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a  b  s  t  r  a  c  t

Formal  decision-analytic  methods  can  be  used  to  frame  disease  control  problems,  the  first  step  of which
is  to define  a clear  and  specific  objective.  We  demonstrate  the  imperative  of  framing  clearly-defined
management  objectives  in  finding  optimal  control  actions  for control  of  disease  outbreaks.  We  illustrate
an  analysis  that  can  be  applied  rapidly  at the  start  of  an  outbreak  when  there  are  multiple  stakeholders
involved  with potentially  multiple  objectives,  and  when  there  are  also  multiple  disease  models  upon
which  to  compare  control  actions.  The  output  of  our  analysis  frames  subsequent  discourse  between
policy-makers,  modellers  and  other  stakeholders,  by  highlighting  areas  of  discord  among  different  man-
agement  objectives  and  also  among  different  models  used  in  the  analysis.  We  illustrate  this  approach  in
the context  of  a  hypothetical  foot-and-mouth  disease  (FMD)  outbreak  in  Cumbria,  UK  using outputs  from
five rigorously-studied  simulation  models  of  FMD  spread.  We  present  both  relative  rankings  and  rela-
bjectives
oot-and-mouth disease

tive  performance  of  controls  within  each  model  and  across  a range  of objectives.  Results  illustrate  how
control  actions  change  across  both  the  base  metric  used  to  measure  management  success  and  across  the
statistic  used  to rank  control  actions  according  to  said  metric.  This  work  represents  a first  step  towards
reconciling  the  extensive  modelling  work  on  disease  control  problems  with  frameworks  for  structured
decision  making.

©  2015  The  Authors.  Published  by  Elsevier  B.V. This  is  an  open  access  article  under  the  CC  BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
. Introduction
Epidemiological modelling is a demonstrably useful tool in
roviding exploration of proposed response measures in the event
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/).
of a disease outbreak. Such models have two main uses: (1) to
identify and uncover mechanistic understanding of the system
in question, and (2) to project the outbreak to explore potential
outcomes under different conditions. For foot-and-mouth disease

(FMD), a highly-contagious, viral disease of several economically-
important, cloven-hoofed species (such as cattle, sheep, and pigs),
model outputs have been used extensively to inform policy-makers
of the likely next steps in an outbreak and to explore the efficacy
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f various control actions (Keeling et al., 2001, 2003; Ferguson
t al., 2001; Morris et al., 2001; Carpenter, 2001; Bates et al., 2003;
ao, 2003; Tildesley et al., 2006; Thornley and France, 2009; Ward
t al., 2009; Backer et al., 2012a; Dürr et al., 2014; McReynolds
t al., 2014). Such extensive use of models is due, in part, to the
arge economic ramifications of trade-bans once FMD infection
s detected. Simulation models allow exploration of management
trategies that may  be seen as too risky (or impossible) to be
rialled in a real outbreak setting (Milner-Gulland et al., 2001; Kao,
002).

Evaluating control actions for FMD  in such a manner requires
he choice of a currency for comparison. The literature on FMD
ontrol provides myriad examples, including the number of live-
tock slaughtered (Durand and Mahul, 2000), number of infected
arms on which animals are culled (Schoenbaum and Disney, 2003),
he number of farms where animals are pre-emptively slaugh-
ered (Velthuis and Mourits, 2007), export losses from trade bans
Paarlberg et al., 2008), livestock slaughter compensation costs
Sanson et al., 2014), total number of farms vaccinated (Tildesley
t al., 2006), spatial area of the outbreak (Dubé et al., 2007), and
utbreak duration (Morris et al., 2001). In choosing any particular
etric to compare control actions, a statement is implicitly being
ade about the objective of management. That is, different stake-

olders may  have different management objectives and therefore
ifferent metrics of management success that they are most inter-
sted in optimising.

Not all of these metrics of management success are positively
orrelated, potentially leading to stakeholder conflict. For instance,
aking a ‘scorched-earth’ approach to FMD  management where
usceptible animals are culled in a wide area surrounding a con-
rmed case, may  be highly effective in reducing outbreak duration,
inimising the time that trade embargoes are enforced, and thus

enefiting exporters. However, this same scorched-earth approach
ould result in devastating economic losses to individual farmers

nd emotional toll to those with premises in the culling area, and
he total number of culled livestock and associated control costs

ay  be very high locally and/or unacceptably high to the general
ublic.

Even if a single metric for evaluation can be identified, more
etailed questions remain in order to compare control actions. For
utbreak duration, a number of statistics have been used in the
iterature for summarising this metric such as the average time
ntil disease eradication (Morris et al., 2001), the median outbreak
uration (Roche et al., 2014a), the probability of disease eradica-
ion within 200 days (Morris et al., 2001), the 95th percentile of
utbreak duration (Velthuis and Mourits, 2007), and sophisticated
omparisons of the whole distribution in outcome metrics (Dubé
t al., 2007). These are all statistics of outbreak duration yet, as with
he choice of metric, not all statistics of outbreak duration are pos-
tively correlated with one another and the choice of statistic will
lso influence which control action is recommended. A scorched-
arth approach, as described above, may  result in a short mean
utbreak duration and the variability surrounding this estimate
ay  be low. Alternatively, only culling confirmed infected premises

IPs) may  also lead to a small mean outbreak duration but this con-
rol action may  have a high likelihood of a large number of infected
remises and thus a greater chance of a very long outbreak (i.e. high
ariability in outbreak duration).

A suitable management objective should motivate the choice of
etric and evaluation function, and thus the definition of a man-

gement objective is the first step in phrasing a control problem.
e define what we mean by an objective in order to clarify this dis-
ussion and highlight the benefits of clearly defining management
bjectives.

Four types of objectives can be defined (Keeney, 2007): strategic,
undamental, means, and process objectives. Strategic objectives
ics 15 (2016) 10–19 11

define the general direction of all decisions made by the decision-
maker. The mission statement of the United States Department
of Agriculture (USDA) is a strategic objective, part of which aims
to “provide leadership on food, agriculture, natural resources,
rural development, nutrition, and related issues” (USDA). Strategic
objectives, being broad and aspirational, can be useful for moti-
vation and cooperation of stakeholders, such as was recognised in
the eradication of smallpox (Fenner et al., 1988; Henderson, 2011).
However, useful as they are, strategic objectives offer little guid-
ance as to how to directly prioritise response actions and resources
for control.

Fundamental objectives define the overarching goal of the deci-
sion problem currently at hand and the term ‘objective’ shall refer to
fundamental objectives in this manuscript unless otherwise qual-
ified. For example, a policy-maker may  decide that minimising
outbreak duration, thereby lifting trade bans on products from
FMD-susceptible animals as soon as possible, is most important.
The FMD  Red Book, for instance, offers a surveillance objective for
the period 72 h post FMD  outbreak declaration to “detect existing
infected animals and premises as quickly as possible to determine
the extent of the outbreak” (APHIS, 2014). A clearly stated funda-
mental objective is unambiguous, quantifiable, states the metric
that is used to evaluate control actions, and, for clarity, states how
said metric should be optimised (Keeney, 1992; Runge and Walshe,
2014). That is, are we interested in maximising or minimising the
metric? Finally, since a fundamental objective is the criterion by
which control actions are evaluated and compared it is important
to include relevant constraints on time (e.g. when is it desired that
this objective be met?).

Means objectives are those which are needed insofar as they
help reach fundamental objectives. It is not of interest to pur-
sue them for their own sake. Learning is a common example of
a means objective. For instance, improving mechanistic under-
standing of the spread of FMD  will likely improve management
success. However, improving this understanding is not the funda-
mental goal of controlling an outbreak, so this is a means objective.
In the case of learning, obfuscating means objectives with funda-
mental objectives might lead to the conclusion that any action that
obtains information will be part of an optimal control strategy. In
an outbreak situation, when time and resources are limited, such
an assumption can be dangerous if spending time and resources
to learn prevents other management activities from being carried
out in a timely fashion. Managers are faced with a huge number
of uncertainties in an outbreak situation so there is a need to be
able to distinguish between which uncertainties are a hindrance to
management, and therefore a priority to resolve, and which uncer-
tainties do not affect the best choice of management action (i.e.
uncertainties for which, were they resolved, the recommended
management action would not change). Put bluntly, it is a waste
of resources to resolve uncertainties in an outbreak situation that
ultimately are not going to lead to a substantive improvement in
management.

Determining which uncertainties should be resolved requires a
manager to quantify the value of learning, which can be a difficult
task. Learning can be quantified in a number of ways. However,
from a management point of view, the currency most pertinent to
evaluating the benefit of learning are the units of the fundamental
objective, that is, the units in which control actions are compared.
For instance, if a policy maker is most interested in minimising
outbreak duration (the fundamental objective), then the benefit
of resolving uncertainty in, say, the rate of disease transmission
to susceptible individuals is best evaluated when the reduction in

uncertainty surrounding the transmission rate is stated in terms
of an expected reduction in outbreak duration. That is, answering
the question, what is the expected reduction in outbreak duration
that will result from resolving our uncertainty surrounding the
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ransmission rate? Thus, speaking more generally, once a fun-
amental objective and a metric of management success have
een defined, it is possible to evaluate the expected improvement

n management provided by the resolution of each uncertainty
Runge et al., 2011; Shea et al., 2014). Uncertainties expected to

ost influence fundamental objectives can then be prioritised.
Process objectives are concerned with the making of decisions

nd not the outcome of decisions. Process objectives do not directly
ffect the choice of control action. Ensuring that decision-making
s kept transparent and the public regularly informed may  be pro-
ess objectives adopted by a government so as to keep the trust
nd confidence of the public, or to maintain the cooperation of dif-
erent stakeholders and personnel involved in carrying out control
ctions. Process objectives thus influence the likelihood of success-
ully containing an FMD  outbreak. Weekly stakeholder meetings
hat were set up on each Friday during the 2001 UK outbreak
re one such example of enacted process objectives (Anderson,
002).

The benefits of being clear in the definition of objectives,
articularly fundamental objectives, has been recognised in a num-
er of contexts beyond FMD  control, including in the success of
rojects leading to the eradication of smallpox (Fenner et al., 1988;
enderson and Klepac, 2013), in the eradication of rinderpest

Mariner et al., 2012), in evaluating influenza vaccination plans
Medlock and Galvani, 2009), in deciding vaccination strategies
gainst avian influenza (Akey, 2003; Senne et al., 2005), and in
any areas outside disease control, such as in wildlife manage-
ent (Walters and Hilborn, 1976; Shea et al., 2002; Nicholson and

ossingham, 2006; Probert et al., 2011), weed control (Shea et al.,
010), and in the management of social welfare programs (Rossi
nd Williams, 1972; Austin, 1973). Despite this acknowledgement
f the importance of clear management objectives in the success
f control projects for high-profile diseases, the topic of objectives,
n itself, appears to be rarely discussed in the literature on FMD
ontrol, or even infectious disease control in general.

Here, we illustrate the dependence of the preferred choice of
ontrol action on the fundamental objective of outbreak man-
gement using an example of emergency response control to a
ypothetical FMD  outbreak in Cumbria, UK. We  focus on the phe-
omenon of contrasting different control actions in light of different
bjectives, rather than the specific metrics of comparison, so as to
llustrate the method of phrasing a decision-making problem. We
valuate seven control actions using five independent, rigorously-
tudied disease spread models and using a range of quantified
undamental objectives. We  explore three metrics of management
uccess, outbreak duration, number of livestock culled, and a cost
etric that includes both compensation costs of the number of ani-
als culled and costs of vaccine doses administered. Using these
etrics we construct objectives which differ not only in the base
etric being used but also in the statistic used to summarise each
etric for ranking.
Consulting multiple models may  complicate an analysis aim-

ng to identify the optimal control policy, particularly when model
esults are in conflict against each other. However, it is likely that
olicy-makers will consult multiple modelling groups during a real
utbreak (e.g. the 2001 FMD  outbreak in UK (Kao, 2002; Woolhouse,
003)) so it is important to study how to identify optimal con-
rol policies when faced with results from several models. Several
esearch groups have previously compared multiple models in the
valuation of FMD  control strategies (e.g. Dubé et al., 2007; Roche
t al., 2014a; Halasa et al., 2014). A multi-model situation illustrates
hat, while concordance in recommended control action across
odels may  provide validation and reassurance, differences in con-
rol action recommendation within the same objective but across
ifferent models may  highlight potentially useful differences in
odels and the assumptions governing those models.
ics 15 (2016) 10–19

2. Methods

2.1. Data

Data are from simulations of an FMD  outbreak using five
independently-developed disease spread models: (1) AusSpread,
developed by the Australian Government Department of Agricul-
ture, Fisheries, and Forestry (Garner and Beckett, 2005; Roche et al.,
2014b); (2) the Davis Animal Disease Simulation model, developed
at the University of California, Davis (Bates et al., 2003); (3) Inter-
spread Plus, developed at Massey University, New Zealand (Sanson,
1993; Stern, 2003; Stevenson et al., 2013); (4) the North Amer-
ican Animal Disease Spread Model, jointly developed by the US
and Canada, and with continued development by the Animal and
Plant Health Inspection Service of the United States Department
of Agriculture (Harvey et al., 2007); and (5) the Warwick model,
originally developed at Cambridge University during the 2001 UK
outbreak but then further developed at Warwick University from
2003 onward (Keeling et al., 2001; Tildesley et al., 2008). All the
models are spatially-explicit, stochastic, state-transition simula-
tion models. Beyond this classification, each model differs in several
respects, from the units upon which infection acts (at the farm-
level or the animal-level) to the type of control actions allowed.
All models have been used for planning purposes for FMD  and sev-
eral studies have validated results from several of these simulation
models against each other (e.g. Dubé et al., 2007; Halasa et al., 2014).
Results are presented with models anonymised.

Demographic parameters for the hypothetical outbreak scenario
were chosen to be consistent with the county of Cumbria in the UK
(Fig. S1). Such parameters included the sizes of the farms and the
proportion of sheep and cattle in each farm (other cloven-hoofed
species were ignored in this analysis). Spread was simulated across
7837 farms with a spatial distribution consistent with Cumbria.
All models were run from the start of the control program with
10 infected farms. The method used to generate which 10 infected
farms for each simulation varied slightly between models. Some
models used the same index farms for each simulation, with a con-
figuration of infected farms consistent with a single point of FMD
introduction, and some models used a new set of index farms at
each simulation (subject to clustering constraints to simulate a
single point of infection). After the first farm was reported with
infection it was  assumed a livestock movement ban was  imple-
mented with 90–100% efficacy.

In addition to the movement ban, five control actions were eval-
uated in the simulations: (1) culling of infected farms only (IP); (2)
culling of infected farms and of those that have been identified as
at risk through tracing of dangerous contacts (DC); (3) culling of
infected farms and of all those within 3 km of each infected farm
(RC); (4) culling of all infected farms and vaccination of cattle on all
farms within 3 km of each infected farm (V3L); and (5) culling of all
infected farms and vaccination of cattle on all farms within 10 km
of each infected farm (V10L). Note that culling of infected premises
was performed in all control strategies. Only one of these manage-
ment actions was  implemented per simulated outbreak (one action
per outbreak). Each modelling team ran each management action
for 100 simulation runs (model B only ran 99 simulation runs per
control). Culling was constrained to a maximum of 50 farms per day
and vaccination had a capacity of 10,000 animals per day. Vaccine
efficacy was  between 80 and 90%, specific to each model, with no
limit on the number of vaccine doses available. Owing to constraints
on action specification, ring culling was  not possible in model B.
Control actions may  be nested within each other (such as IP culling

within the other actions), or it may  not be possible to evaluate some
control actions in some models (as presented here) and, although
this situation is not complete, from the point of view of presenting
the results in a consistent manner, these situations may  present
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hemselves to decision-makers in real outbreaks so methods need
o be prepared for them. Additionally, models themselves may  not
ave been constructed with the same aims and so it may  not be
ppropriate to use such models in a comparison across a full range
f control actions.

Two further control actions accounted for vaccination. While
accination was not used during the 2001 UK outbreak, the subse-
uent public feedback and concern for animal welfare prompted
ore serious discussion about using vaccination as a viable

ontrol action in future outbreaks. Vaccinated animals are not con-
erred lifelong immunity after vaccination and so two vaccination
egimes are recognised: a vaccinate-to-kill regime, where vacci-
ated animals are removed from the population (V3K, V10K) and

 vaccinate-to-live regime, where vaccinated animals are allowed
o remain in the population to live out their normal commercial
ives (V3L, V10L). These vaccination regimes reflect differences in
pproaches by FMD-free countries and the ramifications of those
trategies with respect to gaining disease-free status from the

orld Organisation for Animal Health (OIE) and re-establishing
nternational market access for livestock and livestock products
OIE, 2013, see Article 8.6.9; Knight-Jones and Rushton, 2013;
acker et al., 2012b). In all simulations it was assumed that only
attle were vaccinated.

For each simulation, the duration of the simulated outbreak, the
otal number of livestock culled by species, and the total number
f vaccine doses administered were recorded. Data are provided in
he supplement.

. Objectives

Objectives are constructed from three metrics used to evaluate
ontrol actions in the literature: (1) a cost metric, in this case as a
unction of both the number of livestock culled and livestock vac-
inated (in units of £); (2) duration of the epidemic (in days); and
3) simply the number of culled livestock. The first metric, denoted
s C, includes both compensation to farmers of culled livestock and
accine cost of administered doses. This metric was  calculated as

 = CcowNcow + CsheepNsheep + CvaccNvacc, where Ccow, Csheep, and Cvacc

re the relative per-animal costs of compensation for cattle and
heep, and the cost of a vaccine dose, respectively (1000, 100, and
, respectively). Model C reported some farms that were a mix  of
attle and sheep without specifying the relative numbers of each
pecies. In this case, an additional term was added to the cost met-
ic, CmixNmix, where Cmix took a value of 500 (as a midpoint between
00 and 1000). The variables Ncow, Nsheep, Nmix, and Nvacc, are the
ulled numbers of cattle, sheep, cattle and sheep (on mixed farms),
nd the number of vaccine doses used, respectively. Note that val-
es of C calculated for the vaccinate-to-kill actions assume that
accine cost and compensation cost are the same, Cvacc = Ccow, since
nder this action vaccinated cows are culled and thus compen-
ation is paid. Note too that although minimising the number of
ivestock lost is generally not a fundamental objective of FMD  out-
reak control, it does represent a significant logistical constraint (de
lerk, 2002). Unless explicitly specified, it is assumed vaccination
ctions are vaccinate-to-live.

For each of the three metrics, five summary statistics were
sed to reflect the risk attitude of the decision maker. All of these
tatistics have previously been used to construct objective func-
ions in the FMD  literature (e.g. Morris et al., 2001; Halasa et al.,
014). Statistics used were the mean, the median, the variance,
he 90th quantile, and the empirical probability of having the met-

ic over a particular threshold. Note that a shortcoming of using a
hreshold-type objective is that values falling on either side of the
hosen threshold, no matter how small a difference, are given com-
letely different values with respect to the objective. An alternative
ics 15 (2016) 10–19 13

approach would be to discount values of the metric in decreasing
increments above the set threshold. The five statistics are calculated
over each of the three metrics, giving fifteen objective functions for
ranking management actions. Any ranking of control actions pre-
sented, using any one of these objectives, is performed on results
from only one model at a time. For example, the objective of min-
imising the median outbreak duration was  included (calculated
for each model separately), and so was the objective of minimis-
ing the probability of an outbreak that resulted in indemnity and
vaccine costs totalling more than £20 million (calculated for each
model separately). When ties occur within the same model and
objective the smallest rank of the tied actions is given to all tied
actions.

4. Results

Simulation output from multiple models and multiple objec-
tive/metric combinations produces an enormous quantity of
output. The goal here is not necessarily to identify a best action or
model, but rather to begin to explore the space of action-outcome
combinations in order to facilitate richer discussion between
modelling and decision-making groups. Rather than a complete
enumeration of all outcomes, here we  focus on highlighting spe-
cific patterns that emerge from our comparison of outcomes across
potential actions and models; the full results from all combinations
of model, action, metric, and statistic are presented in the supple-
ment. Results are shown using only the statistics of median, the
90th quantile, and the empirical probability of having a value over a
particular threshold due to similarities of results between the mean
with median, and variance with the 90th quantile, respectively
(results for all five statistics are presented in the supplement).

In a conventional, single-model analysis, one would rank candi-
date actions with respect to their projected outcome within a single
metric and statistic. For example, simulation results from model D
using vaccination at a 3 km radius under a vaccinate-to-live regime
(V3L) produce a median cost of compensation of livestock culled
and vaccine doses administered of £2.96 million (Fig. 1, Fig. S3).
Under an objective to minimise the median cost this was the best
(i.e. smallest) control action using model D;  the next most highly
ranked control under model D, and using the same objective, was
vaccinating-to-live at a 10 km radius (V10L), with a median cost
of £2.97 million, followed by culling of infected premises only (IP,
£4.68 million), ring culling at 3 km (RC, £5.47 million), dangerous
contacts culling (DC, £6.06 million), vaccination at 3 km under a
vaccinate-to-kill regime (V3K, £28.85 million), and vaccination at
10 km under a vaccinate-to-kill regime (V10K, £125.51 million),
respectively.

Within a given metric, the recommended control actions may
vary across objectives that use different statistics to form a rank-
ing. In particular, statistics based on measures of central tendency
will reflect expected outcomes, but statistics based on higher order
moments (e.g. variance, skewness) may  be more influenced by a
small number of extreme outcomes. For instance, for the metric of
the combined cost of compensation of culled livestock and vaccine
doses administered, culling only infected farms is ranked highly for
objectives of minimising statistics of central tendency such as the
mean or median cost (Fig. 1, Fig. S3). However, this control strat-
egy ranks poorly for metrics of variation or minimising extreme
values, with the exception of results from model A (Fig. 1, Fig. S3).
This comparison highlights that the IP strategy, which is the least
severe culling alternative (in that it never recommends culling of

farms for which infection has not yet been detected) results in low
expected costs associated with compensation and vaccine doses,
but is not robust to very large outbreaks, during which transmis-
sion outpaces the ability to respond. Thus, stakeholders that have
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Fig. 1. Cost of both compensation for culled livestock and vaccine doses administered (£ million), for a range of control actions (grouped rows) evaluated against three
objectives (columns) under five models (A–E, rows). Column titles represent the statistic used for ranking the control actions. Cells are rounded to integer values, except the
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lue  representing best performing control action. The final column is the empirica
dministered being greater than £20 million.

trong aversion to such rare, but extreme, outcomes would do best
o choose another strategy.

The ranking of control actions may  also vary across objectives
hat use different metrics but the same statistic. For instance, while
he control action of vaccinate-to-kill at a 10 km radius (V10K)
erforms poorly under an objective that minimises median cost
Fig. 1), this control action performs well under an objective to

inimise outbreak duration with the same statistic (Figs. 2 and 3).
ith the exception of model D, ring culling performs very well

or minimising median outbreak duration but poorly across other
edian metrics (Fig. 3). This conflict among metrics may  lead to

onflict among stakeholders in a decision-making setting as dif-
erent groups may  favour one metric of management success over
nother.

While trade-offs between metrics or statistics used to create
ankings may  lead to conflict among stakeholders, consistency in
he rankings of control actions allows decision-makers to simplify

he decision problem by identifying “win-win” or “lose-lose” sit-
ations. Vaccinating at a 10 km radius under a vaccinate-to-live
egime, for instance, performs well under all statistics, across all
odels, and across all three metrics investigated (Figs. 1–3, Figs.
model and objective) with red representing worst performing control actions and
ability of the combined cost of compensation of culled livestock and vaccine doses

S2–S7). Across the same range of criteria, the action of only culling
infected premises performs consistently poorly. Identifying such
“lose–lose” actions in advance might allow decision-makers to
remove these options from consideration, and simplify future simu-
lation exercises. Isolated exceptions to such consensuses are useful
to know too. For instance, the only metric for which vaccinating at a
10 km radius under a vaccinate-to-kill regime does perform well is
the metric of outbreak duration (Figs. 1 and 2, Figs. S2–S7). Know-
ing this exception forces decision-makers to express whether this
metric of management success is of primary importance.

It is not only useful to look at ordinal rankings of control meas-
ures but also the actual numerical output that leads to this ordinal
scale. Fig. 4 and Figs. S8–S14 present scatterplots of the perfor-
mance of each control action for each model and across a range
of objectives. For any given model and objective, statistics of the
chosen measure of success for each control action are scaled by
subtracting the value of said statistic of the worst performing con-

trol action and dividing by the range of values of the statistic across
all control actions for that model and objective. Under this rescal-
ing, the worst control strategy has a score of 1 and the best a score
of 0 within each model and objective, allowing control actions to
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Fig. 2. Outbreak duration (days) of control actions (grouped rows) evaluated against several objectives (columns) under five models (rows). Column titles represent the
statistic  used for ranking the control actions. Cells are rounded to integer values, except the column for the empirical probability, and are coloured according to rank with red
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epresenting worst performing control actions and blue representing best perform
robability of the outbreak duration being longer than 50 days.

e compared independently of the raw numerical output of sim-
lation models. For instance, the mean outbreak duration under
odel B for the strategy of dangerous contacts culling was 384

ays while the best and worst performing actions under model B,
ccording to mean outbreak duration, were vaccinating at 10 km
114 days) and infected premises culling (394 days), respectively.
his gives a score for dangerous contacts culling for model B of
384–114)/(394–114) = 0.96 (Fig. 4).

Correlations between metrics provide broader insight into the
elationship between metrics and functions of metrics. Some
etrics, such as outbreak duration, are generally positively cor-

elated across all investigated statistics, with the exception of the
mpirical probability of an extreme event, and in almost all models
Fig. S9). Therefore, any stakeholder interested in outbreak dura-
ion, whether it be expectation or risk, may  campaign for the same
ontrol action. The metrics of cost and the number of livestock
ulled are also highly correlated (Figs. S11–S14).

Clustering of actions in the space of different objectives allows
iscussion of latent logistical costs of actions, trade-offs in actions
mong different objectives, and constraints inherent in the system
n question. For instance, relative to the worst actions, vaccinating
t 10 km and at 3 km under a vaccinate-to-live regime (V3L, V10L)
luster together in multiple dimensions: outbreak duration, cost,
nd number of livestock culled (Fig. 4, Fig. S11–S12). Although vac-
inating at 10 km under a vaccinate-to-live regime was previously

dentified as a consistently well-performing action, this cluster-
ng forces decision-makers to decide whether the implementation
osts associated with vaccinating at 10 km over vaccinating at 3 km
re warranted given marginal improvement across a wide range of
ntrol action (within both a model and objective). The final column is the empirical

objectives. Actions that cluster in one dimension but disperse in
another highlight the importance of trade-offs. For example, in all
models except model B, dangerous contacts culling (DC) resulted
in a mean outbreak duration that is similar to vaccinating at 10 km
under a vaccinate-to-live regime (V10L) while resulting in a greater
number of mean livestock culled (Fig. 4). Therefore, if it is deemed
by policy-makers that the mean number of livestock culled is not an
important measure then the relatively small increase in outbreak
duration may  be warranted so as to avoid the implementation costs
associated with vaccination at a 10 km radius.

5. Discussion

Our analysis illustrates how differences in the definition of
a management objective for disease control really matter. The
importance of a clearly stated management objective is illus-
trated in our results by the change in recommended control
actions across (1) the choice of metric of management success,
as has been noted elsewhere in disease control (e.g. Medlock and
Galvani, 2009), and (2) the statistic used to summarise the metric
to create a ranking. Our analysis shows how qualitatively com-
paring rankings of actions allowed identification of consistently
well or poorly performing control actions, broad-scale correla-
tions among objectives, and clustering of actions in the space of
management objectives. All such findings either simplify the subse-

quent decision-making process or focus further discussion between
modellers and decision-makers on points of interest. Exceptions
to consensus in the best choice of control action across differ-
ent objectives explicitly shows where conflicts between different
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Fig. 3. Median performance of control actions (grouped rows) evaluated against several objectives under five models (rows). The median is used as the statistic to form a
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anking  of control actions under each metric (columns). Column titles represent th
nd  thousand head of livestock culled. Cells are rounded to integer values and are co
ction,  blue signifies best performing action).

takeholders may  exist, thereby forcing policy-makers to express
heir fundamental objective(s) of management. Reconciling any
ighlighted discordance in action recommendation across different
bjectives may  require multiple rounds of discussion and mod-
lling.

Elicitation of objectives is a non-trivial task which may  involve
any stakeholders with competing interests. Ultimately, the

ppropriate management objective(s) is a choice to be made by
olicy-makers in consultation with stakeholders. While it may  be
nrealistic to expect a policy-maker to provide modellers with a
tatistic they wish to optimise in simulation experiments, it should
e possible to deduce whether a policy-maker is interested in min-

mising an expectation or in minimising the risk of an extreme
vent occurring. Stating an explicit objective is in line with hav-
ng a clear policy, and so should be encouraged. In the absence of
lear objectives from policy-makers (such as prior to discussions

ith policy-makers), our analysis shows how performing compar-

sons across a range of objectives can highlight consensuses and
rade-offs of control actions across the space of candidate objec-
ives, which can then focus discussion to elicit a preference from
ic use for the ranking, and units for each column are, respectively: £ million, days,
 according to rank within each model and objective (red signifies worst performing

policy-makers. Subsequently obtaining a clearly-defined funda-
mental objective of management then makes most efficient use
of modellers’ resources, which is particularly important in an out-
break situation when speed is needed, and allows uncertainties
that have the greatest impact on FMD  control to be prioritised. In
cases where it is not possible to identify one objective of interest
and decision makers require a combination of objectives, it may  be
appropriate to consider techniques from the literature on multiple
criterion decision analysis (e.g. Keeney and Raiffa, 1976). Further
discussion of risk tolerance of decision makers may  be found in the
risk analysis literature (e.g. Raiffa, 1968; Keeney and Raiffa, 1976).

Our analysis, which used several objectives, was  complicated
by output from multiple peer-reviewed models rather than from a
single model. This situation is likely when dealing with important
diseases of humans and livestock, and one that will only become
more common in the future. Broad scale consensus across dif-

ferent models provides corroboration for whatever patterns are
highlighted by our analyses. One such pattern was  identifying
actions that perform consistently well (vaccinating at 10 km under
a vaccinate-to-live regime) or poorly (culling of infected premises
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Fig. 4. Performance of control strategies under both mean outbreak duration and mean number of livestock culled across five simulation models of FMD  spread. Mean values
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rom  simulation output under each model and under each measure of success (out
as  a score of 1 and the best a score of 0 within each model.

nly) across different management objectives. The positive corre-
ation observed in several statistics of outbreak duration was also
onsistent across models, adding weight to this phenomenon.

In several situations models differed in their recommendations
f the best control action. All models stood out at some point in our
nalysis as an exception to a norm. We  present no formal guide for
hoosing between control actions when there exist discrepancies in
he recommended control strategy across different models. How-
ver, there is merit in taking the broad-scale view that we  present,
t least in the initial stages of the decision-making process. The goal
f the decision-making process is to choose the best course of action
nd therefore the role of modelling, as a part of the decision-making
rocess, is not necessarily to produce a single recommended man-
gement action but to augment the decision-making process in
he way that most effectively helps decision-makers choose the
ourse of action that is most in-line with the objectives of man-
gement. This aim holds, regardless of the number of models
vailable for comparison. By not choosing between models, or by
ot combining model outputs, our presented approach avoids (1)
onditioning results on a single model (assuming only one model
s true), (2) assuming that all models will give similar results, (3)

aking assumptions about the commensurability of model out-
uts, and (4) having an upper limit on the number of models that
an be included (besides considering the practicalities of interpre-
ing the simulation output). Underlying mechanisms that lead to
ivergence among models may  be caused by different assumptions
nd parameterisations, uncontrollable differences in computation,
r they may  be reflective of underlying mechanisms that different
odels take into account, and therefore have a real-world inter-

retation. Ultimately, only by taking a broad view across several

odels can we identify patterns in measures of management suc-

ess that are robust to model choice, and identify where resolution
n model outputs is needed. Our analysis can highlight where reso-
ution is needed, therefore framing subsequent discussion between
 duration and livestock culled) have been scaled so that the worst control strategy

decision-makers and modellers, and taking steps towards priori-
tising which uncertainties are impeding decision-making. If it is
found that several uncertainties in the system have led to discord-
ance in models then an uncertainty analysis may  be an appropriate
next step, such as a value-of-information analysis (Runge et al.,
2011; Shea et al., 2014). As with reconciling differences across
objectives, reconciling the highlighted discordance in action rec-
ommendation across different models may  require multiple rounds
of discussion and modelling. Methods exist for combining outputs
from multiple models into a single prediction or action recommen-
dation (e.g. Lindström et al., 2015) and employing such an approach
can mean added transparency in the decision-making process as it
requires explicit quantification of how to combine different model
outputs. It is worth noting that discovering differences in model
recommendations is potentially more informative when the teams
developing the contributing models are working independently of
each other, as such a situation means it is more likely for different
mechanistic approaches to modelling to have been used.

For the analysis presented, subsequent discussions between
modellers highlighted that discrepancies in output between the
models could have been caused by movement restrictions asso-
ciated with implementing control actions. For example, the poor
ranking of ring culling in model D under an objective of minimis-
ing outbreak duration (Fig. 2), being an exception compared to
other models, is likely a reflection that model D does not imple-
ment additional movement constraints in areas where ring culling
is occurring whereas the other models do, and thus highlights the
importance of maintaining movement constraints in areas where
control actions are taking place. Additionally, models differ in how
they account for resource constraints. Some models assume detec-

tion of infected farms is a function of time while others assume
detection depends on the availability of surveillance resources to
undertake investigations. Daily vaccination rates also depend on
farm size in some of the models. While parameter differences across
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odels were minimised, there is also the possibility of these caus-
ng differences in model output. These factors, highlighted from our
esults, can thus frame subsequent analysis to pinpoint where lie
he most pertinent differences between models.

Our analysis used a cost function that only includes compen-
ation costs of culled livestock and the cost of vaccine doses
dministered. In a real world setting the economic losses caused
y export losses are non-trivial (Paarlberg et al., 2008; Buetre et al.,
013). Indeed, for a country with an export-focussed livestock

ndustry these costs can account for the majority of the economic
osses associated with an FMD  outbreak, and implementation costs

ill vary across control actions. All these costs need to be taken into
ccount for a thorough comparison of control actions using any
bjective of cost. From a cost perspective, the number of vaccine
oses used are the number of doses that are ordered from manu-
acturers, rather than doses that are administered. Unused vaccine
oses are a sunk cost, and this has not been taken into account in
he cost function in the presented analysis.

The current analysis calculates outbreak duration as the time
rom the first reported cases to when there are no more infected
r exposed animals in the simulation. This represents the mini-
um  duration of an outbreak, since in reality addition time would

e required to complete control operations, undertake surveillance
o demonstrate disease freedom, and to regain international mar-
et access. The duration of sanctions placed upon FMD-infected
ountries by the OIE and trade partners is dependent on whether
accination is used and whether or not vaccinated animals are
ulled (OIE, 2013 see Article 8.6.9) so it may  be pertinent to include
uch allowances when calculating outbreak duration. In our anal-
sis, the definition of outbreak duration provides no difference in
utcome between vaccinate-to-kill and vaccinate-to-live actions,
hereas duration of these two control actions when defined

ccording trade restrictions would be very different.
Our analysis is straight-forward and rapid, assuming that mod-

ls are already available, and the results presented are easily
nderstandable, requiring no assumptions on combining model
utputs. This analysis could also be adapted to other animal or
uman diseases as simulation models are widely used to test
fficacy of control strategies in these fields (e.g. Medlock and
alvani, 2009; Lee et al., 2010). Conditional on the time needed to
enerate model outputs, it would be feasible to construct the pre-
ented tables and plots in a short time-frame consistent with the
rgency of an FMD  outbreak situation, thereby quickly illustrat-

ng where differences occur across choice of objective and model,
nd fostering discussion surrounding the factors causing any differ-
nces. Despite the presented scenario being somewhat artificial it
llustrates how the rapid use of models can augment the decision-

aking process in disease outbreak management in this respect.
his work lays the important foundation, in defining an FMD  con-
rol project’s objectives, for future applications of formal structured
ecision making in FMD  control problems, and in disease control

n general, thereby leading to a more transparent and reproducible
ramework for making the most of modelling tools used in disease
utbreak control.
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