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Abstract

Cloud computing has provided the convenience for many IT-related and tradi-

tional industries to use feature-rich services to process complex requests. Various

services are deployed in the cloud and they interact with each other to deliver

the required results. How to effectively manage these services, the number of

which is ever increasing, within the cloud has unavoidably become a critical issue

for both tenants and service providers of the cloud. In this thesis, we develop

the novel resource provision frameworks to determine resources provision for

interactive services. Next, we propose the algorithms for mapping Virtual Ma-

chines (VMs) to Physical Machines (PMs) under different constraints, aiming to

achieve the desired Quality-of-Services (QoS) while optimizing the provisions in

both computing resources and communication bandwidth. Finally, job schedul-

ing may become a performance bottleneck itself in such a large scale cloud. In

order to address this issue, the distributed job scheduling framework has been

proposed in the literature. However, such distributed job scheduling may cause

resource conflict among distributed job schedulers due to the fact that individual

job schedulers make their job scheduling decisions independently. In this thesis,

we investigate the methods for reducing resource conflict. We apply the game

theoretical methodology to capture the behaviour of the distributed schedulers

in the cloud. The frameworks and methods developed in this thesis have been

evaluated with a simulated workload, a large-scale workload trace and a real

cloud testbed.
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CHAPTER 1
Introduction

The growing Internet enriches our social activities and modern business in many

aspects, and the fundamental core supporting all those Internet-based technolo-

gies is defined as “cloud computing” [7]. This emerging technology has evolved

the IT industries, because it not only provides the convenience and flexibility

for individual developers or startup companies to build their products at a min-

imal cost, but also extends the commercial successes to the large enterprises by

leasing their infrastructure and services. Over the last few years, many non-

IT related industries, such as NASADQ and Lamborghini [99], have benefited

from the cloud in developing their products without the need of maintaining the

expensive IT infrastructures, whilst those IT enterprises which provides cloud

services, such Google, Amazon and Microsoft, have profited financially from the

cloud marketing at an unprecedented scale of over $20 billions [86].

Despite the rapid development of cloud computing, it rises the complexity

and challenges in academia and industry, especially on resources provision, VM

placement and scheduling in the cloud. Mastering these aspects with the aware-

ness of the different potential issues becomes one of the most critical research

topics in the further advance of cloud computing.

1.1 Resource Provision

In the cloud system, a number of services are often deployed in a collection

of VMs. Services interact with each other and the interaction patterns may

be dynamic, varying according to the system information at runtime. These

impose a challenge in determining the amount of resources required to deliver a

desired level of QoS for each service. Inaccurate resources provision incurs either

1



1. Introduction

budget waste on unnecessary resources or businesses penalty by breaking the

required QoS. The research of resources provision is important as it is directly

related to services deployment in the cloud.

Cloud tenants rent resource and services to build their IT platform for pro-

cessing their daily businesses. For example, British Gas [99] uses Amazon Web

Services Elastic Computing Cloud (AWS EC2), AWS Relation Database Service

and AWS Simple Storage Service to build their data centre infrastructures to

store their daily business data. AWS Auto Scaling automates the scaling of the

VM resources as the requests increase. AWS Elastic Load Balancing distributes

their daily traffic across VMs. Moreover, the deployed services within the cloud

are hosted by a collection of VMs, which are allocated across PMs in the data

centres. When the external requests arrive, the deployed services interact with

each other, which essentially forms a workflow, to deliver the final results.

Another example of interacting cloud services is NASDAQ QMX, the largest

stock exchange company in the world, has been developing their data analysis

services on AWS [101]. The data analysis services receive and analyse the com-

panies’ financial data submitted by the tenants, and reduce the analysis results

such as profit trends, investment risks and so on. The data analysis process may

not be completed by a single service, but may involve a collection of interact-

ing services, which are implemented through the standard services provided in

the Amazon cloud, such as Amazon simple Storage Service (S3), Amazon Vir-

tual Private Cluster (VPC), Amazon Elastic Compute (EC2), Amazon Direct

Connect (DC) and Amazon Elastic MapReduce (EMR), etc.. The invocation

relations of these services are illustrated in Figure 1.1, in which a top part of

the figure shows a standard workflow of tasks that may be executed during

the data analysis process, and the bottom part shows the Amazon cloud and

the services deployed in the cloud. The green dash lines show which service a

task in the workflow invokes. When a tenant wants to analyze the data, it first

invokes the S3 service to upload the financial data to S3, which is task T1 in

the workflow. Then task T2 invokes Amazon EC2 to start a number of Virtual

2



1. Introduction

S3
EC 2

VPC

AWS Direct Connect EMR

T1: 
Upload data

T2: 
Start cluster of VMs

T3: 
Create private network

T4: 
Create Distinct Data

T5: 
Mapreduce analysis

T6: 
Store results

Amazon Web Services Cloud

Figure 1.1: The workflow of interactive services

Machines (VMs) to support the services required by the following tasks in the

workflow. After T2 is finished, Task T3 invokes the VPC service to create an iso-

lated network for the VMs that support a particular service. In the meanwhile,

Task T4 calls the DC service to place the data from the tenant in a distinct

storage container (so that the data are separated from other tenants’ data) and

implement a dedicated network connection from the tenant to the data. After

T3 and T4 are completed, T5 invokes the EMR service and uses the mapreduce

method to generate the analysis results. Finally, T6 invokes the S3 service again

and stores the analysis results in S3.

Note that we call the above workflow a standard workflow of tasks. This is

because some tasks (and services) in the workflow may not be run depending

on dynamic system information/state at runtime. For example, T1 (and service

S3) may not be run if the data to be analyzed is already in S3 for the current

tenant who is initiating the data analysis process. After T2 is finished, whether

T3 is run depends on the performance and security need of the current tenant.

3



1. Introduction

Also whether T4 has to be performed may depends on whether the data contain

security-sensitive information or the current tenant conflicts with other tenants

in the system. Further, when the services interact with each other, data may

be communicated between them. The red line in Figure 1.1 represents the

communication relations amongst the services during the data analysis workflow

to create the separate networks for VMs. Also the data stored by the S3 service

needs to be sent to EMR service to perform the mapreduce operation. As can be

seen from the above discussions, we may not always know the actual invocation

workflows across multiple services in the cloud. Similar observations have also

been made in [16, 70].

In addition to the above data analysis requests spawning a workflow of the

service invocations, there may be other requests that are also invoking these

standard services in the Amazon cloud, either through a single invocation from

an external tenant (external requests) or through the invocations spawned by

other services inside the cloud (internal requests). For example, a request is sent

to the S3 service to upload the data for other purposes and is irrelevant to the

above data analysis process. Due to the dynamic interaction relation among the

services, which are demanded by the mix of the external and internal requests, it

is a non-trivial task to determine the suitable amount of resources for supporting

each service so as to deliver the desired QoS. This situation also exists in many

other application domains when their services are deployed in the cloud, such

as video transcoding [100], TV program production [27] and so on.

1.2 VM Placement

Virtualization is a core technology in cloud computing, which is the key for

providing the flexibility and isolation to cloud tenants in terms of using the

machine resources, such as CPU cores, memory, disk storage and bandwidth.

Virtualization implements the hypervisor to split the physical resources in a

single Physical Machine (PM) into multiple VMs, so that the VMs hosted in

4



1. Introduction

PMs can be leased to and utilized by different tenants to deploy their services

without interference. On the contrary, although multiple users and their services

can co-exist in the traditional architecture, i.e., a single Operating System (OS)

being installed in a PM, they are not running in isolated environments. Their

architectures are illustrated in Figure 1.2.

PM

OS OS OS
Hypervisor

VM/
Container

Service
Service Service Service

Service Service

PM

PM

PM

VM/
Container

VM/
Container

Figure 1.2: The transformation of PM usage

VMs in a PM can scale up their resource capacity and can also be mi-

grated into another PM to achieve resource consolidation. This ability cuts

the considerable cost by helping reduce the number of used PMs, and also

gives the cloud tenants and cloud providers the flexibility to dynamically adjust

their implementations based on various objectives. Based on this idea, different

types of virtualization have been developed. For example, QUEM [15], Hyper-

V [83] and KVM [72] utilize the full virtualization technique to virtualize the

full hardware for each VM, which make it easy to implement the guest OS in

a VM. On the other hand, Xen[11], which currently is the mainstream virtu-

alization technique in academia, adopts para-virtualization that virtualizes all

hardware resources for a main VM (domain 0), which isolates the CPUs and

memory resources for each hosting VM, but shares the bandwidth resources

with all VMs rather than virtualizing all hardware resource for each VM. Al-

though para-virtualization needs to slightly modify the VM’s OS to utilize the

hardware virtualized by domain 0, its performance can be significantly better

than full virtualization [11, 114]. Recently, the virtualization technique which is

5



1. Introduction

even lighter emerges. [82] adopts the process-virtualization that uses the Linux

container process to isolate the predefined resources for the processes of individ-

ual users. This implicates that all users have to use the identical OS kernel, but

can have separated computing and bandwidth resources from each other. Bet-

ter performance can be achieved than other existing virtualization techniques.

Despite the advantages and disadvantages of different virtualization techniques,

they share similar principle aim, i.e., splitting the PM resources across multiple

users without interference. We thus regard each isolated resources unit as the

VM or the RC (Resource Container) (in chapter 5).

VM-to-PM placement is an important problem since different placements

lead to different performance and resource consumption, such as the number of

used PMs in total, the amount of communication traffic among services, and

so on. The resource capacity in PMs, such as the total number of CPU cores,

memory and storage capacity, and the communication patterns among services

complicate this performance optimization problem.

1.3 Job Scheduling

Cloud infrastructure is constructed with the support of virtualization in indi-

vidual PMs. Figure 1.3 shows the overview of a typical cloud infrastructure.

Such a cloud infrastructure can be seen in the modern open source cloud plat-

forms [85, 87, 96]. The cloud, actually is formed as one or a few of data centres,

each of which often comprising a few thousands of PMs connected with the

networking products such as switches. Normally, a central manager or sched-

uler handles all incoming requests demanding for resources or services from the

Internet, and allocates the requests to suitable PMs and commit required VMs

and other resources. The PM allocation and resource commitment of VMs can

be elastically adjusted according to the administration policies and the tenant

requirements. The “pay-as-you-go” model is adopted in cloud that only charges

the amount of utilized resources for the length of usage time. Cloud tenants can
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focus on the product development while the work of maintaining and expanding

the supporting IT infrastructures is considered by the cloud providers.
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Figure 1.3: The overview of cloud architecture

However, it has exposed limitation to adopt traditional centralized sched-

uler to handle service requests in large-scale clouds. Distributed job scheduling

frameworks have been proposed in the literature to maximize the scheduling

throughput and reduce the job pending time [18, 36, 69, 95]. However, dis-

tributed schedulers may cause the resource conflicts, i.e., different schedulers

attempt to schedule the jobs to the same resource so as to exceed the capacity

of the resource. Therefore, in such an emerging architecture, alleviating the

resource conflict plays a vital role in maintaining the desired performance.

1.4 Contributions

In order to address the above issues, the following work has been conducted in

this thesis.

•We develop a framework to determine the provision of computing resources

required for cloud services to deliver the desired level of QoS. The frameworks

capture the interaction relations among different services in the cloud.

• We further extend the above framework to model bandwidth provision so

7
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as to not only meet the external communication demand but also the internal

communication relations. And we evaluate it with simulations at the scalability

of a industrial level. A real world AWS cloud testbed with the framework has

been implemented to verify its efficiency and effectiveness.

• We develop two VM-to-PM placement algorithms under the constraints

on computing resources and communication cost.

• We propose the game-theoretical methodology for distributed job sched-

ulers to exploit the trade-off between resource conflicts and resource demand. In

this thesis, the parallel scheduling behaviour by distributed schedulers is mod-

elled as a non-cooperative game and the Nash Equilibrium point is solved for the

game, which represent the best scheduling behaviour of distributed schedulers.

• We conduct the experiments to evaluate the effectiveness of the proposed

methods for resource provision, VM placement and distributed scheduling. The

experiments are carried out with simulated workload, the workload trace from

a production cloud and the a cloud testbed.

1.5 Thesis Overview

The rest of this thesis is organized as follows. Chapter 2 reviews the modern

cloud computing architecture, the existing methods of managing the computing

and communication resources in cloud systems and other existing work related

to this thesis.

Chapter 3 presents the novel frameworks presented in this thesis for mod-

elling the demands for computing resources. These frameworks borrow the ideas

from the Input-Output model in economy and capture the interaction relation

among cloud services, which are different from the existing resource provision

work that focuses on individual single services. These frameworks can be used

by cloud providers or cloud tenants to model and plan their resource offering

or resource purchase. This chapter further presents the VM-to-PM placement

methods. These methods are communication-aware, which differentiate our

8
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work from the existing work in literature. The extensive experiments with sim-

ulated workload and real industrial workload trace have been conducted. The

real experiments have also been carried out on the AWS cloud platform to verify

the effectiveness of the efficiency of these methods.

The services are hosted in VM in clouds. After the provision for computing

resources is determined in chapter 3. Chapter 4 further extends the framework

to model provision of communication resources.

Chapter 5 proposes a game-theoretical methodology to regulate the schedul-

ing behaviour of distributed schedulers in cloud systems. The resource conflict

due to the independent scheduling decisions made by distributed schedulers

is quantitatively analysed. Experiments have been conducted to evaluate the

proposed methodology.

Finally, Chapter 6 summarises the thesis. The conclusions are drawn and

some further research directions are discussed.
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CHAPTER 2
Related work

As listed in chapter 1, the key aspects that define the difficulties in the cloud

computing include: 1) resources allocation under dynamic services interactions;

2) bandwidth provision in different architectures; 3) VM-to-PM allocation with

different objectiveness; 4) job scheduling at the emerging architecture of dis-

tributed schedulers. Therefore, in this chapter we explore and investigate some

of existing techniques, to understand their methodologies and weaknesses in the

cloud computing.

2.1 Resource Allocation for VMs

Various methodologies have been proposed to construct the performance model,

i.e., to establish the relation between the performance of a VM (e.g., through-

put, the time needed to complete a request) and the resource capability allocated

to the VM (e.g., CPU, memory and storage) [3, 13, 14, 16, 23, 68, 104]. For

instance, the work in [68] used layered queuing network to model the response

time of a request in a multi-tiered web service hosted in VM environments, while

hardware resources (e.g., CPU and disk) are modelled as processor sharing (PS)

queues. In particular, the work in [104] modelled the contention of visible re-

sources (e.g., CPU, memory, I/O) and invisible resources (e.g., shared cache,

shared memory bandwidth) as well as the overheads of the VM hypervisor im-

plementation. In the simulation experiments, we use the queuing theory as the

exemplar technique to derive the performance model.

There is the work addressing resource allocation for a group of VMs with

communications among them [16, 63]. For example, [16] models the interacting

workflow as a Markov Chain. It detects the changes in the QoS of each service
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based on a sliding time window, and estimates the resource provision for services

based on the QoS requirements. The work in [63] can translate the performance

goals of the tasks submitted by tenants to the resource allocation in terms of

the combination of the number of VMs and the network bandwidth between the

VMs. Since different resource combinations may produce similar performance,

the work further proposes a method to select the resource combination that can

balance the resource utilization.

The work in [63] bears similarity with the work presented in this work.

The difference is that the work in [63] is job-oriented (or client-oriented), i.e.,

to calculate the resource allocation given the specific tasks submitted by the

tenants. However, as the service invocations (i.e., the tasks) may vary according

to the dynamic system information, and it may be difficult to know the full

picture of the tasks/workflows to be run in the cloud. The work in this thesis

is service-oriented, which does not focus on allocating resources for a set of

specific tasks or workflows, but aims to allocate resources based on the service

interaction patterns. This work does not even have to know the full information

of the tasks/workflows to be run.

2.2 Bandwidth Provision in Clouds

The network architecture of modern data centre is described as the network

topology, routing/switching devices, the used protocols and commodity-class

physical machines [12, 48]. Figure 2.1 shows a classic three-tier topology [56, 73]

of a data centre. The network elements are divided into three layers in terms

of:(1) access layer; (2) aggregation layer; (3) core layers. In the access layer, the

Top-of-Rack (TOR) switch provides the basic connection to each PM mounted

on to this data centre. Every Aggregation Switch (AS) in the aggregation layer

distributes data traffic from those ToRs to the core layer. Each ToR switch is

connected with more than one ASs for the redundancy and high availability.

Moreover, the core switches in the core layer are responsible for the connection

11
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between the Internet and inside the data centre. Since the three-tiers topology

is simple and easy to understand, it is the major choice for most data centres

first choice.
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Figure 2.1: The overview of three-tier architecture

Fat-tree topology [77], as we illustrate in the Figure 2.2, is the topology aim-

ing to maximise the end-to-end bisection bandwidth. In the fat-tree topology,

although the hierarchical organization still exists in edge (access), aggregate

and core layers, the number of switches is much more than three-tiers topology.

Switches in ToRs and AS are formed as the the number of k “pods” that each

pod consists of (k2 )2 PMs, 2 layers of k
2k port switches. Each edge switch con-

nects to k
2 PMs and (k2 ) aggregate switches, each the aggregate switch connects

(k2 ) edge and (k2 ) core switches, so that there are (k2 )2 core switches connect

to k pod, which reduces the traffic load at the core layer. Fat-tree topology is

better bandwidth connections and highly cost effectively compared to the three-

tier counterpart, but the complex IP addressing scheme and multipath routing

algorithm are not easy to be implemented.

VL2 [45] is the hierarchical fat-tree based topology. VL2 uses a flat auto-

mated addressing scheme that facilitates the placement of PMs anywhere in
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Figure 2.2: The overview of Fat-tree architecture

the data centre by two IP address families: Location-specific IP Address (LA)

for the PM within the network, and Application-specific IP address (AA) for

the application or VM. The LA is used to forward the packet in the physical

network whilst the AA keeps unchanged regardless of movements in a PM’s

location within the data centre. The sending PM encapsulates the AA infor-

mation in the LA packet header, but it is trapped and de-encapsulated by the

ToR switch associated with the receiver. This topology has provided more flex-

ibility to programmers within the cloud data centre to abstract and operate

the network bandwidth and services communication compared to other topolo-

gies. However, the virtual overlays and centralized management, such as VL2

Directory services, are even more expensive than others to implement.

There are also many others advanced network topologies for abstracting and

managing the data centre, such as [28, 48, 49, 52, 102]. Regardless of various

network topologies, the cloud network is virtualized and manager by the central

scheduler to assign different services. The work in [9, 10, 91, 92] implements

the techniques to enforce the defined bandwidth allocation for each VM that
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is used to host specific services. Those techniques are principally based on

the Hose model [38], which have the analogies with practical switch networks

that offers the abstraction to each VM for one service has a dedicated link of

guaranteed minimum bandwidth capacity to a non-blocking virtual switch as in

Figure 2.3. However, these studies do not consider the policies to determine the

appropriate bandwidth capacity for each service and its constituent VMs from a

holistic perspective. The work in [9] and [10] designed the centralized controller

to assign the bandwidth in order to achieve the required performance. On the

other hand, the work in [91, 92] distribute the ability of allocating the band-

width and develops sophisticated policies in the hypervisor and the switch to

compete the bandwidth for ensuring guaranteed communication. Although the

above studies developed the elaborate techniques to manage shared networks

and enforce the bandwidth allocation, they do not consider the policies to de-

termine the appropriate bandwidth capacity for each service and its constituent

VM from a holistic perspective.

The work in [108, 115] adopts the stochastic model to analyse the bandwidth

requirements for each service. [111] guides the bandwidth provision dynamically.

[51, 67] propose the routing policies within the data centres to exploit the poten-

tial bandwidth provision. Their works are solely based on “external” demands,

while our work not only satisfies the external demands, but also captures the

internal demands due to service interactions.

2.3 VMs-to-PMs Placement

The VM-to-PM placement problem mainly aims to consolidate resources and

improve resource utilization [20, 46, 57, 59, 112]. Various methods have been

proposed in literature to address the VM-to-PM placement problem, includ-

ing knapsack modelling [57], mixed integer programming [22, 90, 103], genetic

algorithms [55, 103, 112], ant colony optimization [39, 42] and heuristic meth-

ods [59, 79, 106]. For example, the work in [59] develops the heuristic squeeze
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Figure 2.3: An example of the hose model, which guarantees the bandwidth
demands of two services (blue for service 1 and red for service 2) with the
mapping of their virtual networks to a physical network.

and release measures to dynamically redistribute the workloads in the cluster

according to the workload level on each individual node, so as to minimize

the usage of physical machines. The work in [57] develops a server consoli-

dation scheme, called Entropy. Entropy strives to find the minimal number

of nodes that can host a set of VMs, given the physical configurations of the

system and resource requirements of the VMs. The objective is formalized as

a multiple knapsack problem, which is then solved using a dynamic program-

ming approach. In the implementation, a one-minute time window is set for

the knapsack problem solver to find the solution. The solution obtained at the

end of the one-minute time space is the new state (i.e., the new VM-to-PM

placement). The work in [55] designed a genetic algorithm to find a VM-to-PM

placement that uses the minimal number of PMs. However, the above work is

used to tackle the placement of independent VMs (i.e., there are no communi-

cations among VMs), aiming to minimize the usage of physical machines. In

this thesis, we investigate the placement of the interacting VMs and focus on

finding the VM placement that can minimize the communication cost.

There is also some works tackling the placement problem for the VMs with
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inter-VM communications, aiming to minimize the communication costs [50, 81].

The work in [50] models such a VM-to-PM placement as a min-cost network flow

problem and then uses the Breadth First Search to find the optimal placement

solution. The work in [81] uses the classical min-cut graph algorithm to obtain

the optimized placement solution. In order to model the placement problem as

the min-cost network flow problem or the min-cut graph problem, they need

to know the specific communication pattern between each pair of VMs. As we

have discussed, in some cases, we may not know the full picture of the submit-

ted workload, and therefore can not accurately determine the communication

pattern between each individual VM. In this thesis, we model the interactions

among the services, and treat a service (and the set of VMs supporting the ser-

vice) as a whole without the need to know the specific communication pattern

between each pair of VMs.

2.4 Analysis of Invocation Pattern among Ser-

vices in Cloud

There are a number of existing techniques to obtain the invocation patterns

of the services [8, 26, 110]. The work in [8] implements a multi-level proba-

bilistic model to infer the probability of a service calling another service. The

fundamental idea is to monitor the packets sent and received by a service, and

then compute the dependency probability between the services by leveraging

the observation that if accessing service B depends on service A, then packets

exchanged with A and B are likely to co-occur. The work in [26] then uses the

k-means clustering technique in data mining area to analyze the service trace

and calculate the correlation probability between services.
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2.5 Job Scheduling in Clouds

Data centres nowadays have to process a large scale of jobs on a daily basis.

On one hand, the resource demand, along with the commercial success of cloud

computing, becomes the major driving force for the cloud providers to increase

the size of their data centres. On the other hand, in order to handle the jobs

efficiently, cloud giants, such as Google, Microsoft and Amazon, have devel-

oped various cluster management frameworks in their production clusters [107].

Among them, one conventional approach is to develop a centralized scheduler

in the cluster, which manages diverse types of job submitted to the cluster.

However, because of the large number of the jobs and the complexity of making

scheduling decisions for some types of job, the centralized schedulers become

the performance bottleneck for delivering resources and processing jobs timely.

A recent trend thus is to deploy multiple, independent schedulers in a cluster.

Different schedulers make scheduling decisions simultaneously for different types

of job, aiming to improve the throughput and cluster utilization. These inde-

pendently working schedulers in a cluster are termed distributed schedulers in

the literature [18, 88, 95].

The scheduling procedure in the cloud with distributed schedulers is illus-

trated in Figure 2.4. When a request is submitted, it is compiled as a workflow

with resource requirements. The workflow is modelled by a directed acyclic

graph (DAG). In the graph, nodes represent jobs such as map, reduce or join

jobs, and edges represent dataflow. Each job consists of one or more identical

parallel tasks. Those jobs are allocated to individual pending queues corre-

sponding to their dependent services based on the job type, resource preference

or job size. Additionally, a distributed scheduler asynchronously scans 1 the

jobs in its pending queue, and finds its best matching machines and claim the

resources in these machines to launch the tasks. Different schedulers choose the

machines based on their preferences in various aspects. In summary, the role of

1The order of scanning can be implemented using different policies. Here we set it as
FIFO (First-In-First-Out).
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Figure 2.4: The overview of a shared cloud

a scheduler covers two parts: Scheduling and Servicing.

In Scheduling, the scheduler scores resources (machines) to decide the best

ones for its jobs. The resulting scores could be very different for different sched-

ulers. For example, the scheduler for Hadoop[113] or Spark[116] jobs chooses

its target machines based on the machine load and data locality, whilst the

scheduler for scheduling web server applications needs to perform some com-

plex optimization algorithms to consider the heterogeneity and performance

interference. In addition, there is a separate Resource Monitor (RM) that pe-

riodically collects from all machines the reports about their resource load and
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machine state, and then aggregates the reports as the global cluster state for

all schedulers. Each scheduler thus keeps a copy of global cluster state to make

its own scheduling decision.

In Servicing, the scheduler claims the resources in the target machines to

initialize, start or cancel its jobs, such as fetch needed data and install the

required software packages. The time cost in initialization is not negligible in

most productive clusters [18, 107]. The median initialization cost is around 25

seconds [107]. Therefore, unlike the monolithic scheduler, such as Mesos [58]

and Fuxi [118], distributed schedulers do not have a central coordinator and

their scheduling attempts and job initialization might conflict with each other.

Once the conflict occurs, only one of the scheduling attempts is granted while

others are deemed failed and consequently these schedulers have to reschedule

the jobs in question.

We investigate the scheduling events in the production clusters at Google and

Microsoft, which have developed their distributed cluster schedulers, Omega and

Apollo, respectively. However, there exists a significant ratio of rescheduling in

their daily scheduling events. Especially in Google, the ratio of task reschedule

is up to 64% of total scheduling events [94].

Distributed schedulers for the large-scale cloud

The emerging trend of distributed schedulers firstly starts with Omega [95].

Since then, many similar products have been developed [18, 33, 36, 69]. Al-

though these schedulers are aware of the scheduling conflicts, their focuses are

on resolving the conflicts after they occur rather than trying to reduce the

chance of conflict in the first place. In this thesis, we balance the size of re-

quested resources in this shared cloud environment by carefully analyzing the

scheduling cost, performance behaviour of the jobs and the level of competition

among distributed schedulers.
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Game-theoretical scheduling

Game-theoretical scheduling is a classic scheduling problem in the cluster man-

agement [19, 31, 37, 43, 44, 71, 75, 89]. These approaches are based either on

the central scheduler architectures to achieve system-level load balance [89] or

resource allocation [19] between jobs and cluster machines, or on sidestepping

the non-cooperative game and making each participating computer to cooperate

together and achieve the global optimal performance [47, 75]. These approaches

cannot be applied in our scenario as distributed schedulers are selfish and strive

to maximize their own scheduling performance.

We thus model the scheduling scenario as a non-cooperative game and de-

velop a theoretically proven solution to reduce the conflict possibility.

Performance metrics in Clouds

It is not straightforward to determine the suitable performance metrics to eval-

uate the scheduling performance in Clouds since a variety of performance issues

may be examined. Recent research has focused on reducing the makespan specif-

ically on the off-line jobs [33, 69], allocation interferences [35] and the quality

of performance [34] for on-line jobs. Their solutions primarily target a partic-

ular type of jobs. The work [62, 117] proposes the performance concepts of

Application Normalized Performance (ANP) and System Normalized Perfor-

mance (SNP). The performance cost adopted in our work shares the similarity

with these two metrics. But the difference is that based on them, we tailor the

utility function for distributed schedulers so that that it can be applied on both

on-line and off-line jobs.

2.6 Background of the IO model

In the IO model, the economy is divided into sectors. Each sector produces

goods except for the open sector, which only consumes goods. When a sector

produces goods, it needs to consume the goods produced by other sectors. The
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consumption matrix C captures the consumption relations among sectors. An

element cij in C represents the amount of goods produced by sector i that

have to be consumed by sector j in order for sector j to produce one unit (e.g.,

in terms of US dollars) of goods. The consumption matrix C represents the

internal demands. Assume the column vector D contains the goods demand

from the open sector, which represents the external demand. The element di

in D represents the amount of goods from sector i required by the open sector.

Let the column vector X be the equilibrium levels of production output that

can satisfy both internal and external demands in the economy. The element

xi in X represents the equilibrium level of output by sector i. X must satisfy

Eq. 2.1, which may be solved for X by transforming it to Eq. 2.2.

X = C ·X +D (2.1)

X = (I − C)−1 ·D (2.2)

2.7 Summary

This chapter has reviewed other related techniques adopted in the cloud com-

puting. We discussed difficulties and shortages of current approaches, especially

in a dynamic, complex and large scale of cloud environment. In particular, the

computing and bandwidth resource provision (Section 2.1 and Section 2.2) are

advanced in chapter 3 and chapter 4, respectively, which we implement in a

large scale of cloud services and a real cloud testbed with dynamic and com-

plex interactions. Moreover, two sophisticated VM-to-PM placement algorithms

have been designed and implemented in these two chapters, two of them are de-

signed for reducing the communication cost amongst services under different

constraints. In Section 2.5, we proposed a game-theoretical mechanism for the

emerging new architecture of distributed schedulers in chapter 5.
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CHAPTER 3
Computing Provision for Cloud Services

Numerous cloud services are deployed in the cloud. These services are often

not isolated. After a cloud tenant invokes a service, the service may request

further actions from other services during or after its execution. The interactions

among the services are not static and may vary according to dynamic system

information at runtime. To determine the amount of resources required for each

of these services that becomes critical in order to deliver a desired level of QoS.

The services in a cloud system are typically hosted in VMs. Therefore, deter-

mining the suitable resource quantity for the services comes down to determine

the resource capacities allocated to the VMs that host the services. There are

some existing works building the performance model for the processing capac-

ity of a VM. For instance, establishing the relation between a VM’s processing

capability and the amount of the resource capacities (such as CPU percentage,

memory size, network bandwidth) allocated to the VM [68, 104]. For example,

Amazon EC2 offers small, medium, large and extra large VMs [97]. The per-

formance model established in the existing work can calculate the processing

capability of these different types of VMs for a type of tasks.

The work in this chapter makes use of the performance model of a VM es-

tablished in the literature. Assuming that the processing capability of one VM

is known, this chapter presents a method to determine the sufficient number of

VMs for interacting services in a cloud system. The proposed method borrows

the ideas from the Leontief Input-Output Model in economy [78] (called the IO

model in this chapter). The IO model conducts the input-output analysis for

different industry sectors in an economy. It is able to capture the consumption

relations among different sectors and calculate the equilibrium level of produc-
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tion for each sector, so as to satisfy both external demands from the open sector

(e.g., people) and internal demands due to the consumptions relations among

individual sectors in an economy. Moreover, the IO model is able to analyze

the impact of the increase in the external demand for a particular sector on the

production of all sectors in the economy.

The behaviours of the interacting services in a cloud system bear the simi-

larity with the behaviours of different industry sectors in an economy. A service

supplies resources, which are consumed by tenants and also by other services

due to service interactions. To the best of our knowledge, this chapter is the

first one in literature that applies the IO model in economy to formalize and

solve the resource demand problem in clouds.

Further, when the services interact with each other, data may be communi-

cated between them. If the VMs that host the services with frequent commu-

nications among themselves can be placed to the same PM, the communication

cost could be significantly reduced.

There is the existing work in literature investigating the VM-to-PM place-

ment problem [39, 50, 55, 57, 81]. However, the existing work either focuses

on consolidating the independent VMs (i.e., there are no interaction between

VMs) into resources, i.e., finding a VM-to-PM placement that can minimize

the number of PMs used to host the VMs, or requires to know the specific

communication patterns between individual VMs. Different methods have been

developed to model such a VM-to-PM placement problem. For example, the

placement problem has also been modelled as a knapsack problem [57], an ant

colony optimization problem [39], a mixed integer programming problem [90]

and a genetic algorithm [55]. Then the existing solvers and the bespoke meth-

ods were developed to solve the objective functions for the optimized placement

solutions. Heuristic algorithms have also been developed to find the placement

solutions [59].

This chapter develops a communication-aware strategy to place the VMs

that host the interacting services on physical machines, aiming to minimize the
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communication costs incurred by the service interactions. A genetic algorithm

is then developed to find a VM-to-PM placement with significantly reduced

communication costs. Briefly, the main differences between our work and the

work in literature are that 1) this work aims to find a placement solution to

minimize the communication costs among services and 2) the approach adopted

in this work does not need to know the specific communication pattern between

individual VMs.

We have also conducted experiments to compare the framework proposed

in this chapter with two existing placement methods: one striving to use the

minimal number of PMs to host VMs, and the other applying the heuris-

tic approach to placing VMs. Our experimental results show that the pro-

posed communication-aware framework significantly outperforms the heuristic

approach in terms of both communication cost and the number of used PMs,

and that comparing with the method aiming to achieve the minimal number

of used PMs, our communication-aware approach is able to significantly reduce

the communication overhead in the cloud with only a tiny fraction of increase

in resource usage.

The remainder of this chapter is organized as follows. Section 3.1 presents

the workload and system models. Section 3.2 proposes the method of modelling

resource demands of services in a cloud economy. The communication-aware VM

placement framework is presented in Section 3.3. Section 3.4 and Section 3.5

evaluate the effectiveness of the proposed framework. Finally, we concluded in

Section 3.6.

3.1 Workload and System Models

Let S = {s1, . . . , sM} denote a set of M services deployed in a cloud. λi denotes

the arrival rate of the requests directly from the tenants for service si. pij

denotes the probability that after service si is invoked and executed, service si

will further call service sj . A service is hosted in a set of VMs (i.e., a virtual
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cluster). Assume each VM that hosts the same service (i.e., each VM in a

virtual cluster) is allocated with the same resource capacity (e.g, the proportion

of CPU, memory size, etc..). This assumption is reasonable because this is

the normal practice when using a virtual cluster to host a service [9]. VM i

denotes a VM that hosts service si. There may be multiple VMs on a PM.

We assume that PMs and network links are homogeneous, i.e, the PMs and the

network links connecting any two PMs in the cloud has the same performance.

This assumption is reasonable since homogeneous machines and communication

networks are typically used to construct a cloud system.

Given the arrival rate of the requests for service si and given VM i’s resource

capacity, there are a number of existing techniques in literature [68, 104] to

calculate the adequate number of VM is that can satisfy the desired QoS in

terms of a particular performance metric (e.g., average waiting time of the

requests, throughput).

Table. 3.1 lists the notations used in the chapter.

Table 3.1: Notations for VM provision

notations Explanation
C consumption matrix
cij the amount of goods produced by sector i that

have to be consumed by sector j in order for
sector j to produce one unit of goods

S the number of services
si service i
eij the amount of data that are sent when service

si invokes sj
pij the probability that one invocation of si causes

the invocation of sj
ni physical machine i
VM i a virtual machine hosting service si
vik the number of VM is in ni
pji the possibility that executing sj causes a fur-

ther invocation of si
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3.2 Modelling Resource Demands of Cloud Ser-

vices

This section applies the IO model to formalize and calculate the equilibrium

level of resource capacity demanded by the external tenants and the interacting

services in a cloud economy. The constructed model is called the cloud-IO model

in this chapter. In order to apply the IO model to formalize a cloud economy,

we have to use the entities in the IO model (i.e., sector and goods) to represent

the entities in cloud environments, such as service, request, VM, resource, etc..

In this chapter, a service in the cloud economy is regarded as a sector in the

IO model while the external tenants are regarded as the open sector, which is

straightforward. However, the challenge is to identify the entity in the cloud

economy that is suitable to be regarded as goods, and also determine the con-

sumption relations among services. We first attempted a straightforward option

and use the requests sent by the tenants or the services to represent goods. This

option seems to be intuitive, because a service processes (consumes) requests

from tenants and other services, and also generates (produces) requests to in-

voke other services. Then the problem comes down to how to determine the

resource capacity for services so that the requests can be processed in a way

that the desired QoS can be met. However, we later realize that it is not appro-

priate to treat the requests as goods. This is because the requests generated by

services are not going to be consumed by the tenants while the goods produced

in the IO model are consumed by the open sector. In this chapter, a group of

VMs hosting a service are regarded as goods produced by the service.

Now we present how to determine the consumption relations among services,

i.e, obtain the consumption matrix. Note that cij in the consumption matrix C

represent the amount of goods produced by sector i that have to be consumed

by sector j in order for sector j to produce one unit of goods (e.g., in terms of US

dollars). Consider one VM (a unit of good) of service sj . ψj denotes the arrival

rate of the requests that one VM of service sj (i.e., one VM j) can handle

26



3. Computing Provision for Cloud Services

to deliver the specified QoS. As discussed in Section 3.1, there are existing

techniques to calculate ψj , given the resource capacity allocated to the VM.

We use a function f to represent such a technique, i.e., Eq. 3.1, where the first

parameter represents service index (i.e., sj), the second parameter Rj represents

the resource capacity allocated to each VM of sj (we assume every VM in the

same service has the same resource capacity), and the third parameter represent

the number of VMs of the service.

ψj = f(j, Rj , 1) (3.1)

Every time service sj is invoked, there is the possibility of pji that sj will

send a request to further invoke si. Therefore, in a time unit one VM j sends

ψj × pji requests to si. The number of VMs that need to be produced by si to

handle the requests with the arrival rate of ψj × pji is then equivalent to the

goods produced by service si that have to be consumed by service sj in order

for sj to produce one unit of goods (i.e., one VM), which is actually cij in the

IO model. Again, the existing techniques in literature can calculate cij based

on the arrival rate of ψj × pji and the given resource capacity allocated to each

VM i. We use a function g to represent such a technique, i.e., Eq. 3.2, where

the first and second parameters have the same meanings as those in Eq. 3.1,

and the third parameter represents the arrival rate of the requests.

cij = g(i, Ri, ψj × pji) (3.2)

In doing so, we have established the consumption matrix in the cloud-IO

model. Let λi be the rate at which the tenants (open sector) send the requests

to service si. Then we can use the g function in Eq. 3.2 to calculate the number

of VM i that have to be produced by si to process the requests with the arrival

rate of λi, which is di in the column vector D in the IO model. Namely, di can

be obtained using Eq. 3.3.
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di = g(i, R, λi) (3.3)

By doing so, the external demand vector D is obtained, X = [x1, ..., xi, ..., xM ]T

denotes the column vector that represents the number of VMs required for each

of M services in the cloud economy. X can be calculated by Eq. 2.2.

3.3 The Communication-aware VM Placement

Section 3.2 calculates the number of VMs required for each service in the cloud.

This section investigate the issues of mapping all the VMs obtained in Section 3.2

to PMs. The VM-to-PM mapping in literature often focuses on minimizing the

number of PMs used to accommodate the VMs, so as to minimize the resource

and/or energy consumption. However, in this chapter, there is the possibility

that after a service is run, it may send a request to another service for further

actions. Some data may be sent along with the request. If the VMs that host

the different services with frequent communications can be placed in the same

PM, then the communication cost could be reduced. This section develops a

framework to find the VM-to-PM mapping that minimizes the communication

cost in the cloud.

According to the cloud-IO model, cij represents the number of VMs that

need to be produced by si to handle the requests send by one VM in sj . There-

fore, if the ratio of the number of VM is to the number of VM j in PM nk,

denoted as αijk, is no less than to cij , then the requests (along with the data)

sent by the VM js can be handled by the VM is in the same PM without breach-

ing the QoS of si, and therefore eliminates the necessity to send the requests

and data to the VM i in a different PM. On the contrary, if αijk is less than cij ,

then a proportion of the requests sent by the VM js in nk have to be processed

by VM is in a different PM. The greater the difference between cij and αijk is,

a larger proportion of the requests and data sent by VM js in nk have to be

sent out of nk and therefore a higher communication cost in the cloud. The
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communication-aware service placement framework developed in this chapter is

based on this insight and aims to find a VM-to-PM mapping with the minimal

communication cost in the cloud.

3.3.1 Formalizing the Problem

This section models the total communication cost incurred by an arbitrary VM-

to-PM mapping in the cloud. As discussed above, when αijk is less than cij , the

communication will occur between nk and another PM where there are VM i.

vik denotes the number of VM is in nk, given a VM-to-PM mapping M. The

communication cost incurred by the mapping M, denoted as C(M), can be

calculated by Eq. 3.4 and Eq. 3.5. In Eq. 3.5, the term (f(j, Rj , vjk) × pji −

f(i, Ri, vik)) calculates that the amount of requests that are sent from sj in PM

nk to si in a time unit, but cannot be handled by VM is in nk (if αijk < cij)

in order to maintain the QoS. Therefore, these requests have to be sent to be

processed by VM is in a different PM. The number of these requests times eji

is then the total amount of data that have to be communicated in the cloud

caused by the inadequate resource capacity of si in PM nk comparing with that

of sj in the same PM. Since we assume that the communication network in the

cloud is homogeneous, we do not have to consider which PM these data will be

sent to. The communication cost is then the sum of all these data that have to

be sent out of the local PM by any service in the cloud, which is Eq. 3.4.

C(M) =

N∑
k=1

M∑
j=1

M∑
i=1

βijk (3.4)

βijk =


eji × (f(j, Rj , vjk)× pji − f(i, Ri, vik))

if αijk < cij

0 otherwise

(3.5)

The objective is to find a VM-to-PM mapping such that C(M) is minimized,

subject to certain constraints. This can be formalized as Eq. 3.6, where xi is
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the number of VM is obtained in Section 3.2.

miminize C(M),

subject to: ∀i : 1 ≤ i ≤M,

N∑
k=1

vik = xi

vik ≥ 0

(3.6)

3.3.2 Designing the Genetic Algorithm

A Genetic Algorithm, called CAGA (Communication-Aware Genetic Algorithm),

is developed in this chapter. CAGA tries to find the optimal mapping with the

least communication cost. In a typical Genetic Algorithm (GA), a solution is

encoded and then the crossover and mutation operations are applied to evolve

the solutions. Moreover, a fitness function is used to judge the quality of the

solutions and guide their evolution direction so that better solutions can be

gradually generated over generations. In the GA developed in this chapter, the

communication cost defined in Eq. 3.4 is used as the fitness function. This sec-

tion mainly presents the encoding of the solution, the crossover and the mutation

operations designed in our GA.

Encoding the Solution and Fitness Function

In CAGA, a solution is a VM-to-PM mapping. It is encoded as an one-

dimensional array, denoted as A. An element ai in A holds the index of a VM.

Br denotes the capacity of the r -th type of resources in a PM. Given an encoded

solution, the PM that a VM is mapped to is determined in the following way.

Starting from the first element in the solution, the VMs are placed into PM1

in the order of their positions in A, until the total capacity of the VMs starts

to exceed the capacity of PM1. The VMs are then placed into the next PM.

Formally, if the first k PMs have been fully occupied and the VM in ai (i.e.,

VMai) is the first VM that cannot be placed into PMk any more, the VMs in

the positions from ai to aj−1 should be placed into PMk+1. j can be deter-
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mined using Eq. 3.7, in which br(au) is the capacity of the r-th type of resource

allocated to the VM with the index of au. For each of R types of resource in

consideration, Eq. 3.7 obtain the least jr such that the total capacity of that

resource of the VMs from ai to ajr begins to exceed Br. Then j is the minimum

number among jr (1 ≤ r ≤ R). The procedure repeats until all VMs have been

placed into PMs. By doing so, CAGA knows which PM a VM is placed into.

j = min{jr|1 ≤ r ≤ R}

subject to:

jr∑
u=i

br(au) > Br

(3.7)

In the encoding, CAGA starts to place a VM to a new PM only when the

current PM does not have enough remaining capacity to host the VM. Therefore,

the method used by CAGA to encode and calculate the VM-to-PM mapping will

not generate excessive spare capacity in PMs, and therefore reduce the number

of PMs used to host VMs. Indeed, our experiments show that the number of

PMs used by CAGA is very close to that obtained by the VM-to-PM mapping

method aiming to use the minimal number of PMs to host VMs.

CAGA aims to find a VM-to-PM mapping with minimal communication

cost. Therefore Eq. 3.4 that calculates the communication cost of a mapping is

used as the fitness function of a solution.

Selecting Solutions

In GA, the solutions need to be selected from the current generation of solu-

tions to perform the crossover and the mutation operations. CAGA applies the

tournament method [84] to select the solutions used to generate next genera-

tion of solutions. The tournament method is as follows. Assume there are h

solutions in one generation. Each time, CAGA randomly selects k solution (k

is called tournament size) from the current generation. Then CAGA takes the

one with the lowest communication cost among these k solutions and uses it as
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one parent solution in the crossover operation. The same way is used to obtain

the other parent solution. Then the crossover operation, which is presented in

subsection 3.3.2.C, is performed over the two parent solutions to generate two

child solutions. The procedure repeats until there are h solutions in the next

generation.

Crossover and Mutation

The two-point crossover is used in CAGA. In the crossover, two points are ran-

domly selected for two parent solutions to divide each parent into three portions.

All VMs in the middle portion are swapped between the parent solutions. The

resulting two solutions are children solutions in the new generation. But such a

swap may cause repetitive VMs in a child solution, i.e., there may be two VMs

with the same index in one solution. In order to eliminate such repetitive VMs,

the swapping action is performed in the following way in CAGA. At position i

in the middle portion of both parents, a1i and a2i are the indexes of VMs in

parent 1 and parent 2, respectively. In parent 1, the crossover operation finds

the VM with the index of a2i and swap a1i and a2i. In parent 2, similarly,

the crossover operation finds the VM with the index of a1i and swap a2i and

a1i. Such swapping is performed at every position in the middle portion of two

parents. By doing so, we effectively swap the middle portions between parents,

and the resulting children solutions will not have the repetitive VMs.

After crossover, the mutation operation is performed on the two newly gen-

erated child solutions. A mutation probability δ is set. For each VM in a

child solution, there is the probability of δ that the VM will swap the positions

with another randomly selected VM in the child solution. The mutated child

solutions become the solutions in the new generation.

3.3.3 Designing the CGA

Since the CAGA uses VM index to encode the VM-to-PM placement, its conver-

gence is limited by the number of VMs. We redesign CAGA as Communication-
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oriented Genetic Algorithm(CGA) based on the services-oriented encoding. The

selecting solution and the fitness function are still the same as CAGA, and we

have redesigned the encoding, crossover and mutation operations that are pre-

sented in the following two sections.

Encoding the Solution

In CGA, a solution is encoded as an one-dimensional array, denoted as A, An

element ai in A holds a pair of values (si, hi), where si is the service index and

hi is the number of VMs hosting service si in the pair. To some extend, an

element in the one-dimensional array is like an element in the two-dimensional

array in CSA, but does not contain the information about which PM the VMs

in an element are located in, and it has significantly saved the searching space

than the CAGA.

Given a encoded solution, we start to decide VMs are mapped to the PM

from the first element in the solution, VMs in the element (i.e., (si, hi)) are

placed into PM1 in the order of their position in A, until the total capacity of

the VMs starts to exceed of PM1. The VMs are then placed into the next PM.

Crossover and Mutation

The original two-point crossover operation will generate repetitive or missed

VMs for services to the original VM-to-PM placement as we discussed in sec-

tion 3.3 at chapter 3. The CAGA adopts moving and swapping the selected

VM indexes on the original parents solutions to complete the crossover and mu-

tation, so that it does not actually move or swap the parent solution, which

avoids the duplicated or missed VMs for services. This approach cannot apply

here because the selected element on one of parent solutions cannot guarantee

it also can be found in the another parent solution as the way of our encoding.

For example, one of parent solution has (S2, 3), (S2, 1), whilst another parent

solution has (S2, 2), (S2, 2), and if the crossover is involved to S2, it will be im-

possible to find the swapped element in the original solution. Therefore, we use
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the following method to adjust the invalid child solution back to valid solution.

An example is given in Figure 3.1 to show the workings of the crossover

operation. In Figure 3.1(a), the two-point crossover is performed. The top of

the figure gives the number of each service calculated by the cloud-IO model.

After the crossover, two child solutions are generated. However, the two child

solutions are invalid. Child solution 1 contains 5 VMs of s3, which is more than

the calculated number of VMs (3) for s3, 3 VMs of s2, which is less than the

calculated number 4, and 0 VM of s1, which is less than the calculated number

5. For similar reasons, child solution 2 is also invalid. Figure 3.1(b) shows how

to modify invalid child solutions into valid ones. In invalid child solution 1, since

s2 and s1 have the numbers of VMs less than the specified numbers by 1 and

5, respectively, we append two elements to the invalid child solution 1, (s2, 1)

and (s1, 5) to make the solution valid in terms of services s2 and s1. Further,

since the number of VMs for s3 is more than the specified number by 2 in the

invalid child solution 1, we start from the end of the solution and remove the

VMs of the element that contains s3 until 2 VMs of s3 have been removed. The

first element containing s3 is (s3, 1). Since all VMs in the element have been

removed, the element is deleted. The next element containing s3 is (s3, 2). We

only need to remove 1 VM from the element. The similar modifications can be

performed to make invalid child solution 2 to become valid.

The mutation operation will be performed on two newly generated valid

child solution after the crossover operation is finished. A mutation probability

δ is set as CAGA, which is usually below 0.2. Then, for each child solution, we

randomly select y × δ elements, where y is the number of elements in the child

solution. For each selected element, the mutation operation further randomly

selects another element and swaps these two elements. Because the mutation

does not need to swap with another solution, the duplicated or missed VMs

issues on the crossover is not existed, the validation procedure would not be

necessary in the mutation operation.
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Figure 3.1: CGA Crossover
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3.4 Performance Evaluation on the Synthetic Work-

flow

We have conducted simulation experiments with the synthetic workflow to eval-

uate the performance of the proposed communication-aware framework. A pool

of S cloud services are assumed in a cloud. In the simulation experiments of this

work, the workflows are generated to simulate the interactions among services.

In real systems, we typically do not know the entire invocation workflows across

multiple services in the cloud. In this case, the service interaction patterns,

i.e., pji in Table 3.1, can be obtained by analyzing the invocation trace of each

individual service in the cloud, or analyze the source code of a service and its

execution flow.

With the information of the generated workflows, pji can be calculated as

follows. A workflow has h nodes with the random topology. A node in a work-

flow represents the invocation of a service randomly selected from the service

pool. Therefore, a service may appear multiple times in a workflow. A link from

service (node) si to sj represents that after si is run, si sends a request to further

invoke sj . The weight of a link represents the amount of data that needs to be

sent from si to sj when si invokes sj . A workflow has a entry service (the first

service that has to been invoked in the workflow). External requests arrive to

invoke the entry service, which is regarded as the external demand. The arrival

rate of the external requests to workflow wi is denoted as λi. The invocations

among services inside the workflow is regarded as internal demand. With the

topology of wi and λi, we can easily calculate the following variables for wi:

1) the rate at which sj is invoked (denoted as λi(sj)); 2) the rate at which sj

invokes sk (denoted as λi(sj , sk)); 3) the the amount of data sent from sj to sk

in a time unit (denoted as ei(sj , sk)). In wi, the probability of sj invoking sk

(denoted as pi(sj , sk)) can be calculated as
λi(sj ,sk)
λi(sj)

. If the number of different

workflows generated in the simulation is W, then the probability of sj invoking

sk (i.e., pjk in Table 3.1) can be calculated as Eq. 3.8. The total amount of

36



3. Computing Provision for Cloud Services

data sent from sj to sk (denoted as Ejk) in a time unit can be calculated as

Eq. 3.9, while the total arrival rate of the requests to sj , denoted as λj , can

be computed using Eq. 3.10. In the experiments, three types of workflows are

generated in the experiments: communication-intensive, computation-intensive

and general workflow. In the communication-intensive, computation-intensive,

and general workflow, eij is randomly obtained from the range of [min comme,

max comme], [min compe, max compe] and [min gene, max gene], respectively.

The computation time of a node in all workflows is randomly selected from the

range of [min comp, max comp] with the average value of avg comp.

pjk =

W∑
i=1

(
λi∑W
i=1 λi

× pi(sk, sj)) (3.8)

Ejk =

W∑
i=1

(λi × ei(sk, sj)) (3.9)

λj =

W∑
i=1

(λi × λi(sj)) (3.10)

There are the existing techniques [104] to obtain the function f in Eq. 3.1.

The value of the function f is the processing rate of a VM. In the experiments,

we apply the queuing theory [68] to obtain the g function. Assume that the

external requests arrive following the Poisson process, and the computation

time of a service and the communication time of sending data between services

follow the exponential process. According to the queuing theory, the average

response time of service si, denoted as Ti, can be calculated by Eq. 3.11, where

|si| is the number of VMs that is used to host si, µi is the mean process rate of a

VM hosting si (which is the inverse of mean computation time of an invocation

in the VM of si and is actually the value of the f function) and Pn is the

probability that the number of requests being processed in the virtual cluster

is no less than n. Assume the QoS of service si is that the average response

time of an invocation of the service is no more than qi. qi is normally set as
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Table 3.2: Experimental parameters

Parameters Value

S 40
B 50
[min comme, max comme] [20, 30]
[min gene, max gene] [10, 20]
avg comp 15
h (the number of tasks in a workflow) 40
W 3
[b min], [b max] [5, 15]
[min compe, max compe] [2, 8]
[min comp, max comp] [10, 20]
slack 20%
δ (mutation probability) 0.2

avg comp × (1 + slack). Given λi and qi, we can calculate from Eq. 3.11 the

minimum |si| that satisfies the QoS, which is the g function in Eq. 3.2 and

Eq. 3.3. pjk has been calculated in Eq. 3.8. Therefore, ckj in the consumption

matrix can be calculated using Eq. 3.2. With the arrival rate of the external

requests, we can apply the queueing theory to calculate the number of VMs

required to serve the external requests, which is D in Eq. 2.1. Finally, the

number of VMs allocated to each service can be calculated using Eq. 2.2.

Ti =
1

µi
+ Pn

1

|si| × µi − λi
(3.11)

The capacity of a physical machine is set to be B. The resource capacity

allocated to a VM in si is set to be bi, which is randomly selected from the

range of [b min, b max ]. Unless otherwise stated, the value of the experimental

parameters are set as in Table. 3.2 as we adopted from the work in [55].

The existing work on placing VMs to PMs mainly focuses on achieving the

minimum number of PMs used to host the VMs [57, 59] (which is called the

Min-nodes algorithm in this chapter), assuming that the VMs are independent

with each other. The CAGA framework developed in this chapter takes the ser-

vice (VM) interactions into account. The Min-nodes method presented in [57]

models the VM-to-PM placement as the bin-packing problem and then uses the
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existing solver to solve the problem for the VM-to-PM placement that mini-

mizes the usage of PMs. In the experiments, we compared CAGA with the

Min-nodes algorithm in terms of communication cost and the number of used

PMs. Moreover, we compared CAGA with a heuristic VM-to-PM placement

algorithm. In the heuristic, the VMs from different services are placed in a PM

in a round-robin fashion [54]. Starting from s0,the heuristic algorithm places a

VM in si to the PM, then places a VM in s(i+1)%S to the PM, until the PM

cannot accommodate more VMs. Then the VMs are placed to a new PM in

the same fashion, except for starting from the VM that cannot be placed to the

previous PM.

3.4.1 Impact of the Increase in External Demands

The experiments presented in this subsection investigates the impact of service

interactions on resource capacity allocated to each service. Figure 3.2(a, b and

c) show the number of VMs allocated to each service under different arrival

rates of external requests for communication-intensive, computation-intensive

and general workflows, respectively. Figure 3.3 shows the the number of VMs

allocated to each service for the three workflows combined. The number of

VMs is obtained using the cloud-IO model. As can be seen from Figure 3.2(a,

b and c), when the arrival rate of external requests increases, not only the

number of VMs allocated to the entry service of the workflow increases (s1 in the

figures), but that allocated to other services in the workflow also increases. The

level of increment in some services is even much greater than that in the entry

service. With the cloud-IO model, we can quantitatively obtain the impact of

the increase in external demands on the resource requirements on each service in

the cloud. For example, in Figure 3.2(b), when the arrival rate of the external

requests increase from 0.2 to 0.6, it imposes the biggest resource burden on

service s27, whose VM quantity increases from 10 to 28.
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Figure 3.2: Impact of the increase in external demands; a)computation-intensive
workflow; b) general workflow; c) communication-intensive workflow.
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3.4.2 Comparing CAGA with the Existing Placement Meth-

ods

This subsection compares CAGA with two existing VM-to-PM placement meth-

ods: Min-nodes [57] and the round-robin heuristic [54]. Figure 3.4(a, b and

c) present the results for computation-intensive, general and communication-

intensive workflows, respectively. It can be seen from these figures that in all

cases, CAGA significantly reduces the communication cost compared with other

two methods, which suggests the effectiveness of the proposed framework.

Figure 3.5 compares CAGA with Min-nodes and the round-robin heuristic

under different types of workflow in terms of the number of PMs used to host

the VMs. It can be seen that although Min-nodes can achieve the least number

of PMs, CAGA only uses one more PMs than Min-nodes in all cases. As it has

been shown in Figure 3.5, CAGA can significantly reduce the communication

cost. These results indicate that CAGA is able to greatly reduce communication

overhead in the cloud with only a tiny fraction of increase in resource usage. This

is because CAGA takes the communication cost into account when designing
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Figure 3.4: Comparing CAGA with Min-nodes and the round-robin heuristic
in terms of communication cost; a)computation-intensive workflow; b) general
workflow; c) communication-intensive workflow.
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Figure 3.5: Comparing CAGA with Min-nodes and the round-robin heuristic in
terms of the number of used PMs

the framework. Moreover the way used by CAGA to encode and calculate the

VM-to-PM mapping ensures that there will not be the excessive spare capacity

in PMs, and therefore effectively reduces the number of PMs used to host VMs.

3.4.3 Convergence of CAGA

Figure 3.6(a, b and c) show the convergence of the CAGA algorithm over time

under computation-intensive, general and communication-intensive workflows,

respectively. In theory, one major factor that influence the convergence speed

is the number of VMs to be placed into the PMs. This is because the size

of the encoded solution equals to the number of VMs to placed. The size of

the solution in turn determines the complexity of the crossover and mutation

operation. Another major influential factor is the number of services in the

cloud, because when calculating communication cost, CAGA needs to calculate

αijk for each pair of services. More services, more calculations are involved.

The number of services in the experiments are 40 and the number of VMs to be

placed is about 150 VMs. It can be seen from Figure 3.6 that the CAGA can

reach the stable result for about 60 seconds in all three cases, and the longest

time (65 seconds) is spent by the communication-intensive workflows in which

the number of VMs to be placed is 167. The results suggest that CAGA can
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find a VM-to-PM placement with low communication cost fairly efficiently.

Figure 3.6: Convergence speed of CAGA; a) computation-intensive workflow,
b) general workflow, c) communication-intensive workflow

3.5 Performance Evaluation on the Bing Work-

flow

This section we further evaluate our cloud-IO model, CAGA and CGA algo-

rithm on the workflow from the Microsoft Bing’s datacenter trace (called Bing

workflow for short) [17, 40].

The Bing workflow is described as follows. The work in [40] describes seven
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types of recurring productive jobs in the Microsoft business datacenter for pro-

cessing daily commercial activities for both internal developers and external

customers (e.g., business partners or tenants), which has the similar character-

istics as the tenant requests. In the experiments, hence, we simulate a stream

of tenant requests (workflows) using these seven typical recurring job structure.

Moreover, reference [17] surveyed the communication pattern among the ser-

vices in Microsoft Bing’s datacenter. We use it to generate the communication

pattern (i.e., pij) among the services in our simulations. In the experiments,

500 services are generated. In the Bing workflow, the communication pattern

can be illustrated using the heat maps shown in Figure 3.7. In Figure 3.7, both

x- and y-axis represent the list of deployed services in the datacenter and the

colours of the cells represent the communication intensity in the scale of 0 to 1

between the corresponding pairs of services. In the sparse pattern of Figure 3.7

(Figure 3.7a), the deployed services can be divided into service groups according

to the communication pattern. A service mainly communicates with other ser-

vices in the same group. The discrepancy between inter-group and intra-group

communications is reduced in the median and the intensive pattern.

About 5% of services (the services with biggest indices in Figure 3.7) always

have intensive communications with all other services, regardless of the interac-

tion pattern. These services are monitor or scheduler services in the datacenter,

which have to frequently communicate with other services. The probability that

Service i invokes Service j (i.e., pij in the proposed bandwidth IO model) is set

as the communication intensity between Service i and j divided by the sum of

the communication intensity between Service i and any other service.

3.5.1 Impact of the Increase in External Demands

The experiment presented in this subsection investigates the impact of service

interactions on resource capacity allocation with 500 services. The workflow

pattern in the experiments is based on the Bing trace with the increasing arrival

rate of workflows, and we set it as four type of workflows, which are sparse,
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Figure 3.7: Communication patterns among services using on the Bing workflow
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median, intensive, and mixed one, where the mixed one we have mixed those

three workflows equally together. Note that for the number of VMs for 500

services we are using box plots (e.g., see Figure 3.8, 3.9, 3.10 and 3.11), in which

the lower part of the main box represents 25-percentile number of VMs for 500

services have, the upper part indicates the 75-percentile, and the red line is the

median. The lower whisker is the 5-percentile, the upper one represents the

95-percentile, and the green bullet is the mean number of VMs for 500 services

have. As can be seen from those 4 figures, when the arrival rate of external

requests increases, the number of VMs for all services has increased. Especially

for the intensive workflow, it remarkably increase the number of VMs for all

services from the total number of VMs as 5138 to 57610 with the increasing

arrival rate. Moreover, it is also noticeable that the mixed workflow is closed to

median workflow in terms of VMs amount for services, which is expectable as it

has mixed with all workflows with equal probabilities and the sparse workflow

“neutralize” the intensive workflow as like median workflows, in terms of VMs

amount for services. Therefore, we can see the IO-model can quantitatively

obtain the impact of increasing demands on VMs for all services with the larger

scale.

3.5.2 Comparing CAGA with the Existing Placement Meth-

ods

Figure 3.12 shows that the comparison of CAGA on bandwidth provision with

the existing placement methods for the above four types of workflows at arrival

rate as 0.5. It indicates the CAGA has achieved the reduction in bandwidth

provision around 38% and 15% comparing with the min-nodes and Heuistic

placement, respectively, in all workflows, which indicates CAGA can achieve

the minimum communication cost in different workflows.
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Figure 3.8: Spare workflow
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Figure 3.9: Median workflow
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Figure 3.10: Intensive workflow
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Figure 3.11: Mixed workflow
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Figure 3.12: Comparing CAGA with different placement methods

3.5.3 Convergence of CAGA

Figure 3.13 presents the convergence of CAGA with the scalability of 500 ser-

vices by the above four different workflows at arrival rate 0.5. With the increase

of number of VMs, we can see the time cost is increasing with the VMs amount,

significantly. All of workflows have taken over 10 minutes to be convergent.

CAGA performs poorly at the larger scale as it encodes the VM-to-PM solution

based on the VM index.

3.5.4 Convergence of CGA

Figure 3.14(a, b, c and d) show the convergence of the CGA algorithm over time

under sparse, median, intensive and mixed workflows, respectively. Since we

have changed the encoded solution of CGA, the convergence speeds at different

scales have been improved significantly compared to CAGA. It can be seen

from Figure 3.14 that CGA can reach the stable result for about 100 seconds
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Figure 3.13: Convergence speed of CAGA; a) sparse workflow, b) median work-
flow, c) intensive workflow d) mixed workflow

for all workflows except the intensive one(Figure 3.14(c)), because the intensive

workflow generates more than 30% VMs than others workflows, and it is the

longest time is spent to convergence the stable result.

3.6 Summary

This chapter employed the input-output model in economy to model the com-

puting resource demand for interacting services in a cloud. Based on the

modelling, this chapter further developed two communication-aware VM-to-

PM placement frameworks, one is based on the VM index encoding, and the

other one is based on the service index encoding. Both frameworks take into

account the interaction costs among services, and aim to find a VM-to-PM place-

ment so that the communication overhead can be minimized. Two frameworks

design the genetic algorithm to search for a placement that can optimize com-
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Figure 3.14: Convergence speed of CGA; a) Sparse workflow, b) Median work-
flow, c) Intensive workflow d) Mixed workflow
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munication overhead in the cloud. Simulation results show that the proposed

communication-aware framework is able to significantly reduce the communicate

cost in the cloud with little increase in a number of used PMs.

This resource provision framework was only modeled for the computing re-

source amongst cloud services, and two proposed VM-to-PM placement algo-

rithms were focused on reducing communication cost with a increasing number

of PMs. As cloud services in most real cases also are affected by its bandwidth

provision and the number of used PMs is one of major considerations for cloud

providers and tenants, attempts need to be made to address these issues. This

will be discussed in detail in the next chapter.
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CHAPTER 4
Bandwidth Provision for Cloud Services

Whereas computing resource is the priority for services, bandwidth provision is

of an equal importance when the interactive and dynamic data communication

within the workflows has concerned. This brings the challenge to determine the

bandwidth provision for these services and more specifically for the VMs that

host the services. Solving the problem of VM bandwidth provision can help the

tenants equip the VMs with proper communication capacity. In EC2, different

types of VM instances have different communication capacity and consequently

different price rates. Moreover, the data transfer between VMs is also charged

in AWS. An exemplar application of this work is that when an enterprise tenant

purchases the VMs in EC2 to build a business cloud platform, offering to its

users a rich set of interacting services, this work can help the enterprise decide

which type of VM instance is most appropriate for each service, so that the VMs

are able to fulfil the communication requirement inherent in the business cloud

while the enterprise does not pay unnecessary extra bills for VMs with higher

bandwidth.

This chapter aims to address this challenge by developing a Communication

Input-Output (CIO) model for data communication among services. It bor-

rows the idea from Leontief’s Input-Output model in Economy and captures

the interaction relation and impact among services. The data communication

performed by each service can be calculated from the model. Knowing data

communication performed by a service does not necessarily mean that the so-

lution is apparent to the problem of bandwidth provision for the service’s VMs.

This is because if two VMs of two communicating services are consolidated into

the same PM, the data transmission between these two VMs does not consume
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their bandwidth. Generally, even if the bandwidth provision for the services

is determined, the bandwidth provision for each individual VM still depends

on the specific VM-to-PM mapping. A lot of existing work has investigated

the methods to find the VM-to-PM mapping with the minimal number of PMs.

However, previous work does not take into account the non-deterministic nature

of service interaction when they design their consolidation strategies. Our stud-

ies found that even if the VM-to-PM mapping has the minimal number of PMs,

there is still room to further reduce the communication cost in the mapping

while maintaining the minimal number of PMs. This chapter designs and im-

plements a Communication-oriented Simulated-Annealing (CSA) algorithm to

reduce the total bandwidth provision of all VMs in a set of interacting services.

The CSA algorithm takes as input the VM-to-PM mapping with the minimal

number of PMs that is generated by the existing strategies. The CSA gradually

adjusts the initial VM mapping to generate new mappings with reduced band-

width provision. The adjustment of VM mappings is designed in the way that

it does not increase the number of used PMs.

4.1 Modelling Bandwidth Provision

The proposed framework models the data communication not only in the up-

link bandwidth for the sending data amongst interactive services, but also in

downlink bandwidth for the receiving data within services. Moreover, the data

consumption within the VM-to-PM placement has been analysed by our pro-

posed equations. The following subsections introduce the detailed formulation

of each aspect within services communication.

4.1.1 The Communication Input-Output Model

We consider a cloud system as an economy, and each service hosted in the cloud

as a sector of this economy. Instead of producing goods, cloud services (sec-

tors) produce and exchange/communicate data over the network infrastructure
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of the cloud. Whereas goods in a real economy are measured by a common

currency that is recognised across different sectors, data produced by services

is measured in units of bandwidth across the network infrastructure. Similar to

the production of goods in an economy as described by Leontief’s model, the

cause for the production of data by services is also classifiable as internal and

external demands.

Internal demand is the data produced by a service as a consequence of a

call from another service. Given two services si and sj from service economy

S, we define a consumption coefficient cij as Eq. 4.1, where di and dj denote

the average data size produced by si and sj respectively, and pij denotes the

probability that one invocation of sj causes one invocation of si. To understand

Eq. 4.1, suppose sj is able to produce one unit of data per unit of time (e.g. it

is allocated with one unit of bandwidth). Since an invocation of sj produces dj

amount of data on average, sj can be invoked 1/dj times in a unit of time, so

that the allocated bandwidth (one unit) of sj is able to transfer the amount of

data produced by sj . As a consequence, the number of invocations to si is then

given by (1/dj)pij . Therefore, the total amount of data produced by si can be

obtained by Eq. 4.1. As defined by Eq. 4.1, cij represents the amount of data

produced by service (sector) si for each unit of data produced by sj in a time

unit. This is in line with the definition of cij used in Leontief’s model.

cij =
1

dj
pjidi (4.1)

In contrast, external demand in a cloud economy is the data produced by a

service due to the invocation requested by external tenants. When a service si is

at the head of a service workflow (e.g., a login service at the start of a workflow),

then the number of times si is invoked by the tenants in a time unit (which we

call the arrival rate of external requests for service si and is denoted by λi),

together with the average amount of data that an invocation of si produces

(i.e., di), determines the amount of data that will be produced by si in a time
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unit due to the external demand. Therefore, the external data demand for si,

denoted by ai, can be calculated by

ai = λidi. (4.2)

This definition is also in line with the definition of external demand as defined

by Leontief’s model. The end tenants of the cloud system who trigger ser-

vice workflows can be regarded as the open sector of the cloud economy which

demands data production from the services.

From these derivations, we can see that a cloud economy shares many similar

properties to that of a real economy. By Eq. 4.1 and Eq. 4.2, we are able to

apply the philosophy of Leontief’s IO model to a cloud setting as follows.

We denote xouti as size of data produced by si in a time unit in order to

meet both internal and external demand (we use “out” to indicate that these

are the data that need to be sent out from si). We can establish the relation

shown in Eq. 4.3, where Xout and A are vectors of dimension |S| holding

the data production (xouti ) and external data demands (ai in Eq. 4.2) of the

cloud economy, respectively, and C is the matrix of cij . Eq. 4.3 establishes

the interdependencies within the cloud economy in terms of data production.

xouti represents the amount of data that may be transmitted over the uplink

network interface of the PMs that service si is hosted in. Note that if si and

the destination service of some data sent by si are located in the same PM, no

uplink bandwidth of the PM needs to be consumed for transferring this part

of data. In Subsection 4.1.2, we will present how to handle this situation and

determine the bandwidth allocation for individual VMs that collectively host

service si.

Xout = CXout +A (4.3)

In addition to the economy described by Leontief’s model, which only con-

siders the amount of goods produced by each sector, we need to calculate the
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amount of data received by each service in our data demand IO model. This is

because Leontief’s model does not consider the additional cost associated with

a service receiving the data through its host PM’s downlink network interface.

Among xouti of data sent by si, the amount of xouti pij will be sent to sij . Let

c′ij denote the probability that a unit of data produced by si is to be received

by sj . Then c′ij can be calculated as
xouti pij
xouti

= pij . We denote xoutij as the size of

data transmitted from si to sj in a time unit and xinji as the size of data received

by sj from si in a time unit, then we have

xinji = xoutij = c′ijx
out
i . (4.4)

Additionally, we denote xini as the size of data consumed by si (i.e., received

from all services) in a time unit. xini can then be calculated by Eq. 4.5, where

Xin is the vector of xini and C ′ is the matrix of c′ij . Eq. 4.5 establishes the

relationship between data production (out) and consumption (in).

Xin = C ′Xout (4.5)

We summarize the notations used in this section in the first half of Table

4.1, and another half of table we will describe in the following section.

4.1.2 Bandwidth Provision for VMs

From the CIO model, we can derive the amount of data that are communicated

by each service. In this section, our objective is to translate this quantity

into actual bandwidth provision for individual VMs hosting a service. In a

cloud system, each service is hosted by a collection of VMs. We assume that

the service is the only service hosted in each of the VMs. This assumption is

reasonable since it is a typical setting in clouds to host different cloud services

in different VMs so as to provide the isolated service environments.

When two VMs of a pair of services are located on the same PM, data may
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Table 4.1: Notations for bandwidth provision

Notation Definition
The Communication IO Model

si, sj , S Services indexed i and j from service universe
S

di Average size of data produced by an invoca-
tion of si

pij The probability that one invocation of si
causes one invocation of sj

cij The amount of VMs produced by service i that
have to be consumed by service j in order for
service j to produce one VM

xouti Size of data produced by si in a unit of time
xini Size of data consumed by si in a unit of time
xij Size of data transmitted from si to sj

Bandwidth Provision for VMs
VM i A virtual machine hosting si
PMk A physical machine indexed k in the cloud
M VM to PM allocation scheme
Vi The number of VM i in the cloud
vik The number of VM i in PMk

be transmitted locally and thus does not consume the VMs’ physical bandwidth.

However, in order to take advantage of this local data transmission channel, the

local ratio between the numbers of VMs of two service needs to match their

global ratio. This is explained in detail below.

Given a pair of services si and sj from S, Vi and Vj denote the total number of

VMs in the cloud for hosting these two services, respectively. Since most clouds,

such as AWS, are equipped with Elastic Load Balancing [98] or the fairness

scheduler [113] to distribute the load traffic for services, we can assume that the

workload of si is evenly distributed across all VMs that host si. Consequently,

the amount of data sent from a VM i (VM i denotes a VM that hosts service

si) to service j can be calculated by
xoutij

Vi
, where xoutij is the data sent by service

i to j in a time unit, which is calculated by Eq. 4.3. Given a PM PMk, vik

and vjk denote the number of VM i and VM j in PMk, respectively. Then

in PMk, the amount of data that are communicated by VM is to service j is

vik
xij
Vi

. If vik
vjk

(i.e., the local ratio of the number of VM i to the number of VM j
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in PMk) is no greater than Vi
Vj

(i.e., the global ratio of the number of VM i to

the number of VM j in the cloud), all data sent by VM is in PMk (the VMs

that host service i in PMk) to service j can be handled by VM js in PMk.

Therefore, there is no need to consume the bandwidth of VM i (or VM j) for

sending (or receiving) these data. For example, assume Vi and Vj are 20 and

50, respectively. If in PMk, vik is 2 and vjk is 6, then there are more than fair

share of VM j (which is 5) in PMk to handle the data sent by VM i in the same

machine (since 2/6 < 20/50).

On the contrary, if the local ratio is greater than the global ratio, which

means that there are not adequate VM j in PMk to handle the data sent by

VM i in PMk. The portion of data that cannot be handled by VM j in PMk,

denoted by yijk, have to be sent by VM ito VM j in another PM, PMl, and

therefore consume the uplink bandwidth of VM i and the downlink bandwidth

of VM j . yijk can be calculated by Eq. 4.6. Eq. 4.6 essentially compares whether

the local ratio is no greater than the global ratio. If so, yijk is 0. Otherwise,

Eq. 4.6 calculates the data that si has to send out after deducting the portion

of data that can be handled by VM j in the same machine.

Since yijk is the data communicated in a time unit, yijk is essentially the

bandwidth that has to be allocated to the VM is in PMk for sending data to

service sj . Therefore,
yijk
vik

is the uplink bandwidth that has to be allocated

to each VM i in PMk for sending the data to sj , while
yijk
vjl

is the downlink

bandwidth allocated to each VM j in PMl for receiving yijk. The total uplink

bandwidth that needs to be allocated to VM i in PMk can be calculated by∑
sj∈PMk

yijk.

yijk = max{vik
xij
Vi

(1− vjk(Vi/Vj)

vik
), 0} (4.6)

Given a VM-to-PM mapping, denoted by M, the total uplink communica-

tion bandwidth generated byM can be calculated by Eq. 4.7, where yijk is the

amount of data that are sent from VM i (hosting service i) in PMk (consuming
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the uplink bandwidth of PMk) to VM j (hosting service j) in other PMs. The

total downlink bandwidth generated by a VM-to-PM mapping can be calculated

in a similar way.

C(M) =
∑
k

∑
j

∑
i

yijk (4.7)

We summarise some notations used in this section in the second half of

Table 4.1.

4.2 The Communication-oriented Simulated An-

nealing Algorithm

In the classical SA approach, an initial solution is first generated (a solution is

encoded) and the neighbourhood searching routine is then applied to generate

new suitable candidate solutions. A cost function and the metropolis crite-

rion [105], which models the transition of a thermodynamic system, are used to

determine the quality of the solutions and guide the searching direction so that

better solutions can be gradually generated until the stopping criterion is met.

In this section, we design a Communication-oriented SA (CSA) algorithm

that aims to find the VM-to-PM mapping with the minimal bandwidth pro-

vision for all VMs. In the CSA algorithm, the initial solution is set as the

VM-to-PM mapping that is generated by the MinPM algorithm [57] (i.e., the

algorithm that produce the VM-to-PM mapping that uses the minimal number

of PMs to host VMs). The amount of bandwidth provision calculated in Eq. 4.7

is used as the cost function for the CSA algorithm. The CSA algorithm adjusts

the VM-to-PM mapping, aiming to reduce the bandwidth provision without in-

creasing the number of PMs. This section presents the encoding of the solution,

the neighbourhood searching routine and the entire flow of the CSA algorithm

designed in this chapter.
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Encoding the solution

In the SA algorithm, a solution is encoded as a two-dimensional array, A, in

which an element a[i][j] represents how many VMs of Service sj there are in

PMi. Note that this encoding method does not differentiate the VMs for the

same service. This way, the number of VMs does not affect the complexity

of the algorithm. Consequently, the proposed SA algorithm can find the good

VM-to-PM mappings efficiently.

Neighbourhood searching

In SA, the design of neighbourhood searching routine is critical for generating

good solutions with good efficiency. This subsection presents the method to

conduct the neighbourhood searching.

Two probabilities, pp and ps, are set to represent the possibility that the

VM mapping of a service in a PM is adjusted. An intuitive way to determine

the PMs and the services whose VM mapping is adjusted is as follows. Given a

current solution (i.e., an encoded VM-to-PM mapping), the routine loops over

every PM. In each iteration of the loop, a random number between 0 and 1 is

generated. If the random number is greater than pp, the VM mapping in the

PM remains unchanged and the loop moves to the next PM. Otherwise, the VM

mapping in the PM is adjusted and the routine enters into a second-layer loop.

In this loop, the routine iterates over every service in the PM. In each iteration,

a random number between 0 and 1 is generated. If the number is greater than

ps, the VM mapping for this service remains unchanged. Otherwise, the VM

mapping of this service is adjusted.

Although the above method is intuitive, the routine has to run a two-layer

loop for generating every new solution. In order to improve the efficiency, the

following design is adopted for the neighbourhood searching. The neighbour-

hood searching routine randomly selects N × pp PMs (N is the total number of

PMs) to adjust the VM mappings of some services in these PMs. For a selected

PM, the routine further randomly selects M × ps services (assume M is the
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number of services in the PM) and the VM mappings of these services will be

adjusted.

For service si in PMj , its VM mapping is adjusted in the following way.

First, the neighbourhood searching routine randomly selects another PM, PMk,

and then randomly selects a service, sl (l 6= i), in PMk. The routine then tries

to swap the VMs between si and sl. In order to render a valid swap, the routine

calculates the maximum number of VMs that can be swapped between the two

services, which can be calculated using Algorithm 1, where fk and fl are the

spare resource capacity in PMk and PMl, respectively, vik is the number of

VM i in PMk, swapik is the maximum number of VM i that can be swapped

in PMk. A valid swap is one after which the total capacity of every type of

resource (the resource types of CPU utilization, memory and bandwidth are

considered in this work) allocated to the VMs in either PM does not exceed

the total physical resource capacity of the PM. This validity rule guarantees

that the number of required PMs does not increase. The pseudo-codes of the

neighbourhood searching routine is presented in Algorithm 2.

As discussed above, the neighbourhood searching routine randomly selects

N × pp PMs (N is the total number of PMs) and in each selected PM, the

routine further selects M×ps services to adjust their VM mappings. Therefore,

the time complexity of Algorithm 2 is O(pp ×N × ps ×M).

Algorithm 1 Calculating the maximum number of VMs that can be
swapped

1: if VM i
k × vik < VM j

l × vjl then
2: Swapik = vik

3: Swapjl = [
VMi

k×vik+fk

VMj
l

]

4: else if VM i
k × vik > VM j

l × vjl then
5: Swapjl = vjl

6: Swapjk = [
VMj

l ×vjl+fl
VMi

k

]

7: else
8: Swapik = vik
9: Swapjl = vjl

10: end if
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Algorithm 2 Neighbourhood searching

1: Randomly select bpp ×Nc PMs
2: for each of these PM do
3: Randomly select ps × S |k services in PMk

4: for each of the services do
5: Randomly select a PM, PMl(l 6= k) and a service j (j 6= i) in PMi

6: Call Algorithm 1 to calculate the maximum number of VMs in VM i

and VM j that can form a valid swap
7: Swap the calculated number of VMs between si in PMk and sj in
PMc

8: end for
9: end for

10: Return the new VM-to-PM mapping, M′

Simulated Annealing

Algorithm 3 outlines the entire SA process aiming to find the optimal VM-to-

PM allocation. In the algorithm, T is the initial temperature of the SA process,

which is typically set as 1000 [105], and factor is the cool-down factor of the

SA process, which is typically set as 0.85[105]. In each iteration, M is the

current VM-to-PM mapping. Algorithm 2 is called to generate a new candi-

date VM-to-PM mapping, M′ (line 4). Eq. 4.7 is then applied to calculate the

communication cost (C′(M′)) of the new mappingM′ (line 5). If C′(M′) is bet-

ter(smaller) than that of the current mapping, the algorithm accepts the new

mapping and the new mapping becomes the current mapping (line 6-8). Oth-

erwise, the metropolis criterion, calculated by exp(−∆C(M)
T ), is used to decide

whether this new but worse VM mapping should be accepted. If the calculated

metropolis criterion is greater than a float number randomly generated between

0 and 1 (line 7), M′ is accepted. Otherwise, the current mapping remains in-

tact. The iteration repeats until the current mapping stays unchanged for a

certain number of consecutive iterations (counted by j) or the number of itera-

tions (counted by i) reaches a pre-set number, kmax1 and kmax2 in the algorithm

(line 2).

There are at most kmax2 iterations in the “while” loop in Algorithm 3. In

each iteration, calling Algorithm 2 dominates the time spent in an iteration.
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Therefore, the time complexity of Algorithm 3 is O(kmax2ppNpsM). In our

experiments, we found that the solutions generated by the CSA algorithm have

stabilised when the “while” loop iterates for 500 times (i.e., kmax2 is set as 500)

for the system scale of 500 services and around 1000 PMs .

Algorithm 3 The Communication-oriented Simulated Annealing Algo-
rithm
Require: M

1: i = 0, j = 0
2: while j ≤ kmax1 or i ≤ kmax2 do
3: T ← T × factor
4: M′ ← Call Algorithm 2
5: C ′(M′) ← Call Eq.4.7
6: ∆C(M)← C ′(M′)− C(M)

7: if ∆C(M) < 0 or exp(−∆C(M)
T ) > R(0, 1) then

8: M←M′
9: j = 0

10: else
11: j = j + 1
12: end if
13: i = i+ 1
14: end while

4.3 Performance Evaluation

We have conducted the simulation experiments to evaluate the effectiveness of

the CIO model and the CSA algorithm developed in this work. Both trace from

the Bing trace as we have used in Chapter 3.5, and synthetic trace are used in

the simulations.

In the experiments, 500 services are generated. Reference [17] surveyed

the number of VMs that a service has in Bing’s datacenter. The results are

summarized in Table 4.2, which shows the percentage of services that has a

certain number of VMs. For example, 25% of services have 1-2 VMs each. It

can be seen that most services are “small” and 80% of services have no greater

than 10 VMs. This distribution of the number of VMs in a service is used to

generate the VMs for services in our simulations.

The synthetic trace is generated in the following way. A set of 500 services
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Table 4.2: Percentage of Services comprising different numbers of VMs

% Services 25% 25% 20% 10% 18% 2%
Number
of VMs

[1, 2] [3, 5] [6, 7] [8, 10] [11, 99] [100, 104]

are generated. A service is defined as the start service, from which all workflows

in the trace start. Another service is defined as the end service, which means

that when the workflow reaches to this service, it stops and will not invoke

further services. The degree of parallelism (denoted by DP) is set, which is 3

by default, when generating the workflow instances for the synthetic trace. For

all services except the end service, after a service (e.g., si) invoked by a task is

completed, it further randomly invokes DP (e.g., 3) services. The roulette wheel

method is used to randomly determine which DP services are selected based on

pij . In the synthetic trace, the value of pij is randomly set from the range of

[0.001, 0.003] with the average of 0.002 (i.e., 1/500, where 500 is the number of

services generated in the trace). The workflow instance stops growing when all

branches in the workflow reach the end service. The technique presented in [24]

is used to calculate the number of VMs for each service. In both synthetic trace

and Bing trace, the strategy presented in [57] is used to generate the initial

VM-to-PM mapping with the minimal number of PMs.

Our evaluation covers the following main aspects: 1) evaluating the effec-

tiveness of the developed CIO Model in calculating the appropriate bandwidth

allocation for the services deployed in the cloud, 2) evaluating the effectiveness

of the proposed CSA algorithm, 3) evaluating the efficiency of the CSA algo-

rithm, and 4) evaluating the effectiveness of applying the developed IO Model

on the AWS cloud platform.

4.3.1 Accuracy of the CIO Model

The experiments presented in this subsection investigate the impact of commu-

nication pattern on the bandwidth allocation and the accuracy of the proposed

IO model.
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Figure 4.1: Accuracy of the CIO model using the Bing trace

In the Bing trace, the probability that Service i invokes Service j (i.e., pij

in the proposed bandwidth IO model) is set as the communication intensity

between Service i and j divided by the sum of the communication intensity

between Service i and any other service. On the another hand, for the synthetic

trace, it is straightforward to determine pij since a service randomly invokes

another service in the service set. With pij , we apply the bandwidth IO model

to calculate the bandwidth allocated for each service.

In the simulator developed in this work, we allocate the calculated band-

width to the services and then run the simulation experiments. We record the

amount of data that are communicated by each service. If the proposed band-

width IO model is effective, then the amount of data that are communicated

by each service in a time unit in the simulation experiment should equal to the

bandwidth allocated to each service.

The experimental results for the Bing trace are shown in Figure 4.1. It can

be seen from this figure that our bandwidth IO model is fairly accurate. The

experimental records show that the average percentages of discrepancy between

the results obtained by the CIO model and those by the simulation experiments
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Figure 4.2: Accuracy of the CIO model using synthetic traces

are 0.8%, 1.3% and 3.4% for Sparse, Median and Intensive communication pat-

terns, respectively. The reason why the accuracy of the CIO model decreases

as the communication pattern intensifies may be because as the communication

pattern changes from Sparse to Intensive, it becomes increasingly more indeter-

minstic that which service a service invokes each time. Such increasing dynamic

makes the CIO model less accurate. The results for the synthetic trace is shown

in Figure 4.2. The mean percentage of discrepancy between the CIO model and

simulation experiments is 1.3%, which once again suggest that the CIO model

is able to capture the bandwidth demands accurately.

4.3.2 The Effectiveness of CSA

The experiments in this subsection investigate the effectiveness of the proposed

Simulated Annealing (SA) algorithm. In the experiments, we first used the

methods proposed in [57], which we call the MinPM algorithm in this Chapter,

to obtain the VM-to-PM mapping that uses the minimal number of PMs to

host the VMs. We then apply the proposed SA algorithm to further adjust

the VM-to-PM mapping in order to reduce the communication cost without

increasing the number of PMs. We also used the greedy method presented in [54]
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to perform the VM-to-PM mapping and compared the results against those

generated by the proposed SA. In the greedy algorithm, all services are ranked

in the decreasing order of their communication intensity (i.e., the data that

have to be communicated by a service in this Chapter). The greedy algorithm

first place the VMs of the first service (i.e., the one with most communication

intensity) on PMs, with each PM having the same number of VMs or having at

most ±1 difference if it can not be evenly divided). Then the greedy algorithm

selects the next service, s2, and tries to place its VMs to PMs so that the local

ratio of the number of VMs of s1 to that of s2 in a PM equal (or is the closest)

to the global ratio of the total number of VMs of s1 to that of s2. The procedure

repeats until all VMs are mapped.

The experiment results for the Bing trace are presented in Figure 4.3(d).

It can be seen from this figure that in all cases, SA significantly reduces the

communication cost compared with other two methods. These results indicate

the effectiveness of the proposed SA algorithm. Further observation shows that

the advantages of CSA over other algorithms decrease when the communication

intensity increases. For example, when the communication pattern is sparse,

the communication cost obtained by CSA is less than that by MinPM by about

44%, while the cost is reduced by only 17% when the communication pattern

is intensive. This result can be explained as follows. When the communica-

tion pattern is intensive, a service has almost equal possibility to communicate

with any of other services. Therefore, the VM-to-PM mapping methods are

less important in terms of reducing the communication cost. On the contrary,

when the communication pattern is sparse, overall communication cost is more

sensitive to the mapping methods.

For the synthetic trace, we increase the arrival rate of the generated work-

flows and use the technique presented in [24] to calculate the number of VMs for

each service under different arrival rates. The experimental results are shown

in Figure 4.3(a, b and c). It can be seen that CSA still outperforms other two

algorithms. However, the advantage is not very prominent. Comparing with
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Figure 4.3: Comparing CSA with other existing algorithms using synthetic and
Bing trace
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MinPM, CSA reduces the communication cost by about 10%. This trend is

consistent with that observed in Figure 4.3(d). This is because in the synthetic

trace, a service randomly invokes (i.e., has equal opportunity to invoke) another

service. According to the analysis of Figure 4.3(d), it is reasonable that CSA

has the diminished advantage over other two algorithms under the synthetic

trace.

4.3.3 The Efficiency of CSA

Figure4.4 shows the convergence of the proposed CSA algorithm over time un-

der different communication patterns of the Bing trace. It can be observed

from these figures that the bandwidth provision decreases dramatically in the

first few seconds in all cases (about 4.5 seconds) and then the trend gradually

tails off, which shows that the proposed CSA algorithm is efficient in reducing

the bandwidth provision. This is because a number of optimization measures

are designed in searching neighbourhood solutions as well as in calculating the

bandwidth provision of a VM-to-PM mapping.

Further observations show that the convergence time remains almost the

same as the communication pattern changes from “sparse” to “intensive”, which

suggests that the communication pattern does not have much impact on the

convergence time. This result is reasonable since the communication pattern is

not a main parameter that affects the number of operations in the SA algorithm.

Figure 4.5(a) and 4.5(b) aim to investigate the convergence time spent by

CSA over the number of services and the number of PMs, respectively. The

synthetic trace is used in these experiments. The y-axis is the time spent by

CSA to establish the stable sub-optimal bandwidth provision, i.e., convergence

time. Note that in the experiments, the number of PMs is determined by the

workflow arrival rate. We set the size of VM so that the average number of

VMs in a PM is fixed (in Figure 4.5(b), the average number of VMs in a PM

is 8). Then the number of PMs increases as the workflow arrival rate increases.

This is why the x-axis of Figure 4.5(b) is the arrival rate. In Figure 4.5(a), the
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average number of VMs in a PM is set to be 8 and the arrival rate is set to be

0.2.

As seen in Figure 4.5(a), the convergence time increases as the number of

services increases from 100 to 900, as to be expected. This is because as the

number of service increases, CSA loops over more services to calculate the local

ratios for each service pair.

In Figure 4.5(b), the numbers of PMs are 476, 686, 896, 1105 and 1314

as the arrival rate increases from 0.2 to 0.6 with increment of 0.1. As can be

seen from this figure, the convergence time increases as the number of PMs

increases, which is also to be expected. This is because in each iteration, CSA

has to calculate the local ratios of service pairs in each PM.

4.3.4 CIO Model on a AWS Testbed

We deployed a testbed in AWS cloud system to verify the effectiveness and

show the applicability of the proposed CIO model. The AWS testbed comprises

six AWS EC2 instances with each representing a different service. Note the

purpose of this experiment is to verify the effectiveness of the CIO model, not

the CAS algorithm since we cannot control the VM-to-PM mapping in AWS.

This is why we only use one EC2 instance to host a service. In order to ensure

these EC2 instances are not allocated on the same physical node, we deploy each

instance on each of three availability zones in two regions in Europe (Ireland

and Frankfurt).

The interaction pattern among services are generated in the following way.

The six services are put into three service groups. Services 1 and 2 are in group

1. Services 3 and 4 are in group 2. Services 5 and 6 are in group 3. In the

experiments, it is set that a service has 70% probability to invoke the other

service in the same group and 30% probability to invoke any of other services

in a different group.

Service invocations are generated in the following way. A tenant (a computer

in our lab) initiates a stream of service requests to the services in the deployed
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Table 4.3: Amazon EC2 instance configurations-1

EC2 configuration m3.large m3.4xlarge c4.4xlarge c4.8xlarge
Max bandwidth
(MB/s)

62.5 125 250 500

AWS testbed following the Poison process with average arrival rate of λ. When

a request is sent to the AWS testbed, the data of size din is also sent with the

request, which represents the data communication of the cloud system with the

open sector in the IO model. A request randomly invokes a service (run in an

EC2 instance), which then kicks off a workflow of service invocations following

the service interaction pattern specified above. When a service invokes another

service, the data of size dintra is also sent from the former service to the latter.

When n service invocations are performed, n-th service will not invoke further

services, which represents that the workflow of service invocations that serves

the initial request sent by the tenant is completed and that the workflow contains

n tasks. After a workflow is completed, the last service sends the data of size

dout back to the tenant, which represents the cloud system returns the results

back to the tenant. In the experimental results presented in this subsection, din,

dintra and dout are set as 200MB. λ and n are set to be 1 and 10, respectively.

Since we focus on investigating bandwidth provision in this experiment, we let

each service have enough capacity to process the computation tasks and set the

computing time of a service invocation to be one second.

We apply the CIO model to compute the bandwidth provision of each service

(i.e., each EC2 instance), which is shown in Table 4.4. AWS provides a list of

EC2 instances with different bandwidth configurations, some of which are listed

in Table 4.3. The tenants can select the EC2 instances from them. For a service,

we select the EC2 instance with the bandwidth configuration bigger but closest

to the bandwidth provision computed by the CIO model. The selected EC2

instances for each service and their corresponding bandwidth configurations are

also shown in Table 4.4.

In the experiments, we record the average time spent by the testbed to
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Table 4.4: IO Model bandwidth configuration

Service index 1 2 3
IO Model
(Mb/s)

431.6 200 248

Instance type c4.8xlarge c4.4xlarge c4.4xlarge
Bandwidth

(Mb/s)
500 250 250

Pricing
($/hour)

2.112 1.056 1.056

Service index 4 5 6
IO Model
(Mb/s)

366 532 465

Instant type c4.8xlarge c4.8xlarge c4.8xlarge
Bandwidth

(Mb/s)
500 500 500

Pricing
($/hour)

2.112 2.112 2.112
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Figure 4.6: Performance comparison with different configurations of EC2 in-
stances

finish a workflow, i.e, the duration between the time when the tenant sends the

initial request and the time when the tenant receives the results sent by the

testbed, which is shown in Figure 4.6.1 (the column labelled by IO(aws)). To

investigate the effectiveness of the CIO model, we also ran the experiments with

other EC2 instance configurations for the services. For example, the column
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labelled by m3.large corresponds to the performance obtained by running the

experiment with each service being run in a m3.large instance (this is reasonable

because tenants tend to select the same configuration for all EC2 instances in

their system). It can be seen that only when the experiment is run with the

c4.8xlarge instances (most bandwidth and therefore most expensive as shown

in Table 4.4), the same performance is obtained as that by the configurations

computed by our IO model.

We also record the throughput of the testbed in terms of the number of

service invocations processed by a testbed in one second, which is shown in

Figure 4.6.2 (the column “IO(aws)”). Note that a service invocation measured

in this experiment includes receiving the data from the previous service or the

tenant, performing the computation, and sending the data to the next service or

the tenant. Similar as in Figure 4.6.1, we also present the throughput obtained

by using other EC2 instance configurations. Once again, the performance ob-

tained by the CIO model is same as that by the configurations in which all

services are run by most expensive instances, c4.8xlarge.

Figure 4.6.3 shows total bandwidth allocated to all services when running the

experiment with different configurations. The column “IO(computed)” is the

actual total bandwidth computed by the IO model while The column “IO(aws)”

is the total bandwidth of the EC2 instances selected according to the CIO

model. It can be seen that by applying the CIO model, the testbed needs less

bandwidth (therefore less money as shown in Table 4.4), but still deliver the

same performance (as shown in Figure 4.6.1 and 4.6.2).

4.3.5 Cloud-IO Model in AWS

We build our testbed cloud system by several deployed services [66] to complete

a workflow that encodes the original 1080p video files to produce different video

formats from 720p to 144p. There are four video services and one front service in

the testbed, and the front service plays the role as a central scheduler receiving

the demand requests with the original video file from the tenant and dispatches
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it to those video services to encode the required formats as in Figure 4.7. For

each encoding service, after it received the original video file, it will split the

original video as several segments and send them to another service to encode,

separately. Thus, each service will need to cooperate with other services together

to complete the original video encoding. The service has the encoding video

segments that needs to run the computation tasks to complete the encoding.

When all segments of video have encoded the required format, the first video

service will gather and join them as the result data sending it to the front service

so that the tenant’s demand request is completed. Moreover, four video services

are divided into 2 groups. Group 1 contains service 1 and service 2, service 3 and

service four are allocated in the group 2. In the experiment, a service has been

set with 70% probability to send its video segments to another service in the

same group, and 30% probability to invoke any of other services in a different

group.

We represent each service as one AWS VPC, and each VPC could be de-

ployed in two different regions in two availability zones within Europe (Ireland

and Frankfurt). For one service represented by a VPC, there is a collection

of VM instances to do its computation tasks, and one extra VM instance is

responsible for the load balance and communication traffic amongst its internal

VMs instances and others VPC (services). In addition, as the front service only

transfers the original video file to other video services without doing computa-

tion tasks, we record the performance results of an average time window within

an one-day experiment to investigate the effectiveness of cloud-IO model by four

video services on processing 40 requests.

For this experiment, we initiate a stream of tenant demand requests that each

request contains the video files to all services and the related encoding tasks as

one minute time interval generated from the machine in our lab. The size of

video file and the number of encoding tasks are two random variables based on

the Gaussian distribution, 100 Mb, 20 encoding tasks are the mean values, and

30 Mb, 5 encoding tasks are the standard deviation values for the video file and
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Figure 4.7: The illustration of AWS testbed workflow

Table 4.5: Amazon EC2 instance configuration-2

EC2
configuration

m3.large m3.4xlarge c4.4xlarge c4.8xlarge

Bandwidth
(Mb/s)

62.5 125 250 500

vCPUs 2 8 16 32
Processing encoding task

(per minute)
1 4 8 16

Pricing cost
($ per hour)

0.146 0.616 1.056 2.112
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encoding tasks, respectively. AWS has provided a list of EC2 instances with

different configurations and pricing cost, which we listed in the Table 4.5, thus

we compare the testbed cloud systems with different configurations chosen from

those configurations and the configuration computed by our cloud-IO Model.

In the beginning of experiment, we assign those four AWS configurations

with VMs capacity that can only meet the external computational demands.

To compare the performance and resource cost with different configurations,

we indicate them as four black bars in Figure 4.8. In addition, we gradually

increase 2 additional VMs for each service at each configuration to see the impact

of performance, which we note them as in the figure with different colour bars,

respectively. We can see the throughput and completion time have not been

improved too much even its configuration has the increasing number of VMs.

Especially, for m3.large, it barely has no improvement on the throughput when

the VMs are increasing. It is because most of data-flows including sending and

receiving amongst four video services are around 400 Mb, and the performance

bottleneck for those configurations is the bandwidth. On the contrary, the

configuration of c4.8xlarge has the performance bottleneck on its processing

ability. This configuration has reached the peak performance after increasing 2

VMs for each service, but its performance keeps in constant even with increasing

VMs number. However, we can see the EC2 configuration computed by cloud-

IO Model can reach the best performance by without increasing the number of

VMs.

Furthermore, if we look deeper into those configurations in the Figure 4.9,

which we noted the resources details and pricing cost for those testbeds, we

can see more differences among those configurations. It is no surprise that

the increasing VMs amount incurs higher financial cost for the configuration,

except for the configuration of c4.8xlarge, due to the shorter time for completing

requests and it used less money than its initial one. However, the throughput

cannot be improved when more VMs are added up with the climbing pricing

cost. And even it has the similar performance result with the configuration
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Figure 4.8: The comparisons of AWS Configurations in Performance

computed by cloud-IO model, it costs more money for using too many powerful

VMs resource. On the another hand, the configuration computed by cloud-

IO model still can obtain the maximum performance with less and cheaper

VMs configuration and bandwidth provision. Moreover, for Figure 4.9(3), the

last two red bars represent the configuration we deployed in AWS and actual

bandwidth provision computed by cloud-IO model, we can see that a smaller

bandwidth provision could be adopted if we can have more suitable EC2 instance

configuration.

4.3.6 AWS VM-to-PM Placement

Since we are unable to control the actual VM-to-PM placement in the AWS, to

directly verify the impact on performance of VM-to-PM placement for our AWS

testbed is intractable. However, AWS restricts the number of VPCs as up to five

in the same region for each cloud tenant, and the same bandwidth configuration

within one region can communicate via AWS private internal IP rather than the

public Internet IP, which significantly surpasses the communication between two

different regions with the public IP as we shown in Table 4.6. Furthermore, in

AWS, there is no extra pricing cost for communication via the internal IP, but
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Figure 4.9: The comparisons of AWS Configurations in Resource Cost

AWS charges in the sending and receiving for $0.04 per GB data per hour.

Thus, these key elements have shared the analogies in our scenario of VM-to-

PM placement, we adopt the VPC-to-Region placement to verify the impact

on the performance of different VM-to-PM placements, and we choose CAGA

as our placement algorithm, because the AWS region treats all VPCs equally

so that there is no differences to allocate the all VPCs by different placement

algorithms in terms of the number of regions.

In this experiment, we still use the testbed with four services for video en-

coding. Because this aim of VM-to-PM placement is the bandwidth provision

rather than the number of VMs, we set each service with three VMs to do the

encoding tasks for the simplicity, and making it is enough to complete our com-

putation tasks. To match the VM-PM placement with AWS VPC-to-region, we

allocate each VM into one VPC. With the limitations of AWS VPC, there are

at least 3 different regions that to allocate 4 services (VPCs) with 12 VMs in

total. Hence, this evaluation focuses on the different placements of 12 VMs-to-3
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Table 4.6: AWS EC2 bandwidth in public/private IP

EC2
configuration

m.3.large m3.4xlarge
public IP private IP public IP private IP

Bandwidth
(Mb/s)

62.5 400 125 600

EC2
configuration

c4.4xlarge c4.8xlarge
public IP private IP public IP private IP

Bandwidth
(Mb/s)

250 1000 500 1500

regions.

For the tenant demand request, we adopt the same way as the last one by

generating a stream of demand requests for four services with one minute as the

time interval to record an average time window of completing 40 requests.

We firstly compare the testbeds with 100Mb demand requests in different

placements to see the differences on the throughput and the pricing cost based

on the configurations that ranges from Non-IO Model and Non-CAGA to cloud-

IO Model and CAGA as we display it in the Figure 4.10. For those configuration

polities either Non-IO model or Non-CAGA, we choose m3.4xlarge EC2 instance

type (125 Mb/s) as our default EC2 instance, and a random placement method,

respectively. It is obvious that the configurations with either cloud-IO Model or

CAGA have enhanced the throughput of testbed as the maximum, and the time

cost is reduced at the minimum. But these configurations incur the significant

difference at the pricing costs as in the Figure 4.10(3), for the policy of CAGA

with the optimal VMs-to-Region placement uses the communication data-flow

among services via EC2 internal IP, it gains the bandwidth and reduces the

unnecessary bandwidth provision cost comparing to the policy of cloud-IO model

without CAGA.

However, only relying on CAGA that cannot guarantee the “best” perfor-

mance whilst we increase the demand request at 200 Mb as we represent in the

Figure 4.11. Although the cloud-IO model still can keep its maximum perfor-

mance with the increasing demand requests, the pricing cost of cloud-IO model
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Figure 4.10: VMs-to-Regions placements with requests (100 MB/s)
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Figure 4.11: VMs-to-Regions placements with increasing requests (200 MB/s)
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without CAGA($8.488) is higher than the one with CAGA($4) over double

times, as CAGA has successively taken the advantages of better VM-to-Region

placement and it chooses the cheapest VMs.

4.4 Summary

This chapter presented a Communication Input-Output (CIO) model, which ex-

tends the economical Input-Output model to model data communication among

cloud services. Based on the CIO model, the method of determining the band-

width provision for VMs is developed. Further, a Communication-oriented Sim-

ulated Annealing (CSA) algorithm is developed. The CSA algorithm takes the

VM-to-PM placement with the minimal number of PMs as the initial mapping

and adjusts this mapping iteration by iteration, aiming to obtain the VM-to-

PM placement with the minimal bandwidth provision without increasing the

number of PMs used. The simulation and real experiments were conducted to

verify the effectiveness of the proposed CIO model and the proposed VM-to-

PM algorithms. The last but not the least, we have combined two IO models

on computing and bandwidth resources as a complete cloud-IO model, and the

cloud-IO model has been implemented in the real AWS cloud platform with the

VM-to-PM placement algorithm to verify its correctness and effectiveness.

By the proposed cloud-IO model and VM-to-PM algorithms, the cloud ten-

ants and providers can model and decide the resource provision and allocation

within a cloud. Owing to the increasing scale of job requests in the cloud, the

emerging architecture of distributed schedulers has been implemented to replace

the traditional central cluster scheduler. But this nascent architecture has also

incurred new challenges for cloud computing, in terms of scheduling the above

resources provision and allocation. Scheduling issues within the cloud will be

discussed in the next chapter.
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CHAPTER 5
Job Scheduling in the Cloud

Data centres nowadays have to process the massive scale of jobs on a daily ba-

sis. On one hand, the resource demand, along with the commercial success of

cloud computing, becomes the major driving force for the cloud providers to

increase the size of their clusters. On the other hand, in order to handle the

jobs efficiently, cloud giants, such as Google, Microsoft and Amazon, have devel-

oped various cluster management frameworks in their production clusters [107].

Among them, one conventional approach is to develop a centralized scheduler in

the cluster, which manages all and diverse types of job submitted to the cluster.

However, because of the massive number of the jobs and the complexity of mak-

ing scheduling decisions for some types of job, the centralized schedulers become

the performance bottleneck for delivering resources and processing jobs timely.

A recent trend thus is to deploy multiple, independent schedulers in a cluster.

Different schedulers make scheduling decisions simultaneously for different types

of job, aiming to improve the throughput and cluster utilization. These inde-

pendently working schedulers in a cluster are termed distributed schedulers in

literature [18, 88, 95].

In data centres, a job typically runs in a resource container, the examples

of which are Linux Docker and VM [58]. A resource container may consume

a certain amount of various types of resources such as CPU, memory, storage

and bandwidth. Scheduling decisions involve determining which physical ma-

chine a resource container should run in. Since distributed schedulers make

the scheduling decisions independently, it is likely that different schedulers de-

cide to place their resource containers in the same physical machine and that

the total resource capacity of these resource containers exceed the resource ca-
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pacity of the physical machine. This situation is called the scheduling conflict

between distributed schedulers. It has been shown that the scheduling conflict

is a crucial part of performance penalty for distributed schedulers, since the

distributed schedulers may spend a long period of time in rescheduling jobs due

to scheduling conflict rather than put them into execution.

This scheduling conflict problem has been recognized and the measures have

been taken in literature to resolve the conflict. For example, Omega [95] accepts

a job even if the scheduling conflict occurs for some of the job’s tasks. However,

the scheduler will keep rescheduling the tasks that conflict with the scheduling

decisions made by other schedulers. Apollo [18] implemented a waiting queue

on each machine so that the conflicting tasks are not rejected and return imme-

diately back to the scheduler. If a task stays in the waiting queue for too long,

the scheduler will try to schedule some duplicated tasks to other machines to

speed up the processing of this task.

Essentially, the existing measures focus on resolving the conflict after it hap-

pens, not on preventing scheduling conflicts. Both strategies cause the straggler

tasks, which increase the makespan of the whole job since the makespan of a

job depends on the slowest constituent task in the job. Also, pending in the

machines and running duplicated tasks cost more unnecessary resources. Fur-

thermore, because the scheduler will still hold the resources until all tasks in

a job have been completed, the early completed tasks does not release the re-

sources in the machines although the resources are idle.

In this work, we investigate the performance penalty incurred by the schedul-

ing conflicts and the relation among the conflict and the number of resources

requested by the schedulers. We then propose a game-theoretical solution for

distributed schedulers to improve the job performance. Finally, we conduct the

simulation experiments and real experiments on AWS platform to evaluate the

effectiveness of the models and the methods proposed in this work.
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5.1 Motivating Case for the Strategy

In this section, we review distributed scheduling in clouds and investigate the

possible tradeoff between resource demand and conflict overhead in the cloud

with distribute schedulers. We also present the opportunities and challenges of

improving job performance in such a system.

5.1.1 Workload Character

The exemplar applications running in clouds include web indexing and search-

ing, database services, data batch processing frameworks and such so on. To

meet their performance targets, each job is allocated with a certain amount of

resources and runs in resource containers, which can consume up to a predefined

amount of resources on the target machine [107]. The resource containers can

be represented as a vector of different types of resource, such as CPU, memory,

storage and bandwidth. For example, if a job request for a resource container is

represented as [2, 5, 2, 300], it means that this job demands a target machine that

has at least 2 CPU cores, 5GB memory, 2GB storage and 300Mb/s bandwidth

so that the requested resource container can be created to run the job.

Different resource allocation polices

In a broad sense, resource allocation policies can be divided into two major

types. First, lenient allocation is often used for the jobs running in the offline

mode, i.e., the jobs can be allocated to run on any machine as long as the

allocation does not exceed the machine’s resource capacity. For example, most

data analysis frameworks, such as Mapreduce [32], Dryad [61] or Spark [116],

do not care the type of CPU cores or type of machines for their execution as

long as they are allocated with enough resources. Second, some online services,

which contain the legacy web applications or latency-intensive jobs, have to run

on a particular type of resources or machines [94, 109]. This type of resource

allocation is called strict allocation, which needs to specify a particular type of
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Figure 5.1: Cumulative Distribution Function(CDF) of jobs duration for Bing,
Facebook and Google traces

resource containers(i.e., CPU cores or kernel version). If any specified resource

container in the strict allocation is occupied by other jobs, the scheduling conflict

occurs.

Predictable Job Distribution

In most clusters, there are a significant number of jobs which have repeated

profile and follow similar distributions [1, 40, 53, 65]. Multiple instances of a

job typically have similar resource requirements and pattern. Figure 5.1 shows

the cumulative distribution function of the execution time of the jobs from the

production cluster traces in Microsoft Bing, Facebook and Google [5, 60, 62, 93].

As can be seen from the figure, most jobs are short, especially for Facebook and

Google trace, with around 80% of jobs taking less than 10 minutes. In all traces,

there are a few requests that are very long, spending up to 1 day. Table 5.1

represents the job size distribution for those traces. Nearly 90% of jobs across
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Table 5.1: Job size distributions for Bing, Facebook and Google traces

% of Jobs
Number of tasks Facebook Bing Google

1-10 85% 43% 60%
11-50 4% 8% 16%
51-150 8% 24% 20%
151-500 2% 23% 2%
>500 1% 2% 2%

three traces contain less than 150 parallel tasks in a job. Only a few percentage

of jobs are quite large and each has more than 500 tasks. Therefore, most

running jobs are predictable by observing the historical trace and analyzing its

probability distribution.

Tolerable Reduction of Resource Demands

There are two main reasons why the schedulers can slightly reduce the jobs’

resource demands without major performance degradation. First, in the most

production environments, users often deliberately request more than enough

resources to account for the occasional load spikes and machine failures [107].

The work in [35, 93] reports that the actual resource usage is lower than the

requested resource usage by about 40−50% in most of time. Thus, it is accept-

able that the cluster schedulers reduce the resource demand of their jobs when

the system load is high or the system lacks spare resources.

Second, most jobs accept approximated results, in terms of deadline or result

accuracy. For example, the executions of some offline data analysis jobs can be

paused and postponed for a long time (in hours) [40]. Some web searching and

real-time advertisement jobs, which are online jobs, allow a small fraction of

incomplete results for some tasks in order to have timely completion for the

whole job [6, 64]. Similar observation have also been reported in [2]. In turn,

this allows us to schedule the jobs with more flexibility in terms of resource

allocation.

In summary, we generalize the workload in the productive cluster as online
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Figure 5.2: Performance gains by increasing the scale of resource containers in
the isolated cluster

and offline jobs based on its characteristics and allocation policies, and the

descriptive distributions within the workloads that allow us to schedule jobs

with guidances. Thus, we can take advantage of running jobs in more flexible

scales of resources assignment based on the various conditions.

5.1.2 Performance Gains with Prices

In this subsection, we first investigate the performance gains achieved by online

and offline applications when we increase the scale of resource containers in an

isolated cluster, and then explore the performance impact of scheduling conflict

in a shared cluster (i.e., with distributed schedulers).

Figure 5.2 illustrates the average makespan by analyzing the impact of in-

creasing the scale of resource containers on two representative job applications,

one being offline and the other online. The offline job is a Spark application run-

ning a mix of 17 machine learning and graph algorithms, such as Support Vector
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Figure 5.3: The impact of increasing resource scale on performance in the shared
cluster

Machine, Matrix Factorization, K-means and Page Rank from SparkBench, on

a small dataset [21], while the online job is a Cassandra service performing a

mix of write and read requests [30]. For Spark, we report the average makespan

by increasing the number of resource containers (each with 2 CPU cores and

6G memory) from 1 to 12, with increment of 2. We also record the mean

makespan when increasing the number of resource containers in the same fash-

ion for running the Cassandra service. The red line in Figure 5.2 illustrates the

performance trend of Spark. It shows that the makespan is improved by up to

45% and the maximum performance is reached with the configuration of 8 re-

source containers. The makespan then remains stable when even more resource

containers are used. The Cassandra service (the blue line in the figure) mani-

fests a similar trend, i.e., the performance improves as the number of resource

containers increases, but remains stable after the number of resource containers

reaches 8.
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Figure 5.4: The average number of scheduling attempts

In the shared cluster, distributed schedulers compete with each other. They

all have a copy of global state of the cluster. In this architecture, the perfor-

mance trend becomes completely different, as in Figure 5.3. In the experiments,

the two schedulers for Spark and Cassandra jobs share a cluster with 50 resource

containers and they schedule their jobs at the same time. Each scheduler makes

its decision independently and selects the required number of resource containers

from its copy of cluster state and schedule the job to these resource containers.

If two schedulers select the same resource container, the scheduling conflict oc-

curs and the target resource container will reject one of the two jobs. As the

result, the rejected job will be rescheduled and the other job can run in the

resource container. In Figure 5.3, the red line depicts the average makespan

of Spark jobs. It can be observed that the jobs still benefit from the increase

of resource containers at the early stage, but the makespan starts to increase

when the number of resource containers is more than 6. This is because more

resource containers are requested by the schedulers, there is the higher possi-

bility of scheduling conflict. Consequently, the number of scheduling attempts

increases.

Figure 5.4 shows the average number of scheduling attempts by both sched-
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ulers as the schedulers demand more resource containers. Each scheduling at-

tempt will incur the extra time, which includes the time spent in machine se-

lection, network delay and task initialization. The machine selection for each

Spark job is a random selection, taking the time between 2 and 4 seconds,

whilst the Cassandra job adopts a heuristic algorithm for selection, which con-

sumes between 15 and 25 seconds. Therefore, we can see that once the number

of scheduling attempts are big, the scheduling overhead will surpass the per-

formance benefit gained by increasing the number of resource containers and

therefore impair the performance significantly.

Based on the above benchmarking experiments, we can conclude that the job

performance can improve when we increase the number of resource containers.

In a shared cluster, however, the benefit will be cancelled if too many resource

containers are requested by distributed schedulers, due to the rescheduling over-

head. Therefore, it is necessary to propose rational scheduling strategies in the

cloud with distributed schedulers, in which the schedulers are aware of the re-

source competition and do not greedily request the resource containers at the

maximum level.

5.1.3 Game Strategy: Ideas and Challenges

A shared cluster contains multiple autonomous schedulers, which compete for

shared but limited resources and have the incentive to request more resource

containers to increase its QoS as we discussed in Section 5.1.2. As such, the

scheduling scenario in a shared cluster is best modelled as an non-cooperative

game among rational and strategic players (schedulers). The players are rational

because they want to maximize their own gain. They are strategic because

they can choose their strategies(i.e., scheduling decisions) that influence other

players.

In the game theory, the payoff of a player depends not only on his own

strategy, but also on another player’s strategy. A popular way of characterizing

this dynamics is through Nash Equilibrium (N.E). The payoff of one player is
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dependent on the choice of strategies. A player might decide to unilaterally

switch his strategy to improve his payoff. This switch in the strategy will affect

other players by changing their payoff. Therefore, other players might decide to

shift their strategies as well, which in turn affects the player who originates the

change of strategy. The collection of players is regarded as being at the N.E if

no player can improve his payoff by unilaterally switching his strategy.

Pure & Mixed Strategy

Although each player has a set of available strategies to choose, sometimes the

player will only choose one of the strategies as it has the maximum payoff, which

is called the pure strategy in game theory. However, the agreement on pure

strategy among players is not always guaranteed. In this situation, the players

can select a strategy by randomizing over the set of pure strategies based on

a certain probability distribution. This is called the mixed strategy, in which

the N.E is guaranteed. We define the set of mixed strategies for player i to be

Si =
∏

(Ai). Then, the set of mixed strategy profile is simply the Cartesian

product of the individual mixed strategy set, {S1×· · ·×Sn}. si(ai) denotes the

probability that a pure strategy will be selected under the mixed strategy si.

The set of the pure strategies that are assigned positive probability forms the

mixed strategy si, which is called the support of si. Namely, the support of a

mixed strategy si is the set of pure strategies {ai|si(ai) ≥ 0 and
∑
si(ai) = 1}.

Expected Utility Payoff

Due to the randomness of mixed strategy, we use the idea of expected utility

from decision theory to represent the payoff of a mixed strategy. For a given

game, G(k, ~A, ~u), where k is the number of players in this game, ~A is the vector

of each player’s strategies set, and ~u is the vector of expected utility cost for each

player with mixed strategy profile {si = (s1, · · · , sn)}. Therefore, the expected

utility for player i with the mixed strategy ai is defined in Eq. 5.1.
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ui(si) =
∑
ai∈Ai

ui(ai)

n∏
j=1

sj(aj) (5.1)

Note that a pure strategy is a special case of a mixed strategy, because it

assigned one specific strategy with probability one and others with probability

zero. The expected utility payoff of pure strategy can be treated in the same

way. Therefore, we focus on getting the mixed strategy as our strategy profile

in this work.

Strategy Profile with Nash Equilibrium

Now we will look at the game from the perspective of an individual player

instead of the outside supervisor. The purpose of each player is to maximize his

expected payoff. This expected payoff not only depends on the strategy chosen

by himself, but also on the strategy chosen by his competitors. Thus, this player

would know how to choose his best response if he knows the strategies that his

competitors are going to play. Specifically, player i’s best response to s−i, his

competitors’ strategy profile, is a strategy profile s∗i ∈ si, and the expected off

ui(s
∗
i , s−i) ≥ ui(si, s−i).

Because none of the players can know what strategies his competitors would

adopt, it is not practical to deliver the best response for the players. However,

we can leverage the idea of best response to define the most important concept

in the non-cooperative game, N.E, which is a strategy profile {s = (s∗1, · · · , s∗k)}

if and only if all player play his best response to others. For example, a given

two-player(p1 and p2) game, each player has two strategies with his own pay-off

matrix A or B, respectively. The pair of mixed strategies (p, q), one for player

p1 and one for player p2, respectively, is a N.E if all other mixed strategies p′

for player p1 will be p′ ·A · q ≤ p ·A · q and for all other mixed strategies q′ for

player p2 will be p ·B · q′ ≤ p ·B · q. Two equations indicate those two players

cannot improve its payoffs by switching their mixed strategy from p, q to any

other mixed strategy p′ or q′.
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Figure 5.5: The life cycle of submitted job in the shared cluster

Therefore, the N.E is a stable strategy profile we want to achieve in this

strategical scenario as no player would want to alter his strategy and all of the

players play the best response to against others’ strategy.

5.2 Design Issues in GRACES

To enable GRACES to schedule jobs with the awareness of the scheduling con-

flicts, we need to first understand the performance penalty caused by the con-

flict. We break the life cycle of a submitted job into two stages as in the

Figure 5.5: scheduling stage and servicing stage. The length of the servicing

stage is the execution time of the job. The scheduling stage is defined as the

period between the time when the scheduler begins to start the first scheduling

attempt for the job and the time when the resource containers that the job is

running in the scheduled physical machine.

More specifically, the scheduling stage consists of two parts: job decision

and job initialization. Job decision is the time spent by a scheduler in making

scheduling decisions (i.e., determining which physical machines are allocated to

run the resource containers requested by the job). Job initiation is the time
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spent in transferring the job and related packages to the allocated physical

machines (so that the job starts running in the resource containers of the physical

machine). However, during this stage, if different schedulers attempt to initiate

their jobs on the same machine, the conflict occurs and only one job can be

actually initiated and other jobs will be rejected and undergo rescheduling.

5.2.1 Scheduling Cost

The cost in the scheduling stage is defined as the scheduling cost, which is the

time duration between the first scheduling attempt and the time when this

job starts to run in the allocated resource containers. In the shared cluster, a

scheduling attempt by a scheduler or the job initialization on the target machines

may experience a series of conflict, failure and rescheduling until this job starts

execution successfully. The time spent in job decision and initialization is the

unavoidable, required time cost for a job to run on the shared cluster, which is

denoted by Jreq. The increasing number of rescheduling will significantly affect

the job’s execution time due to the accumulation of Jreq. The scheduling cost

for a job can be calculated by Eq. 5.2, where Jsched is the scheduling cost and

Esched is the expected number of scheduling attempts before it succeeds. The

key problem thus comes down to determining the expected number of scheduling

attempts, Esched. Theorem 5.2.1 states the method to calculate Esched and

proves the correctness of the method.

Jsched = Esched · Jreq (5.2)

Theorem 5.2.1 The expected number of scheduling attempts is Esched = 1
Pwo ,

where Pwo is the probability that a scheduling attempt does not experience failure.

Proof Assume k is the number of scheduling attempts, and Pi is the probability

that the scheduler makes exactly k scheduling attempts for the job before it

succeeds, which can be calculated by the Pwo · (1− Pwo)k−1. Eq. 5.3 gives the
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steps for deriving the expected number scheduling attempts.

Esched =

∞∑
k=1

k · Pi(X = k)

=

∞∑
k=1

k · Pwo(1− Pwo)k−1

=
Pwo

(1− Pwo)

∞∑
k=1

k · (1− Pwo)k

=
Pwo

1− Pwo
· 1− Pwo

(1− (1− Pwo)2)

=
1

Pwo

(5.3)

Next, we derive Pwo for both lenient and strict allocations.

Lenient Allocation

Before we start to calculate the probability of a scheduling attempt without

failure, we use Eq. 5.4 to derive the probability of scheduling attempts being

conflicted and rejected, Pc is the probability of a scheduling attempt will be

conflicted with others, wi is a predefined weight which ranges from 0 to 1 as

a common agreement by distributed schedulers to decide whether a job will be

rejected or not when the conflict is happened. The higher the value of weights,

the higher chance it will be rejected when the conflict is happened [95]. Thus,

to get Pwo, we need to confirm Pc by the requesting demands.

Pwo = 1− Pc · wi (5.4)

Since a lenient allocation will be accepted if there is no oversubscribed al-

location on the target machine, the conflicted probability of one scheduling

allocation is the number of selections that are scheduled allocation from sched-

ulers that divides the number of oversubscribed allocation. For the number of

selections from schedulers that is the product of each scheduler’s allocation for

its resource containers from the entire cluster. We denote it as
S∏
MRsi , where S

is the number of schedulers, M is the total number of resource containers within
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the cluster, and Rsi is the number of resource containers required by scheduler

i.

Algorithm 4 Pseudocode for enumerating the number of oversubscribed
scheduled allocations.

1: T : the number of machine configuration types.
2: A : the number of conflicted allocations.
3: for i := 0 → T do
4: Ri : the number of resource containers in Ti
5: A′cf : the conflicted allocations on Ti.
6: Tnumi : : the number of machines Ti has
7: for Rs0 := max(Rs0) → 1 do
8: · · · · · ·
9: for Rsj := max(Rsj ) → 0 do

10: · · · · · ·
11: for Rs(S−1)

:= max(Rs(S−1)
) → 0 do

12: Ai is an allocation for schedulers on Ti.
13: for k := 0 → S− 1 do
14: Append Rks on Ai
15: end for
16: if size(Ai) > size(Ti) then
17: Append Ai on A′cf
18: end if
19: end for
20: end for
21: end for

22: A +=
(
Tnumi

1

)
·
A′cf∑
k

S∏
s

(
Ri

Rk|s|j

)
23: end for

For the number of oversubscribed allocation, we design Algorithm 4 to enu-

merate all allocations on the target machine, then we calculate and sum those

combinations to get the total number of oversubscribed allocations. Because

this algorithm aims at the oversubscribed allocation on the machine capacity,

the total number of oversubscribed allocation will be the sum of oversubscribed

allocation on each type of machine configurations. In the first loop, we start

from the number of machine configuration types within cluster T , at line 3. For

each type of machine configurations, Ti, we set the number of available resource

containers as Ri, and Tnumi as the number of machines that the machine config-

uration Ti has in this cluster. Then, we iterate each scheduler’s allocation that

can have the maximum number of resource containers till zero resource con-
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tainer from Ri so that we can enumerate schedulers’ allocations(line 6-12). At

line 13 and 14, we form each scheduler’s allocation(Rks) from the above as Ai,

which is one allocation for schedulers on Ti. Consequently, if this allocation has

oversubscribed the size of Ti, it will be a conflicted allocation, and we append

this allocation into A′cf for calculating the number of combinations. After we

have enumerated all conflicting allocations, we calculate the number of combi-

nations for this conflicting allocation as
(
Tnumi

1

)
·
S−1∏
k=0

(
Ri
Rks

)
, which is the number

of combinations from Tnumi to select one machine, and times the product of

each scheduler’s combinations of resource container from this machine. In the

end, we sum all combinations for each machines configuration to get the total

number of conflicted allocations(line 17). For example, a cluster has 1 machine

configuration with 3 identical machines, and each machine can be assigned with

4 resource containers. One scheduler, S1, requests 3 resource containers, and

the another, S2, requests 4 resource containers. Then, Algorithm 4 enumerates

all conflicted allocations, 3S1 + 4S2, 3S1 + 3S2, · · · , and 1S1 + 4S2, which we

denote it as the result of A′cf from line 16. Then, the number of combinations

that is conflicted allocations will be the sum of each combinations of conflicted

allocations, which is
(

3
1

)
·
(

4
3

)
·
(

4
4

)
+
(

3
1

)
·
(

4
3

)
·
(

4
3

)
+ · · ·+

(
3
1

)
·
(

4
1

)
·
(

4
4

)
= 234. On the

other hand, the number of selection on the scheduled allocation for schedulers,
S∏
MRsi , is 33 · 34 = 2187. The conflicted probability for those two schedulers

will be 234
2187 = 0.11, and if we set two schedulers with equal chance to be rejected

if two of them have the conflict, Pwo by 1− 0.11 · 0.5 = 0.945 for Theorem 5.2.1

to calculate the expected number of scheduling attempts as 1
0.945 ≈ 1.06, which

is close to our simulation result.

From the above, we can derive the complexity of Algorithm 4 as |T | ·|S| ·|R|,

where |T | is the number of machine configuration types, |S| is the number of

schedulers and |R| is the number of available resource containers.
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Strict Allocation

For the strict allocation, the scheduler specifies the particular resource contain-

ers for the allocation, and this allocation will be regarded as the conflict if the

specified resource containers have also been requested by others. Conflict exists

among resource containers rather than machines.

Pwo =

(
M− E(Rc) · wi

R

)
(
M
R

) (5.5)

To get the probability of one strict allocation without failure, we use Eq. 5.5

where the combinations of requested resource containers from the non-failed

resource containers that divide the the combinations of requested resource con-

tainers and the total number of resource containers within the cluster, and we

denote the non-failed resources containers as the expected number of conflicted

resource containers multiplies its weight, E(Rc) · wi.

E(Rc) =

∑
(~R)−max(~R)∑

i=0

· ~Ri · Pi

= E1 +

S∑
si=1

Rsi∑
j=0

·Rx ·
E2

S∏
sr=0

(
M
Rsr

) (5.6)

where:
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Rx : max(~R) += 1

E1 : max(~R) ·
S∏

si=0

(
max(~R)

Rsi

)
(

M
Rsi

)

E2 :

(
max(~R)

Rsi − j

)
·
(M− si∑

Rsi

j

)
·
S−2∏
sk

(
max(~R)

Rsk

)

It is straightforward that we can directly use Eq. 5.5 if there are only two

schedulers compete each other. But the situation will be more complicated

if there are multiple schedulers, the scheduler needs to confirm the expected

number of conflicted resource containers from others. In strict allocation, this

expected value ranges from the least conflict, which is the maximum number of

resource containers from one of scheduled allocations as all of those allocations

have conflicted with others, by the increment of one resource container, to the

maximum conflict, which is sum of resource containers from all scheduled al-

locations as none of those allocations have conflicted with others at all. Then,

we use Eq. 5.6 to calculate the expected number of conflicted resource contain-

ers, where we denote the number of conflicted resource containers as a random

variable with the probability pi. Theorem. 5.2.2 proves its correctness.

Theorem 5.2.2 Given the number of resource containers per scheduler request-

ing, the expected number of conflicted resource containers can be derived by

Eq. 5.6, where M is the total number of resource containers in the cluster, and

S is the number of schedulers.

Proof As the expected number of conflicted resource containers is the sum of

each random variable multiplied by its probability from the least to the max-

imum, we firstly calculate the least case, E1. Then, the least number of con-

flicted resource container, max( ~Ri), multiplies with its probability, where the

probability is the product of combinations of each scheduler requesting from
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the maximum resource containers, which we denote as
S∏(max(~R)

Rsi

)
, and it di-

vides the product of combinations of the requesting resource containers by each

scheduler and the total number of resource containers within the cluster, which

is represented as
S∏( M

Rsi

)
.

For the rest of sum, it is the sum of one increment on the maximum re-

source containers allocation to the sum of all allocations, and the number of

sum iteration is equal to the number of schedulers and the number of resource

containers by each scheduler requesting. Therefore, we denote it as
S∑

si=1

Rs|i∑
j=0

·Rx,

where we use Rx to replace max(~R) += 1 as for the increasing increment on

the random variable. The probability for each one of random variables is the

product of combinations with each particular number of conflicted resource con-

tainers happening that divides the product of all combinations by schedulers as

the denominator in E1, the numerator thus is the product of combinations of

one of schedulers gradually decreasing his choices from the one with maximum

resource containers, and the combinations of this scheduler incrementally choos-

ing non-conflicted resource containers from others with an additional product

of combinations that others still choose resource containers from the maximum

resource containers by one particular scheduler, which we denote it as E2.

Therefore, the expected number of conflicted resources containers can be

derived by Eq. 5.6 based on each resource containers per scheduler request-

ing. For example, the previous exemplar cluster has 3 identical machines,

each machine can have 4 resource containers. One scheduler, S1, requests 3

resource containers, and another scheduler, S2, requests 4 resource contain-

ers. Thus, the possible conflicted resource containers will be 4, 5, 6, 7. We

then use Eq. 5.6, the expected number of conflicted resource containers will be

4 · (12
4 )·(4

3)
(12

3 )·(12
4 )

+ 5 · (
12
4 )·(4

2)·(
12−4

1 )
(12

3 )·(12
4 )

+ 6 · (
12
4 )·(4

1)·(
12−4

2 )
(12

3 )·(12
4 )

+ 7 · (
12
4 )·(12−4

3 )·
(12

3 )·(12
4 )

= 6.0. Moreover,

for one scheduler to request one resource container from this cluster competing

with those two schedulers, combined with Eq. 5.5 and all schedulers have the

equal chance to be rejected, we can derive Pwo =
(12−6·0.5

1 )
(12

1 )
= 0.75. The ex-

pected number of scheduling attempt will be 1
0.75 ≈ 1.3, which is also close to
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our simulation result on strict allocation.

5.2.2 Servicing Cost

The second key metric that we define it as the servicing cost, which we use

it to measure the cost whilst the job is running with the assigned resource

containers. A running job with too few resource containers during its duration

time is regarded as the servicing cost. Let Rtar be the target of required resource

containers for a submitted job, which is set by the users at the job submission

to achieve its ideal performance. We then note Rasg as the assigned resource

containers for a scheduler choosing to run this job. Hence, comparing Rasg

against Rtar that allows us to judge the quality of a running job as in Eq. 5.7,

where Jserc is the job’s servicing cost and Jd is the job duration.

Jserc =
Rtar
Rasg

× Jd (5.7)

If Jserc is equal to Jd, we have an ideal assignment that the job running with

ideal resource containers. Otherwise, the larger gap between resource containers

and job requirement, the higher Jserc will incur. Then, a scheduler uses Eq. 5.7

to gauge the serving cost when it is choosing the resource containers for the job.

5.2.3 Game-theoretic Solution for Shared Schedulers

To make rational and strategical decision on jobs, the scheduler needs the utility

function to represent the payoff gains by choosing a strategy. The payoff for one

scheduler to choose a strategy is dependent on others. Each scheduler makes his

best response to others. Thus, the utility function is applied for the scheduler

to quantify whether a strategy choice is the best response or not.

Utility Function

The utility function indicates player’s utility gain based on the choice of strate-

gies, and the strategies set of job scheduling is about a particular scale of resource
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containers from the baseline to the maximum, which we denote as Rαi, the Rα

scale of resource containers for player i to request. Based on Theorem. 5.2.1, we

can deduce the expected number of scheduling attempts with the scale of Rα

resource containers. Put the scheduling cost together, we can have the utility

function for player i requesting scale of Rαi resource containers as in Eq. 5.8.

Jcost = Esched · Jreq + Jserc (5.8)

In addition, as this utility function results the performance cost, whilst the

utility function within the game theory represents the payoff benefit a player

can gain, we multiply a “−1” on Eq. 5.8 as the payoff benefit a scheduler can

gain. In other words, the smaller performance cost a strategy can have, the

better payoff benefit a scheduler can get.

N.E for the Participating Players

Since we represent each distributed cluster scheduler in the cluster as a player

with the strategies set, this scenario has been formalized as a multi-player game

among distributed schedulers. For a cluster with k schedulers, there are k ·(A1×

A2 × · · · ×Ak) matrices, where Ai is the payoff matrix for a scheduler based on

its strategies set. Each player chooses (x1, x2, · · · , xi) to cover his strategies set

that can equalize his opponents’ expected payoff on their strategies set, where xi

is the probability value ranges between 0 to 1. With another condition that the

sum of this probability distribution is equal to 1, we can combine these linear

functions and use the linear function solver to calculate the mixed strategy

profile for each player.

We use an implementation of Gambit [80] library as our linear equations

solver to get the N.E solution, and the time complexity is O(nlog n
ε ) [29], where

n is the number of players and ε is the number of strategies at most where the

NE strategy profile will be. When all players prefer not to switch or is indifferent

between his strategies, the set of strategies is a N.E.
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Table 5.2: An exemplar three-players’ payoff matrix

1 2 3

1
1 a111, b111, c111 a112, b112, c112 a113, b113, c113

2 a121, b121, c121 a122, b122, c122 a123, b123, c123

3 a131, b131, c131 a132, b132, c132 a133, b133, c133

2
1 a211, b211, c211 a211, b211, c211 a213, b213, c213

2 a221, b221, c221 a222, b222, c222 a223, b223, c223

3 a231, b231, c231 a232, b232, c232 a233, b233, c233

3
1 a311, b311, c311 a312, b312, c312 a313, b313, c313

2 a321, b321, c321 a322, b322, c322 a323, b323, c323

3 a331, b331, c331 a332, b332, c332 a333, b333, c333

The approach of a strategical game is firstly to construct the payoff matrix

that records players with strategies, and its related payoffs based on the choice of

strategies. Consequently, for a game with k players that needs k(A1×A2×· · ·×

Ak) matrices. Each player then chooses one probability distribution, which is

the mixed strategy with the N.E, overs his strategies set that has more or equal

benefit gains than other probability distributions. And since the mixed strategy

is the probability distribution, the value ranges between 0 to 1 and the sum of

this probability distribution is equal 1. After combined those linear functions,

we can use linear function solver to calculate the mixed strategy profile for each

player.

Taking a three-players game as an example, each player has three strategies

to choose against others, the payoff for each player we denote it as a, b and c,

respectively. Thus, this example of three-player game will be specified by three

3× 3× 3 matrices as in the Table 5.2.

When player a chooses his strategy s1, the payoffs are



1 2 3

1 a111, b111, c111 a112, b112, c112 a113, b113, c113

2 a121, b121, c121 a122, b122, c122 a123, b123, c123

3 a131, b131, c131 a132, b132, c132 a133, b133, c133


, where the (i, j)-th entry is the triple payoffs for player a, b and c choosing

the strategy profile (s1, si, sj).
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As we indicated in the Section 5.1.3, the N.E strategy profile is where each

player chooses his best response to against others. A mixed strategy profile

is when each player plays the strategies with positive probabilities. Only if

for any player keeping all the other players’ strategies fixed, the payoffs to

player i from each of player i’s pure strategies are equal. Otherwise, player i

could improve his own payoff by omitting those pure strategies leading to lesser

payoffs. In other word, each player adopts one probability distribution overs

his strategies to equalize the payoff of each strategy. Thus, these conditions

give a list of polynomial equations, the unknowns in those equations are the

probabilities assigned by each player to their pure strategies to form their mixed

strategies. Only the solution with positive numbers represent the N.E mixed

strategy profile, and the sum of each player’s mixed strategy is 1.

Then, in this exemplar three-player game, ua1 , as player a’s expected pay-

off from choosing s1 that has expressed in Eq. 5.9, where σb and σc are the

probabilities for player b and c choosing their related strategies, respectively.

ua1 = a111 · σb1 · σc1 + a112 · σb1 · σc2 + a113 · σb1 · σc3

+ a121 · σb2 · σc1 + a122 · σb2 · σc2 + a123 · σb2 · σc3

+ a131 · σb3 · σc1 + a132 · σb3 · σc2 + a133 · σb3 · σc3

(5.9)

Player 1’s payoff from choosing pure strategy s2 and s3 are given by Eq. 5.10

and Eq. 5.11.

ua2 = a211 · σb1 · σc1 + · · ·+ a233 · σb3 · σc3 (5.10)

ua3 = a311 · σb1 · σc1 + · · ·+ a333 · σb3 · σc3 (5.11)

Now, we can equalize the above three linear equations, and one additional

equation that the sum of one mixed strategy probability distribution for each
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player as 1. Similarly, we can have linear equations and equalize relations for b

and c. We use linear function solver to solve these linear equations to get each

player’s mixed strategy probability distribution. We use an implementation of

Gambit [80] library as our linear equations solver to get the N.E solution, and

the time complexity is O(nlog n
ε ) [29], where n is the number of players and ε is

the number of strategies at most where the NE strategy profile will be. When

all players prefer not to switch or is indifferent between his strategies, the set of

strategies is a N.E.

5.3 Performance Evaluation

In this section, we implement different strategies and our Nash solver within

GRACES and compare their performance. Our experiments were carried out

with both simulations and production AWS clusters.

Trace-driven simulator

To precisely evaluate GRACES with more parameter, we built a trace-driven

simulator that performs scheduling on the scale of Google’s production cluster.

We use the publicly available Google trace [94, 109] that collects the detailed

jobs and tasks information from a large Google cluster during a month period.

This trace records the CPU and memory capacities for each machine within the

cluster. The cluster is made of heterogeneous machines. All values given in

this trace were normalised according to their maximum. Our simulation were

constructed using the data from this trace. We list our cluster configuration

in Table. 5.3. The default cluster in our simulation has 1000 machines. This

leads to a 60% system utilizations which allows us to explore how the system

performs at a high conflict cost.

In each simulation, once the cluster scheduler receives a job, a scheduling

decision on the target machines is made with a scheduling cost, and any resource

container conflicted with others from this scheduling decision that will be re-
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Table 5.3: Cluster configuration

Percentage CPUs Memory
50% 0.5 0.5
30% 0.5 0.25
8% 0.5 0.76
6% 1 1
5% 0.5 0.3
1% 0.25 0.25

jected and reschedule based on the predefined weight. To keep the simplicity,

we set each job has equal weight to be rejected and reschedule in experiments.

If the scheduled job has allocated successfully, it will run with assigned re-

source containers by a predefined job duration until it completes. The simulator

then records the performance cost and the number of scheduling attempts dur-

ing the experiments. In our experiments, we set each job’s scheduling time as

a random number between 30 and 90 seconds. This value is close to that of

large production clusters [18, 107]. This time cost also includes all of the over-

heads occurred before the job starting running, such as the task initialization,

data backup, network latency and security checking. In the experiments, we

present the average results across multiple runs, all runs with small changes on

the results.

Workloads

We extract the workload information from the Google trace and give the CDFs

of memory and CPUs demands in Figure 5.6. As we can see from this trace,

most tasks are small and requires less than 20% of a typical cluster machine’s re-

sources. We also adopt the distributions of the number of tasks per job and job

duration from Section 5.1.1 to simulate a job’s demands on resource containers,

size of tasks, and job duration. To create our experimental workload, we retain

the job requirements on resources demands. The jobs were however, not perfor-

mance tolerant in terms of resource demands. Hence, we set the performance

tolerance for the jobs randomly between 20− 40%, which are based on real job
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Figure 5.6: CDFs of memory and CPU for workloads

applications and productive scenarios [2, 6] on their the percentage of required

demands or completed results. We apply it in the jobs for the strategies set.

For instance, a job which requires 100 tasks and has 30% performance tolerance

needs at least needs 70 of its 100 tasks to be scheduled. Its strategies set will

range from 70 to 100.

Moreover, before the experiments, we partition jobs into groups. Jobs from

the same group have the same scheduler. This partition is based on each job’s

requirement of resource containers, number of tasks and job duration. Then,

schedulers concurrently make scheduling decisions based on its job requirements

and the strategies set from others. This is consistent with our description re-

garding one scheduler is responsible for one particular type of jobs and they do

not have detailed information on other scheduling decision except the general

strategies set from the baseline to the maximum.

Metrics

Since both job scheduling and execution are affected by the choice of strategies,

the qualities of both are important metrics to evaluate. We therefore compare
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the performance cost and the number of scheduling attempts for the scheduler

with the Nash solver and other predefined strategies.

According to the assigned performance tolerance, we proportionally scale

down the strategies on the resource containers assignment from the baseline

to the maximum. The strategies we represent in this paper, which include

baseline (BL), median-1 (M-1), median-2 (M-2), median-3 (M-3), max (MX),

random (RM), and Nash (NS). NS is the best response strategy adopted by

players to achieve the N.E. RM is the scheduler with equal probability to ran-

domly choose any one of BL, M-1, M-2, M-3 and MX. For example, a job with

40% performance tolerance means the BL will be 60% of resource containers

assignment compared to his initial job demand, 70% of resource containers as-

signment is the M-1, 80% is M-2, 90% is M-3, and 100% is the MX strategy to

choose the initial job demands without being degraded.

In addition, for Section 5.3.2, we use the percentages of improvement on the

performance cost as in Eq. 5.12, which compares the performance cost based

on different strategies with the worst case where we set a job will be eventually

accepted with its baseline resource containers assignment after it has been re-

jected over 10 times, which is the standard maximum times to be rejected in

production clusters.

Improvement% =
Worst−Adopted

Worst
× 100% (5.12)

5.3.1 Comparing Strategies with Increasing Concurrent

Jobs

In this experiment, we investigate how different strategies adopted by a sched-

uler performs with concurrent and competitive (CC) jobs, CC job are synthetic

jobs that have identical demands to scheduled jobs, but each one of these tasks

randomly occupies resource containers on a random machine. The number of

tasks increases from 100 to 200 for both online and offline jobs, respectively. The

scheduler adopts one of the strategies from BL to NS for each run to evaluate
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Figure 5.7: Performance cost on offline jobs

its performance cost.

Figure 5.7 and Figure 5.8 show that the NS strategy does result in reduction

of performance cost on both online and offline jobs. The red bars from these two

figures indicate the performance cost from the NS compared to the outcomes

from other strategies that are denoted by the blue bars, NS performs consistently

better than other strategies. When the CC job has 100 tasks, NS chooses MX

as the NS to its best response for both online and offline jobs to minimise its

minimum performance cost. We denote this choice under the red bars. Other

strategies, especially for BL, schedule jobs with small resource containers that

miss the benefit of reducing servicing cost by assigning more resource containers,

and NS reduces the performance cost by 32% and 20% for both online and

offline jobs. At 150 tasks run, MX starts to perform poorly on the reduction of

performance cost because it increases the scheduling cost significantly compared

to other strategies, and the advantage of MX on the servicing cost has been

eliminated by the scheduling cost. For the CC job with 200 tasks and the system
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Figure 5.8: Performance cost on online jobs

load is high, NS reduces the most performance cost by choosing BL and M-1 for

online and offline jobs, respectively, and strategies with high resource containers

that have suffered the expensive performance cost as they have not adjusted to

high load of cluster utilization by reducing their job resource demands.

Moreover, because the synthetic CC job does not have the performance

tolerance, it always chooses one particular “strategy” (100, 150, and 200) in

each round of experiments, NS thus always chooses one of his strategies as his

best response to be the pure NE.

It is obvious that scheduler with online jobs has generally more performance

cost than offline jobs, because it adopts the strict allocation that incurs more

scheduling cost compared to the lenient allocation. We report the average num-

ber of scheduling attempts during the experiments in Figure 5.9. The number of

scheduling attempts is expectedly increasing with the scheduler adopting more

and more aggressive strategies. Although NS cannot guarantee the minimum

number of scheduling attempts in each run, it has reduced the most perfor-
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Figure 5.9: The average number of scheduling attempts

mance cost during the experiments, since NS has focused on the overall job

performance rather the minimum number of scheduling attempts in terms of

the strategy selection.

5.3.2 Comparing Strategies with Multiple Schedulers

This subsection analyses the experiment results on multiple schedulers with

different strategies on the shared cluster. Schedulers schedule their jobs based

on one of the strategies from BL to NS to measure the impact of strategy

selection in each round of experiment. We evaluate four schedulers with the

other two schedule online jobs and another two schedule offline jobs.

Figure 5.10(1) gives the average improvements of all schedulers with different

strategies. The average improvement of schedulers with NS has outperformed

other strategies, and the average improvement of schedulers with MX has the

worst outcome, unsurprisingly. This is because the scheduling cost becomes too

expensive and overweights the benefit of servicing cost with maximum resources

when all schedulers adopt the MX.
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Figure 5.10: The improvement of 4 schedulers with different strategies

We then display the percentages of improvement for each scheduler in Figure 5.10(2).

The percentages of improvement on schedulers for online jobs(red bars) are gen-

erally larger than the schedulers for offline jobs(blue bars) around 30%, as the

online jobs are more sensitive than offline jobs in terms of performance tolerance

and the longer job duration, and they will be jeopardized severely if the worst

case is happened on them. The scheduler for online jobs thus will choose to tol-

erate more scheduling cost at the selection of NS, despite it has more decision

time cost on reschedule than the scheduler for offline jobs. For the NS strategy,

there is not a pure N.E solution that exists for this game. The strategies set

for all schedulers could not achieve their best response against others in pure

strategies. Then, N.S will use the mixed strategy that one probability distribu-

tion covers his strategies set to equalize the payoff of his pure strategies. In our

N.S profile, one of offline schedulers only adopts his M-2 and M-3 strategies with

probabilities as 27% and 73%, respectively, and 0% to other strategies. Another

offline scheduler adopts his M-1 and M-2 strategies with 43% and 57%, respec-

tively, whilst one online scheduler adopts his M-2 as 22% and M-3 as 78%, but
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0% to other strategies, respectively, and another online scheduler chooses his

M-3 strategy only. Due to the NS strategies adopted by all schedulers choosing

their best response, all schedulers can achieve the stable and better performance

than other strategies set.

In Figure 5.10(3), we illustrate the average number of scheduling attempts

where the offline jobs have more scheduling attempts than online jobs. Since

offline jobs require more number of resource containers than online jobs. Offline

jobs have more re-scheduling attempts than online jobs. More importantly, the

decision time cost of scheduler for offline jobs is smaller than the counterpart

of schedulers for the online jobs. This means that the best response strategy

for offline jobs can take more scheduling attempts with a reasonable range than

online jobs. In this group of experiments, the schedulers for offline jobs gener-

ally have two times more than online jobs, in terms of the number of scheduling

attempts. However, In spite of the NS strategies for both online and offline

jobs that have achieved the maximum improvements in performance cost, NS

cannot always guarantee the minimum number of scheduling attempts for the

scheduling, because NS considers the trade-off between scheduling cost and per-

formance cost for the jobs, which sustains an acceptable scheduling cost but

achieving the performance gains as much as possible within the job tolerance

degree.

5.3.3 Real Experiment on AWS

In this subsection we present results from our AWS testbed, which contains 50

EC2 instances, each instance has 2 CPU cores and 6G memory. One scheduler is

for handling Spark and another scheduler is for the Cassandra, respectively. The

same workload for both two applications from Section 5.1.2 are used here. To

eliminate the task interference, any machine receives the scheduling requesting

from a different scheduler will randomly reject one of them. The schedulers use

our developed Nash model solver to choose its NS or predefined strategies, which

range from 2 to 8 resource containers, to allocate its jobs. The inter-job arrival
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Figure 5.11: The average makespan of AWS cluster schedulers with different
strategies

time is around two minutes in this experiment. Figure 5.11 illustrates the av-

erage makespan of Spark and Cassandra in red and blue bars, respectively. We

can see the NS ones for Spark and Cassandra both can achieve better makespan

outcomes than other strategies, where Spark chooses his 6x and 8x with 36%

and 64% probability, and 42% and 58% probability for Cassandra deciding his

6x and 8x, respectively. RM performs terribly in this experiment, as the gap of

those jobs performance amongst strategies is significant and its performance has

been hurt deeply at low resource containers strategies. Moreover, Figure 5.12

indicates the average number of scheduling attempts for two schedulers, which

increases with the strategy choosing more resource containers. NS has an ac-

ceptable number of scheduling attempts than others with the guaranteed job

performance.
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5.4 Summary

This chapter has investigated the related influence and improvements on job

performance within the shared cluster environment, and we present GRACES,

a game-theoretical framework with the awareness of performance target and re-

sources competition for distributed cluster schedulers. GRACES is derived from

validated analytical methods, such as Nash Equilibrium (N.E) in the game the-

ory. It strategically adjusts scheduling policies on incoming jobs with respect to

the performance target and other competitors. We have formalized the expected

number of scheduling attempts and the performance cost for the distributed

schedulers with different kind of jobs to guide the choice on the scheduler’s

scheduling policy. The performance evaluation of the GRACES uses both sim-

ulation with Google production workload and a real testbed in the AWS with

typical offline application and online service. The experiments verify the ef-

fectiveness of the GRACES that is able to achieve the improved performance

outcomes under the shared and conflicted cluster architecture. In the next

chapter the contributions made in chapter 3, 4 and 5 are concluded, alongside
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a discussion and directions for further work to support this research.
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CHAPTER 6
Conclusions and Future Work

The work presented in this thesis investigates the strategies to improve the per-

formance in clouds. Since the development of cloud computing accelerates the

evolution of traditional infrastructure, this brings the challenges to the indus-

try and academic community in many aspects. Moving “everything” into the

cloud has become the most popular trend for not only cloud tenants but also

cloud providers. The cloud tenants need to accurately plan and implement their

services and infrastructure in the cloud to maximize their service performance

whilst reducing the unnecessary cost. On the other hand, it is a crucial issue for

the cloud provider to deliver the required resources to its tenants with guaran-

teed QoS and minimize the cost. The existing approaches presented in chapter 2

indicate that there are still a lot of room for improvement with regards to the

above-mentioned issues.

6.1 Conclusions

In this thesis, we develop a framework to determine the provision of computing

resources required for cloud services to deliver the desired level of QoS. The

frameworks capture the interaction relations among different services in the

cloud. Next, we extend the above framework to model bandwidth provision so

as to not only meet the external communication demand but also the internal

communication relations. and evaluate it with simulations at the scalability of

industrial level. The real world AWS cloud testbed with the framework has been

implemented to verify its efficiency and effectiveness. After obtaining resource

provision, we develop the VM-to-PM placement methods under the constraints

on computing resources and communication cost.
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Moreover, we propose the game-theoretical methodology for distributed job

schedulers to exploit the trade-off between resource conflicts and resource de-

mand. In this thesis, the parallel scheduling behaviour by distributed schedulers

is modelled as a non-cooperative game and the Nash Equilibrium point is solved

for the game, which represent the best scheduling behaviour of distributed sched-

ulers.

Finally, we conduct the experiments to evaluate the effectiveness of the pro-

posed methods for resource provision, VM placement and distributed scheduling.

The experiments are carried out with simulated workload, the workload trace

from production cloud and the real cloud testbed.

6.2 Discussion

By understanding the performance demand of cloud computing at different

scales and angles, we have achieved three main goals: the resources provision

under interactive and complex workflows, the resource allocation with various

constraints and objectives, and job scheduling within the emerging cluster ar-

chitecture.

Whilst the benefit of these goals is clear, there are certain limitations to our

research. We discuss them in this section.

The first limitation of the research lies in the cloud-IO model that provi-

sions the required resources for both external and internal demands. The IO

model is used for determining the long term resource planning in economy, which

means that if there is any fluctuation in the original service communication, the

cloud-IO model would not be able to reflect this change unless its consumption

matrix has been updated in time. Hence, we need an additional resource pro-

vision framework that can catch these changes and respond with new resources

provision. One of potential solutions to this issue is the recommended system,

as we mentioned in the Section 6.3. It can predict and recommend the suitable

resources in time under the changing patterns amongst services. Since we have
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previous service communication records already, it is not difficult to make rea-

sonably accurate prediction based on current techniques [74] in the recommend

system.

Another limitation is related to the VM-to-PM allocation. Our two elab-

orated algorithms can handle a cloud with a large scale of services and VMs.

However, with the increasing scale of a cloud, they still have the shortage of

the slow convergence speed, compared to simpler greedy algorithms. Although

the greedy algorithms cannot achieve as good communication cost and PM

consumption as our algorithms, they can achieve acceptable results in some sce-

narios. Due to this advantage of speed, simple greedy algorithms will still be

one of options to handle a very large scale of cloud [10]. Therefore, investigat-

ing the trade-off between speed and quality in different algorithms becomes an

interesting research issue when we face different scales of cloud.

The final limitation is that our job scheduling focuses on reducing conflict

cost amongst distributed cluster schedulers. Scheduling decisions on assigned

resources are arguably most important to service jobs. However, there are a

number of additional metrics that we do not consider, but are likely to be of in-

terest to the maintainers of such systems, such as resource initialization, cluster

reliability and the searching space of available machines for scheduling decisions.

Many of these are linked to job performance, and could thus jeopardize the QoS

if we failed to consider them carefully. Later in this chapter we present some

directions for future work where these challenges are explored and investigated.

6.3 Directions for Future Work

Following on the work presented in this thesis, further work is planned in the

following aspects.

• Cloud providers, such as Amazon, Google and Microsoft, have provided

many different configurations and services for their tenants. For example, Ama-

zon has 44 different EC2 configurations and over 100 services so far [4], each
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of which has the advantage in some particular scenarios. The number of pos-

sible configurations is expected to increase further as the market continues to

increase. It is difficult for cloud tenants to get familiar with all configuration

details and make correct selection of configurations for a given application sce-

nario. The technique of recommended system [74], such as Matrix Factorization

and Stochastic Gradient Descent, could be applied to build a recommended sys-

tem to aid tenants’ configuration selection and implementation planning.

• When a scheduler manages thousands of machines in a large-scale cloud,

it is expensive for the scheduler to search all machines and find the optimal

machine set when making scheduling decisions for each job. [18, 107] propose a

method that randomly selects a subset of all machines. The searching algorithm

is only applied to the subset of the machines. However, the chance of finding the

most suitable machines is not guaranteed because of the randomness. Therefore,

a more “intelligent” resource manager needs to be designed. It can borrow

the ideas from the Information Retrieval regarding compression, clustering and

ranking. This “intelligent” resource manager can not only increase the chance

of finding the suitable machines, but also alleviate the stress for the schedulers.

• The latency of job initialization is an unavoidable price to be paid in

Clouds. However, starting up the required resources before the job arrives could

significantly reduce the latency and speed up the job execution. In order for this

method to be effective, the starting time of future jobs need to be accurately

predicted. The techniques in the time series analysis can be applied here to

establish a predictable framework for job initialization.

• Achieving high availability is always an important objective in the cloud

environment. Currently, academic community and industries highly rely on the

Paxos algorithm [76] to guarantee the high availability. However, it is not always

suitable and economical for the emerging cloud environment, especially for the

massive scale of services and machines. We plan to investigate new techniques

for achieving high availability in the massive scale of cloud systems in the future.
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