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Abstract: Structural identifiability analysis is a theoretical concept that ascertains whether
unknown model parameters can be uniquely determined for a given experimental setup. If
this condition is not fulfilled numerical parameter estimates will be meaningless and the
model prediction may not necessarily be reliable. Therefore, structural identifiability should
be considered a prerequisite in any project where model predictions are a part of the decision
making process. For models defined by ordinary differential equations, there are several methods
developed both for the linear and nonlinear cases. In systems pharmacology pharmaceutical
drug development projects there is, apart from an interest in understanding the biological
mechanisms, also an interest in subject variability. For this, mixed-effects models are typically
used. However, despite the wide use of mixed-effects models and being a part of the decision
making process in pharmaceutical drugs projects, very little has been done on developing
methods for structural identifiability analysis of mixed-effects models. In this paper, we propose
and compare two methods for performing such an analysis. The first method is based on applying
a set of established statistical theorems while in the second method the system is augmented to
yield a random differential equation system format followed by subsequent analysis.

Keywords: Systems Pharmacology, Structural Identifiability, Observability, Mixed-Effects
models, Random Differential Equations, Statistics

1. INTRODUCTION

Systems pharmacology is a sub-field of the more broader
concept of mathematical modelling of biological systems.
More specifically, in systems pharmacology efforts are fo-
cused on understanding the underlying biological mech-
anisms using modelling as a way of developing effective
pharmaceutical drugs more efficiently. According to Vicini
and van der Graaf (2013), the idea behind having a more
systems approach to drug development, is to be able to
better develop optimal and translatable pharmacological
pathway interventions, scalable to humans. Systems phar-
macology is an emerging field, and its importance and
application in drug development will most likely continue
to increase.

For a systems pharmacology model to be truly useful, the
concept of identifiability must always be considered, i.e.
whether the unknown model parameters can be estimated
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in a meaningful way. There are two types of problems
associated with identifiability i) Structural identifiability,
where assumption of perfect experimental conditions is
made, i.e. continuous-time and noise-free input and output
functions. This assumption allows an analysis of whether
or not the actual model structure itself with a given ob-
servation function allows estimation of unique parameter
estimates. ii) Practical identifiability, which concerns how
the amount and quality of information in the experimental
data are translated into the model parameter uncertainty.
A model can be structurally identifiable, but still be prac-
tically unidentifiable due to poor data quality, e.g. bad
signal-to-noise ratio, or sparse sampling. Conversely, if a
model is structurally unidentifiable then it is always prac-
tically unidentifiable. Therefore, a structural identifiability
analysis should always be performed prior to a practical
identifiability analysis. In this paper, we will only consider
structural identifiability analysis.

A great deal of effort has been made on developing meth-
ods for structural identifiability analysis of deterministic
systems. These methods include the Taylor series expan-
sion introduced by Pohjanpalo (1978), the Laplace trans-



formation approach by Bellman and Astrom (1970), a
differential algebra approach by Ljung and Glad (1994),
the software DAISY which also is based on differential
algebra algorithms presented in Bellu et al. (2007), the
Exact Arithmetic Rank approach by Karlsson et al. (2012),
rewriting the model on an input-output form presented in
Evans et al. (2013), a numerical approach called Profile-
Likelihood by Raue et al. (2011) and the Similarity Trans-
formation outlined in Vajda (1982).

In a pharmaceutical drug development project it is, along-
side having a good understanding of the underlying bi-
ological mechanisms, also important to have knowledge
about patient variability in terms of efficacy and toxicity.
For this, mixed-effects modelling has been widely used.
However, the structural identifiability analysis methods
mentioned above can only be applied to deterministic mod-
els. Apart from a few results, e.g. Wang (2013) which is
applicable for linear mixed-effects models and Shivva et al.
(2013) which is based on numerical approaches, very little
has been performed on structural identifiability for mixed-
effects models. In this paper we propose and compare two
approaches for such an analysis together with examples.

2. STRUCTURAL IDENTIFIABILITY

In this section we introduce structural identifiability first
with an conceptual example of using simulations from a
structurally unidentifiable model. We then formally define
structural identifiability.

Consider the well known one-compartment absorption
model

ẋ(t) = −kax(t) x(0) = FDose (1)

ċ(t) =
kax(t)

V
− CL

V
c(t) c(0) = 0 (2)

y(t) = c(t) (3)

where ka is the absorption rate, F is the bioavailability,
Dose is the administered dose, CL is the clearance of the
drug and V is the volume of distribution and c(t) is the
concentration of the drug in the plasma which is measured.
It has previously been shown, for instance in Cheung
et al. (2013), that the model parameters {CL,F, V } are
structurally unidentifiable but the ratios of the model
parameters {CLF , VF } are structurally identifiable.

In Figure 1, simulations using three different parameters
sets are shown. The values used for the different parame-
ters sets are summarized in Table 1.

Fig. 1. The simulations using parameter set A and B are
identical while the simulation using parameter set C
has a different profile.

Note in Table 1 that the ratios for parameter set A and
B are the same while one of the ratios in parameter
set C is different. These numerical results are consistent

with previous symbolic results followed from structural
identifiability analysis.

Table 1. Parameter values used for simulations.

Parameter Set ka CL F V CL
V

V
F

A 0.01 0.9 1 1 0.9 1
B 0.01 0.45 0.5 0,5 0.9 1
C 0.01 0.3 1 1 0.3 1

Now follows a more formal definition of structural identi-
fiability.

Let the generic parameter vector p belong to a feasible
parameter space Ω such that p ∈ Ω. Let y(t,p) be the
observable output function from a state space model. Fur-
ther consider a parameter vector p̄ where y(t,p) = y(t, p̄)
for t. If this equality, in a neighbourhood N ∈ Ω, implies
that p = p̄ the model is structurally locally identifiable. If
N = Ω then the model is globally structurally identifiable.
However, if y(t,p) = y(t, p̄) implies p 6= p̄ then the model
is structurally unidentifiable.

For mixed-effects models there are, in addition to the
model parameters, also statistical parameters describing
the model parameter distributions in the population. The
concept of structural identifiability in a mixed-effects
model context then expands to determining whether the
distribution of the model parameters is uniquely deter-
mined by the statistical parameters. For instance, if the
parameters P1 ∈ N(µ1, ω1) and P2 ∈ N(µ2, ω2) then
the statistical parameters {µ1, µ2, ω1, ω2} are structurally
unidentifiable if only the sum psum = P1 +P1 is estimated
since Psum ∈ N(µ1 + µ2,

√
ω2

1 + ω2
2).

3. METHODS

In this section the general mixed-effects model struc-
ture is defined together with two different approaches to
structural identifiability analysis applicable to such model
structures.

3.1 Mixed-effects models

Before introducing the mixed-effects model structure we
first introduce the deterministic model

ẋ(t) = f(x(t),u(t),θ) x(t0) = x0 (4)

y(t) = h(x(t),u(t),θ) (5)

where x(t) ∈ Rm is the state, u(t) ∈ Rn is the input,
θ ∈ Rd are the model parameters and y(t) ∈ Rw is the
output.

In contrast to the deterministic model, in mixed-effects
modelling framework individual estimates of each subject’s
parameters are obtained. This is done by defining fixed
effects, which are related to a population, and random
effects, which are related to individuals within that popu-
lation. In the inference problem, the random effects are
assumed to belong to a postulated distribution which
allows sharing of information between all subjects in a
simultaneous estimation of all subject;s parameters. The
mixed-effects model has the following general form

ẋi(t) = f(xi(t),ui(t),φi) xi(t0) = x0(φi) (6)

yi(t) = h(xi(t),ui(t),φi) (7)

(8)



where φi = g(θ,ηi,Ci) are the parameters for the ith
subject, ηi ∈ N(0,Σ) are the random effects where Σ is
the variance-covariance matrix, θ are the population pa-
rameters and Ci are covariates. In systems pharmacology,
most parameters are typically assumed to belong to a log-
normal distribution φi = θeηi to ensure positivity.

3.2 Repeated measurement approach

In a structurally unidentifiable model, it is still common to
have structurally identifiable combinations of parameters,
e.g. products, sums or ratios. The main idea behind
the repeated measurement approach is to consider what
happens to models where such parameter combinations
exist in terms of structural identifiability in a mixed-
effects framework, i.e. how the parameters belonging to
a distribution, which may or may not be correlated with
each other, affect whether they are structurally identifiable
or not.

To state the problem more formally, consider

Z = w(Φ) (9)

where Φ = [φi] is a vector of containing a subset of the
model parameters with postulated parametrised distribu-
tions and Φ ∈ Rp, Z ∈ Rq, q < p and w(·) being in
general a nonlinear function, e.g. products, sums or ratios
of two or more parameters. The repeated measurement ap-
proach is to determine under what conditions the original
parametrised distributions of Φ are determined by a lower
dimensional distribution of Z. Several theorems will be
presented below that can help in answering this question.

Theorem 1. (Radhakrishna (1971)) Suppose P1, P2 and
P3 are three independent real-valued random variables.
Consider the two linear forms:

Z1 = a1P1 + a2P2 + a3P3 (10)

Z2 = b1P1 + b2P2 + b3P3 (11)

such that ai : bi 6= aj : bj for i 6= j. If the characteristic
function of (Z1, Z2) does not vanish, then the joint distri-
bution of (Z1, Z2) determines the distribution of P1, P2

and P3 up to a change of location.

Theorem 2. (Radhakrishna (1971)) In an extension of
Theorem 1, consider p linear functions Zi, 1 ≤ i ≤ p, of n
independent variables Pi. The smallest number p of linear
functions Zi, 1 ≤ i ≤ p such that the joint distribution
specifies the distribution of each random variable Pi, 1 ≤
i ≤ n, can be calculated from the following relation

p(p− 1)

2
< n ≤ p(p+ 1)

2
(12)

Theorem 3. (Rao (1992)) Suppose P1, P2 and P3 are three
independent positive random variables. Let

Z1 =
P1

P3
(13)

Z2 =
P2

P3
(14)

If the characteristic function of (log Z1, log Z2) does not
vanish then the distribution of (Z1,Z2) determines the
distributions of P1, P2 and P3 up to a change of scale.

Theorem 4. (Szekely and Rao (2000)) Let P1, P2,..., Pn be
independent random variables. Given the moments E[P sj ]

where s = 1,2,..., m and j = 1,2,..., n the joint distribution
function of the linear forms

Zi =

n∑
j=1

aijPi, i = 1, 2, ...k (15)

with an arbitrary nonvanishing joint characteristic func-
tion uniquely determines the distributions of P1, P2,..., Pn
if and only if

n ≤
(
k +m
m+ 1

)
. (16)

Theorems 1-4 provide some general conditions how the
parameters belonging to a distribution affects structural
identifiability. In Example 1 below Theorem 1 is applied to
show preciously how the repeated measurement approach
can be used.

3.3 Augmented system approach

The second approach deals with augmenting the original
system in such as way that the model parameters in
the original system are differential equations with a zero-
derivative and a random variable as initial condition in the
augmented system, i.e. the augmented system is a random
differential equation system where the randomness enters
only through the initial conditions.

Theorem 5. (Soong (1973)) Consider the random system
described by

Ẋ(t) = f(X(t), t) (17)

X(t0) = X0 (18)

where the initial condition X0 are random variables. The
general solution takes the form

X(t) = h(X0, t) (19)

If h(·) is continuous in X0, has continuous partial deriva-
tives with respect to X0 and defines a one-to-one mapping,
the inverse transform can then be written as

X0 = h−1(X, t) (20)

The joint density function p(x, t) of X(t) is then given by

f(x, t) = p0[x0 = h−1(x, t)] | J | (21)

where f0(x0) is the joint density function of the initial
condition X0 and J =

∣∣∂x0

∂x

∣∣.
Problem formulation: In the augmented system the struc-
tural identifiability problem becomes a question of whether
the joint distribution function p(x, t) of the states X(t) is
uniquely determined by (21) in Theorem 5.

One way of connecting the output function y(t) with the
model structure and the density function for the random
initial conditions is to consider the moments of the output
function y(t). The nth moment of the ith component of
the state vector X(t), here denoted as Xi(t), is given by

E[Xn
i (t)] =

∫ ∞
−∞

hni (x0, t)p0(x0)dx0 (22)

Assume for some arbitrary model that we have y(t) =
x1(t). From eq. 22 we have, using E[yn(t)] = E[Xn

1 (t)] =∫∞
−∞ hn1 (x0, t)p0(x0)dx0 for some number n, a set of n

equations describing the n different moments of y(t) in
terms of the statistical parameters {µ, ω, ρ} (expected
value, variance, correlation) and the model structure. The



assumption here is that we have, apart from noise free,
continuous data, an infinite number of subjects/patients.
The task is now to show that the different moments
of our observation y(t) are uniquely determined by the
statistical parameters. Note that in this way the output
can be any arbitrary function e.g. a sum, products etc.
of several states. For instance if y(t) = x1 + x2, then
E[yn(t)] = E[Xn

1 (t)] + E[Xn
2 (t)].

4. EXAMPLES

In this section two examples of structural identifiability
analysis will be given using the approaches presented in
the previous section.

4.1 Example 1: Simple tumour growth model

Consider the two following simple tumour growth models

q̇A(t) = (P1 − P3)qA(t) = Z1qA(t) (23)

qA(0) = qA0 (24)

y1(t) = qA(t) (25)

and

q̇B(t) = (P2 − P3)qB(t) = Z2qB(t) (26)

qB(0) = qB0 (27)

y2(t) = qB(t) (28)

where Pi = eηi and ηi ∈ N(0, σi), P1 and P2 are the
growth rate of the tumour with no drug present and with
drug present respectively, P3 is the natural cell death,
qA(t), qB(t) are the tumour sizes. Note that the parameter
P3 is shared between the two models. If we estimate all
model parameters simultaneously we can apply Theorem
1 to show that the variances of the model parameters σ1,
σ2 and σ3 are structurally identifiable even though the
model parameters in the deterministic case are structurally
unidentifiable.

From Theorem 1 we have

Z1 = P1 − P3 (29)

Z2 = P2 − P3 (30)

This means that if the model parameters in (23)-(28) are
estimated in parallel, i.e. if the joint distribution (Z1, Z2)
is estimated, the variance σi of the individual parameters
is structurally identifiable. However, the population pa-
rameters are structurally unidentifiable.

4.2 Example 2

Consider the following model with only one state and one
normally distributed dose parameter ZDose

ẋ1(t) = −x1(t) x1(0) = ZDose (31)

y(t) = x1(t) p0(ZDose) =
e
− (ZDose−µDose)

2

2ω2
Dose

√
2πωDose

(32)

with the solution y(t) = ZDosee
−t. The first and second

moment of the observation function y(t) is, using eq. 22,

E[y(t)] = E[x1(t)] (33)

=

∫ ∞
−∞

ZDosee
−t e
− (ZDose−µDose)

2

2ω2
Dose

√
2πωDose

dZDose (34)

=
e−tµDose√

1
ω2
Dose

ωDose
(35)

E[y2(t)] = E[x2
1(t)] (36)

=

∫ ∞
−∞

(ZDosee
−t)2 e

− (ZDose−µDose)
2

2ω2
Dose

√
2πωDose

dZDose

(37)

=
e−2t

(
µ2

Dose + ω2
Dose

)√
1

ω2
Dose

ωDose
(38)

To show that the first two moments of the output signal
y(t) are determined uniquely by the statistical parameters
we can equate E[ynθ (t)] = E[yn

θ̄
(t)] where n = 1, 2 and θ =

{µDose, ωDose}andθ̄ = {µ̄Dose, ω̄Dose} is an alternative
parameter vector. If this equation system implies that
θ = θ̄ then the statistical parameters are structurally
identifiable. This yields

e−tµDose√
1

ω2
Dose

ωDose

=
e−tµ̄Dose√

1
ω̄2

Dose

ω̄Dose

(39)

(40)

and

e−2t
(
µ2

Dose + ω2
Dose

)√
1

ω2
Dose

ωDose

=
e−2t

(
µ̄2

Dose + ω̄2
Dose

)√
1

ω̄2
Dose

ω̄Dose

(41)

for which the only solutions are µ = µ̄ and ω = ω̄.
The mixed-effect model (31)-(32) is therefore structurally
uniquely identifiable.

Observability

Observability is an important concept in systems mod-
elling in general. A system such as (4)-(5) is said to be
observable if and only if, given an input-output map, the
initial conditions x0 can be determined, see Hermann and
Krener (1977). Observability is strongly related to struc-
tural identifiability since observability may be regarded as
a generalisation of structural identifiability. If a system,
written in an extended state-space form, i.e. the model
parameters are defined as state variables, but with zero
time-derivative, is shown to be observable then it follows
directly that the system also is structurally identifiable.

In the augmented system approach presented in this pa-
per, the system is rewritten on such an extended state-
space form. Therefore, although no explicit approach is
presented here, it is still worth mentioning that an alter-
native to considering the moments of the output function
y(t) is to instead combine existing observability tests such
as the Observability Rank Criterion together with the
joint density function of the initial conditions p0(x0) to
determine whether the system is observable or not and
therefore determining whether the system is structurally
identifiable or otherwise.



5. DISCUSSION

Both of the two methods presented have been shown to
be applicable to study structural identifiability in mixed-
effects models. However, there are a few obvious differences
between the methods worth mentioning.

The repeated measurement approach and Theorems 1-
4 rely on certain structures or combinations of model
parameters appearing in the model. In models where these
structures do not exist this method cannot be used to
study structural identifiability. It is also necessary that the
parameter estimation includes parallel models with some
parameters shared such as in Example 1. In modelling
patient variability, another scenario could for instance
be a difference in the distribution of the bioavailability
parameter F between males/females while the remaining
model parameters belong to the same distribution for
males/females. Finally, Theorems (1)-(4) assumes that the
random variables are independent and therefore offer no
insight on how to deal with covariance between the model
parameters.

Augmenting the original system form to a random dif-
ferential equation system form is in some sense a more
general approach to the structural identifiability problem
for mixed-effects models. This is due to the following
three reasons: i) in the augmented system the problem
of structural identifiability can instead be regarded as an
observability problem. If the augmented system is observ-
able, the original system is structurally identifiable since
all model parameters are included in the initial conditions.
ii) In contrast to the repeated measurement approach,
any model structure may be considered. This includes any
covariance between any two model parameters. iii) In con-
trast to the repeated measurement approach, if the model
structure is unidentifiable this approach still informs on
which parameters are identifiable/unidentifiable and also
the parameter combinations that are structurally identifi-
able. However, it is worth noting that, even for very simple
model structures, the expression to be evaluated quickly
grows in complexity. In addition, this method requires
finding the system solution h(·) which may become very
computationally expensive.

6. CONCLUSION

Two methods for structural identifiability analysis in
mixed-effects models have been proposed. The two meth-
ods have different advantages and disadvantages. While
the approach using functions of random variables requires
minimal computation it requires a certain structure of
the equations in order to be applicable. In addition, the
method does not give any information about combinations
of parameters that are structurally identifiable.

The other proposed approach, which involves augmenting
the original system to a random differential equation sys-
tem, is much more general in the sense that any arbitrary
model structure, including covariance, can theoretically be
analysed. With this approach it is also possible to deter-
mine structurally identifiable parameter combinations in
the case of a structurally unidentifiable model. However,
at present the latter method suffers from expensive com-
putation even for relatively simple models.
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