
University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/74268

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to
cite it. Our policy information is available from the repository home page.

http://go.warwick.ac.uk/wrap
http://go.warwick.ac.uk/wrap/74258


M
A

E
G
NS

I
T A T

MOLEM

U
N

IVERSITAS  WARWICENSIS

Hand Gesture Recognition in Uncontrolled

Environments

by

Yi Yao

Thesis

Submitted to the University of Warwick

for the degree of

Doctor of Philosophy

Department of Computer Science

December 2014



Contents

List of Tables IV

List of Figures VI

Acknowledgments XI

Declarations XIII

Abstract XIV

Chapter 1 Introduction 1

1.1 Human Computer Interaction . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Hand Gesture Recognition . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Vocabulary Structure . . . . . . . . . . . . . . . . . . . . . . 6

1.3.2 Scene Settings . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.3 Performance Constrains . . . . . . . . . . . . . . . . . . . . . 9

1.3.4 Intra-class variance . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Map of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Chapter 2 Literature Review 12

2.1 Categorisation of HGR Methods . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Categorisation by Context . . . . . . . . . . . . . . . . . . . . 13

I



2.1.2 Categorisation by Sensor . . . . . . . . . . . . . . . . . . . . 15

2.1.2.1 Non-vision-based HGR . . . . . . . . . . . . . . . . 16

2.1.2.2 3D Vision based HGR . . . . . . . . . . . . . . . . . 17

2.1.2.3 2D Vision based HGR . . . . . . . . . . . . . . . . . 19

2.2 Methodologies of Appearance based HGR . . . . . . . . . . . . . . . 20

2.2.1 Hand Segmentation and Tracking . . . . . . . . . . . . . . . . 21

2.2.2 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.3 Gesture Classification . . . . . . . . . . . . . . . . . . . . . . 26

Chapter 3 Hand Posture Recognition 33

3.1 Background Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.1 Texture Features . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.2 AdaBoost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Chapter 4 Hand Tracking in Uncontrolled Environments 51

4.1 Adaptive SURF Tracking . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1.1 First Frame Processing . . . . . . . . . . . . . . . . . . . . . 53

4.1.2 Texture Matching . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.3 Trajectory Feature Extraction . . . . . . . . . . . . . . . . . . 67

4.2 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.1 Changing Lighting Conditions . . . . . . . . . . . . . . . . . 70

4.2.2 Background Distractions . . . . . . . . . . . . . . . . . . . . 71

4.2.3 Frontal Occlusion and Hand Out of the Scene . . . . . . . . 73

4.2.4 Pause During Gestures . . . . . . . . . . . . . . . . . . . . . 74

4.2.5 Speed Variance . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.6 Location Variance . . . . . . . . . . . . . . . . . . . . . . . 74

II



4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Chapter 5 Probabilistic Model based Hand Gesture Recognition for

Uncontrolled Environments 76

5.1 Advantages and Issues of Applying CRF on Gesture Classification . 78

5.1.1 Generative Models versus Discriminative Models . . . . . . . 78

5.1.2 Lebal Bias Problem in HGR . . . . . . . . . . . . . . . . . . . 79

5.2 Gesture Classification for Uncontrolled Environments . . . . . . . . . 82

5.2.1 Gradient based Parameter Estimation . . . . . . . . . . . . . 83

5.2.2 Inference with Partition Matrix . . . . . . . . . . . . . . . . . 96

5.2.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.3.1 Gesture Similarity . . . . . . . . . . . . . . . . . . . . . . . 126

5.3.2 Gesture Complexity . . . . . . . . . . . . . . . . . . . . . . 126

5.3.3 Gesture Size Variance . . . . . . . . . . . . . . . . . . . . . 127

5.3.4 Unsolved Challenges . . . . . . . . . . . . . . . . . . . . . . 127

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Chapter 6 Hand Gesture Spotting in Uncontrolled Environments 130

6.1 Garbage Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.2 Multiple Sliding Windows Forward Spotting Scheme . . . . . . . . . 137

6.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Chapter 7 Conclusions and Future Works 151

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.2 Limitations and Future Works . . . . . . . . . . . . . . . . . . . . . . 154

III



List of Tables

3.1 Results of experiment 1 and comparisons with state-of-the-art meth-

ods on the Triesch Hand Posture Database. . . . . . . . . . . . . . . 48

3.2 Results of experiment 2 and comparison with A. Just et al [1]. . . . 48

5.1 Performance of the proposed framework on the hard set of the Palm

Graffiti Digits database. . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2 Performance of the proposed framework on the easy set of the Palm

Graffiti Digits database. . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3 Comparison with state-of-the-art accuracies on the Palm Graffiti Dig-

its database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.4 Comparison of performances with method of [2] on the Warwick Hand

Gesture Database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.5 Performance with w = 1 on the hard set of Warwick Hand Gesture

Database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.6 Performance with w = 2 on the hard set of Warwick Hand Gesture

Database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.7 Performance with w = 3 on the hard set of Warwick Hand Gesture

Database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.8 Performance with w = 4 on the hard set of Warwick Hand Gesture

Database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

IV



5.9 Performance with |h| = 6 on the hard set of Warwick Hand Gesture

Database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.10 Performance with |h| = 7 on the hard set of Warwick Hand Gesture

Database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.11 Performance with |h| = 8 on the hard set of Warwick Hand Gesture

Database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.12 Performance with |h| = 9 on the hard set of Warwick Hand Gesture

Database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.13 Performance with |h| = 10 on the hard set of Warwick Hand Gesture

Database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.14 Performance with |h| = 11 on the hard set of Warwick Hand Gesture

Database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.15 Performance with |h| = 12 on the hard set of Warwick Hand Gesture

Database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.1 Results of the proposed method on the ”hard” gesture spotting set

of Warwick Hand Gesture Database. . . . . . . . . . . . . . . . . . . 147

6.2 Results of the proposed method on the ”easy” gesture spotting set of

Warwick Hand Gesture Database. . . . . . . . . . . . . . . . . . . . 148

6.3 Comparison of performances with method in [3]. . . . . . . . . . . . 149

V



List of Figures

1.1 Sample from Warwick Hand Gesture Database, with uncontrolled

environments [4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Sub-gesture problem. On the left: a sample of gesture ”5”; On the

right: gesture ”5” can be seen as part of gesture ”8”. The red and

blue dots indicate start and end point of both gesture respectively. . 8

1.3 The structure of the proposed Hand Gesture Recognition framework

in this thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Word Bicycle in American Sign Language [5]. . . . . . . . . . . . . . 14

2.2 Example of signs that are only different on the hand poses. (a): word

Key in the American Sign Language. (b): word start in the American

Sign Language [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Mister Gloves, Cornell University [6]. . . . . . . . . . . . . . . . . . . 16

3.1 Matched SURF pairs in different postures. . . . . . . . . . . . . . . . 36

3.2 Testing samples in the Triesch Hand Posture Database. The level of

noise in the background is high [7]. . . . . . . . . . . . . . . . . . . 39

3.3 All ten pre-defined hand postures in the Triesch Hand Posture Database

[7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Number of weak hypotheses within trained strong classifiers for all

10 postures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

VI



4.1 Processing of the first frame, (a) The skin color binary image, (b)

Results of the denoising process, (c) The initial ROIs, (d) SURF key

points within the initial ROIs. . . . . . . . . . . . . . . . . . . . . . 54

4.2 Texture matching for the ROI of the target signing hand. . . . . . . 61

4.3 The graph shows the number of SURF key points extracted from

different downsampled resolutions of the same image. The lines in the

graph represent the number of detected SURF key points from two

images with uncontrolled and controlled scene settings, respectively.

The full image size is 640 * 480 pixels. . . . . . . . . . . . . . . . . 61

4.4 For the first 10 frames in the sample displayed in Fig 4.5, with a

fixed resolution of 340*240 pixels, this graph shows how the number

of matching SURF key point pairs changing with different values of

Tmatch from 0.1 to 0.9. . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5 For the first 10 frames in the sample displayed in Fig 4.5, with fixed

Tmatch value 0.9, this graph shows how the number of matching SURF

key point pairs changing with different value of scale from 10% to

100%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.6 Pruning process. (a) matched key point pairs from one of the ROIs,

between the previous frame (left) and the current frame (right), (b)

the remaining matched key point pairs after pruning. . . . . . . . . 65

4.7 The movement orientation vectors of all training samples of the ges-

ture ”6” from the Palm Graffiti Digits database [8], with orientation

bin size 10 degree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.8 The movement orientation vectors of all training samples of the ges-

ture ”6” from the Palm Graffiti Digits database [8], with orientation

bin size 20 degree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

VII



4.9 The movement orientation vectors of all training samples of the ges-

ture ”6” from the Palm Graffiti Digits database [8], with orientation

bin size 30 degree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.10 The movement orientation vectors of all training samples of the ges-

ture ”6” from the Palm Graffiti Digits database [8], with orientation

bin size 40 degree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1 The transitional features of gesture ”4” and ”2”. The solid circles

indicate one of the common features of the two gesture class, while

the doted circles represent two distinctive features that can separate

the two classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 HCRF model, the hidden states are defined as strokes of gestures,

input sequence x is the movement direction vector of one hand can-

didate under one frame selection pattern. xu,r means vector with uth

frame selection pattern and rth ROI. . . . . . . . . . . . . . . . . . . 85

5.3 Vocabulary of ten hand signed digits. . . . . . . . . . . . . . . . . . 85

5.4 The feature function contains the observation state and corresponding

hidden state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.5 The feature function contains the hidden state and the class label. . 89

5.6 The feature function of the transitional hidden states and the class

label. In this case, the window size is 0. . . . . . . . . . . . . . . . . 90

5.7 Samples of distorted hand trajectories. . . . . . . . . . . . . . . . . 90

5.8 Partition Matrix of a testing sample from the Warwick Hand Gesture

Database. The target hand is signing the gesture ”7”, while the

background distractions are randomly moving around. The Partition

Matrix is only showing the class labels, instead of the partition-label

pairs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.9 Sample from the hard testing set of the Palm Graffiti Digits database. 105

VIII



5.10 Comparison with Alon et al. PAMI 2009 [8] on the hard set of Palm

Graffiti Digits database. . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.11 Comparison with Correa et al. RoboCup 2009 [9] and Malgireddy et

al. CIA 2011 [10] on the easy set of Palm Graffiti Digits database. . 108

5.12 Gesture trajectories of all training samples of gesture ”6” in the Palm

Graffiti Digits database. . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.13 Gesture trajectories of all training samples of gesture ”6” in the War-

wick Hand Gesture Database. . . . . . . . . . . . . . . . . . . . . . . 111

5.14 Comparison of performances with method of [2] on the esay set of

Warwick Hand Gesture Database. . . . . . . . . . . . . . . . . . . . 112

5.15 Comparison of performances with method of [2] on the hard set of

Warwick Hand Gesture Database. . . . . . . . . . . . . . . . . . . . 112

5.16 Performance with different window sizes. . . . . . . . . . . . . . . . . 113

5.17 Performance with different number of hidden states. . . . . . . . . . 117

6.1 Three types of feature functions for the garbage model. Left: the f1

features, remain the same as in isolated gesture recognition; Middle:

the new f2 feature functions represent the compatibility of hidden

states and garbage hand movements; Right: the new f3 feature func-

tions indicating the compatibility of the transitional hidden states

and garbage hand movements. . . . . . . . . . . . . . . . . . . . . . . 135

6.2 Structure of the forward spotting scheme with Partition Matrix for

videos with multiple hand candidates. A series of video fragments

are cut from the input frames by sliding windows with different sizes.

Then the series of video fragments are put through Partition Matrix

with Non-Sign Model introduced in the last section. The resutls of

the Partition Matrix are used to form a matrix that produces the

final spotting results for the current frame. . . . . . . . . . . . . . . 138

IX



6.3 Trajectories of all training samples of gesture ”6” in the Warwick

Hand Gesture Database. . . . . . . . . . . . . . . . . . . . . . . . . 143

6.4 Trajectories of all hand candidates, including background distrac-

tions, from a fragment of a testing sample in Warwick Hand Gesture

Database. The target hand is signing gesture ”6” in this fragment. 144

6.5 Upper left: Sample of testing video in the ”hard” testing set with

uncontrolled environments; Upper right: The movement directions

codewords, and there are in total 12 directions. Bottom: the defini-

tion of the gesture set in the experiments. . . . . . . . . . . . . . . 146

6.6 Comparison of performances on the ten gesture classes in the ”easy”

gesture spotting set of Warwick Hand Gesture Database. . . . . . . 149

6.7 Comparison of performances on the ten gesture classes in the ”hard”

gesture spotting set of Warwick Hand Gesture Database. . . . . . . 150

X



Acknowledgments

The journey of completing my PhD research has significant influences on my life. It

taught me the meaning of responsibility and perseverance. This journey was made

possible because of the support, guidance and encouragement I got from many

individuals. I would like to take this opportunity to express my gratitude to all of

them.

First of all, I would like to express my gratitude to my supervisor, Prof.

Chang-Tsun Li. For the past few years, despite my ignorance and sloth, Prof. Li

introduced me to the world of science, and taught me everything I know about how

to conduct scientific research. He provided me many opportunities that I could

only dream about. I hope I can inherit some of his work ethics and many valuable

qualities as a person. He is not only my supervisor, he also sincerely cares about

my life. My wife and I have received countless helps from Prof. Li and his lovely

family over the years. We will never forget that.

This journey would be much harder without my lab mates. Xingjie Wei, Yu

Guan, Xin Lu, Xufeng Lin, Ruizhe Li, Ning Jia, Qiang Zhang, Xin Guan, Roberto

Leyva, Alaa Khadidos, Faisal Azhar, Chao Chen, Bo Gao, Huanzhou Zhu, you are

all exceptional scientists. Many ideas of mine came from our heated discussions.

We worked hard together and had fun together, thank you all for being my friends

and accompanying me along this journey. Our friendships won’t stop here.

I owe my deepest gratitude to my parents, who always give me unconditional

love and support. Without your encouragement, I would never finish this PhD.

Thanks to my father who always is my role model, for all the helps on my career.

XI



Thanks to my mother who has been supporting me and my marriage thousands

miles away from China since day one of my PhD. I hope I can make you both

proud. Also, thanks to my parents in-law, who gave me permission to take their

little girl half the world away for years.

Finally, special thanks to the love of my life, my best friend and wonderful

wife Jing Ma, who literally did this PhD with me. Thank you for staying with me

in the lab every day, thank you for tolerating my long hours, thank you for standing

right by my side and holding my hand during all the ups and downs. You saved me

and changed me from a boy to a man.

XII



Declarations

I hereby declare that, except where acknowledged, the work presented in this thesis

is my own work. No part of the work contained in this thesis has previously been

accepted in substance for any degree nor submitted elsewhere for the purpose of

obtaining an academic degree.

XIII



Abstract

Human Computer Interaction has been relying on mechanical devices to feed infor-

mation into computers with low efficiency for a long time. With the recent devel-

opments in image processing and machine learning methods, the computer vision

community is ready to develop the next generation of Human Computer Interaction

methods, including Hand Gesture Recognition methods. A comprehensive Hand

Gesture Recognition based semantic level Human Computer Interaction framework

for uncontrolled environments is proposed in this thesis. The framework contains

novel methods for Hand Posture Recognition, Hand Gesture Recognition and Hand

Gesture Spotting.

The Hand Posture Recognition method in the proposed framework is capable

of recognising predefined still hand postures from cluttered backgrounds. Texture

features are used in conjunction with Adaptive Boosting to form a novel feature

selection scheme, which can effectively detect and select discriminative texture fea-

tures from the training samples of the posture classes.

A novel Hand Tracking method called Adaptive SURF Tracking is proposed

in this thesis. Texture key points are used to track multiple hand candidates in the

scene. This tracking method matches texture key points of hand candidates within

adjacent frames to calculate the movement directions of hand candidates.

With the gesture trajectories provided by the Adaptive SURF Tracking

method, a novel classifier called Partition Matrix is introduced to perform gesture

classification for uncontrolled environments with multiple hand candidates. The

trajectories of all hand candidates extracted from the original video under different

XIV



frame rates are used to analyse the movements of hand candidates. An alternative

gesture classifier based on Convolutional Neural Network is also proposed. The in-

put images of the Neural Network are approximate trajectory images reconstructed

from the tracking results of the Adaptive SURF Tracking method.

For Hand Gesture Spotting, a forward spotting scheme is introduced to detect

the starting and ending points of the predefined gestures in the continuously signed

gesture videos. A Non-Sign Model is also proposed to simulate meaningless hand

movements between the meaningful gestures.

The proposed framework can perform well with unconstrained scene settings,

including frontal occlusions, background distractions and changing lighting condi-

tions. Moreover, it is invariant to changing scales, speed and locations of the gesture

trajectories.
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Chapter 1

Introduction

1.1 Human Computer Interaction

The methods of inputting information into computers have significant influences

on system efficiency, system usability and user experience. People have been us-

ing mechanical devices as input methods since the advent of electronic computers

[11]. The history of Human Computer Interaction (HCI) began in 1959 [12] with

Shakel’s article on ”The ergonomics of a computer” [13]. People have been devel-

oping novel HCI methods since then, from the Atari 2600 Joystick in 1977 [11], the

first commercially successful integrated keyboard in personal computer IBM PC 84

key keyboard in 1981 [14] and the first widely used mouse on Apple Lisa PC in 1983

[15], to the huge success of Microsoft Kinect in 2009 [16]. With the rapid growth

in the hardware computational power and the accuracy of machine learning meth-

ods, the computer science research community has changed people’s fundamental

perspectives. However, we are still pushing buttons to feed information into ma-

chineries byte by byte with low efficiency. The needs for more intuitive and efficient

ways to interact with computers are acute. People are seeking methods to ”walk” in

virtual reality, ”talk” to computers and ”wave” to control machineries. The novelty

of the armband MYO [17] and LeapMotion [18], are two of the many proofs of the

1



fact that HCI just about to enter the new era of semantic level communications.

Computer vision based methods are becoming one of the most promising

directions for the next generation HCI. Hand Gesture Recognition (HGR) as one

of the earliest ideas of the semantic HCI, has already started the process of large

scale commercialisation since the Microsoft Kinect 2009 [16]. More and more novel

applications for HGR are emerging. This thesis is focusing on solving the bottleneck

that the HGR research community is facing today: pure appearance based robust

HGR method for uncontrolled environments.

1.2 Hand Gesture Recognition

According to Psycholinguistcs gesture is the ”critical link between our conceptualiz-

ing capacities and our linguistic abilities” [19]. In Biology, gesture is defined as ”all

kinds of instances where an individual engages in movements such that their com-

municative intent is manifested and openly recognized” [20]. Gestures are utilised

in communications as part of the expression. Sometimes gestures alone can be used

as a communicative language [21] [22] [23]. Due to the important role of gestures in

human communication, gesture recognition has been explored in many multimedia

applications [24, 25, 26, 27, 28, 29, 30].

The tasks for Hand Gesture Recognition vary under different contexts. Gen-

erally, there are two main tasks: Hand Posture Recognition (HPR) and Hand Ges-

ture Recognition. For HPR, the task is to recognise different hand postures based on

the spatial features extracted from the static images [31, 2, 32, 33, 34, 35, 36, 37, 38].

The task of HGR could be combination of analysing the latent patterns based on

both the temporal and spacial features extracted from the trajectories and shapes of

hands in video streams [39, 40, 41, 42, 43, 44, 45, 46]. For some specific applications,

the functionalities of HPR and HGR are usually combined, which means detecting

the presence of certain hand posture, then analysing its trajectory. In the research

2
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field of HGR, some works on HPR still claim that the methods are under the scope

of HGR. Hence there is ambiguity in the definition of HGR in the research field.

This thesis separates the definition of hand gestures and hand postures, and novel

solutions for both HPR and HGR in uncontrolled environments are proposed. Due

to the similarity between HPR and HGR, the principles of HGR methods can also

be applied to HPR methods. Hence, HPR is treated as a sub-task of HGR in this

thesis. The content about HPR methods can be found within the content of HGR,

without dedicated titles. Additionally, another sub-task of HGR to recognise con-

tinuous hand gestures is called Hand Gesture Spotting (HGS), which can be seen

as a branch of HGR research. Contents about HGS can be found in Chapter 7.

There are three key components of the HGR process: 1) Hand Segmentation

and Tracking, 2) Trajectory Feature Extraction and Selection, 3) Gesture Classi-

fication. Hand Segmentation and Tracking can be seen as the pre-processing of

HGR, which is about detecting possible hand candidates in the scene, and record

the positions and trajectories of the hand candidates through video streams. For

various background scene settings, the task of hand segmentation and tracking can

be very different. Hand Tracking in the uncontrolled environments with intensely

distracted backgrounds has always been a difficult problem for the HGR research

community. But at the same time, it is one of the crucial challenges that must been

tackled before HGR can be widely used in real-world applications. In this thesis,

a novel hand tracking scheme is presented specially for uncontrolled environments.

Similar with other pattern recognition problems, classification process can always

benefit from discriminative features. Different combinations of trajectory features

can produce diverse invariance properties against changes of size, speed and orien-

tation of the gesture trajectories. The more types of trajectory features adopted,

the more discriminative the feature combination will be. But the less invariant the

method would be against alignment and scale change (of course, some of the fea-

tures are correlated and therefore redundant). Hence the trade-off between invariant
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properties and feature discriminability can be decisive for HGR methods. Attempts

on pairing various classifiers and features have been conducted in many works (see

Chapter 2).

HPR needs pre-processing to detect the hand region as well. If the method

is for real-time HPR, the method would also require a tracking scheme to keep

record on the current position of the target hand region. Then instead of trajectory

features, spatial features are extracted as the main feature for posture classification,

including contour descriptors, texture features and colour cues.

The concept of HPR is perfectly clear, but when it comes to real-world

applications, the definitions of HGR and HPR are often ambiguous, due to the

reason that gestures in the vocabulary are normally combinations of dynamic hand

gestures and still hand poses. Hence, the task becomes combination of Hand Gesture

Recognition and Hand Posture Recognition. Hand poses can be used as an individual

feature for HGR. Hence, for the majority of the commercialised methods, HPR is

used as a complimentary method for HGR.

1.3 Problem Statement

The research of Hand Gesture Recognition started in the late 80s to the early 90s

[47, 48, 49, 50, 51, 52, 53] to deal with problems such as Sign Language Recognition

and Virtual Reality. The fundamental idea of the early stage HGR research is using

pattern recognition and image processing techniques to interpret hand movement,

without too much considerations for the further usability issues. The researchers

were rather focusing on the basic HGR tasks in well-controlled lab environments. To

this very day, the majority of the HGR community are focusing on Sign Language

Recognition, where the main challenges are massive vocabulary, massive amount of

classes and extremely low amount of training samples for each class. There were

few attempts for HGR in uncontrolled environments in the academic community
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Figure 1.1: Sample from Warwick Hand Gesture Database, with uncontrolled envi-
ronments [4].

[54, 8, 2], however the robustness of these methods were far from satisfactory.

On the other hand, the commercialisation wave of HGR technologies began

with the launch of Wii from Nintendo [55] and Kinect from Microsoft [16]. HGR

as an innovation HCI method started to attract attention. People started to focus

on usability and robustness against real-world scene settings, instead of complex

pattern recognition problems with relatively low potential commercial values, such

as Sign Language Recognition. Due to the lack of robust appearance based methods,

industry oriented researchers came up with alternative approaches, that involve

additional sensors such as stereo cameras [54], laser scanner [56], infrared cameras

[16] and other mechanical sensors [17], to overcome challenges from the uncontrolled

real life scene settings (see Fig 1.1). But the cost of integrating these relatively

expensive sensors has been proven to be an issue for embedded systems and portable

devices.

Developing a robust appearance based method for HGR in uncontrolled en-
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vironments is the main contribution of this thesis. Due to the variety of HGR

applications, the key parameters of HGR problems can largely vary. There are a

large number of challenges that can significantly affect the performance of the HGR

methods. In this thesis, the uncontrolled environments are define as: The envi-

ronments with no constrains on the scene settings and the manner of

gesture performance. The challenges that HGR community are currently facing,

from controlled or uncontrolled environments, will be systematically defined in this

section. The key challenges can be grouped into 4 categories. They are discussed

below:

1.3.1 Vocabulary Structure

Vocabulary structure basically defines the task for HGR and HPR: What kind of

gestures or postures the method wants to recognise.

• Large Vocabulary Size. In applications such as Sign Language Recognition,

normally the task is recognising a large number of gestures and postures. Large

amount of words means large amount of classes in classification process which

is always a challenge for pattern recognition methods. It is a common knowl-

edge that for pattern recognition tasks, the more training samples available,

the better results the method will produce [57], of course if overfitting stays

in reasonable level. For tasks like Sign Language Recognition, the amount

of classes are massive. It is fairly difficult to collect a database with descent

amount of samples for every word. The most popular dataset in the field is

Boston ASL dataset [58]. It comprises hand signed short stories, dialogues,

instead of individual words. In this way, more words would be covered in the

dataset. But there are still no more than few dozens of samples for each words.

• High Gesture Similarity. Since the articulation limitation of the human upper

body, including the 27 Degree of Freedom (DoF) in human hands [59, 60, 61],
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the possible movements of joints in arms and hands are confined. Hence the

amount of different hand gestures and postures (up to certain complexity) are

limited. In order to present different words with limited articulation, intro-

ducing certain extent of similarity among words is inevitable. That means the

inter-class variance is small. From pattern recognition point of view, small dis-

tinction among samples from different classes is always a problem. Especially

for a massive vocabulary, gesture similarity is the main challenge.

• High Gesture Complexity. For some application, the gestures need to be de-

fined with certain complex hand movements, such as Human Robot Interaction

or Sign Language Recognition. Overly complex gestures can lead to confusion

in classification, which also known as the sub-gesture problem [8]. Taking the

task of HGR in this thesis as example, namely recognising 10 hand signed

digits. The gesture ”5” can be seen as first half of the gesture ”8” (Fig. 1.2).

• Double Handed Gestures. In sign languages, two handed gestures are com-

mon. These gestures require tracking methods that can track multiple objects

with similar texture, colour and contour features, without getting confused.

Two handed gestures require more sophisticated tracking methods, hence nor-

mally less used in commercialised systems. For most of the applications, single

handed gestures are more than enough to form the vocabulary. For interactive

hand gestures utilised in HCI applications, the less occupied the users are by

performing the gestures, the better user experience the system will produce.

From usability point of view, simpler gestures would make the system easier

to use. Therefore, in commercialised methods on the market, the vocabularies

are filled with simple single-handed gestures, such as ”swipes”. There is no

reason for requiring both hands of the gesture performer to use the system,

while the single handed gestures are more than adequate. But two handed

gesture still is one of the main challenges for some HGR problems.
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Figure 1.2: Sub-gesture problem. On the left: a sample of gesture ”5”; On the right:
gesture ”5” can be seen as part of gesture ”8”. The red and blue dots indicate start
and end point of both gesture respectively.

1.3.2 Scene Settings

The scene settings are the contents of the scene environment other than the gesture

performer.

• Changing Lighting Conditions. The content of the scene directly affects the

tracking methods. Therefore the features of trajectory classification will also

be affected. Lighting changes as one of the scene setting challenges, can affect

the tracking method by giving object surfaces different colours and textures.

• Background Distractions. The main challenge in uncontrolled environments

is background distractions. For further explanation, this challenge can be

sub-categorised into 4 types: Static Background Non-Skin-Coloured Regions;

Moving Background Non-Skin-Coloured Regions; Static Background Skin-

Coloured Regions; Moving Background Skin-Coloured Regions. The 4 types

of objects in the background can potentially present similar colour and tex-

ture features as the target hand region and confuse the tracking method. In

Chapter 4, the influence of these challenges and corresponding solutions will
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be discussed.

• Frontal Occlusion. Frontal occlusions means objects (moving or static) ap-

pearing in between the camera and the gesture performer, during certain time

period of the gesture. Intuitively the solution for this challenge would in-

volves using the last known feature of the target region before the occlusion

occurred, or use partial features from the regions that have not been covered

by the occlusion. In Chapter 4, this issue will be discussed in details.

1.3.3 Performance Constrains

Performance Constrains: The definition of performance constrains is the challenges

caused by the manner of gesture performing.

• Continuous Gestures. For some specific application scenarios, the HGR meth-

ods are facing the task of recognising continuous gestures, with interconnection

hand movements. Namely, detecting the starting and ending points of each

gestures in a continuous gesture stream, similar with phrasing all words in a

sentence. This particular task is called Hand Gesture Spotting (HGS). For

every frame, the method should be able to determine whether it is part of

predefined gestures, or meaningless hand movements.

• Face/Hand Overlapping. If the hand is overlapping with face regions during

gestures, that could cause a tracking error for methods based on colour fea-

tures. Facial region of the gesture performer can also be seen as a background

distraction. In early studies of HGR without the consideration of background

distractions, this challenge was one of the main obstacles.

• Hand Out of Scene. During the gestures, if the target hand is stepping out

of the scope of the camera, only leaving the wrist or arm region in the scene,

there would be no colour, texture or motion features can be extracted on the
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target hand region. Hence the tracking method can easily lost track on the

hand.

• Pause During Gesture. Pauses during the gestures can be catastrophic for

HGR methods that extract speed or position as trajectory features. In Chapter

4, solution for this challenge will be introduced.

1.3.4 Intra-class variance

Intra-class variance includes variance on the gesture size, speed, location and orien-

tation. HGR methods are suffering from large intra-class variance as other pattern

recognition problems. Performing hand postures or gestures in the air with no ref-

erence objects can cause largely varying posture or gesture patterns. People have

different level of brain-hand coordination and spatial imagination abilities, which

can affect how people draw signs in the air. Even with specific instructions of

standard postures or gestures, same hand posture or gesture samples performed

by different individuals could have a distribution with large variance in the feature

space. Even the same performer signing the same posture or gesture, the results

could still vary in sizes, speed, locations and orientations. That presents a challenge

for classification.

1.4 Map of this thesis

In the following chapters, a framework for Hand Posture Recognition, Hand Gesture

Recognition and Hand Gesture Spotting in uncontrolled environments is introduced

(Fig 1.3). Chapter 2 contains a detailed review on existing methods of the commer-

cial and academic communities of HPR and HGR. Chapter 3 introduces a solution

for Hand Posture Recognition in uncontrolled environments. In Chapter 4, a novel

tracking scheme called Adaptive SURF Tracking is proposed for hand tracking in

uncontrolled environments. Following that, Chapter 5 introduces a novel gesture
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classifier based on Hidden Conditional Random Fields, for gesture classification in

uncontrolled environments with multiple hand candidates in the scene. In Chapter

6, a forward hand gesture spotting scheme is proposed for Hand Gesture Spotting

in uncontrolled environments. The final chapter presents conclusions and possible

future directions of the proposed framework.

Adaptive 
SURF 

Tracking
(Chap 4)

Partition
Matrix
(Chap 5)

Gesture 
Spotting
Scheme
(Chap 6)

Input Video

Movement 
Direction 
Vectors

Initial 
Classification 

Results

Video Fragment 
with different 
window sizes

Spotting 
Results

Isolated Gesture 
Recognition Results

Hand 
Posture 

Recognition
(Chap 3)

Input Image

Posture Recognition 
Results

Figure 1.3: The structure of the proposed Hand Gesture Recognition framework in
this thesis.
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Chapter 2

Literature Review

As listed in Section 1.3, the key aspects that define the complexity of the HGR

task in different contexts include: 1) vocabulary structure (vocabulary size, gesture

similarity and complexity, and double handed gestures), 2) scene settings (lighting

conditions, background content, and occlusions), 3) performance constrains (contin-

uous gestures, face/hand overlapping, hand out of scene, and pause during gesture)

and 4) intra-class variance (gesture size, speed, location and orientation). Under

different circumstances, the task of HGR can be fairly diversified. In the first half

of this chapter (Section 2.1), different definitions of HPR and HGR under different

contexts will be categorised. Since this thesis mainly focuses on appearance based

HGR methods, the second half of this chapter (Section 2.2) is dedicated for review

on the milestones and other related works in the category of 2D computer vision

based HGR methods.

2.1 Categorisation of HGR Methods

To present a systematic review on the works produced by both academic and indus-

trial communities, the existing HGR methods can be categorised according to their

purposes and approaches. In Section 2.1.1, HGR methods are introduced under

12



different contexts. A categorisation of HGR methods based on the input sensors

can be found in Section 2.1.2.

2.1.1 Categorisation by Context

People use hand gestures to convey various messages in communications. For differ-

ent gesture vocabularies, HGR can be classified into two categories: Communicative

Hand Gesture Recognition and Manipulative Hand Gesture Recognition. Commu-

nicative gestures mainly comprise sign languages. As standalone languages, sign

languages are normally formed with 2500 - 3500 words [62]. From pattern recog-

nition point of view, the massive size of vocabularies leads to a massive number of

classes in the feature space, which is always a tough task for classification. Due to

the presentation limitations of using only two hands, the similarities among different

classes are relatively high. Moreover, to simulate specific semantic meanings of cer-

tain words, out-of-plane rotations are often involved in the gestures, (such as word

”bicycle” in American Sign Language [21], shown in Fig 2.1). The circles are hard

to be distinguished from vertical strokes with normal 2D cameras. There are three

types of signs in sign languages [63]: 1) Word Signs: the signs are designed based on

the semantic meaning of the words [64, 63, 65, 47], 2) Non-Manual Signs: they are

signs with additional features other than hand movements and poses, such as head

poses, tongue poses and other body postures [66, 67, 68], 3) Finger Spelling Signs:

these signs require the sign performer to spell the words by drawing the numbers

or characters from written languages in the air [69, 70, 71, 72]. Researchers are

focusing on tackling the massive size of vocabularies for the communicative HGR

methods, instead of the usability issues from the unconstrained environments.

For Manipulative Hand Gesture Recognition, the task is more about sending

commands to the computers, rather than serving communicative purposes. Hence,

the gestures are intuitive and simple, such as swipes for turning pages. From usabil-

ity and user experience’s point of view, gestures as commands need to be as simple
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Figure 2.1: Word Bicycle in American Sign Language [5].

as possible. In that way, performing the gestures can be as less distracting for the

user as possible. Also, the size of the vocabularies are relatively small. The simi-

larities among gestures can be low. For real world applications, Manipulative HGR

methods are used as interactive user interfaces. The potential market is beginning

to emerge for the Manipulative HGR methods [16, 17, 18]. This thesis is focusing

on Manipulative HGR, more specifically, recognising 10 hand-signed digits.

Hand Posture Recognition methods are also widely used in both Commu-

nicative Hand Gesture Recognition and Manipulative Hand Gesture Recognition. In

Sign Language Recognition, many words are designed to have distinct hand shapes.

Therefore, the hand posture is naturally one of the trajectory features. Sometimes

the hand trajectories in different signs are the same, and only the hand poses are

different (Fig 2.2). In these situations, detecting different hand poses becomes part

of the recognition process. Also, for the finger spelling alphabet in sign languages

[73, 74], the only task is Hand Posture Recognition. As for Manipulative HGR,

most of the vocabularies in real-life applications are normally formed by static hand

poses [75, 2, 76]. For HPR applications, the camera scope is focused on the hand

region with relatively small background areas. That leaves the distractions in the

background smaller proportion of the scene to present complex and moving textures.

The challenges from uncontrolled environments faced by HPR methods are far less

severe than HGR, which makes real-time response an easier task for HPR methods.

HPR methods are also widely used for solving the Hand Gesture Spotting prob-
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Figure 2.2: Example of signs that are only different on the hand poses. (a): word
Key in the American Sign Language. (b): word start in the American Sign Language
[5].

lem. The simplest solution for HGS is defining certain hand postures as the starting

signal for the predefined gestures. This idea has been adopted in both academic

researches [54, 77] and commercial systems [75, 16, 76, 78].

2.1.2 Categorisation by Sensor

As a typical pattern recognition problem, the performance of HPR and HGR meth-

ods highly depends on the quality of features. Due to the various applications of

HPR and HGR methods, different input sensors can provide various imaging meth-

ods, such as depth information and infrared data. Hence the classifiers in different

applications are facing different types of features. To review HPR and HGR meth-

ods, categorisation of methods based on input sensors is an vital perspective. In this

section, methods with non-vision based sensors, 3D and 2D vision based methods

will be introduced.
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Figure 2.3: Mister Gloves, Cornell University [6].

2.1.2.1 Non-vision-based HGR

For commercialised HGR technologies, stable and robust sensors can provide solu-

tions for challenges from the uncontrolled environments (see Section 1.3). Various

types of sensors can produce additional information such as depths of pixels or hand

articulation models. The methods using these sensors can identify target hand with-

out being distracted by objects in the background, even frontal occlusions. Despite

the advantages, comparing with normal 3D or 2D cameras, the cost of deployment

or integration of complex sensors can be relatively high. But that did not stop the

non-vision-based methods being commercialised in the recent years. This section

provides a brief review on these methods.

Intuitively, glove is a natural form to capture hand gestures and postures.

Glove based method is one of the earliest HGR ideas. Mister Gloves, developed by

Cornell University [6], uses wireless USB transmission integrated on a pair of circuit

gloves as the input method. By monitoring hand joints movements to detect different

hand postures and transmitting wireless USB signal to report the hand position,

Mister Gloves system can accurately recognise dynamic hand gestures and static

hand postures. However the sizeable circuit gloves and hardware costs prevented

this method from vast production.

Another leading technology among the glove based methods is CyberGlove,

developed by CyberGlove Systems [79]. The sensor glove is attached with joint-

angle measuring sensors and an array of pulse-vibration stimulators. It can not only

capture the hand movements, but also simulate simple sensations onto the user’s
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hand. Namely, the user can ”feel” the virtual objects through the glove.

Touch screen technologies has been widely used today for capturing dynamic

hand trajectories. Due to the commercial value, the production process of the

touch screens has been perfected in the past decade. The costs of the touch screens

are low enough to make them standard embedded hardware for portable devices.

Touch screen technology is considered the most reliable HGR method commercially

available on the market.

MYO [17], is an armband sensor that monitors the user’s electrical activity

from the arm muscles. The armband can predict the hand gestures and postures

through the patterns in the electrical signals. This product is extending the usability

boundary of HGR technologies. It is portable, wearable, and it does not require any

cameras.

2.1.2.2 3D Vision based HGR

Computer vision based methods that utilise RGB Depth (RGB-D) cameras as input

sensors are becoming the main stream for tasks like 3D hand pose estimation and

human pose estimation. With input feed of static images or video streams from

the RGB-D sensors, 3D computer vision methods analyse the content of the im-

ages or video frames using image processing, pattern recognition, machine learning

techniques, and recognise predefined hand trajectories or hand poses.

3D depth information is widely used for hand pose estimation [80, 81, 82].

With the depth information, these methods are able to distinguish the foreground

hand from the background textures as they are in different depth scales. The chal-

lenge of cluttered background is overcame from the sensor level, which gives the

methods more focus on challenges such as high intra-class variance. For applica-

tions where the only available sensor is one 2D camera and the environment is

containing cluttered background, a method is proposed in Chap 3 in this thesis for

this specific task. Despite the different sensors, methodologies of the state-of-the-art
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methods using RGB-D sensors need to be reviewed here. Keskin et al. [80] pro-

posed a method for 3D hand pose estimation which firstly clustering the training

set, then training multiple experts using the method introduced in [83] for every

cluster. However, with given depth information, the spatial features used in [80] for

the shape classification trees are neither rotation or scale invariant. Similar spatial

features are used in other RGB-D methods [83, 84]. That motivated the idea of using

rotation and scale invariant texture key points to describe the hand poses, which will

be introduced in Chap 3. Melax et al. [81] introduced a tracking method for human

hand poses in markerless depth sensor data based on physical simulation. They used

a strong prior called Rigid Body Dynamics which is a set of assumptions and con-

straints that simulates the articulation and interaction of human body parts. This

prior largely lowers the computational cost of the tracking method. But for human

computer interaction in uncontrolled environments where no assumptions should be

made on the articulation or manner of interaction of the human body parts, the

method of [81] would not be able to track human body parts with different articula-

tions (such as face tracking). That motivates the method proposed in Chap 3 which

does not make any assumptions on articulation of the body parts. It only extracts

and learns the effective texture key points of the body parts, in the experiments of

this thesis, human hands. Ballan et al. [82] used discriminatively learned salient

points on the fingers for two hands interaction motion capture. They also proposed

a differentiable objective function that can take optical flow and edge information

into account. But the method of [82] requires additional computation for collision

and self-occlusion detection. For the method proposed in Chap 3, the possibility of

discard the additional compution on collision/occlusion detection is explored. By

learning the most effective texture key points in the collision/occlusion free training

set, the occluded texture key points in the testing samples will simply produce low

matching scores, no different than texture key points of the cluttered background.

Also, the method of [82] assumes the input frames are spatially calibrated, while
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the method of Chap 3 does not require any pre-calibration.

As for depth information based hand gesture recognition, Peng et al. [85]

proposed a method to train linear Support Vector Machine for action and hand

gesture recognition in depth video based on a super vector representation of dense

features. This method uses a sliding window scheme with trained isolated gesture

models for gesture spotting. However, the method is vulnerable to multiple distrac-

tions including people other than the gesture performer. That inspires the spotting

method introduced in Chap 6 uses similar sliding window scheme with additional

analysis on different hand candidates to deal with the challenge of other people in

the scene. Pei et al. [86] introduced a method for hand gesture recognition in depth

video based on a set of heterogeneous attributes learned from the depth data. They

use SVM-HOG detector and tracklet generation to detect and track multiple gesture

performers in the scene. Similar to [85], method of [86] is vulnerable to situation of

additional people in the scene. Bagdanov et al. [87] proposed a method for predict

the status of the gesture performer’s hand in real-time by using temporal filtering.

This method detects the hand region with pre-defined hand poses as the target hand.

For presence of multiple hand candidates with similar hand poses, the method would

not be able to do target hand segmentation. That motivates the method introduced

in Chap 4 and 5 to explore the possibility of tracking and analysing all hand candi-

dates in the scene. Other methods use silhouette spatial features [88, 89, 90] with

depth information to segment and track the target hand. However for uncontrolled

environments where occlusion is allowed, these methods would not be able to ex-

tract accuate silhouette features, which motivates the tracking method introduced

in Chap 4 to tolerate temporal occlusions.

2.1.2.3 2D Vision based HGR

This thesis focuses on 2D vision based HGR, namely appearance based HGR meth-

ods. The only sensor used in the methods is a normal 2D camera, without the ability
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to capture depth information. The reason for this choice is based on the current us-

ability issues with the RGB-D sensors. Currently, RGB-D sensors are not as widely

deployed in portable personal electronic devices (laptop, mobile and tablet) as 2D

cameras due to the size and extra hardware costs of the RGB-D sensors, despite the

fact that the sizes of the RGB-D sensors are getting smaller and the manufactur-

ing cost difference between the RGB-D sensors and the normal 2D cameras is also

getting smaller. In other words, from the point of view of real-world application

usability, the general population user base of RGB-D sensors is still in a relatively

smaller scale than normal 2D cameras. Moreover, no matter how small, the size

and price differences of RGB-D sensors and normal 2D cameras remain the major

obstacles of the adoption of RGB-D sensors in main stream consumer electronics.

Although The ability of utilising depth information of the RGB-D sensors is a major

advantage over the 2D cameras, the primary motivation of this thesis is to explore

the possibility of performing robust HGR with the most widely deployed camera

type on the market which currently is the 2D cameras. The appearance based HGR

methods normally have 3 main steps, hand segmentation/tracking, feature extrac-

tion and gesture classification. The following section provides a detailed review on

various techniques used in appearance based HGR.

2.2 Methodologies of Appearance based HGR

In this section, a review on appearance based HGR methods is presented. The

review follows the three basic steps of the HGR process. For each basic step, widely

used classic techniques and the state-off-the-art methods will be introduced. Brief

analysis on the merits and drawbacks of the techniques can also be found in this

section.
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2.2.1 Hand Segmentation and Tracking

To record the hand trajectory for HGR or extract the hand area for HPR, the target

hand area needs to be segmented from the background and tracked throughout the

video stream. In this thesis, to distinguish the features for Hand Segmentation and

Tracking from the features for Gesture Classification, the features for the former are

called spacial tracking features, while the features for the latter are called temporal

trajectory features. The most distinctive characteristic of the target hand region

against the background is the skin colour. Hence, skin colour detection is widely used

in HGR community, which is also one of the active research fields in the computer

vision community [91, 92, 93, 94, 95, 96] . Human skin colour has a relatively

distinct distribution in the colour spaces [94]. The skin colour tones from different

races share similar hue value, but the saturations are different [97], especially in the

HSV colour space. That makes the HSV colour space the most widely used colour

space to perform skin detection [98, 99]. It is obvious that a model of skin colour can

be trained to perform skin detection. Jones et al. [91] trained a Mixture of Gaussian

Model through a large database of skin and non-skin images. The detection time is

unacceptable for time-sensitive applications. There are also some methods focus on

other colour spaces. Li et al. [100], proposed a Gaussian model for skin detection

in the YCbCr colour space. Unsupervised learning methods are also used in skin

detection. Kovac et al. [93] proposed a clustering method for skin detection to

overcome the changing illumination. For real-time applications, the common choice

of skin detection method is simple thresholding with carefully chosen thresholds.

For HGR methods that only consider the controlled background without any

moving distractions, the target hand can be easily segmented by using scene depth

information. Some HPR methods adopt the depth information to facilitate the hand

segmentation through stereo cameras. Kim et al. [101] proposed a Latent Tree

Model that is capable of presenting the hierarchical topology of the hand postures,

with depth information. Khamis et al. [102] proposed a method for learning a
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compact and efficient model of the surface deformation of human hands from depth

information.

For HPR methods, there is no need to perform hand tracking, given that

the samples are normally still images. For HGR methods, after detecting the target

hand, the hand region needs to be tracked. Hand tracking is no different than other

standard tracking tasks such as object tracking. Hence, various traditional tracking

methods have been utilised for hand tracking. Mean Shift as one of the traditional

methods, is firstly proposed by Fukunaga et al. [103] for feature space analysis.

Mean Shift has been used for tracking in many works [104, 105]. The basic idea

is firstly to train a model of the target represented by texture, contour or colour

features. Then similar to the optimisation methods, Mean Shift takes a density

function of the target region model and searches for the optimised matching area

in the frames. Continuously Adaptive Mean Shift (Camshift) [106] is a variation of

Mean Shift which changes the window size in Mean Shift when the search is near

the convergence point. It also has been used for hand tracking [107, 108, 109].

Particle filter methods are essentially grid-based iterative search methods.

With the extracted features from the given target region, the methods search for

similar regions in the whole frame iteratively. In each iteration, the search biases to

the matching result from the last iteration, until the search converges at a region.

Particle filter methods are widely used for tracking [110, 111, 112]. Shan et al. [113]

proposed a hand tracker that combining the Particle filter with Mean Shift. Another

well-known hand tracker proposed by Stenger et al. [114], trains a dynamic model

to guide the particle filter search. Stenger et al. [115] proposed a method using

hierarchical bayesian filter for model-based hand tracking.

Optical flow [116, 117], is a velocity field that shows the movement of pixels.

Optical flow can be used to extract trajectories of pixels in video streams. However,

it works under two assumptions. The first one is that the target feature point has

constant texture and brightness during the motion. The second one is that all pixels
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within the neighbouring region of the target feature point are moving towards the

same direction as the target point. Rehg et al. [118], proposed a optical flow hand

tracking method that can recover the full hand articulation model with 27 degree

of freedom from the gray level images. Lu et al. [119] proposed a fusion model that

combines optical flow with other features to perform hand tracking.

2.2.2 Feature Extraction

For Hand Posture Recognition, the feature for posture classification is the data

representation of the hand shapes. There are two main types of features for HPR,

contour and texture features. Contour features are descriptors that represent the

exterior contour of the target hand region. The Fourier descriptor is one of the

most widely used contour features. The basic idea is making the contour an one

dimensional vector, similar to the chain code. Then Fourier Transform is applied to

the vector. The Fourier coefficients can then be treated as the feature of the contour

[120, 121]. Moments are descriptors that represent various contour properties, such

as the sum of horizontal and vertical directed variance. Other contour features

include Wavelet descriptors [122], shape signatures such as average distance between

pixels on the contour, gradient shape features [123] and the centroid of the contour,

etc.

Texture features are essentially various representations on the gradient pat-

terns. Histogram of Gradient (HoG) [124] as one of the popular texture features, is

a histogram presentation of the local gradients. Scale-Invariant Feature Transform

(SIFT) [125] is another popular texture feature. SIFT contains selected key points

with coordinates and gradient descriptors. The key points are local extreme values

in the Laplace of Gaussian (LoG) pyramid. The descriptors summarise the orien-

tation and intensity of local gradients. The two important advantages of SIFT are

its invariance against rotation and scale. Hence, the SIFT key points represent the

edges and ridge-like textures regardless of the orientation and scale of the target
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object. Moreover, it can also tolerant certain level of view point changing. Speeded-

Up Robust Features (SURF) was originally presented by Herbert Bay et al [126]

based on the idea of SIFT. It also inherited in-plane rotation and scale invariance,

which makes it desirable for Hand Posture Recognition. However, with high preci-

sion of texture matching, the 64 dimensional descriptor of SURF requires intense

computations for both key point extraction and matching. Calonder et al. [127]

proved that this problem can be fixed by directly building a short binary descriptor

with independent bits. That is called the Binary Robust Independent Elementary

Feature (BRIEF) [127]. This binary descriptor uses Hamming distance as matching

criteria, instead of Euclidean distance between the descriptors. That can largely

fasten the texture matching process. However, the descriptors are not rotation and

scale invariant. Rublee et al. [128] proposed an improved binary descriptor which

is rotation invariant, called Oriented Fast and Rotated BRIEF (ORB). There is an

additional advantage of ORB which is its robustness to noises. Leutenegger et al.

[129] also introduced a binary descriptor that is both rotation and scale invariant.

It is called Binary Robust Invariant Scalable Keypoints (BRISK). The main charac-

teristic of BRISK is that, in each scale pyramid octave, a corner detection method

called Features from Accelerated Segment Test (FAST) [130], is used to detect the

key points, instead of simply locating local extreme values as in SURF and SIFT.

That makes the key point selection more efficient in BRISK, and ensures that the

amount of key points in BRISK descriptor is lower than SIFT and SURF. How-

ever, the robustness of BRISK descriptor can be affected by out-of-plane rotation

or rapid texture changes. That is a vital drawback for applications such as HPR.

Fast Retina Keypoint (FREAK) proposed by Alahi et al. [131] is the latest devel-

opment on gradient based key point texture features. It simulates the principle of

human retina visualisation. A cascade of binary descriptors is used instead of a sin-

gle descriptor. The cascade structure is constructed by comparing image intensities

over a sampling pattern based on the human retinal ganglion cells distribution, in
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which the method picks more key points on the central area. Although Alahi et al.

[131] reported better performance over SURF, its robustness against illumination

and view point changes in HPR applications still remains untested. For the tracking

method in Chap 4, the only texture feature used is SURF. The reason is two-fold.

Firstly, using short binary descriptors including BRISK and ORB sacrifices certain

invariance properties and accuracies [127, 128]. Secondly, SURF has certain level of

tolerance for view-point variance, which BRISK and ORB do not have.

For HGR applications, the aforementioned gradient based texture key point

descriptors can also be used for texture matching based tracking. In Chapter 4,

a novel texture matching tracker will be introduced. Instead of shape descriptors,

descriptors of dynamic hand trajectories are the features for gesture classification

in HGR problems. Since for HGR in uncontrolled environments, the method should

not require certain hand shape to be presented by the user, the spatial features

of hand shapes are not considered in the HGR methods introduced in Chap 4-6.

After the hand tracking method has located the position of the hand candidate in

the frames, temporal features are extracted to represent the trajectories. Unlike

contour and texture spatial features, there are only a few commonly used trajectory

features. They can be categorised into two types, local and global features. Local

trajectory features include hand speed, location and movement direction [8, 3]. The

hand velocity, orientation of movement and coordinates displacements of the hand

between adjacent frames can be used to describe the elementary trajectory segments.

Global features are shape descriptors that are extracted from the complete hand

trajectories. All contour and texture features mentioned before can potentially be

used as global trajectory features. Because the same as hand postures, trajectories

can be seen as stationary images.
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2.2.3 Gesture Classification

All classifiers are trying to summarised feature patterns from the training set, and

then applying these patterns to classify the testing samples. For HGR, the hand

trajectories are sequence data represented by both spatial and temporal features.

The classifiers must be capable of processing sequential features in order to classify

the hand trajectories. But for HPR, the classifiers does not have to process sequence

data since the samples are still images without any temporal information. In this

section, a review on some of the popular classifiers for HGR and HPR is presented.

Template matching is a strategy for directly measuring the distance between

the testing sample and the predefined gesture class models. The advantages of this

strategy are twofold. Firstly, minimum training is required. Since the methods

directly calculate the distance of two feature vectors in the feature space, instead of

extracting latent patterns or measuring elementary local patterns, the templates of

gesture classes are usually pre-processed feature vectors of training samples. Hence,

there is no need to build statistical models for the gesture classes through the training

process. Secondly, the inference time cost is usually low. Namely, the calculation

of the feature vector distances does not require complex computation. Although

the computational complexity depends on the dimensionality of the feature vectors,

template matching methods are still considered less computational intensive than

statistical models. Continuous Dynamic Programming (CDP) as one of the popular

template matching methods, is proposed by Nishimura et al. [132] for segmenting

and recognising continuous hand gestures. A set of sequence patterns are used to

represent trajectories in the spatio-temporal space. A dynamic programming based

method is used to match the sequence patterns, which accumulatively adds the

distances between corresponding elements in the sequence patterns. Decent results

are reported on a 8 hand gesture database [132]. Alon et al. proposed a hand

gesture segmentation scheme based on CDP [133]. A pruning method is introduced

in this scheme to discard hand trajectories with relatively short length. An improved
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version with template matching method based on Dynamic Time Warping (DTW) is

proposed later [8]. This work introduces the concept of sub-gesture reasoning, which

learns the relationships among the gesture classes. For Hand Gesture Spotting, sub-

gesture reasoning can improve the ability of segmenting similar gestures. However,

these two methods require extra computation on estimating the location and scale

of the gestures. In other words, the methods of [133, 8] do not have gesture scale

and location invariance property. The DTW classifier itself still requires estimated

scale and location of the gesture trajectories. A pruning technique is also used in

the method to reduce the amount of hypotheses. DTW based methods are normally

used for tackling temporal element displacements in the templates. If the sequential

order of the elements has a certain level of variance in the testing set, DTW based

methods can overcome the variance by matching the elements within a corresponding

time window without considering the order of the elements. However, using the

length of the trajectories as a criteria for pruning means the method is not gesture

speed invariant. For the testing samples where the gesture performer signs the

gestures relatively faster than the performers in the training samples, there is a high

probability that the method of [8] would prune off these testing samples regardless of

the actual gestures labels of the samples. Hense for the uncontrolled environments,

the methods of [133, 8] are sensitive to the various scale, speed and location of

the gestures. This motivates the methods in Chapter 4,5 and 6 to propose gesture

recognition and spotting methods that are invariant to gesture scale, speed and

location.

Statistical models are also widely used for HGR. Hidden Markov Models

(HMM) [134] is one of the early probabilistic models proposed for pattern recognition

applications. It has been successfully applied to HGR problems [135, 136, 137, 138].

HMM based methods have to obey the independence assumption, which is assuming

there is no dependencies among the observation states within the input observation

sequence. In other words, this assumption is essentially discarding the long range
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temporal features in the hand trajectories. The purpose of this assumption is to keep

the calculations of training and inference tractable. As a complementary measure,

HMM based methods use a set of transitional probabilities to simulate the local

dependencies between the adjacent observation states. The model needs to estimate

the state and transitional probability matrices among the observations and hidden

states in the training set. Then the inference task is performed through forward-

backward propagation based on the trained probability matrices. Starner et al.

[135, 138] introduced two HMM based models to perform HGR on a 40 words sign

language vocabulary, and reported decent accuracies. A few HMM variations are

proposed for different specific applications. Elmezain et al. [139] trained a dedicated

HMM model for each gesture class, with various number of hidden states. Brand

et al. [140] introduced a coupled HMM method for classifying two-handed signs.

This method is proven to be robust against initial observation probability changes.

Wilson et al. [141] proposed a parametric HMM, which extends the original HMM

by including a global parametric variation on the output probabilities of the hidden

states. But HMM is only able to take the last observation state into account for

infering the current hidden state. That means HMM is incapable of monitoring

long-range dependencies within the observation sequences. In the context of HGR,

the transition probabilities in HMM can only represent trajectory temporal features

within adjacent frames. The transition probabilities are not considered under the

context of the entire trajectory. That inspires the method in Chap 5 to model the

long-range dependencies in the observation sequences.

Another popular concept in pattern recognition is Deep Learning. One of

the main concepts of Deep Learning is to train the features instead of using man-

made features. Dan et al. [142] showed the potential of Deep Learning methods in

solving various computer vision problems. Convolutional Neural Networks (CNN)

proposed by Lecun et al. [143], is one of the best examples of Deep Learning

methods. The key innovation of CNN is choosing trainable features over heuristic
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features. It breaks the conventional concept of man made spatial features. In the

CNN model, a set of fix-sized trainable kernels are defined to extract local texture

features. The training process is based on optimisation methods with an error

function on the whole training set as the objective function. Hence, the training

process is essentially searching for optimised kernels that can minimise the error

function of the training set. The kernels act like texture feature extractors. In each

convolution layer of the neural network, the input image will be convolved with

the trained kernels for feature detection. Every convolution layer is followed by a

pooling layer which downsamples the input image to one-fourth of the size. As the

input image goes deeper into the network, the kernels with fixed size are monitoring

texture features on larger scales. The final output layer of the network produces the

final scores based on the input signals from all previous layers. Simard et al. [144]

simplified the CNN model. The simplified version does not require weight decay

and averaging layers. Multi-column Deep Neural Networks (MCDNN) is introduced

by Ciresan et al. [145], as a CNN structure with a large number of feature maps

in each convolution layer, and large number of convolution-pooling layer pairs. In

other words, this is a wider and deeper neural network. It is proven in this work

that with more feature maps to monitor a large number of local texture features, the

MCDNN is capable of producing state-of-the-art performance on various computer

vision applications. The methods in Chap 5 and 6 are monitoring the temporal

features on different scales similar with deep learning methods. But the proposed

methods in this thesis are not capable of generating features on different scales in

the training stage.

Conditional Random Fields (CRF) [146] is invented for segmenting and la-

belling sequence data [147]. It is proposed to tackle the drawbacks of independence

assumption and Label Bias Problem in the generative models such as HMM. CRF

models utilise the concept of factorisation to relax the independence assumption. A

series of elementary feature functions, namely the ”factors”, are defined to detect
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specific local observation patterns regardless of their positions within the observa-

tion sequence. In other words, these feature functions are temporal independent.

For each feature function, the CRF model assigns a trained weight to balance the

voting power on all feature functions. The training process of the weights can be

understood as a search for the optimised weight distribution for all feature func-

tions. The search is carried out by gradient based optimisation methods, with the

likelihood function of the training set as the objective function. Also a penalty term

is included in the likelihood function to reduce the influence of overfitting. The

likelihood function in the original CRF model is guaranteed to be convex, since it is

the summation of a linear function and a known convex function. Hence, there is a

global optimisation point for all pattern recognition problems that use CRF models.

Although CRF is able to monitor the long-range dependencies in the observation

sequences, it is unable to learn the underlining structures of the vocabulary with

trained latent variables as HMM does. Hence, Hidden Conditional Random Fields

(HCRF) [148], is proposed to extend the original CRF with a set of latent hidden

states, similar to the hidden states in HMM. The hidden states are used to simulate

the inner-structure of the observation sequences. Each hidden state can be seen as

a ”component” of the predefined classes. HCRF model has been used to model the

underlying structure of similarities among strokes of hand gestures for gesture recog-

nition in controlled environments [148]. The main drawback of the HCRF model

is that the likelihood function is no longer convex. With the latent hidden states,

the training process is not guaranteed to reach the global maxima. But in different

applications, it has been proven that the loss of convexity does not affect the over-all

model performance definitively [149]. In the training process of the HCRF model,

the learning process of the hidden states is semi-supervised. Although the class label

of the training samples are provided, but there are no label of hidden state on all

observation states. That leads to the invention of the Latent Dynamic Conditional

Random Fields (LDCRF) [150], in which the training of the hidden states are fully
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supervised. In this way, the model can learn the underlying structure in the hand

gesture observation sequence in supervised manner. The CRF and its variants have

a close relationship with Convolutional Neural Network and its variants. Both series

of classifiers are discriminative models (more details about discriminative and gen-

erative models can be found in Section 5.1.2). The CRF models can be treated as

a single layer Neural Network. In other words, Convolutional Neural Networks are

also capable of monitoring the local feature patterns hierarchically. The classifier of

the proposed HGR framework in this thesis is built upon the HCRF structure. More

detailed discussions on CRF principles and how CRF models tackling the Label Bias

Problem under the context of HGR can be found in Chapter 5. For gesture recog-

nition and spotting in uncontrolled environments, the class of CRF related models

are not considered before. That motivates the methods in Chapter 5 and 6 to build

a novel weighting scheme with HCRF as the initial classifier.

Some recent publications proposed promising methods for activity recogni-

tion and prediction in uncontrolled environments. Yu et al. [151] proposed a novel

hough-transform based voting method which uses random projection trees to per-

form feature voting. This method reported taking about 10 seconds to perform the

activity classification for a video with four seconds length. It is far from real time,

but the method is robust against crowded scenes. Ryoo et al. [152] proposed a

forward human action prediction method which represents an activity as an integral

histogram of spatio-temporal features. A novel recognition method called dynamic

bag-of-words is also proposed in this work, which is capable of taking the sequential

nature of human activities into account while maintaining the merit of noise tol-

erance of the bag-of-words method. This work can perform prediction in real-time

given that the features are fed to the method in real-time. Gall et al. [153] proposed

Hough Forests for human activon recognition which are random forests variations

utilised to perform a generalized Hough transform. They reported 10 seconds time

cost for classifying pre-existing actions in 100 frames. The method in Chapter 6
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introduced a forward spotting scheme which also uses a sliding window mechanism

as [152].
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Chapter 3

Hand Posture Recognition

Hand Posture Recognition is the task of recognising predefined stationary hand

poses from still images. That means no sequential temporal information is involved

in recognising the hand poses. Despite the simpler task compared with HGR, HPR

in complex backgrounds still remains a challenging problem. Existing RGB-D HPR

methods are using depth information to segment the target hand in the scene, while

the appearance-based methods are struggling with cluttered backgrounds. In this

chapter, a novel method is proposed for performing HPR in real-world applications

where depth information is not available and the background is cluttered. This HPR

method introduces the idea of using boosting-based method to select a optimised set

of rotation and scale invariant texture features in the training stage, which makes

the method capable of recognising the pre-defined postures with more distinctive

featuers against the cluttered background.

The proposed method is a combination of Speeded-Up Robust Features

(SURF) [126] and Adaptive Boosting (AdaBoost) [154]. Firstly, SURF key points

are extracted to describe the blob or ridge-like structures from grey level hand pos-

ture images. These SURF key points are potential points of interest that can be

used to match with other images with similar textures. Then the tendency of gra-

dient changes within small patches surrounding the points of interest are calculated
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as feature vectors. With all the points of interest, a boosting based method is used

to train a strong classifier for each posture by selecting and combining the most

efficient features. This boosting process can significantly reduce the computational

cost of inference. The proposed method was tested on the Hand Posture Recognition

Benchmark, the Triesch Hand Posture Database. Experimental results showed that

our method outperforms existing methods in terms of better recognition accuracy.

3.1 Background Knowledge

Brief discussions on the advantages of SURF and AdaBoost and the reason for

utilising them are presented in this section.

3.1.1 Texture Features

Various features have been tested in previous HPR works, including colour, contour

and texture. In this method, texture features are used to achieve skin colour invari-

ance and performer independence. The varying skin colours and hand appearances

of different individuals are two crucial factors that cause large intra-class variance

in HPR. Different individuals tend to have unique hand joint articulation patterns.

That means for the same hand pose, the actual contour and texture on different

hands may vary. Using colour or contour features can blur the decision boundary

among classes in the feature space. Hence, only texture features are used in this

method, which means only distinct patterns of gradient changes in hand regions

are used to recognise hand postures. Intuitively, different people would have unique

ways of performing the same hand pose. But, the basic articulation of joints are

the same. If we take the ”fist” hand pose for example, regardless of the various

appearances of thumbs and divergent positions of the thumbs in the hand regions,

people are required to cross the thumb horizontally with other four fingers in the

front. Hence, for all ”fist” images, there are certain amount of common edges and
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corners located in the intersection of fingers or on the external contours. Hence, the

proposed method extracts texture key points with extreme values of gradient within

local areas, and selects texture features that are ”common” among the samples of

the same hand pose.

Speeded-Up Robust Features [126] is used in our method as the texture

feature. It has in-plane rotation and scale invariance properties and a certain level

of tolerance for view point and illumination changes, which makes it desirable for

HPR. SURF was originally presented by Bay et al [126] and built upon the idea of

Scale-Invariant Feature Transform (SIFT) [125]. The interest points are detected at

first from the scale space using Hessian matrix approximations with the approximate

second order Gaussian derivatives.

SURF uses filters of various sizes to build a scale space, instead of using the

same filter iteratively as in SIFT. A method called ’integral image’ was used for

fast convolution. In an integral image, the value of pixel x is the sum of pixels in

the original image within a rectangular region from the top-left corner to x. With

the approximate second order derivatives of the Gaussian filter and the calculated

integral image, convolution with Gaussian filters of various sizes can be done at

the same speed. With the integral image, the summation of intensities inside a

rectangular area of any sizes only requires three addition operations and four accesses

to the memory.

The candidate points are then picked out. These points have the extreme

determinant value of the Hessian Matrix within a 27 pixels neighbourhood. This

neighbourhood comprises 3× 3 pixels in each of the upper, lower and current scale

levels. The interest points are located using scale space interpolation. For every

interest points, the Haar wavelet response in both x and y direction within a circular

neighbourhood with 6s radius of interest points are calculated, where s stands for the

scale of the level where this key point is found. Then within a sliding orientation

window covering an angle range of π/3, the orientation with the largest sum of

35



Figure 3.1: Matched SURF pairs in different postures.

wavelet response is selected as the dominant orientation. At last for each interest

point, Haar wavelet responses within a 20s × 20s surrounding region are used to

form the final descriptor. The final feature vector of SURF is 64 dimensional, which

is half the size of the SIFT descriptor. Fig 3.3 shows that with similar blob or ridge

structures, despite the presence of the sleeve or ring on the finger as noise, the same

posture from different performers (left-hand side of Fig 3.1) still have more matched

interest points than different postures from the same performer (right-hand side of

Fig 3.1).

There are good reasons why we chose SURF as feature over SIFT and other

texture features. Firstly, the calculation of SIFT is rather time consuming. Since

SURF uses integral images and LoG approximations, the process of building the

scale space is significantly accelerated. This process can even be paralleled. This

makes the computational cost of SURF relatively less dependent on the image size

than SIFT. Secondly, most of other features used in HPR are based on binary

images with enhanced hand regions. However, they require hand segmentation,

while SURF does not require hand segmentation since it is based on gray scale

images. Thirdly, SURF depends on gradient information on sub-patches, instead

of individual gradients, which makes SURF less sensitive to noises. SURF not only

uses the sum of wavelet responses, but also the sum of absolute values of them.

As such the descriptor can also indicate the number of changes across the patch.

For the region on the left, without dramatic intensity changes, the sum of wavelet

response and the absolute values of them do not have much differences. For the
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region on the right, which has more intensity changes in the x direction, the sum

of the wavelet response will not change much, which fails to show the intensity

changing information within the region. On the other hand, the sum of absolute

values of wavelet response is high, which can preserve important information for

patch-matching process. Hence for every sub-patches, a 4 dimensional descriptor

v = (
∑
dx,
∑
dy,
∑
|dx| ,

∑
|dy|) is built as part of the final feature vector. The final

SURF descriptor comprises the 4 dimensional descriptors from all 16 sub-patches,

which makes the final descriptor 64 dimensional. Certain parts of hand postures,

for example thumbs in the fist posture images, can have rather large orientation

variance among samples in the same class. SURF can provide robust orientation

and scale invariance of the same texture pattern. The most important merit of

the proposed method is that it handles the complex background noises without any

additional training images with random background. For those methods that use

colour information, skin coloured regions in the background can largely affect the

performance. But for the proposed method, the gradient of intensity changes is used

which has much more tolerance on distractions in the background.

In [2], they tackled the background noise problem by using images with

single-coloured background as positive samples. Our method solves this in an even

simpler and faster manner. With the boosting based feature selector, the training

set is filled with images of complex backgrounds. Since all positive and negative

training samples have complex backgrounds, the selected interest points are the ones

that can best distinguish the target posture from other postures and background

textures. Hence the selected patches are the ones appear in positive samples with

high frequency and almost never appear in other postures and random backgrounds.

Experimental results showed that this method can achieve high accuracy.
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3.1.2 AdaBoost

Feature selection methods that are capable of screening out correlated redundant

features are crucial for pattern recognition applications. If the classifier receives a

large number of features, the dimension of the feature space would be high. That

would make the computation more inefficient. For example, classifiers that perform

optimisation on an objective function normally use gradient based search. The

extent of mathematical tractability of the gradient based search largely depends

on the dimensionality of the feature space. For a feature space with thousands of

dimensions, even reaching a local optimum could take hours.

For applications with noisy training and testing samples, it is not fully justi-

fiable to make a set of heuristics to extract and select features. The prior knowledge

about which features are the most efficient for a particular dataset is not available.

Especially for texture features such as HoG, SIFT and Gabor features, it is diffi-

cult to tell what gradient patterns are the distinctive characteristics for every class

against other classes, and most importantly, against the unfamiliar random noise

patterns. Intuitively, it makes sense to pick a set of features through a trial and

error iteration process on a validation set in the training process. For images with

rich textures, the amount of SURF key points would be high, since SURF key points

are local extreme values in a three-layer subset in the LoG pyramid. Moreover the

level of noise in testing samples are fairly high (Fig 3.5). Hence, a small num-

ber of distinctive features would lower the chance of mis-matching with the noisy

backgrounds. Due to all aforementioned reasons, Adaptive Boosting is used in the

proposed method as the feature selection method.

Boosting methods essentially test the effectiveness of various combinations

of features on the validation set, rather than improving the distinctiveness of the

features themselves. It is worth mentioning that feature selection does not necessar-

ily mean dimensionality reduction (such as LDA, PCA, etc). The point of feature

selection is not using eigenvectors to present higher dimensional feature vectors. In-
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Figure 3.2: Testing samples in the Triesch Hand Posture Database. The level of
noise in the background is high [7].
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stead, we can simply build a set of evaluation rules, to test the effectiveness of all

features, and prune off the features that are correlated or do not have high degree of

distinctiveness among classes. Obviously, the key question is how to choose the set

of evaluation rules. For boosting methods normally the evaluation process is min-

imising the error function through iterations of classification on the validation set.

For AdaBoost, the concept is to assume that certain weak classifiers can produce

accurate classification results among a certain set of samples. Then we can combine

weak classifiers with complementary ”specialities” into a strong classifier.

3.2 Methodology

Regardless of the relatively small 64 dimensional feature vector of SURF, even im-

ages of size as small as 128 by 128 pixels, dozens of interest points can still be

detected. Boosting based methods can be used to find a subset of points of inter-

ests. The basic idea is to individually evaluate all SURF key points through an

iterative process. In each iteration, a SURF key point with the lowest error rate

would be picked as one of the weak classifiers. The process goes on until at least

one of the stop criteria is met.

In this method, we treat the 64 dimensional descriptor of a SURF key point

as a weak classifier. The feature selection mechanism of the proposed method is

described in details in Algorithm 1. Assuming there are X images and Y postures

in the training set, and let T be the maximum number of weak classifiers for one

posture. The rationales behind the manual setting of the maximum number of the

weak hypotheses are threefold. Firstly, since the number of weak classifiers in the

strong classifier represents the precision of the classifier. Restricting the conver-

gence criteria to a smaller value would requires larger amount of weak classifiers to

produce higher precision. If we do not restrict the amount of weak classifiers, and

the convergence criteria is too strict, or the quality of weak classifiers are too poor
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to converge, it could take all weak classifiers to form the strong classifier. Then

there is no point calling this a ”feature selection scheme” if we select all features.

Hence we need to stop the iteration at a reasonable point. Secondly, the training

computational cost is proportional to the number of weak classifiers. We need to

balance the trade-off between precision and tractability. Finally, if the objective

function is converged to some extent, the selected weak classifiers are no longer gen-

erally effective. In other words, they over-fit to the training set. Even the testing

samples can be highly distracted by the background textures, the diversity of the

noise textures are still confined by the fact that we can only produce limited sample

diversity in the database. The trained sets of weak classifiers could be only fitting

the noise distribution in the database. Hence, we need to avoid overfitting by con-

straining the convergence of the objective function, therefore the number of weak

classifiers. There is an optimal number of weak classifiers, with the combination of

all features that are complementary in terms of distinctiveness among the classes.

Adding more features would be either redundant (adding correlated features) or de-

creasing the precision of the strong classifier (adding noisy SURF key points). The

actual number of selected weak classifiers for every target posture could be different

(Fig 3.7).

For a certain class label, the SURF features are extracted from all positive

samples in the training set. Different weights wt,x will be assigned to all samples in

the training set, where t is the number of iteration in boosting process and x is the

sample index. All positive samples share the same initial weight wp:

wp =
1

2Np
(3.1)

and all the negative samples share the same initial weight wn:

wn =
1

2Nn
(3.2)
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where Np is the total number of positive samples of this class label and Nn is the

number of negative samples. For every target posture, the SURF vectors of all

positive training samples will be put into the weak classifier pool. All SURF vectors

in the pool will be tested to label all samples in the training set. To evaluate the

performance of each SURF vector, an error rate will be calculated for every vector

using the weight of all training samples.

et =

X∑
x=1

wt,x |ht (x, f, θ)− Px| (3.3)

where the ht () represents the weak classifiers, x is the training sample index, f is

one SURF key point and θ is the corresponding threshold of f. Px is the ground

truth class label of the sample. One SURF vector with the lowest error rate will be

chosen as one of the weak classifiers that form the strong classifier of this posture.

For each chosen weak classifier, a final weight αt will be calculated based on its error

rate:

αt = log
1− et
et

(3.4)

Then the weights of all training samples will be updated based on the error

rates of the chosen SURF vectors. The weights of the correctly classified samples

will be reduced by a factor:

wt+1,x = wt,x ·
(

et
1− et

)
(3.5)

For the misclassified samples, the weights will stay the same. The process iterates

until the error rate of the latest chosen vector is smaller than a threshold or the

number of selected vectors reaches the predefined limit T . In every iteration, since

the misclassified samples have larger weights, the process will look for the next weak

classifier which can specifically classify these samples. This process has a fairly
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intuitive pattern. Every chosen SURF vector is specifically suitable for classifying

samples with certain characteristics, which cannot be efficiently classified by other

chosen vectors. Every weak classifier consists of a weight, a selected SURF feature

and its threshold.

Algorithm 1 Training process for all predefined posture classes.

Input:
The training set consists of X samples of Y classes: (I1, P1) . . . (IX , PX), where
Ix is the xth training sample, Px is the posture class label of sample Ix.

Output:
Strong classifiers for all posture classes, H = {H1, H2, . . . ,HY }.

1: Assign weights wp = 1/2Np to all positive samples, wn = 1/2Nn to all negative
samples, where Np and Nn are total number of positive and negative samples
respectively;

2: for t = 1, . . . , T do
3: Initialise the error rate et = 1;
4: while et ≤ ERT , (ERT is the Error Rate Threshold) do
5: Normalise weight of all training samples, so that
6:

∑X
x=1wt,x = 1

7: Select one feature ft with its threshold θt, from the SURF key
points of all positive samples, which minimise the error rate: et =∑X

x=1wt,x |ht (Ix, ft, θt)− Px|
8: Assign weight αt to the selected weak classifier ht (Ix, ft, θt),αt = log 1−et

et
9: Put ht (Ix, ft, θt, αt) into Hy.

10: Update the weights of all training samples:wt+1,x = wt,x

(
et

1−et

)1−λ
, where

λ = 0 if sample is correctly classified, λ = 1 otherwise.
11: end while
12: end for
13: return H;

In the process of selecting weak classifiers, for every chosen vector, an op-

timised matching threshold will be evaluated. The matching threshold is the Eu-

clidean distance between the selected vector and the first matched vector on the

matching score list, divided by the distance between the selected vector and the

second best matched vector on the list. This technique will be explained with de-

tails in Chapter 4, please refer to Eq 4.12 and 4.13 for more details. This threshold

represents the winning margin between the best matched interest point and the

second best. It indicates the uniqueness of this selected vector and the efficiency
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Figure 3.3: All ten pre-defined hand postures in the Triesch Hand Posture Database
[7].

of classification using this vector. The value of the threshold between 0.20 to 0.95

are tested for every selected SURF vector, and the optimised value with the best

performance is chosen.

The proposed method incurs even less computation in the classification stage

than existing boosting based HPR methods such as [2] due to the various number

of weak classifiers ht involved in every strong classifier Hy of each posture class.

That means in the classification stage the computation will be focused on those

postures with a relatively large number of weak classifiers. The method of [2] uses

boosting method to select texture feature SIFT for posture recognition. This is

very important for pattern recognition tasks that require real time response like

hand posture and gesture recognition. For postures with a high degree of similarity

which are relatively harder to classify, like posture ’I’ and ’Y’ in the Triesch database

[7] as shown in Fig 3.6, there will be more features picked out for classification. As

shown in Fig 3.7, posture ’I’ has 19 selected features. For posture ’L’, only 4 features

are selected. Because the SURF features of posture ’L’ are so discriminative that

only 4 of features are enough to distinguish this posture from the others.
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Figure 3.4: Number of weak hypotheses within trained strong classifiers for all 10
postures.

Algorithm 2 Classification process.

Input:
A testing image I, trained strong classifiers H = {Hy |y = 1, 2, . . . , Y }, where
Hy, y = 1, 2, . . . , Y , each strong classifier Hy consists of Ty weak classifiers. Each
weak classifier ht (I, ft, θt, αt) has weight αt, SURF descriptor ft and threshold
θt.

1: Extract the SURF key points S = {s1, . . . , sm}, from I;
2: Initialise WeightSum = 0;
3: for t = 1, . . . , Ty do
4: Find the best match sm of ht in S;
5: if Euclidean distance d (ht, sm) < θt, then
6: WeightSum = WeightSum + αt;
7: end if
8: end for
9: if WeightSum < µ

∑T
t=1 αt then

10: return 1;
11: else
12: return 0;
13: end if
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The classification process is shown with details in Algorithm 2. Given a

testing sample, firstly the SURF feature vectors will be extracted. Every weak

classifier within all trained strong classifiers will produce a binary matching result

based on the thresholds of all weak classifiers. These scores are assigned with the

weight of the corresponding weak classifiers. The rationale behind this is that by

multiplying the score with the weight of the weak classifier that produces it, the

score is weighted by the confidence level of the weak classifier. Hence the higher the

weight is, the more contribution the score should be accounted for in the final score

of the strong classifier. Then the weighted sum of the results of all weak classifiers

in this strong classifier Hy (I) will be produced as the matching result of this strong

classifier.

If Hy (I) is larger than a certain percentage µ of the sum of all weights αt,

then the output of the strong classifier is 1. The parameter µ needs to be estimated

through experiments. If there are more than one classifiers producing 1 as results,

the actual weighted sum in Eq(3.6) from these classifiers will be compared and the

one with the highest sum wins.

3.3 Experiments

As the benchmark of HPR, the Triesch Hand Posture Database consists of 10 hand

postures performed by 24 persons. There are three kinds of background settings:

uniform light, uniform dark and complex. Uniform light and dark backgrounds

represent the single-coloured white and black backgrounds, respectively. The com-

plex background means unconstrained background contents. In total, there are 720

greyscale images with size of 128 × 128 pixels, 72 images for each posture. Some

samples of the database are shown in Fig 3.6. The proposed method is tested in two

different experiments. The maximum number of features selected for one posture

class T is set to 20 based on the performance on the whole training set.
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The first experiment is conducted for comparison with state-of-the-art meth-

ods, including Triesch et al. (FG 1996) [7], Fang et al. (ICPR 2008) [155] and

Kumar et al. (ICARCV 2010) [156]. Triesch et al. [7] proposed a method for hand

posture recognition by using elastic graph matching. Fang et al. (ICPR 2008) [155]

proposed a co-training method for hand posture recognition using semi-supervised

learning that treats each new posture as unlabeled data and updates the classifiers

in a co-training framework. Kumar et al. (ICARCV 2010) [156] also proposed a

elastic model matching algorithm for hand posture recognition. The same exper-

iment settings in Fang et al.(ICPR 2008) [155] is adopted. For each posture, the

training set consists all 30 images from 10 performers and the remaining images of

the other 14 performers constitute the testing set.

Another state-of-the-art method Just et al. (FG 2006) [1] reported results on

the Triesch Hand Posture Database with different amount of training and testing

samples. The method uses the novel features that are based on modified census

transform. For comparison with Just et al. [1] the second experiment is conducted

with the same amount of training and testing samples as [1]. For each posture class,

the training set has images of 8 performers and the testing set has images from the

remaining 16 performers. The results are shown in Table 3.1 and 3.2, respectively.

In Table 3.1, the first two columns represent results on light and dark back-

ground images, respectively. The third column is the average accuracy on light and

dark background images. Results of complex background images and over-all ac-

curacy are in the fourth and fifth column, respectively. Fang et al. [155] did not

provide any detailed experimental results, besides the over-all accuracy. The reason

for Kumar et al. [156] only providing accuracies on light and dark background im-

ages is that, their method can only perform well with unified backgrounds. In other

words, the method is sensitive to the complex background textures. Both [155] and

[156] are based on elastic models. If there are complex texture in the background,

the methods are not able to extract the elastic model accurately since the location
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Table 3.1: Results of experiment 1 and comparisons with state-of-the-art methods
on the Triesch Hand Posture Database.

Light Dark Average
on Unified
Back-
ground

Complex Over-all

Triesch et al. (FG
1996)

94.3% 93.3% 93.8% 86.2% 91.0%

Fang et al. (ICPR
2008)

N/A N/A N/A N/A 90.1%

Kumar et al.
(ICARCV 2010)

96.8% 95.9% 96.4% N/A N/A

Proposed method 93.9% 94.4% 94.2% 90.2% 92.8%

Table 3.2: Results of experiment 2 and comparison with A. Just et al [1].

Light Dark Complex Over-all

Just et al.
(FG 2006)

92.8% 92.8% 81.3% 89.0%

Proposed
method

93.6% 94.3% 90.0% 92.6%
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of the hand is unknown. The proposed method delivered slightly lower accuracies

on the unified backgrounds than Kumar et al. [156], but our method is capable of

perform robust HPR against uncontrolled complex background scene settings. Also,

the proposed method is the first one to out-perform the original Triesch et al. (FG

1996) [7] method on all experimental categories.

As shown in Table 3.2, the proposed method out-performed Just et al. [1]

on all experimental categories. In [1], the classifier is a simple set of liner feature

lookup-tables. The lookup-table is not capable of determine which features are the

optimised ones that can represent the posture against the complex background.

On the other hand, our method is capable of selecting a optimised set of texture

features through the training process. With smaller amount of training samples

than the original experimental protocol of the Triesch Hand Posture Database, the

proposed method still produced satisfactory results.

The challenges from uncontrolled environments in the experiments of this

chapter include: 1) complex background texture; 2) high gesture similarity; 3)

size,location and orientation variance. That means other challenges listed in Section

1.3 are not considered in this chapter. The reason for that is the close range be-

tween the target hand and the camera, which makes some challenges not applicable

to HPR, including double handed gestures, continuous gestures, face/hand overlap-

ping, pause during the gesture and speed variance. The remaining challenges on the

list in Section 1.3 have not been considered by the HPR community, including large

vocabulary size, high gesture complexity, lighting change hands out of the scene and

occlusion.

3.4 Conclusions

In this chapter, a novel HPR method is introduced to tackle the challenge of pure

appearance-based HPR in uncontrolled environments with cluttered background.
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By learning the most effective texture features of the posture classes in the training

set with single-coloured background, the proposed method is able to recognise the

pre-defined postures with learnt texture features in the testing samples with clut-

tered background. The main contribution of this chapter is proposing a boosting-

based method to select optimised set of texture features to represent the pre-defined

postures against each other and the cluttered background. This method could be

further improved by applying deep learning methods. Adaptive Boosting is capable

of selecting better features from a given feature set, while deep learning methods

are capable of generating optimised features.
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Chapter 4

Hand Tracking in Uncontrolled

Environments

Within the context of HGR, the challenges from the uncontrolled environments

including the presence of cluttered backgrounds, moving objects in the background,

gesturing hand out of the scene during gestures, pauses during gestures and the

presence of other people are the main difficulties that keep this intuitive way of

Human Computer Interaction from widely utilised in real-world scenarios. Moreover,

the position, scale and length variance of the hand gestures can be large even for the

same gesture from the same performer under the same environment. In this chapter,

a novel hand tracking method for uncontrolled environments will be introduced.

Analysis on the robustness of the proposed tracking scheme against challenges from

uncontrolled environments is also included in Section 4.2.

With all the challenges, detecting pre-defined hand gestures from the scene

becomes a tough task. Segmenting the target hand from the complex background

is the first step to analyse the trajectories. For traditional tracking methods, the

task is normally locating the exact coordinates of the target hand candidate. In

the unconstrained scene settings that the proposed framework aims to tackle, the

background usually contains moving objects, including skin-coloured and hand-like
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regions. Namely, there are multiple moving hand regions in the scene. With no

prior knowledge, there is no way to distinguish the target signing hand from the

other hand regions. For commercialised HGR methods, constraints can be made to

distinguish the system user from other distractions in the background, e.g. requiring

the user to appear within a certain area of the scene at a certain scale. Also, unlike

methods that use depth information, the proposed method has to perform tracking

without any knowledge on the Depth of Field (DOF). Hence the method would not

be able to discard other interferences based on depth information.

Different from the traditional tracking schemes, instead of segmenting one

certain target region and tracking the exact position of the region throughout the

video, the proposed tracking method in this chapter detects and tracks all eligible

hand candidates in the scene. The rationale behind this is that, similar to the idea of

Maximum Entropy Model, the only fair assumption to make under the circumstances

when there is no prior knowledge about the feature distribution of the predefined

patterns, is no assumption should be made at all. In other words, with no knowledge

of the scene content whatsoever, the only fair heuristic rule to make is enabling the

selection criteria of the hand candidates as soft as possible.

The proposed tracking scheme uses a set of heuristic rules to match the

texture features (SURF) of hand candidates in adjacent frames. The main contri-

butions of the proposed tracking scheme are: 1. This method is capable of adapting

to uncontrolled scene contents including lighting variance, gesture scale, speed and

location variance; 2. This method does not need a hand segmentation process. 3.

It is capable of dealing with multiple hand candidates in the scene.

4.1 Adaptive SURF Tracking

The novel tracking scheme proposed in this thesis is called Adaptive SURF Tracking.

The key differentiating feature of the Adaptive SURF Tracking is that it can adapt
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to arbitrary scene contents, and it does not need a hand segmentation process.

The framework can locate and track all eligible hand candidates, namely Regions of

Interests (ROIs) from the first frame. The tracking process has three key steps: first

frame processing, texture matching and trajectory feature extraction. This section

presents detailed explanation of each step.

The objective of the tracking scheme is to perform trajectory feature extrac-

tion. The essential method of the trajectory feature extraction is texture matching,

namely matching similar texture patterns in the adjacent frames. Limited by the

real-time response criteria, the tracking method can only select characteristic tex-

ture patterns of the hand candidates for matching, namely the SURF key points. In

this way, the exact location of the hand candidates can hardly be determined. The

reason is that, the matching error of SURF descriptors causes small displacements

on coordinates of all matched SURF key points. Therefore, matching key points

introduces certain level of displacement on the centroid of the hand candidates. In

our experiments, when the hand candidates are overlapping with fast moving dis-

tractions in the background in a video stream with 320× 240 pixels resolution and

at a rate of 30 frames per second, the matching error can be larger than ten pixels.

This disadvantage of key point matching does not affect the trajectory analysis in

the proposed HGR framework. That is because the exact coordinates of the hand

candidates are not needed in this HGR framework.

4.1.1 First Frame Processing

The reason for introducing first frame processing in a dedicated section is that, the

proposed tracking scheme only track the hand candidates that appeared in the first

frame. In this way, other interferences that enter the scene after the first frame will

not cause any texture pattern mismatches. Also, to achieve better response time,

the computation for detecting eligible hand candidates in every frame is spared.

This strategy is viable under one assumption, which is the target signing hand must
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Figure 4.1: Processing of the first frame, (a) The skin color binary image, (b) Results
of the denoising process, (c) The initial ROIs, (d) SURF key points within the initial
ROIs.
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be in the scene from the first frame. Also, the detection of hand candidates plays a

vital factor on the response speed of the tracking scheme, since the number of hand

candidates affects the complexity of texture matching.

To locate all hand candidates, skin colour cues are used. Processing of the

first frame is illustrated in Fig 4.1. Skin colour tone can vary under different illumi-

nation conditions. In order to estimate the skin colour under the current lightings

in the scene, skin-colour tone has to be estimated using features other than colour

cues. Hence, the proposed tracking scheme detects eligible human faces in the first

frame using the Viola-Jones face detector [157]. Because the Viola-Jones method

can detect facial regions based on texture features rather than colour cues.

Then the thresholds in the HSV colour space for producing the skin-colour

binary image (Fig 4.1a) are estimated using the pixels within the detected facial re-

gions. If no faces are detected in the first frame, a Gaussian Mixture Model (GMM)

in the RGB colour space which trained out of a large skin-colour database [158] will

be used to produce the skin-colour binary image, until eligible facial regions are de-

tected in a later frame. A simple thresholding strategy is used for binary skin pixel

classification with the lower bound threshold Tskin,Min= (tMin,H , tMin,S , tMin,V ),

and the upper bound threshold Tskin,Max= (tMax,H , tMax,S , tMax,V ), for all three

channels of the HSV colour space. The two thresholds are calculated as:

Tskin,Min=µ (µH , µS , µV )− σ (σH , σS , σV ) (4.1)

Tskin,Max=µ (µH , µS , µV ) + σ (σH , σS , σV ) (4.2)

where,

µ (µH , µS , µV ) =

∑
f∈F

∑
(x,y)∈f

vx,y (h, s, v)∑
f∈F

Af
(4.3)
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σ (σH , σS , σV ) =

√
E
[
vx,y(h, s, v)2

]
− µ(µH , µS , µV )2 (4.4)

are mean and standard deviation vectors for all three HSV channels of all facial

pixels that lie in each face region f , within the set of all detected human facial

regions F . vx,y is the pixel value on coordinate (x, y), and Af , f ∈ F , indicates the

area of the detected facial regions. The thresholding process is shown below:

Cx,y =


255, Tskin,Min ≤ vx,y (h, s, v) ≤ Tskin,Max

0, otherwise

(4.5)

where Cx,y is the pixel value at coordinate (x, y) in the skin-colour binary image.

In other words, only pixels lie in the range between Tskin,Max and Tskin,Min are

determined as the skin-coloured pixels. By using simple band-pass filter on pixels,

the processing speed of skin-colour detection is ensured. Also, the simplicity of skin-

colour detection makes it possible to calculate additional colour cues for ruling out

non-skin-coloured background distractions after the first frame.

At this stage, the error rate of skin-colour detection is relatively high, due to

the following reasons:

• Error of face detection: The Viola-Jones detector is one of the most popular

face detectors. But with the presence of printed artificial human faces, it is

possible that the background distractions could be wrongfully determined as

human facial regions.

• Poor lighting conditions: The proposed HGR framework aims at tolerating

environments with unsatisfying lighting conditions. Within the detected facial

regions, shadow areas usually cause distorted thresholds. Hence for extreme

lighting conditions, the accuracy of this skin detection thresholding process

could be low.
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• Background skin-coloured distractions: With multiple skin-coloured regions

in the background, overlapping of skin-coloured regions is expected. However

the skin detection process is not able to segment different skin colour objects

in a connected skin region. Thereby overlapping skin regions are likely to be

treated as one Region of Interest.

• Simple thresholding: Since only band pass thresholding is used, the quality

of skin detection is limited. Using simple thresholding strategy increases the

speed of the framework.

Also, the low precision of skin region detection has only limited influence on

the over-all performance of the framework. The reason is that the whole point of

skin detection is to rule out the regions that are unlikely to be hands and narrow

down the choices of hand candidates. The significance of the first frame processing is

to include the target hand region in one of the ROIs, instead of locating all possible

hands with high level of precision. As long as the target hand is covered in one of

the ROIs, its trajectory will be tracked and analysed in the framework.

Then in the binary skin colour image, all closed exterior contours are located.

That means the contours which are included within other contours are discarded.

The priority is to lower the number of hand candidates in the first frame, rather

than segmenting boundaries of all overlapping skin regions. A denoising process

is performed on all the closed contours in the skin-colour binary image. All the

interior contours and contours with areas smaller than a threshold Tdsr are deleted

(Fig 4.1b).

Tdsr = Āf × 0.25 (4.6)

where Āf is the average area of all the detected facial regions in the first frame.

Intuitively the denoising threshold should be defined based on the average hand

regions, but no assumptions on the areas of hands should be made in completely
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uncontrolled environments. Also, the only concrete data the tracking scheme calcu-

lated so far is the area of the facial regions, and the hand and facial regions have

similar areas. Hence the denoising threshold is calculated based on the facial regions.

Then the ROIs are defined as the minimum bounding rectangles of the remaining

contours (Fig 4.1c). Then the SURF key points are extracted from the ROIs in the

first frame.

4.1.2 Texture Matching

After the first frame, all the eligible hand candidates are located. In the rest of

the video, the trajectories of all hand candidates are tracked by matching texture

features. Since the SURF key points are used to represent the texture patterns, the

basic idea of tracking is to match SURF key points within all ROIs in the adjacent

frames. From the second frame, SURF key points are extracted from the whole

frame at current time t, and matched with SURF key points from ROIs in the

frame at time t− 1. The rationale behind this is that, for the same gesture sample,

the displacement of ROI between adjacent frames depends on the frame rate of the

video stream. For the same gesture sample, the lower the frame rate is, the larger

the displacement would be. This framework is specially designed for uncontrolled

environments, that includes the unconstrained video specifications. Hence, to adapt

to different frame rates, there is no assumption on the exact current locations of the

ROIs. Namely, the only assumption is that the displacement would falls within a

reasonably range which will be explained later in this section. No prior knowledge

on the movement direction and speed in the current frame is used. Based on this,

the SURF key points in the whole frame is extracted to match with the textures

of ROIs in the previous frame, rather than making a heuristic rule of possible ROI

locations in the current frame.
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Assuming the set of SURF key points

St = {Spt |p = 1, 2, . . . , Pt } (4.7)

of the rthROI in the frame at time t contains Pt key points, and every SURF key

point

Spt = (Xp
t , Y

p
t , E

p
t ) (4.8)

contains coordinates (Xp
t , Y

p
t ) and the corresponding 64-dimensional SURF descrip-

tor Ept . We define a matched SURF key point Spt for a given key point Spt−1 as:

Spt = arg min
Sp
t ∈St

∥∥Ept − Ept−1

∥∥ (4.9)

and the key point Spt is subject to the condition:

∥∥Ept − Ept−1

∥∥ / ∥∥∥Ep′t − Ept−1

∥∥∥ ≥ Tmatch (4.10)

where Ep
′

t is the SURF descriptor of the second best matching point Sp
′

t for Spt−1:

Sp
′

t = arg min
Sp′
t ∈St−Sp

t

∥∥∥Ep′t − Ept−1

∥∥∥ (4.11)

The Euclidean distance between the two 64 dimensional SURF descriptors

is used as the matching score. Only when the ratio of the best match and the

second best is larger than a threshold Tmatch, the best match can be used as the

valid matching SURF key point (Fig 4.4). In this way, only when the best match

is winning by a large margin can it be counted. If there is no such matching SURF

point Spt found, the given SURF key point Spt−1 is discarded. Namely, the uniqueness

of the matching is the only criteria. When there are multiple regions with the similar

texture of the given SURF key point, this matching is considered with low level of
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distinctiveness. Thereby, only the most distinctive SURF key points are used to

represent the texture patterns of the ROI. Also, this strategy can keep the number

of matching SURF key points relatively low, which is a positive factor for fastening

the processing speed. There is another merit of this matching strategy. For video

streams with relatively large resolutions, the texture in the ROIs would be naturally

richer. That will rise the numbers of extracted SURF key points within the ROIs

(Fig 4.5). By setting the matching threshold Tmatch, the number of matched SURF

key points in the same ROI with different video resolutions will be levelled down to

the same scale. Thereby texture matching in various image resolutions would have

similar computational complexity.

As Fig 4.5 shows, the number of SURF key points rises with the increasing

video resolutions. Even for controlled environments with relatively simple texture

in both the foreground and background, with 640 * 480 pixels resolution, there are

still over 100 key points extracted from the frame. Learned from the experiments on

Hand Posture Recognition in uncontrolled environments, to recognise a hand region

in complex background, only 10-20 key points are needed to represent the texture

patterns. Hence, it is essential to down-sampling the frame when it is in a relatively

high resolution. In the experiments of Chapter 5, 6 and 7, the frames resolution is

set to 320 * 240 pixels.

Fig 4.6 shows the decreasing tendency of the amount of matching SURF key

points with respect to the decreasing value of Tmatch. If the threshold for matching

is set too small, for complex background, the chance of mismatching would be high.

In the experiments of this thesis, the threshold is set to 0.8. If the frame resolution

has a certain level of influence on the SURF extraction process, naturally it can also

affect the texture matching. As shown in Fig 4.7, the changing resolutions can affect

the number of matching key points. The higher the resolution, the more matching

points would be found.

Once the matched pairs Mt =
{〈
S1
t−1, S

1
t

〉
,
〈
S2
t−1, S

2
t

〉
, ...,

〈
S
Pt−1

t−1 , S
Pt−1

t

〉}
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Figure 4.2: Texture matching for the ROI of the target signing hand.
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Figure 4.3: The graph shows the number of SURF key points extracted from differ-
ent downsampled resolutions of the same image. The lines in the graph represent
the number of detected SURF key points from two images with uncontrolled and
controlled scene settings, respectively. The full image size is 640 * 480 pixels.

are found, where Mt is the set of the matching pairs. A pruning process is per-

formed on all matched pairs in the ROIs. Only the matching texture key points

with displacement in a certain range are preserved. All the matched pairs with dis-

placements smaller than the lower bound Tmin,t of the ROI’s displacement range are
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Figure 4.4: For the first 10 frames in the sample displayed in Fig 4.5, with a fixed
resolution of 340*240 pixels, this graph shows how the number of matching SURF
key point pairs changing with different values of Tmatch from 0.1 to 0.9.
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Figure 4.5: For the first 10 frames in the sample displayed in Fig 4.5, with fixed
Tmatch value 0.9, this graph shows how the number of matching SURF key point
pairs changing with different value of scale from 10% to 100%.
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dropped. On the other hand, if a matched key point has displaced more than the up-

per bound Tmax,t of the ROI’s displacement range in the next frame, it is most likely a

mismatch. The fast moving objects would cause motion blur and it is hard to extract

texture features in motion blur regions. Thereby no matching can be found in the

blurred areas. Then that is a reasonable assumption that matching key points with

large displacements are mismatches, because no object is capable of moving that far

within such a short period of time without causing massive motion blurring. The

lower and upper displacement bounds of the ROIs in frame t are calculated based on

the average displacement of all matched key point pairs in the ROIs between frame

t − 2 and t − 1, namely M ′t−1 =
{〈
S1
t−2, S

1
t−1

〉
,
〈
S2
t−2, S

2
t−1

〉
, ...,

〈
S
P ′t−2

t−2 , S
P ′t−2

t−1

〉}
,

where the prime symbols indicate ”after pruning”. The displacement bounds con-

stitute the example of adaptive tracking in uncontrolled environments. Due to the

small time window, the motion of objects has a certain level of consistency on speed

in the adjacent frames. Hence, to prune off mismatches of SURF key points, the

bound for displacements should be calculated based on the current speed of the

ROIs. Namely, if the ROIs are accelerating, the upper bound should be raised to

include matches with larger displacements. The definition of the lower and upper

bounds are:

Tmin,t =

∑P ′t−2

p=1

∥∥(Xp
t−1 −X

p
t−2, Y

p
t−1 − Y

p
t−2

)∥∥
P ′t−2

× Fmov,min (4.12)

Tmax,t =

∑P ′t−2

p=1

∥∥(Xp
t−1 −X

p
t−2, Y

p
t−1 − Y

p
t−2

)∥∥
P ′t−2

× Fmov,max (4.13)

Fmov,min = 0.25 and Fmov,max = 3 are adjusting factors of minimum and

maximum displacement, the values are chosen through experiments. For the first

frame, various default displacement ranges have been tested and we found that the

default values of the lower and upper bounds Tmin,0 = 3 and Tmax,0 = 40 pixels were

empirically feasible. Also if Tmin,t is less than the default value, it would be set to
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the default value. Hence for the stationary regions (e.g. facial regions), where no

large movements can be found, the majority of the matched key point pairs would

be dropped, so the challenge of face/hand overlapping is naturally resolved. The

displacement range of ROIs is recalculated in every frame adaptively based on the

movement distances of the main objects in the ROIs. Hence the proposed tracking

scheme can adapt to speed changes of the target. With pre-defined trajectories in

the vocabulary of this thesis, namely the hand signed digits from 0 - 9, the strokes

could have 1 to 2 corners. That means the signing hand will stop and accelerate

again at every corner. If the displacement thresholds for pruning is fixed, then to

cover object moving in different velocities, the acceptable displacement range must

be set wide, which could cause high probability for including mismatches. Thereby,

to keep the ROIs as fit to the hand candidate as possible, the threshold must be

adaptively calculated based on the current velocities of the ROIs. If the target,

namely the main objects in the ROIs are accelerating, the displacement range will

move up according to the actual acceleration, which can be represented by the

average displacement of all the matched key point pairs. An example of pruning is

shown in Fig 4.9b.

After the pruning process, the new ROIs in the current frame are drawn. The

new ROIs in the current frame are defined as the minimum bounding rectangle of the

remaining matched key points after pruning. Instead of only keeping the matched

key points in the new ROIs of the current frame, all key SURF points within the

new ROIs are preserved for matching with the SURF key points in the next frame.

The pruning process discards a large percentage of key points in the ROIs. The

bounding rectangles of the remaining matched key points do not necessarily fit the

contours of the hand candidates in the ROIs. Normally the matched key points

concentrate in a subregion of the hand candidates, the new ROIs are only covering

the subregion, rather than the minimum bounding rectangle of the exterior contour

of the hand candidates. The solution is to increase the sizes of the newly drew ROIs,
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Figure 4.6: Pruning process. (a) matched key point pairs from one of the ROIs,
between the previous frame (left) and the current frame (right), (b) the remaining
matched key point pairs after pruning.

to cover the entire hand candidate regions. Hence, the ROIs need to be enlarged to

make sure that the new ROIs can cover the corresponding hand candidates.

Assuming the number of the remaining matched key points after pruning

is P ′t and the area of the new rth ROI is At, the boundaries of the new rth ROI

are then extended by et pixels. The value of ROI extension is determined by the

amount of remaining SURF key points after pruning and the area of the new ROIs

before extension. The extension rules can be summarised as: a) Only the ROIs with

areas that are smaller than a pre-defined threshold AROI will be extended; b) The

ROIs with number of remaining SURF key points less then a threshold Te which

after pruning will be assigned with larger extension values. The extension value et

is defined as:
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et =



0, Ar,t > AROI

exp
(
−Ar,t

AH

)
× Er, AH < Ar,t < AROI[

exp
(
−P ′t−1

Pmin

)
+ Eboost

]
× Er, Ar,t < AH ∧ P ′t−1 ≤ Te

exp
(
−P ′t−1

Pmin

)
× Er, Ar,t < AH ∧ P ′t−1 > Te

(4.14)

where Te is set to 3 in this thesis, and

AROI = (hs · ws)/20 (4.15)

AH = (hs · ws)/60 (4.16)

AROI is the estimated maximum area of ROIs that are qualified for extension.

Definition in Eq. 4.15 is based on accuracy tested on the training set of Warwick

Hand Gesture Recognition for isolated gestures (will be introduced in Chap 5). The

reason for setting this threshold is that, if the ROI already covers a large area due

to mismatch of texture or high velocity of the hand candidate, further extension

would cause redundant background textures to be included in the ROI. hs and ws

are the height and width of the frame respectively.

AH is the estimated plausible area of the hand regions. Definition in Eq.

4.16 is based on accuracy tested on the training set of Warwick Hand Gesture

Recognition). This parameter does not have to be precise to various gesture scales,

since it merely affects the extension of ROIs. However, by using this parameter the

precision of ROIs’ fitness to the hand candidates is enhanced. Pmin is the empirically

estimated suitable amount of the remaining SURF key points after pruning, the

value of 10 is based on accuracy tested on the training set of Warwick Hand Gesture

Recognition for isolated gestures. Eboost is a coefficient to ensure that the lower the
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value of P ′t−1 is, the higher the extension is given to the ROI. The value of Eboost is

set to 0.3 empirically based on accuracy tested on the training set of Warwick Hand

Gesture Recognition for isolated gestures. Er is the enlargement scale for the rth

ROI, which is defined as:

Er =


[(hr,0 + wr,0) /2] · Fs, hr,0 · wr,0 < Āf · 2.5√
Āf · Fs, otherwise

(4.17)

where hr,0 and wr,0 are the initial height and width of this rth ROI in the first frame.

Fs = hs · ws/30 is the enlargement factor corresponding to the frame size. Hence et

also depends on the original size of this ROI in the first frame. For hand candidates

in a large scale during the gesture, namely the hand candidates that are appearing

in a close range to the camera, the ROI extensions should be increased accordingly.

After the extension of the ROIs, all eligible SURF key points within the ROIs are

extracted as the texture feature for locating the ROIs in the next frame, regardless

of whether they have matching key points in the previous frame.

4.1.3 Trajectory Feature Extraction

From the pattern recognition point of view, the more discriminative and uncorrelated

the features are, the better results the classifier should produces. Instead of using

the combination of hand candidate’s position, speed and orientation as trajectory

feature, the only trajectory feature used in this framework is movement orientation.

The reasons of this are twofold.

Firstly, to tackle the position variance of the gesture performer, the location

of hand candidates should not be used. Some methods [8, 54, 77] normalises the

trajectories of hand candidates into the same coordinate system to deal with the

location variance. The drawback of this approach is that the processing must begin

after the gesture performer finishes the whole gesture. Coordinate system transfor-
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mation requires the centroid of the trajectory, which can only be calculated with

the full trajectory. Therefore, it makes the real time response a harder task for the

trajectory classification (definition of real-time response will be explained in Section

5.2.3).

Secondly, using speed of hand candidates as feature makes the method sen-

sitive to velocity variance, which could be at a relatively large scale due to various

signing habit of different individuals. However, the acceleration of the hand candi-

dates is a viable trajectory feature, since it can be seen as normalised speed. The

texture matching method used in the proposed framework is not designed for ex-

tracting the exact positions of the hand candidates. Thereby the precision of the

acceleration calculated based on texture matching is not satisfactory enough to im-

prove the overall accuracy. Hence, speed is not used as the trajectory feature in the

proposed framework.

For every frame, after the texture matching, the dominant movement di-

rections of all ROIs are extracted as the trajectory feature. Since there are P ′t−1

matched SURF pairs between frames t and t− 1 after pruning in the rth ROI. The

corresponding dominant movement direction of this ROI in the frame t is defined

as:

drt (t, r) = arg max
d
{qd}Dd=1 (4.18)

where {qd}Dd=1 is the histogram of the movement direction, and d indicates the

index of directions. qd is the dth bin of the histogram. The width of each bin is α,

D = 360◦/α is the total number of bins.

Various values for α have been tested, 20 degrees is employed which can

produce the best results. Fig 4.10 - 4.13 illustrate the movement orientation vectors

of all training samples of gesture ”6” from the Palm Graffiti Digits database [8],

with α set to 10, 20, 30, 40 degree, respectively. qd is defined as
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qd = C
∑P ′t−1

p=1
k
(
‖Spt ‖

2
)
δ (Spt , d) (4.19)

where k(·) is a monotonic kernel function which makes the key points that are

located far away from the centre of the ROI having smaller weights. δ (Spt , d) is a

simple Kronecker delta function used to see whether the direction of
〈
Spt−1, S

p
t

〉
falls

in the dth bin. The constant C is a normalisation coefficient defined as

C = 1

/∑P ′t−1

p=1
k
(
‖Spt ‖

2
)

(4.20)

Figure 4.7: The movement orientation vectors of all training samples of the gesture
”6” from the Palm Graffiti Digits database [8], with orientation bin size 10 degree.

4.2 Robustness

With the problem statement in Section 1.3 and the introduction of Adaptive SURF

Tracking in Section 4.1, further analysis on how the tracking scheme of the proposed

framework tackles some of the challenges from the uncontrolled environments is

given in this section. More analysis on how the gesture classifier overcomes the

remaining challenges identified in Section 1.3 can be found in Section 5.3.
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Figure 4.8: The movement orientation vectors of all training samples of the gesture
”6” from the Palm Graffiti Digits database [8], with orientation bin size 20 degree.

Figure 4.9: The movement orientation vectors of all training samples of the gesture
”6” from the Palm Graffiti Digits database [8], with orientation bin size 30 degree.

4.2.1 Changing Lighting Conditions

To calculate skin colour tone under different lighting conditions, the proposed track-

ing scheme needs to locate some skin-coloured regions using features other than

colour cues. Hence a texture feature based face detector is used to locate eligible

human facial regions before the calculation of skin colour. The proposed tracking

scheme estimates the skin colour tone with the pixels on the detected human fa-
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Figure 4.10: The movement orientation vectors of all training samples of the gesture
”6” from the Palm Graffiti Digits database [8], with orientation bin size 40 degree.

cial regions in the first frame. In this way, the proposed framework is capable of

detecting skin-coloured regions under changing lighting conditions.

4.2.2 Background Distractions

Additional distractions in the background is the main challenge for most of the ex-

isting works in the research field of HGR. The categorisation of different distractions

is listed below, with explanation of the countermeasures in the proposed framework.

• Distractions appearing in the first frame:

– Skin-coloured regions (stationary or moving): For small skin-coloured

regions, they would be discarded by the pruning processing during the

selection of hand candidates (see Section 4.1.1). For the eligible hand can-

didates, their trajectories are recorded by the Adaptive SURF Tracking

method. The distractions with meaningless trajectories would not affect

the proposed method much (please see more details in Section 5.2.2).

Since the proposed framework does not distinguish the target hand from

the background distractions, the trajectories of the distractions that have
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certain level of similarity with the pre-defined gestures classes would cause

certain level of confusion for the classifier. The proposed method tackles

these situations with a novel classifier weighting algorithm called Parti-

tion Matrix which will be introduced in Section 5.2.2. For background

regions that are overlapping with the target hand (including hand/face

overlapping), the textures of these regions are hidden behind the hand

candidate. The texture features are extracted again in every frame and

the ROI is kept as fitting to the hand candidate as possible. Hence the

background area within the ROI is relatively small. Namely the majority

of the SURF key points would be extracted from the hand candidate.

Therefore the dominant movement orientation must be the moving direc-

tion of the hand candidate.

– Non-skin-coloured regions (stationary or moving): These regions could

not pass the pruning process of hand candidate selection (see Section

4.1.1).

• Distractions entering the scene after the first frame:

– Skin-coloured regions (stationary or moving): Since the skin-coloured

distractions that enter the scene after the first frame are not treated

as hand candidates, there are only two scenarios that these distractions

could cause negative influences. One is when the distractions are over-

lapping with one of the ROIs. If the distractions are in the foreground,

this situation falls into the category of frontal occlusion (will be explained

later). If they are in the background of the ROI, the overlapping would

not cause any problem to the tracking scheme. The distraction’s texture

that occluded by the ROI does not affects the tracking scheme. The

other scenario is the distractions present similar texture feature as the

ROIs. Namely, other people are trying to sign a gesture alongside the
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gesture performer with the same hand posture. There is the possibility

that during the texture matching, the texture features located in the dis-

traction areas could have a certain amount of matches. If the distractions

are at distance from the ROIs, these matches would be discarded during

the pruning for matched SURF key points, due to the large displace-

ments. If the displacements of the texture matches with the distractions

are within the pruning thresholds (Eq 4.15 and 4.16), namely the dis-

tractions are right next to the ROIs without any overlapping, the mis-

matches could make the new ROI boundary in the current frame cover

both the hand candidate and the distractions. This is the only scenario

that skin-coloured distractions appeared after the first frame could lead

to mis-tracking on the hand candidates. Other than this, the proposed

framework is not sensitive to the background distractions.

– Non-skin-coloured regions (stationary or moving): For the distractions

with non-skin-colours, they will not cause any trouble since they are

discarded by the skin-colour detection step in every frame.

4.2.3 Frontal Occlusion and Hand Out of the Scene

If the object that is occluding with one of the ROIs is non-skin-coloured, then this

ROI would be discarded by the skin-colour detection process, and there would be

no matching texture features for this ROI. The tracking scheme keeps the current

position of the ROI for the next frame. Hence the ROI remains on the same location

until the occluding object passes and viable texture matches present themselves. If

the occluding object is skin-coloured, the tracking results depends on the level of

texture similarity between the distraction and the hand candidate. If there are no

viable texture matches, the tracking method keeps the current position of the ROI

for the next frame. If there are some texture matches, namely the occluding object

is presenting similar hand posture as the hand candidate, the tracking scheme could
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fail.

The challenge of hand candidates going out of the camera scope could be

treated as frontal occlusion. The only difference between the countermeasures for

this situation and the frontal occlusions is that the tracking method no longer per-

forms skin-colour detection for this ROI if the hand candidate is out of the scene.

The tracking method keeps tracking the texture within the ROI, which is likely to

be the arm region, until the hand returns to the scene.

4.2.4 Pause During Gestures

As for the challenge of hand candidates pausing during the gesture, methods that use

moments, normalised hand positions or hand velocity as trajectory features could

suffer from this challenge. In the proposed framework, if the hand candidate is

remaining in the same position, namely there are no displacements of the matching

texture features, the current frame will be discarded in the trajectory, until a new

movement direction presents itself.

4.2.5 Speed Variance

As discussed in Section 4.1, due to the fact that the thresholds for pruning the

matched SURF key points are calculated based on the movement speed of the ROI

in the previous frame (Eq 4.15 and 4.16), the proposed framework is capable of

tracking hand candidates with changing speed.

4.2.6 Location Variance

For hand candidates located in different areas of the scene, the proposed method

can extract the trajectories regardless of the location variance. In the first frame,

the locations of the hand candidates are irrelevant to the tracking scheme, since the

hand candidate detection is based on skin-colour detection, not prior knowledge on

the possible hand locations.
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4.3 Conclusions

A novel hand tracking method is proposed in this chapter. The main advantages of

this method over the existing methods are: 1. It does not need any segmentation

process. 2. It is capable of dealing with multiple hand candidates in the scene.

3. It can adapt to various lighting conditions, gesture scales, speed and locations.

The proposed tracking method provide hand candidate trajectories to the gesture

classification method in Chapter 5 and the gesture spotting method in Chapter 6.

This method uses SURF as the texture feature for its rotation and scale invariance

properties. For real-world applications that demand low response delay, alternative

texture features could be used such as BRISK and ORB. Utilising these short bi-

nary descriptors can lower the computational complexity, but at cost of invariance

properties and accuracy. Also, SURF has certain level of tolerance for view-point

variance, which BRISK and ORB do not have.
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Chapter 5

Probabilistic Model based Hand

Gesture Recognition for

Uncontrolled Environments

In this chapter, a novel weighting scheme is proposed to perform HGR in uncon-

trolled environments. The weighting scheme uses the initial classification results

from the trained HCRF model to monitor temporal features on different scales and

analysis trajectories of all hand candidates. The main contributions of this method

are: 1. It can monitor temporal features on different scales. 2. It is capable of

dealing with multiple hand candidates at the same time. For classification of the

dynamic hand gestures, the task is essentially predicting an output class label y

for the input sequence data X = {x0, x1, x2, . . . xn} with dependencies, which is

also called the observation sequence. Namely, there are dependencies among the

variables in the input vector. This task is at the root of many applications in dif-

ferent research fields include locating a specific gene segment in a strand of DNA

[159], human activity prediction [160], parsing natural scenes [161] and natural lan-

guage processing [162]. Many methods have been tested for solving this widely
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shared problem, include sequence matching methods such as Dynamic Time Warp-

ing (DTW) [163], and probabilistic models, such as Bayesian Network, Maximum

Entropy Model (MEM) and Hidden Markov Model (HMM). Probabilistic model

is one of the most intensively studied categories in machine learning and pattern

recognition because of the effectiveness of the natural principle of summarising pat-

terns from training data through statistics. Among the probabilistic models, there

are two major types of models with different basic strategies, generative models and

discriminative models. Generative models typically estimate a joint probability dis-

tribution of the input observations and the class labels, through maximizing the joint

likelihood function of all training samples. This type of probabilistic model suffers

from a major drawback, which is making the assumption of independence among

variables in the input sequence. Hence, for segmenting and labelling sequence data

with long range dependencies, the discriminative models which directly simulate

conditional probability distribution between the sequence data and the class labels,

can potentially produce more satisfactory results than the generative models. With

this strategy, the model is capable of summarising dependencies and correlations

among the input observations.

In the context of HGR, the trajectories of hand candidates are sequences

of trajectory features extracted from the video frames. The main characteristic

of various trajectories is the combinations of the trajectory features, instead of the

values of single trajectory features. In this thesis, Conditional Random Fields (CRF)

and its variations are used for recognising dynamic hand gestures from uncontrolled

environments. This chapter is dedicated to introduce the proposed solution for

hand trajectories classification based on CRF. In Section 5.1, key advantages and

issues of applying CRF on gesture classification are discussed. In Section 5.2, the

proposed gesture classifier is introduced with analysis on the main advantages and

disadvantages.
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5.1 Advantages and Issues of Applying CRF on Gesture

Classification

Probabilistic models (or statistical models) have been intensively studied for decades

in the Machine Learning community. Among them, Conditional Random Fields

[146] was introduced for segmenting and labeling sequence data. The potential of

CRF was rapidly recognised by the computer vision community [164, 165, 166, 147].

CRF was introduced with two main advantages. One is to relax strong independence

assumptions in the generative models. Another is avoiding the Label Bias Problem.

Discussions on the difference between the discriminative models including CRF and

the generative models is given in Section 5.1.1. The Label Bias Problem within the

context of HGR is discussed in Section 5.1.2.

5.1.1 Generative Models versus Discriminative Models

Probabilistic models that focus on modelling the joint probability of the input obser-

vation sequence X and the class label y, p (y,X) are called generative models. The

essential idea of generative models is that, calculating the statistics of p (X |y ), p (y)

and p (X) from the training set, then using the statistics to simulate the probability

density function of the class label. On the other hand, probabilistic models that

directly calculate the conditional probability p (y |X ) are called discriminative mod-

els. Discriminative models generate a set of feature functions to simulate the local

structure of the pre-defined patterns in the training set. The contribution of each

feature function is bounded by a weight, which is optimised through the training

process to simulate the conditional probability distribution. During inference, the

similarities between the testing sample and the local feature functions are accumu-

lated into a final score. The difference of the two kinds of models can be illustrated

with the following two aspects.

Firstly, for sequence data with long-range dependencies, only the discrimina-
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tive models can produce decent recognition rate. Take Part-of-speech Tagging (POS

tagging) for example, which is the task of labelling words with different properties,

the meaning of the word ”record” in the phrase ”break the world record” is com-

pletely different from its meaning in the phrase ”record the speech”. In the context

of HGR, for hand-signed digits, the gesture ”7” and ”4” both contain a vertical

stroke. If HMM is used for gesture classification, the feature function of the verti-

cal strokes in the gesture class ”7” and ”4” will have similar weights. That means

the HMM model ignores the vertical strokes as trajectory features when classifying

samples from the gesture class ”7” and ”4”. But the vertical strokes as a part of the

trajectory sequence in the two gesture classes are discriminative. In other words, if

taking longer trajectory sequences that contain two or more strokes including the

vertical strokes into consideration as the CRF models do, the feature functions of

the vertical strokes in both classes will have different weights.

Secondly, the discriminative models do not have to model p (X). When X

contains highly interdependent variables, p (X) becomes intractable to calculate.

For pattern recognition applications, calculation of p (X) can be avoided in the

Naive Bayes model. But in HMM, calculation of the initial state probability is

inevitable. The only way of doing it is by counting appearances of different initial

states through the training set. In other words, the precision of p (X) is depend on

the diversity of the training set. If the training set is too small or not diversified

enough, the performance of HMM could be poor.

5.1.2 Lebal Bias Problem in HGR

Discriminative models that monitor the dependencies in the input sequence data,

include Maximum Entropy Markov Models (MEMM) [167] suffer from the Lebal Bias

Problem which is firstly defined in the original CRF paper [146]. The transitional

features leaving a given state only compete against each other, rather than against

all other transitional features in the model [146]. Maximum Entropy Taggers [168],
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Maximum Entropy Model (MEM) [167] and other non-generative finite state models

are all typical victims of this problem [146]. In backward recursion of the MEM

classifier, given a current position t, the previous position t+ 1 (t+ 1 is the previous

position of t since it is the backward recursion), the observation state xt+1 at position

t+ 1, the class label yt and yt+1 at position t and t+ 1 respectively, the summation

of all possible outputs from position t+ 1 is always 1:

βt (i) =
∑
j

p (yt+1 = j |yt = i, xt+1 ) · βt+1 (j) (5.1)

where βt (i) indicates the summation of all conditional probabilities of the state

value at t+ 1 given the state value at state t. i and j are possible class label values.

βt (i) is always 1, no matter what i realy is.

Some of the Generative models also suffer from this problem. Take HMM

as an example, given a state t, there are only finite number of choices for the

value of the next state, since the state value can only be one of the class labels.

Summation of all possible transitional probabilities that leaving from this state

must be 1. That indicates the transitional features could not consider the context

of the input sequence as a whole.

In the context of HGR, local dependencies are crucial for gesture classifica-

tion. As shown in Fig 5.2, the two same local features covered by the solid circles

in gesture ”4” and ”2”, are represented by feature fi. The two local features in

the doted circles are represented by feature fj and fk. In HMM, the feature fi

is a product of multiple transitional probabilities. The actual values of the tran-

sitional probabilities are determined by counting the number of training samples

that have the features. The calculations for the probabilities of feature fj and fk

are in the same fashion. Hence, the probability values of the three local structures

have no influence on each other whatsoever. The values only depend on the fea-

tures’ frequency of appearance in the training set. On the other hand, for CRF,
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fi = q12,q12,q11,q12,q18,q1,q18,q18

fj = q4,q4,q5,q12,q12,q11

fi

fi

fj
fk

fk = q18,q1,q1,q12,q12,q11

Figure 5.1: The transitional features of gesture ”4” and ”2”. The solid circles
indicate one of the common features of the two gesture class, while the doted circles
represent two distinctive features that can separate the two classes.
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in the training process, the appearance of feature fi can be found in samples of

both gesture ”4” and ”2”. Hence, the feature fi has relatively small contribution on

classifying the two gestures. Thereby the optimisation search would assign a small

weight on this feature. For feature fj and fk, they are distinctive between the two

gestures. Then the two features will be assigned with large weights. In other words,

compared with fi and other less discriminative features, fj and fk have certain level

of uniqueness for representing gesture ”4” and ”2” respectively. That makes the

two distinctive features have larger weights than the shared features. The CRF is

able to evaluate the distinctiveness of the local features, and entitle the effective

features with stronger ”voting” power by assigning large weights. In this way, the

summation of all possible values leaving a specific state is no longer 1 because the

summation of the weights is no longer awayls 1. Thereby CRF is capable of solving

the Label Bias Problem.

5.2 Gesture Classification for Uncontrolled Environments

The Adaptive SURF Tracking (Section 4.1) is designed to produce multiple trajec-

tories for all hand candidates within one video sample. The next step to complete

the task of HGR is gesture classification. In this section, a classifier based on Hidden

Conditional Random Fields (HCRF) [148] which is a variation of CRF is proposed

for gesture classification in uncontrolled environments. The main task of gesture

classification is to detect and classify the trajectory of the target signing hand from

the set trajectories of all hand candidates including distractions in the background.

To increase the inter-class distance between the pre-defined gesture trajecto-

ries and the noise trajectories, a novel classifier with a weighting scheme is proposed,

called Partition Matrix. Essentially this weighting scheme takes tracking results

from different ROIs and frame selection patterns into account. The trajectory of

the target signing hand has relatively low level variance under different frame rates,
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while the background distractions tend to produce various tracking results under

different frame rates, due to high probability of out-of-plane rotations, regions over-

lapping and texture changes.

5.2.1 Gradient based Parameter Estimation

Since Adaptive SURF Tracking uses texture features to track the hand candidates,

matching the SURF key points from one frame with different frames may produce

different tracking results. In order to take as many tracking results as possible into

consideration, all tracking results from different ROIs and frame selection patterns

are evaluated in the classifier. The frame selection patterns means down-sampling

the original video into different frame rates. Assuming that V = {ci|i = 1, 2, . . . , N}

is a video with N frames, cn is the nth frame, video fragment Vp with frame rate Fp

is defined as,

Vp = {ci|i = p, 2p, 3p...} (5.2)

The downsampled video fragments are subsets of V . Frame rates F1 to F4 are used to

create different tracking results in our experiments. After the tracking stage, the set

of movement direction vectors X = {xu,r|u = 0, . . . U − 1, r = 0, . . . R− 1} are fed

into a multi-class HCRF model as the observation sequences (Fig 5.2). Each move-

ment direction vector xu,r = {o0, o1, . . . , ol−1} contains l observation states as l is

the number of frames in the video fragment corresponding to xu,r with the rth frame

rate. The total amount of the observation sequences equals to the number of frame

rates U , times R which is the number of ROIs. In our experiments, U = 4 and one

single frame is treated as a single node in the HCRF model. Y = {y0, y1, . . . , ym−1}

is the class label set and m is the total number of the class labels. In this chapter,

since the task is recognising hand-signed digits (Fig 5.3), we define the hidden states

H = {H0, H1, . . . ,Hn−1} as the strokes of gestures and n is the total number of the
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hidden states. Since the stroke structures are natural segmentations of the trajec-

tories, and the hidden states are used to simulate the structure of the trajectory

features with high level of similarity, using strokes as hidden states is a reason-

able choice. There are certain level of similarities among the gestures (for example

gesture 0, 6 and 9), namely some digits share the similar strokes. The number of

hidden states are lower than the total number of strokes of the whole vocabulary.

For each observation sequence xu,r, a vector of hidden states ~h = {h0, h1, . . . , hl−1}

is assgined to it. Each element of the hidden state vector ~h is one of the hidden

states in H. Also, each element of the hidden state vector ~h is corresponding to an

observation state in the observation sequence xu,r. Hence the length of the hidden

state vector ~h is also l, the same as the observation sequence xu,r. The experiments

of this chapter contain tests on two datasets, the Warwick Hand Gesture Dataset

and Palm Graffiti Digits database [8]. The hidden state definitions are, 11 states

in the HCRF model for the Warwick Hand Gesture Dataset (Fig 5.2 shows 4 of

the 11 states, which form the gesture of digit 4), and 15 states in the Palm Graffiti

Digits database. The optimisation scheme used in our model is Limited Memory

Broyden-Fletcher-Goldfarb-Shanno method [169]. In our experiments, the weight

vector ~θ is initialised with the mean value, and the regularisation factors are set to

zero.

The HCRF model with hidden latent variables are proven to be effective for

gesture recognition [148, 149], the basic structure from the original HCRF model

[148] is designed for dealing with one input observation sequence xu,r given a class

label yg, a hidden state vector ~h and the weight vector ~θ:

P
(
yg|xu,r, ~θ

)
=
∑
~h

P
(
yg,~h|xu,r, ~θ

)
=

∑
~h

exp
{

Ψ
(
yg,~h, xu,r|~θ

)}
∑
y

∑
~h

exp
{

Ψ
(
y,~h, xu,r|~θ

)} (5.3)

84



Figure 5.2: HCRF model, the hidden states are defined as strokes of gestures, input
sequence x is the movement direction vector of one hand candidate under one frame
selection pattern. xu,r means vector with uth frame selection pattern and rth ROI.

Figure 5.3: Vocabulary of ten hand signed digits.
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where the sum over the hidden state vector ~h means the summation of all possible

combinations of l hidden states in the hidden state vector. The partition function

is defined as:

Z
(
yg|xu,r, ~θ

)
=
∑
~h

exp
{

Ψ
(
yg,~h, xu,r|~θ

)}
(5.4)

The partition function is the sum of all potential functions Ψ
(
yg,~h, xu,r|~θ

)
over all

possible combinations of hidden states in the hidden state vector. ~θ is the set of

weights of the potential functions. The potential function with a given class label

yg, a hidden state vector ~h, a input observation sequence xu,r and the set of weights

~θ is defined as:

Ψ
(
yg,~h, xu,r|~θ

)
=
l−1∑
j=0

D×n∑
i=0

θ1,i·f1,i (xu,r, hj) +
l−1∑
j=0

m×n∑
i=0

θ2,i·f2,i (yg, hj) +

∑
(j,k)∈E

m×n2∑
i=0

θ3,i·f3,i (yg, hj , hk)

(5.5)

where j and k are hidden state index, E is the set of adjacent hidden states in the

hidden state vector ~h. f1,i and θ1,i are the ith feature function and the corresponding

weight of the first feature function type. The same rule of nomenclature applies to

f2,i,f3,i, θ2,i and θ3,i . For each input sequence, the value of the potential function

is the weighted sum of all feature functions. Three types of feature functions and

their corresponding weights are defined in the proposed model of this chapter. The

first feature function type is the compatibility between an observation sequence xu,r

and a hidden state hj , f1,i (xu,r, hj),

f1,i = {f1,i |i ∈ [1, L1]}

θ1,i = {θ1,i |i ∈ [1, L1]}

(5.6)
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where L1 = D × n is the total number of the first type of feature function. D

is the number of possible movement orientations (see Eq 4.18) and n is the total

number of hidden states as defined earlier in this chapter. This kind of feature

function can be understood as the probability of the observation being part of a

certain stroke represented by a hidden state (Fig 5.4). To monitor the long-range

dependencies, the neighbouring observations of the current observation state are

also taken into calculation of the feature functions. The window size w indicating

how many neighbouring observations are included in the feature function. Assuming

the set of neighbouring observations of the current observation state oc is W ,

W = {oc−w, . . . , oc−1, oc, oc+1, . . . , oc+w} (5.7)

If w = 3, that means three previous and three future neighbour observations are in

the feature window, so there are 7 observations in W .

The second type feature function f2,i (yg, hj) is the compatibility between a

hidden state hj and a class label yg. There are in total L2 feature functions of the

second type,

f2,i = {f2,i |i ∈ [1, L2]}

θ2,i = {θ2,i |i ∈ [1, L2]}

(5.8)

where L2 = m × n is the total number of the second type of feature function. m

is the total number of classes in the vocabulary as defined earlier in this chapter.

This kind of feature function can be seen as the probability of the local structure of

a certain gesture class containing a specific stroke (Fig 5.5).

The third kind is the compatibility of a pair of adjacent hidden states hj

and hk with a class label yg: f3,i (yg, hj , hk). There are in total L3 different feature

functions of the third kind,
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f3,i = {f3,i |i ∈ [1, L3]}

θ3,i = {θ3,i |i ∈ [1, L3]}

(5.9)

where L3 = m × n2 is the total number of the third type of feature function. This

feature type is similar to the transitional probability in the HMM classifier. The

features describe the probability of certain gesture class containing certain local

trajectory patterns represented by local trajectory feature sub-sequences (Fig 5.6).

Since every single feature function takes all frames in the input sequence into

calculation, to make each feature function extracts a certain local pattern from the

input sequence, the feature functions are designed to produce non-zero values for

only this pattern in the model. Take one of the first type feature functions as an

example:

f1,i (xu,r, hk) =


1, ∃oj : oj = q12 and oj ∈ xu,r , k = 3

0, otherwise

(5.10)

where i is the index of this specific feature function. This feature function only

produce value 1 when the 12th movement orientation q12 (Eq 4.18) appears in the

observation sequence xu,r as an observation state, and the corresponding hidden

state of q12 is h3. In this way, the feature functions are not depending on specific

positions in the observation sequence. In other words, even if the target local pat-

tern appears at arbitrary stage of the gesture, the feature function can still detect

this local pattern. This makes the model more tolerant to distortions in the hand

trajectory. As shown in Fig 5.7, intra-class variance could be relatively large in HGR

problems, that means gesture distortions appear frequently in both the training set

and the testing set of HGR databases. This feature extraction strategy could be

sensitive for trajectories of background distractions that share high level similarity
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h0 h1 hl-1

o0 o1 ol-1

y

...

Figure 5.4: The feature function contains the observation state and corresponding
hidden state.

h0 h1 hl-1

o0 o1 ol-1

y

...

Figure 5.5: The feature function contains the hidden state and the class label.

with pre-defined gestures. For HGR in uncontrolled environments, the inter-class

distance between the noise patterns and pre-defined gestures are still averagely larger

than intra-class variance within the gesture classes. Hence the proposed framework

benefits from the position independent feature functions.

The learning process of the proposed framework is essentially estimation of

the parameter set θ, which represents the ”voting power” for each and every feature

function. Therefore, the training process is the search for the optimised voting power

distribution for all feature functions. As all other CRF-like probabilistic models, the

parameter estimation of the proposed framework is done through a gradient based
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h0 h1 hl-1

o0 o1 ol-1

y

...

Figure 5.6: The feature function of the transitional hidden states and the class label.
In this case, the window size is 0.

Figure 5.7: Samples of distorted hand trajectories.
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search, to be more specific, through maximising the likelihood function L (θ) of the

training set Tr:

L
(
~θ
)

=
∑

(X,y)∈Tr

logP
(
y
∣∣∣X, ~θ)− 1

2σ2

∥∥∥~θ∥∥∥2
(5.11)

where (X, y) is a observation-label pair with the set of input observation sequences

extracted from a training sample and the ground truth class label for this training

sample. The second term in the likelihood function is a penalty term. The reason

to include this penalty term is to avoid overfitting. The idea is introducing a regu-

larisation term to prevent a few feature functions to possess dominant weights. The

common choice of the penalty is based on the Euclidean norm of the weight vector

~θ [149, 148, 170, 171]. The actual strength of the penalty is determined by a regu-

larisation parameter 1
2σ2 . σ is a Gaussian prior variance of the assumed Gaussian

distribution of ~θ, namely

P
(
~θ
)
∼ exp

(
− 1

2σ2

∥∥∥~θ∥∥∥2
)

(5.12)

The search for the optimised value of σ could be computation intensive. Theory of

Charles Sutton [170] indicates that the accuracy of the CRF model is not sensitive to

the precision of σ. For databases with medium-sized training sets, σ2 = 10 is typical.

The proposed framework inherited this value of σ. That is reasonable strategy for

HGR problems, since there are normally only few hundreds of training samples in

the databases. Intuitively, the scale of the bias towards the noises in the training set

produced by the optimisation search depends on the amount of distorted training

samples. Value of the variance σ represents the extent of domination of biased

feature functions. The larger the variance σ is, the more significant the bias is,

thereby the larger the penalty should be.

Given the likelihood function, the training process becomes a parameter op-

timisation problem with the likelihood function L
(
~θ
)

as the objective function. For
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functions with one dimensional variable, the optimisation is naturally the process

of calculating the first order derivative of the variable, then equating the function

to zero and solving the equation. But for pattern recognition applications includ-

ing HGR, the variable is usually with high dimensions. Calculating the derivatives

becomes intractable. For the weight vector ~θ in this thesis which is about 1800

dimensional vector depend on different window sizes of the feature functions in the

HCRF model, the optimisation turns from a simple line search to a search in a high

dimensional space.

Many gradient based methods could potentially be viable solutions, including

Line Search, Simulated Annealing, Gradient Ascent, Conjugate Gradient, Levenberg

Marquart and Newton’s Method. In this thesis, Limited Memory BFGS algorithm

is used as the optimisation method [172]. The fundamental idea of all optimisation

methods is simple. In order to find a maximum or minimum value of a certain

function, which could be bound by additional constrains, a iterative search is con-

ducted. There are few strategies to initialise the start point of the search, such as

starting at mean point or random point. In every iteration, the algorithm calculates

the next search direction. The common strategy is to follow the gradient. Then

the algorithm finds the local extreme value along the calculated search direction

and evaluates this extreme value to see whether it fits the converge criteria. If not,

the search continues to the next iteration, until it locates a value that fits the con-

verge criteria. By simply following the gradient, the search usually takes too many

iterations to converge. Hence, other strategies of calculating more efficient search

directions were considered. The well-known Newton’s method converge much faster

than the original gradient descent methods. Since they use not only the gradient

which is the first order derivative, the Hessian Matrix which essentially is a ma-

trix of second order derivatives is also used to calculate the search directions. For

objective functions with high dimensional variables, the calculation of the Hessian

Matrix could be computation intensive, since the second order derivative of every
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dimension must be calculated. The Quasi-Newton methods are optimisation meth-

ods that do not calculate the Hessian Matrix in every search step directly. Instead,

an approximation of the Hessian Matrix is built to speed up the process. The Lim-

ited Memory BFGS method is essentially one of the Quasi-Newton methods. The

uniqueness of the Limited Memory BFGS method is that it only uses the first order

derivative to estimate the Hessian Matrix of the objective function. For HGR in the

uncontrolled environments, the number of feature functions is huge. That makes the

fast converge speed an important feature to consider for choosing the optimisation

method. Hence, the Limited Memory BFGS is the best choice.

To use the optimisation methods, the obvious issue is that, is the objective

function namely the likelihood function of the training set L
(
~θ
)

even convex? For

normal CRF model without the hidden latent states, each observation state has a

corresponding class label. Given the training set Tr, the likelihood function can be

written as,

L
(
~θ
)

=
∑

(X,y)∈Tr

logP
(
y
∣∣∣X, ~θ)− 1

2σ2

∥∥∥~θ∥∥∥2

=
∑

(X,y)∈Tr

3∑
j=1

Lj∑
i=1

θj,i·fj,i −
∑

(X,y)∈Tr

log
∑
~y

exp

[
3∑
j=1

Lj∑
i=1

θj,i·fj,i
]
−

1

2σ2

∥∥∥~θ∥∥∥2

(5.13)

where j is the feature function type index and i is the feature function index as

defined before. The sum over ~y is the sum of all possible combinations of the

class label vector for the observation sequence. The first term in the equation on

the second line is three fold summation of the weighted feature functions. The

summation over weight ~θ is linear function. The second term is the normalisation

term. It is a Log-Sum-Exp (LSE) Function, which is a known convex function
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[173]. The last term, namely the penalty function, is a quadratic function of the

weight ~θ. The whole equation is a linear combination of a linear function, a convex

function and a quadratic function. Therefore, the likelihood function of normal

chain-structured CRF model is guaranteed to be convex.

For CRF models with hidden latent states, the likelihood function can be

written as,

L
(
~θ
)

=
∑

(X,y)∈Tr
logP

(
y
∣∣∣X, ~θ)− 1

2σ2

∥∥∥~θ∥∥∥2

=
∑

(X,y)∈Tr
log
∑
~h

exp

(
3∑
j=1

Lj∑
i=1

θj,i·fj,i
)
−

∑
(X,y)∈Tr

log
∑
y′∈Y

∑
~h

exp

(
3∑
j=1

Lj∑
i=1

θj,i·fj,i
)
−

1

2σ2

∥∥∥~θ∥∥∥2

(5.14)

where
∑

(y′∈Y ) and
∑
~h

means sum over all class labels and all combination of

hidden states in the hidden state vector in the feature functions, as defined in Eq

5.5. The right hand side of the second line equation is essentially a difference of two

LSE functions, which is not always convex. The reason for the loss of convexity is

the variation of partition function (Eq 5.4) in HCRF models. Since the partition

function is the summation over the hidden states, so the first term in the likelihood

function is no longer linear. In the context of the proposed framework, the loss of

convexity of the likelihood function is one of the main drawbacks of hidden state CRF

models. This means the optimisation search is only capable of locating the closest

local optimisation, not the global optimisation. Therefore, the starting point of the

optimisation search is vital to the training process. In the proposed framework, the

initialisation value of the weight vector is the mean point.

Another important concept of the proposed framework is the definition of
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the partition function (Eq 5.4). Using the partition function can largely speed

up the training and inference processes. To evaluate the status of convergence of

the optimisation search during the training process, in every iteration the Limited

Memory BFGS algorithm calculates the difference between the current value of the

likelihood function, and the value of the likelihood function with the previous weight

vector from the last iteration. The value of the likelihood function can be calculated

as,

L
(
~θ
)

=
∑

(X,y)∈Tr

logP
(
y
∣∣∣X, ~θ)− 1

2σ2

∥∥∥~θ∥∥∥2

=
∑

(X,y)∈Tr

log

 Z(y|X,~θ )∑
y′∈Y

Z(y′|X,~θ )

− 1

2σ2

∥∥∥~θ∥∥∥2

(5.15)

The inference process can also be simplified by only calculating the partition func-

tion. Since the final score of input sequence set X against class label yg can be

written as,

P
(
yg|X, ~θ

)
=
∑
~h

P
(
yg,~h|X, ~θ

)
=

∑
~h

exp
{

Ψ
(
yg,~h,X; ~θ

)}
∑
y

∑
~h

exp
{

Ψ
(
y,~h,X; ~θ

)} =
Z
(
yg

∣∣∣X, ~θ)∑
y
Z
(
y
∣∣∣X, ~θ)
(5.16)

The denominator
∑
y
Z
(
y
∣∣∣X, ~θ) is summation of the partition functions over

all class labels, which can be treated as a normalisation term. Therefore, for classi-

fication which is finding the largest probability P
(
yg|X, ~θ

)
where yg ∈ Y among all

class labels, if the normalisation term is ignored for partition functions of all class

label, the value of the partition function is equivalent to the final score y∗:
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y∗ = arg max
y

P
(
y|X, ~θ

)
= arg max

y

Z(y|X,~θ )∑
y′∈Y

Z(y′|X,~θ )
≈ arg max

y
Z
(
y
∣∣∣X, ~θ)

(5.17)

This largely simplified the inference process has significant contribution to the over-

all real-time performance of the entire proposed framework. Also, the idea of the

proposed weighting scheme Partition Matrix is built based on this equivalence (see

section 5.2.3).

The training process indicates that the CRF models are supervised classifiers.

But for the hidden latent states, training process can be seen as semi-supervised

learning. For every training sample, although the ground truth class label is pro-

vided, the hidden states that corresponding to all single observation states are un-

labelled. In other words, we do not need to provide the model with any information

on the hidden state sequences of every training sample, expect the total number of

the hidden states. Similar to the parameter estimation of HMM, the model will cal-

culate the optimised configuration of the weight vector ~θ automatically. Intuitively,

this semi-supervised training strategy for the hidden states is essentially a feature

selection process. The model is capable of prioritising the ”voting power” among

the feature functions with hidden states. Latent Dynamic CRF [150], is another

version of CRF. In the LDCRF, the hidden state sequences of every training sample

are labelled. That makes the training for hidden state completely supervised. This

strategy is also proven to be effective for gesture recognition [150].

5.2.2 Inference with Partition Matrix

The proposed framework takes the idea of the Partition Function from the original

CRF model one step forward to solve the gesture classification problem in uncon-

trolled environments with multiple hand candidates in the scene. More specifically,

a weighting matrix of the partition functions from different frame rate and ROIs is
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proposed.

When a new video clip comes in for classification, all vectors in X will be

evaluated against every gesture classes. A normalisation process is applied on all

partition functions of X. The reason for the normalisation is that, observation

sequences with different frame rates have various sizes. The observation sequence

with frame rate F3 has only one third amount of frames as the sequence with frame

rate F1. Since the value of partition function is proportional to the amount of feature

functions, and the amount of feature functions depends on the amount of frames

in the observation sequence. Hence, the trajectory of background distractions with

large amount of frames could potentially produce higher partition function values

than the trajectories of the target signing hand, solely due to the large number of

feature functions, instead of high level of similarity with pre-defined trajectories.

Therefore, in order to compare partition functions of observation sequences with

different sizes, partial partition function for single observation sequence is proposed:

Zn
(
yg

∣∣∣xu,r, ~θ) =
∑
~h

exp
[
Ψ
(
yg,~h, xu,r|~θ

)]/
nu,r (5.18)

where nu,r is the total number of frames in xu,r and yg is a given class label. In-

tuitively, the partition function is normalised to average partition value per frame.

Since the only trajectory feature used in the proposed framework is the movement

direction, the size and location invariance are naturally achieved (Section 4.2). Also

the Partition Matrix does not depend on the length of the observation sequences,

which makes the proposed framework robust against the changing gesture speed.

Since the basic idea of the Partition Matrix is to take trajectories of multi-

ple hand candidates with different frame rates into consideration, all eligible hand

candidates including background distractions in the uncontrolled environments are

under evaluation. Even for the same ROI, with different frame rates, the Adaptive

SURF Tracking scheme can produce largely different tracking results, due to the
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texture matching nature of the tracking scheme and the random moving patterns

of the hand candidates. Hence, structure of the Partition Matrix of observation

sequence set X is defined as,



(
Zp0,0, L0,0

)
. . .

(
Zp0,R−1, L0,R−1

)
...

. . .
...

(
ZpU−1,0, LU−1,0

)
· · ·

(
ZpU−1,R−1, LU−1,R−1

)


(5.19)

where (Zpu,r, Lu,r) is the partition-label pair of the observation sequence of rth hand

candidate with uth frame rate. Among all partition functions of the observation

sequence xu,r against all class labels, Lu,r is the class label with the highest partition

function value, and Zpu,r is the corresponding partition value.

Lu,r = arg max
y∈Y

Zn
(
y|xu,r, ~θ

)
(5.20)

Zpu,r = max
y∈Y

[
Zn
(
y|xu,r, ~θ

)]
(5.21)

Every column of the matrix contains observation sequences extracted from one of

the hand candidates, with various frame rates, while each row of the matrix contains

observation sequences extracted from all hand candidates, with the same frame rate.

With the definition of the Partition Matrix, partition function for the observation

sequence set X and a given class label yg is proposed:

Z ′
(
yg|X, ~θ

)
=

∑
xu,r∈X

{
Zn
(
yg|xu,r, ~θ

)
· wu,r

}
(5.22)

The partition function of X is essentially a weighted sum of partial partition func-

tions of all observation sequences in X. How to distinct the trajectory of the target

signing hand from the other trajectories depends on the definition of the weight

wu,r, which is,
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wu,r = 1 +WF (xu,r) +WR (xu,r) (5.23)

where WF (xu,r) is the Frame Rate Weight Function, which gives a larger weight to

the observation sequence with maximum P
(
y|xu,r, ~θ

)
value among all ROIs with

the same frame rate, namely a row in the Partition Matrix. The rationale behind

this is that, for trajectories from all hand candidates under the same frame rate,

the one with the highest partition value has the highest possibility to be the target

sighing hand. Hence, more confidence should be assigned to the corresponding ROI.

The definition of Frame Rate Weight is,

WF (xu,r) =


1/U, xu,r = arg max

x̄u,r∈{x̄u′,r|u′=u}
P
(
y|x̄u,r, ~θ

)

0, otherwise

(5.24)

where U is the total number of frame rates that used in the Partition Matrix. The

definition of WF (xu,r) is based on the logic that the more frame rate adopted in

the Partition Matrix, the less voting power should be assigned to each row of the

matrix.

WR (xu,r) is the ROI Weight function, which represents the confidence of the

rth ROI being the target hand, considering all frame rates. The definition is,

WR (xu,r) =
∣∣{xu′,r′ |WF

(
xu′,r′

)
6= 0, r′ = r

}∣∣/U (5.25)

The ROI Weight of a specific ROI depends on how many row maximum value are

there among the observation sequences from this ROI, namely a column of the Par-

tition Matrix. The ROI Weight is designed to enhance the voting power of the ROI

with the target hand. For the situation shown in Fig 5.8, more than one ROIs have

row maximum values, the ROI Weight can further enlarge the difference of voting
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power among ROIs. At last, the final gesture label is defined as arg max
y

Z ′
(
y|X, ~θ

)
.

Namely, the gesture class with the largest weighted sum of the partition values is

the final result.

To explain how Partition Matrix analyse trajectories from uncontrolled en-

vironments, an example is shown in Fig 5.8. In this example, the tracking scheme

picked up 4 hand candidates, and the target hand is signing gesture ”7” while the

background distractions are randomly moving around. As shown in the figure, clas-

sification results for the first 2 frame rates are wrong. Namely without using the

Partition Matrix, the final classification would be wrong. This example constitutes

the best scenario that the Partition Matrix can distinguish the trajectory of the

target hand from other trajectories of distractions with the similar scale, speed and

skin-colour as the target hand. In the sample Partition Matrix, to better explain

the weighting strategy, only the class labels are shown.

As shown in Fig 5.8, on the row of all ROIs with frame rate F4, all 4 clas-

sification results are gesture ”7”. That indicates the possibility that all 4 ROIs

overlapped at some point during the gesture, so that all four trajectories share

the same level of similarity with the gesture model ”7”. ROI overlapping happens

frequently in the testing samples of the databases used in this thesis. The high

probability of region overlapping is caused by two reasons. Firstly, since the pre-

cision of hand candidates selection is not at high level by design (Section 4.1.1),

some of the ROIs may occupy relatively large areas in the scene. That could lead to

overlapping of ROIs. Since SURF features are extracted in every frame, when ROIs

are overlapping, the textures of the ROI on the background are occluded. Hence,

the overlapping ROIs extract the same texture features during the overlapping. In

other words, they emerge into a single ROI. Secondly, with lower frame rates, the

key point displacements between adjacent frames are relatively larger than that of

the higher frame rates. The change of textures of the background distractions with

random movements between frames are also more dramatically in the videos with
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Figure 5.8: Partition Matrix of a testing sample from the Warwick Hand Gesture
Database. The target hand is signing the gesture ”7”, while the background dis-
tractions are randomly moving around. The Partition Matrix is only showing the
class labels, instead of the partition-label pairs.
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lower frame rates. That leads to poor texture matching results, namely small num-

ber of matching key point pairs. When the paths of ROIs are closing together, even

if the hand candidates are not overlapping, the ROIs are highly likely to overlap at

low frame rates.

The Partition Matrix can use the frequent appearances of one class label

due to the high probability of ROI overlapping to analyse the gesture trajectories.

Frequent appearances of one class label in the Partition Matrix happens for two

reasons. One is multiple hand candidates are signing this gesture. If the gesture is

the ground truth gesture, this gesture will win the final score by a large margin. If the

gesture is not the ground truth, and the partition value of the target hand is smaller

than the partition values of the distractions, there is a possibility that this sample

could be misclassified. The other possible reason is one of the hand candidates in

the foreground is signing this gesture, and the trajectory of this hand candidate is

large enough to overlap with others. By the nature of HGR applications, gesture

performer is assumed in the foreground with relatively large scale. Hence, the hand

candidate causes region overlapping is likely to be the target hand. Therefore, the

frequent appearances of one class label in the matrix indicating at least one hand

candidates in the foreground with relatively large area and small change of texture,

are signing this gesture.

The cells with underlined class labels in the Partition Matrix represent the

row maximums. The column of ROI2 and ROI4 have row maximums. The reason

for not discarding the columns that do not have any row maximums is to keep

the influence of ROI overlapping. As explained, the gestures class that repeatedly

appearing in the Partition Matrix have high possibility to be the ground truth. Now,

the problem is how to distinguish the ground truth from the others.

The cells in the Partition Matrix could be categorised into four types. As

shown in Fig 5.8, the examples of the four types are labelled C1, C2, C3 and C4.

C1 cells are the row maximums that located in the ROI with the largest number
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of row maximums. These cells represent the partition values of the ROI that most

likely to be the target hand. Also, C1 cell is the trajectory that has the highest

similarity with the pre-defined gestures among all trajectories under the same frame

rate. Hence, these cells should be assigned with large voting powers. For C1 cell(4,4)

in the example, the weights are WF (xu,r) = 1/4 and WR (xu,r) = 3/4.

C2 cells are row maximums that are not located in the ROI with the largest

number of row maximums. For example, the cell labelled C2 in Fig 5.7, it has the

right classification result, but it is not from the target hand. That means in this

specific frame rate, one of the background distractions has higher similarity with the

gesture classes than the target hand. This could be caused by region overlapping or

texture mismatching. For situation in the example, the weights are: WF (xu,r) = 1/4

and WR (xu,r) = 1/4. Intuitively, the cell is not as creditable as the C1 cells, because

the ROI it came from has low credibility.

For C3 cells, they are not row maximums and they located in the ROI with

the largest number of row maximum. C3 cells are possibly caused by the mis-tracked

target hand under this particular frame rate. Hence for this situation, the voting

power of C3 cells should be lower than C1 and C2 cells. The weights for cells(3,2)

are WF (xu,r) = 0 and WR (xu,r) = 3/4.

Cell(2,2) in the example is a C4 cell. It is neither a row maximum, nor located

in the ROI with most of the row maximums. Intuitively, some credibility should be

assigned to this cell, since the ROI it came from once produced a row maximum. It

is possible that the path of this ROI is close to the target hand trajectory enough to

cause overlapping. Therefore, it is possible that other trajectories of this ROI under

different frame rates also are overlapping with the target hand. Hence the weights

are, WF (xu,r) = 0 and WR (xu,r) = 1/4.

For HGR databases, usually there are only few hundred of training samples.

This size of training set is far from satisfactory for probabilistic models. Since the

models are usually under-trained, and the intra-class variances are relatively high
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in HGR problems, decent recognition rate can hardly be produced by probabilistic

models. Partition Matrix provides a way to make use of the under-trained model, by

providing as much tracking information as possible to the model. For HGR in the

uncontrolled environments with multiple background distractions, the Partition Ma-

trix also provides a novel method of analysing the trajectories of all hand candidates

and distinguish the trajectory of the target hand from the distractions.

5.2.3 Experiments

Two experiments are conducted on two databases for testing the proposed frame-

work. The first one is on the Palm Graffiti Digits Database used in [8]. All video

samples have 240 × 320 pixels resolution. There are in total 300 isolated gesture

training samples, collected from 10 gesture performers. The gesture performers also

wear coloured gloves to label the ground truth hand positions. In the training pro-

cess, ten percent of the training samples are randomly selected to be the validation

set, while the rest of the training set is used to train the model. There are two

testing sets, the ”easy” and ”hard” sets. Video clips in the easy set do not have

any moving objects in the background. The videos in the hard set have 1-3 people

moving in the background (Fig 5.9). Among the challenges discussed in Chapter

1, the ones that are included in this dataset are: 1. Background distractions. 2.

Hand/Face overlapping.

In this experiment, the proposed framework outperformed state-of-the-art

methods on the Palm Graffiti Digits Database. Correa et al. RoboCup 2009 [9]

proposed a cascade of boosted Bayes classifiers with hand’s positions and velocities

as temporal featuers. Malgireddy et al. CIA 2011 [10] introduced a method to

learn the underlying sub-gesture relationships among the predefined signs in the

vocabulary, by sharing the parameters of trained generative models. Alon et al.

PAMI 2009 [8] proposed a method based on DTW which is capable of perform

sub-gesture reasoning, pruning off poor trajectory matches in a early stage and
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Figure 5.9: Sample from the hard testing set of the Palm Graffiti Digits database.

processing multiple hand candidates in every frame. The method from Bao et al.

ICEICE 2011 [2], is the only existing method similar to the proposed framework.

This method also uses SURF as the texture matching spacial feature and a clustering

method based on correlation analysis is proposed for trajectory classification. Our

method extends the idea of [2] for uncontrolled environments where multiple hand

candidates are in the scene. Hence it is implemented and tested in this experiments.

Table 5.1 and 5.2 shows the results of the proposed framework on both easy and

hard test sets. The comparisons of performances are shown in Table 5.3, Fig 5.10

and 5.11. The reason for the performance drop on the gesture ”6” is because the

absence of sub-gesture reasoning in our method (discussed in section 6.3).

In the method of Alon et al. PAMI 2009 [8], the amount of hand candidates
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Table 5.1: Performance of the proposed framework on the hard set of the Palm
Graffiti Digits database.

Gesture Classes

Hard Set

Training Samples Testing Samples
Recognition Results

True Detected Accuracy (%)

0 30 14 11 15 78.57

1 30 14 13 13 92.86

2 30 14 13 15 92.86

3 30 14 13 14 92.86

4 30 14 13 14 92.86

5 30 14 14 16 100.00

6 30 14 6 6 42.86

7 30 14 12 13 85.71

8 30 14 13 16 92.86

9 30 14 13 18 92.86

Overall 300 140 121 140 86.43
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Figure 5.10: Comparison with Alon et al. PAMI 2009 [8] on the hard set of Palm
Graffiti Digits database.
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Table 5.2: Performance of the proposed framework on the easy set of the Palm
Graffiti Digits database.

Gesture Classes

Easy Set

Training Samples Testing Samples
Recognition Results

True Detected Accuracy (%)

0 30 30 30 35 100.00

1 30 30 30 31 100.00

2 30 30 28 28 93.33

3 30 30 28 28 93.33

4 30 30 30 30 100.00

5 30 30 30 32 100.00

6 30 30 24 25 80.00

7 30 30 29 30 96.67

8 30 30 30 30 100.00

9 30 30 27 31 90.00

Overall 300 300 286 300 95.33

Table 5.3: Comparison with state-of-the-art accuracies on the Palm Graffiti Digits
database.

Palm Graffiti Digits Database

Easy Set Hard Set

Correa et al. RoboCup 2009 [9] 75.00% N/A

Malgireddy et al. CIA 2011 [10] 93.33% N/A

Alon et al. PAMI 2009 [8] 94.60% 85.00%

Bao et al. ICEICE 2011 [2] 52.00% 28.57%

The proposed method 95.33% 86.43%
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Figure 5.11: Comparison with Correa et al. RoboCup 2009 [9] and Malgireddy et
al. CIA 2011 [10] on the easy set of Palm Graffiti Digits database.

must be specified, while the proposed framework does not make any assumptions or

require any prior knowledge on the content of the background. Also, extra compu-

tation on estimating the location and scale of the gestures is required in [8], while

the proposed framework achieved scale, speed and location invariance without any

extra computation.

The method of [8] does not allow the observation states to be skipped. Also,

the transition probabilities of the states are not used for classification. The Parti-

tion Matrix in the proposed framework uses transition probabilities of the hidden

states as one of the three feature functions in the potential function, that is another

reason why our method outperformed [8]. Since the distractions in the background

are moving randomly, out of plane rotation, changing of speed and overlapping of

objects are also involved. Hence the texture of the background is changing rapidly.

Although there are no constrains on how subjects should perform the gestures, the

gesture performers tend to remain in a relatively stationary position. That makes

the changing of texture on the gesture performer in a relatively small scale. The
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proposed Partition Matrix uses this characteristic of Hand Gesture Recognition,

repeatedly applies the proposed Adaptive SURF Tracking method on the testing

samples under different frame rates. Hence for videos in the hard set, the Partition

Matrix is able to capture target gesture trajectory pattern, out of the dramatically

changing background noises.

In order to demonstrate the proposed framework can perform well in arbi-

trary uncontrolled environments, we collected an even more challenging database

called Warwick Hand Gesture Database. There are in total ten gesture classes as

shown in Fig 5.3 are defined for our database. This database consists of two testing

sets, the ”easy” and ”hard” sets. There are 360 video samples for training, 6 samples

were captured from each of the 6 performers for each of the 10 gestures. There are

480 video samples in total for testing. For each testing set, 4 samples were collected

from each of the 6 performers for every gesture. The ”easy” set is collected in a

controlled environment. The scene settings in the controlled environment include

simulated natural sun light, single-coloured background, gesture performers wear

long sleeve tops and no distractions in the background. The specifications of videos

are the same as the Palm Graffiti Digits Database, with the same frame rate and

resolution. Similar to the Palm Graffiti Digits database, the hard set of our database

is captured with performers wearing short sleeve tops with cluttered backgrounds.

The differences are: 1) No gloves are used in our training set; 2) Instead of 1-3

people, we have 2-4 people moving in the background; 3) The lighting conditions

are random. The hard set is collected in two separate sessions.

The extent of distractions in the background of the Warwick Hand Gesture

Database is much more severe than the Palm Graffiti Digits database. Fig 5.12

and 5.13 illustrate the tracking results of Adaptive SURF Tracking on samples of

gesture six of hard sets from the two databases. It is obvious that the intra-class

variance of our database is larger than the Palm Graffiti Digits database. In this

experiment, the method of Bao et al. [2] and the original Dynamic Time Warping
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Figure 5.12: Gesture trajectories of all training samples of gesture ”6” in the Palm
Graffiti Digits database.

[174] are implemented and compared with our method, due to the reason that it is

the foundation of [8]. The experimental results are shown in Table 5.4, Fig 5.14 and

5.15.

Since various window sizes (Eq 5.7) in the f1 feature functions can affect the

performance of the proposed framework greatly, experiments on adopting different

window sizes are conducted on the hard set of the Warwick Hand Gesture Database.

Table 5.5 - 5.9 illustrate the performances of the framework with window sizes from

1 - 4. Based on the results on the validation set, The number of hidden states is set

to 13 and w is set to 1.

The total number of the hidden states has significant influence on the frame-

work’s performance as well. Experiments on various total number of hidden states

are conducted on hard set of the Warwick Hand Gesture Database to locate the op-

timised hidden state number. Since the latent hidden states are serving as the label
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Figure 5.13: Gesture trajectories of all training samples of gesture ”6” in the War-
wick Hand Gesture Database.

Table 5.4: Comparison of performances with method of [2] on the Warwick Hand
Gesture Database.

Warwick Hand Gesture Database

Easy Set Hard Set

Bao et al. ICEICE 2011 [2] 71.00% 18.20%

Dynamic Time Warping [174] 75.00% 40.42%

The proposed method 93.00% 91.25%
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Figure 5.14: Comparison of performances with method of [2] on the esay set of
Warwick Hand Gesture Database.
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Figure 5.15: Comparison of performances with method of [2] on the hard set of
Warwick Hand Gesture Database.

112



Table 5.5: Performance with w = 1 on the hard set of Warwick Hand Gesture
Database.

Gesture Classes

Hard Set

Training Samples Testing Samples
Recognition Results

True Detected Accuracy (%)

0 36 24 22 25 91.67

1 36 24 22 22 91.67

2 36 24 20 28 83.33

3 36 24 17 20 70.83

4 36 24 17 23 70.83

5 36 24 23 29 95.83

6 36 24 20 24 83.33

7 36 24 24 25 100.00

8 36 24 21 21 87.50

9 36 24 21 23 87.50

Overall 360 240 207 240 86.25
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Figure 5.16: Performance with different window sizes.
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Table 5.6: Performance with w = 2 on the hard set of Warwick Hand Gesture
Database.

Gesture Classes

Hard Set

Training Samples Testing Samples
Recognition Results

True Detected Accuracy (%)

0 36 24 21 23 87.50

1 36 24 23 25 95.83

2 36 24 18 26 75.00

3 36 24 18 19 75.00

4 36 24 15 19 62.50

5 36 24 23 24 95.83

6 36 24 20 23 83.33

7 36 24 22 28 91.67

8 36 24 24 24 100.00

9 36 24 21 29 87.50

Overall 360 240 205 240 85.42
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Table 5.7: Performance with w = 3 on the hard set of Warwick Hand Gesture
Database.

Gesture Classes

Hard Set

Training Samples Testing Samples
Recognition Results

True Detected Accuracy (%)

0 36 24 18 21 75.00

1 36 24 18 21 75.00

2 36 24 21 29 87.50

3 36 24 13 16 54.17

4 36 24 21 31 87.50

5 36 24 23 26 95.83

6 36 24 20 29 83.33

7 36 24 21 27 87.50

8 36 24 13 17 54.17

9 36 24 18 23 75.00

Overall 360 240 186 240 77.50
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Table 5.8: Performance with w = 4 on the hard set of Warwick Hand Gesture
Database.

Gesture Classes

Hard Set

Training Samples Testing Samples
Recognition Results

True Detected Accuracy (%)

0 36 24 17 33 70.83

1 36 24 18 21 75.00

2 36 24 4 17 16.67

3 36 24 11 34 45.83

4 36 24 3 11 12.50

5 36 24 22 23 91.67

6 36 24 9 21 37.50

7 36 24 19 34 79.17

8 36 24 16 22 66.67

9 36 24 12 24 50.00

Overall 360 240 131 240 54.58
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Figure 5.17: Performance with different number of hidden states.

for different parts or components of the pre-defined patterns, the suitable number

of hidden states may not be complying with common senses. In Quattoni et al.

(CVPR 2006) [149], it is proven that the optimised definition of hidden states is not

always fitting with the natural structure of the pre-defined patterns. For example,

to recognise different types of cars, the best hidden state definition is not according

to segmentation of parts in the cars. In other words, a wheel or a door may not be

a suitable individual hidden state, and the area contains a wheel and a door maybe

is. Based on the performances on the validation set, which is one tenth of the train-

ing set, the best amount for hidden states is 11. In this series of experiments, the

window size is set to 1. To better demonstrate the sensitivity of our method on the

amount for hidden states and the window size on large number of testing samples,

the testing results on the testing set are shown in Table 5.9 - 5.15 and Fig 5.17,

instead of results on the validation set.

As for the computational costs, the proposed framework can run in average

at: 55.00 ms/frame for easy sets, 56.75ms/frame for hard sets, on both experiments.

That is 18.18 frames/sec and 17.64 frames/sec, respectively. Experiments were
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Table 5.9: Performance with |h| = 6 on the hard set of Warwick Hand Gesture
Database.

Gesture Classes

Hard Set

Training Samples Testing Samples
Recognition Results

True Detected Accuracy (%)

0 36 24 22 26 91.67

1 36 24 23 23 95.83

2 36 24 22 27 91.67

3 36 24 16 18 66.67

4 36 24 19 20 79.17

5 36 24 22 29 91.67

6 36 24 21 25 87.50

7 36 24 22 23 91.67

8 36 24 23 24 95.83

9 36 24 19 25 79.17

Overall 360 240 209 240 87.08

118



Table 5.10: Performance with |h| = 7 on the hard set of Warwick Hand Gesture
Database.

Gesture Classes

Hard Set

Training Samples Testing Samples
Recognition Results

True Detected Accuracy (%)

0 36 24 22 25 91.67

1 36 24 22 22 91.67

2 36 24 19 26 79.17

3 36 24 20 22 83.33

4 36 24 23 23 95.83

5 36 24 22 22 91.67

6 36 24 19 22 79.17

7 36 24 24 26 100.00

8 36 24 22 27 91.67

9 36 24 21 25 87.50

Overall 360 240 214 240 89.17
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Table 5.11: Performance with |h| = 8 on the hard set of Warwick Hand Gesture
Database.

Gesture Classes

Hard Set

Training Samples Testing Samples
Recognition Results

True Detected Accuracy (%)

0 36 24 24 26 100

1 36 24 23 23 95.83

2 36 24 24 26 100.00

3 36 24 17 18 70.83

4 36 24 23 29 95.83

5 36 24 23 31 95.83

6 36 24 22 22 91.67

7 36 24 21 24 87.50

8 36 24 20 20 83.33

9 36 24 19 21 79.17

Overall 360 240 216 240 90.00

120



Table 5.12: Performance with |h| = 9 on the hard set of Warwick Hand Gesture
Database.

Gesture Classes

Hard Set

Training Samples Testing Samples
Recognition Results

True Detected Accuracy (%)

0 36 24 20 22 83.33

1 36 24 24 26 100.00

2 36 24 23 30 95.83

3 36 24 20 22 83.33

4 36 24 22 27 91.67

5 36 24 22 25 91.67

6 36 24 23 27 95.83

7 36 24 23 23 95.83

8 36 24 20 20 83.33

9 36 24 18 18 75.00

Overall 360 240 215 240 89.5
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Table 5.13: Performance with |h| = 10 on the hard set of Warwick Hand Gesture
Database.

Gesture Classes

Hard Set

Training Samples Testing Samples
Recognition Results

True Detected Accuracy (%)

0 36 24 20 22 83.33

1 36 24 22 22 91.67

2 36 24 21 27 87.50

3 36 24 17 20 70.83

4 36 24 20 22 83.33

5 36 24 21 25 87.50

6 36 24 23 28 95.83

7 36 24 23 26 95.83

8 36 24 22 25 91.67

9 36 24 22 23 91.67

Overall 360 240 211 240 87.92

122



Table 5.14: Performance with |h| = 11 on the hard set of Warwick Hand Gesture
Database.

Gesture Classes

Hard Set

Training Samples Testing Samples
Recognition Results

True Detected Accuracy (%)

0 36 24 21 21 87.50

1 36 24 23 25 95.83

2 36 24 23 28 95.83

3 36 24 21 21 87.50

4 36 24 18 19 75.00

5 36 24 24 28 100.00

6 36 24 24 30 100.00

7 36 24 22 23 91.670

8 36 24 21 22 87.50

9 36 24 22 23 91.67

Overall 360 240 219 240 91.25
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Table 5.15: Performance with |h| = 12 on the hard set of Warwick Hand Gesture
Database.

Gesture Classes

Hard Set

Training Samples Testing Samples
Recognition Results

True Detected Accuracy (%)

0 36 24 20 24 83.33

1 36 24 23 24 95.83

2 36 24 23 24 95.83

3 36 24 18 18 75.00

4 36 24 19 23 79.17

5 36 24 21 25 87.50

6 36 24 20 25 83.33

7 36 24 24 27 100.00

8 36 24 24 27 100.00

9 36 24 19 23 79.17

Overall 360 240 211 240 87.92
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performed on a common 3.3GHz 4-core 8GB RAM Windows machine with C++

implementation with openMP.

The criteria of real time computing has various versions in different research

fields. According to Real-Time Digital Signal Processing: Fundamentals, Implemen-

tations and Applications [175], by SM Kuo et al.: A real-time DSP system demands

that the signal processing time, tp, must be less than the sampling period, T , in

order to complete the processing task before the new sample comes in. If to is the

overhead of I/O operations, the criteria is:

tp + to < T (5.26)

This is referred as the hard criteria [175]. It is mostly used to evaluate methods for

time sensitive tasks, including time recording, stock exchanging, etc. In the context

of HGR, hard criteria means the processing frame rate must larger than the frame

rate of the original video stream. However for interactive service applications such

as HGR, the widely used real time criteria is the soft criteria. There is no unified

definition of soft criteria in computer vision community. In the field of HGR, as long

as the method does not cause severe time delay to affect user experience, the method

could be called real time. The traditional minimum processing speed for real time

computing is the half of the original video frame rate. Hence our framework is able

to perform comfortably in real time.

5.3 Robustness

Following the discussion in Section 4.2, some of the challenges listed in Section 1.3

are tackled by the gesture classifier. The challenges are discussed individually in

this section, with explanation of the corresponding countermeasures. The unsolved

challanges are also discussed in this section.
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5.3.1 Gesture Similarity

For the challenge of high gesture similarity, such as gesture ”6” and ”0”, the proposed

framework presented decent results in the experiments, due to the definition of

the partition function. The partition function is the normalised summation of all

weighed feature function values (Eq 5.18). Hence for testing samples of the gesture

”6”, the feature functions extracted from the first stroke, namely the vertical down

stroke in the beginning of the gesture ”6”, would be assigned with large weights.

That is because the distinctiveness of these feature functions for separating gesture

”6” from ”0”. The feature functions that are shared by gesture ”6” and ”0”, would

be assigned with low weights. In other words, the proposed method can detect the

minor difference between the similar gestures, then assign them with large voting

powers.

Although in some experiments the recognition rate for gesture ”6” is lower

than other gestures, the over-all performance is still satisfactory. Without dedicated

algorithms to learn the similarity among gestures, the ability of the proposed frame-

work to recognise similar gestures in videos with continuous gestures is compromised

to certain extent. This will be discussed in Section 7.3.

5.3.2 Gesture Complexity

The challenge of high gesture complexity is tackled by the factorisation of the po-

tential function in the classifier. Since the classifier only monitors local trajectory

patterns, if the gestures are long with large number of local trajectory patterns,

the only negative influence is the long off-line training time. Although there are

HGR applications with more complex gesture vocabularies, such as Sign Language

Recognition, the proposed framework is designed for manipulative HGR, instead of

communicative HGR (Section 2.1). The task of recognising 10 hand signed digits is

already considered one of the complex gesture vocabularies for manipulative HGR.

Thereby, as long as the HCRF models are thoroughly trained, the proposed method
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can perform well with gesture vocabulary with high level of complexity.

5.3.3 Gesture Size Variance

For the gesture size variance challenge, the countermeasure in the proposed frame-

work is the normalised partition function (Eq 5.38). Since the partition function is

normalised to average partition value per frame, the sizes of the testing samples is

irrelevant to gesture classification. Also, for all class labels, the final partition value

is the weighed sum of all partition values in the Partition Matrix (Eq 5.26). Hence,

if the testing sample has a relatively large scale gesture trajectory, which means the

sample has a large number of frames, that would enlarge the final partition values

for all class labels. But the ratios among the final partition values of all gesture

classes are not changed by the varying sizes of the testing samples. Therefore, the

proposed method can accurately classify the samples with different sizes.

5.3.4 Unsolved Challenges

There are still three challenges on the list in Section 1.3, the proposed framework is

still unable to overcome.

The first one is gesture angle variance, namely gesture rotations. As dis-

cussed in Section 5.2.1, one of the main causes of the intra-class variance in HGR

applications is distorted samples, as shown in Fig 5.8. Essentially the distortions can

be seen as in-plane rotations. The proposed framework is capable of tolerating the

rotations to certain extent. The level of tolerance highly depends on the variety of

the training samples. For the rotations have appeared in the training set frequently,

the probabilistic model can learn the pattern and treat the rotation as one of the

distortion patterns of the gesture class. However, for unfamiliar rotations in the

testing samples, the proposed framework could fail. Hence, the proposed framework

is sensitive to unfamiliar rotations.

The second one is large vocabularies. There are only 10 gestures in the
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vocabulary of this thesis. However, similar to the challenge of high gesture com-

plexity, 10 gestures are more than enough for controlling HGR applications. Hence

the experimental setting is still adequate to validate the performance of the pro-

posed framework for manipulative HGR applications. For communicative HGR,

such as Sign Language Recognition, the vocabularies are usually with thousands of

words. For these vocabularies, the performance of the proposed framework remains

unknown. Due to the absence of sub-gesture reasoning methods, the possibility for

the framework to deliver unsatisfactory results is relatively high. For large vocabu-

laries, the inter-class variance is likely to be low. In other words, there will be large

number of similar gestures. Without the ability to learn the relationships between

the gestures, the proposed framework could fail to perform robust HGR for large

vocabularies.

The third one is the double handed gestures. Double handed gestures are

common in Sign Language Recognition. But for manipulative HGR, vocabularies

with single handed gestures are adequate for the task. Hence in the experiments of

this thesis, double handed gestures are not considered.

5.4 Conclusions

In this chapter, a novel weighting scheme is proposed for performing HGR in uncon-

trolled environments. The main advantages of this method are: 1. It can monitor

temporal features on different scales. 2. It is capable of dealing with multiple hand

candidates at the same time. Similar with deep learning methods, the proposed

Partition Matrix monitors temporal features on different scales. But the proposed

method still has few drawbacks: 1. It can only monitor the temporal features on

pre-defined scales, and currently it has only been tested for using 4 scales. 2. The

temporal features are trained on a single scale. Unlike deep learning methods, the

features are not trained on different scales. Hence, training a connected multi-layer
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HCRF model similar with the RNN model could be potentially beneficial for im-

proving the Partition Matrix.

129

Yi
附注
“Yi”设置的“Marked”



Chapter 6

Hand Gesture Spotting in

Uncontrolled Environments

In Chapters 5 the proposed HGR framework (Fig 1.3) is working under one assump-

tion that the video samples are already segmented into isolated gesture videos. That

means all training and testing samples are manually segmented to contain only one

gesture. In other words, the method treats the first frame in the video as the start of

the single gesture, and the last frame as the end of it. However, in real world HGR

applications, the users usually need to send multiple commands in a row. For exam-

ple, the user wants to dial a number on the phone with HGR control. The task of

recognising continuous gestures without the prior knowledge about the starting and

ending points of isolated gestures is called Hand Gesture Spotting (HGS) or Hand

Gesture Segmentation. The main challenge of HGS is to determine the starting

and ending point of each gesture in the video stream, with inter-connecting mean-

ingless hand movements between the predefined gestures. In this thesis, a novel

HGS method is proposed, as part of the proposed HGR framework, for segmenting

and recognising hand gestures in the uncontrolled environments. Experimental re-

sults on the Warwick Hand Gesture Databases prove that this method is capable of

tackling severe background distractions.

130



The proposed spotting scheme is a forward spotting scheme that uses Par-

tition Matrix (introduced in Chapter 5) to evaluation whether the current frame

is the starting or ending point of a meaningful gesture. The main contributions of

the proposed spotting scheme over other existing spotting schemes are: 1. It can

monitor temporal features on different scales. 2. it can perform gesture spotting in

uncontrolled environments with multiple hand candidates.

6.1 Garbage Model

To perform HGS in uncontrolled environments, the first task is hand tracking. The

proposed HGS method uses the Adaptive SURF Tracking method introduced in

Chapter 4. Since the tracking scheme is able to monitor all eligible hand candidates

in the scene to tackle the challenge of moving objects in the background, a novel

spotting scheme based on HCRF is proposed specifically for working with our track-

ing scheme and accomplishing hand gesture spotting in uncontrolled environments.

With the inter-connecting meaningless hand movements, the task of HGS in

uncontrolled environments can be seen as HGR for isolated gestures with the possi-

bility that the target signing hand itself is producing meaningless hand movements

in the video. Namely, at some parts of the video stream, none of the hand candi-

dates are signing meaningful predefined hand gestures. This scenario is similar with

speech recognition or speaker recognition in uncontrolled environments. The voice

signal also contains words and background noises. There have been some attempts

to tackle the influence of the background noise [176, 177, 178]. The general idea

of these methods is to build a filter based on prior knowledge of the target human

voice signal, or a probabilistic model dedicatedly for the background noise. The

proposed HGS method takes this idea one step forward in the context of HGS. A

dedicated Non-Sign Model (or garbage model) is comprised of feature functions that

are derived from the feature functions of the gesture vocabulary.
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HCRF models are undirected graph models that can learn the transition

probabilities between different modules of the observation sequences, with hypothet-

ical states. In our experiments, the task is recognising 10 hand-signed digits Y =

{y0, y1, . . . , ym−1}, similar with the experiments for isolated gestures in Section 5.2.3.

For a testing sample, a series of observation sequencesX = {xu,r|u = 0, 1, . . . U − 1, r = 0, 1, . . . R− 1}

are extracted by the Adaptive SURF Tracking method. Each movement direc-

tion vector xu,r = {o0, . . . , ol−1} contains l observation states as l is the num-

ber of frames in the video fragment corresponding to xu,r. The hidden states

H = {H0, H1, . . . ,Hn−1}, defined for the HGS experiments on the Warwick Hand

Gesture Database. Same as the definition in Section 5.2.1, for each observation

sequence xu,r, a vector of hidden states ~h = {h0, h1, . . . , hl−1} is assgined to it.

Each element of the hidden state vector ~h is one of the hidden states in H and it is

corresponding to an observation state in the observation sequence xu,r. Similar with

the ”easy” and ”hard” HGR testing sets in the Warwick Hand Gesture Database

used in Section 5.2.3, there are also two testing sets for HGS in the Warwick Hand

Gesture Database, namely the ”easy” and ”hard” HGS testing sets. The optimi-

sation method for training the weight vector ~θ of the potential function is Limited

Memory BroydenFletcherGoldfarbShanno (Limited Memory BFGS) method, also

the same as in Section 5.2.3. The weight vector is initialised with the mean value

and the regularisation factors set to zero.

Given a class label yg, a observation sequence xu,r, a hidden state vector ~h and

the weight vector ~θ, the standard HCRF model (Section 5.2.1) can be represented

as,

P
(
yg|xu,r, ~θ

)
=
∑
~h

P
(
yg,~h|xu,r, ~θ

)
=

∑
~h

exp
{

Ψ
(
yg,~h, xu,r|~θ

)}
∑
y

∑
~h

exp
{

Ψ
(
y,~h, xu,r|~θ

)} (6.1)
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where the numerator that can be understood as the score of the observation se-

quences xu,r given the class label yg is defined as the partition function:

Z
(
yg|xu,r, ~θ

)
=
∑
~h

exp
{

Ψ
(
yg,~h, xu,r|~θ

)}
(6.2)

The potential function is comprised of three types of feature functions, as introduced

in Section 5.2.1.

Ψ
(
yg,~h, xu,r|~θ

)
=
l−1∑
j=0

D×n∑
i=0

θ1,i·f1,i (xu,r, hj) +
l−1∑
j=0

m×n∑
i=0

θ2,i·f2,i (yg, hj) +

∑
(j,k)∈E

m×n2∑
i=0

θ3,i·f3,i (yg, hj , hk)

(6.3)

where j and k are hidden state index, i is the feature function index and E is the

set of adjacent hidden states in the hidden state vector ~h, as mentioned in Section

5.2.1. To segment meaningful gestures from the transitional hand movements, we

define a dedicated class label yG for the garbage gestures. Hence, the gesture class

set becomes Y = {y0, y1, . . . , y9, yG}. To build correspondent feature functions for

this non-sign gesture class, two series of new feature functions are defined for yG

based on the trained weights of the existing feature functions.

The reasons for not including garbage gesture samples in the training stage

for learning non-sign gesture patterns in the HCRF model are twofold. Firstly,

the strategy of treating garbage hand movements as familiar gesture patterns in

the training stage is unrealistic. It is nearly impossible to collect all meaningless

hand movement patterns for training, due to the infinite possibilities of random

movements. Secondly, if samples of garbage hand movements are included in the

training process, and all frames of the samples are labelled for supervised learning,

the tracking results would be biased towards the background distractions and inter-

connecting hand movements in the training set, which makes the weights of states

and transition feature functions also biased to the familiar noise patterns in the
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training set. Hence the most accurate way of learning the weights of non-sign feature

functions is estimating them from the known weights of meaningful gesture feature

functions. In other words, learning meaningless hand movements as the features

that are not consistent with the meaningful gestures.

Two new series of feature functions for non-sign gestures are used in the pro-

posed HGS method. One is a set of state feature f ′2,i = {f2,i |i ∈ (L2, yG ·Hj ] , Hj ∈ H }

where the class lable of the garbage model yG is used as its numerical value. This new

set of feature function represents the compatibility between the hidden states and

yG. The weights of these new state features θ2,i
′ = {θ2,i |i ∈ (L2, yG ·Hj ] , Hj ∈ H }

are calculated from the trained weights of the existing state features. For a given

hidden state Hj :

θ2, yG ·Hj
= µ2 (Hj) + T ·

√
v2 (Hj) (6.4)

where T is a scale factor that set to 1.2 empirically. µ2 (Hj) is the average weight

of the state features of Hj and all meaningful gesture classes,

µ2 (Hj) =

m−1∑
g=0

θ2, yg ·Hj

m
(6.5)

and v2 (Hj) is the variance of the weights θ2 for state features of Hj and all mean-

ingful gesture classes,

v2 (Hj) =

m−1∑
g=0

(
θ2, yg ·Hj

)2
m

− [µ2 (Hj)]
2 (6.6)

The other series of new feature functions is transition feature functions f ′3,i =

{f3,i |i ∈ (L3, Hj ·Hk · yG] ;Hj , Hk ∈ H; (j, k) ∈ E }, as defined before E is the set of

adjacent hidden states. θ′3,i = {θ3,i |i ∈ (L3, Hj ·Hk · yG] ;Hj , Hk ∈ H; (j, k) ∈ E }

are the corresponding weights of the new transition feature functions and they are
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calculated based on existing transition features. For a given pair of hidden state Hj

and Hk:

θ3,Hj ·Hk ·yG = µ3 (Hj , Hk) + T ·
√
v3 (Hj , Hk) (6.7)

T is still set to 1.2. µ3 (Hj , Hk) and v3 (Hj , Hk) are the mean and variance of weights

of existing transition feature functions respectively,

µ3 (Hj , Hk) =

m−1∑
i=0

θ3,Hj ·Hk ·yi
m

(6.8)

v3 (Hj , Hk) =

m−1∑
i=0

(
θ3,Hj ·Hk ·yi

)2
m

− [µ3 (Hj , Hk)]
2 (6.9)

These weights are measures for the significance of certain state in the non-sign

movements. In other words, given the different probabilities of all meaningful gesture

classes that contain a certain hidden state Hj , θ2, yG ·Hj
represents the probability

of this hidden state appearing in garbage hand movements. If the hidden state Hj is

only appearing in a meaningful gesture classes yi, the average weight µ2 (Hj) would

be relatively low, but the variance v2 (Hj) would be high. Due to the uniqueness of

this hidden state to yi, the state features θ2, yi ·Hj
must be assigned a large weight

during the training process, and the state feature for Hj with other gesture classes

would have relatively smaller weights to enhance the voting power of θ2, yi ·Hj
. Hence

the variance v2 (Hj) would be high. Therefore the final value of θ2, yG ·Hj
depends

on the value of v2 (Hj) which represents the extent of effectiveness of θ2, yi ·Hj
as a

feature function. The more effective the feature function is, namely the rarer the

feature function is, the larger the probability of this feature function appearing in

a garbage gesture is. Intuitively, this strategy of calculating the garbage model is

valid. If a feature function is rarely seen in pre-defined gesture classes in the training
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set, it should be treated as a non-meaningful feature function.

6.2 Multiple Sliding Windows Forward Spotting Scheme

A forward spotting scheme is proposed in this thesis to determine the starting and

ending frames of the meaningful gestures in continuously sighed gesture videos in

uncontrolled environments. Fig 6.2 demonstrates the structure of the proposed

spotting scheme. As shown in Fig 6.2, to perform gesture spotting on an input

video, starting from the first frame, the proposed spotting scheme takes a series of

sliding windows with different sizes to extract video fragments from the input video.

The video fragments start from the current frame fc with the sliding window size

Lg, are defined as:

Sc,g = {fi|i = c, c+ 1, c+ 2, . . . , c+ Lg} (6.10)

where Lg is the average length of all the training samples of gesture g. Hence there

are in total 10 different sliding window sizes Sc,g. Unlike the standard CRF model,

HCRF model do not produce gesture labels for every frame. For evaluating the

probabilities of the current frame being part of each gesture classes, the sliding

window is designed to has various sizes, instead of fixed size [3].

For the proposed framework, as explained in Chapter 5, the length of gesture

trajectories are irrelevant for classification, due to two reasons. One is utilising the

proposed normalised Partition Function (Eq 5.18), the other is factorisation of the

potential function (Eq 5.5). Sizes of the sliding windows are also irrelevant for

gesture spotting. Despite the size invariance property of the proposed framework,

the purpose of using average sizes of training samples of each gesture classes as

sizes of the sliding windows is to utilise information in the training set. When

the gesture trajectory has similar size with one of the sliding window sizes, the

difference between the partition value of the correct class label and other labels
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Figure 6.2: Structure of the forward spotting scheme with Partition Matrix for
videos with multiple hand candidates. A series of video fragments are cut from
the input frames by sliding windows with different sizes. Then the series of video
fragments are put through Partition Matrix with Non-Sign Model introduced in the
last section. The resutls of the Partition Matrix are used to form a matrix that
produces the final spotting results for the current frame.
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would be relatively large. In other words, those video fragments that are similar to

the training samples can induce the best performance of the trained HCRF model.

Although different choices of the sliding window sizes have small influence on the

recognition rate, it is still to the advantage of the proposed framework to use the

average sizes of training samples of every gesture class.

As shown in Fig 6.2, after video fragment set Sc,0−9 is extracted, the Partition

Matrix with Non-Sign Model is used to evaluate every video fragment. Then a

matrix is formed as shown in the bottom of Fig 6.2. Every column of this matrix is

the normalised partition values of one video fragment against all gesture classes:



(Zpy0,L0) . . . (Zpy0,L9)

...
. . .

...

(ZpyG,L0) · · · (ZpyG,L9)


(6.11)

where Zpy,Lg indicates value of the partition function of the video fragment which

was defined in Eq 5.21, with sliding window size Lg and the class label y. The final

partition values of all gesture classes Fy of the current frame fc are calculated as:

Fy =
∑
g

Zpy,Lg (6.12)

which are the sums of all elements in each row of the matrix. For a specific gesture

trajectory, partition values for different sliding windows represent the local similar-

ities of different parts of the trajectory with the predefined gestures. Namely, by

adding up the partition values for different parts of the gesture trajectory, the final

score Fy can capture the over all similarity between the gesture trajectory and the

meaningful gestures classes.

As the tracking scheme combined with the Partition Matrix, the proposed

spotting scheme is able to capture the target meaningful gesture trajectories from
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multiple hand candidates in uncontrolled environments, while the vast majority of

the HGR community only consider HGS in controlled environments with unified

background, no distractions appearing in the scene [3].

With the sliding window mechanism, the only remaining step to complete the

HGS task is segmenting meaningful gestures with partition values produced by the

sliding windows. A Differential Probability (DP) function is proposed to determine

the starting and ending frames of the meaningful gestures. For all gesture classes,

including the garbage gesture class, the summations of all normalised partition val-

ues from different sliding window sizes, namely F0 to F9 are used to calculate the

Differential Probability function. Given the starting position of the sliding windows

fc, Differential Probability function is defined as:

DP (fc) = max
y∈(Y−yG)

(Fy − FyG) (6.13)

If the value of the Differential Probability is positive at a certain frame, namely the

condition ∃yi : Fyi > FyG , yi ∈ (Y − yG) is satisfied, the current frame is treated as

a starting point of gesture yi. That means for frame fc, one of the video fragments

start at fc is silimar with one of the meaningful gesture classes more than similar

with the garbage model. At a later frame fc+k, when the DP value returns to

negative, namely the condition ∀yi : Fyi < FyG , yi ∈ (Y − yG) is satisfied, fc+k

is treated as the ending point of the gesture yi. The starting point of the sliding

windows is re-initialised to fc+k as well. As shown in Fig 7.3, the proposed method is

not for real-time HGS. The video with continuous gestures must be completed, and

fed into the proposed HGS method as the input video. Essentially, the proposed

HGS method is a forward spotting method, which means the sliding window is

moving forward to detect the starting point of meaningful gesture first, before the

ending point is detected. The opposite strategy is backward spotting, which detects

the ending point of the gesture first, then move the sliding window backwards to
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locate the starting point. Hence, for real-time HGS, backward spotting method is

the common choice. The forward spotting methods apparently require a ”buffer” to

store the video fragments from the starting point to the current frame.

The proposed HGS scheme is not designed for real-time HGS, and the reasons

are twofold. Firstly, the proposed HGR framework produces large amount of feature

functions for the potential function. For real-time HGS, all the feature function

values of all video fragments from different sliding windows need to be stored in the

buffer, then evaluated to determine the starting point of the meaningful gestures.

Secondly, between the meaningful gestures, if a long period of meaningless hand

movements exists, the video fragments could have large number of frames. That

could make the computation for the DP function intractable. Also, if the number of

hand candidates in the scene is large, the calculation of DP function would be even

more computational intensive.

6.3 Experiments

For testing the proposed method, a database for 10 hand-signed digits is collected to

provide the proposed spotting scheme a uncontrolled environment with severely dis-

tracted unconstrained background. The training set contains 6 gesture performers.

For each gesture class, each gesture performer signs the gesture 6 times. Hence, there

are in total 360 training samples (the training samples are manually segmented). In

the proposed HGS method, only the HCRF models for predefined gesture classes

need to be trained, while the garbage model and Partition Matrix are calculated

during the inference process based on the trained HCRF models. Therefore, the

training process only requires isolated gesture samples. All the training samples are

collected with perfectly controlled environments, with controlled lighting and uni-

fied single colour background, without any kind of distraction in the background.

Two testing sets are collected, one ’easy’ set with the same scene setting as the
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training set, and one ’hard’ set with uncontrolled background. In the hard set, the

background is normal office scene under natural sun light without any artificial light-

ings, and the performers wear short sleeve tops. There are 2-4 people constantly and

randomly walking around in the background, and deliberately making meaningless

hand movements beside the gesture performer. For both testing sets, each of the 6

performers signs gesture 0-9 continuously in one video sample for 4 times. Hence

there are 240 gesture samples in both easy and hard sets. The method of [3] is also

a forward spotting method which based on the original CRF model. Hence it is

implemented and tested in this experiment to show the unique advantages of our

method over the state-of-the-art forward hand gesture spotting method. Comparing

with [3] our method has additional advantages: 1) Our method is for uncontrolled

environments with multiple hand candidates in the scene, while [3] was not tested

on uncontrolled scene settings. 2) In each frame, instead of one fixed-size sliding

window, our method segment the video with multiple sliding windows. Then these

video segments are fed into the Partition Matrix for classification, instead of the

original CRF model. That gives our method the ability to deal with background

distractions (multiple hand candidates). 3) Our method proposed a new DP function

for detecting starting and ending frames of the meaningful gestures. The tracking

results that are fed into our implementation of [3] are from our own tracking scheme,

and the tracking results of the target hand ROI is manually picked out. That makes

the experiments fair for comparison. In this experiment, the total number of hidden

states in our method is 13.

Fig 6.4 shows how meaningful gesture can be detected from distracted back-

ground with other hands moving. Fig 6.3 illustrates the trajectories of all samples

of gesture 6 in the training set, while Fig 6.4 shows the tracking results of all hand

candidates in a testing sample of hard set. The red line indicating the target ROI,

and we can see from frame 4 to 63, a gesture 6 trajectory is detected.

The experimental results of the proposed spotting scheme on the hard and
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Figure 6.3: Trajectories of all training samples of gesture ”6” in the Warwick Hand
Gesture Database.
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Figure 6.4: Trajectories of all hand candidates, including background distractions,
from a fragment of a testing sample in Warwick Hand Gesture Database. The target
hand is signing gesture ”6” in this fragment.
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easy testing sets are shown in Table 6.1 and Table 6.2. For the training process,

there are in total 13 hidden states, the optimisation method is Limited Memory

BroydenFletcherGoldfarbShanno (Limited Memory BFGS) algorithm, the same as

the isolated gesture recognition experiments in Chapter 5. The weight vector is

initialised with the mean value and the regularisation parameters are set to zero.

A sample of uncontrolled scene setting is shown in Fig 7.6. There are in total 12

movement directions as the trajectory feature codewords.

The comparisons with the method in [3] on both easy and hard testing sets

are shown in Table 6.3, Fig 6.6 and 6.7. The two methods share similar performances

on different labels on the hard set (Fig 6.6 and 6.7), which means both method failed

to beat the similarity among gestures. For the overall performance, the proposed

method out-performed [3] with relatively small margins. The reason for decreased

performances on gesture ”6” and ”0” for both the proposed method and the method

of [3] is that no sub-gesture reasoning mechanism is included in both methods.

Gesture ”6” has high level of similarity with gesture ”0”. The sub-gesture reasoning

methods are algorithms that learn the similarity and containing relationships among

gesture classes. Hence, for a circle-like trajectory fragment that could be gesture

”6” or ”0”, the sub-gesture reasoning methods can determine whether the it is part

of a gesture ”6”, or a finished gesture ”0”. However, the over-all performance of the

proposed HGS method is still satisfactory. For the starting vertical stroke of the

gesture ”6”, gesture performs tend to draw the vertical stroke much shorter than the

vertical stroke in gesture ”9”. Hence, samples of gesture ”9” have enough amount of

temporal features from the vertical strock to distinguish the samples from gesture

”0” and ”6”. That is a possible reason for the worse performance on gesture ”6”

than gesture ”9”.
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Figure 6.5: Upper left: Sample of testing video in the ”hard” testing set with

uncontrolled environments; Upper right: The movement directions codewords, and

there are in total 12 directions. Bottom: the definition of the gesture set in the

experiments.
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Table 6.1: Results of the proposed method on the ”hard” gesture spotting set of

Warwick Hand Gesture Database.

Gesture Classes

Hard Set

Training Samples Testing Samples

Recognition Results

True Detected Accuracy (%)

0 36 24 22 25 91.67

1 36 24 22 22 91.67

2 36 24 20 28 83.33

3 36 24 17 20 70.83

4 36 24 17 23 70.83

5 36 24 23 29 95.83

6 36 24 20 24 83.33

7 36 24 24 25 100.00

8 36 24 21 21 87.50

9 36 24 21 23 87.50

Overall 360 240 207 240 86.25
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Table 6.2: Results of the proposed method on the ”easy” gesture spotting set of

Warwick Hand Gesture Database.

Gesture Classes

Easy Set

Training Samples Testing Samples

Recognition Results

True Detected Accuracy (%)

0 36 24 23 23 95.83

1 36 24 22 22 91.67

2 36 24 23 24 95.83

3 36 24 22 22 91.67

4 36 24 21 26 87.50

5 36 24 22 24 91.67

6 36 24 21 25 87.50

7 36 24 24 26 100.00

8 36 24 24 25 100.00

9 36 24 23 23 95.83

Overall 360 240 225 240 93.75
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Table 6.3: Comparison of performances with method in [3].

Warwick Hand Gesture Database

Easy Set Hard Set

Eleezain et al. ICPR 2010 [3] 92.08% 82.08%

The proposed method 93.75% 86.25%
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Figure 6.6: Comparison of performances on the ten gesture classes in the ”easy”

gesture spotting set of Warwick Hand Gesture Database.
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Figure 6.7: Comparison of performances on the ten gesture classes in the ”hard”

gesture spotting set of Warwick Hand Gesture Database.

6.4 Conclusions

A novel gesture spotting scheme is proposed in this chapter. The spotting scheme

uses a sliding window mechanism conbined with the Partition Matrix introduced in

Chapter 5. The main advantages of this spotting scheme are: 1. It can monitor tem-

poral features on different scales. 2. It can perform gesture spotting in uncontrolled

environments with multiple hand candidates. Since it is a forward spotting scheme,

it is not able to perform real-time gesture spotting. A backward searching scheme

which can detect the ending point of the meaningful gestures firstly, then searching

backward for the starting point could potentially make the spotting scheme capable

of real-time gesture spotting.
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Chapter 7

Conclusions and Future Works

Computer vision method that enables people to communicate with computers in-

tuitively on the semantic level is one of the most promising directions for the next

generation of Human Computer Interaction. Using computer vision techniques to

recognise hand gestures is getting accepted by the general population as an alter-

native way to control machines. However, the existing Hand Gesture Recognition

technologies are confined by various challenges from the unconstrained environ-

ments.

In this thesis, a general framework for Hand Gesture Recognition is intro-

duced to tackle the challenges from uncontrolled environments, include changing

illumination, multiple skin-coloured regions moving in the background with com-

plex texture, performers wearing short-sleeve and frontal occlusion. Gesture scale,

speed and location invariance are also achieved. This framework is capable of per-

forming Hand Posture Recognition, Hand Gesture Recognition and Hand Gesture

Spotting in the uncontrolled environments.
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7.1 Conclusions

A comprehensive framework for HGR, HPR and HGS in uncontrolled environments

is proposed in this thesis. For Hand Posture Recognition, a novel boosting-based

method is proposed. The main contribution of this method over the existing methods

is the capability of selecting optimised set of texture features to represent the pre-

defined postures against each other and the cluttered background. For Hand Posture

Recognition with complex backgrounds, the Speeded Up Robust Features are used

as the texture key points. Due to the large number of candidate texture key points,

Adaptive Boosting is also used as a feature selection method. In this way, among

all local texture features, the feature selection method can pick out effective local

features through iterative validations on the training set. The selected local features

are then combined to synthesise the strong classifiers for the gesture classes. This

method is tested on the Triesch Hand Posture Database, and outperformed the

state-out-the-art methods.

A novel tracking scheme called Adaptive SURF Tracking is introduced to

extract hand trajectories for gesture classification in the uncontrolled environments

with multiple distractions in the background. The main advantages of this method

over the existing methods are: 1. No need for any segmentation process. 2. Capa-

blility of dealing with multiple hand candidates. 3. It can adapt to various lighting

conditions, gesture scales, speed and locations. The tracking method detects human

facial regions in the first frame to estimate the skin-colour tone under the current

lighting condition. Then large connected skin-coloured regions are picked out as

the hand candidates. For the rest of the video stream, the trajectories of all hand

candidates are recorded. This real-time tracking scheme is robust against speed,

location and scale variance of the hand trajectories. Trajectory features are then

extracted from the trajectories.

The trajectory features are then put into a novel gesture classifier called
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Partition Matrix as the input observation sequences. The main advantages of this

method over the existing methods are: 1. It can monitor temporal features on

different scales. 2. Capablity of dealing with multiple hand candidates. Partition

Matrix utilises the partition functions within the Hidden Conditional Random Fields

to evaluate all hand candidates. Partition values are calculated from trajectories of

all hand candidates under different frame rates, to distinguish the trajectory features

of the signing hand. The key concept is making use of varying tracking results of

randomly moving background distractions, by applying different frame rates on

the original video. Compared with the background distractions, the variance of

texture and trajectory patterns of the signing hand under different frame rates is

relatively small. Hence, in the matrix of all partition values, the target signing hand

would present a relatively consistent pattern. The classifier is tested on two datasets

with severely distracted background settings and produced satisfactory experimental

results.

As a branch of Hand Gesture Recognition, Hand Gesture Spotting is the task

of detecting and segmenting single hand gestures within a continuously signed ges-

ture sequence. A forward Hand Gesture Spotting method is introduced specifically

for uncontrolled environments. The main advantages of this spotting method over

the existing spotting schemes are: 1. Capability of monitoring temporal features

on different scales. 2. It can perform gesture spotting in uncontrolled environments

with multiple hand candidates in the scene. The spotting method inherits the Par-

tition Matrix to evaluate the possibilities of the current frame being part of the

predefined gesture classes. A garbage model is built after the training process. The

garbage model is used to evaluate the possibility of the current hand trajectories

being meaningless hand movements. This spotting method is tested on the Warwick

Hand Gesture Database, and produced decent accuracy.
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7.2 Limitations and Future Works

There are still many unsolved issues in the proposed framework for HGR, HPR and

HGS in uncontrolled environments. Main limitations of the framework are listed

below with possible corresponding solutions as the future works.

• Vocabulary Structure: Currently the proposed framework has only been tested

on databases with small vocabularies, namely datasets of 10 hand-signed dig-

its. Robustness of the framework against large vocabulary is unknown. Sub-

gesture reasoning methods could potentially enhance the framework’s ability

to handle vocabularies with high level of intra-class variance and low level of

inter-class variance. Hand-signed letters could potentially be a viable choice

of vocabulary.

• Scene Settings: More challenges should be considered for Hand Posture Recog-

nition in the unconstrained scene settings. Currently the framework’s Hand

Posture Recognition method is vulnerable against background distractions and

partial frontal occlusions. Mechanisms that are capable of adaptively match-

ing the non-occlusion hand regions with the predefined posture classes should

be included in the framework. Concepts of some Face Recognition methods

that are specifically designed to handle partial occlusions could be used as

solutions.

• Texture Features: More texture features could be tested in the Adaptive SURF

Tracking method, including BRISK, ORB and FREAK (more details please see

Section 2.2.3.2), for less computational cost on feature extraction and texture

matching process.

• Optimisation in the CRF Models: Various optimisation methods could be

adopted in the training process of the CRF models. In the HCRF model, the

likelihood functions are no longer guaranteed to be convex. The initialisation
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of the optimisation search becomes vital to the over-all performance of the

model. A strategy of estimating the optimised initialisation of the weight

vector should be considered.

• Latent Dynamic Condition Random Fields (LDCRF): LDCRF should be tested

as an alternative model of HCRF. LDCRF is capable of producing class label

for every observation state. Compared with HCRF, it is more suitable for

the HGS task. A forward spotting method for the LDCRF model could be

potentially powerful for HGS in uncontrolled environments.

• Real-time Backward Spotting Method: The HGS method of the proposed

framework is currently unable to perform real-time HGS in uncontrolled envi-

ronments, since it is a forward spotting method. The sliding window structure

and the garbage model in the proposed HGS method can be improved to form

a robust real-time backwards HGS method.

• Estimation on Number of Hidden States in CRF Models: The number of hid-

den states in the HCRF and LDCRF models has great influence on the over-

all model performance. Currently various values have to be tested through

experiments to locate the optimum. The experiment process is rather time-

consuming due to the long off-line training time. A single training session

could take dozens of hours to converge. A method that can estimate the opti-

mised amount of hidden states could be developed to narrow down the possible

choices. One of the possible solutions is to analyse the feature functions in the

potential function of the HCRF and LDCRF models. Similar with the calcu-

lation of the garbage model in the proposed framework, a predicted structure

of the predefined gesture classes could be calculated from the training sam-

ples. Thereby the estimated number of ”strokes” in the vocabulary could be

computed as part of the off-line training process.

• Tang et al. [179] proposed a forest-based method called Latent Regression
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Forest for real-time 3D hand pose estimation from single depth image. The

problem of 3D articulated hand pose estimation is treated as a structured

coarse-to-fine search for the skeletal joints. Latent tree model is then used to

learn the granularity of each search stage. The Latent Regression Forest is

used on the whole image instead of individual pixels, which largely improves

the run-time speed. The Latent Tree Model which the Latent Regression

Forest method built upon is modelling the underlining dependencies of the

observations in the similar way as the HCRF model. It has been used in many

areas in the computer vision community. It should be tested for the HGR in

uncontrolled environments task as well.

• Deep Learning methods: Firstly, currently the Partition Matrix (Chapter 5)

is monitoring the temporal features on different scales. But the temporal

features are man-made and trained only on a single scale. Deep Learning

methods generate optimised features on different scales in the training stage.

The Partition Matrix could benefit from a multi-layer HCRF model similar

with RNN, which trains the latent variables on different scales. Secondly, a

score lever fusion method could be beneficial for the Partition Matrix. Instead

just using one initial classifier to calculate the scores in each cell of the Partition

Matrix, multiple classifiers could be used including deep learning methods to

generate multiple initial scores for each cell.

156

Yi
附注
“Yi”设置的“Marked”



Bibliography

[1] Agnes Just, Yann Rodriguez, and Sebastien Marcel. Hand posture classifica-

tion and recognition using the modified census transform. In Automatic Face

and Gesture Recognition, 2006. FGR 2006. 7th International Conference on,

pages 351–356. IEEE, 2006.

[2] Chieh-Chih Wang and Ko-Chih Wang. Hand posture recognition using ad-

aboost with sift for human robot interaction. In Recent progress in robotics:

viable robotic service to human, pages 317–329. Springer, 2008.

[3] Mahmoud Elmezain, Ayoub Al-Hamadi, Samy Sadek, and Bernd Michaelis.

Robust methods for hand gesture spotting and recognition using hidden

markov models and conditional random fields. In Signal Processing and Infor-

mation Technology (ISSPIT), 2010 IEEE International Symposium on, pages

131–136. IEEE, 2010.

[4] Yi Yao and Chang-Tsun Li. Real-time hand gesture recognition for uncon-

trolled environments using adaptive surf tracking and hidden conditional ran-

dom fields. Advances in Visual Computing, pages 542–551, 2013.

[5] American Sign Language Dictionary. word Bicycle in ASL. http://www.

lifeprint.com/index.htm, 2013. [Online; accessed July-2014].

[6] Sean Chen and Evan Levine. Mister Gloves - A Wireless USB Gesture In-

157



put System. https://courses.cit.cornell.edu/ee476/FinalProjects/

s2010/ssc88\_egl27/References, 2013. [Online; accessed July-2014].

[7] Jochen Triesch and Christoph Von Der Malsburg. Robust classification of

hand postures against complex backgrounds. In 2013 10th IEEE International

Conference and Workshops on Automatic Face and Gesture Recognition (FG),

pages 170–170. IEEE Computer Society, 1996.

[8] Jonathan Alon, Vassilis Athitsos, Quan Yuan, and Stan Sclaroff. A uni-

fied framework for gesture recognition and spatiotemporal gesture segmen-

tation. Pattern Analysis and Machine Intelligence, IEEE Transactions on,

31(9):1685–1699, 2009.

[9] Mauricio Correa, Javier Ruiz-del Solar, Rodrigo Verschae, Jong Lee-Ferng,

and Nelson Castillo. Real-time hand gesture recognition for human robot

interaction. In RoboCup 2009: Robot Soccer World Cup XIII, pages 46–57.

Springer, 2010.

[10] Manavender R Malgireddy, Ifeoma Nwogu, Subarna Ghosh, and Venu Govin-

daraju. A shared parameter model for gesture and sub-gesture analysis. In

Combinatorial Image Analysis, pages 483–493. Springer, 2011.

[11] Shackel B. and Richardson S. Human factors for informatics usability. Cam-

bridge University Press, 1991.

[12] Diaper Dan and Sanger Colston. Tasks for and tasks in humancomputer

interaction. Interacting with Computers, 18(7):117–138, 2006.

[13] B. Shackel. Ergonomics for a computer. Design, 120:36–39, 1959.

[14] Columbia University Computing History. The IBM 610 Auto-Point Com-

puter. http://www.columbia.edu/cu/computinghistory/610.html, 2014.

[Online; accessed July-2014].

158



[15] CATHERINE G. WOLF. A comparative study of gestural, keyboard, and

mouse interfaces. Behaviour and Information Technology, 11(1):13–23, 1992.

[16] Microsoft. Kinect. http://www.microsoft.com/en-us/kinectforwindows/,

2009. [Online; accessed July-2014].

[17] ThalmicLabs. MYO armband. https://www.thalmic.com/en/myo/, 2014.

[Online; accessed July-2014].

[18] LeapMotion Inc. Leap Motion Controller. https://www.leapmotion.com/,

2010. [Online; accessed July-2014].

[19] A.Jaimes and N. Sebe. Multimodal human computer interaction: A survey.

Computer Vision and Image Understanding, 108:116 – 134, 2007.

[20] J. Nespoulous, P. Perron, and A. R. Lecours. The biological foundations of

gestures: Motor and semiotic aspects. New Jersey London: Lawrence Erlbaum

associates, 1986.

[21] William C Stokoe, Dorothy C Casterline, and Carl G Croneberg. A dictio-

nary of American Sign Language on linguistic principles. Linstok Press Silver

Spring, 1976.

[22] David Brien, British Deaf Association, et al. Dictionary of British Sign Lan-

guage English. Faber & Faber, 1992.

[23] Chunli Wang, Wen Gao, and Shiguang Shan. An approach based on phonemes

to large vocabulary chinese sign language recognition. In Automatic Face and

Gesture Recognition, 2002. Proceedings. Fifth IEEE International Conference

on, pages 411–416. IEEE, 2002.

[24] Quan Yuan, Stan Sclaroff, and Vassilis Athitsos. Automatic 2d hand

tracking in video sequences. In Application of Computer Vision, 2005.

159



WACV/MOTIONS’05 Volume 1. Seventh IEEE Workshops on, volume 1,

pages 250–256. IEEE, 2005.

[25] Alejandro Jaimes and Nicu Sebe. Multimodal human–computer interaction:

A survey. Computer vision and image understanding, 108(1):116–134, 2007.

[26] Kai Nickel, Edgar Scemann, and Rainer Stiefelhagen. 3d-tracking of head and

hands for pointing gesture recognition in a human-robot interaction scenario.

In Automatic Face and Gesture Recognition, 2004. Proceedings. Sixth IEEE

International Conference on, pages 565–570. IEEE, 2004.

[27] Toshiyuki Kirishima, Kosuke Sato, and Kunihiro Chihara. Real-time gesture

recognition by learning and selective control of visual interest points. Pat-

tern Analysis and Machine Intelligence, IEEE Transactions on, 27(3):351–

364, 2005.
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[80] Cem Keskin, Furkan Kıraç, Yunus Emre Kara, and Lale Akarun. Hand pose

estimation and hand shape classification using multi-layered randomized deci-

sion forests. In Computer Vision–ECCV 2012, pages 852–863. Springer, 2012.

[81] Stan Melax, Leonid Keselman, and Sterling Orsten. Dynamics based 3d skele-

tal hand tracking. In Proceedings of Graphics Interface 2013, pages 63–70.

Canadian Information Processing Society, 2013.

[82] Luca Ballan, Aparna Taneja, Jürgen Gall, Luc Van Gool, and Marc Pollefeys.

166



Motion capture of hands in action using discriminative salient points. In

Computer Vision–ECCV 2012, pages 640–653. Springer, 2012.

[83] Jamie Shotton, Toby Sharp, Alex Kipman, Andrew Fitzgibbon, Mark Finoc-

chio, Andrew Blake, Mat Cook, and Richard Moore. Real-time human pose

recognition in parts from single depth images. Communications of the ACM,

56(1):116–124, 2013.
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