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ON TRANSFER OPERATORS FOR CONTINUED
FRACTIONS WITH RESTRICTED DIGITS

OLIVER JENKINSON, LUIS FELIPE GONZALEZ
AND MARIUSZ URBANSKI

1. Introduction

For a non-empty subset .# c N, let A, denote the set of real numbers x € [0, 1]
for which the infinite continued fraction expansion

1

X =
al+

612+...

has each partial quotient a; belonging to the alphabet .#. Let T: [0, 1] — [0, 1] be
the continued fraction (or Gauss) map, given by T(x) = 1/x (mod 1). The set A,
is invariant under 7.

When the alphabet .# is finite, the irrationals in A, are all badly approximable
by rationals (cf. [44]). The arithmetic properties of such A, have therefore been
widely studied, with particular emphasis on the set FE,, corresponding to the
choice # = {1, 2} (cf. [16, 8, 22]). The Hausdorff dimension of sets such as E,
yields insight into various problems in Diophantine approximation, particularly in
connection with the Markoff and Lagrange spectra (cf. [8, 13, 24]). Further
geometric measure-theoretic properties have been studied by Mauldin and
Urbanski [31], who extended this investigation to the case of infinite alphabets
# as part of a wider analysis of infinite conformal iterated function systems [30].

A powerful approach to these problems is provided by the thermodynamic
formalism of Ruelle [39]. To a continuous function g: [0, 1] — R, we associate the
Ruelle transfer operator Ly ,, defined by the formula

Loet)= Y ew e )| 7( 5 ) m

neJs

whenever this sum is convergent.
The choice g(x) = gg(x) = —Blog|T’(x)| = logx**?, for a real parameter @, is
of particular importance, leading to the formula

2,550 =Lrn 0= 3 (75) F(h3 ) ?)

ney

where again if .# is infinite then care is needed in the choice of 3 and f to ensure
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convergence of the sum. Specifically, we suppose that Re(8) > 6 ,, where Re(3) = 6 ,
is the abscissa of convergence of the series 3. ,c, n >*, and that f € C°[0, 1]. In
what follows, we will consider this operator acting on functions f that are at least
C*, and this will additionally ensure that it has countable spectrum (see § 3).

One of the reasons for the importance of #, s is its relation to Hausdorff
dimension. Under appropriate hypotheses on .# (see §2) there is a unique real
value of 8 for which %, ; has leading eigenvalue equal to 1, and this value is
precisely the Hausdorff dimension of A, (see [7, 30]). This characterisation has
been used to approximate the Hausdorff dimension of Ay 5 (see [8, 22, 24]). The
eigenfunction of this leading eigenvalue is, suitably normalised, the density
function for the natural geometric T-invariant probability measure supported on
Ay. For 4 =N this density is (1/1log2)(1/(1 + x)), corresponding to the well-
known Gauss measure. The second eigenvalue of ¥, ; determines the rate of
correlation decay for the dynamical system 7: A, — A, with respect to the
geometric invariant measure; for .# = N this corresponds to Wirsing’s constant
(cf. [14, 34, 51]). It can also be related to the efficiency of numerical algorithms
for approximating the Hausdorff dimension of A, (cf. [21]). The lower-lying
eigenvalues (the so-called Ruelle resonances, cf. [40, 41]) determine finer mixing
properties of T: A, — A .

It is conjectured that the full C* spectrum of various Ruelle transfer operators
associated to expanding dynamical systems (including, for example, the linearised
Feigenbaum renormalisation operator [11]) is real. Empirical evidence supports
these conjectures, although a satisfactory explanation for the phenomenon is
lacking. If the underlying expanding map is piecewise linear, then it is easily
proved that the spectrum is real. For non-linear expanding maps where one branch
dominates the other in a certain sense, Rugh [43] has shown that the spectrum of
certain associated transfer operators is indeed real. However, reality of the
spectrum is not ubiquitous, as demonstrated by Levin [29].

A remarkable analysis of Babenko [3] established the reality of the spectrum of
&N.1, the Perron—Frobenius operator for the Gauss map on [0, 1]. His method is
very different from the perturbative approach of Rugh, hinging instead on an
algebraization of the problem by means of an integral transform. This analysis of
the Perron—Frobenius operator was further elaborated by Mayer and Roepstorff
[34, 35], while a significant generalisation of Babenko’s theorem to the family
PN, g» With B> % was given by Mayer [33]. The main purpose of our article is to
further develop this algebraization program. It will be shown that the transfer
operators £, g associated to general invariant sets A, may also be transformed in
such a way that the reality of their spectra is readily apparent. These operators
will act primarily on canonical spaces such as C”[0, 1] and C“[0, 1]. For example
we prove the following.

THEOREM. Suppose J is a non-empty subset of N, and 3 > max(0, 0 ;). Then
the operator %y g: C*[0, 1] — C*[0, 1] has real spectrum. This spectrum is a
sequence of real numbers union its accumulation point at 0.

This result will follow from Theorems 2 and 3, in §§5 and 6 respectively,
where identical spectral properties are proved for %, ; acting on the nuclear
space C“[0, 1] and on various spaces of holomorphic functions. The scheme of
proof is as follows. To each alphabet .# we will associate a theta function
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Fs(8)=>,ese ™, a StleltJes measure dmy(s) = 9,(s)ds, and an integral
transform given by 7, 50(z) = [y s B=1/2 sz e(s )dm](sg. The transfer operator
will be shown to preserve a Hllbert space %fy, g =7 4.3(L°(my)) of holomorphic
functions, on which its action is similar to a selfadjoint integral operator on
L*(m,). Tt follows that Ly i Hy g — Hy g has real spectrum. Since it can be
shown (Lemma 6) that J#; 4 is densely and continuously embedded in C*[0, 1], a
recent intertwining theorem of Bandtlow [4] implies that the spectrum of &, g on
these two spaces is the same, thus establishing the above theorem. In the same
way it will be shown that the non -essential spectrum of %, 5 acting on Holder
function spaces, or on spaces of C* functions, is also real.

In the second part of this article we consider the analytic dependence of £, g
on the parameter 8. If 3 € C, with Re(8) > 0,, then £, 4 is clearly well defined.
For such @ it can again be shown (Theorem 1) that &, g is similar to an (in
general non-selfadjoint) integral operator. (If .# is finite, so that (2) is convergent
for all 8 € C, this result requires the assumption Re(8) > 0.)

We consider ., 5 as an element of the complex Banach space of bounded linear
operators on a suitable Hilbert space. This ensures a canonical notion of analyticity
for the map B +— Z; 3, equivalent to complex differentiability. The analyticity of this
map in the half-plane Re(B) > 0, suggests the possibility of an analytic continuation
to a wider domain in the 3-plane. The original result in this direction is due to Mayer
[33], who analysed the case .# = N. Using a somewhat weaker notion of analyticity,
he proved that 8+ ¥ g has a meromorphic continuation to the whole $3-plane,
the only poles being simple ones at 8 =1 (1 — k), with k € Z -,

The situation for general alphabets .# is rather more recondite. The simplest
situation is when .# is finite; in this case § , = —oo, and the analytic continuation,
in this case to the entire 3-plane, is immediate. When .# is infinite then 8 = 0, is
a non-removable singularity, and in general there is no analytic continuation past
this point. However, for certain infinite alphabets .#, a meromorphic continuation
does exist, as described in Theorem 5. For example, if .# is an arithmetic
progression {a +bn}, a monomial sequence {n”}, or a geometric progression
{b"}, then there is a meromorphic continuation to the whole complex (-plane. If
4 is either the set of all prime numbers, or the set of numbers which are the sum
of two squares, then 6, :%. In both these cases an analytic continuation past
B =6, is possible, but there is no meromorphic extension to the whole plane. If
# is a sequence of super-exponential growth, then 6 , = 0, and the line Re(8) =0
is a natural boundary, so that no analytic continuation is possible.

The article is organised as follows. In § 2 we introduce the fundamental objects
necessary for our analysis. The action of &, s on various function spaces is
discussed in §3. In §4 we develop the basic properties of the integral operator
and the integral transform. The conjugacy of %, s with the integral operator is
established in §5, as is the reality of the spectrum for 8 real. In §6 this spectral
property is extended to various other function spaces. In §7 we consider the
analytic properties of the map S+ %, 5. This is related (Theorem 4) to the
analytic properties of a certain Hurwitz zeta function, which then yields precise
results (Theorem 5) for certain alphabets .# of an arithmetic nature.

Acknowledgements. This paper has greatly benefited from various enlightening
discussions with Oscar Bandtlow on some fine points of functional analysis. We
are also grateful to Richard Sharp for some helpful comments on Theorem 5(vii).
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2. The fundamental objects

A non-empty subset .# of N will be called an alphabet. We associate to .# the
following objects:

the limit set A, defined as the set of real numbers in [0, 1] whose continued
fraction partial quotients all belong to .#;

the Hausdorff dimension 6, of the limit set A ,;
the finiteness parameter 0 ,, defined as the infimum of those real numbers 6

for which
1
) 28 (3)

neJs
converges for all 8 € C with Re(B) > 0.

If .# =N then A, is the set of irrationals in [0, 1], and in general when .# is
infinite A, is homeomorphic to the irrationals (in particular, it is not compact). If
J is finite with cardinality greater than 1, then A, is a Cantor subset of [0, 1].
Moreover, we have 0 < 6, < 1 unless .# = N (when the dimension is 1) or .# is a
singleton (when the dimension is 0).

If . is finite then clearly 6, = —co. If .# is infinite then 6, € [0, 1], and the
series (3) has a singularity at 3 =6, since it is a Dirichlet series all of whose
coefficients are non-negative (cf. [2, Theorem 11.13]).

To the alphabet .# we further associate the following objects:

Ny :=min./;

the zeta function {;(s) =>,c,n °, defined initially for Re(s) > 26, but in
some cases admitting an analytic continuation to a larger domain in the s-plane;

the Hurwitz zeta function {;(s,2) =) ,es(n+2)" ", defined initially for
7€ C\(—o, —N,]|, Re(s) >260,, but in some cases admitting an analytic
continuation to a larger domain in the s-plane;

the theta function 9,(t) = ,c e ", defined for r € R*;

the theta measure m, on R*, defined by dm,(t) = 8 ,(t)dt;

the right half-plane R ; = {z€ C: Re(z) > =N, }.

The nomenclature is motivated by that used in classical analytic number theory,
in spectral geometry (for example, [9, 10, 49]), and in recent generalisations of
Jorgenson and Lang (for example, see [25, 26]). For instance, if .# = N then {,
is Riemann’s zeta function, and the theta function is simply 6 ,(t) = 1/(e' — 1).
(Note, however, that the classical Hurwitz zeta function is defined by a
summation over all non-negative (rather than positive) integers (cf. [6, p.502]).

In this way our convention differs from the classical one.)
For any 3 € C, the kernel function Gg: R XxR* — C is defined by

RN G )
Ga(s.1)= > KIT(k + 26)

k=0

In fact this kernel function is related to a Bessel function of the first kind (cf. [50,

p.40]) by Gg(s, 1) = #»5_1(2+/ts). The most important property of Gz is that if

B € R then Gg(s, 1) = Gg(t, s), so that any associated integral operator is selfadjoint.
For Re(B) > 0, we associate to the pair (.4, §) the following objects.
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The integral transform 7, s defined by

Trpeld) = 5712 ols) s ), )

The space of integral transforms Hy; 5= 7. yQB(Lz(mf)). This is a Hilbert
space, its inner product inherited from L2(m ) via the map J, 5, which is
easily seen to be injective and which we declare to be a Hilbert space
isomorphism. It will be shown that each f € #) g is a function analytic in
the right half-plane R ,.

The integral operator Ay 3 defined by

Aot = [ Gals e (5)dm ().

The transfer operator ¥, s defined by

2,500=Y (o) #(+) ©

neJsg

The main focus of our attention is the transfer operator £, 3. As mentioned in
§ 1, one of the reasons for this interest is its relation with Hausdorff dimension
6s. If {,(20,) =00 (in which case we say that .# is regular, as in [30, 31],
where examples of irregular sets can also be found) then there is a unique real
value of 8 for which #, 5 has spectral radius 1, and this value is precisely 6,
(see [7, 30]). The transfer operator will be studied by means of the various
auxiliary objects we have introduced. The integral transform .7, g resembles a
Laplace—Mellin transform (cf. [25, p.9]), although the exponent 3 —% is carefully
chosen for our purposes (cf. Remark 3). The reason for the choice of kernel
function Gg will become apparent in § 5.

3. Trace class transfer operators

As is well known, the spectral properties of the transfer operator ¥, ; depend
strongly upon the space on which it acts. In fact it will be convenient for £, s to
act on several different spaces, which we now specify.

For 0 < @ <1, let C®[0, 1] denote the space of complex-valued a-Holder functions
on [0, 1], equipped with its Banach norm. For real 8> max(0, ), the operator
Ly 2 C¥[0,1] = C*[0, 1] enjoys various Perron—Frobenius-type properties. In
particular, it has an essential spectral radius strictly smaller than its spectral radius
(see [42]).

Since z— (z+n) “" extends as a C* function to the unit interval, the operator
%, g in fact preserves various subspaces of C*[0, 1], notably the Banach spaces
C*0, 1] for k€N, the Fréchet space C>[0, 1], and the nuclear space C“[0, 1].
When acting on Ck[O, 1], &, 5 is again quasicompact, although its essential
spectral radius shrinks to 0 as k — oo (see [42]). In Proposition 2 it will be shown
that the spectrum of %, g on both C*[0,1] and C“[0, 1] is a countable set
accumulating at 0.

The operator &£, g also preserves various spaces of holomorphic functions, and
there is considerable freedom in selecting such spaces. For example, suppose that
D is a complex domain satisfying

_28

(i) D does not intersect —.#,
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(i) Dcint(N,es Sa(D)), where S,(z) := (1/z) — n,
(iii) D is bounded and simply connected.

There is an abundance of such domains D. For example, D = {z € C: [z — 1| <3}
(cf. [33]) satisfies (i)—(iii) for any # cN. In certain applications it may be
advantageous to choose large domains, and the main restriction on this is the
value N, = min.#. If .# were the set of all prime numbers larger than 100, say,
then the disc D = {z € C: |z| < 100} also satisfies (i)—(iii).

In general, if f is holomorphic on a complex domain D satisfying (i)—(iii), then
%y g f is holomorphic on some open neighbourhood of D. A suitably chosen
space of functions holomorphic on D, and satisfying some prescribed condition on
the boundary of D, will then be invariant under %, 5. Ruelle [38] worked with
the disc algebra A (D) of holomorphic functions which extend continuously to
the boundary of D, equipped with the supremum norm. This space has since been
the most common choice, although Bergman, Dirichlet, or Hardy spaces (see [12])
are also invariant under %y 3, as are various more exotic (in general non-
normable) spaces (cf. [37, Chapter VIII, §2, 3]). However, for many reasons it is
preferable to work with a Hilbert space. If D is a disc of radius r, centred at c,
and in addition satisfying (i) and (ii) above, then a convenient choice is the Hardy
space H?(D) of those functions holomorphic on D and such that

1 2w

sup — | flc+ ee™)|?dt < oo.
e<r 2w Jo

Note that any function holomorphic on an open neighbourhood of D is
automatically in H*(D). The inner product on H?*(D) is defined by

27
(f.8) L flc+re')g(c+re)dt,
27 Jo
which is well defined since any element of H?(D) extends as an L? function of 9D.

The very freedom in choosing these holomorphic function spaces means that
none of them are canonical. By contrast C*[0, 1] and C“[0, 1] are both canonical,
although neither of these is normable. Therefore the holomorphic function spaces
may usefully be considered as intermediate spaces, on which certain properties of
the transfer operator £, 5 are more readily apparent. The intermediate nature of
these spaces means that we do not strive for the utmost generality in our choice
of the domain D. For simplicity we will only consider the Hilbert space H?*(D)
and the Banach space A, (D), where D is a disc satisfying conditions (i) and (ii).
When acting on either of these spaces, it will be seen that the operator £, s is
trace class (and hence compact), a concept we now briefly review.

Given a compact operator L: H — H on a Hilbert space H, define the nth
approximation number (or nth singular value) to be s,(L) = min{||L — F||: F is a
linear operator of rank at most n — 1}. Then L has a norm convergent expansion
L=>,5,(L)(e,, *)¥, for orthonormal sets {¢,}, {¢,} (cf. [45, Theorem 1.4]).
For p >0, the Schatten—von Neumann ideal ¥,(H) is the collection of those
operators for which >, s,(L)” <oco. The case p =1 is of particular importance;
L is said to be frace class if > ,s,(L) <o, in which case its trace
tr(L) = >, 5,(L) (¢, ¥,) is well defined. Lidskii’s theorem then asserts that
tr(L) = >, N,(L), where the \,(L) are the non-zero eigenvalues of L, counted
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with multiplicity. The Fredholm determinant for L is an entire function of z
defined as exp[tr(log(/ — zL))] for small z, and then by analytic continuation. Its
zeros are precisely the reciprocals of the non-zero eigenvalues of L, the order of
any zero being the algebraic multiplicity of the corresponding eigenvalue.

Grothendieck [18, 19] generalised the notion of trace class operators to Banach
spaces B. If L: B— B can be written as L(f)=>_,1,(f)f,, for some I, €B’
and f, € B satisfying >, ||L.lp'|| fullp < oo, then L is said to be nuclear. If
STallL s Nl full8)? < 00, then L is called nuclear of order p. If L is nuclear of
order p for every p >0 then it is said to be nuclear of order 0. The class of
nuclear operators of order % (the Grothendieck trace class) is of particular
importance, for in that case the frace tr(L) =>_,1,(f,) is well defined, and
independent of the sequences [, and f,. Moreover, for such operators
Grothendieck [18] proved that the analogue of Lidskii’s theorem holds, namely
tr(L) = > ,N,(L). The Fredholm determinant can also be defined for such
operators L, in the same way as for trace class operators on Hilbert space, and its
zeros are again related to the eigenvalues of L as above.

If |2, fullg = O(y") for some 0 <+ < 1, we will say that L is exponentially
nuclear (such operators are clearly nuclear of order 0). Moreover we have the
tail estimate S oy | Lls |l fulls = O(¥"), so that sy(L) = O(y"), and hence
> asp(L) < 0. Therefore an exponentially nuclear operator on a Hilbert space is
of trace class.

PROPOSITION 1.  Suppose .# N is non-empty, and Re(B8) >60,. Let D C be
a disc satisfying conditions (i) and (ii).
(a) Ly 5 H*(D) — H*(D) belongs to every Schatten—von Neumann ideal

S,(H*(D)), with p >0, and in particular is trace class.

p
(b) Ly 51 Au(D) — A(D) is nuclear of order 0, and in particular is a
Grothendieck trace class operator.

Proof. The assumptions on D guarantee that if f is holomorphic on D then
%y s f is holomorphic on an open neighbourhood of D. In particular we may
choose an open disc D', concentric with D, and with strictly larger radius, such
that %, 5 f is holomorphic on D'. Let r and r’ denote the radii of D and D’
respectively, and let ¢ denote their common centre. We have the Taylor series

Lrf @)=Y Wl f)ea)
k=0

where

),
w() = Zeal I = ot

Now Y (f) = O((r')~%), since %y g f is holomorphic on D'.
In particular, if E denotes either H?(D) or A.(D) then Yy sf€E, and
moreover || Yllgr = O((r')"*). Clearly also g, € E, and | g|z = r*. Therefore

gullell¥kller = O((r/r")"), so that &£, g is exponentially nuclear. The discussion
VY o((r/r' ) hat %, 4 i iall lear. The di i
preceding this proposition then implies that #, z is (Grothendieck) trace class.  [J

We now consider the action of %, 5 on the spaces C*[0, 1] and C“[0, 1].
These are not Banach spaces, so care is needed in the definition of its spectrum,
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which we will always understand in the sense of Allan [1] (see also § A.1 of [4]).
The spectrum of a linear operator L: E — E on a topological vector space E will
be denoted by o(L|E).

PROPOSITION 2. Suppose ¥ N is non-empty, and Re(B) > 6. Both
Ly CT0,1] = C*0,1] and £ 5 C°[0,1] — C*[0, 1]

have countable spectrum, the only accumulation point being at O.

Proof. First we consider the operator ., g acting on the space C“[0, 1]. Let
A; be a decreasing sequence of open rectangles with (]; A; = [0, 1], such that
A;cint(N,csS,(4)) and —# NA; = 0. For definiteness we could choose A; to
be centred at a; =1+ 1/j, of height 1/j and length 1 +1./(2a; +3)(2a; — 1).

By Riemann’s mapping theorem, there is a holomorphic diffeomorphism

®;: int((),e.s S,(4;)) — (0, 1) sending the simply connected Jordan domain
1nt(ﬂn€]S (4;)) onto the open unit disc (0, 1). There is some 0 < @; <1 such
that ®(A;) cD(0, @;), the open disc of radius @; centred at 0. Let C; denote the
composition operator C;f =f o ®;. The Riemann mapping ®; extends to a
boundary homeomorphism 9((,c.» S,(4;)) — S ! (see [23, Theorem 17.5.3]). This
ensures that C; is a continuous operator A, (D (0, 1)) — A (int([(),c.s S,,(Aj))),
with unit norm The operator C;- !is also continuous, for the same reason.

By an argument analogous to that of Proposition 1 we see that C; o £, 30 C;
exponentially nuclear when acting on the space A (<I> (4;)). From the continuity of C
and C jfl we deduce that £, 5: Aw(A;) — Ax(4;) is also exponentially nuclear. It
follows that the non-zero eigenvalues of £, g: A (A;) — A(4;), counted with
algebraic multiplicity, are precisely the reciprocals of the zeros, again counted
with multiplicity, of the Fredholm determinant D, g(z) of 4 5. But by a result
of Ruelle [38], the Fredholm determinant for a transfer operator can be expressed
in terms of the periodic points of the underlying dynamical system as

Hn I(T x)ZB
D7 B(Z = €Xp— n n ’
nZ:l T;x (_1) i:()l(T X)2

xeA,

an expression which is manifestly independent of the particular domain A;. Thus
the spectrum of £, g: A (A;) — A (4;) is independent of A;. Let {\;};cn U {0}
denote this common spectrum.

Now C“[0, 1] is topologised as the inductive limit of the injective inductive
system of Banach spaces E;:=Ay(4A;). Each &, g: E; — E; is nuclear, and
hence compact, and these operators all have identical spectrum {\;};cny U {0}. A
result of Bandtlow [4, Corollary A.7.11] then allows us to deduce that the
spectrum of Ly g: C*[0, 1] — C“[0, 1] is also {\;};cn U {0}.

To treat the operator £, g: C*[0, 1] — C ™[0, 1], we first note that C* [0, 1} is the
projective limit of the countable injective projective system of Banach spaces c* [0, 1].
This means, by [4, Proposition A.7. 20] that the spectrum o (%, g|C*[0, 1]) is the
intersection of the spectra a(cf] ﬁ|C [O 1]), with k € N.

We claim that %, g: c*[0, 1] — "0, 1] is quasicompact, and that its essential
spectral radius shrinks to 0 as k — oco. This will essentially follow from another
result of Ruelle [42]. Since Re(B) >0, then condition (i) on p.176 of [42] is
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satisfied for the operator <, 3, and also for 3]2’5. Now ,S,”j‘ﬁ is a transfer
operator for the infinite iterated function system determined by the collection of
strict contractions

-1
T,.(2)=m+ fi ,n)e.g2,
@ =(mt ) formn

Since |7, ,(z)| <1 for all (m,n) € .#* and z€ [0, 1], the results of [42] can be
applied to 3}, s (the subtlety here is that if 1 € .7 then Ruelle’s results would not
apply verbatim to %, g, since Ty(z) = 1/(z+ 1) is not a strict contraction). By
Theorem 1.3 of [42] we see that #7 5: C¥[0, 1] — C*[0, 1] is quasicompact, with
essential spectral radius bounded by c(%)k, where ¢ > 0 is independent of k. If we
consider both £, 5 and Z?}, s as acting on the Calkin algebra (that is, bounded
operators modulo compact ones), then an application of the spectral mapping
theorem shows that £, g: C*[0, 1] — C*[0, 1] is also quasicompact, with essential
spectral radius bounded by +/c(1)".

In particular, the essential spectral radius of £, g does tend to 0 as k — oo, so
that o(L, 5|C*[0,1]) = NiZ1 0(Z,.5/C*[0, 1)) is countable, its only accumulation
point being at 0. U

REMARK 1. In the course of the above proof it was shown that the spectrum of
%y 5 on C°[0, 1] coincides with that on A, (D), for suitable domains D. In fact it
can be proved that the spectrum of £, 5 on each of the spaces C [0, 1], C*[0, 1],
H*(D) and A (D) is identical. The proof of this is postponed until Theorem 3,
when the Hilbert space J; 3z will also intervene.

4. The integral operator and integral transform

The following lemma is elementary, and its proof is left as an exercise.

LeEMmA 1 (Properties of the theta function ¢ ,). Suppose ¥ N is non-empty.
Let 8,(t) = ,cs e " be the corresponding theta function. Then

(@) d,: RT = R™ is monotone decreasing, with lim,_, , 9 ,(t) =0,
(b) lim,\ (& ,(t) = o0 if and only if .7 is infinite,
© eM<d,)<(1—e e ™ forall t=1.

The following lemma is a standard tool in Mellin transform theory, and will be
used several times. Its proof follows from the simple change of variable u = at.

LEMMA 2 (Mellin transform trick). For Re(s) >0, a>0, and any locally
integrable function g for which either side of the equality is finite,

o0 1 o0
/ ts_lg(at)dt—s/ u' g (u)du.
0 a* Jo

An immediate application is to the following.

LEMMA 3. Suppose F <N is non-empty. If Re(s) > max(0, 260 ) then
1 * s—1 _—zt
(s, 2) = =—— t e ““dmy(t).
g_/( ) F(S) A ,7( )
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Proof. Since Re(s) >0, we have
1 o 71 —
s, 7)T(s) = — u'" e "du.
56, 9060) = 3 o |

Applying Lemma 2 and then interchanging integration and summation (which is
justified since both are absolutely convergent) gives

$s(s,2)T(s) = Z Am (5l tletn) gy

ne.g
[y
o ne.g
o0
—/ 1 e dmy(1). O
0

REMARK 2. The case z=0 in Lemma 3 yields the following integral
expression for the zeta function { ,(s):

1 °
£s(s) ZWA £ dmy (1),
valid for Re(s) > max(0, 260 ).

LEMMA 4. Suppose .# < N is non-empty, and Re(B8) > max (0, 8,). If o € L*(m.;)
then 7 4 g(¢) is holomorphic in the right half-plane R ; = {z € C: Re(z) > —3N,}.

Proof. Suppose ¢ GLz(m]). By Lemma 1.1 of [25], it suffices to show that

Trsel@) = [ 5712 sy dmy(s) = [P Re (0)0,(5)ds

is uniformly convergent in z, on any compact subset of R,. To do this we will
split the range of integration, considering separately the integrals |7 and fol .

We will first show that [i° |5671/267”¢(s)|19j(s) ds < oo, uniformly on any
compact subset of R, .

Since ¢ € L?(m) then f(f°|go(s)\2191(s)ds<oo, and so |e(s)|*d,(s) = 0 as
s — 00. By Lemma 1(c) we deduce that |¢(s)| < ¢*" /2 for all sufficiently large s.
Consequently, there exists K > 0 such that

/ |sﬁ]/ze”<p(s)|19](s)ds<1(/ s57]/Zef‘Y(Re(ZHN’"/Z)ds,
1 1

and this integral is convergent for Re(z) > —%N s. The convergence is uniform on
any compact subset of R, (indeed on any half-plane Re(z) = — %N_ s + 6, for 6 > 0).
We now consider the integral fol |SB_1/2€_SZ¢(S)| dm 4(s). We first claim that
5 go(s)sﬁ_l/2 is in L'(m,). To prove this it suffices to show, by the Cauchy—
Schwarz inequality, that s°~1/2 ¢ L*(m,). An application of Remark 2 gives

A T ISB V2P dmy (s) = / T 2RO g (5) = ¢, (2Re(8))T(2Re (8)) < o0

for Re(B) > max(0, 6 ,), as required.
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For Re(z) > —4N, we have

/ |S B-1/2 =5z o(s)|dmy(s) < eN//ZA s 7]/2|¢( )| dm g (s)

<e”f”/ $Re® =172 o ()| dm (s)
0

< 0

since ¢(s)s”~ 172 ¢ L'(m,). Indeed the convergence of this integral is uniform on

all of R,.
We have checked that the integral [5°s®~ 1267525 (s)dm,(s) is absolutely
convergent, uniformly on any compact subset of R, so we have the required result.
O

The integral operator %, g will always act on the space Lz(m ), which we now
show it leaves invariant.

LEMMA 5. Suppose . N is non-empty, and Re(B) > max(0, 6 ;). The integral
operator Ay g

(a) preserves the space L*(m.),

(b) is trace class when acting on L*(m.),

(c) is selfadjoint in the case where (3 is real.

Proof. Part (a) will follow from part (b), which we now prove.
The straightforward expansion

A ¢(t):§: (—l)ktkw/wsk-kﬁ—lﬂso(s)dm (s)
7P 2 kIT(k+26) Jo 7
is in fact not a nuclear representation. However, the Bessel functlon can be
expanded (cf. [47, p. 8]) in terms of Laguerre polynomials L(26 ) (which form an
orthogonal basis for L*(R™, ds)) as

00 2,87])( )l”

Gals. 1) = Sap 1 (251) = (s1) e *’Z—I’in+25)~

This gives the representation

fyﬁ¢—zl ) fos

where
8172, (28-1) 00 tn+ﬁ*l/267t
710) =P L), (o) = [ e el dns (),

A calculation (cf. [34, p.155]), again using Lemma 2, reveals this to be an
exponentially nuclear representation, with the exponential decay of the |,]|
dominating the exponential growth of the | f,||. The discussion preceding
Proposition 1 then implies that &, 5 is trace class.

Part (c) is clear since Gg(s, t) = Gg(t, s) for B € R. O
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5. The transfer operator on the space of integral transforms

THEOREM 1. Suppose ¥ N is non-empty, and Re(B) > max(0, 0 5). Then

(a) the transfer operator Ly g preserves the space K, g = jﬂ,ﬂ(Lz(my)),

(b) if Ay L*(my) — L*(my) is the integral operator with kernel function
Gg, then

A,
L (my) —2E L2 (my)

jﬂ,ﬁl l%,ﬁ

9@/,3 —>%f,6
»Zf,ﬁ

is a commutative diagram.

Proof. At several points during this proof we swap order of summation, or
interchange summation and integration. On each occasion this is justified by
absolute convergence, stemming from the hypothesis Re(8) > max(0, 6 ). Now

1 VP 1
se50m0= 5 () ()

nes

1 28 )
_ B—1/2 —s/(z+n)
= E K e s)dm 4 (s
<Z+n> A <p() ]()

nesy

[T X () . @

ney

Manipulating part of the integrand we have

1 * —s/(z+n) _ 1 P& —s \'1
Z<z+n> ¢ _Z<z+n> Z<z+n)1<!

neJs nes k=0
i Z ( 1 >k+26 (_ )k
k=0 ney \&T 1 k!

2okl
- ()" /oo k+28-1 ,—zt

= t “dmy(t),
,;0 KIT(k+26) Jo e dmy (1)

where Lemma 3 was used for the final step.
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Substituting into (6) gives us

Ly Type(2)

_ - —s 1 -
‘/s ) / 1/2 Z kizﬁ thrZﬂ 16 z'dmj(t)dmj(s)

1 0 /— $)Gy(s, 1)1~ 2e ™ dm s (1) dm  (s)

= [Ceme [ Gyt netwran, )] an, o)

= 9},[3 ° «%/,/,6 GO(Z)-

So indeed the operators #; 3 and .#, 3 are conjugated by the integral transform
T4 4, and in particular %, 5 preserves the space J# g. O

REMARK 3. It is now clear why the exponent 3 — 5 was chosen in the integral

transform 7, g0(2) = [ sB=1/2, “o(s)dmy(s ) It ensures that %, g is
conjugate to an 1ntegral operator w1th symmetric kernel.

THEOREM 2. Let ¥ be a non-empty subset of N. Suppose € R with
B>max(0,0,). Then the operator Ly g: Hy 53— Hyp is conjugate to a
selfadjoint operator, and in particular has real spectrum.

This spectrum is a sequence of real numbers union its accumulation point at Q.

Proof. The continuous conjugacy of Theorem 1 between the integral operator 7, g
and the transfer operator % g: #; 3 — A, 5 implies that their spectra coincide.

Now %, s is trace class, by Lemma 5(b), so in particular it is compact.
Therefore the only non-discrete point in the spectrum of #7 4 is the accumulation
point at 0. Also, .#, s is selfadjoint, by Lemma 5(c), so its spectrum is real. []

6. The full C™ spectrum of the transfer operator

In this section it will be shown that the space J# g is large enough to capture
the full spectrum of %, 5 acting on C*[0, 1] (and on various spaces of analytic
functlons) as well as the discrete part of the spectrum of %, 5 acting on either
C*0,1] or C*[0,1]. This will follow from the fact that J#, 4 is densely and
continuously embedded in these various spaces, a result we now prove.

LEMMA 6. Let . N be non-empty, and Re(B) > max(0,0,). Suppose the
open disc D satisfies [0,1)cD and DcR,. Let E denote any of the spaces
Aw(D), H*(D), C®[0,1], C®[0,1], C*0,1] (for keN), or C*0,1] (for
0 < a =<1). The natural inclusion vp: #y g — E is continuous, and vg(Hy g) is a
dense subspace of E.

Proof. First we show that the inclusions ¢y are continuous. For any & € N and
€ (0, 1], each inclusion in the chain

Ay (D) — H*(D) — C°[0, 1] — C>[0, 1] = C*[0, 1] = C*|0, 1]
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is continuous, as is readily verified, so it suffices to check the continuity of
tap): #y,p— Ax(D). In the definition of J#, 3 we declared 7, 4 to be a Hilbert
space isomorphism; so || 7 g¢lls5 = l@lL20n,) for every ¢ € L*(m,), where
||+ |l.-.s denotes the norm in 7 g.

Now for any z € D and Re(B) > max(0, 6,), the function r, g: s+— s
belongs to L*(m), since

/ |S,871/2675z|2dmﬂ(s) :/ SZRe(,B)fleflfz Z e " ds
0 0

neJs

671/267“

= {s(2Re(B), 27)T'(2Re(B)),

which is finite because Re(2z) > —N,, and Re(B) > max(0, 0 ). Indeed there is a
constant Cp, g > 0 such that [ 7. gl|;2(,,) < Cp,g for all z € D, since D is compactly
contained in R .

For all ¢ € Lz(m ») and z € D, the Cauchy—Schwarz inequality then gives

Ty 50(2)] = \/ $8 125 o (s) dim 5 (5)

< |7 sllezmpyllellL2on,)
< Cp sl Zsp¢lls.5-

That is, |7, g¢|la.) < Cpsll 75 8¢l s so the inclusion H#, g3 — Ax(D) is
continuous, as required.

It now remains to prove that each vz(# g) is dense in E. Define f;(z) = 1/(z+j),
for j € N with j > N,. Each f; € E, and we claim that the linear span of {f;};.,
is a dense subspace of E. To see this it suffices to show that any monomial
z™ can be approximated by linear combinations of the f;, since the space of all
polynomials is certainly dense in E. If

(p+Ny)(p+14+Ny)...(p+m+Ny) o
2+p+Ny)(z+p+14+Ny)...(z+p+m—+Ny)

gp,m<z) = (

then clearly g, , approaches z” in E as p — 0. On the other hand, there is a
partial fractions decomposition of g, ,, into a linear combination of elements of
{f;}, thus establishing the claim. ‘

Now f; is the Laplace transform of ¢ /*; so if

e s

then 7, gpg ; = f;. However in general (that is, for 8= 1), ¢z ; does not belong
to L*(my), so that f; is not in # 4.

Neverthg:less, if @g 0= jX[1/n,0 then it is readily verified that
¢g8,j.n €L7(my) for all B>max(0,6,). Therefore f3 ;,:= T, 03 jn € Hy s
Now f5 ; .(z) = e~ @71/ (24 ), so that fs.j.n € E (and in fact does not depend
on f). Clearly fg ;, converges to f; in E as n—oo. So the linear span of
{fs.j.n}j>n, nen is E-dense in the linear span of {f;};.y,, which itself is E-dense
in E, and we have finished. O
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THEOREM 3. Let . €N be non-empty, and Re(B) > max(0, 0 ). Suppose the
open disc D satisfies [0,1]cD, DcRy,, and Dcint((),cs S,(D)), where
S,(z)=1/z—n.

(a) If E denotes any of the spaces A (D), H*(D), C°[0,1], or C*[0, 1], then
0(Zy |E) = o(ZLy 5| Hy g). If furthermore (3 is real, then o(%Ly 5|E) is real.

(b) If E denotes either of the spaces C*[0,1] (for keN) or C0,1] (for
O<a=<1), then the non-essential spectrum of <%, 5. E— E is a subset of
o(ZLy gl Hyg). If furthermore B is real, then the non-essential spectrum of
Yy g E— E is real.

Proof. Grabiner’s intertwining theorem [17], which was initially formulated in
the context of Banach spaces, has been extended by Bandtlow [4, Theorem A.6.2]
to more general topological vector spaces. This extension asserts the following.
Suppose E is a sequentially complete and barrelled topological vector space, with
a dense subspace F. Suppose F cartries a topology stronger than the one induced
by E, and that F is itself sequentially complete and barrelled with respect to this
topology. If both £ and F are invariant under a continuous linear operator L, then
the discrete part of o(L|E) is a subset of the discrete part of o(L|F). Moreover, if
both L: E — E and L: F — F have countable spectrum, then these spectra coincide.

We choose L= %5 3 and F = #, 5. If E is any of the spaces in the statement
of the theorem then F is continuously and densely embedded in £ by Lemma 6.
Part (b) therefore follows from Bandtlow’s intertwining theorem, and from
Theorem 2 when 3 is real. If now E is any of the spaces in the statement of
part (a), then we recall from §3 that (%, g|E) is countable. Therefore (a)
follows from the intertwining theorem as well, and from Theorem 2 when f is real.

O

In fact it is possible to say a little more about any C™ eigenfunction of %, 4
corresponding to a non-zero eigenvalue, as described in the following corollary.

CorOLLARY 1. Let .# =N be non-empty, and Re() > max(0, 6 ,). Every C*
eigenfunction corresponding to a non-zero eigenvalue of <y g is holomorphic in
the cut plane C\(—oo, —1].

Proof. Let A denote the restriction of %, 3 to #, 5, and let B denote the
restriction of %, g to C*[0, 1]. By Theorem 3 we know that every eigenvalue \ of B
is also an eigenvalue of A. If A # 0 then it is an isolated element of both spectra.

Let us suppose that the geometric multiplicity of A as an eigenvalue of A
coincides with its geometric multiplicity as an eigenvalue of B. Then any C°
eigenfunction f corresponding to A is actually an element of ) 5. Since
AN #0, the eigenequation can be written )\715,@’5 f=/f, and iterated to give
N "% sf =f for all n=0. But f is holomorphic in the half-plane R,, from
which we successively deduce that N\™" %/ f = f is holomorphic in some region
Q,, where Qo cQ, ... and J,—¢ @, = C\(—00, —1]. Since N\ was an arbitrary
non-zero eigenvalue, and f an arbitrary eigenfunction, it follows that every C*
eigenfunction for a non-zero eigenvalue is holomorphic in the cut plane
C\(—o0, —1], as required.

It remains to show that indeed the geometric multiplicity of N as an eigenvalue
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of A coincides with its geometric multiplicity as an eigenvalue of B. For the following
argument we are grateful to O. F. Bandtlow, who pointed out its omission in
our original proof (see also [5] for a thorough investigation of related questions).

If «: #y 53— C*[0,1] denotes the inclusion map, then the relation Bo.=
Lo A gives

(z—B) 'oi=10(z—A)" (7)

for all z belonging to the resolvent set of both A and B.

Allan’s functional calculus [1] applies to continuous linear operators L on a
certain class of locally convex topological vector spaces which includes C %[0, 1].
This generalises Taylor’s functional calculus for closed operators on Banach
spaces, and asserts that, under suitable hypotheses (see [1, Theorem 5.3]),

1 F(z)
F(L) =— d
D) =7z Ac L
for functions F' holomorphic in a neighbourhood of the spectrum of L, where C is

a suitable Cauchy domain (see [1, Definition 5.2]). Combining this with (7) we
can derive the relations

toII(N;A) =1I(N; B) o4 (8)
and
toAoII(NA) =II(N;B) o B oy, 9)

where II(\; A) and II(\; B) denote the respective spectral projections at .
From (8) it easily follows that

(Z(IL(N; A))) < 2(TL(N; B)), (10)

where Z(II(N; A)) and Z(II(N\; B)) are the respective generalised eigenspaces
corresponding to A. Now Proposition A.6.5 of [4] implies that Z(II(\; A)) and
A(II(N; B)) have the same dimension (that is, the algebraic multiplicity of \ is
the same for both A and B). Now % g: L*(m,) — L*(my) is trace class by
Proposition 5, and hence so is the operator A, by Theorem 1(b). In particular, A
is compact, so that Z(II(\;A)) is finite dimensional [15, Theorem 7.4.5].
Therefore equation (10), together with the injectivity of ¢, implies that ¢ is an
isomorphism between the finite-dimensional generalised eigenspaces Z(II(\; A))
and Z(II(\; B)).

Using (9), and the fact that B commutes with II(\; B), we see that the
restrictions B|Z(II(N\; B)) and A|Z(II(N; A)) are similar, so that their Jordan
decompositions are identical. In particular,

nullity[(A — A)|Z(II(N\; A))] = nullity[(N — B)|Z(II(\; B))].

To complete the proof, we observe that since II(\; A) and II(\; B) are spectral
projections then

ker(N—A) =ker(A|2(II(\; A))) and ker(N — B) = ker(B|Z(IL(\; B))).
Hence nullity (N — A) = nullity(\ — B), as required. O

REMARK 4. Suppose that .# is a singleton .# = {n}, and § € C is arbitrary. In
this case % s is just a weighted composition operator

Ly 5f (@) = (n+2)7Ff(1/ (n+2)),
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whose spectrum can be determined explicitly (cf. [27, 32]). If

1
R T
n+

n+...
is the fixed point of 1/(n + z), then

o(Z;61C10, 1)) = {(=1)z" % ke Z= o} L {0}

7. Analytic properties of B+ %, s

In this section we consider the analytic properties of the map 8+ % 6’ where
%y g is considered as a trace class operator on a suitable Hardy space H 2(D). In
particular, %, 5 is an element of the complex Banach space B(H*(D)) of
bounded linear operators from H (D) to itself. The analyticity of a map from
some complex domain into B(H?*(D)) is then understood (cf. [46, p.205]) to
mean the existence of a derivative at every point.

The map B+ ¥, g is certainly holomorphic in the half-plane Re(8) >0, and
for general alphabets .# — N there is no reason to expect an analytic continuation
to a larger region. However for alphabets of an arithmetic nature, such as those
studied in [31], such continuations are often possible, as will be described in this
section. The original result in this direction is due to Mayer [33], and asserts that
B+ L. extends meromorphically to the entire plane, the only poles being
simple ones at 3 =1 (1 — k), where k € Z~,. The notion of analyticity used by
Mayer is weaker than the one we consider here; in [33] it means that
B+ % 5f(2) is analytic for every z € D and f € H*(D).

THEOREM 4. Let . cN be non-empty. Let D C be an open disc with
[0, 1]cD, Dc Ry, and such that D cint((\,c.s S,(D)), where S,(z) = 1/z—n.

Let ¢4(s,2) => ,cs(z+n)"" denote the Hurwitz zeta function for the
alphabet J. If the map B+ ¢ (2B, z) has an analytic continuation to a complex
domain U, then the following hold.

(@) The map 3+ %y g also has an analytic continuation to U.

(b) The singularities of the analytic continuation of B+ %, 3 are at the points
1(p—k) with k € Z ~, where p is a singularity of s § ;(s, z).

(c) If U=C, and the analytic continuation of f3+— $,(28,z2) to U is a
meromorphic one to U = C, then 8+ %, g also has a meromorphic continuation
to C, with poles of order m at the points %(p — k) with k € Z ~, where p is a
pole of order m of s+ ¢ 4(s, 2).

() If s+— ¢4(s,2) has an algebraic or logarithmic branch singularity at the
point p, then B+ %, g has algebraic or logarithmic, respectively, branch
singularities at those points 5 (p k) with k € Z - which lie in U.

(e) Foreach BeU, %y 3. H 2(D) — H*(D) is a trace class operator.

Proof. We follow Mayer [33] in expressing 8+ <, s as the sum of two
maps, the first of which is meromorphic with range the class of rank-(N + 1)
operators, the second of which is entire and trace class-valued. We will then
let N — oo.
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Define the operators m, Zy: H*(D) — H*(D) by

® 0 N
ka(z) :f ks )Zk, QN:ZW“
: =0

Letting 2y =1 — %y we write, for any N € Z -,
Lypg=Lsp°Pv+ Lypo 2Ly (11)
Each of the rank-1 projections %, g o m; can be expressed as

®) (0
Ly s f(2) :fk—!() 2B+ k. z)

for f e H*(D), Re(f) > 1 1(0, —k), and for z€ D', some open disc concentric
with D and of strictly larger radius, as in Proposition 1.

Fix f € H*(D) and z€ D'. Let P denote the set of singularities of s — ¢ ,(s, z).
Since B+ {,(28,z) extends analytically to U, with singularities in 1P, then
B— %y sm f(z) extends to the translated region U —k, with singularities
translated to lie in the set 1 (P — k) N U. Therefore 3+ %, 3Py f(z) extends
analytically to U, with singularities in the set {{(p —k): 0<k=<N, p ePInU.

Now we claim that for arbitrary fixed f cH (D) and z€ D', the map
B+ % 52xnf(2) can be extended holomorphically to the half-plane

Re(B) >3(6, — N —1).
If .7 is finite then this claim is clearly true, so suppose .# is infinite, and write
I = {nk}zozl, where ny<n,<....
If £>0 is sufficiently small, then every feH 2(D) has a power series

expansion around 0, uniformly convergent for |z| < &. It follows from Cauchy’s
theorem that there is a constant C; > 0 such that

| 2nf (@) < Crlz|™ (12)
for all |z] < &.
Since .# = {n;} is infinite, we may choose m € N large enough so that

<¢ forany z€ D' and k > m.

Z+nyg

m 28 1
L 2nf (@) Z( +”k> QNf<Z+”k>

k=1

00 1 23 1
+ 2 .
kzm:H(z—i—nk) Nf<z+nk>

The first summation in this expression is finite, and so can be extended to an
entire function of B. Using (12) we see that the second summation is absolutely
and uniformly bounded on D’ by a constant multiple of Y, ]nsze(ﬁ)fN -1
which in particular is convergent for Re(8)>1(6, —N —1), and therefore
defines a holomorphic function in this half-plane.

Therefore for any fixed f € H*(D) and z € D’, the map

B2y pf(2) =Ly gPnf(2) + Ly 2nf(2)

We now write
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has an analytic extension to Un{8e€C:Re(B)>%(0, —N—1)}, for any
N €Z~,. Letting N — oo shows that 8+ %, 5 f(z) has an analytic extension to
U. The nature of any singularity of B+ %, 5f(z) is clearly the same as the
corresponding singularity of s+ { y(S 2).

We now claim that §+— %, 53 is weakly analytzc on U; that is, given any
f € H*(D) and any bounded linear functional I € H*(D)', the map S+ [(%, sf)
has an analytic extension to U. Every functional has a representation [ = (-, g),
for some g € H*(D), so that

1 27 O —
l(gfy,,ﬁf):ﬂ A Lypf(c+re’)glc+ret)dr, (13)

where ¢ denotes the centre of D, and r denotes its radius. We have shown that for
every 1 € [0, 2), the map B+— %, 3 f(c + re'") is holomorphic. Moreover, on any
compact subset K of U, the integral (13) is uniformly convergent for 8 € K. The
analyticity of 8+ (%, 5 f) then follows from Lemma 1.1 of [25].

The weak analyticity of 8+ %, g 1n fact implies strong analyticity (see [46,
Theorem 4 4-F]); that is, for any f € H (D) the map f — Ly g f is analytic on U
(as an H ( )-valued map). But strong analyticity in turn implies the analyticity of
B— s as a B(H 2(D))-Valued map (see [46, Theorem 4.4-G]), which is the
result we want. Once again the nature of any singularity of §+— %, ;5 is clearly
the same as the corresponding singularity of s+ ¢ ,(s, z).

The operator & g o 2 is trace class for each 3 € U, by the same calculations as in
Proposition 1. Adding the finite rank operator £, 3 o 2y gives the analytically
continued operator %, 5, which is therefore itself trace class for each B c U. [

THEOREM 5. Let 4 N be non-empty. Let DcC be an open disc with
[0, 1] CDandDCR], andsuch that D cint((),c.s S,(D)), where S,(z) = 1/z — n.

Define ¥y 5: H 2(D) — H*(D) by (5) on the half-plane Re(B) >0 ,. For the
following alphabets .7, the map (B+— %y 3 has an analytic continuation to the
region stated, and in each case ¥ g is a trace class operator for every (3 in
the extended region.

(i) # finite (and non-empty); 3+ £y g is an entire function of .

(i) & =aN+b for a,b e N; B+— Ly 5 extends meromorphically to C with
simple poles at 8 =3 (1 —k) for ke Z~,.

(i) & ={n"}, =, for aeN; B+ &, 5 extends meromorphically to the
complex plane with simple poles at 8 =13 (1/a — k) for k€ Z .

iv) # ={¥(n)}n—1 with Yy €N[z] a polynomial of degree d>1. Then
0,=1/2d, and B+— %, 5 extends meromorphically to C, the only poles being
simple ones among the points 3 = (1 —k)/2d with k€ Z -,

v) S ={a"};_, for aEZ>2, B &y 5 extends meromorphically to the
complex plane with poles at {— 3k + (Wl/loga) t(k,m)eZogXZ}.

(Vi) 4 = { prime numbers}. Then 0, =1. There is a sequence {B,};—,, with
B1 = 5, whose set of accumulation points is the imaginary axis Re(B) = 0, such that
B JJ’B extends analytically to a domain {8 € C: Re(B) >0}\ J;2 | L,, where
L, = {1,8 —t: t=0}. The map has a logarithmic singularity at each point 3,.

(vil) # the set of integers which are the sum of two squares (of natural

numbers). Then 0, :% and %y 5= (B — 5) ! zﬂ/ g, Where B M, g extends
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analytically to a domain {B € C: Re(B) >1—1A[log(2[Im(B)| +2)] "} for
some A > 0.

(vil) . = {ny}p_ is such that there exists v >0 with ny =n, " for all k.
Then 0 = 0, and the line Re(B) = 0 is a natural boundary for the map 3+— %5 g.

Proof. (i) This is clear.
By Theorem 4, the analytic properties of 8+ %, 5 are closely related to those
of s+ ¢ ,4(s,z). In case (ii) we can exploit this directly.
(i1) We can write

= 1 U +b
§'/(S»Z)22<m>=a §'N<S,Za )

n=1

If ¢(s,2) = > p—o(z + n)~* denotes the classical Hurwitz zeta function, then we have

z+bY z+b a Y
(s 50 ) <o (50 ) - (55)

Now {(s, (z+ b)/a) has a meromorphic extension to the entire complex plane,
with a simple pole at s =1 [6, p.502], so the same is true of {n(s, (z+b)/a),
and hence of {,(s, z). The result then follows by Theorem 4.

In cases (iii)—(viii) it will be more convenient to relate { ,(s,z) to {,(s). The
analytic properties of this latter zeta function are known for the alphabets .#
considered here.

We claim that if {,(s) has an analytic extension to a complex domain U, with
set of singularities Q, then for z€ D, the map s+ {,(s,z) has an analytic
extension to the same domain U, and that its singularities are contained in
{g—kiqeQ,keZ-y}nU.

Let us prove this claim. Write .# = {n;};_,, where n; <n,<.... We can
choose m € N sufﬁciently large to ensure that the closure of D is contained in the
disc of radius 1 >, centred at 0. Define

m—1 s
e =3 (o) A = 5002 g6,

=1 Z+I’lk

for z€ D and Re(s) >20,. For fixed z € D, the map s+ g(s, z) is clearly entire.
We will consider the analytic extension of s+ h(s, z). Let ¢ = {n;}¢-,. be the
tail of the alphabet .#. For z € D and Re(s) > 26, we have

1

N
P

"
]2

SZ

(o7m)
()0 n)'
(S
(/)=

k

Il
]2
S|~

I
3
~

|
M
(=}
w-ra

I
Ms

§‘/ S+l)

~
Il
=
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where the interchange of order of summation is clearly justified, and where
=5\ (1 —ys)
[ ) T+ (-s—1+1)
(so in particular if —s € N with —s <[ then (7“') =0).
We will prove that the map

= (7)ot

extends analytically to U {se€ C: Re(s) >20, — N}, for all N & N. This will
complete the proof of the claim, since it is easily seen that

o NZ ()55 +0)

extends analytically to U, with singularities in the set

{g—kiqgeQ,0<sk<sN-1}nT.

Fix N €N and set hy(s, w) = 372y (7)) (=w)". By a calculation analogous to
the one above we have

Zi; (;s>(—Z)’§f(s+l) =y nihN

Let K be any compact subset of the half-plane Re(s)>26, — N. By the
Cauchy formula there is a constant A >0 such that |hy(s, w)| < A|w|" for s € K
and |w|<3. Now if z€ D then |z/ny| <1 for all k = m. Therefore

® z 00 1 Re(s)+N
thN<S,>'$AmaX|Z|NZ () B
k=m % s zeb k=m s

for all ze D and s € K.
The right-hand side of this inequality is finite, since Re(s) > 26, — N, so indeed

the map
> [ - 1
=3 ()l =3 o

s
k=m "k

is holomorphic on Re(s) > 26, — N, and the claim is proved. The claim will now
be used to establish parts (iii)—(viii) of the theorem.

(iii) In this case we have {,(s) = {(as), where { is Riemann’s zeta function,
which has a meromorphic extension to all of C, with a simple pole at s = 1.
Therefore {,(s) has a meromorphic extension to the whole plane, with a simple
pole at s =1/a. The above claim means that {,(s,z) has a meromorphic
continuation to C, with simple poles at s = 1/a — k with k€ Z-,. (In the case
p =1 all these poles except for k = 0 are cancelled by zeros.) The result follows
by Theorem 4.

(iv) The function {,(s) has a meromorphic extension to all of C, with a
simple pole at s =1/d, and possible further simple poles at s = —k/d for
ke Z- [36]. By the above claim, the same is true of {,(s, z), and the result then
follows by Theorem 4.
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(v) Now

> 1
Cols) =) a ™ =",
mz::l l1—a

which extends meromorphically to C with simple poles at s = (2wi/loga)m for
m € Z. The above claim implies that {(s, z) has a meromorphic continuation to C,
with simple poles at points s = (27i/loga)m —k for k€ Z-, and m€ Z. The
result then follows by Theorem 4.

(vi) For .# = {primes}, the Dirichlet series { ,(s) is holomorphic for Re(s) > 1,
has a logarithmic singularity at s = 1, and can be continued into the half-plane
Re(s) >0 with logarithmic singularities at points s, which accumulate on the
imaginary axis and do not accumulate elsewhere [28]. Removing suitable half-lines,
for example L, = {s, — t: t = 0}, gives a domain {s € C: Re(s) >0}\ J;=, L} on
which {,(s) has a holomorphic continuation. The Hurwitz zeta function { (s, 2)
is also holomorphic on this domain, by the above claim, and the result follows by
Theorem 4.

(vii) The Dirichlet series {,(s) is holomorphic for Re(s) > 1, and can be
written as {,(s) = (s — 1)_1/ 2Z(s), where Z(s) is holomorphic in a domain of
the form

A

log(|Im(s)| +2)]*

(see [20, pp.61-62]). An analogous statement is true for {,(s, z), by the above
claim, and the result then follows by Theorem 4.

(viii) Clearly 60, =0. Write s=1it, where r€R. We then have the
formal expression

Re(s)>1—

Colit) =) g, (14)
k=1

where £ =e¢ . Now ny ., Bni“’, so that logn,,; = (1+v)logn,. A minor

modification of Hadamard’s gap theorem (see [48, §7.43]) then implies that the
circle |£] =1 is a natural boundary for the function of £ defined by (14).
Therefore Re(s) = 0 is a natural boundary for £ ,(s), and hence for {,(s, z). The
result follows by Theorem 4. O
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