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Abstract

In order to explore the possibility of adding new functions to preexisting genes, we considered a framework of
riboregulation. We created a new riboregulator consisting of the reverse complement of a known riboregulator.
Using computational design, we engineered a cis-repressing 5’ untranslated region that can be activated by
this new riboregulator. As a result, both RNAs can orthogonally trans-activate translation of their cognate,
independent targets. The two riboregulators can also repress each other by antisense interaction, although
not symmetrically. Our work highlights that antisense small RNAs can work as regulatory agents beyond the
antisense paradigm and that, hence, they could be interfaced with other circuits used in synthetic biology.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

Genetic material is, paraphrasing the words of
Alphonse de Lamartine brought to this context,
limited in its nature but infinite in its desires. Four
combinatorial bases offer the possibility of encoding
vast information [1], and even the same sequence
can provide, in some cases, multiple functions [2]. In
this work, we investigate the possibility of adding a
new function to an existing gene. To this end, we
focused on DNA sequences that produce transcripts
able to perform a cellular function without being
translated (i.e., regulatory RNAs) [3]. In particular,
we envisioned a scenario wherein an antisense
small RNA (sRNA) can trans-sequester a functional
SRNA that targets an existing gene. This regulatory
mechanism has already been described in prokary-
otes [4,5] and eukaryotes [6,7], and this work will
show that an antisense sRNA may additionally
acquire the ability to directly control gene expres-
sion. We present a synthetic case in Escherichia
coli, where the two transcribed sRNAs, one the

reverse complement of the other, can independently
activate gene expression (Fig. 1a). We used a de
novo sequence design methodology to obtain the
sequence of a new riboregulator device that we
named antiRAJ11 based on our previously engi-
neered riboregulator RAJ11 [8].

Indeed, there is a growing interest, and need, to
use non-coding RNAs rather than proteins in
synthetic biology [9]. The reasons are their greater
ab initio predictability of folding and interaction ability
(i.e., function) [8,10—-13], their broad repertoire of
regulatory mechanisms [14-19], and the faster
action compared to regular transcription factors
[5,20,21]. Here, we focused on bacterial riboregula-
tors (sRNAs), having the ability to induce a confor-
mational change in a specific 5" untranslated region
(5" UTR) of a messenger RNA (mRNA) to modulate
gene expression [8,14]. The secondary structure of
the 5" UTR allows base pairing of ribosomal binding
site (RBS), which then becomes inactivated to
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Fig. 1. Design and characterization of a riboregulator as the negative-sense strand of the riboregulator RAJ11. (a) On
the left, scheme of the circuit of system antiRAJ11. Here, antiRAJ11 sRNA is the negative-sense strand of our previous
RAJ11 sRNA. On the right, illustration of the computational design of the 5" UTR regulated by an antiRAJ11 sRNA. Note
that the two sRNAs are functional. (b) Characterization result of system antiRAJ11 in vivo with the appropriate inducers
(aTcand IPTG). Assays performed in MGZ1 cells. (c) Scheme of the regulatory circuit and characterization result of RAJ11
sRNA inhibition of the action of antiRAJ11 sRNA. Here, RAJ11 sRNA is absent (only plasmid pMIR03) or present (introduced
with a different plasmid; pMIR03 + pMIR04). Assays performed in JS006 cells. (d) Characterization result of system
antiRAJ11 by in vitro translation. (e) Molecular characterization of the RNA—-RNA interactions by native polyacrylamide gel
electrophoresis (PAGE). Arrows indicate intermolecular complexes. (d and ) RNAs were pre-transcribed with T7 polymerase
and purified.
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recruit the 16S ribosomal RNA. Binding of the sRNA
to the 5" UTR of the mRNA results in the release of
the RBS (via a conformational change), and the RBS
is then converted into a fully functional motif.

The sRNA antiRAJ11 was designed as the
reverse complement of the sRNA RAJ11 (without
including transcription terminators). Using Ribo-
Maker [22] as computational method and following
defined energetic and structural criteria (Fig. S1; see
details in supplemental information), we designed
a 5" UTR sequence that is able to cis-repress
the RBS (thus blocking the translation) and to be
trans-activated by the new riboregulator antiRAJ11
(Fig. 1a). The RNA sequences are shown in Fig. S2
and the plasmid maps are in Figs. S3, S4, and S5.
The heuristic algorithm performs multiple cycles of
random mutations and selection, and each run
produces a different sequence. Hence, we ran Ribo-
Maker multiple times and selected the best sequence
according to the desired function (see details in
supplemental information). Note that it is not possible
to construct the 5" UTR antiRAJ11 as the reverse
complement of the 5" UTR RAJ11 because it would
lack a suitable RBS sequence. Moreover, riboregula-
tory systems require a precise secondary structure,
followed by toehold formation, which is not maintained
after a reverse complementation operation due to the
existence of GU wobble pairs.

We used inducible promoters [23] to dynamically
control the expression of our system with isopro-
pyl-B-D-1-thiogalactopyranoside (IPTG) and anhy-
drotetracycline (aTc) (Fig. 1b). As reporter, we used
a green fluorescent protein (GFP). The design of the
full expression cassette including the promoters and
terminators of the sRNA and mRNA was performed
according to a previously described protocol [24].
The characterization of the system in vivo at the
population level revealed a high dynamic range and
a 64-fold activation with aTc (Fig. 1b). Moreover, the
single-cell analysis also revealed that the whole
population shifted to the ON state upon induction
with IPTG and aTc (Fig. S6), while the population
was maintained in the OFF state upon induction with
only one chemical.

We then tested the ability of the riboregulator
RAJ11 to inhibit the action of the riboregulator
antiRAJ11, as they hybridize perfectly with each
other. When co-expressing both riboregulators, we
observed a remarkable decrease in GFP expression
(Fig. 1c). We also tested the ability of the riboregu-
lator antiRAJ11 to inhibit the action of the riboregu-
lator RAJ11, obtaining a reduction in GFP expression
but less substantial than in the previous case (Fig.
S7). We decided to perform a Boolean assay (i.e.,
with/without antisense sRNA) because, in our con-
structions, the sRNAs (RAJ11 and antiRAJ11) are
expressed from the same promoter. Using in vitro
translation (see details in supplemental information)
wherein the complementary DNAs (cDNAs) corre-

sponding to the RNA species were first transcribed
in vitro, we also proved the dynamic behavior of the
new system antiRAJ11 and the inhibitory role of
sRNA RAJ11 (Fig. 1d, see also Fig. S8). Conse-
quently, we observed that the appropriate activation
ofthe target genes, i.e., genes controlled either by the
system RAJ11 or by antiRAJ11, could require
non-simultaneous expression regimes of the
riboregulators.

In addition, we studied to what extent one
riboregulator can affect the targets of the other
(i.e., if they are orthogonal). For this, we measured
the change in GFP expression from the mRNA
controlled by the non-cognate 5° UTR in the
presence or absence of the sRNA (i.e., crossed
systems). We found that the riboregulator antiRAJ11
has no significant impact on the GFP controlled by
the 5 UTR RAJ11 (Fig. S9), and the same applies for
the riboregulator RAJ11 on the GFP controlled by
the 5" UTR antiRAJ11 (Fig. S10). We also found that,
in both cases, the 5 UTRs are very efficient at
repressing translation. Simulations with an RNA
physicochemical model [10] revealed no significant
free energy of hybridization between the non-cog-
nate sRNAs and mRNAs, supporting the orthogonal
behavior. Finally, to gain mechanistic insights, we
performed a native polyacrylamide gel electropho-
resis (PAGE; see details in supplemental informa-
tion), [25] where the cDNAs were again first
transcribed in vitro. We mixed two species per
lane, by adjusting the amount of each RNA. The
gel revealed the intermolecular interactions between
the sBRNA and 5 UTR of systems RAJ11 and
antiRAJ11, as well as the interaction between the
two riboregulators while no interaction was detected
for the non-cognate pairs.

In conclusion, we have demonstrated that it is
possible to use an antisense sRNA as a new
regulatory agent in the cell. This was accomplished
by designing an appropriate 5" UTR. These results
largely indicate the development of sophisticated
RNA-only circuits where sRNAs interact with each
other to form arbitrary regulatory architectures.
We also hypothesize that antisense transcripts [4]
could be exploited in synthetic biology as overlap-
ping reading frames of transcription (i.e., ambisense)
for engineering bi-functional systems with minimal
genetic material, as well as non-linear behavior with
RNA, as convergent transcription has been shown to
confer a bi-stability [26].
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