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Abstract

We model a railway network in terms of the flow of trains, and of
memory of how long crews have been on duty. We impose limits at stations
on the throughput of trains, the duty time of crew, and the availability
of fresh crew. In the regime where the traffic is limited by crew renewal,
we find the system is linearly unstable with respect to spatial fluctuations
leading to lengthenning queues of trains. Numerical simulations show
that this instability can lead to a collapse in service in which nearly all
the trains are trapped queueing at a minority of stations.

1 Introduction

The general idea that a network service becomes surprisingly prone to failure [1]
when it has multiple interdependent flows has received conisderable attention in
recent years, under the general theme of a Net-of-nets. We model a railway in
terms of three key attributes: the infrastucture of tracks and stations, the trains
running over this, and the crew staffing the trains. Service to passengers could
break down due to failure in any one of these, but what we find under further
model assumptions is that it is most vulnerable to a catastrophic instability as-
sociated with coupling between crew availability and train flow. This instability
is associated with an inverted relationship between mean field flow rate and
train numbers, which occurs when crew availability becomes the limiting factor.
There exist railway network models with much higher levels of detail [2], but
our prupose lies in exposing the big picture such that links to other problems
beomce apparent.
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We consider an interconnected network of stations which for simplicity we
take to form a square grid with nearest neighbour connections. Each station 7 is
characterised by a limiting capacity A; being the number of trains it can admit,
platform and despatch per unit time. Arrivals in excess of capacity lengthen the
queues of @; trains held (just upstream of) each station. Each station is also
presumed to have a limited supply of fresh train crew, sufficient to re-crew Cj
trains per unit of time. Each train requires a unit of crew to run, and there is a
limit on the time for which crew can serve until they are replaced by fresh crew:
specifically we require that the trains leaving each station at any given time
have crew with average time of service less than s.. We will generally assume
that s, > 1 so that crew can serve for multiple stops, and correspondingly that
C; < A;.

We analyse this model in a hydrodynamic limit, meaning that we work in
terms of numbers of trains and fluxes of trains instead of tracking individual
units. The numbers and fluxes of crew simply follow those of the trains, but we
need to separately model the local totals and fluxes of accumulated crew service
time.

For simplicity we work with a discrete timestep and we assume this absorbs
the transit time between adjacent stations. We exactly solve the uniform case
of the model and find that the fundamental diagram relating train flow to train
numbers has three regimes corresponding to limitation by infrastructure, trains
and crew respectively. Spatially resolved stability analysis shows that only the
latter is unstable, and that it is always so. Simulations of an elaboration of
the model reflect the theory, and show that the instability of the crew limited
regime leads to service collapse. Simulations also show that the collapse can
be triggered from the linearly stable regime by non-zero noise amplitude in the
station capacities.

2 Model in Detail

We first describe the model without detail of how trains are routed, as for our
theoretical calculations this is sufficient.

At time t each station receives its inbound trains which added to its inbound
queue, give a total load

Lj(t) = Q;(t — 1) + I;(t) (1)

where I;(t) = >, ,eighbouring j Jij (¢ — 1) and Ji;(t — 1) is the number of trains
despatched from i towards j at preceding time ¢ — 1. These loads have the
convenient property that they sum to all the trains in the system. We have
analogously a loading of staff-service-time comprising a queued contribution
and an inflow, plus an extra one unit of service time elapsed per train in the
local load:

LS() = QS(t = 1) + I3(t) + L ). (2)



The average service time of the crew at station j is now

sj(t) = L7 (t)/L; (t).

We now assume the station seeks to maximise its outflow of trains J;(¢)
subject to this not exceeding either the available load L;(t) or the station train
capacity A;(t), or the limit of crew service time on the outgoing trains, s. >
st = JJS (t)/J;(t). Making maximal use of fresh traincrew leads to an outflow
of crew servicetime given by st(t) = s;(t) (J;(t) — C;) and hence we obtain
J;i(t) < C;/ (1 —s¢/s;(t)) which only applies when the denominator is negative.
We can collect all of these resutls together as

r 1 1 1—sc/55(t)
s = (o o e ™) )

which correspond to being locally limited by trains, infrastructure and crew
respectively.
The minimal corresponding outflow of staff service time is given by

_J0 Jj(t) < Cj
70 = { () (50— Cp) (1) > C, (4)

and we note that in the crew limited regime the latter simplifies to JJS (t) =
SCJ]' (t)
Finally we retain the balance of the loads in queues, that is

Qj(t) = L;(t) — J;(t), - (5)
and less trivially

Q7 (t) = L7 (t) — s(t) J;(t) (6)
where the decrement takes account of crews refreshed. Note also that in practical
simulations the same variables can be used to hold both queues and loads.

2.1 Elaboration of train routing

The outbound direction of a train will depend on its route, which for simplicity
in our simulations we take to be determined solely by the inbound direction. At
each station we now need to keep separate queues and loads for each inbound
route, but we pool the staff on the grounds that these could be swapped between
trains. We then calculate the achievable pooled outflows of trains J;(¢) and staff
service Jf(t), and divide these over the outbound routes in proportion to the
distribution of train loads held.

3 Mean field results and Fundamental Diagram

We now consider the case where the system is and remains homogeneous. Start-
ing from initial values of the loads L and L° we have conservation of the train



load L and hence the only dynamical variable is L°. The update of the staff time
load is given from Eq (2) using the queue from Eq (6) as (L%)" = L® —sJ+J%+L,
which in terms of s = L®/L becomes

s'=s(1—J/L)+J%/L+1

where J is determined by eqn (3) and J° by eqn (4). For J > C we can
substitute Jg = s (J — C) from Eq (4) leading to

s'=s(1-C/L)+1,
where given that C/L < C/J < 1, this is a stable recurrence converging to
s=s"=L/C>1.

This fixed point has the simple interpretation that the decrease in aggregate
servicetime due to refreshing at the crew capacity s*C = L balances the increase
due to servicing the load for one timestep. The only alternative scenario for the
recurrence of s is J < C for which Jg = 0 : then assuming C' < A the only
reason to encounter this regime is that the flux is train limited with J = L < C,
which leads to the immediate fixed value s’ = 1.

Having found the fixed points for s we can now find the corresponding steady
state fluxes from Eqn (3) using s = L/C for the crew limited regime and hence

1 1 1 1
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This is what is known in road traffic literature as the Fundamental Diagram|3,
?], in that it tells us the traffic flux as a function of traffic density reresented
here by L. In the present case the middle infrastructure regime will only arise
it A < (1+ s.)C; otherwise there is a direct transition from the train limited
regime to the crew limited regime at L = (1 + s.)C. Note that for the steady
state crew limited regime this implies s = L/C > 1 + s., where the offset by
1 arises because the constraint on crew service time is applied when trains are
despatched whereas we measure the overall average s one time unit later when
trains have arrived.

4 Spatial Instability

For the crew limited regime, our uniform flow Eq (7) shows decreasing flow for
increasing density of trains. For one dimensional flows such as a single carriage-
way road traffic, it is very well known that where such a law applies locally the
flow will exhibit spatial instabilities. Whilst our model is two dimensional with
more complex local response due to coupling of trains and crew, we nevertheless
find instability as follows.

For simplicity we consider the highest wavevector in the first Brillouin zone
for our square lattice of stations, corresponding to spatial antiphase between
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Figure 1: The Fundamental Diagram for flow vs load of trains, when all is strictly
uniform. The three regimes are limited by available trains, station capacity and
crew respectively from left to right, although the middle regime only occurs for
station capacity A < C(1+s.). Note that the crew limited regime has negative
slope of J vs L leading to the expectation that it could be unstable, as found
in section 4. The dashed horinzontal line corresponds to the asymptote of the
crew limited regime and is found to play the role of a tie line between the two
loads with flux J = C.

nearest neighbour stations, a chequer board mode. We work to linear order in
perturbations §L etc about the uniform solution for the crew limited regime.
The analysis of this mode differs from the uniform case only in that the loads
L can now have perturbation amplitudes,and that the outgoing and incoming
fluxes no longer cancel as they carry different chequer board signs. The new
equation for the train load pertrubation is then

SL' =8L — 6J° + 6J"™ = 6L — adJ

where ¢J is the locally calculated amplitude of the outgoing flux and o = 2 for
the checker board mode with a = 0 for a uniform perturbation as a check. The
corresponding equation for the loading of crew service time is

(6L5)" = 6L° — 205,80 — Cds + 8L/
and the perturbation of the flux is given by

Sc

5J)J =~

ds/s.

§— S¢

In terms of new amplitude variables dz; = iéL/L and 0y = 0s/s = 0L° /L5 —
dL/L we then find 2’ = M.5x where the matrix of coefficients is given by

1 of 1
L s—s.
Merew limited = Se 1 C ad sc 1 1 :
L + L s

s S—Se



It is easily checked that for o = 0 we recover eigenvalues 1 — € for s and 1

L
corresponding to conservation of L. For the checkerboard mode we set a = 2
and the matrix takes the form M =TI + 2 § where pq = %% > 0 for

s > s¢, and one its eigenvalues will always be bigger than unity, meaning that
the mode is always positively unstable in the crew limited regime at finite load.
The system approaches neutral stability as L — oo.

The above analysis is readily adapted to the train limited and station capac-
ity limited regimes, and we find no linear instabillity in these regimes. Where
the system is train limited we have

M ( 1- 2« 0 )

train limited — 1 200J 1+s, in(C,L 5
begl(1- ) - mefol

which is at worst neutrally stable. Where it is station limited the train fluxes

are unperturbed and we have the same stability for checkerboard and uniform

modes, with

0 0
Mssation limited = < 0 1_¢ ) -
L

The above results imply there is possible coexistence at flux J = C between
load L = C in the train limited regime and limitingly large load L — oo in the
crew limited regime, both of which are at least neutrally stable in the analysis
above. This is shown as a tie line in Fig (1)

5 Simulations with Noise and Instability

To explore the full impact of instability we have explored simulations where the
initial conidtion corresponds to a uniform steady state solution but the evolution
included small independent random fluctuations in the staff capacity to feed
instability. These were drawn independently from the uniform distribution at
each time and station (white noise in time and space), with zero mean and
amplitude characterised as a fraction of the mean staff capacity.

Figure 2 shows the evolution of a simulation expected to be unstable and
duly proving so. The longer time behaviour shows coarsenning in which station
queues become concentrated on a decreasign minority of sites. The total number
of trains caught in these queues is non-decreasing but does saturate, as can be
seen from the graph of the fraction of trains moving with time.

The limiting fraction of trains moving has a very simple explanation in terms
of equilibrium between highly queued sites, which will emit a flux of trains
Jumit = C set by their capacity to send out trains with entirely fresh crew,
and the remaining majority of stations which then operate at this same fresh
crew only flow rate in a train limited manner without queues. Thus we expect
the fraction flowing to be C/L and the observed asymptotes are consistent with
this.

The above interpretation implies that isolated and persistently highly queued
sites are not dependent on noise once established. As such we might expect that
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Figure 2: Unstable evolution for a simulation where the load L is 10% into
the crew limited regime from a station limited regime, and with 10% noise in
the station capacites. (a) shows the station queues after 30 timesteps, where
in the projected view blue is low (no queue) and orange high; the influence of
checkerboard instability can be seen. (b) shows such a simulation out to 1000
timesteps, together with a graph of the fraction of trains moving vs time. The
queues become more concentrated on fewer stations and the fraction of trains
moving levels out at a value much lower than the inital value from the uniform
case. These simulations used a 33x33 grid of stations with periodic boundary
conditions slewed by one unit so that trains were not trapped in a single row or
column. The parameters were s, =5, C =2, A =7 and L = 15.4 where the
latter is 10% into the crew limited regime.
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Figure 3: (a) Late nucleation of service collapse for a simulation with load 5%
below transition from station limited to crew limited. The initial fractional
flow matches the uniform solution, and the later value the fresh crew only limit
C/L. Parameters s, =5, C =2, A =7 and L =13.3. (b) Service collapse for a
simulation with load 1.5% below transition from train limited to crew limited.
Parameters s. = 5, C = 2, A = 70 (effectively infinite) and L =11.8.

noise can nucleate the system into such a state even from a stable regime and
instances of this are shown in figure 3. Nucleation appears to be harder from
below the train limited to crew limited transition than for the transion from
station limited, but both are observed.

Discussion

Our key result is that as the availability of train crew becomes rate limiting on
how many trains can be despatched, the resulting delays to trains feed back on
this unstably due to expiry of limited crew service time. This occurs despite
our model fixing the number of trains, which already implies that as trains run
slower due to delays the service frequency is being reduced by cancellations:
this is the reason we do not see instability within the homogeneous solutions
themselves.

Our model does not include some features which are important for regular
service running but we would argue become unimportant as the system comes
under stress and trains are running late and/or short of staff. The first is
timetable keeping and any slack in train running capability which this has built
in, which has effectively all gone by the stage when station capacity or crew
availability limits service. A second is the availability of accumulated unused



crew at stations: drawing this down could serve as a short time buffer but only
the supply rate of new crew can sustain a steady state.

Some layers of management are implictly included in our model but others
not at all. Our station capacities do provide a reflection of what local train
management at the station level delivers in terms of track switching and platform
allocation, whereas higher level interventions such as rerouting trains are not
modelled. Similarly on the crew side, we have assumed a fixed distribution of
the supply of fresh crew but not taken account that management might direct
crew to travel to different stations where they were more needed.

The Fundamental Diagram of train flow vs train number density plays the
same role in our problem as does an isotherm giving pressure vs density for
particles in a fluid. In both cases negative slope is the hallmark of instability, and
two phase regions emerge where states at same respectively flow and pressure can
coexist, whihc is all well appreciated in the traffic literature. What is different
about the train problem is that we have coexistence beween a low density bulk
and islated very high density sites rather than between two bulk regions. This
is because the high density phase only approaches stability as its density tends
to infinity, and any extended region of it with finite density is unstable. The
result might more accurately be described as a dilute microphase than a two
phase region.

We have seen that modest fluctuations in the supply of crew can nucleate
the service collapse regime even where the system remains on average stable,
and it remains to be explored just how far the possible analogy with the role
of temperature might be taken. We would further expect that the full rangle
of possible collapse regime, which means all of the tie line between L = C and
L = oo, can also be reached by system histories other than ambient fluctuations.
Once reached these states are expected to be stable and hence persistent just like
any thermodynamically stable two phase region, although they should coarsen
over time with the dominant queues focussing on fewer sites and ulimately just
one.
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