Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016 ## Supplementary Information The Contrasting Catalytic Efficiency and Cancer Cell Antiproliferative Activity of Stereoselective Organoruthenium Transfer Hydrogenation Catalysts Ying Fu, Carlos Sanchez-Cano, Rina Soni, Isolda Romero-Canelón, Jessica M. Hearn, Zhe Liu, Martin Wills, and Peter J. Sadler Tables S1 - S5 Figures S1 – S9 **Table S1.** Anticancer activity in the NCI 60-cell line screen, measured as the GI_{50} . (A) complex **8**, (B) complex **8a**. ## (A) Complex 8. | NSC : D - 756775 / 1 | | | | | Exp | erimer | nt ID : 1 | 105NS53 | 3 | | | Test | Туре : 08 | Units : Molar | | |---|---|---|---|------|---|---|---|---|---------|--|---|---|---|---|---| | Report Date : | July 15 | , 2011 | | | Tes | t Date | : May 2 | 3, 2011 | | | | QNS | : | MC: | | | COMI : MW02 (103477) | | | | | Stai | n Rea | gent : S | RB Dual | -Pass F | Related | ı | SSPL: 0Y4T | | | | | | Time | | | | | Log10 Concentration Optical Densities Percent Growth | | | | | | 0.50 | | | | | Panel/Cell Line
.eukemia
CCRF-CEM
HL-60(TB)
K-562
MOLT-4
RPMI-8226
SR | Zero
0.527
0.594
0.249
0.587
0.789
0.346 | 1.752
2.626
1.922
2.273
2.570
1.724 | -8.0
1.825
2.259
1.861
2.220
2.511
1.654 | -7.0 | -6.0
1.079
1.753
0.725
2.008
1.807
1.248 | -5.0
0.277
0.346
0.162
0.446
0.470
0.272 | -4.0
0.336
0.286
0.154
0.563
0.505
0.288 | -8.0
106
82
96
97
97
95 | -7.0 | -6.0
45
57
28
84
57
65 | -5.0
-48
-42
-35
-24
-40
-21 | -4.0
-36
-52
-38
-4
-36
-17 | GI50
6.88E-7
1.18E-6
2.32E-7
2.07E-6
1.18E-6
1.51E-6 | TGI
3.07E-6
3.77E-6
2.81E-6
5.99E-6
3.85E-6
5.67E-6 | > 1.00E-4
6.43E-5
> 1.00E-4
> 1.00E-4
> 1.00E-4
> 1.00E-4 | | Non-Small Cell Lung
A549/ATCC
EKVX
HOP-62
NCI-H226
NCI-H23
NCI-H322M
NCI-H460
NCI-H522 | | 1.517
1.683
0.971
1.673
1.438
1.687
1.792
1.547 | 1.469
1.620
0.954
1.587
1.390
1.652
1.785
1.463 | | 1.384
1.570
0.987
1.469
1.339
1.739
1.682
1.065 | 0.441
0.211
0.104
0.147
0.079
1.347
0.113
0.052 | | 96
93
97
92
95
96
100
91 | | 89
88
102
81
89
106
93
50 | 10
-72
-70
-76
-85
61
-50
-91 | -75
-94
-77
-60
-60
-96
-35
-85 | 3.14E-6
1.73E-6
2.01E-6
1.57E-6
1.67E-6
1.17E-5
2.00E-6
9.46E-7 | 1.33E-5
3.55E-6
3.92E-6
3.28E-6
3.24E-6
2.45E-5
4.47E-6
2.25E-6 | 5.11E-5
7.30E-6
7.63E-6
6.85E-6
6.27E-6
5.11E-5
> 1.00E-4
5.09E-6 | | Colon Cancer
COLO 205
HCC-2998
HCT-116
HCT-15
HCT29
KM12
SW-620 | 0.270
0.685
0.186
0.472
0.217
0.439
0.228 | 1.306
2.008
1.124
2.547
1.055
1.948
1.313 | 1.358
2.086
1.136
2.414
1.084
1.847
1.292 | | 1.098
1.990
0.681
2.335
1.053
1.928
0.645 | 0.080
0.062
0.023
0.210
0.066
0.456
0.041 | 0.163
0.048
0.036
0.100
0.085
0.053
0.072 | 105
106
101
94
103
93
98 | | 80
99
53
90
100
99
38 | -71
-91
-88
-56
-70
1 | -40
-93
-81
-79
-61
-88
-69 | 1.58E-6
1.81E-6
1.05E-6
1.88E-6
1.96E-6
3.16E-6
4.09E-7 | 3.40E-6
3.31E-6
2.38E-6
4.15E-6
3.87E-6
1.03E-5
2.08E-6 | 6.08E-6
5.40E-6
9.16E-6
7.64E-6
3.74E-5
5.40E-6 | | CNS Cancer
SF-268
SF-295
SF-539
SNB-19
SNB-75
U251 | 0.469
0.640
0.834
0.448
0.603
0.254 | 1.537
1.977
2.105
1.318
1.275
1.187 | 1.499
1.887
2.002
1.278
1.284
1.153 | | 1.496
1.863
2.053
1.306
1.229
0.723 | 0.068
0.882
0.109
0.254
0.058
0.006 | 0.052
0.123
0.346
0.061
0.398
0.031 | 96
93
92
95
101
96 | | 96
91
96
99
93
50 | -86
18
-87
-43
-90
-98 | -89
-81
-59
-86
-34
-88 | 1.79E-6
3.68E-6
1.78E-6
2.20E-6
1.72E-6
1.00E-6 | 3.38E-6
1.52E-5
3.34E-6
4.95E-6
3.22E-6
2.19E-6 | 6.37E-6
4.88E-5
6.28E-6
1.43E-5
4.76E-6 | | Melanoma
LOX IMVI
MALME-3M
M14
MDA-MB-435
SK-MEL-2
SK-MEL-28
SK-MEL-5
UACC-257
UACC-62 | 0.221
0.694
0.393
0.445
0.990
0.516
0.442
0.776
0.834 | 1.342
1.411
1.239
1.943
1.689
1.451
2.658
1.473
2.246 | 1.322
1.419
1.199
1.906
1.676
1.478
2.673
1.418
2.199 | | 1.108
1.207
1.156
1.767
1.660
1.433
2.573
1.351
2.097 | 0.013
0.180
0.029
0.069
0.195
0.067
0.610
0.058
0.075 | 0.060
0.343
0.032
0.135
0.245
0.224
0.025
0.138
0.108 | 98
101
95
97
98
103
101
92
97 | | 79
72
90
88
96
98
96
83
89 | -94
-74
-93
-84
-80
-87
8
-93
-91 | -73
-51
-92
-70
-75
-57
-94
-82
-87 | 1.47E-6
1.41E-6
1.66E-6
1.66E-6
1.82E-6
1.82E-6
3.32E-6
1.53E-6
1.65E-6 | 2.86E-6
3.10E-6
3.11E-6
3.24E-6
3.50E-6
3.39E-6
1.19E-5
2.96E-6
3.13E-6 | 5.55E-6
6.83E-6
5.84E-6
6.31E-6
6.73E-6
6.31E-6
3.67E-5
5.71E-6
5.93E-6 | | Ovarian Cancer
IGROV1
OVCAR-3
OVCAR-4
OVCAR-5
OVCAR-8
NCI/ADR-RES
SK-OV-3 | 0.523
0.499
0.488
0.573
0.386
0.452
0.503 | 1.661
1.316
1.523
1.498
1.480
1.295
1.316 | 1.683
1.316
1.462
1.446
1.506
1.310
1.297 | | 1.667
1.235
1.301
1.462
1.228
1.270
1.349 | 0.166
0.014
0.210
0.235
0.077
0.707
0.758 | 0.419
0.020
0.412
0.117
0.337
0.331
0.024 | 102
100
94
94
102
102
98 | | 101
90
79
96
77
97
104 | -68
-97
-57
-59
-80
30
31 | -20
-96
-16
-80
-13
-27
-95 | 1.99E-6
1.64E-6
1.62E-6
1.98E-6
1.48E-6
5.06E-6
5.54E-6 | 3.94E-6
3.02E-6
3.79E-6
4.16E-6
3.09E-6
3.39E-5
1.77E-5 | 5.59E-6
8.74E-6
> 1.00E-4
4.39E-5 | | Renal Cancer
786-0
A498
ACHN
CAKI-1
RXF 393
SN12C
TK-10
UO-31 | 0.533
1.239
0.418
0.688
0.541
0.583
0.657
0.566 | 1.814
2.180
1.439
2.077
1.151
1.777
1.128
1.699 | 1.731
2.087
1.400
2.104
1.155
1.729
1.084
1.582 | | 1.852
2.144
1.200
2.020
1.041
1.642
1.074
1.599 | 0.061
1.723
0.015
0.305
0.016
0.123
0.023
0.014 | 0.023
0.018
0.009
0.383
-0.004
0.315
0.012
0.042 | 94
90
96
102
101
96
91
90 | | 103
96
77
96
82
89
89 | -89
51
-96
-56
-97
-79
-96 | -96
-99
-98
-44
-100
-46
-98
-93 | 1.89E-6
1.02E-5
1.42E-6
2.01E-6
1.51E-6
1.70E-6
1.62E-6
1.65E-6 | 3.45E-6
2.20E-5
2.77E-6
4.29E-6
2.87E-6
3.38E-6
3.01E-6
3.04E-6 | 6.28E-6
4.74E-5
5.39E-6
5.46E-6
5.61E-6
5.60E-6 | | Prostate Cancer
PC-3
DU-145 | 0.488
0.300 | 1.113
1.099 | 1.095
1.071 | | | 0.075
0.009 | | 97
97 | | 91
13 | -85
-97 | -73
-97 | 1.71E-6
1.30E-7 | 3.29E-6
1.31E-6 | 6.34E-6
3.74E-6 | | Breast Cancer
MCF7
MDA-MB-231/ATC
HS 578T
BT-549
T-47D
MDA-MB-468 | 0.335
C 0.577
0.733
0.750
0.672
0.587 | 1.832
1.363
1.350
1.510
1.502
1.366 | 1.701
1.344
1.345
1.452
1.479
1.314 | : | 1.362
1.297
1.523
1.267 | 0.171
0.085
0.570
0.038
0.417
0.058 | 0.072
0.636
0.036
0.541 | 91
98
99
92
97
93 | | 77
100
91
102
72
18 | -49
-85
-22
-95
-38
-90 | -49
-88
-13
-95
-19
-97 | 1.63E-6
1.86E-6
2.31E-6
1.83E-6
1.58E-6
1.40E-7 | 4.08E-6
3.46E-6
6.37E-6
3.29E-6
4.50E-6
1.46E-6 | > 1.00E-4
6.44E-6
> 1.00E-4
5.91E-6
> 1.00E-4
4.25E-6 | ## (B) Complex 8a. | NSC : D - 756777 / 1 | | | | | Experiment ID : 1105NS53 | | | | | | Test Type : 08 | | Units : Molar | | | |---|--|---|---|---|---|---|---|--|--|---|--|---|---|---|--| | Report Date : | July 15, | , 2011 | | | Test Date : May 23, 2011 | | | | | QNS | : | MC: | | | | | COMI : MW03 (103478) | | | | | Stai | Stain Reagent : SRB Dual-Pass Related | | | | | SSPL | SSPL: 0Y4T | | | | | | Time | | | Mear | Optical | Lo
I Densiti | | centration | Р | ercent G | Growth | ' | | ' | | | Panel/Cell Line
Leukemia | Zero | Ctrl | -8.0 | -7.0 | -6.0 | -5.0 | -4.0 | -8.0 | -7.0 | -6.0 | -5.0 | -4.0 | GI50 | TGI | LC50 | | CCRF-CEM
HL-60(TB)
K-562
MOLT-4
RPMI-8226
SR | 0.527
0.594
0.249
0.587
0.789
0.346 | 1.797
2.542
1.905
2.171
2.492
1.612 | 1.814
2.318
1.843
2.202
2.520
1.626 | 1.758
2.493
1.769
2.112
2.454
1.612 | 1.172
1.692
0.621
1.921
2.144
1.090 | 0.337
0.390
0.176
0.512
0.435
0.310 | 0.306
0.352
0.205
0.557
0.582
0.308 | 101
88
96
102
102
101 | 97
97
92
96
98
100 | 51
56
22
84
80
59 | -36
-34
-30
-13
-45
-10 | -42
-41
-18
-5
-26
-11 | 1.02E-6
1.18E-6
4.00E-7
2.25E-6
1.73E-6
1.34E-6 | 3.84E-6
4.18E-6
2.70E-6
7.38E-6
4.36E-6
7.07E-6 | > 1.00E-4
> 1.00E-4
> 1.00E-4
> 1.00E-4
> 1.00E-4
> 1.00E-4 | | Non-Small Cell Lun
A549/ATCC
EKVX
HOP-62
NCI-H226
NCI-H23
NCI-H322M
NCI-H360
NCI-H522 | g Cancer
0.315
0.746
0.348
0.605
0.538
0.821
0.226
0.593 | 1.519
1.651
1.153
1.769
1.497
1.553
1.940
1.555 | 1.456
1.615
1.119
1.626
1.441
1.554
1.947
1.481 | 1.427
1.594
1.119
1.513
1.447
1.506
1.874
1.427 | 1.398
1.576
1.125
1.491
1.352
1.615
1.811
0.781 | 0.289
0.048
0.217
0.115
0.112
1.053
0.146
0.103 | 0.169
0.060
0.217
0.301
0.306
0.023
0.132
0.244 | 95
96
96
88
94
100
100 | 92
94
96
78
95
93
96
87 | 90
92
97
76
85
108
92
20 | -8
-94
-38
-81
-79
32
-35
-83 | -47
-92
-38
-50
-43
-97
-42
-59 | 2.55E-6
1.68E-6
2.22E-6
1.47E-6
1.63E-6
5.76E-6
2.15E-6
3.52E-7 | 8.24E-6
3.12E-6
5.24E-6
3.05E-6
3.29E-6
1.76E-5
5.29E-6
1.55E-6 | > 1.00E-4
5.81E-6
> 1.00E-4
6.35E-6
4.30E-5
> 1.00E-4
4.79E-6 | | Colon Cancer
COLO 205
HCC-2998
HCT-116
HCT-15
HT29
KM12
SW-620 | 0.270
0.685
0.186
0.472
0.217
0.439
0.228 | 1.389
2.505
1.172
2.207
1.162
1.960
1.430 | 1.460
2.453
1.144
2.056
1.177
1.945
1.396 | 1.505
2.422
1.153
2.090
1.151
1.883
1.433 | 0.888
2.452
0.572
2.022
1.003
1.973
0.660 | 0.147
0.255
0.027
0.091
0.088
0.538
0.066 | 0.200
0.092
0.036
0.143
0.157
0.048
0.118 | 106
97
97
91
102
99 | 110
95
98
93
99
95 | 55
97
39
89
83
101
36 | -46
-63
-85
-81
-60
7
-71 | -26
-87
-81
-70
-28
-89
-48 | 1.13E-6
1.97E-6
6.53E-7
1.70E-6
1.71E-6
3.46E-6
6.04E-7 | 3.53E-6
4.05E-6
2.06E-6
3.35E-6
3.82E-6
1.17E-5
2.17E-6 | > 1.00E-4
8.31E-6
5.19E-6
6.60E-6
3.90E-5 | | CNS Cancer
SF-268
SF-295
SF-539
SNB-19
SNB-75
U251 | 0.469
0.640
0.834
0.448
0.603
0.254 | 1.576
2.022
2.023
1.322
1.258
1.219 | 1.507
1.971
2.049
1.239
1.201
1.225 | 1.492
1.964
2.065
1.242
1.169
1.172 | 1.530
1.812
2.153
1.282
1.235
0.692 | 0.061
0.906
0.091
0.162
0.041
0.015 | 0.107
0.048
0.528
0.036
0.422
0.094 | 94
96
102
91
91
101 | 92
96
104
91
86
95 | 96
85
111
95
96
45 | -87
19
-89
-64
-93
-94 | -77
-93
-37
-92
-30
-63 | 1.78E-6
3.40E-6
2.02E-6
1.93E-6
1.76E-6
8.07E-7 | 3.34E-6
1.49E-5
3.58E-6
3.97E-6
3.22E-6
2.11E-6 | 6.28E-6
4.17E-5
8.18E-6
4.82E-6 | | Melanoma
LOX IMVI
MALME-3M
M14
MDA-MB-435
SK-MEL-2
SK-MEL-28
SK-MEL-5
UACC-257
UACC-62 | 0.221
0.694
0.393
0.445
0.990
0.516
0.442
0.776
0.834 | 1.540
1.455
1.250
2.002
1.623
1.438
2.944
1.468
2.267 | 1.528
1.419
1.248
1.980
1.605
1.424
2.902
1.477
2.240 | 1.502
1.449
1.264
1.909
1.601
1.437
2.725
1.425
2.177 | 1.018
1.177
1.225
1.853
1.648
1.263
2.792
1.347
2.080 | 0.015
0.133
0.046
0.052
0.262
0.089
0.457
0.097
0.085 | 0.087
0.444
0.111
0.257
0.666
0.339
0.018
0.235
0.071 | 99
95
100
99
97
99
98
101
98 | 97
99
102
94
97
100
91
94 | 60
63
97
90
104
81
94
83 | -93
-81
-88
-88
-74
-83
1
-88 | -61
-36
-72
-42
-33
-34
-96
-70
-91 | 1.17E-6
1.24E-6
1.79E-6
1.68E-6
2.01E-6
1.55E-6
2.95E-6
1.55E-6
1.62E-6 | 2.47E-6
2.75E-6
3.34E-6
3.21E-6
3.85E-6
3.12E-6
1.01E-5
3.06E-6
3.10E-6 | 5.22E-6
6.21E-6
3.34E-5
6.01E-6
5.95E-6 | | Ovarian Cancer
IGROV1
OVCAR-3
OVCAR-4
OVCAR-5
OVCAR-8
NCI/ADR-RES
SK-OV-3 | 0.523
0.499
0.488
0.573
0.386
0.452
0.503 | 1.703
1.309
1.486
1.500
1.457
1.286
1.485 | 1.716
1.353
1.454
1.487
1.479
1.301
1.489 | 1.672
1.319
1.506
1.444
1.450
1.263
1.474 | 1.735
1.112
1.279
1.453
1.211
1.286
1.506 | 0.130
0.010
0.036
0.097
0.103
0.529
0.950 | 0.417
0.012
0.306
0.129
0.391
0.355
0.048 | 101
105
97
99
102
102
100 | 97
101
102
94
99
97
99 | 103
76
79
95
77
100
102 | -75
-98
-93
-83
-73
9
45 | -20
-98
-37
-78
-22
-91 | 1.98E-6
1.40E-6
1.48E-6
1.79E-6
1.51E-6
3.55E-6
8.32E-6 | 3.78E-6
2.73E-6
2.89E-6
3.41E-6
1.99E-5
2.16E-5 | 5.29E-6
6.51E-6
> 1.00E-4
5.03E-5 | | Renal Cancer
786-0
A498
ACHN
CAKI-1
RXF 393
SN12C
TK-10
UO-31 | 0.533
1.239
0.418
0.688
0.541
0.583
0.657
0.566 | 1.930
2.101
1.393
2.077
1.188
1.829
1.150
1.611 | 1.841
2.005
1.394
2.044
1.188
1.819
1.103
1.544 | 1.815
2.013
1.400
2.041
1.085
1.764
1.076
1.543 | 1.866
1.986
1.118
1.874
1.043
1.653
1.039
1.504 | 0.014
1.528
0.015
0.153
-0.005
0.339
0.015
0.018 | 0.046
0.003
0.025
0.323
-0.011
0.510
0.019
0.014 | 94
89
100
98
100
99
90
94 | 92
90
101
97
84
95
85
93 | 95
87
72
85
77
86
77
90 | -97
33
-97
-78
-100
-42
-98
-97 | -91
-100
-94
-53
-100
-13
-97
-98 | 1.72E-6
4.89E-6
1.35E-6
1.65E-6
1.43E-6
1.91E-6
1.43E-6
1.63E-6 | 3.13E-6
1.78E-5
2.67E-6
3.34E-6
2.73E-6
4.70E-6
2.77E-6
3.02E-6 | 5.68E-6
4.23E-5
5.29E-6
6.75E-6
5.23E-6
> 1.00E-4
5.34E-6
5.61E-6 | | Prostate Cancer
PC-3
DU-145 | 0.488
0.300 | 1.158
1.186 | | 1.108
1.187 | | | 0.159 | 96
99 | 93
100 | 77
98 | -88
-98 | -67
-100 | 1.46E-6
1.75E-6 | 2.93E-6
3.16E-6 | 5.89E-6
5.69E-6 | | Breast Cancer
MCF7
MDA-MB-231/ATC
HS 578T
BT-549
T-47D
MDA-MB-468 | 0.335
C 0.577
0.733
0.750
0.672
0.587 | 1.807
1.406
1.451
1.548
1.648
1.410 | 1.420
1.427
1.509
1.543 | 1.711
1.345
1.466
1.471
1.633
1.164 | 1.401
1.397
1.591
1.199 | 0.074
0.634
0.017 | 0.160
0.687
0.060
0.696 | 95
102
97
95
89
91 | 93
93
102
90
98
70 | 75
99
92
105
54
21 | -34
-87
-14
-98
-17
-81 | -52
-72
-6
-92
2
-85 | 1.68E-6
1.84E-6
2.51E-6
1.87E-6
1.14E-6
2.57E-7 | 4.84E-6
3.41E-6
7.46E-6
3.30E-6 | 7.38E-5
6.32E-6
> 1.00E-4
5.82E-6
> 1.00E-4
4.97E-6 | COMPARE results using NCI/DTP synthetic agents database for the GI₅₀ endpoint Table S2 | COM THE TESURS | 8 | CI/DII synthetic a | gents database for the | 8a | ponit | |------------------|-------|--------------------------|------------------------|-------|--------------------| | Correlated agent | PCC | Mechanism | Correlated agent | PCC | Mechanism | | MW03 | 0.868 | - | MW02 | 0.868 | - | | Pleurotin | 0.661 | Inhibit | Eupacunoxin | 0.673 | | | | | flavoproteinthior | - | | | | | | edoxin reductase | | | | | | | Inhibits hypoxia | | | | | | | induced increase | | | | | | | of HIF-1a | | | | | Mercaptoacetate | 0.654 | Potential DNA | Bipinnatin H | 0.664 | | | | | cleavage | | | | | Zinolide | 0.652 | No data on MoA | Mercaptoacetate | 0.664 | Potential DNA | | | 0.710 | | | 0.470 | cleavage | | Xestoquinone | 0.649 | Topo II | Urdamycin A, | 0.659 | | | | | mediated DNA | pentaacetate | | | | C | 0.640 | cleavage | A1 1 | 0.650 | | | Cryptosporiopsin | 0.649 | Inhibit RNA synthesis by | Arnebin 1 | 0.658 | | | | | altering | | | | | | | nucleotides. | | | | | | | Also disrupts | | | | | | | production of | | | | | | | ATP. | | | | | Methyl-CCNU | 0.642 | Alkylating agent | Mikanolide | 0.656 | | | Eupacurvin | 0.636 | No data on MoA | Multistatin | 0.652 | | | Urdamycin A, | 0.614 | | Gold, | 0.65 | | | pentaacetate | | | chloro(triethyl | | | | | | | phosphine) | | | | Homopterocarpin | 0.605 | | Straital B | 0.65 | | | | | | Acnistin F | 0.648 | | | | | | Cryptosporiosin | 0.647 | Inhibit RNA | | | | | | | synthesis by | | | | | | | altering | | | | | | | nucleotides. | | | | | | | Also disrupts | | | | | | | production of ATP. | | | | | Heliangolide | 0.645 | | | | | | Eupacurvin | 0.645 | | | | | | Withaferin A | 0.643 | | NCI/DTP database. Only those agents returned within the first 100 correlations, with (PCC) > 0.6 are shown. Agents with compound names, and not registered names, are omitted. Table S3 COMPARE results using NCI/DTP synthetic agents database for the TGI endpoint | | 8 | | | 8a | | |-----------------|-------|---------------|-------------------|-------|---------------| | Correlated | PCC | Mechanism | Correlated agent | PCC | Mechanism | | agent | | | | | | | MW03 | 0.945 | - | MW02 | 0.874 | - | | Mercaptoacetate | 0.656 | Potential DNA | Mercaptoacetate | 0.695 | Potential DNA | | | | cleavage | | | cleavage | | | | | Gold, | 0.638 | | | | | | chloro(triethyl | | | | | | | phosphine) | | | | | | | Arnebin 1 | 0.614 | | | | | | Straital B | 0.610 | | | | | | Santolinapolyacet | 0.602 | | | | | | aylene 18 | | | NCI/DTP database. Only those agents returned within the first 100 correlations, with PCC > 0.6 are shown. Agents with only their compound structure name, and not registered names, are omitted. $\label{eq:compare} \begin{tabular}{ll} \textbf{Table S4} \\ \textbf{COMPARE results using the NCI/DTP synthetic agents database for the LC_{50} endpoint } \end{tabular}$ | | 8 | | 8a | | | | | |--------------------------|-------|------------------------|---|-------|-----------|--|--| | Correlated agent | PCC | Mechanism | Correlated agent | PCC | Mechanism | | | | MW03 | 0.942 | - | MW02 | 0.942 | - | | | | Withaferin A | 0.847 | | | | | | | | Mercaptoacetate | 0.809 | Potential DNA cleavage | Withaferin A | 0.73 | | | | | Urdamycin A, pentacetate | 0.793 | | Longikaurin B | 0.727 | | | | | Kalafungin(USAN) | 0.785 | | Eupachlorin acetate | 0.727 | | | | | T 1(VAN) | 0.773 | | Cumertilin | 0.723 | | | | | Longikaurin B | 0.765 | | Celastrol | 0.684 | | | | | Stannane, | 0.761 | | Acetyl | 0.682 | | | | | dibutyldithiocyanato | | | rolandrolide | | | | | | Cumertilin | 0.739 | | Iso-
withanolide E
14,15-epoxy-6
alpha | 0.662 | | | | | Helenine | 0.736 | | Alpha-
bromochalcone | 0.653 | | | | | ChelerythrineHCl | 0.73 | | Cleandrin | 0.653 | | | | | Secalone B | 0.726 | | Arylpurine derivatives | 0.65 | | | | | Farinosin, dehydro | 0.72 | | | | | | | | Plumbaein | 0.715 | | | | | | | | Celastrol | 0.712 | | | | | | | | Sanguinarine Nitrate | 0.71 | | 1 '.1' (1 6' .1) | 00 1 | * *.1 | | | NCI/DTP database. Only those agents returned within the first 100 correlations, with PCC > 0.6 are shown. Agents with compound names, and not registered names, are omitted. Values for the cell cycle analysis using flow cytometry experiments in A2780 ovarian cancer cells. All values are compared to the untreated controls for statistical significance calculations. Table S5 | Sample | Cell cycle | Averages | Stdev | P-value against -ve | |---------------------|-----------------|----------|-------|---------------------| | Controls | Sub-G1 | 0.000 | 0.000 | | | | G1 | 62.700 | 0.854 | | | | S | 23.167 | 0.751 | | | | G2/M | 10.703 | 0.362 | | | Colchicine | Sub-G1 | 12.400 | 0.436 | 0.000411643 | | (100 nM) | G1 | 7.553 | 0.832 | 1.46989E-07 | | (100 111.1) | S | 13.433 | 0.551 | 0.000100684 | | | G2/M | 55.933 | 2.325 | 0.000683922 | | Taxol | Sub-G1 | 22.933 | 1.701 | 0.001828733 | | (100 nM) | G1 | 17.300 | 1.153 | 1.66939E-06 | | (100 mv1) | S | 11.433 | 0.907 | 8.43193E-05 | | | G2/M | 45.600 | 1.473 | 0.000306016 | | | G2/1 V 1 | 43.000 | 1.475 | 0.000300010 | | 7 (2 µM) | Sub-G1 | 3.305 | 0.601 | 0.081418053 | | | G1 | 57.950 | 0.636 | 0.007032042 | | | S | 29.000 | 0.849 | 0.014886727 | | | G2/M | 15.050 | 0.778 | 0.051306728 | | 7a (2 μM) | Sub-G1 | 4.360 | 0.740 | 0.00946604 | | ` • / | G1 | 46.533 | 3.647 | 0.012960242 | | | S | 30.300 | 1.114 | 0.001410555 | | | G2/M | 20.033 | 2.470 | 0.020725302 | | 8 (2 μM) | Sub-G1 | 13.750 | 0.354 | 0.01157363 | | 5 (= -) | G1 | 54.500 | 0.283 | 0.001328262 | | | S | 17.950 | 0.778 | 0.013337581 | | | G2/M | 17.300 | 0.566 | 0.011716941 | | 8a (2 μM) | Sub-G1 | 2.683 | 0.163 | 0.001221477 | | ο α (2 μ1ν1) | G1 | 56.600 | 0.624 | 0.000870273 | | | S | 22.667 | 1.026 | 0.536401588 | | | G2/M | 16.700 | 1.253 | 0.009689256 | | | U2/1VI | 10.700 | 1.433 | 0.007007230 | **Figure S1.** H NMR spectra of **8a** (1.5 mM) and 9-EtG (1.5 mM) in 25% MeOD- d_4 /75% D₂O (v/v) at 310 K after (A) 10 min and (B) 24 h. **Figure S2.** ¹H NMR spectra of **8a** (1.5 mM) and 9-MeA (1.5 mM) in 25% MeOD- $d_4/75\%$ D₂O (v/v) at 310 K after (A) 10 min and (B) 24 h. **Figure S3.** ¹H NMR spectra of **7** (A) and **8a** (B) with NADH in 25% MeOD- d_4 /75% D₂O (v/v) at 298 K: (i) equilibrium solution of the complexes (1.5 mM); (ii) 3 h after addition of 3 mol equiv of NADH to the above solution. No reaction between the complexes and NADH was observed after 3 h incubation. The broad humps in (ii) arise from incomplete H₂O peak suppression. **Figure S4**. Effect of co-administration of sodium formate (0, 0.5, 1 or 2 mM) and complexes 7/8 $(1/5 \text{ IC}_{50})$ on cell survival. **Figure S5**. Relative distribution of ruthenium in the different cellular fractions of A2780 ovarian carcinoma cells (expressed in ng Ru/million cells) after 24 h treatment with 2 μ M of **7/8**. **Figure S6**. Relative distribution of ruthenium in the different cellular fractions of A2780 ovarian carcinoma cells (expressed in ng Ru/million cells) after 24 h treatment with IC_{50} concentration of **7/8**. **Figure S7**. Changes in the cell cycle of A2780 ovarian carcinoma cells after 24 h treatment with 100 nM of Colchicine or Taxol. **Figure S8**. Cell viability test of A2780 ovarian carcinoma cells treated with ruthenium complexes (7, 7a, 8, 8a). **Figure S9**. Kinetics of tubulin polymerisation at 310 K: untreated ($\stackrel{\bullet}{\bullet}$), complex **7** ($\stackrel{\bullet}{\bullet}$, 10 μ M), complex **7a** ($\stackrel{\bullet}{\bullet}$, 10 μ M), complex **8a** ($\stackrel{\bullet}{\bullet}$, 10 μ M), Taxol ($\stackrel{\bullet}{\bullet}$, 3 μ M, stabilises microtubules) and Colchicine ($\stackrel{\bullet}{\bullet}$, 3 μ M, inhibits microtubule formation). Microtubule formation was monitored by the increase in fluorescence (arbitrary units) of a reporter incorporated into microtubules as polymerisation proceeds.