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Abstract

In this thesis we study three different, but interconnected low-factor market models: LIBOR
market model, Markov-functional model, and two-currency Markov-functional model.

The LIBOR market model (LMM) is one of the most popular term structure models.
However, it suffers from a major drawback, it is high-dimensional. The problem of high-
dimensionality can be in part solved imposing a separability condition. We will be interested
how the separability condition interacts with time-homogeneity, a desirable property of
an LMM. We address this question by parametrising two- and three-factor separable and
time-homogeneous LMMs and show that they are of practical interest.

Markov-functional models (MFMs) are a computationally efficient alternative to the
LMMs. We consider two aspects of the MFMs, implementation and specification. First we
provide two new algorithms that can be used to implement the one-dimensional MFM under
the terminal and the spot measure driven by a general diffusion process. Since the existing
literature has been focused exclusively on the Gaussian driving processes our algorithms
open the scope for new parameterisations. We then prove that the dynamics of the one-
dimensional MFM are only affected by the time dependence of the driving process, described
by a copula, and not by its marginal distributions. We then shift our focus and show that
the one-dimensional MFM under the terminal measure is closely related to the one-factor
separable local-volatility LMM.

Finally, we move our attention to the models of a two-currency economy. We propose
a new three-factor model that we calibrate to the domestic and foreign caplet prices and
the foreign exchange call options. To maintain the no-arbitrage condition while calibrating
to foreign exchange market we propose a predictor-corrector type step. It is our conjecture

that the predictor-corrector step converges, thus the model is well defined.



Abbreviations and operators

Abbreviation

Meaning

FRA Forward rate agreement

LIBOR London interbank offered rate
LMM LIBOR market model

MFM Markov-functional models

ZCB Zero-coupon bond

Operator Meaning

()4 Maximum of z and 0

|| Absolute value of x

sgn x Sign of z

T Ay Minimum of z and y

zVy Maximum of x and y

T kY Entry-by-entry product of vectors x and y
(x,y) Inner product of vectors z and y




Chapter 1

Introduction

Interest rate derivatives are arguably the largest asset class trading in the global market.
Bank for International Settlements (Monetary and Economic Department, 2015) estimated
that at the end of December 2014 the total notional amount outstanding on the global
over-the-counter derivatives market was more than 630 trillion US dollars. Of this amount
approximately 505 trillion US dollars, or 80% of the total amount, was attributed to the
(single-currency) interest rate contracts (including forward rate agreements and interest rate
swaps). This is approximately 9 times the total notional amount outstanding attributed to
the foreign exchange contracts, which are the second largest asset class. Furthermore, the
over-the-counter market in interest rate contracts is estimated to have approximately 6.5
times the notional amount outstanding of its exchange traded counterpart. Not only are the
interest rate contracts the biggest asset class in terms of the notional amount outstanding,
but are also the largest asset class by the gross market value representing approximately
75% of the over-the-counter market.

For the reasons outlined above the models of term structure of interest rates remain an
important part of mathematical finance. In this thesis we contribute to the existing literature

on two well established interest rate models
e LIBOR market model (Chapter 3),
e Markov-functional model (Chapter 4)
and an emerging
e Two-currency Markov-functional model (Chapter 5).

The common theme throughout the thesis is the computational efficiency of the models
considered, which is in part achieved by concentrating on the models driven by low-number
of Markovian factors or sources of uncertainty. The second motif in the thesis is our interest
in the so called ‘market models’, which model the market observable forward LIBORs or
forward swap rates opposed to the models of unobservable short or instantaneous forward

rates.



Chapter 2 provides the reader with the background material used throughout the thesis
and introduces the notation. It gives a brief overview of the arbitrage pricing theory, describes
the economy of our interest and introduces some of the interest rate related instruments
encountered on the interbank markets. Finally, it gives a brief introduction to the LIBOR
market model and the Markov-functional model. Readers familiar with this material may
choose to skip this chapter and refer back to it when necessary.

In Chapter 3 we focus on the LIBOR market model. It is well known that the LIBOR
market model is a high-dimensional model regardless of the dimension of the Brownian motion
driving its dynamics. In particular, this usually forces the user to implement it using Monte
Carlo techniques, which are especially cumbersome to use when valuing derivatives with early
exercise features. One way to overcome the problems arising from the high-dimensionality
was proposed by Pietersz et al. (2004) and involves restricting the model parameterisation
by imposing a separability condition. It has been suggested that such a restriction is too
strong when we also want the model to be time-homogeneous. In Chapter 3 we explore this
issue further. We show that a minor generalisation of the separability condition allows for
a greater variety of time-homogeneous parameterisations of the separable LIBOR market
model. In particular, we characterise two- and three-factor separable and time-homogeneous
LIBOR market models and show that we obtain parameterisations that are of practical
interest.

In Chapter 4 we turn our attention to the Markov-functional model. While the class of
Markov-functional models encompasses most existing interest rate models, we will focus on
the one-dimensional Markov-functional models under the terminal and the spot measure
driven by a Markov process z. Traditionally, x has always been assumed to be a Gaussian
process as this allowed for a straightforward implementation on a grid. The main contribution
of Chapter 4 to the literature on the Markov-functional models are two new algorithms that
can be used to implement the one-dimensional Markov-functional model under the terminal
or the spot measure for any diffusion process x that has continuous marginal distributions.

While the Markov-functional approach have become popular because of its computational
efficiency, it’s main drawback is the lack of intuition behind the model dynamics, especially
when compared to the LIBOR market model. In part, this has been addressed by Bennett
and Kennedy (2005) who showed that the one-factor separable (log-normal) LIBOR, market
model has similar dynamics as an appropriately defined one-dimensional Markov-functional
model (driven by a Gaussian process). In Chapter 4 we also address this issue and generalise
the approach by Bennett and Kennedy (2005) to a wider class of separable one-factor local-
volatility LIBOR market models. In particular, we generalise the idea of separability to the
one-factor local-volatility LIBOR market models and give a systematic approach how they
can be used to define one-factor Markov-functional model, which we later demonstrate with
an example. We also provide a further insight into the role of the driving process by proving
that the one-factor Markov-functional models under the terminal and the spot measure are
only influenced by the time-dependence of the driving process, which we characterise with a

copula, and not by its marginal distributions.



In Chapter 5 we introduce a two-currency economy and show how the results from
Section 2.1 can be extended to the two-currency setting. We then define the concept of a
two-currency Markov-functional model under the spot measure and review the approach
taken by Fries and Rott (2004). We then propose a new two-currency Markov-functional
model, that we conjecture can calibrate to the domestic and foreign caplet prices and foreign
exchange call option prices. The novelty of the model is a predictor-corrector type step that
we use to calibrate the model to foreign exchange options and maintain no-arbitrage property.
Finally, we outline how the model can be efficiently implemented on a grid using the ideas
from the implementation of the one-factor Markov-functional model under the spot measure.

Chapter 6 concludes by discussing how the concepts presented in the thesis are interlinked
and by pointing out some interesting open questions.

There are two appendices at the end of the thesis. In Appendix A we provide further
detail about the ‘basis functions’ that are used in Chapter 4. Appendix B contains two

longer and less instructive proofs.



Chapter 2

Arbitrage Pricing Theory, Interest
Rate Derivatives and Market Models

In this chapter we review some basic concepts of arbitrage pricing theory, interest rate
derivatives and two models of the term structure of interest rates that will be used throughout
the thesis.

2.1 Arbitrage Pricing Theory in a Nutshell

In this section we give a brief introduction of the important concepts of the arbitrage pricing
theory that will be used throughout the thesis, especially the concept of a numeraire pair.
The material covered in this section can be found in many textbooks about mathematical
finance such as Andersen and Piterbarg (2010), Duffie (2001) or Fries (2007). Here we follow
the approach taken by Hunt and Kennedy (2004).

Throughout this section and the entire thesis we will assume we are working on a filtered
probability space (2, F, {F;}+>0,P) supporting Brownian motion and satisfying the ‘usual

conditions’:
1. o-algebra Fq is P-complete: if A C B € F such that P(B) = 0 then A € Fy;

2. Filtration {F;}¢>0 is right-continuous:

Fo=()Fs t=0. (2.1)

s>t

Let us first consider an abstract single-currency!' economy &£ with finite time horizon
T* < oo consisting of n + 1 assets A',..., A""L. For i € {1,...,n+ 1} we can write
A" = (A})tefo,1+), where Aj is the time ¢ price of the asset A’. For notational convenience we
n+1
i=1

define the vector valued process A = (A?) and we assume that each of the price processes

is a semimartingale with respect to the filtration {F;}iepo,7+]-

1We will extend the results of this section to a two-currency setting in Section 5.1.



We will model gains of trading by Ito integral. More precisely, we first define a filtration
{]:A}te[O,T*] to be the augmented natural filtration associated with A, i.e.

Fi = o(o0(As;s <t)UFy), t<T* (2.2)

We say that a vector valued process ¢ = (¢*)1]! is a self-financing trading strategy if ¢ is

{F*}iejo,r+-predictable and

(p1, At) = (P, Ao) + Gi(9), t<T7, (2.3)

where G(¢) = (G¢($))iepo,r+] is the gain-process of the strategy ¢ defined by

Gi(9) ::/o (¢s,dAs), t<T" (2.4)

Next we define the concept of a numeraire pair.

Definition 2.1. A process N = (N;).e[0,r+] is called numeraire if it is strictly positive P-a.s.

and there exists a self-financing trading strateqy ¢ such that

t
Nt:N0+/ (ds,dA,), t<T. (2.5)
0

A

Note that if a process N is a numeraire, the ratio Ai’N = ﬁ is well defined P-a.s.

and we will denote by A»Y := (Ai’N)te[o,T*] the numeraire rebased price process of asset

n+1
i=1 -

Atjie{1,...,n+ 1}. Moreover, we can define the vector valued process AN := (A%N)'H

Definition 2.2. A probability measure N defined on the measurable space (2, F4.) is an
equivalent martingale measure (EMM) associated with the numeraire N if N and P are

equivalent (on (0, Fih)) and AN is an {F{* }ieo,r-martingale with respect to measure N.

We will refer to a pair (IV,N) consisting of numeraire N and an EMM N associated with
numeraire N as the numeraire pair.

For technical reasons we need to restrict the set of self-financing trading strategies that
can be used for trading. We will call the strategies that can be used for trading admissible
and denote the set of admissible trading strategies by S. We will adopt the convention that
when the economy does not admit a numeraire pair we take the set of admissible strategies

to be an empty set.

Definition 2.3. A self-financing trading strategy ¢ is admissible if for every numeraire pair
(N,N) the process GN(¢) defined by

GV (g) = /0 (burdAY), t<T", (2.6)

is an {ff}te[o,;p*]—martingale with respect to measure N.



Remark 2.4. Alternatively we could impose an appropriate integrability constraint on the
trading strategies. The details of such an approach can be found in Delbaen and Schachermayer
(2006) and Duffie (2001).

Next we define the concept of arbitrage and show how it relates to the existence of

numeraire pair.

Definition 2.5 (Arbitrage). We say that a self-financing trading strategy ¢ is an arbitrage

strategy if one of the following conditions is satisfied for some t < T™*;
1. {(¢o,Ap) <0 and {¢¢, Ar) > 0, P-a.s.;
2. <¢0,A0> S 0, <¢taAt> Z 0, P-G.S., and P(<¢t,At> > O) > 0.

We will say that an economy £ admits arbitrage if there exists an admissible arbitrage

strategy. Otherwise we say that the economy is arbitrage-free.

Theorem 2.6. The economy & with the set of admissible strategies as defined in Definition2.3

is arbitrage-free.

See Theorem 7.32 in Hunt and Kennedy (2004) for the proof.
Having established when an economy is arbitrage-free, we can now define price processes

of contingent claims in an arbitrage-free economy.

Definition 2.7. A contingent claim with paying an amount Vp at time T < T* is attainable
if there exists an admissible trading strategy ¢, called the replication strategy, such that
Vr = (¢r, Ar). We will refer to the time T as the expiry of the claim.

In other words an attainable contingent claim can be replicated by trading with some
admissible trading strategy. Note that by definition any attainable claim expiring at time
T is .7-"74 measurable. For an attainable contingent claim Vi we can define its price process
V= (Vi)ie,m) by

Vii= (1, Ar), t<T, (2.7)

where ¢ is a replication strategy for V. Note that, the price process seems to depend on
the replication strategy chosen, however in an arbitrage-free economy one can show that the

price process is independent replication strategy.

Theorem 2.8 (Law of one price). Suppose that ¢ and 1 are replication strategies for an

attainable contingent claim Vi expiring at time T. If the economy is arbitrage-free then
<¢t7At> = <1,Z1t, Af> ]P)—G,.S., t S T (28)

and the price process V = (V;)icjo,1) s well defined up to a modification.

See Theorem 7.33 in Hunt and Kennedy (2004) for the proof.
Theorem 2.8 is sometimes referred to as the Law of One Price and will be used in the
next section to determine the value of simple but fundamental instruments. As a corollary

to Theorem 2.8 one can prove the fundamental pricing formula.



Corollary 2.9 (Fundamental pricing formula). Let (N,N) be a numeraire pair and Vr an
admissible contingent claim expiring at time T' < T*. Then the price process V = (Vi)icjo.1

satisfies the fundamental pricing formula

1%
V, = N;Ex {Nj

]-';4} P-a.s., t<T. (2.9)

See Corollary 7.34 in Hunt and Kennedy (2004) for the proof.

Remark 2.10. Thought the thesis we will slightly abuse the notation and simply condition
on the a-algebra F; instead of F{* when using the fundamental pricing formula. While the
two o-algebras are in general not the same, in particular .7:,{4 C F, the distinction between
them is not of practical importance for most of the thesis. We will explicitly point out the
distinction between them in places where interchanging the o-algebras would lead to different
results (see also Section 7.3.1 and Remarks 7.38 and 7.45 in Hunt and Kennedy (2004)).

Let us complete this short introduction to the arbitrage pricing theory by briefly discussing

the notion of completeness.

Definition 2.11. An economy & admitting a numeraire pair (N,N) is complete if for every

]:7’3* measurable contingent claim Vi« satisfying

Vi

E
N Np-

< oo (2.10)

there exists na admissible replicating strategy.

It turns out (see Corollary 7.40 in Hunt and Kennedy (2004)) that Definition 2.11 is
independent of the numeraire pair chosen and that for a self-financing trading strategy ¢
to be admissible it is enough that the gains process GV (¢) as defined in equation (2.6) is
{ff}te[O)T*]—martingale under an EMM N for a single numeraire pair (N, N).

Theorem 2.12. An economy & admitting a numeraire pair is complete if and only if for

any two numeraire pairs (N,Ny) and (N,Ny) the measures Ny and Ny agree on Fib. .

See Theorem 7.41 in Hunt and Kennedy (2004) for proof.

2.2 Interest Rate Derivatives

In the previous section we have defined the concept of a general arbitrage-free economy &.
Now we will introduce a concrete economy that will be of our interest throughout the thesis.

Suppose 0 =Ty < ... < Tp,41 is a set of dates. We will adopt the convention that the
date Ty = 0 represents the present and that the dates are expressed as fractions of the
year. For example if T; = 1.5 then date T; is 18 months from today. We will denote by
a;,i € {0,...,n}, the accrual factor associated with the period [T;,T;+1]. Roughly speaking



«; is the length of the period [T}, T;11] expressed as a fraction of the year, i.e. o; &~ T;11 —Tj,
however the exact calculation of the accrual depends on the daycount convention used and

might differ between markets.

2.2.1 Zero-coupon Bonds and the Economy

A zero-coupon bond (ZCB) is a financial instrument that promises the holder a payment of
one unit of a currency at a pre-agreed date called the maturity. We will denote the time
t < T price of a T-maturity ZCB by D r, obviously in an arbitrage-free economy D 1 = 1.
Figure 2.1 shows the cashflows associated with buying a T" maturity ZCB at time t.

1

receive

pay t T

Dy 1

Figure 2.1: Cashflows associated with buying a T-maturity zero-coupon bond at time .

Due to their simple structure ZCBs are fundamental assets of many interest rate models
(we will explain the relationship between the ZCBs and the interest rates in the next
subsection). For the purposes of this thesis we will assume, unless stated otherwise, that
the economy consists of n + 1 ZCBs maturing on dates T3, ..., 7T, 41, which can be traded in
continuous time without friction. In the context of previous section we can think of the date
Ty+1 as the time horizon and the ZCBs as the assets A!,..., A"T!. For any t < T,,.1 we
will refer to the map

T, Dy, T >t (2.11)

as the term structure of ZCBs and to any model of the economy consisting of ZCBs as the

term structure model.

Remark 2.13. To be precise, the assets price processes in the previous section were well
defined up until the time horizon T* = T,,41. However, fori € {1,...,n} the price process
of a T;-maturity ZCB is defined up unitl time T3, in particular only the price process of Ty 11
maturity ZCB is well defined for the entire time period [0,T,+1]. Note that this is only a
minor technical detail which can be resolved by defining an ‘extended’ T;-maturity ZCB as

Dt,Tn_'_l

Dthi’ = Dt/\Ti,,T, t S Tn. (212)

i b
Dt/\Tth+1

Note that slight abuse of notation is not harmful since the time t < T; prices of the ‘original’

and ‘extended’ Ti-maturity ZCBs are the same, provided that Dy r,., > 0 which is always the



case in an arbitrage-free economy. In words, an ‘extended’ T;-maturity ZCB is a T; maturity

ZCB whose payoff is at the maturity is invested into buying T, 11-maturity ZCBs.

We have hinted in Remark 2.13 that in an arbitrage-free economy the price process of
the T, 1-maturity ZCB is strictly positive. This is clearly the case for the price process of
any ZCB as non-positive price of a ZCB leads to trivial arbitrage strategy (buy the ZCB at
a non-positive price and hold it until maturity). In particular, the T),41-maturity ZCB is
a numeraire and we will denote the EMM assciated with it by F*+! and refer to it as the

terminal measure.

2.2.2 Deposits, Forward Rate Agreements and Swaps
Deposit

A deposit is an agreement between two counterparties where one party pays the other a
fixed amount of cash in exchange for receiving it back with interest at a later date. Of our
interest will be deposits starting on a date T;,i € {0,...,n}, and ending on the date T;;.
The interest paid is proportional to the amount deposited. The interest received on a unit of
a currency deposited at time T; is given by «; éﬂi, where L% is the interest rate determined
at time T; for the period [T}, T;+1]. Figure 2.2 shows the cashflows associated with entering

a unit deposit at time T;.

oy Lé,_
N

receive

(67

pay T; Tita

1

Figure 2.2: Cashflows associated with a deposit of one unit of a currency for the period
[j—jia Ti+1]

On the interbank market the interest rate Lf, is called the London Interbank Offered Rate
or simply spot LIBOR. 1t is quoted every business day by the ICE Benchmark Administration.?
Note that the payoff of a unit deposit can be replicated by buying 1 + aiLiTi ZCBs with
maturity T;4;1 at time T;. The cost of such a strategy at time T; is then (1 + OéiLiTi)DT,;,THl
and in an arbitrage-free economy it has to equal to one unit of a currency. Therefore, we

can express Ly, as

i 1 _DThTiJrl

b (2.13)

o;Dr, 1,y

2More details can be found at http://www.theice.com/iba/libor.
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Rolling Bank Account

Closely related to the deposit is a discretely compounded rolling bank account. It is an
instrument created by depositing one unit at time 0 for the period [0,77]. At each of the
dates T;, € {1,...,n} we receive the deposited amount back with interest and deposit it
again for the period [T}, T;41]. It is easy to see that the value of the rolling bank account at

time T; is given by
i—1

Br, = [[0+e;L%), i=1,...,n+1 (2.14)
j=0
Since the value of a deposit at time 711 is known at time 7; we can determine the value of
the rolling bank account on a date ¢ € (T}, T;+1) by simply discounting the time 7T} value
of the deposit (which is already known), i.e.

Bt - Dt’TiJrlBTi t € (T“ TIH,l]. (215)

41
Note that the value of the rolling bank account can be replicated by a self-financing trading
strategy involving ZCBs only. In particular, investing the amount By, in T;4i-maturity
ZCB at time T;,i = 0,...,n, replicates Br,,,. Furthermore, note that the process B =
(Bt)tepo,T, 1] is strictly positive and is therefore a numeraire. In any arbitrage-free term
structure model we will denote the EMM associated with it by FO and refer to it as the spot

measure.

Remark 2.14. Note that a rolling bank account provides a suitable alternative for defining
‘extended’ ZCBs, similarly as we have done it in Remark 2.13. For the purposes of this thesis,
it is not relevant which route one chooses to take. However, if one wishes to use T;-maturity
ZCB i€ {1,...,n} as a numeraire and apply it to price payoffs occurring after time T; care
must be taken as the two definitions will yield different EMMs.

Forward Rate Agreement

Another instrument closely related to the deposit is a forward rate agreement (FRA). An
FRA is a financial instrument where two parties agree to exchange interest payments accrued
over a future period [T}, T;41],% € {1,...,n}. The payments are exchanged at time T;;1,
when one counterparty pays the other the amount o; K and in exchange receives an amount
aiLiTi. The interest rate K is agreed when the parties enter the FRA, on the other hand
the spot LIBOR LE‘F is determined on a later date T;. The date T} is often referred to as
the reset or setting date. We will say that the party paying the interest accrued at rate K
holds the long position in the FRA and the party paying the interest accrued at spot LIBOR
holds the short position in the FRA. Figure 2.3 shows the cashflows associated with the long
position in the FRA.

Suppose the parties entered an FRA with reset date T; and fixed rate K. We would
like to calculate the time ¢ < T; value of the long position in the FRA. Clearly, the time ¢
value of the cashflow o; K is simply Dy 1, , ;K. On the other hand, we can replicate the

10
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Figure 2.3: Cashflows associated with a long-position in an FRA with strike K for the period
(T3, Tit1]-

payment aiLiTi by buying a T; maturity ZCB, selling a T;i-maturity ZCB and depositing
the payment of a ZCB at time T; for the period [T}, T;+1]. Then the time ¢ value of a long
position in the FRA is given by

VvtFRA,i(K) — Dt,Ti — (]. + aiK)Dt,TH_y (216)

It is standard market practice that the FRAs are entered at zero cost. The interest rate
K that satisfies this condition is called the forward LIBOR for the period [T;,T;+1] and its
time ¢ < T} value is denoted by L! and is given by
. Dyp. — Dy
L= 0T T T (2.17)
@Dy,

For t <T,, we will refer to the map
T, Ly, Ty>t (2.18)

as the term structure of interest.

Remark 2.15. Throughout the thesis we will work in the ‘single-curve’ setting, that is we
will assume that the term structure of ZCBs and the term structure of forward LIBORs (and
later forward swap rates) are ‘equivalent’ in the sense that one can move between the two
curves by using equation (2.17). Such a setting does not take into the account the credit risk.
A good overview of the ‘multi-curve’ approach taking into account the credit risk can be found
in the books by Brigo et al. (2013) and Henrard (2014).

Although we assumed that ¢ < T;, observe that by setting t = T; in equation (2.17) we
obtain exactly the spot LIBOR LZTZ This should not come as a surprise as entering into an
FRA on its setting date at zero cost has to be done with fixed rate being the spot LIBOR
rate (which is known on the reset date). Furthermore, note that in any arbitrage-free term
structure model the process L' = (Li)te[o,Ti} has to be a martingale under the EMM Fi+!
associated with T}, ;-maturity ZCB as the numeraire. The measure F'*! is referred to as

the T;41-forward measure.
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Swap

A payers interest-rate swap is a financial instrument where two parties agree to exchange
a series of interest payments on a series of pre-agreed dates. The swap is characterised by
a start date T;,¢ € {1,...,n}, the last payment date T;,j € i+ 1,...,n+ 1, and a fixed
interest rate K agreed when the parties enter the swap. The payments are exchanged at
times Tj41,...,T;, on a date Ty41,k € {4,...,5 — 1} one counterparty pays the other the
amount o K and in exchange receives the amount akL’%k. The series of payments (ag K )fc;i
is referred to as the fized leg of the swap and series of payments (akL’%k )fc;i is called the
floating leg. Similarly to the FRA we adopt the convention that the party paying the fixed
leg holds the long position in the swap and that the party paying the floating leg holds the
short position in the swap. Figure 2.4 shows the cashflows associated with the long position

in the swap.

Jj—2
ai_ol
» % Tj_»
| )
j—1
I o1l
I P XI-1ET
I I
I I
I I
. | |
receive ‘ } aj 1 }
. . | | |

t T; Tit1 Tj 1 Ty

a; K aj oK a;j 1K

Figure 2.4: Cashflows associated with a long position in a swap starting on date T; and last
payment date on T}.

In order to value a swap we need to find a trading strategy replicating the swap’s cashflows.
One way this can be done is by observing that a swap starting on date 7T; and last payment
date T} can be decomposed into a series of j —i FRAs with reset dates 7}, ..., Tj_1. Therefore

the time ¢ < T; value of the swap can be expressed as a sum of values of the FRAs

j—1
VPP I(K) = Dyr, — Dyry — K Y oDy, (2.19)
k=1

As in the case of the FRA, it is standard market practice to enter the swap at zero cost for
both parties. The fixed rate K that satisfies this condition is called the swap rate. The time
t < T; value of the swap rate for the swap starting on date 7; and with last payment date T}
will be denoted by yzxj and can be expressed as

i D1, — Dir,
g = it Doty (2:20)

= g
Zk:i ath,Tk-H
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The sum
j—1

PP =Y "ayDym., (2.21)

k=i
is usually referred to as the present value of a basis point. Note that the process (Ptixj)tG[O,Ti]
is strictly positive and can be used as a numeraire. We will denote the EMM associated with

it by %7 and refer to it as the T} x Tj-swaption measure.

2.2.3 Caplets and Swaptions

In the previous subsection we introduced basic financial instruments encountered on the
interbank market. They all shared a common feature that they could be replicated by a simple
model-independent trading strategies involving only ZCBs. In this subsection we introduce
some common instruments that in general cannot be replicated using model-independent
trading strategies. The reason for this will be that the instruments’ payoffs will no longer be
affine functions of ZCB prices as it was the case for FRAs and swaps (see equations (2.16)
and (2.19)).

Caplet

A (European) caplet with expiry date T;,i € {1,...,n}, payment date T;1 and strike K > 0
is a financial instrument that gives the holder the right to enter an FRA with reset date
T;, payment date T;;; and fixed rate K on the expiry date T;. Recall that the value of the
underlying FRA on the date 7T; is given by

Vit = Do ag(L, — K. (2.22)

i

The holder will only choose to exercise his right to enter the FRA if its value is positive that

is when LE_F > K. Therefore, the time T; value of a caplet with expiry date T; is given by
V’,ng)lﬂ(K) = aiDTi,TiJrl (LEF, - K)-i-’ (2'23)

where (x) denotes the positive part of x, and the net payment to the holder of the caplet

at time T}, is given by
Vil (K) = ai(Ly, — K)+. (2.24)

For time ¢ < T; the value of a caplet is no longer model independent. However, if the
economy admits a numeraire pair (IV,N) and the caplet payoff Vq‘fpif(K ) can be replicated,
the time ¢ value of a caplet is given by

ai(Ly, — K)+

Vtcpl,i(K) = NV;Ey |: Ny
i1

ft] (2.25)
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or equivalently by
OéiDTi»Ti,+1 (La“ - K)+

ViR (K) = NiEy Nr

]-"t] (2.26)

When valuing a caplet it is often convenient to choose (D r,,,,F"™!) as the numeraire pair,
in this case equations (2.25) and (2.26) reduce to
VYK = Dy Brons [eu (L, — K) 4 | F]. (2.27)
One of the first models capable of valuing the caplets was proposed by Black (1976).
Black’s model is essentially a modification of the earlier Black and Scholes (1973) model,
where instead of modelling the spot price of an asset one models its forward price, i.e. in the
case of a caplet the forward LIBOR L?. The original approach by Black is based on the PDE
methods, however it has a straightforward probabilistic interpretation that the forward price
(in our case forward LIBOR L?) is a log-normal martingale under the measure 7;1-forward

measure satisfying the SDE
dLi = LicdW;t, (2.28)

where o is a positive constant and W**! is a Brownian motion under the EMM F*+1. In
particular, note that the process L’ is a Markov process under the measure Fi*! and the

caplet price can be expressed in terms of K, Dy r, Li, and o as

i1
Vtcpl’i(K) = aiDt7Ti+1 (Lifb(d_;'_) - K(I)(d—))7 (2'29)
where @ is the distribution function of a standard normal random variable and

B log% +10X(T; — t)

oT; —t

We will refer to equation (2.29) as the Black’s formula for caplets.

ds :

(2.30)

Remark 2.16. In a term structure model for a Black’s formula to be valid for time t =0

only it is enough that the distribution of L%i under the measure Fit1 is log-normal.

While the Black’s model is nowadays rarely used for the pricing of derivatives, Black’s
formula remains important part of the finance industry. The reason for this is that the caplet
prices are quoted in terms of the value of the parameter o one needs to use in the Black’s
formula to obtain the price of the caplet. Such a value of o is referred to as the implied
volatility and in practice depends on the strike and the expiry date. We will refer to the
function mapping the expiry date and the strike to the implied volatility as the implied

volatility surface.

14



Digital Caplet

A digital caplet with expiry date T;,i € {1,...,n}, payment date T;;1 and strike K >0 is a
financial instrument that pays the holder one unit of a currency at time 7;, if the value
of LlT is above K and zero otherwise. In particular, the time T; value of a digital caplet is
given by

VAP = Dy ry 1 (L, >K) (2.31)

and the payment at T; 4 is given by

depl,i

As in the case of the European caplet the price of a digital caplet is model-dependent and
can be evaluated using the fundamental pricing formula provided that the option payoff can
be replicated. In particular, taking the 7;41-maturity ZCB as the numeraire yields that the
time ¢ < T; price of a digital caplet is given by

VAPY = Dy gy B [1 Ly, >K) | 7] (2.33)

In particular for ¢ = 0 the price of the caplet is simply discounted probability (under the

measure Fit1) of LiT,- being greater than K, i.e.
V3P = Dy 1, (LY, > K). (2.34)

Furthermore, one can show that the prices of digital caplets are related to the prices of

European caplets via

: 1 gV
dcpl,i _ t
\A (K) = o 0K (2.35)
since 8(L' K)
T; +
1{LiTi>K} =TT 9Kk (2.36)

in the sense of the weak derivative and we can justify the interchange of differentiation and
integration using the dominated convergence theorem. Therefore, the prices of digital caplets
uniquely define the prices of caplets and vice versa (this was first observed by Dupire et al.
(1994)).

In particular, in the Black’s model the price of a digital caplet is given by

VIAPY(K) = Dog, ®(d-), (2.37)

where d_ is defined as in equation (2.30).
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Digital Caplet In-arrears

A digital caplet in-arrears with expiry date T; and strike K is a financial instrument that
pays the holder one unit of a currency at time 7; if the LIBOR rate L% is above K and zero

otherwise. Therefore the time T; value/payment of the digital caplet in-arrears is given by
dca,i
VTiCd L 1{L§“i >K} (238)
and the time ¢t < T; value is given by

1,/
ca,i {L ,v>K}
VAN K) = Dy, Episs {T‘

Fil- 2.39
DTi L1 t:| ( )
Note that D;ilyTi+1 =1+ aiLiTi and therefore a digital caplet in-arrears can be replicated by
buying «; European caplets and 1 + «; K digital caplets, both with strike K and expiry date
T;

VU K) = a; VPR + (1 + oK) VP (K) (2.40)

Therefore, knowing the prices of European caplets uniquely determines the prices of digital

caplets in-arrears.

Swaption

A European swaption with strike K, expiry date T; written on swap rate yZTXj is a financial
instrument that gives holder the right to enter at time 7; a long position in a swap with
fixed rate K, reset date 7; and last payment date T;, ;. The time T; value of such a swap

can be written as

-1

V,]s;vap,’LXJ (K) =1- DTi,Tj - K Z ak‘DTi,T}c+1 (241)
k=1

= Py — K) (2.42)

Since P;jj is strictly positive the investor will choose to exercise his right and enter the swap
when the swap rate y}XJ is above the strike K and the time T; value of the swaption is given
by

V;waption,ixj(K) _ P%T](y;::] _ K)+ (243)

i

Remark 2.17. Note that swap rate y%”l s exactly the LIBOR L’T and the swaption
written on yéf”l is the same as the caplet written on L}l.
As in the case of caplets the time t < T; value of swaption is model dependent and can

evaluated using the fundamental pricing formula

Py — K)4
Nr.

i

V;swaption,ixj (K) — Nt]EN

]—"t] , (2.44)

16



where (N, N) is a numeraire pair. In particular, it is often convenient to evaluate the swaption

price under the T; x Tj-swaption measure S**J associated with the numeraire P**J
‘/tswaption,ixj(K) _ PZXjESin [(y;:;] _ K)+|.7:f] ) (245)

Note the similarity between equation (2.27) describing the caplet value under the forward
measure and equation (2.45). In particular, in both cases the underlying forward rate and
swap rate processes are martingales under the forward and respectively swaption measure.
Therefore, it should not come as a surprise that the Black’s model can be used to price the
swaption.

Under the Black’s model the forward swap rate process y**7 is assumed to be a log-normal

martingale under the measure S"J given by the SDE
Ay =y odW (2.46)

where o is a positive constant and W%*J is a Brownian motion under the measure S**7. The

swaption price is then given by the Black’s formula for swaptions
VPR () = PO (I8 (d,) — KB(d)), (247)

where v
J

_ log 1/21: +10X(T; - t)
ovi1; —t '

As in the case of caplets, the importance of Black’s model today is mainly as a computa-

dy : (2.48)

tional tool as the prices of swaptions are quoted in terms of implied volatilities. That is the

parameter o one needs to use to determine the current value of the swaption.

Digital swaption

A PVBP-digital swaption with strike K, expiry date T; written on swap rate y}xj is a
financial instrument paying the amount prjj at time Tj if the swap rate y**7 is above K
and zero otherwise. In particular, the value of digital swaption on the expiry date is given by
dswaption,ixj _ pixjJ o

VT:wdp ion,ixj (K) = Pi Jl{y}j]>K}' (249)

Remark 2.18. Note that a PVBP-digital swaption written on y%j”l is the same as «;

digital caplets written on Li, .

We can then evaluate the time ¢ < T; price of a digital swaption by applying the funda-
mental pricing formula to its payoff. Under the T} x Tj-swaption measure S"*J corresponding

to P?*J as the numeraire the digital swaption price is given by

‘/tdswaption,ixj (K) _ PtinESin [1{1/}1,XJ>K} |‘Ft] . (250)
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In particular for t =0
VoI (K) = PyUsTI (g > K). (2.51)

As for the European caplets and digital caplets, we can derive a similar relationship between
prices of European swaptions and PVBP-digital swaptions, namely
o o aszaption,in
dedethn,ZX] K)=— t ) 2.52
; (K) = = (2:52)
Finally, let us note that under the Black’s model the digital swaption price can be
expressed as
‘/tdswaption,ixj(K) — szj(p(d_), (253)

where d_ is defined as in equation (2.48).

2.3 Market Models

Having described some of the instruments encountered on the interbank market let us outline
two models that will be of our interest throughout the thesis: LIBOR market models and

Markov-functional models.

2.3.1 LIBOR Market Model

The LIBOR market model (LMM) is one of the most popular models of interest rates. It was
developed in the 1990s by Miltersen et al. (1997), Brace et al. (1997), Musiela and Rutkowski
(1997), and Jamshidian (1997). The introduction of LMM also brought a major shift in the
prevailing term structure modelling paradigm.

Before the introduction of LMM the term structure models were usually based on the
unobservable short rates (e.g. Vasicek (1977), Cox et al. (1985), Hull and White (1990) etc.)
and after the publication of the seminal paper Heath et al. (1992) also on unobservable
instantaneous forward rates (e.g. Cheyette (1992), Ritchken and Sankarasubramanian (1995),
etc.).

The LMM represented the shift from modelling the unobservable short rates or a con-
tinuum of instantaneous forward rates to a finite set of market observable forward LIBORs.?
In particular, the underlying economy in an LMM consists of n + 1 ZCBs maturing on dates
Ti,...,Th+1 and is exactly the economy described in Subsection 2.2.1.

The basic idea behind the LMM is to model the prices of ZCBs indirectly by specifying the
dynamics of forward LIBORs L, ..., L™. In particular, for each i € {1,...,n} the process
L is assumed to be a log-normal martingale under the T} -forward measure. Therefore,
in the LMM the prices of caplets written on LiTi,i € {1,...,n} are given by the Black’s
formula. However, the LMM is fundamentally different from the Black’s model. The Black’s

3And with the extension by Jamshidian (1997) also the forward swap rates.
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model is a model of a single forward rate whereas the LMM is a model of the entire term
structure of forward rates.

The LMM can be specified under the spot measure or any T;-forward measure, i €
{1,...,n+ 1}. However, the spot and the terminal measure are the most common choices.
From the theoretical standpoint the choice of measure is irrelevant, however in practical
applications one might prefer one EMM over the other (more details can be found in Chapter 5
Brace (2007), Section 2.5 Gatarek et al. (2007) and Chapter 20 Joshi (2011)). In this thesis
we will mainly consider LMMs under the terminal measure.

A d-factor LMM under the terminal measure, is given by an initial term structure (L})™,
and the system of SDEs
ALk = Lifo* (), dwy) — 1 3 B .o7(0)

j=i+1 L+ a;Ly

dt, t<T;, i=1,...,n, (2.54)

where W is a standard d-dimensional Brownian motion under the measure F**! and o :
[0,7;] — R4 i =1,...,n, are bounded measurable functions. One can show that under these
conditions the system of SDEs (2.54) admits a strictly positive strong solution when the
initial forward LIBORs L{,i = 1,...,n, are strictly positive (see Section 14.2 in Andersen
and Piterbarg (2010) and Section 18.2 in Hunt and Kennedy (2004) for more details).

Remark 2.19. [t is sometimes convenient to define all forward LIBORs on the interval

[0, T41] by setting

Lii= Ly, te (T, T, (2.55)
or equivalently by extending the domain of functions ot,... o™ to [0, T, 1] by setting
ol(t) =0, te(T;,Thil- (2.56)

Let us now step back and discuss the LMM in the context of our economy & consisting
of ZCBs maturing on date 77, ...,T,,+1. In particular, note that such an economy consists
of n 4+ 1 ZCBs but the LMM specifies the dynamics of only n forward rates. Consequently,
the LMM does not uniquely define the dynamics of ZCB prices, however it does uniquely

define their relative dynamics since

Doz, :ﬁ(lJrakLk) i< j (2.57)
Dt,Tj P t/) 9 .
moreover the ZCB prices are uniquely defined on the dates T1,...,T;, since
j—1
DTi,Tj = H(l + o‘kLI’ZC“k)717 1< J. (258)
k=i

In particular, this is usually enough for pricing purposes since the LIBOR and swap derivatives

typically have cashflows occurring on dates T7,...,T,+1 (see Section 7 in Jamshidian (1997)
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and Chapter 20 in Joshi (2011) for more detail).

The specification of an LMM as in equation (2.54) is particularly useful from the compu-
tational perspective. For example, it allows for a straight-forward implementation via Monte
Carlo methods. However, it offers little intuition about the model’s dynamics. It is therefore

often useful to introduce instantaneous volatility and instantaneous correlation functions.

The instantaneous volatility functions o : [0, T;] — Ry,i = 1,...,n, are given by
o™ (t) == /(o (t), o' (1)), (2.59)
and the instantaneous correlation functions pf”}“ ([0, T ATy] — [-1,1],4,5 =1,...,n, are
given by _ _
) (). oI (t
p;ZSt(t) = <U ( )70 ( )> (260)

ginst,i (t)o-inst,j (t) .
It is easy to see that

d(log Li)d(log L) = pi"!(£)0™0 (#)0703 (1) dt, (2.61)
and one can show that the instantaneous volatility and correlation functions uniquely

determine an LMM (see Section 3.2 inRebonato (2002)). Furthermore, the time ¢t < T;

implied volatility of a caplet written on L’T is a deterministic function given by

Umpl’z(t) = — / 0’”St”(s)2ds . (2.62)
T, —t\Js
It is often convenient to fix a calendar time ¢ and consider the time ¢ implied volatilities as a

function of the maturity of the caplet, i.e.
T; v o™PL(L), Ty > t. (2.63)

We will refer to such function as the time t term structure of volatilities or simply term
structure of volatilities when ¢ is clear from the context.

Finally, let us briefly comment on one of the main issues user of the LMMs face when im-
plementing them in practice namely the high dimensionality of the model. In particular, note
that the drift term of the forward LIBOR, L* under the terminal measure (see equation (2.54))
depends on the state of the forward rates L?, ..., L™. Consequently, to implement the LMM
it is not enough to keep track only of the current value of the Brownian motion driving the
dynamics and one must keep track of all forward LIBORs. In particular, the finite difference
methods are not suitable for implementing the LMM and one is usually forced to resort to
Monte Carlo methods (see Section 14.6 in Andersen and Piterbarg (2010)). We will see in

1

Chapter 3 that under certain restrictions on the functions ¢*,..., 0™ we can overcome the

so called ‘curse of dimensionality and discuss the limitations of such an restriction.
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2.3.2 Markov-functional Model

The second class of models we will be interested in this thesis are Markov-functional models
(MFMs). They were introduced by Hunt et al. (2000) and also by Balland and Hughston
(2000) based on the earlier ideas of Hunt et al. (1998). The main idea of an MFM is that we
express the prices of ZCBs as functions of the state of some Markov process z. This allows
us to implement an MFM by only keeping track of only process . In this thesis we adopt
the definition of an MFM from Kennedy (2010).

Definition 2.20. A model of a T* < oo time horizon economy consisting of ZCBs with
maturities from a non-empty set T C (0, T*]* is said to be Markov-functional if there eists

a numeraire pair (N,N) and a (d-dimensional) {Fi}ieo,7+-adapted process x such that:
1. x is a Markov process under the measure N;
2. forallT € T andt <T the timet price of a T-maturity ZCB Dy 1 is o(x;)-measurable.

Before we analyse Definition 2.20 in more detail let us make a trivial observation that the
existence of a numeraire pair ensures that any MFM is arbitrage-free. Besides the numeraire
pair, the central part of the definition of the MFM is a Markov process & which we will refer
to as the driving process or the driver. It is easy to see that for a given numeraire pair the
driving process is not unique. For example, let  be a driving process and a > 0 then the
process &’ defined by z} := ax; gives rise to the same model as the process = (we will discuss
this in greater detail in Section 4.4). Moreover, the driving processes need not be of the
same dimension.

With this in mind we say that the dimension of an MFM is d if:

1. There exists a d-dimensional driving process x;

2. Dimension of any other driving process z’ (possibly corresponding to a different

numeraire pair) is at least d.

However, in practical application one typically singles out a specific numeraire pair and
driving process when working with an MFM and refers to the dimension of the MFM as the
dimension of the chosen driving process. We will see in Chapter 4 that the ‘true spirit’ of an
MFM is in choosing the driving process and the EMM in advance and then determining the
numeraire and the functional forms of the ZCBs by calibrating the model to prices of caplets

or swaptions.

LIBOR Market Models as Markov-functional Models

Let us conclude this section with a comment how LMMs can be seen as MFMs. In particular,
let us consider an LMM under the terminal measure consisting of forward LIBORs L', ... L"
given by the System of SDEs (2.54).

4In the context of the economy & we set T = {T1,...,Tnt1}
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In order to identify, the LMM as the MFM we then have to find a driving process z
and show that the prices of ZCBs can be expressed in terms of the driving process. Recall
that, in the LMM the prices of ZCBs were uniquely defined only on dates T1,...,7T54+1.
As a consequence, the embedding of an LMM into an MFM is not unique, however any
two embedding (under the same measure) will share a common joint distribution of ZCB
prices on the dates T1,...,T,+1. In that sense, we will embed the LMM into the MFM
by specifying only the functional forms of ZCBs on dates T1,...,7,+1 which is in practice
enough for pricing of the derivatives.

Recall, that the prices of ZCBs on the dates T1,...,T,+1 can be expressed in terms of
forward LIBORs as in equation (2.58). We can then define the driving process to be the
process © = (L%)"_; (where we extend each L' to [0,7,1] in the sense of Remark 2.19).
Note, that x is an n-dimensional Markov process under terminal measure and that the prices
of ZCBs on dates T1,...,T,41 can be expressed as functions of the state of the driving
process as in equation (2.58).

Note, that the resulting MFM is n-dimensional regardless of the dimension of the Brownian
motion driving the dynamics of the LMM. The connection between MFM and LMM will be
further explored in 4 and 6.
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Chapter 3

Classification of Two- and
Three-Factor Time-Homogeneous
Separable LIBOR Market Models

The LIBOR market models (LMMs), introduced in Section 2.3 are one of the most popular
classes of term structure models. One of the reasons for their popularity can be attributed
to the flexibility of their parameterisations. However, this flexibility comes with a major
drawback, the dimension of an LMM is equal to the number of forward rates in the model.
This makes them particularly cumbersome to use for pricing of derivatives with early exercise
features.

To overcome the issue of high-dimensionality Pietersz et al. (2004) proposed the separab-
ility constraint on the volatility structure of the LMM and proved that a separable LMM
has an approximation with dimension equal to the number of Brownian motions driving
the model dynamics. This process came with two drawbacks. Firstly, it greatly restricted
the class of available parameterisations. In particular, it was noted in Joshi (2011) that
the separability condition is too restrictive to use when the instantaneous volatilities are
time-homogeneous. Secondly, the approximation obtained is not arbitrage-free and is only
useful for time horizons up to 15 years.

In this chapter we mainly address the first issue. We show that the separability condition
can be relaxed by allowing the components of the driving Brownian motions to be correlated.
Under the relaxed separability condition we characterise two- and three-factor separable
LMMs with time-homogeneous instantaneous volatilities and show that they are of practical
interest.

We briefly comment on the second issue, namely that the approximation considered
admits arbitrage, by pointing out the ideas presented in Bennett and Kennedy (2005). In
particular, we note that by defining a suitable Markov-functional model one can retain the
benefits of low-dimensionality while avoiding problems with arbitrage.

The remainder of the chapter is structured as follows. In Section 3.1 we introduce the LMM
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driven by correlated Brownian motions and introduce the single time step approximation.
The separability condition is discussed and generalised in Section 3.2. In Section 3.3 we
characterise the two- and three-factor separable LMM with time-homogeneous instantaneous
volatilities. In Section 3.4 we discuss the models obtained from a practical point of view.

Section 3.5 concludes the chapter.

3.1 LIBOR Market Model

The LIBOR market model was briefly introduced in Section 2.3. In particular, we have
specified the LMM under the terminal measure in equation (2.54) and introduced the
instantaneous volatility functions ¢%¢ i =1,...,n, and instantaneous correlation function
pff}”,i,j = 1,...,n in equations (2.59) and (2.60) respectively. Moreover, we noted that
the instantaneous volatility functions and correlation functions uniquely define the model
dynamics.

In particular, by specifying the instantaneous volatility functions one implicitly specifies
the evolution of the term structure of volatilities over time via equation (2.62). In practice
one often does not have a particular view on the dynamics of the term structure of volatilties
and is faced with two natural choices. Either one chooses the implied volatilities to be
constant functions of time (i.e. they only depend on the maturity 7; of the caplet) or so
that the implied volatilities are a function of the time to maturity (i.e. they depend on the
difference T; — t) (see Section 6.2 in Rebonato (2002)). In this chapter we will focus on the
latter choice. It is easy to see that the implied volatilities of caplets will depend on the time

to maturity if the instantaneous volatility functions satisfy the time-homogeneity condition

a,inst,i(t) — O,inst(n _ t), t < Tia 7 = 1’ e,y (31)
where o™ : [0,T,,] — R, is some bounded measurable function. In particular, c™! is often
taken to be of the form

o™t () = (a+br)exp(—cr) +d, (3.2)

where 7 is the time to maturity. To ensure that equation (3.2) represents a valid paramet-

st is non-negative and bounded on

erisation the parameters must be chosen such that o
[0,T,]. This parameterisation was proposed by Rebonato (1999) and remains a popular
choice amongst practitioners.

Let us now turn our attention back to the specification of the LMM. Recall that we
assumed that the Brownian motion driving the model dynamics has independent components.
While this assumption is in general non-restrictive, it turns out to be beneficial to relax it when
there are additional constraints associated with functions ¢%,i = 1,...,n, in equation (2.54).

Let p: [0,T},] — [~1,1]9%? be a measurable function, such that p; is a correlation matrix
for t € [0,T,]. We will construct an LMM driven by a d-dimensional Brownian motion W,
satisfying

AW, dWE = p(t)dt, (3.3)
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and bounded measurable volatility functions o? : [0,T;] = R%,i=1,,...,n.

First observe, that since p(t),t < T, is a correlation matrix, in particular a positive
semidefinite matrix, there exists a unique positive semidefinite matrix R;, called the principal
square root, such that R; R: = p(t). Then we can define the matrix valued function R : ¢t — Ry,
moreover one can show that taking the principal square root is a continuous operation and
therefore R; is a measurable function. Now let W be a d-dimensional standard Brownian

motion. Then we can define a process W = (Wy):eqo,7,,] by

t
Wt = / thWt (34)
0
note that W satisfies

AW, dW]TI = (RydW,)(RydW)T = Ry(dW, dWI)R, = R%dt = p(t)dt. (3.5)

Therefore, the process W as defined in equation (3.4) is a Brownian motion with the

correlation structure we desired. Next we define functions &° : [0, 7] — R%i=1,...,n, by
G'(t) :== Rya' (). (3.6)
It is easy to see that %,i = 1,...,n are bounded measurable functions. Then we can define

an LMM driven by W and volatility functions 6,4 = 1,...,n as in equation (2.54), i.e. for
ie{l,...,n}

n

oy L (5°(t), 57 (1))

dLi = L&' (t),dW;) — Lt —Ldt, t<T. (3.7)
j:;tl 1+ OéjL'Z
Note that
(G%(t), dW;) = (Rya (t), dW,) = (o' (t), RedWy) = (o (t), dW;) (3.8)
and

(&' (t),67 (1)) = (Reo' (t), Reo? (1)) = (o' (t), Rio? (1)) = (0" (1), p(t)o” (t)),  (3.9)

then we can rewrite (3.7) fori =1,...,n, as
) o . TG o) o (¢
dLi = Li(o'(t),awy) — L) Yy o), PO ®) -y < (3.10)
j=it1 1 —|—OéjLi

We will refer to the collection of functions {o}? ; as the volatility structure and will say
that an LMM is parametrised by the pair ({o*}7 1, p). We can express the instantaneous

1

volatility and correlation functions in terms of functions ¢*,...,¢™ and p as

omsti() = \/(oi(t), p()oi(t)), t<Ty i=1,...,n, (3.11)
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and ) )
(a"(t), p(t)a’ (t))

ginst,i (t)o-inst,j (t) ’

it (t) =

Remark 3.1. Note that we allowed p to be of any rank. In particular, if p(t) is of rank d’ < d

t<Ty ATy, i,j=1,...,n. (3.12)

fort < T, we get a d-factor parameterisation of a d’ factor LMM. This may seem suboptimal

for implementation purposes, however as we will later observe this is not necessarily the case.

Let us conclude this section by briefly discussing the implementation of the LMM. We
have noted in Section 2.3 that one of the biggest challenges when implementing the LMM
comes from the state dependent drifts occurring in the SDEs for the forward LIBORs (see
equations (2.54) and (3.10)). In particular this ensures that the LMM is Markovian in
dimension n regardless of the dimension of the Brownian motion driving the dynamics.
Furthermore, there are no closed form solutions for the joint distribution of the LIBORs at
any date t > 0. Therefore, in order to implement the LMM it is necessary to use a suitable

approximation. This is usually done in the log-space since

: : 1 it "N Lot (t), p(t)o (t
dlog L} = (0" (1), dWr) — (201"“*(75)2 + Y Y t<01 i)a?éj.)" ( )>)dt (3.13)
j=it1 jt

and the distribution of j;tf (o (t), dW;) is known explicitly.

In this chapter we will focus on an approximation in which the forward LIBORs are
evolved from time 0 to time ¢ in a single time-step. An early description of this method can
be found in Hunter et al. (2001), however we will closely follow the approach and notation in
Pietersz et al. (2004). Let us denote by Z a vector valued process, where the ith component,

i=1,...,n, Z; is given by
t .
Z;(t) ::/ (o' (t),dWy), t<T,. (3.14)
0
We say that (L4, is a single time-step approvimation of (L), if
log L = log L + Zi(t) + p'(t, Z(t)), t<Tyi=1,...,n, (3.15)

where p* is defined by the drift approximation used (e.g. Euler, Brownian bridge, see Joshi
and Stacey (2008)). Note that the drift approximation implicitly depends on the initial term
structure. Furthermore, observe that the process Z is in general an n-dimensional Markov

process.

Remark 3.2. Observe that the process Z; is only well defined for t < T;, hence the drift
approzimation 7 at time t < T, may only depend on the ith component of vector Z if t < Tj.

However, this does not cause problems since the drift part of log L7 only depends on the state
of the Li+1 ... L™

Remark 3.3. Instead of approximating the LMM under the terminal measure, we could

have used any T; forward measure or the spot measure.
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The single-time step approximation is a powerful computational tool, however it does
come with one major drawback. Like most approximations of the LMM it is not arbitrage-free.
In particular, the quality of approximation decreases with time and care must be taken when
using it over long time horizons. This is typically less of a problem for the schemes that use
many time steps to evolve the forward LIBORs in time. Nevertheless, the single time-step
approximation is a useful method for short- and medium-term time horizons and its true

power will be demonstrated in Section 3.2.

Remark 3.4. In this thesis we do not explore the accuracy of the single time-step approxim-
ation. For separable LMMs (see the next section) this has been studied Pietersz et al. (2004)
and Ng (2009). A comparison of drift approximations can be found in Joshi and Stacey
(2008).

3.2 Separability

We have noted in the previous section that a d-factor LMM is an n-dimensional model.
Therefore, one typically needs to implement it by using Monte Carlo methods, which are
particularly cumbersome to use when pricing derivatives with early exercise features such
as Bermudan swaptions. However, it was first shown by Pietersz et al. (2004) that this
single-time step approximation of a d-factor LMM can be expressed as a function of some
d-dimensional Markov process if we impose the separability condition on the functions

octyi=1,...,n.

Definition 3.5. A wolatility structure {o® : [0,T;] — R4}, is separable if there evist a
function o : [0,T,,] — R% and vectors v*',...,v™ € R? such that

olt)y=v'xo(t), t<T;, i=1,...,n, (3.16)

where the operator x denotes entry-by-entry multiplication of vectors.
We say that a d-factor LMM is separable if it can be parametrised by ({o'}"_,, p) where

the volatility structure {o"}"_, is separable.

Definition 3.5 is a slight generalisation of the one given by Pietersz et al. (2004), in
particular Pietersz et al. (2004) only considered the separable LMMs driven by independent
Brownian motions. Next we extend the result by Pietersz et al. (2004) and prove that any
single time-step approximation of a d-factor separable LMM can be expressed as a function
of some d-dimensional Markov process for a general correlation structure of the driving

Brownian motion W.

Proposition 3.6. Suppose that forward LIBORs (L))", are given by a d-factor separable
LMM and let (LA, be a single-time step approzimation to (L), of the form as in

equation (3.15). Then there exists a d-dimensional Markov process and functions f* :
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[0,T;] x R = RY i=1,...,n, such that
LM = fit,z), t <Ty, i=1,....n. (3.17)

Proof. Since (L*)™_, are given by a separable d-factor LMM, there exists a parameterisation

n
1=

({0}, p) such that the volatility structure {o*
1

1 is separable, i.e. there exists function
o :[0,T,] — R% and vectors v, ..., v" € RY satisfying equation (3.16).

Let W be the d-dimensional Brownian motion, such that dW;dW = p(t), driving
the dynamics of the LMM (under the terminal measure) and define the vector valued
process Z = (Z;)_; as in equation (3.14). Now define a d-dimensional Markov process

x = (2¢)sefo,1,,] DY

t
Ty = / o(s)xdWs, t,<T,, (3.18)
0
and observe that
Zi(t) = (v'ay), t<Ty, i=1,...,n. (3.19)
In particular, Z(t) = vy, where v = [v!,...,9™]T is a d x n matrix. Then any single

time-step approximation (L), of (L)7_, is of the form
log LA = log LY + (0%, 2y) + p'(t,vay), t<Ty, i=1,...,n, (3.20)

where ;¢ depends on the drift approximation used. In particular there exist functions
fi:[0,T;] x R = R*,i=1,...,n, such that

LM = filt,z), t <Ty, i=1,...,n. (3.21)

O

Proposition 3.6 is in fact independent of the equivalent martingale measure used to specify
the model and the single time-step approximation. It was originally argued by Pietersz et al.
(2004) that if one is to implement the single time-step approximation on a grid the terminal
measure needs to be used to avoid the path-dependence of the numeraire. However, one can
easily implement the single time-step approximation under the spot measure by using the
same ideas as in the implementation of the Markov-functional model under the spot measure
(Fries and Rott, 2004) (see also Section 4.3).

Remark 3.7. Joshi (2011) provides an alternative formulation of the separability condition
which he refers to as ‘matriz separability’. This is briefly discussed in Section 12.8 in Joshi
(2011) and can be shown to be equivalent to the Definition 3.5. The formulation presented
above is more natural for the problem we consider in the next section when we consider the

time-homogeneous separable LMDMs.

Since a single time-step approximation of a separable LMM can significantly reduce the

computational effort needed for valuation of callable derivatives it is a natural question to
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ask how flexible are the separable LMMs. We will address this question in Section 3.3.

3.3 Time-Homogeneous and Separable LIBOR Market
Model

We have pointed out in Section 3.1 that time-homogeneity of instantaneous volatilities
is usually a desirable property of an LMM. In this section we will be interested which
time-homogeneous instantaneous volatility functions can be obtained in a d-factor LMM
when we also impose the separability condition on the volatility structure. In particular we

will be interested in solutions of the system of functional equations
o™ T — 1) = <vi x o (t), pe(v; * J(t))>, t<T;, 1=1,...,n. (3.22)

Note that (3.22) implicitly depends on the choice of the reset dates 11, ..., T,. It is therefore
reasonable to search only for the solutions that continuously depend on the reset dates. This

can be simply achieved by searching for the solutions of the functional equation
o™ T —t)* = (v(T) x o(t), pe(v(T) x o(t))), t<T. (3.23)

where we require v : [0, 00) — R? to be a continuous function.

We will first consider one-factor volatility structures, that is d = 1. This problem has
already been examined in Joshi (2011), however it is instructive to study it first as it points
out some of the important aspects of the problem that will be encountered later. In the

one-factor case equation (3.23) can be rewritten as
o™ T — )2 = o(T)?0(t)%,t < T. (3.24)

Note that if c™*(z) = 0 for some z > 0, then ¢™ = 0 and either v = 0 or 0 = 0 (or
both). Clearly, such solution is not of our interest, we can therefore assume without loss of
generality that o™ is a strictly positive function.

Next we define functions f, g, h, by f(z) := c™(x)?2, g(y) := o(—y)?, and h(z) := v(x)?,

where > 0 and y < 0. Then we can rewrite equation (3.24) as
fl+y) =h(z)g(y), >0,-z<y<O0. (3.25)

Equation (3.25) is commonly known as Pexider equation. It can be shown that under the
assumption that f is a continuous function' the general solution to the Pexider equation is
of the form f(z) = abexp(cx), g(y) = aexp(cy) and h(z) = bexp(cz), where a,b,c € R (see
Section 3.1 in Aczél (1966)).

Note that f, g, h are non-negative functions, therefore we are only interested in positive

11n fact it is enough to assume that f is continuous at a single point.
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solutions to the Pexider equation and we need to restrict the parameters to a,b > 0. Further-

more, each solution to equation (3.25) can be mapped to four solutions of equation (3.24):
1. o(t) = Vaexp(—3ct) and v(T) = \/I;exp(%cT);
2. o(t) = —\/aexp(—ict) and v(T) = Vbexp(3cT);
3. o(t) = Vaexp(—ict) and v(T) = —\/Bexp(%cT);
4. o(t) = —aexp(—3ect) and v(T) = —Vbexp(icT).

However for all cases o{(T —t) = \/%exp(%c(T —t)). Now recall that o and v affect
the dynamics of the LMM through their product. Furthermore, the sign of the product
v(T)o(t) can be absorbed into the Brownian motion driving the dynamics. Therefore, all
four solutions lead to the same LMM and we can without loss of generality assume that one
of the parameters a and b is equal to one.

Therefore a one-factor time-homogeneous and separable LMM can be parametrised as

o(t) = aexp(pt), (3.26)
v(T') = exp(—5T), (3.27)
o™t = aexp(—B(T — t)), (3.28)

where a@ > 0 and 8 € R. However, only the case when § > 0 is of practical interest.

As mentioned earlier the one-factor time-homogeneous separable LMMs was already
characterised in Joshi (2011). Neverthless, there are two important observations we can make
from our thought process. Firstly, although we imposed the continuity condition on function
f this turned out not to be a restriction since any solution to the Pexider equation is either
smooth or nowhere-continuous. Secondly, any solution to the Pexider equation corresponded
to four solutions to equation (3.24) which all lead to the same dynamics of the LMM. We
will see that above observations also hold in a d-factor setting where equation (3.23) can be

transformed to a Levi-Civita equation
k
flz+y) =Y gi(@)hi(y), (3.29)
i=1
where k = 2d(d +1).

It can be shown that if f,g;, h;,4 = 1,...,k is a continuous solution to equation (3.29)
then f, g;, h; € C*° and f is of the form

f(z) = Z Pi(z) exp(\iz), (3.30)

where P; is a polynomial of degree k; — 1, such that ). k; = k, and A; € C (See Section 4.2
in Aczél (1966)).

30



3.3.1 The Two-Factor Case

In the two-factor case equation (3.23) can be rewritten as

Uinst(T _ t)2 = (T)20'1 (t)z + U2(T)2(72(t)2

(3.31)
+ 201 (T)v2(T) p1,2(t) o1 ()2 (2).

To simplify the analysis of equation (3.31) we introduce functions

We can then rewrite equation (3.31) as

3
AT —1)= _Zm(t)hm. (3.37)

Note that equation (3.37) can be easily transformed to the form of equation (3.29) by the

following change of coordinates
Therefore, if we assume that f,g;, h; are continuous functions, f is of the form as in
equation (3.30).

Theorem 3.8. Let v,0 : Ry — R? and p12 : Ry — [—1,1] be continuous functions such
that equation (3.31) holds for some function o™t : R, — R,
Then v,o and p1 2 are parametrised up to the uniqueness of o™t by one of the following

parameterisations

2.1. aj,a9 > 0,81, B2 €R and v € [-1,1]

exp(—£1T)
o(T) = exp(—BaT) | (3.39)
=)
pr2(t) =7 (3.41)
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2.2.a>0,eR,vy>0and A € R

ory = | (3.42)
exp(—AT)
_ aexp(At)
o(t) = L JETHT 7 e /\t)] , (3.43)
t+p
t) = ————i 3.4
p1,2(t) NS (3.44)
2.3, ,B.0,AER, v > /a2 1 7
~ [sen(cos & +sin 1) \/T + sin(0T) exp(—AT)
v = sgn(cos 2L —sin 2) /1 —sin(0T) exp(—AT) |’ (3.45)
(a) If &® + 3% >+

o(t) = \/7 + accos(60t) + B sin(6t) exp(At) (3.46)

/Y — acos(0t) — Bsin(0t) exp(\t) | ’

_ B cos(0t) — asin(6t) _
pre= \/72 — (acos(0t) + ﬁsin(@t))f (3.47)
(b) If o® + B =?
| sen(cos 52) \/acos(6t) + Bsin(0t) + 7 exp(At)
o(t) = [— sgn (sin Gt;‘b) \/—a cos(0t) — Bsin(0t) + v exp(At) ’ (3.48)
p12 =1, (3.49)
where

6= arccos %; B8>0 (3.50)

— arccos %; 8 <0

The proof can be found in Appendix B.

We analyse Parameterisations 2.1 and 2.2 in Section 3.4. Parameterisation 2.3 is not of
practical interest and will not be analysed further. Let us mention that none of them can
capture the ‘hump’ and the long term level of instantaneous volatility simultaneously. For

this reason we next consider the three-factor case.
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3.3.2 The Three-Factor Case

In the three-factor case equation (3.23) can be rewritten to

o™ T — )% = vi(T)?a1(1)? + va(T) 02 (t) + v3(T)?a3(t)?
+ 2v1(T)v2(T)p1,2(t) o1 (t)o2(t)
+ 201 (T)vs(T)p1,3(t)o1(t)o3(t)
+ 2ua(T)v3(T) p2,3(t)oa(t)os(t).

s

(3.51)

We can now proceed similarly as in the two-factor case and we define functions f, g;, h;, i =
1,...,6 by

f(z) = o™t (2)?, 3.52
gi(z) = o5(x)?, i=1,2,3 3.53
ga(x) = 2p12(x)o1(x)02(), 3.54
g5(x) = 2p1,3(z)o1(x)o3(x), 3.55
2p2,3(
hi(x) = vi(2)?, i=1,2,3, 3.57
hy(z) = v1(z)va(2), 3.58
hs(x) = v1(x)vs(x), 3.59
he(z) = va(z)vs(x) 3.60

fT—t)= Zgi@)him. (3.61)

Again we obtain an equation that can be can be easily transformed to equation (3.29) by
the change of coordinates (x(T,t),y(T,t)) = (T,—t). If we assume that o,v and p are
continuous functions then so are g;, h;,2 = 1,...,6, and function f has to be of the form as
in equation (3.30). In the three-factor case we will only be interested in solutions where the

coefficients \; in equation (3.30) are real numbers.

Theorem 3.9. Let 0™ : Ry — Ry, v,0: Ry — R? and p12,p1,3,p23 : Ry — [—1,1] be

continuous functions. Furthermore, assume that matriz

L pia(t) p13(t)
p(t) = | p12(2) 1 p2,3(t) (3.62)
p13(t)  pa2,3(t) 1

s a correlation matriz for t > 0.

Then the following parameterisations are solutions to equation (3.51):
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3.1. ay,ag,a3 > 0,81, B2, 83 €R and v € [—1,1]>*3 a correlation matriz

exp(—B3T

a1 exp(fit)
o(t) = |agexp(Bat)| ,

a exp(fst)
pt) =

3.2. a,8,7,6,( >0, \peR,ne[-1,1] ande € [§ — /By 2—B,6 — /By 2 —

oMU T — )2 = a®(B+ (T — t+7 — 6)2) exp(—2\(T — )
+2aln(T —t +~ — &) exp(—(A + ) (T — 1))
+ ¢ exp(—2u(T — 1)),
(T +7) exp(/\T)]
v(T) = exp(—=AT) .
exp(—uT)
aexp(At)

o(t) = |ay/BF (E+0)2 expuw}

Cexp(put)

and p defined by

(t)_—$
T VB o

p2,3(t) = n,
t+¢

t) = " 1N—m—m—m0 o——.
pr3(t) =—n RN
3.3 a,8,7,0,6,( >0, e R

oMU ) = (T —t+7—-6)+ BT —t+7-2)

+ ozCQ) exp(—A(T —t))

(T +7)? exp(—=AT)
o(T) = | (T +~)exp(=AT) |,

exp(—AT)
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(3.63)

(3.64)

(3.65)

(3.66)

(3.67)

(3.68)

(3.69)

(3.70)

(3.71)
(3.72)

(3.73)

(3.74)



Cexp(At)
oft) = C\/B+A(t+0)2 exp(At) (3.75)

CVa+ B(t+e)2 + (t+ 0%) exp(At)

(3.76)
and p defined by
 2At+9)
p12(t) = TGOS (3.77)
p1,3(t) = )k (3.78)

VT Bt +e)2 +a’

o 20t +0)* + B(t+¢)
paalt) = VAC+)Z+B)((t+0) + Bt+e)’ +a) (8.79)

The proof of Theorem 3.9, can be simply done by verifying that parameterisations
presented are valid (p(t) needs to be a correlation matrix) and satisfy the time-homogeneity

condition.

Remark 3.10. Theorem 3.9 does not cover all the parameterisations for which \;’s in
(3.30) are real. In particular, there may be a more general solution in the case of Para-
meterisation 3.3 However, one can show that the theorem covers all the cases where

lim, o0 0™ (x) > 0 or (04)? is a weighted sum of exponential functions.

3.4 Analysis

Recall that a separable LMM is given by vectors v, ..., v,, a vector valued function ¢ and a
matrix valued function p, such that p(t),t < Ty, is a correlation matrix. However, to analyse
the dynamics of an LMM it is more intuitive to think in terms of the instantaneous volatility
and correlation functions. For a separable LMM these can be expressed in terms vectors of

vi,%=1,...,n, o and functions p by combining equations (3.11), (3.12) and (3.16) as

o™ (t) = v x (), p(t) (vi * o (1)), (3.80)
(vi * a(t), p(t) (v; * 0 (1))

O-inst, (t)o-znst 1( )

inst

pi () =

(3.81)

Recall that we have imposed the time-homogeneity condition on the instantaneous

volatility functions explicitly in Theorems 3.8 and 3.9. However it turns out that in

inst
%7

maturities T;,7; and the calendar time ¢ only through the times to maturity 7; — ¢ and

the resulting instantaneous correlation functions p{%* i,j = 1,...,n, also depend on the
T; —t. Moreover, parameterisations obtained in Theorems 3.8 and 3.9 are independent
of the choice of the setting dates T1,...,T,,. Therefore we can think of instantaneous
volatilities and correlations for the purposes of this section as functions o™ : R, — R, and

pst i R2 — [—1,1], whose arguments are times to maturity.
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In the two-factor model we get the following parameterisations of the instantaneous

volatility and correlation:
2.1. aj,a0 >0, 51,02 € Rand v € [—1, 1]

nst(2)? = oF exp(—2612) + o exp(—2Pax)

+ 2a1azy exp(—(B1 + f2)x),

P (21, o) = (a? exp(—B1 (71 + x2)) + a3 exp(—fa(z1 — 2))

g

+ aragyexp(—pfiry — Boxo)
+ a7y exp(—foxy — 61332))
/(O‘iTLSt(xl)UmSt({L‘Q));

22. a>0,8, 2 eRandy >0

0" (@) = o (@ = B) +7) exp(~2)),
(@ -B@-B+y
V@ =B+ )2~ B +7)

inst(xl’ x2) _

P

In the three-factor case we get the following parameterisations:

3.1 aj,a,a3 >0, 1, 52,83 € R and v1,271,3,72,3 € [—1,1]

3 3
O,inst(z)z — Z Z QG055 eXp(*(ﬂi —+ ﬂj)x),
i=1 j=1
3 3
Zi:l Zj:l ;i exp(—Bir1 — Bjxz)

inst
" ( UinSt(l'l)UinSt(l'z)

P (X1, 0) =

)

where v; j :=;, and y;;, :=1land I' = (’ym);‘{j:l is a correlation matrix;
32. a>0,B,e,\,pueR, 7,6 >0and n €[-1,1]

o5 (2)? = 0 (& — B)% + ) exp(~2\a)
+ 2adn(z — ¢) exp(—(\ + u)x)
+ 62 exp(—2pux)

P, w2) = (02 (@1 = B)(w2 = B) +7) exp(~2X (w1 + 22))

+ adn(x; —e) exp(—Azy — pxsa)
+ adn(xgy — ) exp(—Azxy — pz1)
+ 6% exp(—2p(z1 + 1'2)))

/(O_inst(xl)o,inst(xQ));
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(3.83)

(3.84)

(3.85)

(3.86)

(3.87)

(3.88)

(3.89)



33. a,v,>0,8,6A€R

Jinst(x)2 —a? ((:C _ 5)4 +v(x — 5)2 + 5) exp(—2Azx) (3.90)
(o1 = B)2(@2 = )% + 21 = (w2 — 0) + <)
S (Ve =B+l =0 +< (3.9)

2= B (w2 =07 + <),

pt (1, m0) =

Observe that Parameterisation 2.1 can be seen as a special case of Parameterisation 3.1
by setting a3 = 0 and 71,2 = v and that Parameterisation 2.2 can be seen as a special case
of Parameterisation 3.2 by setting 6 = 0.

In the rest of the section we analyse the instantaneous volatility functions obtained in the
above parameterisations by relating them to the implied volatilities which can be observed on
the market. Then we consider the instantaneous correlations in the above parameterisations
and conclude the section by pointing out some practical implications of using two- and

three-factor separable and time-homogeneous LMMs.

3.4.1 Instantaneous Volatiltiy

We have noted in Section 3.1 that time-homogeneity of instantaneous volatilities is a
desirable property of LMMs. This motivated us to characterise the two- and three-factor
time-homogeneous and separable LMMs. Now we analyse the flexibility of the instantaneous
volatility functions obtained.

In practice the instantaneous volatilities of forward rates cannot be observed directly
but we can observe the term structure of volatilities (see equation (2.63)) for a finite set of
different times to maturity. Section 6.3 in Rebonato (2002) contains analysis of historical
data on term structure of volatility. In particular, he points out that the term structure
of volatilities remains relatively stable over time and at each date has one of the following

shapes

e Hump shape: the term structure of volatilities first increases in time to maturity and

decreases after some time to maturity 7”;

e Monotonically decreasing: the term structure monotonically decreases in time to

maturity.

Furthermore, he observes that the implied volatilities do not decrease to zero as the time to
maturity increases but approach some non-negative constant, which we will call the long-term
level of volatility.

Under the assumption that the instantaneous volatilities are time-homogeneous, i.e. there

inst

exists a function o such that condition in equation (3.1) holds, then it is easy to observe:

e If 0™ is hump shaped then the term structure of volatilities is hump shaped;
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o If 0™ is monotonically decreasing then the term structure of volatilities is monotonic-

ally decreasing.

Moreover, if lim, o, 0! (z) = 0 then

1t
lim — / o™t (2)2dx = 0. (3.92)
0

In particular, if o™ is a decreasing function on an interval (a,oco) for some a > 0
then the implied volatilities will converge to some non-zero long term level if and only
if limy_ o0 0™t () # 0.

Therefore, a good parameterisation of a time-homogeneous instantaneous volatility
function will converge to a positive constant as time to maturity increases and will be able

to represent both hump-shaped and monotonically decreasing instantaneous volatilities.

The Two-Factor Parameterisations

We begin by analysing the instantaneous volatility functions we can obtain in the two-factor

case and which are given by equations (3.82) and (3.84).

Parameterisation 2.1 The instantaneous volatility function for the Parameterisation 2.1
is given by the parameters aq,ay > 0, 5162 € R, v € [—1,1] and equation (3.82). For the
purpose of this discussion we will assume that a;,as > 0 and 51 # B2 as the instantaneous
volatility function otherwise reduces to a single exponential. Furthermore we will assume
that 0 < 1 < B2 to ensure that the instantaneous volatility function is bounded on R .
Figure 3.1 shows plots of the instantaneous volatility function for various choices of parameter

values.
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Figure 3.1: Plots of instantaneous volatility as a function of time to maturity corresponding
to Parameterisation 2.1 (equation (3.82)) for various different choices of parameter values.

Clearly this parameterisation can capture the long-term level of volatility when 51 =0

in this case lim,_,, 0™ (x) = a;. Moreover, when « € [0, 1] the function o is strictly

decreasing. On the other hand if v € [—1,0) the instantaneous volatility function has a local
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o
—ay”
increasing (on R, ) and when 2’ > 0 the instantaneous volatility function is strictly decreasing

minimum at 2’ = i log When z’ < 0 the instantaneous volatility function is strictly
on [0,z') and strictly increasing on (z’,00). In particular when £; = 0 the instantaneous
volatility function cannot capture the hump, but it can capture the monotonically decreasing
instantaneous volatilities and the long-term level of volatility.

Let us now consider the case when 81 > 0. In this case it is obvious that limg,_ o 0 = 0
and the instantaneous volatility cannot capture the long-term level of volatility. Furthermore,
when v > 0 it is easy to observe that the instantaneous volatility function is strictly decreasing.

One can show that 0% has two local extrema x} and z4 (on R) if and only if

VB1B2
<=2 . 3.93
7 B+ B2 ( )
In particular when v = —1 the local extrema occur at
1 az 2
o= - log 22 = lo . 3.94
T BB P 2" BB anfy (369

Since 81 < B2 it follows 2} < 2% and the local minimum is attained at z} and the local
maximum is attained at x5,. Note that when a; > ay then 2} < 0 and o™ is strictly
increasing on (0, x5) and strictly decreasing towards zero on (z3,00) and is therefore hump
shaped.

To summarise, the instantaneous volatility function given by Parameterisation 2.1 can-
not capture the hump and the long-term level simultaneously. However, it can capture

monotonically decreasing volatilities together with the long-term level of volatility.

Parameterisation 2.2 Next we analyse the instantaneous volatility function corresponding
to Parameterisation 2.2 given in equation (3.84). Figure 3.2 shows plots of the instantaneous

volatility function for various choices of parameter values.
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Figure 3.2: Plots of instantaneous volatility as a function of time to maturity corresponding
to Parameterisation 2.2 (equation (3.84)) for various different choices of parameter values.

First observe that o™ will be bounded (on R4 ) if and only if A > 0, which we will
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assume throughout the analysis. In this case it is clear that lim,_, U”‘St(m) = 0 and the
instantaneous volatility function cannot capture the long-term level of volatility.

Secondly note that the parameter « is a scale parameter and does not affect the shape of
the instantaneous volatility function, which is affected only by the parameters 3,~ and .
Parameter A\ controls the speed of decay of instantaneous volatility function and one can
think of 5 and v as a shfit along x and y axis respectively. Note however that the shift will be
non-linear and affected by the decay, i.e. the effect of varying 8 and - on the instantaneous
volatility will decrease as time to maturity increases.

It is then easy to observe that 0! has local extrema (on R) if and only if

1

< e (3.95)

gl

which is in practice a relatively mild constraint. The local extrema are then attained at

1— /1 —4y)2 ﬁ+1+\/1—47)\2 (3.96)

r_
n=0+ 2\ ) 2\

xh =
In particular, z is a local minimum and % is a local maximum.? Note that 2} < z, and
that changing the parameter 8 will shift the location of the local extrema, which is in line
with the intuitive interpretation of the parameter 5. When z{ < 0 < %, the instantaneous
volatility function is strictly increasing on (0, %) and strictly decreasing on (x4, 00) and can
therefore capture the hump. Furthermore, when z/, < 0 the instantaneous volatility function
is strictly decreasing on R, . Note that in both cases g < 0.

To summarise, Parameterisation 2.2 can represent both monotonically decreasing and

hump shaped volatilities. However it cannot capture the long-term level of volatility.

The Three-Factor Parameterisations

We have seen that the two-factor parameterisations cannot capture the hump and the
long-term level of volatility simultaneously. We will show that introducing the third factor
leads to significantly more flexible instantaneous volatility parameterisations, given by
equations (3.86), (3.88) and (3.90), that can capture the hump and the long-term level of

volatility simultaneously.

Parameterisation 3.1 First we consider the instantaneous volatility function give by
equation (3.86). Figure 3.3 shows plots of the volatility function for various choices of
parameter values.

Note that, by setting a3 = 0 the instantaneous volatility function reduces to the one we
get in Parameterisation 2.1. Therefore we can assume that oy, as, a3 > 0. Furthermore, in

order for the instantaneous volatility function to be bounded we will additionally require
B, B2, B3 > 0.

2When v = ﬁ then z} = z, is a saddle point.
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Figure 3.3: Plots of instantaneous volatility as a function of time to maturity corresponding
to Parameterisation 3.1 (equation (3.86)) for various different choices of parameter values.

Recall that the main weakness of the Parameterisation 2.1 is its inability to capture the
hump and the long-term level of volatility simultaneously. We will therefore only concentrate
on the case when 83 = 0 and 31 # (2. In this case we can interpret the parameter ag as the
long-term level of volatility.

For the Parameterisation 3.1 to be valid, the matrix value function p(t) describing the time
t correlation structure of the Brownian motion driving the model needs to be a correlation

matrix. In the case of Parameterisation 3.1 p is given by

1 72 mz3
pt)=|mz2 1 g3 (3.97)
73 733 1

and is a correlation matrix if and only if v1 2,713, 72,3 € [—1, 1] and

det p(t) =1— (779 + 73 +753) + 21.271,872,3 = 0. (3.98)

When the third factor is independent of the first two (i.e. y1,3 = 2,3 = 0), equation (3.98) is

satisfied for any 1 2 € [—1,1] and 0™ has local extrema (on R) if and only if

vV B1B2
b1+ B

Y12 < —2 (3.99)
Note, that this is essentially the same condition as in the Parameterisation 2.1. Moreover,
it is easy to verify that the local extrema are attained at the same points as for the
Parameterisation 2.1.

When the third factor is correlated with the first two, one cannot in general explicitly
find the local extrema, due to the first derivative being highly non-linear. However, allowing
the third factor to be correlated with the first two clearly introduces additional flexibility to
the instantaneous volatility parameterisation. In particular, this flexibility is necessary when

the implied volatilities of caplets with short times to maturity are below the long-term level
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of volatility.

To summarise, Parameterisation 3.1 can capture both the hump and monotonically
decreasing volatilities while it also captures the long term level of volatility. Its main
downside is that it becomes less intuitive (but remains analytically tractable) when the factor

representing the long-term level of volatility is correlated with the other two factors.
Parameterisation 3.2 The instantaneous volatility Parameterisation 3.2 given by equa-
tion (3.88) is perhaps the most interesting parameterisation we can achieve in a three-factor

separable and time-homogeneous model. Figure 3.4 shows the plots of the volatility function

for various choices of parameter values.
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Figure 3.4: Plots of instantaneous volatility as a function of time to maturity corresponding
to Parameterisation 3.2 (equation (3.88)) for various different choices of parameter values.

Note that setting the parameter § = 0 reduces the instantaneous volatility function to
the one obtained in Parameterisation 2.1. In particular, we noted that the main drawback of
Parameterisation 2.1 is its inability to capture the long term level of volatility.

Parameterisation 3.2 can capture the long-term level of volatility simply by setting
1 =0 in which case d can be interpreted as the long-term level of volatility. In particular,
by setting a = |b], B = =%, 7y =0, =d, e = =%, n = sgnb and A = c the volatility
function corresponds to the Rebonato’s abed instantaneous volatility parameterisation given
by equation (3.2). In particular, the Parameterisation 3.2 can capture both hump and long
term-level of volatility.

Clearly, we can get extra flexibility by also varying the parameters ~, 7, however it is

often sensible to set € = [ as its effect on the volatility function is relatively limited.

Parameterisation 3.3 Finally let us briefly discuss the instantaneous volatility function
given by equation (3.90) corresponding to Parameterisation 3.3. Recall that the main reason
for considering the three-factor models was the inability of the two-factor parameterisations
to capture the hump and the long-term level of volatility simultaneously. However, note that
Parameterisation 3.3 cannot capture the long-term level of volatility. Therefore it will in

most case perform only marginally better over the Parameterisation 2.1 and 2.2 which does
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not justify the increase in the number of factors used.

3.4.2 Instantaneous Correlation

Let us now turn our attention to the instantaneous correlations. Recall that we are interested
only in the time-homogeneous instantaneous correlations parameterisations, which can
be represented by a function p™* : R?2 — [—1,1] where p™(z,y) is the instantaneous
correlation between two forward rates with times to maturity = and y respectively.

Ideally one would take a similar approach as for instantaneous volatilities and determine
the desirable properties of instantaneous correlations by relating them to prices of European
swaptions. However, this turns out to be a difficult task as in general one cannot separate
the effects of the instantaneous correlations from the effects of instantaneous volatilities on
the European swaption prices (see Section 7.1 in Rebonato (2002)).

One therefore needs to take a different route and estimate the instantaneous correlations
from historical data (see Section 7.2 in Rebonato (2002) and Section 14.3 in Andersen
and Piterbarg (2010)). By doing so one usually observes that the resulting instantaneous
correlation matrix satisfies the following stylised facts (see Section 7.2 in Rebonato (2002),
Section 23.8 in Joshi (2011))

1. Instantaneous correlations are positive

Pt (2, y) > 0; (3.100)

2. Instantaneous correlations decrease as the absolute value of the difference between the

two times to maturity increases
|z —y| < |z — 2| = p™(x,y) > p™(, 2); (3.101)

3. Instantaneous correlation between forward rates with the difference between their
times to maturity increases as the time to maturity of the forward rate expiring earlier
increases

r<a' = p™t ez +y) < p™a! 2 +y); (3.102)

The most basic example of an instantaneous correlation function satisfying the first two
stylised facts is the exponential instantaneous correlation function given by parameter 5 > 0
and equation

P (z,y) = exp(—Blz —yl), (3.103)

Note that the exponential instantaneous correlation violates the stylised fact 3. To correct
for this violation one can introduce the square-root exponential instantaneous correlation

function given by parameter 8/ > 0 and equation
pH (@, y) = exp(=F'[VE — /yl). (3.104)
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Figure 3.5 shows plots of the exponential and square-root exponential instantaneous
correlation functions. We used = 0.05 to specify the exponential instantaneous correlation
function and chose 8’ so that instantaneous correlation functions agree for the pair of forward
rates with times to maturity 1 and 15 years. Observe that for both functions the correlations
rapidly decrease as the difference between the times to maturity increases.

We will later observe that the instantaneous correlations in the two- and three-factor
separable and time-homogeneous LMM cannot achieve such a rapid decrease in instantaneous
correlations. This is not only the case for the separable LMMs but will be true for low-factor
LMDMs in general and is a necessary compromise one needs to make when using a low-factor
LMM.

Figure 3.5: Plots of the exponential instantaneous correlation function (left) for 5 = 0.05
and the square-root exponential instantaneous correlation function (right) for 8’ = 0.2436.

Another way of comparing the instantaneous volatility functions is by performing a
principal component analysis on the n x n matrix of instantaneous correlations between the
rates with times to maturity 771, ...,7;,. Such a matrix is by definition positive-semidefinite
and can therefore be diagonalised. Moreover, in this case the principal values correspond to
the eigenvalues A\; > ... > A, and the ith principal component corresponds to the normalised
eigenvector v; associated with the eigenvalue );. Performing the principal component analysis
on the empirical data gives the following stylised facts about the instantaneous correlation
matrix (see Lord and Pelsser (2007))

1. The principal components vy, v9,v3 corresponding to eigenvalues Ai, A2, A3 explain
more than 95% of the observed correlation, with the first principal component being at

least an order of magnitude more significant than the others;

2. The first principal component v is comprised of positive elements of similar value (i.e.

approximately 1/n);

3. The first and last element of the second principal component vs are of opposite sign

and monotonically decreasing (increasing) if the first element is positive (negative);

4. The first and the last element of the third principal component vs are of the same sign
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but there is an element of the opposite sign which splits the elements of the principal

component vs into two monotonic sequences.

The first, second and third principal components are commonly referred to as the level, slope
and curvature.

In particular for the exponential and square-root exponential volatility functions for
a set of annual forward rates with maturities 1 to 15 years, we find that the first three
eigenvalues explain approximately 94% of the variability and Figure 3.6 shows that the first

three principal components can be interpreted as level, slope and curvature.
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Figure 3.6: Plots of first three principal components of the exponential instantaneous
correlation matrix(left) for 5 = 0.05 and for the square-root exponential instantaneous
correlation matrix (right) for beta’ = 0.2436.

The Two-Factor Parameterisations

We now analyse the two-factor instantaneous correlation functions we obtained in Paramet-
erisations 2.1 and 2.2. Note that in the two-factor case the instantaneous correlation matrix
is of rank two or less and will therefore have at most two non-zero eigenvectors, which we

would like to interpret as level and slope.

Parameterisation 2.1 We begin by considering the instantaneous correlation function
given by equation (3.83). Without loss of generality we can assume that oy, as > 0, 51 # Sa.
Now recall that the parameter  is the correlation between two components of the Brownian
motions driving the separable LMM.

In particular when v € {—1,1} the components of the Brownian motion are perfectly
(inversely) correlated. In this case the LMM is essentially a one-factor model and the forward
rates are perfectly correlated. Note that when v € {—1, 1} the resulting LMM is essentially
driven by a single factor (see Remark 3.1), however it is separable in the dimension two and
cannot be represented by a one-factor separable LMM.

On the other hand when v € (—1,1) the instantaneous correlation function is not

identically equal to one and the resulting correlation matrix is of rank two. Moreover, the
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10 15

Figure 3.7: Plot of an instantaneous correlation function (left) and the first two principal
components of the associated instantaneous correlation matrix for annual forward rates with
times to maturity 1 to 15 years (right) corresponding to Parameterisation 2.1.

instantaneous correlations are strictly positive for every choice of parameters. However, it is
in general difficult to analyse its dependence on the parameters due to complex interplay
amongst them. Nevertheless, for a sensible choice of parameter values the correlation function
results in mild-decorrelation between forward rates with short and long time to maturity
and near perfect correlations between rates with longer times to maturity.

Figure 3.7 shows plots of a typical instantaneous correlation function (3.83) for a reas-
onable choice of parameter values and the first and second eigenvectors of the associated
correlation matrix. Note that the forward rates with long maturities are nearly perfectly
correlated, however there is some decorrelation between the rates of short to medium matur-
ities and other rates. Moreover, the first two principal components of the correlation matrix

can be interpreted as level and slope.

Parameterisation 2.2 We now turn our attention to the instantaneous correlation function

given by equation (3.85). First observe that it only depends on the parameters 8 and ~.

1 “:“
SN
0.9 \\“‘
0.8

Figure 3.8: Plot of an instantaneous correlation function (left) and the first two principal
components of the associated instantaneous correlation matrix for annual forward rates with
times to maturity 1 to 15 years (right) corresponding to Parameterisation 2.2.
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First note that when v = 0 the instantaneous correlation function can be written as
p™t(x1, 29) = sgn((z1 — B)(z2 — B)), in particular the model is effectively driven by a single
factor. However when v > 0 the instantaneous correlation function results in non-perfect
correlations among forward rates.

On the other hand when 8 > 0 the instantaneous correlation function may attain negative
values when one of the forward rates has time to maturity less then 8 and the other has time
to maturity sufficiently greater than 5. However, this turns out not to cause any problems
from a practical perspective as 8 > 0 results in an unrealistic shape of the instantaneous
volatility function. The more interesting scenario occurs when 5 < 0; and the instantaneous
correlations are strictly positive. In this case increasing v will decrease the correlations and
decreasing [ will increase the correlations amongst forward rates.

Figure 3.8 shows plots of a typical instantaneous correlation function for a reasonable
choice of parameter values and the first and second principal component of a corresponding
correlation matrix. Note the instantaneous correlations for rates of long-maturities are nearly
perfect and there is some decorrelation between the forward rates of short and other times
to maturity. Furthermore, the first two principal components can be interpreted as level and

slope.

The Three-Factor Parameterisations

Having analysed the two-factor parameterisations let us now consider the three-factor
parameterisations 3.1 and 3.2. In the three-factor case we expect to observe higher levels of

deceleration and also the curvature in principal component analysis of the correlation.

Parameterisation 3.1 First consider the instantaneous correlation function given by
equation (3.87). Recall that the matrix valued function p as defined in equation (3.97)
is a correlation matrix describing the correlations amongst the components of driving
Brownian motion. Therefore, the instantaneous correlation function will result in non-perfect
instantaneous correlations only when the rank of matrix p(t) is strictly greater than one.

Recall that from practical standpoint fixing 1 2 = —1 is often desirable as it results in
hump-shaped volatilities. It is then easy to see that the matrix p(t) is a correlation matrix
if and only if v1,3 = 72,3 = 0 and we have a three-factor separable parameterisation of a
two-factor LMM. Nevertheless, as demonstrated by Figure 3.9, the instantaneous correlations
obtained in such model are reasonable. In fact the decorrelation achieved is much greater
than the ones observed in the two-factor separable models. Furthermore, the first two
principal components of the correlation matrix can be interpreted as level and slope.

On the other hand when p(t) is a full rank matrix, the resulting model will be a proper
three-factor LMM and the instantaneous correlation matrix will have three principal com-
ponents corresponding to non-zero eigenvalues. Figure 3.10 shows plots of an instantaneous
correlation function and the first three principal components of the associated instantaneous
correlation matrix for a full rank p(t). Note that the principal components can be interpreted

as level, slope and curvature.
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Figure 3.9: Plot of an instantaneous correlation function (left) and the first two principal
components of the associated instantaneous correlation matrix for annual forward rates
with times to maturity 1 to 15 years (right) corresponding to Parameterisation 3.1 when

’)/172 = —1
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Figure 3.10: Plot of an instantaneous correlation function (left) and the first three principal
components of the associated instantaneous correlation matrix for annual forward rates with
times to maturity 1 to 15 years (right) corresponding to Parameterisation 3.1 when ;3 2 = 0.

Observe the correlation functions in Figures 3.9 and 3.10 have significantly different

shapes demonstrating the flexibility of the instantaneous correlation function (3.89).

Parameterisation 3.2 Finally let us consider the instantaneous correlation function given
by equation (3.89) corresponding to perhaps the most interesting parameterisation of the
three-factor separable and time-homogeneous LMM.

We begin by noting that in the special case when the parameters are chosen so that the
instantaneous volatility function corresponds to the Reobnato’s abed parameterisation the
resulting model is one-factor but it is represented by a three-factor separable parameterisation.

However, for a general parameterisation the instantaneous correlations will be non-perfect.
Figure 3.11 shows plots of an instantaneous correlation function and the first three principal
components of the associated correlation matrix for reasonable parameter values. Note that

the instantaneous correlation function has shape similar to the one presented in Figure 3.9.
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Furthermore, observe that the principal components can be interpreted as the level, slope

and curvature.
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Figure 3.11: Plot of an instantaneous correlation function (left) and the first three principal
components of the associated instantaneous correlation matrix for annual forward rates with
times to maturity 1 to 15 years (right) corresponding to Parameterisation 3.2.

3.4.3 Remarks on Calibration and Implementation

Let us conclude this section by pointing out some practical remarks about the two- and
three-factor separable parameterisations discussed in this section. Recall, that in all cases
the instantaneous volatility and correlation function were determined by the same set of
parameters. As a consequence, one has to simultaneously calibrate to the caplet and swaption
prices.

In particular, to calibrate to caplet and swaption prices in the LMM one needs to be able

to efficiently evaluate the terminal covariance elements between forward rates
Tk . . .
(T = / PTL — £, Ty — )™ (T, — o™ (T; — )dt, k<iAj  (3.105)
0

It turns out that the terminal covariance elements have a closed form representation, thus
allowing for efficient calibration.

Furthermore, one could exploit the fact that the terminal covariance elements can be
determined explicitly and perform a global calibration of a full-factor LMM and then calibrate
the separable parameterisation to the terminal covariance elements that capture the dynamics

of the forward rates relevant for pricing a particular instrument.

3.5 Conclusion

In this chapter we have addressed one of the main issues of the separable LMMs, their
flexibility. We have generalised the separability condition and characterised the two- and

three-factor separable LMM with time-homogeneous instantaneous volatilities. We then
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demonstrated that parameterisations obtained are of practical interest by analysing their
instantaneous volatilities and correlations. In particular, we have shown that a two-factor
model can capture the long-term level of volatility when the instantaneous volatility function
is decreasing or it can capture the hump shape in instantaneous volatility function but not
the long-term level of volatility. To capture the hump and the long term level of volatility
we introduced the third factor, which can capture the popular Rebonato’s abed volatility
function as a special case.

For all parameterisations we observed that the corresponding instantaneous correlation
is also time-homogeneous, which was not directly imposed in the formulation of the problem.
Furthermore, for reasonable parameterisations the instantaneous correlation functions were
qualitatively in line with the stylised facts.

For the ease of presentation we restricted our attention to the basic log-normal version of
the LMM. However, one can generalise the separability condition further to the local-volatility
LMM and reduce the dimension of the single time-step approximation, (see Section 4.5 for
more details).

To conclude let us touch on the issue of the single time-step approximation admitting
arbitrage and being useful only for time horizons up to 15 years. One way to avoid this
issue is to use an appropriately specified Markov-functional model (MFM) instead of the
single-time step approximation of a separable LMM. The main idea of the MFMs is to express
forward rates at any given time as a function of some low-dimensional Markov process and
is by construction arbitrage-free and efficient to implement.

Recall, that in proving that single-time step approximation of a separable LMM has
dimension equal to the dimension of Brownian motion driving the dynamics we have explicitly
defined a Markov process z in equation (3.18). One can then use this driving process to drive
the dynamics of an MFM calibrated to the caplet prices from the separable LMM. Bennett
and Kennedy (2005) have shown that in the case of a one-factor separable LMM the MFM
specified as above has similar dynamics as the LMM. They believed that this observation
also holds for separable LMM with higher number of factors.

Therefore, Theorems 3.8 and 3.9 are not only useful for characterising the two- and three-
factor separable (log-normal) LMMs with time homogeneous instantaneous volatilities, but
can be used in a more general local-volatility setting or to define two- and three-dimensional
MFMs with dynamics similar to the separable LMM.

We will discuss the link between the separable LMM and the MFM and how the results
from this chapter can be applied beyond the (log-normal) LMM in Chapter 6.
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Chapter 4

One-dimensional Markov-functional
Models driven by Non-(Gaussian

Processes

Markov-functional models (MFMs), introduced by Hunt et al. (2000), provide a framework
that allows one to define an arbitrage-free interest-rate model of any (finite) dimension
that can be calibrated to any arbitrage-free formula for caplet or swaption prices. While
there exist high-dimensional MFMs (see for example Kaisajuntti and Kennedy (2013)),!
low-dimensional MFMs are of particular interest as they allow for efficient implementation
on a low-dimensional grid.

The cost one needs to pay for the low-dimensionality is often the absence of a system of
SDEs describing the dynamics of forward rates or ZCBs. This makes the MFMs less intuitive
to use than their high-dimensional alternatives. Bennett and Kennedy (2005) acknowledged
this problem and showed that an MFM under the terminal measure calibrated to Black
formula for caplet prices (Black, 1976) and driven by a one-dimensional Gaussian process has
dynamics similar to the one-factor separable LIBOR market model (LMM). Calibrating to
Black formula results in a model with constant implied volatilities of caplet prices and cannot
capture the skew or smile shaped implied volatilities typically observed on the market.

It is possible to calibrate the MFM to a skew or smile in implied volatilities, but using
a Gaussian driving process might not lead to a stable or desired evolution of the implied
volatility surface. However, the current literature on the MFMs has been exclusively focused
on the models driven by Gaussian processes. This is most likely the consequence of the
absence of numerical algorithms that implement MFMs driven by non-Gaussian processes.

The aim of this chapter is therefore twofold. Firstly, we provide new and efficient
algorithms that can be used to implement an MFM driven by a (not-necessarily Gaussian)
one-dimensional Markov process under the terminal and the spot measure. Secondly, we

describe a systematic approach that can be used to specify MFMs under the terminal measure

Hn fact we can view any LMM as a high-dimensional MFM.
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with a stable evolution of the implied volatility surface by exploring the link between the
one-factor separable local-volatility LMMs and the MFMs under the terminal measure.
The remainder of the chapter is organised as follows. In Section 4.1 recap the definition of
a Markov-functional model and discus some of its basic properties. In Sections 4.2 and 4.3 we
recall the constructions of MFMs under the terminal and the spot measure respectively and
provide new algorithms that can be used to implement them for a general one-dimensional
(not-necessarily Gaussian) driving process. In Section 4.4 we discuss the importance of
choosing the right combination of caplet prices and driving process when specifying an MFM
and give a simple copula based criterion that can be used to distinguish between driving
processes. In Section 4.5 we explore the link between the one-factor separable local-volatility
LMMs and the one-dimensional MFMs under the terminal measure. We then use these ideas
in Section 4.6 where we propose a new combination of a one-dimensional driving process
and caplet prices that exhibit skew in implied volatilities. In Section 4.7 we give a numerical
example of the MFM specified by the aforementioned combination and show that it exhibits

stable evolution of caplet implied volatilities. Section 4.8 concludes.

4.1 Definition and Sufficient Conditions

We have formally defined Markov-functional models of a T* < oo time-horizon economy
consisting of ZCB with maturities in a set 7 C (0,00) in Subsection 2.3.2. Essentially, a
model of such an economy is called Markov-functional if there exists a numeraire pair (N, N)
such that the prices of ZCBs can be expressed as functions of some driving process x, which
is a Markov process under the measure N.

One way to specify the dynamics of an MFM is therefore, to specify the dynamics of the
ZCBs and show that they satisfy the conditions of Definition 2.20. An example of such an
approach is the LMM (albeit indirectly via the forward LIBORs).

Rather than by specifying the dynamics of the ZCBs another way to define an arbitrage-
free model of a term structure is by specifying the numeraire pair (N,N). In this case
we can determine the prices of ZCBs by applying the fundamental pricing formula (see

equation (2.20)) to a unit claim at some time T < T*
Dyr = NEN[NGF], t<T<T*? (4.1)

Such an approach results in D_r being {F; }+<r-adapted.®> Therefore, a model specified by a
numeraire pair is in general not Markov-functional. Next we give sufficient conditions when

a numeraire pair defines a Markov-functional model.

Proposition 4.1. Consider a model of a T* < oo horizon economy consisting of ZCBs

maturing on dates in set T C (0,T*|defined by the numeraire pair (N,N) and assume there

2Reader familiar with the short-rate models will notice that in a short rate model one essentially specifies
the dynamics of the continuously compounded rolling bank account under the associated risk neutral measure
and then uses the fundamental pricing formula to determine the prices of ZCBs.

3Note, that by definition the ZCBs will also be adapted to the augmented filtration generated by them.
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exists a process x such that

1’ x is Markov process under the measure N;
27 For 0 <t<TeT the quotient IJ\\,’—; € LY(N) and ]J\\,’—; is o(xs,s € [t,T])-measurable.

Then the model is Markov-functional.
Furthermore, suppose that Vi is a replicable European claim* expiring at time T < T*

that depends only on time T prices of traded ZCBs. If JI\\,/—;VT € LY(N) then the time t price

Vi of Vi is given by
Ny

Vi = En []VTVT J?t} . (4.2)

Lemma 4.2. Let x be a Markov process under the measure N and let 0 <t < T. Suppose
V € LY(N) is o(xs; s € [t, T])-measurable. Then

En[V|Fi] = En[V]z]. (4.3)

Proof of Lemma 4.2 can be found in Appendix B.

Proof of Proposition 4.1. To prove that the model defined by the numeraire pair (IV,N)
satisfying conditions 1’ and 2’ in Proposition 4.1 it is enough to prove that it satisfies the
measurability condition 2 in Definition 2.20.

Let 0 <t < T €T, then by assumption 2’ ]]VV—; € LY(N) and therefore

Ny

1
Dth - Nt]EN [M‘ft] =E |:NT

]-"t} . (4.4)

Furthermore, by assumption 2’ ]]\,V—; is also o(zs;s € [t,T])-measurable and we can apply

Lemma 4.2 to prove
Ny

Diyr =Ey [NT

xt} ) (4.5)

therefore D, 7 is o(z;)-measurable and can be expressed as a function of z;. Consequently,
condition 2 in Definition 2.20 is fulfilled and the model is Markov-functional.

Now suppose that Vi is a replicable European claim expiring at time 7' < T™* that depends
only on time T prices of traded ZCBs. Since Dy g is o(xr)-measurable for S € [T,7T*]NT
then Vp is o(zr) measurable and NL;VT is o(xzs, s € [t,T])-measurable. Furthermore, we
assumed that ]]\Y—;VT € LY(N) and therefore

N,
}—t} = Ey [tVT

v
V, = N,Ey [T N

Nt

]-"t} . (4.6)
We can now apply Lemma 4.2 to show

N,
V%:EN[ Vr

2
Nr

mt} . (4.7)

4When specifying an MFM via the numeraire pair one usually implicitly assumes the uniqueness of the
EMM and thus the completeness of the economy.
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Condition 2’ imposed in Proposition 4.1 is a mild one. In particular, it allows for the
three most common numeraire processes: T*-maturity ZCB, the discretely compounded
bank account and the continuously compounded bank account.

Proposition 4.1 has another important corollary. Since it ensures that the prices of
European claims are functions of the state of the driving process the prices of derivatives
with finitely many early exercise features (e.g. Bermudan swaptions) can be calculated using
backward induction by only keeping track of the state of the driving process.

In the remainder of the chapter we focus on the economy consisting of n + 1 ZCBs
maturing on dates 71 < ... < Tj,4+1 and MFMs driven by one-dimensional Markov processes
under the two popular choices of EMMs: terminal and spot measure. Unlike the traditional
literature on MFM we do not assume that the driving process is Gaussian,® but allow for a
general diffusion process « with continuous marginal distributions (see Remark 4.5 for more

detail on this restriction).

4.2 Markov-functional Model under the Terminal Meas-

ure

F*+1), i.e. we take the T, 1-maturity ZCB as

the numeraire and consider the model under the associated EMM F"*!, which is commonly

We now fix the numeraire pair to (D 1, ,,
referred to as the terminal measure. In Subsection 4.2.1 we review the theoretical construction
of an MFM under the terminal measure calibrated to swaption prices as presented originally
in Hunt et al. (2000). We then introduce a new algorithm that implements the model on a grid
for a general diffusion process x with continuous marginal distributions in Subsection 4.2.2.

First let us describe the main assumption behind the construction. For each i € {1,...,n}
we fix anindex j; € {i +1,...,n + 1}. The pair (4,5;),% € {1,...,n}, then identifies a forward
swap rate process y**7i associated with a payers (fixed-for-floating) interest rate swap (see
Subsection 2.2.2) starting at time T; and with last payment date at time Tj,. Our aim is to

calibrate the model to swaptions written on swap rates y'>7t, ..., y"¥in,

Remark 4.3. The choice of indices ji, ..., Jn in practice depends on the exotic derivative

one wishes to price. Two common choices are:

1. j;=1+1,i=1,...,n, in this case the chosen forward swap rate is in fact a forward
LIBOR, i.e. y"Ji = L, and the resulting model is an alternative to the LMDM.

2. ji=n+1,i=1,...,n, in this case y**J: = y"*" 1 i e. the forward swap rates have
a common last payment date, and the resulting model is an alternative to the Swap
market model of Jamshidian (1997).

5However, the algorithms presented in the following two sections can be also applied to a Gaussian driving
process .
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For the construction to work we need to make two additional assumptions:

e 'i . . . . N N .
1. In our model y5. 7", = 1,...,n, can be written as an increasing cadlag® function of

X5

2. We are given the initial value of the numeraire Do 1, , and the prices of digital

swaptions (see Subsection 2.2.3) written on y;jji,i =1,...,n, for strikes K > 0 which
are represented by a decreasing cadlag function V3="*PHOmIXi . 0 o) — R, i.e. for
K>0
X Ji
dswaption,i X j; _ i o
A (K) = Do, ., Epnt1 7DT¢,Tn+1 l{y‘Tj”>K} . (4.8)

Assumption 1 is an appropriate and non-restrictive modelling assumption ensuring that
the driving process x is capturing the level of rates in the economy. On the other hand
assumption 2 provides us with the data needed to calibrate the model. In particular, recall
that knowing the prices of digital swaptions on y}f] ‘ is equivalent to knowing the prices of

. i X i
European swaptions on sz 7
i

4.2.1 Recovery of Functional Forms

We now describe how to use assumptions 1 and 2 to construct an MFM under the terminal
measure driven by a diffusion process x with continuous marginal distributions and calibrated

dswaption,ixXj; -
P Tii=1,..

to the prices of digital swaptions V|, .,n. Recall that a model of term
structure is essentially determined by the dynamics of the numeraire, in our case the ZCB
maturing at time T}, ;1. As for the LMMs the construction presented in this section uniquely
determines the joint distribution of numeraire only on the dates 77,75, ..., T, +1, however this
is in general non-restrictive as the numeraire discounted prices of ZCBs will be well-defined
(see also discussion in Subsection 2.3.1).

We recover the functional forms of the numeraire iteratively working from time 77,41
backwards. At time T}, there is nothing to be determined as Dz, ,, 1,,, = 1.

Next suppose that at time Tj,i € {1,...,n}, the functional forms of Dz, , 7,,,,...,

D,

+i1,Twsrs have already been determined. We now wish to infer the functional form of

Dr, 1,,, from the market prices of digital swaptions written on yZTXj
Recall that y}xy satisfies (see equation (2.20))

o 1—Dp 1,
LXJi ©7d4
Yr,” = Pé“jji ’ (4.9)

Dividing the numerator and the denominator on the right-hand side of equation (4.9) by

DTi g1 ylelds

—1 —1
1X 74 iydn41 1774 iydn+41
y‘j:DTT Dz, 1, Dy, r (4.10)
T; pixii p=1 . :
T; T, Tp41

6Right continuous with limits from left.
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Next recall that PlTXJ is a linear combination of ZCB prices Dr, 1,,,,..., D1, ;.. We can

i1

therefore evaluate P%_Xj : DilTn+1 using the martingale property” as

iX Ji

S ] (iL’T. 1)
Pl%jiD_Al = ]E n+1 |: TH—l = ‘FT:| 411
T; T;, Thi1 ¥ DT¢+1 T (mTi+1) i ( )
B |: Pé“:ﬁ (IT1+1) . ] (4 12)
= n—+1 Tl .
" Dr,,\ 1000 ($T1+1)

.. —1
where we also use the Markov property. Similarly we can express Dr, 1, DTi1Tn+1 as

DT 1,7} (xT' 1)
Dr, 1, D7'r = Epna { D5 T xT] : (4.13)

e DT +1,Tn41 (xT1+1)
Since we already know the functional form of the numeraire at times Tj,1,...,Tj,, we also
know the functional forms of time T;4, prices of ZCBs maturing at times T51,...,T},, from

equation (4.1). In particular, P%X] Dil,Tn+1 and Dr, 1, DT T, Are known functions of zr,.
We can then use equation (4.10) to express D, 1, ,, in terms of known functions of x7, and

yet unknown functional form y5.%" (1) as

Dy 1. » pixs -
DTi7TTL+1 (le) = ((DT;JZ> (xTI) +yz><]1(xT1)(l)Ti’;) (xTi)) 78 (414)
i Tnt1 i Tt

where we pointed out the dependence on z7, explicitly. To determine the functional form of

Dr, 1,., it is therefore enough to recover the functional form of y}jJ K
iX i

We determine the dependence of y;”* on zr, by calibrating the model to the prices of

digital swaptions written on y”] ‘. We deﬁne a function J* on the range of x7, by
1XJi
JH(x*) = Do,y Brner | =10 0oy |- (4.15)
' DTi,TnJrl ¢

Note that the functions J¢ and V3="*PHomi%3i giffer only in the indicator function, i.e. the set
over which the expectation is taken. Secondly, note that Pixji D; 1T ., Isa known function
of x7, and the function J? is well defined. By assumption 1, yT 7t is an increasing cadlag
function of zr,. Therefore, for each K in the range of yth there exists a unique z* such
that the set identity

{y}xj > K} ={ar, > 2"} (4.16)

holds and therefore VSW*PHOmXTs (f7) — Ji(*). In particular, if V=" PHOmX0t is o strictly

7Pi%Ji is the price process of a self-financing trading strategy in which we buy at time 0 the amount oy
of ZCBs with maturity Tj for k=44 1,...,j;, and sell them at time T} .
8When j; =i+ 1, i.e. y**Ji = L? equation (4.14) can be expressed as

-1
Dy, 1y (w1;) = ((1 + aiL% (xTi))]E]F""'l I:DTi+1an+1 (xTH-l )71 |IT7]> :
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decreasing function of strike then

lejjl (l'*) _ (Vodswaption,ixji)*l(Ji(x*)). (417)

In general the functional form of yZTXj ‘ is given by

(@) = sup{ K 2 OV (K) > (e ), (.19

Remark 4.4. Note that defining y%] as in (4.18) (and taking the supremum of an empty
set to be 0) will ensure that the MFM is arbitrage free even when the digital caplet prices

will admit arbitrage (e.g. when the caplet prices are not strictly decreasing.).

Having recovered the functional form of the yZTXﬁ we can determine the functional form
of Dr, r,., from equation (4.14).

Finally, we can determine the functional forms of other ZCBs by using the fact that the
price process of any numeraire discounted ZCB is a martingale under the EMM associated

with the numeraire, in our case the terminal measure. In particular, for j >4
‘DTinj (le) = DTi1Tn+1 (mTz‘ )E]F"Jrl I:DijTn+1 (ij )_1 |xT1] . (419)

Let us conclude the theoretical construction of the MFM under the terminal measure with

a trivial but important observation. For a given set of indices {j1, ..., jn}, an initial value of

dswaption,iXj;\n

the numeraire Dy 7 a set of digital swaption prices {Vj » 1, and a diffusion

n417
process x with continuous marginal distributions, there exists a unique MFM under the
terminal measure driven by z and calibrated to the digital swaption prices { Vg SVePtiomixjiyn |

that satisfies assumption 1 (see also Theorem (Uniqueness) in Bennett and Kennedy (2005)).

Remark 4.5. Recall that we have assumed that the driving process x is a diffusion process
with continuous marginal distributions. However, in the construction we actually only needed
that © has continuous marginal distributions during the calibration of the MFM,.

To illustrate the need for such an assumption suppose that distribution of xr, has an
atom at x*. Then by assumption 1 distribution y}jjl has an atom at value K = y}fj’ (z*).
It is then easy to see that VS="*PU™Ii has to have a jump at strike K. However, function

%dswaptiomxji was chosen independently of the driving process and it may be the case that

it does not have a jump at strike K, e.g. VSSVPHOMTi yioht be a continuous function. In

such a case the construction will result in a model that is not calibrated to digital caplet
. dswaption,iXj;

prices V .

In general, when the marginal distribution of xr, has atoms the construction can be

carried out if and only if the image of function V; is a subset of the image of function J°.

4.2.2 Numerical Implementation

We now present a new implementation of the above construction on a grid. In particular, the

use of piecewise polynomial function is a novel approach that allows for efficient implementa-
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tion of the MFM when the driving process is a general (not-necessarily Gaussian) diffusion
process with continuous marginal distributions.

For each time T;,7 € {1,...,n}, we assume we have m grid-points
—o00o < hi1 <...<him<oo. (4.20)

For notational convenience it is beneficial to think of plus and minus infinity as grid-points
hio = —o00 and h; ;41 = 00,9 =1,...,n. Moreover, we will denote by hg 1 = o the initial
value of the driving process.

The information about the distribution of the driving process is given to us via one

time-step conditional moments. More precisely, for some integer ¢ > 1 we are given

A;’kvl = E[ﬁ‘nJrl I:x’lTil{hi,k<$Ti§hi,k+1}’xTifl = hifl,j}; (421)

fori=1,....n,7=1,....m k=0,...,m,and [ =0,...,q.

Remark 4.6. Since x is a diffusion process we know that its transition density is a solution
to the corresponding Kolmogorov forward equation. When the transition density is known
explicitly the A’s can be well approximated using numerical integration or even calculated
exactly. However, even when the Kolmogorov forward equation does not have a closed form
solution one can still approximate A’s efficiently, for example by discretising the SDE for

the driving process in time.

Our aim is to determine at each time step the functional form of the numeraire on the
grid-points via equations (4.15) and (4.18) and then recover the functional forms of other
ZCBs on the grid-points via equation (4.19).

Observe that the most computationally demanding part of the construction is evaluating
the function J¢, given in equation (4.15), since it involves integration over the distribution of
a7, which is not known a priori. One could evaluate J¢ directly by integrating i times over
the one time step conditional distributions, however such an approach is computationally
intensive and would defeat the aim of using a low-dimensional MFM, which is computational
efficiency. We avoid the direct evaluation of J¢ by first ‘building’ the distribution of xr,
forward in time. To do so we introduce ‘basis functions’ that will allow us quick and simple
approximation of smooth (and with minor modifications piecewise smooth) functions (see

Appendix A for more detail).

We consider basis functions b; ;,i =1,...,n,j = 1,...,m, that are continuous and of the
form
m g
szj (J;) = Z Z b_’;,k,lxl]‘{hi,k<$ghi7k+1}7 reR (422)
k=0 1=0

for some coefficients bé w1 € R. Moreover we impose the condition

bi,j(hi,k) = 04,k j, k = 1, e, (423)
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In our algorithm we can approximate any smooth function f : R — R by a piecewise

polynomial function f defined by

f(l') = Z f(hi,j)bi’j (.’L‘), xz eR. (424)
j=1
Note that f and f will have the same value for the grid-points h; 5,k =1,...,m, since
Fhin) =" F(hi )65 = F(hig)- (4.25)
j=1

In Appendix A we propose a specific choice of basis functions and show that for that choice
f is a piecewise polynomial approximation of f on the interval (i1, Pim]-

Furthermore, if the expectation of f(xr,) is finite, we can approximate it as

E]Fn+1 [f(:L’Tl)] ~ Z f(hi,j)Ei,j7 (426)
j=1
where Eiyj = E]Fn+1 [biyj (le)]
We now show how to determine the expectations F; ;,i =1,...,n,j = 1,...,m, iteratively

forward in time and then use this information to evaluate the function J* on the grid-points.

First note that at time 77 the conditional and unconditional distributions coincide and for

j=1...,m,
m q
Ey ;= Z Z b},k,lE]F"‘*'l [xlTl 1on, s <zgh1,k+1}] (4.27)
k=0 1=0
m q
= Z Z b;,k,lE]F"’“ [mlTll{hl,kCﬂShl,kH} |xTO = hOal] (4.28)
k=0 1=0
m q
=3 b AL (4.29)
k=0 1=0
Now we can proceed iteratively forward in time. Let ¢ € {2,...,n} and assume that

E;_1,,j=1,...,m, have already been determined. Then for j € {1,...,m}

NE
MQ

Ei,j = b;yk’l]EIFn‘Fl l:x’lTi]'{hi,k<xShi,k+1}} (430)

=
Il

0

0

b;‘,k,l]EF"*l |:]E]F"+1 [‘TlTi]'{hi,k<$Shi,k+1} |xTi—1H : (4.31)

M
M=

>
Il

(

~

(

Note that since z7, is a diffusion process the conditional expectation in (4.31) is a smooth

function of zy, ,. Therefore, we can approximate it using the basis functions b;_1 j,7 =
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1,...,m, and approximate E; ; as

m q m

Bijm Y Y by Y Eeeer (2 1, coch iy |on, = hic1p) Eic1y (4.32)
k=0 =0 p=1
m q m

RO D i D A Biciy (4.33)
k=0 =0 p=1

Observe that the innermost summation does not depend on index j. Therefore, it is
computationally advantageous to evaluate it in advance. In particular if we define 1"};717 ke
{0,...,m},1€{0,...,q} by

Fi,z i= Epnt1 [:C’lfi]‘{hi,k<$ghi,k+l}] (4.34)

and use the same trick as in (4.31) we can approximate it by

m
ff»l ~ ZEF"“ [xlﬂ'l{hi,k<$ﬁhi,k+1}|xTz‘—1 = hi—l,P] Ei—1p (4.35)

]
Il
-

M-

A ki Bictp- (4.36)
1

S
Il

Then we can express E; ; as
m q
Bijm Y Y b Thy (4.37)
k=01=0

The number of operations needed to determine Ej;,j = 1,...,m and 1"};7[, k=0,...,m,
1=0,...,q is then of order O(m?q).

Remark 4.7. The construction of E; ;’s using forward iteration as described above preserves
the tower property of expectation in the sense that approzimating the expectation of f(xr,) as

in (4.26) yields the same result as approzimating the conditional expectation E[f(z,)

T, ]
using basis functions and then approzimating the expectation. This is crucial for the imple-
mentation of a MFM to be arbitrage free as it ensures that the prices of derivatives do not

depend on the way expectation was evaluated in the model.

Having determined E; ;’s and Fz’l’s we have the information needed about the marginal
distributions of the driving process to recover the functional form of the numeraire on
the grid-points h; j,7 = 1,...,n,7 = 1,...,m, as described in Subsection 4.2.1. We work
iteratively backwards in time. For each time T;,7 € 1,...,n we first evaluate function
J* as defined in equation (4.15) and determine the functional form of sz>1<]1 on the grid-

points h; ;,7 =1,...,n. Then we recover the functional-form of D7, 1., on the grid-points

+1
hij,i=1,...,n via equation (4.14).
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The value of function J? on the grid-points h; j,j = 1,...,n is given by

J'(hij) = Doz, Egnis

Py (wr,)
Bl VLV N 4.38
DTi7Tn+1(‘rTi) Loz >his} ( )

P‘L),(ji (ITZ)

Recall that the fraction 5 - can be evaluated as in equation (4.12). Then we

(zT;)
n+1
can recover its value on the grld points h; j,j = 1,...,m, by approximating it using basis
functions. In particular,
Pixji(h,’j) P}:ﬁ (x7,,,)
_— = ]E]F”+1 mTi (439)
DT Tn41 (h’ ) DT1+17 Thn+1 (xTH»l)

P (hiy1r)

m
- E : Tit1
D

b1 = Tit1,Tnt1 (hi-i‘l,k)

Egn1 [bi+1’k(xT1+1)|le = hi,j} (440)

7 X

m P ‘j‘ h; m q
=Y B ) 2 2 A (1.41)

Tit1,Tnt1 (hH-l k

k=1 —0 =0
TR PZAJI Rit1,k
=D D AT hh s (1) (4.42)

p=0 =0 k=1 DTi+1,T71+1 (hi+1,k)

It is computationally advantageous to calculate the innermost summation in advance as

it does not depend on index j. Then, the number of operations needed to determine the

P’LX],L i ] )
fraction # for all j € {1,...,m}, is of order O(m?q).
n+1

Remark 4.8. Note that we have evaluated the time T;11 functional forms of ZCB in the
previous step. Therefore, evaluating P}Xfl (hit1,k) in advance will involve O(n), operations
and O(mn) for all k € 1,...,m, which will be in practice negligible. In particular, when
ji=1+1 then P%fjjl(hHLk) = o 18 trivial.

Next observe that evaluating J? involves integrating over a discontinuous function,
therefore we can not directly apply the approximation from equation (4.26). We first simplify
the problem by observing the following relationship

Jl(hz’j) :Ji(hi’jJrl)—f—DOT J’J, j=1...,m, (443)
where J¥(hy414) = 0 (recall that hy,41; = 00) and

_ Py (2,)
Ji i = Epnt1 __ds 7t
I DTinn,+l (le)

)

{hi,j<ITi§hi,j+1} 5 j = 1,...,m. (444)

Although evaluating jiu' involves integration over a discontinuous function, we can still

evaluate it efficiently as we can approximate its continuous part first and then multiply the
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indicator function with the approximation. In particular

Ji; ~E 3 yMMM)b 1 4.45
1,5 72 pnt1 Z m ZJC('rTi) {hij<zr,<hiji1} (4.45)
m 1%]; h )
B 2:: DT Tt (hz k) E]erl [bi’k(xTi)l{hi*j Sz Shz’u’+1}] (4‘46)
m szg .
— by T 4.47
Z:: T“Tnﬂ( Z k.l Jl ( )
Evaluating J; ; for all j € {1,...,m}, then requires O(m?q) operations. Afterwards we can

determine the value of J? on the grid-points iteratively in O(m) operations and the total
number of operations required to evaluate J* on the grid-points hij,g=1,...,m,is O(m?q).

Next we determine the functional form of ylx] i

on the grid-points h; ;,5 =1,...,m, as
in equation (4.18)°. To recover the functional form of the numeraire on the grid-points
hij,j=1,...,m, by using equation (4.14), we first need to determine the functional form

of Dr, 1, Dil,Tn+1 via equation (4.13)

DT, T (h ) |: DT 1 T- (IT.+1) :|
St SELCLEY W SUTASKITSVR P (4.48)
DT 41 (h’ ) DT i1, Tt (xT'H»l) !

m

Dr, 1, (hig1k)
& . Epn+1 |b; x|z, = hi 4.49
DT+1, n+1(hi+1,k) F ﬂ[ ""Lk( Tz+1)’ T; vJ} ( )

Tiy1,T, 71 7""‘1 k z+1 z+1
ZZ k,p,l Jp, (4'50)

7+17Tn+1( l+1k p=0 1=0

Il
MS il MS wM

_ ! Aitl G pitl DT+1, (h’LJrl k) (4 51)
= § LY by .
p=01=0 . =1 P! DT1+1,TH+1(hi+1,k)’
Pt (hi g) : o
similarly as for the ratio Di(h) we should evaluate the innermost summation in
n+1 Utij
Dr;,1;. (hi,j) . 5 .
advance. Then we can evaluate 75—z for all j € {1,...,m} using O(m?q) operations.
Ty, n+1

Finally, we can determine the functional forms of the remalning ZCBs on the grid-points

9The complexity of this step is usually negligible in comparison to the O(qu).

62



via equation (4.19),

Dy, 1, (hi ;) = Dr, 1

n+1

| Dt
’ DT +1, Tn+1 (xTz+l)

TrT; = hi,j:| (452)

D 1 ‘s
~ Dot (b MEW[le,T(me>|xTi:hm] (4.53)

Dz, 7,y (Rig1,r

2
m ) m q . A

= D i) 3 % S5 hELAL (454)
>

(hiv1r) ==
q m
i DT T, (h7,+1 ’l“) 1
= Dr. h E Ait1 E ’“—blJrl . 4.55
i )pzo 1=0 Jd DT Toir (Rit1,r) Pt ( )

Again, note that evaluating the innermost conditional expectation separately is computa-
tionally advantageous. In such case we then require O(m?q) operations to determine the

functional form of a ZCB on all grid-points at each time.

Computational Complexity of the Algorithm

Let us conclude this section by briefly commenting on the computational complexity of the
above algorithm. The algorithm can be naturally divided into three parts. In the first part
the information about marginal distributions of the driving process — that is F; ;’s and F; &S
— is constructed from the A’s. The second part is the calibration to digital swaption prices
and determining the functional forms of the numeraire. In the last part remaining functional
forms of ZCBs are recovered from the martingale property.

The number of operations performed in the first two parts is of order O(m?q) for each
time step and therefore of order O(m?ngq) for all time steps. In the last part we need to
perform O(m?q) operations to determine the functional form of a single ZCB per time step.
However, the total number of functional forms we need to determine is of order O(n?),
therefore in the third part we perform O(m?n%q) operations in total, making the total
number of operations of order O(m?n2q).

In most practical applications, the order of the basis function ¢ will take values 1, 3 or 5
and will be considerably smaller than m and (usually) n. Furthermore, the basis function
will typically be non-zero only on ¢ + 1 intervals. Modifying the algorithm accordingly (by
only summing over non-zero elements) can significantly reduce the number of operations,

but not the overall complexity.

4.3 Markov-functional Model under the Spot Measure

Let us now fix the numeraire pair (B, F°), that is we take the discretely compounded or rolling
bank account B as the numeraire and the associated EMM F called the spot measure (see
Subsection 2.2.2). Markov-functional models under the spot measure were first introduced

by Fries and Rott (2004) and we will outline their construction in Subsection 4.3.1. In
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Subsection 4.3.2 we will show how ideas from the previous section can be used to implement
efficiently an MFM under the spot measure driven by a diffusion process x with continuous
marginal distributions.

Recall from Subsection 2.2.2 that the discretely compounded rolling bank account repres-
ents the price process of a unit deposited at time 0 that is reinvested or rolled over at the
prevailing LIBOR rate between on the dates 11, ...,T,. In particular, at time 73,71 =0, ..., n,
we deposit the value By, for the period [T}, T;;1] at the LIBOR rate L, , at time T4 we
receive the deposited value back with interest, i.e. Br,,, = Br, (1 + oziLiTi), and reinvest the
whole amount for another period. In particular, the value of the rolling bank account on

setting dates 11, ...,T,11 is given by

i—1

By, = [[(1+a;L%,). (4.56)

=0

Remark 4.9. Note, that the process B is a path-dependent process and it is not obvious
that it can be used as a numeraire for an MFM. However, one can check that for any
MFM (regardless of the choice of the numeraire pair) the rolling bank account satisfies the
measurability condition from Proposition 4.1. Let 0 <t <T < T,11 thent € (T;_1,T;] and
T € (Tj—1,Tj) for some i < j and the ratio

j—1
By Dy, * 5
—_—= 1 L 4.

is o(xs;s € [t, T])-measurable. Hence, the rolling bank account is a suitable numeraire for
defining an MFM.

We will calibrate the MFM under the spot measure to the prices of digital caplets
in-arrears (see Subsection 2.2.3). The reason for choosing the digital digital caplets in-arrears
over the digital swaptions, will become apparent in the next subsection when we present the

construction. First, we need to impose two additional assumptions
1. In our model L}i,i =1,...,n, can be written as an increasing cadlag function of zr;;

2. We are given the initial value of the T1-maturity ZCB Dy 1, and the prices of the digital
caplets in-arrears written on LiTi,i =1,...,n, for strikes K > 0 which are represented

by a decreasing cadlag function

dca,i _ 1

Assumptions 1 and 2 can be interpreted in the same way as for the MFM under the terminal
measure, namely they provide us with the data needed for calibration and ensure that the

driving process x represents the level of interest rates in the economy.

Remark 4.10. Because the MFM under the spot measure is effectively calibrated to the
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prices of European caplets, it is particularly suitable for valuation of exotic derivatives that

depend only on the forward LIBORSs opposed to general forward swap rates.

4.3.1 Recovery of Functional Forms

We now describe, how assumptions 1 and 2 can be used to construct an MFM under the

dca,iyn .
Vo * , and driven by a

spot measure calibrated to prices of digital caplets in-arrears {
diffusion process & with continuous marginal distributions. As in the case of the MFM under

the terminal measure, we will determine the functional form of the numeraire, the rolling

bank account B, on dates T1,...,T,11.

Recall that by assumption 2 the value of numeraire at time 77 namely By, = 1+ aOL%O =
Do_,lTl is already known. Next note that for ¢ > 2 By, is a function of (z7,,...,zr,_,) and is
uniquely determined by the functional forms of L]Tj ,j=1,...,i—1, as in equation (4.56).

We will recover the functional forms of the LIBORs at their setting date — and therefore
the functional form of the numeraire — forwards in time. Suppose that we have already
determined the functional form of the numeraire By, for some i € {1,...,n}. Since Br,,, =
(1 + ;L% ) By, we need to determine the functional form of L%, in order to recover the
functional form of By, ,. This is done by calibrating to digital caplets in-arrears written on
L.

Similarly as in the previous section we can define function J* by

- 1
J'(z*) := Epo |:1{1Ti>r*}:| . (4.59)

Br,
Recall that the functional form of By, has already been determined in the previous step and
therefore J* is well defined. Now observe that the functions V? and J? differ only in the
indicator function. We can now use the same argument as in the construction of the MFM
under the terminal measure to argue that assumption 1 implies that for each K in the range

of Liﬂ there exists a unique z* such that the set identity

(L}, > K} = {ag, > 2"} (4.60)

holds and consequently
LY (z*) = sup{K > 0; Vet (K > J'(z*)}. (4.61)
Having determined the functional form of the numeraire for all times T;,i =1,...,n+ 1,

we can recover the functional forms of the ZCBs. In particular for j > ¢

Br.
Dr. 1, = Epe {B?

J

IT} : (4.62)

Let us finish the construction by pointing out that the construction of the MFM under

dca,i

the spot measure is unique in the sense that for a given set {Vi "}, of prices of digital
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caplets in-arrears, an initial value of the Th-maturity ZCB Dy r,, and a diffusion process z
with continuous marginal distributions there exists a unique MFM under the spot measure

n

calibrated to prices of digital caplets in-arrears {Vodca’i ", and the initial condition Dg 1,

that satisfies assumption 1.

4.3.2 Numerical Implementation

Before presenting an algorithm that implements the construction of an MFM under the spot
measure on a grid let us point out some computational issues arising in the model. As in the
case of the MFM under the terminal measure, it appears that evaluating the function .J*
will be a crucial step from the implementation standpoint. This is because evaluating J*

[
j=1

involves integrating over the joint distribution of (27, )

Fries and Rott (2004) solve this problem when the driving process is Gaussian by
introducing linear ‘pricing functionals’ that can be constructed iteratively. The algorithm
we describe in this section extends their idea to a more general class of diffusion processes
with continuous marginal distributions. Furthermore, Fries and Rott (2004) do not give full
detail on how the pricing functionals are constructed and do not give the set of contingent
claims on which they are acting (see Remark 4.11).

The inputs to our algorithm are the same as for the MFM under the terminal measure.

For each time T;,i = 1,...,n, we assume we are given m grid-points
—00<hi1<...<him<oo (4.63)
and denote for notational convenience hy; = —oo and h; ;41 = 0o. Furthermore, we denote

the initial value of the driving process by ho1 = xg.
The information about the driving process is given to us by one time step conditional

moments. More precisely, for some integer ¢ > 1 we are given
A;’,k,l = E[FO [‘IEZTi]'{hi,k<ETi§hi,k+1} |£L’Ti71 = hi*l,j]v (464)

fori=1,....,n,5=1,....mand [ =0,...,q.

Our aim is to provide an implementation, that allows for efficient calibration of the
model (i.e. efficient evaluation of function J* at grid-points) and also efficient valuation of
derivatives.

As in the implementation of the MFM under the terminal measure, we introduce con-

tinuous piecewise polynomial ‘basis functions’ b; ;,7 =1,...,n,j =1,...,m, of the form
m q
bi,j (l’) = Z Z b;,k,lxl1{hivk<ib§hi‘k+1}’ z €R, (4'65)
k=11=0
such that
bi,j(hi,k) :5j,ka j,k‘z 1,...7m. (466)
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We can then approximate any smooth function f of z7, by a piecewise polynomial function

f (see Appendix A for more detail) defined by
Fl@) =" f(hijbij(x), zeR. (4.67)

Now we deviate from the implementation of the MFM under the terminal measure and

define constants E; j,i =1,...,n,j =1,...,m by

b; i(xT,

B = Egm [3(”)} . (4.68)
Br,

This allows us to approximate any expectation of the form E[f (xTi)Bi_l], where f is a

‘smooth enough’ function, by
T, -
Ego [fi?;)} ~ Y f(hig)Eij. (4.69)
i j=1

Remark 4.11. The FE; ;’s defined above are analogous to the pricing functional used in
Fries and Rott (2004). In particular, we can define a linear pricing functional V' acting on

time T; claims of the form f(x1,), where [ is a ‘smooth enough’ function, by
Vilf(zr)] =Y f(hij)Ei;. (4.70)

While we have not specified the smoothness condition completely as it depends on a particular
choice of basis functions (see Appendiz A), we will always need the f to be at least continuous.

Therefore, we can not apply V* to the claim Yoy, >z} and use it to evaluate J* directly.

Next we show how to determine the E; ;’s using forward iteration and calibrate the
model to the prices of digital caplets in-arrears at the each step of iteration. At time

T; the marginal distribution of z7, and one step conditional distribution a7, |xg coincide.

Furthermore By, = 1+ apL is a known constant. Then we can express Ei;,j=1,...,mas
1 -
El’j = 7B Z Z b},k,ZA%,k,l' (4.71)
T k=01=0
Moreover, we can evaluate J! on the grid-points hij,3=1,...,m, directly
1
Jl(hlyj) = Epo El{xq‘1>hzx,]‘} (472)
1
1 m
= B > Alko (4.73)
L k=j
and the functional form of LlT1 on the grid-points hy ;,% = 1,...,n, can be determined from
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equation (4.61).

Now we describe a step of the forward iteration. Let ¢ € {2,...,n} and assume that we
have already determined E;_; 4,5 = 1,...,m and the functional form of L’Tlll Then for
j=1,...,m,

[b; ;(z,
E;; = Ego J@”T)} (4.74)
Br,
= Ego 1 Ego [ bij(27,) Fr ] (4.75)
_BTq‘,—l 1 —|—aiLZTj_11 (xr,_,) !
[ 1 bl (QCT)
= Epo Ego |: - ’Ji_ : T, (476)
_BT171 1+ alLTijl (JTT,FI) '
m
bi (IT)
~ E;i 1 xEpo |: - i : TT,_, = hi—l,k (477)
; 1+a; 1L (2r, ) '
S Y it (179
k=11+ai71LTi 1(h1 Zk p=0 1=0
"L & Ei 1 pA}
D) DD PR TR (110
Jipsl i—1
p=01=0 o L el (himik)

Observe that, the innermost summation does not depend on the index j, therefore it is

computationally more efficient to calculate it in advance. Define I‘;’l,p =0,...,m,0l=0,...,q
by
m i
1,54
Z Bi- Ll (4.80)
1+ a; 1L (hiﬂ',k)
then we can express F; ;,7 =1,...,m, as
m q
Eij =) Ul (4.81)
p=11=0

Note that determining all the I'} ;’s requires O(m?q) operations per time step and computing
all E; ;’s requires O(m?q) operations per time step.

Next we describe the calibration part of the iteration step. To calibrate the model to
prices of digital caplets in-arrears and determine the functional form of L}q on the grid-points

we need to evaluate function J* for grid-points h; j,j =1,...,m,

. 1
“(hi ;) = Epo | —
J(hw) IF{BT

i

1 {wwhi,j}] . (4.82)

Note that evaluating J* involves integrating over a discontinuous function and therefore

equation (4.69) can not be applied directly. As in the case of MFM under the terminal
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measure we simplify the problem by observing the recursive relationship for j =1,...,m,

Ji(hi,j) = Ji(hi,jJrl) +Jij, (4.83)

where Ji(hi7m+1) =0 and

- 1
J’L] - E]FO |:BTil{hivj<ITiSh'irj+1}:| . (484)

Next we condition on the value of x7, , to smooth the discontinuity thus allowing us to

apply equation (4.69)

_ 1 l{h i <wr, <hi ji1} :|
Jij=E E D oI 4.85
R P [ 1+ o1 LY i (4.85)
s 1. . o
~ ZEiA,k]EJFO { {hl’jqngh;ﬁl} rr_, = hz‘l,k] (4.86)
k=1 L+ ai_lLTz‘
m E;_1 AL
= LT (4.87)
= 1+aii Ly, (hioik)
=T, (4.88)
Note that we have already calculated F;'-’O, therefore we can then recover J*(h; ;),j = 1,...,m,

iteratively in O(m) operations and consequently determine the functional form of L%, on the
grid-points via equation (4.61).
Once we have recovered the functional forms of all forward LIBOR rates we can recover

the functional forms of ZCBs iteratively backwards in time notting that

Dr.. 1
Dr,.r, = Br,Ego [“T ]-‘T,L} (4.89)
BTi+1
Dr, 1y
ZTinds | 4.90
o [1 +aill, Tl] (4.90)
Do
= Ego | Lot Ts g 4.91
Fo [1 +alli, le} (4.91)
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and therefore

DT T (.I‘Tv )
Dr. 7. (hig) = Epo | —2d —H e = 4.92
TuT]( ,k) FO |:]-+CVZL1.(~TT1.) LT k ( )
i+1,7] z+1,p)
~ § —E byt (T — 4.93
1 ¥ az (hZ k:) IFO [ +17P(xTz+1)‘xTz JC] ( )
1 G
S § D hivip) YD UL A 4.94
1+ OéiLTTi (hik ) Tors Ty (Rittp r=0 (=0 it ( :
m q m
— E E 7,+1 § i
- 1 +a1 1 i k’rlp 1DT1+17 Z+17p)bprl' (495)

Note that we can evaluate the innermost summation in advance which requires O(m?q)
operations per functional form of a ZCB for each time step. Then the total number of
operation to evaluate the actual functional form of a ZCB on the grid points is of order
O(m?q) per time step. In total there are O(n?) functional forms to be determined and
therefore the total number of operations of the determining the functional forms of ZCBs is
of order O(m?n?q).

Computational Complexity of the Algorithm

Let us conclude this section by briefly commenting on the computational complexity of the
above algorithm. The algorithm can be naturally divided into two parts. In the first part
the information about marginal distributions of the driving process is constructed from the
A’s and the functional forms of the forward LIBORs at their setting dates are determined
by calibrating to digital caplets in-arrears. In the second part the functional forms of ZCBs
are recovered from the martingale property.

The number of operations performed in the first part is of order O(m?q) for each time
step and therefore of order O(m?nq) for all time steps. In the second part we need to perform
O(m?2q) operations to determine the functional form of a single ZCB per time step. However,
the total number of functional forms we need to determine is of order O(n?), therefore in the
third part we perform O(m?2n?q) operations in total, making the total number of operations

of order O(m?n?q).

4.4 Choice of The Driving Process

In this section we focus on the Markov-functional models driven by a one-dimensional process
as described in Sections 4.2 and 4.3. We will refer to the MFM as described in Section 4.2
as the MFM under the terminal measure and to the MFM as described in Section 4.3 as the
MFM under the spot measure, omitting the dimension of the driving process.

For simplicity we will restrict ourselves to the LIBOR version of the MFM under the

terminal measure. This corresponds to the choice j; =i+ 1,4 =1,...,n (see Remark 4.3),
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in this case the prices of digital swaptions and digital caplets on y%j”l = 1T will differ by a
multiplicative constant only and we will therefore say that the model is calibrated to caplet
prices.

For a given set of caplet prices choosing the driving process is arguably the most important
step in specifying a Markov-functional model. A suitable driving process will ensure that
the dynamics of the model are reasonable. In particular, it will ensure a stable evolution of
the caplet implied volatility surface over time (we will demonstrate this with an example in
Section 4.7). Moreover, the choice of the driving process will also influence the correlations
between rates and thus the prices of swaptions.

In general it is difficult to understand how changing the driving process will influence
the dynamics of the MFM. One of the reasons for this is the complex interplay between the
swaption or caplet prices and the driving process (especially for the MFM under the terminal
measure, see equation (4.14)). However, the role of the driving process is well understood for
the MFM under the terminal measure driven by a Gaussian process and calibrated caplet
prices given by the Black formula.l?

This case was studied by Bennett and Kennedy (2005) who compared the dynamics of a
one-factor separable LMM (see Section 3.2) with the dynamics of an MFM under the terminal
measure calibrated to the same set of caplet prices and driven by a one-dimensional Gaussian
process. They showed that under a wide range of parameters the LMM and the MFM have
similar dynamics and Bermudan swaption prices. Therefore, one can see the MFM as an
arbitrage-free one-dimensional approximation to the one-factor separable LMM. This has two
important consequences. Firstly, one can transfer the intuition from the one-factor separable
LMM to the MFM. Secondly, one can use a computationally more efficient MFM instead of
the LMM.

While the connection between the separable LMM and the MFM is strong, the assumption
that the caplet prices are given by the Black formula is often too restrictive. However, we
will show in the next section that the concept of separability can be extended beyond the
log-normal LMM. Based on these findings, we will propose a combination of a one-dimensional
driving process and caplet prices that can be used to specify an MFM with similar dynamics
to the CEV-LMM.

Another way to gain an insight into the role of the driving process is by using copula
theory. The basic principle of the copula theory is that any d-dimensional distribution
F can be decomposed into an n-dimensional copula'! C and its marginal distributions
F;,i=1,...,n, so that

F(zy,...,2y) = C(Fi(z1),..., Fo(zn)), @1,...,2, €R. (4.96)

Moreover, the decomposition is unique if the distribution F' is continuous (see Nelsen (1999)

10Recall that the Black formula assumes that L% is log-normally distributed under the measure Fit1, see
also Remark 2.16. '

I1C is a d-dimensional copula if it is an n-dimensional distribution function on [0,1]? with uniform
marginals.
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for more detail). The ‘decomposition’ of a Markov-functional model into a driving process
and caplet prices seems to be to a certain extent analogous to this. However, for a given
choice of caplet prices there are infinitely many driving processes that result in ‘the same’
MFM. For example driving processes x and ax + b, where a > 0 and b € R, clearly result in
‘the same’ MFM.

Let us now be more precise and define what we mean by saying that two MFMs under
the terminal (respectively spot) measure are ‘the same’. Remember that an MFM is fully
determined by the dynamics of the numeraire and underlying filtration {F;};>0. On the
other hand, the construction of the MFM under the terminal (respectively spot) measure
uniquely determines the numeraire only on the tenor structure dates. In-between the tenor
structure dates one can still recover numeraire discounted prices of ZCBs and the LIBOR
rates. However this is not a major drawback and a similar observation holds for other market
models including the LMM. For this reason we will compare MFMs under the terminal
(respectively spot) measure only on the tenor structure dates.

Remember that in the MFM under the terminal (respectively spot) measure the LIBORs
at their setting dates are increasing functions of the driving process. In particular, when they
are strictly increasing the o-algebras generated by the LIBOR at its setting date and the state
of the driving process will be the same. In this case the MFM under the terminal (respectively
spot) measure is uniquely determined (on the tenor structure dates) by the joint distribution
of LIBORs at their setting date and the initial term structure (see equations (4.14) and
(4.56)).

We will then say that two MFMs under the terminal (respectively spot) measure calibrated
to the same initial term structure are equivalent if the joint distribution of the LIBORs L’T 1=
1,...,n, is the same in both models. Next we prove that under mild technical conditions two
MFMs under the terminal (respectively spot) measure driven by one-dimensional Markov
processes x and y are the equivalent if and only if the copulae of the vectors (zr,)}; and

(yr,)_, are the same.

Theorem 4.12. Let x and y be one-dimensional Markov processes with absolutely continuous
marginal distributions. Let Do, < 1; and assume that for i € {1,...,n} Dor, > Do, .,
and V¥ :[0,00) — [0,1] is a differentiable function. Moreover, assume that fori € {1,...,n}

V; is strictly decreasing on the subdomain {K;V*(K) > 0} and satisfies
lim V(K) = 0. (4.97)
K—oo
1. Suppose that Vi(0) = Dor,.,. Then MFMs under the terminal measure, calibrated to
digital caplet prices {V}1_, and initial term structure (Do’Ti)?jll, driven by processes
x and y are equivalent if and only if the vectors (zr,)?_, and (yr,)7—, have the same

copula.

2. Suppose that Vi(0) = Dor,. Then MFMs under the spot measure, calibrated to

digital caplet in-arrears prices {V*}"_ | and initial term structure (DO,Ti)?:f, driven by
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processes x and y are equivalent if and only if the vectors (xr,)?_y and (yr,)?; have

the same copula.

Proof. First observe that conditions on the functions {V?}? , ensure that they are an
arbitrage-free system'? of digital caplet (respectively digital caplets in-arrears) prices compat-
ible with the initial term structure. Therefore MFMs under the terminal (respectively spot)
measure, calibrated to the digital caplet (respectively digital caplets in-arrears) prices {V?}7 ;
and initial term structure (D07Ti)?:+11, driven by processes x and y are well defined. Denote
by L“® and L»Y the ith LIBOR rate in the MFM driven by process = and y respectively,
1=1,...,n.

Recall that when the LIBORs at their setting dates are strictly increasing functions of the
state of the driving process, then the MFM under the terminal (respectively spot) measure
is uniquely determined (on the tenor structure dates) by the initial term structure and the
joint distribution of the LIBORs at their setting date under the terminal (respectively spot)
measure. Therefore, the MFMs driven by z and y respectively will be equivalent if and only
if the distributions of the vectors (L}f);l:l and (L%Z’)le are the same.

Since the function V* is differentiable L7 and L7? are absolutely continuous random
variables under the T;.; (respectively the T;) forward measure and therefore also under
the terminal (respectively spot) measure. Therefore, LZTm and LlTy are strictly increasing
functions of z7, and yr, respectively. By the invariance of the copula under increasing
transformations, the copulae of vectors (L}f)?:l and (z7,)", are the same. Similarly, the
copulae of vectors (L;f’):’zl and (yr,)I, are the same.

Now suppose that the MFMs driven by x and y are equivalent. Then the copulae of
the vectors (Lélf)?zl and (LiT’f’)?zl are the same. Consequently the copulae of the vectors
(x1,)f, and (yr,)", are the same.

We now prove the opposite implication. Suppose that the copulae of the vectors (xr,)?,

and (yr,)", are the same. Define processes & and § by
Iy =F(z) and g = F(z), (4.98)

where F{® and F} are the distribution functions of x; and y; respectively. Note that Z and
7 are one-dimensional Markov processes with marginals distributed uniformly on interval
(0,1). Furthermore, for ¢ > 0, F¥ and F} are increasing functions on the state space of x;
and y; respectively. Therefore, the distributions of vectors (Zr,)_; and (gr,)?, are also the

same. Furthermore, we can define LIBORs
Lyl = Ly ((Ff)'@r))  and Lyl = Ly ((FR) ™' (Im))- (4.99)

Then clearly
(L)L = (L), and (LR, (L)) (4.100)

= i Ji=1 i /i=1"

Therefore, it follows from the previous discussion that the models driven by = and % are

12There is no model independent arbitrage strategy.
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equivalent and so are the models driven by y and §. But since (Z1,)" 4 (g1, ), the models
driven by & and have to be equivalent as well, hence the models driven by x and y are

equivalent. O

Remark 4.13. One can weaken the assumptions of Theorem 4.12 to allow for discontinuities
in digital caplet (respectively digital caplet in-arrears) prices. In this case one can still prove
that two MFM under the terminal (respectively spot) measure driven by processes x and y

are equivalent if the copulae of the vectors (xr,)'_, and (yr,)"_, are the same.

In what follows we will say that two driving processes are equivalent if they lead to
equivalent MFMs. In particular, we will use Theorem 4.12 to provide a simple criterion on
when two driving processes are equivalent. Suppose, that Markov process z is given by a

strong solution to the SDE
dxy = p(t, zy)dt + o(t, z)dWe,  x0 € R, (4.101)

and let function f : [0,00) x R — R € C!? satisfy

of

a7 0, t>0,zcR. 4.102
o >0, t>0,z¢ ( )

(t,z)

We can then define a process y by
ye = f(t, ), t2>0. (4.103)

Since f(t,.) is increasing function for ¢ > 0, the vectors (xr,)"_; and (yr,)"_; have the same
copula. Theorem 4.12 then implies that MFMs driven by x and y calibrated to the same set
of caplet prices are equivalent.

We are especially in interested when a driving process x can be transformed as in

equation (4.103) to a process y of the form

Applying Ité’s Lemma to equation (4.103) yields

of of 1 % f
dys = ( + M(tvl’t)% + 50(@%)2@

ox

(t,@¢)

For equation (4.104) to hold f has to be a solution to the PDE

a(t,x)g—i =1 (4.106)

When o € C1! is a strictly positive function then any solution to the PDE (4.106) is given
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by

Ftz) = / - (tlx)dx +o(t), (4.107)

for some function ¢ € C1. We can then chose the function ¢ so that yo = 0 and the drift
part of the SDE for y has no additive deterministic part.

Transforming driving processes to the form given by the SDE (4.103) is not only useful to
determine whether two driving processes are equivalent. It can be also used in the numerical
implementation of a driving process for which the transition densities are not know. In such
a case one typically needs to discretise the driving process in time. Therefore, moving the
state dependence from the local volatility to the drift can simplify the discretisation.

In practice it might be beneficial to allow for a deterministic local volatility part when
implementing the driver. This will still allow for a simple discretisation of the process in
time and will additionally allow the user to remove the part of the drift that is affine in the

state of the driving process.

Example 4.14. Let x be an Ornstein—Uhlenbeck process satisfying the SDE
dzy = 0(p — xy)dt + odWy, o € R, (4.108)
where 0,0 > 0 and p € R. Define the function f by
ft,z) = e’ (zy — p) — xo + p. (4.109)

Then the process y defined as y. = f(t,x¢) is a deterministic time change of a Brownian
motion satisfying the SDE
dy; = oe?*'dW;, o =0. (4.110)

Since f satisfies condition (4.102), the Ornstein—Uhlenbeck process x given by the SDE (4.108)
and the deterministic time change of a Brownian motion y given by the SDE (4.110) are

equivalent driving processes for the MFM under the terminal or spot measure.

Example 4.15. Let x be a non-degenerate displaced diffusion satisfying the SDE
dzy = (xy — 0)odWy, x> 0, (4.111)
where 0 > 0 and 0 € R. Define the function f by
L,
f(t,x) =log(ay — 6) + i t —log(zo — 0). (4.112)
Then the process y defined by y; = f(t,x) satisfies the SDE
d'yt = O'th, Yo = 0. (4113)

Since [ satisfies condition (4.102), the displaced diffusion x given by the SDE (4.111) and
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the deterministic time change of a Brownian motion y given by SDE (4.113) are equivalent

driving processes for the MFM under the terminal or spot measure.

The implications of Theorem 4.12 are not limited only to identifying drivers that result
in equivalent MFMs. Dynamic copula theory (see Darsow et al. (1992) and Nelsen (1999,
Sec. 6.4)) can be used to define processes that cannot be transformed to a deterministic time
change of a Brownian motion using strictly increasing transformations. Furthermore, the
transition densities of such processes will typically be known explicitly, allowing for efficient

implementation.

4.5 Separable Local-volatility LIBOR Market Model

We have mentioned in the previous section the importance of choosing an appropriate
combination of driving process and caplet (or swaption) prices when specifying an MFM
model. In this section we describe a systematic approach for finding such combinations by
exploring the link between separable LMMs and MFMs.

In the context of the log-normal LMM, separability was first introduced by Pietersz
et al. (2004). They proved that a single time-step approximation to the separable d-factor
log-normal LMM can be represented as a function of a d-dimensional Gaussian process (see
Proposition 3.6). Moreover, they found that such an approximation is highly accurate for
LMMs with time horizon up to 10 years. However, for LMMs with longer time horizons the
single time-step approximation admits noticeable arbitrage.

It turns out that the MFM under the terminal measure driven by a one-dimensional
Gaussian process has similar dynamics to the one-factor separable log-normal LMM (Ben-
nett and Kennedy, 2005).' Bennett and Kennedy (2005) found that the two models are
numerically virtually indistinguishable for time up to 10 years. For longer time horizons they
observed slight differences between the two models but the qualitative behaviour remained
similar.

The results by Bennett and Kennedy (2005) have two important implications. Firstly,
the MFM under the terminal measure provide a computationally efficient and arbitrage-free
alternative to the one-factor separable log-normal LMM. Secondly, the intuition behind the
well-understood behaviour of the LMM can be transferred to the MFM, in particular the
evolution of caplet implied volatility surface in the MFM will be approximately the same as
in the LMM.

These ideas can be extended beyond the log-normal LMM to more general local-volatility
LMDMs as introduced by Andersen and Andreasen (2000). This allows us to find combinations
of caplet prices and driving processes that exhibit a stable and well understood evolution
of the caplet implied volatility surface. Here we will only explore the connection between

one-factor models.

13We implicitly assume that the two models are calibrated to the same set of caplet prices and an
appropriate Gaussian process is driving the MFM.
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4.5.1 Local-volatility LIBOR Market Model

A one-factor local-volatility LMM under the terminal measure is given by a local volatility
function ¢ : A C R — [0, 00), bounded piecewise continuous functions o* : [0,7;] — R,i =

1,...,n, and a system of SDEs

. ) ) n -~ Lj
dLi = o' (t)p(L1) (th -3 OWWdt), t<Ti=1,...,n. (4.114)
j=it1 1 +04ng

Andersen and Andreasen (2000) proved that when ¢ : [0,00) — R satisfies:
AAL. ¢(0) = 0;

AA2. Local Lipschitz continuity:

YneN, 3C, >0:(xVi) <Cp=|o(x) — @) < Cplx —Z; (4.115)

AA3. Linear growth:
3C >0, Yz >0: ¢(x)* < C(1+2?); (4.116)

then the System of SDEs (4.114) admits a pathwise-unique non-negative solution when the
initial term structure is non-negative (L§ > 0,4 = 1,...,n). Moreover, if the initial term
structure is strictly positive (L > 0,4 = 1,...,n) the solution is also strictly positive.

The most popular choices for the local volatility function found in the literature are
#N(x) = x leading to log-normal LMM (Brace et al., 1997); ¢PP(z) = x — 0,0 > 0, leading
to shifted log-normal LMM; and ¢CEV($) =285 ¢ (0,1), leading to constant elasticity
of variance (CEV) LMM (Andersen and Andreasen, 2000). Note that only ¢™N satisfies
conditions AA1-AA3, ¢PP fails condition AA1 and ¢“FV fails condition AA2. Nevertheless,
all three choices lead to a unique solution to the System of SDEs (4.114).14 Finally let us
mention the hyperbolic local-volatility function (Jéckel, 2008)

_1-8+Fc (V@ TP/’ )
g0 B ’

where 8 € (0,1),6 > 0, which satisfies conditions AA1-AA3.

PP (x)

(4.117)

4.5.2 Separability
We adopt the definition of separability for the one-factor LMMs from Pietersz et al. (2004).15

Definition 4.16. (Separability) A one-factor LMM given by functions ¢, o',i = 1,...n,
and a system of SDEs (4.114) is separable if there exists a function o : [0,T,] — R and

14 Although one needs to impose an absorbing boundary at the origin in the CEV-LMM when 8 <

15Pietersz et al. (2004) define separability in the context of a d-factor log-normal LMM (¢(z z).
However, their definition does not depend on their choice of the local-volatility function and can be therefore
adopted for any local-volatility function ¢.

1
5
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constants vy, ...,v, € R such that
ol(t) =vio(t), t<T;i=1,...,n. (4.118)

In practice one is only interested in separable LMMs with o #0,i = 1,...,n. We can
therefore assume without loss of generality that ¢ = ¢™ and v,, = 1.

We now give a heuristic argument as to why a one-factor separable local-volatility
LMM has dynamics similar to an MFM under the terminal measure driven by some one-
dimensional Markov process. First we follow the idea of Pietersz et al. (2004) to remove the
state dependence from the dW part of the SDE (4.114). Then we will use separability to
rewrite the SDE in terms of process L™ as ‘the driver’ of the LMM.

Suppose that ¢ : A — R is a strictly positive and continuously differentiable function
and assume that there exists a solution to the System of SDEs (4.114) for some initial term
structure (note that the state space for each LIBOR rate is the set A). Then we can define a
function f: A — R, by

1
f(z) .z/wdx. (4.119)

Remark 4.17. In particular when A = (0,00), ¢ satisfies conditions AA2 and AAS, and
additionally limg o ¢(x) = 0, the System of SDEs (4.114) will have a unique strictly positive

solution if the initial term structure is strictly positive.

Note that f is twice continuously differentiable and applying It6’s Lemma to f(L}) yields

P\ __ oy T _n - aJ’UJ(b(Lg) )_12n 2 41(T1
df (L) = v;0™ () (th o (t)j;HiHajL{ dt | — Svio" ()¢ (L), (4.120)

in particular for i =n

dF(LY) = o™ (£)dWV, — %a"(t)qu’(L?)dt. (4.121)

Then we can rewrite (4.120) as

ajw(L{)
1 =+ Oszg

AL U

3 (0(L0) — wd' (L)) dt = o™ (0 3

j=it1

dt.  (4.122)

Equation (4.122) suggests that as long as the sum of the finite variation parts will be close
to some deterministic function of time, we will observe the following relationship between
the LIBORs:

FLY) = v f(LY) + (), t<Ti=1,...n, (4.123)

for some deterministic functions ¢?,i = 1,...,n. This should be understood in the sense
that the value of L? has a strong predictive power about the value of L! according to the
relationship in equation (4.123). This has been already observed by Bennett and Kennedy
(2005) in the case of the log-normal separable LMM (¢(x) = x and f(z) = log(x)). However,
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such a relationship also holds for more general local-volatility functions ¢.
In this case we can define a one-dimensional Markov process x by z; = f(L}),t € [0,T,],

and rewrite equation (4.123) to
Ly ~ v+ A(Ty)), i=1,...,n. (4.124)

In particular since f~! is an increasing function each LIBOR rate at its setting date will be
an ‘increasing function’ of zr,.

Recall that there exists a unique MFM under the terminal measure driven a one-
dimensional process x, calibrated to the same caplet prices as the separable LMM and
such that the LIBOR rates at their setting dates are increasing functions of the state of the
driving process. Therefore, when the relationship in equation (4.123) holds for the LMM
we expect to observe a similar relationship between the functional forms of the LIBORs in
the MFM under the terminal measure driven by z = f(L") and calibrated to the caplet
prices from the LMM. Therefore, we can expect that the dynamics of the two models will be
similar. In particular, we expect that behaviour of the future implied volatility surface to
be similar in both models. This in turn allows us, to use the MFM as a computationally
efficient alternative to the separable one-factor LMM and we can transfer the intuition about
the LMM to the MFM.

Next, let us examine the drift part of SDE (4.122) more carefully. First we consider the
term . _

RO M (4.125)
isi Lol
From the findings of Bennett and Kennedy (2005) we know that this term is ‘well-behaved’
for ¢(x) = x. In this case LIBORs take values in interval (0, 00) and each component of the
sum is bounded and satisfies
lim %% — 0 and  lim 29—y (4.126)
0 1+ a z—oo 1 + ajx
This suggests that for a general local-volatility function ¢ the drift part (4.125) will be
well-behaved when
0P o lm  2%0@) (4.127)
zlinf(A) 1+ ajx atsup(4) 1+ a7
Observe that when LIBORs take values in (0, 00) or [0,00) and ¢ satisfies conditions AA1
and AA3 then the conditions given in equation (4.127) will be satisfied.

Let us now turn our attention to the second part of the drift term,

o" (t)2
2

(¢/(Ly) — vig! (LY)). (4.128)

Note that in the log-normal case this term is deterministic, since ¢(x) = x and ¢'(xz) = 1 and
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therefore is not problematic. However, for a general local-volatility function it is much more
difficult to analyse. Nevertheless, provided that ¢ has bounded derivative the drift term
(4.128) will also be bounded. This requirement is stronger then conditions AA2 and AA3.
To verify our heuristic argument we have tested numerically the separable one-factor
CEV and hyperbolic local-volatility LMMs for the presence of the relationship (4.123). It
turns out that the relationship (4.123) has strong predictive power for both models under a
wide range of scenarios. This is not surprising in the case of hyperbolic local-volatility since
it satisfies conditions AA1-AA3 and has bounded derivative. On the other hand the CEV
local-volatility function does not have a bounded derivative in the neighbourhood of zero
and the drift term (4.128) could potentially be unbounded. Nevertheless, it turns out that as
long the probability of absorption is low (which is the case for reasonable parameterisations)

the relationship (4.123) has a strong predictive power.

4.6 LCEYV Driving Process

In Section 4.5 we provided a heuristic argument to explain why a one-factor separable
local-volatility LMM is close to some MFM under the terminal measure. In this section we
apply these ideas to the one-factor separable CEV-LMM.

The CEV-LMM was proposed by Andersen and Andreasen (2000) as an extension of
the LMM framework that can capture the skew in caplet implied volatilities typically
observed in the market. A one-factor CEV-LMM under the terminal measure is given by
the system of SDEs (4.114) and the local volatility function ¢(x) = 2%, 8 € (0,1). Like the
log-normal LMM, the CEV-LMM offers a closed form solution for the caplet-prices and good
approximations for swaption prices, thus allowing for fast and efficient calibration. However,
the CEV-LMM comes with a range of shortcomings. Firstly, it is a high dimensional model.
Secondly, the LIBORs can get absorbed at the origin with a positive probability. This in
combination with the fact that lim, o ¢’(0) = oo implies that the discussion from Section 4.5
cannot be applied directly to CEV-LMM.

One way to overcome the technical difficulties is by defining a stopping time 7 to be
the first time any of the LIBOR rates hits some level ¢ > 0, where 0 < £ < max; L},
and consider the stopped version of the CEV-LMM. Note that the state space of stopped
LIBORs is the interval [e,00) on which ¢ has bounded derivative. The discussion from
Section 4.5 then suggests that we will observe the relationship between the rates as described
in equation (4.123) in the stopped version of the one-factor separable CEV-LMM.

On the other hand if € and the probability of rates absorbing at the origin are small enough
the one-factor separable CEV-LMM and its stopped version will have similar dynamics.
Thus suggesting that, the relationship in equation (4.123) will also have strong predictive
power for the CEV-LMM. In this case we can rewrite equation (4.123) as

(L) ~oilL) +¢(8), t<Thi=1,....m, (4.129)
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where y =1 — (.

This gives a heuristic explanation for the numerical observation we made in Section 4.5
that the one-factor separable CEV-LMM is also close to some one-dimensional model in
the sense of equation (4.129). However using L™, a CEV process, as the driver of the
approximating MFM under the terminal measure comes with a range of difficulties. Firstly,
one needs to modify the algorithm to allow for atoms in the driving process. Secondly, if
Frt1 (LY, = 0) < F**1(L}, = 0) the model cannot calibrate to the caplet prices.

To overcome this, we go back to Andersen and Andreasen (2000) who acknowledged that
rates absorbing at the origin is a qualitatively undesirable feature. As an alternative they
proposed a ‘limited’ CEV (LCEV) local-volatility function ¢ defined by

HVCEY () = a:(xﬁfl A Eﬁfl), (4.130)

where € > 0. Observe that the CEV and LCEV local-volatility functions are the same
when z > €. Therefore, the CEV-LMM and the LCEV-LMM will at least locally have the
same dynamics when rates are larger than e. Andersen and Andreasen (2000) compared the
swaption prices in the two models and found that the closed form formulae for caplet prices
and approximations for swaption prices from the CEV-LMM can be used in the LCEV-LMM.

Based on these observations we propose to use the LCEV process x given by
dxy = o} xt (fo A 5371)th’ xo = Lg, (4.131)

as the driving process for an MFM under the terminal measure calibrated to the caplet
prices from the one-factor separable CEV-LMM.

In the next section we demonstrate with an example that such an MFM is indeed close
to the CEV-LMM and that the behaviour of future implied volatilities is similar in both

models.

4.7 Numerical results

In this section we give a numerical example demonstrating the ideas from Sections 4.5 and 4.6.
We first consider a one-factor separable CEV-LMM and show by considering equation (4.129)
that it can be approximated well by some one-dimensional model. We then define an MFM
under the terminal measure driven by an LCEV process and calibrated to caplet prices from
the CEV-LMM as suggested in Section 4.6. We show that the relationship in equation (4.129)
holds to a good approximation in the MFM. Next, we compare the future implied volatilities
of caplets in both models and demonstrate that they behave similarly. Finally, we give an
example where a ‘bad’ combination of caplet prices and driving process leads to undesirable
dynamics of future implied volatilities.

In the following example we use a one-factor separable CEV-LMM with parameters as

summarised in Table 4.1 as the reference model. For our approach to work equation (4.129)
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Table 4.1: Parameters used to define the one-factor separable CEV-LMM.

Parameter Value Parameter Value

n 10 L 0.06
T i ol 0.05
8 04 v 0.6

needs to have strong predictive power in the CEV-LMM. To test for this we simulated
100,000 paths of the CEV-LMM using the Euler scheme with time step 0.02 and performed

a linear regression to estimate parameters a; and b; in
(L) =ai(L}) +bi+ €, i=1,...,n—1, (4.132)

where €; represents the error term.

Table 4.2 summarises the results. Note that the coefficient of determination R? is above
99% in all cases. This indicates that the CEV-LMM is close to some one-dimensional
model. Now, let us turn our attention to the coefficient a;. Recall that we have predicted
in equation (4.129) that a,; takes the value of the separability constant v;, which is in our
case equal to 1 since of = of,t < T;. Observe that for all i € {1,...,n — 1} the coefficient
a; is indeed close to 1. The fact that it is systematically below 1 and that the coefficients
bi,i =1,...,n, are systematically below zero is a consequence of the drift in the SDE (4.114)
being negative on average. Most importantly, as discussed in Section 4.5, these results
suggest that the CEV-LMM is a good guide for an MFM under the terminal measure.

The above results come with a small caveat. The parameterisation chosen in Table 4.1
favours the problem in the sense that the probability of forward rates absorbing at the origin
is low. In particular, we found similar results to hold for increasing and decreasing initial
term structures and for other one-factor separable volatility functions provided that the
probability of absorption remained low. When this is not the case the relationship breaks

down, however in such case CEV-LMM might not be the most appropriate model.

Table 4.2: Summary of results of the regressions (L%, )" = a;(L7},)" + b; + €;.

a; bl R2

0.9941 -0.0030 0.9999
0.9894 -0.0054 0.9999
0.9863 -0.0071 0.9999
0.9844 -0.0082 0.9996
0.9832 -0.0085 0.9992
0.9828 -0.0080 0.9988
0.9838 -0.0068 0.9985
0.9866 -0.0050 0.9988
0.9920 -0.0028 0.9994

.

© 00~ O Uk W+

Following the discussion from Section 4.6 we wish to define an MFM under the terminal
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measure calibrated to caplet prices from the CEV-LMM and driven by a process z, satisfying
the SDE
day = of'xy (xf_l A sﬁfl)th, xo = Ly, € =0.001.1° (4.133)

Since the LCEV process is not a Gaussian process, we cannot use the standard numerical
implementation of the MFM under the terminal measure, but we can use the algorithm
introduced in Section 4.2. Recall that the algorithm requires us to choose the grid-points,
basis functions and evaluate the conditional expectations in equation (4.21). The LCEV
process does not have a closed form expression for the transition densities, but as discussed
in Remark 4.6 this can be overcome by discretising the driving process in time.

We have chosen to discretise the driving process by using a log-Euler scheme with time
steps of the size At = 1/16. Such an approach leads to a model driven by an approximation
of a LCEV process and the size of the time step At effectively controls the quality of the
approximation. For this reason choosing At = 1 can (and as we will later observe) lead to
different dynamics of the MFM.

The grid-points were chosen so that the probability of the process x taking value in-
between the smallest and the largest valued grid-point at each step was approximately
99.9999% and we used 150 grid-points at each time step. We choose to use the basis functions
of order 5 as described in Appendix A with constant extrapolation in the upper and lower
tail.

Remark 4.18. Clearly there are other choices one can make to obtain the building blocks
needed to implement the algorithm. In particular, one could potentially use a higher order

scheme to reduce the number of time steps in-between the setting dates.

With these choices the MFM can be calibrated to the caplet prices from the CEV-LMM
using the algorithm from Section 4.2. We have already shown that the relationship (4.129)
has a strong predictive power in the CEV-LMM, if the MFM has indeed similar dynamics as
the CEV-LMM we expect to observe similar relationship between the functional forms in
the MFM.

Figure 4.1 shows the plots of the functional form of (L%, )7 as a function of (L, ) in the
MFM and a scatter plot (100 paths) of (L%, )Y versus (L%,)” in the CEV-LMM for i € {3, 7}.
Observe that the scatter plots almost exactly overlay the functional forms obtained from the
MFM (At = 1/16) and a similar observation holds for other times and rates. This indicates
that the joint distribution of the LIBORs at a given date (L%i, ceey L%ﬂ) is close in the two
models.

Note also that the relationship between the forward rates (L7, )Y and (L, ) for the
MFM in Figure 4.1 is non-linear near the origin. This is because IE‘”"‘l(LiTi =0) > 0 but
the atom at zero disappears for LiTj, j <, since the LCEV driving process has continuous
transition densities.

Having compared the models’ joint distributions at a given setting date, we now wish to

compare their dynamics. We do so by comparing their future implied volatilities of caplet

161t turns out that choice of & does not affect the model significantly.
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Figure 4.1: (L%}, )7 as a function of (L7?)7 in the MFM for At = 1/16 (solid line) and a
scatter plot of (L%, )7 versus (L}?)7 in the CEV-LMM (crosses).

prices. Note that a time T} price of a caplet on the Léwi,i > j with a strike K is a random

variable D
T, Tit1 i
Do L — Kt
T, Trnt1

]:Tj:| . (4.134)

In particular, in the MFM it is enough to condition on the state of the driving process
x7;. On the other hand, in the CEV-LMM one needs to condition on the state of the
vector (L%}j, cee L%j). Therefore, Vf«j is a function of zr, in the MFM and a function of
(LjTj, cee L}j) in the CEV-LMM.

This allows us to compare the two models in the following way. First, we can evaluate
the value of V;;j for a given value of x;, = * in the MFM. Recall, that the state of the
driving process in the MFM determines the state of the economy and in particular the values
of the LIBORs. We can then determine the value of VTij in the CEV-LMM by conditioning
on the values of the LIBORs from the MFM L’i (z*),k =j,...,n. Since we have observed
the relationship (4.129) that the CEV-LMM is eésentially a one-dimensional model and such
a choice ensures that the state of the economy in the CEV-LMM is the same as in the MFM
we can view the differences in the forward caplet prices as only coming from the differences
in models’ dynamics.

Figure 4.2 shows the plots of time 75 and T5 prices versus strike of a caplet written on
LIBOR L% expressed as implied volatilities in the CEV-LMM, MFM with At = 1/16 and
MFM with At = 1. We have chosen the values of the x7, so that L%]_ took the values: 0.03
(top three lines), 0.06 (middle three lines) and 0.09 (bottom three lines). Observe that the
implied volatilities in the MFM with At = 1/16 and the CEV-LMM are very close and there
are only minor differences when the caplet approaches maturity. In particular, the skew
in the implied volatilities in the MFM has been preserved. On the other hand the implied

volatilities in the MFM with At = 1 are not only shifted away from what we observe in the
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Figure 4.2: Time T}, j € {2,5} forward implied volatilities versus strike of the caplet on L%
in the CEV-LMM (blue), MFM with At =1/16 (red) and At =1 (yellow) for the levels of
L}j: 0.03 (top three lines), 0.06 (middle three lines) and 0.09 (bottom three lines).

CEV-LMM but also become less skewed as the caplet approaches maturity.

Similar results hold for other caplets. The implied volatilities in the MFM with At = 1/16
are almost indistinguishable from the ones in the CEV-LMM when the time to maturity of a
caplet is large and we can observe minor differences when the caplet is close (one and two
setting dates) to maturity. On the other hand in the MFM with At = 1, the differences
between the two models occur much sooner. This indicates that simply discretising the
LCEV process in-between the setting dates leads to an approximation with significantly
different dynamics (transition probabilities).

We can draw two conclusions from Figure 4.2. Firstly, it is the combination of the choice
of a driving process and caplet prices which determines the joint distribution of LIBORs at
their setting date and the features of the MFM. In this section we have an example where
a different choice of the driving process for given caplet prices has a significant effect on
the forward implied volatilities. Secondly, in the MFM driven by the LCEV process with
At = 1/16 the evolution of the forward implied volatilities was stable and similar to the
one observed in the CEV-LMM and therefore the MFM represents an arbitrage-free and
computationally efficient alternative to the CEV-LMM.

4.8 Conclusion

In this chapter we addressed two important issues related to one-dimensional MFMs driven.
Firstly, we described two new algorithms that can be used to implement the MFM under
the terminal and the spot measure for a one-dimensional (not-necessarily Gaussian) driving
process.

Secondly, we have shown how the driving processes can be analysed using the copula
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theory and shown that it is only the dependence structure of the driving process that
influences the model dynamics.

Finally, by exploring the link between the one-factor separable local-volatility LMM and
the MFM under the terminal measure, we described a systematic approach that can be used
to specify MFMs with stable evolution of future caplet implied volatility surface. Moreover,
the resulting MFM can be viewed as a one-dimensional arbitrage-free approximation to
the LMM. We have demonstrated our approach by approximating a one-factor separable
CEV-LMM. This is arguably the most challenging model to approximate amongst the popular
local-volatility LMMs due to LIBORs absorbing at the origin with positive probability.

To conclude let us point out some interesting possible applications of our findings and
some ideas for future research.

The use of copula theory in the context of MFMs provides us with exciting new possibilities
both for defining the MFMs and implementing them. From the implementation standpoint
it seems that using processes with uniform marginal distributions would be desirable as it
would allow for the grid-points to be ‘evenly spaced’ in the sense of the probability mass
between two consecutive grid-points. From the theoretical perspective it gives us a simple
way to move away from processes with Gaussian dependence structure as there exist several
non-Gaussian parametric families of copulae that are consistent with the Markov property
(see Darsow et al. (1992)).

Another interesting question worth pursuing is the relationship between the MFM under
the spot measure and the LMM. Pietersz et al. (2004) claimed that the one time step
approximation to the separable LMM can only be used to implement the LMM under the
terminal measure as it avoids the problems occurring from numeraire being path-dependent.
However, as we have seen in Section 4.3 the path-dependence of the rolling bank account
numeraire can be dealt with efficiently and similar ideas can be used to implement a one-factor
separable LMM.
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Chapter 5

A Two-currency Markov-functional
Model under the Spot Measure

In the previous chapters we have been interested in the economies consisting of ZCBs
denominated in the same currency. In this chapter we extend the economy of our interest by
adding to it ZCBs denominated in a different currency.

In the context of LIBOR market model the two-currency extension have been introduced
by Schlogl (2002) and subsequently studied Benner et al. (2009), Mikkelsen (2002) and others.
While the LIBOR market models offer a theoretically appealing approach for modelling the
two-currency economy they suffer from the high-dimensionality as outlined in Section 2.3
and later in Chapter 3.

To avoid the problem of high-dimensionality we will be interested in the two-currency
extensions of the Markov-functional model. In the context of MFMs a two-currency model
was first introduced by Fries and Rott (2004). A special case where the dynamics of the
foreign currency are deterministic was also presented by Fries and Eckstaedt (2011). The
models introduced in the two papers use the Markov-functional approach to calibrate to the
domestic and foreign interest rate markets and a parametric approach to model the foreign
exchange market.

The aim of this chapter is to present a Markov-functional model of a two-currency
economy that uses the ‘Markov-functional sweep’ — uses the option prices to determine the
functional forms — to calibrate to both interest rate markets and to the foreign exchange
market.

The remainder of the chapter is structured as follows. In Section 5.1 we formally define
the two-currency economy and discuss how it fits in the arbitrage pricing theory framework
from Section 2.1. In Section 5.2 we define a two-currency MFM and review the approach
taken by Fries and Rott (2004). In Section 5.3 we propose a new version of a two-currency
MFM under the spot measure. Section 5.4 discusses its numerical implementation on a grid

and Section 5.5 concludes.
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5.1 Two-currency Economy

Let 0 =Ty <11 < ... < T,y1 be an increasing sequence of dates. Of our interest will be
an economy consisting of ZCB denominated in two different currencies — referred to as the
domestic and the foreign currency — maturing on the dates T3, = 1,...,n+1. More precisely,
for each i = 1,...,n + 1, there exist two ZCBs maturing at time T, one denominated in the
domestic currency and one denominated in the foreign currency. We will refer to them as
the domestic (T;-maturity) ZCB and the foreign (T;-maturity) ZCB and denote their time
t < T; values by Dy 1, and DLTZ respectively. Note that the prices of domestic ZCBs are
denominated in the domestic currency and the prices of foreign ZCBs are denominated in
the foreign currency.

We will assume that the two currencies can be exchanged at any time without frictions
and will denote by FX = (FX¢)cpo,1,,,] the (spot) foreign exchange rate process in the
direct quotation. In particular, F X, < T,,.1, is the price of a unit of the foreign currency
denominated in the domestic currency. Furthermore, we will assume that the foreign exchange
process is strictly positive and finite-valued P-almost surely.!

Note that the arbitrage pricing theory as presented in the Section 2.1 assumed that
the economy consists of assets denominated in the same currency and cannot be applied
directly to the two-currency setting. We will overcome this issue by taking the foreign ZCBs
denominated in the domestic currency, FX,D,7T1. = (FXtDt,Ti)te[QTi]ai =1,....,n+1, as
the fundamental assets alongside the domestic ZCBs.?

This allows us to use all the tools presented in Section 2.1, in particular we know
that if there exists a numeraire pair, such an economy is arbitrage-free (in the sense of
Definition 2.5) and the fundamental pricing formula (2.9) holds for the replicable contingent
claims. However, it is beneficial to introduce more ‘natural’ terminology when considering
the foreign denominated claims.

We will say that Vr is an attainable foreign claim expiring at time T' < T, 44 if Vp :=
FX1Vyp is an attainable claim in the sense of Definition 2.7. Note that for the claim Vi

its time ¢ < T price V; and can be obtained from the fundamental pricing formula. This

allows us to define the foreign currency denominated time ¢t < T price f/t of f/T by f/f = FL)Z
Moreover, it is easy to see that for any numeraire pair (IV,N)
- N, FX1Vr| 4
Vi = E Fi. 5.1
T Ex { Ny |7t (5-1)

We will refer to equation (5.1) as the fundamental pricing formula for foreign claims.
Now we can define the concept of foreign numeraire. We will say that a strictly positive

process N = (Ny)ie(o,1,,,] is a foreign numeraire if N7, is an attainable foreign claim and

+1
N is its foreign denominated price process.

IRecall, we are working on a filtered probability space (Q, F, {Ft}t>0,P).
20f course we need to extend the time domain of the ZCBs to [0,T,,+1] in the sense of Remark 2.13
or 2.14.
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Note that if N is a foreign numeraire then FXN := (FXtNt)te[O,TT,,+1] is a numeraire
in the sense of Definition 2.1. Moreover, if the economy is arbitrage-free there exists an
equivalent martingale measure N associated with FXN. Then the fundamental pricing
formula (2.9) can be expressed in terms of (FXN,N) as

A AP S
FX, FX+Nr

J-‘g“] (5.2)

and the fundamental pricing formula for foreign claims (5.1) can be expressed in terms of
(FXN,N) as

_ \%
T

]—",;4} . (5.3)

The importance of equations (5.2) and (5.3) is in showing that by changing the measure
to the one associated with a foreign numeraire process, we effectively obtain the pricing
formulae that one would get if we have chosen view the two-currency economy in the single

currency economy denominated in foreign currency.

Remark 5.1. A careful reader will notice that there is a slight difference between the two
choices for the currency which is used to define the single-currency ‘embedding’ of the two-
currency economy. In particular, the asset generated filtration F4 as defined in equation (2.2)
will in general depend on the choice of the domestic currency. However, this is a minor
difference which is not of practical importance. In particular, in the rest of the chapter we

will simply condition on Fy in the fundamental pricing formula (see also Remark 2.10).

Having defined the economy of our interest we can define the domestic and foreign
deposits and forward rate agreements similarly as in Section 2.2. Which in turn allow us to
define forward and spot LIBOR rates. For i = 1,...,n, and t < T; we will denote the time ¢
value of the domestic forward /spot LIBOR by Li and the value of the foreign forward/spot
LIBOR by Zi. One can than show using the same arguments as in Section 2.2 that

o ‘Dthz‘ - Dt,Ti+1

L 5.4
' Dy, (54)
.. Dt,T; — Dy,
i_ ZN—t’THl’ (5.5)
@Dy
note that we implicitly assumed that the accrual factors ay,7 = 0,...,n, are the same in

both economies, this can be easily relaxed and allow the accrual factors to be different.?
In similar fashion we can then define domestic and foreign swaptions and caplets. As
the reader will probably guess we will add a tilde to the to the notation for the domestic
instrument prices to denote the prices of foreign counterparts, in particular we will denote
the time ¢t < T;,i € {1,...,n} price of the digital caplet in-arrears with strike K written on
i and Li, by VA (K) and V2 (K) respectively.

3For example it might be the case that two economies have different day-count conventions.
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5.2 Two-currency Markov-functional Models

Recall that in a (single-currency) MFM the prices of (domestic) ZCBs can be expressed
as functions of some driving process x which is a Markov process under some equivalent
martingale measure N corresponding to a numeraire process N. We now generalise this to a
two-currency economy.

In a two-currency economy we will consider a model to be Markov-functional if there exist
a triplet of processes (x,y, z) which are Markov under the measure N and with respect to the

augmented natural filtration generated by them. Moreover, we will additionally require that

1. fori € {1,...,n} and t <T; the time ¢ price of the domestic T;-maturity ZCB Dy r, is

a function of xy;
2. for t <T,4+1 the time t value of the foreign exchange rate FX, is a function of y;

3. for i € {1,...,n} and ¢t < T; the time ¢ price of the foreign T;-maturity ZCB bt’Ti is a

function of z.

Of our interest will be Markov-functional models driven by one-dimensional processes z,
y and z. In particular, we wish to construct a Markov-functional model by calibrating it to
prices of domestic and foreign caplets and foreign exchange call options in the spirit of the
MFMs from Sections 4.2 and 4.3.

As Fries and Rott (2004) observed this turns out to be a difficult problem. One of the
reasons for this comes form the fact that when the numeraire process IV is a function of
process x only (for example if we take domestic T;,41-maturity ZCB or a domestic discretely
compounded rolling bank account as the numeraire) it is easy to see that processes z, y and
z cannot be independent.

Fries and Rott (2004) address this issue by discretising the processes x, y and z in time

and assumes that they are of the form

xTi = mTi—l + O—;v—l(W’zzg, - W’lz—‘i_l )’ (5'6)
Y1, =Y, t O—g/—l(W’ZZ{i - W]y“i,l) + /’I’ifl(xTi—l ) yTi—17ZTi—1)7 (57)
zTi = ZTifl + o'ffl(sz-‘l - W%i71)7 (5'8)

where W* WY and W* are independent Brownian motions, o¥ 1,07 ;,07 ; >0, and ;1
is a drift term that is determined during the calibration process.
Under the above assumptions, it turns out that for any foreign claim Vz, expiring at time

T; its time T); < T; price is given by

.

Vi, = Br,En {B

]—"TJ} (5.9)

i

as long as the numeraire process N is dependent on the process z only (see Fries and

Rott (2004)). Note that in equation (5.9) the foreign claim is discounted using the foreign
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rolling bank account B but the expectation is taken with respect to the domestic EMM N.
This turns out to be the consequence of the fact that the one time-step increments of the
discretised processes x, y and z are conditionally independent.

To retain the ‘symmetry’ — in the sense that the domestic and foreign currency can be
interchanged — in their model, Fries and Rott (2004) choose to set up the model under
the domestic spot measure. They calibrate the domestic and foreign ZCB markets to the
domestic and foreign digital-caplets in-arrears — note that equation (5.9) allows this to be
done using the approach from Section 4.3 independently for each of the currencies. Then
they choose to calibrate the foreign exchange rate market iteratively forwards in time to
prices of call options by using a parametric functional form to model the dependence of the
foreign exchange rate on process y.

In the next section we will propose a construction that will allow for the Brownian
motions W* W¥ and W# to be dependent and that will also use the Markov-functional

sweep to calibrate the model to the prices of foreign exchange options.

5.3 The Model

In this section we propose a new algorithm that for constructing a two-currency MFM under
the domestic spot measure. As was proposed by Fries and Rott (2004) we will discretise the

driving process (x,y, z) in time. In particular, we will assume that the driving process is of

the form
Tr, =TT, , + Uzg’c—l(W%i - Wiz“i,l)v (510)
yr, = O'iy—l(W’lgi — W/Jlii_l) + ,Uzi—l(xTi,l Y YTy 15 2T 4 )7 (511)
2T, = 27, + Uz'z—l(WZZ"i - WYZ},,l)v (512)

where ©g = yo = z9 = 0, W, WY and W?* are possibly correlated Brownian motions,
of .00 1,071 >0,and p;_1 is a drift term that will be determined during the construction.

Next we make the following assumptions

1. In our model:

1.1. L} ,i=1,...,n, can be written as an increasing cadlag function of z;

T ) s Iy i)
1.2. FX7,,i=1,...,n+1, can be written as an increasing cadlag function of yr;
1.3. L"Ti,i =1,...,n, can be written as an increasing cadlag function of zr;;

2. We are given:

2.1. the initial value of the T7-maturity domestic ZCB Dy 1, and prices of the digital

caplets in-arrears written on LiTi,i = 1,...,n, for strikes K > 0 which are
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represented by a decreasing cadlag function

; 1
dca,i .
Vo (K) = Ego { Br, 1{L§~i>K}} ) (5.13)
2.2. the prices of digital call options written on the time 7;,7 =1,...,n + 1 value of

the foreign exchange rate for strikes K > 0 which are represented by a decreasing

cadlag function

; 1
VOdFX7 (K) = Epo |:BT1{FXT">K}:| ; (514)

2.3. the initial value of the Tj-maturity foreign ZCB ﬁ07T1 and prices of the digital
caplets in-arrears written on f)ifb_,i = 1,...,n, for strikes K > 0 which are
represented by a decreasing cadlag function

“rdca,i FXT1

Note that assumptions 1.1 and 2.1 are exactly the same as assumptions 1 and 2 in the
construction of the single-currency MFM under the spot measure in Section 4.3. Assump-
tions 1.1, 1.2 and 1.3 will ensure that the ‘Markov-functional sweep’ can be performed. On
the other hand assumptions 2.1, 2.2 and 2.3 provide us with the market data needed to
calibrate the model.

5.3.1 Main Idea

Ideally the one would like to perform the construction of an MFM iteratively forwards in

time by performing the following steps at time 73,7 € {1,...,n}
1. Recover the functional form of LZT from prices of domestic digital caplets in-arrears;
2. Recover the functional form of F X7, from prices of digital foreign exchange call options;*
3. Recover the functional form of I~/’T from prices of foreign digital caplets in-arrears.

Unfortunately, the procedure is not so straightforward. The reason for this comes from the
fact that a model of a two-currency economy is determined by the dynamics of the numeraire
— in our case the discretely compounded rolling bank account B — and of the spot foreign
exchange rate process FX. In particular, note that F.X Ti_1DTi_1,T7: is the time T;_; price of
the claim paying FXr, at time T; and therefore

~ FXr.
FXTi—1DTi—1,Tz‘ = BTi_lE]FU |: B L

fTi_l} . (5.16)

T;

4Note that we need to perform this step also for time Ty 1.
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Observing that By, is Fr, ,-measurable and that Dy, , 7, = (1 + aii%jfl)_l then allows us

to rewrite equation (5.16) as

i—1
I+ ai1Ly, — o [FXT

FXp ———
Trll—l—ai,lL%«:}l

Fri_y]. (5.17)

In particular, observe that the functional form of i}ill which was determined in the previous
step is also uniquely determined by the functional forms of LiT:_ll, FXp,_, and FX7,. Or
alternatively, the functional form of FX7, has to be chosen so that equation (5.17) holds.
This demonstrates the importance of the flexibility to choose the drift during the calibration.
Had we chosen the drift term u;_; in advance, calibrating to the digital swap options would
in general result in a functional form for F X7, that would not satisfy equation (5.17).

However, the ability to freely choose the drift term does not solve problems of performing
the step 2 in the above procedure entirely. In particular, it is not trivial to determine the
drift term p;—1 and the functional form of FXr,, because to determine one we need to know
the other. From a theoretical perspective this is not a problem as we only need a solution —
pair of functional forms (FXr,, u;—1) — to exist. However, to apply the model in practice we
need to be able to construct the solution, which is not a trivial task.

Here we propose to find a suitable pair (FXr,, ;—1) using a predictor-corrector type of

approach. In particular, we propose to use the following procedure instead of step 2:
2.1. Choose an initial functional form for p;_1;
2.2. Determine the functional from of F X7, by calibrating to digital call option prices;
2.3. Adjust the drift so that equation (5.17) is satisfied;

2.4. Re-evaluate prices of digital call options, if the fit to the market is acceptable proceed
to step 3, otherwise go to step 2.1.

Our conjecture is that for a reasonable initial choice of u;_; the above algorithm converges.
In the next three subsections we describe in more detail how the i¢th time step of the
proposed algorithm can be implemented. In particular, we assume that prior to ith step we
have already recovered the functional forms of LZ;FJ_, [N/Z‘fj, FXr, and pj_y for j € {1,...1 —1}.

5.3.2 Calibration to the Domestic Digital Caplets In-arrears

We can determine the functional form of LY, and consequently of Br,,, from the prices of
digital caplets in-arrears as was done in Section 4.3 for the single-currency MFM under the
spot measure.

First, we define a function J%! by

1

Jz,z(gj*) = Epo |:_BTll{zT1 >x*}:| . (518)
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Note that, we have already determined the functional form of Bz, in the previous step and
therefore the function J*% is well defined. We can now use assumptions 1.1 and 2.1 to recover

the functional form of Li;pi using the same argument as in Section 4.3, in particular
L (a*) = sup{ K > 0; Vg (K) > J™'(a*)}. (5.19)

Observe that determining the functional form of L’T involves only integration over the joint
distribution of process x. Therefore, one can perform it for all the time step independently

of the calibration to the foreign exchange and the foreign interest rate markets.

5.3.3 Calibration to the Foreign Exchange Digital Call Options

To calibrate the model at time step 7T; to the prices of digital call options we have proposed
a predictor-corrector type scheme. Before describing its two main steps, we need to choose
an initial value for of the drift term. To do so, let us return back to equation (5.17)

1+ aiflLé’vjl

L — Byo [FXr,

FXr, =
T1711+ai_1L§ﬂ:}

Friy].

1

By assumption 1.2 F.X7, is an increasing function of
yr, = Ug’l_l(W% - ij“i,l) + /’l’ifl(xTi—l Y YT 1 ZTi—l)‘

In particular, the Brownian increment W% - W%_l is independent of the o-algebra Fr,_,
while the drift term p;—1(x1,_,,y7,_,, 21,_,) i Fr,_,-measurable. Therefore the conditional
expectation on the right-hand side of equation (5.17) has to be o(pi—1 (1, 1, ¥, 1,21, ,))-
measurable.

On the other hand, we know by observing the left-hand side of (5.17) the exact functional
form of the conditional expectation on the right-hand side. Consequently, the drift term has

to be measurable with respect to o-algebra o(FX1,_, 1,(x7,_,,y1,_1,21,_,)) Where

1+ Oli—ng":_ll (ITi—l)

FXT (xr,_ .y 21 ,) = FXr, L — 5.20
Ty (T YTy 21 y) 7, (Y1) o E ) (5.20)
is the time T;_; value of time 7T; forward foreign exchange rate and we can write
lu’i_l(xTi—l Y YT, 1 ZTi—l) = Hi-1 (FXT'i,—lvTi (:L‘Tmfl Y YTi_15 AT )) . (5'21)
Moreover, we can write equation (5.17) as
FXr1,_, 1, =Ep [FX1,|Fr,_,]. (5.22)

Remark 5.2. Note that equation (5.22) is the reason for a difference between our setup of
the process y in (5.11) and the one in Fries and Rott (2004) in (5.7). In particular, it allows
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us for the drift to be dependent on the (xr, ,,yr, ,,zr,_,) only trough FXr, | 1,.

Having, fixed the initial drift, we can now describe the predictor step, that is recovering
the functional form of FXr, from foreign exchange digital call option prices. Similarly to

the previous step we now define a function J¥* by

Jy’ (y ) - EIFO |:B,I,1{yT7>y*}:| . (5.23)

i

Note, that the functional form of the numeraire By, is known and that we have already fixed
the drift term j;_1 and consequently the distribution of yz,. Therefore, the function J¥*
is well defined. We can then use assumptions 1.2 and 2.2 to recover the functional form of
FXr, as

FXr1,(y*) = sup{ K > 0; Vg7 (K) > g% (y*) ). (5.24)

Determining the functional form of as above will in general result result in the foreign
exchange rate FXr,(yr,) that no longer satisfies equation (5.17). Therefore, we need to
perform the corrector step that adjusts the drift appropriately.

In particular, we need to determine a new value of drift p;—1 (FXr, , 1) such that

FX1, 1 = Epo [FX1,(yr,)

(xTiflayTi—17ZTif1)] (525)
= Epo [FXTL' (Ugfl(W% - Wiy",-,l) + luifl(FXTi—hTi)) ’FXTL'—I;TL} (526)

= / FXTI (0?_1 AV4 Tz — Ti,1U + ui,l(FXTi_l,Ti))(ﬁ(u)du, (527)

— 00

where ¢ is the density function of a standard normal random variable. By assumption 1.2
FXr, is an increasing function of y7, and therefore ;1;_; has to be an increasing function of
FXTL'*l;Ti.

5.3.4 Calibration to the Foreign Digital Caplets In-arrears

Finally, we describe how to recover the functional form of the foreign LIBOR fji;,ji. Unsur-

prisingly, we keep with the existing theme and define a function J*? by

A FXo, }
J5(2") = Epo |21, oy 5.28
(z%) = Ep [Bn {r;>27} (5.28)

Note, that we already know the functional form of By, and FXr, and therefore the function
J#' is well defined. Again, we can use assumptions 1.3 and 2.3 to perform the Markov-

functional sweep and determine the functional form of [NﬂT from

L% (2*) = sup{ K > 0; %dca’i(K) > J7(2%)}. (5.29)

Remark 5.3. Recall that Fries and Rott (2004) used could calibrate to the foreign digital

caplets in-arrears independently of calibrating to domestic ones and the foreign exchange
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rate. In our model this is in general not the case as we allow for the Brownian motions
W= WY and WZ? to be correlated. Nevertheless, if the increments of Brownian motions
are independent, one can show that (5.9) also holds in our model and the calibration to the

foreign caplets can be performed independently.

5.4 Numerical Implementation

Let us now outline how to implement the model presented in the previous section on a grid.

For each of the time steps T;,i € {1,...,n}, we choose grid-points

f1<...<hi, (5.30)
hi, <...<hi, (5.31)
1<...<hi, (5.32)

corresponding to states of xr,, yr, and z7, respectively. Our aim is to recover the functional
forms of Li(h?;), FXr,(hY;), L(hi;) for j =1,...,m, and determine the functional form
Of the dI‘lft Ml(hijap)hzjya h’i]z) = :ui—l(FXTi—l,Ti(h:iE,jxvh%’jy7hijz)) fOI' jl’ajya.jz = la sy M.

To ease the burden of notation we will adopt the following convention, by s we will denote

the vector valued process defined by
Si 1= (memiZTi)7 i= 07"'7”7 (533)
and by h; j,i € {1,...,n},j = (Ju, Jy, J=) € {1,...,m}?, we will denote the grid-point

hig o= (hi;, hi; b s)- (5.34)

First we recall that we can calibrate to the domestic digital caplet in-arrears prices
and determine the functional form of L? independently of the calibration to the foreign
digital caplets in-arrears and foreign exchange digital call options. To do so, we can use the
algorithm presented in Section 4.3. In the rest of the section we will therefore assume we
have already determined the functional forms of L’T on the grid points and therefore also of
the rolling bank account.

One of the problems we face when implementing the proposed model is that distribution
of st, is not Gaussian for ¢ > 2 (we later discuss the case i = 1 separately) and we can only
build it iteratively by observing that the conditional distribution sz|sr, , is Gaussian. In
particular, we need to build the information about the joint dynamics of process s in a way
that will allow us to efficiently evaluate the functions J¥* and J*! on the grid-points and
later also allow us to price other derivatives.

Recall that we were faced with a similar, albeit only one-dimensional, problem in
Sections 4.2 and 4.3. There, we introduced the piecewise polynomial basis functions and

defined suitable expectations E; ;’s that allowed us to build up the distribution of them
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model efficiently. Here, we will outline how to extend this idea to our setting.
Let i € {1,...,n} we will say that functions b; ; : R = R, j = (jiz, jy,j2) € {1,...,m}3
are basis functions if they are piecewise polynomial® and satisfy the following condition for

all Jj= (jwajyajz); k= (kacv kyv kz) € {17 s ’m}g
b’L,J(h’L,’C) - 6j:z’kz6jy,ky5Azykz' (5.35)
Then we can define for any function f : R* — R a function f : R* — R by

f(x,yv Z) = Z f(hi,j)bi,j(xay7z)a x,Y,z S R (536)
j:(j:cajyvjz)
je{1,....m}3

In particular, note that the two functions agree on gridpoints

F(hig) = f(hig), J€f1,...,m}°. (5.37)

Moreover, for a suitable choice of basis functions and any ‘smooth enough’® function f
the approximation f is a ‘good’ (piecewise polynomial) approximation of f on the domain
(03, b ] x [BY, 3] x [B3, Bz,

In particular, at each time step T;, € {1,...,n}, we use the basis functions to define

constants E; j,j € {1,...,m}3, by

Ei j = Epo [b](ST)] : (5.38)
Br,

We now sketch how E; ;’s and the functional forms of FX, and INJ%;pj_l can be recovered.
First, we note that ¢ = 1 is a special case since at time zero the drift term o (o, yo, 20) is
constant and therefore the joint distribution of (1, yr,, 27,) is Gaussian. In particular,
without loss of generality we can set py = 0 since any deterministic drift can be absorbed
into the functional form of FXr, . Moreover, observe that by fixing po = 0 we have also
made E; ;’s well defined.

We can therefore evaluate JY'! on the grid-points directly

1
1 —
Jy (h?i]y) = EFU |:B,T11{yT1 >h}1/,jy}:| (5.39)
— 0y—1
= (1 + aoLO) Ego [1{03W;{1 >h‘il,jy }] (540)
~ (1 +a0L0)—1q><— ", ) (5.41)
0 O'g /7T1 ’ .

where @ is the cumulative distribution of a standard normal random variable. Consequently

we can recover, the functional form of FXr,.

5Note that one will need to sensibly divide the R3 into partitions on which the coefficients are constants,
two natural choices are cuboids or triangular pyramids with vertices corresponding to grid-points.
6The smoothness condition depends on the choice of basis functions.
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Finally, we can determine the functional form of I~/1T1 by first evaluating J*! on the

grid-points

z z FXTl (yTl)
J 11( l,jz) = EIFO |:_BTl{zT1>hijz} (542)
1
= (1 + Oé()Lg)ilEFo |:FXT1 (yT1 )E]FO [l{le>hijz}|yT1]:| (543)

= (1+agLd) 'Epo

FXr, (yTl)(I)<

a5 Y,z z
w0 PT YT — hi,
o T ! )] (5.44)

o5\ T (1= (p7))?)

where pf.* = Corr(W7,,W7,). We have manipulated J"*(hj ; ) to equation (5.44) which

only involves integrating over a one-dimensional Gaussian distribution and can be performed

by many existing numerical integration techniques.

Now we show how to perform a general time step. In particular, we assume that we have
recovered the functional forms of LZT__I1 FXr,_,, f/ZT__ll and the values of E;_ ;’s for some
i€{2,...,n}.

We first show how to recover the functional form of FX7, by evaluating J¥! on the
grid-points. We assume that we have chosen an initial guess for the drift p; 1 or we have

obtained it from the corrector step.

; 1

JVH(hY ;) = Epo BTl{yTpth (5.45)
1

=Ep | 5B [1{yTi>hg1jy}]]-‘Til]] (5.46)
1

= Epo B—TE]FO [1{9T7:>h?,jy}|sTi*1] (5.47)

i 1 pi-1(s7,_,) —hi; )
=E S P v | 5.48
| @+ 125 ) B, ( VT T (549

Note that LlTill is a known function of x7, ,. We can now use the approximation using the

basis functions b;_; ; and express J y”(hf jy) in terms of E; ;’s which are already known.
,

. i—1(hik) —hY . b ,
Jwaﬁh>z§anlgqukg¢(“ 1) W)Ew[ll*“ﬂlq (5.49)
k

0?71\/ T, —Ti—1 BTi—l

o Beetewony
— 1+ai 'L (B ) o Ti—Tia

After we have recovered the functional form of F X1, we need to use the corrector step to
make sure our model remains arbitrage-free. We then repeat the two step until we achieve

sufficient level of convergence at which point we can freeze the drift term u;_; and determine
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the E; ;’s, by conditioning on Fr,_,

e
E;; = Epo %(;T)} (5.51)
[ 1 b (s7,) }
=E Eo 2 Fr,_ 5.52
* _BTi 1 * |:]- + o 1LT 1(xTz 1) e ( )
=E E SRR ST, 5.53
o BT; o |:1 + ai—lLlT:,ll ('rT¢71) i ( )

= hi1k] (5.54)

2 : 1 1k
L+ o= 'LE (b, ) o bes o)

Finally we can recover the functional form of LZ by evaluating function J** on the

gridpoints
i -FXTi (yT1)
Jz’z(hijz) = EFO L B’]"7 l{ZT >hf]z} (5.55)
[ 1
= Epo EEFU [FX1,(yr, )1{zTi>hijz}]]—'TH]] (5.56)
[ 1
= Epo EEFO [FXT7 (yTi)]‘{ZTi >hZ, } |$Ti—1 ) yTi]:| (557)

Now observe that, the random vector (yr,, z1;) has a known bivariate normal distribu-

tion and therefore 27, |yr,, s7,_, has a known normal distribution. In particular, using the

tower property of conditional expectation we can show that

Epo [FXTi (yTi)l{ZTi>hf,jz } ’8Ti—1} = Epo [FXTi (yTi)q)(gi,jz (ST¢71 y yTl)) |5T,-,1] ) (558)

for a known function g; ;. : R* — R. This, then allows us to evaluate conditional expectation
Ero [FX1, (Y1) 1 (g, >hs 3

Jz

one-dimensional numerical integration. Then we can finally determine the value of J"* on

STFI] on the grid points h;_1x,k € {1,...,m}3, by using only

the grid-points as a linear combination of E;_; ;’s.

5.5 Conclusion

In this chapter we have proposed a new two-currency Markov-functional model, which can
be calibrated to the smile in the domestic and foreign caplet prices and foreign exchange
options. We have used the idea of Fries and Rott (2004) and discretised the driving process
first and then constructed the model. By doing so we avoided dealing with state-dependent
drifts which would occur in the continuous time setting.

The model proposed in Section 5.3 relies on the predictor-corrector step to converge. We
are yet to prove under what conditions this is the case and test it numerically. It is our

conjuncture that predictor-corrector step indeed converges (possibly under mild technical
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conditions).
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Chapter 6

Conclusion

In this thesis we have been interested in the low-factor market models of interest rates. We
have contributed to the existing literature on the LIBOR market model, Markov-functional
model and two-currency Markov-functional model.

In Chapter 3 we were interested in the time-homogeneous separable LMMs. First,
we extended the concept of separability to the LMMs driven by d-dimensional Brownian
motions with correlated components and proved that the single time-step approximation
remains a function of a d-dimensional Markov process under the extended definition of
separability. Next we focused on the classification of the time-homogeneous separable LMMs.
We have shown that the problem of finding the time-homogeneous parameterisations of
separable LMM can be reduced to finding solutions of a Levi-Civitd equation subject to
additional conditions. This allowed us to characterise the two- and three-factor separable
time-homogeneous LMMs. In the two-factor case we found all the parameterisations and
in the three-factor case we found all parameterisations that are of practical interest (see
Remark 3.10). We have then analysed the parameterisations obtained and showed that they
are indeed of practical interest. In particular, in the three-factor case we can obtain the
popular Rebonato’s abed instantaneous volatility function.

In Chapter 4 we focused on the Markov-functional models. First we discussed the
numeraire approach and provided sufficient conditions under which a term structure model
defined by a numeraire pair is Markov-functional. Next we restricted ourselves to the
one-dimensional Markov-functional models under the terminal and the spot measure. Unlike
the existing literature that is focused on the Gaussian driving processes, we were interested
in the diffusion driving processes with continuous marginal distributions. We introduced
two new algorithms that can be used to implement a one-dimensional MFM under the
terminal and the spot measure for such a driving process. The algorithms relied on the use
of piecewise-polynomial ‘basis functions’ that allowed us to efficiently approximate smooth
functions and build the distribution of the driving process iteratively forwards in time. We
then shifted our attention to the problem of choosing an appropriate driving process. First,

we used the copula theory to prove that it is the dependence structure of the driving process
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and not the marginal distributions that influence the dynamics of the one-dimensional MFM
under the spot and the terminal measure. Next, we approached problem of choosing an
appropriate driving process by relating the one-factor separable local-volatility LMMs to
the one-dimensional MFMs under the terminal measure. To do so we first showed that the
concept of separability and can be extended to the one-factor local-volatility LMMs. Based
on this we proposed and gave heuristic justification for an approach that can be used to
define one-factor MFMs under the terminal measure with dynamics similar to the dynamics
of a one-factor separable local-volatility LMM. Finally, we demonstrated our approach on an
example.

In Chapter 5 we proposed a new two-currency Markov-functional model that can calibrate
to the domestic and foreign interest rate markets and the foreign exchange market. The
novelty of our approach is the use of ‘Markov-functional’ sweep to determine the functional
form of the foreign exchange rate and the predictor-corrector step that we conjectured
will converge and ensure that the model is arbitrage-free. We outlined the numerical
implementation of such an approach using ‘basis functions’ that ensure that the model can
be implemented efficiently.

To conclude the thesis let us suggest some possibilities for further research and outline
how the topics discussed are connected and can be used beyond the context in which they
were presented.

Firstly let us discuss the concept of separability and the single time-step approximation.
We have presented two extensions of the separability condition. In Chapter 3 we extended
it to the (log-normal) LMM driven by a Brownian motion with correlated components. In
Chapter 4 we have extended it to the one-factor local-volatility LMM. It is not difficult to
see that we can combine both generalisations and extend the separability to the d-factor
local-volatility LMM driven by a Brownian motion with correlated components. We can
then show that the single time-step approximation of such a model is d-dimensional when
the separability condition is fulfilled (a slightly different approach has been outlined in
Section 12.8 in Joshi (2011), while the full details are not given there we believe that it
is equivalent to our proposal). In particular, we can then use the two- and three-factor
parameterisations obtained in Theorems 3.8 and 3.9 in the context of the two- and three-factor
local-volatility LMM.

The two- and three-factor separable parameterisations are not only interesting in the
context of LMMs but have practical implications for the MFMs as well. Recall that the
one-factor separable LMM under the terminal measure has similar dynamics to the one-
dimensional MFM under the terminal measure (see Section 4.5). Bennett and Kennedy
(2005) believe that this is also the case for the multi-factor separable log-normal LMMs
and the multi-dimensional MFMs under the terminal measure (see Section 19.5 in Hunt
and Kennedy (2004) for construction of the multi-dimensional MFM). It is our view that
this is also the case for the multi-factor separable local-volatility LMMs. We can then use
the two- and three-factor parameterisations to define driving processes for the two- and

three-dimensional MFMs under the terminal measure that have similar dynamics to the two-
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and three-factor separable (local-volatility) LMMs. Such MFMs are an arbitrage-free and
computationally efficient alternative as the two- and three-factor separable LMMs.

One can also apply the concepts from the MFMs to the LMM setting. Recall that we made
a comment that Pietersz et al. (2004) claimed that the single-time step approximation of a
separable LMM can be used only under the terminal measure to avoid the path-dependence
of the numeraire. In particular, when using the single time-step approximation of a separable
LMM one wishes to implement the model on a grid. Therefore, it appears that using the
rolling bank account as the numeraire would be problematic as the numeraire discounted
payoffs can no longer be represented by a single grid-point but depend on the way we got to
the grid-point. Note that this is exactly the problem one faces in the one-factor MFM under
the spot measure. One can then implement the one-factor separable LMM under the spot
measure by using the construction of the one-factor MFM under the spot measure. The only
difference is that in the LMM the functional forms of the LIBORs at their setting date is
determined by the drift approximation used and not by the ‘Markov-functional sweep’. Note
that this idea can also be generalised to a multi-dimensional setting.

The implementation of the single time-step approximation to the separable LMM under
the spot measure suggested above gives rise to a natural question: Is there a connection
between the separable LMM under the spot measure and the MFM under the spot measure?
While it is reasonable to believe that the answer is positive this remains an open question. In
particular, we can then ask ourselves what is the relationship between the MFMs under the
terminal and the spot measure. Since, the prices of derivatives in the LMM do not depend on
the EMM chosen and the MFMs under the terminal and the spot measure are have similar
dynamics as the separable LMM under the terminal and respectively spot measure, how
different or similar are the two MFMs?

The application of copula theory to MFMs offers a new way to view and study them.
From theoretical perspective it would be interesting to extend Theorem 4.12 to the multi-
dimensional MFMs. However, the practical applications of this approach are the most
exciting part. Firstly, copula theory offers a simple approach that can be used to define
grids with equal probability mass between the consecutive grid-points, which seems to be a
desirable property. Secondly, there are several known parametric families of copulae that
can describe the time dependence of a Markov process. This is interesting from a practical
perspective as it allows to move away from the Gaussian dependence while retaining the
numerical tractability as the transition densities are known explicitly.

Last but not least, let us mention the two-currency MFM. Finding the conditions under
which the predictor-corrector step converges remains an open question and it is the author’s
plan at the time of writing to address in the near future. In the spirit of the earlier chapters
it would be interesting to examine if the separability condition can be used to approximate
the two currency LMM by a function of some low-dimensional Markov process and if this is

the case can we relate it to a suitably defined two-currency MFM.
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Appendix A

Basis Functions

The numerical algorithms presented in Sections 4.2 and 4.3 crucially depend on the ability to
approximate well any ‘smooth enough’ function on a compact interval as a linear combination
of piecewise polynomial basis functions. We now formalise this idea and present a construction

of basis functions that will ensure that the resulting approximation is piecewise polynomial.

Definition A.1. Let [a,b] C R be an interval and let a = hy < hy < ... < hy,, = b be a
partition of [a,b]. We say that continuous functions b; : [a,b] — R,i = 0,...,n, are basis

functions for the interval [a,b] (with respect to the above partition) if
bi(hj)=5i7j, i,j=1,...,m. (Al)

Due to the nature of our problem we only consider basis functions that are continuous

piecewise polynomials of order ¢ and have constant coefficients on the intervals (h;, h;11],7 =

1,...,m — 1, of the partition.! In particular, we assume that each basis function is of the
following form
m—1 q
bl(a:) = Zbé,kxkl{hj<w§hj+1}' (AQ)
j=1 k=0

I(f) = f(hi)bi. (A.3)

Observe that by the definition of basis functions I(f)(h;) = f(hi),i =1,...,n. Moreover,
I(f) is piecewise polynomial of order g.

We now show how to choose a set of basis functions such that I(f) will be a piecewise
polynomial approximation of function f. Consider the i¢th basis function b; on the jth

interval [h;, hji1]. We determine the coefficients {bé,k}izo by fitting a polynomial through

1 Actually we can drop the assumption of continuity as constant coefficients on each interval make the
basis functions continuous on the interior of each interval of the partition and the definition of basis functions
then ensures the continuity on the dividing points h;,i =1,...,m.
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a+1
2

the points {(h;,j+,dij+k)}, 2 4 .. Note that this can only be done when

2

qg—1 . qg+1
— - — A4
5= <j<m 5 (A.4)
When j does not satisfy inequality (A.4), we reduce ¢ to the highest odd integer such that
the inequality holds. Figure A.1 shows the construction of the basis function b; on the
intervals [hq, ha], [he, hs] and [hs, ha] for ¢ = 5. Note that on other intervals the function by

equals zero.

Figure A.1: Construction of basis function b; when g = 5.

The simplest example of the above construction occurs when ¢ = 1. In this case
inequality (A.4) hold for every j = 1,...,m—1, and the ith basis function on the jth interval
is a linear function through points (k;,d; ;) and (hjt1,d; j4+1). Observe that the support of
b; is the interval [h;—1 V 0, hi11 A hyp]. Moreover I(f) is a linear interpolation of a function f.

For a general any odd integer ¢ < 7 the support of the ith basis function will be the
interval [hi_qu VO0,h; a1 A hm]. On the other hand on jth interval [hj, hj;1], there will
be only g + 1 non-zero basis function,? b;,i = j — q;—l, g+ q;“—l. Note that polynomials
b;| (hjhjsa]s b = j—q;zl, ces ,j—l—% are of degree g and are linearly independent by construction,
therefore they form a basis for the vector space of polynomials up to degree q. Furthermore,

if we slightly abuse the notation,

J+at
D SR, () = (R, (A.5)

T
i=j—45

Therefore I(f)|(n,,n.,,) is the polynomial approximation of degree g of the function f passing
through points (h;, f(hi)),i = j — q;—l,...,j + %1. Consequently, I(f) is a piecewise

2Provided that the Inequality (A.4) is satisfied, otherwise we reduce the ¢ to the highest odd integer such
that the inequality holds.)
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polynomial approximation of function f.
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Appendix B

Proofs

B.1 Proof of Theorem 3.8

Let v = (v1,v2),0 = (01,02) : Ry — R? p1o: Ry — [—1,1] and o™ : Ry — R, be
continuous functions that satisfy equation (3.31). Next define functions g;, h;,i = 1,2,3, and

f asin (3.32)—(3.36) and note that they are a solution to the functional equation

3

FT =) =" gi(t)hi(T). (B.1)

i=1

Note that g;, h;,t = 1,2,3, and f are continuous functions and we know from the
discussion in the Section 3.3 that f has to be of the form

Z Pi(y) exp(—Aiy), (B.2)

where \; € C, P; is a polynomial (possibly with complex coefficients) and ) (14 deg P;) = 3.
Similarly, functions g;, h;, 7 = 1,2, 3, can be expressed as sum of exponential polynomials, i.e.
fori=1,2,3,

PI(t) exp(Ait), (B.3)

=2

th exp(—=A;T). (B.4)
(B.5)

In particular f has to be of one of the following forms
1. 2, N €Ri=1,2,3,
3
= Z x; exp(—N\iy); (B.6)
i=1
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2. 21 #0, xo, 23, A1, A2 €R
f(y) = (z1y + z2) exp(—A1y) + 23 exp(—A2y); (B.7)
3. ¢1 >0, xz0,23,\€R
F(y) = 21(y° + 22y + x3) exp(—=A1y); (B.8)
4. z1,\ €eC\R, 22,2 €R

f(y) = 21 exp(—=A1y) + T1 exp(—A1y) + 22 exp(—Aay), (B.9)

where T denotes the complex conjugate of x.

Before analysing the possible solutions note that equations (3.35) and (3.36) imply
h3(T)? = hy(T)ho(T), (B.10)
an observation which will be used throughout the proof.

Case 1 We first analyse the case when f is of the form (B.6). We can assume without
loss of generality that Ay < Ao < A3. Clearly f will be of desired form if the functions
gi, hi,i = 1,2,3 are of the form,

gi(t) = a?exp(2Bit), i=1,2 (B.11)
93(t) = 2yaraz exp((B1 + Bo)t), (B.12)
hi(T) = exp(—26,T), i=1,2, (B.13)
ha(T) = exp(—=(B1 + £2)T), (B.14)

where aq, a2 >0, 81,02 € R and v € [-1,1]. Then f is given by
f(x) = af exp(—2B12) + o exp(—2B2x) + 2y oz exp(—(By + B2)x) (B.15)

and functions v, o and p; 2 are given by

o(T) = Zzg_ﬁlg : (B.16)
o(t) = [Zi zggglﬂ ; (B.17)
p12(t) =~ (B.18)
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Note that this is indeed a valid parameterisation since p; 2(t) = € [—1,1], and corresponds
to parameterisation 2.1 in the statement of the theorem.

Next we show that one cannot get a more general parameterisation when f is of the
form (B.6). We will refer to the parameterisation given by (B.16)—(B.18) as the ‘original

parameterisation’. The most general form we can expect of functions g;, h;, 71 =1,2,3, is

9i(t) = o exp(Ait) + B; exp(Aat) + 7; exp(Ast), (B.19)
hi(T) = a; exp(—MT) + b; exp(—X2T) + ¢; exp(—A3T), (B.20)

for some constants «;, 8;, Vi, a;, b;,c; € R,i=1,2,3. Then f has to be of the form

3

fly) = Z(aiai exp(—A1y) + b; B exp(—Aay) + ¢iyi exp(—)\gy)). (B.21)
i=1

In particular, observe that f can be represented by the original parameterisation if

n
> aie; >0, (B.22)
=1

Zcmi > 0, (B23)
=1

<§EM@)2§4(§;%%><§:%%)~ (B.24)

If we can show that any parameterisation of the form (B.19) and (B.20) satisfies (B.22)—
(B.24), then the original parameterisation covers all the parameterisations when f is of the
form (B.6). Note that (B.22) is true for any parameterisation of our interest since f needs
to be a positive function.

Another simple way of showing that a parameterisation offers no generality over the
original one is by showing that hi, ho and hs are linearly dependent. In such a case there
exist constants £, &2, &3 € R such that max{¢?,£2, €2} > 0 and

3
S &hi(T)=0, T>0. (B.25)
=1

Then at least one of the constants £; and &» is non-zero. Without loss of generality we

assume £ = 1. Then

3

3
T —=1) = Zgi(t)hi(T) = (9i(t) = &gr () ha(T) (B.26)

=2

and f can only be a sum of two exponential functions, thus less general than the original
parameterisation.

Now we use the restriction in equation (B.10). We will split the analysis into two
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possibilities: Ay = %()\1 + A2) and Ay # %()\1 + Ao).
First assume that A2 # (A1 + A3). Then equation (B.10) implies

2
aijaz = as,
2
biby = b3a
2
C1C2 = Cg,

a1bs + asb; = 2azbs,
ai1c2 + ascy = 2(13037

bico + bacy = 2bscs.

Suppose that a; = 0, then as = 0 and we are only interested in this parameterisation if
as # 0. Which in turn implies b; = ¢; = 0 and therefore b3 = ¢3 = 0. Thus hy = hz = 0 and
f(T —1t) = ga(t)ho(T) which leads to f being an exponential, thus offering no generality over

the original parameterisation. Note that assuming that any of the constants a;, b;, ¢;,i = 1,2,3

equals zero would lead to the conclusion that f is an exponential function (for example we

simply relabel constants appropriately).
Next assume that a;b;c; # 0,1 =1,2,3

Then it is easy to observe that

and therefore
a1bs = azby,

Since a;b;c; # 0,1 =1,2,3, then

(a1b2 - a2b1)2 =0,
(arc2 — ager)? =0,

(b162 - 5201)2 =

a1C2 = Q2C1,

az by ¢

ay b1 C1

(B.33)
(B.34)
(B.35)

(B.36)

b1C2 = bgcl.

(B.37)

and therefore ho = xhy. In particular, functions hi, he and hg are linearly dependent, thus

offering no generality over the original parameterisation.

Therefore we need to assume that As = (A1 4+ A3). In this case equation (B.10) implies

b1b2 + aico + asc1 = bg -+ 2(1363.

2
ai1a = asg,
2
C1C2 = Cg,

a1by + asb1r = 2asbs,

bica + bacy = 2bscs,
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Without loss of generality we can assume that a; = 1 and split the analysis into two cases
as # 0 and as = 0.
First let us consider the case when as = 0. Then equation (B.38) implies ag = 0 and

consequently equation (B.40) implies by = 0. Then (B.41) and (B.42) can be rewritten as

blcg = 25363 (B43)
co = b2 (B.44)

Note that if b3 = 0 then c3 = 0 and therefore h3 = 0, this would clearly offer no generality
over the original parameterisation. Therefore we can assume bs # 0 and we can express

b1,c1,co in terms of by and c3 as

C3 C% 2
b1 = 2*, Cc1 = 79 Cy = b3. (B45)
bs bs
We can now turn back to equation (B.1), since we know that f is of the from as in equation
(B.6), we know that the sum of coefficients in front of term of the form exp(—A\;T + A;t) is 0
when ¢ # j. Therefore 51 = v, =0 (take i = 1 and j = 2,3) and setting ¢ = 1,2 and j =1

yields

Z*ZOQ +bzaz =0 (B.46)
C2
b%al + b%OCQ + C3(iz — 0 (B47)
3

2
then 7o) + csas = 0 and therefore a 42 = 0.
3
On the other hand equation (3.34) implies 4g1(t)g2(t) > g¢3(t)?. In particular, the
coefficients 71, 72,73 in front of the exponential exp(2Ast) have to satisfy the inequality

0=dy72 >73 (B.48)
and therefore v3 = 0. Then we have to compare the coefficients in front of exp((Az2 + A3)t),

da1ve = 4(a1ye + azyi + BifB) > B + 2a3v3 = f3. (B.49)

Now we can show that the parameterisation satisfies conditions (B.23) and (B.24). First
observe that v, > 0 since go is non-negative function. Moreover, since y; = 3 = 0 it has to
be the case that y3 > 0. Then

3

Z civi = 373 = b3ys >0 (B.50)
i=1
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and condition (B.23) holds. Next observe that

() (L) -

i=1
= dayy9b3 (B.52)

3 2
<302 = (Y us) (B.53)
=1

and condition (B.24) also holds. Therefore, this parameterisation offers no generality over
the original one.

Finally we need to consider the case when as # 0. In this case we can without loss of
generality assume a; = as = az = 1.

First observe that we are only interested in the case when bjc; # 0 or baco # 0 as it
is easy to see that in other case the parameterisation offers no generality over the original
parameterisation. For example if b; = co = 0 it follows that either c3 = 0 and ¢1b2 = 0 which
in turn implies that either ¢; = c; = c3 =0 or by = by = b3 = 0.

Therefore, we can assume without loss of generality that bycl # 0. Since that cjca = ¢3 > 0

we can rewrite (B.41) to

0= b102 + b261 — QSgH(Cg)\/Clcg ( )
= sgn(c1)bi|ca| + sgn(er)ba|cr| — 2sgn(cs)/c1ca ( )
= by|ea| + bale1| — 2sgn(eres)/e1c2 (B.56)
(B.57)

= (b1v/]cal — sgn(eres)bay/Iea) (V]eal — sgn(eres)y/Iesl)

Therefore either \/|ca] — sgn(ciez)/Je1] = 0 or byy/|ca| — sgn(eics)bey/|e1] = 0.

Note that \/[ca| — sgn(cics)y/]ci]| = 0 if and only if ¢; = c; and sgn(cic3) = 1, therefore
c1 = ¢ = ¢z and functions hq, ho, h3 are linearly dependent and such parameterisation can
offer no generality over the original parameterisation.

We can then assume that bl\/@ — sgn(clcg)bg\/m = 0. In particular this implies

bi/[ea = sgn(cres)ba/Jer] (B.58)

ba _ sgn(cicz) - 2 =z eR (B.59)
b Vel

Then we can use (B.38)—(B.41) to express bs, b3, ¢1, ¢ in terms of by, ¢y and z as

1
by = by, by = ibl(l + x), Co = 01332, C3 = C1.
Next we use (B.42) to obtain a relationship between by, ¢; and x.

bibs +c¢c1 + o = bg + 2c3 (BGO)
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de1(1+ 22 + 422 = b (1 4+ )2 + 8¢y (B.61)
dei(1— ) =b3(1 — )? (B.62)

Note that x = 1 implies h;y = hy = hg which is not an interesting case. We then assume
x # 1 and thus
1
€= Zb‘{. (B.63)

Recall that it is enough for us to show that (B.23) and (B.24) hold. First observe that
the coefficient in front of the term exp(—X\;T" + A;t) on the right-hand side of equation (B.1)
has to be 0 when ¢ # j. In particular, for s = 1,2 and j =3

O=~v+7+73 (B.64)
1
0=0b1y1 +brzy2 + 5bi7ys (B.65)
and therefore 72 = v, and y3 = —27;. Furthermore, g; is non-negative and therefore y; > 0.
In particular,
2 1
Z civi = chyl(l —2)>>0 (B.66)
i=1

and (B.23) holds.
Next we prove that (B.24) also holds. Recall that 4g;(t)g2(t) > g3(t)?,t > 0, then

0 < 4g1(t)g2(t) — g3(t)” (B.67)
= (47172 — 73) exp(2Ast)
+ (48172 + 4B271 — 2B373) exp((A2 + As)t) (B.68)

+ (48182 + darye + dasyt — B3 — 2a373) exp(2Xat) + . ...
= 41 (B1 + B2 + fs) exp((Az + A3)t)

(B.69)
+ (461,82 — ﬁg + 4’}/1 (0(1 + 40(2 —+ 2&3)) exp(2)\2t) + ... s
where we omitted smaller exponents. Next observe that 2?21 B; = 0 and therefore
43182 — B3 + 471 (a1 + 4o + 2a3) > 0 (B.70)
Ay1(ar + dag + 203) > (=B — B2)° — 48152 (B.71)
1
’71(0[1 + 4042 =+ 2@3) Z Z(ﬁl — ﬂ2)2 (B72)
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Then

3 2
biBs) = V2B + o+ 2 (—B1 — Ba)(1 + 2)? (B.73)
2 ;
i=1
= 180 - )5 - Bo)? (.74
< bf'yl(ozl +as+az)(l — x)Q. (B.75)
On the other hand
3 3 1
4<; aiozi) <; ci'yi> =4(a; + a2 + 043)10171(1 - x)2 (B.76)
= b%%(al + o + 043)(1 — 3;‘)2 (B77)

and therefore equation (B.24) holds and this parameterisation offers no generality over the

original one.

Case 2 Next we analyse the case when f is of the form as in equation (B.7). Then hy, ho, h3
are of the form
hi(T) = (a;T + b;) exp(— M1 T) + ¢; exp(—A2T), (B.78)

where A; # A2. Then equation (B.10) implies
(a1T+b1)(a2T—|—bg) = (CL3T+ b3)2 (B79)

Note that a; = 0 implies as = a3 = 0 reducing the problem to Case 1. Similarly as = 0

implies a; = ag = 0. Then we can without loss of generality assume ajasas # 0 and therefore

ajas (T + %) (T + %) = a3 (T + bj)Q (B.80)

as

In particular, there exists x € R such that

b b b
A _2_3B_ . (B.81)
aq a9 as
and
hi(T) = a;(T + x) exp(—MT) + ¢; exp(—A2T). (B.82)
Now we can use (B.10) again and obtain
arca(T + x) + a2¢1 (T + x) = 2a3c3(T + x) (B.83)
aray = a3 (B.84)
cico = C2 (B.85)
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And it is straightforward to deduce

(arco — ager)? = 0. (B.86)
It then follows that
a_2_y (B.87)
ap  ap
for some z’ € R and
a1as = ascsx’. (B.88)

Therefore Z—i =2a/, hy = %hl and hy = Z—fhl. Then f solves
f(T—1t) =g)n(T), (B.89)

where g = g1 + Z—f g2+ Z—f g3 and h = hy. In particular, f is an exponential thus contradicting

the assumption that f is of the form as in equation (B.7) where 21 # 0.

Case 3 Next we analyse the case when f is of the form as in equation (B.8). Then

gi, hi,i =1,2,3, are of the form

gi(t) = pi(t) exp(Ait), (B.90)
hi(T) = ¢;(T') exp(—A1t), (B.91)

where p; and ¢; are polynomials of degree two or less. Without loss of generality we can
assume that the leading coefficient in polynomials ¢;,7 = 1,2, 3, is equal to 1. Denote by P

the quadratic polynomial P(y) := f(y)exp(A1y) and note that

3

P(T—t) =Y pi(t)gi(T). (B.92)

i=1

Note hat equation (B.10) implies that polynomials ¢; and g2 have to be of the same
parity and at least one of the polynomials ¢q; and ¢ has to be quadratic. We can therefore
without loss of generality assume that ¢; is a quadratic polynomial. We then have two
possibilities: deg gz = 0 and deg g» = 2.

We first explore the former, i.e. deg g = 0, then deg¢; = 1. In particular, the polynomials
q1, 92, q3 are then of the form

ql(T) = (T + C)Qa QQ(T) =1, q3(T) =T+ ¢, (B93)

for some ¢ € R. Differentiating (B.92) twice with respect to T" then yields

3
PUT —t) = Zpi(t)QQ’(T) = 2p1(t) (B.94)
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and therefore p;(t) = a. Since gy is a non-negative function a > 0 (note that a = 0 leads to
Case 1). Next we differentiate (B.92) once with respect to T and obtain

3
P/(T =) = 3 pilt)d(T) = 2a(T + ¢) + pa(0). (B.95)
i=1
Since the left-hand side in (B.95) is a function of T' — t only p3 has to be of the form
ps3(t) = —2a(t + b),b € R. Finally,
P(T —t) = a(T + ¢)* + pa(t) — 2a(t + b)(T + ¢) (B.96)
=a(T —t+c—b)*—a(t+b)? + pa(t) (B.97)

and pa(t) = a(t + b)?2 +d,d € R. Then f, v and o are of the form

f(T—t)=(a(T —t+c—b)+d)exp(—A (T — 1)) (B.98)
o) = |1 :;?XZ(/\:%\IT) : (B.99)
olt) = [ a(t ﬁ;xi(}l :;)(;/\11&)1 (B-100)
and we can determine p; » from equation (3.34)
(t+9) (B.101)

P12 = *m-

Recall that py o(t) € [-1,1],¢ > 0 which implies d > 0, moreover since f depends only on
the parameters difference b, ¢ only through their difference we can set ¢ = 0. We then obtain
Parameterisation 2.2 as in the statement of the theorem by introducing o = v/a, 8 =b,v=d
and A = Aq.

Now let us analyse the case when deg ¢; = deg go = 2. Note that equation (B.10) implies
that when ¢ has two distinct roots then ¢o and g3 have the same roots as ¢; and therefore
functions hi,he and hg are linearly dependent which in turn implies that f cannot be a
quadratic polynomial multiplied by an exponential. Then ¢, g2 and g3 have to be of the

form
q = (T +¢)?, g = (T +d)?, g3 = (T +¢)(T — d), (B.102)

where ¢ # d. We can now follow the same argument as for the case deggs = 0 and observe
that

P/(T = £) = 2(pr () + pa(t) + ps (1) = 20 > 0 (B.103)
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and

P(T —t) =2(T + ¢)p1(t) + 2(T + d)p2(t) + (2T + ¢ + d)ps3(t) (B.104)
= 2aT + 2cpa(t)2dps(t) + (¢ + d)ps(t) (B.105)

and therefore

2epa(t)2dpa(t) + (¢ + d)ps(t) = —2a(t + b). (B.106)
Then
P(T —t) = (T +¢)’pi(t) + (T + d)*pa(t) + (T + ) (T + d)ps(t) (B.107)
= aT? 4+ 2aT(t +b) + Zp1(t) + d*pa(t) + cdps(t) (B.108)
and therefore
Ep1(t) + d?pa(t) + cdps(t) = a((t +b)* +e). (B.109)

Note that p1, p2, ps then solve the following system of linear equations

1 1 1 p1(t) a
2¢ 2d c+d| [p2(t)| = | —2a(t+) (B.110)
2 d®  cd p3(t) a((t+b)? +e)

=A

Recall that ¢ # d, then the determinant det A = (¢ — d)® # 0 and therefore A is an invertible
matrix. Consequently, functions p, pa, p3 are well defined by (B.110). In particular,

pi(t) ) a((t+b+d)? +e)
p2(t)| = m a((t+c—|—d)2+e) . (B.111)
p3(t) —2a((t+b+c)(t+b+d) +e)

Finally, we need to find the conditions under which p; 2(t) € [-1,1],¢ > 0. Note that this is
the case if and only if 4p; (#)p2(t) > p3(t)? (see equation (3.34)). In particular,

0 < 4p1(t)pa(t) — p3(t)? (B.112)
4a3e
= e dp (B.113)

and therefore e > 0. Then f is of the form

f() =a((y +b)* +¢) exp(—Ay), (B.114)

where a > 0, b, A € R and e > 0. Therefore this parameterisation offers no generality over

the previous case.
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Case 4 Finally we analyse the case when f is of the form as in equation (B.9). We will
denote the imaginary unit by ¢ to avoid confusion with index i. Without loss of generality

we can take Ay = A —0,\,0 € R and z1 = %(u —ww),u, w € R. We can then express f as
fly) = (u cos(fy) + w sin(@y)) exp(—Ay) + x3 exp(—Aa2y), (B.115)
and g;, h;,i = 1,2, 3, have to be of the form

9i(t) = (v cos(0t) + fB; sin(6t)) exp(At) + ; exp(Aat), (B.116)
hi(T) = (a; cos(0T) + b; sin(07)) exp(—AT) + ¢; exp(—A2T), (B.117)

for some «;, 8;,7vi, a;,b;, c; € R.
If A # A9 equation (B.10) implies

ajas = a3, B.118
biby = b2, B.119
cres = a3, B.120

arbz + azb; = 2as3bs,
aico + ascy = 2(1/3C37

bico + bacy = 2bscs.

Recall that we got the same set of equations in Case 1 (A2 # (A1 + A3)) in particular it
is easy to observe that vectors (a;, b;,¢;),i = 1,2, 3, are co-linear, thus implying that f is a
solution to a Pexider equation, in particular v = w = 0. Thus it offers no generality over
Case 1.

We can therefore assume Ay = ), note that since ki, ho > 0 this implies ¢, co > 0.1 We

can without loss of generality assume ¢; = ¢o = 1. Then equation (B.10) implies

aras +1=a3 +c3, (B.124)
biby +1 =03 +c3, (B.125)
a1bs + asby = 2as3bs, (B.126)
a1 + as = 2ascs, (B.127)

by + by = 2bses. (B.128)

Let us first consider the case when a; + as = 0 and ¢3 = 0. It will turn out that we will
be able to capture all the parameterisations where f is of the form as in (B.9) and is a
non-negative function.

Equation (B.128) then implies by + by = 0. Define a := a; = —ag and b := by = —bo,

Lf ¢y = 0 it follows h1 = h3 = 0 and similarly if co = 0 then ho = h3 = 0 and in both cases it is trivial to
observe that f is an exponential function.
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then it follows from equations (B.124)—(B.126)
a>+b? =1, a3 = b, b3 = a? (B.129)

moreover azbz = —ab. We can then assume without loss of generality that b = v/1 — a2 and

hi(T) = (acos(0T) + bsin(9T) + 1) exp(—AT), (B.130)
ho(T) = (—acos(T) — bsin(T) + 1) exp(—AT), (B.131)
hs(T) = (beos(0T) — asin(6T)) exp(—AT). (B.132)

Next we would like to use (B.1) to find the constraints on the parameters «;, 8;, v, @ =
1,2,3. First, recall that cos(T — t) and sin(7T — t) can be expanded as

cos(T —t) = cos T cost + sinT'sint, (B.133)
sin(T' —t) = —cosT'sint 4 sin T cos . (B.134)

Therefore equation (B.1) implies

ayy —ayz +bys =0 (B.135)

byr —bys —ay3 =0 (B.136)

a1 +as=0 (B.137)

Bi+B2=0 (B.138)

a(ar — az) +baz = b(f1 — f2) — abs (B.139)

—a(f1 — B2) — bps = blag — a2) — aas (B.140)

In particular, o :== a3 = —awg, f:= 1 = —f2, 7:= 71 = 72 and 3 = 0. Then we can use
(B.139) and (B.140) to find a3z = 28 and 5 = —2a, hence

91(t) = (acos(6t) + Bsin(0t) + v)exp(At), (B.141)

92(t) = (—acos(0t) — Bsin(0t) + v)exp(At), (B.142)

g3(t) = (2B cos(6t) — 2asin(t) )exp(At). (B.143)

Recall that g, and g, have to be non-negative, which implies that v > 0 and o?+32? < 42 and it
is easy to verify that inequality 4¢; (t)g2(t) > g3(t)?, which ensures that p; o(t) € [-1,1],¢ > 0.
Then, f is of the form

f(y) = 2((ac + bB) cos(By) + (bar — afB) sin(fy) + ) exp(—Ay). (B.144)

Moreover, f is a non-negative function if and only if v > 0 and a? + 32 < 42 which is our
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assumption. Next observe that fixing ¢ = 0 implies b = 1 and

f(y) =2(Bcos(0y) + asin(fy) + v) exp(—Ay). (B.145)

Which clearly losses no generality. Finally, we need to determine functions v, and p; 2.
Note, that defining v;(T") := \/h;(T),T > 0,7 = 1,2, will not work since h3(T") = v1(T)v2(T)
assumes values between [—1,1]. We then have account the sign of the function hz while

maintaining continuity of functions v; and wvs.

Note that
1+sin(0T) = 0 < cos 97T + sin 07T =0, (B.146)
1 —sin(0T) = 0 < cos 97T — sin 07T =0 (B.147)
and 0 0 0 0
cos(fz) = (cos ; + sin ;) (cos ; —sin ;) (B.148)

The v defined as

sgn(cos &L + sin L) /1 + sin(0T) exp(— 1 AT')

sgn(cos &L — sin L) /1 — sin(0T) exp(— L1 AT)

o(T) = (B.149)

is a continuous function and v1 (T)va(T) = hs(T).
Now let us turn our attention to o and p; 2. When o? + 32 < 4% g; and gy are strictly

positive functions and 4¢; (t)g2(t) > ¢3(t) for all . Then o and p; 2 can be parametrised as

| Vacos(0t) + Bsin(0t) + v exp(3At)
o(t) = L/oz cos(0t) — Bsin(0t) + 'yexp(;/\t)l ’ (B.150)
B cos(0t) — asin(6t) (B.151)

PL2 = V72 — (accos(6t) + Bsin(0t))2

Note that p; 2 is well defined and continuous since o + 5% < 2.
On the other hand when o? + 32 = 4?2 it follows that 4g; (t)g2(t) = g3(t)? for all ¢ which
implies pl,g(t)2 = 1, in particular since p; 2 has to be a continuous function it has to be

constant. We can then parameterise o by first observing that a constant ¢ defined by

arccos %; £5>0
¢ = v (B.152)
— arccos %; B8 <0
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satisfies cos ¢ = % and sin¢ = &, Then

5

. bt — ¢
v+ acos(ft) + Bsin(fx) = 0 < cos =0, (B.153)
v — acos(ft) — Bsin(fx) = 0 < sin 0 2_ ¢ _ 0 (B.154)

and ot ot
B cos(0t) — asin(6t) = —2 cos 2_ sin 2_ ¢ (B.155)

Then we can parametrise o and p; 2 as
Ot— -
o(t) = sgn(c?s ;tT_Z)\/a cos(6t) + B sm.(9t) + 'yexp(%);t) , (B.156)
—sgn(sin %52)\/—acos(0t) — Bsin(0t) + yexp(3At)

p172 =1 (B157)

in particular note that ¢ is a continuous function.
And we can get the Parameterisation 2.3 from the statement theorem by rescaling

parameter A — 2.

B.2 Proof of Lemma 4.2

Let (Q, F,{F:}+>0,N) be a filtered probability space and let « be a Markov process under
the measure N. Suppose that 0 <t < T. Let V C £L(N) be a collection of o(x, s € [t,T])-
measurable such that for Ve V

E[V|F] = E[V|z]. (B.158)

Note that V is a linear subspace of £1(N) since the conditional expectation is a linear
functional.

Define a collection of sets A by
A={A=A, N - A ;VneNVie{l,...,n}: A, € o(xy,),t; € [t,T]}. (B.159)
Then for any set A € A its indicator function can be written as
1a=14, ... 14, (B.160)
Since z is a Markov process and Ay, € o(xy,)
E[1a|F] = E[14]z] (B.161)

and therefore 14 € V. Moreover, observe that the collection A is closed under finite

intersections and contains the whole probability space 2. Therefore A is a m-system.
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Moreover o(A) = o(xs,s € [t,T]).
Now define a collection B by

B:={BcCQ;1p € V}. (B.162)

We will show that B is a A-system containing collection A, thus allowing us to apply Dynkin’s
m-A Theorem. Trivially 1o =1 € V, and since V is a vector space 1gc =1 —15 € V. We

therefore only need to show that for an increasing sequence of sets (B;);en the union

oo
B=|JBieB. (B.163)
i=1
Since the sequence of the sets (B;);en is increasing the sequence of indicator functions
(1B,)52, is also increasing and

lim 1Bi (w) = 1B(W)a w e Q. (B164)

i—00

We can therefore use the conditional monotone convergence theorem to show
1—00 1— 00

Therefore B € B and B is a A-system. Furthermore, A C B since 14 € V, A € A. Therefore
we can apply Dynkin’s m-A Theorem to show

o(zs,s € [t,T]) =0(A) CB. (B.166)

Therefore, V contains all the indicator functions of o (x5, s € [t, T])-measurable sets and since
YV is a vector space over R it contains all the simple functions (linear combinations of indicator
functions). Furthermore, the collection V is closed under limits of increasing sequences by the
conditional monotone convergence theorem. Therefore, we can use the standard construction
to prove that V contains all integrable positive o(xs; s € [t, T])-measurable functions. Finally,
we can prove that V contains all integrable o(z4;s € [t,T]) functions by viewing them as a

difference of positive and negative parts and using the fact that V is a vector space.
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