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We study a novel mechanism design model in which agents each arrive
sequentially and choose one action from a set of actions with unknown
rewards. The information revealed by the principal affects the incen-
tives of the agents to explore and generate new information. We char-
acterize the optimal disclosure policy of a planner whose goal is to
maximize social welfare. One interpretation of our result is the imple-
mentation of what is known as the “wisdom of the crowd.” This topic
has become increasingly relevant with the rapid spread of the Internet
over the past decade.
I. Introduction
The Internet has proven to be a powerful channel for sharing informa-
tion among agents. As such, it has become a critical element in imple-
menting what is known as the “wisdom of the crowd.” Hence it is not that
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implementing the wisdom of the crowd 989
surprising that one of the most important recent trends in the new Inter-
net economy is the rise of online reputation systems that collect, maintain,
and disseminate reputations. There are now reputation systems for such
things as high schools, restaurants, doctors, travel destinations, and even
religious gurus. A naive view is that perfect-information sharing through
the Internet allows for favorable learning and supports the optimal out-
come. We argue that this is not the case because one of the important
characteristics of these new markets is the feedback effect, where users are
consumers aswell as generatorsof information. Information that is revealed
today affects the choices of future agents and as a result affects the new
information that will be generated. A policy that ignores this effect and
simply provides themost accurate current recommendation will lead in the
long run to insufficient exploration and hence a suboptimal outcome. In
this paper, we take a first step toward characterizing an optimal policy of
information disclosure when agents behave strategically and, unlike the
planner, are myopic.
To this end, we study a novel mechanism design problem in which

agents arrive sequentially and each in turn chooses one action from a
fixed set of actions with unknown rewards. The agent’s goal is to maxi-
mize his expected rewards given the information he possesses at the time
of arrival. Only the principal, whose interest is to maximize social wel-
fare, observes all past outcomes and can affect the agent’s choices by
revealing some or all of his information. The principal’s challenge is to
choose an optimal disclosure/recommendation policy while taking into
account that agents are self-interested and myopic. Clearly, a policy not
to reveal any information would cause all agents to select a priori the
better action and hence would lead to an inefficient outcome. Never-
theless, a policy of full transparency is not optimal either because it does
not address the incentives of selfish agents and hence does not allow
for enough exploration. Information is a public good, and as such, one
needs to be careful to provide proper incentives to an agent to explore
and produce new information. Note that contrary to what is commonly
assumed, in our setup the principal is the one who possesses the infor-
mation, which he reveals optimally through the chosen mechanism.
The new “Internet economy” provides several related examples for

which our model is relevant, and perhaps the first to come to mind is
TripAdvisor. TripAdvisor operates within the travel industry, one of the
world’s largest industries, accounting for 11.7 percent of world GDP and
8 percent of employment. As its name suggests, TripAdvisor is a website
that offers travel advice to its users. It does so by soliciting reviews from
users and providing rankings of hotels and restaurants around the world.
The company’s rankings are based on its own metric called “the Popu-
larity Index,” which is a proprietary algorithm. Note that while the in-
dividual reviews are also available to users, it is obvious to anyone familiar
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with TripAdvisor that they are of secondary importance to the rankings,
simply because of the overwhelming numbers of properties and reviews. A
typical user, then, mostly relies on the rankings and reads only a few re-
views to refine his search.
The company is by far the dominant source in the hospitality space,

with more than 75 million reviews generated by some 40 million visitors
per month ðsee Jeacle and Carter 2011Þ. Indeed, the data speak for them-
selves: the closer a property is to a number 1 ranking in its givenmarket, the
more numerous its direct online bookings. For example, a property ranked
number 1 sees 11 percent more bookings per month than the one ranked
number 2.1 This difference is striking given that in most cases, the differ-
ence between similarly ranked hotels is minor.
TripAdvisor’s revenue is generated through advertising, and as a re-

sult, the company’s main concern is the volume of visitors to its site. We
note, however, that high volume is achieved when the utility of the aver-
age customer is maximized. It follows that the company’s goal is akin to
that of a benevolent social planner. TripAdvisor’s Popularity Index is a
company secret, yet it is apparent that its exact strategy differs from just a
simple aggregation. In this paper, we point to one important aspect of
optimality that the company needs to consider.
Another interesting example is a company called Waze-Mobile, which

developed Global Positioning System navigation software based on the
wisdom of the crowd. Waze’s popularity on the West Coast is second only
to that of Google Maps, whereas in developing markets such as Brazil,
Uruguay, and Indonesia, it has surpassed Google by far.2 Waze is a social
mobile application that provides free turn-by-turn navigation based on
real-time traffic conditions as reported by users. The greater the number
of drivers who use this software, the more beneficial it is to its customers.
When a customer logs in to Waze with his smartphone, he continuously
sends information to Waze about his speed and location, and this infor-
mation, together with information sent by others, enables Waze to rec-
ommend to this driver as well as all other drivers an optimal route to their
1 The information breaks down as follows: Properties ranked 20 in their market see 10
percent more bookings per month than those ranked 40, properties ranked 10 in their
market see 10 percentmore bookings permonth than those ranked 20, properties ranked 5
in their market see 9 percent more bookings per month than those ranked 10, properties
ranked 2 in their market see 7 percent more bookings per month than those ranked 5, and
properties ranked 1 in their market see 11 percent more bookings per month than those
ranked 2 ðsee Digital Compass by MICROS eCommerce, http://blog.micros.com/2013
/04/25/how-a-higher-tripadvisor-ranking-can-help-hotels-book-more-room-nights/; accessed
on April 25, 2013Þ. A similar study about the Travelocity website illustrates that if a hotel
increases its score by one point on a five-point scale, the hotel can raise its price by 11.2 per-
cent and still maintain the same occupancy or market share. See Anderson ð2012Þ.

2 Waze, with a user base above 45million, was recently bought by Google for roughly $1.1
billion.
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implementing the wisdom of the crowd 991
destination. However, in order to provide good recommendations, Waze
must have drivers on every possible route. Indeed, as Waze’s own president
and cofounder admitted ðhttp://www.ustream.tv/recorded/21445754Þ,
Waze sometimes recommends a particular route to a driver despite ðindeed,
because ofÞ the absence of information on that route. The information
transmitted by this driver is then used to better serve future drivers. How-
ever, in order not to deter drivers from using the system, Waze must be very
careful about how often it “sacrifices” drivers to improve the experience of
others. Our model sheds some light on exactly this trade-off.
TripAdvisor and Waze are just two fascinating examples of the rapid

growth in the number of rankings and league tables published in recent
years, and they may well be the face of things to come. Internet evalua-
tions of goods and services are now commonplace. Influential websites
provide ratings for activities as diverse as the relative merit of various
books and compact discs and the teaching prowess of university profes-
sors. As we argue in this paper, the managers of these websites are facing
a nontrivial task as there is a conflict between gathering information from
users and making good recommendations to the same users.
Our model also relates to the recent controversy over the health care

report card system. This system entails a public disclosure of patient
health outcomes at the level of the individual physician. Supporters ar-
gue that the system creates powerful incentives for physicians to improve
the quality of health care and also provides patients with important in-
formation. Skeptics counter that report cards may encourage physicians
to “game” the system by avoiding sick patients, accepting healthy pa-
tients, or both. We look at this problem from a different angle by asking
how the information available canbe optimally revealed tomaximize social
welfare while taking account of the users’ incentives.3

With no pretensions to provide a comprehensive solution to this prob-
lem, the present paper should be seen as a first small step in this direc-
tion. Indeed, the model presented in Section II is the simplest one pos-
sible that allows us to study the interaction between an informed planner
and agents, as described above. In the model, the set of actions contains
only two deterministic actions with unknown rewards. We first assume
that agents are fully informed about their place in line. For this case the
principal’s optimal policy is characterized in Section III. In the optimal
policy, agent 1 always chooses the action with the higher mean, and we
denote his reward by r1. If r1 ∈ I t, then agent t is the first agent to whom
the principal recommends trying the other action, while for all agents
t 0 > t the recommendation is the better of the two actions. We show that
3 A striking example is the recent Israeli court order that the government reveal the
performance of child liver transplants in public hospitals. Although the evidencewas far from
statistically significant, parents overwhelmingly preferred to seek the operation abroad, and
the activity in Israel was virtually stopped.
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the sets fI tgt∈T are given by an increasing sequence of thresholds fi tgt∈T ,
where I t 5 ðit21; i tÞ, and that the number of agents who choose a sub-
optimal action is bounded independently of T. Consequently, as the num-
ber of agents increases, the social welfare converges to the first-best wel-
fare in the unconstrained mechanism.
The informational assumption is relaxed in Section IV, where we as-

sume that agents know only the block to which they belong ðsay, before,
during, or after rush hourÞ and show that the optimal policy is also a
threshold policy. The coarser the partition of the blocks is, the closer the
outcome is to the first-best, which is obtained in the extreme when all
agents belong to the same block.
It is worth noting that in the blocks model, agents have incentives to

spend resources to obtain information about their location. If this is a
relevant concern, a planner may choose to implement the policy that
assumes that agents know their exact location so as to eliminate agents’
incentives to waste resources on finding their location. Thus, in such a
situation one is led to consider the problem in which the agents know
their exact location in line.
In Section V, we describe a model in which the realized payoff of each

action is stochastic. We show that our mechanism naturally extends to
this case and yields a near-optimal performance. Solving for the first-best
mechanism in the stochastic setting is difficult and remains an open
problem.
We conclude in Section VI by arguing that a planner who can use

monetary transfers will make the best use of his resources by spending
them all on relaxing the incentive-compatibility constraint of the second
agent so as to keep the mechanism intact for all other agents.
Related literature.—The literature on informational cascades that origi-

nated with the work of Bikhchandani, Hirshleifer, and Welch ð1992Þ is
probably the closest to the model presented here. An informational cas-
cade occurs when it is optimal for an individual who has observed the
actions of those ahead of him to follow their behavior without regard to
his own information. Our problem is different as agents are not endowed
with private signals. Instead we examine a social planner who can control
the information received by each individual while implementing the opti-
mal informational policy.
The agents in the model considered here must choose from a set of

two-armed bandits ðsee the classical work of Rothschild ½1974�Þ. But un-
like the vast early work on single-agent decision making, our work con-
siders strategic experimentation in which several agents are involved,
along the lines of more recent work by Bolton and Harris ð1999Þ and
Keller, Rady, and Cripps ð2005Þ, to name just a few. The major departure
from the single-agent problem is that an agent in amultiagent setting can
learn from experimentation by other agents. Information is therefore a
This content downloaded from 137.205.101.038 on October 28, 2016 01:01:09 AM
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implementing the wisdom of the crowd 993
public good, and a free-rider problem in experimentation naturally arises.
It is shown that because of free riding, there is typically an inefficiently
low level of experimentation in equilibrium in these models. In contrast,
in our model, free riding is not a problem as agents have only one chance
to act, namely, when it is their turn to move. Our contribution is in ap-
proaching the problem from a normative, mechanism design point of
view.
In another related paper, Manso ð2011Þ studies an optimal contract

design in a principal-agent setting in which the contract motivates the
agent to choose optimally from a set of two-armed bandits. Yet, while in
Manso’s setup there is one agent who works for two periods, in our setup
there are multiple agents who choose sequentially.
Mechanism design without monetary transfers has been with us from

the early days when the focus of interest was the design of optimal voting
procedures. One such model that shares the sequential feature of our
model is that of Gershkov and Szentes ð2009Þ, who analyze a votingmodel
in which there is no conflict of interest between voters and information
acquisition is costly. In the optimal mechanism the social planner asks
voters randomly and one at a time to invest in information and to report
the resulting signal. In recent years, the interest in this type of exercise has
gone far beyond voting, as, for example, in the paper of Martimort and
Aggey ð2006Þ, which considers the problem of communication between
a principal and a privately informed agent when monetary incentives are
not available.
Also relevant and closely related to our work are the papers by Rayo

and Segal ð2010Þ and Kamenica and Gentzkow ð2011Þ. These two papers
consider optimal disclosure policies in which a principal wishes to in-
fluence the choice of an agent by sending the right message. A version of
our model with only two agents is very similar to what they consider. Our
contribution is in our consideration of the dynamic aspects of the prob-
lem, the real action beginning from the third agent onward.
Finally, two recent papers that examine disclosure of information in

a dynamic setup that is very different from ours are Ely, Frankel, and
Kamenica ð2013Þ and Horner and Skrzypacz ð2012Þ. Ely et al. consider
the entertainment value of information in themedia. They examine how
a newspaper may release information so as to maximize the utility that
readers derive from surprises and suspense. Horner and Skrzypacz ex-
amine a dynamic model in which an agent sells information over time.
II. Model

We consider a binary set of actions A5 fa1; a2g. The reward Ri of action
ai is deterministic but ex ante unknown. We assume that each Ri is drawn
independently from a continuous distribution pi that has full support
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and is common knowledge, and we let p be the joint distribution. Let
mi 5 ERi∼pi ½Ri �, and assume without loss of generality that m1 ≥ m2.
There are T agents who arrive one by one, choose an action, and real-

ize their payoff. Agents do not observe prior actions and payoffs. We start
by assuming that agents know their exact place in line. In Section IV, we
show that the main ingredients of the optimal policy remain the same
when this assumption is relaxed and agents receive only a noisy signal
about their position. The planner, on the other hand, observes the entire
history, which consists of his recommendations to the agents as well as
their choices and rewards. Let ht denote a particular history of length t,
where Ht stands for the set of histories of length t. The planner commits
to a message ðdisclosureÞ policy, which in the general setup is a sequence
of functions f ~Mtgt51; : : : ;T , where ~Mt :H t21 →Mt is a mapping from the set
of histories H t21 to the set of possible messages to agent t.4 Finally, a
strategy for agent t is a function jt :Mt → A.
The goal of agent t is to maximize his expected payoff conditional on

his information, while the goal of the planner is to maximize the ex-
pected average reward, that is, E ½1=ToT

t51R
t �. An alternative objective for

the planner would be to maximize the discounted payoff, E ½oT

t51g
tR t �,

for some discounting factor g ∈ ð0; 1Þ. We focus on the average payoff as
it is more suitable to our setup, but a similar result holds if the planner
wishes to maximize the discounted payoff.
Before we proceed to characterize the optimal solution, we note that

one can generalize our model so that the distribution of payoffs does not
have full support. The distribution does not even need to be continuous.
These assumptions are made to simplify the exposition. However, it is
important that when m1 ≥ m2 there be a positive probability that the first
action’s payoff is lower than m2, that is, that PrðR1 < m2Þ > 0 holds when
we assume full support. If, however, PrðR1 < m2Þ5 0, then all the agents
will choose the first action regardless of any recommendation policy.
This follows as every agent knows that everyone before him chose the
first action simply because any payoff of the first action exceeds the
mean of the second action. In such a setup a planner will find it im-
possible to convince agents to explore.
III. The Optimal Mechanism

Let us first give an overview of the mechanism and the proof. We start by
providing a simple example that illustrates the main properties of the
optimal mechanism. Then in Section III.B, we present some basic prop-
4 Restricting the planner to pure strategies is done for the sake of simplicity only. It is easy to
see that each of the arguments in the following sections holds true when the planner is also
allowed to use mixed strategies and that the resulting optimal strategy of the planner is pure.
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implementing the wisdom of the crowd 995
erties of incentive-compatible mechanisms. In particular, we establish a
revelation principle and show that without loss of generality, we can con-
centrate on recommendation mechanisms that specify for each agent
which action to perform ðlemma 1Þ. We show that once both actions are
sampled, the mechanism recommends the better action and stays incen-
tive compatible ðlemma 2Þ. In Section III.C, we explore the incentive-
compatible constraint of the agents.
Section III.D develops the optimal mechanism. We first show that

initially the optimal mechanism explores as much as possible ðlemma 4Þ.
We then show that any value of the better a priori action that is lower than
the expectation of the other action causes the second agent to under-
take an exploration ðlemma5Þ. Themain ingredient in our proof is that the
lower realizations are better incentives for exploration than the higher
realizations ðlemma 6Þ. Finally, there is some value of the better action that
realizations above it deter the principal from undertaking any exploration.
This result implies that the optimal incentive-compatible mechanism

is rather simple. The principal explores as much as he can ðgiven the
incentive-compatible mechanismÞ up to a certain value ðdepending on
TÞ for which he does not perform any exploration.
A. Example

To gain a better intuition of what follows, consider an example in which
the payoff of the first alternative, R1, is distributed uniformly on ½21, 5�
while the payoff of the second alternative, R 2, is distributed uniformly on
½25, 5�. For simplicity, suppose that the principal wishes to explore both
alternatives as soon as possible.5

Consider first what would happen in the case of full transparency. The
first agent will choose the first action. The second agent will choose the
second alternative only if the payoff of the first alternative is negative, R1

≤ 0. Otherwise, he and all the agents after him will choose the first
alternative, an outcome that is suboptimal.
Now consider a planner who does not disclose R1 but instead rec-

ommends the second alternative to the second agent whenever R1 ≤ 1.
The agent will follow the recommendation because he concludes that
the expected value of the first alternative is zero, which is equal to the
expected value of the second alternative. This implies that the outcome
under this policy allowsmore exploration as compared to the policy under
full transparency. Hence, we can already conclude that full transparency
is suboptimal.
5 The decision to explore depends on the realization of bothR1 andT. However, for large
T, the planner would like to explore for almost all values of R1.
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But we can do even better. Consider the more interesting case, the
recommendation for agent 3. Suppose that the planner’s policy is such
that he recommends that agent 3 use the second alternative if one of
the following two cases obtains: ð1Þ the second agent has been recom-
mended to test the second action ðR 1 ≤ 1Þ and, on the basis of the expe-
rience of the second agent, the planner knows thatR 2>R1; or ð2Þ the third
agent is the first to be recommended to test the second alternative be-
cause 1 <R1 ≤ 11 x ðto be derived belowÞ. Note that conditional on case 1,
the agent strictly prefers to follow the recommendation, while condi-
tional on case 2, he prefers not to, and the higher x is, the less attractive
the recommendation is. In the Appendix we show that for x 5 2.23 the
agent is just indifferent.
The computation for the fourth agent is similar, andherewe get that this

agent will explore ði.e., be the first to test R2Þ for the remaining values of R1

< 5. The better of the two actions is recommended to all the remain-
ing agents.
The rest of the paper is devoted to showing that this logic can be ex-

tended to form the optimal policy and that the number of exploring agents
is bounded.
B. Preliminary

We start the analysis with two simple lemmas that, taken together, es-
tablish that it is possible without loss of generality to restrict attention
to a special class of mechanisms in which the principal recommends an
action to the agents, and once both actions are sampled, the better of
the two is recommended thereafter. The first lemma is a version of the
well-known revelation principle.
Definition 1. A recommendation policy is a mechanism in which, at

time t, the planner recommends an action at ∈ A that is incentive com-
patible. That is, E ½Rj 2 Ri jat 5 aj � ≥ 0 for each aj ∈ A.We denote by M̂ the
set of recommendation policies.
Note that the above expectation E ½Rj 2 Ri jat 5 aj � implicitly assumes

that the agent knows the mechanism. Hence, from now on, whenever
we refer to a mechanism as incentive compatible, we assume that the agent
knows the mechanism and takes it as given.
Lemma 1. For any mechanism M, there exists a recommendation

mechanism that yields the same expected average reward.
The above lemma is a special case of Myerson ð1986Þ, and conse-

quently the proof is omitted.
Thus, we can restrict our attention to recommendation policies only.

The next lemma allows us to focus the discussion further by restricting
attention to the set of partition policies. A partition policy has two re-
strictions. The first is that the principal recommends action a1 to the first
This content downloaded from 137.205.101.038 on October 28, 2016 01:01:09 AM
 use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



implementing the wisdom of the crowd 997
agent. This is an essential condition for the policy to be incentive com-
patible. The second restriction is that once both actions are sampled, the
policy recommends the better one.
Definition 2. A partition policy is a recommendation policy that is

described by a collection of disjoint sets fItgT11
t52 . If r1 ∈ I t for t ≤ T, then

agent t is the first agent for whom at 5 a2, and for all t 0 > t , we have at 0 5
maxfa1; a2g. If r1 ∈ IT11, then no agent explores. If I t 5 ∅, then agent t
never explores.
Lemma 2. The optimal recommendation mechanism is a partition

mechanism.
Proof. Note first that since m1 ≥ m2, the first agent will always choose

the first action. Also, since the principal wishes to maximize the aver-
age reward, E ½1=ToT

t51R
t �, it will always be optimal for him to recommend

the better action once he has sampled both actions. Clearly, recommend-
ing the better of the two actions will only strengthen the incentive compati-
bility of the agent to follow the recommendation. Hence, for each agent
j ≥ 2, we need to describe the realizations of R1 that will lead the planner
to choose agent j to be the first agent to try the second action. QED
We next show that the optimal partition is a threshold policy.
C. Incentive-Compatibility ðICÞ Constraints
Agent t finds the recommendation at 5 a 2 incentive compatible if and
only if

E ½R 2 2 R1jat 5 a 2� ≥ 0:

Note that this holds if and only if

Prðat 5 a 2Þ � E ½R2 2 R1jat 5 a2� ≥ 0:

We use the latter constraint since it has a nice intuitive interpretation
regarding the distribution, namely,

E
at5a2

½R2 2 R1�dp ≥ 0:

For a partition policy the above constraint can be written as

E
R1∈[t<t I t ;R2>R1

½R 2 2 R1�dp1 E
R1∈I t

½m2 2 R1�dp ≥ 0: ð1Þ

The first integral represents exploitation, which is defined as the benefit
for the agent in the event that the principal is informed about both ac-
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tions, that is,R1 ∈ [t<t I t . Obviously this integrand is positive. The second
integral, the exploration part, represents the loss in the case in which the
principal wishes to explore and agent t is the first agent to try the second
action. We show that in the optimal mechanism this integrand is negative.
Alternatively, ð1Þ can be expressed as

E
R1∈[t<t I t ;R 2>R1

½R2 2 R1�dp ≥ E
R1∈I t

½R1 2 m2�dp:

The following lemma shows that it is sufficient to consider the IC of ac-
tion a2.
Lemma 3. Assume that the recommendation at 5 a 2 to agent t is

incentive compatibile. Then the recommendation at5 a1 is also incentive
compatible.

Proof. Let K t 5 fðR1; R2Þjat 5 a2g be the event in which the recom-
mendation to agent t is at 5 a2. If K

t 5 ∅, then the lemma follows since
E ½R1 2 R 2� > 0. Otherwise Kt ≠ ∅, and because the recommendation at 5
a 2 is incentive compatible, we must have E ½R2 2 R1jK t � ≥ 0. Recall, how-
ever, that by assumption, E ½R 2 2 R1� ≤ 0.
Now, since

E ½R2 2 R1�5 E ½R2 2 R1jK t � � Pr½K t �
1 E ½R2 2 R1j:K t � � Pr½:K t � ≤ 0;

it follows that E ½R2 2 R1j:K t � ≤ 0, which in particular implies that recom-
mending at

t 5 a1 is incentive compatible in the case of :K t . QED
D. Optimality of the Threshold Policy
Definition 3. A threshold policy is a partition policy in which the sets I t

are ordered intervals. Formally, I 2 5 ð2`, i2�, I t 5 ði t21, i t �.
Note that if i t21 5 i t, then I t 5 ∅ and agent t never explores.
The following simple claim establishes that in every period, the planner

will undertake as much exploration as the IC condition allows.
Lemma 4. Let M * be an optimal partition policy and assume that in

M * agent t 1 1 ≥ 3 explores with some positive probability ði.e.,
Pr½I t11� > 0Þ. Then agent t has a tight IC constraint.
Proof. Assume by way of contradiction that agent t does not have a

tight IC constraint. Then we can “move” part of the exploration of agent
t 1 1 to agent t and still satisfy the IC constraint. The average reward will
only increase, since agent t 1 1, rather than exploring in this set of reali-
zations of R 1, will choose the better of the two actions. To be precise,
assume that the IC condition for agent t does not hold with equality.
That is,
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E
R1∈I t

½R1 2 m2�dp < E
R1∈[t<t I t ;R 2>R1

½R2 2 R1�dp: ð2Þ

Recall that I t consists of those values r1 for which agent t is the first to
explore action a2 when R1 5 r1. By assumption we have Pr½I t11� > 0. Note
that the right-hand side of ð2Þ does not depend on I t. Therefore, we
can find a subset Î ⊂ I t11 in which Pr½Î � > 0 and then replace the set I t

with I 0t 5 I t [ Î and the set I t11 with I 0t11 5 I t11 2Î and still keep the IC
constraint. The only change is in the expected rewards of agents t and
t 1 1.
Before the change, the expected sum of rewards of agents t and t1 1,

conditional on R1 ∈ Î, was E ½R1jR1 ∈ Î �1 m2, while the new sum of expected
rewards ðagain conditional on R1 ∈ Î Þ is m2 1 E ½maxfR1;R2gjR1 ∈ Î �, which
is strictly larger ðsince the prior is continuousÞ. The IC constraint of agent
t holds by construction of the set Î, while the constraint for agent t 1 1
holds because his payoffs from following the recommendation increased
since we removed only exploration. None of the other agents is affected
by this modification. Therefore, we have reached a contradiction to the
claim that the policy is optimal. QED
Lemma 5. In the optimal partition policy, agent 2 explores for all

values r1 ≤ m2. Formally,

I 2 ⊇ fr1 : r1 ≤ m2g:

Proof. Assume that policyM 0 is a partition policy, and let B include the
values of the first action that are below the expectation of the second action
and are not in I 2, that is,6

B 5 fr1 : r1 ≤ m2; r1 ∉ I 2g:

If Pr½B� > 0, then a policy M 00, which is similar to M 0 except that now I 02

5 B [ I 2 and I 0t 5 I t 2 B for t ≥ 3 is a recommendation policy with a
higher expected average reward. Consider the policy M 0 and let Bt 5 B \ I t

for t ≥ 3. Because M 0 is a recommendation policy, agent t finds it opti-
mal to follow the recommendations and in particular to use action a 2

when recommended. Next consider the policy M 00 and observe that the
incentives of agent t to follow the recommendation to use action a2 are
stronger now because for R1 ∈ Bt, his payoff in M 0 is R2 while in M 00 it is
maxfR1;R2g. The agents t between 3 and T have a stronger incentive to
follow the recommendation, since now in the event of R1 ∈ Bt, we rec-
ommend the better of the two actions rather than a1. Because R1 < m2, it
6 Recall that we assume that Pr½R1 < m2� > 0.
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is immediate that expected average rewards in M 00 are higher than in M 0.
For agent 2 we have only increased the IC since E ½R2 2 R1jR1 ∈ B� ≥ 0.
QED
The discussion so far allows us to restrict attention to partition policies

in which ðiÞ once both R1 and R 2 are observed, the policy recommends
the better action, ðiiÞ the IC constraint is always tight, and ðiiiÞ the set
I 2 ⊇ ð2`; m2�. Next, we argue that we should also require the policy to be
a threshold policy. Note that if a partition policy fI jgT11

j52 is not a thresh-
old policy ðup to measure zero eventsÞ, then there exist indexes t2 > t1

and sets B1 ⊆ I t1 and B2 ⊂ I t2 such that supB2 < infB1 and Pr½B1�, Pr½B2� > 0.
A useful tool in our proof is an operation we call swap, which changes

a policy M 0 to a policy M 00.
Definition 4. A swap operation is a modification of a partition policy.

Given two agents t 1 and t 2 > t 1 and subsets B1 ⊂ I t 1 and B2 ⊂ I t 2 , where
supB2 < infB1, a swap constructs a new partition policy such that I 0t1 5
I t1 [ B 2 2 B1 and I 0t 2 5 I t 2 [ B1 2 B2, while other sets are unchanged, that
is, I 0t 5 I t for t ∉ ft1, t2g.
Definition 5. We say that a swap is proper if 7

E
R1∈B1

½m2 2 R1�dp5 E
R1∈B2

½m2 2 R1�dp:
Lemma 6. The optimal recommendation policy is a threshold policy.
Proof. LetMbe a recommendationpolicy that is not a threshold policy.

Following the discussion above, one can construct a proper swap. LetM 0

be the resulting recommendation policy. Consider a proper swap opera-
tion. First we show that the swap does not change the expected reward of
agent t1 conditional on a recommendation to choose action a2. From the
perspective of agent t1, the change is that in the case in which r1 ∈ B1, the
action recommended to him at M 0 is a1 rather than the action a2 rec-
ommended to him at M, and in the case in which r1 ∈ B2, it is a2 ðat M 0Þ
rather than a1 ðatMÞ. Since the swap operation is proper, his IC constraint
at M 0 can be written as

E
R1∈[t<t1 I

t ;R 2>R1

½R2 2 R1�dp1 E
R1∈I

t1

½m2 2 R1�dp

1 E
R1∈B2

½m2 2 R1�dp2 E
R1∈B1

½m2 2 R1�dp

5 E
R1∈[t<t1 I

t ;R 2>R1

½R2 2 R1�dp1 E
R1∈I t1

½m2 2 R1�dp ≥ 0:

ð3Þ
7 A proper swap always exists when a swap operation exists as a result of our assumption
on no mass points.
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Therefore, the swap does not change the expected reward of agent t 1
and M 0 satisfies IC for this agent.
Next consider all agents except agents t 2 and t 1. Observe first that all

agents t < t 1 and t > t 2 do not observe any change in their incentives ðand
rewardsÞ and we are left with agents t where t1 < t < t2. The expected re-
wards of these agents can only increase because the effect of the swap
is only on the first integral ∫R1∈[t<t I t ;R 2>R1

½R2 2 R1�dp of the IC constraint
ðsee ½3�Þ, which increases as a result of the swap because instead of the
set [t<t I t, we now have [t<t I t [ B 2 2 B 1 and supB 2 < infB 1.
Thus, it is left for us to analyze the incentives and rewards of agent

t 2 ðand only when t2 ≤T Þ to follow the recommendation to choose ac-
tion a 2. First observe that if r1 ∉ B1 [ B2, thenM andM 0 are identical, and
hence the only case to consider is the one in which r1 ∈ B1 [ B2. The ex-
pected reward under M conditional on r1 ∈ B1 [ B2 is

1
Pr½B1 [ B2� E

R1∈B1;R 2>R1

½R2 2 R1�dp1 E
R1∈B2

½m2 2 R1�dp
( )

;

and the expected reward under M 0 is

1
Pr½B1 [ B2� E

R1∈B2;R 2>R1

½R2 2 R1�dp1 E
R1∈B1

½m2 2 R1�dp
( )

:

We would like to show that

E
R1∈B1;R 2>R1

½R2 2 R1�dp1 E
R1∈B2

½m2 2 R1�dp

< E
R1∈B2;R 2>R1

½R2 2 R1�dp1 E
R1∈B1

½m2 2 R1�dp;

which is equivalent to showing that ðrecall that the swap is properÞ

E
R1∈B1
E
R 2>R1

½R 2 2 R1�dp < E
R1∈B2
E
R 2>R1

½R2 2 R1�dp:

Since ð2 ;̀ m2� ⊆ I 2 and inf B1 > supB 2, we conclude that Pr ½B2� > Pr½B1�,
which implies the last inequality. This again implies that the IC con-
straint is satisfied for this agent and that the swap operation increases
his rewards.
We now show that the proper swap operation increases the expected

payoff. First consider agent t 1. His net change in expected payoff is

E
R1∈B2

½R 2 2 R1�dp1 E
R1∈B1

½R1 2 R2�dp5 0;
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where the equality follows since it is a proper swap. Next consider agents t,
where t1 < t < t2. The net change in expected payoff of agent t is

E
R1∈B2
E
R 2

max fR2; R1g2 R1dp2 E
R1∈B1
E
R 2

maxfR 2; R1g2 R1dp

5 E
R1∈B2;R 2>R1

½R2 2 R1�dp2 E
R1∈B2;R 2>R1

½R2 2 R1�dp ≥ 0:

The last inequality, similar to ð3Þ, follows from the fact that Pr ½B2� > Pr½B1�
and that sup ½R1jR1 ∈ B2� < inf ½R1jR1 ∈ B1�.
Finally, we consider agent t 2, where the net change in expected pay-

offs is

E
R1∈B2
E
R2

maxfR2; R1g2 R2dp

2 E
R1∈B1
E
R 2

maxfR2; R1g2 R2dp

5 E
R1∈B2
E
R 2

maxfR2; R1g2 R1dp

2 E
R1∈B1
E
R 2

maxfR2; R1g2 R1dp

5 E
R1∈B2;R 2>R1

½R2 2 R1�dp

2 E
R1∈B2;R 2>R1

½R2 2 R1�dp ≥ 0;

where the first equality follows from the fact that it is a proper swap, and
the inequality follows as in ð3Þ. QED
Lemma 6 implies that an optimal policy must be a threshold policy.

That is, the sets fI tgt ∈T are restricted to being sets of intervals. Moreover,
the IC constraint is tight for any agent t ≤T provided that there is a pos-
itive probability that agent t 1 1 will be asked to explore.
Note that with a finite number of agents, there always exist high enough

realizations of R1 after which exploration is suboptimal. The next subsec-
tion solves for the optimal policy that accounts for this effect.
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E. The Optimal Threshold Policy

Consider first the case in which T is infinite. In this case, exploration is
maximized as the planner wishes to explore for any realized value of the
first action, r1. The optimal policy is defined by an increasing sequence of
thresholds i2;` < i3;` , where for t 5 2,

Ei2;`

R152`

½R1 2 m2�dp5 0:

For t > 2, as long as it ;` < `, we have

i t11;` 5 sup ijE
R1≤it ;R 2>R1

½R2 2 R1�dp ≥ Ei

R15it;`

½R1 2 m2�dp
( )

:

If i t ;` 5 `, then we define i t 0;` 5 ` for all t 0 ≥ t . Note that if it11;` < `,
then the above supremum can be replaced with the following equality:

E
R1≤i t ;R 2>R1

½R2 2 R1�dp5 Eit11;`

R15it ;`

½R1 2 m2�dp: ð4Þ

Consider the case in whichT is finite. As we shall see, the planner will ask
fewer agents to explore. Consider the tth agent. The right-hand side is the
expected loss due to exploration by the current agent. The expected gain
in exploitation, if we explore, is ðT 2 tÞE ½maxfR2 2 r1; 0g�. We set the
threshold vt for agent t to be the maximum r1 for which it is beneficial to
explore. Let vt be the solution to

ðT 2 tÞE ½maxfR2 2 vt ; 0g�5 vt 2 m2:

When considering agent t, there are T 2 t 1 1 agents left; then vt is the
highest value for which it is still optimal to explore. Note that vt is in-
creasing in t. Our main result is as follows.
Theorem 1. The optimal policy, Mopt, is defined by the sequence of

thresholds

i t ;T 5minfi t ;`; vtg;

where t is the minimal index for which i t ;` > vt .
Next we argue that even whenT is arbitrarily high, exploration is lim-

ited to a bounded number of agents in which the bound does not de-
pend on either the number of agents or the realizations of R1 and R 2.
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This implies that the memory required by the planner to implement the
optimal policy is bounded by a constant.
Theorem 2. Let t* 5minft ji t 5 `g; then t* ≤ ðm1 2 m2Þ=a, where

a5 E
R1≤i2;R 2>R1

½R2 2 R1�dp

≥ Pr ½R2 ≥ m2� � Pr½R1 < m2� � fE ½R2jR2 ≥ m2�2 E ½R1jR1 < m2�g:

Since t* is finite, the principal is able to explore both actions after t* agents.
The proof appears in the Appendix, but we can provide the intuition

here. Consider ð4Þ: the left-hand side represents the gain agent t expects
to receive by following the recommendation of the principal who has al-
ready tested both alternatives. It is an increasing sequence as the planner
becomes better informed as t increases. This implies that these terms can
be bounded from below when we consider agent t 5 2. The right-hand
side represents the expected loss the agent expects to experience when he
is the first agent to try the second alternative. The sum of the right-hand
side over all t is m1 2 m2. The proof is based on these two observations when
we sum the left-hand side and the right-hand side.
The above theorem has important implications. Consider the first-best

outcome in which the principal can force agents to choose an action. The
above theorem implies that for any T, the aggregate loss of the optimal
mechanismascompared to thefirst-bestoutcome isboundedby ðm1 2 m2Þ2=a.
As a result we make the following conclusion.
Corollary 1. As T goes to infinity, the average loss per agent as

compared to thefirst-best outcome converges to zero at a rate of 1=T . Apart
from a finite number of agents, t*, all other agents are guaranteed to fol-
low the optimal action.
IV. Imperfect Information about Location

In this section we relax the assumption that agents are perfectly informed
about their location in line and study the consequences of this uncer-
tainty. Indeed, if agents have no information about their location and
assign equal probability to every possible position, then it is easy to see
that the planner can implement the first-best outcome. The reason is
simply that there is no conflict of interest between the agent and the
planner who wishes to maximize the utility of the average agent. In what
follows we examine an intermediate case in which agents do not know their
exact location but know to which group of agents they belong location-
wise. For example, in the context of the real-time navigation problem, it is
reasonable to assume that while drivers are not perfectly aware of their exact
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place in order, they do know whether it is before, during, or after the rush
hour.
Thus, consider a sequence of integers 15 t1 < t2 < � � � < tk 5 T 1 1

such that if tj ≤ t ≤ tj11 2 1, then agent t believes that his location is uni-
formly distributed between tj and tj11 2 1. To simplify the exposition, we
assume that the first agent knows his location ði.e., t2 5 2Þ and therefore
always chooses action 1. We assume that this sequence is commonly known
and refer to the set of agents tj ≤ t ≤ tj11 2 1 as block j. Note that when the
number of blocks is T, we are in the model of Section II, while when there
is only one block, the agents are uninformed and the first-best is imple-
mentable.
We first argue that our main result of Section III also holds in this model

and the planner’s optimal strategy is a recommendation-based threshold
policy. Indeed, the steps leading to the conclusion that the optimal policy
is a partition policy are exactly the same as in Section III. Therefore, it
suffices to show that the swap operation, which is the key step in our proof
of the optimality of a threshold policy, is still valid.
Assume that the planner follows a partition policy. Given the informa-

tion agents have about their position, their IC constraint now becomes

1
tj11 2 tj o

tj1121

t5tj
E
R1∈[t<t I t ;R 2>R1

½R2 2 R1�dp
(

1 E
R1∈I t

½m2 2 R1�dp
)

≥ 0:

ð5Þ
As before, consider a nonthreshold partition policy and recall that if a
partition policy fI jgT11

j52 is not a threshold policy, then there exist indexes
t2 > t1 and sets B1 ⊆ I t 1 and B 2 ⊂ I t 2 such that

supB2 < inf B1 and Pr ½B1�; Pr½B2� > 0

and

E
R1∈B1

½m2 2 R1�dp5 E
R1∈B2

½m2 2 R1�dp;

and we can construct a new partition policyM 0 such that Î t 1 5 I t1 [ B2 2 B1

and Î t 2 5 I t 2 [ B1 2 B2, while the other sets are unchanged, that is, Î t 5 I t

for t ∉ ft1, t2g. Recall from the proof in Section III.D that following a
proper swap, the terms

E
R1∈[t<t I t ;R 2>R1

½R2 2 R1�dp1 E
R1∈I t

½m2 2 R1�dp
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weakly increase for all agents t. This implies also that the term

1
tj11 2 tj o

tj1121

t5tj

E
R1∈[t<t I t ;R 2>R1

½R2 2 R1�dp1 E
R1∈I t

½m2 2 R1�dp
( )

weakly increases. We conclude that the IC constraint remains the same for
some agents and becomes stronger for others and that, following a proper
swap, the sum of agents’ payoffs strictly increases. We thereby conclude that
the optimal policy is a threshold policy, that is, a policy in which the sets It

are ordered intervals I t 5 ði t21; it �. Next we argue that in a given block
only the first agent explores.
Lemma 7. In the optimal policy, for every block j5 1, . . . , k, we have

I t j 5 ðit j21; it j � and I t 5 ∅ for tj < t < tj11.
Proof. Consider an arbitrary threshold policy and a specific block j.

Suppose that we ask only the first agent in the block to explore, and only
when r1 ∈ ðitj21; itj11–1�, that is, whenever someone in the block explores
in the original policy. Then the aggregate loss from exploration in the IC
constraint ðsee ½5�Þ remains the same for everyone in the block. However,
we improve the expected payoff from exploitation for all agents. Hence,
the IC becomes stronger and the expected welfare higher. QED
Note that in the above lemma we may have slack in the IC constraint,

and the planner can even induce more exploration from the first agent
in the block. Specifically, we can calculate the optimal threshold itj11

by
replacing ð4Þ with

E
R1≤it

j21
;R 2>R1

½R2 2 R1�dp1 ðt j11 2 t J 2 1ÞE
R1≤it

j
;R 2>R1

½R2 2 R1�dp

5 Eit
j

R15it
j21

½R1 2 m2�dp:

The next theorem summarizes the discussion above.
Theorem 3. The optimal policy in the blocks model is given by a

sequence of thresholds fvig such that only the first agent in block j
explores when r1 ∈ ðvj21; vj �. That is, action a 2 is recommended to all the
other agents only when it is known that R 2 > R 1.
Finally, we argue that as the information that agents have about their

location becomes coarser, the policy that the planner can implement is
closer to the first-best. We define a block structure to be coarser if it is
constructed by joining adjacent blocks. As in the proof of the lemma
above, in the optimal policy only the first agent in this new block explores,
and he explores for a bigger set of realizations. Clearly, this results in a
more efficient outcome.
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Theorem 4. If block structure B1 is coarser than block structure B2,
then the optimal policy in B1 is more efficient.

V. The Stochastic Case

Our main goal in this section is to show that we can essentially extend
the optimal mechanism in the deterministic case to the stochastic model
and achieve a near-optimal expected average reward. The optimal sto-
chastic mechanism will have thresholds like the optimal deterministic
mechanism, and at the high level we keep the same structure.

A. Model

The stochastic model, like the deterministic model, has a binary set of
actions A 5 fa1, a2g. There is a prior distribution pi over all possible dis-
tributions of payoffs for action ai, which is common knowledge. From pi

a distribution Di is drawn before the process starts and is unknown. The
reward Ri of action ai is drawn independently from the distribution Di for
each agent, and we denote by Rt

i the reward of action ai to agent t. The a
priori expected reward of action ai is

mi 5 EpiðEDi ½Ri �Þ;

and as before we assume without loss of generality that m1 > m2 and that
Pr½E ½R1� < m2� > 0; otherwise exploration is impossible. For simplicity, we
assume that the range of any realized Ri is ½0, 1�. ðHowever, the result can
be extended to many other settings.Þ
Note that in the stochastic model there are two sources of uncer-

tainty. One is the distribution Di that is selected from the prior pi. The
second is due to the variance in the realizations of Rt

i that are drawn
from the distribution Di.

B. Threshold Algorithm for the Stochastic Model

We define a mechanism S for the planner that guarantees near-optimal
performance. The parameter of mechanism S is a sequence of thresholds
ðv1; v2; : : :Þ. We partition the agents to T=m blocks of m agents each,
where the ith block includes agents ði 2 1Þm 1 1 until im. All the agents
in each block will receive an identical recommendation.
To the agents in block 1, the first m agents, S recommends action a1.

Given the realizations, it computes

m̂1 5
1
m o

m

t51

R t
1:
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Note that m̂1 is fixed and never changes and does not necessarily reflect
all the information that is available to the planner.
For blocks i ≥ 2, mechanism S does the following:

1. If m̂1 ∈ ðvi21; vi �, then S recommends action a2. The agents in block i
will be the first to explore action a 2. Given the realizations of the
rewards, we set m̂2 5 ð1=mÞoim

t5ði21Þm11R
t
2 and define abest 5 a1 if m̂1 ≥ m̂2

and otherwise abest 5 a2.
2. If m̂1 ≤ vi21, then S recommends action abest.
3. If m̂1

> vi , then S recommends action a1.

C. Setting the Thresholds

As before, the planner needs to balance exploration and exploitation
to guarantee the IC constraint. First, we set v2;` for block i 5 2 as the
solution to the following equality:

05 E ½R2 2 R1jm̂1 ≤ v2;` �:

Then, consider the expected loss, assuming that block i ≥ 3 was the first
to explore action a2:

Lossðvi21; viÞ5 E ½R1 2 R2jm̂1 ∈ ðvi21; vi ��Pr½m̂1 ∈ ðvi21; vi ��:

Next we consider the expected gain, assuming that action a 2 was already
sampled and that abest 5 a 2:

Gainðvi21Þ5 E ½R2 2 R1jm̂1 ≤ vi21; abest 5 a2�
� Pr½m̂1 ≤ vi21; abest 5 a2�:

We set vi;` inductively. After we set vj ;` for j < i, we set vi;` such that
Gainðvi21;`Þ5 Lossðvi21;`vi;`Þ. Let ,i be the solution to

ðT 2 miÞED 2 ½maxfE ½R2�2 ‘i ; 0g�5 ð‘i 2 m2Þm:

We set the threshold to be vi 5minf‘i ; vi;`g.
D. Analysis

The following theorem establishes that as the number of agents T in-
creases, the average loss per agent goes to zero, as compared to the case
in which the planner knows the distributions of payoffs. Note that this
represents a better performance than that of a planner who is not sub-
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ject to the IC constraint as there is no need for explorations. The fol-
lowing theorem establishes the near-optimal performance of S.
Theorem 5. The mechanismS is incentive compatible, and when we

set m 5 T 2=3lnT , it has an average expected reward of at least

ED1;D 2 ½maxfER1∼D1 ½R1�; ER 2∼D 2 ½R2�g�2 C
lnT
T 1=3

;

where the constant C depends only on p1 and p2.
The theorem follows from the observation that, by the Hoeffding in-

equality, jm̂i 2 E ½Ri �j ≥ l with probability at most d ≤ 2e22l2m. For l5 T21=3,
since m 5 T 2=3lnT , we have d ≤ 2T22. This implies that we have three
sources of loss as compared with always playing the better action. The first
source of loss is due to the exploration, which spans a constant number
of b blocks, and depends only on the priors. Since each block is of size m,
this contributes at most bm=T to the average loss. The second source of
loss is the fact that E ½Ri � is only approximated; this loss is at most l5 T21=3

per agent. Finally, there is a small probability d ≤ 2T22 that our estimates
are incorrect, which contributes at most T 21 to the expected loss per
agent. Summing the three sources of loss yields the above theorem.

VI. Concluding Remarks: Monetary Transfers

We have focused on mechanisms in which the planner is not allowed to
usemonetary transfers. An interesting extension is to consider the case in
which the planner canuse cash to provide incentives to agents to explore. It
is straightforward that inour setup theplanner will exercise this optiononly
with the second agent and leave the mechanism intact for all other agents.
Thus, if the plannerhas a large enoughbudget, thenhe can obtain thefirst-
best by convincing the second agent ðor even the first agentÞ to explore
whenever this is required by the first-best. Otherwise, all the planner’s
resources should be used to increase the set I 2 in which agent 2 explores.
This also holds in the more realistic case in which the budget is raised
through taxation and taxation distorts efficiency.
Appendix

Detailed Calculation of the Example

When calculating the benefit from choosing the second alternative, agent 3
considers two cases.

Case I: R1 ≤ 1, R 2 > R1: In this case the third agent is certain that the second
alternative has already been tested by the second agent and was found to be
optimal; this implies that R2 >21. When computing the expected gain condi-
tional on this event, one can divide it into two subcases: ðIaÞ R2 > 1 and ðIbÞ R2 ∈
½21, 1�. The probabilities of these two events ðconditional on case I Þ are
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PrðIa jI Þ

5
PrðR2 > 1; R1 ≤ 1; R2 > R1Þ

Pr ðR2 > 1; R1 ≤ 1; R2 > R1Þ1 PrðR2 ∈ 21; 1�; R1 ≤ 1; R2 > R1Þ

5
0:4 � 1=3

0:4 � 1=31 0:2 � 1=3 � 1=2
5 0:8;

Pr ðIb jI Þ5 12 PrðIa jI Þ5 0:2:
The gain conditional on Ia is

EðR2 2 R1jIaÞ5 EðR2jR2 > 1Þ2 EðR1jR1 < 1Þ5 32 05 3:

The gain conditional on Ib is

EðR2 2 R1jIbÞ5 EðR2 2 R1jR1;R2 ∈ ½21; 1�; R2 > R1Þ5 2=3:

Hence, the gain conditional on I is given by

EðR2 2 R1jI Þ5 0:8 � 31 0:2 � 2=3
0:81 0:2

5
38
15

:

The relative gain from following the recommendation when we multiply by
the probability of I is

PrðI Þ � EðR2 2 R1jI Þ5 2
21 x

� 38
15

:

Case II: 1 < R1 ≤ 11 x : Conditional on this case, our agent is the first to test the
second alternative. The expected loss conditional on this event is

EðR1 2 R2jII Þ5 E ½R1jR1 ∈ ½1; 11 x��2 EðR2Þ

5
11 ð11 xÞ

2
2 05

21 x
2

:

When we multiply this by the probability of this event, we get

PrðII Þ � EðR2 2 R1jII Þ5 x
21 x

� 21 x
2

5
x
2
:

Equating the gain and the loss yields x 5 2.23. This implies that if the sec-
ond action is recommended to agent t 5 3 when I : R 1 ≤ 1 and the planner has
learned that the second action is optimal or when II : 1 < R1 ≤ 3.23, then agent t5 3
will follow the recommendation.
Proof of Theorem 2

Given our characterization, it is sufficient to focus on the case in which T 5 `.
Consider the summation of the right-hand side in ð4Þ:

o
`

t52
Ei t11;`

R15it ;`

½R1 2 m2�dp5 lim
t→` Ei t;`

R15i 2;`

½R1 2 m2�dp:
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Since ∫
i2;`

R152` ½R1 2 m2�dp5 0 and since ∫R1≤x ½R1 2 m2�dp is increasing in x, we con-
clude that

o
`

t52
Eit11;`

R15it;`

½R1 2 m2�dp ≤ lim
x→` E

R1≤x

½R1 2 m2�dp5 m1 2 m2:

Looking at the summation of the left-hand side

o
`

t52
E
R1≤i t ;R 2>R1

½R2 2 R1�dp;

we note that ∫R1≤x;R 2>R1
½R2 2 R1�dp is increasing in x. The fact that it is increasing

in t implies that if we let

a; E
R1≤i 2;R 2>R1

½R2 2 R1�dp;

we then have

a ≤ E
R1≤i t ;R 2>R1

½R2 2 R1�dp:

Hence, this sum can be bounded from below by t*a, which implies the claim.
QED
Proof of Theorem 5

Let r1 and r2 be the realized values of R1 and R 2, respectively. First, assume that
we have that jr1 2 r2j ≤ 2T21=3. Since max fr1; r2g ≤minfr1; r2g1 2T21=3, then the
average reward of any policy of selecting the actions would be at most 2T21=3

from the reward of always selecting the best action.
Second, assume that we have that jr1 2 r2j > 2T21=3. Using the Hoeffding in-

equality, we have that jm̂i 2 E ½Ri �j ≥ l with probability at most d ≤ 2e22l2m . For
l5 T21=3, since m 5 T 2=3 lnT , we have d ≤ 2T22. Assume that the event that
jm̂i 2 E ½Ri �j < l for both a1 and a 2 holds ðthis happens with probability at least
12 2d ≥ 12 4T22Þ. Given that the event holds, we have that m̂1

> m̂2 iff m1
> m2,

namely, abest is the optimal action. In this case we have a loss due to exploring
the worst action. If the worst action is a 2, then we have a loss of m ðone blockÞ,
and therefore the average loss, per action, compared to always performing the
optimal action is at most m=T 5 T21=3lnT .

If the worst action is action a1, then we claim that we explore action a 2 after
only a finite number of b blocks. Note that GainðvÞ is an increasing function in v.
Since v2;` is at least m2, we can claim that Gainðvi;`Þ ≥ Gainðm2Þ for any i ≥ 2. Recall
that Gainðvi21;`Þ5 Lossðvi21;` ; vi;`Þ, and note that oiLossðvi21;` ; vi;`Þ5 E ½R1 2 R2�.
This implies that the number of i’s needed is at most E ½R1 2 R2�=Gainðm2Þ ≥ b. Note
that b is a constant that depends only on the distributions D1 and D2 and is inde-
pendent from T. In this case the loss would be at most bm=T .

The third case is when our assumption does not hold, namely, either jm̂1 2 m1j
> T21=3 or jm̂2 2 m2j > T21=3. This occurs with probability at most 4T22 and there-
fore adds to the loss of each agent, in expectation, at most 4T22.
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Therefore, the difference between using always the better action and using the
mechanism S is at most

max fT21=3lnT ; 4T22 1 T21=3lnT ; 4T22 1 bT21=3lnTg ≤ CT21=3lnT

for some constant C > 0. QED
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