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 5 
Summary: Educational attainment (EA) is strongly influenced by social and other 6 

environmental factors, but genetic factors are also estimated to account for at least 20% of the 7 

variation across individuals1. We report the results of a genome-wide association study 8 

(GWAS) for EA that extends our earlier discovery sample1,2 of 101,069 individuals to 9 

293,723 individuals, and a replication in an independent sample of 111,349 individuals from 10 

the UK Biobank. We now identify 74 genome-wide significant loci associated with number 11 

of years of schooling completed. Single-nucleotide polymorphisms (SNPs) associated with 12 

educational attainment are disproportionately found in genomic regions regulating gene 13 

expression in the fetal brain. Candidate genes are preferentially expressed in neural tissue, 14 

especially during the prenatal period, and enriched for biological pathways involved in neural 15 

development. Our findings demonstrate that, even for a behavioral phenotype that is mostly 16 

environmentally determined, a well-powered GWAS identifies replicable associated genetic 17 

variants that suggest biologically relevant pathways. Because EA is measured in large 18 

numbers of individuals, it will continue to be useful as a proxy phenotype in efforts to 19 

characterize the genetic influences of related phenotypes, including cognition and 20 

neuropsychiatric disease. 21 

 22 

Main Text: 23 

We study educational attainment (EA), which is measured in all main analyses as the number 24 

of years of schooling completed (EduYears, N = 293,723, mean = 14.33, SD = 3.61; 25 

Supplementary Information sections 1.1-1.2). All genome-wide association studies (GWAS) 26 

were performed at the cohort level in samples restricted to individuals of European descent 27 
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whose EA was assessed at or above age 30. A uniform set of quality-control (QC) procedures 1 

was applied to the cohort-level summary statistics. In our GWAS meta-analysis of ~9.3M 2 

SNPs from the 1000 Genomes Project, we used sample-size weighting and applied a single 3 

round of genomic control at the cohort level. 4 

Our meta-analysis identified 74 approximately independent genome-wide significant loci. For 5 

each locus, we define the “lead SNP” as the SNP in the genomic region that has the smallest 6 

P-value (Supplementary Information section 1.6.1). Fig. 1 shows a Manhattan plot with the 7 

lead SNPs highlighted. This includes the three SNPs that reached genome-wide significance 8 

in the discovery stage of our previous GWAS meta-analysis of EA1. The quantile-quantile 9 

(Q-Q) plot of the meta-analysis (Extended Data Fig. 1) exhibits inflation (λGC = 1.28), as 10 

expected under polygenicity3. 11 

Extended Data Fig. 2 shows the estimated effect sizes of the lead SNPs. The estimates range 12 

from 0.014 to 0.048 standard deviations per allele (2.7 to 9.0 weeks of schooling), with 13 

incremental R2 in the range 0.01% to 0.035%.  14 

To quantify the amount of population stratification in the GWAS estimates that remains even 15 

after the stringent controls used by the cohorts (Supplementary Information section 1.4), we 16 

used LD Score regression4. The regression results indicate that ~8% of the observed inflation 17 

in the mean χ2 is due to bias rather than polygenic signal (Extended Data Fig. 3a),  suggesting 18 

that stratification effects are small in magnitude. We also found evidence for polygenic 19 

association signal in several within-family analyses, although these are not powered for 20 

individual SNP association testing (Supplementary Information section 2 and Extended Data 21 

Fig. 3b). 22 

To further test the robustness of our findings, we examined the within-sample and out-of-23 

sample   replicability   of   SNPs   reaching   genome-wide   significance   (Supplementary 24 
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Information sections 1.7-1.8). We found that SNPs identified in the previous EA meta-1 

analysis 2 

replicated in the new cohorts included here, and conversely, that SNPs reaching genome-wide 3 

significance in the new cohorts replicated in the old cohorts. For the out-of-sample replication 4 

analyses of our 74 lead SNPs, we used the interim release of the U.K. Biobank 5 (UKB) (N = 5 

111,349). As shown in Extended Data Fig. 4, 72 out of the 74 lead SNPs have a consistent 6 

sign (P = 1.47×10−19), 52 are significant at the 5% level (P = 2.68×10−50), and 7 reach 7 

genome-wide significance in the U.K. Biobank dataset (P = 1.41×10−42). For comparison, the 8 

corresponding expected numbers, assuming each SNP’s true effect size is its estimated effect 9 

adjusted for the winner’s curse, are 71.4, 40.3, and 0.6. (Supplementary Information section 10 

1.8.2). We also find out-of-sample replicability of our overall GWAS results: the genetic 11 

correlation between EduYears in our meta-analysis sample and in the UKB data is 0.95 (s.e. = 12 

0.021; Supplementary Table 1.14). 13 

It is known that EA, cognitive performance, and many neuropsychiatric phenotypes are 14 

phenotypically correlated, and several studies of twins find that the phenotypic correlations 15 

partly  reflect  genetic  overlap6–8  (Supplementary  Information  section  3.3.4).  Here, we 16 

investigate genetic correlation using our GWAS results for EduYears and published GWAS 17 

results for 14 other phenotypes, using bivariate Linkage-Disequilibrium (LD) Score 18 

regression9 (Supplementary  Information  section  3).  First, we estimated genetic correlations 19 

with EduYears. As shown in Fig. 2, based on overall summary statistics for associated 20 

variants, we find genetic covariance between increased EA and increased cognitive 21 

performance (P = 9.9×10-50), increased intracranial volume (P = 1.2×10-6), increased risk of 22 

bipolar disorder (P = 7×10-13), decreased risk of Alzheimer’s (P = 4×10-4), and lower 23 

neuroticism (P = 2.8×10-8). We also found positive, statistically significant, but very small, 24 

genetic correlations with height (P = 5.2×10-15) and risk of schizophrenia (P = 3.2×10-4). 25 



4 
  

Second, we examined whether our 74 lead SNPs are jointly associated with each phenotype 1 

(Extended Data Fig. 5 and Supplementary Information section 3.3.1). We reject the null 2 

hypothesis of no enrichment at P < 0.05 for 10 of the 14 phenotypes (all the exceptions are 3 

subcortical brain structures).  4 

Third, for each phenotype, we tested (in the published GWAS results) each of our 74 lead 5 

SNPs or proxy for association at a significance threshold of 0.05/74. We found a total of 25 6 

SNPs meeting this threshold for any of these phenotypes, but only one reaching genome-wide 7 

significance. While these results provide suggestive evidence that some of these SNPs may 8 

be associated with other phenotypes, further testing of these associations in independent 9 

cohorts is required (Supplementary Tables 3.2-3.4, Extended Data Fig. 6).  10 

To consider potential biological pathways, we first tested whether SNPs in particular regions 11 

of the genome are implicated by our GWAS results. Unlike what has been  found for other 12 

phenotypes, SNPs in regions that are DNase I hypersensitive in the fetal brain are more likely 13 

to be associated with EduYears by a factor of ~5 (95% confidence interval 2.89–7.07; 14 

Extended Data Fig. 7). Moreover, the 15% of SNPs residing in regions associated with 15 

histones marked in the central nervous system (CNS) explain 44% of the heritable variation 16 

(Extended Data Fig. 8a and Supplementary Table 4.4.2). This enrichment factor of ~3 for 17 

CNS (P = 2.48×10−16) is greater than that of any of the other nine tissue categories in this 18 

analysis. 19 

Given that our findings disproportionately implicate SNPs in regions regulating brain-specific 20 

gene expression, we examined whether genes located near EduYears-associated SNPs show 21 

elevated expression in neural tissue. We tested this hypothesis using data on mRNA transcript 22 

levels in the 37 adult tissues assayed by the Genotype-Tissue Expression Project (GTEx)10. 23 

Remarkably, the 13 GTEx tissues that are components of the CNS—and only those 13 24 
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tissues—show significantly elevated expression levels of genes near EduYears-associated 1 

SNPs (FDR < 0.05; Extended Data Fig. 8b and Supplementary Table 4.5.2). 2 

To investigate possible functions of the candidate genes from the GWAS associated loci, we 3 

examined the extent of their overlap with groups of genes (“gene sets”) whose products are 4 

known or predicted to participate in a common biological process11. We found 283 gene sets 5 

significantly enriched by the candidate genes identified in our GWAS (FDR < 0.05; 6 

Supplementary Table 4.5.1). To facilitate interpretation, we used a standard procedure11 to 7 

group the 283 gene sets into “clusters” defined by degree of gene overlap. The resulting 34 8 

clusters, shown in Fig. 3, paint a coherent picture, with many clusters corresponding to stages 9 

of neural development: the proliferation of neural progenitor cells and their specialization 10 

(the cluster npBAF complex), the migration of new neurons to the different layers of the 11 

cortex (forebrain development, abnormal cerebral cortex morphology), the projection of 12 

axons from neurons to their signaling targets (axonogenesis, signaling by Robo receptor), the 13 

sprouting of dendrites and their spines (dendrite,  dendritic  spine  organization),  and  14 

neuronal  signaling  and  synaptic  plasticity throughout  the  lifespan  (voltage-gated  15 

calcium  channel  complex,  synapse part,  synapse organization). 16 

Many of our results implicate candidate genes and biological pathways that are active during 17 

distinct stages of prenatal brain development. To directly examine how the expression levels 18 

of candidate genes identified in our GWAS vary over the course of development, we used 19 

gene expression data from the BrainSpan Developmental Transcriptome12. As shown in 20 

Extended Data Fig. 9, these candidate genes exhibit above-baseline expression in the brain 21 

throughout life but especially higher expression levels in the brain during prenatal 22 

development (1.36 times higher prenatally than postnatally, P = 6.02×10−8). 23 

A summary overview of some promising candidate genes for follow-up work is provided in 24 

Table 1.  25 
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We constructed polygenic scores13 to assess the joint predictive power afforded by the 1 

GWAS results (Supplementary Information section 5.2). Across our two holdout samples, the 2 

mean predictive power of a polygenic score constructed from all measured SNPs is 3.2% (P = 3 

1.18×10−39; Supplementary Table 5.2 and Supplementary Information section 5). 4 

Studies of genetic analyses of behavioral phenotypes have been prone to misinterpretation, 5 

such as characterizing identified associated variants as “genes for education.” Such 6 

characterization is not correct for many reasons: EA is primarily determined by 7 

environmental factors, the explanatory power of the  individual SNPs is small, the candidate 8 

genes may not be causal, and the genetic associations with EA are mediated by multiple 9 

intermediate phenotypes14. To illustrate this last point, we studied mediation of the 10 

association between the all-SNPs polygenic score and EduYears in two of our cohorts. We 11 

found that cognitive performance can statistically account for 23-42% of the association (P < 12 

0.001) and the personality trait “openness to experience” for approximately 7% (P < 0.001; 13 

Supplementary Information section 6). 14 

 It would also be a mistake to infer from our findings that the genetic effects operate 15 

independently of environmental factors. Indeed, a recent meta-analysis of twin studies found 16 

that genetic influences on EA are heterogeneous across countries and birth cohorts15. We 17 

conducted exploratory analyses in the Swedish Twin Registry to illustrate how environmental 18 

factors may amplify or dampen the impact of genetic influences (Supplementary Information 19 

section 7). We found that the predictive power of the all-SNPs polygenic score is 20 

heterogeneous by birth cohort, with smaller explanatory power in younger cohorts (Extended 21 

Data Fig. 10; see also Supplementary Information section 7.4 for discussion of the contrast 22 

between these results and findings from a seminal twin study that estimated EA heritability 23 

by birth cohort16). 24 

 25 
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Methods: All methods are described in the Supplementary Information. 1 

 2 

 3 
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Table 1 | Selected candidate genes implicated by bioinformatics analyses. Fifteen 1 

candidate genes implicated most consistently across various analyses. To assemble this list, 2 

each gene in a DEPICT-defined locus (Supplementary Information section 4.5) was assigned 3 

a score equal to the number of criteria it satisfies out of ten (see Supplementary Table 4.1 for 4 

details). The DEPICT prioritization P-value was used as the tiebreaker. “SNP”: the SNP in 5 

the gene’s locus with the lowest P-value in the EduYears meta-analysis. “Syndromic”: which, 6 

if any, of three neuropsychiatric disorders have been linked to de novo mutations in the gene 7 

(Supplementary Information section 4.6). “Top-ranking gene sets”: DEPICT reconstituted 8 

gene sets of which the gene is a top-20 member (Supplementary Table 4.5.1). The three most 9 

significant gene sets are shown if more than three are available. ID, intellectual disability; 10 

ASD, autism spectrum disorder; SCZ, schizophrenia. 11 

  12 
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 1 
Gene SNP Syndromic Score Top-ranking gene sets 
TBR1 rs4500960 ID, ASD 6 Developmental biology, decreased brain size, 

abnormal cerebral cortex morphology 
MEF2C rs7277187 ID, ASD 5 ErbB signaling pathway, abnormal sternum 

ossification, regulation of muscle cell 
differentiation 

ZSWIM6 rs61160187 – 5 Transcription factor binding, negative regulation 
of signal transduction, PI3K events in ErbB4 
signaling 

BCL11A rs2457660 ASD 5 Dendritic spine organization, abnormal 
hippocampal mossy fiber morphology, 
SWI/SNF-type complex 

CELSR3 rs11712056 SCZ 5 Dendrite morphogenesis, dendrite development, 
abnormal hippocampal mossy fiber morphology 

MAPT rs192818565 ID 5 Dendrite morphogenesis, abnormal hippocampal 
mossy fiber morphology, abnormal axon 
guidance 

SBNO1 rs7306755 SCZ 5 Protein serine/threonine phosphatase complex 
NBAS rs12987662 – 5 – 
NBEA rs9544418 SCZ 4 Developmental biology, signaling by Robo 

receptor, dendritic shaft 
SMARCA2 rs1871109 ID 4 – 
MAP4 rs11712056 ASD 4 Developmental biology, signaling by Robo 

receptor, SWI-SNF-type complex 
LINC00461 rs10061788 – 4 Decreased brain size, abnormal cerebral cortex 

morphology, abnormal hippocampal mossy fiber 
morphology 

POU3F2 rs9320913 – 4 Dendrite morphogenesis, developmental biology, 
decreased brain size 

RAD54L2 rs11712056 SCZ 4 Decreased brain size, SWI/SNF-type complex, 
nBAF complex 

PLK2 rs2964197 – 4 Negative regulation of signal transduction, PI3K 
events in ErbB4 signaling 

  2 
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Figure Legends 

Figure 1 | Manhattan plot for EduYears associations (N = 293,723). The x-axis is 

chromosomal position, and the y-axis is the significance on a –log10 scale. The black line 

shows the genome-wide significance level (5×10-8). The red x’s are the 74 approximately 

independent genome-wide significant associations (“lead SNPs”). The black dots labeled 

with rs numbers are the 3 Rietveld et al.1 SNPs. 

 

 

Figure 2 | Genetic correlations between EduYears and other traits. Results from bivariate 

Linkage-Disequilibrium (LD) Score regressions9: estimates of genetic correlation with brain 



28 
  

                                                                                                                                                                                         
volume, neuropsychiatric, behavioral, and anthropometric phenotypes using published 

GWAS summary statistics. The error bars show the 95% confidence intervals. 

 

 

Figure 3 | Overview of biological annotation. 34 clusters of significantly enriched gene 

sets. Each cluster is named after one of its member gene sets. The color represents the P-

value of the member set exhibiting the most statistically significant enrichment. Overlap 

between pairs of clusters is represented by an edge. Edge width represents the Pearson 

correlation ρ between the two vectors of gene membership scores (ρ < 0.3, no edge; 0.3 ≤ ρ < 

0.5, thin edge; 0.5 ≤ ρ < 0.7, intermediate edge; ρ ≥ 0.7, thick edge), where each cluster’s 

vector is the vector for the gene set after which the cluster is named.  

 

Extended Data Figure Legends 

 

Extended Data Figure 1 | Quantile-quantile plot of the genome-wide association meta-

analysis of 64 EduYears results files. Observed and expected P-values are on a –log10 scale. 

The grey region depicts the 95% confidence interval under the null hypothesis of a uniform 

P-value distribution. The observed λGC is 1.28. (As reported in Supplementary Information 

section 1.5.4, the unweighted mean λGC is 1.02, the unweighted median is 1.01, and the range 

across cohorts is 0.95–1.15.) 

 

 

Extended Data Figure 2 | The distribution of effect sizes of the 74 lead SNPs. a, SNPs 

ordered by absolute value of the standardized effect of one more copy of the education-

increasing allele, with 95% confidence intervals. b, SNPs ordered by R2. Effects on EduYears 
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are benchmarked against the top 74 genome-wide significant hits identified in the largest 

GWAS conducted to date of height and body mass index (BMI), and the 48 associations 

reported for waist-to-hip ratio adjusted for BMI (WHR). These results are based on the 

GIANT consortium’s publicly available results for pooled analyses restricted to European-

ancestry individuals: 

https://www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium.  

 

 

Extended Data Figure 3 | Assessing the extent to which population stratification affects 

the estimates from the GWAS. a, LD Score regression plot with the summary statistics 

from the GWAS. Each point represents an LD Score quantile for a chromosome (the x and y 

coordinates of the point are the mean LD Score and the mean χ2 statistic of variants in that 

quantile). The facts that the intercept is close to one and that the χ2 statistics increase linearly 

with the LD Scores suggest that the bulk of the inflation in the χ2 statistics is due to true 

polygenic signal and not to population stratification. b, Estimates and 95% confidence 

intervals from individual-level and WF regressions of EduYears on polygenic scores, for 

scores constructed with sets of SNPs meeting different P-value thresholds. In addition to the 

analyses shown here, we conduct a sign concordance test, and we decompose the variance of 

the polygenic score. Overall, these analyses suggest that population stratification is unlikely 

to be a major concern for our 74 lead SNPs. See Supplementary Information section 3 for 

additional details. 

 

 

Extended Data Figure 4 | Replication of 74 lead SNPs in the UK Biobank data. Estimated 

effect sizes (in years of schooling) and 95% confidence intervals of the 74 lead SNPs in the 
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meta-analysis sample (N = 293,723) and the UK Biobank replication sample (N = 111,349). 

The reference allele is the allele associated with higher values of EduYears in the meta-

analysis sample. SNPs are in descending order of R2 in the meta-analysis sample. Of the 74 

lead SNPs, 72 have the anticipated sign in the replication sample, 52 replicate at the 0.05 

significance level, and 7 replicate at the 5×10−8 significance level.  

 

 

Extended Data Figure 5 | Q-Q plots for the 74 lead EduYears SNPs (or LD proxies) in 

published GWAS of other phenotypes. SNPs with concordant effects on both phenotypes 

are pink, and SNPs with discordant effects are blue. SNPs outside the gray area pass 

Bonferroni-corrected significance thresholds that correct for the total number of SNPs we 

tested (P < 0.05/74 = 6.8×10-4) and are labeled with their rs numbers. Observed and expected 

P-values are on a –log10 scale. For the sign concordance test: * P < 0.05, ** P < 0.01, and 

*** P < 0.001. 

Extended Data Figure 6 | Regional association plots for four of the ten prioritized SNPs 

for MHBA phenotypes identified using EduYears as a proxy phenotype: a, cognitive 

performance; b, hippocampus; c, intracranial volume; d, neuroticism. The four were selected 

because very few genome-wide significant SNPs have been previously reported for these 

traits. Data sources and methods are described in Supplementary Information section 3. The 

R2 values are from the hg19 / 1000 Genomes Nov 2014 EUR references samples. The figures 

were created with LocusZoom (http://csg.sph.umich.edu/locuszoom/). Mb, megabases. 

 

 

Extended Data Figure 7 | Application of fgwas to EduYears. See Supplementary 

Information section 4.2 for further details. a, The results of single-annotation models. 
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“Enrichment” refers to the factor by which the prior odds of association at an LD-defined 

region must be multiplied if the region bears the given annotation; this factor is estimated 

using an empirical Bayes method applied to all SNPs in the GWAS meta-analysis regardless 

of statistical significance. Annotations were derived from ENCODE and a number of other 

data sources. Plotted are the base-2 logarithms of the enrichments and their 95% confidence 

intervals. Multiple instances of the same annotation correspond to independent replicates of 

the same experiment. b, The results of combining multiple annotations and applying model 

selection and cross-validation. Although the maximum-likelihood estimates are plotted, 

model selection was performed with penalized likelihood. c, Reweighting of GWAS loci. 

Each point represents an LD-defined region of the genome, and shown are the regional 

posterior probabilities of association (PPAs). The x-axis give the PPA calculated from the 

GWAS summary statistics alone, whereas the y-axis gives the PPA upon reweighting on the 

basis of the annotations in b. The orange points represent genomic regions where the PPA is 

equivalent to the standard GWAS significance threshold only upon reweighting. 

Extended Data Figure 8 | Tissue-level biological annotation. a, The enrichment factor for 

a given tissue type is the ratio of variance explained by SNPs in that group to the overall 

fraction of SNPs in that group. To benchmark the estimates for EduYears, we compare the 

enrichment factors to those obtained when we use the largest GWAS conducted to date on 

body mass index, height, and waist-to-hip ratio adjusted for BMI. The estimates were 

produced with the LDSC python software, using the LD Scores and functional annotations 

introduced in Finucane et al. (2015) and the HapMap3 SNPs with MAF > 0.05. Each of the 

10 enrichment calculations for a particular cell type is performed independently, while each 

controlling for the 52 functional annotation categories in the full baseline model. The error 

bars show the 95% confidence intervals. b, We took measurements of gene expression by the 

Genotype-Tissue Expression (GTEx) Consortium and determined whether the genes 



32 
  

                                                                                                                                                                                         
overlapping EduYears-associated loci are significantly overexpressed (relative to genes in 

random sets of loci matched by gene density) in each of 37 tissue types. These types are 

grouped in the panel by organ. The colored bars corresponding to tissues where there is 

significant overexpression. The y-axis is the significance on a –log10 scale. 

 

 

Extended Data Figure 9 | Gene-level biological annotation. a, The DEPICT-prioritized 

genes for EduYears measured in the BrainSpan Developmental Transcriptome data (red 

curve) are more strongly expressed in the brain prenatally rather than postnatally. The 

DEPICT-prioritized genes exhibit similar gene-expression levels across different brain 

regions (gray lines). Analyses were based on log2-transformed RNA-Seq data. Error bars 

represent 95% confidence intervals. b, For each phenotype and disorder, we calculated the 

overlap between the phenotype’s DEPICT-prioritized genes and genes believed to harbor de 

novo mutations causing the disorder. The bars correspond to odds ratios. EduYears, years of 

education; BMI, body mass index; WHR, waist-to-hip ratio adjusted for BMI. c, DEPICT-

prioritized genes in EduYears-associated loci exhibit substantial overlap with genes 

previously reported to harbor sites where mutations increase risk of intellectual disability and 

autism spectrum disorder (Supplementary Table 4.6.1). 

 

 

Extended Figure 10 | The predictive power of a polygenic score (PGS) varies in Sweden 

by birth cohort. Five-year rolling regressions of years of education on the PGS (left axis in 

all four panels), share of individuals not affected by the comprehensive school reform (a, 

right axis), and average distance to nearest junior high school (b, right axis), nearest high 
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school (c, right axis) and nearest college/university (d, right axis). The shaded area displays 

the 95% confidence intervals for the PGS effect. 
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