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Abstract

The relationships between languages are often modelled as phylogenetic trees whereby there

is a single shared ancestral language at the root and contemporary languages appear as leaves.

These can be thought of as directed acyclic graphs with hidden variables, specifically Bayesian

networks. However, from a statistical perspective there is often no formal assessment of the

suitability of these latent tree models. A lot of the work that seeks to address this has focused

on discrete variable models. However, when observations are instead considered as functional

data, the high dimensional approximations are often better considered in a Gaussian context.

The high dimensional data is often inefficiently stored and so the first challenge is to project this

data to a low dimension while retaining the information of interest. One approach is to use the

newly developed tool named separable-canonical variate analysis to form a basis.

Extending the techniques for assessing latent tree model compatibility to beyond discrete vari-

ables, the complete set of Gaussian tree constraints are derived for the first time. This set com-

prises equations and inequality statements in terms of correlations of observed variables. These

statements must in theory be adhered to for a Gaussian latent tree model to be appropriate for

a given data set. Using the separable-canonical variate analysis basis to obtain a truncated rep-

resentation, the suitability of a phylogenetic tree can then be plainly assessed. However, in

practice it is desirable to allow for some sampling error and as such probabilistic tools are de-

veloped alongside the theoretical derivation of Gaussian tree constraints.

The proposed methodology is implemented in an in-depth study of a real linguistic data set to

assess the phylogenies of five Romance languages. This application is distinctive as the data set

consists of acoustic recordings, these are treated as functional data, and moreover these are then

being used to compare languages in a phylogenetic context. As a consequence a wide range of



theory and tools are called upon from the multivariate and functional domains, and the powerful

new separable-canonical function analysis and separable-canonical variate analysis are used.

Utilising the newly derived Gaussian tree constraints for hidden variable models provides a first

insight into features of spoken languages that appear to be tree-compatible.
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Chapter 1

Introduction

1.1 Phylogenetic trees and networks in linguistics and biology

Evolutionary models of languages are usually considered to take the form of trees. However

some researchers have shifted away from describing the evolutionary language relationships

using trees instead using networks (for example, Forster and Toth [2003], Nelson-Sathi et al.

[2011]). This shift has also been seen in other areas of study such as biological phylogenetics

(e.g. Rieppel [2010]). On the other hand, trees have a somewhat more natural interpretation

in terms of evolutionary structure. Thus, assessing the suitability of a tree model for language

data is therefore of interest to researchers in linguistics. The main application of this thesis is

to examine functional acoustic data from speakers of five Romance languages (French, Italian,

Portuguese, American Spanish, and Iberian Spanish) to provide insight at an exploratory level

as to whether a tree is an adequate model for describing certain features of these language

relationships.

To address questions of whether data is compatible with a latent tree model, we appeal to the

notion of tree constraints. The theory of tree constraints is embedded in the area of algebraic

statistics, a field that has a significant recent literature related to phylogenetics (e.g. Allman

and Rhodes [2008], Sturmfels and Sullivant [2005]). It has been known for some time that

covariance functions of data on observed variables respecting an evolutionary tree must obey

particular algebraic and semi-algebraic constraints, e.g. Settimi and Smith [2000]. Recently

1



Chapter 1. Introduction 2

these have become much better understood (for example Allman et al. [2009, 2014], Drton and

Sullivant [2007]) and fully characterised in some cases (e.g. the binary case Zwiernik and Smith

[2011, 2012]). With the development of so-called tree constraints the plausibility of the tree

model assumptions can be assessed for certain random variables.

In this thesis we derive and utilise tree constraints for Gaussian latent tree models (GLTMs).

This allows us to check whether the moments of observed variables lie within regions consistent

with a GLTM and moreover to develop statistical tools in order to get a probabilistic assessment

of compatibility of data with a GLTM. In our linguistic application, the data set comprises

acoustic samples (audio recordings) from speakers of five Romance languages or dialects. The

aim is to assess this functional data set for compatibility with a hereditary tree model at the

language level. A novel combination of canonical function analysis (CFA) with a separable

covariance structure produces a representative basis for the data. The separable-CFA basis is

formed of components which emphasise language differences whilst maintaining the integrity

of the observational language-groupings.

The set of Gaussian tree constraints is applied to the covariances of component-by-component

projections of the data to investigate adherence to an evolutionary tree. By considering the data

component-wise, a more realistic and nuanced analysis can be performed which permits some

observed features of linguistic data to be tree-compatible and others not. The results highlight

some aspects of Romance language speech that appear compatible with an evolutionary tree

model but indicate that it would be inappropriate to model all features as such.

1.2 Key contributions of the thesis

This thesis makes a number of contributions to the literature with the main ones being listed

below:

• The first key contributions are the tools separable-canonical variate analysis (separable-

CVA) and the functional counterpart separable-canonical function analysis (separable-

CFA), both of which are defined in Section 3.6. These are hugely useful tools that allow

for CVA and CFA to be implemented in the commonly occurring situation that the number
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of variables exceeds the number of observations. Importantly the assumption of separabil-

ity does not affect the validity of these tools and, in the analyses we perform, the efficiency

does not appear to be significantly impaired. This new tool is described in Shiers et al.

[2014, Section 3], which has been submitted for review.

• The latter half of Chapter 4 introduces a preliminary exploration of graphical diagnostics

for inequality constraints for binary latent tree models. This stems from the definite need

to develop more nuanced assessment of tree-compatibility. The graphical diagnostics add

insight, which was previously not available, into how much credence should be given to

an inequality constraint being violated (or not). Furthermore, we use multi-dimensional

scaling to obtain a visual aid for distinguishing between alternative trees. These results

have been published in refereed conference proceedings [Shiers and Smith, 2012].

• In Chapter 5, the first complete description of tree constraints for the GLTM is derived.

This is given as a set of equations and inequality statements involving correlations of the

observed variables. These statements hold if and only if the correlations are associated

with a GLTM, which means that these constraints can form the foundation of techniques

for assessing compatibility of data sets with GLTMs. These results can be found in Shiers

et al. [2016, Section 3], which has been submitted for review.

• In Chapter 6, using the tree constraints presented in Chapter 5, a novel methodology is

presented for assessing GLTM compatibility of data sets. For the inequality constraints,

the Wishart and inverse-Wishart distributions are employed to obtain posterior probabili-

ties of tree-compatibility. This is an efficient and versatile tool for assessing both general

tree constraints and constraints specific to a particular tree. Additionally, the link is made

between the equality constraints and vanishing tetrads which then allows for the estab-

lished chi-squared test to be performed to assess tree-compatibility. Moreover, two main

scenarios are given for when equality constraints can be utilised: Firstly, for smaller scale

models an exploratory tetrad analysis (ETA) can be implemented to select the best fitting

tree (if any). Secondly, a confirmatory tetrad analysis (CTA) can be performed when a

specific tree is to be tested, which is particularly useful when one wants to test a widely

accepted or a newly proposed tree model. This suite of tools, for both equality and in-

equality constraints, makes use of all the tree constraints, and it allows assessment of a
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particular data set as to whether the class of GLTMs is suitable for specified trees. This

methodology can be found in Shiers et al. [2016, Sections 4–5], which has been submitted

for review.

• Using the tree constraints derived in Chapter 5 and the associated methodology developed

in Chapter 6, the first implementations of this newly constructed set of tools for assessing

tree-compatibility are given in Chapter 7. The primary application is the acoustic linguis-

tic data set consisting of audio recordings of speakers from five different languages. The

tree constraint testing is used to assess whether any tree in the class of GLTMs is an ap-

propriate fit for the data. In contrast, the secondary application is biological, considering

whether a growth curve data set relating to several yeast species supports an existing pur-

ported evolutionary tree from the literature. Between these two examples, the full range of

the constraints and associated methodologies are demonstrated, and furthermore, prelim-

inary findings are discussed in the context of the applications. The linguistic application

is the basis of Shiers et al. [2014] and it also features in a further analysis in Shiers et al.

[2016, Section 6] in addition to the biological yeast example.

1.3 Structure of the thesis

The overall aim of this thesis is to present a methodology for assessing whether features of

spoken languages may be suitably modelled as Gaussian trees with latent interior variables. To

this end, it is necessary to identify phonetic features that effectively distinguish languages. This

is achieved by projecting high dimensional spectrograms to a novel separable-canonical variate

basis, to obtain a meaningful low dimensional representation of data. The features highlighted

by this projection can then be assessed for compatibility with evolutionary trees. Throughout, a

Romance language data set is used to illustrate the methodology as a proof of concept.

Chapter 2 provides the background material regarding graphical models and more specifically

Bayesian networks (BNs) for which GLTMs, the model class of interest, are a particular sub-

class. We also touch upon the Wishart and related distributions due to their possible use in

Monte Carlo sampling for model search. These ideas are brought across in later chapters to

assist with assessing the suitability of GLTMs.
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In Chapter 3, a brief overview is given of quantitative and statistical linguistics before moving

into the use of functional acoustic data in a linguistic context. The acoustic data set originat-

ing from Romance language speakers is then introduced so as to provide motivation for the

techniques we subsequently discuss in this and future chapters. At this point, we discuss the

preprocessing work that the raw data undergoes in order to get to the desired form for a func-

tional data analysis. The rest of the chapter is devoted to introducing functional data tools for

dimension reduction, namely functional principal component analysis (FPCA) and canonical

function analysis (CFA). These are then associated with their multivariate counterparts princi-

pal component analysis (PCA) and CVA, which are often used as approximations to FPCA and

CFA respectively. Finally, we introduce the new techniques separable-CFA and separable-CVA

which prove to be very useful in situations where the number of variables exceed the number of

observations.

Chapter 4 introduces the concept of tree constraints, a theoretical set of equations and inequal-

ities that must satisfied if a data set is to be deemed compatible with a latent tree model. We

then review the existing literature on binary tree constraints and illustrate their use with two

examples, one from linguistics and another from phylogenetics. The latter half of the chapter

provides the first look at moving away from a black-and-white assessment of tree-compatibility.

By utilising graphical tools a more subtle approach can be given as to judging whether a data

set is tree-compatible and even as to which tree is a better fit.

In Chapter 5, we derive the complete description of the correlation space of GLTMs, thus ob-

taining the full set of Gaussian tree constraints. This is achieved by making the link between

tree metrics and another defined space called the space of phylogenetic oranges, and then notic-

ing the close relationship between this space and that of GLTMs. This provides a theoretical

framework for assessing whether a data set is compatible with a GLTM.

Whereas Chapter 5 provides the theoretical results required for assessing tree-compatibility,

Chapter 6 details how to utilise these in practice, extending the use of constraints beyond simple

binary diagnostics. The inverse-Wishart is combined with the Wishart distribution to efficiently

obtain a posterior probability of tree-compatibility with respect to the inequality constraints. For

the equality constraints a direct link is made with the concept of vanishing tetrads opening up the
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use of distributional results and a chi-squared test statistic for ETAs and CTAs. Thus methods

for utilising all of the Gaussian tree-constraints are detailed.

Chapter 7 features the core application of the thesis. The aim is to assess whether a subset of

Romance languages can be adequately modelled by a GLTM. Using GLTMs to model language

evolution is often performed implicitly without any check on whether this is appropriate. Here

we take the relatively recent approach of considering spoken languages as functional data and

using these objects as the observations of interest. This application draws upon tools detailed

in earlier chapters such as the novel separable-CFA and separable-CVA in Chapter 3 and the

Gaussian tree constraints and associated methodology in Chapter 5 and Chapter 6 respectively.

To complement the linguistic application a biological example is also given, studying the growth

curves of yeast species. As with languages, a GLTM is often implicitly adopted when modelling

biological evolution. In this example, an existing phylogenetic tree for the yeast species is taken

from the literature and the data set is tested against this specific tree using a CTA. Between

the linguistic and biological examples, we are able to showcase the full suite of Gaussian tree

constraints and methodologies proposed in the thesis.



Chapter 2

Basics of graphical models and

Bayesian analysis

This chapter introduces the concept of graphical models with a focus on BNs. The relevant

notation and definitions are given alongside some key results. The subject of graphical models

is vast and thus we keep the focus of the chapter to the key elements required for understanding

the concepts in the thesis. BNs form the basis of the tree constraints reviewed in Chapter 4 and

the newly derived ones in Chapter 5. In the latter half of the chapter, the Wishart and inverse-

Wishart distributions are introduced with an example of their use in graphical model selection

[Atay-Kayis and Massam, 2005]. These are of relevance as the inverse-Wishart will be utilised

in Chapter 6 as part of the methodology for implementing Gaussian tree constraints.

2.1 Graphical models

A probabilistic graphical model is a graph that is used to encode the joint probability of random

variables and to visualise the (conditional) independence relationships between these random

variables. It is then possible to determine the conditional and marginal distributions of the ran-

dom variables. One of the main advantages of graphical models is efficiency; the representation

of the joint density is usually more compact than other descriptions but also calculations and sim-

ulations are often more efficient due to the sleek representation. On top of this, it is often easier

7
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to quickly read information (such as conditional independence) from a graphical representation

and consequently graphical models can also be good ways to communicate information regard-

ing statistical relationships between random variables. There are plenty of texts on the subject

of graphical models. For example Koller et al. [2007], Lauritzen [1996], Pearl [1988], Smith

[2010], Sucar [2015], Whittaker [1990]. Here we primarily follow Lauritzen [1996] though will

draw upon other sources where stated.

A graphical model is defined by its graph G and by a set of local functions of random variables,

denoted by f(·). Thus if the full set of random variables is given by X = {X1, . . . , Xn} then

the joint probability is given by

Pr(X1, . . . , Xn) = K

M∏
i=1

f(Yi) (2.1.1)

where Yi ⊆ X and K is a constant that normalises all probabilities such that they sum to one

[Koller et al., 2007]. Before considering specific types of graphical models we shall review

some definitions and notation regarding graphs that we will use later in the thesis.

Definition 2.1.1 (Graph). A graph G is a pair G = (V,E) whereby V is a set of vertices and E

is a set of edges. The edge set E comprises ordered pairs (vi, vj) whereby vi, vj ⊆ V . If i = j

then the edge is known as a loop. If i 6= j and if (vi, vj) ∈ E and (vj , vi) ∈ E then there is an

undirected edge between vertices vi and vj . Otherwise, (vi, vj) ∈ E indicates a directed edge

from vi to vj , which can be denoted vi → vj .

In terms of visual representation, vertices are denoted by circles with edges given by lines joining

the relevant vertices complete with arrow head in the case of directed edges.

Definition 2.1.2 (Parent and child). If vi → vj then vi is the parent of vj and vj is the child of

vi. Furthermore, pa(vj) is the set of all parents of vj and similarly ch(vi) is the set of children

of vi.

Definition 2.1.3 (Directed graph). A graph G is said to be directed if all edges are directed, i.e.

if (vi, vj) ∈ E then (vj , vi) /∈ E.

Definition 2.1.4 (Subgraph). G1 = (V ∗, E∗) is a subgraph of G = (V,E) (written G∗ ⊆ G) if

V ∗ ⊆ V and E∗ ⊆ E.
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Definition 2.1.5 (Completeness). A graph G = (V,E) is said to be complete if ∀ i, j, (vi, vj) ∈

E or (vj , vi) ∈ E or both.

Definition 2.1.6 (Clique). If a subgraph G∗ is complete, it is said to be a clique.

Definition 2.1.7 (Skeleton). The skeleton sk(G) is the graphG with all directed edges replaced

with undirected edges.

Definition 2.1.8 (Path). A sequence of vertices (v1, . . . , vj , . . . , vk) is a (non-repeating) path

denoted v1vk if vi ∈ V and if vi are unique vertices ∀ i = 1, . . . , k, and if (vi, vi+1) ∈ E ∀

i = 1, . . . k − 1.

Definition 2.1.9 (Ancestor). For the graph G = (V,E), a vertex vj ∈ V is an ancestor of

vi ∈ V if path (vj , vi) is found in G. The ancestor set of vi is all such vj and is denoted an(vi).

Definition 2.1.10 (Separation). For a graph G, if VA, VB, VC ⊂ V and are pairwise disjoint,

then C separates A from B if ∀ vA ∈ VA, vB ∈ VB all paths from vA to vB contain at least one

element vC ∈ VC . Furthermore, VC is known as a separator.

Definition 2.1.11 (Cycle). A graph G contains a cycle if ∃ vi, vj ∈ V such that vivj and vjvi

are paths in G and the sets of vertices comprising these two paths are not identical.

Definition 2.1.12 (Decomposable). A graphG is decomposable if in sk(G) every cycle of length

4 or more has an edge not on the path between two vertices.

Definition 2.1.13 (Directed acyclic graph). A graph G is a directed acyclic graph (DAG) if G

is a directed graph with no cycles.

Definition 2.1.14 (Unmarried parent and unmoralised child). For a DAG G, a vertex vi ∈

V is an unmarried parent if ∃ j, k with i, j, k unique, such that (vi, vk), (vj , vk) ∈ E and

(vi, vj), (vj , vi) /∈ E. Let any such vk be called an unmoralised child.

Definition 2.1.15 (Verma graph). The Verma graph of a DAG G is denoted ver(G) and is

obtained by replacing directed edges with undirected edges ∀ (vi, vj) ∈ E, where vj is not an

unmoralised child.

Definition 2.1.16 (DAG equivalence). Two DAGs G1 and G2 are said to be equivalent if they

encode the same set of independences.
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v1 v2 v3 v1 v2 v3 v1 v2 v3

FIGURE 2.1: Equivalent DAGs.

v1 v2 v3

FIGURE 2.2: Non-equivalent DAG.

Definition 2.1.17 (Faithfulness). A graphG is said to be faithful in relation to a joint probability

distribution P if every independence in P can be read from G.

Theorem 1 (Equivalence of DAGs). Two DAGsG1 andG2 are equivalent iff ver(G1) is identical

to ver(G2).

The concept of equivalent DAGs is taken from Verma and Pearl [1990]. Consider the simple

DAG which is a path with three vertices (v1, v2, v3). There are three graphs in the equivalent

class, which are shown in Figure 2.1. However, note that the fourth combination of arrow head

directions (Figure 2.2) is not equivalent to the other three DAGs. This can be observed by

comparing the Verma graph which would retain the directed edges unlike the other three DAGs.

One further point to note is that the direction of the arrows does not (in general) imply a causal

relationship in a graphical model. The equivalence of DAGs above exemplifies why this is the

case given the complete reversal of paths in Figure 2.1.

Thus far, we have introduced the basics of graphs, which make up half of the specification of a

graphical model. The other half is specified by functions on the random variables as formulated

by (2.1.1). We now consider the most frequently studied of the probabilistic graphical models,

the BN.

A BN is a graphical model whereby for a graph G = (V,E) the vertices represent random

variables X1, . . . , Xn and the edges represent the dependence relationships between the ran-

dom variables. Before we give a more formal definition by stating the particular functions that

embellish the graphical description to form the complete probabilistic description of a BN, we

define conditional independence.
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Definition 2.1.18 (Conditional independence). If X1, X2 and X3 are random variables and f

are probability density or mass functions, then

X1 ⊥⊥ X2|X3 ⇐⇒ fX1X2|X3
(x1, x2|x3) = fX1|X3

(x1|x3)fX2|X3
(x2|x3)

where X1 ⊥⊥ X2|X3 denotes that X1 is conditionally independent of X2 given X3.

In terms of the graphical representation of a BN the separation theorem provides us with a

method for reading conditional independence statements from a BN.

Theorem 2 (Separation theorem). Consider the BN with graph G = (V,E). If VA, VB, VC ⊂ V

are pairwise disjoint and C separates A from B then:

A ⊥⊥ B|C.

Furthermore, we can see that

Xi ⊥⊥ {an(Xi)\pa(Xi)}|pa(Xi).

Recall that a joint probability density can be written as a product of conditional probabilities:

p(x1, . . . , xn) = pn(xn|x1, . . . , xn−1)pn−1(xn−1|x1, . . . , xn−2) . . . p2(x2|x1)p1(x1)

where the vertices are numbered such that i < j for each directed edge (vi, vj). Here each pk

can denote probability mass functions or probability density functions depending on whether

Xk is discrete or continuous.

For a BN, we can make a further simplification:

p(x1, . . . , xn) =
n∏
k=1

pk(xk|pa(xk)).

Definition 2.1.19 (Bayesian network). Consider the random variables X1, . . . , Xn and an

acyclic graph G = (V,E) with n nodes whereby each node is associated with a unique random
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variable Xi. Then G is a Bayesian network for X1, . . . , Xn if

Pr(X1, . . . , Xn =
n∏
j=1

Pr(Xj |pa(Xj).

Thus a BN for random variables X1, . . . , Xn is defined by an acyclic graph G = (V,E) and the

set of probabilities Pr(Xi|pa(Xi)) for each random variable Xi, i = 1, . . . , n.

The thesis will pay particular attention to a specific type of BN whereby the graph G is a tree.

Definition 2.1.20 (Tree). A graph G = (V,E) is a tree if in sk(G) there is a unique path vivj

∀ vi, vj ∈ V .

It is clear from the definition that if sk(G) is a tree then its edges can be directed such that the

resulting graph is a DAG by selecting a node and pointing all edges away from this vertex.

Definition 2.1.21 (Roots and leaves). If for a DAG G, pa(vi) = ∅, then vi is a root. If ch(vi) =

∅, then vi is a leaf.

A tree can be assigned a unique root by selecting a vertex and then directing all edges away from

the selected vertex. This is often seen in graphs that represent evolutionary processes where

informally the directed edges represent some aspect of time. From a BN point of view, we have

already seen that directed edges can be reversed under certain conditions while encoding the

same conditional independences. Thus in BNs the directed edges do not necessarily represent

the direction of time, though it is sometimes possible to direct them to do so. We now define a

particular type of tree that is often used in evolutionary models.

Definition 2.1.22 (Binary tree). A directed tree is binary if no vertex has more than two children.

If all interior vertices (i.e. non-leaves) have two children, then it is called strictly binary.

Definition 2.1.23 (Vertex degree). The degree of a vertex vi is the number of edges connected

to the vertex and denoted deg(vi).

Definition 2.1.24 (Trivalent). A graph G is trivalent if in sk(G) the maximum degree of any

vertex is 3. It is strictly trivalent if every interior vertex has degree 3.
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Binary and trivalent trees are often used to represent evolutionary models whereby the vertices

represent species or languages for example. These often are explicitly assigned a single root

representing the common ancestor of all the other vertices to convey the idea of evolution over

time. It is often the case that random variables associated with interior nodes of a tree are unob-

servable, perhaps because species or languages are extinct and the relevant data unobtainable. In

terms of BNs, we can represent this graphically by distinguishing between observed and unob-

served random variables. If a random variable is unobserved this can be called a latent or hidden

variable, in contrast to observed variables also known as manifest variables. Latent variables

are represented graphically as white circles, manifest variables as black circles. Latent models

are often more reflective of reality since often there are unknown but relevant random variables

worth modelling. However, latent models tend to be more difficult to analyse and perform infer-

ence on and as such there is a vast dedicated literature on latent variable graphical models that

is still developing (e.g. Anandkumar et al. [2014], Bentler [1980], Bollen [2014], Duncan et al.

[2013], Stanghellini and Vantaggi [2013]).

Definition 2.1.25 (Latent tree model). A graph T is a latent tree model if T is a BN, a tree, and

has latent interior vertices and manifest leaf vertices.

Latent tree models are commonly used to represent evolutionary processes whereby we only

observe the extant species at the leaves and so the ancestor set of all leaves is empty. This need

not necessarily be a binary or trivalent tree, though often this is the case [Felsenstein, 1978]. In

Settimi and Smith [2000], it is shown that the class of trivalent trees on discrete random variables

contains the class of statistical models of manifest variables on all latent tree models. So in this

sense we lose nothing by focusing on the former class. Binary latent tree models will be the

basis of the tree constraints derived in this thesis (Chapter 5) and the focus of our analyses of

Romance languages (Chapter 7). Furthermore, we consider a specific class of latent tree models

that are not only binary in structure but whereby the nodes are also jointly multivariate Gaussian

in distribution. We now recall the definition of the multivariate Gaussian distribution and define

Gaussian latent tree models.

Definition 2.1.26 (Multivariate Gaussian distribution). Random variables X1, . . . , Xn are dis-

tributed jointly Gaussian with mean vector µ and covariance matrix Σ if the density of the

distribution is given by:
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fx(x1, . . . , xk) =
1√

(2π)k|Σ|
exp(−1

2
(x− µ)TΣ−1(x− µ))

Definition 2.1.27 (Gaussian latent tree model). A graph T is a Gaussian latent tree model if T

is a latent tree model and the random variables represented by its vertices are distributed jointly

Gaussian.

Note, that only the marginal distribution on the leaves are actually observed for the GLTM.

Compare with the parametrisation of the GLTM in Section 5.2 and specifically Definition 5.2.2

where the space of multivariate normal distributions is linked to the space of marginal distribu-

tions on the leaves. As described in this later section, the description forms the starting point for

understanding and utilising the model space.

To close this current section, some of the terms and concepts defined thus far are now exempli-

fied using Figure 2.3.

X1

X3

X4 X5

X2

FIGURE 2.3: Example DAG, specifically a latent tree model.

Hidden nodes: X1, X2.

Observed nodes: X3, X4, X5.

Root node: pa(X1) = ∅ so X1 is the root node.

Path example: Path X1 to X5 : (X1, X2, X5).

Separation examples:

X1 separates A = {X2, X4, X5} and B = {X3} so A ⊥⊥ B|X1.

X2 separates D = {X1, X3} and E = {X4, X5} so D ⊥⊥ E|X2.

Parent, child and ancestor set examples:

pa(X4) = {X2}, pa(X3) = {X1}.

ch(X2) = {X4, X5}, ch(X3) = ∅ thus X3 is a leaf as are X4, X5.

an(X4) = {X1, X2}.
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2.2 Learning model structure

The two main strands of learning for graphical models are estimation of parameters and model

structure. In this thesis the interest is on model class (whether a tree is a suitable model) and

thus learning model structure is more relevant to this work.

There are plenty of established methods for performing a model search or assessing model fit for

fully observed graphs e.g. Atay-Kayis and Massam [2005], Banerjee et al. [2008], Yuan and Lin

[2007], and the range of existing tools continues to expand. Loh and Wainwright [2013] make

use of precision matrices to assess graph structure for discrete variable models and Schwaller

et al. [2015] search the class of spanning trees under a number of distributional assumptions by

considering posterior distributions across possible edges.

In Atay-Kayis and Massam [2005, Section 3], variants of the Wishart distribution, known as

G-Wisharts, are used to assess model fit for decomposable models. We review the use of the G-

Wishart for decomposable model search as this has some parallels to Section 6.1 where we

advocate using the inverse-Wishart for assessing Gaussian tree constraints in the latent tree

model setting. First we give an overview of the Wishart, inverse-Wishart and G-Wishart.

2.2.1 Wishart & inverse-Wishart

If Σ̂ is based on a sample matrix X comprising n samples from Np(0,Σ), then the estimated

scatter matrix is calculated as Ŝ = (n−1)Σ̂ = XXT and it is well known that the scatter matrix

is Wishart distributed Ŝ ∼ Wp(n,Σ) [Wishart, 1928a] with probability density function

f(S) =
det(S)

n−p−1
2 exp(−1

2 tr(Σ−1S))

2
np
2 det(Σ)

n
2 Γp(

n
2 )

where S is a positive definite matrix and Γp(·) is the multivariate gamma function which is given

in its non-recursive form as:

Γp(a) = π
p(p−1)

4

p∏
j=1

Γ(a+
1− j

2
)
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where Γ(·) is the regular gamma function. Recall that in its most general form, the gamma

function is:

Γ(b) =

∫ ∞
0

xb−1 exp(−x)dx.

A common prior distribution for unknown Σ is the inverse-WishartW−1
p (n0,Σ0), e.g. Gelman

et al. [2013], Carlin and Louis [2008], Roverato [2002], with probability density function

f(Σ0) =
det(ψ)

n0
2 exp(−1

2 tr(ψΣ−1
0 ))

2
n0p
2 det(T )

n0+p+1
2 Γp(

n0
2 )

.

The inverse-Wishart is a conjugate prior, thus the posterior distribution p(Σ|X) is the inverse-

Wishart with parameters as indicated: W−1
p (n0 + n,Σ0 + Ŝ). If Ŝ ∼ Wp(n,Σ) then ˆS−1 ∼

W−1
p (n,Σ−1), i.e. T = S−1 and ψ = Σ−1.

Proposition 2.2.1. The inverse-Wishart distribution is the conjugate distribution for the Wishart

distribution.

Proof. Let X be an n × p data matrix where X ∼ Np(0,Σ) and so the scatter matrix Ŝ =

(n − 1)Σ̂ = XXT and Ŝ ∼ Wp(n,Σ). Consider a prior distribution for the true covariance

Σ ∼ W−1
p (n0,Σ0). We are interested in the posterior:

f1(Σ|Ŝ) ∝ f2(Ŝ|Σ)f3(Σ)

=
det(Ŝ)

n−p−1
2 exp(−1

2 tr(ŜΣ−1))

det(Σ)
n
2 2

np
2 Γp(

n
2 )

det(Σ0)
n0
2 exp(−1

2 tr(Σ0Σ−1)

det(Σ)
n0+p+1

2 2
n0p
2 Γp(

n0
2 )

∝
exp(−1

2 tr(ŜΣ−1) exp(−1
2 tr(Σ0Σ−1))

det(Σ)
n
2 det(Σ)

n0+p+1
2

=
exp(−1

2 tr((Ŝ + Σ0)Σ−1)

det(Σ)
n+n0+p+1

2

=⇒ Σ|Ŝ ∼ W−1
p (n+ n0, Ŝ + Σ0)

The penultimate step uses tr(A) + tr(B) = tr(A + B) (when A,B square matrices with the

same dimension) and also det(C)α det(C)β = det(C)α+β .
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As in Roverato [2002], for the scale hyperparameter of the prior Σ0 the identity matrix Ip can be

used. Furthermore, by setting the degrees of freedom hyperparameter as n0 = p the prior distri-

bution is well-defined — n0 ≥ p ensures that the domain of the gamma function is respected and

thus the density function of the prior is valid. Under this prior, the probability density function

of the posterior inverse-Wishart distribution in Proposition 2.2.1 is given by

det(Ŝ + Σ0)
n+n0

2 exp(−1
2 tr((Ŝ + Σ0)Σ−1)

2
n+n0

2 Γp(
n+n0

2 ) det(Σ)
n+n0+p+1

2

Then Σ|X can be sampled from the posterior density. This is very efficient as the inverse-

Wishart is a known distribution available in most statistical software. Alternative priors may be

selected such as the scaled inverse-Wishart [O’Malley and Zaslavsky, 2008] or a strategy for

modelling correlation and covariance separately [Barnard et al., 2000]. However, these alterna-

tives bring additional computational cost and complexity. Thus, the inverse-Wishart prior is an

appealing choice particularly for preliminary analyses.

2.2.2 The G-Wishart distribution for model search

Following Atay-Kayis and Massam [2005, Section 3] and adopting generally the same notation,

we introduce theG-Wishart. For an undirected, decomposable graphG = (V,E), letM+(G) =

{X ∈ M+| for i 6= j, A(G)ij = 0 ⇒ Xij = 0} where A(G) is the edge adjacency matrix for

G, and M+ is the cone of positive definite matrices. Thus M+(G) is the set of positive definite

matrices with the missing edges of G constrained to be zero.

Let X1, . . . , Xn ∼ Np(0,Σ) where Σ−1 ∈ M+(G) the set of positive definite matrices re-

stricted to the undirected graph G such that if i 6= j and (i, j) 6∈ E then Σ−1
ij = 0.

Let Zi = Xi − X̄i where X̄ = 1
n

∑n
i=1Xi, and then let Ui = ZTi Zi be a p× p scatter matrix ∀

i = {1, . . . , n}. Also denote Z = (Z1, . . . , Zn).

The joint density of the observations is thus:

f(Z|Σ−1, G) =
det(Σ−1)

n
2

(2π)
np
2

exp(−1

2
tr(Σ−1U)). (2.2.1)
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We use the Diaconis-Ylvisaker conjugate prior [Diaconis and Ylvisaker, 1979] for Σ−1:

f(Σ−1|G) =
1

IG(δ,D)
det(Σ−1)

δ−2
2 exp(−1

2
tr(Σ−1D)) (2.2.2)

where δ ∈ R, δ > 2 (prior sample size) and D ∈M(G) (scale parameter) with D−1 ∈M+(G)

ensures the normalising constant

IG(δ,D) =

∫
M+(G)

det(Σ−1)
δ−2
2 exp(−1

2
tr(Σ−1U))dΣ−1 (2.2.3)

is finite. f(Σ−1|G) is known as the G-Wishart (the Wishart distribution restricted to G) written

Σ−1|G ∼ WG(δ,D). In Appendix A, a detailed look at the likelihood is given that demonstrates

that obtaining the maximum likelihood estimator of δ is intractable and requires numerical so-

lutions.

We can put a uniform prior on G:

π(G) =
1

|G|

where G ∈ G and |G| the cardinality of the set of graphs of interest G. It would then follow that

f(Z,Σ−1, G) = f(Z|Σ−1, G)f(Σ−1|G)π(G)

=
det(Σ−1)

n
2 exp(−1

2 tr(Σ−1U))

(2π)
np
2

det(Σ−1)
δ−2
2 exp(−1

2 tr(Σ−1D))

IG(δ,D)

1

|G|

=
1

(2π)
np
2 |G|

1

IG(δ,D)
det(Σ−1)

δ+n−2
2 exp(−1

2
tr(Σ−1(D + U))).

(2.2.4)

Marginalising out the Σ−1 gives

p(Z,G) =
1

(2π)
np
2

1

|G|
1

IG(δ,D)

∫
M+(G)

det(Σ−1)
δ+n−2

2 exp(−1

2
tr(Σ−1(D + U)))dΣ−1

=
1

(2π)
np
2

1

|G|
IG(δ + n,D + U)

IG(δ,D)

(2.2.5)

and

p(Z|G) =
p(Z,G)

p(Z)
=

1

(2π)
np
2

IG(δ + n,D + U)

IG(δ,D)
. (2.2.6)
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The posterior of G|Z is thus:

p(G|Z) =
p(Z|G)π(G)

π(Z)
∝ p(Z|G)π(G) ∝ p(Z|G) (2.2.7)

since π(G) = 1
|G| is a constant. Thus

p(G|Z) =
p(Z|G)∑

G′∈G p(Z|G′)

=
JG(δ, n,D,U)∑

G′∈G JG′(δ, n,D,U)

(2.2.8)

where

JG(δ, n,D,U) =
IG(δ + n,D + U)

IG(δ,D)
. (2.2.9)

Given a G that is decomposable, there is a perfect ordering of cliques and separators: (C1, . . . ,

Cn) and (S2, . . . , Sn), and so

p(G|Z) =

∏k
i=1 P (GCi |Z)∏k
i=2 P (GSi |Z)

. (2.2.10)

If G is complete or if considering GCi or GSi (since they are complete) then it follows that per

Atay-Kayis and Massam [2005], f(Σ−1|G) has Wishart density W (δ,D) with

IG(δ,D) =
2

(δ+p−1)p
2 Γp(

δ+p−1
2 )

det(D)
δ+p−1

2

. (2.2.11)

Thus

IG(δ,D) =

∏k
i=1 IGCi (δ,DCj )∏k
i=2 IGSi (δ,DSi)

(2.2.12)

which is closely related to the hyper-inverse-Wishart distribution [Dawid and Lauritzen, 1993].

The posterior probabilities for each G can finally be calculated by substituting (2.2.11) into

(2.2.9), and then (2.2.9) into (2.2.8). Note, that 2
(δ+p−1)p

2 (c.f. Roverato [2002]) in (2.2.11) is

the correct parameter as opposed to 2
np
2 (c.f. Atay-Kayis and Massam [2005]). If G is not

decomposable then there is no closed-form expression of the normalising constants — thus a

numerical approach is required as detailed in Atay-Kayis and Massam [2005, Sections 4–5].

In practical terms, this means that the relative posterior probabilities of graphs can be calculated
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in order to identify those which appear to fit the data well, and if desired an optimum graph can

be selected. However, if G also incorporates latent variables then the challenge of model search

is more complex. In this thesis the main results concern whether the class of latent tree models

is suitable for a given set of data, though we do also provide methodology for assessing specific

G as well. We are able to draw upon the Wishart and inverse-Wishart distributions to develop

similar Monte-Carlo simulation techniques as above for the GLTM.



Chapter 3

Quantitative linguistics: a functional

data perspective

This chapter will be used to give a background to the statistical work in linguistics particularly

from an acoustic perspective (e.g. Aston et al. [2012], Bouchard-Côté et al. [2013]). The main

data set of the thesis shall be described from both a statistical and acoustic perspective. This

section will outline the preprocessing which has been applied to the audio data in order to obtain

the spectrograms for use in the analyses. The content of this chapter is quite different to that of

Chapter 2, but both are required for the type of applications we wish to perform later on.

This chapter will go on to describe the details of the main tools that will be utilised for the

linguistic application. This will include presenting both functional and multivariate versions of

techniques, covering tools such as PCA and FPCA, and the less often implemented technique of

CVA and the functional counterpart CFA. Finally, a novel contribution of the thesis is presented:

separable covariance versions of CVA and CFA denoted separable-CVA and separable-CFA

respectively. These form highly effective and practically useful tools that overcome the common

problem of observation-poor, variable-rich data sets (i.e. small n, large p problems).

21
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3.1 Selected history of quantitative linguistics

Linguistics is the scientific study of languages. Under this broad definition it can be argued

that there is evidence of linguistics being practised in the time of antiquity in locations such

as Greece, India and China, and then developing in Arabia in the Middle Ages [Allan, 2013,

Syal and Jindal, 2007]. However, the development of modern linguistics is not considered to

have begun until the late 18th and early 19th centuries. Some notable scholars in the Western

world were Schlegel and Bopp who both pioneered the concept of comparative grammar, and

Schleicher who led on the idea of reconstructing proto-languages [Koerner, 1999]. In the 20th

century Saussure is considered to have been one of the most influential thinkers on linguistics.

Two notable contributions were his principle of studying languages synchronically (at a fixed

time) rather than diachronically (historically) and his structuralist approach to linguistics which

significantly changed the way that languages were studied [Malmkjaer, 2009]. While general

linguistic theory evolved, quantitative and statistical linguistics also began to develop. This

started in earnest a few decades after modern statistics had begun to flourish and the direction

was generally guided by wider linguistic research interests.

Some of the earliest quantitative work was by Ernst Förstemann in 1852 who measured how sim-

ilar languages were based on grammatical and phonological (sound) characteristics [Těšitelová,

1992]. Sampson [2003] discusses other early quantitative work in the branch of linguistics

called stylometry whereby the style of an individual’s writing was quantified in order to assess

authenticity of literary works or analyse stylistic change over an author’s career. Without a

quantitative approach these analyses would not detect subtle linguistic features. A well-known

result that was applied to textual analysis is Zipf’s Law [Lüdeling, 2009, Chapter 3] which in

theory governs the relative frequency of words in a corpus. Under mild assumptions, Zipf’s Law

is asymptotically equivalent to Herdan’s Law that relates the length of a text to the number of

unique words [Egghe, 2007, Herdan, 1960].

In 1913, Markov gave the first use of Markov chains which just happened to be an application

to linguistics. In his analysis of poems by Pushkin he had noticed that the proportion of vowels

and consonants in a word changed based upon the location of the letter (e.g. beginning or end

of a word). Furthermore, he noted that these proportions were heavily affected by whether the
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preceding letter was a vowel or consonant and so could be modelled by what is now known as

a Markov chain [Basharin et al., 2004]. Since then Markov chains and hidden Markov models

have been used for more advanced purposes such as automatic part-of-speech identification (e.g.

verbs, nouns, adjectives) with high success rates (e.g. Kupiec [1992]).

Relationships between languages have long been described as phylogenetic trees constructed

using linguistic factors (e.g. Schleicher [1860]) where all non-leaf variables are unobserved and

represent features of the past languages before their divergence. Greenberg [1954] developed

some of the first quantitative methods that were used to investigate evolutionary relationships

between languages. Other tree reconstruction methods have used cladistic techniques [Plat-

nick and Cameron, 1977, Rexová et al., 2003]. As with cladistic techniques that were in part

borrowed from biology, cluster-analysis techniques from population genetics were applied to

grammatical structures by Nichols [1992] to investigate macro migration patterns. Even more

recently there have been large-scale attempts to reconstruct trees or networks of languages using

statistical methods (e.g. Nakhleh et al. [2005] for the Indo-European language family, Nicholls

and Ryder [2011] for the Semitic language family).

The above has only touched upon the range of quantitative methods with many other mathemat-

ical and statistical tools being utilised for analysis across the study of linguistics. For example,

corpus linguistics makes extensive use of quantitative tools an statistical summaries to analyse

and summarise real-world texts (see Kučera and Francis [1967] for an early modern work, and

Gries [2009], Oakes [1998] for overviews of more recent work). Some more thorough surveys of

quantitative linguistics can be found in Köhler et al. [2005], Sampson [2003], Těšitelová [1992].

The use of quantitative and moreover statistical techniques for linguistic inference has made it

possible to get additional insights and depth of understanding regarding questions of linguistic

interest. Such tools alone are no substitute for linguistic theory but together are robust.

In this thesis, the statistical linguistic analyses are notable on three counts: Firstly, the data set

is acoustic, taking the form of audio recordings of speakers of different languages. Secondly,

these audio recordings are treated as functions rather than vectors or other forms. Thirdly,

these functional audio recordings are used to compare languages in a phylogenetic context. The

treatment of acoustic data as functional in a linguistic context is relatively new and its application

to phylogenetic language studies even more so. This approach provides opportunities to study
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and identify features of languages that might otherwise be obscured and to use an array of

tools that are not available when considering some traditional quantitative analyses. In the next

section we introduce the concept of functional data and consider its existing use in a linguistic

context.

3.2 Functional data analysis

Functional data analysis (FDA) is a statistical approach whereby the statistical units of interest

are functions defined on a continuum. Often these objects are curves or surfaces but equivalent

objects can be studied in higher dimensions. There is usually a stipulation that the underlying

functions are assumed to be smooth to the extent that derivatives of the functions exist up to

a given order. For example, the existence of first and second order derivatives reflects the be-

lief that data is suitably smooth but also has practical implications by enabling functional data

tools that require derivatives (e.g. roughness penalisation) to be implemented. FDA can also

be viewed as a specific type of object oriented data analysis whereby the objects of interest are

smooth continuous functions [Wang et al., 2007].

3.2.1 Basis functions

In practice we record discretised observations even when we believe that there is an underlying

continuous function. In addition to the discretisation these observations usually include added

noise. Thus, often one of the first steps in an FDA is to represent the data by basis functions.

Let us first consider the theoretical setting whereby the function x(t) can be expressed in terms

of a linearly weighted (by c) sum of functions φ(t) known collectively as a basis

x(t) =

K∑
k=1

ckφk(t)

and where K is potentially ∞. In practice, by selecting a sensible set of basis functions and

sufficiently large K we can suitably approximate infinite dimensional functional data by a finite

number of basis functions. That is:
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x(t) ≈
K∑
k=1

ckφk(t)

for finite K. Now considering the case of discretised data, the aim is to find such a finite K and

an appropriate basis that provides a good fit for the data.

There are many classical choices for basis functions such as the monomial power series and

the Fourier series. To illustrate the use of basis function approximations, data was simulated

by first evaluating the polynomial x(t) = t3 − 5t2 + 2t + 4 at 100 equally spaced values

t ∈ {−2,−1.9192 . . . , . . . , 6}. At each of these 100 points some Gaussian noise was added to

x(t) generated independently from ε ∼ N(0, 10) to obtain the 100 observations of the curve

x̃(t) = x(t) + ε.

In Figure 3.1 we illustrate the third-order monomial basis (1, t, t2, t3) that provides the least-

squares fit to the simulated data. Similarly in Figure 3.2, a second-order Fourier basis (1,

sin(ωt), cos(ωt), sin(ω2t), cos(ω2t)) has been fitted to the same data. In both instances there

is a good fit to the true curve, which is to be expected given the data generating process is quite

simple. The key point is that a 100 observation data set has been suitably summarised by 4

and 5 basis functions respectively which is an efficient description of the data. Furthermore, the

functional description matches the belief that the data is obtained from an underlying curve.

FIGURE 3.1: Least-squares fit of a third-order polynomial basis to simulated data.
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FIGURE 3.2: Least-squares fit of a second-order Fourier basis to simulated data.

3.2.2 Spline basis

A more advanced and flexible basis is based on spline functions. A spline is constructed by

dividing a function’s domain into subintervals and within each subinterval approximating the

function with an order m polynomial (where m − 1 is thus the polynomial degree). The end

points of the range of each interval, τ0, . . . , τL say, are called breakpoints, and polynomials

within adjacent subintervals are constrained to match at these breakpoints. Furthermore, up

to order m − 2 derivative functions must also observe these constraints. Spline functions are

currently one of the most popular bases with the B-spline [de Boor, 2001] often being the pre-

ferred variant. In general, spline functions have the advantage of being more flexible than a

generic polynomial basis (sometimes even on very few component functions), and importantly,

significantly faster to compute.

The spline function based on B-splines is constructed as follows:

S(t) =
n∑
i=1

ciBi,m−1(t)
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where ci are B-spline coefficients or control points which are used to guide the curves. In general

the jth B-spline of degree d (say) is found recursively as

Bj,d(t) =
t− τj

τj+d − τj
Bj,d−1(t) +

τj+1+d − t
τj+1+d − τj+1

Bj+1,d−1(t)

which is initialised by

Bj,0(t) =


1 if τj ≤ t < τj+1

0 if otherwise.

Further details can be found in de Boor [2001]. From a practical point of view there are many

pieces of software for implementing B-spline fitting often based on the objective function of

minimising squared distance. In Section 7.2.1 we use the MATLAB package csaps to fit a

cubic spline to some biological growth curves. In fact, we go one step further than B-splines by

incorporating a smoothing parameter. These smoothed splines are known as penalised B-splines,

or P-Splines [Eilers and Marx, 1996] and allow more deviation from the data than a pure least-

squares fit meaning the resulting spline functions are smoother. The effect of different levels of

smoothing are considered in Section 7.2.1 and displayed graphically in Figure 7.25.

3.2.3 Use of functional data in statistical linguistics

As interest in FDA has increased, so has the range of applications (e.g. brain imaging [Sørensen

et al., 2013], climatology [Besse et al., 2000], and medical research [Ratcliffe et al., 2002]).

This has been partly facilitated by better access to functional data, a wider range of FDA tools

[Horváth and Kokoszka, 2012, Ramsay and Silverman, 2005] and through greater availability

of computational power for analyses. The use of FDA in statistical phonetics has recently at-

tracted attention (e.g. Koenig et al. [2008], Mooshammer [2010]). Such analyses, which involve

acoustic functional data, have provided particularly promising and interesting results in a diverse

range of settings. The acoustic structure of spoken words can be used to investigate areas of lin-

guistic interest in a similar way that orthographic representations of speech have been utilised.

For example, Aston et al. [2010] investigate Qiang, a Sino-Tibetan language and Grabe et al.

[2007] use a polynomial basis expansion to examine pitch variation in English.
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In more detail, the data set in Aston et al. [2010] consists of recordings of 8 speakers of Lu-

obuzhai Qiang speaking 19 different nouns. The phonetic feature of interest in the study is

known as the fundamental frequency or F0 which can broadly be thought of as pitch. Many

previous studies of F0 have relied upon point estimates of recordings but this loses a lot of the

information available in the full pitch contour. To overcome this the pitch contours for each of

the speakers and words is modelled using FPCA (see Section 3.4.2) so that a large amount of the

pitch variability can be encoded using a small number of basis functions. In practice, the pitch

contours for each syllable were recorded at eleven equidistant time points and these were then

used with the FPCA. A projection of the data to three dimensions was deemed sufficient and

the FPC scores (projections) were then treated as the response for a linear mixed effects model

with speaker and word characteristics. The results of which found previously unidentified gen-

der differences amongst speakers. The use of a functional data approach allowed the complex

pitch contours to be modelled by low order functions. Moreover, by associating FPC scores with

meaningful phonetic covariates the analysis provides an interpretable linguistic conclusion.

In Grabe et al. [2007], once again F0 is treated as functional data and in this instance modelled

using a third-order polynomial basis. The data set consisted of 710 sentences spoken by 42

speakers of 7 English dialects but the feature of interest is the intonation of the 7 accents that

are found across these 7 dialects. For each accent, the 4 coefficients associated with each third-

order fitted basis were identified. The aim was to investigate whether the accents could be

distinguished by the coefficient summary. By implementing a multivariate analysis of variance

on the coefficients associated with each accent, 19 of the 21 pairwise accent comparisons were

found to be statistically significant. This raises possibilities of utilising accent and intonation

more readily in speech technology, demonstrating the usefulness of using a functional basis

representation of acoustic data for identifying particular phonetic features.

The differences and similarities between spoken languages suggest that any meaningful func-

tional observations taken across languages are unlikely to be independently, identically dis-

tributed. As such, it is probable that the language relationships form a tree or network structure,

which may be informative about possible historical developments of these languages. If this

alternative (acoustic) approach can be used to corroborate known and uncontroversial language

relationships, then our methods offer great potential for less certain language relationships. For
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instance, this would be useful for languages where there are few historical records but in which

inference of a family tree is reasonably supported by the contemporary data (e.g. African lan-

guage families), or alternatively, in cases where reconstruction of a family tree is disputed, such

as Greenberg’s classification of native American languages [Bolnick et al., 2004].

3.3 The acoustic functional data set

The core application of the thesis is an investigation into the conditional independence rela-

tionships between 5 Romance languages. The main analysis is given in Section 7.1 though the

description of the data set is given here along with the preprocessing steps. The data set com-

prises audio recordings originating from speakers of one of five different Romance languages:

French, Italian, Portuguese, Spanish (American), and Spanish (Iberian) — while two dialects of

Spanish are being used in this study, they are treated as different spoken languages in this anal-

ysis as the interest is in pronunciation rather than textual representation, the difference between

“dialect” and “language” being a matter of degree of difference rather than an absolute quanti-

tative difference. Each recording is of some individual saying an integer from ‘one’ to ‘ten’ in

their particular language. In total there are 219 word recordings and each can be classified by

the language, the gender of the speaker and the number being spoken. Observations of the same

word being spoken in different languages are treated as sharing the same word attribute. For

example the word ‘four’ includes recordings of ‘quatre’ (French) and ‘quattro’ (Italian) as well

the word ‘four’ in other languages. Integers were chosen because these have no ambiguity in

terms of translation making comparison of their use across languages straightforward. Further-

more, the cardinals ‘one’ to ‘ten’ of Romance languages (among many other words) stem from

shared Latin forms [Price, 1992]. This suggests that these words might also be suitable when

comparing languages acoustically.

As mentioned, the observations are modelled as functional data as is becoming increasingly

common in studies involving sound recordings (e.g. Holan et al. [2010]). Such models make the

reasonable assumption that the data have been obtained by observing an underlying function at

finitely many discrete points along a continuum, and that this underlying function is smooth (i.e.

a certain number of derivatives exist).
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3.3.1 Romance data set pre-processing

The data set used in the final analysis had already been preprocessed with the full description

given in Hadjipantelis [2013, Chapter 6]. The original acoustic data set originated from a num-

ber of sources and the specifications of the recordings differed across these sources. Therefore,

the audio recordings were resampled at a rate of 16000 samples per second to make the obser-

vations comparable for processing. A short-time (10ms window) Fourier transform was taken

of each audio recording to produce a spectrogram. A spectrogram is a two-dimensional repre-

sentation of audio signal energy intensity in frequency-time space [Fulop, 2011]. Spectrograms

are a natural choice for representing power with functional data [Holan et al., 2010, Martinez

et al., 2013], though approaches such as Mel-frequency cepstra can provide possible alternative

representations [Davis and Mermelstein, 1980]. The value stored at a frequency-time point is

a function of the power (or amplitude). A 10 log10(·) transformation of the original power was

taken so that units of power are decibels.

In Holan et al. [2010], spectrograms of mating calls are used as predictors of mating success of

treehoppers. Martinez et al. [2013] investigate regional differences in bat chirps by considering

a functional mixed model with spectrograms as the image response. In contrast, the emphasis

of this analysis will not be to seek a model that acts as the data generating process. Instead it

aims to identify meaningful low dimensional representations of spectrograms that highlight dif-

ferences between languages, and subsequently assess whether these distinctive acoustic features

are compatible with the class of GLTM.

Frequencies were binned every 100Hz up to the Nyquist frequency of 8000Hz. The resulting

spectrograms were stored as matrices of 81 frequency by 100 time points. These spectrograms

were still distorted in two mains ways: firstly, the data was undoubtedly noisy (amplitude dis-

tortions) and secondly there were phase distortions. The amplitude distortion is a common

feature of many data sets and can be considered as an error term having been added to the power

recording at every frequency-time point. The time distortion was the result of the overall du-

ration of a word varying significantly per speaker and furthermore the timings of intra-word

elements (for instance syllables). To adjust for amplitude distortion the spectrograms under-

went a smoothing algorithm aimed at removing noise. This is consistent with the smoothness
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assumption inherent to the functional data framework. A penalised least squares filtering ap-

proach was used to smooth the data. Roughness was penalised using second-order difference

and the unsmoothed data underwent a discrete cosine transformation following the algorithm in

Garcia [2010]. Having smoothed the data, the remaining unadjusted distortion was in the time

dimension. The available techniques to deal with differences in the phase of curves are known

as curve alignment, curve registration or warping (see Lucero and Koenig [2000], Ramsay and

Silverman [2005]). The method used on this data set was based on the pairwise synchronisation

as described in Tang and Müller [2008] with adjustments for the two dimensional nature of the

data. Although the warping of the spectrograms was only occurring in the time dimension, the

frequency information was required for calculating discrepancy between spectrograms. These

time-phase adjustments were performed on a word-gender basis as there are known differences

in frequency ranges spoken by male and female speakers. As part of this process, the word du-

rations were all standardised to have the same arbitrary length. In our analysis we refer to this as

“standardised time” across a range of 0 to 100. Figure 3.3 is a spectrogram (post pre-processing)

of a female French speaker saying the word ‘quatre’. Broadly, this interpolated plot indicates

that there is greater power in the lower frequencies, and that the beginning and the end portions

of the standardised time period are quieter.

FIGURE 3.3: Post-registration spectrogram of female French speaker saying ‘quatre’. It can be
seen that there is greater power in the lower frequencies, and that the very beginning and end

of the word are unsurprisingly two of the quietest regions.
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3.3.2 Notation

The underlying function of each spectrogram is denoted xd,gl,m(f, t) with the two dimensions

f and t referring to frequency and time respectively. Recall that each spectrogram is derived

from a spoken word — the subscripts and superscripts encode observational information: l =

1, . . . , nl denotes the language being spoken; d = 1, . . . , nd indicates the word being spoken;

m = 1, . . . ,mld is a counter where mld is the number of observations of word d from language

l; g refers to the gender of the speaker.

It is well documented that there are differences in the acoustics of male and female speakers

which go beyond a simple shift in the spoken frequencies (for instance Nittrouer et al. [1990],

Pépiot [2013]). Parris and Carey [1996] present a statistical method for discriminating between

speaker gender of short acoustic recordings. In their analysis of seven Indo-European languages

(of which Romance is a subset), gender was correctly identified on average 98% of the time.

This suggests that there are commonalities in acoustic gender differences across Indo-European

languages. In light of this result, it is judged that gender should be adjusted for at the macro

level:

xdl,m(f, t) = xd,gl,m(f, t) + x̃g(f, t)

where x̃g is the difference between the mean of all samples with gender g and the mean of all

samples. Henceforth it will be the gender adjusted function that will be the object of interest in

the thesis.

The mean spectrograms for language l, word d are defined in (3.3.1), for language l in (3.3.2),

and the grand mean spectrogram in (3.3.3).

x̄dl (f, t) =
1

mld

mld∑
m=1

xdl,m(f, t) (3.3.1)

x̄l(f, t) =
1

ml·

nd∑
d=1

mldx̄
d
l (f, t) (3.3.2)

x̄(f, t) =
1

m··

nl∑
l=1

ml·x̄l(f, t) (3.3.3)

where ml· =
∑nd

d=1mld, m·· = n =
∑nl

l=1ml·, and for t ∈ T , f ∈ F . The parameters m··

and n will be used interchangeably depending on whether summation is being emphasised.
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To get a further feel for the data, we plot the mean spectrograms by gender (Figure 3.4). Note

that although it appears that the higher frequencies have more power for males, this is not sug-

gesting males speak at a higher pitch, just that the male recordings tend to be louder in general.

Recall that this gender effect is adjusted for throughout the rest of the analyses.

FIGURE 3.4: Mean spectrograms by gender.

For even more detail, we plot the mean spectrograms for each language-number combination

(Figure 3.5). Observe that it can be seen that certain words have two clear syllables whereas

others just one (e.g. the number seven: French “sept” versus Italian “sette”).

3.4 Functional data tools

The development of a functional data framework has demanded functional tools equivalent to

those used in other areas of data analysis. The theory of these tools is rooted in the functional

context, yet in practice it is often necessary for numerical or discrete approximations to be used

and thus multivariate tools often have a role to play in FDA. We now introduce two functional

tools that project data to an alternative basis often with the aim of reducing dimensionality while

retaining the majority of the relevant variability in the data. The multivariate counterparts are

discussed in Section 3.5.

3.4.1 Group based projections of functional data

Dimension reduction is a well-studied area of statistics with tools such as principal component

analysis (PCA) and multidimensional scaling (MDS) (e.g. see Cox and Cox [2010], Jolliffe
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FIGURE 3.5: Mean spectrograms on a grid with rows representing languages and columns representing numbers. As with other plots vertical axes are frequency
(Hz), horizontal axes are standardised time and colour represents power.
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[2002]) having widespread use. Functional counterparts of such techniques have also been for-

mulated, for example functional principal component analysis (FPCA) Castro et al. [1986], Rice

and Silverman [1991], Yao and Lee [2006], and functional MDS Mizuta [2006].

The Romance data set presented as the main application of the thesis can benefit from a dimen-

sion reduction in two main ways. First and foremost, dimension reduction provides a route to

feature extraction whilst also reducing unwanted noise. Second, if subsequent to the reduction it

is found that n ≥ p then techniques which make use of inverse covariances can be implemented

straightforwardly. If this is not so, standard estimates will produce singular sample covariance

matrices. Of course these benefits must be balanced against potential information loss from the

data reduction. One approach to feature extraction that mitigates against this loss is to find an

ordered basis which prioritises one or more characteristics of interest. Thus by projecting data

onto the first few components of such a basis the most prominent aspects of the data are retained

whilst what remains is treated as noise. In the cases of PCA and FPCA, the dimension reduction

is optimised so as to efficiently capture modes of variation. Such techniques are often used in

linguistic and semantic analyses, for example Lee et al. [2001], Wenyin et al. [2010]. However,

as our focus is on macro-language comparisons, it can be argued that the feature of interest is the

between- to within-language covariance, and it is this which should directly inform the method

selected to construct a basis. When data is known a priori to be grouped then CFA and its mul-

tivariate analogue CVA are standard techniques implemented to select variables to discriminate

between groups. These tools are therefore the starting points for our analyses.

3.4.2 Functional principal component analysis

The aim of FPCA is to identify dominant directions of variability for functional data. These

directions are known as functional principal components and a projection to the first r basis

functions (ordered by variability) produces an efficient representation of the original (centred)

data in a lower dimensional space. More precisely, define X(t), t ∈ T to be a random function

whereby
∫
T |X(t)|2dt <∞, that is X(t) is almost surely square-integrable. The mean function

is given by

µ(t) = E(X(t))
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with associated covariance function

C(t, u) = cov(X(t), X(u)) =
∞∑
k=1

λkψk(t)ψk(u) (3.4.1)

where u, t ∈ T , and λ and ψ are the eigenvalues and eigenfunctions of the orthonormal basis

associated with C(t, u). Denote the centred function

X̃(t) = X(t)− µ(t) =
∞∑
k=1

ξkψk(t)

where

ξk =

∫
T
X̃(t)ψk(t)dt

is the kth functional principal component and is subject to the following constraints:

∫
T
ψ2
k(t)dt = 1

and ∫
T
ψk(t)ψj(t)dt = 0 ∀j = 1, . . . , k − 1

i.e. the eigenfunctions are orthonormal and mutually orthogonal.

By the Karhunen–Loève theorem (e.g. Lindgren [2012, Chapter 5]), if the domain T is finite on a

range [a, b] say, then FPCA produces the optimal linear basis expansion with respect of minimis-

ing mean-squared error (MSE). Thus, for the FPCA basis ordered decreasingly by eigenvalue,

the truncation of this basis captures more of the variability in the data than any other set of ba-

sis functions. This result has been proven in many ways [Algazi, 1969, Brown, 1960, Kramer,

1960], here we provide a sketch proof.

Sketch proof.

εN (t) =

∞∑
j=N+1

ξjψ(t)
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Thus the mean squared error associated with a truncation to N basis functions is given by

E(ε2N (t)) = E
( ∞∑
i=N+1

∞∑
j=N+1

ξiξjψi(t)ψj(t)
)

=

∞∑
i=N+1

∞∑
j=N+1

E
( ∫ b

a

∫ b

a
X̃(r)X̃(s)ψi(r)ψj(s)drds

)
ψi(t)ψj(t)

=

∞∑
i=N+1

∞∑
j=N+1

ψi(t)ψj(t)

∫ b

a

∫ b

a
C(r, s)ψi(r)ψj(s)drds

Recall that ψ functions are orthonormal and so

∫ b

a
ε2N (t)dt =

∞∑
j=N+1

∫ b

a

∫ b

a
C(r, s)ψj(r)ψj(s)drds

To minimise total MSE subject to mutual orthogonality of ψ functions, a Lagrangian multiplier

βj can be introduced. Lagrangian multiplier techniques utilise partial differentiation to find

maxima and minima of functions subject to constraints. For an overview of the subject see a

text such as Bertsekas and Rheinboldt [2014].

For the total MSE, by setting the derivative with respect toψj(s) to 0, solutions to the Lagrangian

functions are given by ∫ b

a
C(r, s)ψi(r)ds = βiψi(s)

which gives the required result.

Corollary 3.4.1. From Brown [1960], the minimum MSE for basis expansion of length n is

given explicitly as:

ε2N (t) =

∫ b

a
E(X̃2(t))dt−

N∑
j=1

1

λj

It is clear that FPCA is a powerful tool for highlighting the dominant modes of variability but,

as a consequence, also for efficient dimension reduction. To implement FPCA a numerical

approximation is required. In Section 3.5.2 PCA is presented as the multivariate counterpart to

FPCA. However, beyond that PCA can be used as an approximation to FPCA by discretising

the functional data.
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3.4.3 Canonical function analysis

Here we present CFA as a tool for FDA to produce a basis which maximises between- to within-

group variation (subject to the basis component functions being orthogonal) with the intention

of achieving an efficient dimension reduction. The first detailed account of CFA in the literature

is given in Kiiveri [1992]. Here we present the fundamentals of the tool.

The aim of CFA is to identify canonical functions fq(u) such that between-group variation is

maximised relative to within-group variation under the restriction that each canonical function

is uncorrelated to every other.

The functional covariance operators required for CFA are given by:

B(t, u) =
1

g − 1

g∑
i=1

ni(mi(t)− m̄(t))(mi(u)− m̄(u)) (3.4.2)

W (t, u) =
1

n− g

g∑
i=1

ni∑
j=1

(xij(t)−mi(t))(xij(u)−mi(u)) (3.4.3)

where in (3.4.2)

m̄(t) =

g∑
i=1

nimi(t)

n
.

Additionally (3.4.2) and (3.4.3) are assumed to be bounded and piecewise continuous.

CFA was first motivated as an approximation to CVA (see Section 3.5.2) and thus the optimisa-

tion problem is derived from the optimality equation of CVA and be seen as a limiting form of

the discrete case. Thus for CFA we are looking for solutions to (3.4.4) which has the equivalent

functional form of the CVA eigenanalysis, c.f. (3.5.7).

e∫
c

(B(t, u)− µqW (t, u))fq(u)du = 0 (3.4.4)

with B(t, u) and W (t, u) defined in (3.4.2) and (3.4.3) respectively and whereby µq and fq are

eigenvalues and eigenfunctions respectively. To obtain subsequent solutions that are orthogonal

to one another (3.4.5) is maximised subject to the restriction in (3.4.6):

e∫
c

e∫
c

fq(t)B(t, u)fq(u)dtdu (3.4.5)
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e∫
c

e∫
c

fq1(t)W (t, u)fq2(u)dtdu = δq1q2 (3.4.6)

where δq1q2 is the standard Kronecker delta:

δq1q2 =


1 q1 = q2

0 q1 6= q2

Note that (3.4.5) and (3.4.6) together lead to he derivation of (eq:optfunc2) so in words CFA is

looking for the fq(u) that maximises between-group to within-group variation under the orthog-

onality conditions. We denote as CFA pairs (f1(t), µ1), . . . , (fs(t), µs), . . . which solve (3.4.4).

There may be countably infinite solutions to this equation but only a maximum of s will have

non-zero µq.

In the discretised estimation, only a maximum of s (say) will have non-zero µq. Pairs of canon-

ical functions and real numbers (h1(t), µ1), . . . , (hs(t), µs) can be found by solving (3.4.4)

numerically, where µ1, . . . , µs is a monotone decreasing sequence. These are solutions to the

generalised eigen-equation. Furthermore, an r-dimensional projection of the data is obtained

using the first r canonical functions (r ≤ s), and this projection is such that the between- to

within-group covariance is maximally retained.

3.5 Multivariate analysis

We now discuss the multivariate PCA and CVA, which are the analogues of FPCA and CFA.

These multivariate equivalents are not only useful in a multivariate framework but can also be

used to provide approximate solutions to their functional counterparts.

3.5.1 Principal component analysis

As with FPCA, the aim of PCA is to find the direction of maximum variability of a particular

data set. With PCA the data is usually multivariate or a discretised approximation to functional

data which in practice can be treated in the same way as multivariate data.
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Given a centred n × p data matrix X with n observations and p variables we seek a vector aT

of length p such that the linear projection y = aXT retains the maximum amount of variability

possible in the data. To obtain the a that satisfies this property consider the covariance of the

projected data.

E((yT − E(yT ))2) = E((aTX − E((aTX))2)

= E(a2(X − E(X))2)

= aE(XTX)aT

= a cov(X)aT

= aΣXa
T

The a that maximises a cov(X)aT subject to aaT = 1 can be obtained using a Lagrange

multiplier λ. This leads to re-expressing the optimisation problem as ΣXa
T = λaT which

implies that (ΣX − λI)aT = 0. Thus we seek non-trivial solutions (i.e. a 6= 0) to det(ΣX −

λI) = 0. The solutions are eigenvectors of the sample covariance ΣX and λ the corresponding

eigenvalues. To determine which of the solutions provides the direction of greatest variance,

note that aΣXa
T = λ and thus λ represents the sample variance. It then follows that the

desired vector a must correspond to the largest eigenvalue λ. This a is called the first principal

component.

To obtain subsequent principal components it can be shown that these are also solutions to the

characteristic polynomial [Krzanowski, 1990, Chapter 2] subject to the condition that all princi-

pal components are orthogonal to one another, i.e. aiaTj = 0 ∀i 6= j. Thus to project the data

from p dimensions to r dimensions, the first r principal component pairs (λ1,a1), . . . , (λr,ar)

are required where λ1 ≥ . . . ≥ λr ≥ 0.

In the linguistic application we have five languages and so our data has a group structure that

would be desirable to incorporate during dimension reduction. Thus, although PCA is the stan-

dard dimension reduction technique and can be used with discretised functional data, we instead

turn to CVA as an approximation to CFA so as to include language information in our analysis

and consider a different type of variability in the data set. The similarities between CFA and
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CVA become clear in Section 3.5.2. Moreover, the justification for the use of CVA in relation

to CFA is outlined in Kiiveri [1992] but in short the numerical solutions to the CFA optimality

equation are none other than the solutions to a CVA.

3.5.2 Canonical variate analysis

Although less frequently implemented than PCA, the theory of CVA as a multivariate tool has

been well developed in Krzanowski [1990, Chapter 11]. However, beyond being a purely mul-

tivariate technique, CVA can also be used with functional data as an approximation to CFA as

is presented in Kiiveri [1992]. The technicalities of implementing CVA do not significantly

differ whether in functional or multivariate settings. However, it is sometimes necessary to in-

terpret their outputs differently, for example referring back to the smoothness of functional data.

This is encountered in other instances and with other multivariate techniques that are used with

functional data (e.g. Fervaha and Remington [2012]). As CVA will form the foundation of the

eventual dimension reduction technique applied to the linguistic data, we shall go into a bit more

detail than the previously mentioned techniques.

With regard to the linguistic application, in practice spectrograms are often discretised repre-

sentations of underlying functions, and so each function xdl,m is instead given by a matrix Xd
l,m

with time-frequency dimensions nf × nt (i.e. the number of sample points of the frequency

and time). These finite approximations tend to be high dimensional and so the question of di-

mension reduction is pertinent. The rows of these matrix representations of spectrograms can

be concatenated to present the data as vectors and thus the data can be used with the standard

vector-description of CVA. As CVA considers each covariance entry independently of its ad-

jacent values, this does not affect the implementation of CVA. The only notable downside of

concatenation is that it can obscure visual representation and description of the data.

In a similar fashion to PCA, the aim of CVA is to find successive uncorrelated vectors a that

form linear combinations y = axT (where x is p-dimensional data) that maximise the ratio

of the between-groups covariance B to the within-groups covariance W . In the context of the

linguistic application, B describes the variation between the per-language mean spectrograms

and the grand mean spectrogram, whereas the W describes the variation between individual

observations and the associated per-language mean spectrograms.
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3.5.2.1 Stating and solving the optimality problem

This section presents the background and workings of CVA as a technique to reduce data di-

mensionality whilst highlighting accurately true differences between g groups.

The aim of CVA is to find a = (a1, a2, . . . , ap) which forms the linear combination yij = axTij

that (by some definition) optimises the separation between groups and within groups. More

precisely, it maximises the between-groups sum of squares SSB(a) and minimises the within-

group sum of squares SSB(a) through maximisation of:

F =

1
g−1SSB(a)
1

n−gSSW (a)
(3.5.1)

where SSB(a) = aB0a
T and SSW (a) = aW0a

T and where B0 and W0 are respectively

the between- and within-groups sum of squares and products matrices of dimensions p× p:

B0 =

g∑
i=1

ni(x̄i − x̄)T (x̄i − x̄) (3.5.2)

W0 =

g∑
i=1

ni∑
j=1

(xij − x̄i)T (xij − x̄i) (3.5.3)

A hypothesis test can be performed on the ratio F in (3.5.1), to investigate whether there are

differences in the g group means. The ratio follows an F distribution on g− 1 and n− g degrees

of freedom. See Section 3.5.2.4 for the assumptions required for CVA.

The between-groups variance-covariance matrix B and the within-groups variance-covariance

matrixW are related toB0 andW0 as follows:

B =
1

g − 1
B0 (3.5.4)

W =
1

n− g
W0 (3.5.5)

This allows us to rewrite (3.5.1):

F =
aBaT

aWaT
(3.5.6)
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so the optimal a for the specified aim is found by maximising F with respect to a, which can

be determined through differentiation with respect to a and setting F ′ to 0.

F ′ =
2BaT (aWaT )− 2WaT (aBaT )

(aWaT )(aWaT )
= 0

⇒ BaT =
WaT (aBaT )

(aWaT )

Let the a that maximises F be denoted a∗, and observe that for a constant λ ∈ R:

aBaT

aWaT

∣∣∣∣
a=a∗

= λ

then

(B − λW )aT = 0⇒ (W−1B − λI)aT = 0 (3.5.7)

which is of a familiar form; λ is an eigenvalue and aT an eigenvector of W−1B. Furthermore,

since λ is the supremum of F , aT is the largest eigenvector of W−1B. The larger the value of

λ, the clearer the separation of the groups under the linear transformation involving aT .

Sometimes Ŵ−1 does not exist — for example, if p > n then Ŵ is singular. This is a common

occurrence for data from underlying functions with suspected high curvature, as to produce

a suitably accurate approximation to the functional data, observations may be recorded with

many data points to the extent that p � n. On the other hand if the data is assumed to have

some underlying level of smoothness, then in effect the dimension could be thought of as much

smaller. In the language data X , n = 23 and p = 8100. Therefore obtaining a solution to

non-invertible Ŵ is not just of interest, but necessary for CVA due to data structure dimensions.

A method of constructing an invertible Ŵ is addressed in Section 3.6.1.

In summary, assuming that W is non-singular, finding the optimal a is equivalent to solving

(W−1B − λI)aT = 0 where λ ∈ R. This reduces to performing an eigenanalysis onW−1B,

whereby the eigenvector corresponding to the largest eigenvalue is the optimal a.
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3.5.2.2 Determining and selecting multiple canonical variates

In most practical situations more than one pair of eigenvalues and eigenvectors is required to

study the differences between groups. The first pair can be renamed as (aT1 , λ1) and yq = aqX
T

can be designated as the length n row vector relating to qth canonical variate.

To obtain subsequent pairs (aT2 , λ2), . . . , (aTs , λs), consider eigenvalues of W−1B which are

ordered λ1 > λ2 > . . . > λs > 0 and corresponding eigenvectors aT1 ,a
T
2 , . . . ,a

T
s . Each sub-

sequent aj is uncorrelated with respect to the within-groups covariance matrix and so satisfies

the property that aiWaTj = 0 ∀i 6= j. This means that AWAT is a diagonal matrix. The

diagonal entries can be scaled in an arbitrary manner though the most common normalisation is

that aiWaTi = 1 and soAWAT = I where I is the identity matrix. Note that each decreasing

eigenvalue accounts for less relative variability than the previous. It follows that (aTr , λr) has

rth greatest ratio of between-group to within-group variability and thus the optimal result in r

directions uses (aT1 , λ1), . . . , (aTr , λr) (i.e. the sample individuals are plotted using the first r

canonical variates as the axes).

Canonical variates can be determined for up to s = min(p, g − 1) as (in general) this is the

number of non-zero eigenvalues of W−1B. When utilising multiple canonical variates, matrix

notation is cleaner. Thus Λ is the s× s diagonal matrix with ith diagonal entry λi, andA is the

s × p matrix with ith row ai. The canonical variate space is fully described by the collection

of canonical variates Y = AXT . The canonical variates are uncorrelated (not orthogonal as

in PCA) - this is a consequence of the optimality equations rather than an additional constraint.

The group means in this new space are calculated as ȳi = Ax̄Ti for group i.

It is convenient if r ≤ 3 (where r is the number of canonical variates required for adequate

representation), as this allows full representation using traditional plots. This is the case if

g ≤ 4 or p ≤ 3 as then s ≤ 3. Often s > 3 and so being able to select an appropriate r

is important. However, as in PCA, it is rare to have anything but an arbitrary (albeit sensible)

method for choosing r. Common methods are analogous to those used in PCA. For example, by

considering the proportion of variability taken up by the first r canonical variates, λ1+λ2+...+λr
λ1+λ2+...+λs

,

a threshold can be specified to determine a value for r. For a detailed account of selection

methods for r refer to Jolliffe [2002, Chapter 6].
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3.5.2.3 Interpretation

Once canonical variates have been determined, interpretation of a canonical variate yi can be

performed. Although a similar situation is encountered in PCA, it is incorrect to rank canonical

variates by the magnitude of their coefficients ai. In CVA a large coefficient indicates large

between-group variability or a small within-group variability - the latter is of less interest in most

analyses. Thus, the within-group variability component can be removed through standardisation

to unit within-group variance:

a∗ij = aij
√
wjj (3.5.8)

where wjj is the ith diagonal element of W the within-groups covariance matrix as defined

through (3.5.5) and (3.5.3). Only after this transformation may magnitude be used for identify-

ing variates which explain significant differences between groups.

3.5.2.4 Assumptions required for CVA

The first assumption is that the data set is jointly multivariate Gaussian, or in reality, sufficiently

close to being so. Thus the first two moments are sufficient for characterising the data, and

allows us to focus on the covariance of the data. The use of the F distribution introduces a

second assumption; the variance ratio used in CVA follows an F distribution only if the pooled

variance-covariance matrix W is representative of each of the groups, i.e. the true variance-

covariance matrix for each group is the same (or sufficiently similar). If this is not the case, then

CVA may be unsuitable and could give misleading results and explanations. These are discussed

in more detail in Chapter 7.

3.5.2.5 Link between PCA and CVA

Campbell and Atchley [1981] give an elegant description of CVA as a twice applied PCA. The

first PCA is performed on the original data whereby the full projection into principal component

space means that the new axes are in the direction of the principal components. In terms of

CVA, this relates to within-group variance and emphasises the reason for homogeneity of within-

group variance. By scaling the data by one over the square root of the relevant eigenvalues, the
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scaled projected data now has unit variances in all principal component directions i.e. this has

performed a transformation from orthogonality to orthonormality. The second PCA is performed

on the group means as projected into orthonormalised principal component space — the group

means are typically weighted by the number of observations associated with each group. This

relates to the between-group variance. This produces principal components but to obtain the

desired canonical variates the scaling and rotation from the first PCA must be reversed. This

returns the data to the original space as expected but now the principal components identified by

the second PCA have now become canonical variates as desired.

When deciding whether to use CVA or PCA (if either), the first aspect to consider is whether the

observations you are studying are grouped. If they are not grouped then CVA is not an option,

whereas PCA does not demand any group structure. If the data set contains groups, then the

second consideration is whether the differences and similarities in the variability of groups is

considered of interest, in which case CVA as a data reduction tool or a tool for investigation

modes of between to within covariance would be well suited. Conversely if the covariance

structure is of more interest irrelevant of the grouping, then PCA will act across groups to

find dominant directions of variability and would be more suited. In Section 3.5.3 this key

difference between CVA and PCA is illustrated using simulated data. Of course, before using

CVA, the required assumptions such as joint multivariate Gaussianity and common within-group

covariances, both of which are cautioned in Section 3.5.2.4. Thus, validity of assumptions may

end up being a key factor in whether to use CVA, PCA or see out an alternative tool.

3.5.3 Illustration of PCA and CVA

To illustrate the differences between PCA and CVA the two tools are applied to simulated data.

We generate 400 samples split into two groups of 200 a follows:

X ∼ Uni(−10, 10) Y ∼ Uni(0, 8)

Group 1 contains 200 samples from (X,Y ) and Group 2 another 200 samples from (X,−Y )

where X and Y are sampled independently. Alternatively a Gaussian simulation could have

been performed in a similar fashion, but for such a contrived (though informative) example this
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is not necessary. A plot of this two dimensional data (after centring) can be seen in Figure 3.6

where Group 1 is coded as blues squares and Group 2 as red circles. We can then use PCA and

CVA in turn to illustrate the difference in projection from two dimensions to one dimension.

The first principal component (PC1) and canonical variate (CV1) are plotted on this same figure

(though the direction of the arrows could be reversed as the eigenvectors are arbitrary by a factor

−1). PCA ignores the group nature of the data so in this simulation as the number of samples

FIGURE 3.6: Centred simulated data where colour and shape indicate one of two nominal
groups. The arrows indicate directions of the first principal component (PC1) and canonical

variate (CV1).

tends to infinity the dominant direction of variability is parallel to horizontal axis. CVA on the

other hand considers the group information aiming to find the dominant direction of between

group variation to within group variation; CV1 turns out to be almost parallel to the vertical axis

since the contrived simulations separate the samples efficiently in this manner. Figure 3.7 and

Figure 3.8 show the one dimensional projections using dominant directions of variation specific

to PCA and CVA respectively where the fainter points are the pre-projection data points. A

slight offset is added to the projected data so that the groupings do not overlap visually — in

practice all points lie on a single line.
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FIGURE 3.7: Centred simulated data projected using the first canonical variate and subse-
quently, for clarity, blue group points and red group points have had 0.1 added and subtracted

respectively in the first co-ordinate.

Recall that principal components are orthogonal and hence perpendicular to one another and

thus in this example the second principal component would be very similar to the first canonical

variate. This is due to the form of the simulated data but in general this is not the case.

3.6 Separable covariance structure

As mentioned previously, if the number of variables is higher than the number of observations

(i.e. p > n) then Ŵ−1 does not exist because Ŵ is singular. This is the case with the acoustic

data set where p = 8100 and n = 219 but is a common occurrence in data analyses. In this

section we adopt a novel approach which we refer to as separable-CFA and its discretised ana-

logue separable-CVA which acts to approximate separable-CFA. This approach is very powerful

because it overcomes the problem p > n for all but the most extreme cases.
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FIGURE 3.8: Centred simulated data projected using the first canonical variate and subse-
quently, for clarity, blue group points and red group points have had 0.1 added and subtracted

respectively in the second co-ordinate.

3.6.1 Separable-CFA

Recall that the Romance data set comprises spectrograms which have time and frequency direc-

tions. A straightforward model for describing how these directions interact is that of separable

covariance. The assumption underpinning this model can be encapsulated as there being no

dependency between the (standardised) time and frequency of the data. This is, of course, a sig-

nificant simplification of the likely underlying model. However, there are circumstances where

the assumption can be made with little penalty and can prove to be particularly useful computa-

tionally. Recall that a covariance function C is said to be separable if:

C((f1, t1), (f2, t2)) = Cf (f1, f2)Ct(t1, t2) (3.6.1)

where Cf and Ct are functions only of their arguments. The factored covariances provide an

understanding of how frequency or time dimensions of the spectrograms vary when the other

has been averaged out. Perhaps even clearer, under the separable covariance

corr((f1, t1), (f1, t2)) = corrt(t1, t2).
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It is useful to consider the notion of covariance separability in terms of statistical independence

and uncorrelation. Rougier provides the necessary results. If two random processes Gf and Gt

are probabilistically independent thenC = CfCt has a separable covariance function. However,

the converse is not true, i.e. if C = CfCt then Gf and Gt are not necessarily probabilistically

independent. Moreover, if Gf and Gt are uncorrelated then this an insufficient condition for

G = GfGt to have a separable covariance function. The sufficient condition requires that Gf

and Gt are second-order uncorrelated, that is

E(G(f1, t1)G(f2, t2) = E(Gf (f1)Gf (f2))E(Gt(t1)Gt(t2)).

Thus, in this application the separable-covariance assumption implies that the time and fre-

quency dimensions can be described by second-order uncorrelated processes, but are not neces-

sarily probabilistically independent of one another. This separability assumption is invariant of

Gaussianity assumptions or otherwise. Interestingly, Gaussianity ofGwith separable covariance

does not imply that Gf and Gt are necessarily Gaussian [Rougier].

However, the main purpose of the assumption becomes apparent for the Romance data set sub-

sequently (as described in Section 3.6.3) when use of the separable model of covariance over-

comes the challenge of covariance rank deficiency. The implications of making this separability

assumption are discussed in Section 3.6.3 where it is shown that for the purposes of forming a

basis, the validity of the assumption is not of great concern.

Under the separable covariance assumption for two-dimensional data the CFA optimality equa-

tion equivalent to (3.4.4) is:

∫
F

∫
T

(Bf (f1, f2)Bt(t1, t2)− λqWf (f1, f2)Wt(t1, t2))hq(f2, t2) dt2 df2 = 0. (3.6.2)

It can be shown that the solutions to this equation can be obtained as the product of the solu-

tions to two CFAs performed on the frequency and time covariances separately. Thus given any

canonical function pairs (hqf (f2), λqf ) and (hqt(t2), λqt) from a frequency and time CFA respec-

tively, the products provide a solution to (3.6.2): hq(f2, t2) = hqf (f2)hqt(t2) and λq = λqfλqt .

Moreover, any solution to (3.6.2) can be obtained from such products. A proof of this result
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is given in Section 3.6.2 and is very useful when proceeding to obtain numerical solutions to

(3.6.2).

3.6.2 Product solutions for separable-CFA

For CFA the separability assumption is:

B((f1, t1), (f2, t2)) = Bf (f1, f2)Bt(t1, t2)

W ((f1, t1), (f2, t2)) = Wf (f1, f2)Wt(t1, t2)

We want to find solutions to:

∫
F

∫
T

(B((f1, t1), (f2, t2))− λqW ((f1, t1), (f2, t2)))hq(f2, t2) dt2 df2 = 0

which under the separability assumptions is:

∫
F

∫
T

(Bf (f1, f2)Bt(t1, t2)− λqWf (f1, f2)Wt(t1, t2))hq(f2, t2) dt2 df2 = 0 (3.6.3)

Considering frequency and time in turn, for each we wish to find λ1 > · · · > λq > · · ·

corresponding to h1(·), · · · , hq(·), · · · which solve:

∫
F

(Bf (f1, f2)− λqfWf (f1, f2))hqf (f2) df2 = 0 (3.6.4)

∫
T

(Bt(t1, t2)− λqtWt(t1, t2))hqt(t2) dt2 = 0 (3.6.5)

Lemma 3.6.1. The solutions to (3.6.3) λq and hq(f2, t2) can be constructed as follows λq =

λqfλqt and hq(f2, t2) = hqf (f2)hqt(t2) if and only if λq and hq(f2, t2) are solutions to (3.6.4)

and (3.6.5).
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Proof. Under reasonable conditions we can rewrite (3.6.3)

∫
F

∫
T

(Bf (f1, f2)Bt(t1, t2))hq(f2, t2) dt2 df2

=

∫
F

∫
T

λq(Wf (f1, f2)Wt(t1, t2))hq(f2, t2) dt2 df2

Now without loss of generality select any pair of solutions to (3.6.4) and (3.6.5) rewrite λq =

λqfλqt and hq(f2, t2) = hqf (f2)hqt(t2)

⇒
∫
F

Bf (f1, f2)hqf (f2) df2

∫
T

Bt(t1, t2)hqt(t2) dt2

=

∫
F

λqfWf (f1, f2)hqf (f2) df2

∫
T

λqtWt(t1, t2)hqt(t2) dt2

Through rearrangement of (3.6.4) and (3.6.5) it is clear that λq = λqfλqt and hq(f2, t2) =

hqf (f2)hqt(t2) are solutions of (3.6.3). This proves sufficiency.

Now necessity. Suppose there is hq(f2, t2) 6= hqf (f2)hqt(t2) and corresponding λ solving

(3.6.3), and we now proceed so as to reach a contradiction. Assuming that the absolute value of

the statement is finite when integrated, the integrals can be exchanged to give:

∫
F

∫
T

(Bf (f1, f2)Bt(t1, t2))hq(f2, t2) dt2 df2

=

∫
F

∫
T

λ(Wf (f1, f2)Wt(t1, t2))hq(f2, t2) dt2 df2

and

∫
T

∫
F

(Bf (f1, f2)Bt(t1, t2))hq(f2, t2) df2 dt2

=

∫
T

∫
F

λ(Wf (f1, f2)Wt(t1, t2))hq(f2, t2) df2 dt2

Evaluating the inner integrals gives:
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∫
F

k1Bf (f1, f2)hqf (f2) df2 =

∫
F

λk2Wf (f1, f2)hqf (f2) df2

∫
T

k3Bt(t1, t2)hqt(t2) dt2 =

∫
T

λk4Wt(t1, t2)hqt(t2) dt2

where ki ∈ R. However, by collecting the constants it is clear that hqf (f2) and λk2
k1

solve (3.6.4),

and that hqt(t2) and λk4
k3

solve (3.6.5).

Thus we have hq(f2, t2) = hqf (f2)hqt(t2) and λ = λk2
k1

λk4
k3

but this contradicts our supposition.

3.6.3 Separable-CVA

As demonstrated by Lemma 3.6.1, the overall solutions to a CFA optimality problem with a

separable covariance structure are found as the product of solutions to CFAs of the decom-

posed covariance functions. We propose combining a tensor decomposable covariance structure

with CVA in order to obtain numerical solutions to the decomposition of the separable-CFAs.

This, when taking products, also gives solutions to the overall CFA. While separable covariance

structures have been adopted elsewhere in the literature (e.g. Aston and Kirch [2012], Jones and

Moriarty [2012]), this is a novel approach for both CVA and CFA. Even though the assumption

behind separable covariance is strong, the accuracy of the assumption for CVA and CFA only

impacts on basis efficiency not basis validity as if the complete basis is retained then it will

still span the space. Thus, if the data is far from separable, then simply a higher number of

dimensions will be needed to retain the same amount of information.

The main purpose of assuming a tensor-decomposable covariance structure is to overcome the

obstacle of rank-deficient sample covariance matrices caused by the length of the observations

exceeding the number of observations (i.e. p > n). This is not just a problem with the Ro-

mance speaker data set but is commonly encountered with functional data sets due to their often

high-dimensionality (e.g. Long et al. [2005]). Rank deficiency obstructs using CVA to obtain

numerical solutions to CFA. Theoretically in CFA an inverse function W−1 is neither required

nor is usually bounded, whereas in CVA W−1 is needed for the eigenanalysis of W−1B but

cannot be obtained because in this caseW is singular.
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In the observational matrix setting, C is separable if:

C((f1, t1), (f2, t2)) = Cf (f1, f2)⊗Ct(t1, t2)

where ⊗ is the standard Kronecker product, c.f. (3.6.1). Using known results of the Kronecker

product (see Lancaster and Tismenetsky [1985] for example), the separability assumption in the

multivariate setting implies:

W−1B = (W−1
t ⊗W−1

f )(Bt ⊗Bf ) = W−1
t Bt ⊗W−1

f Bf (3.6.6)

where the estimates of separate within- and between-language covariance matrices in the fre-

quency direction are:

B̂f [f1, f2] =
1

nl − 1

nl∑
l=1

ml·
nt

nt∑
t=1

X̃l[f1, t]X̃l[f2, t]

Ŵf [f1, f2] =
1

n− nl

nl∑
l=1

nd∑
d=1

mld∑
m=1

1

nt

nt∑
t=1

X̃d
l,m[f1, t]X̃

d
l,m[f2, t]

where X̃l[i, j] = X̄l[i, j]− X̄[i, j] and X̃d
l,m[i, j] = Xd

l,m[i, j]− X̄l[i, j] with equivalent esti-

mates for the time direction. Treating each frequency and time sample as a separate observation

leads to the product covariance matricesW andB having higher ranks than previously. Explic-

itly, forW−1 = (Wf⊗Wt)
−1 to be nonsingular, we need that nnf ≥ nt and nnt ≥ nf . This is

equivalent to requiring n ≥ max(nf ,nt)
min(nf ,nt)

. This contrasts to the previous condition n ≥ p = nfnt.

So the new requirement is usually significantly more relaxed, and CVA can often then be imple-

mented.

An eigenanalysis of W−1
f Bf produces eigenvalues (λf1, λf2, . . . , λfnf ) and corresponding

eigenvectors (cf1, . . . , cfnf ) with equivalent output for the time covariances W−1
t Bt. Sorting

decreasingly, (λf1, . . . , λfnf ) ⊗ (λt1, . . . , λtnt) produces a vector denoted (λ1, λ2, . . . , λnfnt)

and the Kronecker product of corresponding eigenvectors results in (c1, c2, . . . , cnfnt) of size

nf × nt, solving the overall CVA. It should be noted that while this basis defined is based on an

assumption of separability, it nevertheless provides a complete basis of the space. So although

when separability does not hold the basis is less efficient and is rather longer than it needs to

be, the basis is still valid. For further details, see an analogous argument for separable PCA in
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Aston and Kirch [2012].

If using CVA for dimension reduction, once a dimension r < p has been selected, each observa-

tion from the language data can be projected into r-dimensional space: Y = AX̃T whereA is

r × p with columns c1, . . . , cr and where X̃ is 1× p and formed by concatenating the nf rows

of length nt of the observationX .

3.7 Summary

In this chapter the main data set of the thesis has been introduced. This is linguistic data based

on audio recordings of speakers from 5 languages. More specifically, the acoustic data takes the

form of spectrograms. The ultimate aim of the analysis is to determine whether certain aspects

of speech could have evolved in a tree-like manner, i.e. can the conditional independence rela-

tionships between particular phonetic features be adequately modelled as a GLTM. This will be

achieved by testing particular sets of equations and inequalities called tree constraints. However,

before this part of the analysis can be performed we need to get the data into a suitable form

that can be used in conjunction with tree constraints. Given the data objects are spectrograms

which are two-dimensional functional objects, our analyses of the data will be in a functional

data framework. Thus, in this chapter we have introduced functional tools most notably the new

construction separable-CFA and the multivariate approximation separable-CVA. The purpose of

these separable techniques is two-fold: firstly, the separability overcomes the problem of high

dimensional data with only a modest number of observations. Secondly, the CFA and CVA can

be used to project the data to a canonical basis and greatly reduce the data dimension while

maintaining important aspects of variability between the languages. CFA and CVA will there-

fore be crucial to the main analyses that are carried out in Chapter 7 prior to the application of

tree constraints.



Chapter 4

Tree constraints for discrete

distributions

The purpose of this chapter is to introduce the concept of tree constraints beginning with a review

for BNs with binary random variables. This will cover some results from the papers Settimi

and Smith [1999, 2000] and more recently Zwiernik and Smith [2011, 2012]. An illustration

utilising some of the constraints is then given for linguistic and genetic data sets. We then present

our contribution towards the development of graphical inequality diagnostics for binary random

variables that were developed in Shiers and Smith [2012]. A key extension of the binary case to

k-state variables will then be reported focusing on the work of Allman et al. [2014].

This chapter provides the third strand of background material required for implementing the

desired analysis of the linguistic data set. Chapter 3 provided a background to the linguistic

application and detailed the functional approach to be taken, and Chapter 2 provided the basics

of the model types we are considering. In this chapter, we take a look at the types of concepts

and tools used for assessing model-compatibility and demonstrate how they are of use in other

contexts. This then sets up Chapter 5 and Chapter 6 to extend these tools and methodologies to

the Gaussian setting required for the functional linguistic application in Chapter 7.

56
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4.0.1 Introduction to tree constraints

Recall from Section 2.1 that BNs with both hidden and observed variables are known as latent

variable graphical models. Moreover, if these graphical models are trees and the unobserved

variables are the interior nodes then these graphical models are known formally as latent tree

models. Such models are commonly referred to as phylogenetic trees with the leaf variables

representing extant species and the interior nodes representing extinct ancestor species. Tradi-

tionally the species have been biological organisms (e.g. Felsenstein [1983]). However, the idea

naturally extends to other fields such as linguistics (e.g. Dunn et al. [2005]). For example, the

evolutionary histories of languages have often been presented in a tree form with contemporary

languages being found at the leaves.

The versatility of phylogenetic trees makes the study of latent tree models of particular inter-

est from a statistical standpoint (e.g. Dutkowski and Tiuryn [2007]). However, the estimation

of BNs when interior vertices are hidden is challenging since the implicit geometry of the as-

sociated probability mass or density functions of the observed variables, and hence also the

likelihood, is complicated. As a consequence there are fewer tools available to assess the fit of

latent tree models to data. This thesis makes a contribution to better understanding the class

of GLTMs theoretically and develops methodology for assessing the fit of such models to data

sets. The approach taken focuses on a fundamental feature of phylogenetic trees called latent

tree constraints (for which we shall refer to as tree constraints henceforth).

Definition 4.0.1 (Tree constraints). A tree constraint is an implicit theoretical restriction on the

probability space of observed variables of a latent tree model.

Remark 4.0.2. Tree constraints are usually expressed in terms of moments of the observed vari-

ables and take the form of algebraic or semi-algebraic statements (i.e. equations or inequalities).

The nature of the tree constraints generally depend on the assumed distributions of the random

variables. However, if the given model context is clear, then the following terminology can be

used freely.

Definition 4.0.3 (Universal and T -specific). If a tree constraint is applicable to any tree T then

it is said to be universal. If a tree constraint only applies to a particular tree T then it is said to

be T -specific.
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Definition 4.0.4 (Tree-compatibility). A data set representing observations of a latent tree

model is said to be tree-compatible if it is deemed to adhere to the universal tree constraints.

Definition 4.0.5 (T -compatibility). A data set representing observations of a latent tree model

is said to be T -compatible if it is deemed to adhere to T -specific tree constraints for a given tree

T .

Our interest is in using Gaussian tree constraints to test data sets for tree-compatibility and

T -compatibility. In Chapter 7, a linguistic and a biological data set are tested against the con-

straints, which is apt as in both settings evolutionary histories have previously been modelled

as phylogenetic trees. But before we derive the complete set of Gaussian tree constraints re-

quired for these analyses, we begin by reviewing the existing tree constraints for some discrete

graphical models.

4.1 Binary tree constraints

The simplest such model is the phylogenetic tree where all variables are binary. The geometry of

this space of models was presented for the tripod tree in Settimi and Smith [1999] and expanded

in Settimi and Smith [2000] to any star tree. It has recently attracted considerable interest (for

example Allman et al. [2009] and Zwiernik and Smith [2012]). These advances have encouraged

some authors to proceed to use the known geometry of these spaces to support inference and

learning over the space of tree models (see Drton and Sullivant [2007] for example). These

focus on the polynomial constraints that are implicit in these models. However, it is well known

that not only these functional relationships but also additional inequality constraints are active.

Recently Zwiernik and Smith [2011] fully characterised these inequality constraints for binary

phylogenetic trees. So we are at last able, at least for this important class of graphical models,

to explore the inferential use for learning of these derived inequality constraints.

We begin this section by reviewing the binary tree constraints derived in Settimi and Smith

[1999] for the tripod tree — we broadly describe the derivation to give an idea of the approach

used. We then present the results from Settimi and Smith [2000] for a star tree with four observed

nodes and moreover a general framework for obtaining higher order moments for larger star

trees.
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4.1.1 Constraints on a tree with three observed nodes and one hidden node

H

X2

X1

X3

FIGURE 4.1: Tripod tree T3.

Following Settimi and Smith [1999, Section 4] we motivate the derivations of tree constraints

for the tripod tree in Figure 4.1 where the random variables are binary taking values {−1,+1}.

The tripod tree has three manifest random variables X1, X2, X3 and hidden variable H .

The probability space of the manifest variables can be efficiently represented in terms of mo-

ments. For any n variables denoted X1, . . . , Xn, we define nth order non-central moments as

µ1,2,...,n = µ12···n = E(X1X2 . . . Xn).

and nth order central moments as

σ1,2,...,n = σ12···n = E((X1 − µ1)(X2 − µ2) . . . (Xn − µn))

So, for example, the mean of variable Xi is denoted µi, and the covariance of Xi and Xj as σij .

Considering the joint probability mass function for the tripod tree, for Pr(i, j, k) = Pr(X1 =

i,X2 = j,X3 = k), Settimi and Smith [1999] write this in additive form:

Pr(i, j, k) =
1

8
((1 + iµ1)(1 + jµ2)(1 + kµ3) + ijσ12 + ikσ13 + jkσ23 + ijkλ123)

=
1

8
(1 + iµ1 + jµ2 + kµ3 + ijµ12 + ikµ13 + jkµ23 + ijkµ123) (4.1.1)

where λ123 = µ123 − µ1µ2µ3. The tripod tree has the following conditional independence

statements

X1 ⊥⊥ X2|H, X1 ⊥⊥ X3|H, X2 ⊥⊥ X3|H, X1 ⊥⊥ (X2, X3)|H.
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The following constraints on the central moments hold given Xi ⊥⊥ Xj |H :

var(H) cov(Xi, Xj) = cov(Xi, H) cov(Xj , H) (4.1.2)

for 1 ≤ i < j ≤ 3. Additionally X1 ⊥⊥ (X2, X3)|H can be expressed by:

var(H) cov(X2X3, X1) = cov(X2X3, H) cov(X1, H) (4.1.3)

Derivations of (4.1.2) and (4.1.3) are given in Settimi and Smith [2000]. Now let

ηi :=
cov(Xi, H)

var(H)
, i ∈ {1, 2, 3}

and

µH := E(H).

Through algebraic manipulation (4.1.2) is rearranged to the form:

σij = (1− µ2
H)ηiηj (4.1.4)

where 1 ≤ i < j ≤ 3. Rearranging (4.1.3) and substituting in equations from (4.1.2) and

(4.1.4), Settimi and Smith [1999] give the final equality constraint as:

σ123 = −2µH(1− µ2
H)η1η2η3. (4.1.5)

Observe that var(H) = E(H2)−E2(H) and since H ∈ {−1,+1} ⇒ H2 = 1⇒ E(H2) = 1

and so we get var(H) = 1 − µ2
H which is seen in the above constraints. The four constraints

in (4.1.4) and (4.1.3) indicate that the joint probability distribution across (X1, X2, X3, H) is

provided by moments of the observed variables (X1, X2, X3) up to aliasing or sign changes on

H . This is a well-known fact from latent variable modelling (for example, see Goodman and

Mirande [1974]). By squaring (4.1.5) and substituting in (4.1.4) the following are obtained:

(1− µ2
H)σ2

123 = 4µ2
Hσ12σ13σ23 (4.1.6)
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The first term is non-negative which implies that solutions must lie in areas where:

σ12σ13σ23 ≥ 0 (4.1.7)

Settimi and Smith [1999] go on to present inequality constraints on the probability space in

terms of moments of observed random variables.

For |σij | ≤ |σik|, |σjk| :

2|σij | ≥ |σik||σjk|+
√
σ2
ikσ

2
jk + σ2

ijk (4.1.8)

The constraints (4.1.8) specify symmetric non-intersecting regions that the central moments can

lie in. These are found in all four of the multiplicative positive octants of the second-order

moment space, as specified by (4.1.7).

These inequalities in (4.1.7) and (4.1.8) are T3-compatibility constraints. We shall refer to them

as the positivity constraints and the (binary) tripod constraints. In fact, with reference to The-

orem 4.3.1, from the implicit conditional independence relationship implied by a phylogenetic

tree, we will see that constraints on the tripod tree appear in any phylogenetic tree and so the

positivity and tripod constraints are universal tree constraints. This makes the tripod constraints

very important and fundamental to any tree. When these are used with the true values of the

moments, the inequalities must be satisfied for the conditional independence statements to hold

and thus for T3 to be a suitable model. Of course in practice we rarely know the true moments,

and thus we can construct a three-way contingency table over (X1, X2, X3), and can estimate

the moments µ1, µ2, µ3, σ12, σ13, σ23, σ123. If the estimates lie outside the feasible region de-

termined by (4.1.7) and (4.1.8) then this provides evidence that the conditional independence

assumption of the tripod tree is incorrect.

Let us consider interesting points in the space of moments. The singular points are geometrically

represented as the boundaries of the four regions and can be found by changing Equation (4.1.8)

from an inequality to an equality. These boundaries represent zero counts in one or more cells

of the contingency tables. These singular points are discussed in more detail in Section 4.1.2.
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Section 4.1.4 will explore the admissible regions of the moment space graphically, both for the

whole space and for an isolated positive octant.

4.1.2 Constraints on a tree with four observed nodes and one hidden node

H

X2X1

X3 X4

FIGURE 4.2: A directed tree with four observed nodes and one hidden node.

In Settimi and Smith [2000], the tree constraints are derived for the star tree with 4 leaves.

The tree in Figure 4.2 contains the conditional independence statements:

Xi ⊥⊥ Xj |H ∀ i, j ∈ {1, 2, 3, 4}, i 6= j

As in Section 4.1.1, we will consider the additive model of the probability distribution of the

observed variables:

Pr(X1 = i,X2 = j,X3 = k,X4 = l) =
1

16

(
(1 + iµ1)(1 + jµ2)(1 + kµ3)(1 + lµ4)

+ijσ12+ikσ13+ilσ14+jkσ23+jlσ24+klσ34+ijµ123+ijµ124+ikµ134+jkµ234+ijklµ1234

)
i, j, k, l ∈ {−1,+1}

Settimi and Smith [2000] make use of Bahadur expansion for high order probability distributions

in order to rewrite the non-central moments in terms of central moments (see Lancaster [1969]

for generalised Bahadur expansion work and Streitberg [1990] for corrected versions for degrees

of n > 3).

µijk = σijk + µiµjµk + µiσjk + µjσik + µkσij
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and

µ1234 = σ1234 +
∑

i 6=j<k<l
µiσjkl +

∑
i<j 6=k<l

σijσkl +
∑

i 6=j 6=k<l
µiµjσkl + µiµjµkµl

As before, the following equality constraints for the conditional independence model can be

expressed as:

σij = (1− µ2
H)ηiηj 1 ≤ i < j ≤ 4 (4.1.9)

σijk = −2µH(1− µ2
H)ηiηjηk 1 ≤ i < j < k ≤ 4 (4.1.10)

Additionally for the fourth-order central moment

σ1234 = 2(1− µ2
H)(3µ2

H − 1)η1η2η3η4 (4.1.11)

Through advanced algebraic manipulation and substitution Settimi and Smith [2000] obtain the

following inequality constraints:

0 ≤ τij =

√
4σijσikσjk + σ2

ijk

2|σij |
≤ 1 (4.1.12)

0 ≤ τik =

√
4σijσikσjk + σ2

ijk

2|σik|
≤ 1 (4.1.13)

0 ≤ τjk =

√
4σijσikσjk + σ2

ijk

2|σjk|
≤ 1 (4.1.14)

for 1 ≤ i < j < k ≤ 4.

These inequalities allow us to test whether the conditional independence assumptions of the tree

are violated (i.e. if τij > 1 for at least one pair i, j s.t. 1 ≤ i < j ≤ 4 then this is evidence that

the model may not be a good fit).
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Additionally, Settimi and Smith [2000] report that the following algebraic (i.e. equality) con-

straints are implicit in the model:

σ12σ34 = σ14σ23 (4.1.15)

σ13σ24 = σ14σ23 (4.1.16)

σ123σ14 = σ124σ13 (4.1.17)

σ123σ14 = σ134σ12 (4.1.18)

σ124σ23 = σ234σ12 (4.1.19)

σ2
124σ

2
134 = (σ1234σ124σ134 + 2σ123σ234σ

2
14)σ14 (4.1.20)

These equations suggest a sufficient reparametrisation of the sample space is the sample means

and a subset of central moments. For instance, µ1, µ2, µ3, µ4, and σij , σkl for i, j, k, l distinct

and σijk for 2 ≤ j < k ≤ 4.

The tripod tree is identified in the star tree by selecting any three leaf nodes and so the T3-

compatibility constraints are also implicit in the 4-leaf star tree:

σijσikσjk > 0 ∀ i, j, k ∈ {1, ..., 4}, i 6= j 6= k 6= i (4.1.21)

2|σij | ≥ |σik||σjk|+
√
σ2
ikσ

2
jk + σ2

ijk (4.1.22)

for |σij | ≤ |σik|, |σjk| where 1 ≤ i < j 6= k < 4. Finally, for the 4-leaf star tree, Settimi

and Smith [2000] present a set of semi-algebraic (i.e. inequality) constraints including third and

fourth-order moments:

4
√

3

9
≥ |σijk| ≥

4(|σijlσikl − σilσ1234|)σ2
jkl

(|σijlσikl|)
1
2 (|3σijlσikl − 2σilσ1234|)

3
2

(4.1.23)

As mentioned in Section 4.1.1, the boundary points of these graphical regions represent zeros

in the marginal tables of each manifest node, and occur where the inequality constraints are

equalities. This is equivalent to having a manifest node equal to H . In the space of any three of

the second-order central moments (see graphs in Section 4.1.4), the fold lines represent having

zero entries in two of these tables, and each of the cusp points corresponds to zeros in all three
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relevant tables. The maximum value of σijk is (as stated earlier) 4
√

3
3 , and this occurs when

σ1234 = 0 and σij = σik = σjk = 2
3 , which is in fact the degenerate distribution Xi = Xj =

Xk = H . In summary, the boundary points of the geometry of the parameter spaces all relate to

varying degrees of degenerate distributions.

From a geometric perspective, it is interesting to note that if the marginal data on the manifest

nodes is inconsistent with the conditional independence model, then the sample estimates will

correspond to points outside of these feasible regions. When considering second-order moments

this can be visualised explicitly by plotting the tree-compatible regions of the second-order

moment space and the second order sample moments. A visualisation of these regions is given

in Section 4.1.4.

4.1.3 Beyond four observed variables

The derivation of constraints for trees involving five or more observed variables with a shared

interior hidden node follows the same strategy as for lower order constraints. Thus for a tree

with conditional independence

⊥⊥ni=1 Xi|H

Settimi and Smith [2000] advocate the following the general procedure:

1. Write the nth central moment σ12...n of the observed variables in terms of in terms of

central moments of a lower order than k and the non-central moment of degree n.

2. Write the non-central moment of degree n in terms of central moments ofH and observed

variables — this can be done as each Xi can be expressed as linear functions of H . Thus

the nth central moment can be expressed in terms of just central moments of the observed

variables and H .

3. This can be repeated for each order k central moment where k < n. Thus a set of

equations is formed that describes the central moment space of the model. These simul-

taneous equations can be solved using any standard mathematical software, and the final

equations and inequality constraints are obtained through elimination of the moments of

hidden variables.
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Hence, Settimi and Smith [2000] provided a framework for deriving the applicable constraints

for any n binary variables with a shared hidden binary variable. This introduces a significant

number of extra constraints to assess for each extra observed variable. However, for a fixed

number of observations, the higher the order of the moment the less confidence that may be

placed in the estimate of the moment. There is a reason for this. The higher the order of the

moment the more sensitive this moment is to tail behaviour or outliers (e.g. see Welling [2005]).

Thus, due to reasons of reliability and practicality for larger models it may judged that only the

lower order moments should be used for assessing compatibility.

4.1.4 Geometry of the tree-compatible regions

We have touched upon the geometric descriptions of the tree-compatible regions throughout this

chapter but we have not yet provided a visual representation of these descriptions. Of course

this is only possible for up to three moments at once and thus in general we are restricted to

lower order constraints. We focus on the second-order tree constraints where we are able to

plot the regions of the moment space that are consistent with the tripod model in Section 4.1.1

albeit for a fixed value of the third-order moment. By graphically representing the regions in

three dimensions we get a more tangible understanding of the way that these constraints are

acting on the low-order moments. For higher dimensions we do not have the privilege of being

able to graphically represent the regions, though heuristically the lower order regions may aid

understanding of analogous concepts in higher dimensions, for example boundaries and cusps.

Considering the second-order moments of the tripod constraints, the regions are determined by

the union of inequalities seen in (4.1.8) intersected with (4.1.7). The third-order central moment

can be varied through its possible range of values 0 to 4
√

3
9 . Plots for three different values of

σ123 are presented in Figures 4.3–4.5 for σ123 = 0, 1
9 ,

1
3 .

It has already been discussed that the regions only lie in the four multiplicatively non-negative

octants (that is: (+,+,+), (+,-,-), (-,+,-) and (-,-,+)), that they are non-intersecting regions (except

for the case where σ123 = 0 where the boundaries meet), and that they are symmetrical. The

colours each represent the boundary of one of the three possible inequality constraints in (4.1.8)

— the boundaries being defined by replacing the inequality sign with an equals sign.
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From (4.1.15)-(4.1.17) it is clear that as µ123 is varied continuously from 0 through to 4
√

3
9

the constraints become more demanding and so the size of the admissible regions decreases.

Thus at µ123 = 4
√

3
9 there are only four admissible points in the parameter space of the second-

order central moments, namely: (2
3 ,

2
3 ,

2
3), (−2

3 ,−
2
3 ,

2
3), (−2

3 ,
2
3 ,−

2
3), (2

3 ,−
2
3 ,−

2
3). At the other

extreme when µ123 = 0, the four previously separate regions are now joined at the single point

(0, 0, 0).

If observations are obtained and contingency tables formed for the model being discussed, the

estimates of the central moments can be calculated. Once the third-order central moment has

been calculated, the plot of the second-order central moment parameter space can be drawn.

The co-ordinate of the second-order central moments estimates can then be marked on the plot.

This may assist in signifying to what extent the observed data is within or outside the admissible

region. The addition of a visual aid can provide more insight than simply checking the relevant

constraint from (4.1.8). In particular, since we can see how the constraints might be violated —

not just that they have been. If the marked point is only just outside (or inside) the admissible

region, then this may suggest the evidence for rejecting (or not rejecting) the model is less

strong.

4.1.5 Alternative parametrisations

It is useful to note that central moments are not the only way of expressing tree constraints.

An alternative representation of the binary constraints is given in Zwiernik and Smith [2012]

and Zwiernik and Smith [2011]. In the former paper, a novel reparametrisation is given for the

binary latent tree model co-ordinate space changing the description from central moments to

so-called tree cumulants, the full details of which can be found in Zwiernik and Smith [2012,

Section 3.2]. In combination with the alternative binary coding {0, 1} (as opposed to {-1,1})

this produces an elegant product-form parametrisation and is useful for obtaining the full semi-

algebraic description of the model space (see the main result of the paper in Zwiernik and Smith

[2011, Theorem 4.7]). However, as second-order and third-order tree cumulants are equal to

the equivalent central moments, we can directly present Zwiernik and Smith [2011, Proposition

2.5]. This is equivalent to the results we report in Section 4.1.1 but under the binary random

variable encoding {0, 1}.
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FIGURE 4.3: Covariance space of tripod tree T3 for σ123 = 0.

FIGURE 4.4: Covariance space of tripod tree T3 for σ123 = 1
9 .
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FIGURE 4.5: Covariance space of tripod tree T3 for σ123 = 1
3 .

Proposition 4.1.1 (Proposition 2.5 from Zwiernik and Smith [2011]). Given an observed joint

probability table P (2 × 2 × 2), the data is consistent with the tripod tree structure if and only

if:

σ123 = 0 and at least two of the three covariances σ12, σ13, σ23 vanish

or

σ12σ13σ23 > 0 (4.1.24)

|σjk|
√

det(P ) + σ123σjk ≤ (1 + 2(1− µi))σ2
jk (4.1.25)

|σjk|
√

det(P )− σ123σjk ≤ (1− 2(1− µi))σ2
jk (4.1.26)

where det(P ) = σ2
123 + 4σ12σ13σ23.

In Section 4.3 we introduce some graphical inequality diagnostics and when we apply these

tools to some genetic data we will use the formulation of the tripod constraints given in Propo-

sition 4.1.1.
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4.2 Examples of tree constraint testing

We now present two examples that demonstrate how tree constraints can be used to assess tree-

compatibility. The two applications are in linguistics and phylogenetics, both of which are

topics known for using latent tree models for describing evolutionary relationships between

species. The examples shown here should only be considered as illustrative. Although both

applications explore questions typical to the subject areas and proceed in a sensible manner,

without consultation with domain experts we cannot give much weight to the conclusions of the

analyses. With this proviso noted, we proceed with the applications with particular note to the

methodology that can carry across to other data sets.

4.2.1 Tree-compatibility of Indo-European languages using binary random vari-

ables

The aim of this analysis is to determine whether four selected Indo-European languages French,

Italian, Spanish and Brazilian Portuguese can be adequately described using a binary latent tree

model. This is achieved by checking whether the inequality constraints derived in Section 4.1.2

are respected by the sample estimates of the data. Of course, it is important that a suitable set

of binary random variables are selected to begin with. The data set is a subset of that used

in Nicholls and Gray [2008] (and is denoted Dyen et al. in Section 7.1 of that paper). The

data set is based upon Dyen et al. [1997] which itself makes use of the famous Swadesh list

of 200 word meanings [Swadesh, 1952]. The Swadesh list comprises word meanings that are

known to have a low level of borrowing between languages — borrowing can be considered a

linguistic equivalent of horizontal gene transfer in the genetic context. Thus the Swadesh list

provides information about the historical relationships between languages largely focused on

gradual evolutionary development. The data set was formed by taking one of 87 Indo-European

languages and one of 200 word meanings and then identifying all words within that language

with that particular meaning. This was then repeated for each language and meaning pair. Words

with a shared meaning are said to be homologous if they are believed to share a common ancestor

or origin. For each word meaning, words that are homologous (as judged by linguistic experts)

are said to belong to the same cognate class. For example:
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TABLE 4.1: Example of words with given meaning for each of four languages.

‘all’ ‘to sit’ ‘to burn’
Brazilian
Portuguese todo(to) — queimar

French tout asseoir bruler
Italian tutto sedere ardere, bruciare
Spanish todo sentasse arder

TABLE 4.2: The corresponding cognate classes for the words in Table 4.1.

‘all’ ‘to sit’ ‘to burn’
Brazilian
Portuguese c=1 — c=3

French c=1 c=2 c=4
Italian c=1 c=2 c=4, 5
Spanish c=1 c=2 c=5

For the word meaning ‘all’ in English, an equivalent word was given in the data set for each of

the four languages: ‘tout’, ‘tutto’, ‘todo’ and ‘todo(to)’. It can be read from the data set that

these four words are deemed homologous and so they share the cognate class denoted c = 1

(say). Now considering the verb ‘to sit’ we have the rare occurrence that the data set in this

case does not provide a word for one of the languages (or in circumstances such a word does

not exist). This means that there is no class code for Brazilian Portuguese for the word meaning

‘to sit’. This occurs rarely in the data set and is thus unlikely to materially affect the analysis.

The final example word meaning is ‘to burn’ where we have the occurrence that two words are

provided for Italian: ‘ardere’ and ‘bruciare’. There are three cognate classes containing {bruler,

bruciare}, {ardere, arder} and {queimar}. Notice that there are two cognate classes associated

with Italian and ‘to burn’. The data set is presented as an 2665× 87 binary data matrix Z where

each row represents a cognate class c = 1, . . . , 2665 and each column relates to one of the 87

languages. If a language j has a word in cognate class i then Z[i, j] = 1 otherwise absence is

indicated by a −1 or 0 depending on your binary coding choice. Hence, the data matrix relating
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to the example in Tables 4.1 and 4.2 is



1 1 1 1

−1 1 1 1

1 −1 −1 −1

−1 1 1 −1

−1 −1 1 1


where the columns are ordered Brazilian Portuguese, French, Italian and Spanish.

We denote the submatrix of Z that contains the four languages of interest as Z∗. We treat each

of the languages as an observed variable with each of the cognate classes being considered as an

observational unit. We can then assess whetherZ∗ is compatible with a binary latent tree model

using the constraints described in Section 4.1.1 and Section 4.1.2.

The required central moment and mean estimates for checking for tree constraint violations are

provided below (where the four languages are coded 1 = Brazilian Portuguese, 2 = French, 3 =

Italian and 4 = Spanish).

µ̂1 = −0.8507 µ̂2 = −0.8544 µ̂3 = −0.8454 µ̂4 = −0.8522

σ̂12 = 0.1839 σ̂13 = 0.1991 σ̂14 = 0.2256 σ̂23 = 0.2101 σ̂24 = 0.1916 σ̂34 = 0.2097

σ̂123 = 0.2951 σ̂124 = 0.2953 σ̂134 = 0.3152 σ̂234 = 0.3017

σ̂1234 = 0.3470

The full set of inequality constraints were evaluated, namely (4.1.7), (4.1.8), (4.1.12)–(4.1.14)

and (4.1.23). All of the constraints were satisfied with the exception of (4.1.23) that was violated.

This suggests that the four languages are not tree-compatible, but that any three of the languages

are indeed T3-compatible as all of the tripod constraints are satisfied. We discuss some of the

difficulties in making inferences about these types of violations in Section 4.2.3.
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4.2.2 Assessing evolutionary history using the COI gene

Phylogenetic trees can be constructed using gene sequences where the vectors of data are ob-

tained from DNA sequences coded into binary. Each base in a sequence has one of four chemi-

cals either T or C (pyrimidines) or A or G (purines). Transversions (which is when a sequence

jumps from a pyrimidine to a purine or vice versa) occur at a lower rate than transitions (jumps

within pyrimidines and purines) and so transversions can be considered of more interest [Yang,

2007]. We can thus encode T and C as 1, and A and G as -1 [Vij and Biswas, 2005, p.8]. When

fitting phylogenetic trees to data there has been some use of constraints implied by conditional

independence (e.g. Casanellas and Fernández-Sánchez [2007]), however without the inequality

constraints given in Settimi and Smith [2000], Zwiernik and Smith [2011] this can lead to erro-

neously fitting a tree to data. The sequences used for genetic analyses usually have hundreds of

entries. For example, Barcode of Life Data Systems (BOLD Systems) requires sequences with

a minimum of five hundred base pairs (BPs) [Ratnasingham and Hebert, 2007a].

The genetic data obtained from BOLD Systems [Ratnasingham and Hebert, 2007b] is from

a particular region of the mitochondrial gene, cytochrome c oxidase I (COI). Hebert et al.

[2004] published the first practical paper using this gene region suggesting the gene region “as a

DNA barcode for the identification of animal species” and since then COI has had increasingly

widespread use in animal species classification.

To illustrate the technique we consider the unresolved problem of how to model the evolution of

placental mammals. For example, Teeling and Hedges [2013] recently surveyed the competing

theories as to the ancestral root of placental mammals and found that despite advances in phylo-

genetic techniques and data sizes that there remain three serious possibilities. The disagreement

is about the ordering of three groups of species called clades. A clade is a group of all species

that are descendants of a common ancestor (and does not exclude any descendants). The three

clades of interest are boreoeutheria, xenarthra and afrotheria.

In Teeling and Hedges [2013, Figure 1] the three proposed orderings of the clades are presented

and Figure 4.6 here generalises the graph, the question then being the location of each clade

in the positions A, B and C. However, this precludes the possibility that a latent tree model

is not the appropriate model class. Reading the tree as a rooted BN, a necessary condition for
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A B C

FIGURE 4.6: Outline of possible placental mammal phylogenetic tree where A, B and C are
also trees and represent each of the three clades.

tree-compatibility is that tree constraints hold for any set of extant species within these groups.

The minimum analysis involves selecting a species from each of these three clades and using

the binary encoding of each COI gene to test them against tripod inequality constraints. It is this

approach that we use in our example. The proof that the tripod constraints apply is provided

by Theorem 4.3.1. This minimal analysis is undoubtedly a simplification but the principle is

correct. A more detailed analysis might involve a larger number of species, more constraints,

and more extensive sections of genetic data.

In our example we select Pongo pygmaeus (Bornean orangutan) from boreoeutheria, Dasypus

novemcinctus (nine-banded armadillo) from xenarthra and Loxodonta africana (African bush

elephant) from afrotheria. In this instance the choice of particular species was arbitrary though

motivated by the images used in Teeling and Hedges [2013]. Clearly a large number of such

choices could be tested in a full-blown analysis.

The species are coded 1 = orangutan, 2 = armadillo and 3 = elephant.

µ̂1 = 0.1170 µ̂2 = 0.2226 µ̂3 = 0.3132

σ̂12 = 0.4004 σ̂13 = 0.4049 σ̂23 = 0.2208

σ̂123 = 0.1656

We find that the tripod constraints (4.1.7), (4.1.8) are satisfied and so based on this analysis the

data set is T3-compatible. Therefore, this offers no evidence against a tree adequately describing

the evolutionary history of the species and thus one of the three rootings of the tree surveyed in

Teeling and Hedges [2013] could be valid.
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4.2.3 Discussions of examples

In these two examples we have motivated two contexts where a phylogenetic tree structure might

be assessed and we demonstrated how to implement straightforward tests of tree-compatibility

using up to fourth-order moments. However, it is worth considering the limitations of these

analyses. Firstly, there has been no expert linguistic or phylogenetic guidance during the analy-

sis as already mentioned. Secondly, the data sets are not definitive. Although the Swadesh list

is a sensible choice it is just one of a number of lists, many of which have been constructed

with more contemporary linguistic knowledge in mind. Likewise, the COI gene is only one of

several genes that have been suggested for identifying species. With advances in technology it

is possible for much larger numbers of BPs or even entire genomes to form the basis of genetic

studies. Finally, we are only using point estimates for the moments and so ignoring any estimate

error. It is interesting to note that for the linguistic example the only violations occur in the

constraints that make use of fourth-order moments, and it is the higher order moment estimates

that tend to be least accurate as argued earlier. To get a sense of reliability of these results there

are several approaches that could be taken. For example, a non-parametric method would be to

bootstrap the data and record the proportion of samples that adhere to each constraint. Alterna-

tively, a prior distribution could be assigned to each estimate and a Bayesian hierarchical model

could be constructed and through simulation a posterior probability of tree-compatibility can

be estimated. These probabilistic methods could potentially be used to additionally incorporate

the algebraic constraints though that is beyond the scope of these short examples. A search of

current research suggest that this is the first example of this type of diagnostic to appear in the

literature.

4.3 A first step into graphical inequality diagnostics

This section is based upon the text of the paper Shiers and Smith [2012]. Here we demonstrate

how some tree constraints for binary random variables can be used for inference by providing

the foundation for various diagnostics. These are primarily designed for the early stages of a

phylogenetic analysis. The first point we note is that all trees must satisfy certain cubic inequal-

ities associated with all the triples of its observed variables. A simple diagnostic is produced
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which therefore simply checks whether data appears to fit with any tree structure or whether

some of these inequalities appear to be violated. For if these constraints are significantly broken

then we know that no tree will fit the data well and a search for a more elaborate graphical model

for the data is needed. We also indicate how functions of the associated statistics can be used as

a guide to selecting candidate tree models that are likely to score highly in model selection. In

this way, these preprocessing tools can be used to help speed up and stabilise numerical scoring

methods over the class.

In the literature, most efforts addressing inference and identifiability on tree models have focused

on the algebraic geometry (see Drton and Sullivant [2007] and Allman et al. [2009]). However,

we have found that there is great practical benefit in matching sample estimates against inequal-

ity constraints on the observed variables implied by the hidden tree structure (as illustrated in

Section 4.2). In this paper, following suggestions of the mentioned authors, we focus on di-

agnostics based on the set of lower order constraints as they apply to all binary phylogenetic

trees.

4.3.1 Two useful graphical results

The following theorem which has appeared previously, albeit as a corollary of more general

theory in different forms and different contexts, is under-exploited but is particularly useful.

The constraints we can use for a tree diagnostic can be derived simply in the following graphical

way, which demonstrates that the tripod constraints are universal constraints.

Theorem 4.3.1. Given any strictly trivalent phylogenetic tree T , for all triplesXi, Xj , Xk there

exists a unique hidden variable Hijk such that Hijk separates Xi, Xj and Xk) in T . i.e. ⊥⊥

(Xi, Xj , Xk)|Hijk

Proof. Let Xi, Xj , Xk be any three manifest variables (leaves) on a phylogenetic tree T . Recall

that ab denotes the path between Xa and Xb and furthermore that abc denotes a path between

Xa and Xc with the path containing (at least) Xb.

By properties of a tree, there is exactly one path with no repeated edges ij and similarly one

such path ik and jk. Note that the intersection of the paths ij and ik has at least one hidden
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vertex as it contains the hidden node adjacent to Xi. Denote the vertex in this intersection

furthest from Xi as Xh, thus the intersection of ih and kh is the vertex Xh. Now consider

the repeating path jhihk. By removing the repeating nodes and their edges, a non-repeating

subpath jhk is formed, with Xh being the only remaining node from the intersection of ij and

ik . Thus Xh = Hijk and furthermore Hijk is unique as no other vertex appears on all three

(non-repeating) paths ij, ik and jk.

This result allows us to construct a diagnostic test to check whether any tree could be consistent

with a sample data set (see Section 4.3.3). This method is not the only means of assessing tree

structures (e.g. the retention index Farris [1989]) but has the advantage of being very simple to

implement and is also well-grounded in theory. When the diagnostic does not reject the tree

class, there is a second way in which the distributions of triples can be used to guide the search

for promising candidate models.

First note that, by its definition, associated with every hidden variable H ∈ H of a strictly

trivalent tree T is a partition Λ(H, T ) of the manifest variables into 3 subsets, each subset being

the leaves of a subtree rooted at H . Interestingly, these partitions uniquely define a tree T . Thus

we have:

Theorem 4.3.2. Each strictly trivalent tree T is uniquely identified by its set of partitions and

X (T ) := {Λ(H,T ) : H ∈ H}

acts as an identifier, under the assumption of faithfulness (see Spirtes et al. [2001]).

The faithfulness property (see Definition 2.1.17 makes the assumption that the conditional in-

dependences in T map to those in the probability distribution. Also note that Theorem 4.3.2 is

essentially a graph-topological theorem and thus we are interested in the underlying structure

(i.e. the skeleton) and not concerned about the location of the root.

Proof. LetH ′ be a vertex in T which is a leaf of the subtree T H consisting of all hidden vertices

and their connecting edges in T . Then since T is strictly trivalent and H ′ is an interior vertex

in T , H ′ must be connected to two manifest vertices of T which we label Xm−1 and Xm. Thus

{Xm−1} and {Xm} are singletons in Λ(H ′, T ).
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Suppose there exists m, the lowest number of leaves a strictly trivalent tree can have such that

there exists nonisomorphic T1 and T2 with X (T1) = X (T2). For m = 3 there is only one

strictly trivalent tree, so m ≥ 4. Now select H ′ ∈ H such that Λ(H ′, T1) (= Λ(H ′, T2))

contains observed vertices Xm−1, Xm as singletons.

Note then that for all otherH ∈ H by the definition ofX (T1) (andX (T2)) the pair {Xm−1, Xm}

are contained in the same subset of both partitions Λ(H, T1) and Λ(H, T2). So

X (T ′) = {Λ(H, Ti) : H ∈ H \ {H ′}, i = 1, 2}

is isomorphic to the partition set {X1, . . . , X
′
m−1}whereX ′m−1 is identified with {Xm−1, Xm}.

Now define trees T ′i from Ti, i = 1, 2 each having m − 1 observed vertices: In T ′i replace

H ′ ∈ H by a manifest variable X ′m−1 then delete vertices Xm−1, Xm and their connecting

edges.

By construction X (T ′1 ) = X (T ′2 ), yet T ′1 and T ′2 have m − 1 manifest variables so by the

definition ofm they must be isomorphic. But then by construction T1 and T2 are also isomorphic.

Thus no such m exists and we obtain our required contradiction.

Thus if there exists a unique phylogenetic tree, then the estimated moments of the triple will

identify it. We will show that this simple result allows us to preselect good candidate trees for

model selection. See Section 4.3.4 for more details.

4.3.2 An illustration of the constraints

In this section we simulate binary data from the two non-isomorphic strictly trivalent trees with

6 leaves. Then from two other graphical models chosen to mirror typical variations which, for

scientific reasons, we might expect of the tree. We adopted the binary coding {0, 1} (in contrast

to Section 4.2) which has no practical consequence other than the form of the tree constraints

used. Unsurprisingly the empirical moments derived from the tree-generated data satisfy all the

constraints whilst the empirical moments calculated from the non-tree data violates some of the

constraints. The four graphs are shown in Figure 4.7.
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(a) 6-leaf Tree I.

(b) Non-tree I.

(c) 6-leaf Tree II.

(d) Non-tree II.

FIGURE 4.7: 6-leafed trees and non-trees.

The variations of the two trees were chosen to be similar in order to highlight any other differ-

ences. The probability distributions of the graphs were simulated so expected means for each

Xi were the same across graphs. Because of this, the differences in the graphs may be expected

to be exhibited through the differences in the higher order moments.
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TABLE 4.3: Estimates of sample covariances for Figure 4.7a and Figure 4.7c.

Moment Tree I Tree II
σ̂12 0.054 0.054
σ̂13 0.020 0.025
σ̂14 0.023 0.023
σ̂15 -0.017 -0.013
σ̂16 -0.017 -0.013
σ̂23 0.037 0.048
σ̂24 0.044 0.044
σ̂25 -0.032 -0.025
σ̂26 -0.032 -0.025
σ̂34 0.053 0.041
σ̂35 -0.023 -0.023
σ̂36 -0.023 -0.023
σ̂45 -0.027 -0.035
σ̂46 -0.027 -0.035
σ̂56 0.150 0.150

For large enough samples, the sample moments of the trees always satisfied the constraints de-

manded of their population analogues whilst the non-tree modifications did not. Both non-trees

experienced the same violations: (X1, X3, X4) and (X2, X3, X4) for (4.1.25), (X3, X4, X5)

and (X3, X4, X6) for (4.1.26), and all versions of (4.1.24) which involve X34 (for example

X13X14X34 < 0). Note that all violated constraints include both indices 3 and 4 (where the

additional edge is found). Moreover, every inequality involving indices 3 and 4 is broken. This

suggests that these diagnostics could provide more insight than a binary acceptance or rejection

of the tree structure; the violated constraints in these cases hint that the random variables X3

and X4 may be responsible for the exceptions.

The geometries of the admissible regions of the covariances σ13, σ14, σ34 are similar between

the trees, and similar between the non-trees. The graphs of the admissible covariance regions

are shown for Figure 4.7a and Figure 4.7b in Figure 4.8a and Figure 4.8b respectively, along

with the estimates of the observed covariances plotted. The sample covariances are revisited in

Section 4.3.5.

The sample covariances of the two 6-leafed trees are compared in Table 4.3. When considering

the absolute values of these moments we notice that for Tree I, σ̂56, σ̂12 and σ̂34 have the greatest

magnitudes. These relate to the pairs of observed nodes topologically closest to each other. The
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(a) Triple 134 - Tree I. The sample moments lie within the
tree-compatible region which provides evidence towards tree-

compatiblity of the data.

(b) Triple 134 - Non-tree I. The sample moments lie well outside
the tree-compatible region which is consitent with the data being

non-tree generated.

FIGURE 4.8: Plots of covariance point estimates.
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same can be said of Tree II for σ̂56 and σ̂12, but now σ̂23 and σ̂24 rank above σ̂34 in magnitude.

This appears to reflect the structure of Tree II where X3 and X4 are not directly joined to the

same vertex. This alludes to a potential method of narrowing a set of tree models based on mag-

nitudes of sample covariances. However, further model simulation and a greater variety of joint

probabilities would need to be considered before any secure inference could be made about this.

In Chapter 6, we instead consider Gaussian random variables and are able to perform inference

on specific trees using probabilistic methods. It may be possible for equivalent methods to be

constructed for binary random variables which would then be complementary to the graphical

diagnostics.

4.3.3 Application of diagnostics

To illustrate the use of diagnostics we again use mitochondrial genetic data from the COI gene as

we did in Section 4.2.2. Each sequence is of length 883 BPs and obtained from BOLD Systems

3 [Ratnasingham and Hebert, 2007b] for six species from the class Mammalia:

X1 — Ailurus fulgens (red panda)

X2 — Procyon lotor (raccoon)

X3 — Ailuropoda melanoleuca (giant panda)

X4 — Ursus maritimus (polar bear)

X5 — Tremarctos ornatus (spectacled bear)

X6 — Ursus malayanus (sun bear)

The BPs are encoded into binary similarly to Section 4.2.2 but with A and G as 0 and T and C as

1 to reflect the choice of {0, 1} over {−1, 1}. Note that this mean we must use the results from

Proposition 4.1.1 to match this parametrisation.

The genetic data did violate some constraints for five of the triples: (X4,X6,Xk) for k =

{1, 2, 3, 5}, and (X2,X4,X5). Figure 4.9a shows a covariance triple point within the admis-

sible region, and contrastingly Figure 4.9b shows a different sample covariance triple outside
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the region associated with a tree. Superficially, this suggests that a tree is not a suitable model

for the data. However, because the sample size is not large these violations could be attributed

to random error, particularly given the closeness of the point in Figure 4.9b to the boundary of

the admissible region. This is explored in Section 4.3.4.

However, one observation specific to the above data is that unlike the simulated data violations,

σ̂ij σ̂ikσ̂jk > 0 is not violated. Because this constraint only involves lower order moments, this

might suggest that the evidence for violations existing might be considered weaker.

At this stage of course, it is important to remember that the types of analyses conducted here are

simply a demonstration of how the constraints could be used. The diagnostics are so far simply

indicative rather than definitive.
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(a) Triple 125. The sample covariances relating to the red
panda, raccoon and spectacled bear, lie within the tree-
compatible region suggesting a tree model may be appro-

priate given the observed data.

(b) Triple 346. This plot of the three sample covariances
between the giant panda, polar bear and sun bear lies just
outside the tree-compatible region. Given the closeness to
the boundary, the evidence is less clear as to whether the

tree inequality constraint has actually been violated.

FIGURE 4.9: Point estimates of covariances.
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4.3.4 The effect of sample size

We now examine the likely power of these diagnostics for studies like those given below using

data generated from the graphs in Figure 4.7 but now using smaller samples. Since it is known

whether the graphs are trees or not, for those that are trees we know that any violations of the

constraints must be due to estimation error of moments. The inequalities can be tested for each

of the four graphs using different sample sizes (n = 500, 883, 1500, 5000), and repeated 104

times. For the 20 combinations of triples on each graph the number of triples which violate at

least one constraint is recorded. This is relevant as even for a tree, some violations (depending on

the sample size) will be expected due to noise. The frequencies of these violations are displayed

in Tables B.1–B.4 in Appendix B. A comparison of these results is shown in Figure 4.10 for

Tree I and Non-tree I from Figure 4.7.

It is noticeable at a sample size of 883 (as in Section 4.3.3) there is a clear shift between the

n = 500 n = 883

n = 1500 n = 5000

FIGURE 4.10: Frequency of violations on a tree (blue) and non-tree (red) for 4 sample sizes.
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FIGURE 4.11: Frequency of violations (n = 883).

modal violations in the non-tree model relative to the tree model. If 5 or fewer violations are

observed Tree I seems the more likely model, and if 11 or more then Non-tree I appears the

favourable hypothesis. Note that the frequencies for the non-tree are likely to be conservative

(shifted to the left) compared to more complex non-trees, and so it might be expected that results

are often even clearer in practice.

We compared the two six-leafed tree models and noted that they performed similarly in terms

of number of violations. This can be seen in particular for sample size 883 in Figure 4.11.

More generally though, the sample size required for these diagnostics to be useful is likely to

vary depending on the topology of the models, as well as the underlying true joint probability

table. However, in the examples we have looked at, a large number of violations would suggest

a non-tree model even for a moderate sample size.

Returning to the application in Section 4.3.3 where 5 violations were observed, the frequency

of violation plots can be studied. Figure 4.12 shows the plot for Tree I and Non-tree I, where

the arrow indicates the frequencies for 5 violations. If the plot is thought to be typical of other

distributions on trees of this size, the level of violations would suggest that the gene sequence

data is more likely to conform to a tree than a non-tree. The compared non-tree is from the

simplest subset of non-trees (only one additional edge). A more complex tree might be expected

to produce more violations and so additional weight may be given to the hypothesised tree.
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FIGURE 4.12: Frequency of violations (n = 883).

4.3.5 Inferring trees from moments

It can be shown that the first 3 moments provide us with consistent but inefficient estimates of

a tree. In Settimi and Smith [1998] it was shown that (provided none of the terms are zero) for

any triple Xi, Xj , Xk with (Xi ⊥⊥ Xj ⊥⊥ Xk)|Hijk

Sijk = ln(|µij |) + ln(|µik|) + ln(|µjk|)− 2 ln(|µijk|)

where Sijk (the signature) depends only on the marginal distributions of the triple. From Theo-

rem 4.3.2, for large enough data sets the signatures of the corresponding sample quantities will

indicate candidate tree partitions X (T ) and hence, from the theorem, candidates T . Note that

triples (i, j, k) and (i′, j′, k′) share the same separator H in T if the pairs (i, i′), (j, j′) and

(k, k′) all lie in different subsets in Λ(H, T ). So these n − 2 partitions can be calculated by

first clustering the signatures by magnitude into up to n − 2 clusters and from this deducing

Λ(H, T ). For small trees this method, simply using the statistics already calculated for our first

diagnostics, allows us to identify some promising trees.

Figure 4.14 shows the standardised signatures S∗ijk for both trees in Figure 4.7 with the sig-

natures of interest labelled. The clustering of the signatures demonstrates the power of the

diagnostic - there is remarkably clear separation of all S∗12k and S∗i56 which supports the topolo-

gies of the trees. The signatures involving 3 and 4 are less distinct, but this may be in part
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unavoidable overlapping of true clusters. However, trees like Tree I have an interior node and it

can be shown that this leads to signatures with a higher variance. The wide spread in Tree I of

the middle cluster (overlapping) with the X3 X4 cluster is indicative of this.

When applied to the genetic example data set we get strong clustering of signatures involving

the raccoon and giant panda, and some clustering of polar bear and sun bear - the signatures for

the remaining species (red panda and spectacled bear) are dispersed. This diagnostic would thus

suggest Tree II as a starting point for an analysis fitting the data, with the latter species being the

singletons.

Finally, the sample covariances µ̂ij themselves can provide some indication of the topology of

the tree if correlations between each manifest variable and its hidden parent are of about the same

magnitude. For then µ̂ij tends to be higher when the number of edges between these vertices is

fewer (as utilised in Harmeling and Williams [2011]). For example, considering Section 4.3.2,

for Tree I µ̂56, µ̂12 and µ̂34 have the greatest absolute values and for Tree II µ̂56 and µ̂12 have

greatest magnitude, but now µ̂23 and µ̂24 rank above µ̂34 in magnitude. This appears to reflect

the structure of Tree II where X3 and X4 do not share a common parent.

It follows that non-metric MDS can be used on a function of sample covariances, allowing the

relationships to be displayed graphically. Here we use the function δij = −2 ln(|µ̂ij |).

The resulting plots (Figure 4.13) for a 2D scaling relate to the trees in Figure 4.7. They were

generated using a sample sizes of 883, which gives a relevant comparison with the gene data

(see Figure 4.15). The size of the plotted points relates to the number of times a variable is

involved in a violation; the more violations, the smaller the marker. More precisely, inequality

violation is expressed through the size of the plotted points. The relative sizes are determined

via (1 + Vi)
−1/2 where Vi is the number of violations for variable Xi.

For Tree I, the MDS indicates clear pairings (X1, X2), and (X5, X6), plus X3 and X4 are

reasonably close which suggests these three pairs are a distance of 2 edges apart giving us the

topology here. However in Tree II X3 and X4 are further apart. So these might be conjectured

as singletons (giving us Tree II). Note that this ambiguity may be caused in part by some |µij |

being close to zero.
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FIGURE 4.14: Plot of standardised signatures for Tree I and Tree II.
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Figure 4.15 is the result of performing the same MDS for the genetic data with the hope that

the plot indicates one of the two six-leafed trees. Unlike for the previous plots, the points are

separated into two groups of three. This matches the form of Tree II, and although admittedly

some of the distances are similar it could be hypothesised that X2 and X4, and X5 and X6 are

pairs (i.e. they are both connected to a common hidden vertex), with X1 and X3 as singletons

(i.e. they are connected to a hidden vertex and no other manifest variable is).

(a) Tree I
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(b) Non-tree I

(c) Tree II
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(d) Non-tree II

FIGURE 4.13: MDS for trees in Figure 4.7.

It is interesting to note that the ambiguity is reflected in a more detailed analysis of this data set.

We are currently applying these simple methods described to preselect good trees with the hope

of achieving a large time saving at little cost to accuracy. We can then use the subset of trees

as a starting point for MCMC likelihood-based model selection algorithms, which otherwise

often get stuck within local maxima (e.g. see Chor et al. [2000]). However, a discussion of these

applications is beyond the scope of the analysis presented in this thesis.
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FIGURE 4.15: MDS for gene data.

4.3.6 Discussion of graphical inequality diagnostics

In this section we have illustrated how some simple graphical properties of trees allow us to

construct useful diagnostics based on inequality violations and certain functions of sample mo-

ments up to order 3. The diagnostics are trivial to calculate and for the sizes of data sets used

in phylogenetic trees (now typically 1500 BPs if using BOLD Systems) provide a relatively

powerful method. In particular the inequality diagnostics are complementary to the algebraic

methods developed by Drton and Sullivant [2007] which are based on different functional con-

straints. We are currently developing analogous inequality diagnostics using the same graphical

properties but for differently distributed variables.

One appealing and unusual feature of our methods based on low order moments is that as we

add more species to the putative tree we simply need to check the new triples introduced by the

additional manifest variables. So in this sense it scales up. Furthermore if violations of the tree

structure are discovered our methods also sometimes allow us to identify a subset of manifest

variables on which a tree is valid. So for example in the two non-trees of Figure 4.7 we can

still deduce that a tree might be valid on X1, X2, X5, X6 since no violations of the inequality

constraints are apparent.

Of course, rather than simple singularities it is important to develop more general theory for tree

diagnostics so that they can be exploited routinely. But even in this naive form, our methods
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appear surprisingly effective.

4.4 Extensions beyond binary variable trees

In a discrete setting, the natural extension beyond binary variables is k-state variables. For many

genetic applications this can be motivated by the desire to code BPs into k = 4 states instead of

k = 2 binary. But the benefit is clear in any setting that requires more than two states. Under

mild conditions such as non-singularity of parameters and strictly positive parameter values,

Allman et al. [2014] derive a semi-algebraic description of the k-state general Markov model

for trees with n leaves. In the paper, the joint distribution of the model leaves is denoted P

and is considered as an n-dimensional k × · · · × k tensor. This ultimately allows the main

result Allman et al. [2014, Theorem 5.7] to be presented in terms of conditions on functions

of P such as principal minors and ranks. A search of the literature has not identified a use of

this result in any applications yet and so there is an opportunity to investigate the challenges of

implementation and develop suitable probabilistic diagnostics to assess tree-compatibility.

An obvious expansion of the existing tree-constraint literature is from discrete variables to con-

tinuous, and in Chapter 5 we shall derive a set of tree constraints for GLTMs. It turns out that

there are some parallels with the presentations of the descriptions for the k-state n-tree and the

Gaussian n-tree (Allman et al. [2014, Theorem 5.7] and (in this thesis) Theorem 5.3.4 respec-

tively). In the former, two-thirds of the theorem is expressed in terms of tripod tree constraints

and quartet tree constraints; in the latter the conditions are solely in terms of tripod and quartet

trees results. This indicates the universal nature of the tripod tree constraints as well T -specific

quartet trees for trees with at least n = 4 leaves — both are fundamental components of graphi-

cal tree models which heuristically explains their appearance in both theorems.



Chapter 5

Gaussian tree constraints

In this chapter we derive a complete description of the space of GLTMs in terms of correlations

between observed variables. This is achieved by taking advantage of the link between tree

metrics and the space of phylogenetic oranges. The purpose of obtaining the algebraic and

semi-algebraic description of the space is to be able to construct tools for assessing whether a

particular data set is compatible with the class of GLTMs. We will then apply this in Chapter 7

to applications that are typically implicitly modelled by GLTMs. This chapter is based upon the

first half of the paper Shiers et al. [2016].

5.1 A constraint on the covariance of Gaussian latent tree models

To introduce the idea of Gaussian tree constraints we demonstrate a direct and explicit method

of deriving the most fundamental of the constraints. Although the most easily attainable of the

constraints it has not been widely exploited for the purpose of investigating tree-compatibility.

Consider the precision matrix Σ−1 related to the tripod tree in Figure 5.1 with one latent and

three manifest Gaussian random variables.

It is well known in the Gaussian setting that Xi is independent of Xj conditional on all other

observed variables if and only if the corresponding entry Σ−1
ij = 0 (see Lauritzen [1996, Chapter

5] for example). By Gaussian setting, we refer to the GLTM as given in Definition 5.2.2 and

93
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FIGURE 5.1: Tripod tree.

again in Definition 2.1.27. Thus the precision matrix for the univariate Gaussian tripod tree has

the form:

Σ−1 =



τ1 0 0 τ1H

0 τ2 0 τ2H

0 0 τ3 τ3H

τH1 τH2 τH3 τH


where the final row/column relates to the interior hidden variable, τHi = τiH for i ∈ {1, 2, 3}

and τii = τi for i ∈ {1, 2, 3, H}. The covariance matrix resulting from taking the inverse of the

precision matrix can be expressed algebraically in terms of entries of Σ−1:

Σ =
1

τ1τ2τ3



τ21H+τ2τ3τ21
τ21

τ1Hτ2H
τ1τ2

τ1Hτ3H
τ1τ3

− τ1H
τ1

τ1Hτ2H
τ1τ2

τ22H+τ1τ3τ22
τ22

τ2Hτ3H
τ2τ3

− τ2H
τ2

τ1Hτ3H
τ1τ3

τ2Hτ3H
τ2τ3

τ23H+τ1τ2τ23
τ23

− τ3H
τ3

− τ1H
τ1

− τ2H
τ2

− τ3H
τ3

1
τH−τ21Hτ

2
2Hτ

2
3H


Noting that the diagonal entries τ1, τ2, τ3, τH in Σ−1 represent the reciprocals of the conditional

variances and so are non-negative (and non-zero for non-degenerate model), the following con-

straint can be derived:

σ12σ13σ23 =
1

(τ1τ2τ3)3

τ1Hτ2H

τ1τ2

τ1Hτ3H

τ1τ3

τ2Hτ3H

τ2τ3
=
τ2

1Hτ
2
2Hτ

2
3H

(τ1τ2τ3)5
≥ 0

Since correlations are simply covariances scaled by standard deviations we can immediately de-

duce that ρ12ρ13ρ23 ≥ 0. Therefore, we have derived a semi-algebraic constraint of the Gaussian

latent tripod model in terms of observed correlations. Moreover, considering the importance of

the tripod tree as a fundamental part of any binary tree (recall Theorem 4.3.1), for any binary

tree with nl observed leaf nodes, there are
(
nl
3

)
tripod trees that must be valid — one for each
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triple — and thus
(
nl
3

)
such positivity constraints. Therefore:

ρijρikρjk ≥ 0 ∀ 1 ≤ i < j < k ≤ nl. (5.1.1)

We denote this equation the positivity constraint. The algebraic manipulation required is quite

involved to obtain a suitable factorisation of Σ. Thus to derive further constraints another more

subtle approach is considered.

5.2 A formal description of the model

To give a thorough derivation of tree Gaussian latent tree constraints we provide a more formal

description of the set-up. Let Z = (Zu)u∈U be a random vector whose components are indexed

by the vertices of an undirected tree T = (U,E) with edge set E ⊂ U × U . The tree T induces

a Gaussian tree model N(T ) for Z that is a Gaussian graphical model on T [Lauritzen, 1996,

Section 5.2]. For two nodes u, v ∈ U , let uv denote the (unique) path between u and v. Then

the model N(T ) is the collection of all multivariate normal distributions on R|U | under which

Zu and Zv are conditionally independent given a subvector ZC whenever the set C ⊂ U \{u, v}

contains a node on uv. It follows that a normal distribution with correlation matrix R = (ρuv)

belongs to N(T ) if and only if

ρuv =
∏
e∈uv

ρe for all u, v ∈ U,

where ρe := ρuv when e is the edge (u, v). To obtain this equation, note that for three nodes

u, v, w ∈ U the conditional independence ofZv andZw givenZu is equivalent to ρvw = ρuvρuw

[Wright, 1921].

As motivated, we are concerned with GLTMs in which only the tree’s leaves correspond to

observed random variables. In this case the set of leaves is denoted by V . For example, consid-

ering the Romance languages, a possible evolutionary tree is displayed in Figure 5.2 with extant

languages as leaves.

Definition 5.2.1. Let V be a finite set. We say that T = (T, φ) is a semi-labelled tree with the

underlying tree T = (U,E) and labelling map φ if φ : V → U is such that every vertex of T
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FIGURE 5.2: Quintet tree relating five Romance languages.

with degree ≤ 2 is necessarily contained in the image φ(V ). In other words φ is any labelling

of nodes of T with the labelling set V such that degree ≤ 2 vertices are labelled. We say that T

is a phylogenetic tree if φ is a bijection between V and the leaves of T .

For examples, see Figure 5.3.
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FIGURE 5.3: On the left - a semi-labelled tree with the labelling set {1, 2, 3, 4, 5, 6}. On the
right - a binary phylogenetic tree with six leaves.

Definition 5.2.2. The GLTMM(T ) for the subvectorX := (Zv)v∈V is the set of all V -marginal

distributions of the distributions in N(T ), where the V -marginal distributions are those associ-

ated with leaf variables.

The parametrization of M(T ) is induced from the parametrisation of N(T ) and given by

ρij =
∏
e∈ij

ρe for all i, j ∈ V. (5.2.1)

As the variances σuu for u ∈ U \ V never appear in the parametrization, without loss of gener-

ality, we may assume that they are equal to 1. Because there are no constraints on the variances

σvv for v ∈ V , we may consider the standardised version of X . Thus, from now on, Σ denotes

a correlation matrix and furthermore we consider M(T ) to have the above parametrization re-

strictions.

We proceed by relating M(T ) to the space of phylogenetic oranges [Engström et al., 2012, Gill

et al., 2008, Kim, 2000, Moulton and Steel, 2004]. This gives the complete description of the
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semi-algebraic structure of the model M(T ). Such a complete description was known for a

simple tree with only four leaves (see Pearl and Xu [1987, Theorem 2]) and for a star tree (see

Bekker and de Leeuw [1987]). For a general tree, only the defining equations were known (see

Sullivant [2008, Corollary 6.5]).

5.3 From tree metrics to phylogenetic oranges

In this section we briefly recall basic results for metrics defined on trees and the corresponding

space of phylogenetic oranges. This space is of interest as it equivalent to the space of correlation

matrices with strictly positive entries and can be used to build up a description of the complete

space as is shown in Section 5.4. A special role is played by binary trees which, recall, are trees

whose inner nodes all have degree three. Here we follow the definition of phylogenetic oranges

as given by Kim [2000] and the concept of tree metrics as introduced by Buneman [1974] and

discussed by Moulton and Steel [2004] for example.

Let T = (U,E) be a tree with leaf set V ⊆ U . Associate to each edge a positive number de,

which we interpret as length of this edge. Then for any two leaves i, j ∈ V we can compute the

distance between them

dij =
∑
e∈ij

de. (5.3.1)

It is straightforward to check that a collection of such edge lengths for all pairs i, j ∈ V forms a

metric:

(i) dij > 0 trivially for i 6= j.

(ii) dij = 0 trivially for i = j.

(iii) It is clear that dij = dji as summation is commutative.

(iv) Recall that there is a unique interior node h that separates any three leaves i, j, k. Thus

dij = dih + dhj and dik + djk = dih + dhk + djh + dhk. By (iii) we then see that

dij < dik + djk.

The set of all metrics that arise in this way for all T with leaves labelled by V is called the space

of tree metrics. We recall the following result.
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Theorem 5.3.1 (Buneman [1974]). A collection of positive numbers dij for i, j ∈ V forms a

tree metric if and only if for all (not necessarily distinct) i, j, k, l ∈ V we have

max{dik + djl, dil + djk} ≥ dij + dkl.

Equivalently, for any three sums dik + djl, dil + djk, dij + dkl two are equal and not less than

the third. Moreover, if it happens then generically T is uniquely identified.

In the above theorem by generically we mean that the statement holds outside of a measure

zero set corresponding to vanishing of some edge lengths de. A more precise statement is also

possible if we allow semi-labelled trees, see Semple and Steel [2003, Section 7]. A more careful

analysis shows that this generic tree is always a binary tree, that is, trees with all inner nodes

having degree three. The usual triangle inequality follows from setting i, j, k distinct and k = l

in Theorem 5.3.1, which implies that every tree metric is a metric on V .

We say that A|B is a split of the set A ∪ B ⊆ V if A ∩ B = ∅. A split A|B is compatible

with T if there exists an edge of T such that removing this edge leaves A and B in two disjoint

components.

Corollary 5.3.2. The space of all tree metrics on a fixed tree T is a metric satisfying: for any

four distinct leaves i, j, k, l such that ij|kl is compatible with T we have

dik + djl = dil + djk ≥ dij + dkl.

An important closely related space defined over a tree is the space of phylogenetic oranges (see

e.g. Kim [2000], Moulton and Steel [2004]). For a given T , the set of all points in Rm(m−1)/2

in this space is denoted PO(T ) and given by:

ρij =
∏
e∈ij

ρe for all i, j ∈ V, ρij ≥ 0. (5.3.2)

Note that this is a similar parametrisation to M(T ) the GLTM (5.2.1) but the edge correlations

ρe are non-negative. We always assume that T is a binary tree with the set of leaves V . The

union of all PO(T ) for all such binary trees is denoted by PO(V ). Furthermore, by PO+(T )
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and PO+(V ) we denote the subset of PO(T ) and PO(V ) respectively, where all coordinates

are assumed to be strictly positive, which implies in particular that the corresponding edge cor-

relations ρe must be strictly positive.

It is clear that PO(T ) ⊂M(T ). The link between the modelM(T ) and the space of tree metrics

comes from the following result.

Lemma 5.3.3. The space of tree metrics on a fixed tree T is isomorphic to PO+(T ). The

isomorphism is given by dij = − log(ρij).

Proof. First note that in PO+(T ) all edge correlations ρe in the parametrization (5.3.2) must be

strictly positive. Taking − log(·), (5.3.2) yields

− log(ρij) =
∑
e∈ij

− log(ρe).

Because ρe ∈ (0, 1] we have that − log(ρe) > 0. Changing dij = − log(ρij) and de =

− log(ρe) and comparing with (5.3.1) gives the result.

This lemma lets us obtain the semi-algebraic description of PO(V ) and PO(T ) for any fixed

tree.

Theorem 5.3.4. Let Σ = [ρij ]i,j∈V and suppose that ρij ≥ 0 for all i, j ∈ V . The following

two statements hold.

(1) Σ ∈ PO(V ) if and only if for every four (not necessarily distinct) elements i, j, k, l in V at

least two out of three products

ρikρjl ρilρjk ρijρkl

are equal and less or equal to the third. Moreover, if this holds then T such that Σ ∈ PO(T ) is

generically identified uniquely.

(2) If T is a fixed tree then the space PO(T ) has dimension |E| and is described by the follow-

ing set of constraints. For any four distinct elements i, j, k, l of V such that the split ij|kl is
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compatible with T we have

ρikρjl = ρilρjk ≤ ρijρkl. (5.3.3)

Moreover, for any three distinct leaves i, j, k

ρijρik ≤ ρjk. (5.3.4)

Before proceeding with the proof, we introduce the definition of a toric cube, a concept that we

use in the proof of Theorem 5.3.4.

Definition 5.3.5 (Engström et al. [2012]). A toric precube in n dimensions is a subset C of the

standard cube [0, 1]n that is defined by binomial inequalities

xr11 · . . . · x
rn
n ≤ x

w1
1 · . . . · x

wn
n , where ri, wj ∈ N ∪ {0}, x ∈ [0, 1].

A toric cube is a toric precube that also satisfies C = C ∩ (0, 1]n.

Proof. Assume first that all correlations ρij are strictly positive, that is Σ ∈ PO+(V ) or

Σ ∈ PO+(T ). In this case Lemma 5.3.3 gives an isomorphism with the space of tree metrics,

whose constraints are given in Theorem 5.3.1 and Corollary 5.3.2. Translating these constraints

via dij = − log(ρij) gives exactly the constraints in the proposed theorem. These constraints de-

scribe a closed set, which is the smallest closed set containing PO+(V ) so it is enough to show

that the closure (in Euclidean space) of PO+(T ) is equal to PO(T ). First note that PO(T ) is a

toric cube, that is, it is given as the image of a hypercube [0, 1]|E| under a monomial map. By

Engström et al. [2012, Theorem 1] every toric cube is equal to the closure of its interior, which

completes our argument.

The relationship between M(T ) and PO(T ) may be further refined, which will give us an

explicit description of M(T ). Define a multiplicative group G = {−1, 1}|V | that acts on the

sample space R|V | by reflections across axes. We identify this group with the group of diagonal

|V | × |V |-matrices with ±1 on the diagonal. With this identification for every ε = (diag(εv)) ∈

G the action on an element x ∈ R|V | is just given by regular matrix multiplication, x 7→ ε · x =
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(εvxv). The action of G on the sample space induces the action on the model space

Σ 7→ ε · Σ = Σ′ = [ρ′ij ], where ρ′ij = εiεjρij .

This also induces the action on the parameter space including the edge correlations ρ = (ρe) so

that if εv = −1 then the sign of the edge correlation for the unique edge of v changes. It is an

easy check that [ε · ρ] = ε · Σ. We therefore have the following result.

Proposition 5.3.6. For every T the model M(T ) is invariant under G, that is G · M(T ) =

M(T ).

Denote by S+(V ) the space of all symmetric positive definite |V | × |V |-matrices.

Theorem 5.3.7. Let T be a tree and let Σ = [ρij ] ∈ S+(V ) be a correlation matrix. We have

Σ ∈M(T ) if and only if

Σ′ := [|ρij |] ∈ PO(T ) and ρijρikρjk ≥ 0 for any three distinct i, j, k ∈ V.

Proof. For sufficiency, if Σ ∈ M(T ) then each ρij has representation (5.2.1). Thus |ρij | =∏
e∈ij |ρe| and hence Σ′ also lies in PO(T ). To show that ρijρikρjk ≥ 0 note that the tree

spanned on three leaves i, j, k necessarily has a unique vertex v that lies on the intersection of

paths ij, ik and jk. Moreover, by (5.2.1),

ρijρikρjk =
∏
e∈ij

ρe
∏
e∈ik

ρe
∏
e∈jk

ρe =
∏
e∈iv

ρ2
e

∏
e∈jv

ρ2
e

∏
e∈kv

ρ2
e ≥ 0.

For necessity, we use the action of G. Distinguish one node in V and label it by {1}. Let

ε ∈ G be such that for i ∈ V , εi = −1 if ρ1i < 0 and εi = 1 otherwise. Then Σ = ε · Σ′

because: ε1εi|ρ1i| = ρ1i for all i ∈ V \ {1} and εiεj |ρij | = ρij for i, j ∈ V \ {1}. This last

equality follows from our assumption that ρ1iρ1jρij ≥ 0 and thus the sign of ρ1iρ1j is equal to

the sign of ρij . Now, since Σ′ ∈ PO(T ) ⊂M(T ) and Σ = ε ·Σ′, Proposition 5.3.6 implies that

Σ ∈M(T ).

Corollary 5.3.8. We haveG·PO(T ) = M(T ) or more precisely the modelM(T ) is isomorphic

to the space of orbits of the action of G on the space of phylogenetic oranges PO(T ).
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The link between the space of phylogenetic oranges PO(T ) and the space of tree metrics M(T )

will help us to study the space of GLTMs.

5.4 The complete set of Gaussian tree constraints

Now that the link from the space of phylogenetic oranges to the space of GLTMs has been estab-

lished, we can derive the complete set of associated tree constraints. We begin by considering

the smallest binary tree, the tripod tree as shown in Figure 5.1.

Example 5.4.1. Let T be the tripod tree. By Theorem 5.3.7 and Theorem 5.3.4, the space of

correlation matrices in M(T ) is described by

ρ12ρ13ρ23 ≥ 0, |ρ12ρ13| ≤ |ρ23|, |ρ12ρ23| ≤ |ρ13|, |ρ13ρ23| ≤ |ρ12|.

If ρ12, ρ13, ρ23 ≥ 0 then by Theorem 5.3.4 (2) the space described by the above inequalities

corresponds to PO(T ). There are three other sign patterns for ρ12, ρ13, ρ23 that assure that

ρ12ρ13ρ23 ≥ 0. For every such pattern we obtain a copy of PO(T ) and hence M(T ) is given by

four copies of PO(T ) as depicted in Figure 5.4.

The description of this model contains no implicit equations. Basic calculus shows that this

model fills 2
π2 ≈ 0.2 part of the volume of the space of all 3 × 3 correlation matrices. This

shows the importance of including inequality constraints in our description.

We now provide the complete set of constraints to give an explicit description of M(T ) via

Theorem 5.3.4 and the action of group G.

Proposition 5.4.2. If T is a fixed tree then the space M(T ) has dimension |E| (where recall E

is the number of edges) and is described by the following set of constraints. For any four distinct

elements i, j, k, l of V such that the split ij|kl is compatible with T we have

ρikρjl
ρijρkl

=
ρilρjk
ρijρkl

≤ 1. (5.4.1)
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FIGURE 5.4: Region in correlation space consistent with the tripod tree model.

Moreover, for any three distinct leaves i, j, k

(ρij − ρikρjk)(ρik − ρijρjk)(ρjk − ρijρik) ≥ 0. (5.4.2)

Remark 5.4.3. We refer to (5.4.2) as the tripod constraints and to (5.4.1) as the tetrad con-

straints. Furthermore, simple bounding shows that (5.4.2) implies the positivity constraint

(5.1.1) ρijρikρjk ≥ 0 :

0 ≤ (ρij − ρikρjk)(ρik − ρijρjk)(ρjk − ρijρik)

= ρijρikρjk + ρ3
ijρikρjk + ρijρ

3
ikρjk + ρijρikρ

3
jk − ρ2

ijρ
2
ik − ρ2

ijρ
2
jk − ρ2

ikρ
2
jk − ρ2

ijρ
2
ikρ

2
jk

≤ ρijρikρjk + ρ3
ijρikρjk + ρijρ

3
ikρjk + ρijρikρ

3
jk

= (ρijρikρjk)(1 + ρ2
ij + ρ2

ik + ρ2
jk)
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But given that 1 + ρ2
ij + ρ2

ik + ρ2
jk ≥ 0 means ρijρikρjk ≥ 0 as required.

Proof of Proposition 5.4.2. First note that, by Theorem 5.3.4 (2), PO(T ) satisfies all the above

constraints. Moreover, all these constraints are invariant with respect to the action of G and

hence G · PO(T ) also satisfies these constraints. By Corollary 5.3.8, G · PO(T ) is equal to

M(T ). Hence it is now enough to show that every point Σ satisfying the above constraints also

lies in M(T ). Equivalently we can show that there always exists ε ∈ G such that Σ′ := ε ·Σ lies

in PO(T ). As in the proof of Theorem 5.3.7 take εi = sgn(ρ1i). Then ρ′ij = εiεjρij = |ρij | ≥ 0.

Since constraints in (5.4.1) and (5.4.2) are G-invariant, they also hold for Σ′. In particular Σ′

satisfies (5.3.3). Moreover,

(ρ′ij − ρ′ikρ′jk)(ρ′ik − ρ′ijρ′jk)(ρ′jk − ρ′ijρ′ik) ≥ 0,

which means that for each such a triple either all terms are nonnegative or exactly two are

negative. If all are nonnegative then Σ′ ∈ PO(T ) by Theorem 5.3.4(2). Suppose that the first

two are negative. But ρ′ij < ρ′ikρ
′
jk and ρ′ik < ρ′ijρ

′
jk implies that

ρ′ijρ
′
ik < ρ′ijρ

′
ikρ
′2
jk,

which is of course impossible because ρ′jk ∈ [0, 1].

This result can be viewed as a generalisation of the main results in Bekker and de Leeuw [1987],

Pearl and Xu [1987] from star trees to general trees. Equations defining M(T ) were already

given in Sullivant [2008, Corollary 6.5]. We have now derived the complete set of Gaussian tree

constraints in a similar fashion to the binary tree constraints in Chapter 4. In order to be able

to utilise these constraints with the Romance language data set it is necessary to develop some

methodology, which is the focus of Chapter 6.



Chapter 6

A probabilistic approach to Gaussian

tree constraints

This chapter presents a selection of methods that together make use of the full set of Gaussian

latent tree constraints. This suite of tools not only incorporates the algebraic constraints, but

also moves beyond simplistic binary outcomes of tree-compatibility to introduce more nuanced

probabilistic approaches. In the case of inequality constraints we can elicit posterior probabil-

ities that a given data set is consistent with the semi-algebraic tree space. For the algebraic

constraints we make the link between the equalities and the tetrad analyses described in Bollen

and Ting [1993]. Using the work of Drton et al. [2008] the relevant moments for the equality

constraints are derived for use with exploratory and confirmatory tetrad analyses.

Once we have developed the tools in this chapter, we can cover two main scenarios. Firstly,

given a data set, we can assess the suitability of the GLTM class as a whole. For example, in

Section 7.1.5 we will go on to test the suitability the space of quintet trees for a linguistic data

set. Secondly, if presented with a candidate tree for a particular data set (as the output of a

search algorithm say), then we are able to examine in absolute terms whether this is a good fit

for the data. We subsequently demonstrate such a scenario in Section 7.2.1 where we test yeast

species against a phylogenetic tree listed in the literature. Knowing whether a tree is the correct

model is pertinent in phylogenetic settings where the effect of horizontal gene transfer can vary

105
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greatly (e.g. Hao and Golding [2008]) and consequently the relevant search space is not clear.

This chapter covers some of the latter half of the paper Shiers et al. [2014].

6.1 Utilising semi-algebraic tree constraints

In this section it is important to distinguish between covariances and correlations explicitly and

so we denote covariances as ΣC and the corresponding correlations as ΣR, as we are sometimes

using distributions that require the covariance representation instead of the correlation. The true

correlation matrix ΣR is not usually known in practice so it is not usually possible to directly

test for tree-compatibility using the inequalities and equalities in Proposition 5.4.2. Instead we

must work with the sample correlations Σ̂R to test for violations in the constraints. Of course,

any sample analogues of the parametric constraints we have derived above will only hold ap-

proximately and in particular, using point estimates of correlations with the semi-algebraic con-

straints will only give a crude binary assessment of each inequality. In this section we therefore

describe how the semi-algebraic constraints can be used more formally to give an indication of

tree-compatibility. The algebraic constraints are dealt with in Sections 6.2 and 6.3.

Before proceeding, it is worth noting that if the assumption is made that ΣR will only have

positive entries then the constraints that describe PO+(T ) can be used as they are but in combi-

nation with the trivial constraint ρij ≥ 0 for all i, j ∈ V . However, in some circumstances it is

preferable to allow for the possibility of negative correlations. For example, in some evolution-

ary processes some species traits may diverge from a common ancestor. This could be caused

by zero sum conditions on limited resources leading to divergence of growth curves for example

and so negative correlation. Alternatively the construction of the analysis may induce negative

correlations, e.g. through standardisation of a data set.

A straightforward but effective assessment of T -compatibility constraints can be obtained from

the posterior probabilities that each of the tree inequalities is satisfied by applying an inverse-

Wishart prior on the sample covariance. More precisely, if Σ̂C is a sample matrix based on a

sampleX comprising n samples fromNm(0,ΣC), then the estimated scatter matrix is calculated

as S = nΣ̂C = XXT and it is well known that the scatter matrix is Wishart distributed S ∼
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Wm(n,ΣC) [Wishart, 1928a] with probability density function

p(S) =
det(S)

n−m−1
2 exp(−1

2 tr(Σ−1
C S))

2
nm
2 det(ΣC)

n
2 Γm(n2 )

where Γm(·) is the multivariate gamma function (see Section 2.2). As previously discussed,

a common prior distribution for unknown covariance ΣC is the inverse-WishartW−1
m (n0,Σ0),

resulting in the posterior density p(ΣC |X) which is inverse-Wishart distributed with parameters

as indicated: W−1
m (n0 +n,Σ0 +S). By letting n0 = m, ΣC |X can be sampled with each draw

being translated to a correlation and then tested against the constraints. Then afterN draws from

the posterior distribution an estimate of the posterior probability that ΣC satisfies the positivity

constraint can be obtained.

Considering Example 5.4.1, an estimate of the probability of ΣC satisfying the semi-algebraic

structure of M(T ) can be constructed using indicator functions. For each draw l from the

relevant inverse-Wishart posterior distribution for Σ̂C , the following identity is evaluated:

rl123(Σ̂C) = 1{(ρ̃12−ρ̃13ρ̃23)(ρ̃13−ρ̃12ρ̃23)(ρ̃23−ρ̃12ρ̃13)≥0} (6.1.1)

where ρ̃ij , i, j = 1, 2, 3 are the correlations corresponding to covariance draw l of the poste-

rior, the index l being dropped to keep the notation clean. The posterior probability of tree-

compatibility is thus estimated using:

R123(Σ̂C) :=
1

N

N∑
l=1

rl123(Σ̂C) (6.1.2)

For a tree with four variables such that 12 and 34 do not intersect, the final test of inequality

constraints is:

R12|34(Σ̂C) =
1

N

N∑
l=1

1{ ρ̃14ρ̃23
ρ̃12ρ̃34

≤1}1{ ρ̃13ρ̃24
ρ̃12ρ̃34

≤1}

∏
1≤i<j
<k≤4

rlijk(Σ̂C) (6.1.3)

If only considering PO+(T ) then for both (6.1.1) and (6.1.3), a further condition is required that

all three ρ̃ij > 0 for each draw.
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Proposition 6.1.1. If Σ ∈M(T ) \ PO(T ) then the inequality sign in (5.1.1) for the tripod tree

is reversed for two of the three constraints.

Proof. Given Σ ∈ M(T ) \ PO(T ) we know that at exactly two of ρ12, ρ13, ρ23 ≤ 0. Without

loss of generality, assume ρ12, ρ13 ≤ 0 and ρ23 ≥ 0. Considering the tripod tree as the simplest

representation of these correlations, we recall that there is a single interior node h that lies on

the path between all three leaf nodes 1, 2, 3. We can deduce that ρ1h ≤ 0 and ρ2h, ρ3h ≥ 0. If

we replace ρ1h with ερ1h where ε = −1 then ερ12, ερ13, ρ23 ≥ 0 and the three tripod constraints

hold as presented in (5.1.1):

ερ12 ≥ ερ13ρ23 ερ13 ≥ ερ12ρ23 ρ23 ≥ ερ12ερ13.

Thus removing ε, the three constraints become:

ρ12 ≤ ρ13ρ23 ρ13 ≤ ρ12ρ23 ρ23 ≥ ρ12ρ13.

Corollary 6.1.2. The estimator (6.1.1) accounts for the reversal of the inequalities as described

in Proposition 6.1.1.

Proof. Without loss of generality, assume ρ12, ρ13 ≤ 0 and ρ23 ≥ 0. Thus substituting the rele-

vant constraints into the indicator of (6.1.1) gives (ρ13ρ23−ρ12)(ρ12ρ23−ρ13)(ρ23−ρ12ρ13) =

(ρ12 − ρ13ρ23)(ρ13 − ρ12ρ23)(ρ23 − ρ12ρ13) trivially.

Proposition 6.1.3. If (ρ12 − ρ13ρ23)(ρ13 − ρ12ρ23)(ρ23 − ρ12ρ13) ≥ 0 then

(i) if ρ12, ρ13, ρ23 ∈ (0, 1) then ρ12 − ρ13ρ23 ≥ 0, ρ13 − ρ12ρ23 ≥ 0, ρ23 − ρ12ρ13 ≥ 0

(ii) if ρ12 ∈ (0, 1) and ρ13, ρ23 ∈ (−1, 0) then ρ12 − ρ13ρ23 ≥ 0, ρ13 − ρ12ρ23 ≤ 0, ρ23 −

ρ12ρ13 ≤ 0.
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We exclude the cases of measure 0 where ρ12, ρ13, ρ23 ∈ {−1, 0, 1}. These correspond to

boundaries or joints of the tree-compatible regions and can produce exceptions to Proposi-

tion 6.1.3. These do not occur in practice during simulation and theoretically boundary cases

will never be sampled.

Proof. We will prove this by assuming that two violations occur in the relevant semi-algebraic

constraints and then proceed to reach a contradiction. Thus, we will have demonstrated that

if (ρ12 − ρ13ρ23)(ρ13 − ρ12ρ23)(ρ23 − ρ12ρ13) ≥ 0 then all the constituent products are also

non-negative.

(i) Suppose that ρ12, ρ13, ρ23 ∈ (0, 1) and without loss of generality suppose that ρ12 ≤

ρ13ρ23 (a violation). Now suppose that also ρ13 ≤ ρ12ρ23. Then

ρ13ρ23 ≤ ρ12ρ
2
23ρ12 ≤ ρ13ρ23 ≤ ρ12ρ

2
23 =⇒ ρ12 ≤ ρ12ρ

2
23.

But given ρ12, ρ23 ∈ (0, 1) we have a contradiction.

(ii) Suppose that ρ12 ∈ (0, 1) and ρ13, ρ23 ∈ (−1, 0). Now we consider two cases:

Case 1: Suppose that ρ12 ≤ ρ13ρ23 and suppose that also ρ13 ≥ ρ12ρ23. Then

ρ13 ≥ ρ12ρ23 ≥ ρ13ρ
2
23 =⇒ ρ13 ≥ ρ13ρ

2
23 =⇒ 1 ≤ ρ2

23 as ρ13 ∈ (−1, 0).

But ρ2
23 ∈ (0, 1) so we have a contradiction.

Case 2: Suppose that ρ13 ≥ ρ12ρ23 and suppose that also ρ23 ≥ ρ12ρ13. Similarly to

before,

ρ12ρ23 ≥ ρ2
12ρ13 =⇒ ρ13 ≥ ρ12ρ23 ≥ ρ2

12ρ13 =⇒ 1 ≤ ρ2
12.

But ρ2
12 ∈ (0, 1) so we have a contradiction.

This covers all possibilities (up to permutation) since we know that either 0 or 2 correlations are

negative for tree-compatibility to hold due to the positivity constraint (5.1.1).

Remark 6.1.4. Proposition 6.1.1, Corollary 6.1.2 and Proposition 6.1.3 together provide an al-

ternative proof for the latter part of the proof of Proposition 5.4.2.
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Note that the tetrad inequality constraints in 5.4.1 can be instead written such that the sign

determines whether there is a violation. i.e.

ρ13ρ24

ρ12ρ34
=
ρ14ρ23

ρ12ρ34
≤ 1 ⇒ ρ12ρ34 − ρ13ρ24 ≥ 0, ρ12ρ34 − ρ14ρ23 ≥ 0. (6.1.4)

With this latter representation, the estimator equivalent to 6.1.3 is given by:

R12|34(Σ̂) :=
1

N

N∑
l=1

(αl12|34

∏
1≤i<j
<k≤4

rlijk(Σ̂)) (6.1.5)

where

αl12|34 := 1{F l(Σ̂)(ρ̃12ρ̃34−ρ̃13ρ̃24)≥0}1{F l(Σ̂)(ρ̃12ρ̃34−ρ̃14ρ̃23)≥0} (6.1.6)

and F l(Σ̂) = sgn(ρ̃12ρ̃13ρ̃14) is the signum function. The role of F (·) is to adapt the inequalities

to account for tree-compatible regions which do not lie in purely positive correlation space. The

description of PO+(T ) allows us to easily extend to M(T ) as it is obtained as the union of

rotations of PO+(T ). This corresponds to the tetrad inequalities (5.3.3) reversing in sign if

F l(Σ̂) is negative.

Proposition 6.1.5. The function sgn(ρ̃12ρ̃13ρ̃14) found in (6.1.6) reverses the tetrad inequalities

when necessary.

Proof. Consider the quartet tree as show in Figure 6.1. We can write the tetrad inequalities in

(5.4.1) in terms of edge correlations:

ρ14ρ23 = ρ13ρ24 = ρ1gρ2gρ3hρ4hρ
2
gh ≤ ρ1gρ2gρ3hρ4h = ρ12ρ34

Observe that the inequality above only reverses if an odd number of edge correlations (excluding

ρgh) are negative. Also note that sgn(ρ1gρ2gρ3hρ4hρ
2
gh) = sgn(ρ1gρ2gρ3hρ4h). Finally, observe

that sgn(ρ12ρ13ρ14) = sgn(ρ1gρ2gρ3hρ4h) which completes the proof.

Corollary 6.1.6. The tetrad inequalities need only be reversed if 3 of the correlations ρ12, ρ13,

ρ14, ρ23, ρ24, ρ34 are negative and specifically those correlations are ρij , ρik, ρil for i, j, k, l

distinct.
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FIGURE 6.1: Quartet tree

Proof. This follows from Proposition 6.1.5 where if the sgn(ρ12ρ13ρ14) = −1 then the inequal-

ity is reversed. Thus either a single ρ1l is negative in which case also ρjl, ρkl < 0, or otherwise

ρ12, ρ13, ρ14 < 0. To complete the proof consider exactly three negative correlations that do not

fit the stated pattern, without loss of generality ρ12, ρ13, ρ24 or ρ12, ρ13, ρ23. In either case the

positivity constraint fails e.g. ρ23ρ24ρ34 < 0 and ρ12ρ13ρ23 < 0 respectively. This is accounted

for in (6.1.3) and so the sign of the tetrad inequalities is irrelevant for the simulation.

In general, the former estimator (6.1.3) shall be used as it is cleaner and simpler to implement.

The alternative estimator (6.1.5) can be used if there is a concern about numerical accuracy

caused by small values of ρij in the denominator — though such cases are rare.

6.2 The sample distribution of algebraic constraints

The sampling approach described in Section 6.1 does not extend to the algebraic constraints

as the set of draws from the posterior satisfying an equality constraint will have zero probabil-

ity. Thus an alternative approach is taken using sample distributions of minors of a covariance

matrix.

6.2.1 Means and variances

Considering Theorem 5.3.4, it is clear that information on whether a Gaussian distribution lies in

some M(T ) for these particular constraints is recorded in the sign of tetrad constraints σikσjl−

σilσjk and other quadratic binomials of the form σiiσjk − σijσik. Here we use the covariance

matrix instead of correlation matrix as the distributional results associated with correlations are

notably more difficult to deal with. Both type of constraints can be realised as minors of the
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covariance matrix Σ

det(Σij,kl) and det(Σij,ik). (6.2.1)

However, we are particularly interested in the former as the algebraic constraints cannot be

treated in the same way as the semi-algebraic constraints in Section 6.1.

Definition 6.2.1. A matrix A vanishes if the det(A) = 0.

Let A|B be a split of the set of leaves that is induced by T by removing an edge and considering

two resulting components. Consider the following block matrix

ΣA,A ΣA,B

ΣB,A ΣB,B

 .
Proposition 6.2.2. The equality constraints in (5.3.3) imply that all 2× 2 minors of ΣA,B must

vanish if A ∪B = V for T = (V,E) ⊂M(T ).

Proof. Without loss of generality, consider i, j ∈ A and k, l ∈ B, i, j, k, l distinct. Then

{i, j}|{k, l} and so σikσjl = σilσjk as a consequence of Theorem (5.3.4). Thus, det(Σij,kl) =

σikσjl − σilσjk = 0, i.e. Σij,kl vanishes.

Corollary 6.2.3. The rank of all 2 × 2 minors of ΣA,B must equal 1 if A ∪ B = V for T =

(V,E) ⊂M(T ).

Proof. Without loss of generality, consider i, j ∈ A and k, l ∈ B, i, j, k, l distinct. Then

Σij,kl =

σik σil

σjk σjl

 .
Multiplying the second row of Σij,kl by σik

σjk
produces:

σik σil

σik
σikσjl
σjk

 .
Since σikσjl − σilσjk = 0 =⇒ σikσjl

σjk
= σil, rows 1 and 2 of Σij,kl are linearly dependent.

Hence, rank(Σij,kl) = 1.
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We wish to understand the distributional properties of the algebraic tetrad constraints for the

Gaussian setting. Suppose that a sample X ∈ Rn×m was observed and let S = XTX so

that S/n is the sample covariance matrix. If C is the covariance matrix of the data generating

distribution then S has Wishart distribution Wm(n,C). Denote by
{
m
2

}
the set of all subsets

of {1, . . . ,m} of cardinality two. We are going to use the following estimator of the value of

det(CI,J) for I, J ∈
{
m
2

}
QI,J :=

1

n(n− 1)
det(SI,J). (6.2.2)

In this section we provide the first two moments for the random
(
m
2

)
×
(
m
2

)
-matrix with entries

given byQI,J . The following result, that shows thatQI,J is an unbiased estimator, follows from

Drton et al. [2008, Corollary 4.2].

Proposition 6.2.4. If I, J ∈
{
m
2

}
then E[QI,J ] = det(CI,J).

It is convenient to introduce the following notation. For an m × m matrix A let A(2) denote

the matrix with rows and columns indexed by elements
{
m
2

}
whose (I, J)-th element is the

corresponding minor det(AI,J). The rows and columns are ordered in the natural order of
{
m
2

}
given by

{1, 2} ≺ {1, 3} ≺ · · · ≺ {1,m} ≺ {2, 3} ≺ · · · ≺ {m− 1,m}.

With this notation, the matrix, whose elements are estimators QI,J is given by S(2)/(n(n− 1)).

Proposition 6.2.4 now reads: E[S(2)] = n(n− 1)C(2).

Remark 6.2.5. This given ordering of
{
m
2

}
is induced from the natural ordering on {1, . . . ,m}

given by 1 < 2 < · · · < m. A different ordering of {1, . . . ,m} will lead to a different ordering

of
{
m
2

}
.

We next provide the variance for QI,J . The formulae depend on the cardinality of I ∩ J .

Proposition 6.2.6. If I, J ∈
{
m
2

}
are disjoint, then

var(QI,J) =
1

n(n− 1)

[
(n+ 2) det(CI,I) det(CJ,J)− n det(CI∪J,I∪J) + 3n det(CI,J)2

]
If I = J ∈

{
m
2

}
then

var(QI,I) =
4n+ 2

n(n− 1)
det(CI,I)

2.
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Moreover, if I, J ∈
{
m
2

}
such that I = {i, j}, J = {i, k} and j 6= k, then

var(QI,J) =
4n+ 2

n(n− 1)
det(CI,J)2 +

n+ 2

n(n− 1)
C2
i,i det(Cjk,jk − Cjk,iC−1

i,i Ci,jk).

Remark 6.2.7. The result for I = J ∈
{
m
2

}
cannot (and is not intended to) be derived directly

from result for the I, J ∈
{
m
2

}
disjoint.

Proof. If I, J are disjoint, this is a classical result of Wishart [1928b], see also Drton et al. [2008,

Corollary 5.6]. The second part of the result, covering the case |I ∩ J | ≥ 1, follows from the

main theorem of Drton et al. [2008] (see Drton and Goia [2012] for the corrected version).

6.2.2 Covariances between minors

There is no simple explicit formula for covariances of various 2-minors but they can be computed

if the true distribution of C is known.

By Drton et al. [2008, Proposition 3.3]

cov[S(2)] = [(C1/2)(2) ⊗ (C1/2)(2)] · (cov(W (2))) · [(C1/2)(2) ⊗ (C1/2)(2)], (6.2.3)

where W has standard Wishart distribution Wm(n, I) and ⊗ is the Kronecker product. This

follows from

S = C1/2WC1/2 ∼ Wm(n,C1/2ImC
1/2) =Wm(n,C)

and the Cauchy–Binet formula [Olkin and Marshall, 2014]

(AB)(k) = (A)(k)(B)(k).

In the rest of this section we provide a complete description of the covariance matrix cov(W (2)).

This matrix has many symmetries that we want to exploit both in the exposition below and in

the computations. First note that detWI,J = detWJ,I for all I, J ∈
{
m
2

}
and hence

cov(detWI,J ,detWK,L) = cov(detWJ,I ,detWK,L) = cov(detWK,L, detWI,J).
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This enables us to take the following convention. Using the natural order of
{
m
2

}
we always

assume that

I � J, K � L and I � K. (6.2.4)

If we can find cov(detWI,J , detWK,L) for all I, J,K,L satisfying (6.2.4) we can then fill out

the rest of the matrix cov(W (2)) using basic symmetries.

Let A∆B := (A \B) ∪ (B \A) be the symmetric difference of two sets.

Proposition 6.2.8. Suppose that I, J,K,L ∈
{
m
2

}
satisfy (6.2.4) and (I, J) 6= (K,L). If

I∆J 6= K∆L, then cov(detWI,J ,detWK,L) = 0.

Proof. Note that necessarily either I 6= J or K 6= L (otherwise I∆J = ∅ = K∆L) and hence

either detCI,J = 0 or detCK,L = 0, where C is the identity matrix. By Proposition 6.2.4

E(detWI,J)E(detWK,L) = n2(n− 1)2 detCI,J detCK,L = 0,

By Drton et al. [2008, Proposition 3.4] also E(detWI,J detWK,L) = 0.

In the rest of this section we assume that I∆J = K∆L. If (I, J) = (K,L) then trivially

cov(detWI,J ,detWK,L) = var(detWI,J) and by Proposition 6.2.6

1

n2(n− 1)2
var(detWI,J) =


4n+2
n(n−1) if I = J

2
n(n−1) if I ∩ J = ∅
n+2

n(n−1) otherwise.

(6.2.5)

For the remaining cases we are going to use the following result, which deals with general

minors of size r.

Theorem 6.2.9 (Drton et al. [2008], Theorem 4.5). Suppose I, J,K,L ∈
{
m
r

}
such that I∆J =

K∆L. Fix an ordering of {1, . . . ,m} that induces an ordering on
{
m
r

}
(c.f. Remark 6.2.5) that
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satisfies

(I ∩ J) \ (K ∩ L) � I \ J � J \ I � (K ∩ L) \ (I ∩ J)

(I \ J) ∩ (K \ L) � (I \ J) ∩ (L \K), (6.2.6)

(J \ I) ∩ (K \ L) � (J \ I) ∩ (L \K).

If any terms result in an order comparison with the empty set then by convention this is said to

hold. If the ordering here holds and if W ∼ Wm(n, I), then

E[det(WI,J) det(WK,L)] =
n!

(n− r)!
· (n+ 2)!

(n+ 2− |I ∩ J ∩K ∩ L|)!
·

· (n− r + |(I ∩ J) \ (K ∩ L)|)!
(n− r)!

· |(I \ J) ∩ (K \ L)|! · |(I \ J) ∩ (L \K)|!

In the rest of this section we analyse the special case of Theorem 6.2.9, when r = 2. Our

motivation is to obtain a more concrete version, with a more algorithmic approach to the ordering

constraint (6.2.6). If (I, J) 6= (K,L) and I∆J = K∆L then we have three cases

(i) I = J and K = L and either |I ∩K| = 0 or |I ∩K| = 1

(ii) I = {i, j}, J = {i, k}, K = {j, l} L = {k, l} for some distinct i, j, k, l

(iii) I = {i, j}, J = {k, l}, K = {i, k}, L = {j, l} for some distinct i, j, k, l

Proposition 6.2.10. If I, J,K,L ∈
{
m
2

}
satisfy (6.2.4) and I∆J = K∆L then given I = J ,

K = L and I 6= K, we have

1

n2(n− 1)2
cov(detWI,J ,detWK,L) =

 0 if |I ∩K| = 0

2
n if |I ∩K| = 1.

Proof. If I = J and K = L then, by Proposition 6.2.4, E(detWI,J) = E(detWK,L) = 1. By

Theorem 6.2.9 E(detWI,J detWK,L) is equal, up to sign, to 1 if |I ∩ K| = 0 and to n+2
n if

|I ∩K| = 1. To show that the sign is always positive we use the fact that I ≺ K by (6.2.4). If

|I∩K| = 0, the ordering constraint (6.2.6) is trivially satisfied. If |I∩K| = 1 then it is satisfied

because I \K ≺ K \ I .
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Obtaining remaining covariances is more subtle because they can take different signs depending

on whether (6.2.6) holds or not. In our special case these technical conditions can be translated

into checking parity of certain permutations.

Definition 6.2.11. We say that a sequence i1, . . . , ik defines a partition σ of the set {i1, . . . , ik}

if σ(oj) = ij for j = 1, . . . , k, where o1, . . . , ok is the sequence of ij’s given in an increasing

order. This is also sometimes called the one-line notation for permutations.

For example if i1 = 2, i2 = 1, i3 = 4, i4 = 3 then {i1, i2, i3, i4} = {1, 2, 3, 4} and the sequence

2, 1, 4, 3 defines permutation such that σ(1) = 2, σ(2) = 1, σ(3) = 4 and σ(4) = 3.

Proposition 6.2.12. If I, J,K,L ∈
{
m
2

}
satisfy (6.2.4) and I∆J = K∆L then for some distinct

i, j, k, l, where I = {i, j}, J = {i, k},K = {j, l}, L = {k, l} then

1

n2(n− 1)2
cov(detWI,J ,detWK,L) = (−1)sgn(σ) 1

n

where σ is a permutation of the set {i, j, k, l} defined by the sequence i, j, k, l.

Proof. Since I 6= J then E(detWI,J) = 0 and hence to compute this covariance it suffices to

compute E(detWI,J detWK,L). By Theorem 6.2.9 this second order moment is equal (up to

sign) to 1/n and the sign is positive if i < j < k < l. Because I, J,K,L satisfy (6.2.4), we

necessarily have j < k and i < l so there are six possible orderings

i < j < k < l, j < k < i < l, j < i < l < k

i < l < j < k, j < i < k < l, i < j < l < k.

Because i < j < k < l gives a positive sign and the sign of detWij,kl changes if you swap

rows or columns, we check directly that only the last two situations lead to negative values of

E(detWI,J detWK,L). Again, a direct check shows that only the last two sequences define

permutations with negative parity.

Proposition 6.2.13. If I, J,K,L ∈
{
m
2

}
satisfy (6.2.4) and I∆J = K∆L then for some distinct

i, j, k, l, where I = {i, j}, J = {k, l},K = {i, k}, L = {j, l} then

1

n2(n− 1)2
cov(detWI,J , detWK,L) = (−1)sgn(σ) 1

n(n− 1)
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where σ is a permutation of the set {i, j, k, l} defined by the sequence i, j, k, l.

Proof. We proceed in a similar way as in the proof of Proposition 6.2.12. To determine the sign

note that, because I, J,K,L satisfy (6.2.4), necessarily min{i, j} < min{k, l}, min{i, k} <

min{j, l} and j < k. There are three possible orderings that satisfy these constraints

i < j < k < l i < l < j < k i < j < l < k.

To see this note that j < k and that there are three possible ways to position l: j < k < l,

l < j < k and j < l < k. But now for each of these orderings the position of i is already

determined. Since the sign of E(detWij,kl detWik,jl) is positive if i < j < k < l, then it is

also positive if i < l < j < k and it is negative for i < j < l < k. Again, a direct check

confirms that the sign coincides with the parity of the corresponding permutation.

6.3 Quartets and applications of tetrad analyses

6.3.1 The method of quartets

For any four distinct leaves i, j, k, l ∈ V we say that qij,kl = ij|kl forms a quartet of T if the

paths ij and kl are disjoint. A binary tree T displays the set of quartets Q if each quartet q ∈ Q

is a quartet of T . A set of quartets Q is said to determine T if T displays Q and T is the unique

tree displayed byQ [Semple and Steel, 2003]. For T we denote such a set asQT . Thus, quartets

can be considered as fundamental components of binary trees; see also Dress et al. [2012]. A set

QT is said to be minimal if there exists no element q ∈ QT such that QT \ {q} determines T .

Grünewald et al. [2008, Theorem 2.4] provides the minimum size of anyQT (i.e. the size of the

smallest minimal defining quartet set). Furthermore, Semple and Steel [2003, Theorem 6.8.8]

provides a quick method for constructing minimal defining sets of quartets that define binary

phylogenetic trees.

Quartets are related to the QI,J defined in (6.2.2) when I, J ∈
{
m
2

}
. Let V ⊂ U be such

that V = {i, j, k, l} with distinct elements. Consider three random variables Qik,jl, Qil,jk and

Qij,kl. By Theorem 5.3.4 we expect that one of them will be approximately zero and the other
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two will be equal. Using this fact, these QI,J can be used to test the algebraic constraints in

Proposition 5.4.2.

If an off-diagonal minor det(CI,J) is zero then QI,J is zero on average but since the variance

of QI,J may be very high, the observed value of QI,J may also deviate from zero substantially

in certain scenarios. This means that we should standardise the data. Since we do not know C,

the standardisation should depend on the sample covariance matrix Σ̂. Testing hypotheses of the

form Qij,kl = 0 is referred to as testing for vanishing tetrads, that is testing whether the quartet

qij,kl is displayed in T given the data.

To test a particular binary tree T , a setQT is required, i.e. a set of quartetsQ that determines T .

Ideally QT should be minimal to remove superfluous quartets. For each qij,kl ∈ QT consider

the corresponding Qij,kl as in (6.2.2) and define the set of these random variables as QT . For

an arbitrary but fixed ordering, denote the column of sample means of these Qij,kl ∈ QT by Q̂T

as provided by (6.2.2). This estimator is known to be consistent [Drton et al., 2007], and as a

consequence as the sample size n tends to infinity any tree T is uniquely identified by the i, j, k, l

such that Q̂ij,kl = 0. The corresponding sample covariance matrix Σ̂QT has dimension p =

|QT |. The sample covariance between minors Σ̂QT can be obtained by calculating cov(W (2))

per the results for covariances of minors in Section 6.2.2 and by substituting C for the sample

covariance of original variables Σ̂. An appropriate simultaneous test statistic (6.3.1) is provided

in Bollen and Ting [1993], which can be calculated and compared with the relevant value of the

chi-square distribution.

T = Q̂T Σ̂−1
Q Q̂ ∼ χ2

p (6.3.1)

The subscript T is omitted for clarity and to avoid confusion with the matrix transpose super-

script T . Compare (6.3.1) with Bollen and Ting [1993, (20)] where their Σtt is the covariance

of
√
nQ̂. Here the sample size n is incorporated implicitly through Σ̂−1

Q . Therefore, (6.3.1)

provides a significance test for the equality constraints in (5.4.1), and furthermore, the required

moments ofQI,J are given in Section 6.2. This provides a quick method for assessing whether a

Gaussian data set appears consistent with the algebraic constraints associated with tree models.

A consideration with tetrad analyses is that there can be multiple QT and there may not always

be an obvious reason for selecting one minimal defining quartet set over another. In such cases
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it is recommended that a number of these sets are randomly selected to assess the robustness of

the results. This issue is discussed further in Bollen and Ting [1993].

Hypothesis testing for vanishing tetrads can be used for both CTA and for ETA. There are many

algorithms for obtaining candidate trees. However, often there is no way to assess the suitability

of the optimal outputted tree. CTA takes a candidate tree and provides an absolute rather than

relative value as to how well the data supports the purported tree. In contrast to a CTA, an ETA

is used primarily when there are only a few variables because it is necessarily computationally

intensive. Here the underlying tree is not known but there is an indication or prior belief that the

data may be compatible with M(T ) for some phylogenetic tree T . Then an exhaustive search

can then be performed across all trees, assessing each set of hypotheses using the observed data.

If the set of plausible trees is empty then the assumption that the data is consistent with M(T )

may be incorrect.

6.4 Simulation results

We now investigate the reliability of the techniques through a variety of methods. The purpose

is to give some comfort that the proposed methodology can be expected to work in practice.

6.4.1 Visualising reliability of semi-algebraic constraints

Here we explore the space of 3 × 3 positive definite correlation matrices with off-diagonal

entries on a lattice of spacing 0.025. Each of the 314, 087 valid correlation matrices is treated as

an observed estimate, and so Ŝ is obtained by multiplying by n−1 (where n is a chosen effective

sample size). Using the inverse-Wishart prior as mentioned previously, the posterior density of

Σ|X isW−1
3 (3 + n, I3 + Ŝ). This posterior density can then be used to simulate N realisations

of Σ each of which can be tested against the tree constraints from which a posterior probability

of tree-compatibility can be determined. As n increases, the effect of the prior diminishes. As

N increases, the estimate of the posterior probability of tree-compatibility improves (given the

particular prior). The following results are for N = 100 and for n = 50, 200, 800.
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Table 6.1 displays measures of reliability of the tree constraints for different effective sample

sizes n — this excludes cases where Σ lies exactly on the boundary of the tree being admissible

(e.g. min{|ρ12|, |ρ13|, |ρ23|} = 0 for the positivity constraint) and so leaves 312,976 correlation

matrices. These were excluded as no matter how large n is, the tree-compatibility remains sen-

sitive to any perturbation, and exact boundary cases will not be observed in practice as long as

the measurement precision is suitably high. The first column indicates n the effective sample

size. The second column refers to the summary statistic being measured — in this case the pro-

portion of posterior probabilities below certain thresholds and the mean posterior probabilities.

The next two columns relate to those posteriors based on covariance Σ that is T3-compatible.

The final two columns relate to those posteriors that are not T3-compatible. These in turn are

split for posterior probabilities of satisfying the positivity (5.1.1) and tripod constraints (5.4.2)

(denoted ‘pos’ and ‘tri’) respectively. Recall from Remark 5.4.3 that the tripod triple product

implies the positivity constraint so the columns ‘tri’ are usually of more interest. The results are

also displayed visually in Figures 6.2–6.5 where the effect of sample size can be observed and

it is apparent that proximity to boundaries of the regions can be seen to have an effect on the

posterior probability of tree-compatibility.
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FIGURE 6.2: Space of correlations relating to 3 × 3 positive definite correlation matrices
that satisfy the positivity constraint. The colour indicates the posterior probability of T3-

compatibility for respective sample sizes n = {50, 200, 800}.
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FIGURE 6.3: Space of correlations relating to 3 × 3 positive definite correlation matrices that
do not satisfy the positivity constraint. The colour indicates the posterior probability of T3-

compatibility for respective sample sizes n = {50, 200, 800}.
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FIGURE 6.4: Space of correlations relating to 3 × 3 positive definite correlation matrices that
satisfy the tripod constraints. The colour indicates the posterior probability of T3-compatibility

for respective sample sizes n = {50, 200, 800}.
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FIGURE 6.5: Space of correlations relating to 3 × 3 positive definite correlation matrices
that do not satisfy the tripod constraints. The colour indicates the posterior probability of

T3-compatibility for respective sample sizes n = {50, 200, 800}.
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The results in Table 6.1 show that as sample size increases the performance improves across the

board. For instance there are fewer cases of false rejections of T3-compatibility and fewer cases

of failing to reject T3-compatibility. Another remark is that the positivity constraint alone does

not perform as well as the tripod product constraint (5.4.2), but that is not a particular problem

as the full tripod constraints are advocated in Section 6.1.

TABLE 6.1: This table displays the proportion of the 312, 976 valid posterior probabilities that
are below the thresholds 0.01, 0.05 and 0.10 along with the mean posterior probabilities. This

is split between Σ that are T3-compatible and those that are not.

Given Σ is T3-compatible Given Σ is not T3-compatible
n measure pos tri pos tri

50

<0.01 0 0 0.0171 0.4700
<0.05 0 <0.0001 0.0659 0.6055
<0.10 0 0.0005 0.1095 0.6824
mean 0.9200 0.6868 0.5908 0.0945

200

<0.01 0 0 0.1328 0.7060
<0.05 0 <0.0001 0.2059 0.7923
<0.10 0 0.0004 0.2482 0.8354
mean 0.9724 0.8211 0.5680 0.0494

800

<0.01 0 0 0.2592 0.8442
<0.05 0 0 0.3100 0.8933
<0.10 0 0.0002 0.3429 0.9171
mean 0.9913 0.9058 0.5603 0.0244

More generally we can observe that the posterior probability is conservative with rejection in so

much as it is very unlikely to reject tree-compatibility when the source is truly tree-compatible

but does not reject tree-compatibility enough when the underlying Σ is not tree-compatible.

Another way of summarising this is that the technique has very high specificity but lower sensi-

tivity. The sensitivity improves when considering a higher threshold or larger sample size. For

example, when using the threshold 0.01 with n = 50 sensitivity is 0.47. Increasing to n = 800

gives sensitivity 0.84 and using the threshold 0.1 increases it to about 0.92. In all combinations

studied, specificity is approximately 1 even with higher thresholds. In practical terms, this sug-

gests that if a tree is rejected then this appears to be strong evidence that the data is truly not

compatible. In contrast, we are cautious to reject tree-compatibility so failure to reject is less

conclusive.



Chapter 6. Distributional results for Gaussian latent tree constraints 127

6.4.2 Moment estimators for dimension four

We now show how the estimators for the mean and variance appear to converge to the true values

for simulated data. Consider a random sample of size n from the four dimensional Gaussian

distribution with mean zero and covariance matrix Σ, where

Σ =



4 2.1 2.24 3.15

· 9 4.704 6.615

· · 16 14.4

· · · 25


, R =



1 0.35 0.28 0.315

· 1 0.392 0.441

· · 1 0.72

· · · 1


.

We perform the following simulations. We first fix n = 100. To evaluate the mean and the

variance of the QI,J ’s, we replicate our computations 1000 times. Each time we generate a

sample of size 100, compute the corresponding statistics S and the minors. This first matrix

contain the means of the estimators:.

31.6 14.1 19.8 −10.3 −14.5 0.0

· 58.9 50.5 23.0 15.4 −18.1

· · 90.0 15.4 31.5 10.6

· · · 121.6 98.3 −38.1

· · · · 180.9 22.3

· · · · · 192.3


This second matrix contains the theoretical actual values of the minors.

31.6 14.1 19.9 −10.3 −14.5 0.0

· 59.0 50.5 23.1 15.4 −18.1

· · 90.1 15.4 31.7 10.6

· · · 121.9 98.5 −38.1

· · · · 181.2 22.3

· · · · · 192.6


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The rows and columns of this matrix correspond to the six size-two subsets of {1, 2, 3, 4} or-

dered in a natural way: {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}. So for example the element

(2, 5) of this matrix is the sample mean of Q13,24. The three boldfaced elements correspond to

the off-diagonal minors: Q12,34, Q13,24 and Q14,23.

The estimated variances of QI,J are given in this first matrix



41.6 25.2 41.6 42.1 64.7 15.3

· 142.0 132.8 91.9 70.9 127.2

· · 336.9 74.3 202.6 180.9

· · · 605.8 510.0 287.5

· · · · 1335.6 373.8

· · · · · 1526.1


This second matrix provides the true theoretical variances computed from Proposition 6.2.6.



40.5 25.2 41.3 42.9 65.3 15.8

· 141.3 132.2 90.2 70.5 127.0

· · 329.5 73.4 198.6 182.2

· · · 603.1 521.5 285.9

· · · · 1333.9 374.9

· · · · · 1506.9



Repeating the simulation for 1000 random positive definite covariances matrices, the average

percentage difference between estimates and true values are 2.5% and 3.9% for the means matrix

and variance matrix respectively. Even though we used only 1000 replications, the estimation is

very good — especially given the fact that in order to estimate the variance of QI,J we need to

estimate fourth order moments of S. However, the next subsection gives a more thorough way

to investigate the estimators.
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6.4.3 Assessment of test statistic

Another approach to assessing the estimators is to investigate how well the test statistic matches

the intended distribution. That is, for particular sample sizes how well does the distribution

of T match the chi-squared distribution. This assessment also acts as a check that the coding

is working as expected. If it is then the distribution of T will be closer to the chi-squared

distribution as the number of samples n increases.

We consider the quintet tree T5 as in Figure 5.2. Our aim is to show that under the null hypothesis

of T5-compatibility, as the sample size n increases, the distance between the empirical CDF of

T and the CDF of the χ2 distribution decreases. Specifically, the χ2 distribution we consider

has 2 degrees of freedom as two embedded quartets are simultaneously tested for T5.

For a single run of the simulation, the 7 edge correlations of T5 are sampled from the Uniform(-

1,1) and then the correlations between leaf variables are calculated to produce a 5 × 5 corre-

lation matrix M . A diagonal matrix D is produced with the diagonal entries sampled from

Uniform(1,5). Then define Σ = DMD which is a covariance matrix that is T5 compatible.

Then n samples are simulated from N5(0,Σ). This is repeated 1000 times for the same Σ. For

each of these 1000 sets of n samples the test statistic T is calculated. The empirical density

function of the test statistic can then be estimated from these 1000 test statistics and compared

to the χ2
2 density function as is done visually in Figure 6.6.

The Kolmogorov–Smirnov (KS) statistic [Pollard, 1979, Chapter 12] is also calculated between

the empirical CDF and χ2
2 CDF. The KS statistic is selected as it accounts for differences in both

shape and location. The one sample KS statistic is calculated as

Kn = sup
x
|Fn(x)− F (x)|

where n is the sample size, sup is the supremum, Fn(x) is the empirical CDF, F (x) is the CDF

of the known distribution.

For a fixed Σ we repeat the process for three sample sizes: n = 50, 200, 800. Thus the output

for each of the three n is a set of 1000 Kolmogorov–Smirnov statistics — the smaller the value
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the closer the two CDFs. We then opt to repeat the whole process 250 times for 250 different

generated Σ = DMD. Therefore, at the end we have a 250× 3× 1000 array of KS statistics.

FIGURE 6.6: An example of an empirical density (solid blue line) plotted with a chi-squared
degree 2 density (red dashed line). This is for sample size n = 800 and N = 1000 replications

as described in the main text.

Figure 6.7 plots the values of the 250 × 3 KS statistics. The KS statistics related to the three

sample sizes n = 50, 200, 800 are represented by ‘x’, ‘y’ and ‘z’ respectively in the colours

black, red and blue respectively. To make the plot visually clearer, the 250 replicates are ordered

ascendingly according to the value of the KS statistic for the n = 50 case along the horizontal

axis. It is apparent that the larger the sample size, the smaller the KS statistic and hence the

smaller the differences in shape and location of the empirical CDF which is a desirable property.

Together with the previous simulations, this gives confidence that the proposed techniques are

suitable for use with the data sets to be considered in Chapter 7.
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FIGURE 6.7: Comparison of KS statistics for each of the 250 simulated parameter sets — the
lower the value, the closer the CDFs of the empirical density and the chi-squared density. The
black ‘x’ represents n = 50, red ‘y’ represents n = 200 and blue ‘z’ represents n = 800. For

visual clarity, the 250 replicates are sorted in ascending order of the n = 50 KS statistics.



Chapter 7

Applications of Gaussian tree

constraints

This chapter draws together all the previous chapters by implementing two novel examples that

make use of Gaussian tree constraints and the associated methodology. The first is using the Ro-

mance language functional data set described in Section 3.3 and is based upon the paper Shiers

et al. [2014]. The second is an example from biology, which expands upon the final example

described in Shiers et al. [2016] that relates to functional growth curves of yeast species. In both

instances, we are interested in whether a GLTM is a suitable graphical description for the rela-

tionships between languages and species respectively. We use Gaussian tree constraints to assess

probabilistically whether a tree model is appropriate given the observed data. Applications of

the suite of tools for Gaussian tree constraints are not found elsewhere in the literature.

7.1 Application of Gaussian tree constraints to acoustic linguistic

functional data

Recall from Section 3.3 that we are considering a linguistic data set comprising phonetic func-

tional data from five Romance languages: French, Italian, Portuguese, and two forms of Spanish

(American and Iberian). The observations are spectrograms of speakers saying numbers in their

respective languages. Here the evolutionary dependencies between spoken numbers is studied

132
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with each extant language treated as a possible leaf vertex of a graphical model. Using the

novel combination of separable-CVA as an approximation to separable-CFA (as described in

Section 3.6) provides an ordered basis on which to project the high dimensional data to a lower

dimension. Each dimension of the projected data set accounts for a particular combination of

phonetic variation and each dimension is considered independently, thus allowing differing evo-

lutionary relationships for different aspects of the speech. Using a selection of the distributional

techniques described in Section 6 we are able to quantify the probability of tree-compatibility.

7.1.1 Application of CVA as an approximation to CFA

As motivated, the separable-CVA is used to approximate the separable-CFA of the Romance lan-

guages data to achieve a dimension reduction based on components which maximise between- to

within-language variability. This is deemed a suitable approximation to make as the functional

spectrograms have been sufficiently densely sampled during discretisation. This is backed-up

visually by the smoothness of the plots in Figure 3.4.

FIGURE 7.1: Sample between-language and within-language covariances of speech data for
frequency and time directions.
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Figure 7.1 displays the interpolated between-language and within-language covariances of the

frequency and time dimensions respectively. Reassuringly the covariances are almost exclu-

sively positively correlated and furthermore the between-language variation is larger than the

within-language variation. Other features of note are the ridges along the diagonals of the

within-language covariances indicating that similar times and frequencies are highly positively

correlated, which is to be expected. The high correlations in the corners of the between-language

covarianceBt are to be expected given beginnings and ends of words are likely to be very quiet

and hence very similar. In the within-group frequency covariance Bf there is a slight block

structure associated with the last 40 points. These relate to some of the recordings being at

lower audio sampling rates capturing fewer details in the higher frequencies. The effect of ex-

cluding these observations is investigated by rerunning the analyses performed in Section 7.1.4

with the results reported in Section 7.1.6.

Before implementing separable-CVA, we test an assumption of CVA, which is that within-

language covariances are equal. In an empirical sense we clearly need to allow for some sam-

pling variation. One appropriate method is to use Box’s M statistic [Box, 1949] which can be

compared with a chi-squared distribution to potentially reject the homogeneity of covariances.

For frequency and time directions in turn, we perform the test on a pair-wise and 5-way basis,

the former approach comparing each of the within-language covariances with the average of the

remaining four. Using the MATLAB package MBoxtstwod [Trujillo-Ortiz et al., 2004], none

of the covariances were found to be significantly different at the 0.01 level and thus the CVA

assumption of homogeneous within-group covariances is not rejected. We can now proceed

with the separable-CVA with some comfort that the homogeneous within-groups covariance as-

sumption appears to be reasonable. This is not the only assumption of associated with CVA.

Multivariate Gaussianity is also assessed in Section 7.1.6.

Recall that we are using CVA with the aim of projecting the spectrograms to a lower dimen-

sional space while retaining important linguistic information regarding the differences between

languages. When selecting a dimension r to project to, it is unusual to have anything but an

arbitrary albeit sensible method for selecting r. However, in some acoustic contexts (e.g. Hadji-

pantelis et al. [2012]) thresholds can be proposed based on sounds which are audible to humans.

Otherwise, equivalent techniques to those employed with PCA [Jolliffe, 2002] can be used. For
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example, by considering λ1+λ2+...+λr
λ1+λ2+...+λs

(the proportion of variability taken up by the first r canon-

ical variates), a threshold can be specified to determine a value for r. For this linguistic study

Figure 7.2 shows the cumulative variation explained by selecting particular numbers of compo-

nents. Note that by construction each subsequent dimension accounts for less variability than

the previous. Figure 7.2 indicates that the time and frequency projections perform extremely

well as close to 97% of the between- to within-language variances can be explained by just a

single component. By definition, the combined time and frequency projection is less efficient

yet it manages to capture over 94% in the first component. This indicates that the separability

assumption in this instance does appear a plausible one. In order to select a dimension, we can

retain only those dimensions that contribute at least 0.1% contribution of explained variance.

In this instance, this leads to selecting the first r = 9 canonical variates, a dimension reduc-

tion from 8100 to 9. These account for almost 97.5% of the variability. Each one of these 9

components c1, . . . , c9 accounts for some mode of variability between languages. Although the

earlier components have high explanatory power, the latter components may isolate directions

of variability which are of more interest from a linguistic perspective.

FIGURE 7.2: Cumulative variation explained by number of components. The explanatory
power of the first component in terms of between- to within-language combined variability is

over 94%.

It is clear from the description given in Section 3.6 that separable-CVA is not implemented on

the belief that it reflects some underlying data generating process. Instead, separable-CVA is
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simply a practical tool that produces a meaningful representation of the original data in a lower

dimension. To demonstrate the effectiveness of projection of the spectrograms to even two di-

mensions, the projections of the means of the word observations are plotted in Figure 7.3 for

all combinations using the first four components. We plot ellipses for each language where the

direction of the major and minor axes are obtained as eigenvectors from a PCA of the projected

means, where the centre point is the mean of projections, and the radii relate to 95% confi-

dence intervals based upon the standard deviation in the directions of the axes (under Gaussian

assumptions). The results of the separable-CVA are encouraging: there are clear groupings in

all of the projections. In some, there is overlap between languages such as Italian and Spanish

(Iberian) for dimensions 1 and 2, and again in dimensions 1 and 4. It is the projection to di-

mensions 2 and 3 that appears to perform the best at separating the groups, which indicates that

the proportion of variance accounted for is not the only relevant factor in projections. This is

consistent with our understanding of CVA. Thus it is possible that the most efficient direction

for CVA achieves good within-language projection and good between-language separation for 9

of the 10 pairings but at the cost of projecting a single pairing close together.

Given that the acoustic data set is undoubtedly noisy and a reduction from 8100 dimensions to

just 2 is large, this demonstrates the effectiveness of separable-CVA at selecting components

which discriminate on a group basis. Note that whilst CVA operates on all languages simul-

taneously rather than in a pairwise manner, this does not necessarily imply languages in close

proximity post-projection share particular acoustic features. However, a particular projection

can be examined in more detail, for example through studying Hadamard products for each

projection as demonstrated in Section 7.1.3.



C
hapter7.A

pplications
ofG

aussian
tree

constraints
137

FIGURE 7.3: Two dimensional separable-CVA projection of means of word observations. The details of which linguistic factors are contributing to the projections
are explored in Section 7.1.4.
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7.1.2 Constructing a suitable covariance statistic

In pursuit of assessing tree-compatibility of the r = 9 projections of the Romance data using

the positivity constraint σijσikσjk ≥ 0, it is clear that a sample covariance of the scores must be

constructed. Recall that the relationships of interest in this study are at the language level and

thus between-language covariances (each 5 × 5) are the appropriate statistics to produce, one

for each of the r components. This can be achieved through r covariance matrices of size 5× 5

(one for each of the components), or alternatively as one large matrix 5r × 5r with particular

elements extracted when needed. The former provides simpler notation and so is adopted here,

although it is worth noting that the latter is more generic and allows for scaling up to future

multivariate tree constraint testing.

One approach to calculating the entries of these matrices is to treat the mean score of each

word in a language as an observation and then measure the distance from the overall word

mean projection. Then using appropriate weights, a between-language covariance matrix can

be estimated as follows. Let ȳid = 1
m·d

∑nl
l=1mldȳ

i
ld, m·d =

∑nl
l mld where recall mld is the

number of samples of word d in language l, and ȳild = cix̄ld the projection of the mean of word

d of language l using component ci. Then for component i the between-groups cross-covariance

for the projected data has the following form:

ΣYi
= [σil,l′ ] where σil,l′ =

nd∑
d=1

√
mld
√
ml′d(ȳ

i
ld − ȳid)(ȳil′d − ȳid)
nd − 1

(7.1.1)

where, as before, nd denotes the number of unique words. Note that this between-group covari-

ance differs from that used in the CVA — this is of the projected data and the word means are

used to provide an observational summary of the data. This is a valid construction in the sense

that (7.1.1) is an inner product (see Istratescu [1987] for instance). Furthermore, for the cross-

covariance to be meaningful, equivalent statistics must be compared, in this case per language

word means. The sample matrices Σ̂Yi
will be rank deficient if nl ≥ nd. Also, observe that if

for at least one word d the number of observations is unequal across languages then the weighted

word mean ȳid differs from the unweighted version. This relaxes a zero-sum condition on the

rows or columns of Σ̂Yi
permitting the covariance matrix to be full rank. In the alternate case of
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a balanced observational design, full rank can be achieved through an alternative construction

(for example adding the unweighted word means back to each language-word mean).

Now component-by-component covariances can be used to indicate adherence to a Gaussian tree

model using the tripod tree positivity constraint on all
(

5
3

)
selections of languages. Each com-

ponent captures a different combination of variability. Thus it is not unexpected that some com-

ponents may show violations of the constraint whereas others may indicate tree-compatibility.

Irrelevant of whether a component is tree-compatible, we may be interested as to how to inter-

pret the specific component from a linguistic perspective. We illustrate a method for exploring

this in more detail in Section 7.1.3.

7.1.3 Investigating particular projections

To develop an insight into which aspects of the languages are being identified by the separable-

CVA and screen for any spurious projections. This can be done at the component level by

studying the associated eigenvector. However, while this can give some broad insight, without

reference to the original (unprojected data) it can fail to isolate the features of the data that are

contributing to each dimension. To establish whether there are any particular frequency ranges

or periods of time that are being highlighted by the CVA it is useful to consider two languages

at a time in the dimension of choice.

To illustrate one method of identifying key features separating languages we consider the fol-

lowing language pairs and dimensions:

• Spanish American and Spanish Iberian in the first dimension

• Spanish American and Portuguese in the second dimension

• French and Italian in the third dimension

• Spanish American and Portuguese in the fourth dimension

These particular components were selected as examples as they appear to have been effectively

separated in the dimension of interest as can be seen from the plots in Figure 7.3. To explore

the selected language pairs in detail, we consider the Hadamard (entrywise) products of the
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relevant component with the mean language spectrogram of interest. That is, we take the matrix

representation of language l mean spectrogram X̄l and perform the Hadamard product with Ci

the matrix representation of component ci:

H̄ i
l = Ci ◦Xl where H̄ i

l [f, t] = Ci[f, t]×Xl[f, t]

The resulting matrix H̄ i
l indicates the contribution of each frequency-time point to the overall

co-ordinates produced by the component projections. We can do this for any two languages in

the same dimension and can visualise the differences between the two matrices by plotting the

absolute difference. This helps to highlight areas of the frequency and time directions which are

contributing to the between language separation. With expert linguistic analysis we can obtain

preliminary interpretations of phonetic features associated with projections. We now illustrate

this using the four examples listed above.

Example 7.1.1. Spanish American and Spanish Iberian in the first dimension

FIGURE 7.4: Absolute differences of Hadamard products for Spanish American and Spanish
Iberian in the first dimension.

To read Figure 7.4, we are looking for areas of the plot that have the highest values (those

indicated by lighter colours). A grid like pattern can be seen on the graph with particular areas

standing out. This is often easier to read from the perspective plots (Figure 7.5 and Figure 7.6).
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FIGURE 7.5: Frequency perspective of Figure 7.4.

FIGURE 7.6: Time perspective of Figure 7.4.

We can see that the frequencies 0-1000Hz, 2000Hz, 3000-4000Hz 7000Hz and 8000Hz exhibit

the highest values. This suggests that it is these frequencies that are contributing significantly to

the overall projection differences between American and Iberian Spanish. The 0-1000Hz range

likely relates to the first formant F1 being different, due to vowel differences. The variation at

the highest frequencies (6000Hz+), are likely to be due to idiosyncratic differences in speakers

(since humans cannot readily control speech frequencies in that range) or in the recordings

(equipment or recording location).

From the time perspective there are many regions throughout the range that appear to be con-

tributory, which suggests that the frequencies are of more interest. This makes sense intuitively

as the difference in the two variants of Spanish would seem more likely to appear in pitch than

in time differences given that the words being uttered are the same orthographically.

Example 7.1.2. Spanish American and Portuguese in the second dimension
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In this example, we illustrate the importance of investigating projections in detail. Here we

consider what appears to be an efficient projection that separates Spanish American and Por-

tuguese. However, on closer inspection using Hadamard products we can see from Figure 7.7

that the projection alone is deceptive; there is a lone region that is responsible for the majority of

the projection and its location is in a corner of the time-frequency space suggesting that this is

identifying something spurious. This is confirmed in the subsequent perspective plots. Thus, al-

though CVA is effective at separating grouped observations it can sometimes pick up on sections

of the data that are uninteresting or artefacts. Even within the same component it is possible to

have a mix of genuine and inconsequential projections depending on how the eigenvectors align

with the data observations for different languages. The only way to screen for oddities such as

this is to look in more detail at the make-up of the projections at the stage of interpretation of

components or language-pair separations, the latter being performed here.

FIGURE 7.7: Absolute differences of Hadamard products for Spanish American and Por-
tuguese in the second dimension.

Example 7.1.3. French and Italian in the third dimension

Once again the grid structure is apparent in the graphical representation of the differences in

Hadamard products (Figure 7.10). In contrast to Figure 7.4, the time dimension appears to have

distinct periods of lower contributory power.
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FIGURE 7.8: Frequency perspective of Figure 7.7.

FIGURE 7.9: Time perspective of Figure 7.7.

As before, the details of important frequency and time points is more apparent from the perspec-

tive plots. The frequency plot is less clear than in the Figure 7.5 but we can broadly say that

the higher frequencies appear to be of less interest, whereas the ranges 0-400Hz, 1500-2000Hz,

3000 and in particular the extended range 3500Hz-5000Hz all appear to significant. The first

three formants for vowel sounds tend to be found in the range 0-5000Hz. This suggests that it is

these frequencies that are contributing significantly to the overall projection differences between

French and Italian.

From the time perspective, once again the description appears less relevant as there are no par-

ticular stand out regions. It is more notable that the range approximately 35-55 seems to play

less of a role than the rest of the standardised time.

Example 7.1.4. Spanish American and Portuguese in the fourth dimension
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Here the relevant frequency regions are relatively easy to read straight from the plot (Figure 7.13)

with 3000-4000Hz appearing to be a key region. This range is in the region of the third formant

and could correspond to differences in lip rounding between speakers of the languages. We can

also see a small artefact in bottom left hand corner similar to that in Figure 7.7, but it does not

appear to be dominating in this example.

The frequency perspective plot does not provide much more clarity in this situation. The time

perspective is fairly consistent with ridges throughout the range with notable peaks around 35,

FIGURE 7.10: Absolute differences of Hadamard products for French and Italian in the third
dimension.

FIGURE 7.11: Frequency perspective of Figure 7.10.
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FIGURE 7.12: Time perspective of Figure 7.10.

FIGURE 7.13: Absolute differences of Hadamard products for Spanish American and Por-
tuguese in the fourth dimension.

85 and 95. In general it appears that the time aspect is less remarkable than the frequency. This

could be a genuine attribute of the spectrograms or could be a result of the time standardisation

and warping in the original registration of the data that could have removed the larger differences

in the time dimension.

The task of interpreting components is often challenging and conclusions are often somewhat



Chapter 7. Applications of Gaussian tree constraints 146

FIGURE 7.14: Frequency perspective of Figure 7.13.

FIGURE 7.15: Time perspective of Figure 7.13.

speculative. However, the methods proposed here are useful tools that assist in assigning mean-

ings to differences in languages in each dimension. Linguistic interpretation should be con-

sidered as preliminary in order to frame further more detailed analyses. Further investigations

are required to determine whether these are general features of the languages or simply of the

particular data set studied. However, in either case, this type of exploratory data analysis pro-

vides a helpful starting point before any more detailed analysis has taken place, especially if the

question of tree model suitability is being considered.

7.1.4 Assessing tree-compatibility of Romance languages

We begin with a straight application of the semi-algebraic Gaussian tree constraints. We con-

sider the positivity constraint (5.1.1) and the tripod constraints (5.4.2) for each of the r = 9

dimensions and report whether or not the inequalities are satisfied. Each constraint is tested
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against every selection of three languages, there being 10 total choices of 3 out 5 languages.

The overall constraint is reported to hold only if all 10 constraints hold as can be seen in Ta-

ble 7.1. Recall from 5.4.3 that the positivity constraint is embedded in the tripod constraint so

the tripod constraint only holds if the positivity constraint does.

TABLE 7.1: Results of testing point estimates against the positivity and tripod constraints for
each of the selected 9 components.

Positivity Tripod
Component Satisfied? # satisfied Satisfied? # satisfied

1 Yes 10 No 5
2 Yes 10 No 7
3 Yes 10 No 5
4 Yes 10 No 3
5 Yes 10 No 0
6 Yes 10 No 3
7 Yes 10 No 4
8 Yes 10 No 1
9 Yes 10 No 2

Applying the positivity constraint to each of the 9 component covariance matrices results in all

of the components (c1, . . . , c9) adhering to the positivity constraint. Yet, none of the compo-

nents satisfied the tripod inequalities. Out of the 10 combinations of languages, the number of

language triples that satisfied the tripod constraint ranges from 0 to 7. At face value we might

declare that a tree model is not an appropriate model for the languages. A slightly more nuanced

conclusion could be that the linguistic features reflected in component 5 are less likely to adhere

to a tree model than those in component 2. This would be based on the fact that component 2

satisfies the tripod constraint for 7 of the 10 induced tripod trees, whereas component 5 satisfies

none. However, this analysis is rather blunt as we are still relying on point estimates. As de-

scribed in Section 6 we can make use of the inverse-Wishart distribution to provide a posterior

probability that the constraints are satisfied and give a more appropriate result than the crude

application above. The results are reported in Table 7.2 for a simulation of 105 samples.

We can see that there is a range of posterior probabilities of adherence to the positivity constraint

despite the previous results indicating adherence. On the other hand, the tripod constraints do

not span a large range: most of the components are entirely rejected for tree-compatibility. The

possibility that a latent Gaussian tree model is an appropriate model seems low for any of the

components. Employing an inverse-Wishart allows us to get a much better understanding of the



Chapter 7. Applications of Gaussian tree constraints 148

TABLE 7.2: Results of simulation from inverse-Wishart posterior declaring posterior prob-
abilities of adherence against the positivity and tripod constraints for each of the selected 9

components.

Positivity Tripod
Component Probability # satisfied Probability # satisfied

1 1.000 10 0.021 5
2 0.990 10 0.002 7
3 0.850 10 0.000 5
4 0.620 10 0.000 3
5 0.242 10 0.000 0
6 0.174 10 0.000 3
7 0.228 10 0.000 4
8 0.110 10 0.000 1
9 0.153 10 0.000 2

tree-compatibility. In this instance, it appears that only the first component could reasonably be

considered as a possible candidate to be modelled as a Gaussian latent tree albeit at an already

low threshold of 0.02.

Let us now consider component 1 as a potential tree and take this exploratory analysis one step

further by also proposing a preliminary tree. Consider the correlation matrix corresponding to

the covariance matrix ΣYi
. For each entry ρjk by making the transformation:

djk = − log((ρjk + 1)/2)

it is possible to apply one of the many existing tree reconstruction methods in the literature. For

example, considering the first component, the UPGMA algorithm [Michener and Sokal, 1957]

produces a tree with topology as shown in Figure 7.16. Observe the similarity to the projection

in Figure 7.3 for the first dimension, where Italian and Iberian Spanish are close in proximity.

FrenchItalian

Iberian Spanish

American Spanish

Portuguese

FIGURE 7.16: Topology of UPGMA generated tree for the first component.
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7.1.5 Exploratory tetrad analysis example: linguistics

A more rigorous assessment of potential trees can be performed for the linguistic data set using

an ETA as described in Section 6.3.

Following on from the previous analysis, we entertain the possibility that component 1 could

plausibly be modelled as a latent Gaussian tree. We sample 105 covariance matrices from the

inverse-Wishart posterior for the sample covariance Σ̂1. Considering the quintet tree (an exam-

ple of which can be seen in Figure 5.2) there are 15 ways to permute the leaf labels and so 15

binary trees to test. In order to test a particular configuration of labels we require a minimal-

sized set of quartets Q that defines the quintet tree (i.e. a minimal sufficient list of quartets

that uniquely define the tree). Recall that Grünewald et al. [2008, Theorem 2.4] provides the

minimum number of quartets required; in the case of the quintet tree this is two. Furthermore,

Semple and Steel [2003, Theorem 6.8.8] provides a method for constructing minimal-sized sets

of quartet trees that define binary phylogenetic trees.

For the dimension of interest, using the sampling distributions given in Section 6.2 and the test

statistic (6.3.1) with two degrees of freedom, a p-value can be calculated for each of the 15

non-isomorphic permutations of languages to leaves. To retain an overall significance rate of

less than α a Bonferroni correction [Dunn, 1961] is applied such that the significance level is

set at α/15. For example, correcting to retain overall 0.05 level means that for each test the

significance level is 0.003. Running the ETA we find that none of the 15 language permutations

are rejected at the 0.05 level (nor at a more stringent 0.01 level) as reported in Table 7.3.

None of the trees are rejected and there are a number of high and similar p-values. If we were

to stop our analysis here we would select tree 2 followed by tree 8 given these have the high-

est p-values. However, we have not exhausted the T5 constraints and so we can utilise the

final set of semi-algebraic constraints: the tetrad constraints. Once again sampling from the

relevant inverse-Wishart posterior 105 times, we produce estimates of the probability of tree-

compatibility using the full suite of semi-algebraic constraints, i.e. positivity, tripod and tetrad

(see 6.1.3). The resulting posterior probabilities of tree-compatibility for the four remaining

trees is given in Table 7.4.
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TABLE 7.3: Results of test for vanishing tetrads for the first component of the linguistic data
set at the 0.05 and 0.01 significance levels. The coding for the trees in column 2 is: 1 = French,

2 = Italian, 3 = Portuguese, 4 = American Spanish, 5 = Iberian Spanish

Tree # Tree p-value Outcome
1 12|3|45 0.476 Do not reject
2 12|4|35 0.525 Do not reject
3 12|5|34 0.491 Do not reject
4 13|2|45 0.483 Do not reject
5 13|4|25 0.478 Do not reject
6 13|5|24 0.387 Do not reject
7 14|2|35 0.311 Do not reject
8 14|3|25 0.520 Do not reject
9 14|5|23 0.376 Do not reject
10 15|2|34 0.341 Do not reject
11 15|3|24 0.363 Do not reject
12 15|4|23 0.389 Do not reject
13 23|1|45 0.398 Do not reject
14 24|1|35 0.285 Do not reject
15 25|1|34 0.451 Do not reject

TABLE 7.4: Posterior probabilities of tree-compatibility using all semi-algebraic constraints
for remaining four trees relating to component 1

Tree # Tree Probability
1 12|3|45 0.006
2 12|4|35 0.012
3 12|5|34 0.002
4 13|2|45 0.000
5 13|4|25 0.000
6 13|5|24 0.000
7 14|2|35 0.000
8 14|3|25 0.000
9 14|5|23 0.000
10 15|2|34 0.000
11 15|3|24 0.000
12 15|4|23 0.000
13 23|1|45 0.000
14 24|1|35 0.000
15 25|1|34 0.000

The highest probability tree is Tree 2 at 0.012 which is displayed in Figure 7.17. This seems

quite low but would not be rejected at the Bonferroni-adjusted 0.01 level. On the other hand,

the previously second highest scoring permutation Tree 8 would be rejected at the 0.01 level. So

having performed the full set of algebraic and semi-algebraic constraint testing the conclusion

of the ETA is that Tree 2 is a plausible GLTM that provides an appropriate description of the

conditional independence relationships given the data.
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For example, from this particular analysis we could hypothesise that the differences in vowel

sounds of Portuguese and French evolved independently conditional on the common ancestor of

Spanish and Italian. In combination with expert judgement, such statements can provide a good

starting points for further analysis of these features in relation to a specified tree.

American SpanishItalian

French

Iberian Spanish

Portuguese

FIGURE 7.17: Topology of highest probability quintet tree for the first component of the Ro-
mance data set.

7.1.6 Alternative analyses

We now repeat some of the same methodology but on the data set that has undergone a copula

transformation and a reduced data set that has excluded selected observations. This allows us to

consider the effect of adopting other reasonable assumptions or adjustments and seeing whether

the results of the analyses differ.

7.1.6.1 Assessment of Gaussianity

The use of CVA is based upon the assumption of Gaussianity, as are the derivations of the

Gaussian tree constraints. While it can be argued that use of these techniques is valid on the

basis that the highest moment of interest is second-order, it may sometimes be preferable to

make an adjustment for non-Gaussian data. Given the use of CVA, here we describe a method

for assessing whether multivariate Gaussianity is inherent in the data set. There are a number

of tests for multivariate normality with differing properties (e.g. type I and type II error rates

[Mecklin and Mundfrom, 2005]). Here we chose to use Royston’s H-test [Royston, 1983] as it is

regarded as having good type I error control and amongst the best power for small sample sizes.

These properties are shared with the Henze-Zirkler procedure [Henze and Zirkler, 1990] which

is also rated as robust test even if the data has strong correlations [Mecklin and Mundfrom,

2005]. Royston’s H-test is a goodness of fit test and an extension of the Shapiro-Wilk test
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for univariate normality [Royston, 1982]. We can employ Royston’s H-test via the MATLAB

package Roystest [Trujillo-Ortiz et al., 2007] on the 219 observations treating each of the

8100 spectrogram time-frequency points as variables. At the 0.01 level, Gaussianity of the data

set is rejected.

FIGURE 7.18: Sample between-language and within-language covariances of speech data for
frequency and time directions.

One approach to addressing the lack of Gaussianity in a data set is to consider the marginal

distributions of the data. It is well known that a necessary condition for multivariate Gaussianity

is that the univariate marginals must also be normally distributed (see Timm [2007, Chapter 3]

for example). While marginal Gaussianity is not sufficient it can aid multivariate Gaussianity.

We perform a copula transform on each of the variables using the function copula.trans

from the R package regpro [Klemela, 2013], which makes each of the marginal distributions

approximately Gaussian. Rerunning Royston’s H-test on the transformed data no longer rejects

Gaussianity. This indicates that the marginal Gaussianity transformation was in this instance

enough to bring the joint density within the limits of normality. Here we compare the results of

the analysis when using the transformed data set.
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In Figure 7.18 we can see that the block structure in the frequency covariances is even clearer

than in the previous analysis (see Figure 7.1). This is considered in the subsequent analysis

in Section 7.1.6.2. Otherwise the covariances appear similar albeit scaled differently by the

nature of the copula transform. We proceed as before, considering a dimension reduction. In

contrast to the previous analysis, the first component only accounts for 12% of the between- to

within-language variation. This could mean that the separability assumption is impacting of the

efficiency or it could simply be that no single component truly can account for a large proportion

of the variance. Considering all the components with greater than 0.75% explanatory power (i.e.

the first 15 dimensions) we proceed with testing the semi-algebraic constraints. Simulating 105

times from the inverse-Wishart posterior we report the results in Table 7.5.

TABLE 7.5: Results of simulation from inverse-Wishart posterior for first 15 components of
copula transformed data.

Positivity Tripod
Component Probability Satisfied? Probability Satisfied?

1 0.999 Yes 0.000 No
2 0.825 Yes 0.000 No
3 0.129 Yes 0.000 No
4 0.397 Yes 0.000 No
5 0.363 Yes 0.000 No
6 0.142 Yes 0.000 No
7 0.146 No 0.000 No
8 0.249 Yes 0.000 No
9 0.111 Yes 0.000 No
10 0.409 Yes 0.000 No
11 0.166 Yes 0.000 No
12 0.144 Yes 0.000 No
13 0.123 Yes 0.000 No
14 0.111 Yes 0.000 No
15 0.000 Yes 0.000 No

We can observe that the positivity constraint once again has a range of posterior probabilities

associated with it, whereas the tripod constraint is very unlikely to hold according to the simu-

lation. Although the components are likely to reflect different combinations of features so that

we cannot automatically compare any two dimensions, it is interesting to note that the eventual

similarly low posterior probabilities are found with both analyses.
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7.1.6.2 Excluding low sample rate observations

Recall Figure 7.1 and Figure 7.18 where it was noted that there appeared to be some artefact in

the frequency covariance plots in the form of a block structure. After closer investigation, it was

noted that some of the recordings (from which the spectrograms were created) were recorded at

a lower sampling rate. By the Nyquist-Shannon sampling theorem [Sujatha, 2010, Chapter 6]

in order to record frequencies at level αHz, the sampling rate needs to be a minimum of 2αHz.

Thus when we are considering frequencies of 8000Hz a sampling rate of 16000Hz is required

to capture the full range of frequencies.

For example, we compare two female French speakers of the word “cinq” and denote them

speakers A and B. Speaker A has been recorded at a sampling rate of 16000Hz whereas speaker

B has been recorded at a sampling rate of 11025Hz. We note that in the spectrograms there is a

difference in the higher frequencies with very little power beyond 5500Hz for speaker B.

FIGURE 7.19: Spectrograms of two female French speakers saying the word “cinq”.

This feature is illustrated even more clearly through the use of frequency analysis. The result of

fast Fourier transforms (FFT) using Hann (or Hanning) windows of size 512 samples [Walker,

1996, Chapter 4] are given in Figure 7.20 and Figure 7.21. There is a clear drop-off in power

for the latter plot. Note the difference in axes ranges and scales.

We identify 38 recordings that are lacking in the higher frequencies. To assess the robustness

of the original conclusions we re-run the analysis excluding these observations. Reviewing the

between- and within-language covariance we can see that there is much less of a block structure

particularly for the frequency direction (Figure 7.22).



Chapter 7. Applications of Gaussian tree constraints 155

FIGURE 7.20: Frequency analysis for French speaker A.

FIGURE 7.21: Frequency analysis for French speaker B.

Proceeding as before, we select a 0.1% cut-off for the explanatory power and project indepen-

dently into 10 dimensions. Together these components account for approximately 97.5% of

the total between-to-within variation. Testing each of the 10 covariance matrices with the first

set of Gaussian tree constraints, we find the same overall conclusion as with the analysis of

the full data set in Section 7.1.6.1 where all the components of interest are rejected for tree-

compatibility. The results are reported in Table 7.6. Comparing the results of the point estimate

positivity test (column 3) with those in Table 7.2 and Table 7.5 we can see that although all



Chapter 7. Applications of Gaussian tree constraints 156

FIGURE 7.22: Sample between-language and within-language covariances of speech data for
frequency and time directions.

TABLE 7.6: Results of simulation from inverse-Wishart posterior for first 10 components of
copula transformed reduced data.

Positivity Tripod
Component Probability Satisfied? Probability Satisfied?

1 0.918 Yes 0.000 No
2 0.923 No 0.000 No
3 0.604 No 0.000 No
4 0.891 No 0.000 No
5 0.157 No 0.000 No
6 0.623 No 0.000 No
7 0.533 No 0.000 No
8 0.303 No 0.000 No
9 0.209 No 0.000 No
10 0.118 No 0.000 No

but the first component fails the positivity test here, the range of posterior probabilities (column

2) is comparable. This indicates the limited usefulness of Gaussian tree constraints as binary

outcome tests.

In the spirit of Section 7.1.6.1, we can perform a copula transform on the reduced data set.

Performing the separable-CVA leads to the selection of the first 10 components being retained
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for projection. The subsequent analyses produce largely similar results to the previous one, with

the rejection of tree-compatibility after the tripod inverse-Wishart constraint testing. This points

to there being some robustness in the conclusions of these alternative analyses with respect to

decisions made regarding transformations and removal of particular samples.

7.2 Yeast data growth curves

7.2.1 Confirmatory tetrad analysis example: biology

We consider a data set consisting of a set growth curves for seven yeast species. These species

have been previously studied in Marcet-Houben and Gabaldón [2009] and there is a purported

phylogeny for the named species (see Figure 7.23) in the form of a tree. However, Libkind

et al. [2011] conclude that yeast species Saccharomyces bayanus is a hybrid involving Saccha-

romyces cerevisiae which would violate the tree assumption. In Warringer et al. [2011] and Liti

et al. [2009] traits relating to growth curves have been used to investigate relationships between

physiological and genetic structure. Positive correlation between growth-related phenotypic

variation and genotypic phylogenetic relationships was reported i.e. some aspects of the growth

curves reflected the genetic description of the relationships between yeast species. With a range

of phylogenetic results in the literature, it is of interest to carry out a CTA to assess whether the

proposed tree structure given in Marcet-Houben and Gabaldón [2009] is reflected in the growth

data. This analysis is not used to determine which of the genetic analyses is correct but rather to

investigate the plausibility or otherwise of aspects of the conditional independence relationships

for growth curves being consistent with the phylogenetic tree presented. We carry out a CTA to

assess whether the proposed tree structure in Marcet-Houben and Gabaldón [2009] is reflected

in any aspects of the growth data.
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S. bayanus

S. kudriavzevii

S. mikitae
N. castellii

K. waltii

S. cerevisiae

S. paradoxus

FIGURE 7.23: Septet tree T7 of yeast species as per Marcet-Houben and Gabaldón [2009].

7.2.1.1 Processing the data set

We consider data consisting of a set of growth curves for seven yeast species: Kluyveromyces

waltii, Saccharomyces bayanus, Saccharomyces mikatae, Saccharomyces kudriavzevii, Saccha-

romyces cerevisiae, Saccharomyces paradoxus and Naumovozyma castellii (synonym: Saccha-

romyces castellii). Each was observed in the same 96 environments, each species with at least

two replicates. The growth is recorded 288 times approximately every six minutes over a period

of just over 26 hours. It is safe to assume that the underlying process is producing functional

data as is assumed for other growth data (e.g. Ramsay and Silverman [2005], Gervini and Carter

[2014]). This assumption appears reasonable when studying the data, for some examples see

some typical linearly interpolated growth plots in Figure 7.24. For this study, we denote the

underlying functions as xl,e,r(t) for t ∈ [0, tmax] where l ∈ {1, . . . , 7} indicates the species,

e ∈ {1, . . . , 96} indicates the environment and r ∈ N indicates the replication (ranges between

1 and 4 with a total of 19 replicates cross all species). Theoretically tmax could be ∞ but in

practice observations will stop at a finite time, in this case approximately 26 hours. The observed

data xl,e,r take the form of vectors of length 288 with growth level recorded at each of the times

tl,r = (tl,r,1, . . . , tl,r,288) (dependent on the species and replicate). The only exception is the

first replicate for S. Paradoxus that is missing 86 of the growth recordings (32 to 117) across all

of the environments. We address this missing data subsequently. The data set can be expressed

as an array of 19× 96× 288.

Having made the reasonable assumption that the data is functional, we decide to fit a spline to

the data such that the entire growth curve is defined rather than just select points. Of course this

will only be an approximation to the true unattainable growth curve. However, the spline should

form a suitable representation given the data if the spline is a high enough order, a sufficient
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FIGURE 7.24: Examples of growth curves for S. Bayanus, replicate r = 1, environments
e = 1, . . . , 6.

number of knots (locations where the spline pieces are joined) are selected, and appropriate

smoothing parameters are chosen. Fitting a spline then allows us to evaluate over all the growth

curves at consistent values, that is tl,r = t∀l, r. It should also help reduce observational noise

by smoothing across observed data. We choose to use a cubic spline (i.e. a maximum of or-

der 3 polynomials between each knot) with smoothing incorporated. We employ the MATLAB

function csaps to carry out the spline fitting. The spline Sl,e,r is constructed by minimising:

ps

288∑
j=1

|xl,e,r,j − Sl,e,r(tl,r,j)|2 + (1− ps)
∫ tl,r,288

tl,r,1

|D2Sl,e,r(u)|2du

where D2 is the second derivative of Sl,e,r and ps is the smoothing parameter which is set to

be constant across all species and replicates. If ps = 0 then the Sl,e,r becomes the line of best

fit through the observed data with respect to squared distance. This is rarely appropriate and

undermines the choice of cubic splines. If ps = 1 then Sl,e,r then we get the regular cubic spline

interpolant. This is usually closer to the desired result, though if the data is noisy then this

condition can be too prescriptive. Through some experimentation, a value of ps = 0.9 appeared

to provide a good compromise in terms of smoothness of the splines and also following the data

sufficiently closely. In Figure 7.25 we can view a comparison of ps = 0.9, 0, 1 for a magnified

section of S. Mikitae, first replicate, 14th environment (l = 1, e = 14, r = 1). This illustrates

that p = 0 is clearly inappropriate as for this latter section the fitted spline does not even go

through the data. We can also see that for p = 1 the spline has tracked the smallest bumps in the

observations. Given that it is questionable that this jitter-like detail is a feature of the underlying
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true growth curves, it is probable that p = 1 is causing the spline to over-fit the data.

FIGURE 7.25: Comparison of smoothing parameters p = 0.9, 0, 1

The spline fitting copes well with missing data simply smoothing over the gap. We are fortunate

that the growth curves appear particularly smooth outside of the missing data range. Also, we

have two other replicates for the species S. Mikitae with which we can compare the fitted spline

to check for any dubious spline sections. Figure 7.26 shows the fitted spline for environment

1 for all three replicates of S. Mikitae. For r = 1 the interpolation seems sensible and this

is backed-up by the other replicates not indicating any unusual features in the growth curves.

This figure is typical when considering the other environments. Another approach to missing

data was tested whereby the splines were fitted for the other replicates and then an average was

taken for the missing data range. This was then adjusted by a constant to shift the curve up or

down to align with the splines for the observed ranges in replicate 1. However, this did not work

well universally and the region of missing data often stood out when the curve shift was too

simplistic. Therefore, although we cannot know what the missing data is we can at least make it

consistent with our assumption that the growth is smooth and so the spline interpolation method

is preferred.

For each of the splines Sl,e,r we can now evaluate at consistent values across species, repli-

cates and environments. Ascertaining the minimum of the maximum of the time ranges tmin =

min
l,r
{tl,r,288} allows us to know the range over which all observations are defined and can thus

be evaluated over. We can then subdivide this range to evaluate the fitted splines at comparable

points. These need not be equally spaced points of evaluation. If regions of the growth curves
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FIGURE 7.26: An example of the smooth cubic spline interpolating the missing data for repli-
cate r = 1 and comparisons with r = 2 and r = 3 that have no missing observations.

are known to consistently fluctuate across observations then more evaluation points can be fo-

cused in these ranges to capture more of the detail. However, the growth curves tend to vary in

shape but also tend not to have intricate details. Thus we decide to evaluate at regular intervals.

Experimenting with differing intervals we opt to evaluate each spline at 81 points, roughly every

20 minutes given that tmin ≈ 26.25 in hours. We then end up with an array of 19 × 96 × 81

where the entries in the columns of the third array dimension are now comparable and hopefully

with reduced noise. We denote a specific selection of species, environment and replicate by the

96× 81 matrixXl,e,r.

Means are calculated for each species and environment pair by averaging across replicates:

X̄l,e =
1

rl

rl∑
r=1

Xl,e,r

where rl is the number of replicates for species l. Similarly for just the mean environment

matrix:

X̄e =
1

19

7∑
l=1

rlX̄l,e.

We then standardise to remove mean environmental effects:

X̃l = X̄l,e − X̄e.
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The next stage is to centre the data at zero and perform a PCA (see Section 3.5.1) across species

and environments. As the mean environmental effects have been removed we consider all 672

observations together for the PCA. The PCA identifies the core variability of the growth curves.

The first four dimensions are found to account for over 99% of variability. For each of the mean

species projections in these dimensions, the sample covariance matrix is constructed.

To investigate the meaning of each of the dimensions we can plot the coefficients (effectively

normalised eigenvectors) relating to the first four components. These are shown in Figure 7.27.

We can see that the eigenvector relating to the first component mostly accounts for variation in

the latter half of growth curves. The second eigenvector accounts for variation in the middle of

the growth curve with opposite sign from about 18 hours onwards. Coefficients for dimension

3 indicate that between 10 and 20 hours the sign is negative whereas outside of this range the

sign is positive. Finally, the fourth dimension eigenvector is approximately sinusoidal crossing

y = 0 at around 5 hours, 13 hours and 22 hours. Note that in this way, studying the coefficient

plot helps us assign a broad interpretation of each principal component.

FIGURE 7.27: Interpolated plots of the coefficients relating to the first four principal compo-
nents.

If we require more detail we can plot the Hadamard product of a coefficient and the centred data.

For example, consider the mean observation for each species in the third dimension. Figure 7.28

indicates the mean contribution of each part of the growth curve to the overall score for the mean

of each species. The scores for dimension 3 for the seven mean species ranges from -0.07 for S.

Mikitae to 0.10 for S. paradoxus. Yet the plot indicates that for most of the time period neither of

these species is the maximum or minimum. Considering K. Waltii we can see that from about 10

hours onwards this curve either bounds above or below the rest of the species’ curves. However,
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given the overall score is -0.05, it is clear that these two ranges are in part cancelling each other

out. In conjunction with the third dimension coefficient curve from Figure 7.27 we can ascertain

that on average the zero centred K. Waltii growth curves were positively values between 10 and

21 hours and negatively valued beyond 21 hours. This is deduced by considering the sign of the

third eigenvector in comparison to the sign of the mean contribution. Together these two plots

can be used to explore the meaning of any particular dimension of projection.

FIGURE 7.28: Interpolated plots of the Hadamard product of the coefficients relating to the
third principal components and the mean of each species.

7.2.1.2 Performing a CTA

Before implementing a CTA (see Section 6.3) it is good practice to assess the positivity and

tripod constraints. These assessments can often be easier to undertake and if they are found

to reject tree-compatibility then there is no need to proceed with the CTA. Using the inverse-

Wishart approach specified in (6.1.2) it seems that none of the first four dimensions satisfy

both the constraints. The highest posterior probability is 0.008 which is probably low enough

to dismiss tree-compatibility. Making that judgement, it would be pointless to proceed with

CTA. However, the analysis does not have to stop here as we can also consider subsets of the

seven species to assess them for tree-compatibility with respect to the tripod constraints (and by

implication the positivity constraints). We assess subsets of 5 and 6 species, thus if just one or

two of species are responsible for violating the tree inequalities we will be able to tell.

We find that there are a few subsets of five species for which the posterior tree-compatibility

probability increases to a level worth investigating further. The most notable of these is the

exclusion of N. castelli and S. paradoxus which reports posterior probabilities for the first four
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components as 0.302, 0.021, 0.184, and 0.029 respectively. The cut-off level is as before subjec-

tive, but here we decide to consider the first and third components further via CTA. The results

indicate that the first dimension is not compatible with a tree at the 0.01 level, whereas the third

dimension does not reject the tree hypothesis having a p-value of 0.337. As discussed in Sec-

tion 6.3, the selection of quartets for CTA are not unique, but often there is a reason to prefer one

choice over another. Here we selected by using the quartets that were informed by the most data

observations (i.e. the most replicates). As a robustness check we consider the other combina-

tions and find that the same conclusion are reached at the α = 0.01 level. We can now proceed

with a final evaluation of the tree shown in Figure 7.29 (induced by the removal of N. castelli

and S. paradoxus). We consider the tetrad semi-algebraic constraints for the third dimension

given the topology of the tree.

S. kudriavzevii
S. bayanus

K. waltii

S. mikitae

S. cerevisiae

FIGURE 7.29: Quintet tree T5 of yeast species as per Marcet-Houben and Gabaldón [2009]
with N. castelli and S. paradoxus removed.

By simulating 105 samples using the inverse-Wishart distribution, the CTA for T5-compatibility

(see Figure 7.29) gives p-values of 0.721 and 0.955 for the first and third components respec-

tively. To double check these results we repeated the test using the bootstrapping strategy out-

lined in Bollen and Stine [1992], which is more robust to small sample sizes where the distribu-

tion of the test statistics is not known. This technique transforms the data set using the maximum

likelihood estimate of the covariance under the null model T5. Bootstrapped samples are taken

and the distribution of the test statistic under the null is then estimated. The results are very

similar with p-values of 0.729 and 0.921 respectively. The CTA and inverse-Wishart simulation

results both give upper bounds on T5-compatibility, but on balance we conclude that the first

and third components are T5-compatible. Therefore, the class of GLTMs does appear suitable

for modelling the subset of the seven species for some aspects of these yeast species’ growth

curves. However, for features relating to components 2 and 4, there is some evidence to support
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the exploration of a wider model class that would allow for the hybrid hypothesis described in

Libkind et al. [2011].

7.3 Discussion

These applications illustrate the implementation of the full set of latent Gaussian tree constraints

in practice. They demonstrate that particular constraints are useful for different scenarios or

aims. The semi-algebraic constraints tend to perform well as exploratory steps to check the

appropriateness of a tree model search whereas often the algebraic constraints are performed as

a follow-up to the semi-algebraic constraints. Primarily this is because the associated algebraic

methods are more time-consuming to set-up than the semi-algebraic tools and thus this imple-

mentation order is sensible. The range of tools adds to the versatility and overall usefulness of

having identified the complete correlation space of GLTMs.

The complete semi-algebraic structure of the correlation space has not been utilised elsewhere

for assessing tree-compatibility of data (only the positivity constraint has been used previously,

see Shiers et al. [2014]). Incorporating a prior (such as the inverse-Wishart) and sampling from

the posterior distribution allows for probabilistic conclusions about the model. It provides a

more nuanced answer than a simple assessment of inequalities via the plugging in of covari-

ance point estimates, and allows two or more incompatible but plausible trees to be considered

relative to one another. Whilst the tetrad constraints have been known previously, their use in

combination with the semi-algebraic constraints is novel and allows for a more critical analysis

of proposed trees.

In the linguistic application, we have demonstrated a method for isolating and identifying distin-

guishing aspects of variability in acoustic functional data which may be of evolutionary interest.

It shows that it is possible to identify prominent features which render particular components

effective for distinguishing the language groups. However, it also highlights the challenge of

precise physical interpretation of particular components, a task which appears notably more

complex due to having both a time and a frequency dimension. It would be of interest to express
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these differences back in the sound domain, although given the difficulties in inverting spectro-

grams to sound, this is not a trivial task. However, it is the subject of ongoing work, including

experiments with other parametric acoustic representations that are more easily inverted.

In the yeast species example, we illustrated how given a candidate tree we can give a thorough

assessment of tree-compatibility via the semi-algebraic tripod structure but more specifically us-

ing CTA and the tetrad inequalities. The implementation of CTA was noticeably more straight-

forward compared to ETA once the moment estimators had been constructed as there was only

one candidate tree to consider. The interpretation of the principal components was less chal-

lenging than the canonical components in the linguistic example. This was in part due to PCA

optimisation having a single aim whereas CVA optimisation is relative regarding between- and

within-group variation. Furthermore, in these particular examples the 2-dimensional nature of

the linguistic data was inherently more challenging than the 1-dimensional growth curves.

An important practical consideration is the scalability of these methods. Techniques employing

the semi-algebraic constraints can be adapted to larger number of variables reasonably well.

In comparison, ETA does not scale well as the number of variables increases the number of

permutations of leaves and the number of trees grows exponentially. Thus ETA is used most

appropriately on small data sets or subsets of larger models where extra resolution is required.

CTA is more manageable as although it can have a significant initial cost for larger trees, once

established implementation is generally viable. The limiting factor for CTA is likely to be

the computational costs of constructing covariances of quartets. This can be addressed in part

through smart programming that makes use of symmetries and sparseness of the matrices.

A further consideration with tetrad analyses is that the selection of the quartet set used for testing

is not unique. Identifying the minimal defining sets can be challenging, but moreover, there may

not always be an obvious reason for selecting one minimal defining quartet set over another. For

reasonably sized problems structural equation modelling software can be used to automate the

process of finding linearly dependent tetrads, and consequently minimal defining quartet sets. In

such cases it is recommended that at least a some of these alternative sets are randomly selected

to assess the sensitivity and robustness of the results.

Overall, these tree constraint methods are most effective as supplementary tools that can provide

an opportunities to reduce model search time and to critique the output of model searches. The
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latter point is of particular relevance as although model searches employ a range of selection

criteria and weightings they may often induce bias, for example through greedy algorithms.

A CTA is based on the unavoidable underlying structure of the space and thus adds a final

probabilistic check on proposed models.



Chapter 8

Discussion

One of the main contributions of this thesis is the derivation of the complete set of Gaussian

tree constraints. Furthermore, the proposed associated methodology turns these theoretical re-

sults into practically useful tools. This is demonstrated through an application to a linguistic

acoustic data set originating from speakers of certain Romance languages. Apart from a new

suite of tools for assessing tree-compatibility, the example is particularly interesting due to the

nature of the data set. The use of acoustic functional data offers a fresh approach to considering

the relationships between languages, potentially offering new insights. The nature of this ap-

proach means that an extensive range of existing knowledge and tools has been drawn upon. But

furthermore, it has been necessary to develop the novel and powerful tools separable-CFA and

separable-CVA in order to overcome the common problem of the number of variables exceeding

the number of observations. The linguistic example has been supplemented by phylogenetic ex-

amples in order to demonstrate the versatility of the techniques and illustrate how the results can

easily be carried across to other domains. The approach taken in this thesis is just one way of

analysing functional data with hypothesised latent structure. The methods used were governed

by what was currently feasible, what could realistically be developed and of course the inferen-

tial needs of the problem. These are clearly not the only ways to analyse such problems and had

another application been the focus then alternative methods may have been selected.

Looking forward to potential directions of research, an obvious extension of this work is to the

multivariate Gaussian domain. However, obtaining the complete description of the space is non-

trivial and ongoing work. Furthermore, some constraints in higher dimensions are more difficult
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to interpret from a practical point of view as they can involve restrictions across dimensions

and across variables simultaneously. Alternatively, a generalisation from Gaussian to other el-

liptical distributions would be very useful if possible and would relax the level of distributional

assumptions that are required.

The linguistic application was the driving force for this thesis and in the process of finding an

appropriate way of analysing the data, a whole framework of methodology was constructed.

Yet clearly the linguistic application was merely the first venture using this approach and there

would be much to be gained from further analyses. For instance, the linguistic data set could be

extended in terms of sample sizes, the number of unique words recorded and even the number

of languages. Finally, it was the combination of statistical and linguistic expertise that allowed

us to make the most progress in understanding our data set. Therefore, it is essential to continue

this collaboration in order to extend and improve upon this framework, with the eventual aim of

providing new perspective on language relationships that are disputed.



Appendix A

Explicit representations for the

G-Wishart

Here we provide explicit representations of the marginal likelihood, the log-likelihood and the

derivative of the log-likelihood, the latter indicating that numerical methods are required to

determine the maximum likelihoods estimate of δ as l′(δ) contains the PolyGamma[z] function

(see Cuyt et al. [2008] for example). Note that here |·| represents determinant applies toD andU

but cardinality when applied to C and S. Elsewhere in the thesis det(·) represents determinant

whereas | · | remains cardinality.
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Summary tables for Section 4.3.4

TABLE B.1: Number of violations for n = 500 and simulation of 104 repetitions.

# of violations Tree I Non-tree I Tree II Non-tree II
0 0 2 0 4

1-3 0 1821 0 195
4-6 240 1821 87 1338
7-9 2174 3429 1102 3023

10-12 4137 3003 3447 3331
13-15 2845 1281 3824 1770
16-18 576 217 1458 330
19-20 28 8 82 9

TABLE B.2: Number of violations for n = 883 and simulation of 104 repetitions.

# of violations Tree I Non-tree I Tree II Non-tree II
0 0 40 0 20

1-3 0 1377 0 925
4-6 1375 3846 591 3034
7-9 4720 3294 3086 3448

10-12 3118 1238 4066 2043
13-15 735 197 1930 494
16-18 52 8 320 35
19-20 0 0 7 1
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TABLE B.3: Number of violations for n = 1500 and simulation of 104 repetitions.

# of violations Tree I Non-tree I Tree II Non-tree II
0 0 249 0 141

1-3 0 3599 0 2406
4-6 4208 4428 2124 4054
7-9 4768 1506 4733 2521

10-12 955 208 2565 780
13-15 67 10 531 93
16-18 2 0 47 4
19-20 0 0 0 1

TABLE B.4: Number of violations for n = 5000 and simulation of 104 repetitions.

# of violations Tree I Non-tree I Tree II Non-tree II
0 0 2916 0 1910

1-3 0 6461 0 5814
4-6 9658 615 8572 1950
7-9 342 8 1333 310

10-12 0 0 90 16
13-15 0 0 5 0
16-18 0 0 0 0
19-20 0 0 0 0
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H. Kučera and W. N. Francis. Computational analysis of present-day American English. Brown

University Press, 1967.

J. Kupiec. Robust part-of-speech tagging using a hidden Markov model. Computer Speech &

Language, 6(3):225–242, 1992.

H. O. Lancaster. The Chi-Square Distribution. John Wiley & Sons, 1969.

P. Lancaster and M. Tismenetsky. The theory of matrices. Computer Science and Applied

Mathematics. Academic Press Inc., Orlando, FL, second edition, 1985.

S. L. Lauritzen. Graphical models, volume 17 of Oxford Statistical Science Series. Oxford

University Press, 1996. Oxford Science Publications.

C. M. Lee, S. Narayanan, and R. Pieraccini. Recognition of negative emotions from the speech

signal. In Automatic Speech Recognition and Understanding, 2001. ASRU ’01. IEEE Work-

shop on, pages 240–243, 2001.
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