].

1.6 n16N

n16 is a family of 108AA (amino acid chain length) “aragonite promoter” proteins

[Samata et al., 1999; Collino and Evans, 2008] in nacre. 23 polymorphic variants

have been identified, all actively expressed in pearl oyster (pinctada fucata) [Nogawa

et al., 2012], while homologues of n16 have been found in other molluscs [Gardner

et al., 2011; Marie et al., 2012; Montagnani et al., 2011].
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Figure 1.4: [Levi-Kalisman et al., 2001]

A putative scheme for the organic biomineralisation matrix which grows nacre.
Interlamellar matrix sheets are composed mainly of aligned �-chitin fibres in several
layers, with acidic glycoproteins at their surface which lead to electron-dense patches
(not labelled). Aragonite biomineralisation occurs in the disordered silk fibroin gel
region, most likely nucleating epitaxially on the chitin framework [Weiner et al.,
1984].
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The 30AA N and C terminal regions have been used as n16 mimics for study

and have been found to control the morphology of calcium carbonate crystals [Kim

et al., 2004a]. The N-terminal sequence of n16 shown in fig. 1.5, named n16N, has

been studied in some detail and has been called “the key self-assembly/aragonite

forming domain” [Seto et al., 2014].

n16N was found to select the aragonite polymorph when adsorbed on �-

chitin [Keene et al., 2010a], while the addition of silk fibroin from silkworm (bom-

byx mori) resulted in metastable vaterite and amorphous calcium carbonate (ACC)

[Keene et al., 2010b]. Sequence-scrambling and point mutations to replace the acidic

residues with neutral residues (asp! asn, glu! gln) greatly hampered the selectiv-

ity of the peptide in both studies. It is confirmed that Asp and Glu do have an active

role in organic-mineral association [Metzler et al., 2008] and that these substitutions

abolish n16N’s ability to form complexes with Ca2+ [Delak et al., 2007].

AYHKKCGR| {z }
SD1

YSYCWIPY| {z }
SD2

DIERDRYDNGDKKC| {z }
SD3

. . .

Figure 1.5: Amino acid sequence of the 30AA N-terminal region of n16, called
n16N. An ellipsis indicates where the full n16 sequence continues, and braces indicate
suggested subdomains [Brown et al., 2014], summarised in table 1.3. Cationic amino
acid residues shown in bold blue, anionic residues shown in bold red. The last 14
residues, labelled SD3, represent a highly charged region which may be the mineral
assembly subdomain.

Further studies shed some light on the mechanism involved. n16N assembles

to form fibril-spheroidal oligomers which retain a high level of secondary structural

disorder similar to the monomeric state. Amorphous sheet or film assemblies can

also form. These complexes act as nucleation sites for crystal growth; fig. 1.6 shows

an in vitro case of pre-formed assemblies of n16N exhibiting polymorph selection.

The assembly process is pH dependent and does not require Ca2+ ions, although

their presence does shift assembly to a higher required pH [Amos et al., 2011].

n16N neither binds strongly to added Ca2+ ions [Seto et al., 2014], nor signif-

icantly changes its conformational ensemble [Collino and Evans, 2008; Brown et al.,

2014] in their presence. However, there is recent suggestion that n16N assemblies

create localised compartments of Ca2+, in which vateritic pre-nucleation clusters are

stabilised [Seto et al., 2014]. Vaterite is a precursor to aragonite [Bischo↵, 1968].

n16N subdomains with the capacity to perform di↵erent functions, especially

in the context of the three-component n16N/�-chitin/calcium carbonate system,

have been proposed [Brown et al., 2014]. These are described in table 1.3 and
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Figure 1.6: [Amos et al., 2011]

Two-stage mineralisation experiment to test whether pre-formed n16N assem-
blies could nucleate calcium carbonate polymorphs. In stage one, n16N deposits are
allowed to form in typical mineralisation conditions (50 µM n16N, 16h, 16 �C). In
stage two, washed supports with n16N deposits are transferred to a mineralisation
solution with or without n16N content.
(A) Calcium carbonate mineralisation without n16N IDP. Calcite polymorph
dominates.
(B) n16N present during first stage of mineralisation, yielding more vaterite (v).
(C,D) n16N present during both stages of mineralisation. The arrows indicate
fibril-spheroidal deposits of n16N on the exposed surface of a crystal.
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shown in fig. 1.5. SD1 and SD2 are rich in tyrosine, which are hypothesised to

have roles in intra- and inter-peptide stabilisation via ring-ring and hydrogen bond

interactions, and lead to SD1 and SD2 being less flexible than SD3 [Brown et al.,

2014].

Name Residue indices Notes

SD1 1 to 8 Tentative role in Y-mediated �-chitin
binding. Intrapeptide stabilisation.

SD2 9 to 16 Clustering role due to interpeptide Y-Y
interactions [Evans, 2012]. Intrapeptide
stabilisation.

SD3 17 to 30 Greatest conformational flexibility, highly
charged; proposed “fly-casting” mecha-
nism in ion capture [Shoemaker et al.,
2000]

Table 1.3: Suggested roles of the subdomains of n16N [Brown et al., 2014].

1.7 Summary

This chapter lays out that intrinsically disordered proteins are a recently emerging

research field of great interest due to the novel functions and mechanisms that these

proteins fulfill and use. n16N is one of myriad biomineralisation proteins, exhibiting

polymorph selectivity on calcium carbonate in solution. Several experimental papers

have been published on the activity of n16N in a range of assay conditions, but the

e↵ort to understand n16N and other IDPs could be augmented by accelerated-

sampling simulation.
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Chapter 2

Accelerated simulation

techniques

A fundamental goal of the project as laid out in the beginning of chapter 1 is to

employ accelerated simulation techniques. These are techniques which reduce the

computational load involved in characterising a simulated system. Such techniques

are grouped into coarse-graining, which simplify the representation of molecules of

a system, and accelerated sampling, which alter the dynamics to characterise the

system’s phase space in fewer (pseudo-)time-steps.

This chapter will be give some background to acceleration techniques, and

name the choices of accelerated techniques to be used in the project.

2.1 Coarse-graining

Coarse-graining in computer simulation refers to any scheme of representation in

which the basic unit of simulation is greater than a single atom. Integrating out a

system’s degrees of freedom through coarse-graining can make feasible simulation

times rise by orders of magnitude, lifting the existing limit of tens or hundreds of

nanoseconds for an atomistic protein in solvent. A coarse-grained simulation has

a smoother energy landscape, and thus travels through configurational space faster

[Molinero and Goddard, 2004]. This improves the sampling of conformations, but

blurs the already questionable connection between simulation time and real time.

The choice of coarse-graining scheme is arrived at by deciding both the map-

ping of real atoms to groups of united pseudo-atoms, and defining the potential

UCG, with which the protein interacts. These decisions are influenced by the goal

of the scheme: schemes may set out to be transferable, or relevant only to certain

21



problems.

2.1.1 Defining the CG mapping

A mapping may have between less than one bead per amino acid to six or so.

Single-bead models tend to fall into a class of ‘Gō-like’ models, in which a bias

towards a reference native configuration exists; this is necessary to compensate for

the very crude description of each amino acid. The usefulness of this very simple

approach is in the fact that it recreates the funnel towards the native state in the

energy landscape, which, for ordered proteins, must be present in the actual protein’s

landscape too [Baker, 2000].

Models of four or so beads generally either focus on detail in the side-chain,

or detail in the back-bone. The MARTINI forcefield and others fall into the for-

mer category [Hills et al., 2010; DeVane et al., 2009; Monticelli et al., 2008]. The

simplicity of the back-bone is dealt with by fixing the secondary structure, which

makes the model inadequate to model conformational changes of secondary struc-

ture. By the same token, this is not a suitable coarse-graining scheme for IDPs. On

the flipside, models which give an almost all-atom description of the back-bone by

modelling each of C
↵

, C’ and N explicitly can aim at organically finding secondary

structure, thus o↵ering a better hope of understanding IDPs [Bereau and Deserno,

2009; Barducci et al., 2011; Coluzza, 2011].

Defining the CG potential

The first step of forming the CG potential is to assume that it can be described

by pairwise interactions in a predetermined functional form. A CG potential may

be either continuous or discontinuous, the latter being far simpler, but able to take

advantage of faster discontinuous molecular dynamics [Alder and Wainwright, 1959;

Rapaport, 1978; Bellemans et al., 1980]. The PRIME model [Voegler Smith and

Hall, 2001; Cheon et al., 2010] is one discontinuous potential CG scheme which will

be discussed in more detail below (section 2.1.4).
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A typical form for a continuous potential may be [Rader, 2010]:

UCG = Ubonded + Unon-bonded , (2.1)

Ubonded =
X

bonds

1

2
k

r

(r � r0)
2 + (2.2)

X

angles

1

2
k

✓

(✓ � ✓0)2 +

X

dihedrals

k

�

[1 + cos(n�+ �0)] ,

Unon-bonded =
X

i 6=j


q

i

q

j

4⇡✏r
ij

+
A

ij

r

12
ij

� B

ij

r

6
ij

�
. (2.3)

In this example, the three bonded terms of equation (2.2) give 6 types of free param-

eters: k
r

, k

✓

, k

�

, r0, ✓0 and �0. The non-bonded terms of equation (2.3) give 4 more

types: q

i

, q

j

, A

ij

, B

ij

. Note that q

i

and q

j

are free parameters which aim to match

the system’s Coulombic interactions. Equation (2.2)’s parameters must be defined

for each type of bond, angle, and dihedral. In equation (2.3), q
i

and q

j

will be prop-

erties of types of pseudo-atoms. The terms involving A

ij

and B

ij

are Lennard-Jones

potentials used to match van der Waals interactions, and these parameters must be

defined for each pair of pseudo-atom types.

An abundance of other options for these functional forms exist. For example,

it has been suggested that using the Morse potential instead of the Lennard-Jones

potential would allow greater time-steps, due to a less steep functional form, without

a significant loss of realism [Chiu et al., 2010]. Naturally, extra functional forms to

account for other features such as hydrogen bonding will bring their own parameters

which need to be defined.

There are two classes of techniques for deriving these parameters. Simulation-

derived parameters get the fit from more detailed simulations. Within this class,

iterative Boltzmann inversion [Reith et al., 2003] takes a simple starting guess for the

potential as a seed and iteratively improves it by comparing the radial distribution

function g(r) of the atomistic case with that of the coarse-grained case, and adding

an improvement term [Milano and Müller-Plathe, 2005]:

V

j+1(r) = V

j

(r) + kBT ln
g

j

(r)

gAtomistic(r)
, (2.4)

where V

j

is the j

th iteration of the coarse-grained potential. Boltzmann inversion is

from the family called inversion methods, which ask the question, “What potential
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gives rise to the observed properties?”

Force matching (FM) [Zhou et al., 2007] is another simulation-derived tech-

nique worth mentioning. The method seeks to minimise the residual �2 describing

the di↵erence between atomistic forces (projected onto CG sites) and the coarse-

grained forces:

�

2 =
LX

l

MX

m

|FAtomistic
lm

� F

CG
lm

|2 , (2.5)

in which F

lm

is the force acting upon the mth projected or coarse-grained pseudo-

atom out of a total of M such sites, in the lth configuration out of L total all-atom

trajectory configurations.

Data derived potentials, better known as knowledge-based potentials, use

structural statistics from the Protein DataBank [Berman et al., 2000], and either

use the native state as a reference to make a Gō-like model, as previously discussed,

or assume a Boltzmann distribution of the potential with a maximum of probability

in the native conformation [Rader, 2010]. Although knowledge-based potentials are

common, they have been criticised on several points [Ben-Naim, 1997], and recently

defended [Mullinax and Noid, 2010].

2.1.2 Explicit and implicit solvation

It is neither useful nor common to coarse-grain a protein or polypeptide under study,

only to put it in bulk solvent of high detail. Two superior alternatives are either

to coarse-grain the water, and continue to represent it explicitly, or to represent it

implicitly through its averaged e↵ects.

The recently developed mWwater model [Molinero and Moore, 2009; DeMille

and Molinero, 2009] reproduces the structure of aqueous ionic solutions without elec-

trostatic interactions, and overcomes the long-standing inability to simultaneously

reproduce the structure and energetics of water, through the introduction of tetra-

hedral interactions. This model has been used in DNA simulation with some success

[DeMille et al., 2011] and the authors expect more uses in biomolecules [Molinero

and Moore, 2009]. Another recent model termed WAT FOUR [Darré et al., 2010] of-

fers long-range electrostatics and its own dielectric permittivity (rather than a preset

constant value), and advertises a good representation of the aqueous environment

in the most biologically relevant temperature range, from 278K to 328K.

Implicit solvent models treat water as a continuum solvent. We assume that

the total potential energy of a biomolecule in solvent is decomposable into three
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terms [Roux and Simonson, 1999], so that:

U(X,Y) = U

u

(X) + U

v

(Y) + U

uv

(X,Y) . (2.6)

Here, u represents the biomolecule with coordinates X and v the solvent with

coordinates Y. U
u

is the biomolecule’s potential, U
v

is the potential of the solvent,

and U

uv

is the biomolecule-solvent potential. The ensemble average of any property

hQi of the biomolecule depends on the probability P (X,Y) of the state:

hQi =
Z
dX dY Q(X) P (X,Y) , (2.7)

P (X,Y) =
e�U(X,Y)/kBT

R
dX dY e�U(X,Y)/kBT

. (2.8)

With equation (2.6), equations (2.7) and (2.8) can be rewritten without ex-

plicit reference to the solvent degrees of freedom Y, which are integrated out :

hQi =
Z
dX Q(X) P (X) , (2.9)

P (X) =

Z
dY P (X,Y) , (2.10)

P (X) =

R
dY e�[Uu(X)+Uv(Y)+Uuv(X,Y)]/kBT

R
dX dY e�[Uu(X)+Uv(Y)+Uuv(X,Y)]/kBT

. (2.11)

Equation (2.11) can be simplified with recourse to the potential of mean force

W (X) [Kirkwood, 1935]:

P (X) =
e�W (X)/kBT

R
dX e�W (X)/kBT

. (2.12)

Therefore, an e↵ective potential W (X) exists which preserves all information

about the influence of the solvent on the equilibrium properties of the biomolecule

[Roux and Simonson, 1999]. This is the goal of an implicit solvation model.

In proteins, residues may be attracted to each other due to hydrophobicity,

and this can be incorporated into non-bonded interaction terms between residues as

a means of capturing the solvent’s e↵ects implicitly [Bereau and Deserno, 2009].
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2.1.3 Validating a CG model

There is no obvious objective means with which to compare CG model quality.

However, techniques exist which can provide some ranking.

Decoy sets [Samudrala and Levitt, 2000] are large sets of conformations of a

given protein, in which one conformation is the true native state, and the others are

decoys. A CG model can be tested on its ability to distinguish the native structure

from the decoys, and can be given a score based on how many or few decoys ‘fooled’

the model. Many sets relevant to one application may be used, to provide a reliable

and pertinent result [DeVane et al., 2009].

A more recent approach is to use the relative entropy Srel of a model system,

given by

Srel =
X

i

pT(i) ln
pT(i)

pM(i)
, (2.13)

in which pT(i) is the probability of configuration i in the target system, and pM(i)

is that of the model system. This is argued by Shell [Shell, 2008; Chaimovich and

Shell, 2010] to be of fundamental physical significance to multiscale problems, with

a minimum in this function representing a minimum in information lost in coarse-

graining.

2.1.4 Choices of coarse-grained models

Two coarse-grained models have been selected as suitable for the goals of the project.

These are the continuous-potential PLUM model [Bereau and Deserno, 2009] and

the discontinuous-potential PRIME20 model [Cheon et al., 2010]. fig. 2.1 shows that

both models feature a four-site-per-residue level of coarse-graining, with three sites

representing the backbone and a single bead for the side-chain.

The models are designed for implicit solvation and aim to natively find sec-

ondary structure. Neither model explicitly includes charged interactions, though this

information is partially included in the resultant parameters, because they come

from statistical analyses of data on atomistic and residue distance distributions.

Both include directional interaction potentials for backbone-to-backbone hydrogen

bonding. Both models’ potentials are knowledge-based for the crucial side-chain

non-bonded interactions.
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Cβ

(a) PLUM model site scheme [Bereau
and Deserno, 2009]

(b) PRIME20 model site scheme [Cheon
et al., 2010]

Figure 2.1: The PRIME20 and PLUM models are identical in their mappings of
atoms to coarse-grained sites. All residues feature a single side-chain site, except
for glycine which has no side-chain site. The PLUM model backbone maintains
its spatial arrangement through continuous-potential bonds, angles and dihedrals as
in equation (2.2), while the PRIME20 model relies upon square bonds and square
pseudo-bonds, seen in fig. 2.1b.

PLUM

The PLUM model, introduced in 2009 [Bereau and Deserno, 2009], is designed to

model protein folding and aggregation, with a goal of being useful where the protein’s

conformation is “not known, not well defined, strongly perturbed from the native

state, or adjusts during aggregation events”.

Non-bonded side-chain chain interactions take the form:

Uhp(r) =

8
>>>>><

>>>>>:

4✏hp

⇣
�C�

r

⌘12
�
⇣
�C�

r

⌘6
�
+ (✏hp � ✏0

ij

) , r  rc ,

4✏hp✏0
ij

⇣
�C�

r

⌘12
�
⇣
�C�

r

⌘6
�
, rc  r  rhp,cut ,

0 , r > rhp,cut ,

(2.14)

with the Van der Waals side-chain bead radius �
C� = 5.0 Å, normalised interaction

strengths ✏0
ij

, mixed for residue type i and j as ✏0
ij

=
q
✏

0
i

✏

0
j

and free parameter ✏hp.

The ✏
i

values are derived from a study of protein crystal structures [Miyazawa

and Jernigan, 1996], which resulted in a 20⇥20 table of relative interaction strengths

✏

ij

. These were reduced in the PLUM work to 20 interaction parameters ✏
i

which

are designated as hydrophobic interactions Uhp, but also capture some other e↵ects.

The process of reduction was referred to by the authors as “deconvolution”. The

mathematical processes involved were not made clear, but the original parameters

✏

ij

and the new quantities ✏
i

have a correlation coe�cient of 98%.
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PRIME20

The PRIME model was originally introduced in 2001 [Voegler Smith and Hall, 2001]

to study secondary structure formation. [Cheon et al., 2010] document e↵orts to

extend the PRIME coarse-grained protein model to be usable for a protein made

of any of the 20 amino acids. Unlike Bereau’s scheme, the PRIME20 model uses

discontinuous potentials in the form of square wells and hard spheres. This is an

austere coarse-graining of the potential, but, if this approach is successful in finding

secondary structure, it has a big advantage in its ability to employ discontinuous

molecular dynamics [Alder and Wainwright, 1959; Rapaport, 1978; Bellemans et al.,

1980].

PRIME20 uses a knowledge-based potential (see section 2.1.1); a set of 711

protein structures which were not membrane proteins or multi-domain proteins, did

not have missing atoms, partial representations, broken chains, or non-standard

amino acids, and did not feature ligands, small single helices or coiled peptides was

obtained from the Protein DataBank [Berman et al., 2000] for use in parametrisa-

tion. The three pseudo-atoms NH, C
↵

H, and CO were mapped to the centres of the

backbone atoms N, C
↵

, and C, respectively, and the single side-chain pseudo-atom

was mapped to the centre of mass of the PDB side chain. In this way, distribution

functions for all pairs of atoms were plotted. Instead of regular radial distribution

functions, which provide no obvious choice for well radius, a distribution function

is used which only counts pairs of united atoms in which more than half of the

distances between the heavy atoms of the first united atom and that of the second

united atom are less than 5.5 Å. The justification for picking 5.5 Å is not made

clear. The sphere diameters are then chosen to be equal to the lowest distance for

which the distribution function is nonzero, and the well radii are chosen to capture

approximately 90% of the distribution.

The crucial non-bonded side-chain interactions are more sophisticated in

PRIME20 than in PLUM in two ways. First, bead sizes and bead well diameters for

the side-chain bead C
�

are arrived at separately for each residue in PRIME20,

whereas in PLUM a single Van der Waals radius of 5.0 Å is used. Secondly,

PRIME20’s non-bonded interactions are parameterised for pairs of side-chain site

types, rather than for single side-chain sites which then require mixing rules. This al-

lows for di↵erences between di↵erent amino acids which wouldn’t survive a mixing

scheme, such as charge and side-chain hydrogen bonding, to be implicitly repre-

sented. The non-bonded side-chain well-depth parameters ✏
i

are estimated using a

stochastic iterative learning algorithm, which seeks to ensure that generated decoy

structures are less stable than native structures.
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The model was utilised by the group originally to fold alanine chains [Voe-

gler Smith and Hall, 2001] and subsequently to form secondary and tertiary �-

structure from short chains in multiplicity with positive results [Cheon et al., 2011;

Wagoner et al., 2012], however, third-party testing is lacking.

2.2 Accelerated sampling techniques

Accelerated sampling techniques seek to sample a system’s configurational space

e�ciently. The properties of the system are altered in unphysical ways to this

end, with the caveat that the system’s properties of interest must be recoverable.

Accelerated sampling techniques fall into 3 broad categories [Laio and Gervasio,

2008].

The transition mechanism group of acceleration techniques seek to sample

in a manner useful to understanding the kinetics of a transition. For example, in

transition path sampling, paths are generated by importance sampling of trajec-

tory space, such that most time is spent sampling transition paths [Bolhuis et al.,

2002]. Developing a coarse-grained model which displays realistic transition prop-

erties would be a di�cult task. Furthermore, an a priori knowledge of the two

states between which a transition of interest will be studied is required [Juraszek

and Bolhuis, 2006]. Since understanding the transition paths in detail is not a key

part of this project, there is no reason to invest time in these methods.

Techniques in which collective variables, thought to characterise the macrostate

of the system, are picked, and aim to flatten the probability distribution with respect

to these collective variables, make up the second family. For example, in metady-

namics [Laio and Parrinello, 2002], the system is forced out of local minima in the

free energy landscape by adding terms to the potential which are Gaussian in collec-

tive variable-space [Laio and Gervasio, 2008]. The choice of collective variables must

be made with care; a poor choice will not aid the full exploration of accessible phase

space and can mask the true nature of the energy landscape. A popular choice for

a collective variable in the case of phase transitions is the potential energy [Trudu

et al., 2006]. It is not clear or obvious what a good choice would be for IDPs.

The third family of techniques makes use of high temperatures to explore

phase space e�ciently alongside the lower temperatures which are actually of inter-

est. Alternatively, a similar e↵ect is achieved by exploring phase space in a biased

manner, as a function of the potential energy. These methods are quite generally

applicable, and therefore will be used in this project. Two techniques from this

family will be described in detail and used.
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2.2.1 Replica exchange molecular dynamics

Replica exchange molecular dynamics [Sugita and Okamoto, 1999] is a reformulation

of replica exchange Monte Carlo, which was developed by Swendsen and Wang [1986]

and allows low-temperature simulations to easily explore phase space, with reduced

hindrance from potential energy barriers.

M non-interacting systems indexed i 2 {1, ...,M}, with the same Hamiltoni-

ans H, but in di↵erent heat baths at temperatures T
i

obeying T

i

< T

i+1, attempt to

swap states with their nearest-temperature neighbours. In the Monte Carlo formu-

lation, only the coordinates X
i

had to be swapped. In molecular dynamics, rather

than swapping the momenta P

i

, the current momenta are scaled according to the

new heat bath’s temperature T

i±1 and the old heat bath’s temperature T

i

:

Pi !
r

T

i±1

T

i

Pi . (2.15)

This is a natural choice in order to satisfy the average kinetic energy at

temperature T , in a system with N particles [Sugita and Okamoto, 1999]:

hE
K

i
T

=

*
NX

k

p

2
k

2m
k

+

T

=
3

2
NkBT. (2.16)

The detailed balance condition can be satisfied by the usual Metropolis pre-

scription Sugita and Okamoto [1999], leading to a transition matrix specified by:

T (j  k) =

8
>>><

>>>:

↵(j  k) , ⇢

j

� ⇢
k

, j 6= k ;

↵(j  k)
⇢

j

⇢

k

, ⇢

j

< ⇢

k

, j 6= k ;

1�
P

j 6=k

T (j  k) , j = k ;

(2.17)

⇢ = exp

(
�

MX

i

�

i

H(X
i

,P

i

)

)
. (2.18)

Here, k is the current state of the generalised ensemble, and j is the state after

an exchange. Move proposal probability is ↵(j  k) = ↵(k  j) and Boltzmann

weight for the generalised ensemble is ⇢. Following this prescription, swap moves do

not disturb the Boltzmann distribution corresponding to any particular canonical

ensemble [Frenkel and Smit, 2002, p. 389]. Resultantly, ensemble averages can be

determined as in a regular simulation, but with far less computation required to
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adequately sample phase space.

A major drawback of this method is that the canonical sampling means that

unlikely states may not be visited at all, so the estimated free energy may have large

errors in some regions.

Due to the acceptance criteria and the nature of the Boltzmann weighting in

equation (2.18), the acceptance probability declines exponentially with the di↵erence

between the two inverse temperatures � Sugita and Okamoto [1999]. Furthermore,

the number of replicas required for e�cient sampling has been shown to scale as

O(f1/2), f being the number of degrees of freedom of the system [Fukunishi et al.,

2002]. Clearly, this is more problematic in an explicitly solvated simulation, in which

f is greater. To counteract this, an altered method, known as Replica Exchange with

Solute Tempering or REST [Liu et al., 2005] and since developed into REST2 [Wang

et al., 2011] has been created. REST2 achieves a scaling of O(x), where x � f

s

, for

a number of degrees of freedom of the solute alone f

s

[Wang et al., 2011]. This is

achieved with a deformed Hamiltonian, causing the solute-solute and solute-solvent

interactions to be tempered, while solvent-solvent interactions are una↵ected and

occur at the reference temperature.

2.2.2 Statistical temperature molecular dynamics

Statistical temperature molecular dynamics (STMD) [Kim et al., 2006, 2007] is a

flat-histogram sampling technique which is based upon the Wang-Landau Monte

Carlo algorithm [Wang and Landau, 2001b,a]. In Wang-Landau sampling, the cen-

tral idea is to arrive at a flat potential energy distribution by weighting the Monte

Carlo acceptance probability by w(U) = 1/⌦(U). ⌦(U) is the density of states,

connected to the microcanonical entropy as S(U) = kB ln⌦(U). This leads to a

uniform random walk in potential energy space.

⌦(U) is not known a priori, so a running estimate ⌦̃(U) is kept. Initially,

⌦̃(U) = 1 is set. Next, every time an energy U

i

is visited, the density of states is

updated via the operation ⌦̃(U
i

)! f⌦̃(U
i

), where f is a modification factor and is

greater than 1. Each update operation diminishes the probability of a return visit

to U

i

.

A histogram of visits to energy states is kept, and, when it becomes flat

within a given tolerance, the modification factor f is decreased (conventionally by

the operation f !
p
f), the histogram is reset, and the simulation continues. In the

limit f ! 1, ⌦̃(U)! ⌦(U).

In STMD, the statistical temperature T̃ (U) is the object of the running

estimate, instead of ⌦̃(U). The two are connected as follows:
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1

T̃ (U)
=
@S̃(U)

@U

= kB
@ ln ⌦̃(U)

@U

. (2.19)

Rewriting as a central finite di↵erence approximation:

1

T̃ (U
i

)
⇡ S̃(U

i+1)� S̃(U
i�1)

2�
, (2.20)

in which � is the di↵erence in energy between two adjacent bins in the statistical

temperature histogram. Feeding the WL update scheme ⌦̃(U
i

) ! f⌦̃(U
i

) into

the microcanonical entropy S = kB ln⌦(U), we obtain an entropy update scheme

S̃(U
i

) ! S̃(U
i

) + kB ln f . Equation (2.20) shows that the statistical temperature

estimate T̃ (U
i

) needs to be updated if either U
i±1 are visited. Given that the current

value for T̃ (U
i

) is derived from equation (2.20), the entropy update scheme tells us

how to update T̃ (U
i

) if U
i+1 is visited;

1

T̃new(Ui

)
⇡ S̃new(Ui+1)� S̃(U

i�1)

2�
=

1

T̃old(Ui

)
+

kB ln f

2�
, (2.21)

or if U
i�1 is visited;

1

T̃new(Ui

)
⇡ S̃(U

i+1)� S̃new(Ui�1)

2�
=

1

T̃old(Ui

)
� kB ln f

2�
. (2.22)

Equivalently, if U
i

is visited, both T̃ (U
i±1) must be updated as follows:

1

T̃new(Ui±1)
⇡ 1

T̃old(Ui±1)
⌥ kB ln f

2�
, (2.23)

and this is the STMD update scheme.

An alternative but equivalent formulation due to Allen and Quigley [2013],

which highlights the similarity between STMD and Wang-Landau further, is to

preserve the Wang-Landau entropy update scheme, S̃(U
i

)! S̃(U
i

)+kB ln f , and to

calculate T̃ (U
i

) when needed as a central di↵erence approximation, using equation

(2.20).

Either of these can be readily implemented into statistical temperatureMonte
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Carlo, altering the acceptance probability to obtain non-Boltzmann sampling. To

implement statistical temperature in molecular dynamics, the generalized ensemble

simulation technique is used [Nakajima et al., 1997], with the temperature held at

T0. In the canonical ensemble,

P (U) =
1

Z

⌦(U)e�U/kBT0
, (2.24)

in which Z is the canonical partition function and T0 is the thermostat-maintained

temperature of the simulation, and not the statistical temperature estimate. A flat

distribution is obtained by altering the potential U to be UMC(U):

⌦(U)e�UMC(U)/kBT0 = C , (2.25)

where C is a constant of choice; let C = 1 for ease. Thus,

UMC(U) = kBT0 ln⌦(U) = T0S(U) . (2.26)

Implementing this potential gives

fSTMD = �r(T0S(U)) = �T0
@S(U)

@U

rU =
T0

T (U)
fTrue , (2.27)

where fSTMD is the scaled force on each atom due to the multicanonical potential,

and fTrue is the force on the respective atom due to the normal (canonical) potential.

After collecting the data on T̃ (U) in a simulation, the estimate for the entropy

is then given by

S̃(U) =

Z
U

Ul

1

T̃ (U)
dU , (2.28)

with an arbitrary lower integration limit U

l

. Now the canonical ensemble average

of an observable can be calculated for the system.
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2.3 Summary

The problem of simulation of intrinsically disordered proteins is a recent one, and it

would be of great utility to the intrinsically disordered protein community to develop

reliable methods by which simulations of intrinsically disordered proteins can be

accelerated. Little is known about the degree to which protein representations can

be coarse-grained in the case of IDPs, but it is less likely that models with significant

simplifications of the backbone could yield good results. Two models have been

selected for experimental study with n16N systems; PLUM and PRIME20, and

these both maintain three beads per residue on the backbone, and one on the side-

chain.

Accelerated sampling schemes disconnect a molecular dynamics experiment

from realistic reproductions of the dynamics by introducing unphysical alterations,

leaving the statics of the system available for retrieval. Two very general methods

have been recruited here; replica exchange and statistical temperature. The former

simulates the system at high temperature in parallel to the reference temperature,

and executes Monte Carlo style dice throws to swap the systems’ configurations

in keeping with canonical ensemble probability statistics. The high temperature

replica explores phase space relatively freely. The latter implements a multicanoni-

cal potential which progressively reduces the probability of visiting the most likely

configurations of the system through learning the density of states ⌦(U). The sys-

tem arrives at a uniform sampling of the potential energy space, and data from this

uniform sampling regime can be reconstructed into canonical statistics.
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Chapter 3

Software modifications and

validation

The principle technical work which was necessary to advance with the project is

described in this section. In section 3.1, the parametrisation of the hard-particle

model used in the DynamO program is described, and in section 3.2, the PLUM

model’s implementation into LAMMPS is described.

3.1 PRIME20 initial parametrisation

The chief barrier to implementation of the PRIME20 model was the absence of many

crucial parameters from the literature. The antecedent model, PRIME, lays out

the backbone geometry, alanine side-chain bead geometry, and hydrogen bonding

geometry and energetics [Voegler Smith and Hall, 2001], which are inherited by

PRIME20. A parameter governing the tolerance of bond distance fluctuations was

updated in a 2004 paper [Nguyen et al., 2004] to induce a more realistic exploration

of (�, ) phase space. The full PRIME20 model debuted in 2010 and filled in square-

well interaction energies, hard sphere radii and square-well radii for side-chain to

side-chain interactions, as well as backbone to side-chain interaction energies [Cheon

et al., 2010]. Absent from these papers are backbone to side-chain hard sphere and

square-well radii, bond and pseudo-bond lengths attaching the side-chains to the

backbone, side-chain bead masses and parameters changed since PRIME.

Fragments of this information are scattered through the later literature [Cheon

et al., 2011; Wagoner et al., 2011; Cheon et al., 2012], but the picture remains far

from complete. After attempts to communicate with the original authors on this

point proved unfruitful, the decision was made to advance by delving into parametri-
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sation in order to create a PRIME20-based model.

3.1.1 PRIME model validation

The PRIME model can retrospectively be seen as almost a subset of the PRIME20

model; only one side-chain bead type, no non-bonded interactions except for hydro-

gen bonding, and two modified parameters. Since its description in the literature is

complete, it provides an excellent starting point for validation. The original PRIME

model will be referred to as PRIME2001, to distinguish it from the larger PRIME20

model. In this section, simulations are run for at least 2.4⇥ 106 collisions in a large

periodic box.

Unfortunately, the parameter set provided as the PRIME2001 model does not

lead to the behaviour shown in the reference work [Voegler Smith and Hall, 2001].

The model possesses a very limited ability to hydrogen bond when a side-chain bead

is present. With an example system of A20 at a reduced temperature of 0.07 in a

REMD simulation, the system averages just 32.70% of the maximum number of

possible backbone hydrogen bonds. Looking at ↵-type backbone hydrogen bonds

exclusively (i.e. with a spacing obeying i+ 4! i), the number is 0.02%. As shown

in fig. 3.2, the equilibrated A20 system ought to nearly be a full ↵-helix all of the

time at any temperature below 0.125, according to the reference work.

In 2012 the parameter giving the maximal distance between NH and CO

beads for a hydrogen bond to exist was updated from its earlier stated value of 4.20

to 4.50; implementing this change in the current work improved the accessibility of

hydrogen-bonded conformations, but did not fully fix the problem. Instead, it was

found that the two percentages given above rise to 69.14% and 42.77%, respectively.

It is telling that the ⇡-helix, defined by i + 5 ! i, emerged as a common motif,

scoring 45.28%. This conformation may be popular because the spiral of the chain

is slightly less tightly wound, hinting at an underlying steric clash. (Note that we

should not expect consistency between these percentages, because the denominator

of the fraction is varying: the maximum number of hydrogen bonds is taken as N

when being type-agnostic, as N � 4 when considering ↵-type only, and N � 5 for

⇡-type. N is the number of residues in the chain.)

Diagnosis of the problem was made easier through the authors’ inclusion

of Ramachandran plots, revealing the sterically accessible portion of (�, ) phase

space. Ramachandran plots in the authors’ work do not state the experimental

temperature or chain length, but the application of trial and error makes finding a

good match possible. In fig. 3.1, the accessible regions in the author’s work and the

present reproduction are compared.
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(a) Reference data; alanine chain
[Voegler Smith and Hall, 2001].

(b) Reference data; glycine chain
[Voegler Smith and Hall, 2001].

(c) A20 system represented in the
canonical PRIME2001 model.

(d) G20 system represented in the
canonical PRIME2001 model.

(e) A20 system represented in a cus-
tomised PRIME2001-like model.

(f) G20 system represented in a cus-
tomised PRIME2001-like model.

Figure 3.1: Ramachandran plots showing the exploration of (�, ) phase space for
PRIME2001 chains, according to the reference [Voegler Smith and Hall, 2001], our
independent reproduction, and a reproduction with a modified parameter set. Note
that T = 0.15 is a high simulation temperature, certainly above that used by the
original authors. By modifying the parameter set, it is possible to reproduce the
reference data’s accessible regions with moderate accuracy.
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Fig. 1.3 categorised the causes of excluded regions into di↵erent steric clashes.

This helps identify the wrong-sized clash regions as: (1) the central elliptical region

due to the CO
i�1...NHi+1 clash, which is too large and entirely prohibits the ↵-helix

peak region, (2) the lower horizontal region due to the C�

...NH
i+1 clash, which is

too small and erroneously makes values of  < �45� and  > 170� accessible in

the A20 simulation, and (3) the right vertical region due to the CO
i�1...C

� clash,

which is too small and erroneously leaves the ↵L region prominently accessible.

The beads involved in each clash are implicated in other clashes. Specifically,

fixing error (1) by reducing the CO bead exacerbates error (3), and doing so by

reducing the NH bead exacerbates error (2). These also change the properties

of the clashes which are not currently problematic. Many preliminary simulations

were carried out to determine empirically that no geometrically consistent set of

bead sizes produces matches of figures 3.1a and 3.1b.

Reducing the CO
i�1...NHi+1 hard-sphere interaction diameter by 85% caused

the central excluded ellipse to shrink to an appropriate size, but jettisoned the ge-

ometric consistency of hard-sphere mixing rules. The original authors make use of

an allowed 25% overlap between beads separated by less than four bonds along the

chain, and our approach to retaining consistency in the model is similar: since the

CO
i�1...NHi+1 interaction is the only steric consideration with participants sepa-

rated by as many as four bonds along the chain, we set an allowed 15% overlap

between backbone beads separated by this amount. This approach allowed us to

respect the author’s original bead sizes for all interactions that do not qualify, and

to maintain geometric consistency. This is the sole change between the canonical

model of glycine shown in fig. 3.1d and the PRIME2001-like version in fig. 3.1f.

Both errors (2) and (3) were amenable to an increase in the C� bead-size.

The bead was originally set at a size of 4.408, and an increase to 5.0 was determined

by trial and error to be an optimal change. These two alterations combine to

produce 3.1e in the simplest possible manner.

It is implied in the source of the model [Voegler Smith and Hall, 2001] that

the hydrogen bond well-depth parameter is equal to 1.0 in their system of reduced

units. However, a value of 1.26 more accurately reproduces the authors’ plotted

behaviour as a function of temperature, and fig. 3.2 shows this. The discrepancy

must stem from the di↵ering parameter sets, perhaps the use of a C
�

bead at a

size of 5.0, which may be large enough to fractionally infringe upon the ↵-helix’s

(�, )-space; see the reference work’s fig. 16. In fig. 3.3, Ramachandran plots are

displayed at a temperature causing them to match 3.1a and 3.1b more closely, with

regards to peaks and regions which are unfavoured, but not forbidden.

38



0.08 0.1 0.12 0.14 0.16 0.18 0.2
Reduced temperature

0

20

40

60

80

100
A

v
er

ag
e 

p
er

ce
n
ta

g
e 

α
-h

el
ic

al
  
  
  
  
  
 h

y
d
ro

g
en

 b
o
n
d
s

Smith2001 dataset
PRIME-like model; ε

HB
= 1.0

PRIME-like model; ε
HB

 = 1.26

PRIME20-like model; ε
HB

= 1.0

Figure 3.2: Behaviour of a chain of A20 in PRIME2001, PRIME2001-like and
PRIME20-like models. After altering the 2001 model to reproduce the authors’ ac-
cessible areas (see fig. 3.1), we see here that the hydrogen bond interaction strength,
✏HB, needs raising to 1.26 to match the reference data best. In the PRIME20-like
model, ↵-helices are far more stable. Unfortunately, no data for the behaviour of
A20 in the canonical PRIME20 model is available.

(a) A20 system. This is a good qualitative
match to fig. 3.1a, though the ↵-helix peak
is centred at (�, ) = (�73,�34), compared
to the source work’s (�82,�19).

(b) G20 system. In addition to having
matching excluded regions to fig. 3.1b, a
horizontal region centred on  = 0.0 is less
favoured than other allowed regions.

Figure 3.3: Ramachandran plots in the custom PRIME2001-like model at T = 0.125,
with ✏HB = 1.26. These plots illustrate that the PRIME2001 data in fig. 3.1a and
3.1b can be reproduced by the custom model.
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3.1.2 Parametrising a PRIME20-like model

The PRIME20 model provided non-bonded interaction specifications between side-

chain beads, allowing peptides composed of all 20 amino acids to be simulated. Our

work with the PRIME20-like model additionally includes an update on the universal

bond fluctuation tolerance, which was modified from � = 2% [Voegler Smith and

Hall, 2001] to � = 2.375%, a value which “produces a more realistic Ramachandran

plot” [Nguyen et al., 2004].

Section 3.1 explains that we have been unable to obtain multiple essential

parameters from the original authors. The hydrogen bond well diameter has been

updated, but its value has been provided subsequently [Cheon et al., 2012]. The

side-chain bead masses are missing, but these do not a↵ect ensemble averages. The

simple approach used here is to set side-chain bead masses to the sum of the textbook

masses of the constituent atoms. Later PRIME20 publications suggest that the

same was done for PRIME20 [Cheon et al., 2011; Wagoner et al., 2011; Cheon et al.,

2012]. A more nuanced approach which could be useful to study dynamics accurately

would be to include mass contributions from bound water. Other solvent e↵ects on

dynamics which are not strictly inertial contributions may be best captured via the

damping coe�cient of a Langevin thermostat, equation (1.11).

This leaves the set of parameters governing backbone to side-chain interac-

tions, including hard sphere diameters, well radii, bond lengths and pseudo-bond

lengths. Following the lead of the PLUM model [Bereau and Deserno, 2009], set-

ting these interactions the same as alanine (in the PRIME2001-like model) may

be an acceptable simplification, and is certainly more time-e�cient than separately

parameterising each residue’s set via its impact on the Ramachandran plot.

Therefore, we set bond and pseudo-bond lengths to 2.44 Å, 1.531 Å and

2.49 Å for NH, CH and CO, respectively. We set all non-bonded bead diameters

�d to values which result from mixing the alanine bead size of 5.0 Å with the

PRIME2001-like backbone bead sizes. Well diameters are set somewhat arbitrarily

to 1.5�d, which brings their ranges to similar values to the non-bonded side-chain

to side-chain interaction ranges.

PRIME20 implementation details

The PRIME20-like model was implemented in the event-driven simulation package

DynamO [Bannerman et al., 2011]. DynamO is a FOSS (free and open source) pro-

gram distributed under the terms of the GPL version 3 license [gpl, 2007]. Its source

code is written in modern C++11 and is fully object-oriented. The PRIME20-like
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model was implemented with great help from the primary developer, Marcus Ban-

nerman. The completed implementation comes to 1356 lines of C++ code. Along

with smaller tools to set up simulations in the model, the completed work is now

available for the public for use.

The A20 system

The PRIME20 model features an extended range for the hydrogen bond interaction

in order to allow for larger side-chains, and the A20 peptide in the PRIME20-like

model was found to form far more stable ↵-helices than the PRIME2001-like model,

in which the side-chain is expanded to 5.0 Å, but the hydrogen bond range is not

adjusted accordingly. This is plotted in fig. 3.2; unfortunately, no comparable data

for the canonical PRIME20 model is known to be available. This result leads to the

conclusion that the hydrogen bond interaction strength should be left at 1.0 for the

PRIME20-like model.

The 48-peptide A�16�22 system

An opportunity to compare our PRIME20-like model to the canonical model exists

due to a published study using the PRIME20 model on residues 16 to 22 of the �-

amyloid (A�) protein [Cheon et al., 2011], which is linked to Alzheimer’s disease. 48

peptides of the corresponding sequence, KLVFFAE, known as A�16�22, are placed in

a simulation box and aggregation occurs, governed by �-sheet secondary structure.

The original authors simulate the systems at reduced temperatures T

⇤ 2
{0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.197, 0.20, 0.205}, at con-

centrations 10mM and 20mM, for 5 or 10 runs each.

It was infeasible to recruit a matching level of computational brawn to study

this large system in the present project, but trial runs on the system were conducted

at T ⇤ = 0.17 and T

⇤ = 0.20 at 20mM, to check that aggregation occurs as expected

and results are similar. Each system ran for 5.0 ⇥ 1010 events. Both systems pro-

ceeded to aggregate into layered �-sheets, as in the reference work. Fig. 3.4 shows

the structures which were observed at the end of each run.

The reference work defines a test of parallel or anti-parallel structure. The

orientation of two bound peptides is measured by the angle ✓ between vectors down

each chain, measured from the second C
↵

atom to the second-from-last. The con-

dition for parallel is ✓ < 60�, and the condition for anti-parallel is ✓ > 120�. The

current work takes two peptides to be bound in �-structure when they share four

or more hydrogen bonds. The simulations carried out here ended with averages of
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72.6% and 70.0% anti-parallel structure for T ⇤ = 0.20 and T

⇤ = 0.17, respectively.

These are slightly weaker preferences for anti-parallel structure than the reference

work, whose ranges are approximately 90% to 100% for T ⇤ = 0.20, and 72% to 90%

for T ⇤ = 0.17, over five runs.

The original study observes that, rather than perfectly anti-parallel �-sheets

coming together when the peptides first aggregate, “parallel strands that formed

early in the simulation switch to an anti-parallel orientation by a continuous stochas-

tic process”, and that this is most likely immediately below the fibrilization tran-

sition temperature. Therefore, one possible source for the discrepancy in observed

�-structure, especially at T ⇤ = 0.20, would be a small change in the transition tem-

perature caused by di↵erences from the reference model. Another cause may be the

lower run time in the present study; the original study had runs of up to 2.68⇥1011

events, compared to 5.0⇥ 1010 here.

3.2 Implementation work in LAMMPS

LAMMPS is a FOSS program distributed under the terms of the GPL version 2 [gpl,

1991]. Its source code is written in C++, and the high-level organisational structure

is object-oriented, leading to an easily extensible modular code-base. However, all

significant computations within each class are performed with low-level C-style data

structures and operations, which may be faster.

LAMMPS can be compiled as an executable binary which reads an input

script for instructions. Less commonly, LAMMPS can be compiled as a library

object, which can then be called and instructed from another program or script.

This suggests two paths for modifying and extending LAMMPS.

3.2.1 The PLUM model

Usage of the PLUMmodel required implementation of the piecewise hydrophobic po-

tential and the 6-body backbone hydrogen bond. The former uses a Lennard-Jones

piece in the attractive domain, a Weeks-Chandler-Andersen piece in the repulsive

domain, and zero force and potential above the cut-o↵ distance. This enables a

consistent excluded volume for each side-chain bead, while the attractive portion

is scaled. The hydrogen bond is a 12-10 Lennard-Jones interaction multiplied by

a directional term which reaches its minimum when the first residue’s nitrogen-to-

hydrogen vector and the second residue’s carbon-to-oxygen vector point at each

other [Bereau and Deserno, 2009]. Since backbone hydrogen and oxygen atoms
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Figure 3.4: Final structures of the 48-peptide A�16�22 system in the PRIME20-like
model. Both structures form �-sheets, with a preference for anti-parallel �-strands.
Left: T

⇤ = 0.17 simulation. Five sheets feature all 48 chains. Right: T

⇤ = 0.20
simulation. The 45 chains shown make up four sheets, while one chain is free and
two are disordered on the surface of the structure.
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are not explicitly represented, a further complication is calculating their implicit

position. The completed implementation comes to 1323 lines of C-style C++ code.

The tripeptide GAG system

Validation begins with replication of the authors’ figure 4b, which shows the free

energy landscape of (�, ) phase space for the tripeptide GAG. This depends upon

the bonded interactions and leaves out the non-bonded interactions and hydrogen

bonding. A good match between the original authors’ work and the present work is

shown in fig. 3.5.

(a) Reference data. (b) Validation data.

Figure 3.5: Validation data for the bonded components of the PLUM model, con-
trasted with the reference data [Bereau and Deserno, 2009]. The free energy land-
scape of the Ramachandran plot is shown for the GAG tripeptide at T ⇤ = 1.0. The
colour represents the free energy di↵erence with the lowest conformation in reduced
units. Both datasets result from REMD simulations at reduced temperatures 0.5,
0.7, 1.0, 1.3, 1.6, 1.9, 2.2 and 2.5. WHAM [Ferrenberg and Swendsen, 1988; Ku-
mar et al., 1992, 1995] and MBAR [Shirts and Chodera, 2008] are used to produce
reweighted analyses in the reference data and the validation data, respectively.

15-unit GNNQQNY system

For validation of the complete model, we reproduce the authors’ simulation of 15

units of the peptide sequence GNNQQNY. This is an aggregation system which

forms parallel �-sheets at low temperatures, transitioning to random coil monomers

at higher temperatures. The authors’ use of 8 replicas for a period of 50 ns each

yields inconsistent results in our initial simulations, suggesting an under-sampled
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simulation. Increasing the sampling to 30 replicas with more in the transition zone

and increasing the simulation time to 330 ns leads to consistent results and a far

sharper heat capacity peak, remaining in agreement on transition temperature with

the original dataset. This is shown in fig. 3.6. As with the reference simulations, at

temperatures below the peak, parallel �-sheets are observed, and above the peak,

random coil behaviour dominates.
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Figure 3.6: Heat capacity of the GNNQQNY-15 system with a 40 Å periodic
simulation box. Far greater sampling than the original simulation leads to the sharp
peak seen in the validation dataset.

A further study of GNNQQNY peptide systems using the PLUM model

[Osborne et al., 2013] found heat capacity profiles similar to the present work, though

the system sizes did not reach 15 units.

The 2A3D triple-helix bundle

The 73AA protein sequence

MGSWAEFKQRLAAIKTRLQALGGSEAELAAFEKEIAA

FESELQAYKGKGNPEVEALRKEAAAIRDELQAYRHN

is called 2A3D and is a designed three-helix bundle with a structure known from

NMR [Walsh et al., 1999]. The sequence has been simulated and found to fold

into the NMR native state in PLUM [Bereau and Deserno, 2009]. The system

was simulated in a large box in our PLUM implementation, in a replica exchange
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simulation lasting for 3.7 microseconds. The 40 thermostatted temperatures were

T

i

2 {300.0, 305.7, 311.5, 317.3, 323.3, 329.4, 335.6, 341.9, 348.4, 355.0, 361.7, 368.6,
375.7, 382.9, 390.3, 398.0, 405.8, 414.0, 422.4, 430.9, 439.7, 448.6, 457.7, 467.0, 476.4,

486.1, 496.1, 506.3, 516.7, 527.5, 538.5, 550.0, 561.8, 574.0, 586.7, 599.9, 613.8, 628.4,

643.8, 660.0} K.

The system folded as expected into the native structure below the transition

temperature, which was found to be approximately 398 K, based on the peak in

heat capacity according to equation (1.13).

3.2.2 Statistical temperature molecular dynamics

lmpSTMD is a pair of tools for using STMD in LAMMPS. Compiling lmpSTMD

produces two executables. STMDlmp converge runs a multicanonical simulation

on a system, while dynamically updating estimates of the statistical temperature in

each potential energy range, according to the STMD update scheme. STMDlmp MC

carries out the post-convergence multicanonical simulation allowing for sampling

followed by reweighting.

The implementation of STMD involves both forms of extension. The ac-

tual adjustment of forces necessary for STMD occurs within modified LAMMPS

source code. LAMMPS uses the terminology of a “fix” to describe any operation

involving per-time-step alteration of some property of the system, such as integra-

tors and thermostats. The new fix STMD is given a pointer to a function from

the driver program during its set-up. It implements a standard LAMMPS method

for fixes which is called immediately after forces for the next step are calculated

and communicated. This method calls the callback function to retrieve the STMD

force modification factor, presented as T0
T (U) in equation (2.27). The method then

proceeds to multiply every force in the system by this factor.

The driver itself is launched by the user and reads a configuration file detail-

ing settings for the simulation, making use of the library libconfig [Lindner, 2012].

It sets up the simulation, defining the LAMMPS STMD fix, recording the pointer to

the LAMMPS instance’s potential energy, equilibrating the system if specified, and

so on. Once the main LAMMPS simulation begins, the driver is only returned to

via the callback function, through which the driver program tracks and histograms

the potential energy, characterising the system and sending back the STMD force

modification factor to arrive at a uniform random walk in potential energy space.

lmpSTMD comes to approximately 2000 lines of C code and a few hundred

lines of analysis tools in Python, to reweigh collective variables and produce an

entropy estimate. The package also comes with a thorough user guide and examples.
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Validating STMD

The STMD authors validate their work using the �-barrel BLN model [Honeycutt

and Thirumalai, 1990], using the justification that “this model has been extensively

studied and provides a good example of a rugged energy landscape, which cannot be

correctly sampled by conventional MC or MD simulations.” [Kim et al., 2007]. The

model has three categories of beads; hydrophobic (B), hydrophilic (L) and neutral

(N). In particular, the 46-mer with the sequence B9N3(LB)4N3B9N3(LB)5L, which

has been extensively studied, is the validation target. This sequence folds into a

globular four-stranded �-barrel at its global energy minimum [Lee and Berne, 2000].

The authors publish the system’s statistical temperature estimate, entropy

estimate, and five related order parameters of the system. These parameters, la-

belled Q and Q

is,1 to Q

is,4, denote the structural similarity of the local energy

minimum of the current configuration to the global minimum, for the whole chain,

or �-barrels 1 through 4, respectively. The mathematical definition of Q is [Kim

et al., 2007; Guo and Brooks, 1997; Camacho and Thirumalai, 1993]

Q =
1

M

NX

i,j>i+4

✓(✏� |r
ij

� r

0
ij

|) , (3.1)

with r

ij

and r

0
ij

as the relative distances between beads i and j in the current

configuration and the global minimum, respectively. ✓ is the unit step function,

with a value of 1 for a positive argument and 0 otherwise. M is a normalisation

constant and ✏ is a parameter to allow for thermal fluctuations, set to 0.2 in the

reference work.

The validation data in fig. 3.7 juxtaposes the present results with the STMD

authors’ results [Kim et al., 2007]. A plot digitiser has been used to recover data

from image formats in the reference work. The parameter set is identical in both

studies. The statistical temperature tracking array is divided into 200 bins which

span the potential energy range [�55.0, 145.0). The temperature range explored is

[0.1, 1.3], with the thermostat held at T0 = 1.3. The update factor in equation (2.23)

begins as f = 1.0005 and is reduced when the energy distribution is near-constant,

having extrema within 20% of the average.

38-atom Lennard-Jones cluster

Lennard-Jones clusters are systems containingN identical particles interacting solely

by the familiar Lennard-Jones potential:
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(a) Convergent statistical temperature estimates T̃ (U). The STMD method appears to
give rise to fluctuations in the estimate; note that the use of a plot digitiser has hidden a
similar magnitude of fluctuations from the reference data.
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(b) Entropy estimate S̃(U) arising from the statistical temperature estimate in fig. 3.7a.
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(c) Ensemble average estimates of a collective variable Q, describing structural similarity
to the native state and defined in equation (3.1).

Figure 3.7: Validation data for the lmpSTMD software, comparing properties of the
BLN 48-mer to equivalent work in the reference paper [Kim et al., 2007]. The orig-
inal authors distinguish between staircase and linear interpolation of their running
statistical temperature estimates in fig. 3.7a and 3.7b, however this does not produce
a visible di↵erence. The current work uses linear interpolation.
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For ease, we operate in reduced units, setting ✏ = � = 1.0, kB = 1.0 and referring

to unitless quantities for energy, length and temperature.

A common challenge for optimisation algorithms is to locate the known global

minimum of a Lennard-Jones cluster system [Pillardy and Piela, 1995; Wales and

Doye, 1997; Leary, 1997]. The 38-atom Lennard-Jones system is one of a few par-

ticularly challenging cases. There are two separate funnels leading to the lowest two

minima, and the penultimate minimum is much wider and is associated with many

more local minima than the global one, so relaxation from a high temperature lends

itself to discovery only of the penultimate minimum [Doye et al., 1999].

A simulation was set up to test the proficiency of lmpSTMD to locate the

significant minima of the Lennard-Jones 38-atom system. The global minimum is

at �173.928427 [Gomez and Romero, 1994], so the window of potential energy to

explore was set as [�175.00, 13.00), tracked initially with 100 bins.

A variety of di↵erent starting parameters were attempted, including di↵erent

update factors f in the range suggested by the STMD authors; di↵erent temperature

ranges and thermostat temperatures T0 up to 1.72, far above the core and overlayer

melting point of the system [Frantsuzov and Mandelshtam, 2005]; varying bin widths

and time-step sizes. In each case, the simulation became stuck in a local minimum

at U

i

, pushing T (U
i�1) and T (U

i+1) to the temperature caps at T

low

and T

high

,

respectively. Example data is given in fig. 3.8.

The failure of lmpSTMD to traverse the system’s phase space suggests a

problem with cool Lennard-Jones systems which could be related to the STMD

scheme’s behaviour in the harmonic limit. Though it warrants further investigation,

it is not necessarily an obstacle in the domain of protein modelling.

The PLUM model with STMD

The fluctuations in statistical temperature estimate seen in the validation work’s

fig. 3.7a plagued attempts to utilise STMD as an accelerated sampling method for

PLUM model proteins. The magnitude of the fluctuations was a high-dimensional

function of the starting parameters, but two obvious parameters were seen to be

most crucial; bin count and starting f

d

. f

d

refers to equation (2.23), simply given

by f

d

= f � 1.0.

Reducing the bin count lowers the resolution of the resultant statistical tem-
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Figure 3.8: Data snapshot from an STMD simulation of the 38-atom Lennard-Jones
cluster system. Statistical temperature estimates are very far from convergence, as
the simulation quickly became stuck in a local minimum configuration. This resulted
in repeated erroneous revisions of the statistical temperature estimates adjacent to
this bin, according to equation (2.23). The visits histogram is reset the first time
a bin’s statistical temperature estimate reaches the lower bound, and this is why all
other bins are at zero visits.
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perature estimate, so that the smoothing it grants is inherently accompanied by a

penalty in information that can be retrieved about the system. In practical terms,

it means that reweighted ensemble average information about the system carries

larger errors, especially in the vicinity of phase transitions.

The likely cause of the problem is that large f

d

values lead to a jagged

statistical temperature estimate during early exploration of the potential energy

landscape, before f

d

’s value is reduced to be a finer instrument. This does not

hamper achieving a flat histogram, so f

d

subsequently falls to a value at which it

is unable to e↵ectively fix the fluctuations within the time until the distribution is

judged to be flat. Reducing the starting f

d

more directly addresses the problem than

lowering the bin count, but comes with a large cost in time taken for convergence,

to the point that STMD may become infeasible.

The related Wang-Landau algorithm [Wang and Landau, 2001b,a] has been

noted to have a similar problem, referred to as saturation in the error [Belardinelli

and Pereyra, 2007a]. Modifications to its update scheme have been proposed [Be-

lardinelli and Pereyra, 2007b] and tested with success in lattice spin models, and

subsequently in lattice protein models [Swetnam and Allen, 2011].

Example data is provided in fig. 3.9, contrasting the statistical temperature

estimate produced by two very di↵erent initial f
d

values. The two runs have the

same form, but the lower starting f

d

run results in far milder fluctuations of the

estimate.
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Figure 3.9: Two STMD simulations of a single n16N peptide in a large periodic box.
100 bins span the potential energy range [�80, 125], of which the sampled subsection
is shown. The smoother dataset is not free of fluctuations and took 3⇥109 time-steps
to reach; long enough to get a thorough sample of the system from REMD.

Several solutions to the estimate fluctuation problem have been proposed.

51



Refinements of the flatness criterion and iterative f

d

reduction scheme could be of

use. The RESTMD algorithm [Kim et al., 2012] parallelised STMD by subdividing

the temperature space with a degree of overlap, so that REMD-style swaps can

occur. It may well have advantages over both of the parent methods, including

making smaller starting f

d

values feasible, but it was decided that implementing

this scheme would be too great a deviation from the project’s core goals, with some

risk of not being helpful.

The use of STMD was ultimately rejected on the basis of the preliminary

studies outlined above. While workarounds to the fluctuations problem by careful

choice of starting parameters seem possible, choosing an appropriate STMD param-

eter set itself proved to be a lengthy task involving multiple preliminary runs for

any given model system. The ubiquitous REMD method is able to characterise a

system in less wall-clock time than an STMD simulation, even with a carefully se-

lected parameter set, is able to converge on a good statistical temperature estimate,

which is itself a preliminary task in characterising the system.

3.3 Summary

The PLUM and PRIME20 models were implemented in the LAMMPS and DynamO

packages, respectively. The PRIME20 model has many unpublished parameters;

these were filled in, creating a PRIME20-like model with very similar behaviour.

The accelerated-sampling method STMD had to be implemented as it is not widely

available, whereas the REMD method is ready in most MD packages.

The STMD implementation in LAMMPS was tested in a range of scenarios,

starting with validation and moving to PLUM model protein systems. The 38-atom

Lennard-Jones system became stuck in local minima when sampled with STMD.

STMD encountered problems with fluctuations in the statistical temperature esti-

mate when dealing with a range of system types, and overcoming this obstacle was

judged to be too large a time-sink to be worthwhile. Eventually, the STMD method

was abandoned for the current project, in favour of the well-tested REMD approach.
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Chapter 4

Single-chain simulations

It is within the capacity of explicit-water, all-atom protein modellers to sample

single-chain simulations without great strain, which means that these cases can be

used to check and refine the predictive power of the coarse-grained models. In

this section, the simulation of several single-chain systems relevant to the project

is described. Simulations are carried out in both the PRIME20-like and PLUM

models, and the results are contrasted to existing atomistic simulation data. The

models are adjusted as necessary to best describe the peptides of interest at this

scale.

4.1 PLUM model simulations

4.1.1 Over-stabilisation of the ↵-helix

Simulations of a single n16N chain, denoted n16N-1, showed significant and obvious

over-stabilisation of the ↵-helix secondary structure motif over the entire length of

the chain.

A REMD simulation of the molecule was carried out with 16 replicas, each

running for 8.5 microseconds. The replicas were thermostatted at T
i

2 {275.0, 280.0,
285.0, 290.0, 300.0, 305.0, 307.5, 310.0, 312.5, 315.0, 317.5, 320.0, 325.0, 330.0, 340.0,

350.0} K.

Clustering 11400 frame samples from the 300.0K trajectory into 453 groups

containing geometrically alike structures (23.7% of which have a population of 5

frames or fewer) revealed that the dominant conformations are all ↵-helix based.

Middle structures from the top four clusters are illustrated in fig. 4.1. The g cluster

tool available as part of the Gromacs package [Berendsen et al., 1995; Hess et al.,

2008; Pronk et al., 2013], and the gromos clustering algorithm [Daura et al., 1999],
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were used. The RMSD cut-o↵ parameter, below which structures are considered

members of the same cluster, was set to 0.4 nm.

It would be unreasonable to expect unstructured behaviour to show up as

clearly as competing structured behaviour, in a structural clustering algorithm.

Nonetheless, the proportion of frames taken up by ↵-helix structure is surprising

and problematic. Ramachandran plots are provided in fig. 4.2, in order to provide

an unbiased overview of the secondary structure.

The PLUM model is designed to fold into secondary structures, and here we

observe that the model favours doing so even with a sequence that ought to show

an absence of such structure. It may be the case that coarse-grained models are

inherently too simple to capture in one parameter set both ordered and disordered

protein behaviour.

The PLUM model may be more suitable for IDPs after a conservative re-

tuning to less zealously seek secondary structure. The ↵-helix, and other common

motifs, are principally stabilised by the strong energetic favourability of hydrogen

bonding. This interaction will be the target for retuning.

In fig. 4.3, the secondary structural behaviour of the PLUM model is com-

pared to atomistic data for the chain at di↵erent values of the backbone-backbone

hydrogen bond well-depth, ✏HB. In fig. 4.3b, the data are broken down by the re-

gions of n16N outlined in fig. 1.5 and table 1.3. Each of these datasets were obtained

with the same specifications as the original n16N REMD simulation above.

Based on this study, the decision was made to proceed using an ✏HB value

set to 94.5% of the original; this will be referred to as the PLUM* model.

4.1.2 PLUM* validation work

Some of the validation work on the PLUM model was repeated for the PLUM*

model as a test that the model continued to function properly, without unexpected

changes.

The 2A3D system in PLUM*

The 2A3D triple-helix bundle is simulated in PLUM* with the same conditions as

its original PLUM model simulation, in section 3.2.1. The system is found to fold

to the same native state, the transition to disorder now occurring at approximately

375 K.
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(a) 1 (48.9%) Residues 1 to 13 form
an ↵-helix. A kink begins at residue 14,
isoleucine, immediately preceding a highly
alpha-disruptive proline. Residues 15 to
27 conform to a left-handed helix which is
the enantiomer of the ↵-helix, maintaining
i + 4 ! i hydrogen bonding. The terminal
residues 28 to 30 are lysine, lysine and cys-
teine, and these deviate from the left-handed
helix dihedral values, suggesting just three
residues of disorder.

(b) 2 (10.3%) The cluster members are
↵-helical throughout, with a ‘double kink’
centered on the proline at residue position
15. The energy penalty of the double kink
is compensated for by maintenance of the
favoured ↵ structure and non-bonded inter-
actions between the two sides of the peptide,
which are pulled closer.

(c) 3 (4.1%) A strict ↵-helix structure per-
vades the chain, with almost no variation in
dihedral angles within or between structures
of the cluster.

(d) 4 (3.7%) This structure is very sim-
ilar to 4.1a, having an ↵-helix disrupted
by a kink, leading to a left-handed ↵-helix.
In this case, the left-handed portion gives
way to disorder beginning at residue 22.
These C-terminal residues of the chain ex-
hibit lower than average alpha-helicity, as
made clear by fig. 4.3b.

Figure 4.1: The four top-occurring structures for n16N represented in PLUM at
300.0K are displayed. Each structure is labelled by its rank, with the percentage
of frames conforming to the structure parenthesised. The N-terminus is highlighted
red and kept on the right for clarity. These top four structures cumulatively occupy
67.0% of all frames with highly ordered helical structure.
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(a) 300K: A tight, sharp global peak is seen
at the coordinates for the ↵-helix, with a
secondary peak in the left-handed ↵-helix
domain.

(b) 325K: The ↵-helix peak remains sharp
and considerably dominant. The top left
quadrant may have a higher overall popula-
tion, however.

(c) 350K: The Ramachandran plot at last becomes remi-
niscent of the totally unstructured GAG molecule seen in
fig. 3.5.

Figure 4.2: Ramachandran plots showing the exploration of (�, ) phase space for
a single unit of n16N at various thermostatted temperatures. Even at 325K, the
↵-helix peak is dominant and thin. Some exploration of unfolded states and left-
handed ↵-helix occurs at all temperatures shown, but an extremely high temperature
of 350K is required for the global maximum to be in an unfolded region. This makes
it clear that the PLUM model is over-stabilising this form of secondary structure for
the n16N molecule.
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(a) Occupancy of each of the four Ramachandran quadrants. Quadrants con-
taining both left- and right-handed ↵-helices decline sharply as ✏HB falls. Most
sterically permitted (�, )-space exists in the top left quadrant, so naturally
it increases as the propensity to form ↵-helices falls.
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(b) ↵-helical structure, broken down by the regions of n16N. The decline in
↵-helical structure follows the decline in occupancy of the bottom left quad-
rant shown in fig. 4.3a, and also reaches agreement with the atomistic model
around a 5% decrease. However, when the level of structure is stratified by
subdomain, it emerges that the PLUM model does not match the atomistic
model, assigning the lowest level of ↵-helical structure to SD3.

Figure 4.3: Behaviour of the PLUM model of n16N at 300K as a function of hy-
drogen bond interaction strength ✏HB, compared to an atomistic REMD simulation
[Brown et al., 2014] with the CHARMM22* model [Piana et al., 2011; MacKerell
et al., 1998] in TIPS3P water [Jorgensen et al., 1983]. The PLUM output is very
sensitive to adjustments, and reaches peak similarity to the atomistic data with a
decrease of about 5%. Each graph has ⇥ symbols on the top axis showing the tem-
peratures of simulations which were run.
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15-unit GNNQQNY system

The �-sheet aggregation system was simulated again in PLUM*, using the same

conditions as in section 3.2.1. While the peak in heat capacity has shifted approxi-

mately from 0.96 to 0.92, the native structure below this temperature is unchanged.

4.1.3 The n16N-1 system in PLUM*

Repeating the simulation set-up of section 4.1.1, an identical clustering analysis led

to the top four structures which are given in fig. 4.4. 1593 clusters of geometrically

similar structures arose, compared to the previous experiment’s count of 453, and

the distribution was far flatter, with top four percentages of 4.4%, 3.4%, 3.0% and

2.4% compared to 48.9%, 10.3%, 4.1% and 3.7%.

The Ramachandran plot is shown in fig. 4.5. The plot resembles the Ra-

machandran plot in fig. 4.2b of the canonical PLUM model at 325 K. This is unsur-

prising, as backbone hydrogen bonds are the key non-bonded interaction in stabilis-

ing ↵-helices, and scaling interaction strength is equivalent to scaling temperature.

In this case, 0.945 ⇥ 325K = 306.125K. However, scaling a particular interaction

while leaving the others untouched leads to a finer adjustment.

It is instructive to consider how well the adjusted PLUM* model now agrees

with atomistic data, in aspects for which it has not been parametrically fitted. The

average radius of gyration of the backbone is found to be 1.04 nm in the PLUM*

model compared to 1.08 nm in CHARMM*. In fig. 4.6, secondary structure is

compared to the atomistic data on a per-residue basis. The results are promis-

ing, indicating that the PLUM* model has a good ability to select between the

primary options; ↵-structure or �-like structure, at the level of individual peptide

bonds. However, the atomistic data allows a finer comparison between specific

named structural regions, and this is given in fig. 4.7.

Region-wise cluster analyses were carried out on the chain for residues 1

to 8, 9 to 16 and 23 to 30 with an RMSD cut-o↵ of 0.2 nm. The residue ranges

were deliberately equal-length representations of SD1, SD2 and SD3, defined in

table 1.3, making comparison possible. All region analyses produced 32 clusters.

The SD1 segment’s top three clusters are populated with 41.3%, 26.2% and 9.5%

of frames, SD2’s with 48.1%, 20.2% and 9.2%, and SD3’s with 33.3%, 20.7%

and 15.7%. This disparity implies that SD3 possesses the greatest conformational

freedom, in agreement with the fly-casting hypothesis and with the atomistic results

[Brown et al., 2014].

No regional top cluster is ↵-structure. SD1’s top structures are �-hairpin,
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(a) 1 (4.4%) The structure matches the
dominant cluster in the canonical PLUM
model, fig. 4.1a. However, its percentage has
fallen dramatically, from 48.9%.

(b) 2 (3.4%) Residues 1 to 14 are in a
�-hairpin, linked by a loop formed of the
glycine and arginine that terminate SD1.
The �-hairpin is stabilised by only three hy-
drogen bonds in this central structure, which
is typical for the members of the cluster.
SD3 is disordered in this cluster.

(c) 3 (3.0%) An ↵-helix equivalent of 4.4b,
in which the final helical hydrogen bond is
at residue 16, after the chain is disordered.

(d) 4 (2.4%) The last ten residues form an
↵-helix, while the remainder of the structure
is disordered.

Figure 4.4: The four top-occurring structures for n16N represented in PLUM*
at 300.0K are shown. The backbone hydrogen bonding parameter has been reduced
to 94.5% of its canonical value. Each structure is labelled by its rank, with the
percentage of frames conforming to the respective structure parenthesised. The N-
terminus is highlighted red and kept on the right for clarity.
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Figure 4.5: Ramachandran
plot for a single unit of
n16N at 300.0K in the
PLUM* model, where the
backbone hydrogen bonding
strength parameter ✏HB is
set to 94.5% of its original
value. This confirms that
a higher degree of disorder
now occurs, though no new
peaks emerge.
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Figure 4.6: The degree of manifestation of two di↵erent forms of secondary struc-
ture; ↵-helix and, broadly, “top left quadrant”, for each individual peptide bond along
the chain. Proposed subdomains are demarcated by vertical dashed lines. The most
striking resemblance is that each top left quadrant line is punctuated by two valleys
centred on glycines, fluctuating about 0.6 otherwise. Each ↵ line hits a minimum
around SD2’s I residue, however, the disagreement in relative ↵-helicity between each
subdomain is clear. For each pair of lines, several other minor peaks and troughs
appear to line up well.
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Figure 4.7: Secondary structure content of simulations of (a) n16N in the
CHARMM22* model [Brown et al., 2014], (b) n16N in the PLUM* model, and
(c) n16NN in the PLUM* model. Data represents occupancy of Ramachandran re-
gions, without implying stable structure. The majority of segments match well in
(a) and (b), but PLUM* has greater �-structure and other structure, at the expense
of PPII structure. n16NN has an increased propensity for ↵-structure, at the ex-
pense of most other structure forms. ↵left may be under-represented in the PLUM*
data, because of di↵erences in the (�, ) angles involved in the two models, and the
authors’ choice of ↵left region, provided in their fig. S1.

↵-turn, and disorder. SD2’s top clusters are disordered, often involving a sharp turn

at the residue 14I. SD3’s top clusters are all highly extended, as one might expect

given its hypothesised role.

4.1.4 The n16NN-1 system

A variant of n16N, with the negatively charged residues switched out for neutral

substitutes (asp ! asn, glu ! gln), is known as n16NN. n16NN fails to bind with

calcite and does not have substantial interactions with calcium carbonate [Metzler

et al., 2008]. n16NN has been shown to self-assemble in an aberrant manner [Delak

et al., 2007] or not at all [Metzler et al., 2010], suggesting that a simulation without

ions may detect significant di↵erences in its behaviour.

A simulation carried out in the same manner as in subsection 4.1.3 of the

n16NN system finds subtle di↵erences in the single-peptide conformational ensemble.

A clustering analysis produces four top structures that are near-identical to those

of n16N, with changed rankings:

1. (8.3%) Identical to fig. 4.4a.

2. (3.3%) Very similar to fig. 4.4d, with the ↵-helical structure persisting for an

extra turn.
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3. (3.0%) Almost identical to fig. 4.4c, except for additional ↵-helical structure

at the start of SD3 and at the N-terminus.

4. (2.9%) Geometrically alike to fig. 4.4b, with no hydrogen bonds whatsoever

in the “�-hairpin” portion.

In addition to the fig. 4.7c, this points towards the conclusion that the

charged residues had a role in ensuring conformational flexibility. However, region-

wise cluster analyses show no clear trend towards greater local conformational free-

dom, suggesting that the di↵erence lies in whole-peptide flexibility. SD1’s top clus-

ters had populations at 40.6%, 27.8% and 8.1% of frames, SD2’s at 45.9%, 20.0%

and 15.9%, and SD3’s at 28.1%, 19.0% and 18.0%.

4.1.5 The S1 system

S1 is a bioinformatics-designed 12AA peptide, named after its place as the first

peptide designed by its authors to bind strongly to quartz [Oren et al., 2007]. CD

spectral analysis of the peptide shows a polyproline II structure, and this result is

replicated by simulation [Oren et al., 2010]. The primary structure is

PPPWLPYMPPWS .

Proline, whose one-letter symbol is P, is a unique residue because its side-

chain is bonded cyclically to both the C↵ and N backbone atoms, in a 5-membered

ring. This makes the side-chain’s structural properties unique, limiting the � dihe-

dral angle to approximately �60�, removing the preference for trans isomerisation,

and preventing the residue’s nitrogen from participating in hydrogen bonding.

The PLUM model features a proline residue which cannot hydrogen bond

through its nitrogen and has its own ! dihedral angular potential which is bimodal,

facilitating both trans- and cis-isomerisation. However, there are no further provi-

sions, and the capacity for polyproline II structure was not specifically considered

in developing the model [Bereau and Deserno, 2009].

Two sets of REMD simulations of the molecule were carried out, one in

the PLUM model and one in PLUM*. 16 replicas were used, each running for 8.4

microseconds. As with n16N simulations, the replicas were thermostatted at T

i

2
{275.0, 280.0, 285.0, 290.0, 300.0, 305.0, 307.5, 310.0, 312.5, 315.0, 317.5, 320.0,
325.0, 330.0, 340.0, 350.0} K.

Fig. 4.8 shows the Ramachandran plots resulting from these simulations, in

comparison to an atomistic-resolution simulation. The data reveals that the PLUM
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model’s current provisions for the proline residue are insu�cient to properly simulate

proline-rich peptides, and further development would be required for a peptide such

as S1 to be accurately characterised with the model, which falls outside of the scope

of this project.

(a) Atomistic simulation data [Notman et al., 2010]
conducted in the CHARMM forcefield [Brooks et al.,
1983], broadly agreeing with the CD spectral data on
the molecule [Oren et al., 2010]. The accessible space
is limited around the � = �60� line, and the peak at
(-75�, 160�) signifies PPII structure.

(b) PLUM simulation data, showing multiple allowed
regions which violate the expected structure of the
chain. No peak is observed at the location of PPII
structure, nor are allowed regions restricted around
the � = �60� line. The major peak exists in the �-
structure zone, and has a puzzling o↵shoot to higher
values of �. The third most intense peak represents ↵l

structure.

(c) PLUM* simulation of the S1 peptide. The back-
bone hydrogen bond does not appear to be an impor-
tant interaction for this peptide, as the retuning hardly
a↵ects the Ramachandran as compared to fig. 4.8b.
However, the ↵l peak is weaker.

Figure 4.8: S1 Ramachandran plots from simulation, showing a deficiency in the
PLUM model for this peptide. The ideal PPII peak, present in fig. 4.8a, is accessible
but not favoured in the PLUM and PLUM* simulations of this peptide.
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4.2 PRIME20-like model simulations

The PRIME20 model does not establish a real-units temperature scale. In order

to determine a suitable window of temperature to simulate, REMD simulations of

the peptide A20 were carried out in PLUM, PLUM* and the PRIME20-like model.

The PLUM simulations were carried out in LAMMPS and ran for 3 microseconds

each, with 40 replicas spanning [320.0, 420.0] K. The PRIME20-like simulations ran

for 1.3 ⇥ 109 events each, with 16 replicas spanning [0.1, 0.2] reduced temperature

units.

In the case of PLUM, the variance of each fixed-temperature replica’s total

energy E was used to deduce the system’s heat capacity at the replica’s temperature

T according to equation (1.13). The DynamO package has internal tools to auto-

matically calculate the heat capacity. The transition temperature of each system,

from an ↵-helix structure to disorder, is known by the peak in each system’s heat

capacity. These peaks fall at 386.7 K, 365.8 K and 0.168 reduced temperature units

in the PLUM, PLUM* and PRIME20-like models respectively. Using these data as

a rough guide, a reduced temperature of 0.13 to 0.14 is set as a plausible region for

300.0 K-like behaviour.

4.2.1 The S1 system

The S1 peptide, described in section 4.1.5, was simulated with 16 replicas spanning

a reduced temperature range of [0.07, 0.22], running for 6.1 ⇥ 108 events each, in a

large box. Unlike the PLUM model, the PRIME20 model has no publicly-known

special provisions for the proline backbone.

The simulation was unsurprisingly unsuccessful. At low temperatures, the

chain forms an ↵-helix, involving the prolines’ nitrogen atoms. At higher tem-

peratures, the chain partially unfolds into a new dominant structure with some ↵

character and some unfolded character. The transition between these states is at

approximately 0.14 reduced temperature units.

This simulation work prompted us to increase the model’s realism by dis-

abling hydrogen bonding on the proline residue’s NH bead. However, repeating the

simulation with this alteration showed that it was not su�cient to lead the peptide

to fold correctly. Cluster analysis was carried out on the backbone sites of the new

trajectories, using an RMSD cut-o↵ of 0.25 nm. It revealed that the chain cannot

maintain an ↵-helix secondary motif with such significant disruptions to the hy-

drogen bonding. The new dominant conformation is very similar to the partially

unfolded dominant conformation of the S1 simulations with proline NH hydrogen
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bonding enabled, above 0.14 temperature units. It is stabilised by internal hydrogen

bonding, including ↵-like i+ 4 ! i hydrogen bonding where possible, especially at

the C-terminal. A family of similar partially-unfolded structural clusters remain

dominant even at reduced temperature T ⇤ = 0.22, at which point a phase transition

appears to be underway.

The modification of disabling the proline’s NH hydrogen bonding capability

is retained for the rest of the simulations and in the implementation of the model

available in the DynamO package.

4.2.2 The n16N-1 system

The n16N-1 system was simulated with 30 replicas spanning the reduced tempera-

ture range [0.105, 0.250] evenly distributed with a spacing of �T

⇤ = 0.005. Replicas

ran for at least 2.2⇥ 109 events each.

Within the estimated temperature window of relevance, [0.13, 0.14], and

significantly beyond it, temperature appears to not greatly a↵ect structure, and no

phase transitions occur. The conformational ensembles are populated by various

collapsed random coil structures with low ↵-helical content and relatively high anti-

parallel �-strand and �-hairpin content.

The temperature-evolution of the Ramachandran plots is a gradual broad-

ening of visited (�, ) coordinates. Fig. 4.9 shows Ramachandran plots at three

temperatures. Fig. 4.10 shows in more detail that the four quadrants of the Ra-

machandran plot remain fairly consistent in their populations as the temperature

changes. As seen in the PLUM model, fig. 4.11 shows that secondary structure on

a per-residue basis is largely congruent with the atomistic data.

Structural analysis of 10000 frames was carried out at T ⇤ = 0.135, using an

RMSD cut-o↵ of 0.3 nm. Fig. 4.12 shows the top four clusters. Despite the lower

cut-o↵, only 36 clusters arose in this analysis compared to 1593 in the PLUM*

model. Even at T ⇤ = 0.16, only 48 clusters arose.

A common theme of the top geometric clusters is a buried subdomain 2. The

tyrosine-rich SD2 is hypothesised to have a role in both inter- and intra-peptide

stabilisation, and table 4.1 bears out tyrosine’s primacy by laying out the top most

prevalent residue-residue interactions, perhaps explaining why SD2 is consistently

found at the core of geometric clusters.

Table 4.1 shows very high proportions of interaction between the top-interacting

residues. The collapsed nature of the structures in the PRIME20-like model, which

also manifests as a low number of geometric clusters being found (and a lower

RMSD cut-o↵ to distinguish them), provides a notable contrast to PLUM* and
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Figure 4.9: Ramachandran plot for a single unit of n16N in the PRIME20-like
model. The temperatures in reduced units are: (top left) 0.11, (bottom left) 0.16 and
(right) 0.135. Two peaks are notable; one indicating anti-parallel beta structure and
another at (�121,�28) which does not correspond to ↵-structure but appears to be
a turn.
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Figure 4.10: Occupancy of each of the four Ramachandran quadrants as a function
of temperature. Crosses are shown on the top axis to indicate the temperatures
at which data was collected. To enable comparison, atomistic data for n16N at
T = 300K is also shown [Brown et al., 2014]. This coarse measure of structure does
not show signs that the peptide changes significantly as a function of temperature.
Fig. 4.9 and fig. 4.11 show that the present level of bottom left quadrant structure is
disproportionately not ↵-structure.
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Figure 4.11: The prevalence of two di↵erent forms of secondary structure, ↵-helix
and, broadly, “top left quadrant”, for each individual peptide bond in n16N simulated
at T

⇤ = 0.135. Proposed subdomains are demarcated by vertical dashed lines. As
with the PLUM* n16N data (fig. 4.6) valleys exist in the top left quadrant lines
around glycine. SD1 and SD2 agree rather well, but, also in common with PLUM*,
a lower level of ↵-helical structure manifests in SD3 in the present model than in
the atomistic data.
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(a) 1 (11.9%) A segment from residue 7
to residue 12 is buried in the core of the coil
and achieves hydrogen bonding with outer
regions on every residue, stabilising the clus-
ter.

(b) 2 (11.1%) Like cluster 1, a segment
from residue 7 to 13 with hydrogen bonding
throughout stabilises the cluster. In multi-
ple places, the hydrogen bonds take the form
of anti-parallel �-strands.

(c) 3 (10.9%) Several hydrogen bonds
bridge the gap between the core and the
outer coil. Although there is no large con-
tiguous region of hydrogen bonding in this
case, SD2 is at the core of the random coil
again. SD1 forms a �-hairpin structure.

(d) 4 (10.7%) SD1 forms a �-hairpin, turn-
ing about residue K4, as in fig. 4.12c. Again,
SD2 is at the core while SD3 wraps around
the structure.

Figure 4.12: The four top-occurring structures for n16N represented in the
PRIME20-like model at T

⇤ = 0.135 are shown. Each structure is labelled by its
rank, with the percentage of frames conforming to the respective structure paren-
thesised. For clarity, side-chains are not shown, the backbone is coloured yellow
for residues involved in backbone-backbone hydrogen bonds, and the N-terminus is
highlighted red and kept on the right.
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CHARMM22*. The PLUM* model is secondary structure-centric, and n16N is only

weakly bound to other parts of the chain in the absence of backbone-backbone hy-

drogen bonds. The CHARMM22* model’s n16N has less secondary structure but

is more collapsed upon itself than PLUM*’s in the absence of secondary structure.

While the PLUM* model and the atomistic model produce average radius of gyra-

tions of 1.04 nm and 1.08 nm respectively, the PRIME20-like model produces an

average of 0.68 nm at T ⇤ = 0.135, increasing only to 0.69 nm by T

⇤ = 0.185.

T

⇤ = 0.11 T

⇤ = 0.135 T

⇤ = 0.16
Y22 Y8 98% Y10 Y15 87% Y10 Y22 85%

Y15 Y8 98% S9 Y22 87% Y10 Y15 85%

S9 Y22 97% Y22 H2 86% H2 Y22 82%

Y10 Y22 94% Y10 Y22 82% S9 Y22 81%

Y10 Y15 93% Y15 Y8 81% C11 Y15 78%

C11 Y15 88% Y22 Y8 77% H2 S9 76%

C11 K28 87% Y15 S9 75% H2 Y8 75%

Y22 R7 85% S9 C29 75% Y22 Y8 71%

S9 C29 85% N24 K27 75% C5 S9 71%

H2 G6 85% H2 G6 74% H2 G6 69%

Table 4.1: Top interactions between residues ranked by frequency of occurrence. To
qualify, any atom on residue A has to be in the square well of any atom on residue B,
with A and B separated with at least three residues in-between. Tyrosine dominates
the rankings, and is clearly a cornerstone of intrapeptide stabilisation.

As in the PLUM* model, region-wise cluster analyses were also performed on

equal-length representations of SD1, SD2 and SD3. The RMSD cut-o↵ was 0.1 nm.

Regions produced 59, 30 and 61 clusters respectively. SD1’s top clusters occupy

25.4%, 12.1% and 11.2% of frames, with the top and the third clusters being

forms of �-hairpins, the other being an extended conformation, and all structures

having a notable turn at residue K4. The �-hairpins are reminiscent of figures 4.12c

and 4.12d from the PRIME20-like full-chain clustering, and figures 4.4b and perhaps

4.4d from the PLUM* clustering. A similar structure tops the list of SD1 clusters

in PLUM*. SD2’s top clusters occupy 15.4%, 14.5% and 10.3% of frames, and

are all extended conformations stretching through the core of the coil, facilitating

hydrogen bonding. SD3’s top clusters occupy 10.8%, 10.0% and 9.9% of frames,

and are all extended conformations which varyingly turn back to wrap around the

rest of the chain. It is plausible that SD3 would stretch outwards in the presence of

ions. Again, SD3 is shown to have the greatest conformational freedom of the three

regions.
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Figure 4.13: Ramachandran
plot of the n16NN peptide
at T

⇤ = 0.135 in the
PRIME20-like model. A
peak spanning a � of al-
most 100� is present in the
�-sheet region while a much
less populous peak occurs in
the ↵-helix zone, unlike for
the n16N peptide (fig. 4.9).

4.2.3 The n16NN-1 system

The n16NN peptide, described in section 4.1.4, was simulated in the PRIME20-like

model to produce a comparison to the n16N data. The simulation methodology of

n16N was repeated.

A Ramachandran plot of the T

⇤ = 0.135 dataset is shown in fig. 4.13. The

unusual peak in the bottom left quadrant of the n16N Ramachandran data is not

present for n16NN, and there is now a slight peak in the ↵-helix domain, which

suggests the negatively charged residues were previously disrupting the potential

for this structure.

The clustering analysis reinforces the notion of n16NN being more stable.

In the full chain clustering, the top four clusters are populated by 23.1%, 14.3%,

9.2% and 8.3% of frames. The trend of a buried SD2 and surface SD3 from n16N is

not repeated, and the top structures are irregular, wide helices with approximately

12 residues per turn, and with increasing disorder as cluster population decreases.

The top structure is shown in fig. 4.14.

Top subdomain clusters have populations of 13.0%, 8.7% and 7.4% for

SD1, 29.2%, 9.6% and 5.4% for SD2, and 19.3%, 18.2% and 14.4% for SD3.

Each subdomain’s top structure is simply that which fits in with the ‘wide helix’

whole-chain structure. SD2’s other structures are extended linking structures as

with n16N. SD3’s other structures are a �-hairpin and 1.5 turns of ↵-helix, termi-

nating in disorder.
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Figure 4.14: Top structure of the
cluster analysis on the n16NN pep-
tide in the PRIME20-like model.
Side-chains are not shown, and ad-
ditional visual cueing is provided
by the x-coordinate dependent colour
scheme. The N-terminus is shown
in red in the bottom right. This
cluster has a frame population of
23.1% and shows an irregular helix-
like structure with a large diameter.

4.3 Summary

The PLUM model and the PRIME20-like model were used to simulate the peptides

n16N, n16NN, and S1. Both models were altered to aid their accuracy for these

simulations; PLUM had its backbone-backbone hydrogen bond strength reduced

to 94.5% of its former value in order to alleviate the over-stabilisation of the ↵-

helix, and the PRIME20-like model had its ability to hydrogen bond via the proline

residue’s backbone NH atom disabled, increasing realism of the model.

Both models proved unable to reproduce the polyproline-II helix of the de-

signed S1 peptide, which is unsurprising as the proline residue is unique in its e↵ect

on structure, and neither coarse-grained model was developed with it in mind as a

special case.

Both models had some success with ensemble average structural properties of

the n16N system. Measures of secondary structure based on dihedral angles showed

a good approximation to atomistic data, both on average for the chain and on a

per-peptide bond basis. Measurements of top residue-residue interactions showed

the importance of tyrosine-tyrosine interactions was replicated in the PRIME20-like

model.

Geometric clustering produced results in agreement with existing data, show-

ing SD3 to be the most disordered region, and showing full-chain conformational

flexibility to fall as expected in the mutant n16NN. However, PLUM*’s top struc-

tures remained anomalously ↵-helix based, while the PRIME20-like model had a

conformational ensemble of structures that were more collapsed than the atomistic
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Chapter 5

Multiple-chain simulations

Due to limits on computational power, little work exists characterising the behaviour

of larger protein systems. This is the domain in which coarse-grained models become

relevant. In this section, simulation data of n16N and n16NN in multiplicity are

presented. The chapter structure changes to system-first (e.g. n16N-2) rather than

model-first, as the focus is now on the systems and not the models.

We continue to use the g cluster/gromos clustering tool in this work, with

one custom improvement: The program now accepts an integer argument giving the

number of identical molecules the system is made of, and a trajectory frame can be

added to a cluster if any permutation of the chains’ positions within a frame lead

to an RMSD below the cut-o↵.

5.1 The n16N-2 system

Two units of the n16N peptide were simulated in both the PRIME20-like and

PLUM* models. This system is called n16N-2. As n16N is known to form macro-

molecular complexes which may make use of specific aggregation domains, may con-

tain di↵erent secondary structure from the monomers, and whose formation may be

essential for n16N’s biomineralisation properties, the structural properties of the

aggregates is an area of great interest.

5.1.1 PLUM*

A REMD simulation of the n16N-2 system was carried out with 30 replicas, each

running for 5.1 microseconds. The replicas were thermostatted at T

i

2 {275.0,
278.54, 281.69, 284.57, 287.23, 289.67, 291.84, 293.8, 295.61, 297.29, 298.87, 300.00,

301.79, 303.15, 304.46, 305.73, 307.06, 308.47, 309.98, 311.61, 313.39, 315.39, 317.69,

73



320.5, 324.19, 328.27, 332.72, 337.66, 343.3, 350.0} K.

34400 trajectory snapshots were used for geometric clustering at 300.00 K,

which was carried out with an RMSD cut-o↵ of 0.6 nm. 11992 clusters were found,

the top of which had populations of 2.6%, 1.9%, 1.0% and 1.0%, and these are shown

in fig. 5.1. The analysis shows a trend of subdomains SD1 and SD2 being kept in rigid

conformations at the core of the dipeptide system, holding the chains together, while

SD3 is extended, uninvolved in interpeptide interactions, and significantly more able

to sample di↵erent conformations. The region-wise cluster analysis makes this even

clearer. An RMSD cut o↵ of 0.2 nm is used, and chains are examined one at a

time (i.e. each frame of two peptides is decomposed into two frames of one peptide).

SD1’s top clusters’ populations are 55.4%, 10.6% and 8.0%. SD2’s are 68.4%,

8.7% and 8.2%. SD3’s are 37.5%, 20.0% and 18.0%. All subdomains have 35

geometric clusters in total.

Fig. 5.2a shows the proportion of frames for which each residue is involved in

interpeptide interactions. Combined with the clustering analysis, these data are in

striking agreement with the hypothesised domain roles; table 1.3. SD1 and SD2 are

highly involved in interpeptide stabilisation, with the tyrosine-rich SD2 being most

involved, both by backbone and by side-chain interactions. Interpeptide interactions

decline after SD2, so that the tail of SD3 is largely free and unbound.

Fig. 5.3 shows the Ramachandran plot of all (�, ) angle pairs in the n16N-2

system, as well as a second plot, highlighting the di↵erence in folding behaviour

between n16N-1 and n16N-2. These data show that ↵-helix structure is far less

favoured in the n16N-2 system than in n16N in isolation, and �-structures now

form the greatest peak.

The fact that multiplicity of the peptide in the system vastly changes the pep-

tides’ folding and draws divergent behaviour out of each subdomain, aligning with

hypothesised aggregation-dependent function and featuring disorder, is a remark-

able property of the system for Bereau and Deserno’s four-bead model to capture.

This result suggests a strong possibility of a role for coarse-grained protein models

of this level in studying intrinsically disordered protein behaviour.

5.1.2 PLUM

Prior to finalising the decision to retune an aspect of the PLUM model to improve

modelling of IDPs, data was collected on the n16N-2 system in PLUM. The same

simulation parameters were used as in the PLUM* simulation, above. To facilitate

comparison, the PLUM data will be briefly summarised and discussed here.

A clustering analysis carried out equivalently to that of n16N-2 PLUM*

74



(a) 1 (2.6%) Both peptides’ SD1 and SD2
form �-hairpins, turning on residues G7 and
R8, and ending with a turn on I14 and P15.
Each chain passes under the other’s hairpin
and competes for hydrogen bonds. Several
highly favourable interpeptide side-chain in-
teractions are in register, primarily in SD1
and SD2, but also involving SD3’s I and Y
residues.

(b) 2 (1.9%) Parallel �-strands bind the
chains, with few intrapeptide interactions.
Turns occur messily around residues K5 to
R8 and more sharply at residues I14 and
P15. Interpeptide hydrogen bonding and
side-chain interaction continues as far as
Y23, so that, as in fig. 4.12a, only the final
seven residues form a free tail.

(c) 3 (1.0%) The five residues Y2, S10,
Y11, C12, and W13 form interpeptide hy-
drogen bonds in a straight line from one
chain’s Y2 to the other’s, and this is the only
interpeptide hydrogen bonding. A great
deal of side-chain interactions stabilise the
two peptides, and, again, Y23 is the last
residue involved in these.

(d) 4 (1.0%) Extremely similar structure
to fig. 5.1a, with slightly di↵erent tail struc-
ture. The blue chain’s tail forms two turns of
an ↵-helix from residues E19 to G26, while
the green ends in a �-hairpin.

Figure 5.1: The four top-occurring structures for the n16N-2 system in PLUM* at
300.0K. Each structure is labelled by its rank, with the percentage population given
in brackets. N-termini are highlighted in red. In all structures, the N-terminal half
is central to the structure while the C-terminal half forms a tail. Di↵erences in
side-chain interactions must be responsible for this asymmetry.
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(a) PLUM*: In agreement with observations from geometric clustering analysis (fig. 5.1),
the first two domains are far more involved in interpeptide stabilisation than the third. The
proportion reaches a maximum in SD2. Residues with the most favourable hydrophobic
interactions; I, W, C and Y, and their neighbours, have higher proportions. n16NN shows
a consistent trend to a slightly higher proportion, which is not localised to SD3.
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(b) PRIME20-like: Each line fluctuates about a fairly flat moving average, and the only
noteworthy di↵erence is a valley passing through the SD2/SD3 boundary in both hydrogen
bond and side-chain lines and lasting approximately 5 residues into SD3. The mutations
from n16N to n16NN cause one large e↵ect; the disappearance of these valleys. Otherwise,
the structural ensemble alters enough to cause each value to shift pseudo-randomly, but has
the overall e↵ect of making each line even flatter.

Figure 5.2: The proportion of trajectory snapshots for which any given residue
along the chain is involved in an interaction binding it to the other chain, in the
n16N-2 and n16NN-2 systems. The n16N residue sequence is shown on the x-axis;
the red residues are replaced in n16NN according to D! N and E! Q. Interactions
are divided into side-chain and hydrogen bond types; an interaction for glycine is
not always applicable, and in these cases no data-point is plotted. Note that the
disparate forms of interaction in each model make a comparison of the average of
each line meaningless.
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Figure 5.3: Ramachandran plots of the n16N-2 system. Left shows a standard Ra-
machandran heat map. The greatest and widest peak is for �-strand structure, while
a minuscule peak exists for ↵-helix structure, with a strong pathway between the two.
Right shows a di↵erence heat map, with the Ramachandran heat map of PLUM*
n16N-1 (fig 4.5) normalised appropriately and subtracted from the heat map plotted
on the left. In the scale shown, a value of �1.0 would imply 100% of hits being in
a given bin in the n16N-1 simulation, and 0% in the n16N-2 simulation. Two ab-
sences are revealed in the locations for ↵ and ↵

left

structure, while �-structure is far
more prominent. This implies that �-structures involving interpeptide interactions
are more stable than intrinsically intrapeptide ↵-helices.
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Figure 5.4: Ramachandran heat map
for the n16N-2 system in the unal-
tered PLUM model. Unlike in the
PLUM* model, n16N in PLUM does
not shift away from ↵-helix structure
in the dimer system.

shows that the top four clusters have populations of 3.2%, 2.3%, 2.0% and 1.8%, and

all of these but the third are two ↵-helix structures as in n16N-1 PLUM (fig. 4.1), as-

sociated with each other in di↵erent configurations via side-chain interactions, while

almost all backbone interactions are intrapeptide. The third structure matches

fig. 5.1a closely. Di↵erentiation of the subdomains therefore occurs to a far milder

degree, and aggregation is mostly limited to side-chain interactions supporting exist-

ing secondary structure. The Ramachandran plot of fig. 5.4 shows that the ↵-helix

peak remains completely dominant.

5.1.3 PRIME20-like

30 replicas were used to simulate the n16N-2 system in DynamO, in a REMD set-

up spanning the reduced temperature range [0.105, 0.250] evenly distributed with a

spacing of �T

⇤ = 0.005. Replicas ran for at least 9.0⇥ 109 events each.

18788 frame snapshots were saved and used for geometric clustering, at T ⇤ =

0.135, with a RMSD cut-o↵ of 0.5 nm. The top four clusters are shown in fig. 5.5.

Unlike the PLUM* results, these data do not conform to the subdomain hypothesis

laid out in table 1.3. Other than fig. 5.5c, the top structures appear to be much

like single-peptide structures, merely perturbed by sitting next to each other. Like

the PLUM* data, no frames exist in which the two chains are uninvolved with each

other by any interaction.

Fig. 5.2b shows the proportion of frames in which each residue is involved

in interpeptide interactions. This figure gives a more complete overview of how

each chain interacts with the other. Any preference for interacting via a particular

subdomain is harder to see than in the PLUM* data, backing up what the top

clusters show. The global maximum for both n16N lines does correspond to the

Y11 residue in SD2, very similar to the PLUM dataset.
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(a) 1 (8.2%) Each peptide forms a ran-
dom coil, interacting with the other through
a planar interface. The structure is asym-
metrical, and the vast majority of interac-
tions are intrapeptide. SD2 regions are the
least involved at the interface, while each
chain’s SD1 interacts predominantly with
the other’s SD1, and the same is true for
SD3.

(b) 2 (7.9%) Chains’ SD3s are heavily in-
volved in interpeptide interactions, and are
at the centre of the chain system. This is a
reversal of the situation seen in the PLUM*
model and predicted in the subdomain hy-
pothesis. Each chain remains a random coil
structure.

(c) 3 (7.4%) The chains are highly involved
with each other in an asymmetrical manner,
and with no apparent subdomain preference
for interpeptide interaction. However, each
chain’s subdomain interacts primarily with
the same subdomain on the other chain.

(d) 4 (6.9%) Each chain adopts a ‘wide
helix’ structure, previously seen in n16NN-
1 in the PRIME20-like model, fig. 4.14.
Only three interpeptide hydrogen bonds ex-
ist, making this the top structure with the
fewest interpeptide interactions.

Figure 5.5: The four top-occurring structures for the n16N-2 system in PRIME20-
like model at T ⇤ = 0.135. Each structure is labelled by its rank, and the percentage
population is given in brackets. N-termini are highlighted in red. Interpeptide and
intrapeptide hydrogen bonding are highlighted in black and yellow respectively.
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A subdomain geometric clustering analysis was also carried out, using the

usual method of representing SD1, SD2 and SD3 as equal-length chain segments; 1 to

8, 9 to 15 and 23 to 30. An RMSD cut-o↵ of 0.1 nm is used. Unlike all previous n16N

simulations, SD3 here actually shows the least flexibility, its top clusters accounting

for 10.2%, 7.4% and 5.6% of frames, compared to SD1 at 5.1%, 4.8% and 4.5%;

and SD2 at 8.7%, 7.1% and 6.2%. The previous trend of SD1 being populated by

extended and �-hairpin structures, turning about residue K4, continued. SD2’s top

clusters involved single ↵-turns in the top two clusters, and are otherwise extended.

SD3’s top cluster is a �-hairpin, and the next two are disordered.

The Ramachandran plot for the system is shown in fig. 5.6, along with a

di↵erence heat map showing how secondary structure has changed in the dimer

system compared to the monomer. The absence of significant di↵erences that the

di↵erent plot highlights underlines the nature of aggregation of these chains in the

PRIME20-like model, which is first hinted at by the cluster analysis: The chains

primarily interact with themselves, and the presence of the other chain makes no

drastic changes to structure.

Figure 5.6: Ramachandran plots of the n16N-2 system. Left shows a standard
Ramachandran heat map. As with n16N-1 in PRIME20-like (fig. 4.9), there are two
notable peaks, one indicating anti-parallel �-structure, and the other which has been
characterised as a turn. Compared to n16N-1, the peaks have broadened greatly.
Right shows a di↵erence heat map, highlighting the di↵erence between the n16N-1
and n16N-2 systems in (�, ) angles adopted. While it appears that some systematic
changes have occurred, these are much harder to distinguish from noise than the
PLUM* case (fig. 5.3), and may simply be peak broadening. The di↵erences also
have about a fifth the magnitude of the PLUM* case.
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5.2 The n16NN-2 system

As it has been reported that n16NN aggregates in an aberrant manner [Delak et al.,

2007] or not at all [Metzler et al., 2010], a simulation of two units of n16NN, known

as the n16NN-2 system, may be su�cient to find significant di↵erences in behaviour

from n16N.

In section 4.1.4, slight di↵erences in the preferred structure of n16NN com-

pared to n16N in the PLUM* model were demonstrated, including a minor rear-

rangement of the top favoured geometrical clusters, and a lower degree of whole-

chain conformational flexibility. Section 4.2.3 shows greater distinctions between

n16NN and n16N in the PRIME20-like model. There is a total upheaval of the

favoured structures, and, again, full-chain flexibility is lower in n16NN.

5.2.1 PLUM*

The simulation parameters employed for the n16N-2 system in section 5.1.1 were

repeated here, the replicas now running for 6.4 microseconds. As with the single-

chain systems in PLUM*, the di↵erences in structure are present, but minor.

A geometric clustering analysis of the whole chain, using an RMSD cut-o↵

of 0.6 nm, finds that the top most populated clusters are all extremely similar to

n16N-2 PLUM* structures, except for di↵erences in SD3, as follows:

1. (6.9%) Fig. 5.1b.

2. (2.7%) Fig. 5.1a, with SD3s collapsed against the central structure.

3. (0.94%) Fig. 5.1a.

4. (0.82%) Fig. 5.1a, with ↵-helix tails.

The n16N-2 and n16NN-2 systems were found to be the sums of a stable core,

made of the N-terminal halves of the chains, and unstable flailing tails made of the

C-terminal ends. The change from n16N to n16NN involves point mutations in the

C-terminal half of the chain, not directly a↵ecting the properties of SD1 and SD2,

and yet the top core structures show up in di↵erent order with di↵erent weights in

the full-system clustering analysis. This could be a skew resulting from the changes

in SD3, or it could be inherent. Therefore, the decision was made to geometrically

cluster the atoms typically corresponding to the stable core, independent of the

skewing e↵ects of the tails. Specifically, the regions comprising SD1 and SD2 in the

region-wise analyses were joined and an RMSD cut-o↵ of 0.3 nm was used. Data

from both n16N and n16NN were studied in this condition.
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Figure 5.7: Ramachandran heat
map for the n16NN-2 system in the
PLUM* model at 300 K. The global
maximum exists in a sharp peak for
↵-helix structure, and a broader peak
exists for �-structure.

For both n16NN-2 and n16N-2 systems, clustering the cores alone resulted

in the top most popular clusters matching the cores of n16N-2, clustered as a full

system (fig. 5.1). However, the n16NN-2 system showed a much greater degree of

core stability, its top clusters scoring populations of 3.5%, 3.2% and 1.3%, compared

to 2.6%, 0.79% and 0.63%. This complements the result seen for single units of the

peptides that full-chain flexibility, not just SD3 flexibility, drops as a result of the

changes from n16N to n16NN.

The proportion of frames for which each residue along the chain is involved in

interpeptide hydrogen bonds is plotted in fig. 5.2a. A surprisingly simple di↵erence

is seen between the n16N and n16NN lines, which is a slight increase in proportion

throughout, once again lending strength to the hypothesis of the SD3 changes having

a full-system e↵ect.

As with the single-peptide systems, no clear di↵erences in regional peptide

flexibility were seen between n16N-2 and n16NN-2 via the regional clustering anal-

ysis, carried out in the same manner as in the n16N-2 PLUM* system.

A Ramachandran plot of the n16NN-2 system in PLUM* is included in

fig. 5.7. Despite the increased stability of the ↵-helix-free core structures demon-

strated above, the Ramachandran plot shows a relatively strong degree of ↵-helicity.

This was found to stem from the C-terminal half of the chain, which is far more

likely to manifest ↵-motifs in the absence of the negatively charged residues.

5.2.2 PRIME20-like

The n16NN-2 system was simulated in a large box for 6.6⇥109 events. 30 replicas ran
in a REMD set-up, spanning the reduced temperature range [0.105, 0.250] evenly.

The Ramachandran plot for this system is in fig. 5.8. The plot shows far

broader peaks than the n16N-2 system; evidence that the present system is more
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Figure 5.8: Ramachandran heat
map for the n16NN-2 system in the
PLUM* model at 300 K. The largest
island of allowed (�, ) values is ex-
tremely flat, having no strongly pre-
ferred regions, though its maximum
is in the location of anti-parallel �-
structure, as with n16N-2.

strongly random coil in character. Further evidence for increased homogeneity is

provided by fig. 5.2b, which shows the rate of interpeptide interaction by residue.

The only clear feature in the line for n16N-2 is a wide valley passing through the

boundary between SD2 and SD3; this disappears for n16NN-2, and the line becomes

scarcely distinguishable from noise.

The full-chain cluster analysis was carried out with an RMSD cut-o↵ of

0.5 nm again, and continued the trend of n16NN showing a slightly lower level of

flexibility than n16N. The top clusters score 10.1%, 8.3%, 7.5% and 6.9% and are

composed, in the main, of two random coils interacting via an interface.

Subdomain clustering analyses were carried out according to the usual pro-

tocol, with the RMSD cut-o↵ set to 0.1 nm. Compared to n16N-2, a significant

shift towards disordered and extended conformations was observed, agreeing with

the interpretation of the Ramachandran plot presented here. No subdomain has

a recognisable secondary structural motif as the most popular structure, and only

SD2 features any in the top three structures, its second cluster having a turn of

↵-helix.

The top three clusters of each subdomain have populations of (SD1) 5.0%,

4.0%, 3.9%; (SD2) 9.5%, 6.7% 5.2%; and (SD3) 7.6%, 6.2%, 4.7%. This shows no

clear trend in local chain flexibility, but, surprisingly and uniquely, SD3 appears

more flexible in n16NN in this case.

5.3 Discussion of dimer systems

The PLUM* model and the PRIME20-like model were used to simulate the systems

n16N-2 and n16NN-2, which denote two units of the peptides n16N and n16NN,

respectively.
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The PLUM* model exhibited an ability to distinguish between the local pri-

mary structure of di↵erent parts of the chain and cause di↵erent behaviour to man-

ifest accordingly. Residue-by-residue analyses and regional analyses showed locally

specific structure and function, correlating with hypothesised domain-dependent

roles. [Brown et al., 2014]’s three-domain scheme for the peptide, delineated in

table 1.3, was bolstered by evidence from PLUM*, especially with respect to the

distinction between SD1 and SD2 as aggregation-enablers and SD3 as a free tail.

These di↵erences between the subdomains were hidden in the single-peptide systems

and required peptide multiplicity to come to light.

Compared to n16N-2, the n16NN-2 system featured a far more stable SD1

and SD2 core; an interesting result, as these subdomains are identical in the two

peptides. As it has been suggested that disorder is useful for molecular assembly (see

sec. 1.2.2), this may be relevant to n16NN’s reported di�culty aggregating [Delak

et al., 2007; Metzler et al., 2010].

The PRIME20-like model yielded far less evidence which can be favourably

compared to existing hypotheses. The chains in these systems tended not to fold

into each other, but rather sit next to each other. It may be that a greater number

of n16N chains are required in a system for the most stable state to be one of

chains folding together. However, the chains continued to show a far greater level of

collapse than the PLUM* model or atomistic data [Brown et al., 2014], which may

hinder aggregation.

There was little discrimination between interpeptide contacts, except for a

slight preference in n16N-2 against interpeptide contacts forming with residues at

the end of SD2 and start of SD3, which could be interpreted as loosely supporting

the three-domain hypothesis. However, SD3 in the n16N-2 system was the least

flexible subdomain.

5.4 The n16N-3 system

5.4.1 PLUM*

A REMD simulation of n16N-3 was carried out for 6.4 microseconds, using 55

replicas. The thermostatted temperatures were T

i

2 {275.0, 275.9, 276.81, 277.71,
278.61, 279.52, 280.42, 281.32, 282.22, 283.13, 284.03, 284.93, 285.84, 286.74, 287.64,

288.55, 289.45, 290.35, 291.25, 292.16, 293.06, 293.96, 294.87, 295.77, 296.67, 297.58,

298.48, 299.38, 300.28, 301.19, 302.09, 302.99, 303.9, 304.8, 305.7, 306.61, 307.51,

308.41, 309.31, 310.22, 311.17, 312.21, 313.35, 314.64, 316.15, 318.09, 321.15, 324.77,

328.38, 331.99, 335.6, 339.21, 342.82, 346.43, 350.0} K.
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42799 frames were used for analysis of the system. The geometric clustering

analysis was carried out with an RMSD cut-o↵ of 0.8 nm, and the results show

a tendency towards a single, strongly favoured top cluster has emerged. The top

four clusters had populations of 7.0%, 1.5%, 1.3% and 0.93%, and these are shown

in fig. 5.9. The dominant core type seen in n16N-2 PLUM* (fig. 5.1a), involving

�-hairpins starting at SD1, has no analogue in the present system; instead, chains

hook into each other, ending the hook with a turn at the end of SD2. In the top

cluster, two chains hook the other chain together.

The regional clustering analysis showed very little change compared to the

n16N-2 system. SD2 became even less flexible, its top cluster now representing a

single strand of �-structure, turning at the SD2/SD3 boundary, as seen in all the

top full-system clusters, with a population of 72.1%. The two other subdomains

remained as before, SD3 staying the most flexible.

The degree to which each residue of the chain is involved in interpeptide in-

teractions shows the same trend in the tripeptide system compared to the dipeptide;

this is shown in fig. 5.11a. The increased level of hydrogen bonding in many residues

in SD1 and SD2 highlights the lower level seen in residues K4 and K5 of SD1, and

P15 and Y16 at the end of SD2, both of which are turning points in the chain in

every full-system and regional top cluster.

The Ramachandran plot of the system is shown in fig. 5.10, as well as a

di↵erence plot comparing to n16N-2 in PLUM*. The shift towards �-structure

and away from ↵-structure has continued as the increased number of peptides has

made �-strands running alongside each other increasingly favourable. The chain-

hooking form of aggregation which dominates in this system is made of �-strands,

and extended conformations which occupy � territory on a Ramachandran plot.

5.4.2 PRIME20-like

REMD simulations were carried out on the n16N-3 system in PRIME20-like in a

large box. 48 replicas were used to evenly span the temperature range [0.105, 0.250],

and each replica executed approximately 7⇥ 1010 events.

12338 trajectory snapshots at T

⇤ = 0.135 were used for analysis. The full-

chain clustering analysis in fig. 5.12 used an RMSD cut-o↵ of 0.65 nm. The analysis

shows that the chains have some ability to extend and fold together, rather than

being purely fixed in a collapsed coil state. Unlike the PLUM* model, no strongly

favoured structure has emerged yet. Additionally, no interpeptide interaction speci-

ficity on the level of subdomains or residues can be seen.

Fig. 5.11 shows the proportion of frames in which each residue is involved
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(a) 1 (7.0%) The grey and red chains
run with parallel �-strands from their K4
residues, turning at the end of SD2 and di-
verging in SD3. The blue chain encloses the
two SD2 regions, again turning at the end
of its SD2. Each chain’s interpeptide inter-
actions last approximately until its final ty-
rosine.

(b) 2 (1.5%) The grey and blue chains form
a core similar to n16N-2’s fig. 5.1b. The
third chain floats above, involving its SD2
in the core interpeptide interactions.

(c) 3 (1.3%) The grey and blue chains
loop around each other, turning at the end
of SD2, and being involved in interpeptide
interactions throughout SD2 and early SD3.
The red chain is largely self-interacting, hav-
ing a �-hairpin turning about residue G7,
while SD3 features an ↵-helix. The red
chain’s SD2 is involved in interpeptide side-
chain interactions with both other chains.

(d) 4 (0.93%) Similar to 5.9c and 5.9b
in having two chains loop around each other
and a third nearby but outside of the loop.
Turns occur consistently at residues K4 and
K5, and at the end of SD2.

Figure 5.9: The four top-occurring structures for the n16N-3 system in PLUM* at
300.0K. Each structure is labelled by its rank, with the percentage population given
in brackets. N-termini are highlighted in yellow. At an RMSD cut-o↵ of 0.8 nm,
this analysis coarsely groups frames in which chains are similarly positioned, with
little discrimination based on local intrapeptide secondary motifs.
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Figure 5.10: Ramachandran plots of the n16N-3 system. Left shows a standard
Ramachandran heat map. The system is strongly �-structure dominated. Right

shows a di↵erence heat map, comparing the (�, ) coordinates visited with those of
the n16N-2 system in PLUM*. The map is similar to the di↵erence map of n16N-1
and n16N-2, shown in fig. 5.3, though the magnitude of the changes is far smaller.

in an interpeptide interaction. The shift from a dimer system to a trimer system

has not elicited any greater di↵erentiation of regions from the chains on this metric.

Although both lines’ global minima exist around the SD2/SD3 boundary, the valley

here is less pronounced than before. There is no evidence of distinct subdomains

from this figure.

The Ramachandran plot of the system is shown in fig. 5.13, as well as a di↵er-

ence plot comparing to n16N-2 in PRIME20-like. The di↵erences between this and

smaller PRIME20-like systems remain minor compared to the large rearrangement

seen with the PLUM* model.

5.5 The n16NN-3 system

The n16NN-3 system was simulated in the PLUM* model only. The simulation time

was 6.4 microseconds, and the simulation set-up of n16N-3 in PLUM* was repeated.

A full-system clustering analysis was carried out using 30734 frames. The

top structure matches that of the n16N-3 system; two chains hooking the other

one, with the geometry of fig. 5.9a. The stability of this geometric arrangement has

risen; its frame population has moved from 7.0% to 12.3%. Fig. 5.11a shows that the

change from n16N-3 to n16NN-3 does very nearly as much to stabilise interpeptide

interaction outside of SD3 as inside it.
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(a) PLUM*: A clear distinction exists between the first two aggregation-aiding domains
and the third; the tail. Compared to the dimer systems, fig. 5.2a, the side-chain interpep-
tide involvement is displaced upwards, however, the hydrogen bond line is increased by a
factor instead, so the lower values at the middle of SD1 and end of SD2 have become more
pronounced. In the clustering analysis, these are frequently seen to sacrifice the correct
hydrogen bonding geometry to facilitate a turn.
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(b) PRIME20-like: No domain appears to be favoured for either hydrogen bond or side-
chain based aggregation.

Figure 5.11: The proportion of trajectory snapshots for which any given residue
along the chain is involved in an interaction binding it to an other chain, in the
n16N-3 and n16NN-3 systems. The n16N residue sequence is shown on the x-axis;
the red residues are replaced in n16NN according to D! N and E! Q. Interactions
are divided into side-chain and hydrogen bond types; an interaction for glycine is
not always applicable, and in these cases no data-point is plotted. Note that the
disparate forms of interaction in each model make a comparison of the average of
each line meaningless.
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(a) 1 (4.6%) A large interface exists be-
tween the blue and grey chains, involving
both ends of both chains. Where the three
chains meet, SD1 and SD3 regions are heav-
ily involved. No SD2 regions are involved in
any interface.

(b) 2 (4.6%) SD1 of the red chain is en-
compassed by the blue chain, and interacts
primarily with the blue’s SD1 and SD2. SD1
and SD2 of the grey chain are at the inter-
face, interacting primarily with each other
chain’s SD1.

(c) 3 (4.4%) The grey chain takes on a
flat, wide shape to provide a large interface
with both other chains. There is no clear
subdomain or residue specificity in the way
the chains aggregate.

(d) 4 (4.2%) The red chain is spread
out, and its N-terminal end interacts with
the blue chain, while its C-terminal interacts
with the C-terminal end of the grey chain.

Figure 5.12: The four top-occurring structures for the n16N-3 system in the
PRIME20-like model at T

⇤ = 0.135. Each structure is labelled by its rank, with
the percentage population given in brackets. N-termini are highlighted in yellow.
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Figure 5.13: Ramachandran plots of the n16N-3 system in PRIME20-like. Left

shows a standard Ramachandran heat map. The global maximum is now the turn
structure in the bottom left of the accessible region. Two significant, broad peaks
also exist at low and high values of � in the �-structure domain. Right shows a
di↵erence heat map, comparing the (�, ) coordinates visited with those of the n16N-
2 system in PRIME20-like. Within the top left quadrant, the peak for lower values
of � has weakened, while the peak for higher values has increased, as it did between
n16N-1 and n16N-2. The trends concerning the bottom left quadrant have reversed,
however.

5.6 Discussion of trimer systems

The PRIME20-like modelling of n16N-3 was startlingly homogeneous in behaviour

by residue or by subdomain along the chain. Despite a sophisticated parametrisation

algorithm for side-chain to side-chain interactions (which did not have to be re-

parameterised in the current work), with free parameters in energy and length, it

seems unlikely that the simulation results would show an interesting di↵erence if the

sequence were scrambled.

The background evidence from atomistic simulation makes it unlikely that

the PRIME20-like model is portraying n16N accurately. The delta in radius of

gyration, first seen in the monomer system, is a huge anomaly which shows that the

PRIME20-like simulations are deviating from predictions. It may be that PRIME20-

like needs its interaction strengths tuning down in order for disordered systems to

be able to properly expand, similar to PLUM*. However, the fact that the radius of

gyration hardly grows in response to large temperature increases (see section 4.2.2)

suggests that the problem lies with the binary nature of the backbone potential.

The PLUM* simulations showed significant di↵erences from the dimer simu-

lations. The top dimer n16N structure, with SD1 and SD2 forming �-hairpins, was
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not favourable enough in the trimer system to reappear. Instead, chains began to

interlink, as seen in all of the top structures. The propensity for �-structure grew at

the expense of ↵-helix structure, though the same change was greater in magnitude

between the monomer and dimer systems.

However, several features of the n16N chain have been preserved: A region

similar to SD2, but perhaps impinging on SD1 and ending at the proline residue, is

primarily responsible for aggregation. The first five residues do not appear essential

for this. The C-terminal half of the chain is not directly involved in aggregation,

and is the most highly disordered and flexible region. Folding is facilitated by turns

at the ends of this aggregation domain, on residues K4 and K5 in SD1 and P15 and

Y16 in SD2. The change from n16N to n16NN increases stability of the aggregates

without changing the geometry of the top structures. The SD3 region, which is

mutated in n16NN, may have a role in ensuring marginal stability of the aggregates,

which may be a prerequisite of the macromolecular assembly coming together.

5.7 The n16N-6 system

The n16N-6 system is the largest simulation carried out to study the n16N peptide,

giving it the best vantage point for clues about how large-scale n16N systems would

assemble.

5.7.1 PLUM*

A REMD simulation of n16N-6 was carried out, lasting for 2.5 microseconds in each

of 120 replicas. 94 replica temperatures were spaced out at even intervals of 0.59 K

from 275 K to 330 K, after which the spacing was linearly increased as a function

of temperature, reaching double its initial spacing at the maximum temperature of

350 K.

4157 frames were used for geometric clustering with an RMSD cut-o↵ of

1.13 nm. The top four clusters have populations of 3.1%, 2.7%, 2.3% and 2.1%, and

the top two of them are shown in fig. 5.14. The greatest number of strands in a

�-sheet that can be stable appears to be four. Besides the top two, other popular

clusters involve three to four chains in a �-sheet, with varying levels of �-structure

and disorder among the extra chains. The extra chains are always found on the

same side of the �-sheet, opposite to the N-termini. In the four-chain-sheet case,

extra chains do not seem to conform to the previously seen dimer conformations of

fig. 5.1, but instead run perpendicular to the primary �-sheet, towards the turn at
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the residue P15. These observations suggest that n16N-8 may favour a layout of

two four-chain �-sheets in a cross-sheet formation.

Fig. 5.15 is a Ramachandran heat map and di↵erence heat map. These show

that increasing the number of peptides in the system continues to increase order,

decreasing the spread of dihedral angle pairs and increasing the magnitude of the

�-peak and other minor peaks which facilitate n16N-6’s favoured structures.

A regional clustering analysis was carried out as usual with an RMSD cut-

o↵ of 0.2 nm using same-length representations of proposed subdomains SD1, SD2

and SD3. SD2’s top cluster is a �-strand as in n16N-3, but its population fell from

72.1% in n16N-3 to 63.7%. This may be unexpected, as the Ramachandran �-peak

became stronger in n16N-6. However, n16N-6 typically has two chains not involved

in the main �-sheet, which can be structured as forms of �-strands that are not

geometrically similar enough to the main �-sheet structure to be clustered together.

SD2’s top three clusters are all �-strands with di↵ering turns at the ends. SD1

favoured the looping structure seen in the top clusters of fig. 5.14 with a population

of 55.6%. SD3’s top structures had populations of 48.1%, 20.6% and 12.7%. The

third cluster is a �-hairpin structure, while the other two are extended conformations

which include both disorder and �-structure. This still provides a comparison point

for the level of flexibility in the subdomain, however.

The proportion of interpeptide interactions has again been analysed, and

this data is presented in fig. 5.16a. The graph supports the hypothesis of an SD2-

like aggregation domain and an SD3 ‘free tail’ domain, which has consistently been

shown to have merit in n16N systems examined in PLUM*.

5.7.2 PRIME20-like

REMD simulations on the n16N-6 model were carried out with 48 replicas, evenly

spaced in the reduced temperature range [0.135, 0.250]. Each replica executed ap-

proximately 1.4⇥ 1010 events.

2180 frame snapshots were used at T ⇤ = 0.135 for geometric clustering anal-

ysis. At an RMSD cut-o↵ of 0.8 nm, the top four clusters had populations of 4.7%,

4.0%, 3.6% and 3.1%. The top two are presented in fig. 5.17. The structures re-

main extremely disordered and collapsed. Nonetheless, they di↵er from the dimer

and trimer systems by being strongly involved with each other. The Ramachandran

plots of the trajectory, shown in fig. 5.18, reinforce the observation of great disorder

in this system, and show that little has changed on the level of secondary structure.

The analysis of propensity for interpeptide interactions by residue, fig. 5.16b,

shows the system has even increased in homogeneity, on general propensity for
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(a) 1 (3.1%) Four strands form a parallel �-sheet. Except for the last chain
(golden, behind yellow), their SD1 regions are not in �-hairpins, but instead each
hovers over the start of the next chain’s SD2. Each strand is disrupted at the proline
residue, and the turn occurs at approximately the SD2/SD3 boundary. After this,
some hydrogen bonding exists but the chains incrementally become more free.
Below the �-sheet, two chains aligned perpendicular to it and anti-parallel to each
other are highly disordered.

(b) 2 (2.7%) Similar arrangement to fig. 5.14a with more order. After the first
turn at the proline residue, �-sheet structure continues almost undisrupted until
the final tyrosine; Y23. The red chain’s SD1 is involved in the �-sheet, while its
SD3 up to residue Y23 forms a �-strand with the same region of the grey chain.

Figure 5.14: The two top-occurring structures for the n16N-6 system in PLUM* at
300.0 K. Each structure is labelled by its rank, with the percentage population given
in brackets. N-termini are highlighted in lime.
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Figure 5.15: Ramachandran plots of the n16N-6 system. Left shows a standard
Ramachandran heat map. The plot is dominated by the �-structure peak, which is
twice the magnitude of any other peak. A wide range of other angle coordinates
are accessible. Right shows a di↵erence heat map, revealing the di↵erence between
the normalised n16N-6 and n16N-3 systems. Continuing the trend from n16N-1
to n16N-2 to n16N-3, most accessible regions and particularly the ↵-helix region
have drained, while the �-structure peak has risen. However, new peaks can be seen
growing at coordinates (�50�,�100�) and (40�, 110�). These dihedral angle pairs
occur in SD1 and SD2 at the start and end of �-strands.

interchain interactions. However, the n16N-6 system’s proclivity for interpeptide

interaction has made a more detailed form of analysis worth performing. In fig. 5.19,

a 2D heat map of residue-residue interpeptide interactions is given. This shows which

residues of other chains any given residue is likely to interact with. It reveals that

the model does indeed have an ability to distinguish between regions of the chain;

all regions of the chain preferentially interact with the N-terminal region of other

chains, and this preference is strongest for the N-terminal region itself. The global

peak is for residue Y2 interacting with itself, but the largest island of interaction is

in the hypothesised aggregation domain named subdomain SD2.

The regional clustering analysis, which uses same-length representations of

hypothesised subdomains SD1, SD2 and SD3, returned similar results to the dimer

system, in which SD3 is the least flexible subdomain. SD1’s top cluster populations

were 4.2%, 2.2% and 2.0%. SD2’s were 2.8%, 2.1% and 1.9%. SD3’s were 5.3%,

3.5% and 3.4%. SD1 and SD3’s top structures were �-hairpins, turning about the

K4, K5 and N25, G26 subsequences, respectively.
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(a) PLUM*: The hydrogen bond line shows that the most important region for peptide
aggregation is similar to SD2, displaced one to two residues left (i.e. towards SD1). Arguably,
the start of SD3 may also be included. The trend is very similar to n16N-3, despite di↵erent
top geometric clusters. SD3’s length is just su�cient for its final residues to be far enough
away from the bulk of the cluster that its hydrogen bonding drops almost to 0.
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(b) PRIME20-like: The side-chain line is extremely flat, revealing essentially no pref-
erence in how the chains aggregate. The hydrogen bonding line shows a little variation.
The SD2 region has a similar form to that of 5.16a, though that is largely a predetermined
result of proline’s nitrogen having its hydrogen bonding capability disabled. No n16NN-6
simulation was carried out in this model.

Figure 5.16: The proportion of trajectory snapshots for which any given residue
along the chain is involved in an interaction binding it to an other chain, in the
n16N-6 and n16NN-6 systems. The n16N residue sequence is shown on the x-axis;
the red residues are replaced in n16NN according to D! N and E! Q. Interactions
are divided into side-chain and hydrogen bond types; an interaction for glycine is
not always applicable, and in these cases no data-point is plotted. Note that the
disparate forms of interaction in each model make a comparison of the average of
each line meaningless.
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(a) 1 (4.7%) The yellow chain sits on its own and primarily self-interacts. The
other five chains are highly involved with each other, though not through clearly
recognisable motifs like �-strands. N-terminal chain ends are found close together
in this structure. There is no obvious order to the structure.

(b) 2 (4.0%) All chains are interwoven; none are primarily self-involved.
No clear common secondary structural motifs are visible, besides the yel-
low chain’s C-terminal ↵-helix. There is very little order to the coil.

Figure 5.17: The two top-occurring structures for the n16N-6 system in PRIME20-
like at T ⇤ = 0.135. Each structure is labelled by its rank, with the percentage popu-
lation given in brackets. N-termini are highlighted in lime.
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Figure 5.18: Ramachandran plots of the n16N-6 system in PRIME20-like. Left

shows a standard Ramachandran heat map. Within the island of sterically accessible
dihedral angles, no coordinates are strongly favoured or disfavoured. Right shows a
di↵erence heat map, comparing the (�, ) coordinates visited with those of the n16N-
3 system in PRIME20-like. While the changes seen here are reversed compared to
the changes between the dimer and trimer n16N systems, the magnitude of changes
observed remains very low.

5.8 The n16NN-6 system

The n16NN-6 system was simulated in the PLUM* model only. The simulation time

was 3.3 microseconds, and the simulation set-up of n16N-6 in PLUM* was repeated.

The interpeptide interaction analysis on a per-residue basis of fig. 5.16a de-

viates from previous results. In the dimer and trimer systems, the change from

n16N to n16NN caused full-system interpeptide interaction proportions to rise, that

is, SD1 and SD2 were a↵ected similarly to SD3. However, the present system has

C-terminal residues’ proportions rising while N-terminal residues stay at the same

level or decline slightly.

5543 frame snapshots were saved for use in a clustering analysis. An RMSD

cut-o↵ of 1.13 nm was used, making the results comparable to n16N-6 in PLUM*.

The top clusters showed far more stability than n16N-6 in PLUM*, having popula-

tions of 10.1%, 6.0%, 5.0% and 3.8%. As in n16N-6, the top clusters all have a three

or four-chain �-sheet with extra chains found near the �-sheet’s SD2 region, on the

side of the sheet opposite the N-termini. However, the top cluster now features the

two extra chains in a more tightly packed conformation, illustrated in fig. 5.20.

The subdomain clustering analysis revealed that neither SD1 or SD2 were

significantly changed compared to n16N, their top three geometric clusters all falling

within 2.0% of their values in n16N-6. Only SD3 showed significant change, the

97



Figure 5.19: A heat map illustrating the frequency of interpeptide residue-residue
contacts in the PRIME20-like model’s n16N-6 system. The dataset plotted includes
all non-bonded interactions except for backbone hydrogen bonding. A value of 1.0
would indicate two residues interacting in as many pairs as possible (15 pairs for a
6-chain system) in every frame. On this scale, a value of 0.16 implies an average of
2.4 corresponding residue pairs are in contact.
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stability of the extended or �-strand conformations of its top two clusters growing

by approximately 4.0% each, while the third-place �-hairpin dropped from 12.7%

to 5.6%.

Figure 5.20: The topmost populated geometric cluster of the n16NN-6 system in
PLUM*, with a population of 10.1%. Four chains form a parallel �-sheet, while
the other two are tightly packed in a hybrid �-strand/�-hairpin conformation which
involves both inter- and intra-peptide hydrogen bonding. SD3 of the red chain joins
the �-sheet, which would be very unusual for n16N.

5.9 Discussion of hexamer systems

In PLUM*, the n16N-6 system took on a new favoured structure, based around

the SD2s of three or four chains coming together to create a �-sheet. The trend

of �-structures growing in dominance as system size increases has persisted. The

stable �-sheet top structures which dominated the n16N-6 simulation are the first

top structures seen for any system size which could conceivably be scaled and could

manifest in bulk without total rearrangement.

As in all n16N PLUM* simulations, the pattern of SD2 as the aggregation

domain and SD3 as the flexible and disordered tail remained. Nothing in the n16N-

6 simulations suggests particular function of SD1; it does not seem to be crucially

involved in aggregation, nor does it possess the properties of SD3, charges and

flexibility, which would suggest a role with ions. The staple of top structures having
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turns around the residues K4 and K5, and P15 and Y16, recurs in the n16N-6 and

n16NN-6 systems.

The mutant peptide n16NN, which has been observed to aggregate abnor-

mally or not at all [Delak et al., 2007; Metzler et al., 2010], features top geometric

clusters which are the same as n16N in the N-terminal, aggregation-enabling half.

Unlike the monomer, dimer and trimer systems, the SD1 and SD2 regions which

make up the N-terminal half of the chain are not more stable in n16NN than n16N,

but instead about equally so. This challenges the hypothesis which emerged from

the dimer and trimer systems that n16NN decreases full-chain flexibility, which may

be necessary for macromolecular assembly. The n16NN-6 top structure in fig. 5.20

shows SD3 becoming involved with the other subdomains in interpeptide interac-

tions, and this is confirmed by the comparison of interpeptide interactions by residue

(fig. 5.16a). It is also seen in the smaller systems. It may simply be that the SD3

domain of n16NN stops aggregation by outcompeting other chains for interpeptide

interactions with SD2.

The PRIME20-like simulation of the n16N-6 system had similar results to

smaller systems, in that the random coils which resulted were entirely collapsed and

disordered. The graph presented on interpeptide interactions per residue showed

that the random coil remained uniformly bound to itself, no portion of the chain

becoming a free tail or interacting less than other portions. A subdomain clustering

analysis showed that SD3 was still the least flexible subdomain. These aspects of the

results were largely in violation of the predicted clustering behaviour of the system,

and the collapsed nature of the structures is particularly troubling.

The present system also di↵ered from smaller systems, in that chains ceased

to prefer self-interaction, and folded together to a significant degree. An analysis of

which residues on other chains each residue prefers to interact with proved extremely

important, because it revealed that there are huge preferences and there is a kind

of order to n16N-6’s structures. SD2-SD2 interactions are far more common than

any other subdomain-to-subdomain interaction, which does support the subdomain

hypothesis. The fact that the PRIME20-like model perhaps gets this aspect of the

system correct, while secondary structure and the collapsed nature of the coil appear

completely wrong, suggests that the side-chain and non-bonded aspects of the model

are stronger than the backbone steric and/or hydrogen bonding aspects.
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5.10 Summary

The PLUM* coarse-grained model was used to simulate systems of 2, 3 and 6 units

of the peptides n16N and n16NN. REMD simulations were used, with replica counts

of 30, 55 and 120 spanning the temperature range [275, 350] K.

The original PLUM model was also used to simulate n16N-2, and the result

confirmed the need for the change in hydrogen bond strength which led to the

PLUM* model. n16N-2 in PLUM yielded two chains both with ↵-helix structure

and with a kink in the middle, exactly as in the top structure of n16N-1, which sat

next to each other and interacted almost exclusively via their side-chains. After the

small tweak to the PLUM model, chain multiplicity brought a remarkable degree of

region-specific di↵erentiation and function out of n16N.

The subdomain hypothesis, which categorises regions of the n16N chain by

local function and is delineated in table 1.3, was repeatedly validated with respect

to the aggregation behaviour of SD2 and the flexibility of SD3. The work elucidated

no clear role for SD1, but it is possible that the simulation would require other

elements, such as a suitable surface, for SD1 to activate.

As system size increased, so did propensity for �-structure, and the largest

simulations produced four-chain �-sheets. �-sheets are scalable with more chains,

so there is the possibility that this would stay the means of aggregation in larger

systems.

n16NN simulations were carried out to check for di↵erences in the properties

of the two systems. An inability of n16NN to aggregate has been experimentally ob-

served, and it was hoped that simulation might give a hint about why. In the dimer

and trimer systems, n16NN had greater full-system stability than n16N and main-

tained its interpeptide interactions in a higher proportion of trajectory snapshots.

However, this was no longer true in the hexamer systems. One consistent trend

observed was a far higher probability in n16NN than n16N for the SD3 to become

involved with the aggregating SD2 regions. Therefore, it was proposed that n16NN’s

SD3 may interfere with aggregation by blocking further interpeptide interactions.

The PRIME20-like model was used to simulate 2, 3 and 6 units of the peptide

n16N. It was also used to simulate 2 units of n16NN. REMD simulations were used,

with replica counts of 30, 48 and 60 spanning the temperature range [0.105, 0.250]

linearly. The reduced temperature T

⇤ = 0.135 was used for analysis, though exam-

inations of datasets at other temperatures revealed that structure was very similar

over a wide range.

Chains of n16N and n16NN were fully collapsed throughout, and remained
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so even at high temperatures. Chains folded into tightly packed random coils which

were barren of recognisable secondary motifs. In no system were strongly favoured

top structures observed. In dimer and trimer systems, the collapsed coils were

primarily self-interacting, typically sitting next to each other with mainly side-chain

interpeptide interactions.

Repeatedly, Ramachandran plots showed peaks for �-region structure and

for a turn motif with coordinates of (121, 28), both of which were also seen in the

monomer system. Contrary to hypotheses asserting that n16N may take on some

degree of order as it assembles in the presence of other chains, increasing chain

number brought about greater flatness in the island of sterically allowed coordinates

on the Ramachandran plots.

The hexamer system favoured interpeptide interaction far more, the chains

intertwining in the four top structures. The chains remained fully disordered and

maximally collapsed, but an analysis of which residues interact with which others

revealed a strong preference for interactions to occur between SD2 and SD2, SD1

and SD1, and SD1 and SD2. This was a strong sign that the PRIME20-like model

can di↵erentiate between regions of the n16N peptide. This result agreed with the

subdomain hypothesis of [Brown et al., 2014].
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Chapter 6

Conclusions

This project set out to advance the role of simulation to study intrinsically disor-

dered proteins, by producing an accelerated simulation methodology which works

for them. The already ubiquitous replica exchange method was selected for its

general availablity and applicability as the accelerated sampling method of choice.

Two coarse-grained models were selected to study the simulation targets n16N and

n16NN. In the following sections, the models’ success in simulating the peptides,

and what has been learned about the peptides themselves, will be evaluated. The

PRIME20-like and PLUM* simulations produced incommensurate trajectories with

very little in common, therefore, they will be analysed separately.

6.1 PLUM* model

The PLUM* model is the coarse-grained PLUM model [Bereau and Deserno, 2009],

with a decrease of 5.5% to the backbone hydrogen bonding strength. This was found

in section 4.1.1 to cause n16N-1 simulations to better match existing atomistic data.

The model was used to simulate systems of 1, 2, 3 and 6 units of the intrinsically

disordered peptide n16N and its mutant n16NN. It was also unsuccessfully used to

simulate the designed S1 peptide, which is known to form a polyproline II helix as

its native state.

6.1.1 Simulation results

Each simulation of n16N systems at di↵erent chain numbers produced di↵erent top

geometric clusters, without recurrence of tertiary structure between system sizes.

This is to be expected at such small system sizes, but means that, very possibly,

the tertiary structure evinced from n16N in these systems does not represent bulk
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behaviour. However, one of the consistent trends was an increase in �-structure as

number of chains rose. �-structure was the dominant aggregation form in multiple-

chain systems. Systems of two and three units were rich in parallel �-strands, and

these evolved to parallel �-sheets in the n16N-6 system. The spare two chains in the

n16N-6 system, when four chains were in a �-sheet, favoured a conformation which

suggested a capacity for layering of �-sheets together.

CD spectral evidence shows that n16N oligomers are composed of 46% �-

structure and 54% random coil structure, and that these proportions are similar to

the monomeric state [Amos et al., 2011]. The large PLUM* simulations showed a

similar balance of structure to this, the N-terminal half of the chain likely to be

in �-structure, and the C-terminal half likely to be disordered. Conversely, the

monomeric state was significantly more ↵-structured, even after turning down the

backbone hydrogen bond strength. PLUM* was tuned to match the ↵-helicity of a

CHARMM22* simulation [Brown et al., 2014] by matching the population of areas

of the Ramachandran plot, but comparing the most populated geometric clusters of

n16N in PLUM* and in CHARMM22* reveals that this did not perfectly eliminate

all excess stable ↵-helix manifestation in the monomer. However, in multiplicity,

the adjustment lead to far more interesting results.

Every simulation of n16N peptides broadly agreed with the subdomain hy-

pothesis [Brown et al., 2014] outlined in table 1.3. In every system including n16N-1,

SD3 possessed the greatest conformational freedom. In multi-peptide simulations,

SD2 was most involved in interpeptide interactions, while involvement in interpep-

tide interactions declined approximately linearly from the start of SD3 onwards. Top

geometric clusters repeatedly had Y23 as the last residue with interpeptide hydrogen

bonding. In the n16N-1 simulation, SD1 and SD2 were not distinguishable. How-

ever, a di↵erence in involvement in aggregation appears in the n16N-2 system, and

grows in the larger systems. The precise ‘interpeptide stabilisation’ domain is not

clearly defined by results in the present project. Arguably, it begins before the SD2

domain starts, and, according to top structures from multiple systems, lasts as far

as residue Y23. The precise length of the flexible tail left over is probably sensitively

dependent on ambient conditions which the PLUM* model cannot capture.

SD1’s two K residues manifested as extremely structure-disruptive, usually

placing a lower limit on the range of any interpeptide structural motif. The two

Ks also facilitated turns, leading to rather weakly bound �-hairpins or side-chain

mediated interactions with SD2.

Simulations of the mutant of n16N known as n16NN were carried out at

the same system sizes. Since it is known that n16NN cannot assemble normally
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[Delak et al., 2007; Metzler et al., 2010], it was hoped that these simulations would

bring to light the important di↵erences between the chains. Monomers of n16NN

were more stable overall than n16N monomers, and in the dimer and trimer cases,

full-chain stability for the top structures was greater in n16NN, as was the stability

of interpeptide interactions along the full chain. In the hexamer systems, the N-

terminal half of the chain was no more stable in n16NN than n16N. Consistently

in all systems, the n16NN SD3 was far more prone to interact with the rest of the

chain and with other chains than the n16N SD3. Based on this, it is possible that

the n16NN C-terminal tail disrupts aggregation by competing for interactions and

sterically blocking other chains.

The PLUM* results in this project have been extremely impressive, the dif-

ferent residues in the chain leading to the emergence of three clearly distinct areas

of di↵erent function, based on a simple hydrophobic interaction scale with mixing

rules. These results paint an optimistic picture of the future role of coarse-grained

models in the di�cult case of intrinsically disordered peptides and proteins. In both

n16N studies, and in general, continual comparison of results with atomistic data

will be necessary to refine models and validate results.

6.1.2 Further work

The attempted simulation of the S1 peptide was the single clear failure for the PLUM

and PLUM* models. This revealed a deficiency in the model relating to proline.

The PLUM* model was designed to have success finding the most common sec-

ondary structural motifs, which are stabilised by strong backbone hydrogen bonds.

However, the polyproline II helix that S1 correctly folds into is not stabilised by

backbone hydrogen bonds, but instead by side-chain interactions. It would be inter-

esting to see whether improvements to the realism of the proline residue, especially

limiting the � dihedral angle to approximately �60�, would serve to enable correct

S1 folding. A change in side-chain interactions may also be necessary. In n16N, the

proline residue is structure-disruptive and often the site of turns, so improving the

realism of proline’s dihedral angular potentials may be particularly beneficial for the

successful modelling of n16N systems.

Larger system sizes of n16N would be of interest and can be carried out with

ease. The reported n16N-6 and n16NN-6 simulations used 120 cores on the local

Warwick University cluster Minerva for just 384 hours and 576 hours respectively.

Of the cores used, 43 were below 300 K, at temperatures which were not referred to

in the final analysis. Optimisation of simulation strategy, and use of national com-

putational facilities, would enable larger-scale simulations to be performed. These
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simulations could answer questions about whether and how hypothesised multi-layer

�-sheets come together, and would bring other system features such as ions and sur-

faces into scope.

To observe the interaction of PLUM* n16N systems with surfaces or ions,

parametrisation would be required. Several existing atomistic forcefields already

allow the combination of ions with proteins, so this feature could be brought into

PLUM and PLUM* with multiple reference points for validation. Bringing a relevant

surface, such as �-chitin, into the simulation would require a large project to create

a suitable coarse-grained model.

Introducing ions would allow investigation of hypotheses regarding SD3’s

proposed “fly-casting” mechanism [Shoemaker et al., 2000; Brown et al., 2014]. The

PLUM* model would also be tested for its ability to conform to the experimental

results that n16N neither binds strongly to Ca2+ [Seto et al., 2014], nor has its

conformational ensemble altered in these ions’ presence [Collino and Evans, 2008].

Simulations orders of magnitude larger than the present system would be required

to investigate the observation of n16N assemblies creating localised compartments

of Ca2+ [Seto et al., 2014].

The more ambitious project of introducing a �-chitin model into PLUM*

would make it possible to recreate a microcosm of the environment of n16N absorbed

on �-chitin in the presence of Ca2+, which has been observed to nucleate aragonite

Keene et al. [2010a].

6.2 The PRIME20-like model

The PRIME20-like model is based on the PRIME20 model [Cheon et al., 2010].

Parameters which were not publicly available were filled in, and this is described in

section 3.1. The model was used to simulate systems of 1, 2, 3 and 6 units of the

intrinsically disordered peptide n16N and 1 and 2 units of its mutant n16NN.

6.2.1 Simulation results

The simulations of n16N defied predictions and produced unusual behaviour in mul-

tiple ways. All system sizes produced trajectories of extremely tightly packed chains,

with no free tails or preferred aggregation domains. The systems featured almost no

ordered secondary structural motifs whatsoever. All of the systems except n16N-6

predominantly formed intrapeptide interactions.

Diagnosing the problem requires more data and a larger variety of test sys-

tems, with the capability to isolate di↵erent aspects of the model. However, looking
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at the reasons to be optimistic do provide a clue. The single-chain n16N system had

promising results. The most common structures involved a buried SD2, maximising

tyrosine interactions, as seen in atomistic simulations [Brown et al., 2014]. They

also had an SD3 on the outside of the structure, though it was still bound to the

coil. The six-chain system showed no greater tendency for SD2 domains to be in in-

terpeptide interactions, but residues on the N-terminal half were found to be vastly

more favoured as other residues’ interaction partner than residues on the C-terminal

half. The largest island of favoured interaction partners was in the centre of SD2,

agreeing with the PLUM* model and the subdomain hypothesis. Therefore, the

PRIME20-like model does strongly exhibit a form of residue specificity which may

lead to reliable predictions when other errors in the model are fixed.

Secondary structure is chiefly derived from properties of the backbone, e.g.

steric clashes, backbone-to-backbone hydrogen bonding and dihedral potentials. On

the other hand, residue specificity must derive from side-chain interactions. Ignoring

basic ↵-helix forming chains, PRIME20 has been used in published work to study

chains of length 7 AA [Cheon et al., 2011], 10 AA [Wagoner et al., 2011], 6 AA

[Wagoner et al., 2012] and 6 AA [Cheon et al., 2012]. It may be that the model is

incapable of proper secondary structure with a chain of length 30 AA. On top of this,

the steric properties of PRIME20 had to be overhauled to create the PRIME20-like

model, and this occurred without significant testing.

The PRIME20-like model’s simulations have been plagued by its inability to

form secondary structure properly, and this has masked most of the model’s finer

properties, such as its carefully tuned side-chain interactions. The glimpses of the

model’s potential which have emerged from some datasets do spur hope for the

model, but it will need improvements before re-evaluation for use in future studies.

6.2.2 Further work

Before PRIME20-like is used for more simulations of n16N or other IDPs, adjustment

to the core parameter set is needed. It is not clear whether there is any simple fix

for the backbone’s structural behaviour, but a few suggestions can be made. Work

should begin by investigating the steric freedom of the backbone; is it su�cient to

allow all commonly observed secondary structure? If so, is the binary nature of the

potential causing a lack of sti↵ness, and could a minimal set of multi-step potentials

aid this? Testing against simple ordered and designed peptides would be extremely

helpful.

The PRIME20-like model has been shown to behave successfully and very

similarly to PRIME20 for short peptide fragments, as in section 3.1.2. The capability
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to perform this kind of simulation with an open-source model may be useful to some

researchers.

6.3 Outlook for coarse-grained models to study IDPs

The data presented in this project are su�cient to fully support the notion that

coarse-grained models, at the resolution of four beads per residue, can augment the

investigation of intrinsically disordered peptides. More specifically, the continuous-

potential model PLUM [Bereau and Deserno, 2009] has been shown capable of

demonstrating predicted behaviour of the peptide n16N in system sizes up to 6

chains. The model has the potential to simulate larger systems and to be enhanced

to involve more features of the biomineralisation environment in which n16N exists.

Pursuing this path could be instrumental to the development of our understanding

of n16N and other intrinsically disordered proteins.

It remains to be seen whether the discontinuous-potential model PRIME20

[Cheon et al., 2010] and its derivatives can be made useful in the study of peptide

chains exceeding ten residues. If it is possible, then this project has presented some

indications that the model may be similarly useful to growing our understanding of

intrinsically disordered proteins.
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